
Simon’s Algorithm

Suppose we are given function 2−1 f : {0,1}n → {0,1}n, specified by a black box, with the promise that
there is ana ∈ {0,1}n with a 6= 0n such that

• For all x f (x+ a) = f (x).

• If f (x) = f (y) then eitherx = y or y = x+ a.

The challenge is to determinea. It should be intuitively clear that this is a difficult task for a classical
(probabilistic) computer. This is because the algorithm cannot determinea until it finds two inputsx andy
such thatf (x) = f (y). And the best an algorithm can do is try random inputsx until it finds a match. By the
birthday paradox (actually its converse), the chance of this is negligible if f is probed on many fewer than
2n/2 inputs. By contrast, we will show an efficient quantum algorithm.

1. Use f to set up random pre-image state

φ = 1/
√

2
∣

∣z
〉

+1/
√

2
∣

∣z+ a
〉

wherez is a randomn-bit string.

2. Perform a Hadamard transformH⊗n.

|0n〉

|0n〉

H2n

C f

| f (x)〉

H2n |y〉

Figure 1: Simon’s algorithm

1 Setting up a random pre-image state

Suppose we’re given a classical circuit for ak−1 function f : {0,1}n →{0,1}n.

We will show how to set up the quantum state
∣

∣φ
〉

= 1/
√

k ∑x: f (x)=a

∣

∣x
〉

. Herea is uniformly random among
all a in the image off .

The algorithm uses two registers, both withn qubits. The registers are initialized to the basis state
|0· · ·0〉 |0· · ·0〉. We then perform the Hadamard transformH2n on the first register, producing the su-
perposition

1

2n/2 ∑
x∈{0,1}n

|x〉 |0· · ·0〉 .

C 191, Fall 2010, 1

Then, we computef (x) through the oracleC f and store the result in the second register, obtaining the state

1

2n/2 ∑
x∈{0,1}n

|x〉 | f (x)〉 .

The second register is not modified after this step. Thus we may invoke the principle of safe storage and
assume that the second register is measured at this point.

Let a be the result of measuring of the second register. Thena is a random element in the range off , and
according to rules of partial measurement, the state of the first register is a superposition over exactly those
values ofx that are consistent with those contents for the second register. i.e.

∣

∣φ
〉

= 1/
√

k ∑
x: f (x)=a

∣

∣x
〉

2 Obtaining a linear equation

After step 2 we obtain a superposition

∑
y∈{0,1}n

αy |y〉

where

αy =
1√
2

1

2n/2
(−1)y·z +

1√
2

1

2n/2
(−1)y·(z⊕a) =

1

2(n+1)/2
(−1)y·z [1+(−1)y·a] .

There are now two cases. For eachy, if y ·a = 1, thenαy = 0, whereas ify ·a = 0, then

αy =
±1

2(n−1)/2
.

So when we observe the first register, with certainty we’ll see ay such thaty · a = 0. Hence, the output
of the measurement is a randomy such thaty · a = 0. Furthermore, eachy such thaty · a = 0 has an equal
probability of occurring. Therefore what we’ve managed to learn is an equation

y1a1⊕·· ·⊕ ynan = 0 (1)

wherey = (y1, . . . ,yn) is chosen uniformly at random from{0,1}n. Now, that isn’t enough information to
determinea, but assuming thaty 6= 0, it reduces the number of possibilities fora by half.

It should now be clear how to proceed. We run the algorithm over and over, accumulating more and more
equations of the form in (1). Then, once we have enough of these equations, we solve them using Gaussian
elimination to obtain a unique value ofa. But how many equations is enough? From linear algebra, we
know thata is uniquely determined once we haven− 1 linearly independent equations—in other words,
n−1 equations

y(1) ·a ≡ 0(mod2)
...

y(n−1) ·a ≡ 0(mod2)

C 191, Fall 2010, 2

such that the set
{

y(1), . . . ,y(n−1)
}

is linearly independent in the vector spaceZn
2. Thus, our strategy will be

to lower-bound the probability that anyn−1 equations returned by the algorithm are independent.

Suppose we already havek linearly independent equations, with associated vectorsy(1), . . . ,y(k). The vectors
then span a subspaceS ⊆ Zn

2 of size 2k, consisting of all vectors of the form

b1y(1) + · · ·+ bky(k)

with b1, . . . ,bk ∈ {0,1}. Now suppose we learn a new equation with associated vectory(k+1). This equation
will be independent of all the previous equations provided that y(k+1) lies outside of S, which in turn has
probability at least(2n − 2k)/2n = 1− 2k−n of occurring. So the probability that anyn equations are
independent is exactly the product of those probabilities.

(

1− 1
2n

)

×
(

1− 1
2n−1

)

×·· ·×
(

1− 1
4

)

×
(

1− 1
2

)

.

Can we lower-bound this expression? Trivially, it’s at least

∞

∏
k=1

(

1− 1
2k

)

≈ 0.28879;

the infinite product here is related to something in analysiscalled a q-series. Another way to look at the
constant 0.28879. . . is this: it is the limit, asn goes to infinity, of the probability that ann×n random matrix
overZ2 is invertible.

But we don’t need heavy-duty analysis to show that the product has a constant lower bound. We use the
inequality (1− a)(1− b) = 1− a− b + ab > 1− (a + b), if a,b ∈ (0,1). We just need to multiply the
product out, ignore monomials involving two or more1

2k terms multiplied together (which only increase the
product), and observe that the product is lower-bounded by

[

1−
(

1
2n

+
1

2n−1 + · · ·+ 1
4

)]

· 1
2
≥ 1

4
.

We conclude that we can determinea with constant probability of error after repeating the algorithm O(n)
times. So the number of queries tof used by Simon’s algorithm isO(n). The number of computation
steps, though, is dominated by the number of steps needed to solve a system of linear equations. This can
be done by Gaussian elimination, which takesO(n3) steps.

C 191, Fall 2010, 3

	Setting up a random pre-image state
	Obtaining a linear equation

