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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 1: Mathematical preliminaries (part 1)

Welcome to CS 766/QIC 820 Theory of Quantum Information. The goal of this lecture, as well as
the next, is to present a brief overview of some of the basic mathematical concepts and tools that
will be important in subsequent lectures of the course. In this lecture we will discuss various
facts about linear algebra and analysis in finite-dimensional vector spaces.

1.1 Complex Euclidean spaces

We begin with the simple notion of a complex Euclidean space. As will be discussed later (in
Lecture 3), we associate a complex Euclidean space with every discrete and finite physical system;
and fundamental notions such as states and measurements of systems are represented in linear-
algebraic terms that refer to these spaces.

1.1.1 Definition of complex Euclidean spaces

For any finite, nonempty set Σ, we denote by CΣ the set of all functions from Σ to the complex
numbers C. The collection CΣ forms a vector space of dimension |Σ| over the complex numbers
when addition and scalar multiplication are defined in the following standard way:

1. Addition: given u, v ∈ CΣ, the vector u + v ∈ CΣ is defined by the equation (u + v)(a) =
u(a) + v(a) for all a ∈ Σ.

2. Scalar multiplication: given u ∈ CΣ and α ∈ C, the vector αu ∈ CΣ is defined by the equation
(αu)(a) = αu(a) for all a ∈ Σ.

Any vector space defined in this way for some choice of a finite, nonempty set Σ will be called a
complex Euclidean space.

Complex Euclidean spaces will generally be denoted by scripted capital letters near the end
of the alphabet, such asW , X , Y , and Z , when it is necessary or helpful to assign specific names
to them. Subsets of these spaces will also be denoted by scripted letters, and when possible our
convention will be to use letters near the beginning of the alphabet, such as A, B, and C, when
these subsets are not themselves necessarily vector spaces. Vectors will typically be denoted by
lowercase Roman letters, again near the end of the alphabet, such as u, v, w, x, y, and z.

In the case where Σ = {1, . . . , n} for some positive integer n, one typically writes Cn rather
than C{1,...,n}. For a given positive integer n, it is typical to view a vector u ∈ Cn as an n-tuple
u = (u1, . . . , un), or as a column vector of the form

u =


u1
u2
...

un

 .



The convention to write ui rather than u(i) in such expressions is simply a matter of typographic
appeal, and is avoided when it is not helpful or would lead to confusion, such as when vectors
are subscripted for another purpose.

It is, of course, the case that one could simply identify CΣ with Cn, for n = |Σ|, with respect
to any fixed choice of a bijection between Σ and {1, . . . , n}. If it is convenient to make this
simplifying assumption when proving facts about complex Euclidean spaces, we will do that; but
there is also a significant convenience to be found in allowing for arbitrary (finite and nonempty)
index sets, which is why we define complex Euclidean spaces in the way that we have.

1.1.2 Inner product and norms of vectors

The inner product 〈u, v〉 of vectors u, v ∈ CΣ is defined as

〈u, v〉 = ∑
a∈Σ

u(a) v(a).

It may be verified that the inner product satisfies the following properties:

1. Linearity in the second argument: 〈u, αv + βw〉 = α 〈u, v〉+ β 〈u, w〉 for all u, v, w ∈ CΣ and
α, β ∈ C.

2. Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ CΣ.

3. Positive definiteness: 〈u, u〉 ≥ 0 for all u ∈ CΣ, with 〈u, u〉 = 0 if and only if u = 0.

One typically refers to any function satisfying these three properties as an inner product, but
this is the only inner product for vectors in complex Euclidean spaces that is considered in this
course.

The Euclidean norm of a vector u ∈ CΣ is defined as

‖u‖ =
√
〈u, u〉 =

√
∑
a∈Σ
|u(a)|2.

The Euclidean norm satisfies the following properties, which are the defining properties of any
function that is called a norm:

1. Positive definiteness: ‖u‖ ≥ 0 for all u ∈ CΣ, with ‖u‖ = 0 if and only if u = 0.

2. Positive scalability: ‖αu‖ = |α| ‖u‖ for all u ∈ CΣ and α ∈ C.

3. The triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ CΣ.

The Euclidean norm corresponds to the special case p = 2 of the class of p-norms, defined for
each u ∈ CΣ as

‖u‖p =

(
∑
a∈Σ
|u(a)|p

)1/p

for 1 ≤ p < ∞, and
‖u‖∞ = max{|u(a)| : a ∈ Σ}.

The above three norm properties (positive definiteness, positive scalability, and the triangle in-
equality) hold for ‖·‖ replaced by ‖·‖p for any choice of p ∈ [1, ∞].

The Cauchy-Schwarz inequality states that

|〈u, v〉| ≤ ‖u‖ ‖v‖
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for all u, v ∈ CΣ, with equality if and only if u and v are linearly dependent. The Cauchy-Schwarz
inequality is generalized by Hölder’s inequality, which states that

|〈u, v〉| ≤ ‖u‖p ‖v‖q

for all u, v ∈ CΣ, provided p, q ∈ [1, ∞] satisfy 1
p +

1
q = 1 (with the interpretation 1

∞ = 0).

1.1.3 Orthogonal and orthonormal sets

A collection of vectors
{ua : a ∈ Γ} ⊂ CΣ,

indexed by a given finite, nonempty set Γ, is said to be an orthogonal set if it holds that 〈ua, ub〉 = 0
for all choices of a, b ∈ Γ with a 6= b. Such a set is necessarily linearly independent, provided it
does not include the zero vector.

An orthogonal set of unit vectors is called an orthonormal set, and when such a set forms a
basis it is called an orthonormal basis. It holds that an orthonormal set {ua : a ∈ Γ} ⊆ CΣ is an
orthonormal basis of CΣ if and only if |Γ| = |Σ|.

The standard basis of CΣ is the orthonormal basis given by {ea : a ∈ Σ}, where

ea(b) =
{

1 if a = b
0 if a 6= b

for all a, b ∈ Σ.

Remark 1.1. When using the Dirac notation, one writes |a〉 rather than ea when referring to
standard basis elements; and for arbitrary vectors one writes |u〉 rather than u (although φ, ψ,
and other Greek letters are much more commonly used to name vectors). We will generally not
use Dirac notation in this course, because it tends to complicate the sorts of expressions we will
encounter. One exception is the use of Dirac notation for the presentation of simple examples,
where it seems to increase clarity.

1.1.4 Real Euclidean spaces

Real Euclidean spaces are defined in a similar way to complex Euclidean spaces, except that the
field of complex numbers C is replaced by the field of real numbers R in each of the definitions
and concepts in which it arises. Naturally, complex conjugation acts trivially in the real case, and
may therefore be omitted.

Although complex Euclidean spaces will play a much more prominent role than real Eu-
clidean spaces in this course, we will restrict our attention to real Euclidean spaces in the context
of convexity theory. This will not limit the applicability of these concepts: they will generally
be applied to the real Euclidean space consisting of all Hermitian operators acting on a given
complex Euclidean space. Such spaces will be discussed later in this lecture.

1.2 Linear operators

Given complex Euclidean spaces X and Y , one writes L (X ,Y) to refer to the collection of all
linear mappings of the form

A : X → Y . (1.1)
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Such mappings will be referred to as linear operators, or simply operators, from X to Y in this
course. Parentheses are typically omitted when expressing the action of linear operators on
vectors when there is little chance of confusion in doing so. For instance, one typically writes Au
rather than A(u) to denote the vector resulting from the application of an operator A ∈ L (X ,Y)
to a vector u ∈ X .

The set L (X ,Y) forms a vector space, where addition and scalar multiplication are defined
as follows:

1. Addition: given A, B ∈ L (X ,Y), the operator A + B ∈ L (X ,Y) is defined by the equation

(A + B)u = Au + Bu

for all u ∈ X .

2. Scalar multiplication: given A ∈ L (X ,Y) and α ∈ C, the operator αA ∈ L (X ,Y) is defined
by the equation

(αA)u = α Au

for all u ∈ X .

The dimension of this vector space is given by dim(L (X ,Y)) = dim(X )dim(Y).
The kernel of an operator A ∈ L (X ,Y) is the subspace of X defined as

ker(A) = {u ∈ X : Au = 0},

while the image of A is the subspace of Y defined as

im(A) = {Au : u ∈ X}.

The rank of A, denoted rank(A), is the dimension of the subspace im(A). For every operator
A ∈ L (X ,Y) it holds that

dim(ker(A)) + rank(A) = dim(X ).

1.2.1 Matrices and their association with operators

A matrix over the complex numbers is a mapping of the form

M : Γ× Σ→ C

for finite, nonempty sets Σ and Γ. The collection of all matrices of this form is denotedMΓ,Σ(C).
For a ∈ Γ and b ∈ Σ the value M(a, b) is called the (a, b) entry of M, and the elements a and b
are referred to as indices in this context: a is the row index and b is the column index of the entry
M(a, b).

The set MΓ,Σ(C) is a vector space with respect to vector addition and scalar multiplication
defined in the following way:

1. Addition: given M, K ∈ MΓ,Σ(C), the matrix M + K ∈ MΓ,Σ(C) is defined by the equation

(M + K)(a, b) = M(a, b) + K(a, b)

for all a ∈ Γ and b ∈ Σ.

4



2. Scalar multiplication: given M ∈ MΓ,Σ(C) and α ∈ C, the matrix αM ∈ MΓ,Σ(C) is defined
by the equation

(αM)(a, b) = αM(a, b)

for all a ∈ Γ and b ∈ Σ.

As a vector space,MΓ,Σ(C) is therefore equivalent to the complex Euclidean space CΓ×Σ.
Multiplication of matrices is defined in the following standard way. Given matrices M ∈

MΓ,∆(C) and K ∈ M∆,Σ(C), for finite nonempty sets Γ, ∆, and Σ, the matrix MK ∈ MΓ,Σ(C) is
defined as

(MK)(a, b) = ∑
c∈∆

M(a, c)K(c, b)

for all a ∈ Γ and b ∈ Σ.
Linear operators from one complex Euclidean space to another are naturally represented by

matrices. For X = CΣ and Y = CΓ, one associates with each operator A ∈ L (X ,Y) a matrix
MA ∈ MΓ,Σ(C) defined as

MA(a, b) = 〈ea, Aeb〉
for each a ∈ Γ and b ∈ Σ. Conversely, to each matrix M ∈ MΓ,Σ(C) one associates a linear
operator AM ∈ L (X ,Y) defined by

(AMu)(a) = ∑
b∈Σ

M(a, b)u(b) (1.2)

for each a ∈ Γ. The mappings A 7→ MA and M 7→ AM are linear and inverse to one other,
and compositions of linear operators are represented by matrix multiplications: MAB = MA MB
whenever A ∈ L (Y ,Z), B ∈ L (X ,Y) and X , Y , and Z are complex Euclidean spaces. Equiv-
alently, AMK = AM AK for any choice of matrices M ∈ MΓ,∆(C) and K ∈ M∆,Σ(C) for finite
nonempty sets Σ, ∆, and Γ.

This correspondence between linear operators and matrices will hereafter not be mentioned
explicitly in these notes: we will freely switch between speaking of operators and speaking of
matrices, depending on which is more suitable within the context at hand. A preference will
generally be given to speak of operators, and to implicitly associate a given operator’s matrix
representation with it as necessary. More specifically, for a given choice of complex Euclidean
spaces X = CΣ and Y ∈ CΓ, and for a given operator A ∈ L (X ,Y), the matrix MA ∈ MΓ,Σ(C)
will simply be denoted A and its (a, b)-entry as A(a, b).

1.2.2 The entry-wise conjugate, transpose, and adjoint

For every operator A ∈ L (X ,Y), for complex Euclidean spaces X = CΣ and Y = CΓ, one defines
three additional operators,

A ∈ L (X ,Y) and AT, A∗ ∈ L (Y ,X ) ,

as follows:

1. The operator A ∈ L (X ,Y) is the operator whose matrix representation has entries that are
complex conjugates to the matrix representation of A:

A(a, b) = A(a, b)

for all a ∈ Γ and b ∈ Σ.
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2. The operator AT ∈ L (Y ,X ) is the operator whose matrix representation is obtained by trans-
posing the matrix representation of A:

AT(b, a) = A(a, b)

for all a ∈ Γ and b ∈ Σ.

3. The operator A∗ ∈ L (X ,Y) is the unique operator that satisfies the equation

〈v, Au〉 = 〈A∗v, u〉

for all u ∈ X and v ∈ Y . It may be obtained by performing both of the operations described
in items 1 and 2:

A∗ = AT.

The operators A, AT, and A∗ will be called the entry-wise conjugate, transpose, and adjoint operators
to A, respectively.

The mappings A 7→ A and A 7→ A∗ are conjugate linear and the mapping A 7→ AT is linear:

αA + βB = α A + β B,

(αA + βB)∗ = αA∗ + βB∗,
(αA + βB)T = αAT + βBT,

for all A, B ∈ L (X ,Y) and α, β ∈ C. These mappings are bijections, each being its own inverse.
Every vector u ∈ X in a complex Euclidean space X may be identified with the linear operator

in L (C,X ) that maps α 7→ αu. Through this identification the linear mappings u ∈ L (C,X ) and
uT, u∗ ∈ L (X , C) are defined as above. As an element of X , the vector u is of course simply the
entry-wise complex conjugate of u, i.e., if X = CΣ then

u(a) = u(a)

for every a ∈ Σ. For each vector u ∈ X the mapping u∗ ∈ L (X , C) satisfies u∗v = 〈u, v〉 for all
v ∈ X . The space of linear operators L (X , C) is called the dual space of X , and is often denoted
by X ∗ rather than L (X , C).

Assume that X = CΣ and Y = CΓ. For each choice of a ∈ Γ and b ∈ Σ, the operator
Ea,b ∈ L (X ,Y) is defined as Ea,b = eae∗b , or equivalently

Ea,b(c, d) =
{

1 if (a = c) and (b = d)
0 if (a 6= c) or (b 6= d).

The set {Ea,b : a ∈ Γ, b ∈ Σ} is a basis of L (X ,Y), and will be called the standard basis of this
space.

1.2.3 Direct sums

The direct sum of n complex Euclidean spaces X1 = CΣ1 , . . . ,Xn = CΣn is the complex Euclidean
space

X1 ⊕ · · · ⊕ Xn = C∆,

where
∆ = {(1, a1) : a1 ∈ Σ1} ∪ · · · ∪ {(n, an) : an ∈ Σn}.
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One may view ∆ as the disjoint union of Σ1, . . . , Σn.
For vectors u1 ∈ X1, . . . , un ∈ Xn, the notation u1 ⊕ · · · ⊕ un ∈ X1 ⊕ · · · ⊕ Xn refers to the

vector for which
(u1 ⊕ · · · ⊕ un)(j, aj) = uj(aj),

for each j ∈ {1, . . . , n} and aj ∈ Σj. If each vector uj is viewed as a column vector of dimension∣∣Σj
∣∣, the vector u1 ⊕ · · · ⊕ un may be viewed as a (block) column vectoru1

...
un


having dimension |Σ1 |+ · · ·+ |Σn |. Every element of the space X1 ⊕ · · · ⊕ Xn can be written as
u1 ⊕ · · · ⊕ un for a unique choice of vectors u1, . . . , un. The following identities hold for every
choice of u1, v1 ∈ X1, . . . , un, vn ∈ Xn, and α ∈ C:

u1 ⊕ · · · ⊕ un + v1 ⊕ · · · ⊕ vn = (u1 + v1)⊕ · · · ⊕ (un + vn)

α(u1 ⊕ · · · ⊕ un) = (αu1)⊕ · · · ⊕ (αun)

〈u1 ⊕ · · · ⊕ un, v1 ⊕ · · · ⊕ vn〉 = 〈u1, v1〉+ · · ·+ 〈un, vn〉 .

Now suppose that X1 = CΣ1 , . . . , Xn = CΣn and Y1 = CΓ1 , . . . , Ym = CΓm for positive integers
n and m, and finite, nonempty sets Σ1, . . . , Σn and Γ1, . . . , Γm. The matrix associated with a given
operators of the form A ∈ L (X1 ⊕ · · · ⊕ Xn,Y1 ⊕ · · · ⊕ Ym) may be identified with a block matrix

A =

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

 ,

where Aj,k ∈ L
(
Xk,Yj

)
for each j ∈ {1, . . . , m} and k ∈ {1, . . . , n}. These are the uniquely

determined operators for which it holds that

A(u1 ⊕ · · · ⊕ un) = v1 ⊕ · · · ⊕ vm,

for v1 ∈ Y1, . . . , vm ∈ Ym defined as

vj = (Aj,1u1) + · · ·+ (Aj,nun)

for each j ∈ {1, . . . , m}.

1.2.4 Tensor products

The tensor product of X1 = CΣ1 , . . . ,Xn = CΣn is the complex Euclidean space

X1 ⊗ · · · ⊗ Xn = CΣ1×···×Σn .

For vectors u1 ∈ X1, . . . , un ∈ Xn, the vector u1 ⊗ · · · ⊗ un ∈ X1 ⊗ · · · ⊗ Xn is defined as

(u1 ⊗ · · · ⊗ un)(a1, . . . , an) = u1(a1) · · · un(an).
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Vectors of the form u1⊗ · · · ⊗ un are called elementary tensors. They span the space X1⊗ · · · ⊗ Xn,
but not every element of X1 ⊗ · · · ⊗ Xn is an elementary tensor.

The following identities hold for every choice of u1, v1 ∈ X1, . . . , un, vn ∈ Xn, α ∈ C, and
k ∈ {1, . . . , n}:

u1 ⊗ · · · ⊗ uk−1 ⊗ (uk + vk)⊗ uk+1 ⊗ · · · ⊗ un

= u1 ⊗ · · · ⊗ uk−1 ⊗ uk ⊗ uk+1 ⊗ · · · ⊗ un

+ u1 ⊗ · · · ⊗ uk−1 ⊗ vk ⊗ uk+1 ⊗ · · · ⊗ un

α(u1 ⊗ · · · ⊗ un) = (αu1)⊗ u2 ⊗ · · · ⊗ un = · · · = u1 ⊗ u2 ⊗ · · · ⊗ un−1 ⊗ (αun)

〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉 = 〈u1, v1〉 · · · 〈un, vn〉 .

It is worthwhile to note that the definition of tensor products just presented is a concrete
definition that is sometimes known as the Kronecker product. In contrast, tensor products are
often defined in a more abstract way that stresses their close connection to multilinear functions.
There is valuable intuition to be drawn from this connection, but for our purposes it will suffice
that we take note of the following fact.

Proposition 1.2. Let X1, . . . ,Xn and Y be complex Euclidean spaces, and let φ : X1 × · · · × Xn → Y
be a multilinear function (i.e., a function for which the mapping uj 7→ φ(u1, . . . , un) is linear for all
j ∈ {1, . . . , n} and all choices of u1, . . . , uj−1, uj+1, . . . , un. It holds that there exists an operator A ∈
L (X1 ⊗ · · · ⊗ Xn,Y) for which

φ(u1, . . . , un) = A(u1 ⊗ · · · ⊗ un).

1.3 Algebras of operators

For every complex Euclidean space X , the notation L (X ) is understood to be a shorthand for
L (X ,X ). The space L (X ) has special algebraic properties that are worthy of note. In particular,
L (X ) is an associative algebra; it is a vector space, and the composition of operators is associative
and bilinear:

(AB)C = A(BC),
C(αA + βB) = αCA + βCB,
(αA + βB)C = αAC + βBC,

for every choice of A, B, C ∈ L (X ) and α, β ∈ C.
The identity operator 1 ∈ L (X ) is the operator defined as 1u = u for all u ∈ X , and is

denoted 1X when it is helpful to indicate explicitly that it acts on X . An operator A ∈ L (X ) is
invertible if there exists an operator B ∈ L (X ) such that BA = 1. When such an operator B exists
it is necessarily unique, also satisfies AB = 1, and is denoted A−1. The collection of all invertible
operators in L (X ) is denoted GL(X ), and is called the general linear group of X .

For every pair of operators A, B ∈ L (X ), the Lie bracket [A, B] ∈ L (X ) is defined as [A, B] =
AB− BA.

8



1.3.1 Trace and determinant

Operators in the algebra L (X ) are represented by square matrices, which means that their rows
and columns are indexed by the same set. We define two important functions from L (X ) to C,
the trace and the determinant, based on matrix representations of operators as follows:

1. The trace of an operator A ∈ L (X ), for X = CΣ, is defined as

Tr(A) = ∑
a∈Σ

A(a, a).

2. The determinant of an operator A ∈ L (X ), for X = CΣ, is defined by the equation

Det(A) = ∑
π∈Sym(Σ)

sign(π) ∏
a∈Σ

A(a, π(a)),

where Sym(Σ) is the group of permutations on the set Σ and sign(π) is the sign of the per-
mutation π (which is +1 if π is expressible as a product of an even number of transpositions
of elements of the set Σ, and −1 if π is expressible as a product of an odd number of trans-
positions).

The trace is a linear function, and possesses the property that

Tr(AB) = Tr(BA)

for any choice of operators A ∈ L (X ,Y) and B ∈ L (Y ,X ), for arbitrary complex Euclidean
spaces X and Y .

By means of the trace, one defines an inner product on the space L (X ,Y), for any choice of
complex Euclidean spaces X and Y , as

〈A, B〉 = Tr (A∗B)

for all A, B ∈ L (X ,Y). It may be verified that this inner product satisfies the requisite properties
of being an inner product:

1. Linearity in the second argument:

〈A, αB + βC〉 = α 〈A, B〉+ β 〈A, C〉

for all A, B, C ∈ L (X ,Y) and α, β ∈ C.

2. Conjugate symmetry: 〈A, B〉 = 〈B, A〉 for all A, B ∈ L (X ,Y).
3. Positive definiteness: 〈A, A〉 ≥ 0 for all A ∈ L (X ,Y), with 〈A, A〉 = 0 if and only if A = 0.

This inner product is sometimes called the Hilbert–Schmidt inner product.
The determinant is multiplicative,

Det(AB) = Det(A)Det(B)

for all A, B ∈ L (X ), and its value is nonzero if and only if its argument is invertible.
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1.3.2 Eigenvectors and eigenvalues

If A ∈ L (X ) and u ∈ X is a nonzero vector such that Au = λu for some choice of λ ∈ C, then u
is said to be an eigenvector of A and λ is its corresponding eigenvalue.

For every operator A ∈ L (X ), one has that

pA(z) = Det(z1X − A)

is a monic polynomial in z having degree dim(X ). This polynomial is the characteristic polynomial
of A. The spectrum of A, denoted spec(A), is the multiset containing the roots of the polynomial
pA(z), with each root appearing a number of times equal to its multiplicity. As pA is monic, it
holds that

pA(z) = ∏
λ∈spec(A)

(z− λ)

Each element λ ∈ spec(A) is an eigenvalue of A.
The trace and determinant may be expressed in terms of the spectrum as follows:

Tr(A) = ∑
λ∈spec(A)

λ

and
Det(A) = ∏

λ∈spec(A)

λ

for every A ∈ L (X ).

1.4 Important classes of operators

A collection of classes of operators that have importance in quantum information are discussed
in this section.

1.4.1 Normal operators

An operator A ∈ L (X ) is normal if and only if it commutes with its adjoint: [A, A∗] = 0, or
equivalently AA∗ = A∗A. The importance of this collection of operators, for the purposes of this
course, is mainly derived from two facts: (1) the normal operators are those for which the spectral
theorem (discussed later in Section 1.5) holds, and (2) most of the special classes of operators that
are discussed below are subsets of the normal operators.

1.4.2 Hermitian operators

An operator A ∈ L (X ) is Hermitian if A = A∗. The set of Hermitian operators acting on a given
complex Euclidean space X will hereafter be denoted Herm (X ) in this course:

Herm (X ) = {A ∈ L (X ) : A = A∗}.

Every Hermitian operator is obviously a normal operator.
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The eigenvalues of every Hermitian operator are necessarily real numbers, and can therefore
be ordered from largest to smallest. Under the assumption that A ∈ Herm (X ) for X an n-
dimensional complex Euclidean space, one denotes the k-th largest eigenvalue of A by λk(A).
Equivalently, the vector

λ(A) = (λ1(A), λ2(A), . . . , λn(A)) ∈ Rn

is defined so that
spec(A) = {λ1(A), λ2(A), . . . , λn(A)}

and
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

The sum of two Hermitian operators is obviously Hermitian, as is any real scalar multiple
of a Hermitian operator. This means that the set Herm (X ) forms a vector space over the real
numbers. The inner product of two Hermitian operators is real as well, 〈A, B〉 ∈ R for all
A, B ∈ Herm (X ), so this space is in fact a real inner product space.

We can, in fact, go a little bit further along these lines. Assuming that X = CΣ, and that the
elements of Σ are ordered in some fixed way, let us define a Hermitian operator Ha,b ∈ Herm (X ),
for each choice of a, b ∈ Σ, as follows:

Ha,b =


Ea,a if a = b

1√
2
(Ea,b + Eb,a) if a < b

1√
2
(iEa,b − iEb,a) if a > b.

The collection {Ha,b : a, b ∈ Σ} is orthonormal (with respect to the inner product defined on
L (X )), and every Hermitian operator A ∈ Herm (X ) can be expressed as a real linear combina-
tion of matrices in this collection. It follows that Herm (X ) is a vector space of dimension |Σ|2
over the real numbers, and that there exists an isometric isomorphism between Herm (X ) and
RΣ×Σ. This fact will allow us to apply facts about convex analysis, which typically hold for real
Euclidean spaces, to Herm (X ) (as will be discussed in the next lecture).

1.4.3 Positive semidefinite operators

An operator A ∈ L (X ) is positive semidefinite if and only if it holds that A = B∗B for some
operator B ∈ L (X ). Hereafter, when it is reasonable to do so, a convention to use the symbols
P, Q and R to denote general positive semidefinite matrices will be followed. The collection of
positive semidefinite operators acting on X is denoted Pos (X ), so that

Pos (X ) = {B∗B : B ∈ L (X )}.

There are alternate ways to describe positive semidefinite operators that are useful in different
situations. In particular, the following items are equivalent for a given operator P ∈ L (X ):

1. P is positive semidefinite.

2. P = B∗B for some choice of a complex Euclidean space Y and an operator B ∈ L (X ,Y).
3. u∗Pu is a nonnegative real number for every choice of u ∈ X .

4. 〈Q, P〉 is a nonnegative real number for every Q ∈ Pos (X ).
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5. P is Hermitian and every eigenvalue of P is nonnegative.

6. There exists a complex Euclidean space Y and a collection of vectors {ua : a ∈ Σ} ⊂ Y , such
that P(a, b) = 〈ua, ub〉.

Item 6 remains valid if the additional constraint dim(Y) = dim(X ) is imposed.
The notation P ≥ 0 is also used to mean that P is positive semidefinite, while A ≥ B means

that A− B is positive semidefinite. (This notation is only used when A and B are both Hermitian.)

1.4.4 Positive definite operators

A positive semidefinite operator P ∈ Pos (X ) is said to be positive definite if, in addition to being
positive semidefinite, it is invertible. The notation

Pd (X ) = {P ∈ Pos (X ) : Det(P) 6= 0}

will be used to denote the set of such operators for a given complex Euclidean space X . The
following items are equivalent for a given operator P ∈ L (X ):

1. P is positive definite.

2. 〈u, Pu〉 is a positive real number for every choice of a nonzero vector u ∈ X .

3. P is Hermitian, and every eigenvalue of P is positive.

4. P is Hermitian, and there exists a positive real number ε > 0 such that P ≥ ε1.

1.4.5 Density operators

Positive semidefinite operators having trace equal to 1 are called density operators, and it is con-
ventional to use lowercase Greek letters such as ρ, ξ, and σ to denote such operators. The notation

D (X ) = {ρ ∈ Pos (X ) : Tr(ρ) = 1}

is used to denote the collection of density operators acting on a given complex Euclidean space.

1.4.6 Orthogonal projections

A positive semidefinite operator P ∈ Pos (X ) is an orthogonal projection if, in addition to being
positive semidefinite, it satisfies P2 = P. Equivalently, an orthogonal projection is any Hermitian
operator whose only eigenvalues are 0 and 1. For each subspace V ⊆ X , we write ΠV to denote
the unique orthogonal projection whose image is equal to the subspace V .

It is typically that the term projection refers to an operator A ∈ L (X ) that satisfies A2 = A,
but which might not be Hermitian. Given that there is no discussion of such operators in this
course, we will use the term projection to mean orthogonal projection.

1.4.7 Linear isometries and unitary operators

An operator A ∈ L (X ,Y) is a linear isometry if it preserves the Euclidean norm—meaning that
‖Au‖ = ‖u‖ for all u ∈ X . The condition that ‖Au‖ = ‖u‖ for all u ∈ X is equivalent to
A∗A = 1X . The notation

U (X ,Y) = {A ∈ L (X ,Y) : A∗A = 1X }
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is used throughout this course. Every linear isometry preserves not only the Euclidean norm,
but inner products as well: 〈Au, Av〉 = 〈u, v〉 for all u, v ∈ X .

The set of linear isometries mapping X to itself is denoted U (X ), and operators in this set
are called unitary operators. The letters U, V, and W are conventionally used to refer to unitary
operators. Every unitary operator U ∈ U (X ) is invertible and satisfies UU∗ = U∗U = 1X , which
implies that every unitary operator is normal.

1.5 The spectral theorem

The spectral theorem establishes that every normal operator can be expressed as a linear combi-
nation of projections onto pairwise orthogonal subspaces. The spectral theorem is so-named,
and the resulting expressions are called spectral decompositions, because the coefficients of the
projections are determined by the spectrum of the operator being considered.

1.5.1 Statement of the spectral theorem and related facts

A formal statement of the spectral theorem follows.

Theorem 1.3 (Spectral theorem). Let X be a complex Euclidean space, let A ∈ L (X ) be a normal
operator, and assume that the distinct eigenvalues of A are λ1, . . . , λk. There exists a unique choice of
orthogonal projection operators P1, . . . , Pk ∈ Pos (X ), with P1 + · · ·+ Pk = 1X and PiPj = 0 for i 6= j,
such that

A =
k

∑
i=1

λiPi. (1.3)

For each i ∈ {1, . . . , k}, it holds that the rank of Pi is equal to the multiplicity of λi as an eigenvalue of A.

As suggested above, the expression of a normal operator A in the form of the above equation
(1.3) is called a spectral decomposition of A.

A simple corollary of the spectral theorem follows. It expresses essentially the same fact as
the spectral theorem, but in a slightly different form that will be useful to refer to later in the
course.

Corollary 1.4. Let X be a complex Euclidean space, let A ∈ L (X ) be a normal operator, and assume that
spec(A) = {λ1, . . . , λn}. There exists an orthonormal basis {x1, . . . , xn} of X such that

A =
n

∑
i=1

λixix∗i . (1.4)

It is clear from the expression (1.4), along with the requirement that the set {x1, . . . , xn} is an
orthonormal basis, that each xi is an eigenvector of A whose corresponding eigenvalue is λi. It is
also clear that any operator A that is expressible in such a form as (1.4) is normal—implying that
the condition of normality is equivalent to the existence of an orthonormal basis of eigenvectors.

We will often refer to expressions of operators in the form (1.4) as spectral decompositions,
despite the fact that it differs slightly from the form (1.3). It must be noted that unlike the form
(1.3), the form (1.4) is generally not unique (unless each eigenvalue of A has multiplicity one, in
which case the expression is unique up to scalar multiples of the vectors {x1, . . . , xn}).

