
Chapter 3

Foundations II: Measurement
and Evolution

3.1 Orthogonal Measurement and Beyond

3.1.1 Orthogonal Measurements

We would like to examine the properties of the generalized measurements
that can be realized on system A by performing orthogonal measurements
on a larger system that contains A. But first we will briefly consider how
(orthogonal) measurements of an arbitrary observable can be achieved in
principle, following the classic treatment of Von Neumann.

To measure an observable M, we will modify the Hamiltonian of the world
by turning on a coupling between that observable and a “pointer” variable
that will serve as the apparatus. The coupling establishes entanglement
between the eigenstates of the observable and the distinguishable states of the
pointer, so that we can prepare an eigenstate of the observable by “observing”
the pointer.

Of course, this is not a fully satisfying model of measurement because we
have not explained how it is possible to measure the pointer. Von Neumann’s
attitude was that one can see that it is possible in principle to correlate
the state of a microscopic quantum system with the value of a macroscopic
classical variable, and we may take it for granted that we can perceive the
value of the classical variable. A more complete explanation is desirable and
possible; we will return to this issue later.

We may think of the pointer as a particle that propagates freely apart
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2 CHAPTER 3. MEASUREMENT AND EVOLUTION

from its tunable coupling to the quantum system being measured. Since we
intend to measure the position of the pointer, it should be prepared initially
in a wavepacket state that is narrow in position space — but not too narrow,
because a vary narrow wave packet will spread too rapidly. If the initial
width of the wave packet is ∆x, then the uncertainty in it velocity will be
of order ∆v = ∆p/m ∼ ~/m∆x, so that after a time t, the wavepacket will
spread to a width

∆x(t) ∼ ∆x+
~t

m∆x
, (3.1)

which is minimized for [∆x(t)]2 ∼ [∆x]2 ∼ ~t/m. Therefore, if the experi-
ment takes a time t, the resolution we can achieve for the final position of
the pointer is limited by

∆x >∼(∆x)SQL ∼
√

~t

m
, (3.2)

the “standard quantum limit.” We will choose our pointer to be sufficiently
heavy that this limitation is not serious.

The Hamiltonian describing the coupling of the quantum system to the
pointer has the form

H = H0 +
1

2m
P2 + λMP, (3.3)

where P2/2m is the Hamiltonian of the free pointer particle (which we will
henceforth ignore on the grounds that the pointer is so heavy that spreading
of its wavepacket may be neglected), H0 is the unperturbed Hamiltonian of
the system to be measured, and λ is a coupling constant that we are able to
turn on and off as desired. The observable to be measured, M, is coupled to
the momentum P of the pointer.

If M does not commute with H0, then we have to worry about how the
observable evolves during the course of the measurement. To simplify the
analysis, let us suppose that either [M,H0] = 0, or else the measurement
is carried out quickly enough that the free evolution of the system can be
neglected during the measurement procedure. Then the Hamiltonian can be
approximated as H ' λMP (where of course [M,P] = 0 because M is an
observable of the system and P is an observable of the pointer), and the time
evolution operator is

U(t) ' exp[−iλtMP]. (3.4)
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Expanding in the basis in which M is diagonal,

M =
∑

a

|a〉Ma〈a|, (3.5)

we express U(t) as

U(t) =
∑

a

|a〉 exp[−iλtMaP]〈a|. (3.6)

Now we recall that P generates a translation of the position of the pointer:
P = −i d

dx
in the position representation, so that e−ixoP = exp

(

−xo
d
dx

)

, and
by Taylor expanding,

e−ixoPψ(x) = ψ(x− xo); (3.7)

In other words e−ixoP acting on a wavepacket translates the wavepacket by xo.
We see that if our quantum system starts in a superposition of M eigenstates,
initially unentangled with the position-space wavepacket |ψ(x) of the pointer,
then after time t the quantum state has evolved to

U(t)

(

∑

a

αa|a〉 ⊗ |ψ(x)〉
)

=
∑

a

αa|a〉 ⊗ |ψ(x− λtMa)〉; (3.8)

the position of the pointer is now correlated with the value of the observable
M. If the pointer wavepacket is narrow enough for us to resolve all values of
the Ma that occur (∆x <∼λt∆Ma), then when we observe the position of the
pointer (never mind how!) we will prepare an eigenstate of the observable.
With probability |αa|2, we will detect that the pointer has shifted its position
by λtMa, in which case we will have prepared the M eigenstate |a〉. In the
end, then, we conclude that the initial state |ϕ〉 or the quantum system is
projected to |a〉 with probability |〈a|ϕ〉|2. This is Von Neumann’s model of
orthogonal measurement.

The classic example is the Stern–Gerlach apparatus. To measure σ3 for a
spin-1

2
object, we allow the object to pass through a region of inhomogeneous

magnetic field

B3 = λz. (3.9)
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The magnetic moment of the object is µ~σ, and the coupling induced by the
magnetic field is

H = −λµzσ3. (3.10)

In this case σ3 is the observable to be measured, coupled to the position
z rather than the momentum of the pointer, but that’s all right because z
generates a translation of Pz, and so the coupling imparts an impulse to the
pointer. We can perceive whether the object is pushed up or down, and so
project out the spin state | ↑z〉 or | ↓z〉. Of course, by rotating the magnet,
we can measure the observable n̂ · ~σ instead.

Our discussion of the quantum eraser has cautioned us that establishing
the entangled state eq. (3.8) is not sufficient to explain why the measurement
procedure prepares an eigenstate of M. In principle, the measurement of the
pointer could project out a peculiar superposition of position eigenstates,
and so prepare the quantum system in a superposition of M eigenstates. To
achieve a deeper understanding of the measurement process, we will need to
explain why the position eigenstate basis of the pointer enjoys a privileged
status over other possible bases.

If indeed we can couple any observable to a pointer as just described, and
we can observe the pointer, then we can perform any conceivable orthogonal
projection in Hilbert space. Given a set of operators {Ea} such that

Ea = E†
a, EaEb = δabEa,

∑

a

Ea = 1, (3.11)

we can carry out a measurement procedure that will take a pure state |ψ〉〈ψ|
to

Ea|ψ〉〈ψ|Ea

〈ψ|Ea|ψ〉
(3.12)

with probability

Prob(a) = 〈ψ|Ea|ψ〉. (3.13)

The measurement outcomes can be described by a density matrix obtained
by summing over all possible outcomes weighted by the probability of that
outcome (rather than by choosing one particular outcome) in which case the
measurement modifies the initial pure state according to

|ψ〉〈ψ| →
∑

a

Ea|ψ〉〈ψ|Ea. (3.14)
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This is the ensemble of pure states describing the measurement outcomes
– it is the description we would use if we knew a measurement had been
performed, but we did not know the result. Hence, the initial pure state has
become a mixed state unless the initial state happened to be an eigenstate
of the observable being measured. If the initial state before the measure-
ment were a mixed state with density matrix ρ, then by expressing ρ as an
ensemble of pure states we find that the effect of the measurement is

ρ →
∑

a

EaρEa. (3.15)

3.1.2 Generalized measurement

We would now like to generalize the measurement concept beyond these
orthogonal measurements considered by Von Neumann. One way to arrive
at the idea of a generalized measurement is to suppose that our system A
is extended to a tensor product HA ⊗ HB, and that we perform orthogonal
measurements in the tensor product, which will not necessarily be orthogonal
measurements in A alone. At first we will follow a somewhat different course
that, while not as well motivated physically, is simpler and more natural from
a mathematical view point.

We will suppose that our Hilbert space HA is part of a larger space that
has the structure of a direct sum

H = HA ⊕H⊥
A. (3.16)

Our observers who “live” in HA have access only to observables with support
in HA, observables MA such that

MA|ψ⊥〉 = 0 = 〈ψ⊥|MA, (3.17)

for any |ψ⊥〉 ∈ H⊥
A. For example, in a two-qubit world, we might imagine

that our observables have support only when the second qubit is in the state
|0〉2. Then HA = H1 ⊗ |0〉2 and H⊥

A = H1 ⊗ |1〉2, where H1 is the Hilbert
space of qubit 1. (This situation may seem a bit artificial, which is what I
meant in saying that the direct sum decomposition is not so well motivated.)
Anyway, when we perform orthogonal measurement in H, preparing one of
a set of mutually orthogonal states, our observer will know only about the
component of that state in his space HA. Since these components are not
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necessarily orthogonal in HA, he will conclude that the measurement prepares
one of a set or non-orthogonal states.

Let {|i〉} denote a basis for HA and {|µ〉} a basis for H⊥
A. Suppose that

the initial density matrix ρA has support in HA, and that we perform an
orthogonal measurement in H. We will consider the case in which each Ea is
a one-dimensional projector, which will be general enough for our purposes.
Thus, Ea = |ua〉〈ua|, where |ua〉 is a normalized vector in H. This vector has
a unique orthogonal decomposition

|ua〉 = |ψ̃a〉 + |ψ̃⊥
a 〉, (3.18)

where |ψ̃a〉 and |ψ̃⊥
a 〉 are (unnormalized) vectors in HA and H⊥

A respectively.
After the measurement, the new density matrix will be |ua〉〈ua| with proba-
bility 〈ua|ρA|ua〉 = 〈ψ̃a|ρA|ψ̃a〉 (since ρA has no support on H⊥

A).
But to our observer who knows nothing of H⊥

A, there is no physical
distinction between |ua〉 and |ψ̃a〉 (aside from normalization). If we write
|ψ̃a〉 =

√
λa|ψa〉, where |ψa〉 is a normalized state, then for the observer lim-

ited to observations in HA, we might as well say that the outcome of the
measurement is |ψa〉〈ψa| with probability 〈ψ̃a|ρA|ψ̃a〉.

Let us define an operator

Fa = EAEaEA = |ψ̃a〉〈ψ̃a| = λa|ψa〉〈ψa|, (3.19)

(where EA is the orthogonal projection taking H to HA). Then we may say
that the outcome a has probability tr Faρ. It is evident that each Fa is
hermitian and nonnegative, but the F a’s are not projections unless λa = 1.
Furthermore

∑

a

F a = EA

(

∑

a

Ea

)

EA = EA = 1A; (3.20)

the F a’s sum to the identity on HA

A partition of unity by nonnegative operators is called a positive operator-

valued measure (POVM). (The term measure is a bit heavy-handed in our
finite-dimensional context; it becomes more apt when the index a can be
continually varying.) In our discussion we have arrived at the special case
of a POVM by one-dimensional operators (operators with one nonvanishing
eigenvalue). In the generalized measurement theory, each outcome has a
probability that can be expressed as

Prob(a) = tr ρF a. (3.21)
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The positivity of F a is necessary to ensure that the probabilities are positive,
and

∑

a F a = 1 ensures that the probabilities sum to unity.
How does a general POVM affect the quantum state? There is not any

succinct general answer to this question that is particularly useful, but in
the case of a POVM by one-dimensional operators (as just discussed), where
the outcome |ψa〉〈ψa| occurs with probability tr(F aρ), summing over the
outcomes yields

ρ → ρ′ =
∑

a

|ψa〉〈ψa|(λa〈ψa|ρ|ψa〉)

=
∑

a

(

√

λa|ψa〉〈ψa|
)

ρ

(

√

λa|ψa〉〈ψa|
)

=
∑

a

√

F aρ
√

F a, (3.22)

(which generalizes Von Neumann’s
∑

a EaρEa to the case where the F a’s are
not projectors). Note that trρ′ = trρ = 1 because

∑

a F a = 1.

3.1.3 One-qubit POVM

For example, consider a single qubit and suppose that {n̂a} are N unit 3-
vectors that satisfy

∑

a

λan̂a = 0, (3.23)

where the λa’s are positive real numbers, 0 < λa < 1, such that
∑

a λa = 1.
Let

F a = λa(1 + n̂a · ~σ) = 2λaE(n̂a), (3.24)

(where E(n̂a) is the projection | ↑n̂a
〉〈↑n̂a

|). Then
∑

a

F a = (
∑

a

λa)1 + (
∑

a

λan̂a) · ~σ = 1; (3.25)

hence the F ’s define a POVM.
In the case N = 2, we have n̂1 + n̂2 = 0, so our POVM is just an

orthogonal measurement along the n̂1 axis. For N = 3, in the symmetric
case λ1 = λ2 = λ3 = 1

3
. We have n̂1 + n̂2 + n̂3 = 0, and

F a =
1

3
(1 + n̂a · ~σ) =

2

3
E(n̂a). (3.26)
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3.1.4 Neumark’s theorem

We arrived at the concept of a POVM by considering orthogonal measure-
ment in a space larger than HA. Now we will reverse our tracks, showing
that any POVM can be realized in this way.

So consider an arbitrary POVM with n one-dimensional positive opera-
tors F a satisfying

∑n
a=1 F a = 1. We will show that this POVM can always

be realized by extending the Hilbert space to a larger space, and perform-
ing orthogonal measurement in the larger space. This statement is called
Neumark’s theorem.1

To prove it, consider a Hilbert space H with dim H = N , and a POVM
{F a}, a = 1, . . . , n, with n ≥ N . Each one-dimensional positive operator can
be written

F a = |ψ̃a〉〈ψ̃a|, (3.27)

where the vector |ψ̃a〉 is not normalized. Writing out the matrix elements
explicitly, the property

∑

a F a = 1 becomes

n
∑

a=1

(Fa)ij =
n
∑

a=1

ψ̃∗
aiψ̃aj = δij. (3.28)

Now let’s change our perspective on eq. (3.28). Interpret the (ψa)i’s not as
n ≥ N vectors in an N -dimensional space, but rather an N ≤ n vectors
(ψT

i )a in an n-dimensional space. Then eq. (3.28) becomes the statement
that these N vectors form an orthonormal set. Naturally, it is possible to
extend these vectors to an orthonormal basis for an n-dimensional space. In
other words, there is an n× n matrix uai, with uai = ψ̃ai for i = 1, 2, . . . , N ,
such that

∑

a

u∗aiuaj = δij, (3.29)

or, in matrix form U †U = 1. It follows that UU † = 1, since

U (U †U)|ψ〉 = (UU †)U |ψ〉 = U |ψ〉 (3.30)

1For a discussion of POVM’s and Neumark’s theorem, see A. Peres, Quantum Theory:

Concepts and Methods.
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for any vector |ψ〉, and (at least for finite-dimensional matrices) the range
of U is the whole n-dimension space. Returning to the component notation,
we have

∑

j

uaju
∗
bj = δab, (3.31)

so the (ua)i are a set of n orthonormal vectors.2

Now suppose that we perform an orthogonal measurement in the space
of dimension n ≥ N defined by

Ea = |ua〉〈ua|. (3.32)

We have constructed the |ua〉’s so that each has an orthogonal decomposition

|ua〉 = |ψ̃a〉 + |ψ̃⊥
a 〉; (3.33)

where |ψ̃a〉 ∈ H and |ψ̃⊥
a 〉 ∈ H⊥. By orthogonally projecting this basis onto

H, then, we recover the POVM {F a}. This completes the proof of Neumark’s
theorem.

