

Master Method

Motivation

Design and Analysis of Algorithms I

Integer Multiplication Revisited

Motivation: potentially useful algorithmic ideas often need matternatical analysis to evaluate.

le call: grade -s chool multiplication alyonthm uses O (n2) operations to multiply two n-digit numbers.

A Recursive Algorithm

Pecursive approach Write $x = 10^{n/2} a + b$ $y = 10^{n/2} c + d$ (where a, b, c, d are $\frac{2}{2} - digit numbers$] So: $X \cdot y = [10^n ac + 10^{\frac{3}{2}} (ad + bc) + bd]$ (*)

Algorithment: recursively compute ac, ad, bc, bd, then compute (t) in obvious way.

A Recursive Algorithm (n) = maximum number of operations, this algorithm needs to multiply two n-digit numbers. lecurrence: express T(n) interns at running time of recursive calls. Base case: T(1) 4 a constant. $F_{\alpha \, \alpha \, N} = T_{N} = T_{N} = 4T(\frac{2}{2}) + 5(n)$ work dove by recursive calls

A Better Recursive Algorithm

Algorithm #2 (bauss): recursively compute actual (atthe cta) [recall ad the = (5-10-0)]

Neu le currence:

Bose case: T(1) 4 a constant.

Which recurrence best describes the running time of Gauss's algorithm for integer multiplication?

$$\bigcirc T(n) \le 2T(n/2) + O(n^2)$$

$$\bigcirc 3T(n/2) + O(n)$$

$$\bigcirc 4T(n/2) + O(n)$$

$$\bigcirc 4T(n/2) + O(n^2)$$