
Chapter 7

Quantum Error Correction

7.1 A Quantum Error-Correcting Code

In our study of quantum algorithms, we have found persuasive evidence that
a quantum computer would have extraordinary power. But will quantum
computers really work? Will we ever be able to build and operate them?

To do so, we must rise to the challenge of protecting quantum information
from errors. As we have already noted in Chapter 1, there are several as-
pects to this challenge. A quantum computer will inevitably interact with its
surroundings, resulting in decoherence and hence in the decay of the quan-
tum information stored in the device. Unless we can successfully combat
decoherence, our computer is sure to fail. And even if we were able to pre-
vent decoherence by perfectly isolating the computer from the environment,
errors would still pose grave difficulties. Quantum gates (in contrast to clas-
sical gates) are unitary transformations chosen from a continuum of possible
values. Thus quantum gates cannot be implemented with perfect accuracy;
the effects of small imperfections in the gates will accumulate, eventually
leading to a serious failure in the computation. Any effective strategem to
prevent errors in a quantum computer must protect against small unitary
errors in a quantum circuit, as well as against decoherence.

In this and the next chapter we will see how clever encoding of quan-
tum information can protect against errors (in principle). This chapter will
present the theory of quantum error-correcting codes. We will learn that
quantum information, suitably encoded, can be deposited in a quantum mem-
ory, exposed to the ravages of a noisy environment, and recovered without
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2 CHAPTER 7. QUANTUM ERROR CORRECTION

damage (if the noise is not too severe). Then in Chapter 8, we will extend the
theory in two important ways. We will see that the recovery procedure can
work effectively even if occasional errors occur during recovery. And we will
learn how to process encoded information, so that a quantum computation

can be executed successfully despite the debilitating effects of decoherence
and faulty quantum gates.

A quantum error-correcting code (QECC) can be viewed as a mapping
of k qubits (a Hilbert space of dimension 2k) into n qubits (a Hilbert space
of dimension 2n), where n > k. The k qubits are the “logical qubits” or
“encoded qubits” that we wish to protect from error. The additional n − k
qubits allow us to store the k logical qubits in a redundant fashion, so that
the encoded information is not easily damaged.

We can better understand the concept of a QECC by revisiting an ex-
ample that was introduced in Chapter 1, Shor’s code with n = 9 and k = 1.
We can characterize the code by specifying two basis states for the code sub-
space; we will refer to these basis states as |0̄〉, the “logical zero” and |1̄〉, the
“logical one.” They are

|0̄〉 = [
1√
2
(|000〉 + |111〉)]⊗3,

|1̄〉 = [
1√
2
(|000〉 − |111〉)]⊗3; (7.1)

each basis state is a 3-qubit cat state, repeated three times. As you will
recall from the discussion of cat states in Chapter 4, the two basis states
can be distinguished by the 3-qubit observable σ(1)

x ⊗ σ(2)
x ⊗ σ(3)

x (where
σ(i)

x denotes the Pauli matrix σx acting on the ith qubit); we will use the
notation X1X2X3 for this operator. (There is an implicit I ⊗ I ⊗ · · · ⊗ I

acting on the remaining qubits that is suppressed in this notation.) The
states |0̄〉 and |1̄〉 are eigenstates of X1X2X3 with eigenvalues +1 and −1
respectively. But there is no way to distinguish |0̄〉 from |1̄〉 (to gather any
information about the value of the logical qubit) by observing any one or two
of the qubits in the block of nine. In this sense, the logical qubit is encoded
nonlocally; it is written in the nature of the entanglement among the qubits
in the block. This nonlocal property of the encoded information provides
protection against noise, if we assume that the noise is local (that it acts
independently, or nearly so, on the different qubits in the block).

Suppose that an unknown quantum state has been prepared and encoded
as a|0̄〉+ b|1̄〉. Now an error occurs; we are to diagnose the error and reverse
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it. How do we proceed? Let us suppose, to begin with, that a single bit flip
occurs acting on one of the first three qubits. Then, as discussed in Chapter
1, the location of the bit flip can be determined by measuring the two-qubit
operators

Z1Z2 , Z2Z3. (7.2)

The logical basis states |0̄〉 and |1̄〉 are eigenstates of these operators with
eigenvalue 1. But flipping any of the three qubits changes these eigenvalues.
For example, if Z1Z2 = −1 and Z2Z3 = 1, then we infer that the first
qubit has flipped relative to the other two. We may recover from the error
by flipping that qubit back.

It is crucial that our measurement to diagnose the bit flip is a collective
measurement on two qubits at once — we learn the value of Z1Z2, but we
must not find out about the separate values of Z1 and Z2, for to do so
would damage the encoded state. How can such a collective measurement
be performed? In fact we can carry out collective measurements if we have
a quantum computer that can execute controlled-NOT gates. We first intro-
duce an additional “ancilla” qubit prepared in the state |0〉, then execute the
quantum circuit

– Figure –

and finally measure the ancilla qubit. If the qubits 1 and 2 are in a state
with Z1Z2 = −1 (either |0〉1|1〉2 or |1〉1|0〉2), then the ancilla qubit will flip
once and the measurement outcome will be |1〉. But if qubits 1 and 2 are
in a state with Z1Z2 = 1 (either |0〉1|0〉2 or |1〉1|1〉2), then the ancilla qubit
will flip either twice or not at all, and the measurement outcome will be |0〉.
Similarly, the two-qubit operators

Z4Z5, Z7Z8,

Z5Z6, Z8Z9, (7.3)

can be measured to diagnose bit flip errors in the other two clusters of three
qubits.

A three-qubit code would suffice to protect against a single bit flip. The
reason the 3-qubit clusters are repeated three times is to protect against
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phase errors as well. Suppose now that a phase error

|ψ〉 → Z|ψ〉 (7.4)

occurs acting on one of the nine qubits. We can diagnose in which cluster
the phase error occurred by measuring the two six-qubit observables

X1X2X3X4X5X6,

X4X5X6X7X8X9. (7.5)

The logical basis states |0̄〉 and |1̄〉 are both eigenstates with eigenvalue one
of these observables. A phase error acting on any one of the qubits in a
particular cluster will change the value of XXX in that cluster relative to
the other two; the location of the change can be identified by measuring the
observables in eq. (7.5). Once the affected cluster is identified, we can reverse
the error by applying Z to one of the qubits in that cluster.

How do we measure the six-qubit observable X1X2X3X4X5X6? Notice
that if its control qubit is initially in the state 1√

2
(|0〉+ |1〉), and its target is

an eigenstate of X (that is, NOT) then a controlled-NOT acts according to

CNOT :
1√
2
(|0〉 + |1〉) ⊗ |x〉 → 1√

2
(|0〉 + (−1)x|1〉) ⊗ |x〉;

(7.6)

it acts trivially if the target is the X = 1 (x = 0) state, and it flips the
control if the target is the X = −1 (x = 1) state. To measure a product of
X’s, then, we execute the circuit

– Figure –

and then measure the ancilla in the 1√
2
(|0〉 ± |1〉) basis.

We see that a single error acting on any one of the nine qubits in the block
will cause no irrevocable damage. But if two bit flips occur in a single cluster
of three qubits, then the encoded information will be damaged. For example,
if the first two qubits in a cluster both flip, we will misdiagnose the error and
attempt to recover by flipping the third. In all, the errors, together with our
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mistaken recovery attempt, apply the operator X1X2X3 to the code block.
Since |0̄〉 and |1̄〉 are eigenstates of X1X2X3 with distinct eigenvalues, the
effect of two bit flips in a single cluster is a phase error in the encoded qubit:

X1X2X3 : a|0̄〉 + b|1̄〉 → a|0̄〉 − b|1̄〉 . (7.7)

The encoded information will also be damaged if phase errors occur in two
different clusters. Then we will introduce a phase error into the third cluster
in our misguided attempt at recovery, so that altogether Z1Z4Z7 will have
been applied, which flips the encoded qubit:

Z1Z4Z7 : a|0̄〉 + b|1̄〉 → a|1̄〉 + b|0̄〉 . (7.8)

If the likelihood of an error is small enough, and if the errors acting on
distinct qubits are not strongly correlated, then using the nine-qubit code
will allow us to preserve our unknown qubit more reliably than if we had not
bothered to encode it at all. Suppose, for example, that the environment
acts on each of the nine qubits, independently subjecting it to the depolar-
izing channel described in Chapter 3, with error probability p. Then a bit
flip occurs with probability 2

3
p, and a phase flip with probability 2

3
p. (The

probability that both occur is 1
3
p). We can see that the probability of a phase

error affecting the logical qubit is bounded above by 4p2, and the probability
of a bit flip error is bounded above by 12p2. The total error probability is no
worse than 16p2; this is an improvement over the error probability p for an
unprotected qubit, provided that p < 1/16.

Of course, in this analysis we have implicitly assumed that encoding,
decoding, error syndrome measurement, and recovery are all performed flaw-
lessly. In Chapter 8 we will examine the more realistic case in which errors
occur during these operations.

7.2 Criteria for Quantum Error Correction

In our discussion of error recovery using the nine-qubit code, we have assumed
that each qubit undergoes either a bit-flip error or a phase-flip error (or both).
This is not a realistic model for the errors, and we must understand how to
implement quantum error correction under more general conditions.

To begin with, consider a single qubit, initially in a pure state, that in-
teracts with its environment in an arbitrary manner. We know from Chapter
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3 that there is no loss or generality (we may still represent the most gen-
eral superoperator acting on our qubit) if we assume that the initial state
of the environment is a pure state, which we will denote as |0〉E . Then the
evolution of the qubit and its environment can be described by a unitary
transformation

U : |0〉 ⊗ |0〉E → |0〉 ⊗ |e00〉E + |1〉 ⊗ |e01〉E ,

|1〉 ⊗ |0〉E → |0〉 ⊗ |e10〉E + |1〉 ⊗ |e11〉E ; (7.9)

here the four |eij〉E are states of the environment that need not be normalized
or mutually orthogonal (though they do satisfy some constraints that follow
from the unitarity of U). Under U , an arbitrary state |ψ〉 = a|0〉 + b|1〉 of
the qubit evolves as

U : (a|0〉 + b|1〉)|0〉E → a(|0〉|e00〉E + |1〉|e01〉E)

+ b(|0〉|e10〉E + |1〉|e11〉E)

= (a|0〉 + b|1〉) ⊗ 1

2
(|e00〉E + |e11〉E)

+ (a|0〉 − b|1〉) ⊗ 1

2
(|e00〉E − |e11〉E)

+ (a|1〉 + b|0〉) ⊗ 1

2
(|e01〉E + |e10〉E)

+ (a|1〉 − b|0〉) ⊗ 1

2
(|e01〉E − |e10〉E)

≡ I |ψ〉 ⊗ |eI〉E + X|ψ〉 ⊗ |eX〉E + Y |ψ〉 ⊗ |eY 〉E
+ Z|ψ〉 ⊗ |eZ〉E . (7.10)

The action of U can be expanded in terms of the (unitary) Pauli operators
{I ,X,Y ,Z}, simply because these are a basis for the vector space of 2 × 2
matrices. Heuristically, we might interpret this expansion by saying that one
of four possible things happens to the qubit: nothing (I), a bit flip (X), a
phase flip (Z), or both (Y = iXZ). However, this classification should not
be taken literally, because unless the states {|eI〉, |eX〉, |eY 〉, |eZ〉} of the en-
vironment are all mutually orthogonal, there is no conceivable measurement
that could perfectly distinguish among the four alternatives.
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Similarly, an arbitrary 2n × 2n matrix acting on an n-qubit Hilbert space
can be expanded in terms of the 22n operators

{I,X,Y ,Z}⊗n; (7.11)

that is, each such operator can be expressed as a tensor-product “string” of
single-qubit operators, with each operator in the string chosen from among
the identity and the three Pauli matrices X,Y , and Z. Thus, the action
of an arbitrary unitary operator on n qubits plus their environment can be
expanded as

|ψ〉 ⊗ |0〉E →
∑

a

Ea|ψ〉 ⊗ |ea〉E ; (7.12)

here the index a ranges over 22n values. The {Ea} are the linearly inde-
pendent Pauli operators acting on the n qubits, and the {|ea〉E} are the
corresponding states of the environment (which are not assumed to be nor-
malized or mutually orthogonal). A crucial feature of this expansion for what
follows is that each Ea is a unitary operator.

Eq. (7.12) provides the conceptual foundation of quantum error correc-
tion. In devising a quantum error-correcting code, we identify a subset E of
all the Pauli operators,

E ⊆ {Ea} ≡ {I ,X,Y ,Z}⊗n ; (7.13)

these are the errors that we wish to be able to correct. Our aim will be
to perform a collective measurement of the n qubits in the code block that
will enable us to diagnose which error Ea ∈ E occurred. If |ψ〉 is a state
in the code subspace, then for some (but not all) codes this measurement
will prepare a state Ea|ψ〉 ⊗ |ea〉E , where the value of a is known from the
measurement outcome. Since Ea is unitary, we may proceed to apply E†

a(=
Ea) to the code block, thus recovering the undamaged state |ψ〉.

Each Pauli operator can be assigned a weight, an integer t with 0 ≤ t ≤ n;
the weight is the number of qubits acted on by a nontrivial Pauli matrix
(X,Y , or Z). Heuristically, then, we can interpret a term in the expansion
eq. (7.12) where Ea has weight t as an event in which errors occur on t
qubits (but again we cannot take this interpretation too literally if the states
{|ea〉E} are not mutually orthogonal). Typically, we will take E to be the set
of all Pauli operators of weight up to and including t; then if we can recover
from any error superoperator with support on the set E, we will say that the
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code can correct t errors. In adopting such an error set, we are implicitly
assuming that the errors afflicting different qubits are only weakly correlated
with one another, so that the amplitude for more than t errors on the n
qubits is relatively small.

Given the set E of errors that are to be corrected, what are the necessary
and sufficient conditions to be satisfied by the code subspace in order that
recovery is possible? Let us denote by { |̄i〉 } an orthonormal basis for the
code subspace. (We will refer to these basis elements as “codewords”.) It
will clearly be necessary that

〈j̄|E†
bEa |̄i〉 = 0, i 6= j, (7.14)

where Ea,b ∈ E. If this condition were not satisfied for some i 6= j, then
errors would be able to destroy the perfect distinguishability of orthogonal
codewords, and encoded quantum information could surely be damaged. (A
more explicit derivation of this necessary condition will be presented below.)
We can also easily see that a sufficient condition is

〈j̄|E†
bEa |̄i〉 = δabδij. (7.15)

In this case the Ea’s take the code subspace to a set of mutually orthogonal
“error subspaces”

Ha = EaHcode. (7.16)

Suppose, then that an arbitrary state |ψ〉 in the code subspace is prepared,
and subjected to an error. The resulting state of code block and environment
is

∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E , (7.17)

where the sum is restricted to the errors in the set E. We may then perform
an orthogonal measurement that projects the code block onto one of the
spaces Ha, so that the state becomes

Ea|ψ〉 ⊗ |ea〉E . (7.18)

We finally apply the unitary operator E†
a to the code block to complete the

recovery procedure.
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A code that satisfies the condition eq. (7.15) is called a nondegenerate

code. This terminology signifies that there is a measurement that can unam-
biguously diagnose the error Ea ∈ E that occurred. But the example of the
nine-qubit code has already taught us that more general codes are possible.
The nine-qubit code is degenerate, because phase errors acting on different
qubits in the same cluster of three affect the code subspace in precisely the
same way (e.g., Z1|ψ〉 = Z2|ψ〉). Though no measurement can determine
which qubit suffered the error, this need not pose an obstacle to successful
recovery.

The necessary and sufficient condition for recovery to be possible is easily
stated:

〈j̄|E†
bEa |̄i〉 = Cbaδij, (7.19)

where Ea,b ∈ E, and Cba = 〈̄i|E†
bEa |̄i〉 is an arbitrary Hermitian matrix. The

nontrivial content of this condition that goes beyond the weaker necessary
condition eq. (7.14) is that 〈̄i|E†

bEa|̄i〉 does not depend on i. The origin of
this condition is readily understood — were it otherwise, in identifying an
error subspace Ha we would acquire some information about the encoded
state, and so would inevitably disturb that state.

To prove that the condition eq. (7.19) is necessary and sufficient, we
invoke the theory of superoperators developed in Chapter 3. Errors acting
on the code block are described by a superoperator, and the issue is whether
another superoperator (the recovery procedure) can be constructed that will
reverse the effect of the error. In fact, we learned in Chapter 3 that the only
superoperators that can be inverted are unitary operators. But now we are
demanding a bit less. We are not required to be able to reverse the action of
the error superoperator on any state in the n-qubit code block; rather, it is
enough to be able to reverse the errors when the initial state resides in the
k-qubit encoded subspace.

An alternative way to express the action of an error on one of the code
basis states |̄i〉 (and the environment) is

|̄i〉 ⊗ |0〉E →
∑

µ

Mµ |̄i〉 ⊗ |µ〉E , (7.20)

where now the states |µ〉E are elements of an orthonormal basis for the envi-
ronment, and the matrices Mµ are linear combinations of the Pauli operators



10 CHAPTER 7. QUANTUM ERROR CORRECTION

Ea contained in E, satisfying the operator-sum normalization condition
∑

µ

M †
µMµ = I . (7.21)

The error can be reversed by a recovery superoperator if there exist operators
Rν such that

∑

ν

R†
νRν = I, (7.22)

and
∑

µ,ν

RνMµ|̄i〉 ⊗ |µ〉E ⊗ |ν〉A

= |̄i〉 ⊗ |stuff〉EA; (7.23)

here the |ν〉A’s are elements of an orthonormal basis for the Hilbert space of
the ancilla that is employed to implement the recovery operation, and the
state |stuff〉EA of environment and ancilla must not depend on i. It follows
that

RνMµ|̄i〉 = λνµ |̄i〉; (7.24)

for each µ and ν; the product RνMµ acting on the code subspace is a multiple
of the identity. Using the normalization condition satisfied by the Rν’s, we
infer that

M
†
δMµ|̄i〉 = M

†
δ

(

∑

ν

R†
νRν

)

Mµ|̄i〉 =
∑

ν

λ∗νδλνµ |̄i〉, (7.25)

so that M
†
δMµ is likewise a multiple of the identity acting on the code

subspace. In other words

〈j̄|M †
δMµ |̄i〉 = Cδµδij; (7.26)

since each Ea in E is a linear combination of Mµ’s, eq. (7.19) then follows.
Another instructive way to understand why eq. (7.26) is a necessary con-

dition for error recovery is to note that if the code block is prepared in the
state |ψ〉, and an error acts according to eq. (7.20), then the density matrix
for the environment that we obtain by tracing over the code block is

ρE =
∑

µ,ν

|µ〉E〈ψ|M †
νMµ|ψ〉E〈ν|. (7.27)
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Error recovery can proceed successfully only if there is no way to acquire
any information about the state |ψ〉 by performing a measurement on the
environment. Therefore, we require that ρE be independent of |ψ〉, if |ψ〉 is
any state in the code subspace; eq. (7.26) then follows.

To see that eq. (7.26) is sufficient for recovery as well as necessary, we
can explicitly construct the superoperator that reverses the error. For this
purpose it is convenient to choose our basis {|µ〉E} for the environment so
that the matrix Cδµ in eq. (7.26) is diagonalized:

〈j̄|M †
δMµ|̄i〉 = Cµδδµδij , (7.28)

where
∑

µ Cµ = 1 follows from the operator-sum normalization condition.
For each ν with Cν 6= 0, let

Rν =
1√
Cν

∑

i

|̄i〉〈̄i|M †
ν , (7.29)

so that Rν acts according to

Rν : Mµ |̄i〉 →
√

Cνδµν |̄i〉. (7.30)

Then we easily see that

∑

µ,ν

RνMµ |̄i〉 ⊗ |µ〉E ⊗ |ν〉A

= |̄i〉 ⊗ (
∑

ν

√

Cν |ν〉E ⊗ |ν〉A); (7.31)

the superoperator defined by the Rν ’s does indeed reverse the error. It only
remains to check that the Rν’s satisfy the normalization condition. We have

∑

ν

R†
νRν =

∑

ν,i

1

Cν

∑

ν

M ν |̄i〉〈̄i|M †
ν , (7.32)

which is the orthogonal projection onto the space of states that can be reached
by errors acting on codewords. Thus we can complete the specification of
the recovery superoperator by adding one more element to the operator sum
— the projection onto the complementary subspace.

