
Chapter 2

Foundations I: States and
Ensembles

2.1 Axioms of quantum mechanics

For a few lectures I have been talking about quantum this and that, but
I have never defined what quantum theory is. It is time to correct that
omission.

Quantum theory is a mathematical model of the physical world. To char-
acterize the model, we need to specify how it will represent: states, observ-
ables, measurements, dynamics.

1. States. A state is a complete description of a physical system. In
quantum mechanics, a state is a ray in a Hilbert space.

What is a Hilbert space?

a) It is a vector space over the complex numbers C. Vectors will be
denoted |ψ〉 (Dirac’s ket notation).

b) It has an inner product 〈ψ|ϕ〉 that maps an ordered pair of vectors
to C, defined by the properties

(i) Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 = 0

(ii) Linearity: 〈ϕ|(a|ψ1〉 + b|ψ2〉) = a〈ϕ|ψ1〉 + b〈ϕ|ψ2〉
(iii) Skew symmetry: 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗

c) It is complete in the norm ||ψ|| = 〈ψ|ψ〉1/2
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(Completeness is an important proviso in infinite-dimensional function
spaces, since it will ensure the convergence of certain eigenfunction
expansions – e.g., Fourier analysis. But mostly we’ll be content to
work with finite-dimensional inner product spaces.)

What is a ray? It is an equivalence class of vectors that differ by multi-
plication by a nonzero complex scalar. We can choose a representative
of this class (for any nonvanishing vector) to have unit norm

〈ψ|ψ〉 = 1. (2.1)

We will also say that |ψ〉 and eiα|ψ〉 describe the same physical state,
where |eiα| = 1.

(Note that every ray corresponds to a possible state, so that given two
states |ϕ〉, |ψ〉, we can form another as a|ϕ〉 + b|ψ〉 (the “superposi-
tion principle”). The relative phase in this superposition is physically
significant; we identify a|ϕ〉 + b|ϕ〉 with eiα(a|ϕ〉 + b|ψ〉) but not with
a|ϕ〉 + eiαb|ψ〉.)

2. Observables. An observable is a property of a physical system that
in principle can be measured. In quantum mechanics, an observable is
a self-adjoint operator. An operator is a linear map taking vectors to
vectors

A : |ψ〉 → A|ψ〉,A (a|ψ〉+ b|ψ〉) = aA|ψ〉 + bB|ψ〉. (2.2)

The adjoint of the operator A is defined by

〈ϕ|Aψ〉 = 〈A†ϕ|ψ〉, (2.3)

for all vectors |ϕ〉, |ψ〉 (where here I have denoted A|ψ〉 as |Aψ〉). A is
self-adjoint if A = A†.

If A and B are self adjoint, then so is A + B (because (A + B)† =
A† + B†) but (AB)† = B†A†, so AB is self adjoint only if A and B
commute. Note that AB+BA and i(AB−BA) are always self-adjoint
if A and B are.

A self-adjoint operator in a Hilbert space H has a spectral representa-
tion – it’s eigenstates form a complete orthonormal basis in H. We can
express a self-adjoint operator A as

A =
∑

n

anPn. (2.4)
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Here each an is an eigenvalue of A, and Pn is the corresponding or-
thogonal projection onto the space of eigenvectors with eigenvalue an.
(If an is nondegenerate, then Pn = |n〉〈n|; it is the projection onto the
corresponding eigenvector.) The Pn’s satisfy

PnPm = δn,mPn

P†
n = Pn. (2.5)

(For unbounded operators in an infinite-dimensional space, the defini-
tion of self-adjoint and the statement of the spectral theorem are more
subtle, but this need not concern us.)

3. Measurement. In quantum mechanics, the numerical outcome of a
measurement of the observable A is an eigenvalue of A; right after the
measurement, the quantum state is an eigenstate of A with the mea-
sured eigenvalue. If the quantum state just prior to the measurement
is |ψ〉, then the outcome an is obtained with probability

Prob (an) =‖ Pn|ψ〉 ‖2= 〈ψ|Pn|ψ〉; (2.6)

If the outcome is an is attained, then the (normalized) quantum state
becomes

Pn|ψ〉
(〈ψ|Pn|ψ〉)1/2

. (2.7)

(Note that if the measurement is immediately repeated, then according
to this rule the same outcome is attained again, with probability one.)

4. Dynamics. Time evolution of a quantum state is unitary; it is gener-
ated by a self-adjoint operator, called the Hamiltonian of the system. In
the Schrödinger picture of dynamics, the vector describing the system
moves in time as governed by the Schrödinger equation

d

dt
|ψ(t)〉 = −iH|ψ(t)〉, (2.8)

where H is the Hamiltonian. We may reexpress this equation, to first
order in the infinitesimal quantity dt, as

|ψ(t+ dt)〉 = (1 − iHdt)|ψ(t)〉. (2.9)
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The operator U(dt) ≡ 1 − iHdt is unitary; because H is self-adjoint
it satisfies U†U = 1 to linear order in dt. Since a product of unitary
operators is finite, time evolution over a finite interval is also unitary

|ψ(t)〉 = U(t)|ψ(0)〉. (2.10)

In the case where H is t-independent; we may write U = e−itH.

This completes the mathematical formulation of quantum mechanics. We
immediately notice some curious features. One oddity is that the Schrödinger
equation is linear, while we are accustomed to nonlinear dynamical equations
in classical physics. This property seems to beg for an explanation. But far
more curious is the mysterious dualism; there are two quite distinct ways
for a quantum state to change. On the one hand there is unitary evolution,
which is deterministic. If we specify |ψ(0)〉, the theory predicts the state
|ψ(t)〉 at a later time.

But on the other hand there is measurement, which is probabilistic. The
theory does not make definite predictions about the measurement outcomes;
it only assigns probabilities to the various alternatives. This is troubling,
because it is unclear why the measurement process should be governed by
different physical laws than other processes.

Beginning students of quantum mechanics, when first exposed to these
rules, are often told not to ask “why?” There is much wisdom in this ad-
vice. But I believe that it can be useful to ask way. In future lectures.
we will return to this disconcerting dualism between unitary evolution and
measurement, and will seek a resolution.

2.2 The Qubit

The indivisible unit of classical information is the bit, which takes one of the
two possible values {0, 1}. The corresponding unit of quantum information
is called the “quantum bit” or qubit. It describes a state in the simplest
possible quantum system.

The smallest nontrivial Hilbert space is two-dimensional. We may denote
an orthonormal basis for a two-dimensional vector space as {|0〉, |1〉}. Then
the most general normalized state can be expressed as

a|0〉 + b|1〉, (2.11)
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where a, b are complex numbers that satisfy |a|2 + |b|2 = 1, and the overall
phase is physically irrelevant. A qubit is a state in a two-dimensional Hilbert
space that can take any value of the form eq. (2.11).

We can perform a measurement that projects the qubit onto the basis
{|0〉, |1〉}. Then we will obtain the outcome |0〉 with probability |a|2, and the
outcome |1〉 with probability |b|2. Furthermore, except in the cases a = 0
and b = 0, the measurement irrevocably disturbs the state. If the value of
the qubit is initially unknown, then there is no way to determine a and b with
that single measurement, or any other conceivable measurement. However,
after the measurement, the qubit has been prepared in a known state – either
|0〉 or |1〉 – that differs (in general) from its previous state.

In this respect, a qubit differs from a classical bit; we can measure a
classical bit without disturbing it, and we can decipher all of the information
that it encodes. But suppose we have a classical bit that really does have a
definite value (either 0 or 1), but that value is initially unknown to us. Based
on the information available to us we can only say that there is a probability

p0 that the bit has the value 0, and a probability p1 that the bit has the
value 1, where p0 + p1 = 1. When we measure the bit, we acquire additional
information; afterwards we know the value with 100% confidence.

An important question is: what is the essential difference between a qubit
and a probabilistic classical bit? In fact they are not the same, for several
reasons that we will explore.

2.2.1 Spin-1
2

First of all, the coefficients a and b in eq. (2.11) encode more than just the
probabilities of the outcomes of a measurement in the {|0〉, |1〉} basis. In
particular, the relative phase of a and b also has physical significance.

For a physicist, it is natural to interpret eq. (2.11) as the spin state of an
object with spin-1

2
(like an electron). Then |0〉 and |1〉 are the spin up (| ↑〉)

and spin down (| ↓〉) states along a particular axis such as the z-axis. The
two real numbers characterizing the qubit (the complex numbers a and b,
modulo the normalization and overall phase) describe the orientation of the
spin in three-dimensional space (the polar angle θ and the azimuthal angle
ϕ).

We cannot go deeply here into the theory of symmetry in quantum me-
chanics, but we will briefly recall some elements of the theory that will prove
useful to us. A symmetry is a transformation that acts on a state of a system,
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yet leaves all observable properties of the system unchanged. In quantum
mechanics, observations are measurements of self-adjoint operators. If A is
measured in the state |ψ〉, then the outcome |a〉 (an eigenvector of A) oc-
curs with probability |〈a|ψ〉|2. A symmetry should leave these probabilities
unchanged (when we “rotate” both the system and the apparatus).

