Simon’s Algorithm

Suppose we are given function-2L f : {0,1}" — {0,1}", specified by a black box, with the promise that
there is ara € {0,1}" with a # 0" such that

» Forallx f(x+a) = f(x).

 If f(x) = f(y) then eithex=yory=x-+a.
The challenge is to determiree It should be intuitively clear that this is a difficult tas@rfa classical
(probabilistic) computer. This is because the algorithmnod determine until it finds two inputsx andy
such thatf (x) = f(y). And the best an algorithm can do is try random inputsitil it finds a match. By the

birthday paradox (actually its converse), the chance sfithnegligible iff is probed on many fewer than
22 inputs. By contrast, we will show an efficient quantum altgori.

1. Usef to set up random pre-image state
¢0=1/V2|z) +1/V2|z+a)

wherezis a randomm-bit string.

2. Perform a Hadamard transfoidi*".
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Figure 1: Simon’s algorithm

| Setting up a random pre-image state

Suppose we're given a classical circuit fok a 1 function f : {0,1}" — {0,1}".

We will show how to set up the quantum St@,’é = l/\/RzX:f(x):a |x> . Hereais uniformly random among
all ain the image off.

The algorithm uses two registers, both withqubits. The registers are initialized to the basis state
|0---0)|0---0). We then perform the Hadamard transfoki on the first register, producing the su-
perposition

1

2n/2xe{%l}”
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Then, we computé (x) through the oracl€; and store the result in the second register, obtaining #te st

S IT00).

x{0,1}"

The second register is not modified after this step. Thus weimake the principle of safe storage and
assume that the second register is measured at this point.

Let a be the result of measuring of the second register. Thisra random element in the range fafand
according to rules of partial measurement, the state of teréigister is a superposition over exactly those
values ofx that are consistent with those contents for the secondieegi<.

o) =1/vk 3 [

x:f(x)=a

2 O]otaining a linear equation

After step 2 we obtain a superposition

ayly)
ye{0,1}"
where
1 1 1 1 1
v oYz, = ay(zpa) _1\yz __q\ya
%_Vﬂm() +ﬁwp(n = s (CD L (-0

There are now two cases. For eaglif y-a= 1, thenay = 0, whereas if/-a= 0, then
=t
ay = 2(n-1)/2°

So when we observe the first register, with certainty we't ag/ such thaty-a = 0. Hence, the output
of the measurement is a randgnsuch thaty-a = 0. Furthermore, eachsuch thaty-a = 0 has an equal
probability of occurring. Therefore what we've managedetarh is an equation

yia1 P PDYnan =0 (1)

wherey = (y1,...,yn) is chosen uniformly at random frof©0,1}". Now, that isn’t enough information to
determineg, but assuming that # 0, it reduces the number of possibilities foby half.

It should now be clear how to proceed. We run the algorithnt anel over, accumulating more and more
equations of the form irf]1). Then, once we have enough o&tkgsations, we solve them using Gaussian
elimination to obtain a unique value af But how many equations is enough? From linear algebra, we
know thata is uniquely determined once we hame- 1 linearly independent equations—in other words,
n— 1 equations

y'Y.a=0(mod?2
y"Y.a=0(mod?2
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such that the sefy®, ...,y(""Y1 is linearly independent in the vector spat Thus, our strategy will be
to lower-bound the probability that amy— 1 equations returned by the algorithm are independent.

Suppose we already hakéinearly independent equations, with associated vegtdrs .., yK. The vectors
then span a subspage Z; of size X, consisting of all vectors of the form

bry® + - + by®

with by, ..., b € {0,1}. Now suppose we learn a new equation with associated wi&tdt. This equation
will be independent of all the previous equations provideat ¥V lies outside of S, which in turn has
probability at least2” — 2K) /2" = 1 — 2" of occurring.  So the probability that anyequations are
independent is exactly the product of those probabilities.

(-2) () (2) ()

Can we lower-bound this expression? Trivially, it's at keas

1

|_| <1— ?> ~ 0.28879;
k=1

the infinite product here is related to something in analgaled a g-series. Another way to look at the
constant ®8879... is this: it is the limit, as goes to infinity, of the probability that anx n random matrix
overZs is invertible.

But we don’t need heavy-duty analysis to show that the prodas a constant lower bound. We use the
inequality (1—a)(1—b)=1—-a—b+ab>1—-(a+b), if a,be (0,1). We just need to multiply the
product out, ignore monomials involving two or mojReterms multiplied together (which only increase the
product), and observe that the product is lower-bounded by

1-— i_|_ 1 4+ _|_1' }>}
2n - 201 4 2= 4

We conclude that we can determiaavith constant probability of error after repeating the aidpon O (n)
times. So the number of queries toused by Simon’s algorithm i©(n). The number of computation
steps, though, is dominated by the number of steps neededveoa system of linear equations. This can
be done by Gaussian elimination, which tak¥®?®) steps.
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