In brief, eq. (7.19) is a sufficient condition for error recovery because it is
possible to choose a basis for the error operators (not necessarily the Pauli
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operator basis) that diagonalizes the matrix Cab, and in this basis we can
unambiguously diagnose the error by performing a suitable orthogonal mea-
surement. (The eigenmodes of Cab with eigenvalue zero, like Z1 −Z2 in the
case of the 9-qubit code, correspond to errors that occur with probability
zero.) We see that, once the set E of possible errors is specified, the recov-
ery operation is determined. In particular, no information is needed about
the states |ea〉E of the environment that are associated with the errors Ea.
Therefore, the code works equally effectively to control unitary errors or de-
coherence errors (as long as the amplitude for errors outside of the set E is
negligible). Of course, in the case of a nondegenerate code, Cab is already
diagonal in the Pauli basis, and we can express the recovery basis as

Ra =
∑

i

|̄i〉〈̄i|E†
a ; (7.33)

there is an Ra corresponding to each Ea in E.
We have described error correction as a two step procedure: first a col-

lective measurement is conducted to diagnose the error, and secondly, based
on the measurement outcome, a unitary transformation is applied to reverse
the error. This point of view has many virtues. In particular, it is the quan-
tum measurement procedure that seems to enable us to tame a continuum of
possible errors, as the measurement projects the damaged state into one of a
discrete set of outcomes, for each of which there is a prescription for recov-
ery. But in fact measurement is not an essential ingredient of quantum error
correction. The recovery superoperator of eq. (7.31) may of course be viewed
as a unitary transformation acting on the code block and an ancilla. This
superoperator can describe a measurement followed by a unitary operator if
we imagine that the ancilla is subjected to an orthogonal measurement, but
the measurement is not necessary.

If there is no measurement, we are led to a different perspective on the
reversal of decoherence achieved in the recovery step. When the code block
interacts with its environment, it becomes entangled with the environment,
and the Von Neumann entropy of the environment increases (as does the
entropy of the code block). If we are unable to control the environment, that
increase in its entropy can never be reversed; how then, is quantum error
correction possible? The answer provided by eq. (7.31) is that we may apply
a unitary transformation to the data and to an ancilla that we do control.
If the criteria for quantum error correction are satisfied, this unitary can be
chosen to transform the entanglement of the data with the environment into
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entanglement of ancilla with environment, restoring the purity of the data in
the process, as in:

– Figure –

While measurement is not a necessary part of error correction, the ancilla
is absolutely essential. The ancilla serves as a depository for the entropy in-
serted into the code block by the errors — it “heats” as the data “cools.” If
we are to continue to protect quantum information stored in quantum mem-
ory for a long time, a continuous supply of ancilla qubits should be provided
that can be discarded after use. Alternatively, if the ancilla is to be recycled,
it must first be erased. As discussed in Chapter 1, the erasure is dissipative
and requires the expenditure of power. Thus principles of thermodynamics
dictate that we cannot implement (quantum) error correction for free. Errors
cause entropy to seep into the data. This entropy can be transferred to the
ancilla by means of a reversible process, but work is needed to pump entropy
from the ancilla back to the environment.

7.3 Some General Properties of QECC’s

7.3.1 Distance

A quantum code is said to be binary if it can be represented in terms of
qubits. In a binary code, a code subspace of dimension 2k is embedded in a
space of dimension 2n, where k and n > k are integers. There is actually no
need to require that the dimensions of these spaces be powers of two (see the
exercises); nevertheless we will mostly confine our attention here to binary
coding, which is the simplest case.

In addition to the block size n and the number of encoded qubits k,
another important parameter characterizing a code is its distance d. The
distance d is the minimum weight of a Pauli operator E such that

〈̄i|Ea|j̄〉 6= Caδij. (7.34)

We will describe a quantum code with block size n, k encoded qubits, and
distance d as an “[[n, k, d]] quantum code.” We use the double-bracket no-
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tation for quantum codes, to distinguish from the [n, k, d] notation used for
classical codes.

We say that an QECC can correct t errors if the set E of Ea’s that allow
recovery includes all Pauli operators of weigh t or less. Our definition of
distance implies that the criterion for error correction

〈̄i|E†
aEb|j̄〉 = Cabδij, (7.35)

will be satisfied by all Pauli operators Ea,b of weight t or less, provided that
d ≥ 2t+1. Therefore, a QECC with distance d = 2t+1 can correct t errors.

7.3.2 Located errors

A distance d = 2t+1 code can correct t errors, irrespective of the location of
the errors in the code block. But in some cases we may know that particular
qubits are especially likely to have suffered errors. Perhaps we saw a hammer
strike those qubits. Or perhaps you sent a block of n qubits to me, but t < n
of the qubits were lost and never received. I am confident that the n − t
qubits that did arrive were well packaged and were received undamaged. But
I replace the t missing qubits with the (arbitrarily chosen) state |00 . . . 0〉,
realizing full well that these qubits are likely to be in error.

A given code can protect against more errors if the errors occur at known
locations instead of unknown locations. In fact, a QECC with distance d =
t+ 1 can correct t errors at known locations. In this case, the set E of errors
to be corrected is the set of all Pauli operators with support at the t specified
locations (each Ea acts trivially on the other n−t qubits). But then, for each
Ea and Eb in E, the product E†

aEb also has weight at most t. Therefore,
the error correction criterion is satisfied for all Ea,b ∈ E, provided the code
has distance at least t+ 1.

In particular, a QECC that corrects t errors in arbitrary locations can
correct 2t errors in known locations.

7.3.3 Error detection

In some cases we may be satisfied to detect whether an error has occurred,
even if we are unable to fully diagnose or reverse the error. A measurement
designed for error detection has two possible outcomes: “good” and “bad.”
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If the good outcome occurs, we are assured that the quantum state is un-
damaged. If the bad outcome occurs, damage has been sustained, and the
state should be discarded.

If the error superoperator has its support on the set E of all Pauli op-
erators of weight up to t, and it is possible to make a measurement that
correctly diagnoses whether an error has occurred, then it is said that we can
detect t errors. Error detection is easier than error correction, so a given code
can detect more errors than it can correct. In fact, a QECC with distance
d = t+ 1 can detect t errors.

Such a code has the property that

〈̄i|Ea|j̄〉 = Caδij (7.36)

for every Pauli operator Ea of weight t or less, or

Ea |̄i〉 = Ca |̄i〉 + |ϕ⊥
ai〉 , (7.37)

where |ϕ⊥
ai〉 is an unnormalized vector orthogonal to the code subspace.

Therefore, the action on a state |ψ〉 in the code subspace of an error su-
peroperator with support on E is

|ψ〉 ⊗ |0〉E →
∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E = |ψ〉 ⊗





∑

Ea∈E
Ca|ea〉E



 + |orthog〉 ,
(7.38)

where |orthog〉 denotes a vector orthogonal to the code subspace.
Now we can perform a “fuzzy” orthogonal measurement on the data, with

two outcomes: the state is projected onto either the code subspace or the
complementary subspace. If the first outcome is obtained, the undamaged
state |ψ〉 is recovered. If the second outcome is found, an error has been
detected. We conclude that our QECC with distance d can detect d − 1
errors. In particular, then, a QECC that can correct t errors can detect 2t
errors.

7.3.4 Quantum codes and entanglement

A QECC protects quantum information from error by encoding it nonlo-

cally, that is, by sharing it among many qubits in a block. Thus a quantum
codeword is a highly entangled state.
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In fact, a distance d = t+1 nondegenerate code has the following property:
Choose any state |ψ〉 in the code subspace and any t qubits in the block.
Trace over the remaining n − t qubits to obtain

ρ(t) = tr(n−t)|ψ〉〈ψ| , (7.39)

the density matrix of the t qubits. Then this density matrix is totally random:

ρ(t) =
1

2t
I; (7.40)

(In any distance-(t+ 1) code, we cannot acquire any information about the
encoded data by observing any t qubits in the block; that is, ρ(t) is a constant,
independent of the codeword. But only if the code is nondegenerate will the
density matrix of the t qubits be a multiple of the identity.)

To verify the property eq. (7.40), we note that for a nondegenerate distance-
(t+ 1) code,

〈̄i|Ea|j̄〉 = 0 (7.41)

for any Ea of nonzero weight up to t, so that

tr(ρ(t)Ea) = 0, (7.42)

for any t-qubit Pauli operator Ea other than the identity. Now ρ(t), like any
Hermitian 2t × 2t matrix, can be expanded in terms of Pauli operators:

ρ(t) =
(

1

2t

)

I +
∑

Ea 6=I

ρaEa . (7.43)

Since the Ea’s satisfy

(

1

2t

)

tr(EaEb) = δab , (7.44)

we find that each ρa = 0, and we conclude that ρ(t) is a multiple of the
identity.
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7.4 Probability of Failure

7.4.1 Fidelity bound

If the support of the error superoperator contains only the Pauli operators
in the set E that we know how to correct, then we can recover the encoded
quantum information with perfect fidelity. But in a realistic error model,
there will be a small but nonzero amplitude for errors that are not in E, so
that the recovered state will not be perfect. What can we say about the
fidelity of the recovered state?

The Pauli operator expansion of the error superoperator can be divided
into a sum over the “good” operators (those in E), and the “bad” ones (those
not in E), so that it acts on a state |ψ〉 in the code subspace according to

|ψ〉 ⊗ |0〉E →
∑

a

Ea|ψ〉 ⊗ |ea〉E

≡
∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E +

∑

Eb 6∈E
Eb|ψ〉 ⊗ |eb〉E

≡ |GOOD〉 + |BAD〉 . (7.45)

The recovery operation (a unitary acting on the data and the ancilla) then
maps |GOOD〉 to a state |GOOD′〉 of data, environment, and ancilla, and
|BAD〉 to a state |BAD′〉, so that after recovery we obtain the state

|GOOD′〉 + |BAD′〉 ; (7.46)

here (since recovery works perfectly acting on the good state)

|GOOD′〉 = |ψ〉 ⊗ |s〉EA , (7.47)

where |s〉EA is some state of the environment and ancilla.
Suppose that the states |GOOD〉 and |BAD〉 are orthogonal. This would

hold if, in particular, all of the “good” states of the environment are orthog-
onal to all of the “bad” states; that is, if

〈ea|eb〉 = 0 for Ea ∈ E, Eb 6∈ E. (7.48)

Let ρrec denote the density matrix of the recovered state, obtained by tracing
out the environment and ancilla, and let

F = 〈ψ|ρrec|ψ〉 (7.49)
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be its fidelity. Now, since |BAD′〉 is orthogonal to |GOOD′〉 (that is, |BAD′〉
has no component along |ψ〉|s〉EA), the fidelity will be

F = 〈ψ|ρGOOD′ |ψ〉 + 〈ψ|ρBAD′|ψ〉 , (7.50)

where

ρGOOD′ = trEA (|GOOD′〉〈GOOD′|) , ρBAD′ = trEA (|BAD′〉〈BAD′|) .
(7.51)

The fidelity of the recovered state therefore satisfies

F ≥ 〈ψ|ρGOOD′ |ψ〉 =‖ |s〉EA ‖2=‖ |GOOD′〉 ‖2 . (7.52)

Furthermore, since the recovery operation is unitary, we have ‖ |GOOD′〉 ‖=
‖ |GOOD〉 ‖, and hence

F ≥ ‖ |GOOD〉 ‖2=‖
∑

Ea∈E
Ea|ψ〉 ⊗ |ea〉E ‖2 . (7.53)

In general, though, |BAD〉 need not be orthogonal to |GOOD〉, so that
|BAD′〉 need not be orthogonal to |GOOD′〉. Then |BAD′〉 might have a
component along |GOOD′〉 that interferes destructively with |GOOD′〉 and
so reduces the fidelity. We can still obtain a lower bound on the fidelity in
this more general case by resolving |BAD′〉 into a component along |GOOD′〉
and an orthogonal component, as

|BAD′〉 = |BAD′
‖〉 + |BAD′

⊥〉 (7.54)

Then reasoning just as above we obtain

F ≥ ‖ |GOOD′〉 + |BAD′
‖〉 ‖2 (7.55)

Of course, since both the error operation and the recovery operation are uni-
tary acting on data, environment, and ancilla, the complete state |GOOD′〉+
|BAD′〉 is normalized, or

‖ |GOOD′〉 + |BAD′
‖〉 ‖2 + ‖ |BAD′

⊥〉 ‖2= 1 , (7.56)

and eq. (7.55) becomes

F ≥ 1− ‖ |BAD′
⊥〉 ‖2 . (7.57)
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Finally, the norm of |BAD′
⊥〉 cannot exceed the norm of |BAD′〉, and we

conclude that

1 − F ≤ ‖ |BAD′〉 ‖2=‖ |BAD〉 ‖2≡‖
∑

Eb 6∈E
Eb|ψ〉 ⊗ |eb〉E ‖2 .

(7.58)

This is our general bound on the “failure probability” of the recovery oper-
ation. The result eq. (7.53) then follows in the special case where |GOOD〉
and |BAD〉 are orthogonal states.

7.4.2 Uncorrelated errors

Let’s now consider some implications of these results for the case where errors
acting on distinct qubits are completely uncorrelated. In that case, the error
superoperator is a tensor product of single-qubit superoperators. If in fact
the errors act on all the qubits in the same way, we can express the n-qubit
superoperator as

$(n)
error =

[

$(1)
error

]⊗n
, (7.59)

where $(1)
error is a one-qubit superoperator whose action (in its unitary repre-

sentation) has the form

|ψ〉 ⊗ |0〉E → |ψ〉 ⊗ |eI〉E + X |ψ〉⊗ |eX〉E + Y |ψ〉 ⊗ |eY 〉E
+Z|ψ〉 ⊗ |eZ〉E . (7.60)

The effect of the errors on encoded information is especially easy to analyze
if we suppose further that each of the three states of the environment |eX,Y,Z〉
is orthogonal to the state |eI〉. In that case, a record of whether or not an
error occurred for each qubit is permanently imprinted on the environment,
and it is sensible to speak of a probability of error perror for each qubit, where

〈eI |eI〉 = 1 − perror . (7.61)

If our quantum code can correct t errors, then the “good” Pauli operators
have weight up to t, and the “bad” Pauli operators have weight greater than
t; recovery is certain to succeed unless at least t+ 1 qubits are subjected to
errors. It follows that the fidelity obeys the bound

1 − F ≤
n
∑

s=t+1

(

n

s

)

ps
error (1 − perror)

n−s ≤
(

n

t+ 1

)

pt+1
error .

(7.62)
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(For each of the
(

n

t+1

)

ways of choosing t+ 1 locations, the probability that

errors occurs at every one of those locations is pt+1
error, where we disregard

whether additional errors occur at the remaining n− t− 1 locations. There-
fore, the final expression in eq. (7.62) is an upper bound on the probability
that at least t+1 errors occur in the block of n qubits.) For perror small and t
large, the fidelity of the encoded data is a substantial improvement over the
fidelity F = 1 − O(p) maintained by an unprotected qubit.

For a general error superoperator acting on a single qubit, there is no clear
notion of an “error probability;” the state of the qubit and its environment
obtained when the Pauli operator I acts is not orthogonal to (and so cannot
be perfectly distinguished from) the state obtained when the Pauli operators
X, Y , and Z act. In the extreme case there is no decoherence at all — the
“errors” arise because unknown unitary transformations act on the qubits.
(If the unitary transformation U acting on a qubit were known, we could
recover from the “error” simply by applying U †.)

Consider uncorrelated unitary errors acting on the n qubits in the code
block, each of the form (up to an irrelevant phase)

U (1) =
√

1 − p+ i
√
p W , (7.63)

where W is a (traceless, Hermitian) linear combination of X, Y , and Z,
satisfying W 2 = I . If the state |ψ〉 of the qubit is prepared, and then the
unitary error eq. (7.63) occurs, the fidelity of the resulting state is

F =
∣

∣

∣〈ψ|U (1)|ψ〉
∣

∣

∣

2
= 1 − p

(

1 − (〈ψ|W |ψ〉)2
)

≥ 1 − p .
(7.64)

If a unitary error of the form eq. (7.63) acts on each of the n qubits in the
code block, and the resulting state is expanded in terms of Pauli operators
as in eq. (7.45), then the state |BAD〉 (which arises from terms in which W

acts on at least t + 1 qubits) has a norm of order (
√
p)t+1, and eq. (7.58)

becomes

1 − F = O(pt+1) . (7.65)

We see that coding provides an improvement in fidelity of the same order
irrespective of whether the uncorrelated errors are due to decoherence or due
to unknown unitary transformations.
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To avoid confusion, let us emphasize the meaning of “uncorrelated” for
the purpose of the above discussion. We consider a unitary error acting on
n qubits to be “uncorrelated” if it is a tensor product of single-qubit unitary
transformations, irrespective of how the unitaries acting on distinct qubits
might be related to one another. For example, an “error” whereby all qubits
rotate by an angle θ about a common axis is effectively dealt with by quantum
error correction; after recovery the fidelity will be F = 1 − O(θ2(t+1)), if the
code can protect against t uncorrelated errors. In contrast, a unitary error
that would cause more trouble is one of the form U (n) ∼ 1 + iθE

(n)
bad, where

E
(n)
bad is an n-qubit Pauli operator whose weight is greater than t. Then

|BAD〉 has a norm of order θ, and the typical fidelity after recovery will be
F = 1 − O(θ2).

7.5 Classical Linear Codes

Quantum error-correcting codes were first invented less than four years ago,
but classical error-correcting codes have a much longer history. Over the past
fifty years, a remarkably beautiful and powerful theory of classical coding has
been erected. Much of this theory can be exploited in the construction of
QECC’s. Here we will quickly review just a few elements of the classical
theory, confining our attention to binary linear codes.

In a binary code, k bits are encoded in a binary string of length n. That
is, from among the 2n strings of length n, we designate a subset containing
2k strings – the codewords. A k-bit message is encoded by selecting one of
these 2k codewords.

In the special case of a binary linear code, the codewords form a k-
dimensional closed linear subspace C of the binary vector space F n

2 . That is,
the bitwise XOR of two codewords is another codeword. The space C of the
code is spanned by a basis of k vectors v1, v2, . . . , vk; an arbitrary codeword
may be expressed as a linear combination of these basis vectors:

v(α1, . . . , αk) =
∑

i

αivi , (7.66)

where each αi ∈ {0, 1}, and addition is modulo 2. We may say that the
length-n vector v(α1 . . . αk) encodes the k-bit message α = (α1, . . . , αk).
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The k basis vectors v1, . . . vk may be assembled into a k × n matrix

G =









v1
...
vk









, (7.67)

called the generator matrix of the code. Then in matrix notation, eq. (7.66)
can be rewritten as

v(α) = αG ; (7.68)

the matrix G, acting to the left, encodes the message α.
An alternative way to characterize the k-dimensional code subspace of

F n
2 is to specify n − k linear constraints. There is an (n − k) × n matrix H

such that

Hv = 0 (7.69)

for all those and only those vectors v in the code C . This matrix H is called
the parity check matrix of the code C . The rows of H are n − k linearly
independent vectors, and the code space is the space of vectors that are
orthogonal to all of these vectors. Orthogonality is defined with respect to
the mod 2 bitwise inner product; two length-n binary strings are orthogonal
is they “collide” (both take the value 1) at an even number of locations. Note
that

HGT = 0 ; (7.70)

where GT is the transpose of G; the rows of G are orthogonal to the rows of
H.

For a classical bit, the only kind of error is a bit flip. An error occurring
in an n-bit string can be characterized by an n-component vector e, where
the 1’s in e mark the locations where errors occur. When afflicted by the
error e, the string v becomes

v → v + e . (7.71)

Errors can be detected by applying the parity check matrix. If v is a code-
word, then

H(v + e) = Hv +He = He . (7.72)
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He is called the syndrome of the error e. Denote by E the set of errors
{ei} that we wish to be able to correct. Error recovery will be possible if
and only if all errors ei have distinct syndromes. If this is the case, we can
unambiguously diagnose the error given the syndrome He, and we may then
recover by flipping the bits specified by e as in

v + e→ (v + e) + e = v . (7.73)

On the other hand, if He1 = He2 for e1 6= e2 then we may misinterpret an
e1 error as an e2 error; our attempt at recovery then has the effect

v + e1 → v + (e1 + e2) 6= v. (7.74)

The recovered message v + e1 + e2 lies in the code, but it differs from the
intended message v; the encoded information has been damaged.

The distance d of a code C is the minimum weight of any vector v ∈ C ,
where the weight is the number of 1’s in the string v. A linear code with
distance d = 2t+1 can correct t errors; the code assigns a distinct syndrome
to each e ∈ E, where E contains all vectors of weight t or less. This is so
because, if He1 = He2, then

0 = He1 +He2 = H(e1 + e2) , (7.75)

and therefore e1 + e2 ∈ C . But if e1 and e2 are unequal and each has weight
no larger than t, then the weight of e1 + e2 is greater than zero and no larger
than 2t. Since d = 2t+ 1, there is no such vector in C . Hence He1 and He2

cannot be equal.