To illustrate Neumark’s theorem in action, consider again the POVM on
a single qubit with

F a =
2

3
| ↑n̂a

〉〈↑n̂a
|, (3.34)

a = 1, 2, 3, where 0 = n̂1+n̂2+n̂3. According to the theorem, this POVM can
be realized as an orthogonal measurement on a “qutrit,” a quantum system
in a three-dimensional Hilbert space.

Let n̂1 = (0, 0, 1), n̂2 = (
√

3/2, 0,−1/2), n̂3 = (−
√

3/2, 0, 0,−1/2), and
therefore, recalling that

|θ, ϕ = 0〉 =

(

cos θ
2

sin θ
2

)

(3.35)

we may write the three vectors |ψ̃a〉 =
√

2/3|θa, ϕ = 0〉 (where θ1, θ2, θ3 =

0, 2π/3, 4π/3) as

|ψ̃1〉, |ψ̃2〉, |ψ̃3〉 =





√

2/3

0



 ,







√

1/6
√

1/2





 ,







−
√

1/6
√

1/2





 . (3.36)

2In other words, we have shown that if the rows of an n × n matrix are orthonormal,
then so are the columns.
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Now, we may interpret these three two-dimensional vectors as a 2×3 matrix,
and as Neumark’s theorem assured us, the two rows are orthonormal. Hence
we can add one more orthonormal row:

|u1〉, |u2〉, |u3〉 =









√

2/3

0
√

1/3









,











√

1/6
√

1/2

−
√

1/3











,











−
√

1/6
√

1/2
√

1/3











,
(3.37)

and we see (as the theorem also assured us) that the columns (the |ua〉’s) are
then orthonormal as well. If we perform an orthogonal measurement onto
the |ua〉 basis, an observer cognizant of only the two-dimensional subspace
will conclude that we have performed the POVM {F 1,F 2,F 3}. We have
shown that if our qubit is secretly two components of a qutrit, the POVM
may be realized as orthogonal measurement of the qutrit.

3.1.5 Orthogonal measurement on a tensor product

A typical qubit harbors no such secret, though. To perform a generalized
measurement, we will need to provide additional qubits, and perform joint
orthogonal measurements on several qubits at once.

So now we consider the case of two (isolated) systems A and B, described
by the tensor product HA ⊕ HB. Suppose we perform an orthogonal mea-
surement on the tensor product, with

∑

a

Ea = 1, (3.38)

where all Ea’s are mutually orthogonal projectors. Let us imagine that the
initial system of the quantum system is an “uncorrelated” tensor product
state

ρAB = ρA ⊗ ρB . (3.39)

Then outcome a occurs with probability

Prob(a) = trAB [Ea(ρA ⊗ ρB)], (3.40)

in which case the new density matrix will be

ρ′AB(a) =
Ea(ρA ⊗ ρB)Ea

trAB[Ea(ρA ⊗ ρB)]
. (3.41)
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To an observer who has access only to system A, the new density matrix for
that system is given by the partial trace of the above, or

ρ′
A(a) =

trB [Ea(ρA ⊗ ρB)Ea]

trAB [Ea(ρA ⊗ ρB)]
. (3.42)

The expression eq. (3.40) for the probability of outcome a can also be written

Prob(a) = trA[trB(Ea(ρA ⊗ ρB))] = trA(F aρA); (3.43)

If we introduce orthonormal bases {|i〉A} for HA and |µ〉B for HB , then

∑

ijµν

(Ea)jν,iµ(ρA)ij(ρB)µν =
∑

ij

(Fa)ji(ρA)ij , (3.44)

or

(Fa)ji =
∑

µν

(Ea)jν,iµ(ρB)µν. (3.45)

It follows from eq. (3.45) that each F a has the properties:

(1) Hermiticity:
(Fa)

∗
ij =

∑

µν

(Ea)
∗
iν,jµ(ρB)∗µν

=
∑

µν

(Ea)jµ,iν(ρB)νµ = Fji

(because Ea and ρB are hermitian.

(2) Positivity:

In the basis that diagonalizes ρB =
∑

µ pµ|µ〉B B〈µ|, A〈ψ|F a|ψ〉A =
∑

µ pµ(A〈ψ| ⊗ B〈µ|)Ea(|ψ〉A ⊗ |µ〉B)

≥ 0 (because Ea is positive).

(3) Completeness:

∑

a

F a =
∑

µ

pµ B〈µ|
∑

a

Ea|µ〉B = 1A

(because
∑

a

Ea = 1AB and tr ρB = 1).
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But the F a’s need not be mutually orthogonal. In fact, the number of F a’s
is limited only by the dimension of HA ⊗ HB , which is greater than (and
perhaps much greater than) the dimension of HA.

There is no simple way, in general, to express the final density matrix
ρ′

A(a) in terms of ρA and F a . But let us disregard how the POVM changes
the density matrix, and instead address this question: Suppose that HA has
dimension N , and consider a POVM with n one-dimensional nonnegative
F a’s satisfying

∑n
a=1 F a = 1A. Can we choose the space HB, density matrix

ρB in HB, and projection operators Ea in HA ⊗HB (where the number or
Ea’s may exceed the number of F a’s) such that the probability of outcome
a of the orthogonal measurement satisfies3

tr Ea(ρA ⊗ ρB) = tr(F aρA) ? (3.46)

(Never mind how the orthogonal projections modify ρA!) We will consider
this to be a “realization” of the POVM by orthogonal measurement, because
we have no interest in what the state ρ′

A is for each measurement outcome;
we are only asking that the probabilities of the outcomes agree with those
defined by the POVM.

Such a realization of the POVM is indeed possible; to show this, we will
appeal once more to Neumark’s theorem. Each one-dimensional F a, a =
1, 2, . . . , n, can be expressed as F a = |ψ̃a〉〈ψ̃a|. According to Neumark,
there are n orthonormal n-component vectors |ua〉 such that

|ua〉 = |ψ̃a〉 + |ψ̃⊥
a 〉. (3.47)

Now consider, to start with, the special case n = rN , where r is a positive
integer. Then it is convenient to decompose |ψ̃⊥

a 〉 as a direct sum of r − 1
N -component vectors:

|ψ̃⊥
a 〉 = |ψ̃⊥

1,a〉 ⊕ |ψ̃⊥
2,a〉 ⊕ · · · ⊕ |ψ̃⊥

r−1,a〉; (3.48)

Here |ψ̃⊥
1,a〉 denotes the first N components of |ψ̃⊥

a 〉, |ψ̃⊥
2,a〉 denotes the next

N components, etc. Then the orthonormality of the |ua〉’s implies that

δab = 〈ua|ub〉 = 〈ψ̃a|ψ̃b〉 +
r−1
∑

µ=1

〈ψ̃⊥
µ,a|ψ̃⊥

µ,b〉 . (3.49)

3If there are more Ea’s than F a’s, all but n outcomes have probability zero.
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Now we will choose HB to have dimension r and we will denote an orthonor-
mal basis for HB by

{|µ〉B}, µ = 0, 1, 2, . . . , r − 1. (3.50)

Then it follows from Eq. (3.49) that

|Φa〉AB = |ψ̃a〉A|0〉B +
r−1
∑

µ=1

|ψ̃⊥
µ,a〉A|µ〉B , a = 1, 2, . . . , n,

(3.51)

is an orthonormal basis for HA ⊗HB .
Now suppose that the state in HA ⊗HB is

ρAB = ρA ⊗ |0〉B B〈0|, (3.52)

and that we perform an orthogonal projection onto the basis {|Φa〉AB} in
HA ⊗ HB . Then, since B〈0|µ〉B = 0 for µ 6= 0, the outcome |Φa〉AB occurs
with probability

AB〈Φa|ρAB |Φa〉AB = A〈ψ̃a|ρA|ψ̃a〉A , (3.53)

and thus,

〈Φa|ρAB |Φa〉AB = tr(F aρA). (3.54)

We have indeed succeeded in “realizing” the POVM {F a} by performing
orthogonal measurement on HA⊗HB. This construction is just as efficient as
the “direct sum” construction described previously; we performed orthogonal
measurement in a space of dimension n = N · r.

If outcome a occurs, then the state

ρ′
AB = |Φa〉AB AB〈Φa|, (3.55)

is prepared by the measurement. The density matrix seen by an observer
who can probe only system A is obtained by performing a partial trace over
HB,

ρ′
A = trB (|Φa〉AB AB〈Φa|)

= |ψ̃a〉A A〈ψ̃a| +
r−1
∑

µ=1

|ψ̃⊥
µ,a〉A A〈ψ̃⊥

µ,a| (3.56)
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which isn’t quite the same thing as what we obtained in our “direct sum”
construction. In any case, there are many possible ways to realize a POVM
by orthogonal measurement and eq. (3.56) applies only to the particular
construction we have chosen here.

Nevertheless, this construction really is perfectly adequate for realizing
the POVM in which the state |ψa〉A A〈ψa| is prepared in the event that
outcome a occurs. The hard part of implementing a POVM is assuring that
outcome a arises with the desired probability. It is then easy to arrange that
the result in the event of outcome a is the state |ψa〉A A〈ψa|; if we like, once
the measurement is performed and outcome a is found, we can simply throw
ρA away and proceed to prepare the desired state! In fact, in the case of the
projection onto the basis |Φa〉AB , we can complete the construction of the
POVM by projecting system B onto the {|µ〉B} basis, and communicating
the result to system A. If the outcome is |0〉B , then no action need be taken.
If the outcome is |µ〉B , µ > 0, then the state |ψ̃⊥

µ,a〉A has been prepared,
which can then be rotated to |ψa〉A.

So far, we have discussed only the special case n = rN . But if actually
n = rN − c, 0 < c < N , then we need only choose the final c components of
|ψ̃⊥

r−1,a〉A to be zero, and the states |Φ〉AB will still be mutually orthogonal.
To complete the orthonormal basis, we may add the c states

|ei〉A|r − 1〉B , i = N − c+ 1, N − c+ 2, . . . N ; (3.57)

here ei is a vector whose only nonvanishing component is the ith component,
so that |ei〉A is guaranteed to be orthogonal to |ψ̃⊥

r−1,a〉A. In this case, the
POVM is realized as an orthogonal measurement on a space of dimension
rN = n+ c.

As an example of the tensor product construction, we may consider once
again the single-qubit POVM with

F a =
2

3
| ↑n̂a

〉A A〈↑n̂a
|, a = 1, 2, 3. (3.58)

We may realize this POVM by introducing a second qubit B. In the two-



3.1. ORTHOGONAL MEASUREMENT AND BEYOND 15

qubit Hilbert space, we may project onto the orthonormal basis4

|Φa〉 =

√

2

3
| ↑n̂a

〉A|0〉B +

√

1

3
|0〉A|1〉B, a = 1, 2, 3,

|Φ0〉 = |1〉A|1〉B . (3.59)

If the initial state is ρAB = ρA ⊗ |0〉B B〈0|, we have

〈Φa|ρAB|Φa〉 =
2

3
A〈↑n̂a

|ρA| ↑n̂a
〉A (3.60)

so this projection implements the POVM on HA. (This time we performed
orthogonal measurements in a four-dimensional space; we only needed three
dimensions in our earlier “direct sum” construction.)

3.1.6 GHJW with POVM’s

In our discussion of the GHJW theorem, we saw that by preparing a state

|Φ〉AB =
∑

µ

√
qµ|ψµ〉A|βµ〉B , (3.61)

we can realize the ensemble

ρA =
∑

µ

qµ|ψµ〉A A〈ψµ|, (3.62)

by performing orthogonal measurements on HB . Moreover, if dimHB = n,
then for this single pure state |Φ〉AB , we can realize any preparation of ρA as
an ensemble of up to n pure states by measuring an appropriate observable
on HB .

But we can now see that if we are willing to allow POVM’s on HB rather
than orthogonal measurements only, then even for dimHB = N , we can
realize any preparation of ρA by choosing the POVM on HB appropriately.
The point is that ρB has support on a space that is at most dimension N .
We may therefore rewrite |Φ〉AB as

|Φ〉AB =
∑

µ

√
qµ|ψµ〉A|β̃µ〉B , (3.63)

4Here the phase of |ψ̃2〉 =
√

2/3| ↑n̂2
〉 differs by −1 from that in eq. (3.36); it has

been chosen so that 〈↑n̂a
| ↑n̂b

〉 = −1/2 for a 6= b. We have made this choice so that the
coefficient of |0〉A|1〉B is positive in all three of |Φ1〉, |Φ2〉, |Φ3〉.
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where |β̃µ〉B is the result of orthogonally projecting |βµ〉B onto the support
of ρB. We may now perform the POVM on the support of ρB with F µ =
|β̃µ〉B B〈β̃µ|, and thus prepare the state |ψµ〉A with probability qµ.

3.2 Superoperators

3.2.1 The operator-sum representation

We now proceed to the next step of our program of understanding the be-
havior of one part of a bipartite quantum system. We have seen that a pure
state of the bipartite system may behave like a mixed state when we observe
subsystem A alone, and that an orthogonal measurement of the bipartite
system may be a (nonorthogonal) POVM on A alone. Next we ask, if a state
of the bipartite system undergoes unitary evolution, how do we describe the
evolution of A alone?