A symmetry, then, is a mapping of vectors in Hilbert space

|ψ〉 → |ψ′〉, (2.12)

that preserves the absolute values of inner products

|〈ϕ|ψ〉| = |〈ϕ′|ψ′〉|, (2.13)

for all |ϕ〉 and |ψ〉. According to a famous theorem due to Wigner, a mapping
with this property can always be chosen (by adopting suitable phase conven-
tions) to be either unitary or antiunitary. The antiunitary alternative, while
important for discrete symmetries, can be excluded for continuous symme-
tries. Then the symmetry acts as

|ψ〉 → |ψ′〉 = U|ψ〉, (2.14)

where U is unitary (and in particular, linear).
Symmetries form a group: a symmetry transformation can be inverted,

and the product of two symmetries is a symmetry. For each symmetry op-
eration R acting on our physical system, there is a corresponding unitary
transformation U(R). Multiplication of these unitary operators must respect
the group multiplication law of the symmetries – applying R1 ◦R2 should be
equivalent to first applying R2 and subsequently R1. Thus we demand

U(R1)U(R2) = Phase (R1, R2)U(R1 ◦R2) (2.15)

The phase is permitted in eq. (2.15) because quantum states are rays; we
need only demand that U(R1 ◦ R2) act the same way as U(R1)U(R2) on
rays, not on vectors. U(R) provides a unitary representation (up to a phase)
of the symmetry group.

So far, our concept of symmetry has no connection with dynamics. Usu-
ally, we demand of a symmetry that it respect the dynamical evolution of
the system. This means that it should not matter whether we first transform
the system and then evolve it, or first evolve it and then transform it. In
other words, the diagram
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Initial Final

New Initial New Final

-

-

? ?

dynamics

dynamics

rotation rotation

is commutative. This means that the time evolution operator eitH should
commute with the symmetry transformation U(R) :

U(R)e−itH = e−itHU(R), (2.16)

and expanding to linear order in t we obtain

U(R)H = HU(R) (2.17)

For a continuous symmetry, we can choose R infinitesimally close to the
identity, R = I + εT , and then U is close to 1,

U = 1 − iεQ +O(ε2). (2.18)

From the unitarity of U (to order ε) it follows that Q is an observable,
Q = Q†. Expanding eq. (2.17) to linear order in ε we find

[Q,H] = 0; (2.19)

the observable Q commutes with the Hamiltonian.
Eq. (2.19) is a conservation law. It says, for example, that if we prepare

an eigenstate of Q, then time evolution governed by the Schrödinger equation
will preserve the eigenstate. We have seen that symmetries imply conserva-
tion laws. Conversely, given a conserved quantity Q satisfying eq. (2.19) we
can construct the corresponding symmetry transformations. Finite transfor-
mations can be built as a product of many infinitesimal ones

R = (1 +
θ

N
T )N ⇒ U(R) = (1 + i

θ

N
Q)N → eiθQ, (2.20)

(taking the limit N → ∞). Once we have decided how infinitesimal sym-
metry transformations are represented by unitary operators, then it is also
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determined how finite transformations are represented, for these can be built
as a product of infinitesimal transformations. We say that Q is the generator

of the symmetry.
Let us briefly recall how this general theory applies to spatial rotations

and angular momentum. An infinitesimal rotation by dθ about the axis
specified by the unit vector n̂ = (n1, n2, n3) can be expressed as

R(n̂, dθ) = I − idθn̂ · ~J, (2.21)

where (J1, J2, J3) are the components of the angular momentum. A finite
rotation is expressed as

R(n̂, θ) = exp(−iθn̂ · ~J). (2.22)

Rotations about distinct axes don’t commute. From elementary properties
of rotations, we find the commutation relations

[Jk, J`] = iεk`mJm, (2.23)

where εk`m is the totally antisymmetric tensor with ε123 = 1, and repeated
indices are summed. To implement rotations on a quantum system, we find
self-adjoint operators J1,J2,J3 in Hilbert space that satisfy these relations.

The “defining” representation of the rotation group is three dimensional,
but the simplest nontrivial irreducible representation is two dimensional,
given by

Jk =
1

2
σk, (2.24)

where

σ1 =

(

0 1
1 0

)

,σ2 =

(

0 −i
i 0

)

,σ3 =

(

1 0
0 −1

)

, (2.25)

are the Pauli matrices. This is the unique two-dimensional irreducible rep-
resentation, up to a unitary change of basis. Since the eigenvalues of Jk are
±1

2
, we call this the spin-1

2
representation. (By identifying J as the angular-

momentum, we have implicitly chosen units with ~ = 1).
The Pauli matrices also have the properties of being mutually anticom-

muting and squaring to the identity,

σkσ` + σ`σk = 2δk`1, (2.26)
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So we see that (n̂ · ~σ)2 = nkn`σkσ` = nknk1 = 1. By expanding the
exponential series, we see that finite rotations are represented as

U(n̂, θ) = e−i θ

2
n̂·~σ = 1 cos

θ

2
− in̂ · ~σ sin

θ

2
. (2.27)

The most general 2× 2 unitary matrix with determinant 1 can be expressed
in this form. Thus, we are entitled to think of a qubit as the state of a spin-1

2

object, and an arbitrary unitary transformation acting on the state (aside
from a possible rotation of the overall phase) is a rotation of the spin.

A peculiar property of the representation U(n̂, θ) is that it is double-

valued. In particular a rotation by 2π about any axis is represented nontriv-
ially:

U(n̂, θ = 2π) = −1. (2.28)

Our representation of the rotation group is really a representation “up to a
sign”

U(R1)U(R2) = ±U(R1 ◦R2). (2.29)

But as already noted, this is acceptable, because the group multiplication is
respected on rays, though not on vectors. These double-valued representa-
tions of the rotation group are called spinor representations. (The existence
of spinors follows from a topological property of the group — it is not simply
connected.)

While it is true that a rotation by 2π has no detectable effect on a spin-
1

2
object, it would be wrong to conclude that the spinor property has no

observable consequences. Suppose I have a machine that acts on a pair of
spins. If the first spin is up, it does nothing, but if the first spin is down, it
rotates the second spin by 2π. Now let the machine act when the first spin
is in a superposition of up and down. Then

1√
2

(| ↑〉1 + | ↓〉1) | ↑〉2 →
1√
2

(| ↑〉1 − | ↓〉1) | ↑〉2 . (2.30)

While there is no detectable effect on the second spin, the state of the first
has flipped to an orthogonal state, which is very much observable.

In a rotated frame of reference, a rotation R(n̂, θ) becomes a rotation
through the same angle but about a rotated axis. It follows that the three
components of angular momentum transform under rotations as a vector:

U(R)JkU(R)† = Rk`J`. (2.31)



10 CHAPTER 2. FOUNDATIONS I: STATES AND ENSEMBLES

Thus, if a state |m〉 is an eigenstate of J3

J3|m〉 = m|m〉, (2.32)

then U(R)|m〉 is an eigenstate of RJ3 with the same eigenvalue:

RJ3 (U(R)|m〉) = U(R)J3U(R)†U(R)|m〉
= U(R)J3|m〉 = m (U(R)|m〉) . (2.33)

Therefore, we can construct eigenstates of angular momentum along the axis
n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) by applying a rotation through θ, about the
axis n̂′ = (− sinϕ, cosϕ, 0), to a J3 eigenstate. For our spin-1

2
representation,

this rotation is

exp

[

−iθ
2
n̂′ · ~σ

]

= exp

[

θ

2

(

0 −e−iϕ

eiϕ 0

)]

=

(

cos θ
2

−e−iϕ sin θ
2

eiϕ sin θ
2

cos θ
2

)

, (2.34)

and applying it to
(

1

0

)

, the J3 eigenstate with eigenvalue 1, we obtain

|ψ(θ, ϕ)〉 =

(

e−iϕ/2 cos θ
2

eiϕ/2 sin θ
2

)

, (2.35)

(up to an overall phase). We can check directly that this is an eigenstate of

n̂ · ~σ =

(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)

, (2.36)

with eigenvalue one. So we have seen that eq. (2.11) with a = e−iϕ/2 cos θ
2
, b =

eiϕ/2 sin θ
2
, can be interpreted as a spin pointing in the (θ, ϕ) direction.

We noted that we cannot determine a and b with a single measurement.
Furthermore, even with many identical copies of the state, we cannot com-
pletely determine the state by measuring each copy only along the z-axis.
This would enable us to estimate |a| and |b|, but we would learn nothing
about the relative phase of a and b. Equivalently, we would find the compo-
nent of the spin along the z-axis

〈ψ(θ, ϕ)|σ3|ψ(θ, ϕ)〉 = cos2
θ

2
− sin2

θ

2
= cos θ, (2.37)
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but we would not learn about the component in the x−y plane. The problem
of determining |ψ〉 by measuring the spin is equivalent to determining the
unit vector n̂ by measuring its components along various axes. Altogether,
measurements along three different axes are required. E.g., from 〈σ3〉 and
〈σ1〉 we can determine n3 and n1, but the sign of n2 remains undetermined.
Measuring 〈σ2〉 would remove this remaining ambiguity.

Of course, if we are permitted to rotate the spin, then only measurements
along the z-axis will suffice. That is, measuring a spin along the n̂ axis is
equivalent to first applying a rotation that rotates the n̂ axis to the axis ẑ,
and then measuring along ẑ.

In the special case θ = π
2

and ϕ = 0 (the x̂-axis) our spin state is

| ↑x〉 =
1√
2

(| ↑z〉 + | ↓z〉) , (2.38)

(“spin-up along the x-axis”). The orthogonal state (“spin down along the
x-axis”) is

| ↓x〉 =
1√
2

(| ↑z〉 − | ↓z〉) . (2.39)

For either of these states, if we measure the spin along the z-axis, we will
obtain | ↑z〉 with probability 1

2
and | ↓z〉 with probability 1

2
.