A useful concept in classical coding theory is that of the dual code. We
have seen that the k×n generator matrix G and the (n−k)×n parity check
matrix H of a code C are related by HGT = 0. Taking the transpose, it
follows that GHT = 0. Thus we may regard HT as the generator and G as
the parity check of an (n − k)-dimensional code, which is denoted C⊥ and
called the dual of C . In other words, C⊥ is the orthogonal complement of
C in F n

2 . A vector is self-orthogonal if it has even weight, so it is possible
for C and C⊥ to intersect. A code contains its dual if all of its codewords
have even weight and are mutually orthogonal. If n = 2k it is possible that
C = C⊥, in which case C is said to be self-dual.

An identity relating the code C and its dual C⊥ will prove useful in the
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following section:

∑

v∈C

(−1)v·u =











2k u ∈ C⊥

0 u 6∈ C⊥
. (7.76)

The nontrivial content of the identity is the statement that the sum vanishes
for u 6∈ C⊥. This readily follows from the familiar identity

∑

v∈{0,1}k

(−1)v·w = 0, w 6= 0, (7.77)

where v and w are strings of length k. We can express v ∈ G as

v = αG, (7.78)

where α is a k-vector. Then

∑

v∈C

(−1)v·u =
∑

α∈{0,1}k

(−1)α·Gu = 0, (7.79)

for Gu 6= 0. Since G, the generator matrix of C , is the parity check matrix
for C⊥, we conclude that the sum vanishes for u 6∈ C⊥.

7.6 CSS Codes

Principles from the theory of classical linear codes can be adapted to the
construction of quantum error-correcting codes. We will describe here a
family of QECC’s, the Calderbank–Shor–Steane (or CSS) codes, that exploit
the concept of a dual code.

Let C1 be a classical linear code with (n−k1)×n parity check matrix H1,
and letC2 be a subcode of C1, with (n−k2)×n parity checkH2, where k2 < k1.
The first n− k1 rows of H2 coincide with those of H1, but there are k1 − k2

additional linearly independent rows; thus each word in C2 is contained in
C1, but the words in C2 also obey some additional linear constraints.

The subcode C2 defines an equivalence relation in C1; we say that u, v ∈
C1 are equivalent (u ≡ v) if and only if there is a w in C2 such that u = v+w.
The equivalence classes are the cosets of C2 in C1.



7.6. CSS CODES 25

A CSS code is a k = k1 − k2 quantum code that associates a codeword
with each equivalence class. Each element of a basis for the code subspace
can be expressed as

|w̄〉 =
1√
2k2

∑

v∈C2

|v + w〉 , (7.80)

an equally weighted superposition of all the words in the coset represented by
w. There are 2k1−k2 cosets, and hence 2k1−k2 linearly independent codewords.
The states |w̄〉 are evidently normalized and mutually orthogonal; that is,
〈w̄|w̄′〉 = 0 if w and w′ belong to different cosets.

Now consider what happens to the codeword |w̄〉 if we apply the bitwise
Hadamard transform H(n):

H(n) : |w̄〉F ≡ 1√
2k2

∑

v∈C2

|v + w〉

→ |w̄〉P ≡ 1√
2n

∑

u

1√
2k2

∑

v∈C2

(−1)u·v(−1)u·w|u〉

=
1√

2n−k2

∑

u∈C⊥
2

(−1)u·w|u〉 ; (7.81)

we obtain a coherent superposition, weighted by phases, of words in the dual
code C⊥

2 (in the last step we have used the identity eq. (7.76)). It is again
manifest in this last expression that the codeword depends only on the C2

coset that w represents — shifting w by an element of C2 has no effect on
(−1)u·w if u is in the code dual to C2.

Now suppose that the code C1 has distance d1 and the code C⊥
2 has

distance d⊥2 , such that

d1 ≥ 2tF + 1 ,

d⊥2 ≥ 2tP + 1 . (7.82)

Then we can see that the corresponding CSS code can correct tF bit flips
and tP phase flips. If e is a binary string of length n, let E(flip)

e denote the
Pauli operator with an X acting at each location i where ei = 1; it acts on
the state |v〉 according to

E(flip)
e : |v〉 → |v + e〉 . (7.83)
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And let E(phase)
e denote the Pauli operator with a Z acting where ei = 1; its

action is

E(phase)
e : |v〉 → (−1)v.e|v〉 , (7.84)

which in the Hadamard rotated basis becomes

E(phase)
e : |u〉 → |u+ e〉 . (7.85)

Now, in the original basis (the F or “flip” basis), each basis state |w̄〉F of
the CSS code is a superposition of words in the code C1. To diagnose bit flip
error, we perform on data and ancilla the unitary transformation

|v〉 ⊗ |0〉A → |v〉 ⊗ |H1v〉A , (7.86)

and then measure the ancilla. The measurement result H1eF is the bit flip

syndrome. If the number of flips is tF or fewer, we may correctly infer from
this syndrome that bit flips have occurred at the locations labeled by eF . We
recover by applying X to the qubits at those locations.

To correct phase errors, we first perform the bitwise Hadamard transfor-
mation to rotate from the F basis to the P (“phase”) basis. In the P basis,
each basis state |w̄〉P of the CSS code is a superposition of words in the code
C⊥

2 . To diagnose phase errors, we perform a unitary transformation

|v〉 ⊗ |0〉A → |v〉 ⊗ |G2v〉A , (7.87)

and measure the ancilla (G2, the generator matrix of C2, is also the parity
check matrix of C⊥

2 ). The measurement result G2eP is the phase error syn-

drome. If the number of phase errors is tP or fewer, we may correctly infer
from this syndrome that phase errors have occurred at locations labeled by
eP . We recover by applying X (in the P basis) to the qubits at those lo-
cations. Finally, we apply the bitwise Hadamard transformation once more
to rotate the codewords back to the original basis. (Equivalently, we may
recover from the phase errors by applying Z to the affected qubits after the
rotation back to the F basis.)

If eF has weight less than d1 and eP has weight less than d⊥2 , then

〈w̄|E(phase)
eP

E(flip)
eF

|w̄′〉 = 0 (7.88)

(unless eF = eP = 0). Any Pauli operator can be expressed as a product of
a phase operator and a flip operator — a Y error is merely a bit flip and
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phase error both afflicting the same qubit. So the distance d of a CSS code
satisfies

d ≥ min(d1, d
⊥
2 ) . (7.89)

CSS codes have the special property (not shared by more general QECC’s)
that the recovery procedure can be divided into two separate operations, one
to correct the bit flips and the other to correct the phase errors.

The unitary transformation eq. (7.86) (or eq. (7.87)) can be implemented
by executing a simple quantum circuit. Associated with each of the n − k1

rows of the parity check matrix H1 is a bit of the syndrome to be extracted.
To find the ath bit of the syndrome, we prepare an ancilla bit in the state
|0〉A,a, and for each value of λ with (H1)aλ = 1, we execute a controlled-NOT
gate with the ancilla bit as the target and qubit λ in the data block as the
control. When measured, the ancilla qubit reveals the value of the parity
check bit

∑

λ(H1)aλvλ.

Schematically, the full error correction circuit for a CSS code has the
form:

– Figure –

Separate syndromes are measured to diagnose the bit flip errors and the phase
errors. An important special case of the CSS construction arises when a code
C contains its dual C⊥. Then we may choose C1 = C and C2 = C⊥ ⊆ C ; the
C parity check is computed in both the F basis and the P basis to determine
the two syndromes.

7.7 The 7-Qubit Code

The simplest of the CSS codes is the [[n, k, d]] = [7, 1, 3] quantum code first
formulated by Andrew Steane. It is constructed from the classical 7-bit
Hamming code.

The Hamming code is an [n, k, d] = [7, 4, 3] classical code with the 3 × 7
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parity check matrix

H =







1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





 . (7.90)

To see that the distance of the code is d = 3, first note that the weight-3
string (1110000) passes the parity check and is, therefore, in the code. Now
we need to show that there are no vectors of weight 1 or 2 in the code. If e1

has weight 1, then He1 is one of the columns of H. But no column of H is
trivial (all zeros), so e1 cannot be in the code. Any vector of weight 2 can be
expressed as e1 + e2, where e1 and e2 are distinct vectors of weight 1. But

H(e1 + e2) = He1 +He2 6= 0, (7.91)

because all columns of H are distinct. Therefore e1 + e2 cannot be in the
code.

The rows of H themselves pass the parity check, and so are also in the
code. (Contrary to one’s usual linear algebra intuition, a nonzero vector over
the finite field F2 can be orthogonal to itself.) The generator matrix G of
the Hamming code can be written as

G =











1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0











; (7.92)

the first three rows coincide with the rows of H, and the weight-3 codeword
(1110000) is appended as the fourth row.

The dual of the Hamming code is the [7, 3, 4] code generated by H. In
this case the dual of the code is actually contained in the code — in fact, it
is the even subcode of the Hamming code, containing all those and only those
Hamming codewords that have even weight. The odd codeword (1110000)
is a representative of the nontrivial coset of the even subcode. For the CSS
construction, we will choose C1 to be the Hamming code, and C2 to be its
dual, the even subcode.. Therefore, C⊥

2 = C1 is again the Hamming code;
we will use the Hamming parity check both to detect bit flips in the F basis
and to detect phase flips in the P basis.
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In the F basis, the two orthonormal codewords of this CSS code, each
associated with a distinct coset of the even subcode, can be expressed as

|0̄〉F =
1√
8

∑

even v

∈ Hamming

|v〉 ,

|1̄〉F =
1√
8

∑

odd v

∈ Hamming

|v〉 . (7.93)

Since both |0̄〉 and |1̄〉 are superpositions of Hamming codewords, bit flips
can be diagnosed in this basis by performing an H parity check. In the
Hadamard rotated basis, these codewords become

H(7) : |0̄〉F → |0̄〉P ≡
(

1

4

)

∑

v∈ Hamming

|v〉 =
1√
2
(|0̄〉F + |1̄〉F )

|1̄〉F → |1̄〉P ≡
(

1

4

)

∑

v∈ Hamming

(−1)wt(v)|v〉 =
1√
2
(|0̄〉F − |1̄〉F ).

(7.94)

In this basis as well, the states are superpositions of Hamming codewords,
so that bit flips in the P basis (phase flips in the original basis) can again
be diagnosed with an H parity check. (We note in passing that for this
code, performing the bitwise Hadamard transformation also implements a
Hadamard rotation on the encoded data, a point that will be relevant to our
discussion of fault-tolerant quantum computation in the next chapter.)

Steane’s quantum code can correct a single bit flip and a single phase
flip on any one of the seven qubits in the block. But recovery will fail if
two different qubits both undergo either bit flips or phase flips. If e1 and e2

are two distinct weight-one strings then He1 +He2 is a sum of two distinct
columns of H, and hence a third column of H (all seven of the nontrivial
strings of length 3 appear as columns of H.) Therefore, there is another
weight-one string e3 such that He1 +He2 = He3, or

H(e1 + e2 + e3) = 0 ; (7.95)

thus e1 + e2 + e3 is a weight-3 word in the Hamming code. We will interpret
the syndrome He3 as an indication that the error v → v+ e3 has arisen, and
we will attempt to recover by applying the operation v → v+ e3. Altogether
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then, the effect of the two bit flip errors and our faulty attempt at recovery
will be to add e1 + e2 + e3 (an odd-weight Hamming codeword) to the data,
which will induce a flip of the encoded qubit

|0̄〉F ↔ |1̄〉F . (7.96)

Similarly, two phase flips in the F basis are two bit flips in the P basis, which
(after the botched recovery) induce on the encoded qubit

|0̄〉P ↔ |1̄〉P , (7.97)

or equivalently

|0̄〉F → |0̄〉F
|1̄〉F → −|1̄〉F , (7.98)

a phase flip of the encoded qubit in the F basis. If there is one bit flip and
one phase flip (either on the same qubit or different qubits) then recovery
will be successful.

7.8 Some Constraints on Code Parameters

Shor’s code protects one encoded qubit from an error in any single one of
nine qubits in a block, and Steane’s code reduces the block size from nine to
seven. Can we do better still?

7.8.1 The Quantum Hamming bound

To understand how much better we might do, let’s see if we can derive any
bounds on the distance d = 2t + 1 of an [[n, k, d]] quantum code, for given
n and k. At first, suppose we limit our attention to nondegenerate codes,
which assign a distinct syndrome to each possible error. On a given qubit,
there are three possible linearly independent errors X,Y , or Z. In a block
of n qubits, there are

(

n

j

)

ways to choose j qubits that are affected by errors,
and three possible errors for each of these qubits; therefore the total number
of possible errors of weight up to t is

N(t) =
t
∑

j=0

3j

(

n

j

)

. (7.99)
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If there are k encoded qubits, then there are 2k linearly independent
codewords. If all Ea|j̄〉’s are linearly independent, where Ea is any error
of weight up to t and |̄i〉 is any element of a basis for the codewords, then
the dimension 2n of the Hilbert space of n qubits must be large enough to
accommodate N(t) · 2k independent vectors; hence

N(t) =
t
∑

j=0

3j

(

n

j

)

≤ 2n−k. (7.100)

This result is called the quantum Hamming bound. An analogous bound
applies to classical block codes, but without the factor of 3j, since there is
only one type of error (a flip) that can affect a classical bit. We also emphasize
that the quantum Hamming bound applies only in the case of nondegenerate
coding, while the classical Hamming bound applies in general. However, no
degenerate quantum codes that violate the quantum Hamming code have yet
been constructed (as of January, 1999).

In the special case of a code with one encoded qubit (k = 1) that corrects
one error (t = 1), the quantum Hamming bound becomes

1 + 3n ≤ 2n−1, (7.101)

which is satisfied for n ≥ 5. In fact, the case n = 5 saturates the inequality
(1 + 15 = 16). A nondegenerate [[5, 1, 3]] quantum code, if it exists, is
perfect: The entire 32-dimensional Hilbert space of the five qubits is needed
to accommodate all possible one-qubit errors acting on all codewords — there
is no wasted space.

7.8.2 The no-cloning bound

We could still wonder, though, if there is a degenerate n = 4 code that can
correct one error. In fact, it is easy to see that no such code can exist. We
already know that a code that corrects t errors at arbitrary locations can
also be used to correct 2t errors at known locations. Suppose that we have
a [[4, 1, 3]] quantum code. Then we could encode a single qubit in the four-
qubit block, and split the block into two sub-blocks, each containing two
qubits.

– Figure –
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If we append |00〉 to each of those two sub-blocks, then the original block
has spawned two offspring, each with two located errors. If we were able to
correct the two located errors in each of the offspring, we would obtain two
identical copies of the parent block — we would have cloned an unknown
quantum state, which is impossible. Therefore, no [[4, 1, 3]] quantum code
can exist. We conclude that n = 5 is the minimal block size of a quantum
code that corrects one error, whether the code is degenerate or not.

The same reasoning shows that an [[n, k ≥ 1, d]] code can exist only for

n > 2(d − 1) . (7.102)

7.8.3 The quantum Singleton bound

We will now see that this result eq. (7.102) can be strengthened to

n− k ≥ 2(d − 1). (7.103)

Eq. (7.103) resembles the Singleton bound on classical code parameters,

n− k ≥ d − 1, (7.104)

and so has been called the “quantum Singleton bound.” For a classical linear

code, the Singleton bound is a near triviality: the code can have distance d
only if any d−1 columns of the parity check matrix are linearly independent.
Since the columns have length n− k, at most n− k columns can be linearly
independent; therefore d− 1 cannot exceed n− k. The Singleton bound also
applies to nonlinear codes.

An elegant proof of the quantum Singleton bound can be found that
exploits the subadditivity of the Von Neumann entropy discussed in §5.2.
We begin by introducing a k-qubit ancilla, and constructing a pure state
that maximally entangles the ancilla with the 2k codewords of the QECC:

|Ψ〉AQ =
1√
2k

∑

|x〉A|x̄〉Q , (7.105)

where {|x〉A} denotes an orthonormal basis for the 2k-dimensional Hilbert
space of the ancilla, and {|x̄〉Q} denotes an orthonormal basis for the 2k-
dimensional code subspace. If we trace over the length-n code block Q, the
density matrix ρA of the ancilla is 1

2k 1, which has entropy

S(A) = k = S(Q). (7.106)
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Now, if the code has distance d, then d − 1 located errors can be corrected;
or, as we have seen, no observable acting on d− 1 of the n qubits can reveal
any information about the encoded state. Equivalently, the observable can
reveal nothing about the state of the ancilla in the entangled state |Ψ〉.

Now, since we already know that n > 2(d − 1) (if k ≥ 1), let us imagine

dividing the code block Q into three disjoint parts: a set of d−1 qubits Q
(1)
d−1,

another disjoint set of d−1 qubits Q
(2)
d−1, and the remaining qubits Q

(3)
n−2(d−1).

If we trace out Q(2) and Q(3), the density matrix we obtain must contain no
correlations between Q(1) and the ancilla A. This means that the entropy of
system AQ(1) is additive:

S(Q(2)Q(3)) = S(AQ(1)) = S(A) + S(Q(1)). (7.107)

Similarly,

S(Q(1)Q(3)) = S(AQ(2)) = S(A) + S(Q(2)). (7.108)

Furthermore, in general, Von Neumann entropy is subadditive, so that

S(Q(1)Q(3)) ≤ S(Q(1)) + S(Q(3))

S(Q(2)Q(3)) ≤ S(Q(2)) + S(Q(3)) (7.109)

Combining these inequalities with the equalities above, we find

S(A) + S(Q(2)) ≤ S(Q(1)) + S(Q(3))

S(A) + S(Q(1)) ≤ S(Q(2)) + S(Q(3)). (7.110)

Both of these inequalities can be simultaneously satisfied only if

S(A) ≤ S(Q(3)) (7.111)

Now Q(3) has dimension n − 2(d − 1), and its entropy is bounded above by
its dimension so that

S(A) = k ≤ n− 2(d − 1), (7.112)

which is the quantum Singleton bound.
The [[5, 1, 3]] code saturates this bound, but for most values of n and

k the bound is not tight. Rains has obtained the stronger result that an
[[n, k, 2t+ 1]] code with k ≥ 1 must satisfy

t ≤
[

n + 1

6

]

, (7.113)
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(where [x] = “floor x” is the greatest integer greater than or equal to x.
Thus, the minimal length of a k = 1 code that can correct t = 1, 2, 3, 4, 5
errors is n = 5, 11, 17, 23, 29 respectively. Codes with all of these parameters
have actually been constructed, except for the [[23, 1, 9]] code.

7.9 Stabilizer Codes

7.9.1 General formulation

We will be able to construct a (nondegenerate) [[5, 1, 3]] quantum code, but
to do so, we will need a more powerful procedure for constructing quantum
codes than the CSS procedure.

Recall that to establish a criterion for when error recovery is possible, we
found it quite useful to expand an error superoperator in terms of the n-qubit
Pauli operators. But up until now we have not exploited the group structure
of these operators (a product of Pauli operators is a Pauli operator). In fact,
we will see that group theory is a powerful tool for constructing QECC’s.

For a single qubit, we will find it more convenient now to choose all of
the Pauli operators to be represented by real matrices, so I will now use a
notation in which Y denotes the anti-hermitian matrix

Y = ZX = iσy =

(

0 1
−1 0

)

, (7.114)

satisfying Y 2 = −I. Then the operators

{±I,±X,±Y ,±Z} ≡ ±{I,X,Y ,Z}, (7.115)

are the elements of a group of order 8.1 The n-fold tensor products of single-
qubit Pauli operators also form a group

Gn = ±{I,X,Y ,Z}⊕n, (7.116)

of order |Gn| = 22n+1 (since there are 4n possible tensor products, and another
factor of 2 for the ± sign) we will refer to Gn as the n-qubit Pauli group.
(In fact, we will use the term “Pauli group” both to refer to the abstract

1It is not the quaternionic group but the other non-abelian group of order 8 — the
symmetry group of the square. The element Y , of order 4, can be regarded as the 90◦

rotation of the plane, while X and Z are reflections about two orthogonal axes.
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group Gn, and to its dimension-2n faithful unitary representation by tensor
products of 2 × 2 matrices; its only irreducible representation of dimension
greater than 1.) Note that Gn has the two element center Z2 = {±I⊗n}. If
we quotient out its center, we obtain the group Ḡn ≡ Gn/Z2; this group can
also be regarded as a binary vector space of dimension 22n, a property that
we will exploit below.

The (2n-dimensional representation of the) Pauli group Gn evidently has
these properties:

(i) Each M ∈ Gn is unitary, M−1 = M †.