Suppose that the initial density matrix of the bipartite system is a tensor
product state of the form

ρA ⊗ |0〉B B〈0|; (3.64)

system A has density matrix ρA, and system B is assumed to be in a pure
state that we have designated |0〉B . The bipartite system evolves for a finite
time, governed by the unitary time evolution operator

UAB (ρA ⊗ |0〉B B〈0|) UAB . (3.65)

Now we perform the partial trace over HB to find the final density matrix of
system A,

ρ′
A = trB

(

UAB (ρA ⊗ |0〉B B〈0|) U†
AB

)

=
∑

µ
B〈µ|UAB |0〉BρA B〈0|UAB |µ〉B , (3.66)

where {|µ〉B} is an orthonormal basis for HB′ and B〈µ|UAB |0〉B is an operator
acting on HA. (If {|i〉A ⊗ |µ〉B} is an orthonormal basis for HA ⊗HB , then

B〈µ|UAB |ν〉B denotes the operator whose matrix elements are

A〈i| (B〈µ|UAB |ν〉B) |j〉A
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= (A〈i| ⊗ B〈µ|)UAB (|j〉A ⊗ |ν〉B) .) (3.67)

If we denote

Mµ = B〈µ|UAB |0〉B , (3.68)

then we may express ρ′
A as

$(ρA) ≡ ρ′
A =

∑

µ

MµρAM†
µ. (3.69)

It follows from the unitarity of UAB that the Mµ’s satisfy the property

∑

µ

M†
µMµ =

∑

µ
B〈0|U†

AB |µ〉B B〈µ|UAB |0〉B

= B〈0|U†
ABUAB |0〉B = 1A. (3.70)

Eq. (3.69) defines a linear map $ that takes linear operators to linear
operators. Such a map, if the property in eq. (3.70) is satisfied, is called a
superoperator, and eq. (3.69) is called the operator sum representation (or
Kraus representation) of the superoperator. A superoperator can be regarded
as a linear map that takes density operators to density operators, because it
follows from eq. (3.69) and eq. (3.70) that ρ′

A is a density matrix if ρA is:

(1) ρ′
A is hermitian: ρ′†

A =
∑

µ Mµρ
†
AM†

µ = ρA.

(2) ρ′
A has unit trace: trρ′

A =
∑

µ tr(ρAM†
µMµ) = trρA = 1.

(3) ρ′
A is positive: A〈ψ|ρ′

A|ψ〉A =
∑

µ(〈ψ|Mµ)ρA(M†
µ|ψ〉) ≥ 0.

We showed that the operator sum representation in eq. (3.69) follows from
the “unitary representation” in eq. (3.66). But furthermore, given the oper-
ator sum representation of a superoperator, it is always possible to construct
a corresponding unitary representation. We choose HB to be a Hilbert space
whose dimension is at least as large as the number of terms in the operator
sum. If {|ϕA} is any vector in HA, the {|µ〉B} are orthonormal states in HB,
and |0〉B is some normalized state in HB, define the action of UAB by

UAB (|ϕ〉A ⊗ |0〉B) =
∑

µ

Mµ|ϕ〉A ⊗ |µ〉B. (3.71)
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This action is inner product preserving:

(

∑

ν
A〈ϕ2|M†

ν ⊗ B〈ν|
)(

∑

µ

Mµ|ϕ1〉A ⊗ |µ〉B
)

= A〈ϕ2|
∑

µ

M†
µMµ|ϕ1〉A = A〈ϕ2|ϕ1〉A; (3.72)

therefore, UAB can be extended to a unitary operator acting on all of HA ⊗
HB . Taking the partial trace we find

trB

(

UAB (|ϕ〉A ⊗ |0〉B) (A〈ϕ| ⊗ B〈0|)U†
AB

)

=
∑

µ

Mµ (|ϕ〉A A〈ϕ|)M†
µ. (3.73)

Since any ρA can be expressed as an ensemble of pure states, we recover the
operator sum representation acting on an arbitrary ρA.

It is clear that the operator sum representation of a given superoperator
$ is not unique. We can perform the partial trace in any basis we please. If
we use the basis {B〈ν ′| =

∑

µ Uνµ B〈µ|} then we obtain the representation

$(ρA) =
∑

ν

NνρAN†
ν , (3.74)

where Nν = UνµMµ. We will see shortly that any two operator-sum repre-
sentations of the same superoperator are always related this way.

Superoperators are important because they provide us with a formalism
for discussing the general theory of decoherence, the evolution of pure states
into mixed states. Unitary evolution of ρA is the special case in which there
is only one term in the operator sum. If there are two or more terms, then
there are pure initial states of HA that become entangled with HB under
evolution governed by UAB . That is, if the operators M1 and M2 appearing
in the operator sum are linearly independent, then there is a vector |ϕ〉A such
that |ϕ̃1〉A = M1|ϕ〉A and |ϕ̃2〉A = M2|ϕ〉A are linearly independent, so that
the state |ϕ̃1〉A|1〉B + |ϕ̃2〉A|2〉B + · · · has Schmidt number greater than one.
Therefore, the pure state |ϕ〉A A〈ϕ| evolves to the mixed final state ρ′

A.
Two superoperators $1 and $2 can be composed to obtain another super-

operator $2 ◦ $1; if $1 describes evolution from yesterday to today, and $2
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describes evolution from today to tomorrow, then $2 ◦$1 describes the evolu-
tion from yesterday to tomorrow. But is the inverse of a superoperator also a
superoperator; that is, is there a superoperator that describes the evolution
from today to yesterday? In fact, you will show in a homework exercise that
a superoperator is invertible only if it is unitary.

Unitary evolution operators form a group, but superoperators define a
dynamical semigroup. When decoherence occurs, there is an arrow of time;
even at the microscopic level, one can tell the difference between a movie that
runs forwards and one running backwards. Decoherence causes an irrevocable
loss of quantum information — once the (dead) cat is out of the bag, we can’t
put it back in again.

3.2.2 Linearity

Now we will broaden our viewpoint a bit and consider the essential properties
that should be satisfied by any “reasonable” time evolution law for density
matrices. We will see that any such law admits an operator-sum representa-
tion, so in a sense the dynamical behavior we extracted by considering part
of a bipartite system is actually the most general possible.

A mapping $ : ρ → ρ′ that takes an initial density matrix ρ to a final
density matrix ρ′ is a mapping of operators to operators that satisfies

(1) $ preserves hermiticity: ρ′ hermitian if ρ is.

(2) $ is trace preserving: trρ′ = 1 if trρ = 1.

(3) $ is positive: ρ′ is nonnegative if ρ is.

It is also customary to assume

(0) $ is linear.

While (1), (2), and (3) really are necessary if ρ′ is to be a density matrix,
(0) is more open to question. Why linearity?

One possible answer is that nonlinear evolution of the density matrix
would be hard to reconcile with any ensemble interpretation. If

$ (ρ(λ)) ≡ $ (λρ1 + (1 − λ)ρ2) = λ$(ρ1) + (1 − λ)$(ρ2),
(3.75)
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then time evolution is faithful to the probabilistic interpretation of ρ(λ):
either (with probability λ) ρ1 was initially prepared and evolved to $(ρ1), or
(with probability 1 − λ) ρ2 was initially prepared and evolved to $(ρ2). But
a nonlinear $ typically has consequences that are seemingly paradoxical.

Consider, for example, a single qubit evolving according to

$(ρ) = exp [iπσ1tr(σ1ρ)] ρ exp [−iπσ1tr(σ1ρ)] . (3.76)

One can easily check that $ is positive and trace-preserving. Suppose that
the initial density matrix is ρ = 1

2
1, realized as the ensemble

ρ =
1

2
| ↑z〉〈↑z | + 1

2
| ↓z〉〈↓z |. (3.77)

Since tr(σ1ρ) = 0, the evolution of ρ is trivial, and both representatives of
the ensemble are unchanged. If the spin was prepared as | ↑z〉, it remains in
the state | ↑z〉.

But now imagine that, immediately after preparing the ensemble, we do
nothing if the state has been prepared as | ↑z〉, but we rotate it to | ↑x〉 if it
has been prepared as | ↓z〉. The density matrix is now

ρ′ =
1

2
| ↑z〉〈↑z | + 1

2
| ↑x〉| ↑x〉, (3.78)

so that trρ′σ1 = 1
2
. Under evolution governed by $, this becomes $(ρ′) =

σ1ρ
′σ1. In this case then, if the spin was prepared as | ↑z〉, it evolves to the

orthogonal state | ↓z〉.
The state initially prepared as | ↑z〉 evolves differently under these two

scenarios. But what is the difference between the two cases? The difference
was that if the spin was initially prepared as | ↓z〉, we took different actions:
doing nothing in case (1) but rotating the spin in case (2). Yet we have found
that the spin behaves differently in the two cases, even if it was initially
prepared as | ↑z〉!

We are accustomed to saying that ρ describes two (or more) different
alternative pure state preparations, only one of which is actually realized
each time we prepare a qubit. But we have found that what happens if we
prepare | ↑z〉 actually depends on what we would have done if we had prepared
| ↓x〉 instead. It is no longer sensible, apparently, to regard the two possible
preparations as mutually exclusive alternatives. Evolution of the alternatives
actually depends on the other alternatives that supposedly were not realized.
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Joe Polchinski has called this phenomenon the “Everett phone,” because the
different “branches of the wave function” seem to be able to “communicate”
with one another.

Nonlinear evolution of the density matrix, then, can have strange, perhaps
even absurd, consequences. Even so, the argument that nonlinear evolution
should be excluded is not completely compelling. Indeed Jim Hartle has
argued that there are versions of “generalized quantum mechanics” in which
nonlinear evolution is permitted, yet a consistent probability interpretation
can be salvaged. Nevertheless, we will follow tradition here and demand that
$ be linear.

3.2.3 Complete positivity

It would be satisfying were we able to conclude that any $ satisfying (0) - (3)
has an operator-sum representation, and so can be realized by unitary evolu-
tion of a suitable bipartite system. Sadly, this is not quite possible. Happily,
though, it turns out that by adding one more rather innocuous sounding
assumption, we can show that $ has an operator-sum representation.

The additional assumption we will need (really a stronger version of (3))
is

(3’) $ is completely positive.

Complete positivity is defined as follows. Consider any possible extension of
HA to the tensor product HA ⊗HB; then $A is completely positive on HA if
$A ⊗ IB is positive for all such extensions.

Complete positivity is surely a reasonable property to demand on physical
grounds. If we are studying the evolution of systemA, we can never be certain
that there is no system B, totally uncoupled to A, of which we are unaware.
Complete positivity (combined with our other assumptions) is merely the
statement that, if system A evolves and system B does not, any initial density
matrix of the combined system evolves to another density matrix.

We will prove that assumptions (0), (1), (2), (3′) are sufficient to ensure
that $ is a superoperator (has an operator-sum representation). (Indeed,
properties (0) - (3′) can be taken as an alternative definition of a superopera-
tor.) Before proceeding with the proof, though, we will attempt to clarify the
concept of complete positivity by giving an example of a positive operator
that is not completely positive. The example is the transposition operator

T : ρ → ρT . (3.79)
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T preserves the eigenvalues of ρ and so clearly is positive.
But is T completely positive (is TA ⊗ IB necessarily positive)? Let us

choose dim(HB) = dim(HA) = N , and consider the maximally entangled
state

|Φ〉AB =
1√
N

N
∑

i=1

|i〉A ⊗ |i′〉B , (3.80)

where {|i〉A} and {|i′〉B} are orthonormal bases for HA and HB respectively.
Then

TA ⊗ IB : ρ = |Φ〉AB AB〈Φ| =
1

N

∑

i,j

(|i〉A A〈j|) ⊗ (|i′〉B B〈j′|)

→ ρ′ =
1

N

∑

i,j

(|j〉A A〈i|) ⊗ (|i′〉B B〈j′|). (3.81)

We see that the operator Nρ′ acts as

Nρ′ :(
∑

i

ai|i〉A) ⊗ (
∑

j

bj|j′〉B)

→ (
∑

i

ai|i′〉B) ⊗ (
∑

j

bj|j〉A), (3.82)

or

Nρ′(|ϕ〉A ⊗ |ψ〉B) = |ψ〉A ⊗ |ϕ〉B . (3.83)

HenceNρ′ is a swap operator (which squares to the identity). The eigenstates
of Nρ′ are states symmetric under the interchange A↔ B, with eigenvalue 1,
and antisymmetric states with eigenvalue −1. Since ρ′ has negative eigenval-
ues, it is not positive, and (since ρ is certainly positive), therefore, TA ⊗ IB

does not preserve positivity. We conclude that TA, while positive, is not

completely positive.

3.2.4 POVM as a superoperator

A unitary transformation that entangles A with B, followed by an orthog-
onal measurement of B, can be described as a POVM in A. In fact, the
positive operators comprising the POVM can be constructed from the Kraus
operators. If |ϕ〉A evolves as

|ϕ〉A|0〉B →
∑

µ

Mµ|ϕ〉A|µ〉B , (3.84)
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then the measurement in B that projects onto the {|µ〉E} basis has outcome
µ with probability

Prob(µ) = A〈ϕ|M †
µMµ|ϕ〉A. (3.85)

Expressing ρA as an ensemble of pure states, we find the probability

Prob(µ) = tr(F µρA), F µ = M †
µMµ, (3.86)

for outcome µ; evidently F µ is positive, and
∑

µ F µ = 1 follows from the
normalization of the Kraus operators. So this is indeed a realization of a
POVM.

In particular, a POVM that modifies a density matrix according to

ρ →
∑

µ

√

F µρ
√

F µ, (3.87)

is a special case of a superoperator. Since each
√

F µ is hermitian, the re-
quirement

∑

µ

F µ = 1, (3.88)

is just the operator-sum normalization condition. Therefore, the POVM has
a “unitary representation;” there is a unitary UAB that acts as

UAB : |ϕ〉A ⊗ |0〉B →
∑

µ

√

F µ|ϕ〉A ⊗ |µ〉B , (3.89)

where |ϕ〉A is a pure state of system A. Evidently, then, by performing an
orthogonal measurement in system B that projects onto the basis {|µ〉B}, we
can realize the POVM that prepares

ρ′
A =

√

F µρA

√

F µ

tr(F µρA)
(3.90)

with probability

Prob(µ) = tr(F µρA). (3.91)

This implementation of the POVM is not the most efficient possible (we
require a Hilbert space HA ⊗ HB of dimension N · n, if the POVM has n
possible outcomes) but it is in some ways the most convenient. A POVM is
the most general measurement we can perform in system A by first entangling
system A with system B, and then performing an orthogonal measurement
in system B.
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3.3 The Kraus Representation Theorem

Now we are almost ready to prove that any $ satisfying the conditions
(0), (1), (2), and (3′) has an operator-sum representation (the Kraus rep-
resentation theorem).5 But first we will discuss a useful trick that will be
employed in the proof. It is worthwhile to describe the trick separately,
because it is of wide applicability.

