Quantum Mechanics & Quantum Computation

Umesh Vazirani, UC Berkeley

Lecture 3: Two Qubits & Entanglement

Two Qubits

Two Qubits

- Classically represent two bits of info:
 00, 01, 10, 11.
- Quantum state is a superposition over all four classical possibilities:

 $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$

 $|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$

Measurement

- Classically represent two bits of info:
 00, 01, 10, 11.
- Quantum state is a superposition over all four classical possibilities:

 $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$

 $|\alpha_{00}|^2+|\alpha_{01}|^2+|\alpha_{10}|^2+|\alpha_{11}|^2=1$

Observe j with probability $|\alpha_j|^2$. New state = $|j\rangle$.

Partial Measurement

 What is the result of measuring just the first qubit?

 $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$

 $|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$