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Observables (part 2)
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« Suppose we have a k-level system: W) c CF ‘ ( ]P’ .

« An observable A for this system is an operator: a kxk Hermitian matrix.
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E.J What's special about it? Spectral theorem!

A has orthonormal eigenvectors \¢1>, ceey ’¢k> with real eigenvalues )\1, Ceey oy

Alpi) = Ai|di)

How do we measure with it?

Let W) — Z 04i|¢5i>. Measurement outcome is \; with probability |Ofi|2

new state Wnew> — ’¢z>



Observable

Suppose we have a k-level system: [1)) € CF

An observable A for this system is an operator: a kxk Hermitian matrix.

A=Al e.g. 1 1+
l1—7 =2
How general is this?
Suppose we wish to measure in an arbitrary basis [91)-- -, |®%)
and want arbitrary real outcomes A1, ..., A

is there an observable A with corresponding eigenvectors and eigenvalues?



- Example: [+),[-) with 2,—3
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In general: Given |¢;), \; corresponding observable is:

A=) Ni|oi) (il AMD:P ) f/\él

Therefore equivalent to our previous notion of measurement
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