Quantum Mechanics & Quantum Computation

Umesh Vazirani, UC Berkeley

Lecture 3: Two Qubits & Entanglement

Entanglement

Composite System

What is the state of the composite system?

Given the state of the composite system, determiner the state of each qubit:

Can you always factorize the composite state?

Answer: No!!

Bell State

 $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$

Measuring the Bell State

Measure first qubit: see 0 with probability $\frac{1}{2}$. New state = $|00\rangle$ see 1 with probability $\frac{1}{2}$. New state = $|11\rangle$

Measuring the Bell State

Measure first qubit: see 0 with probability $\frac{1}{2}$. New state = $|00\rangle$ see 1 with probability $\frac{1}{2}$. New state = $|11\rangle$

Same result if two particles share a coin flip before they were separated!