Finally, let us mention one more important theorem regarding spectral decompositions of
normal operators, which states that the same orthonormal basis of eigenvectors {x1, . . . , xn} may
be chosen for any two normal operators, provided that they commute.
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Theorem 1.5. Let X be a complex Euclidean space and let A, B ∈ L (X ) be normal operators for which
[A, B] = 0. There exists an orthonormal basis {x1, . . . , xn} of X such that

A =
n

∑
i=1

λixix∗i and B =
n

∑
i=1

µixix∗i

are spectral decompositions of A and B, respectively.

1.5.2 Functions of normal operators

Every function of the form f : C→ C may be extended to the set of normal operators in L (X ), for
a given complex Euclidean space X , by means of the spectral theorem. In particular, if A ∈ L (X )
is normal and has the spectral decomposition (1.3), then one defines

f (A) =
k

∑
i=1

f (λi)Pi.

Naturally, functions defined only on subsets of scalars may be extended to normal operators
whose eigenvalues are restricted accordingly. A few examples of scalar functions extended to
operators that will be important later in the course follow.

The exponential function of an operator

The exponential function α 7→ exp(α) is defined for all α ∈ C, and may therefore be extended to
a function A 7→ exp(A) for any normal operator A ∈ L (X ) by defining

exp(A) =
k

∑
i=1

exp(λi)Pi,

assuming that the spectral decomposition of A is given by (1.3).
The exponential function may, in fact, be defined for all operators A ∈ L (X ) by considering

its usual Taylor series. In particular, the series

exp(A) =
∞

∑
k=0

Ak

k!

can be shown to converge for all operators A ∈ L (X ), and agrees with the above notion based
on the spectral decomposition in the case that A is normal.

Non-integer powers of operators

For r > 0 the function λ 7→ λr is defined for nonnegative real values λ ∈ [0, ∞). For a given
positive semidefinite operator Q ∈ Pos (X ) having spectral decomposition (1.3), for which we
necessarily have that λi ≥ 0 for 1 ≤ i ≤ k, we may therefore define

Qr =
k

∑
i=1

λr
i Pi.

For integer values of r, it is clear that Qr coincides with the usual meaning of this expression
given by the multiplication of operators. The case that r = 1/2 is particularly common, and in
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this case we also write
√

Q to denote Q1/2. The operator
√

Q is the unique positive semidefinite
operator that satisfies √

Q
√

Q = Q.

Along similar lines, for any real number r < 0, the function λ 7→ λr is defined for positive
real values λ ∈ (0, ∞). For a given positive definite operator Q ∈ Pd (X ), one defines Qr in a
similar way to above.

The logarithm of an operator

The function λ 7→ log(λ) is defined for every positive real number λ ∈ (0, ∞). For a given positive
definite operator Q ∈ Pd (X ), having a spectral decomposition (1.3) as above, one defines

log(Q) =
k

∑
i=1

log(λi)Pi.

Logarithms of operators will be important during our discussion of von Neumann entropy.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 2: Mathematical preliminaries (part 2)

This lecture represents the second half of the discussion that we started in the previous lecture
concerning basic mathematical concepts and tools used throughout the course.

2.1 The singular-value theorem

The spectral theorem, discussed in the previous lecture, is a valuable tool in quantum information
theory. The fact that it is limited to normal operators can, however, restrict its applicability.

The singular value theorem, which we will now discuss, is closely related to the spectral theo-
rem, but holds for arbitrary operators—even those of the form A ∈ L (X ,Y) for different spaces
X and Y . Like the spectral theorem, we will find that the singular value decomposition is an
indispensable tool in quantum information theory. Let us begin with a statement of the theorem.

Theorem 2.1 (Singular value theorem). Let X and Y be complex Euclidean spaces, let A ∈ L (X ,Y)
be a nonzero operator, and let r = rank(A). There exist positive real numbers s1, . . . , sr and orthonormal
sets {x1, . . . , xr} ⊂ X and {y1, . . . , yr} ⊂ Y such that

A =
r

∑
j=1

sjyjx∗j . (2.1)

An expression of a given matrix A in the form of (2.1) is said to be a singular value decomposition
of A. The numbers s1, . . . , sr are called singular values and the vectors x1, . . . , xr and y1, . . . , yr are
called right and left singular vectors, respectively.

The singular values s1, . . . , sr of an operator A are uniquely determined, up to their ordering.
Hereafter we will assume, without loss of generality, that the singular values are ordered from
largest to smallest: s1 ≥ · · · ≥ sr. When it is necessary to indicate the dependence of these
singular values on A, we denote them s1(A), . . . , sr(A). Although technically speaking 0 is not
usually considered a singular value of any operator, it will be convenient to also define sk(A) = 0
for k > rank(A). The notation s(A) is used to refer to the vector of singular values s(A) =
(s1(A), . . . , sr(A)), or to an extension of this vector s(A) = (s1(A), . . . , sk(A)) for k > r when it is
convenient to view it as an element of Rk for k > rank(A).

There is a close relationship between singular value decompositions of an operator A and
spectral decompositions of the operators A∗A and AA∗. In particular, it will necessarily hold
that

sk(A) =
√

λk(AA∗) =
√

λk(A∗A) (2.2)

for 1 ≤ k ≤ rank(A), and moreover the right singular vectors of A will be eigenvectors of A∗A
and the left singular vectors of A will be eigenvectors of AA∗. One is free, in fact, to choose
the left singular vectors of A to be any orthonormal collection of eigenvectors of AA∗ for which
the corresponding eigenvalues are nonzero—and once this is done the right singular vectors
will be uniquely determined. Alternately, the right singular vectors of A may be chosen to be



any orthonormal collection of eigenvectors of A∗A for which the corresponding eigenvalues are
nonzero, which uniquely determines the left singular vectors.

In the case that Y = X and A is a normal operator, it is essentially trivial to derive a singular
value decomposition from a spectral decomposition. In particular, suppose that

A =
n

∑
j=1

λjxjx∗j

is a spectral decomposition of A, and assume that we have chosen to label the eigenvalues of A
in such a way that λj 6= 0 for 1 ≤ j ≤ r = rank(A). A singular value decomposition of the form
(2.1) is obtained by setting

sj =
∣∣λj
∣∣ and yj =

λj∣∣λj
∣∣ xj

for 1 ≤ j ≤ r. Note that this shows, for normal operators, that the singular values are simply the
absolute values of the nonzero eigenvalues.

2.1.1 The Moore-Penrose pseudo-inverse

Later in the course we will occasionally refer to the Moore-Penrose pseudo-inverse of an oper-
ator, which is closely related to its singular value decompositions. For any given operator
A ∈ L (X ,Y), we define the Moore-Penrose pseudo-inverse of A, denoted A+ ∈ L (Y ,X ), as
the unique operator satisfying these properties:

1. AA+A = A,

2. A+AA+ = A+, and

3. AA+ and A+A are both Hermitian.

It is clear that there is at least one such choice of A+, for if

A =
r

∑
j=1

sjyjx∗j

is a singular value decomposition of A, then

A+ =
r

∑
j=1

1
sj

xjy∗j

satisfies the three properties above.
The fact that A+ is uniquely determined by the above equations is easily verified, for suppose

that X, Y ∈ L (Y ,X ) both satisfy the above properties:

1. AXA = A = AYA,

2. XAX = X and YAY = Y, and

3. AX, XA, AY, and YA are all Hermitian.

Using these properties, we observe that

X = XAX = (XA)∗X = A∗X∗X = (AYA)∗X∗X = A∗Y∗A∗X∗X
= (YA)∗(XA)∗X = YAXAX = YAX = YAYAX = Y(AY)∗(AX)∗

= YY∗A∗X∗A∗ = YY∗(AXA)∗ = YY∗A∗ = Y(AY)∗ = YAY = Y,

which shows that X = Y.
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2.2 Linear mappings on operator algebras

Linear mappings of the form
Φ : L (X )→ L (Y) ,

where X and Y are complex Euclidean spaces, play an important role in the theory of quantum
information. The set of all such mappings is sometimes denoted T (X ,Y), or T (X ) when X = Y ,
and is itself a linear space when addition of mappings and scalar multiplication are defined in
the straightforward way:

1. Addition: given Φ, Ψ ∈ T (X ,Y), the mapping Φ + Ψ ∈ T (X ,Y) is defined by

(Φ + Ψ)(A) = Φ(A) + Ψ(A)

for all A ∈ L (X ).

2. Scalar multiplication: given Φ ∈ T (X ,Y) and α ∈ C, the mapping αΦ ∈ T (X ,Y) is defined
by

(αΦ)(A) = α(Φ(A))

for all A ∈ L (X ).

For a given mapping Φ ∈ T (X ,Y), the adjoint of Φ is defined to be the unique mapping
Φ∗ ∈ T (Y ,X ) that satisfies

〈Φ∗(B), A〉 = 〈B, Φ(A)〉

for all A ∈ L (X ) and B ∈ L (Y).
The transpose

T : L (X )→ L (X ) : A 7→ AT

is a simple example of a mapping of this type, as is the trace

Tr : L (X )→ C : A 7→ Tr(A),

provided we make the identification L (C) = C.

2.2.1 Remark on tensor products of operators and mappings

Tensor products of operators can be defined in concrete terms using the same sort of Kronecker
product construction that we considered for vectors, as well as in more abstract terms connected
with the notion of multilinear functions. We will briefly discuss these definitions now, as well as
their extension to tensor products of mappings on operator algebras.

First, suppose A1 ∈ L (X1,Y1) , . . . , An ∈ L (Xn,Yn) are operators, for complex Euclidean
spaces

X1 = CΣ1 , . . . ,Xn = CΣn and Y1 = CΓ1 , . . . ,Yn = CΓn .

We define a new operator

A1 ⊗ · · · ⊗ An ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn) ,

in terms of its matrix representation, as

(A1 ⊗ · · · ⊗ An)((a1, . . . , an), (b1, . . . , bn)) = A1(a1, b1) · · · An(an, bn)
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(for all a1 ∈ Γ1, . . . , an ∈ Γn and b1 ∈ Σ1, . . . , bn ∈ Γn).
It is not difficult to check that the operator A1 ⊗ · · · ⊗ An just defined satisfies the equation

(A1 ⊗ · · · ⊗ An)(u1 ⊗ · · · ⊗ un) = (A1u1)⊗ · · · ⊗ (Anun) (2.3)

for all choices of u1 ∈ X1, . . . , un ∈ Xn. Given that X1 ⊗ · · · ⊗ Xn is spanned by the set of all
elementary tensors u1 ⊗ · · · ⊗ un, it is clear that A1 ⊗ · · · ⊗ An is the only operator that can
satisfy this equation (again, for all choices of u1 ∈ X1, . . . , un ∈ Xn). We could, therefore, have
considered the equation (2.3) to have been the defining property of A1 ⊗ · · · ⊗ An.

When considering operator spaces as vector spaces, similar identities to the ones in the pre-
vious lecture for tensor products of vectors become apparent. For example,

A1 ⊗ · · · ⊗ Ak−1 ⊗ (Ak + Bk)⊗ Ak+1 ⊗ · · · ⊗ An

= A1 ⊗ · · · ⊗ Ak−1 ⊗ Ak ⊗ Ak+1 ⊗ · · · ⊗ An

+ A1 ⊗ · · · ⊗ Ak−1 ⊗ Bk ⊗ Ak+1 ⊗ · · · ⊗ An.

In addition, for all choices of complex Euclidean spaces X1, . . . ,Xn, Y1, . . . ,Yn, and Z1, . . . ,Zn,
and all operators A1 ∈ L (X1,Y1) , . . . , An ∈ L (Xn,Yn) and B1 ∈ L (Y1,Z1) , . . . , Bn ∈ L (Yn,Zn),
it holds that

(B1 ⊗ · · · ⊗ Bn)(A1 ⊗ · · · ⊗ An) = (B1A1)⊗ · · · ⊗ (Bn An).

Also note that spectral and singular value decompositions of tensor products of operators are
very easily obtained from those of the individual operators. This allows one to quickly conclude
that

‖A1 ⊗ · · · ⊗ An‖p = ‖A1‖p · · · ‖An‖p ,

along with a variety of other facts that may be derived by similar reasoning.
Tensor products of linear mappings on operator algebras may be defined in a similar way

to those of operators. At this point we have not yet considered concrete representations of such
mappings, to which a Kronecker product construction could be applied, but we will later discuss
such representations. For now let us simply define the linear mapping

Φ1 ⊗ · · · ⊗Φn : L (X1 ⊗ · · · ⊗ Xn)→ L (Y1 ⊗ · · · ⊗ Yn) ,

for any choice of linear mappings Φ1 : L (X1) → L (Y1) , . . . , Φn : L (Xn) → L (Yn), to be the
unique mapping that satisfies the equation

(Φ1 ⊗ · · · ⊗Φn)(A1 ⊗ · · · ⊗ An) = Φ1(A1)⊗ · · · ⊗Φn(An)

for all operators A1 ∈ L (X1) , . . . , An ∈ L (Xn).

Example 2.2 (The partial trace). Let X be a complex Euclidean space. As mentioned above, we
may view the trace as taking the form Tr : L (X )→ L (C) by making the identification C = L (C).
For a second complex Euclidean space Y , we may therefore consider the mapping

Tr ⊗ 1L(Y) : L (X ⊗Y)→ L (Y) .

This is the unique mapping that satisfies

(Tr ⊗ 1L(Y))(A⊗ B) = Tr(A)B
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for all A ∈ L (X ) and B ∈ L (Y). This mapping is called the partial trace, and is more commonly
denoted TrX . In general, the subscript refers to the space to which the trace is applied, while
the space or spaces that remains (Y in the case above) are implicit from the context in which the
mapping is used.

One may alternately express the partial trace on X as follows, assuming that {xa : a ∈ Σ} is
any orthonormal basis of X :

TrX (A) = ∑
a∈Σ

(x∗a ⊗ 1Y )A(xa ⊗ 1Y )

for all A ∈ L (X ⊗Y). An analogous expression holds for TrY .

2.3 Norms of operators

The next topic for this lecture concerns norms of operators. As is true more generally, a norm
on the space of operators L (X ,Y), for any choice of complex Euclidean spaces X and Y , is a
function ‖·‖ satisfying the following properties:

1. Positive definiteness: ‖A‖ ≥ 0 for all A ∈ L (X ,Y), with ‖A‖ = 0 if and only if A = 0.

2. Positive scalability: ‖αA‖ = |α| ‖A‖ for all A ∈ L (X ,Y) and α ∈ C.

3. The triangle inequality: ‖A + B‖ ≤ ‖A‖+ ‖B‖ for all A, B ∈ L (X ,Y).

Many interesting and useful norms can be defined on spaces of operators, but in this course
we will mostly be concerned with a single family of norms called Schatten p-norms. This family
includes the three most commonly used norms in quantum information theory: the spectral norm,
the Frobenius norm, and the trace norm.

2.3.1 Definition and basic properties of Schatten norms

For any operator A ∈ L (X ,Y) and any real number p ≥ 1, one defines the Schatten p-norm of
A as

‖A‖p =
[
Tr
(
(A∗A)p/2

)]1/p
.

We also define
‖A‖∞ = max {‖Au‖ : u ∈ X , ‖u‖ = 1} , (2.4)

which happens to coincide with limp→∞ ‖A‖p and therefore explains why the subscript ∞ is
used.

An equivalent way to define these norms is to consider the the vector s(A) of singular values
of A, as discussed at the beginning of the lecture. For each p ∈ [1, ∞], it holds that the Schatten
p-norm of A coincides with the ordinary (vector) p-norm of s(A):

‖A‖p = ‖s(A)‖p .

The Schatten p-norms satisfy many nice properties, some of which are summarized in the
following list:

1. The Schatten p-norms are non-increasing in p. In other words, for any operator A ∈ L (X ,Y)
and for 1 ≤ p ≤ q ≤ ∞ we have

‖A‖p ≥ ‖A‖q .
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2. For every p ∈ [1, ∞], the Schatten p-norm is isometrically invariant (and therefore unitarily
invariant). This means that

‖A‖p = ‖UAV∗‖p

for any choice of linear isometries U and V (which include unitary operators U and V) for
which the product UAV∗ makes sense.

3. For each p ∈ [1, ∞], one defines p∗ ∈ [1, ∞] by the equation

1
p
+

1
p∗

= 1.

For every operator A ∈ L (X ,Y), it holds that

‖A‖p = max
{
|〈B, A〉| : B ∈ L (X ,Y) , ‖B‖p∗ ≤ 1

}
.

This implies that
|〈B, A〉| ≤ ‖A‖p ‖B‖p∗ ,

which is Hölder’s inequality for Schatten norms.

4. For any choice of linear operators A ∈ L (X1,X2), B ∈ L (X2,X3), and C ∈ L (X3,X4), and
any choice of p ∈ [1, ∞], we have

‖CBA‖p ≤ ‖C‖∞ ‖B‖p ‖A‖∞ .

It follows that
‖AB‖p ≤ ‖A‖p ‖B‖p (2.5)

for all choices of p ∈ [1, ∞] and operators A and B for which the product AB exists. The
property (2.5) is known as submultiplicativity.

5. It holds that
‖A‖p = ‖A∗‖p = ‖AT‖p =

∥∥A
∥∥

p

for every A ∈ L (X ,Y).

2.3.2 The trace norm, Frobenius norm, and spectral norm

The Schatten 1-norm is more commonly called the trace norm, the Schatten 2-norm is also known
as the Frobenius norm, and the Schatten ∞-norm is called the spectral norm or operator norm. A
common notation for these norms is:

‖·‖tr = ‖·‖1 , ‖·‖F = ‖·‖2 , and ‖·‖ = ‖·‖∞ .

In this course we will generally write ‖·‖ rather than ‖·‖∞, but will not use the notation ‖·‖tr
and ‖·‖F.

Let us note a few special properties of these three particular norms:

1. The spectral norm. The spectral norm ‖·‖ = ‖·‖∞, also called the operator norm, is special in
several respects. It is the norm induced by the Euclidean norm, which is its defining property
(2.4). It satisfies the property

‖A∗A‖ = ‖A‖2

for every A ∈ L (X ,Y).
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2. The Frobenius norm. Substituting p = 2 into the definition of ‖·‖p we see that the Frobenius
norm ‖·‖2 is given by

‖A‖2 = [Tr (A∗A)]1/2 =
√
〈A, A〉.

It is therefore the norm defined by the inner product on L (X ,Y). In essence, it is the norm
that one obtains by thinking of elements of L (X ,Y) as ordinary vectors and forgetting that
they are operators:

‖A‖2 =

√
∑
a,b
|A(a, b)|2,

where a and b range over the indices of the matrix representation of A.

3. The trace norm. Substituting p = 1 into the definition of ‖·‖p we see that the trace norm ‖·‖1
is given by

‖A‖1 = Tr
(√

A∗A
)

.

A convenient expression of ‖A‖1, for any operator of the form A ∈ L (X ), is

‖A‖1 = max{|〈A, U〉| : U ∈ U (X )}.

Another useful fact about the trace norm is that it is monotonic:

‖TrY (A)‖1 ≤ ‖A‖1

for all A ∈ L (X ⊗Y). This is because

‖TrY (A)‖1 = max {|〈A, U ⊗ 1Y 〉| : U ∈ U (X )}

while
‖A‖1 = max {|〈A, U〉| : U ∈ U (X ⊗Y)} ;

and the inequality follows from the fact that the first maximum is taken over a subset of the
unitary operators for the second.

Example 2.3. Consider a complex Euclidean space X and any choice of unit vectors u, v ∈ X .
We have

‖uu∗ − vv∗‖p = 21/p
√

1− |〈u, v〉|2. (2.6)

To see this, we note that the operator A = uu∗ − vv∗ is Hermitian and therefore normal, so its
singular values are the absolute values of its nonzero eigenvalues. It will therefore suffice to
prove that the eigenvalues of A are ±

√
1− |〈u, v〉|2, along with the eigenvalue 0 occurring with

multiplicity n − 2, where n = dim(X ). Given that Tr(A) = 0 and rank(A) ≤ 2, it is evident
that the eigenvalues of A are of the form ±λ for some λ ≥ 0, along with eigenvalue 0 with
multiplicity n− 2. As

2λ2 = Tr(A2) = 2− 2|〈u, v〉|2

we conclude λ =
√

1− |〈u, v〉|2, from which (2.6) follows:

‖uu∗ − vv∗‖p =

(
2
(

1− |〈u, v〉|2
)p/2

)1/p

= 21/p
√

1− |〈u, v〉|2.
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2.4 The operator-vector correspondence

It will be helpful throughout this course to make use of a simple correspondence between the
spaces L (X ,Y) and Y ⊗X , for given complex Euclidean spaces X and Y .

We define the mapping
vec : L (X ,Y)→ Y ⊗X

to be the linear mapping that represents a change of bases from the standard basis of L (X ,Y) to
the standard basis of Y ⊗X . Specifically, we define

vec(Eb,a) = eb ⊗ ea

for all a ∈ Σ and b ∈ Γ, at which point the mapping is determined for every A ∈ L (X ,Y) by
linearity. In the Dirac notation, this mapping amounts to flipping a bra to a ket:

vec(|b〉 〈a|) = |b〉 |a〉 .

(Note that it is only standard basis elements that are flipped in this way.)
The vec mapping is a linear bijection, which implies that every vector u ∈ Y ⊗ X uniquely

determines an operator A ∈ L (X ,Y) that satisfies vec(A) = u. It is also an isometry, in the sense
that

〈A, B〉 = 〈vec(A), vec(B)〉
for all A, B ∈ L (X ,Y). The following properties of the vec mapping are easily verified:

1. For every choice of complex Euclidean spaces X1, X2, Y1, and Y2, and every choice of opera-
tors A ∈ L (X1,Y1), B ∈ L (X2,Y2), and X ∈ L (X2,X1), it holds that

(A⊗ B) vec(X) = vec(AXBT). (2.7)

2. For every choice of complex Euclidean spaces X and Y , and every choice of operators A, B ∈
L (X ,Y), the following equations hold:

TrX (vec(A) vec(B)∗) = AB∗, (2.8)

TrY (vec(A) vec(B)∗) = (B∗A)T . (2.9)

3. For u ∈ X and v ∈ Y we have
vec(uv∗) = u⊗ v. (2.10)

This includes the special cases vec(u) = u and vec(v∗) = v, which we obtain by setting v = 1
and u = 1, respectively.

Example 2.4 (The Schmidt decomposition). Suppose u ∈ Y ⊗ X for given complex Euclidean
spaces X and Y . Let A ∈ L (X ,Y) be the unique operator for which u = vec(A). There exists a
singular value decomposition

A =
r

∑
i=1

siyix∗i

of A. Consequently

u = vec(A) = vec

(
r

∑
i=1

siyix∗i

)
=

r

∑
i=1

si vec (yix∗i ) =
r

∑
i=1

siyi ⊗ xi.
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The fact that {x1, . . . , xr} is orthonormal implies that {x1, . . . , xr} is orthonormal as well.
We have therefore established the validity of the Schmidt decomposition, which states that every

vector u ∈ Y ⊗X can be expressed in the form

u =
r

∑
i=1

siyi ⊗ zi

for positive real numbers s1, . . . , sr and orthonormal sets {y1, . . . , yr} ⊂ Y and {z1, . . . , zr} ⊂ X .

2.5 Analysis

Mathematical analysis is concerned with notions of limits, continuity, differentiation, integration
and measure, and so on. As some of the proofs that we will encounter in the course will require
arguments based on these notions, it is appropriate to briefly review some of the necessary
concepts here.

It will be sufficient for our needs that this summary is narrowly focused on Euclidean spaces
(as opposed to infinite dimensional spaces). As a result, these notes do not treat analytic concepts
in the sort of generality that would be typical of a standard analysis book or course. If you are
interested in such a book, the following one is considered a classic:

• W. Rudin. Principles of Mathematical Analysis. McGraw–Hill, 1964.

2.5.1 Basic notions of analysis

Let V be a real or complex Euclidean space, and (for this section only) let us allow ‖·‖ to be any
choice of a fixed norm on V . We may take ‖·‖ to be the Euclidean norm, but nothing changes
if we choose a different norm. (The validity of this assumption rests on the fact that Euclidean
spaces are finite-dimensional.)

The open ball of radius r around a vector u ∈ X is defined as

Br(u) = {v ∈ X : ‖u− v‖ < r} ,

and the sphere of radius r around u is defined as

Sr(u) = {v ∈ X : ‖u− v‖ = r} .

The closed ball of radius r around u is the union Br(u) ∪ Sr(u).
A set A ⊆ X is open if, for every u ∈ A there exists a choice of ε > 0 such that Bε(u) ⊆ A.

Equivalently, A ⊆ X is open if it is the union of some collection of open balls. (This can be an
empty, finite, or countably or uncountably infinite collections of open balls.) A set A ⊆ X is
closed if it is the complement of an open set.

Given subsets B ⊆ A ⊆ X , we say that B is open or closed relative to A if B is the intersection
of A and some open or closed set in X , respectively.

Let A and B be subsets of a Euclidean space X that satisfy B ⊆ A. Then the closure of B
relative to A is the intersection of all subsets C for which B ⊆ C and C is closed relative to A. In
other words, this is the smallest set that contains B and is closed relative to A. The set B is dense
in A if the closure of B relative to A is A itself.
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Suppose X and Y are Euclidean spaces and f : A → Y is a function defined on some subset
A ⊆ X . For any point u ∈ A, the function f is said to be continuous at u if the following holds:
for every ε > 0 there exists δ > 0 such that

‖ f (v)− f (u)‖ < ε

for all v ∈ Bδ(u) ∩A. An alternate way of writing this condition is

(∀ε > 0)(∃δ > 0)[ f (Bδ(u) ∩A) ⊆ Bε( f (u))].

If f is continuous at every point in A, then we just say that f is continuous on A.
The preimage of a set B ⊆ Y under a function f : A → Y defined on some subset A ⊆ X is

defined as
f−1(B) = {u ∈ A : f (u) ∈ B} .

Such a function f is continuous on A if and only if the preimage of every open set in Y is open
relative to A. Equivalently, f is continuous on A if and only if the preimage of every closed set
in Y is closed relative to A.

A sequence of vectors in a subset A of a Euclidean space X is a function s : N→ A, where N

denotes the set of natural numbers {1, 2, . . .}. We usually denote a general sequence by (un)n∈N

or (un), and it is understood that the function s in question is given by s : n 7→ un. A sequence
(un)n∈N in X converges to u ∈ X if, for all ε > 0 there exists N ∈ N such that ‖un − u‖ < ε for
all n ≥ N.

A sequence (vn) is a sub-sequence of (un) if there is a strictly increasing sequence of nonneg-
ative integers (kn)n∈N such that vn = ukn for all n ∈ N. In other words, you get a sub-sequence
from a sequence by skipping over whichever vectors you want, provided that you still have
infinitely many vectors left.

2.5.2 Compact sets

A set A ⊆ X is compact if every sequence (un) in A has a sub-sequence (vn) that converges to a
point v ∈ A. In any Euclidean space X , a set A is compact if and only if it is closed and bounded
(which means it is contained in Br(0) for some real number r > 0). This fact is known as the
Heine-Borel Theorem.

Compact sets have some nice properties. Two properties that are noteworthy for the purposes
of this course are following:

1. If A is compact and f : A → R is continuous on A, then f achieves both a maximum and
minimum value on A.

2. Let X and Y be complex Euclidean spaces. If A ⊂ X is compact and f : X → Y is continuous
on A, then f (A) ⊂ Y is also compact.

2.6 Convexity

Many sets of interest in the theory of quantum information are convex sets, and when reasoning
about some of these sets we will make use of various facts from the the theory of convexity (or
convex analysis). Two books on convexity theory that you may find helpful are these:

• R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

• A. Barvinok. A Course in Convexity. Volume 54 of Graduate Studies in Mathematics, American
Mathematical Society, 2002.
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2.6.1 Basic notions of convexity

Let X be any Euclidean space. A set A ⊆ X is convex if, for all choices of u, v ∈ A and λ ∈ [0, 1],
we have

λu + (1− λ)v ∈ A.

Another way to say this is that A is convex if and only if you can always draw the straight line
between any two points of A without going outside A.

A point w ∈ A in a convex set A is said to be an extreme point of A if, for every expression

w = λu + (1− λ)v

for u, v ∈ A and λ ∈ (0, 1), it holds that u = v = w. These are the points that do not lie properly
between two other points in A.

A set A ⊆ X is a cone if, for all choices of u ∈ A and λ ≥ 0, we have that λu ∈ A. A convex
cone is simply a cone that is also convex. A cone A is convex if and only if, for all u, v ∈ A, it
holds that u + v ∈ A.

The intersection of any collection of convex sets is also convex. Also, if A,B ⊆ X are convex,
then their sum and difference

A+ B = {u + v : u ∈ A, v ∈ B} and A−B = {u− v : u ∈ A, v ∈ B}

are also convex.

Example 2.5. For any X , the set Pos (X ) is a convex cone. This is so because it follows easily
from the definition of positive semidefinite operators that Pos (X ) is a cone and A + B ∈ Pos (X )
for all A, B ∈ Pos (X ). The only extreme point of this set is 0 ∈ L (X ). The set D (X ) of density
operators on X is convex, but it is not a cone. Its extreme points are precisely those density
operators having rank 1, i.e., those of the form uu∗ for u ∈ X being a unit vector.

For any finite, nonempty set Σ, we say that a vector p ∈ RΣ is a probability vector if it holds
that p(a) ≥ 0 for all a ∈ Σ and ∑a∈Σ p(a) = 1. A convex combination of points in A is any finite
sum of the form

∑
a∈Σ

p(a)ua

for {ua : a ∈ Σ} ⊂ A and p ∈ RΣ a probability vector. Notice that we are speaking only of finite
sums when we refer to convex combinations.

The convex hull of a set A ⊆ X , denoted conv(A), is the intersection of all convex sets contain-
ing A. Equivalently, it is precisely the set of points that can be written as convex combinations
of points in A. This is true even in the case that A is infinite. The convex hull conv(A) of a
closed set A need not itself be closed. However, if A is compact, then so too is conv(A). The
Krein-Milman theorem states that every compact, convex set A is equal to the convex hull of its
extreme points.

2.6.2 A few theorems about convex analysis in real Euclidean spaces

It will be helpful later for us to make use of the following three theorems about convex sets.
These theorems concern just real Euclidean spaces RΣ, but this will not limit their applicability
to quantum information theory: we will use them when considering spaces Herm

(
CΓ) of Her-

mitian operators, which may be considered as real Euclidean spaces taking the form RΓ×Γ (as
discussed in the previous lecture).
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The first theorem is Carathéodory’s theorem. It implies that every element in the convex hull of
a subset A ⊆ RΣ can always be written as a convex combination of a small number of points in
A (where small means at most |Σ|+ 1). This is true regardless of the size or any other properties
of the set A.

Theorem 2.6 (Carathéodory’s theorem). Let A be any subset of a real Euclidean space RΣ, and let m =
|Σ|+ 1. For every element u ∈ conv(A), there exist m (not necessarily distinct) points u1, . . . , um ∈ A,
such that u may be written as a convex combination of u1, . . . , um.

The second theorem is an example of a minmax theorem that is attributed to Maurice Sion. In
general, minmax theorems provide conditions under which a minimum and a maximum can be
reversed without changing the value of the expression in which they appear.

Theorem 2.7 (Sion’s minmax theorem). Suppose that A and B are compact and convex subsets of a
real Euclidean space RΣ. It holds that

min
u∈A

max
v∈B
〈u, v〉 = max

v∈B
min
u∈A
〈u, v〉 .

This theorem is not actually as general as the one proved by Sion, but it will suffice for our needs.
One of the ways it can be generalized is to drop the condition that one of the two sets is compact
(which generally requires either the minimum or the maximum to be replaced by an infimum or
supremum).