The trick (which we will call the “relative-state method”) is to completely

characterize an operator MA acting on HA by describing how MA ⊗1B acts
on a single pure maximally entangled state6 in HA ⊗HB (where dim(HB) ≥
dim(HA) ≡ N). Consider the state

|ψ̃〉AB =
N
∑

i=1

|i〉A ⊗ |i′〉B (3.92)

where {|i〉A} and {|i′〉B} are orthonormal bases of HA and HB. (We have
chosen to normalize |ψ̃〉AB so that AB〈ψ̃|ψ̃〉AB = N ; this saves us from writing
various factors of

√
N in the formulas below.) Note that any vector

|ϕ〉A =
∑

i

ai|i〉A, (3.93)

in HA may be expressed as a “partial” inner product

|ϕ〉A =B 〈ϕ∗|ψ̃〉AB , (3.94)

where

|ϕ∗〉B =
∑

i

a∗i |i′〉B . (3.95)

We say that |ϕ〉A is the “relative state” of the “index state” |ϕ∗〉B . The map

|ϕ〉A → |ϕ∗〉B, (3.96)

is evidently antilinear, and it is in fact an antiunitary map from HA to a
subspace of HB. The operator MA ⊗ 1B acting on |ψ̃〉AB gives

(MA ⊗ 1B)|ψ̃〉AB =
∑

i

MA|i〉A ⊗ |i′〉B . (3.97)

5The argument given here follows B. Schumacher, quant-ph/9604023 (see Appendix A
of that paper.).

6We say that the state |ψ〉AB is maximally entangled if trB(|ψ〉AB AB〈ψ|) ∝ 1A.
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From this state we can extract MA|ψ〉A as a relative state:

B〈ϕ∗|(MA ⊗ 1B)|ψ̃〉AB = MA|ϕ〉A. (3.98)

We may interpret the relative-state formalism by saying that we can realize
an ensemble of pure states in HA by performing measurements in HB on an
entangled state – the state |ϕ〉A is prepared when the measurement in HB

has the outcome |ϕ∗〉B . If we intend to apply an operator in HA, we have
found that it makes no difference whether we first prepare the state and then
apply the operator or we first apply the operator and then prepare the state.
Of course, this conclusion makes physical sense. We could even imagine that
the preparation and the operation are spacelike separated events, so that the
temporal ordering has no invariant (observer-independent) meaning.

We will show that $A has an operator-sum representation by applying
the relative-state method to superoperators rather than operators. Because

we assume that $A is completely positive, we know that $A ⊗ IB is positive.
Therefore, if we apply $A ⊗ IB to ρ̃AB = |ψ̃〉AB AB〈ψ̃|, the result is a positive
operator, an (unconventionally normalized) density matrix ρ̃′

AB in HA⊗HB.
Like any density matrix, ρ̃′

AB can be expanded as an ensemble of pure states.
Hence we have

($A ⊗ IB)(|ψ̃〉AB AB〈ψ̃|) =
∑

µ

qµ|Φ̃µ〉AB AB〈Φ̃µ|, (3.99)

(where qµ > 0,
∑

µ qµ = 1, and each |Φ̃µ〉, like |ψ̃〉AB , is normalized so that

〈Φ̃µ|Φ̃µ〉 = N). Invoking the relative-state method, we have

$A(|ϕ〉A A〈ϕ|) =B 〈ϕ∗|($A ⊗ IB)(|ψ̃〉AB AB〈ψ̃|)|ϕ∗〉B
=
∑

µ

qµ B〈ϕ∗|Φ̃µ〉AB AB〈Φ̃µ|ϕ∗〉B . (3.100)

Now we are almost done; we define an operator Mµ on HA by

Mµ : |ϕ〉A → √
qµ B〈ϕ∗|Φ̃µ〉AB . (3.101)

We can check that:

1. Mµ is linear, because the map |ϕ〉A → |ϕ∗〉B is antilinear.

2. $A(|ϕ〉A A〈ϕ|) =
∑

µ Mµ(|ϕ〉A A〈ϕ|)M †
µ, for any pure state |ϕ〉A ∈ HA.
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3. $A(ρA) =
∑

µ MµρAM †
µ for any density matrix ρA, because ρA can be

expressed as an ensemble of pure states, and $A is linear.

4.
∑

µ M †
µMµ = 1A, because $A is trace preserving for any ρA.

Thus, we have constructed an operator-sum representation of $A.
Put succinctly, the argument went as follows. Because $A is completely

positive, $A⊗ IB takes a maximally entangled density matrix on HA⊗HB to
another density matrix. This density matrix can be expressed as an ensemble
of pure states. With each of these pure states in HA ⊗HB , we may associate
(via the relative-state method) a term in the operator sum.

Viewing the operator-sum representation this way, we may quickly estab-
lish two important corollaries:

How many Kraus operators? Each Mµ is associated with a state
|Φµ〉 in the ensemble representation of ρ̃′

AB . Since ρ̃′
AB has a rank at most

N2 (where N = dimHA), $A always has an operator-sum representation with
at most N2 Kraus operators.

How ambiguous? We remarked earlier that the Kraus operators

Na = MµUµa, (3.102)

(where Uµa is unitary) represent the same superoperator $ as the Mµ’s. Now
we can see that any two Kraus representations of $ must always be related
in this way. (If there are more Na’s than Mµ’s, then it is understood that
some zero operators are added to the Mµ’s so that the two operator sets
have the same cardinality.) This property may be viewed as a consequence
of the GHJW theorem.

The relative-state construction described above established a 1− 1 corre-
spondence between ensemble representations of the (unnormalized) density

matrix ($A⊗IB)
(

|ψ̃〉AB AB〈ψ̃|
)

and operator-sum representations of $A. (We
explicitly described how to proceed from the ensemble representation to the
operator sum, but we can clearly go the other way, too: If

$A(|i〉A A〈j|) =
∑

µ

Mµ|i〉A A〈j|M †
µ, (3.103)

then

($A ⊗ IB)(|ψ̃〉AB AB〈ψ̃|) =
∑

i,j

(Mµ|i〉A|i′〉B)(A〈j|M †
µ B〈j′|)

=
∑

µ

qµ|Φ̃µ〉AB AB〈Φ̃µ|, (3.104)
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where

√
qµ|Φ̃µ〉AB =

∑

i

Mµ|i〉A|i′〉B . ) (3.105)

Now consider two such ensembles (or correspondingly two operator-sum rep-
resentations of $A), {√qµ|Φ̃µ〉AB} and {√pa|Υ̃a〉AB}. For each ensemble,
there is a corresponding “purification” in HAB ⊗HC:

∑

µ

√
qµ|Φ̃µ〉AB |αµ〉C

∑

a

√
pa|Υ̃a〉AB |βa〉C , (3.106)

where {(αµ〉C} and {|βa〉C} are two different orthonormal sets in Hc. The
GHJW theorem asserts that these two purifications are related by 1AB ⊗U′

C ,
a unitary transformation on HC . Therefore,

∑

a

√
pa|Υ̃a〉AB |βa〉C

=
∑

µ

√
qµ|Φ̃µ〉ABU′

C |αµ〉C

=
∑

µ,a

√
qµ|Φ̃µ〉ABUµa|βa〉C , (3.107)

where, to establish the second equality we note that the orthonormal bases
{|αµ〉C} and {|βa〉C} are related by a unitary transformation, and that a
product of unitary transformations is unitary. We conclude that

√
pa|Υ̃a〉AB =

∑

µ

√
qµ|Φ̃µ〉ABUµa, (3.108)

(where Uµa is unitary) from which follows

N a =
∑

µ

MµUµa. (3.109)

Remark. Since we have already established that we can proceed from an
operator-sum representation of $ to a unitary representation, we have now
found that any “reasonable” evolution law for density operators on HA can
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be realized by a unitary transformation UAB that acts on HA⊗HB according
to

UAB : |ψ〉A ⊗ |0〉B →
∑

µ

|ϕ〉A ⊗ |µ〉B . (3.110)

Is this result surprising? Perhaps it is. We may interpret a superoperator as
describing the evolution of a system (A) that interacts with its environment
(B). The general states of system plus environment are entangled states.
But in eq. (3.110), we have assumed an initial state of A and B that is
unentangled. Apparently though a real system is bound to be entangled
with its surroundings, for the purpose of describing the evolution of its density
matrix there is no loss of generality if we imagine that there is no pre-existing
entanglement when we begin to track the evolution!

Remark: The operator-sum representation provides a very convenient
way to express any completely positive $. But a positive $ does not admit
such a representation if it is not completely positive. As far as I know, there
is no convenient way, comparable to the Kraus representation, to express the
most general positive $.

3.4 Three Quantum Channels

The best way to familiarize ourselves with the superoperator concept is to
study a few examples. We will now consider three examples (all interesting
and useful) of superoperators for a single qubit. In deference to the traditions
and terminology of (classical) communication theory. I will refer to these
superoperators as quantum channels. If we wish, we may imagine that $
describes the fate of quantum information that is transmitted with some loss
of fidelity from a sender to a receiver. Or, if we prefer, we may imagine (as in
our previous discussion), that the transmission is in time rather than space;
that is, $ describes the evolution of a quantum system that interacts with its
environment.

3.4.1 Depolarizing channel

The depolarizing channel is a model of a decohering qubit that has partic-
ularly nice symmetry properties. We can describe it by saying that, with
probability 1 − p the qubit remains intact, while with probability p an “er-
ror” occurs. The error can be of any one of three types, where each type of
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error is equally likely. If {|0〉, |1〉} is an orthonormal basis for the qubit, the
three types of errors can be characterized as:

1. Bit flip error: |0〉→|1〉
|1〉→|0〉 or |ψ〉 → σ1|ψ〉,σ1 =

(

0 1
1 0

)

,

2. Phase flip error: |0〉→|0〉
|1〉→−|1〉 or |ψ〉 → σ3|ψ〉,σ3 =

(

1 0
0 −1

)

,

3. Both: |0〉→+i|1〉
|1〉→−i|0〉 or |ψ〉 → σ2|ψ〉,σ2 =

(

0 −i
i 0

)

.

If an error occurs, then |ψ〉 evolves to an ensemble of the three states σ1|ψ〉,σ2|ψ〉,σ3|ψ〉,
all occuring with equal likelihood.

Unitary representation

The depolarizing channel can be represented by a unitary operator acting on
HA ⊗ HE, where HE has dimension 4. (I am calling it HE here to encour-
age you to think of the auxiliary system as the environment.) The unitary
operator UAE acts as

UAE : |ψ〉A ⊗ |0〉E

→
√

1 − p|ψ〉 ⊗ |0〉E +

√

p

3



σ1|ψ〉A ⊗ |1〉E

+ σ2|ψ〉 ⊗ |2〉E + σ3|ψ〉 ⊗ |3〉E


. (3.111)

(Since UAE is inner product preserving, it has a unitary extension to all of
HA ⊗ HE .) The environment evolves to one of four mutually orthogonal
states that “keep a record” of what transpired; if we could only measure the
environment in the basis {|µ〉E , µ = 0, 1, 2, 3}, we would know what kind of
error had occurred (and we would be able to intervene and reverse the error).

Kraus representation

To obtain an operator-sum representation of the channel, we evaluate the
partial trace over the environment in the {|µ〉E} basis. Then

Mµ = E〈µ|UAE |0〉E , (3.112)
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so that

M 0 =
√

1 − p 1, M ,=

√

p

3
σ1, M 2 =

√

p

3
σ2, M 3 =

√

p

3
σ3.

(3.113)

Using σ2
i = 1, we can readily check the normalization condition

∑

µ

M †
µMµ =

[

(1 − p) + 3
p

3

]

1 = 1. (3.114)

A general initial density matrix ρA of the qubit evolves as

ρ → ρ′ = (1 − p)ρ+

p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3) . (3.115)

where we are summing over the four (in principle distinguishable) ways that
the environment could evolve.

Relative-state representation

We can also characterize the channel by describing how a maximally-entangled
state of two qubits evolves, when the channel acts only on the first qubit.
There are four mutually orthogonal maximally entangled states, which may
be denoted

|φ+〉AB =
1√
2
(|00〉AB + |11〉AB),

|φ−〉AB =
1√
2
(|00〉AB − |11〉AB),

|ψ+〉AB =
1√
2
(|01〉AB + |10〉AB),

|ψ−〉AB =
1√
2
(|01〉AB − |10〉AB). (3.116)

If the initial state is |φ+〉AB , then when the depolarizing channel acts on the
first qubit, the entangled state evolves as

|φ+〉〈φ+| → (1 − p)|φ+〉〈φ+|
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+
p

3



|ψ+〉〈ψ+| + |ψ−〉〈ψ−| + |φ−〉〈φ−|


. (3.117)

The “worst possible” quantum channel has p = 3/4 for in that case the
initial entangled state evolves as

|φ+〉〈φ+| → 1

4



|φ+〉〈φ+| + |φ−〉〈φ−|

+|ψ+〉〈ψ+| + |ψ−〉〈ψ−|


 =
1

4
1AB ; (3.118)

it becomes the totally random density matrix on HA ⊗HB. By the relative-
state method, then, we see that a pure state |ϕ〉A of qubit A evolves as

|ϕ〉A A〈ϕ| → B〈ϕ∗|2
(

1

4
1AB

)

|ϕ∗〉B =
1

2
1A; (3.119)

it becomes the random density matrix on HA, irrespective of the value of the
initial state |ϕ〉A. It is as though the channel threw away the initial quantum
state, and replaced it by completely random junk.