Now consider the combination

1√
2

(| ↑x〉 + | ↓x〉) . (2.40)

This state has the property that, if we measure the spin along the x-axis, we
obtain | ↑x〉 or | ↓x〉, each with probability 1

2
. Now we may ask, what if we

measure the state in eq. (2.40) along the z-axis?
If these were probabilistic classical bits, the answer would be obvious.

The state in eq. (2.40) is in one of two states, and for each of the two, the
probability is 1

2
for pointing up or down along the z-axis. So of course we

should find up with probability 1

2
when we measure along the z-axis.

But not so for qubits! By adding eq. (2.38) and eq. (2.39), we see that
the state in eq. (2.40) is really | ↑z〉 in disguise. When we measure along the
z-axis, we always find | ↑z〉, never | ↓z〉.

We see that for qubits, as opposed to probabilistic classical bits, proba-
bilities can add in unexpected ways. This is, in its simplest guise, the phe-
nomenon called “quantum interference,” an important feature of quantum
information.
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It should be emphasized that, while this formal equivalence with a spin-1

2

object applies to any two-level quantum system, of course not every two-level
system transforms as a spinor under rotations!

2.2.2 Photon polarizations

Another important two-state system is provided by a photon, which can
have two independent polarizations. These photon polarization states also
transform under rotations, but photons differ from our spin-1

2
objects in two

important ways: (1) Photons are massless. (2) Photons have spin-1 (they
are not spinors).

Now is not a good time for a detailed discussion of the unitary represen-
tations of the Poincare group. Suffice it to say that the spin of a particle
classifies how it transforms under the little group, the subgroup of the Lorentz
group that preserves the particle’s momentum. For a massive particle, we
may always boost to the particle’s rest frame, and then the little group is
the rotation group.

For massless particles, there is no rest frame. The finite-dimensional
unitary representations of the little group turn out to be representations of
the rotation group in two dimensions, the rotations about the axis determined
by the momentum. Of course, for a photon, this corresponds to the familiar
property of classical light – the waves are polarized transverse to the direction
of propagation.

Under a rotation about the axis of propagation, the two linear polarization
states (|x〉 and |y〉 for horizontal and vertical polarization) transform as

|x〉 → cos θ|x〉 + sin θ|y〉
|y〉 → − sin θ|x〉 + cos θ|y〉. (2.41)

This two-dimensional representation is actually reducible. The matrix

(

cos θ sin θ
− sin θ cos θ

)

(2.42)

has the eigenstates

|R〉 =
1√
2

(

1
i

)

|L〉 =
1√
2

(

i

1

)

, (2.43)
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with eigenvalues eiθ and e−iθ, the states of right and left circular polarization.
That is, these are the eigenstates of the rotation generator

J =

(

0 −i
i 0

)

= σy, (2.44)

with eigenvalues ±1. Because the eigenvalues are ±1 (not ±1

2
) we say that

the photon has spin-1.
In this context, the quantum interference phenomenon can be described

this way: Suppose that we have a polarization analyzer that allows only
one of the two linear photon polarizations to pass through. Then an x or y
polarized photon has prob 1

2
of getting through a 45o rotated polarizer, and

a 45o polarized photon has prob 1

2
of getting through an x and y analyzer.

But an x photon never passes through a y analyzer. If we put a 45o rotated
analyzer in between an x and y analyzer, then 1

2
the photons make it through

each analyzer. But if we remove the analyzer in the middle no photons make
it through the y analyzer.

A device can be constructed easily that rotates the linear polarization of
a photon, and so applies the transformation Eq. (2.41) to our qubit. As
noted, this is not the most general possible unitary transformation. But if
we also have a device that alters the relative phase of the two orthogonal
linear polarization states

|x〉 → eiω/2|x〉
|y〉 → e−iω/2|y〉 , (2.45)

the two devices can be employed together to apply an arbitrary 2×2 unitary
transformation (of determinant 1) to the photon polarization state.

2.3 The density matrix

2.3.1 The bipartite quantum system

The last lecture was about one qubit. This lecture is about two qubits.
(Guess what the next lecture will be about!) Stepping up from one qubit to
two is a bigger leap than you might expect. Much that is weird and wonderful
about quantum mechanics can be appreciated by considering the properties
of the quantum states of two qubits.
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The axioms of §2.1 provide a perfectly acceptable general formulation
of the quantum theory. Yet under many circumstances, we find that the
axioms appear to be violated. The trouble is that our axioms are intended
to characterize the quantum behavior of the entire universe. Most of the
time, we are not so ambitious as to attempt to understand the physics of the
whole universe; we are content to observe just our little corner. In practice,
then, the observations we make are always limited to a small part of a much
larger quantum system.

In the next several lectures, we will see that, when we limit our attention
to just part of a larger system, then (contrary to the axioms):

1. States are not rays.

2. Measurements are not orthogonal projections.

3. Evolution is not unitary.

We can best understand these points by considering the simplest possible
example: a two-qubit world in which we observe only one of the qubits.

So consider a system of two qubits. Qubit A is here in the room with us,
and we are free to observe or manipulate it any way we please. But qubit
B is locked in a vault where we can’t get access to it. Given some quantum
state of the two qubits, we would like to find a compact way to characterize
the observations that can be made on qubit A alone.

We’ll use {|0〉A, |1〉A} and {|0〉B , |1〉B} to denote orthonormal bases for
qubits A and B respectively. Consider a quantum state of the two-qubit
world of the form

|ψ〉AB = a|0〉A ⊗ |0〉B + b|1〉A ⊗ |1〉B . (2.46)

In this state, qubits A and B are correlated. Suppose we measure qubit A by
projecting onto the {|0〉A, |1〉A} basis. Then with probability |a|2 we obtain
the result |0〉A, and the measurement prepares the state

|0〉A ⊗ |0〉B . (2.47)

with probability |b|2, we obtain the result |1〉A and prepare the state

|1〉A ⊗ |1〉B . (2.48)
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In either case, a definite state of qubit B is picked out by the measurement. If
we subsequently measure qubit B, then we are guaranteed (with probability
one) to find |0〉B if we had found |0〉A, and we are guaranteed to find |1〉B if
we found |1〉A. In this sense, the outcomes of the {|0〉A, |1〉A} and {|0〉B , |1〉B}
measurements are perfectly correlated in the state |ψ〉AB.

But now I would like to consider more general observables acting on qubit
A, and I would like to characterize the measurement outcomes for A alone
(irrespective of the outcomes of any measurements of the inaccessible qubit
B). An observable acting on qubit A only can be expressed as

MA ⊗ 1B , (2.49)

where MA is a self-adjoint operator acting on A, and 1B is the identity
operator acting on B. The expectation value of the observable in the state
|ψ〉 is:

〈ψ|MA ⊗ 1B|ψ〉
= (a∗A〈0| ⊗ B 〈0| + b∗B〈1| ⊗ B 〈1|) (MA ⊗ 1B)

(a|0〉A ⊗ |0〉B + b|1〉A ⊗ |1〉B)

= |a|2A〈0|MA|0〉A + |b|2A〈1|MA|1〉A, (2.50)

(where we have used the orthogonality of |0〉B and |1〉B). This expression
can be rewritten in the form

〈MA〉 = tr (MAρA) , (2.51)

ρA = |a|2|0〉A A〈0| + |b|2|1〉A A〈1|, (2.52)

and tr(·) denotes the trace. The operator ρA is called the density operator

(or density matrix) for qubit A. It is self-adjoint, positive (its eigenvalues are
nonnegative) and it has unit trace (because |ψ〉 is a normalized state.)

Because 〈MA〉 has the form eq. (2.51) for any observable MA acting
on qubit A, it is consistent to interpret ρA as representing an ensemble of
possible quantum states, each occurring with a specified probability. That
is, we would obtain precisely the same result for 〈MA〉 if we stipulated that
qubit A is in one of two quantum states. With probability p0 = |a|2 it is
in the quantum state |0〉A, and with probability p1 = |b|2 it is in the state
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|1〉A. If we are interested in the result of any possible measurement, we can
consider MA to be the projection EA(a) onto the relevant eigenspace of a
particular observable. Then

Prob (a) = p0 A〈0|EA(a)|0〉A + p1 A〈1|EA(a)|1〉A, (2.53)

which is the probability of outcome a summed over the ensemble, and weighted
by the probability of each state in the ensemble.

We have emphasized previously that there is an essential difference be-
tween a coherent superposition of the states |0〉A and |1〉A, and a probabilistic
ensemble, in which |0〉A and |1〉A can each occur with specified probabilities.
For example, for a spin-1

2
object we have seen that if we measure σ1 in the

state 1√
2
(| ↑z〉 + | ↓z〉), we will obtain the result | ↑x〉 with probability one.

But the ensemble in which | ↑z〉 and | ↓z〉 each occur with probability 1

2
is

represented by the density operator

ρ =
1

2
(| ↑z〉〈↑z | + | ↓z〉〈↓z |)

=
1

2
1, (2.54)

and the projection onto | ↑x〉 then has the expectation value

tr (| ↑x〉〈↑x |ρ) =
1

2
. (2.55)

In fact, we have seen that any state of one qubit represented by a ray can
be interpreted as a spin pointing in some definite direction. But because
the identity is left unchanged by any unitary change of basis, and the state
|ψ(θ, ϕ)〉 can be obtained by applying a suitable unitary transformation to
| ↑z〉, we see that for ρ given by eq. (2.54), we have

tr (|ψ(θ, ϕ)〉〈ψ(θ, ϕ)|ρ) =
1

2
. (2.56)

Therefore, if the state |ψ〉AB in eq. (2.57) is prepared, with |a|2 = |b|2 = 1

2
,

and we measure the spin A along any axis, we obtain a completely random
result; spin up or spin down can occur, each with probability 1

2
.