Finally, let us state one version of a separating hyperplane theorem, which essentially states that
if one has a closed, convex subset A ⊂ RΣ and a point u ∈ RΣ that is not contained in A, then
it is possible to cut RΣ into two separate (open) half-spaces so that one contains A and the other
contains u.

Theorem 2.8 (Separating hyperplane theorem). Suppose that A is a closed and convex subset of a real
Euclidean space RΣ and u ∈ RΣ not contained in A. There exists a vector v ∈ RΣ for which

〈v, w〉 > 〈v, u〉

for all choices of w ∈ A.

There are other separating hyperplane theorems that are similar in spirit to this one, but this one
will be sufficient for us.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 3: States, measurements, and channels

We begin our discussion of quantum information in this lecture, starting with an overview of
three mathematical objects that provide a basic foundation for the theory: states, measurements,
and channels. We will also begin to discuss important notions connected with these objects, and
will continue with this discussion in subsequent lectures.

3.1 Overview of states, measurements, and channels

The theory of quantum information is concerned with properties of abstract, idealized physical
systems that will be called registers throughout this course. In particular, one defines the notions
of states of registers; of measurements of registers, which produce classical information concerning
their states; and of channels, which transform states of one register into states of another. Taken
together, these definitions provide the basic model with which quantum information theory is
concerned.

3.1.1 Registers

The term register is intended to be suggestive of a component inside a computer in which some
finite amount of data can be stored and manipulated. While this is a reasonable picture to keep
in mind, it should be understood that any physical system in which a finite amount of data may
be stored, and whose state may change over time, could be modeled as a register. Examples
include the entire memory of a computer, or a collection of computers, or any medium used for
the transmission of information from one source to another. At an intuitive level, what is most
important is that registers are viewed as a physical objects, or parts of a physical objects, that
store information.

It is not difficult to formulate a precise mathematical definition of registers, but we will not
take the time to do this in this course. It will suffice for our needs to state two simple assumptions
about registers:

1. Every register has a unique name that distinguishes it from other registers.

2. Every register has associated to it a finite and nonempty set of classical states.

Typical names for registers in these notes are capital letters written in a sans serif font, such as
X, Y, and Z, as well as subscripted variants of these names like X1, . . . ,Xn, YA, and YB. In every
situation we will encounter in this course, there will be a finite (but not necessarily bounded)
number of registers under consideration.

There may be legitimate reasons, both mathematical and physical, to object to the assumption
that registers have specified classical state sets associated to them. In essence, this assumption
amounts to the selection of a preferred basis from which to develop the theory, as opposed to
opting for a basis-independent theory. From a computational or information processing point
of view, however, it is quite natural to assume the existence of a preferred basis, and little (or



perhaps nothing) is lost by making this assumption in the finite-dimensional setting in which we
will work.

Suppose that X is a register whose classical state set is Σ. We then associate the complex
Euclidean space X = CΣ with the register X. States, measurements, and channels connected
with X will then be described in linear-algebraic terms that refer to this space. As a general
convention, we will always name the complex Euclidean space associated with a given register
with the same letter as the register, but in a scripted font rather than a sans serif font. For
instance, the complex Euclidean spaces associated with registers Yj and ZA are denoted Yj and
ZA, respectively. This is done throughout these notes without explicit mention.

For any finite sequence X1, . . . ,Xn of distinct registers, we may view that the n-tuple

Y = (X1, . . . ,Xn)

is itself a register. Assuming that the classical state sets of the registers X1, . . . ,Xn are given by
Σ1, . . . , Σn, respectively, we naturally take the classical state set of Y to be Σ1 × · · · × Σn. The
complex Euclidean space associated with Y is therefore

Y = CΣ1×···×Σn = X1 ⊗ · · · ⊗ Xn.

3.1.2 States

A quantum state (or simply a state) of a register X is an element of the set

D (X ) = {ρ ∈ Pos (X ) : Tr(ρ) = 1}

of density operators on X . Every element of this set is to be considered a valid state of X.
A state ρ ∈ D (X ) is said to be pure if it takes the form

ρ = uu∗

for some vector u ∈ X . (Given that Tr(uu∗) = ‖u‖2, any such vector is necessarily a unit
vector.) An equivalent condition is that rank(ρ) = 1. The term mixed state is sometimes used to
refer to a state that is either not pure or not necessarily pure, but we will generally not use this
terminology: it will be our default assumption that states are not necessarily pure, provided it
has not been explicitly stated otherwise.

Three simple observations (the first two of which were mentioned briefly in the previous
lecture) about the set of states D (X ) of a register X are as follows.

1. The set D (X ) is convex: if ρ, σ ∈ D (X ) and λ ∈ [0, 1], then λρ + (1− λ)σ ∈ D (X ).

2. The extreme points of D (X ) are precisely the pure states uu∗ for u ∈ X ranging over all unit
vectors.

3. The set D (X ) is compact.

One way to argue that D (X ) is compact, starting from the assumption that the unit sphere
S = {u ∈ X : ‖u‖ = 1} in X is compact, is as follows. We first note that the function
f : S → D (X ) : u 7→ uu∗ is continuous, so the set of pure states f (S) = {uu∗ : u ∈ X , ‖u‖ = 1}
is compact (as continuous functions always map compact sets to compact sets). By the spectral
theorem it is clear that D (X ) is the convex hull of this set: D (X ) = conv{uu∗ : u ∈ X , ‖u‖ = 1}.
As the convex hull of every compact set is compact, it follows that D (X ) is compact.

29



Let X1, . . . ,Xn be distinct registers, and let Y be the register formed by viewing these n regis-
ters as a single, compound register: Y = (X1, . . . ,Xn). A state of Y taking the form

ρ1 ⊗ · · · ⊗ ρn ∈ D (X1 ⊗ · · · ⊗ Xn) ,

for density operators ρ1 ∈ D (X1) , . . . , ρn ∈ D (Xn), is said to be a product state. It represents
the situation that X1, . . . ,Xn are independent, or that their states are independent, at a particular
moment. If the state of Y cannot be expressed as product state, it is said that X1, . . . ,Xn are
correlated. This includes the possibility that X1, . . . ,Xn are entangled, which is a phenomenon that
we will discuss in detail later in the course. Registers can, however, be correlated without being
entangled.

3.1.3 Measurements

A measurement of a register X (or a measurement on a complex Euclidean space X ) is a function
of the form

µ : Γ→ Pos (X ) ,

where Γ is a finite, nonempty set of measurement outcomes. To be considered a valid measurement,
such a function must satisfy the constraint

∑
a∈Γ

µ(a) = 1X .

It is common that one identifies the measurement µ with the collection of operators {Pa : a ∈ Γ},
where Pa = µ(a) for each a ∈ Γ. Each operator Pa is called the measurement operator associated
with the outcome a ∈ Γ.

When a measurement of the form µ : Γ → Pos (X ) is applied to a register X whose state is
ρ ∈ D (X ), two things happen:

1. An element of Γ is randomly selected as the outcome of the measurement. The probability
associated with each possible outcome a ∈ Γ is given by

p(a) = 〈µ(a), ρ〉 .

2. The register X ceases to exist.

This definition of measurements guarantees that the vector p ∈ RΓ of outcome probabilities
will indeed be a probability vector, for every choice of ρ ∈ D (X ). In particular, each p(a)
is a nonnegative real number because the inner product of two positive semidefinite operators
is necessarily a nonnegative real number, and the probabilities sum to 1 due to the constraint
∑a∈Γ µ(a) = 1X . In more detail,

∑
a∈Γ

p(a) = ∑
a∈Γ
〈µ(a), ρ〉 = 〈1X , ρ〉 = Tr(ρ) = 1.

It can be sown that every linear function that maps D (X ) to the set of probability vectors in RΓ

is induced by some measurement µ as we have just discussed. It is therefore not an arbitrary
choice to define measurements as they are defined, but rather a reflection of the idea that every
linear function mapping density operators to probability vectors is to be considered a valid
measurement.
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Note that the assumption that the register that is measured ceases to exist is not necessarily
standard: you will find definitions of measurements in books and papers that do not make this
assumption, and provide a description of the state that is left in the register after the measure-
ment. No generality is lost, however, in making the assumption that registers cease to exist upon
being measured. This is because standard notions of nondestructive measurements, which specify
the states of registers after they are measured, can be described by composing channels with
measurements (as we have defined them).

A measurement of the form

µ : Γ1 × · · · × Γn → Pos (X1 ⊗ · · · ⊗ Xn) ,

defined on a register of the form Y = (X1, . . . ,Xn), is called a product measurement if there exist
measurements

µ1 : Γ1 → Pos (X1) ,
...

µn : Γn → Pos (Xn)

such that
µ(a1, . . . , an) = µ1(a1)⊗ · · · ⊗ µn(an)

for all (a1, . . . , an) ∈ Γ1 × · · · × Γn. Similar to the interpretation of a product state, a product
measurement describes the situation in which the measurements µ1, . . . , µn are independently
applied to registers X1, . . . ,Xn, and the n-tuple of measurement outcomes is interpreted as a
single measurement outcome of the compound measurement µ.

A projective measurement µ : Γ → Pos (X ) is one for which µ(a) is a projection operator for
each a ∈ Γ. The only way this can happen in the presence of the constraint ∑a∈Γ µ(a) = 1X is for
the measurement operators {Pa : a ∈ Γ} to be projections onto mutually orthogonal subspaces
of X . When {xa : a ∈ Σ} is an orthonormal basis of X , the projective measurement

µ : Σ→ Pos (X ) : a 7→ xax∗a

is referred to as the measurement with respect to the basis {xa : a ∈ Σ}.

3.1.4 Channels

Quantum channels represent idealized physical operations that transform states of one register
into states of another. In mathematical terms, a quantum channel from a register X to a register Y
is a linear mapping of the form

Φ : L (X )→ L (Y)
that satisfies two restrictions:

1. Φ must be trace-preserving, and

2. Φ must be completely positive.

These restrictions will be explained shortly.
When a quantum channel from X to Y is applied to X, it is to be viewed that the register

X ceases to exist, having been replaced by or transformed into the register Y. The state of Y is
determined by applying the mapping Φ to the state ρ ∈ D (X ) of X, yielding Φ(ρ) ∈ D (Y).
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There is nothing that precludes the choice that X = Y, and in this case one simply views that
the state of the register X has been changed according to the mapping Φ : L (X ) → L (X ). A
simple example of a channel of this form is the identity channel 1L(X ), which leaves each X ∈ L (X )
unchanged. Intuitively speaking, this channel represents an ideal communication channel or a
perfect component in a quantum computer memory, which causes no modification of the register
it acts upon.

Along the same lines as states and measurements, tensor products of channels represent
independently applied channels, collectively viewed as a single channel. More specifically, if
X1, . . . ,Xn and Y1, . . . ,Yn are registers, and

Φ1 : L (X1)→ L (Y1)

...
Φn : L (Xn)→ L (Yn)

are channels, the channel

Φ1 ⊗ · · · ⊗Φn : L (X1 ⊗ · · · ⊗ Xn)→ L (Y1 ⊗ · · · ⊗ Yn)

is said to be a product channel. It is the channel that represents the action of channels Φ1, . . . , Φn
being independently applied to X1, . . . ,Xn.

Now let us return to the restrictions of trace preservation and complete positivity mentioned
in the definition of channels. Obviously, if we wish to consider that the output Φ(ρ) of a given
channel Φ : L (X ) → L (Y) is a valid state of Y for every possible state ρ ∈ D (X ) of X, it must
hold that Φ maps density operators to density operators. What is more, this must be so for tensor
products of channels: it must hold that

(Φ1 ⊗ · · · ⊗Φn)(ρ) ∈ D (Y1 ⊗ · · · ⊗ Yn)

for every choice of ρ ∈ D (X1 ⊗ · · · ⊗ Xn), given any choice of channels Φ1, . . . , Φn transform-
ing registers X1, . . . ,Xn into registers Y1, . . . ,Yn. In addition, we make the assumption that the
identity channel 1L(Z) is a valid channel for every register Z.

In particular, for every legitimate channel Φ : L (X ) → L (Y), it must hold that Φ⊗ 1L(Z) is
also a legitimate channel, for every choice of a register Z. Thus,

(Φ⊗ 1L(Z))(ρ) ∈ D (Y ⊗Z)
for every choice of ρ ∈ D (X ⊗Z). This is equivalent to the two conditions stated before: it
must hold that Φ is completely positive, which means that (Φ⊗ 1L(Z))(P) ∈ Pos (Y ⊗Z) for every
P ∈ Pos (X ⊗Z), and Φ must preserve trace: Tr(Φ(X)) = Tr(X) for every X ∈ L (X ).

Once we have imposed the condition of complete positivity on channels, it is not difficult
to see that any tensor product Φ1 ⊗ · · · ⊗ Φn of such channels will also map density operators
to density operators. We may view tensor products like this as a composition of the channels
Φ1, . . . , Φn tensored with identity channels like this:

Φ1 ⊗ · · · ⊗Φn = (Φ1 ⊗ 1X2 ⊗ · · · ⊗ 1Xn) · · · (1Y1 ⊗ · · · ⊗ 1Yn−1 ⊗Φn).

On the right hand side, we have a composition of tensor products of channels, defined in
the usual way that one composes mappings. Each one of these tensor products of channels
maps density operators to density operators, by the definitions of complete positivity and trace-
preservation, and so the same thing is true of the product channel on the left hand side.

We will study the condition of complete positivity (as well as trace-preservation) in much
greater detail in a couple of lectures.
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3.2 Information complete measurements

In the remainder of this lecture we will discuss a couple of basic facts about states and mea-
surements. The first fact is that states of registers are uniquely determined by the measurement
statistics they generate. More precisely, if one knows the probability associated with every out-
come of every measurement that could possibly be performed on a given register, then that
registers state has been uniquely determined.

In fact, something stronger may be said: for any choice of a register X, there are choices of
measurements on X that uniquely determine every possible state of X by the measurement statis-
tics that they alone generate. Such measurements are called information-complete measurements.
They are characterized by the property that their measurement operators span the space L (X ).

Proposition 3.1. Let X be a complex Euclidean space, and let

µ : Γ→ Pos (X ) : a 7→ Pa

be a measurement on X with the property that the collection {Pa : a ∈ Γ} spans all of L (X ). The
mapping φ : L (X )→ CΓ, defined by

(φ(X))(a) = 〈Pa, X〉

for all X ∈ L (X ) and a ∈ Γ, is one-to-one on L (X ).

Remark 3.2. Of course the fact that φ is one-to-one on L (X ) implies that it is one-to-one on
D (X ), which is all we really care about for the sake of this discussion. It is no harder to prove
the proposition for all of L (X ), however, so it is stated in the more general way.

Proof. It is clear that φ is linear, so we must only prove ker(φ) = {0}. Assume φ(X) = 0, meaning
that (φ(X))(a) = 〈Pa, X〉 = 0 for all a ∈ Γ, and write

X = ∑
a∈Γ

αaPa

for some choice of {αa : a ∈ Γ} ⊂ C. This is possible because {Pa : a ∈ Γ} spans L (X ). It
follows that

‖X‖2
2 = 〈X, X〉 = ∑

a∈Γ
αa 〈Pa, X〉 = 0,

and therefore X = 0 by the positive definiteness of the Frobenius norm. This implies ker(φ) =
{0}, as required.

Let us now construct a simple example of an information-complete measurement, for any
choice of a complex Euclidean space X = CΣ. We will assume that the elements of Σ have been
ordered in some fixed way. For each pair (a, b) ∈ Σ × Σ, define an operator Qa,b ∈ L (X ) as
follows:

Qa,b =


Ea,a if a = b
Ea,a + Ea,b + Eb,a + Eb,b if a < b
Ea,a + iEa,b − iEb,a + Eb,b if a > b.

Each operator Qa,b is positive semidefinite, and the set {Qa,b : (a, b) ∈ Σ× Σ} spans the space
L (X ). With the exception of the trivial case |Σ| = 1, the operator

Q = ∑
(a,b)∈Σ×Σ

Qa,b
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differs from the identity operator, which means that {Qa,b : (a, b) ∈ Σ× Σ} is not generally a
measurement. The operator Q is, however, positive definite, and by defining

Pa,b = Q−1/2Qa,bQ−1/2

we have that µ : Σ× Σ→ Pos (X ) : (a, b) 7→ Pa,b is an information-complete measurement.
It also holds that every state of an n-tuple of registers (X1, . . . ,Xn) is uniquely determined by

the measurement statistics of all product measurements on (X1, . . . ,Xn). This follows from the
simple observation that for any choice of information-complete measurements

µ1 : Γ1 → Pos (X1)

...
µn : Γn → Pos (Xn)

defined on X1, . . . ,Xn, the product measurement given by

µ(a1, . . . , an) = µ1(a1)⊗ · · · ⊗ µn(an)

is also necessarily information-complete.

3.3 Partial measurements

A natural notion concerning measurements is that of a partial measurement. This is the situation in
which we have a collection of registers (X1, . . . ,Xn) in some state ρ ∈ D (X1 ⊗ · · · ⊗ Xn), and we
perform measurements on just a subset of these registers. These measurements will yield results
as normal, but the remaining registers will continue to exist and have some state (which generally
will depend on the particular measurement outcomes that resulted from the measurements).

For simplicity let us consider this situation for just a pair of registers (X,Y). Assume the
pair has the state ρ ∈ D (X ⊗Y), and a measurement µ : Γ → Pos (X ) is performed on X.
Conditioned on the outcome a ∈ Γ resulting from this measurement, the state of Y will become

TrX [(µ(a)⊗ 1Y )ρ]

〈µ(a)⊗ 1Y , ρ〉 .

One way to see that this must indeed be the state of Y conditioned on the measurement outcome
a is that it is the only state that is consistent with every possible measurement ν : Σ → Pos (Y)
that could independently be performed on Y.

To explain this in greater detail, let us write A = a to denote the event that the original
measurement µ on X results in the outcome a ∈ Γ, and let us write B = b to denote the event that
the new, hypothetical measurement ν on Y results in the outcome b ∈ Σ. We have

Pr[(A = a) ∧ (B = b)] = 〈µ(a)⊗ ν(b), ρ〉

and
Pr[A = a] = 〈µ(a)⊗ 1Y , ρ〉 ,

so by the rule of conditional probabilities we have

Pr[B = b|A = a] =
Pr[(A = a) ∧ (B = b)]

Pr[A = a]
=
〈µ(a)⊗ ν(b), ρ〉
〈µ(a)⊗ 1Y , ρ〉 .
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Noting that
〈X⊗Y, ρ〉 = 〈Y, TrX [(X∗ ⊗ 1Y )ρ]〉

for all X, Y, and ρ, we see that

〈µ(a)⊗ ν(b), ρ〉
〈µ(a)⊗ 1Y , ρ〉 = 〈ν(b), ξa〉

for

ξa =
TrX [(µ(a)⊗ 1Y )ρ]

〈µ(a)⊗ 1Y , ρ〉 .

As states are uniquely determined by their measurement statistics, as we have just discussed,
we see that ξa ∈ D (Y) must indeed be the state of Y, conditioned on the measurement µ having
resulted in outcome a ∈ Γ. (Of course ξa is not well-defined when Pr[A = a] = 0, but we do not
need to worry about conditioning on an event that will never happen.)

3.4 Observable differences between states

A natural way to measure the distance between probability vectors p, q ∈ RΓ is by the 1-norm:

‖p− q‖1 = ∑
a∈Γ
|p(a)− q(a)| .

It is easily verified that

‖p− q‖1 = 2 max
∆⊆Γ

(
∑
a∈∆

p(a)− ∑
a∈∆

q(a)

)
.

This is a natural measure of distance because it quantifies the optimal probability that two known
probability vectors can be distinguished, given a single sample from the distributions they spec-
ify.

As an example, let us consider a thought experiment involving two hypothetical people: Alice
and Bob. Two probability vectors p0, p1 ∈ RΓ are fixed, and are considered to be known to both
Alice and Bob. Alice privately chooses a random bit a ∈ {0, 1}, uniformly at random, and uses
the value a to randomly choose an element b ∈ Γ: if a = 0, she samples b according to p0, and
if a = 1, she samples b according to p1. The sampled element b ∈ Γ is given to Bob, whose goal
is to identify the value of Alice’s random bit a. Bob may only use the value of b, along with his
knowledge of p0 and p1, when making his guess.

It is clear from Bayes’ theorem what Bob should do to maximize his probability to correctly
guess the value of a: if p0(b) > p1(b), he should guess that a = 0, while if p0(b) < p1(b) he
should guess that a = 1. In case p0(b) = p1(b), Bob may as well guess that a = 0 or a = 1
arbitrarily, for he has learned nothing at all about the value of a from such an element b ∈ Γ.
Bob’s probability to correctly identify the value of a using this strategy is

1
2
+

1
4
‖p0 − p1‖1 ,

which can be verified by a simple calculation. This is an optimal strategy.
A slightly more general situation is one in which a ∈ {0, 1} is not chosen uniformly, but

rather
Pr[a = 0] = λ and Pr[a = 1] = 1− λ
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for some value of λ ∈ [0, 1]. In this case, an optimal strategy for Bob is to guess that a = 0 if
λp0(b) > (1− λ)p1(b), to guess that a = 1 if λp0(b) < (1− λ)p1(b), and to guess arbitrarily if
λp0(b) = (1− λ)p1(b). His probability of correctness will be

1
2
+

1
2
‖λp0 − (1− λ)p1‖ .

Naturally, this generalizes the expression for the case λ = 1/2.
Now consider a similar scenario, except with quantum states ρ0, ρ1 ∈ D (X ) in place of

probability vectors p0, p1 ∈ RΓ. More specifically, Alice chooses a random bit a = {0, 1} according
to the distribution

Pr[a = 0] = λ and Pr[a = 1] = 1− λ,

for some choice of λ ∈ [0, 1] (which is known to both Alice and Bob). She then hands Bob a
register X that has been prepared in the quantum state ρa ∈ D (X ). This time, Bob has the
freedom to choose whatever measurement he wants in trying to guess the value of a.

Note that there is no generality lost in assuming Bob makes a measurement having outcomes
0 and 1. If he were to make any other measurement, perhaps with many outcomes, and then
process the outcome in some way to arrive at a guess for the value of a, we could simply combine
his measurement with the post-processing phase to arrive at the description of a measurement
with outcomes 0 and 1.

The following theorem states, in mathematical terms, that Bob’s optimal strategy correctly
identifies a with probability

1
2
+

1
2
‖λρ0 − (1− λ)ρ1‖1 ,

which is a similar expression to the one we had in the classical case. The proof of the theorem
also makes clear precisely what strategy Bob should employ for optimality.

Theorem 3.3 (Helstrom). Let ρ0, ρ1 ∈ D (X ) be states and let λ ∈ [0, 1]. For every choice of positive
semidefinite operators P0, P1 ∈ Pos (X ) for which P0 + P1 = 1X , it holds that

λ 〈P0, ρ0〉+ (1− λ) 〈P1, ρ1〉 ≤
1
2
+

1
2
‖λρ0 − (1− λ)ρ1‖1 .

Moreover, equality is achieved for some choice of projection operators P0, P1 ∈ Pos (X ) with P0 + P1 = 1X .

Proof. First, note that

(λ 〈P0, ρ0〉+ (1− λ) 〈P1, ρ1〉)− (λ 〈P1, ρ0〉+ (1− λ) 〈P0, ρ1〉) = 〈P0 − P1, λρ0 − (1− λ)ρ1〉
(λ 〈P0, ρ0〉+ (1− λ) 〈P1, ρ1〉) + (λ 〈P1, ρ0〉+ (1− λ) 〈P0, ρ1〉) = 1,

and therefore

λ 〈P0, ρ0〉+ (1− λ) 〈P1, ρ1〉 =
1
2
+

1
2
〈P0 − P1, λρ0 − (1− λ)ρ1〉 , (3.1)

for any choice of P0, P1 ∈ Pos (X ) with P0 + P1 = 1X .
Now, for every unit vector u ∈ X we have

|u∗(P0 − P1)u| = |u∗P0u− u∗P1u| ≤ u∗P0u + u∗P1u = u∗(P0 + P1)u = 1,
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and therefore (as P0 − P1 is Hermitian) it holds that ‖P0 − P1‖ ≤ 1. By Hölder’s inequality (for
Schatten p-norms) we therefore have

〈P0 − P1, λρ0 − (1− λ)ρ1〉 ≤ ‖P0 − P1‖ ‖λρ0 − (1− λ)ρ1‖1 ≤ ‖λρ0 − (1− λ)ρ1‖1 ,

and so the inequality in the theorem follows from (3.1).
To prove equality can be achieved for projection operators P0, P1 ∈ Pos (X ) with P0 + P1 = 1X ,

we consider a spectral decomposition

λρ0 − (1− λ)ρ1 =
n

∑
j=1

ηjxjx∗j .

Defining
P0 = ∑

j: ηj≥0
xjx∗j and P1 = ∑

j: ηj<0
xjx∗j ,

we have that P0 and P1 are projections with P0 + P1 = 1X , and moreover

(P0 − P1)(λρ0 − (1− λ)ρ1) =
n

∑
j=1

∣∣ηj
∣∣ xjx∗j .

It follows that

〈P0 − P1, λρ0 − (1− λ)ρ1〉 =
n

∑
j=1

∣∣ηj
∣∣ = ‖λρ0 − (1− λ)ρ1‖1 ,

and by (3.1) we obtain the desired equality.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 4: Purifications and fidelity

Throughout this lecture we will be discussing pairs of registers of the form (X,Y), and the
relationships among the states of X, Y, and (X,Y).

The situation generalizes to collections of three or more registers, provided we are interested
in bipartitions. For instance, if we have a collection of registers (X1, . . . ,Xn), and we wish to
consider the state of a subset of these registers in relation to the state of the whole, we can
effectively group the registers into two disjoint collections and relabel them as X and Y to apply
the conclusions to be drawn. Other, multipartite relationships can become more complicated,
such as relationships between states of (X1,X2), (X2,X3), and (X1,X2,X3), but this is not the topic
of this lecture.

4.1 Reductions, extensions, and purifications

Suppose that a pair of registers (X,Y) has the state ρ ∈ D (X ⊗Y). The states of X and Y
individually are then given by

ρX = TrY (ρ) and ρY = TrX (ρ).

You could regard this as a definition, but these are the only choices that are consistent with the in-
terpretation that disregarding Y should have no influence on the outcomes of any measurements
performed on X alone, and likewise for X and Y reversed. The states ρX and ρY are sometimes
called the reduced states of X and Y, or the reductions of ρ to X and Y.

We may also go in the other direction. If a state σ ∈ D (X ) of X is given, we may consider the
possible states ρ ∈ D (X ⊗Y) that are consistent with σ on X, meaning that σ = TrY (ρ). Unless
Y is a trivial register with just a single classical state, there are always multiple choices for ρ that
are consistent with σ. Any such state ρ is said to be an extension of σ. For instance, ρ = σ⊗ ξ, for
any density operator ξ ∈ D (Y), is always an extension of σ, because

TrY (σ⊗ ξ) = σ⊗ Tr(ξ) = σ.

If σ is pure, this is the only possible form for an extension. This is a mathematically simple
statement, but it is nevertheless important at an intuitive level: it says that a register in a pure
state cannot be correlated with any other registers.

A special type of extension is one in which the state of (X,Y) is pure: if ρ = uu∗ ∈ D (X ⊗Y)
is a pure state for which

TrY (uu∗) = σ,

it is said that ρ is a purification of σ. One also often refers to the vector u, as opposed to the
operator uu∗, as being a purification of σ.

The notions of reductions, extensions, and purifications are easily extended to arbitrary posi-
tive semidefinite operators, as opposed to just density operators. For instance, if P ∈ Pos (X ) is



a positive semidefinite operator and u ∈ X ⊗Y is a vector for which

P = TrY (uu∗),

it is said that u (or uu∗) is a purification of P.
For example suppose X = CΣ and Y = CΣ, for some arbitrary (finite and nonempty) set Σ.

The vector
u = ∑

a∈Σ
ea ⊗ ea

satisfies the equality
1X = TrY (uu∗),

and so u is a purification of 1X .

4.2 Existence and properties of purifications

A study of the properties of purifications is greatly simplified by the following observation. The
vec mapping defined in Lecture 2 is a one-to-one and onto linear correspondence between X ⊗Y
and L (Y ,X ); and for any choice of u ∈ X ⊗ Y and A ∈ L (Y ,X ) satisfying u = vec(A) it holds
that

TrY (uu∗) = TrY (vec(A) vec(A)∗) = AA∗.

Therefore, for every choice of complex Euclidean spaces X and Y , and for any given operator
P ∈ Pos (X ), the following two properties are equivalent:

1. There exists a purification u ∈ X ⊗Y of P.

2. There exists an operator A ∈ L (Y ,X ) such that P = AA∗.

The following theorem, whose proof is based on this observation, establishes necessary and
sufficient conditions for the existence of a purification of a given operator.

Theorem 4.1. Let X and Y be complex Euclidean spaces, and let P ∈ Pos (X ) be a positive semidefinite
operator. There exists a purification u ∈ X ⊗Y of P if and only if dim(Y) ≥ rank(P).

Proof. As discussed above, the existence of a purification u ∈ X ⊗ Y of P is equivalent to the
existence of an operator A ∈ L (Y ,X ) satisfying P = AA∗. Under the assumption that such an
operator A exists, it is clear that

rank(P) = rank(AA∗) = rank(A) ≤ dim(Y)

as claimed.
Conversely, under the assumption that dim(Y) ≥ rank(P), there must exist operator B ∈

L (Y ,X ) for which BB∗ = Πim(P) (the projection onto the image of P). To obtain such an operator
B, let r = rank(P), use the spectral theorem to write

P =
r

∑
j=1

λj(P)xjx∗j ,

and let

B =
r

∑
j=1

xjy∗j

for any choice of an orthonormal set {y1, . . . , yr} ⊂ Y . Now, for A =
√

PB it holds that AA∗ = P
as required.
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Corollary 4.2. Let X and Y be complex Euclidean spaces such that dim(Y) ≥ dim(X ). For every
choice of P ∈ Pos (X ), there exists a purification u ∈ X ⊗Y of P.

Having established a simple condition under which purifications exist, the next step is to
prove the following important relationship among all purifications of a given operator within a
given space.

Theorem 4.3 (Unitary equivalence of purifications). Let X and Y be complex Euclidean spaces, and
suppose that vectors u, v ∈ X ⊗Y satisfy

TrY (uu∗) = TrY (vv∗).

There exists a unitary operator U ∈ U (Y) such that v = (1X ⊗U)u.

Proof. Let P ∈ Pos (X ) satisfy TrY (uu∗) = P = TrY (vv∗), and let A, B ∈ L (Y ,X ) be the unique
operators satisfying u = vec(A) and v = vec(B). It therefore holds that AA∗ = P = BB∗. Letting
r = rank(P), it follows that rank(A) = r = rank(B).

Now, let {x1, . . . , xr} ⊂ X be any orthonormal collection of eigenvectors of P with corre-
sponding eigenvalues λ1(P), . . . , λr(P). By the singular value theorem, it is possible to write

A =
r

∑
j=1

√
λj(P)xjy∗j and B =

r

∑
j=1

√
λj(P)xjz∗j

for some choice of orthonormal sets {y1, . . . , yr} and {z1, . . . , zr}.
Finally, let V ∈ U (Y) be any unitary operator satisfying Vzj = yj for every j = 1, . . . , r. It

follows that AV = B, and by taking U = VT one has

(1X ⊗U)u = (1X ⊗VT) vec(A) = vec(AV) = vec(B) = v

as required.