An alternative way to express the evolution of the maximally entangled
state is

|φ+〉〈φ+| →
(

1 − 4

3
p
)

|φ+〉〈φ+| + 4

3
p
(

1

4
1AB

)

. (3.120)

Thus instead of saying that an error occurs with probability p, with errors of
three types all equally likely, we could instead say that an error occurs with
probability 4/3p, where the error completely “randomizes” the state (at least
we can say that for p ≤ 3/4). The existence of two natural ways to define
an “error probability” for this channel can sometimes cause confusion and
misunderstanding.

One useful measure of how well the channel preserves the original quan-
tum information is called the “entanglement fidelity” Fe. It quantifies how
“close” the final density matrix is to the original maximally entangled state
|φ+〉:

Fe = 〈φ+|ρ′|φ+〉. (3.121)

For the depolarizing channel, we have Fe = 1 − p, and we can interpret Fe

as the probability that no error occured.
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Block-sphere representation

It is also instructive to see how the depolarizing channel acts on the Bloch
sphere. An arbitrary density matrix for a single qubit can be written as

ρ =
1

2

(

1 + ~P · ~σ
)

, (3.122)

where ~P is the “spin polarization” of the qubit. Suppose we rotate our axes
so that ~P = P3ê3 and ρ = 1

2
(1 + P3σ3). Then, since σ3σ3σ3 = σ3 and

σ1σ3σ1 = −σ3 = σ2σ3σ2, we find

ρ′ =
(

1 − p+
p

3

)

1

2
(1 + P3σ3) +

2p

3

1

2
(1 − P3σ3),

(3.123)

or P ′
3 =

(

1 − 4
3
p
)

P3. From the rotational symmetry, we see that

~P ′ =
(

1 − 4

3
p
)

~P , (3.124)

irrespective of the direction in which P points. Hence, the Bloch sphere
contracts uniformly under the action of the channel; the spin polarization
is reduced by the factor 1 − 4

3
p (which is why we call it the depolarizing

channel). This result was to be expected in view of the observation above
that the spin is totally “randomized” with probability 4

3
p.

Invertibility?

Why do we say that the superoperator is not invertible? Evidently we can
reverse a uniform contraction of the sphere with a uniform inflation. But
the trouble is that the inflation of the Bloch sphere is not a superoperator,
because it is not positive. Inflation will take values of ~P with |~P | ≤ 1 to

values with |~P | > 1, and so will take a density operator to an operator
with a negative eigenvalue. Decoherence can shrink the ball, but no physical
process can blow it up again! A superoperator running backwards in time is
not a superoperator.

3.4.2 Phase-damping channel

Our next example is the phase-damping channel. This case is particularly
instructive, because it provides a revealing caricature of decoherence in re-
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alistic physical situations, with all inessential mathematical details stripped
away.

Unitary representation

A unitary representation of the channel is

|0〉A|0〉E →
√

1 − p|0〉A|0〉E +
√
p|0〉A|1〉E ,

|1〉A|0〉E →
√

1 − p|1〉A|0〉E +
√
p|1〉A|2〉E . (3.125)

In this case, unlike the depolarizing channel, qubit A does not make any
transitions. Instead, the environment “scatters” off of the qubit occasionally
(with probability p) being kicked into the state |1〉E if A is in the state |0〉A
and into the state |2〉E if A is in the state |1〉A. Furthermore, also unlike the
depolarizing channel, the channel picks out a preferred basis for qubit A; the
basis {|0〉A, |1〉A} is the only basis in which bit flips never occur.

Kraus operators

Evaluating the partial trace over HE in the {|0〉E , |1〉E , |2〉E}basis, we obtain
the Kraus operators

M 0 =
√

1 − p1,M 1 =
√
p
(

1 0

0 0

)

,M2 =
√
p
(

0 0

0 1

)

.
(3.126)

it is easy to check that M 2
0 + M 2

1 + M 2
2 = 1. In this case, three Kraus

operators are not really needed; a representation with two Kraus operators
is possible, as you will show in a homework exercise.

An initial density matrix ρ evolves to

$(ρ) = M0ρM0 + M1ρM1 + M 2ρM2

= (1 − p)ρ + p

(

ρ00 0
0 ρ11

)

=

(

ρ00 (1 − p) ρ01

(1 − p)ρ10 ρ11

)

;
(3.127)

thus the on-diagonal terms in ρ remain invariant while the off-diagonal terms
decay.

Now suppose that the probability of a scattering event per unit time is
Γ, so that p = Γ∆t � 1 when time ∆t elapses. The evolution over a time
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t = n∆t is governed by $n, so that the off-diagonal terms are suppressed by
(1 − p)n = (1 − Γ∆t)t/∆t → e−Γt (as ∆t→ 0). Thus, if we prepare an initial
pure state a|0〉 + b|1〉, then after a time t � Γ−1, the state decays to the
incoherent superposition ρ′ = |a|2|0〉〈0| + |b|2|1〉〈1|. Decoherence occurs, in
the preferred basis {|0〉, |1〉}.

Bloch-sphere representation

This will be worked out in a homework exercise.

Interpretation

We might interpret the phase-damping channel as describing a heavy “clas-
sical” particle (e.g., an interstellar dust grain) interacting with a background
gas of light particles (e.g., the 30K microwave photons). We can imagine
that the dust is initially prepared in a superposition of position eigenstates
|ψ〉 = 1√

2
(|x〉 + | − x〉) (or more generally a superposition of position-space

wavepackets with little overlap). We might be able to monitor the behavior
of the dust particle, but it is hopeless to keep track of the quantum state of
all the photons that scatter from the particle; for our purposes, the quantum
state of the particle is described by the density matrix ρ obtained by tracing
over the photon degrees of freedom.

Our analysis of the phase damping channel indicates that if photons are
scattered by the dust particle at a rate Γ, then the off-diagonal terms in
ρ decay like exp(−Γt), and so become completely negligible for t � Γ−1.
At that point, the coherence of the superposition of position eigenstates is
completely lost – there is no chance that we can recombine the wavepackets
and induce them to interfere. (If we attempt to do a double-slit interference
pattern with dust grains, we will not see any interference pattern if it takes
a time t � Γ−1 for the grain to travel from the source to the screen.)

The dust grain is heavy. Because of its large inertia, its state of motion is
little affected by the scattered photons. Thus, there are two disparate time
scales relevant to its dynamics. On the one hand, there is a damping time
scale, the time for a significant amount of the particle’s momentum to be
transfered to the photons; this is a long time if the particle is heavy. On the
other hand, there is the decoherence time scale. In this model, the time scale
for decoherence is of order Γ, the time for a single photon to be scattered
by the dust grain, which is far shorter than the damping time scale. For a
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macroscopic object, decoherence is fast.
As we have already noted, the phase-damping channel picks out a pre-

ferred basis for decoherence, which in our “interpretation” we have assumed
to be the position-eigenstate basis. Physically, decoherence prefers the spa-
tially localized states of the dust grain because the interactions of photons
and grains are localized in space. Grains in distinguishable positions tend to
scatter the photons of the environment into mutually orthogonal states.

Even if the separation between the “grains” were so small that it could
not be resolved very well by the scattered photons, the decoherence process
would still work in a similar way. Perhaps photons that scatter off grains at
positions x and −x are not mutually orthogonal, but instead have an overlap

〈γ + |γ−〉 = 1 − ε, ε� 1. (3.128)

The phase-damping channel would still describe this situation, but with p
replaced by pε (if p is still the probability of a scattering event). Thus, the
decoherence rate would become Γdec = εΓscat, where Γscat is the scattering
rate (see the homework).

The intuition we distill from this simple model applies to a vast variety
of physical situations. A coherent superposition of macroscopically distin-
guishable states of a “heavy” object decoheres very rapidly compared to its
damping rate. The spatial locality of the interactions of the system with its
environment gives rise to a preferred “local” basis for decoherence. Presum-
ably, the same principles would apply to the decoherence of a “cat state”
1√
2
(| dead〉+ | alive〉), since “deadness” and “aliveness” can be distinguished

by localized probes.

3.4.3 Amplitude-damping channel

The amplitude-damping channel is a schematic model of the decay of an ex-
cited state of a (two-level) atom due to spontaneous emission of a photon. By
detecting the emitted photon (“observing the environment”) we can perform
a POVM that gives us information about the initial preparation of the atom.

Unitary representation

We denote the atomic ground state by |0〉A and the excited state of interest
by |1〉A. The “environment” is the electromagnetic field, assumed initially to
be in its vacuum state |0〉E . After we wait a while, there is a probability p
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that the excited state has decayed to the ground state and a photon has been
emitted, so that the environment has made a transition from the state |0〉E
(“no photon”) to the state |1〉E (“one photon”). This evolution is described
by a unitary transformation that acts on atom and environment according
to

|0〉A|0〉E → |0〉A|0〉E
|1〉A|0〉E →

√

1 − p|1〉A|0〉E +
√
p|0〉A|1〉E . (3.129)

(Of course, if the atom starts out in its ground state, and the environment
is at zero temperature, then there is no transition.)

Kraus operators

By evaluating the partial trace over the environment in the basis {|0〉E , |1〉E},
we find the kraus operators

M 0 =

(

1 0
0

√
1 − p

)

,M1 =

(

0
√
p

0 0

)

, (3.130)

and we can check that

M †
0M0 + M †

1M 1 =

(

1 0
0 1 − p

)(

0 0
0 p

)

= 1.
(3.131)

The operator M1 induces a “quantum jump” – the decay from |1〉A to |0〉A,
and M 0 describes how the state evolves if no jump occurs. The density
matrix evolves as

ρ → $(ρ) = M 0ρM
†
0 + M1ρM

†
1

=

(

ρ00

√
1 − pρ01√

1 − pρ10 (1 − p)ρ11

)

+

(

pρ11 0
0 0

)

=

(

ρ00 + pρ11

√
1 − pρ01√

1 − pρ10 (1 − p)ρ11

)

. (3.132)

If we apply the channel n times in succession, the ρ11 matrix element decays
as

ρ11 → (1 − p)nρ11; (3.133)
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so if the probability of a transition in time interval ∆t is Γ∆t, then the
probability that the excited state persists for time t is (1−Γ∆t)t/∆t → e−Γt,
the expected exponential decay law.

As t→ ∞, the decay probability approaches unity, so

$(ρ) →
(

ρ00 + ρ11 0
0 0

)

, (3.134)

The atom always winds up in its ground state. This example shows that it
is sometimes possible for a superoperator to take a mixed initial state, e.g.,

ρ =

(

ρ00 0
0 ρ11

)

, (3.135)

to a pure final state.

Watching the environment

In the case of the decay of an excited atomic state via photon emission, it
may not be impractical to monitor the environment with a photon detector.
The measurement of the environment prepares a pure state of the atom, and
so in effect prevents the atom from decohering.

Returning to the unitary representation of the amplitude-damping chan-
nel, we see that a coherent superposition of the atomic ground and excited
states evolves as

(a|0〉A + b|1〉A)|0〉E
→ (a|0〉A + b

√

1 − p|1〉)|0〉E +
√
p|0〉A|1〉E .

(3.136)

If we detect the photon (and so project out the state |1〉E of the environment),
then we have prepared the state |0〉A of the atom. In fact, we have prepared
a state in which we know with certainty that the initial atomic state was the
excited state |1〉A – the ground state could not have decayed.

On the other hand, if we detect no photon, and our photon detector has
perfect efficiency, then we have projected out the state |0〉E of the environ-
ment, and so have prepared the atomic state

a|0〉A + b
√

1 − p|1〉A. (3.137)
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The atomic state has evolved due to our failure to detect a photon – it has
become more likely that the initial atomic state was the ground state!

As noted previously, a unitary transformation that entangles A with E,
followed by an orthogonal measurement of E, can be described as a POVM
in A. If |ϕ〉A evolves as

|ϕ〉A|0〉E →
∑

µ

Mµ|ϕ〉A|µ〉E , (3.138)

then an orthogonal measurement in E that projects onto the {|µ〉E} basis
realizes a POVM with

Prob(µ) = tr(F µρA), F µ = M †
µMµ, (3.139)

for outcome µ. In the case of the amplitude damping channel, we find

F 0 =

(

1 0
0 1 − p

)

, F 1 =

(

0 0
0 p

)

, (3.140)

where F 1 determines the probability of a successful photon detection, and
F 0 the complementary probability that no photon is detected.

If we wait a time t� Γ−1, so that p approaches 1, our POVM approaches
an orthogonal measurement, the measurement of the initial atomic state in
the {|0〉A, |1〉A} basis. A peculiar feature of this measurement is that we can
project out the state |0〉A by not detecting a photon. This is an example
of what Dicke called “interaction-free measurement” – because no change

occured in the state of the environment, we can infer what the atomic state
must have been. The term “interaction-free measurement” is in common use,
but it is rather misleading; obviously, if the Hamiltonian of the world did not
include a coupling of the atom to the electromagnetic field, the measurement
could not have been possible.

3.5 Master Equation

3.5.1 Markovian evolution

The superoperator formalism provides us with a general description of the
evolution of density matrices, including the evolution of pure states to mixed
states (decoherence). In the same sense, unitary transformations provide
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a general description of coherent quantum evolution. But in the case of
coherent evolution, we find it very convenient to characterize the dynamics of
a quantum system with a Hamiltonian, which describes the evolution over an
infinitesimal time interval. The dynamics is then described by a differential
equation, the Schrödinger equation, and we may calculate the evolution over
a finite time interval by integrating the equation, that is, by piecing together
the evolution over many infinitesimal intervals.

It is often possible to describe the (not necessarily coherent) evolution of
a density matrix, at least to a good approximation, by a differential equation.
This equation, the master equation, will be our next topic.

In fact, it is not at all obvious that there need be a differential equation
that describes decoherence. Such a description will be possible only if the
evolution of the quantum system is “Markovian,” or in other words, local in
time. If the evolution of the density operator ρ(t) is governed by a (first-
order) differential equation in t, then that means that ρ(t+dt) is completely
determined by ρ(t).