(ii) For each element M ∈ Gn,M
2 = ±I ≡ ±I⊗n. Furthermore, M 2 = I

if the number of Y ’s in the tensor product is even, and M 2 = −I if
the number of Y ’s is odd.

(iii) If M2 = I, then M is hermitian (M = M †); if M2 = −I , then M is
anti-hermitian (M = −M †).

(iv) Any two elements M ,N ∈ Gn either commute or anti-commute: MN =
±NM .

We will use the Pauli group to characterize a QECC in the following way:
Let S denote an abelian subgroup of the n-qubit Pauli group Gn. Thus all
elements of S acting on H2n can be simultaneously diagonalized. Then the
stabilizer code HS ⊆ H2n associated with S is the simultaneous eigenspace
with eigenvalue 1 of all elements of S. That is,

|ψ〉 ∈ HS iff M |ψ〉 = |ψ〉 for all M ∈ S. (7.117)

The group S is called the stabilizer of the code, since it preserves all of the
codewords.

The group S can be characterized by its generators. These are elements
{M i} that are independent (no one can be expressed as a product of others)
and such that each element of S can be expressed as a product of elements
of {M i}. If S has n−k generators, we can show that the code space HS has
dimension 2k — there are k encoded qubits.

To verify this, first note that each M ∈ S must satisfy M 2 = I; if
M2 = −I, then M cannot have the eigenvalue +1. Furthermore, for each
M 6= ±I in Gn that squares to one, the eigenvalues +1 and −1 have equal



36 CHAPTER 7. QUANTUM ERROR CORRECTION

degeneracy. This is because for each M 6= ±I, there is an N ∈ Gn that
anti-commutes with M ,

NM = −MN ; (7.118)

therefore, M |ψ〉 = |ψ〉 if and only if M (N |ψ〉) = −N |ψ〉, and the action
of the unitary N establishes a 1 − 1 correspondence between the +1 eigen-
states of M and the −1 eigenstates. Hence there are 1

2
(2n) = 2n−1 mutually

orthogonal states that satisfy

M 1|ψ〉 = |ψ〉 , (7.119)

where M 1 is one of the generators of S.
Now let M 2 be another element of Gn that commutes with M 1 such that

M 2 6= ±I,±M1. We can find an N ∈ Gn that commutes with M1 but
anti-commutes with M2; therefore N preserves the +1 eigenspace of M 1,
but within this space, it interchanges the +1 and −1 eigenstates of M2. It
follows that the space satisfying

M 1|ψ〉 = M2|ψ〉 = |ψ〉, (7.120)

has dimension 2n−2.
Continuing in this way, we note that if M j is independent of {M1,M2, . . .M j−1},

then there is an N that commutes with M 1, . . . ,M j−1, but anti-commutes
with M j (we’ll discuss in more detail below how such an N can be found).
Therefore, restricted to the space with M 1 = M2 = . . . = M j−1 = 1,M j

has as many +1 eigenvectors as −1 eigenvectors. So adding another genera-
tor always cuts the dimension of the simultaneous eigenspace in half. With
n − k generators, the dimension of the remaining space is 2n (1/2)n−k = 2k.

The stabilizer language is useful because it provides a simple way to
characterize the errors that the code can detect and correct. We may think
of the n − k stabilizer generators M1, . . . ,Mn−k, as the check operators of
the code, the collective observables that we measure to diagnose the errors.
If the encoded information is undamaged, then we will find M i = 1 for each
of the generators; but if M i = −1 for some i, then the data is orthogonal to
the code subspace and an error has been detected.

Recall that the error superoperator can be expanded in terms of elements
Ea of the Pauli group. A particular Ea either commutes or anti-commutes
with a particular stabilizer generator M . If Ea and M commute, then

MEa|ψ〉 = EaM |ψ〉 = Ea|ψ〉, (7.121)
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for |ψ〉 ∈ HS, so the error preserves the value M = 1. But if Ea and M

anti-commute, then

MEa|ψ〉 = −EaM |ψ〉 = −Ea|ψ〉, (7.122)

so that the error flips the value of M , and the error can be detected by
measuring M .

For stabilizer generators M i and errors Ea, we may write

M iEa = (−1)siaEaM i. (7.123)

The sia’s, i = 1, . . . , n− k constitute a syndrome for the error Ea, as (−1)sia

will be the result of measuring M i if the error Ea occurs. In the case
of a nondegenerate code, the sia’s will be distinct for all Ea ∈ E, so that
measuring the n− k stabilizer generators will diagnose the error completely.

More generally, let us find a condition to be satisfied by the stabilizer
that is sufficient to ensure that error recovery is possible. Recall that it is
sufficient that, for each Ea,Eb ∈ E, and normalized |ψ〉 in the code subspace,
we have

〈ψ|E†
aEb|ψ〉 = Cab, (7.124)

where Cab is independent of |ψ〉. We can see that this condition is satisfied
provided that, for each Ea,Eb ∈ E, one of the following holds:

1) E†
aEb ∈ S ,

2) There is an M ∈ S that anti-commutes with E†
aEb.

Proof: In case (1) 〈ψ|E†
aEb|ψ〉 = 〈ψ|ψ〉 = 1, for |ψ〉 ∈ HS. In case (2),

suppose M ∈ S and ME†
aEb = −E†

aEbM . Then

〈ψ|E†
aEb|ψ〉 = 〈ψ|E†

aEbM |ψ〉

= −〈ψ|ME†
aEb|ψ〉 = −〈ψ|E†

aEb|ψ〉, (7.125)

and therefore 〈ψ|E†
aEb|ψ〉 = 0.
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Thus, a stabilizer code that corrects {E} is a space HS fixed by an abelian
subgroup S of the Pauli group, where either (1) or (2) is satisfied by each
E†

aEb with Ea,b ∈ E. The code is nondegenerate if condition (1) is not
satisfied for any E†

aEb.

Evidently we could also just as well choose the code subspace to be any
one of the 2n−k simultaneous eigenspaces of n − k independent commuting
elements of Gn. But in fact all of these codes are equivalent. We may regard
two stabilizer codes as equivalent if they differ only according to how the
qubits are labeled, and how the basis for each single-qubit Hilbert space is
chosen – that is the stabilizer of one code is transformed to the stabilizer
of the other by a permutation of the qubits together with a tensor prod-
uct of single-qubit transformations. If we partition the stabilizer generators
into two sets {M 1, . . . ,M j} and {M j+1, . . . ,Mn−k}, then there exists an
N ∈ Gn that commutes with each member of the first set and anti-commutes
with each member of the second set. Applying N to |ψ〉 ∈ Hs preserves the
eigenvalues of the first set while flipping the eigenvalues of the second set.
Since N is just a tensor product of single-qubit unitary transformations,
there is no loss of generality (up to equivalence) in choosing all of the eigen-
values to be one. Furthermore, since minus signs don’t really matter when
the stabilizer is specified, we may just as well say that two codes are equiva-
lent if, up to phases, the stabilizers differ by a permutation of the n qubits,
and permutations on each individual qubits of the operators X,Y ,Z.

Recovery may fail if there is an E†
aEb that commutes with the stabilizer

but does not lie in the stabilizer. This is an operator that preserves the
code subspace HS but may act nontrivially in that space; thus it can modify
encoded information. Since Ea|ψ〉 and Eb|ψ〉 have the same syndrome, we
might mistakenly interpret an Ea error as an Eb error; the effect of the error
together with the attempt at recovery is that E

†
bEa gets applied to the data,

which can cause damage.

A stabilizer code with distance d has the property that each E ∈ Gn of
weight less than d either lies in the stabilizer or anti-commutes with some
element of the stabilizer. The code is nondegenerate if the stabilizer contains
no elements of weight less than d. A distance d = 2t + 1 code can correct
t errors, and a distance s + 1 code can detect s errors or correct s errors at
known locations.
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7.9.2 Symplectic Notation

Properties of stabilizer codes are often best explained and expressed using the
language of linear algebra. The stabilizer S of the code, an order 2n−k abelian
subgroup of the Pauli group with all elements squaring to the identity, can
equivalently be regarded as a dimension n− k closed linear subspace of F 2n

2 ,
self orthogonal with respect to a certain (symplectic) inner product.

The group Ḡn = Gn/Z2 is isomorphic to the binary vector space F 2n
2 . We

establish this by observing that, since Y = ZX, any element M of the Pauli
group (up to the ± sign) can be expressed as a product of Z’s and X’s; we
may write

M = ZM · XM (7.126)

where ZM is a tensor product of Z’s and XM is a tensor product of X’s.
More explicitly, a Pauli operator may be written as

(α|β) ≡ Z(α)X(β) =
n
⊗

i=1

Zαi ·
n
⊗

i=1

Xβi, (7.127)

where α and β are binary strings of length n. (Then Y acts at the locations
where α and β “collide.”) Multiplication in Ḡn maps to addition in F 2n

2 :

(α|β)(α′|β ′) = (−1)α′·β(α+ α′|β + β ′) ; (7.128)

the phase arises because α′ ·β counts the number of times a Z is interchanged
with a X as the product is rearranged into the standard form of eq. (7.127).

It follows from eq. (7.128) that the commutation properties of the Pauli
operators can be expressed in the form

(α|β)(α′|β ′) = (−1)α·β′+α′·β(α′|β ′)(α|β) (7.129)

Thus two Pauli operators commute if and only if the corresponding vectors
are orthogonal with respect to the “symplectic” inner product

α · β ′ + α′ · β . (7.130)

We also note that the square of a Pauli operator is

(α|β)2 = (−1)α·βI , (7.131)
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since α·β counts the number of Y ’s in the operator; it squares to the identity
if and only if

α · β = 0 . (7.132)

Note that a closed subspace, where each element has this property, is auto-
matically self-orthogonal, since

α · β ′ + α′ · β = (α+ α′) · (β + β ′) − α · β − α′ · β ′ = 0 ;
(7.133)

in the group language, that is, a subgroup of Gn with each element squaring
to I is automatically abelian.

Using the linear algebra language, some of the statements made earlier
about the Pauli group can be easily verified by counting linear constraints.
Elements are independent if the corresponding vectors are linearly indepen-
dent over F 2n

2 , so we may think of the n − k generators of the stabilizer
as a basis for a linear subspace of dimension n − k. We will use the nota-
tion S to denote both the linear space and the corresponding abelian group.
Then S⊥ denotes the dimension-n + k space of vectors that are orthogonal
to each vector in S (with respect to the symplectic inner product). Note
that S⊥ contains S, since all vectors in S are mutually orthogonal. In the
group language, corresponding to S⊥ is the normalizer (or centralizer) group
N(S) (≡ S⊥) of S in Gn — the subgroup of Gn containing all elements that
commute with each element of S. Since S is abelian, it is contained in its
own normalizer, which also contains other elements (to be further discussed
below). The stabilizer of a distance d code has the property that each (α|β)
whose weight

∑

i(αi ∨ βi) is less than d either lies in the stabilizer subspace
S or lies outside the orthogonal space S⊥.

A code can be characterized by its stabilizer, a stabilizer by its generators,
and the n− k generators can be represented by an (n− k) × 2n matrix

H = (HZ|HX). (7.134)

Here each row is a Pauli operator, expressed in the (α|β) notation. The syn-
drome of an error Ea = (αa|βa) is determined by its commutation properties
with the generators M i = (α′

i|β ′
i); that is

sia = (αa|βa) · (α′
i|β ′

i) = αa · β ′
i + α′

i · βa. (7.135)
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In the case of a nondegenerate code, each error has a distinct syndrome. If
the code is degenerate, there may be several errors with the same syndrome,
but we may apply any one of the E†

a corresponding to the observed syndrome
in order to recover.

7.9.3 Some examples of stabilizer codes

(a) The nine-qubit code. This [[9, 1, 3]] code has eight stabilizer genera-
tors that can be expressed as

Z1Z2, Z2Z3 Z4Z5 Z5Z6, Z7Z8 Z8Z9

X1X2X3X4X5X6, X4X5X6X7X8X9.
(7.136)

In the notation of eq. (7.134) these become
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(b) The seven-qubit code. This [[7, 1, 3]] code has six stabilizer genera-
tors, which can be expressed as

H̃ =

(

Hham 0
0 Hham

)

, (7.137)

where Hham is the 3 × 7 parity-check matrix of the classical [7,4,3]
Hamming code. The three check operators

M 1 = Z1Z3Z5Z7

M 2 = Z2Z3Z6Z7

M 3 = Z4Z5Z6Z7, (7.138)
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detect the bit flips, and the three check operators

M4 = X1X3X5X7

M5 = X2X3X6X7

M6 = X4X5X6X7, (7.139)

detect the phase errors. The space with M1 = M2 = M 3 = 1 is
spanned by the codewords that satisfy the Hamming parity check. Re-
calling that a Hadamard change of basis interchanges Z and X, we
see that the space with M 4 = M 5 = M6 is spanned by codewords
that satisfy the Hamming parity check in the Hadamard-rotated ba-
sis. Indeed, we constructed the seven-qubit code by demanding that
the Hamming parity check be satisfied in both bases. The generators
commute because the Hamming code contains its dual code; i.e., each
row of Hham satisfies the Hamming parity check.

(c) CSS codes. Recall whenever an [n, k, d] classical code C contains its
dual code C⊥, we can perform the CSS construction to obtain an
[[n, 2k−n, d]] quantum code. The stabilizer of this code can be written
as

H̃ =

(

H 0
0 H

)

(7.140)

where H is the (n− k)×n parity check matrix of C . As for the seven-
qubit code, the stabilizers commute because C contains C⊥, and the
code subspace is spanned by states that satisfy the H parity check in
both the F -basis and the P -basis. Equivalently, codewords obey the H
parity check and are invariant under

|v〉 → |v + w〉, (7.141)

where w ∈ C⊥.

(d) More general CSS codes. Consider, more generally, a stabilizer
whose generators can each be chosen to be either a product of Z’s
(α|0) or a product of X’s (0|β). Then the generators have the form

H̃ =

(

HZ 0
0 HX

)

. (7.142)
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Now, what condition must HX and HZ satisfy if the Z-generators and
X-generators are to commute? Since Z’s must collide with X’s an
even number of times, we have

HXH
T
Z = HZH

T
X = 0 . (7.143)

But this is just the requirement that the dual C⊥
X of the code whose

parity check is HX be contained in the code CZ whose parity check is
HZ . In other words, this QECC fits into the CSS framework, with

C2 = C⊥
X ⊆ C1 = CZ . (7.144)

So we may characterize CSS codes as those and only those for which
the stabilizer has generators of the form eq. (7.142).

However there is a caveat. The code defined by eq. (7.142) will be non-
degenerate if errors are restricted to weight less than d = min(dZ , dX)
(where dZ is the distance of CZ , and dX the distance of CX). But the
true distance of the QECC could exceed d. For example, the 9-qubit
code is in this generalized sense a CSS code. But in that case the
classical code CX is distance 1, reflecting that, e.g., Z1Z2 is contained
in the stabilizer. Nevertheless, the distance of the CSS code is d = 3,
since no weight-2 Pauli operator lies in S⊥ \ S.

7.9.4 Encoded qubits

We have seen that the troublesome errors are those in S⊥ \ S — those that
commute with the stabilizer, but lie outside of it. These Pauli operators are
also of interest for another reason: they can be regarded as the “logical”
operations that act on the encoded data that is protected by the code.

Appealing to the “linear algebra” viewpoint, we can see that the nor-
malizer S⊥ of the stabilizer contains n + k independent generators – in the
2n-dimensional space of the (α|β)’s, the subspace containing the vectors that
are orthogonal to each of n − k linearly independent vectors has dimension
2n − (n − k) = n + k. Of the n + k vectors that span this space, n − k
can be chosen to be the generators of the stabilizer itself. The remaining
2k generators preserve the code subspace because they commute with the
stabilizer, but act nontrivially on the k encoded qubits.

In fact, these 2k operations can be chosen to be the single-qubit operators
Z̄i, X̄ i, i = 1, 2, . . . , k, where Z̄i, X̄ i are the Pauli operators Z and X acting
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on the encoded qubit labeled by i. First, note that we can extend the n− k
stabilizer generators to a maximal set of n commuting operators. The k
operators that we add to the set may be denoted Z̄1, . . . Z̄k. We can then
regard the simultaneous eigenstates of Z̄1 . . . Z̄k (in the code subspace HS)
as the logical basis states |z̄1, . . . , z̄k〉, with z̄j = 0 corresponding to Z̄j = 1
and z̄j = 1 corresponding to Z̄j = −1.

The remaining k generators of the normalizer may be chosen to be mutu-
ally commuting and to commute with the stabilizer, but then they will not
commute with any of the Z̄i’s. By invoking a Gram-Schmidt orthonormaliza-
tion procedure, we can choose these generators, denoted X̄ i, to diagonalize
the symplectic form, so that

Z̄iX̄j = (−1)δijX̄jZ̄i. (7.145)

Thus, each X̄j flips the eigenvalue of the corresponding Z̄j, and it can so be
regarded as the Pauli operator X acting on encoded qubit i

(a) The 9-qubit Code. As we have discussed previously, the logical oper-
ators can be chosen to be

Z̄ = X1X2X3 ,

X̄ = Z1Z4Z7 . (7.146)

These anti-commute with one another (an X and a Z collide at position
1), commute with the stabilizer generators, and are independent of the
generators (no element of the stabilizer contains three X’s or three
Z’s).

(b) The 7-qubit code. We have seen that

X̄ = X1X2X3 ,

Z̄ = Z1Z2Z3 ; (7.147)

then X̄ adds an odd Hamming codeword and Z̄ flips the phase of an
odd Hamming codeword. These operations implement a bit flip and
phase flip respectively in the basis {|0〉F , |1〉F } defined in eq. (7.93).
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7.10 The 5-Qubit Code

All of the QECC’s that we have considered so far are of the CSS type — each
stabilizer generator is either a product of Z’s or a product of X’s. But not
all stabilizer codes have this property. An example of a non-CSS stabilizer
code is the perfect nondegenerate [[5,1,3]] code.

Its four stabilizer generators can be expressed

M1 = XZZXI,

M2 = IXZZX,

M3 = XIXZZ,

M4 = ZXIXZ, (7.148)

M2,3,4 are obtained from M1 by performing a cyclic permutation of the
qubits. (The fifth operator obtained by a cyclic permutation of the qubits,
M5 = ZZXIX = M 1M 2M3M4 is not independent of the other four.)
Since a cyclic permutation of a generator is another generator, the code itself
is cyclic — a cyclic permutation of a codeword is a codeword.

Clearly each M i contains no Y ’s and so squares to I. For each pair
of generators, there are two collisions between an X and a Z, so that the
generators commute. One can quickly check that each Pauli operator of
weight 1 or weight 2 anti-commutes with at least one generator, so that the
distance of the code is 3.

Consider, for example, whether there are error operators with support
on the first two qubits that commute with all four generators. The weight-2
operator, to commute with the IX in M 2 and the XI in M3, must be
XX. But XX anti-commutes with the XZ in M1 and the ZX in M 4.

In the symplectic notation, the stabilizer may be represented as

H̃ =











01100 10010
00110 01001
00011 10100
10001 01010











(7.149)

This matrix has a nice interpretation, as each of its columns can be regarded
as the syndrome of a single-qubit error. For example, the single-qubit bit flip
operator Xj , commutes with M i if M i has an I or X in position j, and
anti-commutes if M i has a Z in position j. Thus the table
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X1 X2 X3 X4 X5

M 1 0 1 1 0 0
M 2 0 0 1 1 0
M 3 0 0 0 1 1
M 4 1 0 0 0 1

lists the outcome of measuring M1,2,3,4 in the event of a bit flip. (For example,
if the first bit flips, the measurement outcomes M 1 = M 2 = M 3 = 1,M 4 =
−1, diagnose the error.) Similarly, the right half of H̃ can be regarded as the
syndrome table for the phase errors.

Z1 Z2 Z3 Z4 Z5

M 1 1 0 0 1 0
M 2 0 1 0 0 1
M 3 1 0 1 0 0
M 4 0 1 0 1 0

Since Y anti-commutes with both X and Z, we obtain the syndrome for the
error Y i by summing the ith columns of the X and Z tables:

Y 1 Y 2 Y 3 Y 4 Y 5

M 1 1 1 1 1 0
M 2 0 1 1 1 1
M 3 1 0 1 1 1
M 4 1 1 0 1 1

We find by inspection that the 15 columns of the X,Y , and Z syndrome
tables are all distinct, and so we verify again that our code is a nondegenerate
code that corrects one error. Indeed, the code is perfect — each of the 15
nontrivial binary strings of length 4 appears as a column in one of the tables.