Theorem 4.3 will have significant value throughout the course, as a tool for proving a variety
of results. It is also important at an intuitive level that the following example aims to illustrate.

Example 4.4. Suppose X and Y are distinct registers, and that Alice holds X and Bob holds Y in
separate locations. Assume moreover that the pair (X,Y) is in a pure state uu∗.

Now imagine that Bob wishes to transform the state of (X,Y) so that it is in a different pure
state vv∗. Assuming that Bob is able to do this without any interaction with Alice, it must hold
that

TrY (uu∗) = TrY (vv∗). (4.1)

This equation expresses the assumption that Bob does not touch X.
Theorem 4.3 implies that not only is (4.1) a necessary condition for Bob to transform uu∗ into

vv∗, but in fact it is sufficient. In particular, there must exist a unitary operator U ∈ U (Y) for
which v = (1X ⊗U)u, and Bob can implement the transformation from uu∗ into vv∗ by applying
the unitary operation described by U to his register Y.

4.3 The fidelity function

There are different ways that one may quantify the similarity or difference between density
operators. One way that relates closely to the notion of purifications is the fidelity between states.
It is used extensively in the theory of quantum information.
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4.3.1 Definition of the fidelity function

Given positive semidefinite operators P, Q ∈ Pos (X ), we define the fidelity between P and Q as

F(P, Q) =
∥∥∥√P

√
Q
∥∥∥

1
.

Equivalently,

F(P, Q) = Tr
√√

PQ
√

P.

Similar to purifications, it is common to see the fidelity defined only for density operators as
opposed to arbitrary positive semidefinite operators. It is, however, useful to extend the definition
to all positive semidefinite operators as we have done, and it incurs little or no additional effort.

4.3.2 Basic properties of the fidelity

There are many interesting properties of the fidelity function. Let us begin with a few simple
ones. First, the fidelity is symmetric: F(P, Q) = F(Q, P) for all P, Q ∈ Pos (X ). This is clear from
the definition, given that ‖A‖1 = ‖A∗‖1 for all operators A.

Next, suppose that u ∈ X is a vector and Q ∈ Pos (X ) is a positive semidefinite operator. It
follows from the observation that

√
uu∗ = uu∗

‖u‖ whenever u 6= 0 that

F (uu∗, Q) =
√

u∗Qu.

In particular, F (uu∗, vv∗) = |〈u, v〉| for any choice of vectors u, v ∈ X .
One nice property of the fidelity that we will utilize several times is that it is multiplicative

with respect to tensor products. This fact is stated in the following proposition (which can be
easily extended from tensor products of two operators to any finite number of operators by
induction).

Proposition 4.5. Let P1, Q1 ∈ Pos (X1) and P2, Q2 ∈ Pos (X2) be positive semidefinite operators. It
holds that

F(P1 ⊗ P2, Q1 ⊗Q2) = F(P1, Q1) F(P2, Q2).

Proof. We have

F(P1 ⊗ P2, Q1 ⊗Q2) =
∥∥∥√P1 ⊗ P2

√
Q1 ⊗Q2

∥∥∥
1
=
∥∥∥(√P1 ⊗

√
P2

) (√
Q1 ⊗

√
Q2

)∥∥∥
1

=
∥∥∥√P1

√
Q1 ⊗

√
P2
√

Q2

∥∥∥
1
=
∥∥∥√P1

√
Q1

∥∥∥
1

∥∥∥√P2
√

Q2

∥∥∥
1
= F(P1, Q1) F(P2, Q2)

as claimed.

4.3.3 Uhlmann’s theorem

Next we will prove a fundamentally important theorem about the fidelity, known as Uhlmann’s
theorem, which relates the fidelity to the notion of purifications.

Theorem 4.6 (Uhlmann’s theorem). Let X and Y be complex Euclidean spaces, let P, Q ∈ Pos (X ) be
positive semidefinite operators, both having rank at most dim(Y), and let u ∈ X ⊗Y be any purification
of P. It holds that

F(P, Q) = max {|〈u, v〉| : v ∈ X ⊗Y , TrY (vv∗) = Q} .
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Proof. Given that the rank of both P and Q is at most dim(Y), there must exist operators A, B ∈
L (X ,Y) for which A∗A = Πim(P) and B∗B = Πim(Q). The equations

TrY
(

vec
(√

PA∗
)

vec
(√

PA∗
)∗)

=
√

PA∗A
√

P = P

TrY
(

vec
(√

QB∗
)

vec
(√

QB∗
)∗)

=
√

QB∗B
√

Q = Q

follow, demonstrating that

vec
(√

PA∗
)

and vec
(√

QB∗
)

are purifications of P and Q, respectively. By Theorem 4.3 it follows that every choice of a
purification u ∈ X ⊗Y of P must take the form

u = (1X ⊗U) vec
(√

PA∗
)
= vec

(√
PA∗UT

)
,

for some unitary operator U ∈ U (Y), and likewise every purification v ∈ X ⊗Y of Q must take
the form

v = (1X ⊗V) vec
(√

QB∗
)
= vec

(√
QB∗VT

)
for some unitary operator V ∈ U (Y).

The maximization in the statement of the theorem is therefore equivalent to

max
V∈U(Y)

∣∣∣〈vec
(√

PA∗UT

)
, vec

(√
QB∗VT

)〉∣∣∣ ,

which may alternately be written as

max
V∈U(Y)

∣∣∣〈UTV, A
√

P
√

QB∗
〉∣∣∣ (4.2)

for some choice of U ∈ U (Y). As V ∈ U (Y) ranges over all unitary operators, so too does UTV,
and therefore the quantity represented by equation (4.2) is given by∥∥∥A

√
P
√

QB∗
∥∥∥

1
.

Finally, given that A∗A and B∗B are projection operators, A and B must both have spectral
norm at most 1. It therefore holds that∥∥∥√P

√
Q
∥∥∥

1
=
∥∥∥A∗A

√
P
√

QB∗B
∥∥∥

1
≤
∥∥∥A
√

P
√

QB∗
∥∥∥

1
≤
∥∥∥√P

√
Q
∥∥∥

1

so that ∥∥∥A
√

P
√

QB∗
∥∥∥

1
=
∥∥∥√P

√
Q
∥∥∥

1
= F(P, Q).

The equality in the statement of the theorem therefore holds.

Various properties of the fidelity follow from Uhlmann’s theorem. For example, it is clear
from the theorem that 0 ≤ F(ρ, ξ) ≤ 1 for density operators ρ and ξ. Moreover F(ρ, ξ) = 1 if and
only if ρ = ξ. It is also evident (from the definition) that F(ρ, ξ) = 0 if and only if

√
ρ
√

ξ = 0,
which is equivalent to ρξ = 0 (i.e., to ρ and ξ having orthogonal images).

Another property of the fidelity that follows from Uhlmann’s theorem is as follows.
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Proposition 4.7. Let P1, . . . , Pk, Q1, . . . , Qk ∈ Pos (X ) be positive semidefinite operators. It holds that

F

(
k

∑
i=1

Pi,
k

∑
i=1

Qi

)
≥

k

∑
i=1

F (Pi, Qi) .

Proof. Let Y be a complex Euclidean space having dimension at least that of X , and choose
vectors u1, . . . , uk, v1, . . . , vk ∈ X ⊗ Y satisfying TrY (uiu∗i ) = Pi, TrY (viv∗i ) = Qi, and 〈ui, vi〉 =
F(Pi, Qi) for each i = 1, . . . , k. Such vectors exist by Uhlmann’s theorem. Let Z = Ck and define
u, v ∈ X ⊗Y ⊗Z as

u =
k

∑
i=1

ui ⊗ ei and v =
k

∑
i=1

vi ⊗ ei.

We have

TrY⊗Z (uu∗) =
k

∑
i=1

Pi and TrY⊗Z (vv∗) =
k

∑
i=1

Qi.

Thus, again using Uhlmann’s theorem, we have

F

(
k

∑
i=1

Pi,
k

∑
i=1

Qi

)
≥ |〈u, v〉| =

k

∑
i=1

F (Pi, Qi)

as required.

It follows from this proposition is that the fidelity function is concave in the first argument:

F(λρ1 + (1− λ)ρ2, ξ) ≥ λ F(ρ1, ξ) + (1− λ) F(ρ2, ξ)

for all ρ1, ρ2, ξ ∈ D (X ) and λ ∈ [0, 1], and by symmetry it is concave in the second argument as
well. In fact, the fidelity is jointly concave:

F(λρ1 + (1− λ)ρ2, λξ1 + (1− λ)ξ2) ≥ λ F(ρ1, ξ1) + (1− λ) F(ρ2, ξ2).

for all ρ1, ρ2, ξ1, ξ2 ∈ D (X ) and λ ∈ [0, 1].

4.3.4 Alberti’s theorem

A different characterization of the fidelity function is given by Alberti’s theorem, which is as
follows.

Theorem 4.8 (Alberti). Let X be a complex Euclidean space and let P, Q ∈ Pos (X ) be positive semidef-
inite operators. It holds that

(F(P, Q))2 = inf
R∈Pd(X )

〈R, P〉 〈R−1, Q〉.

When we study semidefinite programming later in the course, we will see that this theorem
is in fact closely related to Uhlmann’s theorem through semidefinite programming duality. For
now we will make due with a different proof. It is more complicated, but it has the value that
it illustrates some useful tricks from matrix analysis. To prove the theorem, it is helpful to start
first with the special case that P = Q, which is represented by the following lemma.
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Lemma 4.9. Let P ∈ Pos (X ). It holds that

inf
R∈Pd(X )

〈R, P〉 〈R−1, P〉 = (Tr(P))2.

Proof. It is clear that
inf

R∈Pd(X )
〈R, P〉 〈R−1, P〉 ≤ (Tr(P))2 ,

given that R = 1 is positive definite. To establish the reverse inequality, it suffices to prove that

〈R, P〉 〈R−1, P〉 ≥ (Tr(P))2

for any choice of R ∈ Pd (X ). This will follow from the simple observation that, for any choice
of positive real numbers α and β, we have α2 + β2 ≥ 2αβ and therefore αβ−1 + βα−1 ≥ 2. With
this fact in mind, consider a spectral decomposition

R =
n

∑
i=1

λiuiu∗i .

We have

〈R, P〉 〈R−1, P〉 = ∑
1≤i,j≤n

λiλ
−1
j (u∗i Pui)(u∗j Puj)

= ∑
1≤i≤n

(u∗i Pui)
2 + ∑

1≤i<j≤n
(λiλ

−1
j + λjλ

−1
i )(u∗i Pui)(u∗j Puj)

≥ ∑
1≤i≤n

(u∗i Pui)
2 + 2 ∑

1≤i<j≤n
(u∗i Pui)(u∗j Puj)

= (Tr(P))2

as required.

Proof of Theorem 4.8. We will first prove the theorem for P and Q positive definite. Let us define
S ∈ Pd (X ) to be

S =
(√

PQ
√

P
)−1/4√

PR
√

P
(√

PQ
√

P
)−1/4

.

Notice that as R ranges over all positive definite operators, so too does S. We have〈
S,
(√

PQ
√

P
)1/2

〉
= 〈R, P〉 ,〈

S−1,
(√

PQ
√

P
)1/2

〉
= 〈R−1, Q〉.

Therefore, by Lemma 4.9, we have

inf
R∈Pd(X )

〈R, P〉 〈R−1, Q〉 = inf
S∈Pd(X )

〈
S,
(√

PQ
√

P
)1/2

〉〈
S−1,

(√
PQ
√

P
)1/2

〉
=

(
Tr
√√

PQ
√

P
)2

= (F(P, Q))2 .
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To prove the general case, let us first note that, for any choice of R ∈ Pd (X ) and ε > 0, we have

〈R, P〉 〈R−1, Q〉 ≤ 〈R, P + ε1〉 〈R−1, Q + ε1〉.

Thus,
inf

R∈Pd(X )
〈R, P〉 〈R−1, Q〉 ≤ (F(P + ε1, Q + ε1))2

for all ε > 0. As
lim

ε→0+
F(P + ε1, Q + ε1) = F(P, Q)

we have
inf

R∈Pd(X )
〈R, P〉 〈R−1, Q〉 ≤ (F(P, Q))2 .

On the other hand, for any choice of R ∈ Pd (X ) we have

〈R, P + ε1〉 〈R−1, Q + ε1〉 ≥ (F(P + ε1, Q + ε1))2 ≥ (F(P, Q))2

for all ε > 0, and therefore
〈R, P〉 〈R−1, Q〉 ≥ (F(P, Q))2 .

As this holds for all R ∈ Pd (X ) we have

inf
R∈Pd(X )

〈R, P〉 〈R−1, Q〉 ≥ (F(P, Q))2 ,

which completes the proof.

4.4 The Fuchs–van de Graaf inequalities

We will now state and prove the Fuchs–van de Graaf inequalities, which establish a close relation-
ship between the trace norm of the difference between two density operators and their fidelity.
The inequalities are as stated in the following theorem.

Theorem 4.10 (Fuchs–van de Graaf). Let X be a complex Euclidean space and assume that ρ, ξ ∈ D (X )
are density operators on X . It holds that

1− 1
2
‖ρ− ξ‖1 ≤ F(ρ, ξ) ≤

√
1− 1

4
‖ρ− ξ‖2

1.

To prove this theorem we first need the following lemma relating the trace norm and Frobe-
nius norm. Once we have it in hand, the theorem will be easy to prove.

Lemma 4.11. Let X be a complex Euclidean space and let P, Q ∈ Pos (X ) be positive semidefinite
operators on X . It holds that

‖P−Q‖1 ≥
∥∥∥√P−

√
Q
∥∥∥2

2
.

Proof. Let
√

P−
√

Q =
n

∑
i=1

λiuiu∗i
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be a spectral decomposition of
√

P−
√

Q. Given that
√

P−
√

Q is Hermitian, it follows that
n

∑
i=1
|λi |2 =

∥∥∥√P−
√

Q
∥∥∥2

2
.

Now, define

U =
n

∑
i=1

sign(λi)uiu∗i

where

sign(λ) =
{

1 if λ ≥ 0
−1 if λ < 0

for every real number λ. It follows that

U
(√

P−
√

Q
)
=
(√

P−
√

Q
)

U =
n

∑
i=1
|λi | uiu∗i =

∣∣∣√P−
√

Q
∣∣∣ .

Using the operator identity

A2 − B2 =
1
2
((A− B)(A + B) + (A + B)(A− B)),

along with the fact that U is unitary, we have

‖P−Q‖1 ≥ |Tr ((P−Q)U)|

=

∣∣∣∣12 Tr
(
(
√

P−
√

Q)(
√

P +
√

Q)U
)
+

1
2

Tr
(
(
√

P +
√

Q)(
√

P−
√

Q)U
)∣∣∣∣

= Tr
(∣∣∣√P−

√
Q
∣∣∣ (√P +

√
Q
))

.

Now, by the triangle inequality (for real numbers), we have that

u∗i
(√

P +
√

Q
)

ui ≥
∣∣∣u∗i√Pui − u∗i

√
Qui

∣∣∣ = |λi |

for every i = 1, . . . , n. Thus

Tr
(∣∣∣√P−

√
Q
∣∣∣ (√P +

√
Q
))

=
n

∑
i=1
|λi | u∗i

(√
P +

√
Q
)

ui ≥
n

∑
i=1
|λi |2 =

∥∥∥√P−
√

Q
∥∥∥2

2

as required.

Proof of Theorem 4.10. The operators ρ and ξ have unit trace, and therefore∥∥∥√ρ−
√

ξ
∥∥∥2

2
= Tr

(√
ρ−

√
ξ
)2

= 2− 2 Tr
(√

ρ
√

ξ
)
≥ 2− 2 F(ρ, ξ).

The first inequality therefore follows from Lemma 4.11.
To prove the second inequality, let Y be a complex Euclidean space with dim(Y) = dim(X ),

and let u, v ∈ X ⊗ Y satisfy TrY (uu∗) = ρ, TrY (vv∗) = ξ, and F(ρ, ξ) = |〈u, v〉|. Such vectors
exist as a consequence of Uhlmann’s theorem. By the monotonicity of the trace norm we have

‖ρ− ξ‖1 ≤ ‖uu∗ − vv∗‖1 = 2
√

1− |〈u, v〉|2 = 2
√

1− F(ρ, ξ)2,

and therefore

F(ρ, ξ) ≤
√

1− 1
4
‖ρ− ξ‖2

1

as required.
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Lecture 5: Naimark’s theorem; characterizations of channels

5.1 Naimark’s Theorem

The following theorem expresses a fundamental relationship between ordinary measurements
and projective measurements. It is known as Naimark’s theorem, although one should under-
stand that it is really a simple, finite-dimensional case of a more general theorem known by the
same name that is important in operator theory. The theorem is also sometimes called Neumark’s
Theorem: the two names refer to the same individual, Mark Naimark, whose name has been
transliterated in these two different ways.

Theorem 5.1 (Naimark’s theorem). Let X be a complex Euclidean space, let

µ : Γ→ Pos (X )

be a measurement on X , and let Y = CΓ. There exists a linear isometry A ∈ U (X ,X ⊗Y) such that

µ(a) = A∗(1X ⊗ Ea,a)A

for every a ∈ Γ.

Proof. Define A ∈ L (X ,X ⊗Y) as

A = ∑
a∈Γ

√
µ(a)⊗ ea.

It holds that
A∗A = ∑

a∈Σ
µ(a) = 1X ,

so A is a linear isometry, and A∗(1X ⊗ Ea,a)A = µ(a) for each a ∈ Γ as required.

One may interpret this theorem as saying that an arbitrary measurement

µ : Γ→ Pos (X )

on a register X can be simulated by a projective measurement on a pair of registers (X,Y). In
particular, we take Y = CΓ, and by the theorem we conclude that there exists a linear isometry
A ∈ U (X ,X ⊗Y) such that

µ(a) = A∗(1X ⊗ Ea,a)A

for every a ∈ Γ. For an arbitrary, but fixed, choice of a unit vector u ∈ Y , we may choose a
unitary operator U ∈ U (X ⊗Y) for which

A = U(1X ⊗ u).



Consider the projective measurement ν : Γ→ Pos (X ⊗Y) defined as

ν(a) = U∗(1X ⊗ Ea,a)U

for each a ∈ Γ. If a density operator ρ ∈ D (X ) is given, and the registers (X,Y) are prepared in
the state ρ⊗ uu∗, then this projective measurement results in each outcome a ∈ Γ with probability

〈ν(a), ρ⊗ uu∗〉 = 〈A∗(1X ⊗ Ea,a)A, ρ〉 = 〈µ(a), ρ〉 .

The probability for each measurement outcome is therefore in agreement with the original mea-
surement µ.

5.2 Representations of quantum channels

Next, we will move on to a discussion of linear mappings of the form Φ : L (X )→ L (Y). Recall
that we write T (X ,Y) to denote the space of all linear mappings taking this form. Mappings of
this sort are important in quantum information theory because (among other reasons) channels
take this form.

In this section we will discuss four different ways to represent such mappings, as well as
a relationship among these representations. Throughout this section, and the remainder of the
lecture, we assume that X = CΣ and Y = CΓ are arbitrary fixed complex Euclidean spaces.

5.2.1 The natural representation

For every mapping Φ ∈ T (X ,Y), it is clear that the mapping

vec(X) 7→ vec(Φ(X))

is linear, as it can be represented as a composition of linear mappings. To be precise, there must
exist a linear operator K(Φ) ∈ L (X ⊗X ,Y ⊗ Y) that satisfies

K(Φ) vec(X) = vec(Φ(X))

for all X ∈ L (X ). The operator K(Φ) is the natural representation of Φ. A concrete expression for
K(Φ) is as follows:

K(Φ) = ∑
a,b∈Σ

∑
c,d∈Γ
〈Ec,d, Φ(Ea,b)〉 Ec,a ⊗ Ed,b. (5.1)

To verify that the above equation (5.1) holds, one may simply compute:

K(Φ) vec(Ea,b) = vec

(
∑

c,d∈Γ
〈Ec,d, Φ(Ea,b)〉 Ec,d

)
= vec(Φ(Ea,b)),

from which it follows that K(Φ) vec(X) = vec(Φ(X)) for all X by linearity.
Notice that the mapping K : T (X ,Y)→ L (X ⊗X ,Y ⊗ Y) is itself linear:

K(αΦ + βΨ) = αK(Φ) + βK(Ψ)

for all choices of α, β ∈ C and Φ, Ψ ∈ T (X ,Y). In fact, K is a linear bijection, as the above
form (5.1) makes clear that for every operator A ∈ L (X ⊗X ,Y ⊗ Y) there exists a unique choice
of Φ ∈ T (X ,Y) for which A = K(Φ).

The natural representation respects the notion of adjoints, meaning that

K(Φ∗) = (K(Φ))∗

for every mapping Φ ∈ T (X ,Y).
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5.2.2 The Choi-Jamiołkowski representation

The natural representation of mappings specifies a straightforward way that an operator can
be associated with a mapping. There is a different and somewhat less straightforward way that
such an association can be made that turns out to be very important in understanding completely
positive mappings in particular. Specifically, let us define a mapping J : T (X ,Y) → L (Y ⊗X )
as

J(Φ) = ∑
a,b∈Σ

Φ(Ea,b)⊗ Ea,b

for each Φ ∈ T (X ,Y). Alternately we may write

J(Φ) = (Φ⊗ 1L(X )) (vec(1X ) vec(1X )∗) .

The operator J(Φ) is called the Choi-Jamiołkowski representation of Φ.
As for the natural representation, it is evident from the definition that J is a linear bijection.

Another way to see this is to note that the action of the mapping Φ can be recovered from the
operator J(Φ) by means of the equation

Φ(X) = TrX [J(Φ) (1Y ⊗ XT)] .

5.2.3 Kraus representations

Let Φ ∈ T (X ,Y) be a mapping, and suppose that

{Aa : a ∈ Γ}, {Ba : a ∈ Γ} ⊂ L (X ,Y)

are (finite and nonempty) collections of operators for which the equation

Φ(X) = ∑
a∈Γ

AaXB∗a (5.2)

holds for all X ∈ L (X ). The expression (5.2) is said to be a Kraus representation of the mapping Φ.
It will be established shortly that Kraus representations exist for all mappings. Unlike the natural
representation and Choi-Jamiołkowski representation, Kraus representations are never unique.

The term Kraus representation is sometimes reserved for the case that Aa = Ba for each a ∈ Γ,
and in this case the operators {Aa : a ∈ Γ} are called Kraus operators. Such a representation
exists, as we will see shortly, if and only if Φ is completely positive.

Under the assumption that Φ is given by the above equation (5.2), it holds that

Φ∗(Y) = ∑
a∈Γ

A∗aYBa.

5.2.4 Stinespring representations

Finally, suppose that Φ ∈ T (X ,Y) is a given mapping, Z is a complex Euclidean space, and
A, B ∈ L (X ,Y ⊗Z) are operators such that

Φ(X) = TrZ (AXB∗) (5.3)

for all X ∈ L (X ). The expression (5.3) is said to be a Stinespring representation of Φ. Similar
to Kraus representations, Stinespring representations always exists for a given Φ and are never
unique.
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Similar to Kraus representations, the term Stinespring representation is often reserved for the
case A = B. Once again, as we will see, such a representation exists if and only if Φ is completely
positive.

If Φ ∈ T (X ,Y) is given by the above equation (5.3), then

Φ∗(Y) = A∗(Y⊗ 1Z )B.

(Expressions of this form are also sometimes referred to as Stinespring representations.)

5.2.5 A simple relationship among the representations

The following proposition explains a simple way in which the four representations discussed
above relate to one another.

Proposition 5.2. Let Φ ∈ T (X ,Y) and let {Aa : a ∈ Γ} and {Ba : a ∈ Γ} be collections of operators
in L (X ,Y) for a finite, non-empty set Γ. The following statements are equivalent.

1. (Kraus representations.) It holds that

Φ(X) = ∑
a∈Γ

AaXB∗a

for all X ∈ L (X ).

2. (Stinespring representations.) For Z = CΓ and A, B ∈ L (X ,Y ⊗Z) defined as

A = ∑
a∈Γ

Aa ⊗ ea and B = ∑
a∈Γ

Ba ⊗ ea,

it holds that Φ(X) = TrZ (AXB∗) for all X ∈ L (X ).

3. (The natural representation.) It holds that

K(Φ) = ∑
a∈Γ

Aa ⊗ Ba.

4. (The Choi-Jamiołkowski representation.) It holds that

J(Φ) = ∑
a∈Γ

vec(Aa) vec(Ba)
∗.

Proof. The equivalence between items 1 and 2 is a straightforward calculation. The equivalence
between items 1 and 3 follows from the identity

vec(AaXB∗a ) =
(

Aa ⊗ Ba
)

vec(X)

for each a ∈ Γ and every X ∈ L (X ). Finally, the equivalence between items 1 and 4 follows from
the expression

J(Φ) = (Φ⊗ 1L(X )) (vec(1X ) vec(1X )∗)

along with

(Aa ⊗ 1X ) vec(1X ) = vec(Aa) and vec(1X )∗(B∗a ⊗ 1X ) = vec(Ba)
∗

for each a ∈ Γ.

Various facts may be derived from the above proposition. For instance, it follows that every
mapping Φ ∈ T (X ,Y) has a Kraus representation in which |Γ| = rank(J(Φ)) ≤ dim(X ⊗ Y),
and similarly that every such Φ has a Stinespring representation in which dim(Z) = rank(J(Φ)).
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5.3 Characterizations of completely positive and trace-preserving maps

Now we are ready to characterize quantum channels in terms of their Choi-Jamiołkowski, Kraus,
and Stinespring representations. (The natural representation does not happen to help us with
respect to these particular characterizations—which is not surprising because it essentially throws
away the operator structure of the inputs and outputs of a given mapping.)

5.3.1 Characterizations of completely positive maps

We will begin with a characterization of completely positive mappings in terms of their Choi-
Jamiołkowski, Kraus, and Stinespring representations. Before doing this, let us recall the follow-
ing terminology: a mapping Φ ∈ T (X ,Y) is said to be positive if and only if Φ(P) ∈ Pos (Y) for
all P ∈ Pos (X ), and is said to be completely positive if and only if Φ⊗ 1L(Z) is positive for every
choice of a complex Euclidean space Z .

Theorem 5.3. For every mapping Φ ∈ T (X ,Y), the following statements are equivalent.

1. Φ is completely positive.

2. Φ⊗ 1L(X ) is positive.

3. J(Φ) ∈ Pos (Y ⊗X ).

4. There exists a finite set of operators {Aa : a ∈ Γ} ⊂ L (X ,Y) such that

Φ(X) = ∑
a∈Γ

AaXA∗a (5.4)

for all X ∈ L (X ).

5. Item 4 holds for |Γ| = rank(J(Φ)).

6. There exists a complex Euclidean space Z and an operator A ∈ L (X ,Y ⊗Z) such that

Φ(X) = TrZ (AXA∗)

for all X ∈ L (X ).

7. Item 6 holds for Z having dimension equal to the rank of J(Φ).

Proof. The theorem will be proved by establishing implications among the 7 items that are suffi-
cient to establish their equivalence. The particular implications that will be proved are summa-
rized as follows:

(1)⇒ (2)⇒ (3)⇒ (5)⇒ (4)⇒ (1)
(5)⇒ (7)⇒ (6)⇒ (1)

Note that some of these implications are immediate: item 1 implies item 2 by the definition of
complete positivity, item 5 trivially implies item 4, item 7 trivially implies item 6, and item 5
implies item 7 by Proposition 5.2.

Assume that Φ⊗ 1L(X ) is positive. Given that

vec(1X ) vec(1X )∗ ∈ Pos (X ⊗X )

and
J(Φ) =

(
Φ⊗ 1L(X )

)
(vec(1X ) vec(1X )∗),
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it follows that J(Φ) ∈ Pos (Y ⊗X ). Item 2 therefore implies item 3.
Next, assume that J(Φ) ∈ Pos (Y ⊗X ). By the spectral theorem, along with the fact that

every eigenvalue of a positive semidefinite operator is non-negative, we have that it is possible
to write

J(Φ) = ∑
a∈Γ

uau∗a ,

for some choice of vectors {ua : a ∈ Γ} ⊂ Y ⊗ X such that |Γ| = rank(J(Φ)). Defining
Aa ∈ L (X ,Y) so that vec(Aa) = ua for each a ∈ Γ, it follows that

J(Φ) = ∑
a∈Γ

vec(Aa) vec(Aa)
∗.

The equation (5.4) therefore holds for every X ∈ L (X ) by Proposition 5.2, which establishes that
item 3 implies item 5.

Finally, note that mappings of the form X 7→ AXA∗ are easily seen to be completely positive,
and non-negative linear combinations of completely positive mappings are completely positive as
well. Item 4 therefore implies item 1. Along similar lines, the partial trace is completely positive
and completely positive mappings are closed under composition. Item 6 therefore implies item 1,
which completes the proof.

5.3.2 Characterizations of trace-preserving maps

Next we will characterize the collection of trace-preserving mappings in terms of their repre-
sentations. These characterizations are straightforward, but it is nevertheless convenient to state
them in a similar style to those of Theorem 5.3.

Before stating the theorem, the following terminology must be mentioned. A mapping Φ ∈
T (X ,Y) is said to be unital if and only if Φ(1X ) = 1Y .

Theorem 5.4. For every mapping Φ ∈ T (X ,Y), the following statements are equivalent.

1. Φ is trace-preserving.

2. Φ∗ is unital.

3. TrY (J(Φ)) = 1X .

4. There exists a Kraus representation
Φ(X) = ∑

a∈Γ
AaXB∗a

of Φ for which the operators {Aa : a ∈ Γ}, {Ba : a ∈ Γ} ⊂ L (X ,Y) satisfy

∑
a∈Γ

A∗a Ba = 1X .

5. For all Kraus representations
Φ(X) = ∑

a∈Γ
AaXB∗a

of Φ, the operators {Aa : a ∈ Γ}, {Ba : a ∈ Γ} ⊂ L (X ,Y) satisfy

∑
a∈Γ

A∗a Ba = 1X .
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6. There exists a Stinespring representation

Φ(X) = TrZ (AXB∗)

of Φ for which the operators A, B ∈ L (X ,Y ⊗Z) satisfy A∗B = 1X .

7. For all Stinespring representations
Φ(X) = TrZ (AXB∗)

of Φ, the operators A, B ∈ L (X ,Y ⊗Z) satisfy A∗B = 1X .

Proof. Under the assumption that Φ is trace-preserving, it holds that

〈1X , X〉 = Tr(X) = Tr(Φ(X)) = 〈1Y , Φ(X)〉 = 〈Φ∗(1Y ), X〉 ,

and thus 〈1X −Φ∗(1Y ), X〉 = 0 for all X ∈ L (X ). It follows that Φ∗(1Y ) = 1X , so Φ∗ is unital.
Along similar lines, the assumption that Φ∗ is unital implies that

Tr(Φ(X)) = 〈1Y , Φ(X)〉 = 〈Φ∗(1Y ), X〉 = 〈1X , X〉 = Tr(X)

for every X ∈ L (X ), so Φ is trace-preserving. The equivalence of items 1 and 2 has therefore
been established.

Next, suppose that
Φ(X) = ∑

a∈Γ
AaXB∗a

is a Kraus representation of Φ. It holds that

Φ∗(Y) = ∑
a∈Γ

A∗aYBa

for every Y ∈ L (Y), and in particular it holds that

Φ∗(1Y ) = ∑
a∈Γ

A∗a Ba.