We have seen that we can always describe the evolution of density op-
erator ρA in Hilbert space HA if we imagine that the evolution is actually
unitary in the extended Hilbert space HA ⊗ HE . But even if the evolution
in HA ⊗ HE is governed by a Schrd̈inger equation, this is not sufficient to
ensure that the evolution of ρA(t) will be local in t. Indeed, if we know only
ρA(t), we do not have complete initial data for the Schrodinger equation;
we need to know the state of the “environment,” too. Since we know from
the general theory of superoperators that we are entitled to insist that the
quantum state in HA ⊗HE at time t = 0 is

ρA ⊗ |0〉E E〈0|, (3.141)

a sharper statement of the difficulty is that the density operator ρA(t + dt)
depends not only on ρA(t), but also on ρA at earlier times, because the
reservoirE7 retains a memory of this information for a while, and can transfer
it back to system A.

This quandary arises because information flows on a two-way street. An
open system (whether classical or quantum) is dissipative because informa-
tion can flow from the system to the reservoir. But that means that informa-
tion can also flow back from reservoir to system, resulting in non-Markovian

7In discussions of the mater equation, the environment is typically called the reservoir,
in deference to the deeply ingrained conventions of statistical physics.
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fluctuations of the system.8

Except in the case of coherent (unitary) evolution, then, fluctuations
are inevitable, and an exact Markovian description of quantum dynamics
is impossible. Still, in many contexts, a Markovian description is a very
good approximation. The key idea is that there may be a clean separation
between the typical correlation time of the fluctuations and the time scale
of the evolution that we want to follow. Crudely speaking, we may denote
by (∆t)res the time it takes for the reservoir to “forget” information that it
acquired from the system — after time (∆t)res we can regard that information
as forever lost, and neglect the possibility that the information may feed back
again to influence the subsequent evolution of the system.

Our description of the evolution of the system will incorporate “coarse-
graining” in time; we perceive the dynamics through a filter that screens out
the high frequency components of the motion, with ω � (∆tcoarse)

−1. An
approximately Markovian description should be possible, then, if (∆t)res �
(∆t)coarse; we can neglect the memory of the reservoir, because we are unable
to resolve its effects. This “Markovian approximation” will be useful if the
time scale of the dynamics that we want to observe is long compared to
(∆t)coarse, e.g., if the damping time scale (∆t)damp satisfies

(∆t)damp � (∆t)coarse � (∆t)res. (3.142)

This condition often applies in practice, for example in atomic physics, where
(∆t)res ∼ ~/kT ∼ 10−14 s (T is the temperature) is orders of magnitude larger
than the typical lifetime of an excited atomic state.

An instructive example to study is the case where the system A is a
single harmonic oscillator (HA = ωa†a), and the reservoirR consists of many
oscillators (HR =

∑

i ωib
†
ibi, weakly coupled to the system by a perturbation

H′ =
∑

i

λi(ab
†
i + a†bi). (3.143)

The reservoir Hamiltonian could represent the (free) electromagnetic field,
and then H ′, in lowest nontrivial order of perturbation theory induces tran-
sitions in which the oscillator emits or absorbs a single photon, with its
occupation number n = a†a decreasing or increasing accordingly.

8This inescapable connection underlies the fluctuation-dissipation theorem, a powerful
tool in statistical physics.
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We could arrive at the master equation by analyzing this system using
time-dependent perturbation theory, and carefully introducing a finite fre-
quency cutoff. The details of that analysis can be found in the book “An
Open Systems Approach to Quantum Optics,” by Howard Carmichael. Here,
though, I would like to short-circuit that careful analysis, and leap to the
master equation by a more heuristic route.

3.5.2 The Lindbladian

Under unitary evolution, the time evolution of the density matrix is governed
by the Schrödinger equation

ρ̇ = −i[H,ρ], (3.144)

which we can solve formally to find

ρ(t) = e−iH tρ(0)e
iHt, (3.145)

if H is time independent. Our goal is to generalize this equation to the case
of Markovian but nonunitary evolution, for which we will have

ρ̇ = L[ρ]. (3.146)

The linear operator L, which generates a finite superoperator in the same
sense that a Hamiltonian H generates unitary time evolution, will be called
the Lindbladian. The formal solution to eq. (3.146) is

ρ(t) = eLt[ρ(0)], (3.147)

if L is t-independent.
To compute the Lindbladian, we could start with the Schrödinger equa-

tion for the coupled system and reservoir

ρ̇A = trR(ρ̇AR) = trR(−i[HAR,ρAR]), (3.148)

but as we have already noted, we cannot expect that this formula for ρ̇A

can be expressed in terms of ρA alone. To obtain the Lindbladian, we need
to explicitly invoke the Markovian approximation (as Carmichael does). On
the other hand, suppose we assume that the Markov approximation applies.
We already know that a general superoperator has a Kraus representation

ρ(t) = $t(ρ(0)) =
∑

µ

Mµ(t)ρ(0)M †
µ(t), (3.149)
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and that $t=0 = I . If the elapsed time is the infinitesimal interval dt, and

ρ(dt) = ρ(0) +O(dt), (3.150)

then one of the Kraus operators will be M0 = 1 +O(dt), and all the others
will be of order

√
dt. The operators Mµ, µ > 0 describe the “quantum

jumps” that the system might undergo, all occuring with a probability of
order dt. We may, therefore, write

Mµ =
√
dt Lµ, µ = 1, 2, 3, . . .

M0 = 1 + (−iH + K)dt, (3.151)

where H and K are both hermitian and Lµ,H , and K are all zeroth order
in dt. In fact, we can determine K by invoking the Kraus normalization
condition:

1 =
∑

µ

M †
µMµ = 1 + dt(2K +

∑

µ>0

L†
µLµ), (3.152)

or

K = −1

2

∑

µ>0

L†
µLµ. (3.153)

Substituting into eq. (3.149), expressing ρ(dt) = ρ(0)+dtρ̇(0), and equating
terms of order dt, we obtain Lindblad’s equation:

ρ̇ ≡ L[ρ] = −i[H,ρ] +
∑

µ>0

(

LµρL†
µ − 1

2
L†

µLµρ − 1

2
ρL†

µLµ

)

.
(3.154)

The first term in L[ρ] is the usual Schrodinger term that generates unitary
evolution. The other terms describe the possible transitions that the system
may undergo due to interactions with the reservoir. The operators Lµ are
called Lindblad operators or quantum jump operators. Each LµρL†

µ term in-

duces one of the possible quantum jumps, while the −1/2L†
µLµρ−1/2ρL†

µLµ

terms are needed to normalize properly the case in which no jumps occur.
Lindblad’s eq (3.154) is what we were seeking – the general form of (com-

pletely positive) Markovian evolution of a density matrix: that is, the master
equation. It follows from the Kraus representation that we started with that
Lindblad’s equation preserves density matrices: ρ(t+ dt) is a density matrix
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if ρ(t) is. Indeed, we can readily check, using eq. (3.154), that ρ̇ is Hermitian
and trρ̇ = 0. That L[ρ] preserves positivity is somewhat less manifest but,
as already noted, follows from the Kraus representation.

If we recall the connection between the Kraus representation and the uni-
tary representation of a superoperator, we clarify the interpretation of the
master equation. We may imagine that we are continuously monitoring the
reservoir, projecting it in each instant of time onto the |µ〉R basis. With
probability 1 − 0(dt), the reservoir remains in the state |0〉R, but with prob-
ability of order dt, the reservoir makes a quantum jump to one of the states
|µ〉R, µ > 0. When we say that the reservoir has “forgotten” the information
it acquired from the system (so that the Markovian approximation applies),
we mean that these transitions occur with probabilities that increase linearly
with time. Recall that this is not automatic in time-dependent perturbation
theory. At a small time t the probability of a particular transition is propor-
tional to t2; we obtain a rate (in the derivation of “Fermi’s golden rule”) only
by summing over a continuum of possible final states. Because the number
of accessible states actually decreases like 1/t, the probability of a transition,
summed over final states, is proportional to t. By using a Markovian de-
scription of dynamics, we have implicitly assumed that our (∆t)coarse is long
enough so that we can assign rates to the various possible transitions that
might be detected when we monitor the environment. In practice, this is
where the requirement (∆t)coarse � (∆t)res comes from.

3.5.3 Damped harmonic oscillator

As an example to illustrate the master equation, we consider the case of a
harmonic oscillator interacting with the electromagnetic field, coupled as

H ′ =
∑

i

λi(ab†
i + a†bi). (3.155)

Let us also suppose that the reservoir is at zero temperature; then the ex-
citation level of the oscillator can cascade down by successive emission of
photons, but no absorption of photons will occur. Hence, there is only one
jump operator:

L1 =
√

Γa. (3.156)

Here Γ is the rate for the oscillator to decay from the first excited (n = 1)
state to the ground (n = 0) state; because of the form of H , the rate for
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the decay from level n to n− I is nΓ.9 The master equation in the Lindblad
form becomes

ρ̇ = −i[H0,ρ] + Γ(aρa† − 1

2
a†aρ − 1

2
ρa†a). (3.157)

where H0 = ωa†a is the Hamiltonian of the oscillator. This is the same
equation obtained by Carmichael from a more elaborate analysis. (The only
thing we have missed is the Lamb shift, a radiative renormalization of the
frequency of the oscillator that is of the same order as the jump terms in
L[ρ].)

The jump terms in the master equation describe the damping of the os-
cillator due to photon emission.10 To study the effect of the jumps, it is
convenient to adopt the interaction picture; we define interaction picture
operators ρI and aI by

ρ(t) = e−iH0tρI(t)e
iH0t,

a(t) = e−iH0taI(t)e
iH0t, (3.158)

so that

ρ̇I = Γ(aIρIa
†
I −

1

2
a
†
IaIρ − 1

2
ρIa

†
IaI). (3.159)

where in fact aI(t) = ae−iωt so we can replace aI by a on the right-hand
side. The variable ã = e−iH0tae+iH0t = eiωta remains constant in the absence
of damping. With damping, ã decays according to

d

dt
〈ã〉 =

d

dt
tr(aρI) = traρ̇ , (3.160)

and from eq. (3.159) we have

traρ̇ = Γtr
(

a2ρIa
† − 1

2
aa†aρI −

1

2
aρIa

†a
)

9The nth level of excitation of the oscillator may be interpreted as a state of n nonin-
teracting particles; the rate is nΓ because any one of the n particles can decay.

10This model extends our discussion of the amplitude-damping channel to a damped
oscillator rather than a damped qubit.
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= Γtr
(

1

2
[a†,a]aρI

)

= −Γ

2
tr(aρI) = −Γ

2
〈ã〉. (3.161)

Integrating this equation, we obtain

〈ã(t)〉 = e−Γt/2〈ã(0)〉. (3.162)

Similarly, the occupation number of the oscillator n ≡ a†a = ã†ã decays
according to

d

dt
〈n〉 =

d

dt
〈ã†ã〉 = tr(a†aρ̇I)

= Γtr
(

a†aaρIa
† − 1

2
a†aa†aρI −

1

2
a†aρIa

†a
)

= Γtra†[a†,a]aρI = −Γtra†aρI = −Γ〈n〉, (3.163)

which integrates to

〈n(t)〉 = e−Γt〈n(0)〉. (3.164)

Thus Γ is the damping rate of the oscillator. We can interpret the nth
excitation state of the oscillator as a state of n noninteracting particles,
each with a decay probability Γ per unit time; hence eq. (3.164) is just the
exponential law satisfied by the population of decaying particles.

More interesting is what the master equation tells us about decoherence.
The details of that analysis will be a homework exercise. But we will analyze
here a simpler problem – an oscillator undergoing phase damping.

3.5.4 Phase damping

To model phase damping of the oscillator, we adopt a different coupling of
the oscillator to the reservoir:

H ′ =

(

∑

i

λib
†
ibi

)

a†a. (3.165)

Thus, there is just one Lindblad operator, and the master equation in the
interaction picture is.

ρ̇I = Γ
(

a†aρIa
†a − 1

2
(a†a)2ρI −

1

2
ρI(a

†a)2
)

. (3.166)
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Here Γ can be interpreted as the rate at which reservoir photons are scattered

when the oscillator is singly occupied. If the occupation number is n then
the scattering rate becomes Γn2. The reason for the factor of n2 is that
the contributions to the scattering amplitude due to each of n oscillator
“particles” all add coherently; the amplitude is proportional to n and the
rate to n2.

It is easy to solve for ρ̇I in the occupation number basis. Expanding

ρI =
∑

n,m

ρnm|n〉〈m|, (3.167)

(where a†a|n〉 = n|n〉), the master equation becomes

ρ̇nm = Γ
(

nm− 1

2
n2 − 1

2
m2
)

ρnm

= −Γ

2
(n−m)2ρnm, (3.168)

which integrates to

ρnm(t) = ρnm(0) exp
[

−1

2
Γt(n −m)2

]

. (3.169)

If we prepare a “cat state” like

|cat〉 =
1√
2
(|0〉 + |n〉), n� 1, (3.170)

a superposition of occupation number eigenstates with much different values
of n, the off-diagonal terms in the density matrix decay like exp(−1

2
Γn2t). In

fact, this is just the same sort of behavior we found when we analyzed phase
damping for a single qubit. The rate of decoherence is Γn2 because this is
the rate for reservoir photons to scatter off the excited oscillator in the state
|n〉. We also see, as before, that the phase decoherence chooses a preferred
basis. Decoherence occurs in the number-eigenstate basis because it is the
occupation number that appears in the coupling H ′ of the oscillator to the
reservoir.

Return now to amplitude damping. In our amplitude damping model, it
is the annihilation operator a (and its adjoint) that appear in the coupling
H ′ of oscillator to reservoir, so we can anticipate that decoherence will occur
in the basis of a eigenstates. The coherent state

|α〉 = e−|α|2/2eαa†|0〉 = e−|α|2/2
∞
∑

n=0

αn

√
n!
|n〉, (3.171)
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is the normalized eigenstate of a with complex eigenvalue α. Two coherent
states with distinct eigenvalues α1 and α2 are not orthogonal; rather

|〈α1|α2〉|2 = e−|α1|2e−|α2|2e2Re(α∗
1
α2)

= exp(−|α1 − α2|2), (3.172)

so the overlap is very small when |α1 − α2| is large.
Imagine that we prepare a cat state

|cat〉 =
1√
2
(|α1〉 + |α2〉), (3.173)

a superposition of coherent states with |α1 − α2| � 1. You will show that
the off diagonal terms in ρ decay like

exp
(

−Γt

2
|α1 − α2|2

)

(3.174)

(for Γt << 1). Thus the decoherence rate

Γdec =
1

2
|α1 − α2|2Γdamp, (3.175)

is enormously fast compared to the damping rate. Again, this behavior is easy
to interpret. The expectation value of the occupation number in a coherent
state is 〈α|a†a|α〉 = |α|2. Therefore, if α1,2 have comparable moduli but
significantly different phases (as for a superposition of minimum uncertainty
wave packets centered at x and −x), the decoherence rate is of the order of
the rate for emission of a single photon. This rate is very large compared to
the rate for a significant fraction of the oscillator energy to be dissipated.

