Quantum Mechanics & Quantum Computation

Umesh Vazirani, UC Berkeley

Lecture 3: Two Qubits & Entanglement

Review

Entanglement is the key resource for quantum computation...

```
"spooky action at a distance"
--Einstein
```

I would not call [entanglement] *one* but rather *the* characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.

--Schrodinger

Qubits

- Atomic qubits: electron orbitals.
- Ground state $\leftrightarrow \rightarrow 0$ & Excited state $\leftrightarrow \rightarrow 1$.

Measurement

- Atomic qubits: electron orbitals.
- Ground state $\leftarrow \rightarrow 0$ & Excited state $\leftarrow \rightarrow 1$.

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$

Observe j with probability $|a_j|^2$. New state = $|j\rangle$.

$$\frac{1}{\sqrt{2}}|0\rangle + \left(\frac{1}{2} + \frac{i}{2}\right)|1\rangle$$

Geometric Interpretation

Other Examples of Qubits

Photon polarization

The orientation of electric field oscillations is either vertical or horizontal.

The spin of a particle is either up or down.

Measuring Polarization

Measuring Polarization

Uncertainty principle

 $\underline{\text{Bit:}} \quad |0\rangle \text{ or } |1\rangle$

Sign: $|+\rangle$ or $|-\rangle$

Cannot know both bit and sign of a qubit simultaneously.