This discussion of the correlated two-qubit state |ψ〉AB is easily general-
ized to an arbitrary state of any bipartite quantum system (a system divided
into two parts). The Hilbert space of a bipartite system is HA ⊗HB where
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HA,B are the Hilbert spaces of the two parts. This means that if {|i〉A} is an
orthonormal basis for HA and {|µ〉B} is an orthonormal basis for HB, then
{|i〉A ⊗ |µ〉B} is an orthonormal basis for HA ⊗HB. Thus an arbitrary pure
state of HA ⊗HB can be expanded as

|ψ〉AB =
∑

i,µ

aiµ|i〉A ⊗ |µ〉B, (2.57)

where
∑

i,µ |aiµ|2 = 1. The expectation value of an observable MA ⊗1B , that
acts only on subsystem A is

〈MA〉 = AB〈ψ|MA ⊗ 1B |ψ〉AB

=
∑

j,ν

a∗jν (A〈j| ⊗ B 〈ν|) (MA ⊗ 1B)
∑

i,µ

aiµ (|i〉A ⊗ |µ〉B)

=
∑

i,j,µ

a∗jµaiµ A〈j|MA|i〉A

= tr (MAρA) , (2.58)

where

ρA = trB (|ψ〉AB AB〈ψ|)
≡
∑

i,j,µ

aiµa
∗
jµ|i〉A A〈j| . (2.59)

We say that the density operator ρA for subsystem A is obtained by per-
forming a partial trace over subsystem B of the density matrix (in this case
a pure state) for the combined system AB.

From the definition eq. (2.59), we can immediately infer that ρA has the
following properties:

1. ρA is self-adjoint: ρA = ρ†
A.

2. ρA is positive: For any |ψ〉A A〈ψ|ρA|ψ〉A =
∑

µ |
∑

i aiµ A〈ψ|i〉A|2 ≥ 0.

3. tr(ρA) = 1: We have tr ρA =
∑

i,µ |aiµ|2 = 1, since |ψ〉AB is normalized.

It follows that ρA can be diagonalized, that the eigenvalues are all real and
nonnegative, and that the eigenvalues sum to one.

If we are looking at a subsystem of a larger quantum system, then, even
if the state of the larger system is a ray, the state of the subsystem need
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not be; in general, the state is represented by a density operator. In the
case where the state of the subsystem is a ray, and we say that the state is
pure. Otherwise the state is mixed. If the state is a pure state |ψ〉A, then
the density matrix ρA = |ψ〉A A〈ψ| is the projection onto the one-dimensional
space spanned by |ψ〉A. Hence a pure density matrix has the property ρ2 = ρ.
A general density matrix, expressed in the basis in which it is diagonal, has
the form

ρA =
∑

a

pa|ψa〉〈ψa|, (2.60)

where 0 < pa ≤ 1 and
∑

a pa = 1. If the state is not pure, there are two
or more terms in this sum, and ρ2 6= ρ; in fact, tr ρ2 =

∑

p2
a <

∑

pa = 1.
We say that ρ is an incoherent superposition of the states {|ψa〉}; incoherent
meaning that the relative phases of the |ψa〉 are experimentally inaccessible.

Since the expectation value of any observable M acting on the subsystem
can be expressed as

〈M〉 = trMρ =
∑

a

pa〈ψa|M|ψa〉, (2.61)

we see as before that we may interpret ρ as describing an ensemble of pure
quantum states, in which the state |ψa〉 occurs with probability pa. We have,
therefore, come a long part of the way to understanding how probabilities
arise in quantum mechanics when a quantum system A interacts with another
system B. A and B become entangled, that is, correlated. The entanglement
destroys the coherence of a superposition of states of A, so that some of the
phases in the superposition become inaccessible if we look at A alone. We
may describe this situation by saying that the state of system A collapses

— it is in one of a set of alternative states, each of which can be assigned a
probability.

2.3.2 Bloch sphere

Let’s return to the case in which system A is a single qubit, and consider the
form of the general density matrix. The most general self-adjoint 2×2 matrix
has four real parameters, and can be expanded in the basis {1,σ1,σ2,σ3}.
Since each σi is traceless, the coefficient of 1 in the expansion of a density
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matrix ρ must be 1

2
(so that tr(ρ) = 1), and ρ may be expressed as

ρ(~P ) =
1

2

(

1 + ~P · ~σ
)

≡ 1

2
(1 + P1σ1 + P2σ2 + P3σ3)

=
1

2

(

1 + P3 P1 − iP2

P1 + iP2 1 − P3

)

. (2.62)

We can compute detρ = 1

4

(

1 − ~P 2

)

. Therefore, a necessary condition for ρ

to have nonnegative eigenvalues is detρ ≥ 0 or ~P 2 ≤ 1. This condition is
also sufficient; since trρ = 1, it is not possible for ρ to have two negative
eigenvalues. Thus, there is a 1 − 1 correspondence between the possible
density matrices of a single qubit and the points on the unit 3-ball 0 ≤ |~P | ≤
1. This ball is usually called the Bloch sphere (although of course it is really
a ball, not a sphere).

The boundary
(

|~P | = 1
)

of the ball (which really is a sphere) contains
the density matrices with vanishing determinant. Since trρ = 1, these den-
sity matrices must have the eigenvalues 0 and 1. They are one-dimensional
projectors, and hence pure states. We have already seen that every pure
state of a single qubit is of the form |ψ(θ, ϕ)〉 and can be envisioned as a spin
pointing in the (θ, ϕ) direction. Indeed using the property

(n̂ · ~σ)
2

= 1, (2.63)

where n̂ is a unit vector, we can easily verify that the pure-state density
matrix

ρ(n̂) =
1

2
(1 + n̂ · ~σ) (2.64)

satisfies the property

(n̂ · ~σ) ~ρ(n̂) = ρ(n̂) (n̂ · ~σ) = ρ(n̂), (2.65)

and, therefore is the projector

ρ(n̂) = |ψ(n̂)〉〈ψ(n̂)|; (2.66)

that is, n̂ is the direction along which the spin is pointing up. Alternatively,
from the expression

|ψ(θ, φ)〉 =

(

e−iϕ/2 cos θ
2

eiϕ/2 sin θ
2

)

, (2.67)
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we may compute directly that

ρ(θ, φ) = |ψ(θ, φ)〉〈ψ(θ, φ)|

=

(

cos2 θ
2

cos θ
2
sin θ

2
e−iϕ

cos θ
2
sin θ

2
eiϕ sin2 θ

2

)

=
1

2
1 +

1

2

(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)

=
1

2
(1 + n̂ · ~σ) (2.68)

where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). One nice property of the Bloch
parametrization of the pure states is that while |ψ(θ, ϕ)〉 has an arbitrary
overall phase that has no physical significance, there is no phase ambiguity
in the density matrix ρ(θ, ϕ) = |ψ(θ, ϕ)〉〈ψ(θ, ϕ)|; all the parameters in ρ

have a physical meaning.
From the property

1

2
tr σiσj = δij (2.69)

we see that

〈n̂ · ~σ〉~P = tr
(

n̂ · ~σρ(~P )
)

= n̂ · ~P . (2.70)

Thus the vector ~P in Eq. (2.62) parametrizes the polarization of the spin. If
there are many identically prepared systems at our disposal, we can determine
~P (and hence the complete density matrix ρ(~P )) by measuring 〈n̂ · ~σ〉 along
each of three linearly independent axes.

2.3.3 Gleason’s theorem

We arrived at the density matrix ρ and the expression tr(Mρ) for the ex-
pectation value of an observable M by starting from our axioms of quantum
mechanics, and then considering the description of a portion of a larger quan-
tum system. But it is encouraging to know that the density matrix formalism
is a very general feature in a much broader framework. This is the content
of Gleason’s theorem (1957).

Gleason’s theorem starts from the premise that it is the task of quantum
theory to assign consistent probabilities to all possible orthogonal projec-
tions in a Hilbert space (in other words, to all possible measurements of
observables).
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A state of a quantum system, then, is a mapping that take each projection
(E2 = E and E = E†) to a nonnegative real number less than one:

E → p(E); 0 ≤ p(E) ≤ 1. (2.71)

This mapping must have the properties:

(1) p(0) = 0

(2) p(1) = 1

(3) If E1E2 = 0, then p(E1 + E2) = p(E1) + p(E2).

Here (3) is the crucial assumption. It says that (since projections on to mutu-
ally orthogonal spaces can be viewed as mutually exclusive alternatives) the
probabilities assigned to mutually orthogonal projections must be additive.
This assumption is very powerful, because there are so many different ways
to choose E1 and E2. Roughly speaking, the first two assumptions say that
whenever we make a measurement; (1) there is always an outcome, and (2)
the probabilities of all possible outcomes sum to 1.