Because of the cyclic property of the code, we can easily characterize all
15 nontrivial elements of its stabilizer. Aside from M1 = XZZXI and
the four operators obtained from it by cyclic permutations of the qubit, the
stabilizer also contains

M3M4 = −Y XXY I , (7.150)

plus its cyclic permutations, and

M2M5 = −ZY Y ZI, (7.151)
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and its cyclic permutations. Evidently, all elements of the stabilizer are
weight-4 Pauli operators.

For our logical operators, we may choose

Z̄ = ZZZZZ,

X̄ = XXXXX; (7.152)

these commute with M1,2,3,4, square to I, and anti-commute with one an-
other. Being weight 5, they are not themselves contained in the stabilizer.
Therefore if we don’t mind destroying the encoded state, we can determine
the value of Z̄ for the encoded qubit by measuring Z of each qubit and eval-
uating the parity of the outcomes. In fact, since the code is distance three,
there are elements of S⊥ \S of weight-three; alternate expressions for Z̄ and
X̄ can be obtained by multiplying by elements of the stabilizer. For example
we can choose

Z̄ = (ZZZZZ) · (−ZY Y ZI) = −IXXIZ, (7.153)

(or one of its cyclic permutations), and

X̄ = (XXXXX) · (−Y XXY I) = −ZIIZX,
(7.154)

(or one of its cyclic permutations). So it is possible to ascertain the value of
X̄ or Z̄ by measuring X or Z of only three of the five qubits in the block,
and evaluating the parity of the outcomes.

If we wish, we can construct an orthonormal basis for the code subspace,
as follows. Starting from any state |ψ0〉, we can obtain

|Ψ0〉 =
∑

M∈S

M |ψ0〉. (7.155)

This (unnormalized) state obeys M ′|Ψ0〉 = |Ψ0〉 for each M ′ ∈ S, since
multiplication by an element of the stabilizer merely permutes the terms in
the sum. To obtain the Z̄ = 1 encoded state |0̄〉, we may start with the state
|00000〉, which is also a Z̄ = 1 eigenstate, but not in the stabilizer; we find
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(up to normalization)

|0̄〉 =
∑

M∈S

|00000〉

= |00000〉 + (M1 + cyclic perms) |00000〉
+ (M 3M4 + cyclic perms) |00000〉 + (M2M5 + cyclic perms) |00000〉
= |00000〉 + (110010〉 + cyclic perms)

− (|11110〉 + cyclic perms)

− (|01100〉 + cyclic perms). (7.156)

We may then find |1̄〉 by applying X̄ to |0̄〉, that is by flipping all 5 qubits:

|1̄〉 = X̄|0̄〉 = |11111〉 + (|01101〉 + cyclic perms)

− (|00001〉 + cyclic perms)

− (|10011〉 + cyclic perms) . (7.157)

How is the syndrome measured? A circuit that can be executed to mea-
sure M1 = XZZXI is:

– Figure –

The Hadamard rotations on the first and fourth qubits rotate M 1 to the
tensor product of Z’s ZZZZI, and the CNOT’s then imprint the value
of this operator on the ancilla. The final Hadamard rotations return the
encoded block to the standard code subspace. Circuits for measuring M 2,3,4

are obtained from the above by cyclically permuting the five qubits in the
code block.

What about encoding? We want to construct a unitary transformation

U encode : |0000〉 ⊗ (a|0〉 + b|1〉) → a|0̄〉 + b|1̄〉. (7.158)

We have already seen that |00000〉 is a Z̄ = 1 eigenstate, and that |00001〉 is
a Z̄ = −1 eigenstate. Therefore (up to normalization)

a|0̄〉 + b|1̄〉 =





∑

M∈S

M



 |0000〉 ⊗ (a|0〉 + b|1〉). (7.159)
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So we need to figure out how to construct a circuit that applies (
∑

M) to
an initial state.

Since the generators are independent, each element of the stabilizer can be
expressed as a product of generators as a unique way, and we may therefore
rewrite the sum as

∑

M∈S

M = (I + M 4)(I + M3)(I + M 2)(I + M 1) .
(7.160)

Now to proceed further it is convenient to express the stabilizer in an alter-
native form. Note that we have the freedom to replace the generator M i by
M iM j without changing the stabilizer. This replacement is equivalent to
adding the jth row to the ith row in the matrix H̃. With such row opera-
tions, we can perform a Gaussian elimination on the 4 × 5 matrix HX , and
so obtain the new presentation for the stabilizer

H̃ ′ =











11011 10001
00110 01001
11000 00101
10111 00011











, (7.161)

or

M1 = Y ZIZY

M2 = IXZZX

M3 = ZZXIX

M4 = ZIZY Y (7.162)

In this form M i applies an X (flip) only to qubits i and 5 in the block.
Adopting this form for the stabilizer, we can apply 1√

2
(I +M1) to a state

|0, z2, z3, z4, z5〉 by executing the circuit

– Figure –

The Hadamard prepares 1√
2
(|0〉 + |1〉. If the first qubit is |0〉, the other

operations don’t do anything, so I is applied. But if the first qubit is |1〉,
then X has been applied to this qubit, and the other gates in the circuit apply
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ZZIZY , conditioned on the first qubit being |1〉. Hence, Y ZIZY = M 1

has been applied. Similar circuits can be constructed that apply 1√
2
(I +M 2)

to |z1, 0, z3, z4, z5〉, and so forth. Apart from the Hadamard gates each of these
circuits applies only Z’s and conditional Z’s to qubits 1 through 4; these
qubits never flip. (It was to ensure thus that we performed the Gaussian
elimination on HX .) Therefore, we can construct our encoding circuit as

– Figure –

Furthermore, each Z gate acting on |0〉 can be replaced by the identity, so
we may simplify the circuit by eliminating all such gates, obtaining

– Figure –

This procedure can be generalized to construct an encoding circuit for any
stabilizer code.

Since the encoding transformation is unitary, we can use its adjoint to
decode. And since each gate squares to ±I , the decoding circuit is just the
encoding circuit run in reverse.

7.11 Quantum secret sharing

The [[5, 1, 3]] code provides a nice illustration of a possible application of
QECC’s.2

Suppose that some top secret information is to be entrusted to n parties.
Because none is entirely trusted, the secret is divided into n shares, so that
each party, with access to his share alone, can learn nothing at all about the
secret. But if enough parties get together and pool their shares, they can
decipher the secret or some part of it.

In particular, an (m,n) threshold scheme has the property that m shares
are sufficient to reconstruct all of the secret information. But from m − 1

2R. Cleve, D. Gottesman, and H.-K. Lo, “How to Share a Quantum Secret,” quant-
ph/9901025.
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shares, no information at all can be extracted. (This is called a threshold

scheme because as shares 1, 2, 3 . . . , m− 1 are collected one by one, nothing
is learned, but the next share crosses the threshold and reveals everything.)

We should distinguish too kinds of secrets: a classical secret is an a priori

unknown bit string, while a quantum secret is an a priori unknown quantum
state. Either type of secret can be shared. In particular, we can distribute
a classical secret among several parties by selecting one from an ensemble
of mutually orthogonal (entangled) quantum states, and dividing the state
among the parties.

We can see, for example, that the [[5, 1, 3]] code may be employed in
a (3, 5) threshold scheme, where the shared information is classical. One
classical bit is encoded by preparing one of the two orthogonal states |0̄〉 or
|1̄〉 and then the five qubits are distributed to five parties. We have seen that
(since the code is nondegenerate) if any two parties get together, then the
density matrix ρ their two qubits is

ρ(2) =
1

4
1 . (7.163)

Hence, they learn nothing about the quantum state from any measurement
of their two qubits. But we have also seen that the code can correct two
located errors or two erasures. When any three parties get together, they
may correct the two errors (the two missing qubits) and perfectly reconstruct
the encoded state |0̄〉 or |1̄〉.

It is also clear that by a similar procedure a single qubit of quantum infor-
mation can be shared – the [[5, 1, 3]] code is also the basis of a ((3, 5)) quan-
tum threshold scheme (we use the ((m,n)) notation if the shared information
is quantum information, and the (m,n) notation if the shared information
is classical). How does this quantum-secret-sharing scenario generalize to
more qubits? Suppose we prepare a pure state |ψ〉 of n qubits — can it be
employed in an ((m,n)) threshold scheme?

We know that m qubits must be sufficient to reconstruct the state; hence
n−m erasures can be corrected. It follows from our general error correction
criterion that the expectation value of any weight-(n−m) observable must
be independent of the state |ψ〉

〈ψ|E|ψ〉 independent of |ψ〉, wt(E) ≤ n −m. (7.164)

Thus, if m parties have all the information, the other n−m parties have no

information at all. That makes sense, since quantum information cannot be
cloned.
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On the other hand, we know that m− 1 shares reveal nothing, or that

〈ψ|E|ψ〉 independent of |ψ〉, wt(E) ≤ m− 1. (7.165)

It then follows thatm−1 erasures can be corrected, or that the other n−m+1
parties have all the information.

From these two observations we obtain the two inequalities

n −m < m ⇒ n < 2m ,

m− 1 < n−m+ 1 ⇒ n > 2m− 2 . (7.166)

It follows that

n = 2m− 1 , (7.167)

in an ((m,n)) pure state quantum threshold scheme, where each party has
a single qubit. In other words, the threshold is reached as the number of
qubits in hand crosses over from the minority to the majority of all n qubits.

We see that if each share is a qubit, a quantum pure state threshold
scheme is a [[2m−1, k,m]] quantum code with k ≥ 1. But in fact the [[3, 1, 2]]
and [[7, 1, 4]] codes do not exist, and it follows from the Rains bound that the
m > 3 codes do not exist. In a sense, then, the [[5, 1, 3]] code is the unique
quantum threshold scheme.

There are a number of caveats — the restriction n = 2m− 1 continues to
apply if each share is a q-dimensional system rather than a qubit, but various

[[2m− 1, 1, k]]q (7.168)

codes can be constructed for q > 2. (See the exercises for an example.)
Also, we might allow the shared information to be a mixed state (that

encodes a pure state). For example, if we discard one qubit of the five qubit
block, we have a ((3, 4)) scheme. Again, once we have three qubits, we can
correct two erasures, one arising because the fourth share is in the hands of
another party, the other arising because a qubit has been thrown away.

Finally, we have assumed that the shared information is quantum infor-
mation. But if we are only sharing classical information instead, then the
conditions for correcting erasures are less stringent. For example, a Bell pair
may be regarded as a kind of (2, 2) threshold scheme for two bits of classical
information, where the classical information is encoded by choosing one of
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the four mutually orthogonal states |φ±〉, |ψ±〉. A party in possession of one
of the two qubits is unable to access any of this classical information. But
this is not a scheme for sharing a quantum secret, since linear combinations
of these Bell states do not have the property that ρ = 1

2
1 if we trace out one

of the two qubits.

7.12 Some Other Stabilizer Codes

7.12.1 The [[6, 0, 4]] code

A k = 0 quantum code has a one-dimensional code subspace; that is, there is
only one encoded state. The code cannot be used to store unknown quantum
information, but even so, k = 0 codes can have interesting properties. Since
they can detect and diagnose errors, they might be useful for a study of the
correlations in decoherence induced by interactions with the environment.

If k = 0, then S and S⊥ coincide – a Pauli operator that commutes
with all elements of the stabilizer must lie in the stabilizer. In this case,
the distance d is defined as the minimum weight of any Pauli operator in
the stabilizer. Thus a distance-d code can “detect d − 1 errors;” that is, if
any Pauli operator of weight less than d acts on the code state, the result is
orthogonal to that state.

Associated with the [[5, 1, 3]] code is a [[6, 0, 4]] code, whose encoded state
can be expressed as

|0〉 ⊗ |0̄〉 + |1〉 ⊗ |1̄〉, (7.169)

where |0̄〉 and |1̄〉 are the Z̄ eigenstates of the [[5, 1, 3]] code. You can verify
that this code has distance d = 4 (an exercise).

The [[6, 0, 4]] code is interesting because its code state is maximally en-
tangled. We may choose any three qubits from among the six. The density
matrix ρ(3) of those three, obtained by tracing over the other three, is totally
random, ρ(3) = 1

8
I. In this sense, the [[6, 0, 4]] state is a natural multiparti-

cle analog of the two-qubit Bell states. It is far “more entangled” than the
six-qubit cat state 1√

2
(|000000〉+ |111111〉). If we measure any one of the six

qubits in the cat state, in the {|0〉, |1〉} basis, we know everything about the
state we have prepared of the remaining five qubits. But we may measure
any observable we please acting on any three qubits in the [[6, 0, 4]] state, and
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we learn nothing about the remaining three qubits, which are still described
by ρ(3) = 1

8
I.

Our [[6, 0, 4]] state is all the more interesting in that it turns out (but is not
so simple to prove) that its generalizations to more qubits do not exist. That
is, there are no [[2n, 0, n+ 1]] binary quantum codes for n > 3. You’ll see in
the exercises, though, that there are other, nonbinary, maximally entangled
states that can be constructed.

7.12.2 The [[2m, 2m − 2, 2]] error-detecting codes

The Bell state |φ+〉 = 1√
2
(|00〉 + |11〉) is a [[2, 0, 2]] code with stabilizer gen-

erators

ZZ ,
XX .

(7.170)

The code has distance two because no weight-one Pauli operator commutes
with both generators (none of X ,Y ,Z commute with both X and Z). Cor-
respondingly, a bit flip (X) or a phase flip (Z), or both (Y ) acting on either
qubit in |φ+〉, takes it to an orthogonal state (one of the other Bell states
|φ−〉, |ψ+〉, |ψ−〉).

One way to generalize the Bell states to more qubits is to consider the
n = 4, k = 2 code with stabilizer generators

ZZZZ ,
XXXX .

(7.171)

This is a distance d = 2 code for the same reason as before. The code
subspace is spanned by states of even parity (ZZZZ) that are invariant
under a simultaneous flip of all four qubits (XXX). A basis is:

|0000〉 + |1111〉 ,
|0011〉 + |1100〉 ,
|0101〉 + |1010〉 ,
|0110〉 + |1001〉 .

(7.172)

Evidently, an X or a Z acting on any qubit takes each of these states to
a state orthogonal to the code subspace; thus any single-qubit error can be
detected.
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A further generalization is the [[2m, 2m− 2, 2]] code with stabilizer gen-
erators

ZZ . . . Z ,
XX . . . X ,

(7.173)

(the length is required to be even so that the generators will commute. The
code subspace is spanned by our familiar friends the 2n−2 cat states

1√
2
(|x〉 + |¬x〉), (7.174)

where x is an even-weight string of length n = 2m.

7.12.3 The [[8, 3, 3]] code

As already noted in our discussion of the [[5, 1, 3]] code, a stabilizer code with
generators

H̃ = (HZ |HX), (7.175)

can correct one error if: (1) the columns of H̃ are distinct (a distinct syndrome
for each X and Z error) and (2) each sum of a column of HZ with the
corresponding column of HX is distinct from each column of H̃ and distinct
from all other such sums (each Y error can be distinguished from all other
one-qubit errors).

We can readily construct a 5 × 16 matrix H̃ with this property, and so
derive the stabilizer of an [[8, 3, 3]] code; we choose

H̃ =







H Hσ

11111111 00000000
00000000 11111111





 . (7.176)

Here H is the 3 × 8 matrix

H =







1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0





 (7.177)

whose columns are all the distinct binary strings of length 3, and Hσ is ob-
tained from H by performing a suitable permutation of the columns. This
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permutation is chosen so that the eight sums of columns of H with corre-
sponding columns of Hσ are all distinct. We may see by inspection that a
suitable choice is

Hσ =







0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 0 0 1 1 0 0





 (7.178)

as the column sums are then







1 1 0 0 1 1 0 0
0 1 1 1 1 0 0 0
1 1 0 1 0 0 1 0





 . (7.179)

The last two rows of H̃ serve to distinguish each X syndrome from each Y

syndrome or Z syndrome, and the above mentioned property of Hσ ensures
that all Y syndromes are distinct. Therefore, we have constructed a length-8
code with k = 8−5 = 3 that can correct one error. It is actually the simplest
in an infinite class of [[2m, 2m −m− 2, 3]] codes constructed by Gottesman,
with m ≥ 3.

The [[8, 3, 3]] quantum code that we have just described is a close cousin
of the “extended Hamming code,” the self-dual [8,4,4] classical code that
is obtained from the [7,3,4] dual of the Hamming code by adding an extra
parity bit. Its parity check matrix (which is also its generator matrix) is

HEH =











1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 1 1 1 1 1 1











(7.180)

This matrix HEH has the property that, not only are its eight columns dis-
tinct, but also each sum of two columns is distinct from all columns; since
the sum of two columns has 0, not 1, as its fourth bit.

7.13 Codes Over GF (4)

We constructed the [[5, 1, 3]] code by guessing the stabilizer generators, and
checking that d = 3. Is there a more systematic method?
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In fact, there is. Our suspicion that the [[5, 1, 3]] code might exist was
aroused by the observation that its parameters saturate the quantum sphere-
packing inequality for t = 1 codes:

1 + 3n = 2n−k, (7.181)

(16 = 16 for n = 5 and k = 1). To a coding theorist, this equation might
look familiar.

Aside from the binary codes we have focused on up to now, classical codes
can also be constructed from length-n strings of symbols that take values,
not in {0, 1}, but in the finite field with q elements GF (q). Such finite fields
exist for any q = pm, where p is prime. (GF is short for “Galois Field,” in
honor of their discoverer.)

For such nonbinary codes, we may model error as addition by an element
of the field, a cyclic shift of the q symbols. Then there are q − 1 nontrivial
errors. The weight of a vector in GF (q)n is the number of its nonzero ele-
ments, and the distance between two vectors is the weight of their difference
(the number of elements that disagree). An [n, k, d]q classical code consists
of qk codewords in GF (q)n, where the minimal distance between a pair is
d. The sphere packing bound that must be satisfied for an [n, k, d]q code to
exist becomes, for d = 3,

1 + (q − 1)n ≤ qn−k. (7.182)

In fact, the perfect binary Hamming codes that saturate this bound for q = 2
with parameters

n = 2m − 1, k = n−m, (7.183)

admit a generalization to any GF (q); perfect Hamming codes over GF (q)
can be constructed with

n =
qm − 1

q − 1
, k = n−m . (7.184)

The [[5, 1, 3]] quantum code is descended from the classical [5, 3, 3]4 Hamming
code (the case q = 4 and m = 2).

What do the classical GF (4) codes have to do with binary quantum sta-
bilizer codes? The connection arises because the stabilizer can be associated
with a set of vectors over GF (4) closed under addition.
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The field GF (4) has four elements that may be denoted 0, 1, ω, ω̄, where

1 + 1 = ω + ω = ω̄ + ω̄ = 0,

1 + ω = ω̄, (7.185)

and ω2 = ω̄, ωω̄ = 1. Thus, the additive structure of GF (4) echos the
multiplicative structure of the Pauli operators X,Y ,Z. Indeed, the length-
2n binary string (α|β) that we have used to denote an element of the Pauli
group can equivalently be regarded as a length-n vector in GF (4)n

(α|β) ↔ α+ βω. (7.186)

The stabilizer, with 2n−k elements, can be regarded as a subcode of GF (4),
closed under addition and containing 2n−k codewords.

Note that the code need not be a vector space over GF (4), as it is not
required to be closed under multiplication by a scalar ∈ GF (4). In the special
case where the code is a vector space, it is called a linear code.

Much is known about codes over GF (4), so this connection opened the
door for the (classical) coding theorists to construct many QECC’s.3 How-
ever, not every subcode of GF (4)n is associated with a quantum code; we
have not yet imposed the requirement that the stabilizer is abelian – the
(α|β)’s that span the code must be mutually orthogonal in the symplectic
inner product

α · β ′ + α′ · β . (7.187)

This orthogonality condition might look strange to a coding theorist, who is
more accustomed to defining the inner product of two vectors in GF (4)n as
an element of GF (4) given by

v ∗ u = v̄1u1 + · · · + v̄nun , (7.188)

where conjugation, denoted by a bar, interchanges ω and ω̄. If this “hermi-
tian” inner product ∗ of two vectors v and u is

v ∗ u = a+ bω ∈ GF (4) , (7.189)

3Calderbank, Rains, Shor, and Sloane, “Quantum error correction via codes over
GF (4),” quant-ph/9608006.
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then our symplectic inner product is

v · u = b . (7.190)

Therefore, vanishing of the symplectic inner product is a weaker condition
than vanishing of the hermitian inner product. In fact, though, in the special
case of a linear code, self-orthogonality with respect to the hermitian inner
product is actually equivalent to self-orthogonality with respect to the sym-
plectic inner product. We observe that if v ∗u = a+ bω, orthogonality in the
symplectic inner product requires b = 0. But if u is in a linear code, then so
is ω̄u where

v ∗ (ω̄u) = b+ aω̄ (7.191)

so that

v · (ω̄u) = a . (7.192)

We see that if v and u belong to a linear GF (4) code and are orthogonal
with respect to the symplectic inner product, then they are also orthogonal
with respect to the hermitian inner product. We conclude then, that a lin-
ear GF(4) code defines a quantum stabilizer code if and only if the code is
self-orthogonal in the hermitian inner product. Classical codes with these
properties have been much studied.

