

Design and Analysis of Algorithms I

Master Method

Proof (Part I)

The Master Method

If
$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$$

then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$$

Preamble

Assume: recurrence is

1:5 T(1) L C

(:i) T(n) L aT(2) + Cnd

(for some)

and nis a power of b.

(general case is similar, but more tedious)

Idoa: gareralite MergeSoft analysis. liveruse a recursion tree

Tim Roughgarden

What is the pattern? Fill in the blanks in the following statement: at each level j=0,1,2,..., $\log_b n$, there are *<blank>* subproblems, each of size <blank>. n by b before reaching I

- \bigcirc a^j and n/a^j, respectively.
- $\supset \bigcirc$ a^j and n/ b^j , respectively.
 - b^j and n/a^j, respectively.
 - b^j and n/b^j, respectively.

The Recursion Tree

level 0

Level 0

Level 1

Sove cooks

(site 1)

Tim Roughgarden

Work at a Single Level

Total work at level; Lignoring work in recursive calls?

Losk per level; sub pro Hern

Los C. [2]

Cond. [2];

Losk six of level;

Shouldens subproblem

Total Work