We can also consider an oscillator coupled to a reservoir with a finite
temperature. Again, the decoherence rate is roughly the rate for a single
photon to be emitted or absorbed, but the rate is much faster than at zero
temperature. Because the photon modes with frequency comparable to the
oscillator frequency ω have a thermal occupation number

nγ =
T

~ω
, (3.176)

(for T � ~ω), the interaction rate is further enhanced by the factor nγ. We
have then

Γdec

Γdamp
∼ noscnγ∼

E

~ω

T

~ω

∼ mω2x2

~ω

T

~ω
∼ x2mT

~2
∼ x2

λ2
T

, (3.177)
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where x is the amplitude of oscillation and λT is the thermal de Broglie
wavelength. Decoherence is fast.

3.6 What is the problem? (Is there a prob-

lem?)

Our survey of the foundations of quantum theory is nearly complete. But
before we proceed with our main business, let us briefly assess the status of
these foundations. Is quantum theory in good shape, or is there a fundamen-
tal problem at its roots still in need of resolution?

One potentially serious issue, first visited in §2.1, is the measurement prob-

lem. We noted the odd dualism inherent in our axioms of quantum theory.
There are two ways for the quantum state of a system to change: unitary evo-
lution, which is deterministic, and measurement, which is probabilistic. But
why should measurement be fundamentally different than any other physical
process? The dualism has led some thoughtful people to suspect that our
current formulation of quantum theory is still not complete.

In this chapter, we have learned more about measurement. In §3.1.1, we
discussed how unitary evolution can establish correlations (entanglement)
between a system and the pointer of an apparatus. Thus, a pure state of
the system can evolve to a mixed state (after we trace over the pointer
states), and that mixed state admits an interpretation as an ensemble of
mutually orthogonal pure states (the eigenstates of the density operator of
the system), each occuring with a specified probability. Thus, already in this
simple observation, we find the seeds of a deeper understanding of how the
“collapse” of a state vector can arise from unitary evolution alone. But on the
other hand, we discussed in §2.5 now the ensemble interpretation of a density
matrix is ambiguous, and we saw particularly clearly in §2.5.5 that, if we are
able to measure the pointer in any basis we please, then we can prepare the
system in any one of many “weird” states, superpositions of eigenstates of the
system’s ρ (the GHJW theorem). Collapse, then (which destroys the relative
phases of the states in a superposition), cannot be explained by entanglement
alone.

In §3.4 and §3.5, we studied another important element of the measure-
ment process – decoherence. The key idea is that, for macroscopic systems,
we cannot hope to keep track of all microscopic degrees of freedom. We must
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be content with a coarse-grained description, obtained by tracing over the
many unobserved variables. In the case of a macroscopic measurement ap-
paratus, we must trace over the degrees of freedom of the environment with
which the apparatus inevitably interacts. We then find that the apparatus
decoheres exceedingly rapidly in a certain preferred basis, a basis determined
by the nature of the coupling of the apparatus to the environment. It seems
to be a feature of the Hamiltonian of the world that fundamental interactions
are well localized in space, and therefore the basis selected by decoherence
is a basis of states that are well localized spatially. The cat is either alive or
dead – it is not in the state 1/

√
2(|Alive〉 + |Dead〉).

By tracing over the degrees of freedom of the environment, we obtain
a more complete picture of the measurement process, of “collapse.” Our
system becomes entangled with the apparatus, which is in turn entangled
with the environment. If we regard the microstate of the environment as
forever inaccessible, then we are well entitled to say that a measurement has
taken place. The relative phases of the basis states of the system have been
lost irrevocably – its state vector has collapsed.

Of course, as a matter of principle, no phase information has really been
lost. The evolution of system + apparatus + environment is unitary and
deterministic. In principle, we could, perhaps, perform a highly nonlocal
measurement of the environment, and restore to the system the phase in-
formation that was allegedly destroyed. In this sense, our explanation of
collapse is, as John Bell put it, merely FAPP (for all practical purposes).
After the “measurement,” the coherence of the system basis states could still
be restored in principle (we could reverse the measurement by “quantum era-
sure”), but undoing a measurement is extremely improbable. True, collapse
is merely FAPP (though perhaps we might argue, in a cosmological context,
that some measurements really are irreversible in principle), but isn’t FAPP
good enough?

Our goal in physics is to account for observed phenomena with a model
that is as simple as possible. We should not postulate two fundamental pro-
cesses (unitary evolution and measurement) if only one (unitary evolution)
will suffice. Let us then accept, at least provisionally, this hypothesis:

The evolution of a closed quantum system is always unitary.

Of course, we have seen that not all superoperators are unitary. The point
of the hypothesis is that nonunitary evolution in an open system, including
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the collapse that occurs in the measurement process, always arises from dis-
regarding some of the degrees of freedom of a larger system. This is the view
promulgated by Hugh Everett, in 1957. According to this view, the evolution
of the quantum state of “the universe” is actually deterministic!

But even if we accept that collapse is explained by decoherence in a system
that is truly deterministic, we have not escaped all the puzzles of quantum
theory. For the wave function of the universe is in fact a superposition of a
state in which the cat is dead and a state in which the cat is alive. Yet each
time I look at a cat, it is always either dead or alive. Both outcomes are
possible, but only one is realized in fact. Why is that?

Your answer to this question may depend on what you think quantum
theory is about. There are (at least) two reasonable schools of thought.

Platonic : Physics describes reality. In quantum theory, the “wave function
of the universe” is a complete description of physical reality.

Positivist : Physics describes our perceptions. The wave function encodes
our state of knowledge, and the task of quantum theory is to make the
best possible predictions about the future, given our current state of
knowledge.

I believe in reality. My reason, I think, is a pragmatic one. As a physicist,
I seek the most economical model that “explains” what I perceive. To this
physicist, at least, the simplest assumption is that my perceptions (and yours,
too) are correlated with an underlying reality, external to me. This ontology
may seem hopelessly naive to a serious philosopher. But I choose to believe
in reality because that assumption seems to be the simplest one that might
successfully account for my perceptions. (In a similar vein, I chose to believe
that science is more than just a social consensus. I believe that science makes
progress, and comes ever closer to a satisfactory understanding of Nature –
the laws of physics are discovered, not invented. I believe this because it
is the simplest explanation of how scientists are so successful at reaching
consensus.)

Those who hold the contrary view (that, even if there is an underlying
reality, the state vector only encodes a state of knowledge rather than an
underlying reality) tend to believe that the current formulation of quantum
theory is not fully satisfactory, that there is a deeper description still awaiting
discovery. To me it seems more economical to assume that the wavefunction
does describe reality, unless and until you can dissuade me.
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If we believe that the wavefunction describes reality and if we accept
Everett’s view that all evolution is unitary, then we must accept that all
possible outcomes of a measurement have an equal claim to being “real.”
How then, are we to understand why, when we do an experiment, only one

outcome is actually realized – the cat is either alive or dead.
In fact there is no paradox here, but only if we are willing (consistent with

the spirit of the Everett interpretation) to include ourselves in the quantum
system described by the wave function. This wave function describes all
the possible correlations among the subsystems, including the correlations
between the cat and my mental state. If we prepare the cat state and then
look at the cat, the density operator (after we trace over other extraneous
degrees of freedom) becomes

|Decay〉atom |Dead〉cat |Know it′s Dead〉me

(

Prob =
1

2

)

|No decay〉atom |Alive〉cat |Know it′s Alive〉me

(

Prob =
1

2

)

(3.178)

This ρ describes two alternatives, but for either alternative, I am certain
about the health of the cat. I never see a cat that is half alive and half dead.
(I am in an eigenstate of the “certainty operator,” in accord with experience.)

By assuming that the wave function describes reality and that all evo-
lution is unitary, we are led to the “many-worlds interpretation” of quan-
tum theory. In this picture, each time there is a “measurement,” the wave
function of the universe “splits” into two branches, corresponding to the
two possible outcomes. After many measurements, there are many branches
(many worlds), all with an equal claim to describing reality. This prolifera-
tion of worlds seems like an ironic consequence of our program to develop the
most economical possible description. But we ourselves follow one particular
branch, and for the purpose of predicting what we will see in the next instant,
the many other branches are of no consequence. The proliferation of worlds
comes at no cost to us. The “many worlds” may seem weird, but should
we be surprised if a complete description of reality, something completely
foreign to our experience, seems weird to us?

By including ourselves in the reality described by the wave function, we
have understood why we perceive a definite outcome to a measurement, but
there is still a further question: how does the concept of probability enter
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into this (deterministic) formalism? This question remains troubling, for to
answer it we must be prepared to state what is meant by “probability.”

The word “probability” is used in two rather different senses. Sometimes
probability means frequency. We say the probability of a coin coming up
heads is 1/2 if we expect, as we toss the coin many times, the number of
heads divided by the total number of tosses to converge to 1/2. (This is a
tricky concept though; even if the probability is 1/2, the coin still might come
up heads a trillion times in a row.) In rigorous mathematical discussions,
probability theory often seems to be a branch of measure theory – it concerns
the properties of infinite sequences.

But in everyday life, and also in quantum theory, probabilities typically
are not frequencies. When we make a measurement, we do not repeat it
an infinite number of times on identically prepared systems. In the Everett
viewpoint, or in cosmology, there is just one universe, not many identically
prepared ones.

So what is a probability? In practice, it is a number that quantifies the
plausibility of a proposition given a state of knowledge. Perhaps surpris-
ingly, this view can be made the basis of a well-defined mathematical theory,
sometimes called the “Bayesian” view of probability. The term “Bayesian”
reflects the way probability theory is typically used (both in science and in
everyday life) – to test a hypothesis given some observed data. Hypothesis
testing is carried out using Bayes’s rule for conditional probability

P (A0|B) = P (B|A0)P (A0)/P (B). (3.179)

For example – suppose that A0 is the preparation of a particular quantum
state, and B is a particular outcome of a measurement of the state. We
have made the measurement (obtaining B) and now we want to infer how
the state was prepared (compute P (A0|B). Quantum mechanics allows us to
compute P (B|A0). But it does not tell us P (A0) (or P (B)). We have to make
a guess of P (A0), which is possible if we adopt a “principle of indifference”
– if we have no knowledge that Ai is more or less likely than Aj we assume
P (Ai) = P (Aj). Once an ensemble of preparations is chosen, we can compute

P (B) =
∑

i

P (B/Ai)P (Ai), (3.180)

and so obtain P (A0|B) by applying Bayes’s rule.
But if our attitude will be that probability theory quantifies plausibility

given a state of knowledge, we are obligated to ask “whose state of knowl-
edge?” To recover an objective theory, we must interpret probability in
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quantum theory not as a prediction based on our actual state of knowledge,
but rather as a prediction based on the most complete possible knowledge
about the quantum state. If we prepare | ↑x〉 and measure σ3, then we say
that the result is | ↑z〉 with probability 1/2, not because that is the best
prediction we can make based on what we know, but because it is the best
prediction anyone can make, no matter how much they know. It is in this
sense that the outcome is truly random; it cannot be predicted with certainty
even when our knowledge is complete (in contrast to the pseudo randomness
that arises in classical physics because our knowledge is incomplete).

So how, now, are we to extract probabilities from Everett’s deterministic
universe? Probabilities arise because we (a part of the system) cannot predict
our future with certainty. I know the formalism, I know the Hamiltonian and
wave function of the universe, I know my branch of the wave function. Now
I am about to look at the cat. A second from now, I will be either be certain
that the cat is dead or I will be certain that it is alive. Yet even with all I
know, I cannot predict the future. Even with complete knowledge about the
present, I cannot say what my state of knowledge will be after I look at the
cat. The best I can do is assign probabilities to the outcomes. So, while the
wave function of the universe is deterministic I, as a part of the system, can
do no better than making probabilistic predictions.

Of course, as already noted, decoherence is a crucial part of this story.
We may consistently assign probabilities to the alternatives Dead and Alive
only if there is no (or at least negligible) possibility of interference among the
alternatives. Probabilities make sense only when we can identify an exhaus-
tive set of mutually exclusive alternatives. Since the issue is really whether
interference might arise at a later time, we cannot decide whether probabil-
ity theory applies by considering a quantum state at a fixed time; we must
examine a set of mutually exclusive (coarse-grained) histories, or sequences
of events. There is a sophisticated technology (“decoherence functionals”)
for adjudicating whether the various histories decohere to a sufficient extent
for probabilities to be sensibly assigned.

So the Everett viewpoint can be reconciled with the quantum indeter-
minism that we observe, but there is still a troubling gap in the picture, at
least as far as I can tell. I am about to look at the cat, and I know that the
density matrix a second from now will be

|Dead〉cat |Know it′s Dead〉me , Prob = pdead,
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|Alive〉cat |Know it′s Alive〉me , Prob = palive. (3.181)

But how do I infer that pdead and palive actually are probabilities that I (in
my Bayesian posture) may assign to my future perceptions? I still need
a rule to translate this density operator into probabilities assigned to the
alternatives. It seems contrary to the Everett philosophy to assume such a
rule; we could prefer to say that the only rule needed to define the theory
is the Schrödinger equation (and perhaps a prescription to specify the initial
wave function). Postulating a probability formula comes perilously close to
allowing that there is a nondeterministic measurement process after all. So
here is the issue regarding the foundations of theory for which I do not know
a fully satisfying resolution.