In particular, consider again the [5, 3, 3]4 Hamming code. Its parity check
matrix (in an unconventional presentation) can be expressed as

H =

(

1 ω ω 1 0
0 1 ω ω 1

)

, (7.193)

which is also the generator matrix of its dual, a linear self-orthogonal [5, 2, 4]4
code. In fact, this [5, 2, 4]4 code, with 42 = 16 codewords, is precisely the
stabilizer of the [[5, 1, 3]] quantum code. By identifying 1 ≡ X, ω ≡ Z, we
recognize the two rows of H as the stabilizer generators M 1,M2. The dual
of the Hamming code is a linear code, so linear combinations of the rows are
contained in the code. Adding the rows and multiplying by ω we obtain

ω(1, ω̄, 0, ω̄, 1) = (ω, 1, 0, 1, ω), (7.194)

which is M 4. And if we add M 4 to M 2 and multiply by ω̄, we find

ω̄(ω, 0, ω, ω̄, ω̄) = (1, 0, 1, ω, ω), (7.195)
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which is M 3.
The [[5, 1, 3]] code is just one example of a quite general construction.

Consider a subcode C of GF (4)n that is additive (closed under addition),
and self-orthogonal (contained in its dual) with respect to the symplectic
inner product. This GF (4) code can be identified with the stabilizer of a
binary QECC with length n. If the GF (4) code contains 2n−k codewords,
then the QECC has k encoded qubits. The distance d of the QECC is the
minimum weight of a vector in C⊥ \ C .

Another example of a self-orthogonal linear GF (4) code is the dual of the
m = 3 Hamming code with

n =
1

3
(43 − 1) = 21. (7.196)

The Hamming code has 4n−m codewords, and its dual has 4m = 26 codewords.
We immediately obtain a QECC with parameters

[[21, 15, 3]], (7.197)

that can correct one error.

7.14 Good Quantum Codes

A family of [[n, k, d]] codes is good if it contains codes whose “rate” R = k/n
and “error probability” p = t/n (where (t = (d − 1)/2) both approach a
nonzero limit as n → ∞. We can use the stabilizer formalism to prove
a “quantum Gilbert-Varshamov” bound that demonstrates the existence of
good quantum codes. In fact, good codes can be chosen to be nondegenerate.

We will only sketch the argument, without carrying out the requisite
counting precisely. Let E = {Ea} be a set of errors to be corrected, and
denote by E(2) = {E†

aEb}, the products of pairs of elements of E. Then to
construct a nondegenerate code that can correct the errors in E, we must
find a set of stabilizer generators such that some generator anti-commutes
with each element of E(2).

To see if a code with length n and k qubits can do the job, begin with the
set S(n−k) of all abelian subgroups of the Pauli group with n− k generators.
We will gradually pare away the subgroups that are unsuitable stabilizers for
correcting the errors in E, and then see if any are left.
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Each nontrivial error Ea commutes with a fraction ∼ 1/2n−k of all groups
contained in S(n−k), since it is required to commute with each of the n − k
generators of the group. (There is a small correction to this fraction that we
may ignore for large n.) Each time we add another element to E(2), a fraction
2k−n of all stabilizer candidates must be rejected. When E(2) has been fully
assembled, we have rejected at worst a fraction

|E(2)| · 2k−n, (7.198)

of all the subgroups contained in S(n−k) (where |E(2)| is the number of ele-
ments of E(2).) As long as this fraction is less than one, a stabilizer that does
the job will exist for large n.

If we want to correct t = pn errors, then E(2) contains operators of weight
at most 2t and we may estimate

log2 |E(2)| <∼ log2

[(

n

2pn

)

32pn

]

∼ n [H2(2p) + 2p log2 3] .
(7.199)

Therefore, nondegenerate quantum stabilizer codes that correct pn errors
exist, with asymptotic vote R = k/n given by

log2 |E(2)| + k − n < 0, or R < 1 −H2(2p) − 2p log2 3.
(7.200)

Thus is the (asymptotic form of the) quantum Gilbert–Varshamov bound.
We conclude that codes with a nonzero rate must exist that protect

against errors that occur with any error probability p < pGV ' .0946. The
maximum error probability allowed by the Rains bound is p = 1/6, for a
code that can protect against every error operator of weight ≤ pn.

Though good quantum codes exist, the explicit construction of families
of good codes is quite another matter. Indeed, no such constructions are
known.

7.15 Some Codes that Correct Multiple Er-

rors

7.15.1 Concatenated codes

Up until now, all of the QECC’s that we have explicitly constructed have
d = 3 (or d = 2), and so can correct one error (at best). Now we will
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describe some examples of codes that have higher distance.
A particularly simple way to construct codes that can correct more errors

is to concatenate codes that can correct one error. A concatenated code is
a code within a code. Suppose we have two k = 1 QECC’s, an [[n1, 1, d1]]
code C1 code and an [[n2, 1, d2]] code C2. Imagine constructing a length n2

codeword of C2, and expanding the codeword as a coherent superposition of
product states, in which each qubit is in one of the states |0〉 or |1〉. Now
replace each qubit by a length-n1 encoded state using the code C1; that is
replace |0〉 by |0̄〉 and |1〉 by |1̄〉 of C1. The result is a code with length
n = n1n2, k = 1, and distance no less than d = d1d2. We will call C2 the
“outer” code and C1 the “inner” code.

In fact, we have already discussed one example of this construction: Shor’s
9-qubit code. In that case, the inner code is the three-qubit repetition code
with stabilizer generators

ZZI , IZZ , (7.201)

and the outer code is the three-qubit “phase code” with stabilizer generators

XXI , IXX (7.202)

(the Hadamard rotated repetition code). We construct the stabilizer of the
concatenated code as follows: Acting on each of the three qubits contained
in the block of the outer code, we include the two generators Z1Z2,Z2Z3 of
the inner code (six generators altogether). Then we add the two generators
of the outer code, but with X,Z replaced by the encoded operations of the
inner code; in this case, these are the two generators

X̄X̄Ī, ĪX̄X̄, (7.203)

where Ī = III and X̄ = XXX. You will recognize these as the eight
stabilizer generators of Shor’s code that we have described earlier. In this
case, the inner and outer codes both have distance 1 (e.g., ZII commutes
with the stabilizer of the inner code), yet the concatenated code has distance
3 > d1d2 = 1. This happens because the code has been cleverly constructed
so that the weight 1 and 2 encoded operations of the inner code do not
commute with the stabilizer of the outer code. (It would have been different
if we had concatenated the repetition code with itself rather than with the
phase code!)
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We can obtain a distance 9 code (capable of correcting four errors) by
concatenating the [[5, 1, 3]] code with itself. The length n = 25 is the smallest
for any known code with k = 1 and d = 9. (An [[n, 1, 9]] code with n = 23, 24
would be consistent with the Rains bound, but it is unknown whether such
a code really exists.)

The stabilizer of the [[25, 1, 9]] concatenated code has 24 generators. Of
these, 20 are obtained as the four generators M 1,2,3,4 acting on each of the
five subblocks of the outer code, and the remaining four are the encoded

operators M̄ 1,2,3,4 of the outer code. Notice that the stabilizer contains
elements of weight 4 (the stabilizer elements acting on each of the five inner
codes); therefore, the code is degenerate. This is typical of concatenated
codes.

There is no need to stop at two levels of concatenation; from L QECC’s
with parameters [[n1, 1, d1]], . . . , [[nL, 1, dL]], we can construct a hierarchical
code with altogether L levels of codes within codes; it has length

n = n1n2 . . . nL, (7.204)

and distance

d ≥ d1d2 . . . dL. (7.205)

In particular, by concatenating the [[5, 1, 3]] code L times, we may construct
a code with parameters

[[5L, 1, 3L]]. (7.206)

Strictly speaking, this family of codes cannot protect against a number of
errors that scales linearly with the length. Rather the ratio of the number t
of errors that can be corrected to the length n is

t

n
∼ 1

2

(

3

5

)L

, (7.207)

which tends to zero for large L. But the distance d may be a deceptive
measure of how well the code performs — it is all right if recovery fails for
some ways of choosing t � pn errors, so long as recovery will be successful
for the typical ways of choosing pn faulty qubits. In fact, concatenated codes
can correct pn typical errors, for n large and p > 0.

Actually, the way concatenated codes are usually used does not fully
exploit their power to correct errors. To be concrete, consider the [[5, 1, 3]]
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code in the case where each of the five qubits is independently subjected to
the depolarizing channel with error probability p (that is X,Y ,Z errors each
occur with probability p/3). Recovery is sure to succeed if fewer than two
errors occur in the block. Therefore, as in §7.4.2, we can bound the failure
probability by

pfail ≡ p(1) ≤
(

5

2

)

p2 = 10p2. (7.208)

Now consider the performance of the concatenated [[25, 1, 9]] code. To
keep life easy, we will perform recovery in a simple (but nonoptimal) way:
First we perform recovery on each of the five subblocks, measuring M1,2,3,4

to obtain an error syndrome for each subblock. After correcting the sub-
blocks, we then measure the stabilizer generators M̄ 1,2,3,4 of the outer code,
to obtains its syndrome, and apply an encoded X̄, Ȳ , or Z̄ to one of the
subblocks if the syndrome reveals an error.

For the outer code, recovery will succeed if at most one of the subblocks
is damaged, and the probability p(1) of damage to a subblock is bounded as
in eq. (7.208); we conclude that the probability of a botched recovery for the
[[25, 1, 9]] code is bounded above by

p(2) ≤ 10(p(1))2 ≤ 10(10p2)2 = 1000p4 . (7.209)

Our recovery procedure is clearly not the best possible, because four errors
can induce failure if there are two each in two different subblocks. Since the
code has distance nine, there is a better procedure that would always recover
successfully from four errors, so that p(2) would be of order p5 rather than
p4. Still, the suboptimal procedure has the advantage that it is very easily
generalized, (and analyzed) if there are many levels of concatenation.

Indeed, if there are L levels of concatenation, we begin recovery at the
innermost level and work our way up. Solving the recursion

p(`) ≤ C [p(`−1)]2, (7.210)

starting with p(0) = p, we conclude that

p(L) ≤ 1

C
(Cp)2L

, (7.211)

(where here C = 10). We see that as long as p < 1/10, we can make the
failure probability as small as we please by adding enough levels to the code.
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We may write

p(L) ≤ po

(

p

po

)2L

, (7.212)

where po = 1
10

is an estimate of the threshold error probability that can be
tolerated (we will obtain better codes and better estimates of this threshold
below). Note that to obtain

p(L) < ε, (7.213)

we may choose the block size n = 5L so that

n ≤
[

log(po/ε)

log(po/p)

]log2 5

. (7.214)

In principle, the concatenated code at a high level could fail with many
fewer than n/10 errors, but these would have to be distributed in a highly
conspiratorial fashion that is quite unlikely for n large.

The concatenated encoding of an unknown quantum state can be carried
out level by level. For example to encode a|0〉 + b|1〉 in the [[25, 1, 9]] block,
we could first prepare the state a|0̄〉 + b|1̄〉 in the five qubit block, using the
encoding circuit described earlier, and also prepare four five-qubit blocks in
the state |0̄〉. The a|0̄〉+|1̄〉 can be encoded at the next level by executing the
encoded circuit yet again, but this time with all gates replaced by encoded
gates acting on five-qubit blocks. We will see in the next chapter how these
encoded gates are constructed.

7.15.2 Toric codes

The toric codes are another family of codes that, like concatenated codes,
offer much better performance than would be expected on the basis of their
distance. They’ll be described by Professor Kitaev (who discovered them).

7.15.3 Reed–Muller codes

Another way to construct codes that can correct many errors is to invoke the
CSS construction. Recall, in particular, the special case of that construction
that applies to a classical code C that is contained in its dual code (we
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then say that C is “weakly self-dual”). In the CSS construction, there is a
codeword associated with each coset of C in C⊥. Thus we obtain an [[n, k, d]]
quantum code, where n is the length of C , d is (at least) the distance of C⊥,
and k = dimC⊥ − dimC . Therefore, for the construction of CSS codes that
correct many errors, we seek weakly self-dual classical codes with a large
minimum distance.

One class of weakly self-dual classical codes are the Reed-Muller codes.
Though these are not especially efficient, they are very convenient, because
they are easy to encode, recovery is simple, and it is not difficult to explain
their mathematical structure.4

To prepare for the construction of Reed-Muller codes, consider Boolean
functions on m bits,

f : {0, 1}m → {0, 1} . (7.215)

There are 22m

such functions forming what we may regard as a binary vector
space of dimension 2m. It will be useful to have a basis for this space. Recall
(§6.1), that any Boolean function has a disjunctive normal form. Since the
NOT of a bit x is 1− x, and the OR of two bits x and y can be expressed as

x ∨ y == x+ y − xy , (7.216)

any of the Boolean functions can be expanded as a polynomial in them binary
variables xm−1, xm−2, . . . , x1, x0 . A basis for the vector space of polynomials
consists of the 2m functions

1, xi, xixj, xixjxk, . . . , (7.217)

(where, since x2 = x, we may choose the factors of each monomial to be
distinct). Each such function f can be represented by a binary string of length
2m, whose value in the position labeled by the binary string xm−1xm−2 . . . x1x0

4See, e.g., MacWilliams and Sloane, Chapter 13.
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is f(xm−1, xm−2, . . . x1, x0). For example, for m = 3,

1 = (11111111)

x0 = (10101010)

x1 = (11001100)

x2 = (11110000)

x0x1 = (10001000)

x0x2 = (10100000)

x1x2 = (11000000)

x0x1x2 = (10000000) . (7.218)

A subspace of this vector space is obtained if we restrict the degree of
the polynomial to r or less. This subspace is the Reed–Muller (or RM) code,
denoted R(r,m). Its length is n = 2m and its dimension is

k = 1 +

(

m

1

)

+

(

m

2

)

+ . . . +

(

m

r

)

. (7.219)

Some special cases of interest are:

• R(0, m) is the length-2m repetition code.

• R(m−1, m) is the dual of the repetition code, the space on all length-2m

even-weight strings.

• R(1, 3) is the n = 8, k = 4 code spanned by 1, x0, x1, x2; it is in fact
the [8, 4, 4] extended Hamming code that we have already discussed.

• More generally, R(m − 2, m) is a d = 4 extended Hamming code for
each m ≥ 3. If we puncture this code (remove the last bit from all
codewords) we obtain the [n = 2m − 1, k = n − m, d = 3] perfect
Hamming code.

• R(1, m) has d = 2m−1 = 1
2
n and k = m. It is the dual of the extended

Hamming code, and is known as a “first-order” Reed–Muller code. It
is of considerable practical interest in its own right, both because of its
large distance and because it is especially easy to decode.
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We can compute the distance of the code R(r,m) by invoking induction
on m. First we must determine how R(m + 1, r) is related to R(m, r). A
function of xm, . . . , x0 can be expressed as

f(xm, . . . , x0) = g(xm−1, . . . , x0) + xmh(xm−1, . . . , x0) ,
(7.220)

and if f has degree r, then g must be of degree r and h of degree r − 1.
Regarding f as a vector of length 2m+1, we have

f = (g|g) + (h|0) (7.221)

where g, h are vectors of length 2m. Consider the distance between f and

f ′ = (g′|g′) + (h′|0) . (7.222)

For h = h′ and f 6= f ′ this distance is wt(f − f ′) =2 · wt(g − g′) ≥ 2 ·
dist (R(r,m)); for h 6= h′ it is at least wt(h − h′) ≥ dist (R(r − 1, m)). If
d(r,m) denotes the distance of R(r,m), then we see that

d(r,m+ 1) = min (2 d(r,m), d(r − 1, m)) . (7.223)

Now we can show that d(r,m) = 2m−r by induction on m. To start with,
we check that d(r,m = 1) = 21−r for r = 0, 1; R(1, 1) is the space of all
length 2 strings, and R(0, 1) is the length-2 repetition code. Next suppose
that d = 2m−r for all m ≤ M and 0 ≤ r ≤ m. Then we infer that

d(r,m+ 1) = min(2m−r+1, 2m−r+1) = 2m−r+1, (7.224)

for each 1 ≤ r ≤ m. It is also clear that d(m + 1, m + 1) = 1, since
R(m + 1, m + 1) is the space of all binary strings of length 2m+1, and that
d(0, m + 1) = 2m+1, since R(0, m + 1) is the length-2m+1 repetition code.
This completes the inductive step, and proves d(r,m) = 2m−r .

It follows, in particular, that R(m − 1, m) has distance 2, and therefore
that the dual of R(r,m) is R(m−r−1, m). First we notice that the binomial

coefficients
(

m

j

)

sum to 2m, so that R(m − r − 1) has the right dimension

to be R(r,m)⊥. It suffices, then, to show that R(m− r − 1) is contained in
R(r,m). But if f ∈ R(r,m) and g ∈ R(m − r − 1, m), their product is a
polynomial of degree at most m− 1, and is therefore in R(m− 1, m). Each
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vector in R(m − 1, m) has even weight, so the inner product f · g vanishes;
hence g is in the dual R(v,m)⊥. This shows that

R(r,m)⊥ = R(m− r − 1, m). (7.225)

It is because of this nice duality property that Reed–Muller codes are well-
suited for the CSS construction of quantum codes.

In particular, the Reed–Muller code is weakly self-dual for r ≤ m− r−1,
or 2r ≥, m − 1, and self-dual for 2r = m − 1. In the self-dual case, the
distance is

d = 2m−r = 2
1
2
(m+1) =

√
2n , (7.226)

and the number of encoded bits is

k =
1

2
n = 2m−1 . (7.227)

These self-dual codes, for m = 3, 5, 7, have parameters

[8, 4, 4], [32, 16, 8], [128, 64, 16] . (7.228)

(The [8, 4, 4] code is the extended Hamming code as we have already noted.)
Associated with these self-dual codes are the k = 0 quantum codes with
parameters

[[8, 0, 4]], [[32, 0, 8]], [[128, 0, 16]] , (7.229)

and so forth.
One way to obtain a k = 1 quantum code is to puncture the self-dual

Reed–Muller code, that is, to delete one of the n = 2m bits from the code.
(It turns out not to matter which bit we delete.) The classical punctured

code has parameters n = 2m − 1, d = 2
1
2
(m−1) − 1 =

√

2(n+ 1) − 1, and

k = 1
2
(n + 1). Furthermore, the dual of the punctured code is its even

subcode. (The even subcode consists of those RM codewords for which the
bit removed by the puncture is zero, and it follows from the self-duality of
the RM code that these are orthogonal to all the words (both odd and even
weight) of the punctured code.) From these punctured codes, we obtain, via
the CSS construction, k = 1 quantum codes with parameters

[[7, 1, 3]], [[31, 1, 7]], [[127, 1, 15]] , (7.230)
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and so forth. The [7, 4, 3] Hamming code is obtained by puncturing the
[8, 4, 4] RM code, and the corresponding [7, 1, 3] QECC is of course Steane’s
code. These QECC’s have a distance that increases like the square root of
their length.

These k = 1 codes are not among the most efficient of the known QECC’s.
Nevertheless they are of special interest, since their properties are especially
conducive to implementing fault-tolerant quantum gates on the encoded data,
as we will see in Chapter 8. In particular, one useful property of the self-dual
RM codes is that they are “doubly even” — all codewords have a weight that
is an integral multiple of four.

Of course, we can also construct quantum codes with k > 1 by applying
the CSS construction to the RM codes. For example R(3, 6), with parameters

n = 2m = 64

d = 2m−r = 8

k = 1 + 6 +

(

6

2

)

+

(

6

3

)

= 1 + 6 + 15 + 20 = 42 , (7.231)

is dual to R(2, 6), with parameters

n = 2m = 64

d = 2m−r = 16

k = 1 + 6 +

(

6

2

)

= 1 + 6 + 15 = 22 , (7.232)

and so the CSS construction yields a QECC with parameters

[[64, 20, 8]] . (7.233)

Many other weakly self-dual codes are known and can likewise be employed.

