Quantum Mechanics & Quantum Computation

Umesh V. Vazirani University of California, Berkeley

Lecture 15: Quantum Search

Needle in a haystack

Searching for a needle in a haystack

Goal: Search for the marked entry.

Classically: try random entries. O(N/2) expected time.

Quantum??

NP-Complete Problems:

What does it mean?

For most computational problems, finding an answer is very difficult, but checking an answer is easy.

Finding a solution to an NP-complete problem can be viewed as a search problem.

$$(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_5 \lor x_6) \land \cdots$$

Is there a configuration of x_1, x_2, \cdots that satisfy the above formula?

There are 2^n possible configurations.

"Digital haystack"

NP-Complete Problems:

Satisfiability:

Finding a solution to an NP-complete problem can be viewed as a search problem.

 $(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_5 \lor x_6) \land \cdots$

Is there a configuration of x_1, x_2, \cdots that satisfy the above formula?

There are 2^n possible configurations.

n qubits
$$2^n = N$$

 $\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} |y\rangle \rightarrow U_{f} \sum_{y=0}^{3} |y\rangle$
Random \mathcal{J}
No better than probing
random $extry !!$
 $f(x) = (x_1 \sqrt{x_2} \sqrt{x_3}) \wedge (y \sqrt{y}) \dots \wedge (y)$
 $x_1 x_2 \dots x_n$

"Digital haystack" 0 1 $\mathbf{2}$ 3 xN -

$$N = 2^n$$

Goal: Search for the marked entry.

Classically: try random entries. O(N/2) expected time.

Quantum??

Theorem: Any quantum algorithm must take at least \sqrt{N} time. $2^{n/2}$

"Digital haystack"

Quantum??

Theorem: Any quantum algorithm must take at least \sqrt{N} time.

Grover's Algorithm: Quantum algorithm for unstructured search that takes $O(\sqrt{N})$ time.

"Digital haystack"

Problem. Given $f:\{0, 1, ..., N-1\} \rightarrow \{0, 1\}$, find x: f(x) = 1.

Hardest case: There is exactly one x: f(x) = 1. $x = \begin{bmatrix} C_f \\ -f(x) \\ x \end{bmatrix} = \begin{bmatrix} z \\ x \\ b \end{bmatrix} = \begin{bmatrix} U_f \\ -f(x) \\ b \end{bmatrix} = \begin{bmatrix} U_f \\ -b \\ -f(x) \end{bmatrix}$