

Asymptotic Analysis

Additional Examples

Design and Analysis of Algorithms I

Example #1

Claim:
$$2^{n+10} = O(2^{n})$$
.
Proof: need to pick constants cyno such that
(H) $2^{n+10} \leq C \cdot 2^{n}$ $\forall n \geq n_0$
Note: $2^{n+10} = 2^{10} \cdot 2^{n} = (102e) \cdot 2^{n}$
So: if we droose $C = 1024$, $n_0 = 1$, then
(+) holds.

Tim Roughgarden

Example #2 Claim: 2 is not O(2"). Proof: by contradiction. If 2100 = O(2n), then Fronstarts C, No >0 Such that 710n 4 C.2n Un 2No But then L cancelling 2"]. 2ªn LC YNZNO which is cortainly fall. Or S.

Tim Roughgarden

Example #3 Claim: for every pair of (positive) Functions f(n),g(n), max f(g) = O(f(n)+g(n)).martig N-30

Tim Roughgarden

Example #3 (continued) Prof: [mer Stig] = Octur + g(n)) for every n, we have max {{hlig(n)} < f(n) + g(n) and Smar St(n), g(n)] Zif(n) tg(n)) Aus: $\frac{1}{2}(f(n) + g(n)) \leq \max\{f(n), g(n)\} \leq f(n) + g(n)$. =) mut $\{f_{ig}\} = O(f(m + g(n)), L_{c_1} = i_{c_1}, c_2 = i]$ Tim Roughgarden