Under these assumptions, Gleason showed that for any such map, there
is a hermitian, positive ρ with trρ = 1 such that

p(E) = tr(ρE). (2.72)

as long as the dimension of the Hilbert space is greater than 2. Thus, the
density matrix formalism is really necessary, if we are to represent observables
as self-adjoint operators in Hilbert space, and we are to consistently assign
probabilities to all possible measurement outcomes. Crudely speaking, the
requirement of additivity of probabilities for mutually exclusive outcomes is
so strong that we are inevitably led to the linear expression eq. (2.72).

The case of a two-dimensional Hilbert space is special because there just
are not enough mutually exclusive projections in two dimensions. All non-
trivial projections are of the form

E(n̂) =
1

2
(1 + n̂ · ~σ), (2.73)

and

E(n̂)E(m̂) = 0 (2.74)
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only for m̂ = −n̂; therefore, any function f(n̂) on the two-sphere such that
f(n̂) + f(−n̂) = 1 satisfies the premises of Gleason’s theorem, and there
are many such functions. However, in three-dimensions, there are may more
alternative ways to partition unity, so that Gleason’s assumptions are far
more powerful. The proof of the theorem will not be given here. See Peres,
p. 190 ff, for a discussion.

2.3.4 Evolution of the density operator

So far, we have not discussed the time evolution of mixed states. In the case
of a bipartite pure state governed by the usual axioms of quantum theory,
let us suppose that the Hamiltonian on HA ⊗HB has the form

HAB = HA ⊗ 1B + 1A ⊗ HB. (2.75)

Under this assumption, there is no coupling between the two subsystems A
and B, so that each evolves independently. The time evolution operator for
the combined system

UAB(t) = UA(t)⊗ UB(t), (2.76)

decomposes into separate unitary time evolution operators acting on each
system.

In the Schrödinger picture of dynamics, then, an initial pure state |ψ(0)〉AB

of the bipartite system given by eq. (2.57) evolves to

|ψ(t)〉AB =
∑

i,µ

aiµ|i(t)〉A ⊗ |µ(t)〉B , (2.77)

where

|i(t)〉A = UA(t)|i(0)〉A,
|µ(t)〉B = UB(t)|µ(0)〉B , (2.78)

define new orthonormal basis for HA and HB (since UA(t) and UB(t) are
unitary). Taking the partial trace as before, we find

ρA(t) =
∑

i,j,µ

aiµa
∗
jν |i(t)〉A A〈j(t)|

= UA(t)ρA(0)UA(t)†. (2.79)
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Thus UA(t), acting by conjugation, determines the time evolution of the
density matrix.

In particular, in the basis in which ρA(0) is diagonal, we have

ρA(t) =
∑

a

paUA(t)|ψa(0)〉A A〈ψa(0)|UA(t). (2.80)

Eq. (2.80) tells us that the evolution of ρA is perfectly consistent with the
ensemble interpretation. Each state in the ensemble evolves forward in time
governed by UA(t). If the state |ψa(0)〉 occurs with probability pa at time 0,
then |ψa(t)〉 occurs with probability pa at the subsequent time t.

On the other hand, it should be clear that eq. (2.80) applies only under
the assumption that systems A and B are not coupled by the Hamiltonian.
Later, we will investigate how the density matrix evolves under more general
conditions.

2.4 Schmidt decomposition

A bipartite pure state can be expressed in a standard form (the Schmidt

decomposition) that is often very useful.
To arrive at this form, note that an arbitrary vector in HA ⊗HB can be

expanded as

|ψ〉AB =
∑

i,µ

aiµ|i〉A|µ〉B ≡
∑

i

|i〉A|̃i〉B . (2.81)

Here {|i〉A} and {|µ〉B} are orthonormal basis for HA and HB respectively,
but to obtain the second equality in eq. (2.81) we have defined

|̃i〉B ≡
∑

µ

aiµ|µ〉B . (2.82)

Note that the |̃i〉B’s need not be mutually orthogonal or normalized.
Now let’s suppose that the {|i〉A} basis is chosen to be the basis in which

ρA is diagonal,

ρA =
∑

i

pi|i〉A A〈i|. (2.83)

We can also compute ρA by performing a partial trace,

ρA = trB(|ψ〉AB AB〈ψ|)
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= trB(
∑

ij

|i〉A A〈j| ⊗ |̃i〉B B〈j̃|) =
∑

ij

B〈j̃ |̃i〉B (|i〉A A〈j|) .

(2.84)

We obtained the last equality in eq. (2.84) by noting that

trB

(

|̃i〉B B〈j̃|
)

=
∑

k

B〈k|̃i〉B B〈j̃|k〉B

=
∑

k

B〈j̃|k〉B B〈k|̃i〉B = B〈j̃ |̃i〉B , (2.85)

where {|k〉B} is an orthonormal basis for HB. By comparing eq. (2.83) and
eq. (2.84), we see that

B〈j̃ |̃i〉B = piδij. (2.86)

Hence, it turns out that the {|̃i〉B} are orthogonal after all. We obtain
orthonormal vectors by rescaling,

|i′〉B = p
−1/2

i |i〉B (2.87)

(we may assume pi 6= 0, because we will need eq. (2.87) only for i appearing
in the sum eq. (2.83)), and therefore obtain the expansion

|ψ〉AB =
∑

i

√
pi|i〉A|i′〉B , (2.88)

in terms of a particular orthonormal basis of HA and HB.
Eq. (2.88) is the Schmidt decomposition of the bipartite pure state |ψ〉AB .

Any bipartite pure state can be expressed in this form, but of course the
bases used depend on the pure state that is being expanded. In general, we
can’t simultaneously expand both |ψ〉AB and |ϕ〉AB ∈ HA ⊗ HB in the form
eq. (2.88) using the same orthonormal bases for HA and HB.

Using eq. (2.88), we can also evaluate the partial trace over HA to obtain

ρB = trA (|ψ〉AB AB〈ψ|) =
∑

i

pi|i′〉B B〈i′|. (2.89)

We see that ρA and ρB have the same nonzero eigenvalues. Of course, there
is no need for HA and HB to have the same dimension, so the number of zero

eigenvalues of ρA and ρB can differ.
If ρA (and hence ρB) have no degenerate eigenvalues other than zero,

then the Schmidt decomposition of |ψ〉AB is essentially uniquely determined
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by ρA and ρB. We can diagonalize ρA and ρB to find the |i〉A’s and |i′〉B ’s,
and then we pair up the eigenstates of ρA and ρB with the same eigenvalue
to obtain eq. (2.88). We have chosen the phases of our basis states so that no
phases appear in the coefficients in the sum; the only remaining freedom is
to redefine |i〉A and |i′〉B by multiplying by opposite phases (which of course
leaves the expression eq. (2.88) unchanged).

But if ρA has degenerate nonzero eigenvalues, then we need more infor-
mation than that provided by ρA and ρB to determine the Schmidt decompo-
sition; we need to know which |i′〉B gets paired with each |i〉A. For example,
if both HA and HB are N -dimensional and Uij is any N ×N unitary matrix,
then

|ψ〉AB =
1√
N

N
∑

i,j=1

|i〉AUij|j′〉B, (2.90)

will yield ρA = ρB = 1

N
1 when we take partial traces. Furthermore, we are

free to apply simultaneous unitary transformations in HA and HB,

|ψ〉AB =
1√
N

∑

i

|i〉A|i′〉B =
1√
N

∑

ijk

U∗
ij|j〉AUik|k′〉B; (2.91)

this preserves the state |ψ〉AB, but illustrates that there is an ambiguity in
the basis used when we express |ψ〉AB in the Schmidt form.

2.4.1 Entanglement

With any bipartite pure state |ψ〉AB we may associate a positive integer, the
Schmidt number, which is the number of nonzero eigenvalues in ρA (or ρB)
and hence the number of terms in the Schmidt decomposition of |ψ〉AB . In
terms of this quantity, we can define what it means for a bipartite pure state
to be entangled: |ψ〉AB is entangled (or nonseparable) if its Schmidt number
is greater than one; otherwise, it is separable (or unentangled). Thus, a
separable bipartite pure state is a direct product of pure states in HA and
HB,

|ψ〉AB = |ϕ〉A ⊗ |χ〉B; (2.92)

then the reduced density matrices ρA = |ϕ〉A A〈ϕ| and ρB = |χ〉B B〈χ| are
pure. Any state that cannot be expressed as such a direct product is entan-
gled; then ρA and ρB are mixed states.
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One of our main goals this term will be to understand better the signif-
icance of entanglement. It is not strictly correct to say that subsystems A
and B are uncorrelated if |ψ〉AB is separable; after all, the two spins in the
separable state

| ↑〉A| ↑〉B, (2.93)

are surely correlated – they are both pointing in the same direction. But
the correlations between A and B in an entangled state have a different
character than those in a separable state. Perhaps the critical difference is
that entanglement cannot be created locally. The only way to entangle A and
B is for the two subsystems to directly interact with one another.

We can prepare the state eq. (2.93) without allowing spins A and B to
ever come into contact with one another. We need only send a (classical!)
message to two preparers (Alice and Bob) telling both of them to prepare a
spin pointing along the z-axis. But the only way to turn the state eq. (2.93)
into an entangled state like

1√
2

(| ↑〉A| ↑〉B + | ↓〉A| ↓〉B) , (2.94)

is to apply a collective unitary transformation to the state. Local unitary
transformations of the form UA ⊗UB , and local measurements performed by
Alice or Bob, cannot increase the Schmidt number of the two-qubit state,
no matter how much Alice and Bob discuss what they do. To entangle two
qubits, we must bring them together and allow them to interact.