7.15.4 The Golay Code

From the perspective of pure mathematics, the most important error-correcting
code (classical or quantum) ever discovered is also one of the first ever de-
scribed in a published article — the Golay code. Here we will briefly describe
the Golay code, as it too can be transformed into a nice QECC via the CSS
construction. (Perhaps this QECC is not really important enough to deserve
a section of this chapter; still, I have included it just for fun.)
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The (extended) Golay code is a self-dual [24, 12, 8] classical code. If we
puncture it (remove any one of its 24 bits), we obtain the [23, 12, 7] Golay
code, which can correct three errors. This code is actually perfect, as it
saturates the sphere-packing bound:

1 +

(

23

1

)

+

(

23

2

)

+

(

23

3

)

= 211 = 223−12. (7.234)

In fact, perfect codes that correct more than one error are extremely rare.
It can be shown5 that the only perfect codes (linear or nonlinear) over any

finite field that can correct more than one error are the [23, 12, 7] code and
one other binary code discovered by Golay, with parameters [11, 6, 5].

The [24, 12, 8] Golay code has a very intricate symmetry. The symmetry
is characterized by its automorphism group — the group of permutations of
the 24 bits that take codewords to codewords. This is the Mathieu group
M24, a sporadic simple group of order 244,823,040 that was discovered in the
19th century.

The 212 = 4096 codewords have the weight distribution (in an obvious
notation)

01875912257616759241 . (7.235)

Note in particular that each weight is a multiple of 4 (the code is doubly
even). What is the significance of the number 759 (= 3.11.23)? In fact it is

(

24

5

)

/

(

8

5

)

= 759, (7.236)

and it arises for this combination reason: with each weight-8 codeword we
associate the eight-element set (“octad”) where the codeword has its support.
Each 5-element subset of the 24 bits is contained in exactly one octad (a
reflection of the code’s large symmetry).

What makes the Golay code important in mathematics? Its discovery
in 1949 set in motion a sequence of events that led, by around 1980, to a
complete classification of the finite simple groups. This classification is one
of the greatest achievements of 20th century mathematics.

(A group is simple if it contains no nontrivial normal subgroup. The finite
simple groups may be regarded as the building blocks of all finite groups in

5MacWilliams and Sloane §6.10.
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the sense that for any finite group G there is a unique decomposition of the
form

G ≡ G0 ⊇ G1 ⊇ G2 ≥ . . . ⊇ Gn, (7.237)

where each Gj+1 is a normal subgroup of Gj , and each quotient group
Gj/Gj+1 is simple. The finite simple groups can be classified into various
infinite families, plus 26 additional “sporadic” simple groups that resist clas-
sification.)

The Golay code led Leech, in 1964, to discover an extraordinarily close
packing of spheres in 24 dimensions, known as the Leech Lattice Λ. The lattice
points (the centers of the spheres) are 24-component integer-valued vectors
with these properties: to determine if ~x = (x1, x2 . . . , x24) is contained in Λ,
write each component xj in binary notation,

xj = . . . xj3xj2xj1xj0 . (7.238)

Then ~x ∈ Λ if

(i) The xj0’s are either all 0’s or all 1’s.

(ii) The xj2’s are an even parity 24-bit string if the xj0’s are 0, and an odd
parity 24-bit string if the xj0’s are 1.

(iii) The xj1’s are a 24-bit string contained in the Golay code.

When these rules are applied, a negative number is represented by its binary
complement, e.g.

−1 = . . . 11111 ,

−2 = . . . 11110 ,

−3 = . . . 11101 ,

etc. (7.239)

We can easily check that Λ is a lattice; that is, it is closed under addition.
(Bits other than the last three in the binary expansion of the xj’s are unre-
stricted).

We can now count the number of nearest neighbors to the origin (or
the number of spheres that touch any given sphere). These points are all
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(distance)2 = 32 away from the origin:

(±2)8 : 27 · 759
(±3)(∓1)23 : 212 · 24

(±4)2 : 22 ·
(

24

2

)

. (7.240)

That is, there are 759 · 27 neighbors that have eight components with the
values ±2 — their support is on one of the 759 weight-8 Golay codewords,
and the number of − signs must be even. There are 212 · 24 neighbors that
have one component with value ±3 (this component can be chosen in 24
ways) and the remaining 23 components have the value (∓1). If, say, +3 is
chosen, then the position of the +3, together with the position of the −1’s,
can be any of the 211 Golay codewords with value 1 at the position of the
+3. There are 22 ·

(

24
2

)

neighbors with two components each taking the value

±4 (the signs are unrestricted). Altogether, the coordination number of the
lattice is 196, 560.

The Leech lattice has an extraordinary automorphism group discovered
by Conway in 1968. This is the finite subgroup of the 24-dimensional rotation
group SO(24) that preserves the lattice. The order of this finite group (known
as ·0, or “dot oh”) is

222 · 39 · 54 · 72 · 11 · 13 · 23 = 8, 315, 553, 613, 086, 720, 000 ' 8.3 × 1018.
(7.241)

If its two element center is modded out, the sporadic simple group ·1 is
obtained. At the time of its discovery, ·1 was the largest of the sporadic
simple groups that had been constructed.

The Leech lattice and its automorphism group eventually (by a route
that won’t be explained here) led Griess in 1982 to the construction of the
most amazing sporadic simple group of all (whose existence had been inferred
earlier by Fischer and Griess). It is a finite subgroup of the rotation group in
196,883 dimensions, whose order is approximately 8.08×1053. This behemoth
known as F1 has earned the nickname “the monster” (though Griess prefers
to call it “the friendly giant”.) It is the largest of the sporadic simple groups,
and the last to be discovered.

Thus the classification of the finite simple groups owes much to (classical)
coding theory, and to the Golay code in particular. Perhaps the theory of
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QECC’s can also bequeath to mathematics something of value and broad
interest!

Anyway, since the (extended) [24, 12, 8] Golay code is self-dual, the [23, 12, 7]
code obtained by puncturing it is weakly self dual; its [23, 11, 8] dual is its
even subcode. From it, a [23, 1, 7] QECC can be constructed by the CSS
method. This code is not the most efficient quantum code that can correct
three errors (there is a [17, 1, 7] code that saturates the Rains bound), but it
has especially nice properties that are conducive to fault-tolerant quantum
computation, as we will see in Chapter 8.

7.16 The Quantum Channel Capacity

As we have formulated it up until now, our goal in constructing quantum
error correcting codes has been to maximize the distance d of the code,
given its length n and the number k of encoded qubits. Larger distance
provides better protection against errors, as a distance d code can correct
d − 1 erasures, or (d − 1)/2 errors at unknown locations. We have observed
that “good” codes can be constructed, that maintain a finite rate k/n for n
large, and correct a number of errors pn that scales linearly with n.

Now we will address a related but rather different question about the
asymptotic performance of QECC’s. Consider a superoperator $ that acts on
density operators in a Hilbert space H. Now consider $ acting independently
each copy of H contained in the n-fold tensor product

H(n) = H⊗ . . .⊗H. (7.242)

We would like to select a code subspace H(n)
code of H(n) such that quantum

information residing in H(n)
code can be subjected to the superoperator

$(n) = $ ⊗ . . .⊗ $, (7.243)

and yet can still be decoded with high fidelity.
The rate of a code is defined as

R =
logH(n)

code

logH(n)
; (7.244)

this is the number of qubits employed to carry one qubit of encoded infor-
mation. The quantum channel capacity Q($) of the superoperator $ is the
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maximum asymptotic rate at which quantum information can be sent over
the channel with arbitrarily good fidelity. That is, Q($) is the largest number

such that for any R < Q($) and any ε > 0, there is a code H(n)
code with rate at

least R, such that for any |ψ〉 ∈ H(n)
code, the state ρ recovered after |ψ〉 passes

through $(n) has fidelity

F = 〈ψ|ρ|ψ〉 > 1 − ε. (7.245)

Thus, Q($) is a quantum version of the capacity defined by Shannon
for a classical noisy channel. As we have already seen in Chapter 5, this
Q($) is not the only sort of capacity that can be associated with a quantum
channel. It is also of considerable interest to ask about C($), the maximum
rate at which classical information can be transmitted through a quantum
channel with arbitrarily small probability of error. A formal answer to this
question was formulated in §5.4, but only for a restricted class of possible
encoding schemes; the general answer is still unknown. The quantum channel
capacity Q($) is even less well understood than the classical capacity C($) of
a quantum channel. Note that Q($) is not the same thing as the maximum
asymptotic rate k/n that can be achieved by “good” [[n, k, d]] QECC’s with
positive d/n. In the case of the quantum channel capacity we need not insist
that the code correct any possible distribution of pn errors, as long as the
errors that cannot be corrected become highly atypical for n large.

Here we will mostly limit the discussion to two interesting examples of
quantum channels acting on a single qubit — the quantum erasure channel
(for which Q is exactly known), and the depolarizing channel (for which Q
is still unknown, but useful upper and lower bounds can be derived).

What are these channels? In the case of the quantum erasure chan-
nel, a qubit transmitted through the channel either arrives intact, or (with
probability p) becomes lost and is never received. We can find a unitary rep-
resentation of this channel by embedding the qubit in the three-dimensional
Hilbert space of a qubit with orthonormal basis {|0〉, |1〉, |2〉}. The channel
acts according to

|0〉 ⊗ |0〉E →
√

1 − p|0〉 ⊗ |0〉E +
√
p|2〉 ⊗ |1〉E ,

|1〉 ⊗ |0〉E →
√

1 − p|1〉 ⊗ |0〉E +
√
p|2〉 ⊗ |2〉E , (7.246)

where {|0〉E , |1〉E , |2〉E} are mutually orthogonal states of the environment.
The receiver can measure the observable |2〉〈2| to determined whether the
qubit is undamaged or has been “erased.”
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The depolarizing channel (with error probability p) was discussed at
length in §3.4.1. We see that, for p ≤ 3/4, we may describe the fate of
a qubit transmitted through the channel this way: with probability 1 − q
(where q = 4/3p), the qubit arrives undamaged, and with probability q it is
destroyed, in which case it is described by the random density matrix 1

2
1.

Both the erasure channel and the depolarizing channel destroy a qubit
with a specified probability. The crucial difference between the two channels
is that in the case of the erasure channel, the receiver knows which qubits
have been destroyed; in the case of the depolarizing channel, the damaged
qubits carry no identifying marks, which makes recovery more challenging.
Of course, for both channels, the sender has no way to know ahead of time
which qubits will be obliterated.

7.16.1 Erasure channel

The quantum channel capacity of the erasure channel can be precisely de-
termined. First we will derive an upper bound on Q, and then we will show
that codes exist that achieve high fidelity and attain a rate arbitrarily close
to the upper bound.

As the first step in the derivation of an upper bound on the capacity, we
show that Q = 0 for p > 1

2
.

– Figure –

We observe that the erasure channel can be realized if Alice sends a qubit
to Bob, and a third party Charlie decides at random to either steal the
qubit (with probability p) or allow the qubit to pass unscathed to Bob (with
probability 1 − p).

If Alice sends a large number n of qubits, then about (1− p)n reach Bob,
and pn are intercepted by Charlie. Hence for p > 1

2
, Charlie winds up in

possession of more qubits than Bob, and if Bob can recover the quantum
information encoded by Alice, then certainly Charlie can as well. Therefore,
if Q(p) > 0 for p > 1

2
, Bob and Charlie can clone the unknown encoded

quantum states sent by Alice, which is impossible. (Strictly speaking, they
can clone with fidelity F = 1− ε, for any ε > 0.) We conclude that Q(p) = 0
for p > 1

2
.
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To obtain a bound on Q(p) in the case p < 1
2
, we will appeal to the

following lemma. Suppose that Alice and Bob are connected by both a
perfect noiseless channel and a noisy channel with capacity Q > 0. And
suppose that Alice sends m qubits over the perfect channel and n qubits
over the noisy channel. Then the number r of encoded qubits that Bob may
recover with arbitrarily high fidelity must satisfy

r ≤ m+Qn. (7.247)

We derive this inequality by noting that Alice and Bob can simulate the m
qubits sent over the perfect channel by sending m/Q over the noisy channel
and so achieve a rate

R =
r

m/Q+ n
=

(

r

m+Qn

)

Q, (7.248)

over the noisy channel. Were r to exceed m+Qn, this rate R would exceed
the capacity, a contradiction. Therefore eq. (7.247) is satisfied.

How consider the erasure channel with error probability p1, and suppose
Q(p1) > 0. Then we can bound Q(p2) for p2 ≤ p1 by

Q(p2) ≤ 1 − p2

p1
+
p2

p1
Q(p1). (7.249)

(In other words, if we plotQ(p) in the (p,Q) plane, and we draw a straight line
segment from any point (p1, Q1) on the plot to the point (p = 0, Q = 1), then
the curve Q(p) must lie on or below the segment in the interval 0 ≤ p ≤ p1; if
Q(p) is twice differentiable, then its second derivative cannot be positive.) To
obtain this bound, imagine that Alice sends n qubits to Bob, knowing ahead
of time that n(1 − p2/p1) specified qubits will arrive safely. The remaining
n(p2/p1) qubits are erased with probability p1. Therefore, Alice and Bob are
using both a perfect channel and an erasure channel with erasure probability
p1; eq. (7.247) holds, and the rate R they can attain is bounded by

R ≤ 1 − p2

p1

+
p2

p1

Q(p1). (7.250)

On the other hand, for n large, altogether about np2 qubits are erased, and
(1 − p2)n arrive safely. Thus Alice and Bob have an erasure channel with
erasure probability p2, except that they have the additional advantage of
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knowing ahead of time that some of the qubits that Alice sends are invul-
nerable to erasure. With this information, they can be no worse off than
without it; eq. (7.249) then follows. The same bound applies to the depolar-
izing channel as well.

Now, the result Q(p) = 0 for p > 1/2 can be combined with eq. (7.249).
We conclude that the curve Q(p) must be on or below the straight line
connecting the points (p = 0, Q = 1) and (p = 1/2, Q = 0), or

Q(p) ≤ 1 − 2p, 0 ≤ p ≤ 1

2
. (7.251)

In fact, there are stabilizer codes that actually attain the rate 1 − 2p for
0 ≤ p ≤ 1/2. We can see this by borrowing an idea from Claude Shannon,
and averaging over random stabilizer codes. Imagine choosing, in succession,
altogether n − k stabilizer generators. Each is selected from among the
4n Pauli operators, where all have equal a priori probability, except that
each generator is required to commute with all generators chosen in previous
rounds.

Now Alice uses this stabilizer code to encode an arbitrary quantum state
in the 2k-dimensional code subspace, and sends the n qubits to Bob over an
erasure channel with erasure probability p. Will Bob be able to recover the
state sent by Alice?

Bob replaces each erased qubit by a qubit in the state |0〉, and then
proceeds to measure all n − k stabilizer generators. From this syndrome
measurement, he hopes to infer the Pauli operator E acting on the replaced
qubits. Once E is known, we can apply E† to recover a perfect duplicate
of the state sent by Alice. For n large, the number of qubits that Bob must
replace is about pn, and he will recover successfully if there is a unique Pauli
operator E that can produce the syndrome that he finds. If more than one
Pauli operator acting on the replaced qubits has this same syndrome, then
recovery may fail.

How likely is failure? Since there are about pn replaced qubits, there are
about 4pn Pauli operators with support on these qubits. Furthermore, for any
particular Pauli operator E, a random stabilizer code generates a random
syndrome — each stabilizer generator has probability 1/2 of commuting with
E, and probability 1/2 of anti-commuting with E. Therefore, the probability
that two Pauli operators have the same syndrome is (1/2)n−k .

There is at least one particular Pauli operator acting on the replaced
qubits that has the syndrome found by Bob. But the probability that an-
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other Pauli operator has this same syndrome (and hence the probability of
a recovery failure) is no worse than

Pfail ≤ 4pn

(

1

2

)n−k

= 2−n(1−2p−R). (7.252)

where R = k/n is the rate. Eq. (7.252) bounds the failure probability if
we average over all stabilizer codes with rate R; it follows that at least one
particular stabilizer code must exist whose failure probability also satisfies
the bound.

For that particular code, Pfail gets arbitrarily small as n→ ∞, for any rate
R = 1−2p−δ strictly less than 1−2p. Therefore R = 1−2p is asymptotically
attainable; combining this result with the inequality eq. (7.251) we obtain
the capacity of the quantum erasure channel:

Q(p) = 1 − 2p, 0 ≤ p ≤ 1

2
. (7.253)

If we wanted assurance that a distinct syndrome could be assigned to
all ways of damaging pn erased qubits, then we would require an [[n, k, d]]
quantum code with distance d > pn. Our Gilbert–Varshamov bound of §7.14
guarantees the existence of such a code for

R < 1 −H2(p) − p log2 3. (7.254)

This rate can be achieved by a code that recovers from any of the possible
ways of erasing up to pn qubits. It lies strictly below the capacity for p > 0,
because to achieve high average fidelity, it suffices to be able to correct the
typical erasures, rather than all possible erasures.

7.16.2 Depolarizing channel

The capacity of the depolarizing channel is still not precisely known, but we
can obtain some interesting upper and lower bounds.

As for the erasure channel, we can find an upper bound on the capacity
by invoking the no-cloning theorem. Recall that for the depolarizing channel
with error probability p < 3/4, each qubit either passes safely with prob-
ability 1 − 4/3p, or is randomized (replaced by the maximally mixed state
ρ = 1

2
1) with probability q = 4/3p. An eavesdropper Charlie, then, can

simulate the channel by intercepting qubits with probability q, and replacing
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each stolen qubit with a maximally mixed qubit. For q > 1/2, Charlie steals
more than half the qubits and is in a better position than Bob to decode the
state sent by Alice. Therefore, to disallow cloning, the rate at which quan-
tum information is sent from Alice to Bob must be strictly zero for q > 1/2
or p > 3/8:

Q(p) = 0, p >
3

8
. (7.255)

In fact we can obtain a stronger bound by noting that Charlie can choose
a better eavesdropping strategy – he can employ the optimal approximate

cloner that you studied in a homework problem. This device, applied to
each qubit sent by Alice, replaces it by two qubits that each approximate the
original with fidelity F = 5/6, or

|ψ〉〈ψ| →
[

(1 − q)|ψ〉〈ψ|+ q
1

2
1
]⊗2

, (7.256)

where F = 5/6 = 1 − 1/2q. By operating the cloner, both Charlie and
Bob can receive Alice’s state transmitted through the q = 1/3 depolarizing
channel. Therefore, the attainable rate must vanish; otherwise, by combin-
ing the approximate cloner with quantum error correction, Bob and Charlie
would be able to clone Alice’s unknown state exactly. We conclude that the
capacity vanishes for q > 1/3 or p > 1/4:

Q(p) = 0, p >
1

4
. (7.257)

Invoking the bound eq. (7.249) we infer that

Q(p) ≤ 1 − 4p, 0 ≤ p ≤ 1

4
. (7.258)

This result actually coincides with our bound on the rate of [[n, k, d]] codes
with k ≥ 1 and d ≥ 2pn + 1 found in §7.8. A bound on the capacity is not

the same thing as a bound on the allowable error probability for an [[n, k, d]]
code (and in the latter case the Rains bound is tighter). Still, the similarity
of the two results bound may not be a complete surprise, as both bounds are
derived from the no-cloning theorem.

We can obtain a lower bound on the capacity by estimating the rate that
can be attained through random stabilizer coding, as we did for the erasure
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channel. Now, when Bob measures the n−k (randomly chosen, commuting)
stabilizer generators, he hopes to obtain a syndrome that points to a unique
one among the typical Pauli error operators that can arise with nonnegligible
probability when the depolarizing channel acts on the n qubits sent by Alice.
The number Ntyp of typical Pauli operators with total probability 1 − ε can
be bounded by

Ntyp ≤ 2n(H2(p)+p log2 3+δ), (7.259)

for any δ, ε > 0 and n sufficiently large. Bob’s attempt at recovery can fail if
another among these typical Pauli operators has the same syndrome as the
actual error operator. Since a random code assigns a random (n − k)-bit
syndrome to each Pauli operator, the failure probability can be bounded as

Pfail ≤ 2n(H2(p)+p log2 3+δ)2k−n + ε . (7.260)

Here the second term bounds the probability of an atypical error, and the
first bounds the probability of an ambiguous syndrome in the case of a typical
error. We see that the failure probability, averaged over random stabilizer
codes, becomes arbitrarily small for large n, for any δ′ < 0 and rate R such
that

R ≡ k

n
< 1 −H2(p) − p log2 3 − δ′. (7.261)

If the failure probability, averaged over codes, is small, there is a particu-
lar code with small failure probability, and we conclude that the rate R is
attainable; the capacity of the depolarizing channel is bounded below as

Q(p) ≥ 1 −H2(p) − p log2 3 . (7.262)

Not coincidentally, the rate attainable by random coding agrees with the
asymptotic form of the quantum Hamming upper bound on the rate of nonde-
generate [[n, k, d]] codes with d > 2pn; we arrive at both results by assigning
a distinct syndrome to each of the typical errors. Of course, the Gilbert–
Varshamov lower bound on the rate of [[n, k, d]] codes lies below Q(p), as it
is obtained by demanding that the code can correct all the errors of weight
pn or less, not just the typical ones.