Thus, if Φ∗ is unital, then
∑
a∈Γ

A∗a Ba = 1X , (5.5)

and so it has been proved that item 2 implies item 5. On the other hand, if (5.5) holds, then it
follows that Φ∗(1Y ) = 1X , and therefore item 4 implies item 2. Given that every mapping has at
least one Kraus representation, item 5 trivially implies item 4, and therefore the equivalence of
items 2, 4, and 5 has been established.

Now assume that
Φ(X) = TrZ (AXB∗)

is a Stinespring representation of Φ. It follows that

Φ∗(Y) = A∗ (Y⊗ 1Z ) B

for all Y ∈ L (Y), and in particular Φ∗(1Y ) = A∗B. The equivalence of items 2, 6 and 7 follows
by the same reasoning as for the case of items 2, 4 and 5.
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Finally, suppose that X = CΓ, and consider the operator

TrY (J(Φ)) = ∑
a,b∈Γ

Tr (Φ(Ea,b)) Ea,b. (5.6)

If it holds that Φ is trace-preserving, then it follows that

Tr(Φ(Ea,b)) =

{
1 if a = b
0 if a 6= b,

(5.7)

and therefore
TrY (J(Φ)) = ∑

a∈Γ
Ea,a = 1X .

Conversely, if it holds that TrY (J(Φ)) = 1X , then by the expression (5.6) it follows that (5.7) holds.
The mapping Φ is therefore trace-preserving by linearity and the fact that {Ea,b : a, b ∈ Γ} is a
basis of L (X ). The equivalence of items 1 and 3 has therefore been established, which completes
the proof.

5.3.3 Characterizations of channels

The two theorems from above are now easily combined to give the following characterization
of quantum channels. For convenience, let us hereafter write C (X ,Y) to denote the set of all
channels from X to Y , meaning the set of all completely positive and trace-preserving mappings
Φ ∈ T (X ,Y).

Corollary 5.5. Let Φ ∈ T (X ,Y). The following statements are equivalent.

1. Φ ∈ C (X ,Y).
2. J(Φ) ∈ Pos (Y ⊗X ) and TrY (J(Φ)) = 1X .

3. There exists a finite set of operators {Aa : a ∈ Γ} ⊂ L (X ,Y) such that

Φ(X) = ∑
a∈Γ

AaXA∗a

for all X ∈ L (X ), and such that
∑
a∈Γ

A∗a Aa = 1X .

4. Item 3 holds for Γ satisfying |Γ| = rank(J(Φ)).

5. There exists a complex Euclidean space Z and a linear isometry A ∈ U (X ,Y ⊗Z), such that

Φ(X) = TrZ (AXA∗)

for all X ∈ L (X ).

6. Item 5 holds for a complex Euclidean space Z with dim(Z) = rank(J(Φ)).
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 6: Further remarks on measurements and channels

In this lecture we will discuss a few loosely connected topics relating to measurements and
channels. These discussions will serve to illustrate some of the concepts we have discussed in
previous lectures, and are also an opportunity to introduce a few notions that will be handy in
future lectures.

6.1 Measurements as channels and nondestructive measurements

We begin with two simple points concerning measurements. The first explains how measure-
ments may be viewed as special types of channels, and the second introduces the notion of
nondestructive measurements (which were commented on briefly in Lecture 3).

6.1.1 Measurements as channels

Suppose that we have a measurement µ : Γ → Pos (X ) on a register X. When this measurement
is performed, X ceases to exist, and the measurement result is transmitted to some hypothetical
observer that we generally think of as being external to the system being described or considered.

We could, however, imagine that the measurement outcome is stored in a new register Y,
whose classical state set is chosen to be Γ, rather than imagining that it is transmitted to an
external observer. Taking this point of view, the measurement µ corresponds to a channel Φ ∈
C (X ,Y), where

Φ(X) = ∑
a∈Γ
〈µ(a), X〉 Ea,a

for every X ∈ L (X ). For any density operator ρ ∈ D (X ), the output Φ(ρ) is “classical” in
the sense that it is a convex combination of states of the form Ea,a, which we identify with the
classical state a for each a ∈ Γ.

Of course we expect that Φ should be a valid channel, but let us verify that this is so. It is
clear that Φ is linear and preserves trace, as

Tr(Φ(X)) = ∑
a∈Γ
〈µ(a), X〉Tr(Ea,a) = ∑

a∈Γ
〈µ(a), X〉 = 〈1X , X〉 = Tr(X)

for every X ∈ L (X ). To see that Φ is completely positive we may compute the Choi-Jamiołkowski
representation

J(Φ) = ∑
b,c∈Σ

∑
a∈Γ
〈µ(a), Eb,c〉 Ea,a ⊗ Eb,c = ∑

a∈Γ
Ea,a ⊗

(
∑

b,c∈Σ
〈µ(a), Eb,c〉 Eb,c

)
= ∑

a∈Γ
Ea,a ⊗ µ(a)T,

where we have assumed that X = CΣ. Each µ(a) is positive semidefinite, and so J(Φ) ∈
Pos (Y ⊗X ), which proves that Φ is completely positive.



An alternate way to see that Φ is indeed a channel is to use Naimark’s theorem, which implies
that µ(a) = A∗(1X ⊗ Ea,a)A for some isometry A ∈ U (X ,X ⊗Y). It holds that

Φ(X) = ∑
a∈Γ
〈A∗(1X ⊗ Ea,a)A, X〉 Ea,a = ∑

a∈Γ
Ea,a TrX (AXA∗) Ea,a,

which is the composition of two channels: Φ = ∆Ψ, where Ψ(X) = TrX (AXA∗) and

∆(Y) = ∑
a∈Γ

Ea,aYEa,a

is the completely dephasing channel (which effectively zeroes out all off-diagonal entries of a matrix
and leaves the diagonal alone). The composition of two channels is a channel, so we have that Φ
is a channel.

6.1.2 Nondestructive measurements

Sometimes it is convenient to consider measurements that do not destroy registers, but rather
leave them in some state that may depend on the measurement outcome that is obtained from
the measurement. We will refer to such processes as non-destructive measurements.

Formally, a non-destructive measurement on a space X is a function

ν : Γ→ L (X ) : a 7→ Ma,

for some finite, non-empty set of measurement outcomes Γ, that satisfies the constraint

∑
a∈Γ

M∗a Ma = 1X .

When a non-destructive measurement of this form is applied to a register X that has reduced
state ρ ∈ D (X ), two things happen:

1. Each measurement outcome a ∈ Γ occurs with probability 〈M∗a Ma, ρ〉.
2. Conditioned on the measurement outcome a ∈ Γ occurring, the reduced state of the register

X becomes
MaρM∗a
〈M∗a Ma, ρ〉 .

Let us now observe that non-destructive measurements really do not require new definitions,
but can be formed from a composition of an operation and a measurement as we defined them
initially. One way to do this is to follow the proof of Naimark’s theorem. Specifically, let Y = CΓ

and define an operator A ∈ L (X ,X ⊗Y) as

A = ∑
a∈Γ

Ma ⊗ ea.

We have that
A∗A = ∑

a∈Γ
M∗a Ma = 1X ,

which shows that A is a linear isometry. Therefore, the mapping X 7→ AXA∗ from L (X ) to
L (X ⊗Y) is a channel. Now consider that this operation is followed by a measurement of Y
with respect to the standard basis. Each outcome a ∈ Γ appears with probability

〈1X ⊗ Ea,a, AρA∗〉 = 〈M∗a Ma, ρ〉 ,
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and conditioned on the outcome a ∈ Γ appearing, the state of X becomes

TrY [(1X ⊗ Ea,a)AρA∗]
〈1X ⊗ Ea,a, AρA∗〉 =

MaρM∗a
〈M∗a Ma, ρ〉

as required.
Viewing a nondestructive measurement as a channel, along the same lines as in the previous

subsection, we see that it is given by

Φ(X) = ∑
a∈Γ

MaXM∗a ⊗ Ea,a = ∑
a∈Γ

(Ma ⊗ ea)X(Ma ⊗ ea)
∗,

which is easily seen to be completely positive and trace-preserving using the Kraus representa-
tion characterization from the previous lecture.

6.2 Convex combinations of channels

Next we will discuss issues relating to the structure of the set of channels C (X ,Y) for a given
choice of complex Euclidean spaces X and Y .

Let us begin with the simple observation that convex combinations of channels are also chan-
nels: for any choice of channels Φ0, Φ1 ∈ C (X ,Y), and any real number λ ∈ [0, 1], it holds
that

λΦ0 + (1− λ)Φ1 ∈ C (X ,Y) .

One may verify this in different ways, one of which is to consider the Choi-Jamiołkowski repre-
sentation:

J(λΦ0 + (1− λ)Φ1) = λJ(Φ0) + (1− λ)J(Φ1).

Given that Φ0 and Φ1 are completely positive, we have J(Φ0), J(Φ1) ∈ Pos (Y ⊗X ), and because
Pos (Y ⊗X ) is convex it follows that

J(λΦ0 + (1− λ)Φ1) ∈ Pos (Y ⊗X ) .

Thus, λΦ0 + (1− λ)Φ1 is completely positive. The fact that λΦ0 + (1− λ)Φ1 preserves trace is
immediate by linearity. One could also verify the claim that C (X ,Y) is convex somewhat more
directly, by considering the definition of complete positivity.

It is also not difficult to see that the set C (X ,Y) is compact for any choice of complex Eu-
clidean spaces X and Y . This may be verified by again turning to the Choi-Jamiołkowski repre-
sentation. First, we observe that the set

{P ∈ Pos (Y ⊗X ) : Tr(P) = dim(X )}

is compact, by essentially the same reasoning (which we have discussed previously) that shows
the set D (Z) to be compact (for every complex Euclidean space Z). Second, the set

{X ∈ L (Y ⊗X ) : TrY (X) = 1X }

is closed, for it is an affine subspace (in this case given by a translation of the kernel of the partial
trace on Y). The intersection of a compact set and a closed set is compact, so

{P ∈ Pos (Y ⊗X ) : TrY (P) = 1X }

is compact. Continuous mappings map compact sets to compact sets, and the mapping

J−1 : L (Y ⊗X )→ T (X ,Y)
that takes J(Φ) to Φ for each Φ ∈ T (X ,Y) is continuous, so we have that C (X ,Y) is compact.
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6.2.1 Choi’s theorem on extremal channels

Let us now consider the extreme points of the set C (X ,Y). These are the channels that cannot
be written as proper convex combinations of distinct channels. The extreme points of C (X ,Y)
can, in some sense, be viewed as being analogous to the pure states of D (X ), but it turns out
that the structure of C (X ,Y) is more complicated than D (X ). A characterization of the extreme
points of this set is given by the following theorem.

Theorem 6.1 (Choi). Let {Aa : a ∈ Σ} ⊂ L (X ,Y) be a linearly independent set of operators and let
Φ ∈ C (X ,Y) be a quantum channel that is given by

Φ(X) = ∑
a∈Σ

AaXA∗a

for all X ∈ L (X ). The channel Φ is an extreme point of the set C (X ,Y) if and only if

{A∗b Aa : (a, b) ∈ Σ× Σ}

is a linearly independent set of operators.

Proof. Let Z = CΣ, and define M ∈ L (Z ,Y ⊗X ) as

M = ∑
a∈Σ

vec(Aa)e∗a .

Given that {Aa : a ∈ Σ} is linearly independent, it holds that ker(M) = {0}. It also holds that

MM∗ = ∑
a∈Σ

vec(Aa) vec(Aa)
∗ = J(Φ).

Assume first that Φ is not an extreme point of C (X ,Y). It follows that there exist channels
Ψ0, Ψ1 ∈ C (X ,Y), with Ψ0 6= Ψ1, such that

Φ =
1
2

Ψ0 +
1
2

Ψ1.

Let P = J(Φ), Q0 = J(Ψ0), and Q1 = J(Ψ1). As Φ, Ψ0, and Ψ1 are channels, one has that
P, Q0, Q1 ∈ Pos (Y ⊗X ) and

TrY (P) = TrY (Q0) = TrY (Q1) = 1X .

Moreover, as 1
2 Q0 ≤ P, it follows that im(Q0) ⊆ im(P) = im(M), and therefore there exists

a positive semidefinite operator R0 ∈ Pos (Z) for which Q0 = MR0M∗. By similar reasoning,
there exists a positive semidefinite operator R1 ∈ Pos (Z) for which Q1 = MR1M∗. Letting
H = R0 − R1, one finds that

0 = TrY (Q0)− TrY (Q1) = TrY (MHM∗) = ∑
a,b∈Σ

H(a, b) (A∗b Aa)
T ,

and therefore
∑

a,b∈Σ
H(a, b)A∗b Aa = 0.

Given that Ψ0 6= Ψ1, it holds that Q0 6= Q1, so R0 6= R1, and thus H 6= 0. It has therefore been
shown that the set

{
A∗b Aa : (a, b) ∈ Σ× Σ

}
is linearly dependent, as required.
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Now assume the set
{

A∗b Aa : (a, b) ∈ Σ× Σ
}

is linearly dependent: there exists a nonzero
operator Z ∈ L (Z) such that

∑
a,b∈Σ

Z(a, b)A∗b Aa = 0.

It follows that

∑
a,b∈Σ

Z∗(a, b)A∗b Aa =

(
∑

a,b∈Σ
Z(a, b)A∗b Aa

)∗
= 0

and therefore
∑

a,b∈Σ
H(a, b)A∗b Aa = 0 (6.1)

for both of the choices H = Z + Z∗ and H = iZ − iZ∗. At least one of the operators Z + Z∗

and iZ− iZ∗ must be nonzero when Z is nonzero, so one may conclude that the above equation
(6.1) holds for a nonzero Hermitian operator H ∈ Herm (Z) that is hereafter taken to be fixed.
Given that this equation is invariant under rescaling H, there is no loss of generality in assuming
‖H‖ ≤ 1.

As ‖H‖ ≤ 1 and H is Hermitian, it follows that 1 + H and 1− H are both positive semidef-
inite, and therefore the operators M(1 + H)M∗ and M(1− H)M∗ are positive semidefinite as
well. Letting Ψ0, Ψ1 ∈ T (X ,Y) be the mappings that satisfy

J(Ψ0) = M(1 + H)M∗ and J(Ψ1) = M(1− H)M∗,

one therefore has that Ψ0 and Ψ1 are completely positive. It holds that

TrY (MHM∗) = ∑
a,b∈Σ

H(a, b) (A∗b Aa)
T =

(
∑

a,b∈Σ
H(a, b)A∗b Aa

)T

= 0

and therefore

TrY (J(Ψ0)) = TrY (MM∗) + TrY (MHM∗) = TrY (J(Φ)) = 1X

and
TrY (J(Ψ1)) = TrY (MM∗)− TrY (MHM∗) = TrY (J(Φ)) = 1X .

Thus, Ψ0 and Ψ1 are channels. Finally, given that H 6= 0 and ker(M) = {0} it holds that
J(Ψ0) 6= J(Ψ1), so that Ψ0 6= Ψ1. As

1
2

J(Ψ0) +
1
2

J(Ψ1) = MM∗ = J(Φ),

one has that
Φ =

1
2

Ψ0 +
1
2

Ψ1,

which demonstrates that Φ is not an extreme point of C (X ,Y).
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6.2.2 Application of Carathéodory’s theorem to convex combinations of channels

For an arbitrary channel Φ ∈ C (X ,Y), one may always write

Φ = ∑
a∈Γ

p(a)Φa

for some finite set Γ, a probability vector p ∈ RΓ, and {Φa : a ∈ Γ} being a collection of extremal
channels. This is so because C (X ,Y) is convex and compact, and every compact and convex set
is equal to the convex hull of its extreme points (by the Krein-Milman theorem). One natural
question is: how large must Γ be for such an expression to exist? Carathéodory’s theorem, which
you will find stated in the Lecture 2 notes, provides an upper bound.

To explain this bound, let us assume X = CΣ and Y = CΓ. As explained in Lecture 1, we may
view the space of Hermitian operators Herm (Y ⊗X ) as a real vector space indexed by (Γ× Σ)2,
and therefore having dimension |Σ|2 |Γ|2.

Now, the Choi-Jamiołkowski representation J(Φ) of any channel Φ ∈ C (X ,Y) is an element
of Pos (Y ⊗X ), and is therefore an element of Herm (Y ⊗X ). Taking

A = {J(Ψ) : Ψ ∈ C (X ,Y) is extremal} ⊂ Herm (Y ⊗X ) ,

and applying Carathéodory’s theorem, we have that every element J(Φ) ∈ conv(A) can be
written as

J(Φ) =
m

∑
j=1

pj J(Ψj)

for some probability vector p = (p1, . . . , pm) and some choice of extremal channels Ψ1, . . . , Ψm,
for m = |Σ|2 |Γ|2 + 1. Equivalently, every channel Φ ∈ C (X ,Y) can be written as a convex
combination of no more than m = |Σ|2 |Γ|2 + 1 extremal channels.

This bound may, in fact, be improved to m = |Σ|2 |Γ|2 − |Σ|2 + 1 by observing that the trace-
preserving property of channels reduces the dimension of the smallest (affine) subspace in which
they may be contained.

6.2.3 Mixed unitary channels

Suppose that X is a complex Euclidean space and U ∈ U (X ) is a unitary operator. The mapping
Ψ ∈ T (X ) defined by

Ψ(X) = UXU∗

for all X ∈ L (X ) is clearly a channel, and any such channel is called a unitary channel. Any
channel Φ ∈ C (X ) that can be written as a convex combination of unitary channels is said to
be a mixed unitary channel. (The term random unitary channel is more common, but it is easily
confused with a different notion whereby one chooses a unitary channel randomly according to
some distribution or measure.)

Again let us suppose that X = CΣ. One may perform a similar calculation to the one above to
find that every mixed unitary channel can be written as a convex combination of |Σ|4− 2 |Σ|2 + 2
unitary channels. The difference between this expression and the one from above comes from
considering additional linear constraints satisfied by unitary channels—namely that they are
unital in addition to being trace-preserving.
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6.3 Discrete Weyl operators and teleportation

Now we will switch gears and discuss something different: the collection of so-called discrete
Weyl operators and some examples of channels based on them. They also allow us to discuss a
straightforward generalization of quantum teleportation to high-dimensional systems.

6.3.1 Definition of discrete Weyl operators

For any positive integer n, we define

Zn = {0, 1, . . . , n− 1},

and view this set as a ring with respect to addition and multiplication defined modulo n. Let us
also define

ωn = exp(2πi/n)

to be a principal n-th root of unity, which will typically be denoted ω rather than ωn when n has
been fixed or is clear from the context.

Now, for a fixed choice of n, let X = CZn , and define two unitary operators X, Z ∈ U (X ) as
follows:

X = ∑
a∈Zn

Ea+1,a and Z = ∑
a∈Zn

ωaEa,a.

Here, and throughout this section, the expression a + 1 refers to addition in Zn, and similar for
other arithmetic expressions involving elements of Zn. Finally, for any choice of (a, b) ∈ Z2

n we
define

Wa,b = XaZb.

Such operators are known as discrete Weyl operators (and also as generalized Pauli operators).
Let us note a few basic facts about the collection

{Wa,b : (a, b) ∈ Z2
n}. (6.2)

First, we have that each Wa,b is unitary, given that X and Z are obviously unitary. Next, it is
straightforward to show that

Tr(Wa,b) =

{
n if a = b = 0
0 otherwise.

This implies that the collection (6.2) forms an orthogonal basis for L (X ), because

〈Wa,b, Wc,d〉 = Tr
(

Z−bX−aXcZd
)
= Tr

(
Xc−aZd−b

)
=

{
n if (a, b) = (c, d)
0 otherwise.

Finally, we note the commutation relation

ZX = ωXZ,

which (for instance) implies

Wa,bWc,d = (XaZb)(XcZd) = ωbcXa+cZb+d = ωbc−ad(XcZd)(XaZb) = ωbc−adWc,dWa,b.
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6.3.2 Dephasing and depolarizing channels

Two simple examples of mixed unitary channels, where the corresponding unitary operators are
chosen to be discrete Weyl operators, are as follows:

∆(A) =
1
n ∑

a∈Zn

W0,a AW∗0,a and Ω(A) =
1
n2 ∑

a,b∈Zn

Wa,b AW∗a,b.

We have already encountered ∆ in this lecture: it is the completely dephasing channel that
zeros out off-diagonal entries and leaves the diagonal alone. To see that this is so, we may
compute the action of this channel on the standard basis of L (X ):

∆(Ec,d) =
1
n ∑

a∈Zn

W0,aEc,dW∗0,a =

(
1
n ∑

a∈Zn

ωa(c−d)

)
Ec,d =

{
Ec,d if c = d
0 if c 6= d.

Alternately we may compute the action on the basis of discrete Weyl operators:

∆(Wc,d) =
1
n ∑

a∈Zn

W0,aWc,dW∗0,a =

(
1
n ∑

a∈Zn

ωac

)
Wc,d =

{
Wc,d if c = 0
0 if c 6= 0.

The discrete Weyl operators of the form Wc,d for c = 0 span precisely the diagonal operators, so
we see that this expression is consistent with the one involving the standard basis.

The channel Ω is known as the completely depolarizing channel, or the maximally noisy channel.
We have

Ω(Wc,d) =
1
n2 ∑

a,b∈Zn

Wa,bWc,dW∗a,b =

(
1
n2 ∑

a,b∈Zn

ωbc−ad

)
Wc,d =

{
Wc,d if (c, d) = (0, 0)
0 otherwise.

The output is always a scalar multiple of W0,0 = 1. We may alternately write

Ω(A) =
Tr(A)

n
1.

For every ρ ∈ D (X ) we therefore have Ω(ρ) = 1/n, which is the maximally mixed state: nothing
but noise comes out of this channel.

6.3.3 Weyl covariant channels

The channels ∆ and Ω above exhibit an interesting phenomenon, which is that the discrete Weyl
operators are eigenvectors of them, in the sense that ∆(Wa,b) = λa,bWa,b for some choice of
{λa,b} ⊂ C (and likewise for Ω). This property holds for all channels given by convex combi-
nations of unitary channels corresponding to the discrete Weyl operators. In general, channels
of this form are called Weyl covariant channels. This can be demonstrated using the commutation
relations noted above.

In greater detail, let us take M ∈ L
(
CZn

)
to be any operator, and consider the mapping

Φ(A) = ∑
a,b∈Zn

M(a, b)Wa,b AW∗a,b.
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We have

Φ(Wc,d) = ∑
a,b∈Zn

M(a, b)Wa,bWc,dW∗a,b =

(
∑

a,b∈Zn

M(a, b)ωbc−ad

)
Wc,d = N(c, d)Wc,d

for
N(c, d) = ∑

a,b∈Zn

M(a, b)ωbc−ad.

Alternately, we may write
N = VMTV∗,

where
V = ∑

b,c∈Zn

ωbcEc,b

is the operator typically associated with the discrete Fourier transform.

6.3.4 Teleportation

Suppose that X, YA, and YB are registers, all having classical state set Zn for some arbitrary
choice of a positive integer n (such as n = 8, 675, 309, which is known as Jenny’s number). Alice is
holding X and YA, while Bob has YB. The pair (YA,YB) was long ago prepared in the pure state

1√
n

vec(1) =
1√
n ∑

a∈Zn

ea ⊗ ea,

while X was recently acquired by Alice. Alice wishes to teleport the state of X to Bob by sending
him only classical information. To do this, Alice measures the pair (X,YA) with respect to the
generalized Bell basis {

1√
n

vec(Wa,b) : (a, b) ∈ Zn ×Zn

}
. (6.3)

She transmits to Bob whatever result (a, b) ∈ Zn ×Zn she obtains from her measurement, and
Bob “corrects” YB by applying to it the unitary channel

σ 7→Wa,bσW∗a,b.

We may express this entire procedure as a channel from X to YB, where the preparation of
(YA,YB) is included in the description so that it makes sense to view YB as having been created
in the procedure. This channel is given by

Φ(ρ) =
1
n ∑

(a,b)∈Zn×Zn

(vec(Wa,b)
∗ ⊗Wa,b)

(
ρ⊗ 1

n
vec(1) vec(1)∗

) (
vec(Wa,b)⊗W∗a,b

)
.

To simplify this expression, it helps to note that

vec(1) vec(1)∗ =
1
n ∑

c,d
Wc,d ⊗Wc,d.
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We find that

Φ(We, f ) =
1
n3 ∑

a,b,c,d∈Zn

(vec(Wa,b)
∗ ⊗Wa,b)

(
We, f ⊗Wc,d ⊗Wc,d

) (
vec(Wa,b)⊗W∗a,b

)
=

1
n3 ∑

a,b,c,d∈Zn

Tr
(
W∗a,bWe, f Wa,bW∗c,d

)
Wa,bWc,dW∗a,b

=
1
n3 ∑

a,b,c,d∈Zn

〈
Wc,d, We, f

〉
Wc,d

=
1
n ∑

c,d∈Zn

〈
Wc,d, We, f

〉
Wc,d

= We, f

for all e, f ∈ Zn. Thus, Φ is the identity channel—so the teleportation has worked as expected.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 7: Semidefinite programming

This lecture is on semidefinite programming, which is a powerful technique from both an analytic
and computational point of view. It is not a technique that is specific to quantum information,
and in fact there will be almost nothing in this lecture that directly concerns quantum informa-
tion, but we will later see that it has several very interesting applications to quantum information
theory.

7.1 Definition of semidefinite programs and related terminology

We begin with a formal definition of the notion of a semidefinite program. Various terms con-
nected with semidefinite programs are also defined.

There are two points regarding the definition of semidefinite programs that you should be
aware of. The first point is that it represents just one of several formalizations of the semidefinite
programming concept, and for this reason definitions found in other sources may differ from
the one found here. (The differing formalizations do, however, lead to a common theory.) The
second point is that semidefinite programs to be found in applications of the concept are typically
not phrased in the precise form presented by the definition: some amount of massaging may be
required to fit the semidefinite program to the definition.

These two points are, of course, related in that they concern variations in the forms of semidef-
inite programs. This issue will be discussed in greater detail later in the lecture, where conver-
sions of semidefinite programs from one form to another are discussed. For now, however, let us
consider that semidefinite programs are as given by the definition below.

Before proceeding to the definition, we need to define one term: a mapping Φ ∈ T (X , Y) is
Hermiticity preserving if it holds that Φ(X) ∈ Herm (Y) for all choices of X ∈ Herm (X ). (This
condition happens to be equivalent to the three conditions that appear in the third question of
Assignment 1.)

Definition 7.1. A semidefinite program is a triple (Φ, A, B), where

1. Φ ∈ T (X ,Y) is a Hermiticity-preserving linear map, and

2. A ∈ Herm (X ) and B ∈ Herm (Y) are Hermitian operators,

for some choice of complex Euclidean spaces X and Y .

We associate with the triple (Φ, A, B) two optimization problems, called the primal and dual
problems, as follows:

Primal problem

maximize: 〈A, X〉
subject to: Φ(X) = B,

X ∈ Pos (X ) .

Dual problem

minimize: 〈B, Y〉
subject to: Φ∗(Y) ≥ A,

Y ∈ Herm (Y) .



The primal and dual problems have a special relationship to one another that will be discussed
shortly.

An operator X ∈ Pos (X ) satisfying Φ(X) = B is said to be primal feasible, and we let A denote
the set of all such operators:

A = {X ∈ Pos (X ) : Φ(X) = B} .

Following a similar terminology for the dual problem, an operator Y ∈ Herm (Y) satisfying
Φ∗(Y) ≥ A is said to be dual feasible, and we let B denote the set of all dual feasible operators:

B = {Y ∈ Herm (Y) : Φ∗(Y) ≥ A} .

The linear functions X 7→ 〈A, X〉 and Y 7→ 〈B, Y〉 are referred to as the primal and dual
objective functions. The primal optimum or optimal primal value of a semidefinite program is defined
as

α = sup
X∈A
〈A, X〉

and the dual optimum or optimal dual value is defined as

β = inf
Y∈B
〈B, Y〉 .

The values α and β may be finite or infinite, and by convention we define α = −∞ if A = ∅ and
β = ∞ if B = ∅. If an operator X ∈ A satisfies 〈A, X〉 = α we say that X is an optimal primal
solution, or that X achieves the optimal primal value. Likewise, if Y ∈ B satisfies 〈B, Y〉 = β then
we say that Y is an optimal dual solution, or that Y achieves the optimal dual value.

Example 7.2. A simple example of a semidefinite program may be obtained, for an arbitrary
choice of a complex Euclidean space X and a Hermitian operator A ∈ Herm (X ), by taking
Y = C, B = 1, and Φ(X) = Tr(X) for all X ∈ L (X ). The primal and dual problems associated
with this semidefinite program are as follows:

Primal problem

maximize: 〈A, X〉
subject to: Tr(X) = 1,

X ∈ Pos (X ) .

Dual problem

minimize: y
subject to: y1 ≥ A,

y ∈ R.

To see that the dual problem is as stated, we note that Herm (Y) = R and that the adjoint
mapping to the trace is given by Tr∗(y) = y1 for all y ∈ C. The optimal primal and dual values
α and β happen to be equal (which is not unexpected, as we will soon see), coinciding with the
largest eigenvalue λ1(A) of A.

There can obviously be no optimal primal solution to a semidefinite program when α is
infinite, and no optimal dual solution when β is infinite. Even in cases where α and β are finite,
however, there may not exist optimal primal and/or optimal dual solutions, as the following
example illustrates.

Example 7.3. Let X = C2 and Y = C2, and define A ∈ Herm (X ), B ∈ Herm (Y), and Φ ∈
T (X ,Y) as

A =

(
−1 0
0 0

)
, B =

(
0 1
1 0

)
and Φ(X) =

(
0 X(1, 2)

X(2, 1) 0

)
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for all X ∈ L (X ). It holds that α = 0, but there does not exist an optimal primal solution to
(Φ, A, B).

To establish this fact, suppose first that X ∈ Pos (X ) is primal-feasible. The condition Φ(X) =
B implies that X takes the form

X =

(
X(1, 1) 1

1 X(2, 2)

)
(7.1)

Given that X is positive semidefinite, it must hold that X(1, 1) ≥ 0 and X(2, 2) ≥ 0, be-
cause the diagonal entries of positive semidefinite operators are always nonnegative. Moreover,
Det(X) = X(1, 1)X(2, 2)− 1, and given that the determinant of every positive semidefinite opera-
tor is nonnegative it follows that X(1, 1)X(2, 2) ≥ 1. It must therefore be the case that X(1, 1) > 0,
so that 〈A, X〉 < 0. On the other hand, one may consider the operator

Xn =

(
1
n 1
1 n

)

for each positive integer n. It holds that Xn ∈ A and 〈A, Xn〉 = −1/n, and therefore α ≥ −1/n,
for every positive integer n. Consequently one has that α = 0, while no primal-feasible X achieves
this supremum value.

7.2 Duality

We will now discuss the special relationship between the primal and dual problems associated
with a semidefinite program, known as duality. A study of this relationship begins with weak
duality, which simply states that α ≤ β for every semidefinite program.

Proposition 7.4 (Weak duality for semidefinite programs). For every semidefinite program (Φ, A, B)
it holds that α ≤ β.

Proof. The proposition is trivial in case A = ∅ (which implies α = −∞) or B = ∅ (which implies
β = ∞), so we will restrict our attention to the case that both A and B are nonempty. For every
primal feasible X ∈ A and dual feasible Y ∈ B it holds that

〈A, X〉 ≤ 〈Φ∗(Y), X〉 = 〈Y, Φ(X)〉 = 〈Y, B〉 = 〈B, Y〉 .

Taking the supremum over all X ∈ A and the infimum over all Y ∈ B establishes that α ≤ β as
required.