As we will discuss later, it is also possible to make the distinction between
entangled and separable bipartite mixed states. We will also discuss various
ways in which local operations can modify the form of entanglement, and
some ways that entanglement can be put to use.

2.5 Ambiguity of the ensemble interpretation

2.5.1 Convexity

Recall that an operator ρ acting on a Hilbert space H may be interpreted as
a density operator if it has the three properties:

(1) ρ is self-adjoint.
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(2) ρ is nonnegative.

(3) tr(ρ) = 1.

It follows immediately that, given two density matrices ρ1, and ρ2, we can
always construct another density matrix as a convex linear combination of
the two:

ρ(λ) = λρ1 + (1 − λ)ρ2 (2.95)

is a density matrix for any real λ satisfying 0 ≤ λ ≤ 1. We easily see that
ρ(λ) satisfies (1) and (3) if ρ1 and ρ2 do. To check (2), we evaluate

〈ψ|ρ(λ)|ψ〉 = λ〈ψ|ρ1|ψ〉 + (1 − λ)〈ψ|ρ2|ψ〉 ≥ 0; (2.96)

〈ρ(λ)〉 is guaranteed to be nonnegative because 〈ρ1〉 and 〈ρ2〉 are. We have,
therefore, shown that in a Hilbert space H of dimension N , the density
operators are a convex subset of the real vector space of N × N hermitian
matrices. (A subset of a vector space is said to be convex if the set contains
the straight line segment connecting any two points in the set.)

Most density operators can be expressed as a sum of other density oper-
ators in many different ways. But the pure states are special in this regard –
it is not possible to express a pure state as a convex sum of two other states.
Consider a pure state ρ = |ψ〉〈ψ|, and let |ψ⊥〉 denote a vector orthogonal
to |ψ〉, 〈ψ⊥|ψ〉 = 0. Suppose that ρ can be expanded as in eq. (2.95); then

〈ψ⊥|ρ|ψ⊥〉 = 0 = λ〈ψ⊥|ρ1|ψ⊥〉
+ (1 − λ)〈ψ⊥|ρ2|ψ⊥〉. (2.97)

Since the right hand side is a sum of two nonnegative terms, and the sum
vanishes, both terms must vanish. If λ is not 0 or 1, we conclude that ρ1 and
ρ2 are orthogonal to |ψ⊥〉. But since |ψ⊥〉 can be any vector orthogonal to
|ψ〉, we conclude that ρ1 = ρ2 = ρ.

The vectors in a convex set that cannot be expressed as a linear combina-
tion of other vectors in the set are called the extremal points of the set. We
have just shown that the pure states are extremal points of the set of density
matrices. Furthermore, only the pure states are extremal, because any mixed
state can be written ρ =

∑

i pi|i〉〈i| in the basis in which it is diagonal, and
so is a convex sum of pure states.
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We have already encountered this structure in our discussion of the special
case of the Bloch sphere. We saw that the density operators are a (unit) ball
in the three-dimensional set of 2 × 2 hermitian matrices with unit trace.
The ball is convex, and its extremal points are the points on the boundary.
Similarly, the N ×N density operators are a convex subset of the (N2 − 1)-
dimensional set of N×N hermitian matrices with unit trace, and the extremal
points of the set are the pure states.

However, the 2×2 case is atypical in one respect: for N > 2, the points on
the boundary of the set of density matrices are not necessarily pure states.
The boundary of the set consists of all density matrices with at least one
vanishing eigenvalue (since there are nearby matrices with negative eigenval-
ues). Such a density matrix need not be pure, for N > 2, since the number
of nonvanishing eigenvalues can exceed one.

2.5.2 Ensemble preparation

The convexity of the set of density matrices has a simple and enlightening
physical interpretation. Suppose that a preparer agrees to prepare one of
two possible states; with probability λ, the state ρ1 is prepared, and with
probability 1 − λ, the state ρ2 is prepared. (A random number generator
might be employed to guide this choice.) To evaluate the expectation value
of any observable M, we average over both the choices of preparation and the
outcome of the quantum measurement:

〈M〉 = λ〈M〉1 + (1 − λ)〈M〉2
= λtr(Mρ1) + (1 − λ)tr(Mρ2)

= tr (Mρ(λ)) . (2.98)

All expectation values are thus indistinguishable from what we would obtain
if the state ρ(λ) had been prepared instead. Thus, we have an operational
procedure, given methods for preparing the states ρ1 and ρ2, for preparing
any convex combination.

Indeed, for any mixed state ρ, there are an infinite variety of ways to
express ρ as a convex combination of other states, and hence an infinite
variety of procedures we could employ to prepare ρ, all of which have exactly
the same consequences for any conceivable observation of the system. But
a pure state is different; it can be prepared in only one way. (This is what
is “pure” about a pure state.) Every pure state is an eigenstate of some
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observable, e.g., for the state ρ = |ψ〉〈ψ|, measurement of the projection
E = |ψ〉〈ψ| is guaranteed to have the outcome 1. (For example, recall that
every pure state of a single qubit is “spin-up” along some axis.) Since ρ

is the only state for which the outcome of measuring E is 1 with 100%
probability, there is no way to reproduce this observable property by choosing
one of several possible preparations. Thus, the preparation of a pure state
is unambiguous (we can determine a unique preparation if we have many
copies of the state to experiment with), but the preparation of a mixed state
is always ambiguous.

How ambiguous is it? Since any ρ can be expressed as a sum of pure
states, let’s confine our attention to the question: in how many ways can a
density operator be expressed as a convex sum of pure states? Mathemati-
cally, this is the question: in how many ways can ρ be written as a sum of
extremal states?

As a first example, consider the “maximally mixed” state of a single qubit:

ρ =
1

2
1. (2.99)

This can indeed be prepared as an ensemble of pure states in an infinite
variety of ways. For example,

ρ =
1

2
| ↑z〉〈↑z | + 1

2
| ↓z〉〈↓z |, (2.100)

so we obtain ρ if we prepare either | ↑z〉 or | ↓z〉, each occurring with proba-
bility 1

2
. But we also have

ρ =
1

2
| ↑x〉〈↑x | + 1

2
| ↓x〉〈↓x |, (2.101)

so we obtain ρ if we prepare either | ↑x〉 or | ↓x〉, each occurring with proba-
bility 1

2
. Now the preparation procedures are undeniably different. Yet there

is no possible way to tell the difference by making observations of the spin.
More generally, the point at the center of the Bloch ball is the sum of

any two antipodal points on the sphere – preparing either | ↑n̂〉 or | ↓n̂〉, each
occurring with probability 1

2
will generate ρ = 1

2
1.

Only in the case where ρ has two (or more) degenerate eigenvalues will
there be distinct ways of generating ρ from an ensemble of mutually orthog-

onal pure states, but there is no good reason to confine our attention to
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ensembles of mutually orthogonal pure states. We may consider a point in
the interior of the Bloch ball

ρ(~P ) =
1

2
(1 + ~P · ~σ), (2.102)

with 0 < |~P | < 1, and it too can be expressed as

ρ(~P ) = λρ(n̂1) + (1 − λ)ρ(n̂2), (2.103)

if ~P = λn̂1 + (1 − λ)n̂2 (or in other words, if ~P lies somewhere on the line
segment connecting the points n̂1 and n̂2 on the sphere). Evidently, for any
~P , there is a solution associated with any chord of the sphere that passes
through the point ~P ; all such chords comprise a two-parameter family.

This highly ambiguous nature of the preparation of a mixed quantum
state is one of the characteristic features of quantum information that con-
trasts sharply with classical probability distributions. Consider, for exam-
ple, the case of a probability distribution for a single classical bit. The two
extremal distributions are those in which either 0 or 1 occurs with 100%
probability. Any probability distribution for the bit is a convex sum of these
two extremal points. Similarly, if there are N possible states, there are N
extremal distributions, and any probability distribution has a unique decom-
position into extremal ones (the convex set of probability distributions is a
simplex). If 0 occurs with 21% probability, 1 with 33% probability, and 2
with 46% probability, there is a unique preparation procedure that yields
this probability distribution!

2.5.3 Faster than light?

Let’s now return to our earlier viewpoint – that a mixed state of system
A arises because A is entangled with system B – to further consider the
implications of the ambiguous preparation of mixed states. If qubit A has
density matrix

ρA =
1

2
| ↑z〉A A〈↑z | + 1

2
| ↓z〉A A〈↓z |, (2.104)

this density matrix could arise from an entangled bipartite pure state |ψ〉AB

with the Schmidt decomposition

|ψ〉AB =
1√
2

(| ↑z〉A| ↑z〉B + | ↓z〉A| ↓z〉B) . (2.105)
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Therefore, the ensemble interpretation of ρA in which either | ↑z〉A or | ↓z〉A
is prepared (each with probability p = 1

2
) can be realized by performing a

measurement of qubit B. We measure qubit B in the {| ↑z〉B , | ↓z〉B} basis;
if the result | ↑z〉B is obtained, we have prepared | ↑z〉A, and if the result
| ↓7〉B is obtained, we have prepared | ↓z〉A.