This random coding argument can also be applied to a somewhat more
general channel, in which X,Y , and Z errors occur at different rates. (We’ll
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call this a “Pauli channel.”) If an X error occurs with probability pX , a Y

error with probability pY , a Z error with probability pZ , and no error with
probability pI ≡ 1 − pX − pY − pZ , then the number of typical errors on n
qubits is

n!

(pXn)!(pY n)!(pZn)!(pIn)!
∼ 2nH(pI ,pX ,pY ,pZ), (7.263)

where

H ≡ H(pI , pX , pY , pZ) = −pI log2 pI − pX log2 pX − pY log2 pY − pZ log2 pZ ,
(7.264)

is the Shannon entropy of the probability distribution {pI , pX , pY , pZ}. Now
we find

Q(pI , pX , pY , pZ) ≥ 1 −H(pI , pX , pY , pZ) ; (7.265)

if the rate R satisfies R < 1−H, then again it is highly unlikely that a single
syndrome of a random stabilizer code will point to more than one typical
error operator.

7.16.3 Degeneracy and capacity

Our derivation of a lower bound on the capacity of the depolarizing channel
closely resembles the argument in §5.1.3 for a lower bound on the capacity
of the classical binary symmetric channel. In the classical case, there was
a matching upper bound. If the rate were larger, then there would not be
enough syndromes to attach to all of the typical errors.

In the quantum case, the derivation of the matching upper bound does
not carry through, because a quantum code can be degenerate. We may
not need a distinct syndrome for each typical error, as some of the possible
errors could act trivially on the code subspace. Indeed, not only does the
derivation fail; the matching upper bound is actually false – rates exceeding
1 −H2(p) − p log2 3 actually can be attained.6

Shor and Smolin investigated the rate that can be achieved by concate-
nated codes, where the outer code is a random stabilizer code, and the inner

6P.W. Shor and J.A. Smolin, “Quantum Error-Correcting Codes Need Not Completely
Reveal the Error Syndrome” quant-ph/9604006; D.P. DiVincen, P.W. Shor, and J.A.
Smolin, “Quantum Channel Capacity of Very Noisy Channels,” quant-ph/9706061.
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code is a degenerate code with a relatively small block size. Their idea is
that the degeneracy of the inner code will allow enough typical errors to act
trivially in the code space that a higher rate can be attained than through
random coding alone.

To investigate this scheme, imagine that encoding and decoding are each
performed in two stages. In the first stage, using the (random) outer code
that she and Bob have agreed on, Alice encodes the state that she has selected
in a large n-qubit block. In the second stage, Alice encodes each of these
n-qubits in a block of m qubits, using the inner code. Similarly, when Bob
receives the nm qubits, he first decodes each inner block of m, and then
subsequently decodes the block of n.

We can evidently describe this procedure in an alternative language —
Alice and Bob are using just the outer code, but the qubits are being trans-
mitted through a composite channel.

– Figure –

This modified channel consists (as shown) of: first the inner encoder, then
propagation through the original noisy channel, and finally inner decoding
and inner recovery. The rate that can be attained through the original chan-
nel, via concatenated coding, is the same as the rate that can be attained
through the modified channel, via random coding.

Specifically, suppose that the inner code is an m-qubit repetition code,
with stabilizer

Z1Z2, Z1Z3, Z1Z4, . . . ,Z1Zm. (7.266)

This is not much of a quantum code; it has distance 1, since it is insensi-
tive to phase errors — each Zj commutes with the stabilizer. But in the
present context its important feature is it high degeneracy, all Zi errors are
equivalent.

The encoding (and decoding) circuit for the repetition code consists of
just m− 1 CNOT’s, so our composite channel looks like (in the case m = 3)

– Figure –
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where $ denotes the original noisy channel. (We have also suppressed the
final recovery step of the decoding; e.g., if the measured qubits both read
1, we should flip the data qubit. In fact, to simplify the analysis of the
composite channel, we will dispense with this step.)

Since we recall that a CNOT propagates bit flips forward (from control
to target) and phase flips backward (from target to control), we see that for
each possible measurement outcome of the auxiliary qubits, the composite
channel is a Pauli channel. If we imagine that this measurement of the m−1
inner block qubits is performed for each of the n qubits of the outer block,
then Pauli channels act independently on each of the n qubits, but the chan-
nels acting on different qubits have different parameters (error probabilities

p
(i)
I , p

(i)
X , p

(i)
Y , p

(i)
Z for the ith qubit). Now the number of typical error operators

acting on the n qubits is

2
∑n

i=1
Hi (7.267)

where

Hi = H(p
(i)
I , p

(i)
X , p

(i)
Y , p

(i)
Z ), (7.268)

is the Shannon entropy of the Pauli channel acting on the ith qubit. By the
law of large numbers, we will have

n
∑

i=1

Hi = n〈H〉, (7.269)

for large n, where 〈H〉 is the Shannon entropy, averaged over the 2m−1 pos-
sible classical outcomes of the measurement of the extra qubits of the inner
code. Therefore, the rate that can be attained by the random outer code is

R =
1 − 〈H〉
m

, (7.270)

(we divide by m, because the concatenated code has a length m times longer
than the random code).

Shor and Smolin discovered that there are repetition codes (values of m)
for which, in a suitable range of p, 1−〈H〉 is positive while 1−H2(p)−p log2 3
is negative. In this range, then, the capacity Q(p) is nonzero, showing that
the lower bound eq. (7.262) is not tight.
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A nonvanishing asymptotic rate is attainable through random coding for
1 − H2(p) − p log2 3 > 0, or p < pmax ' .18929. If a random outer code is
concatenated with a 5-qubit inner repetition code (m = 5 turns out to be the
optimal choice), then 1−〈H〉 > 0 for p < p′max ' .19036; the maximum error
probability for which a nonzero rate is attainable increases by about 0.6%.
It is not obvious that the concatenated code should outperform the random
code in this range of error probability, though as we have indicated, it might
have been expected because of the (phase) degeneracy of the repetition code.
Nor is it obvious that m = 5 should be the best choice, but this can be
verified by an explicit calculation of 〈H〉.7

The depolarizing channel is one of the very simplest of quantum chan-
nels. Yet even for this case, the problem of characterizing and calculating
the capacity is largely unsolved. This example illustrates that, due to the
possibility of degenerate coding, the capacity problem is considerably more
subtle for quantum channels than for classical channels.

We have seen that (if the errors are well described by the depolarizing
channel), quantum information can be recovered from a quantum memory
with arbitrarily high fidelity, as long as the probability of error per qubit is
less than 19%. This is an improvement relative to the 10% error rate that
we found could be handled by concatenation of the [[5, 1, 3]] code. In fact
[[n, k, d]] codes that can recover from any distribution of up to pn errors do
not exist for p > 1/6, according to the Rains bound. Nonzero capacity is
possible for error rates between 16.7% and 19% because it is sufficient for the
QECC to be able to correct the typical errors rather than all possible errors.

However, the claim that recovery is possible even if 19% of the qubits
sustain damage is highly misleading in an important respect. This result
applies if encoding, decoding, and recovery can be executed flawlessly. But
these operations are actually very intricate quantum computations that in
practice will certainly be susceptible to error. We will not fully understand
how well coding can protect quantum information from harm until we have
learned to design an error recovery protocol that is robust even if the execu-
tion of the protocol is flawed. Such fault-tolerant protocols will be developed
in Chapter 8.

7In fact a very slight further improvement can be achieved by concatenating a random
code with the 25-qubit generalized Shor code described in the exercises – then a nonzero
rate is attainable for p < p′′

max
' .19056 (another 0.1% better than the maximum tolerable

error probability with repetition coding).
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7.17 Summary

Quantum error-correcting codes: Quantum error correction can protect
quantum information from both decoherence and “unitary errors” due to
imperfect implementations of quantum gates. In a (binary) quantum error-

correcting code (QECC), the 2k-dimensional Hilbert space Hcode of k encoded
qubits is embedded in the 2n-dimensional Hilbert space of n qubits. Errors
acting on the n qubits are reversible provided that 〈ψ|M †

νMµ|ψ〉/〈ψ|ψ〉 is
independent of |ψ〉 for any |ψ〉 ∈ Hcode and any two Kraus operators Mµ,ν

occuring in the expansion of the error superoperator. The recovery superop-
erator transforms entanglement of the environment with the code block into
entanglement of the environment with an ancilla that can then be discarded.

Quantum stabilizer codes: Most QECC’s that have been constructed
are stabilizer codes. A binary stabilizer code is characterized by its stabilizer
S, an abelian subgroup of the n-qubit Pauli group Gn = {I ,X,Y ,Z}⊗n

(where X,Y ,Z are the single-qubit Pauli operators). The code subspace is
the simultaneous eigenspace with eigenvalue one of all elements of S; if S has
n− k independent generators, then there are k encoded qubits. A stabilizer
code can correct each error in a subset E of Gn if for each Ea,Eb ∈ E,
E†

aEb either lies in the stabilizer S or outside of the normalizer S⊥ of the
stabilizer. If some E†

aEb is in S for Ea,b ∈ E the code is degenerate; otherwise
it is nondegenerate. Operators in S⊥ \ S are “logical” operators that act on
encoded quantum information. The stabilizer S can be associated with an
additive code over the finite field GF (4) that is self-orthogonal with respect
to a symplectic inner product. The weight of a Pauli operator is the number
of qubits on which its action is nontrivial, and the distance d of a stabilizer
code is the minimum weight of an element of S⊥ \ S. A code with length n,
k encoded qubits, and distance d is called an [[n, k, d]] quantum code. If the
code enables recovery from any error superoperator with support on Pauli
operators of weight t or less, we say that the code “can correct t errors.” A
code with distance d can correct [(d−1)/2] in unknown locations or d−1 errors
in known locations. “Good” families of stabilizer codes can be constructed
in which d/n and k/n remain bounded away from zero as n→ ∞.

Examples: The code of minimal length that can correct one error is a
[[5, 1, 3, ]] quantum code associated with a classical GF (4) Hamming code.
Given a classical linear code C1 and subcode C2 ⊆ C1, a Calderbank-Shor-
Steane (CSS) quantum code can be constructed with k = dim(C1)−dim(C2)
encoded qubits. The distance d of the CSS code satisfies d ≥ min(d1, d

⊥
2 ),
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where d1 is the distance of C1 and d⊥2 is the distance of C⊥
2 , the dual of

C2. The simplest CSS code is a [[7, 1, 3]] quantum code constructed from the
[7, 4, 3] classical Hamming code and its even subcode. An [[n1, 1, d1]] quantum
code can be concatenated with an [[n2, 1, d2]] code to obtain a degenerate
[[n1n2, 1, d]] code with d ≥ d1d2.

Quantum channel capacity: The quantum channel capacity of a su-
peroperator (noisy quantum channel) is the maximum rate at which quantum
information can be transmitted over the channel and decoded with arbitrar-
ily good fidelity. The capacity of the binary quantum erasure channel with
erasure probability p is Q(p) = 1 − 2p, for 0 ≤ p ≤ 1/2. The capacity of the
binary depolarizing channel is no yet known. The problem of calculating the
capacity is subtle because the optimal code may be degenerate; in particular,
random codes do not attain an asymptotically optimal rate over a quantum
channel.

7.18 Exercises

7.1 Phase error-correcting code

a) Construct stabilizer generators for an n = 3, k = 1 code that can
correct a single bit flip; that is, ensure that recovery is possible for
any of the errors in the set E = {III,XII, IXI , IIX}. Find
an orthonormal basis for the two-dimensional code subspace.

b) Construct stabilizer generators for an n = 3, k = 1 code that can
correct a single phase error; that is, ensure that recovery is possible
for any of the errors in the set E = {III ,ZII, IZI , IIZ}. Find
an orthonormal basis for the two-dimensional code subspace.

7.2 Error-detecting codes

a) Construct stabilizer generators for an [[n, k, d]] = [[3, 0, 2]] quantum
code. With this code, we can detect any single-qubit error. Find
the encoded state. (Does it look familiar?)

b) Two QECC’s C1 and C2 (with the same length n) are equivalent

if a permutation of qubits, combined with single-qubit unitary
transformations, transforms the code subspace of C1 to that of
C2. Are all [[3, 0, 2]] stabilizer codes equivalent?
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c) Does a [[3, 1, 2]] stabilizer code exist?

7.3 Maximal entanglement

Consider the [[5, 1, 3]] quantum code, whose stabilizer generators are
M1 = XZZXI , and M2,3,4 obtained by cyclic permutations of M1,
and choose the encoded operation Z̄ to be Z̄ = ZZZZZ. From the
encoded states |0̄〉 with Z̄|0̄〉 = |0̄〉 and |1̄〉 with Z̄|1̄〉 = −|1̄〉, construct
the n = 6, k = 0 code whose encoded state is

1√
2

(|0〉 ⊗ |0̄〉 + |1〉 ⊗ |1̄〉) . (7.271)

a) Construct a set of stabilizer generators for this n = 6, k = 0 code.

b) Find the distance of this code. (Recall that for a k = 0 code, the
distance is defined as the minimum weight of any element of the
stabilizer.)

c) Find ρ(3), the density matrix that is obtained if three qubits are
selected and the remaining three are traced out.

7.4 Codewords and nonlocality

For the [[5,1,3]] code with stabilizer generators and logical operators as
in the preceding problem,

a) Express Z̄ as a weight-3 Pauli operator, a tensor product of I’s,
X’s, and Z’s (no Y ’s). Note that because the code is cyclic,
all cyclic permutations of your expression are equivalent ways to
represent Z̄.

b) Use the Einstein locality assumption (local hidden variables) to pre-
dict a relation between the five (cyclically related) observables
found in (a) and the observable ZZZZZ. Is this relation among
observables satisfied for the state |0̄〉?

c) What would Einstein say?

7.5 Generalized Shor code

For integer m ≥ 2, consider the n = m2, k = 1 generalization of Shor’s
nine-qubit code, with code subspace spanned by the two states:

|0̄〉 = (|000 . . . 0〉 + |111 . . . 1〉)⊗m ,

|1̄〉 = (|000 . . . 0〉 − |111 . . . 1〉)⊗m . (7.272)
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a) Construct stabilizer generators for this code, and construct the log-
ical operations Z̄ and X̄ such that

Z̄|0̄〉 = |0̄〉 , X̄|0̄〉 = |1̄〉 ,
Z̄|1̄〉 = −|1̄〉 , X̄|1̄〉 = |0̄〉 . (7.273)

b) What is the distance of this code?

c) Suppose that m is odd, and suppose that each of the n = m2 qubits
is subjected to the depolarizing channel with error probability p.
How well does this code protect the encoded qubit? Specifically,
(i) estimate the probability, to leading nontrivial order in p, of a
logical bit-flip error |0̄〉 ↔ |1̄〉, and (ii) estimate the probability,
to leading nontrivial order in p, of a logical phase error |0̄〉 → |0̄〉,
|1̄〉 → −|1̄〉.

d) Consider the asymptotic behavior of your answer to (c) for m large.
What condition on p should be satisfied for the code to provide
good protection against (i) bit flips and (ii) phase errors, in the
n→ ∞ limit?

7.6 Encoding circuits

For an [[n,k,d]] quantum code, an encoding transformation is a unitary
U that acts as

U : |ψ〉 ⊗ |0〉⊗(n−k) → |ψ̄〉 , (7.274)

where |ψ〉 is an arbitrary k-qubit state, and |ψ̄〉 is the corresponding
encoded state. Design a quantum circuit that implements the encoding
transformation for

a) Shor’s [[9,1,3]] code.

b) Steane’s [[7,1,3]] code.

7.7 Shortening a quantum code

a) Consider a binary [[n, k, d]] stabilizer code. Show that it is possible
to choose the n − k stabilizer generators so that at most two act
nontrivially on the last qubit. (That is, the remaining n − k − 2
generators apply I to the last qubit.)
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b) These n−k−2 stabilizer generators that apply I to the last qubit will
still commute and are still independent if we drop the last qubit.
Hence they are the generators for a code with length n−1 and k+1
encoded qubits. Show that if the original code is nondegenerate,
then the distance of the shortened code is at least d − 1. (Hint:
First show that if there is a weight-t element of the (n− 1)-qubit
Pauli group that commutes with the stabilizer of the shortened
code, then there is an element of the n-qubit Pauli group of weight
at most t + 1 that commutes with the stabilizer of the original
code.)

c) Apply the code-shortening procedure of (a) and (b) to the [[5, 1, 3]]
QECC. Do you recognize the code that results? (Hint: It may
be helpful to exploit the freedom to perform a change of basis on
some of the qubits.)

7.8 Codes for qudits

A qudit is a d-dimensional quantum system. The Pauli operators
I ,X,Y ,Z acting on qubits can be generalized to qudits as follows.
Let {|0〉, |1〉, . . . , |d − 1〉} denote an orthonormal basis for the Hilbert
space of a single qudit. Define the operators:

X : |j〉 → |j + 1 (mod d)〉 ,
Z : |j〉 → ωj |j〉 , (7.275)

where ω = exp(2πi/d). Then the d × d Pauli operators Er,s are

Er,s ≡ XrZs , r, s = 0, 1, . . . , d− 1 (7.276)

a) Are the Er,s’s a basis for the space of operators acting on a qudit?
Are they unitary? Evaluate tr(E†

r,sEt,u).

b) The Pauli operators obey

Er,sEt,u = (ηr,s;t,u)Et,uEr,s , (7.277)

where ηr,s;t,u is a phase. Evaluate this phase.

The n-fold tensor products of these qudit Pauli operators form a group
G(d)

n of order d2n+1 (and if we mod out its d-element center, we obtain
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the group Ḡ(d)
n of order d2n). To construct a stabilizer code for qudits,

we choose an abelian subgroup of G(d)
n with n− k generators; the code

is the simultaneous eigenstate with eigenvalue one of these generators.
If d is prime, then the code subspace has dimension dk: k logical qudits
are encoded in a block of n qudits.

c) Explain how the dimension might be different if d is not prime.
Hint: Consider the case d = 4 and n = 1.)

7.9 Syndrome measurement for qudits

Errors on qudits are diagnosed by measuring the stabilizer generators.
For this purpose, we may invoke the two-qudit gate SUM (which gen-
eralizes the controlled-NOT), acting as

SUM : |j〉 ⊗ |k〉 → |j〉 ⊗ |k + j (mod d)〉 . (7.278)

a) Describe a quantum circuit containing SUM gates that can be exe-
cuted to measure an n-qudit observable of the form

⊗

a

Zsa

a . (7.279)

If d is prime, then for each r, s = 0, 1, 2, . . . , d−1, there is a single-qudit
unitary operator U r,s such that

U r,sEr,sU
†
r,s = Z . (7.280)

b) Describe a quantum circuit containing SUM gates and U r,s gates
that can be executed to measure an arbitrary element of G(d)

n of
the form

⊗

a

Era,sa . (7.281)

7.10 Error-detecting codes for qudits

A qudit with d = 3 is called a qutrit. Consider a qutrit stabilizer
code with length n = 3 and k = 1 encoded qutrit defined by the two
stabilizer generators

ZZZ , XXX . (7.282)
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a) Do the generators commute?

b) Find the distance of this code.

c) In terms of the orthonormal basis {|0〉, |1〉, |2〉} for the qutrit, write
out explicitly an orthonormal basis for the three-dimensional code
subspace.

d) Construct the stabilizer generators for an n = 3m qutrit code (where
m is any positive integer), with k = n − 2, that can detect one
error.

e) Construct the stabilizer generators for a qudit code that detects one
error, with parameters n = d, k = d − 2.

7.11 Error-correcting code for qudits

Consider an n = 5, k = 1 qudit stabilizer code with stabilizer generators

X Z Z−1 X−1 I

I X Z Z−1 X−1

X−1 I X Z Z−1

Z−1 X−1 I X Z

(7.283)

(the second, third, and fourth generators are obtained from the first by
a cyclic permutation of the qudits).

a) Find the order of each generator. Are the generators really in-
dependent? Do they commute? Is the fifth cyclic permutation
Z Z−1 X−1 I X independent of the rest?

b) Find the distance of this code. Is the code nondegenerate?

c) Construct the encoded operations X̄ and Z̄, each expressed as an
operator of weight 3. (Be sure to check that these operators obey
the right commutation relations for any value of d.)