One implication of weak duality is that every dual-feasible operator Y ∈ B establishes an
upper bound of 〈B, Y〉 on the optimal primal value α, and therefore an upper bound on 〈A, X〉
for every primal-feasible operator X ∈ A. Likewise, every primal-feasible operator X ∈ A
establishes a lower-bound of 〈A, X〉 on the optimal dual value β. In other words, it holds that

〈A, X〉 ≤ α ≤ β ≤ 〈B, Y〉 ,

for every X ∈ A and Y ∈ B. If one finds a primal-feasible operator X ∈ A and a dual-feasible
operator Y ∈ B for which 〈A, X〉 = 〈B, Y〉, it therefore follows that α = β and both X and Y must
be optimal: α = 〈A, X〉 and β = 〈B, Y〉.

The condition that α = β is known as strong duality. Unlike weak duality, strong duality does
not hold for every semidefinite program, as the following example shows.
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Example 7.5. Let X = C3 and Y = C2, and define

A =

−1 0 0
0 0 0
0 0 0

 , B =

(
1 0
0 0

)
, and Φ(X) =

(
X(1, 1) + X(2, 3) + X(3, 2) 0

0 X(2, 2)

)

for all X ∈ L (X ). The mapping Φ is Hermiticity-preserving and A and B are Hermitian, so
(Φ, A, B) is a semidefinite program.

The primal problem associated with the semidefinite program (Φ, A, B) represents a maxi-
mization of −X(1, 1) subject to the constraints X(1, 1) + X(2, 3) + X(3, 2) = 1, X(2, 2) = 0, and
X ≥ 0. The constraints X(2, 2) = 0 and X ≥ 0 force the equality X(2, 3) = X(3, 2) = 0. It must
therefore hold that X(1, 1) = 1, so α ≤ −1. The fact that α = −1, as opposed to α = −∞, is
established by considering the primal feasible operator X = E1,1.

To analyze the dual problem, we begin by noting that

Φ∗(Y) =

Y(1, 1) 0 0
0 Y(2, 2) Y(1, 1)
0 Y(1, 1) 0

 .

The constraint Φ∗(Y) ≥ A implies that(
Y(2, 2) Y(1, 1)
Y(1, 1) 0

)
≥ 0,

so that Y(1, 1) = 0, and therefore β ≥ 0. The fact that β = 0 is established by choosing the dual
feasible operator Y = 0.

Thus, strong duality fails for this semidefinite program: it holds that α = −1 while β = 0.

While strong duality does not hold for every semidefinite program, it does typically hold
for semidefinite programs that arise in applications of the concept. Informally speaking, if one
does not try to make strong duality fail, it will probably hold. There are various conditions on
semidefinite programs that allow for an easy verification that strong duality holds (when it does),
with one of the most useful conditions being given by the following theorem.

Theorem 7.6 (Slater’s theorem for semidefinite programs). The following implications hold for every
semidefinite program (Φ, A, B).

1. If A 6= ∅ and there exists a Hermitian operator Y for which Φ∗(Y) > A, then α = β and there exists
a primal feasible operator X ∈ A for which 〈A, X〉 = α.

2. If B 6= ∅ and there exists a positive semidefinite operator X for which Φ(X) = B and X > 0, then
α = β and there exists a dual feasible operator Y ∈ B for which 〈B, Y〉 = β.

(The condition that X ∈ Pd (X ) satisfies Φ(X) = B is called strict primal feasibility, while the
condition that Y ∈ Herm (Y) satisfies Φ∗(Y) > A is called strict dual feasibility. In both cases, the
“strictness” concerns the positive semidefinite ordering.)

There are two main ideas behind the proof of this theorem, and the proof (of each of the two
implications) splits into two parts based on the two ideas. The ideas are as follows.

1. By the hyperplane separation theorem stated in the notes for Lecture 2, every closed convex
set can be separated from any point not in that set by a hyperplane.
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2. Linear mappings do not always map closed convex sets to closed sets, but under some
conditions they do.

We will not prove the hyperplane separation theorem: you can find a proof in one of the
references given in Lecture 2. That theorem is stated for a real Euclidean space of the form RΣ,
but we will apply it to the space of Hermitian operators Herm

(
CΓ) for some finite and nonempty

set Γ. As we have already noted more than once, we may view Herm
(
CΓ) as being isomorphic

to RΓ×Γ as a real Euclidean space.
The second idea is quite vague as it has been stated above, so let us now state it more precisely

as a lemma.

Lemma 7.7. Let Σ and Γ be finite, nonempty sets, let Ψ : RΣ → RΓ be a linear mapping, and let P ⊆ RΣ

be a closed convex cone possessing the property that ker(Ψ) ∩ P is a linear subspace of RΣ. It holds that
Ψ(P) is closed.

To prove this lemma, we will make use of the following simple proposition, which we will take
as given. It is straightforward to prove using basic concepts from analysis.

Proposition 7.8. Let Σ be a finite and nonempty set and let S ⊂ RΣ be a compact subset of RΣ such that
0 6∈ S . It holds that cone(S) , {λv : v ∈ S , λ ≥ 0} is closed.

Proof of Lemma 7.7. First we consider the special case that ker(Ψ) ∩ P = {0}. Let

R = {v ∈ P : ‖v‖ = 1}.

It holds that P = cone(R) and therefore Ψ(P) = cone(Ψ(R)). The set R is compact, and
therefore Ψ(R) is compact as well. Moreover, it holds that 0 6∈ Ψ(R), for otherwise there would
exist a unit norm (and therefore nonzero) vector v ∈ P for which Ψ(v) = 0, contradicting the
assumption that ker(Ψ) ∩ P = {0}. It follows from Proposition 7.8 that Ψ(P) is closed.

For the general case, let us denote V = ker(Ψ) ∩ P , and define Q = P ∩ V⊥. It holds that
Q is a closed convex cone, and ker(Ψ) ∩ Q = V ∩ V⊥ = {0}. We therefore have that Ψ(Q) is
closed by the analysis of the special case above. It remains to prove that Ψ(Q) = Ψ(P). To this
end, choose u ∈ P , and write u = v + w for v ∈ V and w ∈ V⊥. Given that V ⊆ P and P is
a convex cone, it follows that P + V = P , so w = u− v ∈ P + V = P . Consequently w ∈ Q.
As Ψ(w) = Ψ(u) − Ψ(v) = Ψ(u), we conclude that Ψ(P) ⊆ Ψ(Q). The reverse containment
Ψ(Q) ⊆ Ψ(P) is trivial, and so we have proved Ψ(P) = Ψ(Q) as required.

Now we are ready to prove Theorem 7.6. The two implications are proved in the same basic
way, although there are technical differences in the proofs. Each implication is split into two
lemmas, along the lines suggested above, which combine in a straightforward way to prove the
theorem.

Lemma 7.9. Let (Φ, A, B) be a semidefinite program. If A 6= ∅ and the set

K =

{(
Φ(X) 0

0 〈A, X〉

)
: X ∈ Pos (X )

}
⊆ Herm (Y ⊕C)

is closed, then α = β and there exists a primal feasible operator X ∈ A such that 〈A, X〉 = α.
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Proof. Let ε > 0 be chosen arbitrarily. Observe that the operator(
B 0
0 α + ε

)
(7.2)

is not contained in K, for there would otherwise exist an operator X ∈ Pos (X ) with Φ(X) = B
and 〈A, X〉 > α, contradicting the optimality of α. The set K is convex and (by assumption)
closed, and therefore there must exist a hyperplane that separates the operator (7.2) from K in
the sense prescribed by Theorem 2.8 of Lecture 2. It follows that there must exist an operator
Y ∈ Herm (Y) and a real number λ such that

〈Y, Φ(X)〉+ λ 〈A, X〉 > 〈Y, B〉+ λ(α + ε) (7.3)

for all X ∈ Pos (X ).
The set A has been assumed to be nonempty, so one may select an operator X0 ∈ A. As

Φ(X0) = B, we conclude from (7.3) that

λ 〈A, X0〉 > λ(α + ε),

and therefore λ < 0. By dividing both sides of (7.3) by |λ| and renaming variables, we see that
there is no loss of generality in assuming that λ = −1. Substituting λ = −1 into (7.3) yields

〈Φ∗(Y)− A, X〉 > 〈Y, B〉 − (α + ε) (7.4)

for every X ∈ Pos (X ). The quantity on the right-hand-side of this inequality is a real number
independent of X, which implies that Φ∗(Y) − A must be positive semidefinite; for if it were
not, one could choose X appropriately to make the quantity on the left-hand-side smaller than
〈Y, B〉 − (α + ε) (or any other fixed real number independent of X). It therefore holds that

Φ∗(Y) ≥ A,

so that Y is a dual-feasible operator. Setting X = 0 in (7.4) yields 〈B, Y〉 < α + ε. It has therefore
been shown that for every ε > 0 there exists a dual feasible operator Y ∈ B such that 〈B, Y〉 <
α + ε. This implies that α ≤ β < α + ε for every ε > 0, from which it follows that α = β as
claimed.

To prove the second part of the lemma, a similar methodology to the first part of the proof is
used, except that ε is set to 0. More specifically, we consider whether the operator(

B 0
0 α

)
(7.5)

is contained in K. If this operator is in K, then there exists an operator X ∈ Pos (X ) such that
Φ(X) = B and 〈A, X〉 = α, which is the statement claimed by the lemma.

It therefore suffices to derive a contradiction from the assumption that the operator (7.5) is
not contained in K. Under this assumption, there must exist a Hermitian operator Y ∈ Herm (Y)
and a real number λ such that

〈Y, Φ(X)〉+ λ 〈A, X〉 > 〈Y, B〉+ λα (7.6)

70



for all X ∈ Pos (X ). As before, one concludes from the existence of a primal feasible operator X0
that λ < 0, so there is again no loss of generality in assuming that λ and Y are re-scaled so that
λ = −1. After this re-scaling, one finds that

〈Φ∗(Y)− A, X〉 > 〈Y, B〉 − α (7.7)

for every X ∈ Pos (X ), and therefore Φ∗(Y) ≥ A (i.e., Y is dual-feasible). Setting X = 0 in (7.7)
implies 〈Y, B〉 < α. This, however, implies β < α, which is in contradiction with weak duality. It
follows that the operator (7.5) is contained in K as required.

Lemma 7.10. Let (Φ, A, B) be a semidefinite program. If there exists an operator Y ∈ Herm (Y) for
which Φ∗(Y) > A, then the set

K =

{(
Φ(X) 0

0 〈A, X〉

)
: X ∈ Pos (X )

}
⊆ Herm (Y ⊕C)

is closed.

Proof. The set Pos (X ) is a closed convex cone, and K is the image of this set under the linear
mapping

Ψ(X) =

(
Φ(X) 0

0 〈A, X〉

)
.

If X ∈ ker(Ψ), then Φ(X) = 0 and 〈A, X〉 = 0, and therefore

〈Φ∗(Y)− A, X〉 = 〈Y, Φ(X)〉 − 〈A, X〉 = 0.

If, in addition, it holds that X ≥ 0, then X = 0 given that Φ∗(Y) − A > 0. Thus, ker(Ψ) ∩
Pos (X ) = {0}, so K is closed by Lemma 7.7.

The two lemmas above together imply that the first implication of Theorem 7.6 holds. The
second implication is proved by combining the following two lemmas, which are closely related
to the two lemmas just proved.

Lemma 7.11. Let (Φ, A, B) be a semidefinite program. If B 6= ∅ and the set

L =

{(
Φ∗(Y)− Z 0

0 〈B, Y〉

)
: Y ∈ Herm (Y) , Z ∈ Pos (X )

}
⊆ Herm (X ⊕C)

is closed, then α = β and there exists a dual feasible operator Y ∈ B such that 〈B, Y〉 = β.

Proof. Let ε > 0 be chosen arbitrarily. Along similar lines to the proof of Lemma 7.9, one observes
that the operator (

A 0
0 β− ε

)
(7.8)

is not contained in L; for if it were, there would exist an operator Y ∈ Herm (Y) with Φ∗(Y) ≥ A
and 〈B, Y〉 < β, contradicting the optimality of β. As the set L is closed (by assumption) and is
convex, there must exist a hyperplane that separates the operator (7.8) from L; that is, there must
exist a real number λ and an operator X ∈ Herm (X ) such that

〈X, Φ∗(Y)− Z〉+ λ 〈B, Y〉 < 〈X, A〉+ λ(β− ε) (7.9)
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for all Y ∈ Herm (Y) and Z ∈ Pos (X ).
The set B has been assumed to be nonempty, so one may select a operator Y0 ∈ B. It holds

that Φ∗(Y0) ≥ A, and setting Z = Φ∗(Y0)− A in (7.9) yields

λ 〈B, Y0〉 < λ(β− ε),

implying λ < 0. There is therefore no loss of generality in re-scaling λ and X in (7.9) so that
λ = −1, which yields

〈Φ(X)− B, Y〉 < 〈X, A + Z〉 − (β− ε) (7.10)

for every Y ∈ Herm (Y) and Z ∈ Pos (X ). The quantity on the right-hand-side of this inequality
is a real number independent of Y, which implies that Φ(X) = B; for if this were not so, one
could choose a Hermitian operator Y ∈ Herm (Y) appropriately to make the quantity on the
left-hand-side larger than 〈X, A + Z〉 − (β− ε) (or any other real number independent of Y). It
therefore holds that X is a primal-feasible operator. Setting Y = 0 and Z = 0 in (7.10) yields
〈A, X〉 > β− ε. It has therefore been shown that for every ε > 0 there exists a primal feasible
operator X ∈ A such that 〈A, X〉 > β − ε. This implies β ≥ α > β − ε for every ε > 0, and
therefore α = β as claimed.

To prove the second part of the lemma, we may again use essentially the same methodology
as for the first part, but setting ε = 0. That is, we consider whether the operator(

A 0
0 β

)
(7.11)

is in L. If so, there exists an operator Y ∈ Herm (Y) for which Φ∗(Y) − Z = A for some
Z ∈ Pos (X ) (i.e., for which Φ∗(Y) ≥ A) and for which 〈B, Y〉 = β, which is the statement we
aim to prove.

It therefore suffices to derive a contradiction from the assumption the operator (7.11) is not
in L. Under this assumption, there must exist a real number λ and a Hermitian operator X ∈
Herm (X ) such that

〈X, Φ∗(Y)− Z〉+ λ 〈B, Y〉 < 〈X, A〉+ λβ (7.12)

for all Y ∈ Herm (Y) and Z ∈ Pos (X ). We conclude, as before, that it must hold that λ < 0, and
so there is no loss of generality in assuming λ = −1. Moreover, we have

〈Φ(X)− B, Y〉 < 〈X, A + Z〉 − β

for every Y ∈ Herm (Y) and Z ∈ Pos (X ), and therefore Φ(X) = B. Finally, taking Y = 0 and
Z = 0 implies 〈A, X〉 > β. This, however, implies α > β, which is in contradiction with weak
duality. It follows that the operator (7.11) is contained in L as required.

Lemma 7.12. Let (Φ, A, B) be a semidefinite program. If there exists a operator X ∈ Pos (X ) for which
Φ(X) = B and X > 0, then the set

L =

{(
Φ∗(Y)− Z 0

0 〈B, Y〉

)
: Y ∈ Herm (Y) , Z ∈ Pos (X )

}
⊆ Herm (X ⊕C)

is closed.
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Proof. The set

P =

{(
Y 0
0 Z

)
: Y ∈ Herm (Y) , Z ∈ Pos (X )

}
is a closed, convex cone. For the linear map

Ψ
(

Y ·
· Z

)
=

(
Φ∗(Y)− Z 0

0 〈B, Y〉

)
it holds that L = Ψ(P).

Suppose that (
Y 0
0 Z

)
∈ ker(Ψ) ∩ P .

It must then hold that

0 = 〈B, Y〉 − 〈X, Φ∗(Y)− Z〉 = 〈B−Φ(X), Y〉+ 〈X, Z〉 = 〈X, Z〉 ,

for X being the positive definite operator assumed by the statement of the lemma, implying that
Z = 0. It follows that

ker(Ψ) ∩ P =

{(
Y 0
0 0

)
: Y ∈ {B}⊥ ∩ ker(Φ∗)

}
,

which is a linear subspace of Herm (Y ⊕X ). It follows that L is closed by Lemma 7.7.

7.3 Alternate forms of semidefinite programs

As was mentioned earlier in the lecture, semidefinite programs can be specified in ways that
differ from the formal definition we have been considering thus far in the lecture. A few such
ways will now be discussed.

7.3.1 Semidefinite programs with inequality constraints

Suppose Φ ∈ T (X ,Y) is a Hermiticity-preserving map and A ∈ Herm (X ) and B ∈ Herm (Y)
are Hermitian operators, and consider this optimization problem:

maximize: 〈A, X〉
subject to: Φ(X) ≤ B,

X ∈ Pos (X ) .

It is different from the primal problem associated with the triple (Φ, A, B) earlier in the lecture
because the constraint Φ(X) = B has been replaced with Φ(X) ≤ B. There is now more freedom
in the valid choices of X ∈ Pos (X ) in this problem, so its optimum value may potentially be
larger.

It is not difficult, however, to phrase the problem above using an equality constraint by using
a so-called slack variable. That is, the inequality constraint

Φ(X) ≤ B
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is equivalent to the equality constraint

Φ(X) + Z = B (for some Z ∈ Pos (Y)).

With this in mind, let us define a new semidefinite program, by which we mean something
that conforms to the precise definition given at the beginning of the lecture, as follows. First, let
Ψ ∈ T (X ⊕Y ,Y) be defined as

Ψ
(

X ·
· Z

)
= Φ(X) + Z

for all X ∈ L (X ) and Z ∈ L (Y). (The dots indicate elements of L (X ,Y) and L (Y ,X ) that
we don’t care about, because they don’t influence the output of the mapping Ψ.) Also define
C ∈ Herm (X ⊕Y) as

C =

(
A 0
0 0

)
.

The primal and dual problems associated with the semidefinite program (Ψ, C, B) are as follows.

Primal problem

maximize:
〈(

A 0
0 0

)
,
(

X ·
· Z

)〉
subject to: Ψ

(
X ·
· Z

)
= B,(

X ·
· Z

)
∈ Pos (X ⊕Y) .

Dual problem

minimize: 〈B, Y〉

subject to: Ψ∗(Y) ≥
(

A 0
0 0

)
,

Y ∈ Herm (Y) .

Once again, we are using dots to represent operators we don’t care about. The fact that we don’t
care about these operators in this case is a combination of the fact that Ψ is independent of them
and the fact that the objective function is independent of them as well. (Had we made a different
choice of C, this might not be so.)

The primal problem simplifies to the problem originally posed above. To simplify the dual
problem, we must first calculate Ψ∗. It is given by

Ψ∗(Y) =
(

Φ∗(Y) 0
0 Y

)
.

To verify that this is so, we simply check the required condition:〈(
X W
V Z

)
, Ψ∗(Y)

〉
= 〈X, Φ∗(Y)〉+ 〈Z, Y〉 = 〈Φ(X) + Z, Y〉 =

〈
Ψ
(

X W
V Z

)
, Y
〉

,

for all X ∈ L (X ), Y, Z ∈ L (Y), V ∈ L (X ,Y), and W ∈ L (Y ,X ). This condition uniquely
determines Ψ∗, so we know we have it right. The inequality(

Φ∗(Y) 0
0 Y

)
≥
(

A 0
0 0

)
,

for Y ∈ Herm (Y), is equivalent to Φ∗(Y) ≥ A and Y ≥ 0 (i.e., Y ∈ Pos (Y)). So, we may simplify
the problems above so that they look like this:
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Primal problem

maximize: 〈A, X〉
subject to: Φ(X) ≤ B,

X ∈ Pos (X ) .

Dual problem

minimize: 〈B, Y〉
subject to: Φ∗(Y) ≥ A,

Y ∈ Pos (Y) .

This is an attractive form, because the primal and dual problems have a nice symmetry between
them.

Note that we could equally well convert a primal problem having an equality constraint into
one with an inequality constraint, by using the simple fact that Φ(X) = B if and only if(

Φ(X) 0
0 −Φ(X)

)
≤
(

B 0
0 −B

)
.

So, it would have been alright had we initially defined the primal and dual problems associated
with (Φ, A, B) to be the ones with inequality constraints as just discussed: one can convert back
and forth between the two forms. (Note, however, that we are better off with Slater’s theorem
for semidefinite programs with equality constraints than we would be for a similar theorem for
inequality constraints, which is why we have elected to start with equality constraints.)

7.3.2 Equality and inequality constraints

It is sometimes convenient to consider semidefinite programming problems that include both
equality and inequality constraints, as opposed to just one type. To be more precise, let X ,
Y1, and Y2 be complex Euclidean spaces, let Φ1 : L (X ) → L (Y1) and Φ2 : L (X ) → L (Y2)
be Hermiticity-preserving maps, let A ∈ Herm (X ), B1 ∈ Herm (Y1), and B2 ∈ Herm (Y2) be
Hermitian operators, and consider these optimization problems:

Primal problem

maximize: 〈A, X〉
subject to: Φ1(X) = B1,

Φ2(X) ≤ B2,
X ∈ Pos (X ) .

Dual problem

minimize: 〈B1, Y1〉+ 〈B2, Y2〉
subject to: Φ∗1(Y1) + Φ∗2(Y2) ≥ A,

Y1 ∈ Herm (Y1) ,
Y2 ∈ Pos (Y2) .

The fact that these problems really are dual may be verified in a similar way to the discussion of
inequality constraints in the previous subsection. Specifically, one may define a linear mapping

Ψ : Herm (X ⊕Y2)→ Herm (Y1 ⊕Y2)

as

Ψ
(

X ·
· Z

)
=

(
Φ1(X) 0

0 Φ2(X) + Z

)
for all X ∈ L (X ) and Z ∈ L (Y2), and define Hermitian operators C ∈ Herm (X ⊕Y2) and
D ∈ Herm (Y1 ⊕Y2) as

C =

(
A 0
0 0

)
and D =

(
B1 0
0 B2

)
.
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The primal problem above is equivalent to the primal problem associated with the semidefinite
program (Ψ, C, D). The dual problem above coincides with the dual problem of (Ψ, C, D), by
virtue of the fact that

Ψ∗
(

Y1 ·
· Y2

)
=

(
Φ∗1(Y1) + Φ∗2(Y2) 0

0 Y2

)
for every Y1 ∈ Herm (Y1) and Y2 ∈ Herm (Y2).

Note that strict primal feasibility of (Ψ, C, D) is equivalent to the condition that Φ1(X) = B1
and Φ2(X) < B2 for some choice of X ∈ Pd (X ), while strict dual feasibility of (Ψ, C, D) is
equivalent to the condition that Φ∗1(Y1) + Φ∗2(Y2) > A for some choice of Y ∈ Herm (Y1) and
Y2 ∈ Pd (Y2). In other words, the “strictness” once again refers to the positive semidefinite
ordering—every time it appears.

7.3.3 The standard form

The so-called standard form for semidefinite programs is given by the following pair of optimiza-
tion problems:

Primal problem

maximize: 〈A, X〉
subject to: 〈B1, X〉 = γ1

...
〈Bm, X〉 = γm

X ∈ Pos (X )

Dual problem

minimize: ∑m
j=1 γjyj

subject to: ∑m
j=1 yjBj ≥ A

y1, . . . , ym ∈ R

Here, B1, . . . , Bm ∈ Herm (X ) take the place of Φ and γ1, . . . , γm ∈ R take the place of B in
semidefinite programs as we have defined them.

It is not difficult to show that this form is equivalent to our form. First, to convert a semidef-
inite program in the standard form to our form, we define Y = Cm,

Φ(X) =
m

∑
j=1

〈
Bj, X

〉
Ej,j,

and

B =
m

∑
j=1

γjEj,j.

The primal problem above is then equivalent to a maximization of 〈A, X〉 over all X ∈ Pos (X )
satisfying Φ(X) = B. The adjoint of Φ is given by

Φ∗(Y) =
m

∑
j=1

Y(j, j)Bj,

and we have that

〈B, Y〉 =
m

∑
j=1

γjY(j, j).

The off-diagonal entries of Y are irrelevant for the sake of this problem, and we find that a
minimization of 〈B, Y〉 subject to Φ∗(Y) ≥ A is equivalent to the dual problem given above.
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Working in the other direction, the equality constraint Φ(X) = B may be represented as

〈Ha,b, Φ(X)〉 = 〈Ha,b, B〉 ,

ranging over the Hermitian operator basis {Ha,b : a, b ∈ Γ} of L (Y) defined in Lecture 1, where
we have assumed that Y = CΓ. Taking Ba,b = Φ∗(Ha,b) and γa,b = 〈Ha,b, B〉 allows us to write
the primal problem associated with (Φ, A, B) as a semidefinite program in standard form. The
standard-form dual problem above simplifies to the dual problem associated with (Φ, A, B).

The standard form has some positive aspects, but for the semidefinite programs to be en-
countered in this course we will find that it is less convenient to use than the forms we discussed
previously.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 8: Semidefinite programs for fidelity and optimal
measurements

This lecture is devoted to two examples of semidefinite programs: one is for the fidelity between
two positive semidefinite operators, and the other is for optimal measurements for distinguishing
ensembles of states. The primary goal in studying these examples at this point in the course is
to gain familiarity with the concept of semidefinite programming and how it may be applied to
problems of interest. The examples themselves are interesting, but they should not necessarily be
viewed as primary reasons for studying semidefinite programming—they are simply examples
making use of concepts we have discussed thus far in the course. We will see further applications
of semidefinite programming to quantum information theory later in the course, and there are
many more applications that we will not discuss.

8.1 A semidefinite program for the fidelity function

We begin with a semidefinite program whose optimal value equals the fidelity between to given
positive semidefinite operators. As it represents the first application of semidefinite program-
ming to quantum information theory that we are studying in the course, we will go through it
in some detail.

8.1.1 Specification of the semidefinite program

Suppose P, Q ∈ Pos (X ), where X is a complex Euclidean space, and consider the following
optimization problem:

maximize:
1
2

Tr(X) +
1
2

Tr(X∗)

subject to:
(

P X
X∗ Q

)
≥ 0

X ∈ L (X ) .

Although it is not phrased in the precise form of a semidefinite program as we formally defined
them in the previous lecture, it can be converted to one, as we will now see.

Let us begin by noting that the matrix (
P X

X∗ Q

)
is a block matrix that describes an operator in the space L (X ⊕X ). To phrase the optimization
problem above as a semidefinite program, we will effectively optimize over all positive semidefi-
nite operators in Pos (X ⊕X ), using linear constraints to force the diagonal blocks to be P and Q.



With this idea in mind, we define a linear mapping Φ : L (X ⊕X )→ L (X ⊕X ) as follows:

Φ
(

X1,1 X1,2
X2,1 X2,2

)
=

(
X1,1 0

0 X2,2

)
for all choices of X1,1, X1,2, X2,1, X2,2 ∈ L (X ), and we define A, B ∈ Herm (X ⊕X ) as

A =
1
2

(
0 1

1 0

)
and B =

(
P 0
0 Q

)
.

Now consider the semidefinite program (Φ, A, B), as defined in the previous lecture. The
primal objective function takes the form〈

1
2

(
0 1

1 0

)
,
(

X1,1 X1,2
X2,1 X2,2

)〉
=

1
2

Tr(X1,2) +
1
2

Tr(X2,1).

The constraint

Φ
(

X1,1 X1,2
X2,1 X2,2

)
=

(
P 0
0 Q

)
is equivalent to the conditions X1,1 = P and X2,2 = Q. Of course, the condition(

X1,1 X1,2
X2,1 X2,2

)
∈ Pos (X ⊕X )

forces X2,1 = X∗1,2, as this follows from the Hermiticity of the operator. So, by writing X in place
of X1,2, we see that the optimization problem stated at the beginning of the section is equivalent
to the primal problem associated with (Φ, A, B).

Now let us examine the dual problem. It is as follows:

minimize:
〈(

P 0
0 Q

)
,
(

Y1,1 Y1,2
Y2,1 Y2,2

)〉
subject to: Φ∗

(
Y1,1 Y1,2
Y2,1 Y2,2

)
≥ 1

2

(
0 1

1 0

)
,(

Y1,1 Y1,2
Y2,1 Y2,2

)
∈ Herm (X ⊕X ) .

As is typical when trying to understand the relationship between the primal and dual problems
of a semidefinite program, we must find an expression for Φ∗. This happens to be easy in the
present case, for we have〈(

Y1,1 Y1,2
Y2,1 Y2,2

)
, Φ
(

X1,1 X1,2
X2,1 X2,2

)〉
=

〈(
Y1,1 Y1,2
Y2,1 Y2,2

)
,
(

X1,1 0
0 X2,2

)〉
= 〈Y1,1, X1,1〉+ 〈Y2,2, X2,2〉

and〈
Φ
(

Y1,1 Y1,2
Y2,1 Y2,2

)
,
(

X1,1 X1,2
X2,1 X2,2

)〉
=

〈(
Y1,1 0

0 Y2,2

)
,
(

X1,1 X1,2
X2,1 X2,2

)〉
= 〈Y1,1, X1,1〉+ 〈Y2,2, X2,2〉 ,
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so it must hold that Φ∗ = Φ. Simplifying the above problem accordingly yields

minimize: 〈P, Y1,1〉+ 〈Q, Y2,2〉

subject to:
(

Y1,1 0
0 Y2,2

)
≥ 1

2

(
0 1

1 0

)
Y1,1, Y2,2 ∈ Herm (X ) .

The problem has no dependence whatsoever on Y1,2 and Y2,1, so we can ignore them. Let us write
Y = 2Y1,1 and Z = 2Y2,2, so that the problem becomes

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Z〉

subject to:
(

Y −1

−1 Z

)
≥ 0

Y, Z ∈ Herm (X ) .

There is no obvious reason for including the factor of 2 in the specification of Y and Z; it is simply
a change of variables that is designed to put the problem into a nicer form for the analysis to
come later. The inclusion of the factor of 2 does not, of course, change the fact that Y and Z are
free to range over all Hermitian operators.

In summary, we have this pair of problems:

Primal problem

maximize:
1
2

Tr(X) +
1
2

Tr(X∗)

subject to:
(

P X
X∗ Q

)
≥ 0

X ∈ L (X ) .

Dual problem

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Z〉

subject to:
(

Y −1

−1 Z

)
≥ 0

Y, Z ∈ Herm (X ) .

We will make some further simplifications to the dual problem a bit later in the lecture, but let
us leave it as it is for the time being.

The statement of the primal and dual problems just given is representative of a typical style
for specifying semidefinite programs: generally one does not explicitly refer to Φ, A, and B, or
operators and mappings coming from other specific forms of semidefinite programs, in applica-
tions of the concept in papers or talks. It would not be unusual to see a pair of primal and dual
problems presented like this without any indication of how the dual problem was obtained from
the primal problem (or vice-versa). This is because the process is more or less routine, once you
know how it is done. (Until you’ve had some practise doing it, however, it may not seem that
way.)

8.1.2 Optimal value

Let us observe that strong duality holds for the semidefinite program above. This is easily
established by first observing that the primal problem is feasible and the dual problem is strictly
feasible, then applying Slater’s theorem. To do this formally, we must refer to the triple (Φ, A, B)
discussed above. Setting (

X1,1 X1,2
X2,1 X2,2

)
=

(
P 0
0 Q

)
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gives a primal feasible operator, so that A 6= ∅. Setting(
Y1,1 Y1,2
Y2,1 Y2,2

)
=

(
1 0
0 1

)
gives

Φ∗
(

Y1,1 Y1,2
Y2,1 Y2,2

)
=

(
1 0
0 1

)
>

1
2

(
0 1

1 0

)
,

owing to the fact that (
1 − 1

2 1

− 1
2 1 1

)
=

(
1 − 1

2
− 1

2 1

)
⊗ 1

is positive definite. By Slater’s theorem, we have strong duality, and moreover the optimal primal
value is achieved by some choice of X.

