Quantum Mechanics and Quantum Computation

Umesh Vazirani, UC Berkeley

Lecture 2: Qubits and the axioms of quantum mechanics Uncertainty principle

Uncertainty principle

One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles - its position and its velocity.

- Werner Heisenberg

Bit:
$$|0\rangle$$
 or $|1\rangle$

Sign:
$$|+\rangle$$
 or $|-\rangle$

Uncertainty principle

One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles - its position and its velocity.

- Werner Heisenberg

• Can we know both bit and sign of a qubit simultaneously?

Uncertainty principle

One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles - its position and its velocity.

- Werner Heisenberg

• Can we know both bit and sign of a qubit simultaneously?

• To quantify this, we define **spread** of a quantum state.

 $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \beta_0|+\rangle + \beta_1|-\rangle$

- The spread in standard basis := $S(|\psi\rangle) = |\alpha_0| + |\alpha_1|$
- The spread in sign basis := $\hat{S}(|\psi\rangle) = |\beta_0| + |\beta_1|$

$$\hat{S}(|0\rangle) = 1 + 0 = 1$$
 $\hat{S}(|0\rangle) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$

$$S(|+\rangle) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$
 $\hat{S}(|+\rangle) = 1 + 0 = 1$

• Uncertainty principle for bit and sign: $S(|\psi\rangle)\hat{S}(|\psi\rangle) \ge \sqrt{2}$ for any $|\psi\rangle$.