-\ ¢ . Master Method
Proof (Part 1)

f

Design and Analysis
of Algorithms |

The Master Method

If T(n) < aT (g) + 0(n%)

then

" 0(n%logn) ifa = b? (Casel)
T(n) = 1 0(n%) ifa < b% (Case?2)
0 (n'°8p @) ifa > b? (Case3)

Preamble
Assume : recurrence is
. T(1) <c (For some
n T(n) < aT(n/b) —|—cnd constant c)

And n is a power of b.
(general case is similar, but more tedious)

|ldea : generalize MergeSort analysis.
(i.e., use a recursion tree)

Tim Roughgarden

Tel
ve

What is the pattern ? Fill in the blanks in the following
statement: at each level j=0,1,2,...,log,n, there are <blank>
subproblems, each of size <blank> \

of times you can dividen by b

O al and n/al, respectively. before reaching 1

O al and n/bj, respectively.
O bl and n/al, respectively.

O bl and n/bi, respectively.

The Recursion Tree

a braches
Level O
Level 1
(Base cases
‘ : \ ‘ (size 1)
Level log,n ‘ ‘ ‘

oaho..v\ - - = -

Tim Roughgarden

Work at a Single Level

Total work at level j [ignoring work in recursive calls]

>Work per level-j subproblem

a

<d -c- YI=cn®. (=)’
o e {() ()
of level-] Size of each

subproblems level-j

subproblem

Tim Roughgarden

Total Work

Summing over all levels {=0,1,2,...,, log,n :

log, n

Total < cpd. Z (%)j (%)

work =0

