Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 7: Observables and Schr<u>ödinger's equ</u>ation

Schrödinger's equation (part 1)

Axiom of unitary evolution

• Unitary evolution axiom: a quantum system evolves by a unitary rotation of the Hilbert space.

 $UU^{\dagger} = U^{\dagger}U = I$

• But... by *which* unitary rotation?

This is described by **Schrödinger's equation**, "the quantum equation of motion"

Schrödinger's equation

- Energy observable H, called the Hamiltonian of the system.
 - Its eigenvectors $|\phi_i
 angle$'s are the states with definite energy.
 - The eigenvalues λ_i 's are the energy of the corresponding state.
- Example $H = \begin{pmatrix} -\frac{1}{2} & \frac{5}{2} \\ \frac{5}{2} & -\frac{1}{2} \end{pmatrix}$
 - $|+\rangle$ with energy = 2
 - $|-\rangle$ with energy = -3

 $(\gamma) = \alpha_0 | 0 \rangle + \alpha_1 | 1 \rangle + \frac{1}{2} + \frac{1}$

Schrödinger's equation

- Energy observable H, called the Hamiltonian of the system.
 - Its eigenvectors $|\phi_i
 angle$'s are the states with definite energy.
 - The eigenvalues λ_i 's are the energy of the corresponding state.

• Schrödinger's equation:

$$|\Psi(t)\rangle = \text{State A system at time t}$$

Given $|\Psi(0)\rangle \ge H$
 $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle$

Solving Schrödinger's equation

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$$

 $|\psi(0)
angle = |\phi_j
angle$ where $|\phi_j
angle$ is some eigenvector of H with a corresponding eigenvalue $|\lambda_j
angle$

Solving Schrödinger's equation

 $i\hbar\frac{\partial}{\partial t}|\psi(t)
angle=H|\psi(t)
angle$

In general:
$$|\psi(0)\rangle = \sum_{j} \alpha_{j} |\phi_{j}\rangle$$

 $|\psi(t)\rangle = \sum_{j} \alpha_{j} e^{-\frac{i\lambda_{j}t}{\hbar}} |\phi_{j}\rangle$
In the eigenbasis, we can write $= \mathcal{U}(t)$
 $|\psi(t)\rangle = \begin{pmatrix} e^{-\frac{i\lambda_{1}t}{\hbar}} & 0\\ 0 & e^{-\frac{i\lambda_{k}t}{\hbar}} \end{pmatrix} |\psi(0)\rangle$
 $B = e^{A}$
 B has some every every B
 B has some every A
 B has some every A
 B has some A
 B has some every A
 B has some A
 B has so

Schrödinger's equation

 $i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$

In general: $|\psi(0)\rangle = \sum \alpha_j |\phi_j\rangle$ $|\psi(t)\rangle = \sum \alpha_j e^{-\frac{i\lambda_j t}{\hbar}} |\phi_j\rangle$ Example $|\psi(0)\rangle = |0\rangle$ H = XWhat is $|\psi(t)\rangle$? $|\psi(t)\rangle = \frac{1}{5}e^{-\frac{it}{5}}|+\rangle + \frac{1}{5}e^{+\frac{it}{5}}|-\rangle$

We know that X's eigenvectors are :

 $|+\rangle$ with eigenvalue 1

 $|-\rangle$ with eigenvalue -1