It so happens that strict primal feasibility may fail to hold: if either of P or Q is not positive
definite, it cannot hold that (

P X
X∗ Q

)
> 0.

Note, however, that we cannot conclude from this fact that the optimal dual value will not be
achieved—but indeed this is the case for some choices of P and Q. If P and Q are positive definite,
strict primal feasibility does hold, and the optimal dual value will be achieved, as follows from
Slater’s theorem.

Now let us prove that the optimal value is equal to F(P, Q), beginning with the inequality
α ≥ F(P, Q). To prove this inequality, it suffices to exhibit a primal feasible X for which

1
2

Tr(X) +
1
2

Tr(X∗) = F(P, Q).

We have

F(P, Q) = F(Q, P) =
∥∥∥√Q

√
P
∥∥∥

1
= max

{∣∣∣Tr
(

U
√

Q
√

P
)∣∣∣ : U ∈ U (X )

}
,

and so we may choose a unitary operator U ∈ U (X ) for which

F(P, Q) = Tr
(

U
√

Q
√

P
)
= Tr

(√
PU
√

Q
)

.

(The absolute value can safely be omitted: we are free to multiply any U maximizing the absolute
value with a scalar on the unit circle, obtaining a nonnegative real number for the trace.) Now
define

X =
√

PU
√

Q.

It holds that

0 ≤
(√

P U
√

Q
)∗ (√

P U
√

Q
)
=

( √
P

√
QU∗

)(√
P U

√
Q
)
=

(
P

√
PU
√

Q
√

QU∗
√

P Q

)
,

so X is primal feasible, and we have

1
2

Tr(X) +
1
2

Tr(X∗) = F(P, Q)
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as claimed.
Now let us prove the reverse inequality: α ≤ F(P, Q). Suppose that X ∈ L (X ) is primal

feasible, meaning that

R =

(
P X

X∗ Q

)
is positive semidefinite. We may view that R ∈ Pos (Z ⊗X ) for Z = C2. (More generally, the m-
fold direct sum CΣ ⊕ · · · ⊕CΣ may be viewed as being equivalent to the tensor product Cm ⊗CΣ

by identifying the standard basis element e(j,a) of CΣ ⊕ · · · ⊕CΣ with the standard basis element
ej⊗ ea of Cm⊗CΣ, for each j ∈ {1, . . . , m} and a ∈ Σ.) Let Y be a complex Euclidean space whose
dimension is at least rank(R), and let u ∈ Z ⊗X ⊗Y be a purification of R:

TrY (uu∗) = R = E1,1 ⊗ P + E1,2 ⊗ X + E2,1 ⊗ X∗ + E2,2 ⊗Q.

Write
u = e1 ⊗ u1 + e2 ⊗ u2

for u1, u2 ∈ X , and observe that

TrY (u1u∗1) = P, TrY (u2u∗2) = Q, TrY (u1u∗2) = X, and TrY (u2u∗1) = X∗.

We have
1
2

Tr(X) +
1
2

Tr(X∗) =
1
2
〈u2, u1〉+

1
2
〈u1, u2〉 = <(〈u1, u2〉) ≤ |〈u1, u2〉| ≤ F(P, Q),

where the last inequality follows from Uhlmann’s theorem, along with the fact that u1 and u2
purify P and Q, respectively.

8.1.3 Alternate proof of Alberti’s theorem

The notes from Lecture 4 include a proof of Alberti’s theorem, which states that

(F(P, Q))2 = inf
Y∈Pd(X )

〈P, Y〉 〈Q, Y−1〉,

for every choice of positive semidefinite operators P, Q ∈ Pos (X ). We may use our semidefinite
program to obtain an alternate proof of this characterization.

First let us return to the dual problem from above:

Dual problem

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Z〉

subject to:
(

Y −1

−1 Z

)
≥ 0

Y, Z ∈ Herm (X ) .

To simplify the problem further, let us prove the following claim.

Claim 8.1. Let Y, Z ∈ Herm (X ). It holds that(
Y −1

−1 Z

)
∈ Pos (X ⊗X )

if and only if Y, Z ∈ Pd (X ) and Z ≥ Y−1.
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Proof. Suppose Y, Z ∈ Pd (X ) and Z ≥ Y−1. It holds that(
Y −1

−1 Z

)
=

(
1 0
−Y−1 1

)(
Y 0
0 Z−Y−1

)(
1 −Y−1

0 1

)
and therefore (

Y −1

−1 Z

)
∈ Pos (X ⊗X ) .

Conversely, suppose that (
Y −1

−1 Z

)
∈ Pos (X ⊗X ) .

It holds that

0 ≤
(

u
v

)∗ ( Y −1

−1 Z

)(
u
v

)
= u∗Yu− u∗v− v∗u + v∗Zv

for all u, v ∈ X . If Y were not positive definite, there would exist a unit vector v for which
v∗Yv = 0, and one could then set

u =
1
2
(‖Z‖+ 1)v

to obtain
‖Z‖ ≥ v∗Zv ≥ 〈u, v〉+ 〈v, u〉 = ‖Z‖+ 1,

which is absurd. Thus, Y ∈ Pd (X ). Finally, by inverting the expression above, we have(
Y 0
0 Z−Y−1

)
=

(
1 0

Y−1 1

)(
Y −1

−1 Z

)(
1 Y−1

0 1

)
∈ Pos (X ⊗X ) ,

which implies Z ≥ Y−1 (and therefore Z ∈ Pd (X )) as required.

Now, given that Q is positive semidefinite, it holds that 〈Q, Z〉 ≥ 〈Q, Y−1〉 whenever Z ≥ Y−1,
so there would be no point in choosing any Z other than Y−1 when aiming to minimize the dual
objective function subject to that constraint. The dual problem above can therefore be phrased as
follows:

Dual problem

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Y−1〉

subject to: Y ∈ Pd (X ) .

Given that strong duality holds for our semidefinite program, and that we know the optimal
value to be F(P, Q), we have the following theorem.

Theorem 8.2. Let X be a complex Euclidean space and let P, Q ∈ Pos (X ). It holds that

F(P, Q) = inf
{

1
2
〈P, Y〉+ 1

2
〈Q, Y−1〉 : Y ∈ Pd (X )

}
.
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To see that this is equivalent to Alberti’s theorem, note that for every Y ∈ Pd (X ) it holds that

1
2
〈P, Y〉+ 1

2
〈Q, Y−1〉 ≥

√
〈P, Y〉〈Q, Y−1〉,

with equality if and only if 〈P, Y〉 = 〈Q, Y−1〉 (by the arithmetic-geometric mean inequality). It
follows that

inf
Y∈Pd(X )

〈P, Y〉 〈Q, Y−1〉 ≤ (F(P, Q))2 .

Moreover, for an arbitrary choice of Y ∈ Pd (X ), one may choose λ > 0 so that

〈P, λY〉 = 〈Q, (λY)−1〉

and therefore

1
2
〈P, λY〉+ 1

2
〈Q, (λY)−1〉 =

√
〈P, λY〉〈Q, (λY)−1〉 =

√
〈P, Y〉〈Q, Y−1〉.

Thus,
inf

Y∈Pd(X )
〈P, Y〉 〈Q, Y−1〉 ≥ (F(P, Q))2 .

We therefore have that Alberti’s theorem (Theorem 4.8) is a corollary to the theorem above, as
claimed.

8.2 Optimal measurements

We will now move on to the second example of the lecture of a semidefinite programming
application to quantum information theory. This example concerns the notion of optimal mea-
surements for distinguishing elements of an ensemble of states.

Suppose that X is a complex Euclidean space, Γ is a finite and nonempty set, p ∈ RΓ is a
probability vector, and {ρa : a ∈ Γ} ⊂ D (X ) is a collection of density operators. Consider the
scenario in which Alice randomly selects a ∈ Γ according to the probability distribution described
by p, then prepares a register X in the state ρa for whichever element a ∈ Γ she selected. She
sends X to Bob, whose goal is to identify the element a ∈ Γ selected by Alice with as high a
probability as possible. He must do this by means of a measurement µ : Γ → Pos (X ) : a 7→ Pa
on X, without any additional help or input from Alice. Bob’s optimal probability is given by the
maximum value of

∑
a∈Γ

p(a) 〈Pa, ρa〉

over all measurements µ : Γ→ Pos (X ) : a 7→ Pa on X .
It is natural to associate an ensemble of states with the process performed by Alice. This is a

collection
E = {(p(a), ρa) : a ∈ Γ} ,

which can be described more succinctly by a mapping

η : Γ→ Pos (X ) : a 7→ σa,

where σa = p(a)ρa for each a ∈ Γ. In general, any mapping η of the above form represents an
ensemble if and only if

∑
a∈Γ

σa ∈ D (X ) .
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To recover the description of a collection E = {(p(a), ρa) : a ∈ Γ} representing such an ensemble,
one may take p(a) = Tr(σa) and ρa = σa/ Tr(σa). Thus, each σa is generally not a density operator,
but may be viewed as an unnormalized density operator that describes both a density operator
and the probability that it is selected.

Now, let us say that a measurement µ : Γ → Pos (X ) is an optimal measurement for a given
ensemble η : Γ→ Pos (X ) if and only if it holds that

∑
a∈Γ
〈µ(a), η(a)〉

is maximal among all possible choices of measurements that could be substituted for µ in this
expression. We will prove the following theorem, which provides a simple condition (both nec-
essary and sufficient) for a given measurement to be optimal for a given ensemble.

Theorem 8.3. Let X be a complex Euclidean space, let Γ be a finite and nonempty set, let η : Γ →
Pos (X ) : a 7→ σa be an ensemble of states, and let µ : Γ→ Pos (X ) : a 7→ Pa be a measurement. It holds
that µ is optimal for η if and only if the operator

Y = ∑
a∈Γ

σaPa

is Hermitian and satisfies Y ≥ σa for each a ∈ Γ.

The following proposition, which states a property known as complementary slackness for
semidefinite programs, will be used to prove the theorem.

Proposition 8.4 (Complementary slackness for SDPs). Suppose (Φ, A, B) is a semidefinite program,
and that X ∈ A and Y ∈ B satisfy 〈A, X〉 = 〈B, Y〉. It holds that

Φ∗(Y)X = AX and Φ(X)Y = BY.

Remark 8.5. Note that the second equality stated in the proposition is completely trivial, given
that Φ(X) = B for all X ∈ A. It is stated nevertheless in the interest of illustrating the symmetry
between the primal and dual forms of semidefinite programs.

Proof. It holds that
〈A, X〉 = 〈B, Y〉 = 〈Φ(X), Y〉 = 〈Φ∗(Y), X〉 ,

so
〈Φ∗(Y)− A, X〉 = 0.

Both Φ∗(Y) − A and X are positive semidefinite, given that X and Y are feasible. The inner
product of two positive semidefinite operators is zero if and only if their product is zero, and so
we obtain

(Φ∗(Y)− A) X = 0.

This implies the first equality in the proposition, as required.

Next, we will phrase the problem of maximizing the probability of correctly identifying the
states in an ensemble as a semidefinite program. We suppose that an ensemble

η : Γ→ Pos (X ) : a 7→ σa
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is given, and define a semidefinite program as follows. Let Y = CΓ, let A ∈ Herm (Y ⊗X ) be
given by

A = ∑
a∈Γ

Ea,a ⊗ σa,

and consider the partial trace TrY as an element of T (Y ⊗X ,X ). The semidefinite program to
be considered is (TrY , A, 1X ), and with it one associates the following problems:

Primal problem

maximize: 〈A, X〉
subject to: TrY (X) = 1X ,

X ∈ Pos (Y ⊗X ) .

Dual problem

minimize: Tr(Y)
subject to: 1Y ⊗Y ≥ A

Y ∈ Herm (X ) .

To see that the primal problem represents the optimization problem we are interested in,
which is the maximization of

∑
a∈Γ
〈Pa, σa〉 = ∑

a∈Γ
〈σa, Pa〉

over all measurements {Pa : a ∈ Γ}, we note that any X ∈ L (Y ⊗X ) may be written

X = ∑
a,b∈Γ

Ea,b ⊗ Xa,b

for {Xa,b : a, b ∈ Γ} ⊂ L (X ), that the objective function is then given by

〈A, X〉 = ∑
a∈Γ
〈σa, Xa,a〉

and that the constraint TrY (X) = 1X is given by

∑
a∈Γ

Xa,a = 1X .

As X ranges over all positive semidefinite operators in Pos (Y ⊗X ), the operators Xa,a individ-
ually and independently range over all possible positive semidefinite operators in Pos (X ). The
“off-diagonal” operators Xa,b, for a 6= b, have no influence on the problem at all, and can safely
be ignored. Writing Pa in place of Xa,a, we see that the primal problem can alternately be written

Primal problem

maximize: ∑
a∈Γ
〈σa, Pa〉

subject to: {Pa : a ∈ Γ} ⊂ Pos (X )

∑
a∈Γ

Pa = 1X ,

which is the optimization problem of interest.
The dual problem can be simplified by noting that the constraint

1Y ⊗Y ≥ A

is equivalent to
∑
a∈Γ

Ea,a ⊗ (Y− σa) ∈ Pos (Y ⊗X ) ,

which in turn is equivalent to Y ≥ σa for each a ∈ Γ.
To summarize, we have the following pair of optimization problems:
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Primal problem

maximize: ∑
a∈Γ
〈σa, Pa〉

subject to: {Pa : a ∈ Γ} ⊂ Pos (X )

∑
a∈Γ

Pa = 1X ,

Dual problem

minimize: Tr(Y)
subject to: Y ≥ σa (for all a ∈ Γ)

Y ∈ Herm (X ) .

Strict feasibility is easy to show for this semidefinite program: we may take

X =
1
|Γ|1Y ⊗ 1X and Y = 21X

to obtain strictly feasible primal and dual solutions. By Slater’s theorem, we have strong duality,
and moreover that optimal values are always achieved in both problems.

We are now in a position to prove Theorem 8.3. Suppose first that the measurement µ is
optimal for η, so that {Pa : a ∈ Γ} is optimal for the semidefinite program above. Somewhat
more formally, we have that

X = ∑
a∈Γ

Ea,a ⊗ Pa

is an optimal primal solution to the semidefinite program (TrY , A, 1X ). Take Z to be any opti-
mal solution to the dual problem, which we know exists because the optimal solution is always
achievable for both the primal and dual problems. By complementary slackness (i.e., Proposi-
tion 8.4) it holds that

Tr∗Y (Z)X = AX,

which expands to
∑
a∈Γ

Ea,a ⊗ ZPa = ∑
a∈Γ

Ea,a ⊗ σaPa,

implying
ZPa = σaPa

for each a ∈ Γ. Summing over a ∈ Γ yields

Z = ∑
a∈Γ

σaPa = Y.

It therefore holds that Y is dual feasible, implying that Y is Hermitian and satisfies Y ≥ σa for
each a ∈ Γ.

Conversely, suppose that Y is Hermitian and satisfies Y ≥ σa for each a ∈ Γ. This means that
Y is dual feasible. Given that

Tr(Y) = ∑
a∈Γ
〈σa, Pa〉 ,

we find that {Pa : a ∈ Γ} must be an optimal primal solution by weak duality, as it equals
the value achieved by a dual feasible solution. The measurement µ is therefore optimal for the
ensemble η.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 9: Entropy and compression

For the next several lectures we will be discussing the von Neumann entropy and various con-
cepts relating to it. This lecture is intended to introduce the notion of entropy and its connection
to compression.

9.1 Shannon entropy

Before we discuss the von Neumann entropy, we will take a few moments to discuss the Shannon
entropy. This is a purely classical notion, but it is appropriate to start here. The Shannon entropy
of a probability vector p ∈ RΣ is defined as follows:

H(p) = − ∑
a∈Σ

p(a)>0

p(a) log(p(a)).

Here, and always in this course, the base of the logarithm is 2. (We will write ln(α) if we wish
to refer to the natural logarithm of a real number α.) It is typical to express the Shannon entropy
slightly more concisely as

H(p) = − ∑
a∈Σ

p(a) log(p(a)),

which is meaningful if we make the interpretation 0 log(0) = 0. This is sensible given that

lim
α→0+

α log(α) = 0.

There is no reason why we cannot extend the definition of the Shannon entropy to arbitrary
vectors with nonnegative entries if it is useful to do this—but mostly we will focus on probability
vectors.

There are standard ways to interpret the Shannon entropy. For instance, the quantity H(p)
can be viewed as a measure of the amount of uncertainty in a random experiment described by
the probability vector p, or as a measure of the amount of information one gains by learning
the value of such an experiment. Indeed, it is possible to start with simple axioms for what a
measure of uncertainty or information should satisfy, and to derive from these axioms that such
a measure must be equivalent to the Shannon entropy.

Something to keep in mind, however, when using these interpretations as a guide, is that
the Shannon entropy is usually only a meaningful measure of uncertainty in an asymptotic
sense—as the number of experiments becomes large. When a small number of samples from
some experiment is considered, the Shannon entropy may not conform to your intuition about
uncertainty, as the following example is meant to demonstrate.

Example 9.1. Let Σ = {0, 1, . . . , 2m2}, and define a probability vector p ∈ RΣ as follows:

p(a) =

{
1− 1

m a = 0,
1
m 2−m2

1 ≤ a ≤ 2m2
.



It holds that H(p) > m, and yet the outcome 0 appears with probability 1− 1/m. So, as m grows,
we become more and more “certain” that the outcome will be 0, and yet the “uncertainty” (as
measured by the entropy) goes to infinity.

The above example does not, of course, represent a paradox. The issue is simply that the
Shannon entropy can only be interpreted as measuring uncertainty if the number of random
experiments grows and the probability vector remains fixed, which is opposite to the example.

9.2 Classical compression and Shannon’s source coding theorem

Let us now focus on an important use of the Shannon entropy, which involves the notion of a
compression scheme. This will allow us to attach a concrete meaning to the Shannon entropy.

9.2.1 Compression schemes

Let p ∈ RΣ be a probability vector, and let us take Γ = {0, 1} to be the binary alphabet. For a
positive integer n and real numbers α > 0 and δ ∈ (0, 1), let us say that a pair of mappings

f : Σn → Γm

g : Γm → Σn,

forms an (n, α, δ)-compression scheme for p if it holds that m = bαnc and

Pr [g( f (a1 · · · an)) = a1 · · · an] > 1− δ, (9.1)

where the probability is over random choices of a1, . . . , an ∈ Σ, each chosen independently ac-
cording to the probability vector p.

To understand what a compression scheme means at an intuitive level, let us imagine the
following situation between two people: Alice and Bob. Alice has a device of some sort with a
button on it, and when she presses the button she gets an element of Σ, distributed according
to p, independent of any prior outputs of the device. She presses the button n times, obtaining
outcomes a1 · · · an, and she wants to communicate these outcomes to Bob using as few bits of
communication as possible. So, what Alice does is to compress a1 · · · an into a string of m =
bαnc bits by computing f (a1 · · · an). She sends the resulting bit-string f (a1 · · · an) to Bob, who
then decompresses by applying g, therefore obtaining g( f (a1 · · · an)). Naturally they hope that
g( f (a1 · · · an)) = a1 · · · an, which means that Bob will have obtained the correct sequence a1 · · · an.

The quantity δ is a bound on the probability the compression scheme makes an error. We
may view that the pair ( f , g) works correctly for a string a1 · · · an ∈ Σn if g( f (a1 · · · an)) = a1 · · · an,
so the above equation (9.1) is equivalent to the condition that the pair ( f , g) works correctly with
high probability (assuming δ is small).

9.2.2 Statement of Shannon’s source coding theorem

In the discussion above, the number α represents the average number of bits the compression
scheme needs in order to represent each sample from the distribution described by p. It is
obvious that compression schemes will exist for some numbers α and not others. The particular
values of α for which it is possible to come up with a compression scheme are closely related to
the Shannon entropy H(p), as the following theorem establishes.
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Theorem 9.2 (Shannon’s source coding theorem). Let Σ be a finite, non-empty set, let p ∈ RΣ be a
probability vector, let α > 0, and let δ ∈ (0, 1). The following statements hold.

1. If α > H(p), then there exists an (n, α, δ)-compression scheme for p for all but finitely many choices
of n ∈N.

2. If α < H(p), then there exists an (n, α, δ)-compression scheme for p for at most finitely many choices
of n ∈N.

It is not a mistake, by the way, that both statements hold for any fixed choice of δ ∈ (0, 1),
regardless of whether it is close to 0 or 1 (for instance). This will make sense when we see the
proof.

It should be mentioned that the above statement of Shannon’s source coding theorem is
specific to the somewhat simplified (fixed-length) notion of compression that we have defined. It
is more common, in fact, to consider variable-length compressions and to state Shannon’s source
coding theorem in terms of the average length of compressed strings. The reason why we restrict
our attention to fixed-length compression schemes is that this sort of scheme will be more natural
when we turn to the quantum setting.

9.2.3 Typical strings

Before we can prove the above theorem, we will need to develop the notion of a typical string.
For a given probability vector p ∈ RΣ, positive integer n, and positive real number ε, we say that
a string a1 · · · an ∈ Σn is ε-typical (with respect to p) if

2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε).

We will need to refer to the set of all ε-typical strings of a given length repeatedly, so let us give
this set a name:

Tn,ε(p) =
{

a1 · · · an ∈ Σn : 2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε)
}

.

When the probability vector p is understood from context we write Tn,ε rather than Tn,ε(p).
The following lemma establishes that a random selection of a string a1 · · · an is very likely to

be ε-typical as n gets large.

Lemma 9.3. Let p ∈ RΣ be a probability vector and let ε > 0. It holds that

lim
n→∞ ∑

a1···an∈Tn,ε(p)
p(a1) · · · p(an) = 1

Proof. Let Y1, . . . , Yn be independent and identically distributed random variables defined as fol-
lows: we choose a ∈ Σ randomly according to the probability vector p, and then let the output
value be the real number − log(p(a)) for whichever value of a was selected. It holds that the
expected value of each Yj is

E[Yj] = − ∑
a∈Σ

p(a) log(p(a)) = H(p).

The conclusion of the lemma may now be written

lim
n→∞

Pr

[∣∣∣∣∣ 1
n

n

∑
j=1

Yj − H(p)

∣∣∣∣∣ ≥ ε

]
= 0,

which is true by the weak law of large numbers.
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Based on the previous lemma, it is straightforward to place upper and lower bounds on the
number of ε-typical strings, as shown in the following lemma.

Lemma 9.4. Let p ∈ RΣ be a probability vector and let ε be a positive real number. For all but finitely
many positive integers n it holds that

(1− ε)2n(H(p)−ε) < |Tn,ε | < 2n(H(p)+ε).

Proof. The upper bound holds for all n. Specifically, by the definition of ε-typical, we have

1 ≥ ∑
a1···an∈Tn,ε

p(a1) · · · p(an) > 2−n(H(p)+ε) |Tn,ε | ,

and therefore |Tn,ε | < 2n(H(p)+ε).
For the lower bound, let us choose n0 so that

∑
a1···an∈Tn,ε

p(a1) · · · p(an) > 1− ε

for all n ≥ n0, which is possible by Lemma 9.3. For all n ≥ n0 we have

1− ε < ∑
a1···an∈Tn,ε

p(a1) · · · p(an) < |Tn,ε | 2−n(H(p)−ε),

and therefore |Tn,ε | > (1− ε)2n(H(p)−ε), which completes the proof.

9.2.4 Proof of Shannon’s source coding theorem

We now have the necessary tools to prove Shannon’s source coding theorem. Having developed
some basic properties of typical strings, the proof is very simple: a good compression function
is obtained by simply assigning a unique binary string to each typical string, with every other
string mapped arbitrarily. On the other hand, any compression scheme that fails to account for a
large fraction of the typical strings will be shown to fail with very high probability.

Proof of Theorem 9.2. First assume that α > H(p), and choose ε > 0 so that α > H(p) + 2ε. For
every choice of n > 1/ε we therefore have that

m = bαnc > n(H(p) + ε).

Now, because
|Tn,ε | < 2n(H(p)+ε) < 2m,

we may defined a function f : Σn → Γm that is 1-to-1 when restricted to Tn,ε, and we may define
g : Γm → Σn appropriately so that g( f (a1 · · · an)) = a1 · · · an for every a1 · · · an ∈ Tn,ε. As

Pr [g( f (a1 · · · an)) = a1 · · · an] ≥ Pr[a1 · · · an ∈ Tn,ε] = ∑
a1···an∈Tn,ε

p(a1) · · · p(an),

we have that this quantity is greater than 1− δ for sufficiently large n.
Now let us prove the second item, where we assume α < H(p). It is clear from the definition

of an (n, α, δ)-compression scheme that such a scheme can only work correctly for at most 2bαnc
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strings a1 · · · an. Let us suppose such a scheme is given for each n, and let Gn ⊆ Σn be the
collection of strings on which the appropriate scheme works correctly. If we can show that

lim
n→∞

Pr[a1 · · · an ∈ Gn] = 0 (9.2)

then we will be finished.
Toward this goal, let us note that for every n and ε, we have

Pr[a1 · · · an ∈ Gn] ≤ Pr[a1 · · · an ∈ Gn ∩ Tn,ε] + Pr[a1 · · · an 6∈ Tn,ε]

≤ |Gn | 2−n(H(p)−ε) + Pr[a1 · · · an 6∈ Tn,ε].

Choose ε > 0 so that α < H(p)− ε. It follows that

lim
n→∞
|Gn | 2−n(H(p)−ε) = 0.

As
lim
n→∞

Pr[a1 · · · an 6∈ Tn,ε] = 0

by Lemma 9.3, we have (9.2) as required.

9.3 Von Neumann entropy

Next we will discuss the von Neumann entropy, which may be viewed as a quantum information-
theoretic analogue of the Shannon entropy. We will spend the next few lectures after this one
discussing the properties of the von Neumann entropy as well as some of its uses—but for now
let us just focus on the definition.

Let X be a complex Euclidean space, let n = dim(X ), and let ρ ∈ D (X ) be a density operator.
The von Neumann entropy of ρ is defined as

S(ρ) = H(λ(ρ)),

where λ(ρ) = (λ1(ρ), . . . , λn(ρ)) is the vector of eigenvalues of ρ. An equivalent expression is

S(ρ) = −Tr(ρ log(ρ)),

where log(ρ) is the Hermitian operator that has exactly the same eigenvectors as ρ, and we
take the base 2 logarithm of the corresponding eigenvalues. Technically speaking, log(ρ) is only
defined for ρ positive definite, but ρ log(ρ) may be defined for all positive semidefinite ρ by
interpreting 0 log(0) as 0, just like in the definition of the Shannon entropy.

9.4 Quantum compression

There are some ways in which the von Neumann entropy is similar to the Shannon entropy and
some ways in which it is very different. One way in which they are quite similar is in their
relationships to notions of compression.
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9.4.1 Informal discussion of quantum compression

To explain quantum compression, let us imagine a scenario between Alice and Bob that is similar
to the classical scenario we discussed in relation to classical compression. We imagine that Alice
has a collection of identical registers X1,X2, . . . ,Xn, whose associated complex Euclidean spaces
are X1 = CΣ, . . . ,Xn = CΣ for some finite and nonempty set Σ. She wants to compress the contents
of these registers into m = bαnc qubits, for some choice of α > 0, and to send those qubits to
Bob. Bob will then decompress the qubits to (hopefully) obtain registers X1,X2, . . . ,Xn with little
disturbance to their initial state.

It will not gnenerally be possible for Alice to do this without some assumption on the state
of (X1,X2, . . . ,Xn). Our assumption will be analogous to the classical case: we assume that the
states of these registers are independent and described by some density operator ρ ∈ D (X ) (as
opposed to a probability vector p ∈ RΣ). That is, the state of the collection of registers will be
assumed to be ρ⊗n ∈ D (X1 ⊗ · · · ⊗ Xn), where

ρ⊗n = ρ⊗ · · · ⊗ ρ (n times).

What we will show is that for large n, compression will be possible for α > S(ρ) and impossible
for α < S(ρ).

To speak more precisely about what is meant by quantum compression and decompression,
let us consider that α > 0 has been fixed, let m = bαnc, and let Y1, . . . ,Ym be qubit registers,
meaning that their associated spaces Y1, . . . ,Ym are each equal to CΓ, for Γ = {0, 1}. Alice’s
compression mapping will be a channel

Φ ∈ C (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym)

and Bob’s decompression mapping will be a channel

Ψ ∈ C (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn) .

Now, we need to be careful about how we measure the accuracy of quantum compression
schemes. Our assumption on the state of (X1,X2, . . . ,Xn) does not rule out the existence of other
registers that these registers may be entangled or otherwise correlated with—so let us imagine
that there exists another register Z, and that the initial state of (X1,X2, . . . ,Xn,Z) is

ξ ∈ D (X1 ⊗ · · · ⊗ Xn ⊗Z) .

When Alice compresses and Bob decompresses X1, . . . ,Xn, the resulting state of (X1,X2, . . . ,Xn,Z)
is given by (

ΨΦ⊗ 1L(Z)

)
(ξ).

For the compression to be successful, we require that this density operator is close to ξ. This must
in fact hold for all choices of Z and ξ, provided that the assumption TrZ (ξ) = ρ⊗n is met. There
is nothing unreasonable about this assumption—it is the natural quantum analogue to requiring
that g( f (a1 · · · an)) = a1 · · · an for classical compression.

It might seem complicated that we have to worry about all possible registers Z and all ξ ∈
D (X1 ⊗ · · · ⊗ Xn ⊗Z) that satisfy TrZ (ξ) = ρ⊗n, but in fact it will be simple if we make use of
the notion of channel fidelity.
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9.4.2 Quantum channel fidelity

Consider a channel Ξ ∈ C (W) for some complex Euclidean space W , and let σ ∈ D (W) be a
density operator on this space. We define the channel fidelity between Ξ and σ to be

Fchannel(Ξ, σ) = inf{F(ξ, (Ξ⊗ 1L(Z))(ξ))},

where the infimum is over all complex Euclidean spaces Z and all ξ ∈ D (W ⊗Z) satisfying
TrZ (ξ) = σ. The channel fidelity Fchannel(Ξ, σ) places a lower bound on the fidelity of the input
and output of a given channel Ξ provided that it acts on a part of a larger system whose state
is σ when restricted to the part on which Ξ acts.

It is not difficult to prove that the infimum in the definition of the channel fidelity may be
restricted to pure states ξ = uu∗, given that we could always purify a given ξ (possibly replacing
Z with a larger space) and use the fact that the fidelity function is non-decreasing under partial
tracing. With this in mind, consider any complex Euclidean space Z , let u ∈ W ⊗ Z be any
purification of σ, and consider the fidelity

F
(

uu∗,
(

Ξ⊗ 1L(Z)

)
(uu∗)

)
=

√〈
uu∗,

(
Ξ⊗ 1L(Z)

)
(uu∗)

〉
.

The purification u ∈ W ⊗Z of σ must take the form

u = vec
(√

σB
)

for some operator B ∈ L (Z ,W) satisfying BB∗ = Πim(σ). Assuming that

Ξ(X) =
k

∑
j=1

AiXA∗i

is a Kraus representation of Ξ, it therefore holds that

F
(

uu∗,
(

Ξ⊗ 1L(Z)

)
(uu∗)

)
=

√√√√ k

∑
j=1

∣∣〈√σB, Aj
√

σB
〉∣∣2 =

√√√√ k

∑
j=1

∣∣〈σ, Aj
〉∣∣2.