Since we have not been able to remove all discomfiture concerning the
origin of probability in quantum theory, it may be helpful to comment on an
interesting suggestion due to Hartle. To implement his suggestion, we must
return (perhaps with regret) to the frequency interpretation of probability.
Hartle’s insight is that we need not assume the probability interpretation as
part of the measurement postulate. It is really sufficient to make a weaker
assumption:

If we prepare a quantum state |a〉, such that A|a〉 = a|a〉, and
then immediately measure A, the outcome of the measurement
is a.

This seems like an assumption that a Bayesian residing in Everett’s universe
would accept. I am about to measure an observable, and the wavefunction
will branch, but if the observable has the same value in every branch, then I
can predict the outcome.

To implement a frequency interpretation of probability, we should, strictly
speaking, consider an infinite number of trials. Suppose we want to make a
statement about the probability of obtaining the result | ↑z〉 when we measure
σ3 in the state

|ψ〉 = a| ↑z〉 + b| ↓z〉. (3.182)

Then we should imagine that an infinite number of copies are prepared, so
the state is

|ψ(∞)〉 ≡ (|ψ〉)∞ = |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 ⊗ · · · (3.183)
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and we imagine measuring σ3 for each of the copies. Formally, the case of an
infinite number of trials can be formulated as the N → ∞ limit of N trials.

Hartle’s idea is to consider an “average spin” operator

σ̄3 = lim
N→∞

1

N

N
∑

i=1

σ
(i)
3 , (3.184)

and to argue that (|ψ〉)N becomes an eigenstate of σ̄3 with eigenvalue |a|2 −
|b|2, as N → ∞. Then we can invoke the weakened measurement postulate to
infer that a measurement of σ̄3 will yield the result |a|2 − |b|2 with certainty,
and that the fraction of all the spins that point up is therefore |a|2. In this
sense, |a|2 is the probability that the measurement of σ3 yields the outcome
| ↑z〉.

Consider, for example, the special case

|ψ(N)
x 〉 ≡ (| ↑x〉)N =

[

1√
2
(| ↑z〉 + | ↓z〉)

]N

. (3.185)

We can compute

〈ψ(N)
x |σ̄3|ψ(N)

x 〉 = 0 ,

〈ψ(N)
x |σ̄2

3|ψ(N)
x 〉

=
1

N2
〈ψ(N)

x |
∑

ij

σ
(i)
3 σ

(j)
3 |ψ(N)

x 〉

=
1

N2

∑

ij

δij =
N

N2
=

1

N
. (3.186)

Taking the formal N → ∞ limit, we conclude that σ̄3 has vanishing disper-
sion about its mean value 〈σ̄3〉 = 0, and so at least in this sense |ψ(∞)

x 〉 is an
“eigenstate” of σ̄3 with eigenvalue zero.

Coleman and Lesniewski have noted that one can take Hartle’s argument
a step further, and argue that the measurement outcome | ↑z〉 not only occurs
with the right frequency, but also that the | ↑z〉 outcomes are randomly

distributed. To make sense of this statement, we must formulate a definition
of randomness. We say that an infinite string of bits is random if the string
is incompressible; there is no simpler way to generate the first N bits than
simply writing them out. We formalize this idea by considering the length
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of the shortest computer program (on a certain universal computer) that
generates the first N bits of the sequence. Then, for a random string

Length of shortest program > N − const. (3.187)

where the constant may depend on the particular computer used or on the
particular sequence, but not on N .

Coleman and Lesniewski consider an orthogonal projection operator Erandom

that, acting on a state |ψ〉 that is an eigenstate of each σ
(i)
3 , satisfies

Erandom|ψ〉 = |ψ〉, (3.188)

if the sequence of eigenvalues of σ
(i)
3 is random, and

Erandom|ψ〉 = 0, (3.189)

if the sequence is not random. This property alone is not sufficient to de-
termine how Erandom acts on all of (H2)

∞, but with an additional technical
assumption, they find that Erandom exists, is unique, and has the property

Erandom|ψ(∞)
x 〉 = |ψ(∞)

x 〉. (3.190)

Thus, we “might as well say” that |ψ(∞)
x 〉 is random, with respect to σ3

measurements – a procedure for distinguishing the random states from non-
random ones that works properly for strings of σ3 eigenstates, will inevitably
identify |ψ(∞)

x 〉 as random, too.
These arguments are interesting, but they do not leave me completely

satisfied. The most disturbing thing is the need to consider infinite sequences
(a feature of any frequency interpretation probability). For any finite N , we
are unable to apply Hartle’s weakened measurement postulate, and even in
the limit N → ∞, applying the postulate involves subtleties. It would be
preferable to have a stronger weakened measurement postulate that could be
applied at finite N , but I am not sure how to formulate that postulate or
how to justify it.

In summary then: Physics should describe the objective physical world,
and the best representation of physical reality that we know about is the
quantum-mechanical wave function. Physics should aspire to explain all ob-
served phenomena as economically as possible – it is therefore unappealing
to postulate that the measurement process is governed by different dynami-
cal principles than other processes. Fortunately, everything we know about
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physics is compatible with the hypothesis that all physical processes (includ-
ing measurements) can be accurately modeled by the unitary evolution of
a wave function (or density matrix). When a microscopic quantum system
interacts with a macroscopic apparatus, decoherence drives the “collapse” of
the wave function “for all practical purposes.”

If we eschew measurement as a mystical primitive process, and we accept
the wave function as a description of physical reality, then we are led to the
Everett or “many-worlds” interpretation of quantum theory. In this view,
all possible outcomes of any “measurement” are regarded as “real” — but I
perceive only a specific outcome because the state of my brain (a part of the
quantum system) is strongly correlated with the outcome.

Although the evolution of the wave function in the Everett interpretation
is deterministic, I am unable to predict with certainty the outcome of an
experiment to be performed in the future – I don’t know what branch of the
wavefunction I will end up on, so I am unable to predict my future state of
mind. Thus, while the “global” picture of the universe is in a sense deter-
ministic, from my own local perspective from within the system, I perceive
quantum mechanical randomness.

My own view is that the Everett interpretation of quantum theory pro-
vides a satisfying explanation of measurement and of the origin of random-
ness, but does not yet fully explain the quantum mechanical rules for com-
puting probabilities. A full explanation should go beyond the frequency
interpretation of probability — ideally it would place the Bayesian view of
probability on a secure objective foundation.

3.7 Summary

POVM. If we restrict our attention to a subspace of a larger Hilbert space,
then an orthogonal (Von Neumann) measurement performed on the larger
space cannot in general be described as an orthogonal measurement on the
subspace. Rather, it is a generalized measurement or POVM – the outcome
a occurs with a probability

Prob(a) = tr (F aρ) , (3.191)

where ρ is the density matrix of the subsystem, each F a is a positive hermi-
tian operator, and the F a’s satisfy

∑

a

F a = 1 . (3.192)
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A POVM in HA can be realized as a unitary transformation on the tensor
product HA ⊗HB, followed by an orthogonal measurement in HB.

Superoperator. Unitary evolution on HA ⊗ HB will not in general
appear to be unitary if we restrict our attention to HA alone. Rather, evo-
lution in HA will be described by a superoperator, (which can be inverted
by another superoperator only if unitary). A general superoperator $ has an
operator-sum (Kraus) representation:

$ : ρ → $(ρ) =
∑

µ

MµρM †
µ , (3.193)

where

∑

µ

M †
µMµ = 1 . (3.194)

In fact, any reasonable (linear and completely positive) mapping of density
matrices to density matrices has unitary and operator-sum representations.

Decoherence. Decoherence – the decay of quantum information due to
the interaction of a system with its environment – can be described by a
superoperator. If the environment frequently “scatters” off the system, and
the state of the environment is not monitored, then off-diagonal terms in the
density matrix of the system decay rapidly in a preferred basis (typically a
spatially localized basis selected by the nature of the coupling of the system
to the environment). The time scale for decoherence is set by the scattering
rate, which may be much larger than the damping rate for the system.

Master Equation. When the relevant dynamical time scale of an open
quantum system is long compared to the time for the environment to “for-
get” quantum information, the evolution of the system is effectively local in
time (the Markovian approximation). Much as general unitary evolution is
generated by a Hamiltonian, a general Markovian superoperator is generated
by a Lindbladian L as described by the master equation:

ρ̇ ≡ L[ρ] = −i[H,ρ] +
∑

µ

(

LµρL†
µ − 1

2
L†

µLµρ − 1

2
ρL†

µLµ

)

.
(3.195)

Here each Lindblad operator (or quantum jump operator) represents a “quan-
tum jump” that could in principle be detected if we monitored the envi-
ronment faithfully. By solving the master equation, we can compute the
decoherence rate of an open system.
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3.8 Exercises

3.1 Realization of a POVM

Consider the POVM defined by the four positive operators

P1 =
1

2
| ↑z〉〈↑z | , P2 =

1

2
| ↓z〉〈↓z |

P3 =
1

2
| ↑x〉〈↑x | , P4 =

1

2
| ↓x〉〈↓x | .

(3.196)

Show how this POVM can be realized as an orthogonal measurement
in a two-qubit Hilbert space, if one ancilla spin is introduced.

3.2 Invertibility of superoperators

The purpose of this exercise is to show that a superoperator is invertible
only if it is unitary. Recall that any superoperator has an operator-sum
representation; it acts on a pure state as

M(|ψ〉〈ψ|) =
∑

µ

Mµ|ψ〉〈ψ|M†
µ, (3.197)

where
∑

µ M†
µMµ = 1. Another superoperator N is said to be the

inverse of M if N ◦M = I , or

∑

µ,a

NaMµ|ψ〉〈ψ|M†
µN

†
a = |ψ〉〈ψ|, (3.198)

for any |ψ〉. It follows that

∑

µ,a

|〈ψ|NaMµ|ψ〉|2 = 1. (3.199)

a) Show, using the normalization conditions satisfied by the Na’s and
Mµ’s, that N ◦M = I implies that

NaMµ = λaµ1, (3.200)

for each a and µ; i.e., that each NaMµ is a multiple of the identity.

b) Use the result of (a) to show that M†
νMµ is proportional to the

identity for each µ and ν.



60 CHAPTER 3. MEASUREMENT AND EVOLUTION

c) Show that it follows from (b) that M is unitary.

3.3 How many superoperators?

How many real parameters are needed to parametrize the general su-
peroperator

$ : ρ → ρ′ , (3.201)

if ρ is a density operator in a Hilbert space of dimensionN? [Hint: How
many real parameters parametrize an N ×N Hermitian matrix? How
many for a linear mapping of Hermitian matices to Hermitian matrices?
How many for a trace-preserving mapping of Hermitian matrices to
Hermitian matrices?]

3.4 How fast is decoherence?

A very good pendulum with mass m = 1 g and circular frequency
ω = 1 s−1 has quality factor Q = 109. The pendulum is prepared in
the “cat state”

|cat〉 =
1√
2
(|x〉+ | − x〉), (3.202)

a superposition of minimum uncertainty wave packets, each initially at
rest, centered at positions ±x, where x = 1 cm. Estimate, in order
of magnitude, how long it takes for the cat state to decohere, if the
environment is at

a) zero temperature.

b) room temperature.

3.5 Phase damping

In class, we obtained an operator-sum representation of the phase-
damping channel for a single qubit, with Kraus operators

M0 =
√

1 − p 1, M1 =
√
p

1

2
(1 + σ3),

M2 =
√
p

1

2
(1 − σ3). (3.203)
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a) Find an alternative representation using only two Kraus operators
N0,N1.

b) Find a unitary 3 × 3 matrix Uµa such that your Kraus operators
found in (a) (augmented by N2 = 0) are related to M0,1,2 by

Mµ = UµaNa. (3.204)

c) Consider a single-qubit channel with a unitary representation

|0〉A|0〉E →
√

1 − p |0〉A|0〉E +
√
p |0〉A|γ0〉E

|1〉A|0〉E →
√

1 − p |1〉A|0〉E +
√
p |1〉A|γ1〉E ,

(3.205)

where |γ0〉E and |γ1〉E are normalized states, both orthogonal to
|0〉E , that satisfy

E〈γ0|γ1〉E = 1 − ε, 0 < ε < 1. (3.206)

Show that this is again the phase-damping channel, and find its
operator-sum representation with two Kraus operators.

d) Suppose that the channel in (c) describes what happens to the qubit
when a single photon scatters from it. Find the decoherence rate
Γdecoh in terms of the scattering rate Γscatt.

3.6 Decoherence on the Bloch sphere

Parametrize the density matrix of a single qubit as

ρ =
1

2

(

1 + ~P · ~σ
)

. (3.207)

a) Describe what happens to ~P under the action of the phase-damping
channel.

b) Describe what happens to ~P under the action of the amplitude-
damping channel defined by the Kraus operators.

M0 =

(

1 0
0

√
1 − p

)

, M1 =

(

0
√
p

0 0

)

.
(3.208)
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c) The same for the “two-Pauli channel:”

M0 =
√

1 − p 1, M1 =

√

p

2
σ1, M2 =

√

p

2
σ3.

(3.209)

3.7 Decoherence of the damped oscillator

We saw in class that, for an oscillator that can emit quanta into a zero-
temperature reservoir, the interaction picture density matrix ρI(t) of
the oscillator obeys the master equation

ρ̇I = Γ
(

aρIa
† − 1

2
a†aρI −

1

2
ρIa

†a
)

, (3.210)

where a is the annihilation operator of the oscillator.

a) Consider the quantity

X(λ, t) = tr
[

ρI(t)e
λa†

e−λ∗a
]

, (3.211)

(where λ is a complex number). Use the master equation to derive
and solve a differential equation for X(λ, t). You should find

X(λ, t) = X(λ′, 0), (3.212)

where λ′ is a function of λ,Γ, and t. What is this function
λ′(λ,Γ, t)?

b) Now suppose that a “cat state” of the oscillator is prepared at t = 0:

|cat〉 =
1√
2

(|α1〉 + |α2〉) , (3.213)

where |α〉 denotes the coherent state

|α〉 = e−|α|2/2eαa†|0〉. (3.214)

Use the result of (a) to infer the density matrix at a later time
t. Assuming Γt � 1, at what rate do the off-diagonal terms in ρ

decay (in this coherent state basis)?