But as we have already noted, in this case, because ρA has degenerate
eigenvalues, the Schmidt basis is not unique. We can apply simultaneous
unitary transformations to qubits A and B (actually, if we apply U to A

we must apply U∗ to B) without modifying the bipartite pure state |ψ〉AB .
Therefore, for any unit 3-vector n̂, |ψ〉AB has a Schmidt decomposition of the
form

|ψ〉AB =
1√
2

(| ↑n̂〉A| ↑n̂′〉B + | ↓n̂〉A| ↓n̂′〉B) . (2.106)

We see that by measuring qubit B in a suitable basis, we can realize any

interpretation of ρA as an ensemble of two pure states.
Bright students, upon learning of this property, are sometimes inspired

to suggest a mechanism for faster-than-light communication. Many copies of
|ψ〉AB are prepared. Alice takes all of the A qubits to the Andromeda galaxy
and Bob keeps all of the B qubits on earth. When Bob wants to send a one-
bit message to Alice, he chooses to measure either σ1 or σ3 for all his spins,
thus preparing Alice’s spins in either the {| ↑z〉A, | ↓z〉A} or {| ↑x〉A, | ↓x〉A}
ensembles.1 To read the message, Alice immediately measures her spins to
see which ensemble has been prepared.

But exceptionally bright students (or students who heard the previous
lecture) can see the flaw in this scheme. Though the two preparation meth-
ods are surely different, both ensembles are described by precisely the same
density matrix ρA. Thus, there is no conceivable measurement Alice can
make that will distinguish the two ensembles, and no way for Alice to tell
what action Bob performed. The “message” is unreadable.

Why, then, do we confidently state that “the two preparation methods
are surely different?” To qualm any doubts about that, imagine that Bob
either (1) measures all of his spins along the ẑ-axis, or (2) measures all of his
spins along the x̂-axis, and then calls Alice on the intergalactic telephone. He
does not tell Alice whether he did (1) or (2), but he does tell her the results of
all his measurements: “the first spin was up, the second was down,” etc. Now

1
U is real in this case, so U = U

∗ and n̂ = n̂
′.
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Alice performs either (1) or (2) on her spins. If both Alice and Bob measured
along the same axis, Alice will find that every single one of her measurement
outcomes agrees with what Bob found. But if Alice and Bob measured along
different (orthogonal) axes, then Alice will find no correlation between her
results and Bob’s. About half of her measurements agree with Bob’s and
about half disagree. If Bob promises to do either (1) or (2), and assuming no
preparation or measurement errors, then Alice will know that Bob’s action
was different than hers (even though Bob never told her this information)
as soon as one of her measurements disagrees with what Bob found. If all
their measurements agree, then if many spins are measured, Alice will have
very high statistical confidence that she and Bob measured along the same
axis. (Even with occasional measurement errors, the statistical test will still
be highly reliable if the error rate is low enough.) So Alice does have a
way to distinguish Bob’s two preparation methods, but in this case there is
certainly no faster-than-light communication, because Alice had to receive
Bob’s phone call before she could perform her test.

2.5.4 Quantum erasure

We had said that the density matrix ρA = 1

2
1 describes a spin in an inco-

herent superposition of the pure states | ↑z〉A and | ↓z〉A. This was to be
distinguished from coherent superpositions of these states, such as

| ↑x, ↓x〉 =
1

2
(| ↑z〉 ± | ↓z〉) ; (2.107)

in the case of a coherent superposition, the relative phase of the two states
has observable consequences (distinguishes | ↑x〉 from | ↓x〉). In the case of an
incoherent superposition, the relative phase is completely unobservable. The
superposition becomes incoherent if spin A becomes entangled with another
spin B, and spin B is inaccessible.

Heuristically, the states | ↑z〉A and | ↓z〉A can interfere (the relative phase
of these states can be observed) only if we have no information about whether
the spin state is | ↑z〉A or | ↓z〉A. More than that, interference can occur
only if there is in principle no possible way to find out whether the spin
is up or down along the z-axis. Entangling spin A with spin B destroys
interference, (causes spin A to decohere) because it is possible in principle
for us to determine if spin A is up or down along ẑ by performing a suitable
measurement of spin B.
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But we have now seen that the statement that entanglement causes de-
coherence requires a qualification. Suppose that Bob measures spin B along
the x̂-axis, obtaining either the result | ↑x〉B or | ↓x〉B , and that he sends his
measurement result to Alice. Now Alice’s spin is a pure state (either | ↑x〉A
or | ↓x〉A) and in fact a coherent superposition of | ↑z〉A and | ↓z〉A. We have
managed to recover the purity of Alice’s spin before the jaws of decoherence
could close!

Suppose that Bob allows his spin to pass through a Stern–Gerlach ap-
paratus oriented along the ẑ-axis. Well, of course, Alice’s spin can’t behave
like a coherent superposition of | ↑z〉A and | ↓z〉A; all Bob has to do is look
to see which way his spin moved, and he will know whether Alice’s spin is
up or down along ẑ. But suppose that Bob does not look. Instead, he care-
fully refocuses the two beams without maintaining any record of whether his
spin moved up or down, and then allows the spin to pass through a second
Stern–Gerlach apparatus oriented along the x̂-axis. This time he looks, and
communicates the result of his σ1 measurement to Alice. Now the coherence
of Alice’s spin has been restored!

This situation has been called a quantum eraser. Entangling the two
spins creates a “measurement situation” in which the coherence of | ↑z〉A and
| ↓z〉A is lost because we can find out if spin A is up or down along ẑ by
observing spin B. But when we measure spin B along x̂, this information
is “erased.” Whether the result is | ↑x〉B or | ↓x〉B does not tell us anything
about whether spin A is up or down along ẑ, because Bob has been careful
not to retain the “which way” information that he might have acquired by
looking at the first Stern–Gerlach apparatus.2 Therefore, it is possible again
for spin A to behave like a coherent superposition of | ↑z〉A and | ↓z〉A (and
it does, after Alice hears about Bob’s result).

We can best understand the quantum eraser from the ensemble viewpoint.
Alice has many spins selected from an ensemble described by ρA = 1

2
1, and

there is no way for her to observe interference between | ↑z〉A and | ↓z〉A.
When Bob makes his measurement along x̂, a particular preparation of the
ensemble is realized. However, this has no effect that Alice can perceive –
her spin is still described by ρA = 1

2
1 as before. But, when Alice receives

Bob’s phone call, she can select a subensemble of her spins that are all in
the pure state | ↑x〉A. The information that Bob sends allows Alice to distill

2One often says that the “welcher weg” information has been erased, because it sounds
more sophisticated in German.
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purity from a maximally mixed state.

Another wrinkle on the quantum eraser is sometimes called delayed choice.
This just means that the situation we have described is really completely sym-
metric between Alice and Bob, so it can’t make any difference who measures
first. (Indeed, if Alice’s and Bob’s measurements are spacelike separated
events, there is no invariant meaning to which came first; it depends on the
frame of reference of the observer.) Alice could measure all of her spins to-
day (say along x̂) before Bob has made his mind up how he will measure his
spins. Next week, Bob can decide to “prepare” Alice’s spins in the states
| ↑n̂〉A and | ↓n̂〉A (that is the “delayed choice”). He then tells Alice which
were the | ↑n̂〉A spins, and she can check her measurement record to verify
that

〈σ1〉n̂ = n̂ · x̂ . (2.108)

The results are the same, irrespective of whether Bob “prepares” the spins
before or after Alice measures them.

We have claimed that the density matrix ρA provides a complete physical
description of the state of subsystem A, because it characterizes all possible
measurements that can be performed on A. One sometimes hears the objec-
tion3 that the quantum eraser phenomenon demonstrates otherwise. Since
the information received from Bob enables Alice to recover a pure state from
the mixture, how can we hold that everything Alice can know about A is
encoded in ρA?

I don’t think this is the right conclusion. Rather, I would say that quan-
tum erasure provides yet another opportunity to recite our mantra: “Infor-
mation is physical.” The state ρA of system A is not the same thing as ρA

accompanied by the information that Alice has received from Bob. This in-
formation (which attaches labels to the subensembles) changes the physical
description. One way to say this mathematically is that we should include
Alice’s “state of knowledge” in our description. An ensemble of spins for
which Alice has no information about whether each spin is up or down is a
different physical state than an ensemble in which Alice knows which spins
are up and which are down.4

3For example, from Roger Penrose in Shadows of the Mind.
4This “state of knowledge” need not really be the state of a human mind; any (inani-

mate) record that labels the subensemble will suffice.
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2.5.5 The GHJW theorem

So far, we have considered the quantum eraser only in the context of a single
qubit, described by an ensemble of equally probable mutually orthogonal
states, (i.e., ρA = 1

2
1). The discussion can be considerably generalized.

We have already seen that a mixed state of any quantum system can be
realized as an ensemble of pure states in an infinite number of different ways.
For a density matrix ρA, consider one such realization:

ρA =
∑

i

pi|ϕi〉A A〈ϕi|,
∑

pi = 1. (2.109)

Here the states {|ϕi〉A} are all normalized vectors, but we do not assume
that they are mutually orthogonal. Nevertheless, ρA can be realized as an
ensemble, in which each pure state |ϕi〉A A〈ϕi| occurs with probability pi.

Of course, for any such ρA, we can construct a “purification” of ρA, a
bipartite pure state |Φ1〉AB that yields ρA when we perform a partial trace
over HB. One such purification is of the form

|Φ1〉AB =
∑

i

√
pi|ϕi〉A|αi〉B , (2.110)

where the vectors |αi〉B ∈ HB are mutually orthogonal and normalized,

B〈αi|αj〉B = δij. (2.111)

Clearly, then,

trB (|Φ1〉AB AB〈Φ1|) = ρA. (2.112)

Furthermore, we can imagine performing an orthogonal measurement in sys-
tem B that projects onto the |αi〉B basis.5 The outcome |αi〉B will occur with
probability pi, and will prepare the pure state |ϕi〉A A〈ϕi| of system A. Thus,
given the purification |Φ〉AB of ρA, there is a measurement we can perform
in system B that realizes the |ϕi〉A ensemble interpretation of ρA. When the
measurement outcome in B is known, we have successfully extracted one of
the pure states |ϕi〉A from the mixture ρA.

What we have just described is a generalization of preparing | ↑z〉A by
measuring spin B along ẑ (in our discussion of two entangled qubits). But

5The |αi〉B ’s might not span HB , but in the state |Φ〉AB, measurement outcomes
orthogonal to all the |αi〉B ’s never occur.
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to generalize the notion of a quantum eraser, we wish to see that in the state
|Φ1〉AB , we can realize a different ensemble interpretation of ρA by performing
a different measurement of B. So let

ρA =
∑

µ

qµ|ψµ〉A A〈ψµ|, (2.113)

be another realization of the same density matrix ρA as an ensemble of pure
states. For this ensemble as well, there is a corresponding purification

|Φ2〉AB =
∑

µ

√
qµ|ψµ〉A ⊗ |βµ〉B , (2.114)

where again the {|βµ〉B ’s} are orthonormal vectors in HB. So in the state
|Φ2〉AB , we can realize the ensemble by performing a measurement in HB

that projects onto the {|βµ〉B} basis.
Now, how are |Φ1〉AB and |Φ2〉AB related? In fact, we can easily show

that

|Φ1〉AB = (1A ⊗ UB) |Φ2〉AB ; (2.115)

the two states differ by a unitary change of basis acting in HB alone, or

|Φ1〉AB =
∑

µ

√
qµ|ψµ〉A|γµ〉B , (2.116)

where

|γµ〉B = UB|βµ〉B , (2.117)

is yet another orthonormal basis for HB . We see, then, that there is a single

purification |Φ1〉AB of ρA, such that we can realize either the {|ϕi〉A} ensemble
or {|ψµ〉A} ensemble by choosing to measure the appropriate observable in
system B!

Similarly, we may consider many ensembles that all realize ρA, where
the maximum number of pure states appearing in any of the ensembles is
n. Then we may choose a Hilbert space HB of dimension n, and a pure
state |Φ〉AB ∈ HA ⊗HB, such that any one of the ensembles can be realized
by measuring a suitable observable of B. This is the GHJW 6 theorem. It
expresses the quantum eraser phenomenon in its most general form.

6For Gisin and Hughston, Jozsa, and Wootters.
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In fact, the GHJW theorem is an almost trivial corollary to the Schmidt
decomposition. Both |Φ1〉AB and |Φ2〉AB have a Schmidt decomposition, and
because both yield the same ρA when we take the partial trace over B, these
decompositions must have the form

|Φ1〉AB =
∑

k

√

λk|k〉A|k′1〉B ,

|Φ2〉AB =
∑

k

√

λk|k〉A|k′2〉B , (2.118)

where the λk’s are the eigenvalues of ρA and the |k〉A’s are the corresponding
eigenvectors. But since {|k′

1
〉B} and {|k′

2
〉B} are both orthonormal bases for

HB, there is a unitary UB such that

|k′
1
〉B = UB |k′2〉B, (2.119)

from which eq. (2.115) immediately follows.
In the ensemble of pure states described by Eq. (2.109), we would say that

the pure states |ϕi〉A are superposed incoherently — an observer in system
A cannot detect the relative phases of these states. Heuristically, the reason
that these states cannot interfere is that it is possible in principle to find
out which representative of the ensemble is actually realized by performing a
measurement in system B, a projection onto the orthonormal basis {|αi〉B}.
However, by projecting onto the {|γµ〉B} basis instead, and relaying the in-
formation about the measurement outcome to system A, we can extract one
of the pure states |ψµ〉A from the ensemble, even though this state may be a
coherent superposition of the |ϕi〉A’s. In effect, measuring B in the {|γµ〉B}
basis “erases” the “welcher weg” information (whether the state of A is |ϕi〉A
or |ϕj〉A). In this sense, the GHJW theorem characterizes the general quan-
tum eraser. The moral, once again, is that information is physical — the
information acquired by measuring system B, when relayed to A, changes
the physical description of a state of A.

2.6 Summary

Axioms. The arena of quantum mechanics is a Hilbert space H. The
fundamental assumptions are:

(1) A state is a ray in H.



38 CHAPTER 2. FOUNDATIONS I: STATES AND ENSEMBLES

(2) An observable is a self-adjoint operator on H.

(3) A measurement is an orthogonal projection.

(4) Time evolution is unitary.

Density operator. But if we confine our attention to only a portion of
a larger quantum system, assumptions (1)-(4) need not be satisfied. In par-
ticular, a quantum state is described not by a ray, but by a density operator
ρ, a nonnegative operator with unit trace. The density operator is pure (and
the state can be described by a ray) if ρ2 = ρ; otherwise, the state is mixed.
An observable M has expectation value tr(Mρ) in this state.

Qubit. A quantum system with a two-dimensional Hilbert space is called
a qubit. The general density matrix of a qubit is

ρ(~P ) =
1

2
(1 + ~P · ~σ) (2.120)

where ~P is a three-component vector of length |~P | ≤ 1. Pure states have

|~P | = 1.
Schmidt decomposition. For any quantum system divided into two

parts A and B (a bipartite system), the Hilbert space is a tensor product HA⊕
HB . For any pure state |ψ〉AB of a bipartite system, there are orthonormal
bases {|i〉A} for HA and {|i′〉B} for HB such that

|ψ〉AB =
∑

i

√
pi|i〉A|i′〉B ; (2.121)

Eq. (2.121) is called the Schmidt decomposition of |ψ〉AB. In a bipartite pure
state, subsystems A and B separately are described by density operators ρA

and ρB ; it follows from eq. (2.121) that ρA and ρB have the same nonvanish-
ing eigenvalues (the pi’s). The number of nonvanishing eigenvalues is called
the Schmidt number of |ψ〉AB . A bipartite pure state is said to be entangled

if its Schmidt number is greater than one.
Ensembles. The density operators on a Hilbert space form a convex set,

and the pure states are the extremal points of the set. A mixed state of a
system A can be prepared as an ensemble of pure states in many different
ways, all of which are experimentally indistinguishable if we observe system
A alone. Given any mixed state ρA of system A, any preparation of ρA

as an ensemble of pure states can be realized in principle by performing a
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measurement in another system B with which A is entangled. In fact given
many such preparations of ρA, there is a single entangled state of A and
B such that any one of these preparations can be realized by measuring a
suitable observable in B (the GHJW theorem). By measuring in system B

and reporting the measurement outcome to system A, we can extract from
the mixture a pure state chosen from one of the ensembles.

2.7 Exercises

2.1 Fidelity of a random guess

A single qubit (spin-1

2
object) is in an unknown pure state |ψ〉, se-

lected at random from an ensemble uniformly distributed over the Bloch
sphere. We guess at random that the state is |φ〉. On the average, what
is the fidelity F of our guess, defined by

F ≡ |〈φ|ψ〉|2 . (2.122)

2.2 Fidelity after measurement

After randomly selecting a one-qubit pure state as in the previous prob-
lem, we perform a measurement of the spin along the ẑ-axis. This
measurement prepares a state described by the density matrix

ρ = P↑〈ψ|P↑|ψ〉 + P↓〈ψ|P↓|ψ〉 (2.123)

(where P↑,↓ denote the projections onto the spin-up and spin-down
states along the ẑ-axis). On the average, with what fidelity

F ≡ 〈ψ|ρ|ψ〉 (2.124)

does this density matrix represent the initial state |ψ〉? (The improve-
ment in F compared to the answer to the previous problem is a crude
measure of how much we learned by making the measurement.)

2.3 Schmidt decomposition

For the two-qubit state

Φ =
1√
2
| ↑〉A

(

1

2
| ↑〉B +

√
3

2
| ↓〉B

)

+
1√
2
| ↓〉A

(
√

3

2
| ↑〉B +

1

2
| ↓〉B

)

,

(2.125)
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a. Compute ρA = trB (|Φ〉〈Φ|) and ρB = trA (|Φ〉〈Φ|).
b. Find the Schmidt decomposition of |Φ〉.

2.4 Tripartite pure state

Is there a Schmidt decomposition for an arbitrary tripartite pure state?
That is if |ψ〉ABC is an arbitrary vector in HA⊗HB ⊗HC, can we find
orthonormal bases {|i〉A}, {|i〉B}, {|i〉C} such that

|ψ〉ABC =
∑

i

√
pi|i〉A ⊗ |i〉B ⊗ |i〉C ? (2.126)

Explain your answer.

2.5 Quantum correlations in a mixed state

Consider a density matrix for two qubits

ρ =
1

8
1 +

1

2
|ψ−〉〈ψ−| , (2.127)

where 1 denotes the 4× 4 unit matrix, and

|ψ−〉 =
1√
2

(| ↑〉| ↓〉 − | ↓〉| ↑〉) . (2.128)

Suppose we measure the first spin along the n̂ axis and the second spin
along the m̂ axis, where n̂ · m̂ = cos θ. What is the probability that
both spins are “spin-up” along their respective axes?