So, it turns out that this quantity is independent of the particular purification of σ that was
chosen, and we find that we could alternately have defined the channel fidelity of Ξ with σ as

Fchannel(Ξ, σ) =

√√√√ k

∑
j=1

∣∣〈σ, Aj
〉∣∣2.

9.4.3 Schumacher’s quantum source coding theorem

We now have the required tools to establish the relationship between the von Neumann entropy
and quantum compression that was discussed earlier in the lecture. Using the same notation that
was introduced above, let us say that a pair of channels

Φ ∈ C (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym) ,
Ψ ∈ C (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn)
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is an (n, α, δ)-quantum compression scheme for ρ ∈ D (X ) if m = bαnc and

Fchannel
(
ΨΦ, ρ⊗n) > 1− δ.

The following theorem, which is the quantum analogue to Shannon’s source coding theorem,
establishes conditions on α for which quantum compression is possible and impossible.

Theorem 9.5 (Schumacher). Let ρ ∈ D (X ) be a density operator, let α > 0 and let δ ∈ (0, 1). The
following statements hold.

1. If α > S(ρ), then there exists an (n, α, δ)-quantum compression scheme for ρ for all but finitely many
choices of n ∈N.

2. If α < S(ρ), then there exists an (n, α, δ)-quantum compression scheme for ρ for at most finitely many
choices of n ∈N.

Proof. Assume first that α > S(ρ). We begin by defining a quantum analogue of the set of typical
strings, which is the typical subspace. This notion is based on a spectral decomposition

ρ = ∑
a∈Σ

p(a)uau∗a .

As p is a probability vector, we may consider for each n ≥ 1 the set of ε-typical strings Tn,ε ⊆ Σn

for this distribution. In particular, we form the projection onto the typical subspace:

Πn,ε = ∑
a1···an∈Tn,ε

ua1 u∗a1
⊗ · · · ⊗ uan u∗an

.

Notice that 〈
Πn,ε, ρ⊗n〉 = ∑

a1···an∈Tn,ε

p(a1) · · · p(an),

and therefore
lim
n→∞

〈
Πn,ε, ρ⊗m〉 = 1,

for every choice of ε > 0.
We can now move on to describing a sequence of compression schemes that will suffice to

prove the theorem, provided that α > S(ρ) = H(p). By Shannon’s source coding theorem (or, to
be more precise, our proof of that theorem) we may assume, for sufficiently large n, that we have
a classical (n, α, ε)-compression scheme ( f , g) for p that satisfies

g( f (a1 · · · an)) = a1 · · · an

for all a1 · · · an ∈ Tn,ε. Define a linear operator

A ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym)

as
A = ∑

a1···an∈Tn,ε

e f (a1···an)(ua1 ⊗ · · · ⊗ uan)
∗.

for each a1 · · · an ∈ Σn. Notice that
A∗A = Πn,ε.
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Now, the mapping defined by X 7→ AXA∗ is completely positive but generally not trace-
preserving. However, it is a sub-channel, by which it is meant that there must exist a completely
positive mapping Ξ for which

Φ(X) = AXA∗ + Ξ(X) (9.3)

is a channel. For instance, we may take

Ξ(X) = 〈1−Πn,ε, X〉 σ

for some arbitrary choice of σ ∈ D (Y1 ⊗ · · · ⊗ Ym). Likewise, the mapping Y 7→ A∗YA is also a
sub-channel, meaning that there must exist a completely positive map ∆ for which

Ψ(Y) = A∗YA + ∆(Y) (9.4)

is a channel.
It remains to argue that, for sufficiently large n, that the pair (Φ, Ψ) is an (n, α, δ)-quantum

compression scheme for any constant δ > 0. From the above expressions (9.3) and (9.4) it is clear
that there exists a Kraus representation of ΨΦ having the form

(ΨΦ)(X) = (A∗A)X(A∗A)∗ +
k

∑
j=1

BjXB∗j

for some collection of operators B1, . . . , Bk that we do not really care about. It follows that

Fchannel(ΨΦ, ρ⊗n) ≥
∣∣〈ρ⊗n, A∗A

〉∣∣ = 〈ρ⊗n, Πn,ε
〉

.

This quantity approaches 1 in the limit, as we have observed, and therefore for sufficiently large
n it must hold that (Φ, Ψ) is an (n, α, δ) quantum compression scheme.

Now consider the case where α < S(ρ). Note that if Πn ∈ Pos (X1 ⊗ · · · ⊗ Xn) is a projection
with rank at most 2n(S(ρ)−ε) for each n ≥ 1, then

lim
n→∞

〈
Πn, ρ⊗n〉 = 0. (9.5)

This is because, for any positive semidefinite operator P, the maximum value of 〈Π, P〉 over all
choices of orthogonal projections Π with rank(Π) ≤ r is precisely the sum of the r largest eigen-
values of P. The eigenvalues of ρ⊗n are the values p(a1) · · · p(an) over all choices of a1 · · · an ∈ Σn,
so for each n we have 〈

Πn, ρ⊗n〉 ≤ ∑
a1···an∈Gn

p(a1) · · · p(an)

for some set Gn of size at most 2n(S(ρ)−ε). At this point the equation (9.5) follows by similar
reasoning to the proof of Theorem 9.2.

Now let us suppose, for each n ≥ 1 and for m = bαnc, that

Φn ∈ C (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym) ,
Ψn ∈ C (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn)

are channels. Our goal is to prove that (Φn, Ψn) fails as a quantum compression scheme for all
sufficiently large values of n.
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Fix n ≥ 1, and consider Kraus representations

Φn(X) =
k

∑
j=1

AjXA∗j and Ψn(X) =
k

∑
j=1

BjXB∗j ,

where

A1, . . . , Ak ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym) ,
B1, . . . , Bk ∈ L (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn) ,

and where the assumption that they have the same number of terms is easily made without loss
of generality. Let Πj be the projection onto the range of Bj for each j = 1, . . . k, and note that it
obviously holds that

rank(Πj) ≤ dim(Y1 ⊗ · · · ⊗ Ym) = 2m.

By the Cauchy-Schwarz inequality, we have

Fchannel(ΨnΦn, ρ⊗n)2 = ∑
i,j

∣∣〈ρ⊗n, Bj Ai
〉∣∣2

= ∑
i,j

∣∣∣〈Πj
√

ρ⊗n, Bj Ai
√

ρ⊗n
〉∣∣∣2

≤∑
i,j

〈
Πj, ρ⊗n〉 (Tr Bj Aiρ

⊗n A∗i B∗j
)

.

As
Tr
(

Bj Aiρ
⊗n A∗i B∗j

)
≥ 0

for each i, j, and

∑
i,j

Tr
(

Bj Aiρ
⊗n A∗i B∗j

)
= Tr(ΨΦ(ρ⊗n)) = 1,

it follows that
Fchannel(ΨnΦn, ρ⊗n)2 ∈ conv

({〈
Πj, ρ⊗n〉 : j = 1, . . . , k

})
.

As each Πj has rank at most 2m, it follows that

lim
n→∞

Fchannel(ΨnΦn, ρ⊗n) = 0.

So, for all but finitely many choices of n, the pair (Φn, Ψn) fails to be an (n, α, δ) quantum
compression scheme.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 10: Continuity of von Neumann entropy; quantum
relative entropy

In the previous lecture we defined the Shannon and von Neumann entropy functions, and es-
tablished the fundamental connection between these functions and the notion of compression.
In this lecture and the next we will look more closely at the von Neumann entropy in order to
establish some basic properties of this function, as well as an important related function called
the quantum relative entropy.

10.1 Continuity of von Neumann entropy

The first property we will establish about the von Neumann entropy is that it is continuous
everywhere on its domain.

First, let us define a real valued function η : [0, ∞)→ R as follows:

η(λ) =

{
−λ ln(λ) λ > 0
0 λ = 0.

This function is continuous everywhere on its domain, and derivatives of all orders exist for all
positive real numbers. In particular we have η′(λ) = −(1 + ln(λ)) and η′′(λ) = −1/λ. A plot of
the function η is shown in Figure 10.1, and its first derivative η′ is plotted in Figure 10.2.

1
e

1
e 1

0

Figure 10.1: A plot of the function η(λ) = −λ ln(λ).

The fact that η is continuous on [0, ∞) implies that for every finite, nonempty set Σ the
Shannon entropy is continuous at every point on [0, ∞)Σ, as

H(p) =
1

ln(2) ∑
a∈Σ

η(p(a)).
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Figure 10.2: A plot of the function η′(λ) = −(1 + ln(λ)).

We are usually only interested in H(p) for probability vectors p, but of course the function is
defined on vectors having nonnegative real entries.

Now, to prove that the von Neumann entropy is continuous, we will first prove the following
theorem, which establishes one specific sense in which the eigenvalues of a Hermitian operator
vary continuously as a function of an operator. We don’t really need the precise bound that
this theorem establishes—all we really need is that eigenvalues vary continuously as an operator
varies, which is somewhat easier to prove and does not require Hermiticity—but we’ll take the
opportunity to state the theorem because it is interesting in its own right.

Theorem 10.1. Let X be a complex Euclidean space and let A, B ∈ Herm (X ) be Hermitian operators.
It holds that

‖λ(A)− λ(B)‖1 ≤ ‖A− B‖1 .

To prove this theorem, we need another fact about eigenvalues of operators, but this one we
will take as given. (You can find proofs in several books on matrix analysis.)

Theorem 10.2 (Weyl’s monotonicity theorem). Let X be a complex Euclidean space and let A, B ∈
Herm (X ) satisfy A ≤ B. It holds that λj(A) ≤ λj(B) for 1 ≤ j ≤ dim(X ).

Proof of Theorem 10.1. Let n = dim(X ). Using the spectral decomposition of A− B, it is possible
to define two positive semidefinite operators P, Q ∈ Pos (X ) such that:

1. PQ = 0, and

2. P−Q = A− B.

(An expression of a given Hermitian operator as P−Q for such a choice of P and Q is sometimes
called a Jordan–Hahn decomposition of that operator.) Notice that ‖A− B‖1 = Tr(P) + Tr(Q).

Now, define one more Hermitian operator

X = P + B = Q + A.

We have X ≥ A, and therefore λj(X) ≥ λj(A) for 1 ≤ j ≤ n by Weyl’s monotonicity theorem.
Similarly, it holds that λj(X) ≥ λj(B) for 1 ≤ j ≤ n = dim(X ). By considering the two possible
cases λj(A) ≥ λj(B) and λj(A) ≤ λj(B), we therefore find that∣∣λj(A)− λj(B)

∣∣ ≤ 2λj(X)− (λj(A) + λj(B))
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for 1 ≤ j ≤ n. Thus,

‖λ(A)− λ(B)‖1 =
n

∑
j=1

∣∣λj(A)− λj(B)
∣∣ ≥ Tr(2X− A− B) = Tr(P + Q) = ‖A− B‖1

as required.

With the above fact in hand, it is immediate from the expression S(P) = H(λ(P)) that the
von Neumann entropy is continuous (as it is a composition of two continuous functions).

Theorem 10.3. For every complex Euclidean space X , the von Neumann entropy S(P) is continuous at
every point P ∈ Pos (X ).

Let us next prove Fannes’ inequality, which may be viewed as a quantitative statement con-
cerning the continuity of the von Neumann entropy. To begin, we will use some basic calculus
to prove a fact about the function η.

Lemma 10.4. Suppose α and β are real numbers satisfying 0 ≤ α ≤ β ≤ 1 and β− α ≤ 1/2. It holds
that

|η(β)− η(α)| ≤ η(β− α).

Proof. Consider the function η′(λ) = −(1 + ln(λ)), which is plotted in Figure 10.2. Given that η′

is monotonically decreasing on its domain (0, ∞), it holds that the function

f (λ) =
∫ λ+γ

λ
η′(t)dt = η(λ + γ)− η(λ)

is monotonically non-increasing for any choice of γ ≥ 0. This means that the maximum value of
| f (λ)| over the range λ = [0, 1− γ] must occur at either λ = 0 or λ = 1− γ, and so for λ in this
range we have

|η(λ + γ)− η(λ)| ≤ max{η(γ), η(1− γ)}.

Here we have used the fact that η(1) = 0 and η(λ) ≥ 0 for λ ∈ [0, 1].
To complete the proof it suffices to prove that η(γ) ≥ η(1− γ) for γ ∈ [0, 1/2]. This claim is

certainly supported by the plot in Figure 10.1, but we can easily prove it analytically. Define a
function g(λ) = η(λ)− η(1−λ). We see that g happens to have zeroes at λ = 0 and λ = 1/2, and
were there an additional zero λ of g in the range (0, 1/2), then we would have two distinct values
δ1, δ2 ∈ (0, 1/2) for which g′(δ1) = g′(δ2) = 0 by the mean value theorem. This, however, is in
contradiction with the fact that the second derivative g′′(λ) = 1

1−λ −
1
λ of g is strictly negative

in the range (0, 1/2). As g(1/4) > 0, for instance, we have that g(λ) ≥ 0 for λ ∈ [0, 1/2] as
required.

Theorem 10.5 (Fannes Inequality). Let X be a complex Euclidean space and let n = dim(X ). For all
density operators ρ, ξ ∈ D (X ) such that ‖ρ− ξ‖1 ≤ 1/e it holds that

|S(ρ)− S(ξ)| ≤ log(n) ‖ρ− ξ‖1 +
1

ln(2)
η(‖ρ− ξ‖1).

Proof. Define
ε i = |λi(ρ)− λi(ξ)|
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and let ε = ε1 + · · ·+ εn. Note that ε i ≤ ‖ρ− ξ‖1 ≤ 1/e < 1/2 for each i, and therefore

|S(ρ)− S(ξ)| = 1
ln(2)

∣∣∣∣∣ n

∑
i=1

η(λi(ρ))− η(λi(ξ))

∣∣∣∣∣ ≤ 1
ln(2)

n

∑
i=1

η(ε i)

by Lemma 10.4.
For any positive α and β we have βη(α/β) = η(α) + α ln(β), so

1
ln(2)

n

∑
i=1

η(ε i) =
1

ln(2)

n

∑
i=1

(εη(ε i/ε)− ε i ln(ε)) =
ε

ln(2)

n

∑
i=1

η(ε i/ε) +
1

ln(2)
η(ε).

Because (ε1/ε, . . . , εn/ε) is a probability vector this gives

|S(ρ)− S(ξ)| ≤ ε log(n) +
1

ln(2)
η(ε).

We have that ε ≤ ‖ρ− ξ‖1, and that η is monotone increasing on the interval [0, 1/e], so

|S(ρ)− S(ξ)| ≤ log(n) ‖ρ− ξ‖1 +
1

ln(2)
η(‖ρ− ξ‖1),

which completes the proof.

10.2 Quantum relative entropy

Next we will introduce a new function, which is indispensable as a tool for studying the von Neu-
mann entropy: the quantum relative entropy. For two positive definite operators P, Q ∈ Pd (X ) we
define the quantum relative entropy of P with Q as follows:

S(P‖Q) = Tr(P log(P))− Tr(P log(Q)). (10.1)

We usually only care about the quantum relative entropy for density operators, but there is
nothing that prevents us from allowing the definition to hold for all positive definite operators.

We may also define the quantum relative entropy for positive semidefinite operators that
are not positive definite, provided we are willing to have an extended real-valued function.
Specifically, if there exists a vector u ∈ X such that u∗Qu = 0 and u∗Pu 6= 0, or (equivalently)
when

ker(Q) 6⊆ ker(P),

we define S(P‖Q) = ∞. Otherwise, there is no difficulty in evaluating the above expression (10.1)
by following the usual convention of setting 0 log(0) = 0. Nevertheless, it will typically not be
necessary for us to give up the convenience of restricting our attention to positive definite oper-
ators. This is because we already know that the von Neumann entropy function is continuous,
and we will mostly use the quantum relative entropy in this course to establish facts about the
von Neumann entropy.

The quantum relative entropy S(P‖Q) can be negative for some choices of P and Q, but
not when they are density operators (or more generally when Tr(P) = Tr(Q)). The following
theorem establishes that this is so, and in fact that the value of the quantum relative entropy of
two density operators is zero if and only if they are equal.
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Theorem 10.6. Let ρ, ξ ∈ D (X ) be positive definite density operators. It holds that

S(ρ‖ξ) ≥ 1
2 ln(2)

‖ρ− ξ‖2
2 .

Proof. Let us first note that for every choice of α, β ∈ (0, 1) we have

α ln(α)− α ln(β) = (α− β)η′(β) + η(β)− η(α) + α− β.

Moreover, by Taylor’s Theorem, we have that

(α− β)η′(β) + η(β)− η(α) = −1
2

η′′(γ)(α− β)2

for some choice of γ lying between α and β.
Now, let n = dim(X ) and let

ρ =
n

∑
i=1

pixix∗i and ξ =
n

∑
i=1

qiyiy∗i

be spectral decompositions of ρ and ξ. The assumption that ρ and ξ are positive definite density
operators implies that pi and qi are positive for 1 ≤ i ≤ n. Applying the facts observed above,
we have that

S(ρ‖ξ) = 1
ln(2) ∑

1≤i,j≤n

∣∣〈xi, yj
〉∣∣2 (pi ln(pi)− pi ln(qj))

=
1

ln(2) ∑
1≤i,j≤n

∣∣〈xi, yj
〉∣∣2 (qj − pi −

1
2

η′′(γij)(pi − qj)
2
)

for some choice of real numbers {γij}, where each γij lies between pi and qj. In particular, this
means that 0 < γij ≤ 1, implying that −η′′(γij) ≥ 1, for each choice of i and j. Consequently we
have

S(ρ‖ξ) ≥ 1
2 ln(2) ∑

1≤i,j≤n

∣∣〈xi, yj
〉∣∣2 (pi − qj)

2 =
1

2 ln(2)
‖ρ− ξ‖2

2

as required.

The following corollary represents a simple application of this fact. (We could just as easily
prove it using analogous facts about the Shannon entropy, but the proof is essentially the same.)

Corollary 10.7. Let X be a complex Euclidean space and let n = dim(X ). It holds that 0 ≤ S(ρ) ≤
log(n) for all ρ ∈ D (X ). Furthermore, ρ = 1/n is the unique density operator in D (X ) having
von Neumann entropy equal to log(n).

Proof. The vector of eigenvalues λ(ρ) of any density operator ρ ∈ D (X ) is a probability vector,
so S(ρ) = H(λ(ρ)) is a sum of nonnegative terms, which implies S(ρ) ≥ 0. To prove the upper
bound, let us assume ρ is a positive definite density operator, and consider the relative entropy
S(ρ‖1/n). We have

0 ≤ S(ρ‖1/n) = −S(ρ)− log(1/n)Tr(ρ) = −S(ρ) + log(n).

Therefore S(ρ) ≤ log(n), and when ρ is not equal to 1/n the inequality becomes strict. For den-
sity operators ρ that are not positive definite, the result follows from the continuity of von Neu-
mann entropy.
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Now let us prove two simple properties of the von Neumann entropy: subadditivity and
concavity. These properties also hold for the Shannon entropy—and while it is not difficult
to prove them directly for the Shannon entropy, we get the properties for free once they are
established for the von Neumann entropy.

When we refer to the von Neumann entropy of some collection of registers, we mean the
von Neumann entropy of the state of those registers at some instant. For example, if X and Y are
registers and ρ ∈ D (X ⊗Y) is the state of the pair (X,Y) at some instant, then

S(X,Y) = S(ρ), S(X) = S(ρX), and S(Y) = S(ρY),

where, in accordance with standard conventions, we have written ρX = TrY (ρ) and ρY = TrX (ρ).
We often state properties of the von Neumann entropy in terms of registers, with the under-
standing that whatever statement is being discussed holds for all or some specified subset of
the possible states of these registers. A similar convention is used for the Shannon entropy (for
classical registers).

Theorem 10.8 (Subadditivity of von Neumann entropy). Let X and Y be quantum registers. For
every state of the pair (X,Y) we have

S(X,Y) ≤ S(X) + S(Y).

Proof. Assume that the state of the pair (X,Y) is ρ ∈ D (X ⊗Y). We will prove the theorem for ρ
positive definite, from which the general case follows by continuity.

Consider the quantum relative entropy S(ρXY‖ρX ⊗ ρY). Using the formula

log(P⊗Q) = log(P)⊗ 1 + 1⊗ log(Q)

we find that
S(ρXY‖ρX ⊗ ρY) = −S(ρXY) + S(ρX) + S(ρY).

By Theorem 10.6 we have S(ρXY‖ρX ⊗ ρY) ≥ 0, which completes the proof.

In the next lecture we will prove a much stronger version of subadditivity, which is aptly
named: strong subadditivity. It will imply the truth of the previous theorem, but it is instructive
to compare the very easy proof above with the much more difficult proof of strong subadditivity.

Subadditivity also holds for the Shannon entropy:

H(X,Y) ≤ H(X) + H(Y)

for any choice of classical registers X and Y. This is simply a special case of the above theorem,
where the density operator ρ is diagonal with respect to the standard basis of X ⊗Y .

Subadditivity implies that the von Neumann entropy is concave, as is established by the proof
of the following theorem.

Theorem 10.9 (Concavity of von Neumann entropy). Let ρ, ξ ∈ D (X ) and λ ∈ [0, 1]. It holds that

S(λρ + (1− λ)ξ) ≥ λS(ρ) + (1− λ)S(ξ).

Proof. Let Y be a register corresponding to a single qubit, so that its associated space is Y = C{0,1}.
Consider the density operator

σ = λρ⊗ E0,0 + (1− λ)ξ ⊗ E1,1,
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and suppose that the state of the registers (X,Y) is described by σ. We have

S(X,Y) = λS(ρ) + (1− λ)S(ξ) + H(λ),

which is easily established by considering spectral decompositions of ρ and ξ. (Here we have
referred to the binary entropy function H(λ) = −λ log(λ)− (1− λ) log(1− λ).) Furthermore, we
have

S(X) = S(λρ + (1− λ)ξ)

and
S(Y) = H(λ).

It follows by subadditivity that

λS(ρ) + (1− λ)S(ξ) + H(λ) ≤ S(λρ + (1− λ)ξ) + H(λ)

which proves the theorem.

Concavity also holds for the Shannon entropy as a simple consequence of this theorem, as we
may take ρ and ξ to be diagonal with respect to the standard basis.

10.3 Conditional entropy and mutual information

Let us finish off the lecture by defining a few more quantities associated with the von Neumann
entropy. We will not be able to say very much about these quantities until after we prove strong
subadditivity in the next lecture.

Classically we define the conditional Shannon entropy as follows for two classical registers X
and Y:

H(X|Y) = ∑
a

Pr[Y = a]H(X|Y = a).

This quantity represents the expected value of the entropy of X given that you know the value
of Y. It is not hard to prove that

H(X|Y) = H(X,Y)− H(Y).

It follows from subadditivity that
H(X|Y) ≤ H(X).

The intuition is that your uncertainty can only increase when you know less.
In the quantum setting the first definition does not really make sense, so we use the second

fact as our definition—the conditional von Neumann entropy of X given Y is

S(X|Y) = S(X,Y)− S(Y).

Now we start to see some strangeness: we can have S(Y) > S(X,Y), as we will if (X,Y) is in a
pure, non-product state. This means that S(X|Y) can be negative, but such is life.

Next, the (classical) mutual information between two classical registers X and Y is defined as

I(X : Y) = H(X) + H(Y)− H(X,Y).

This can alternately be expressed as

I(X : Y) = H(Y)− H(Y|X) = H(X)− H(X|Y).
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We view this quantity as representing the amount of information in X about Y and vice versa.
The quantum mutual information is defined similarly:

S(X : Y) = S(X) + S(Y)− S(X,Y).

At least we know from subadditivity that this quantity is always nonnegative. We will, however,
need to further develop our understanding before we can safely associate any intuition with this
quantity.
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Lecture 11: Strong subadditivity of von Neumann entropy

In this lecture we will prove a fundamental fact about the von Neumann entropy, known as strong
subadditivity. Let us begin with a precise statement of this fact.

Theorem 11.1 (Strong subadditivity of von Neumann entropy). Let X, Y, and Z be registers. For
every state ρ ∈ D (X ⊗Y ⊗Z) of these registers it holds that

S(X,Y,Z) + S(Z) ≤ S(X,Z) + S(Y,Z).

There are multiple known ways to prove this theorem. The approach we will take is to first
establish a property of the quantum relative entropy, known as joint convexity. Once we establish
this property, it will be straightforward to prove strong subadditivity.

11.1 Joint convexity of the quantum relative entropy

We will now prove that the quantum relative entropy is jointly convex, as is stated by the follow-
ing theorem.

Theorem 11.2 (Joint convexity of the quantum relative entropy). Let X be a complex Euclidean
space, let ρ0, ρ1, σ0, σ1 ∈ D (X ) be positive definite density operators, and let λ ∈ [0, 1]. It holds that

S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1) ≤ λ S(ρ0‖σ0) + (1− λ) S(ρ1‖σ1).

The proof of Theorem 11.2 that we will study is fairly standard and has the nice property of
being elementary. It is, however, relatively complicated, so we will need to break it up into a few
pieces.

Before considering the proof, let us note that the theorem remains true if we allow ρ0, ρ1,
σ0, and σ1 to be arbitrary density operators, provided we allow the quantum relative entropy
to take infinite values as we discussed in the previous lecture. Supposing that we do this, we
see that if either S(ρ0‖σ0) or S(ρ1‖σ1) is infinite, there is nothing to prove. If it is the case
that S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1) is infinite, then either S(ρ0‖σ0) or S(ρ1‖σ1) is infinite as
well: if λ ∈ (0, 1), then ker(λρ0 + (1− λ)ρ1) = ker(ρ0) ∩ ker(ρ1) and ker(λσ0 + (1− λ)σ1) =
ker(σ0) ∩ ker(σ1), owing to the fact that ρ0, ρ1, σ0, and σ1 are all positive semidefinite; and so

ker(λσ0 + (1− λ)σ1) 6⊆ ker(λρ0 + (1− λ)ρ1)

implies ker(σ0) 6⊆ ker(ρ0) or ker(σ1) 6⊆ ker(ρ1) (or both). In the remaining case, which is that
S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1), S(ρ0‖σ0), and S(ρ1‖σ1) are all finite, a fairly straightforward
continuity argument will establish the inequality from the one stated in the theorem.

Now, to prove the theorem, the first step is to consider a real-valued function fρ,σ : R → R

defined as
fρ,σ(α) = Tr

(
σαρ1−α

)



for all α ∈ R, for any fixed choice of positive definite density operators ρ, σ ∈ D (X ). Under the
assumption that ρ and σ are both positive definite, we have that the function fρ,σ is well defined,
and is in fact differentiable (and therefore continuous) everywhere on its domain. In particular,
we have

f ′ρ,σ(α) = Tr
[
σαρ1−α (ln(σ)− ln(ρ))

]
. (11.1)

To verify that this expression is correct, we may consider spectral decompositions

ρ =
n

∑
i=1

pixix∗i and σ =
n

∑
i=1

qiyiy∗i .

We have
Tr
(

σαρ1−α
)
= ∑

1≤i,j≤n
qα

j p1−α
i

∣∣〈xi, yj
〉∣∣2

and so

f ′ρ,σ(α) = ∑
1≤i,j≤n

(ln(qj)− ln(pi))qα
j p1−α

i

∣∣〈xi, yj
〉∣∣2 = Tr

[
σαρ1−α (ln(σ)− ln(ρ))

]
as claimed.

The main reason we are interested in the function fρ,σ is that its derivative has an interesting
value at 0:

f ′ρ,σ(0) = − ln(2)S(ρ‖σ).
We may therefore write

S(ρ‖σ) = − 1
ln(2)

f ′ρ,σ(0) = −
1

ln(2)
lim

α→0+

Tr
(
σαρ1−α

)
− 1

α
,

where the second equality follows by substituting fρ,σ(0) = 1 into the definition of the derivative.
Now consider the following theorem that concerns the relationship among the functions fρ,σ

for various choices of ρ and σ.

Theorem 11.3. Let σ0, σ1, ρ0, ρ1 ∈ Pd (X ) be positive definite operators. For every choice of α, λ ∈ [0, 1]
we have

Tr
(
(λσ0 + (1− λ)σ1)

α(λρ0 + (1− λ)ρ1)
1−α
)
≥ λ Tr

(
σα

0 ρ1−α
0

)
+ (1− λ)Tr

(
σα

1 ρ1−α
1

)
.

(The theorem happens to be true for all positive definite operators ρ0, ρ1, σ0, and σ1, but we will
really only need it for density operators.)

Before proving this theorem, let us note that it implies Theorem 11.2.

Proof of Theorem 11.2 (assuming Theorem 11.3). We have

S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1)

= − 1
ln(2)

lim
α→0+

Tr
(
(λσ0 + (1− λ)σ1)

α(λρ0 + (1− λ)ρ1)
1−α
)
− 1

α

≤ − 1
ln(2)

lim
α→0+

λ Tr
(

σα
0 ρ1−α

0

)
+ (1− λ)Tr

(
σα

1 ρ1−α
1

)
− 1

α

= − 1
ln(2)

lim
α→0+

λ

Tr
(

σα
0 ρ1−α

0

)
− 1

α

+ (1− λ)

Tr
(

σα
1 ρ1−α

1

)
− 1

α


= λ S(ρ0‖σ0) + (1− λ) S(ρ1‖σ1)
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as required.

Our goal has therefore shifted to proving Theorem 11.3. To prove Theorem 11.3 we require
another fact that is stated in the theorem that follows. It is equivalent to a theorem known as
Lieb’s concavity theorem, and Theorem 11.3 is a special case of that theorem, but Lieb’s concavity
theorem itself is usually stated in a somewhat different form than the one that follows.

Theorem 11.4. Let A0, A1 ∈ Pd (X ) and B0, B1 ∈ Pd (Y) be positive definite operators. For every
choice of α ∈ [0, 1] we have

(A0 + A1)
α ⊗ (B0 + B1)

1−α ≥ Aα
0 ⊗ B1−α

0 + Aα
1 ⊗ B1−α

1 .

Once again, before proving this theorem, let us note that it implies the main result we are
working toward.

Proof of Theorem 11.3 (assuming Theorem 11.4). The substitutions

A0 = λσ0, B0 = λρT
0 , A1 = (1− λ)σ1, B1 = (1− λ)ρT

1 ,

taken in Theorem 11.4 imply the operator inequality

(λσ0 + (1− λ)σ1)
α ⊗ (λρT

0 + (1− λ)ρT
1)

1−α

≥ λ σα ⊗ (ρT
0)

1−α + (1− λ) σα
1 ⊗ (ρT

1)
1−α

= λ σα ⊗ (ρ1−α
0 )T + (1− λ) σα

1 ⊗ (ρ1−α
1 )T.

Applying the identity vec(1)∗(X⊗YT) vec(1) = Tr(XY) to both sides of the inequality then gives
the desired result.

Now, toward the proof of Theorem 11.4, we require the following lemma.

Lemma 11.5. Let P0, P1, Q0, Q1, R0, R1 ∈ Pd (X ) be positive definite operators that satisfy these condi-
tions:

1. [P0, P1] = [Q0, Q1] = [R0, R1] = 0,

2. P2
0 ≥ Q2

0 + R2
0, and

3. P2
1 ≥ Q2

1 + R2
1.

It holds that P0P1 ≥ Q0Q1 + R0R1.

Remark. Notice that in the conclusion of the lemma, P0P1 is positive definite given the assump-
tion that [P0, P1] = 0, and likewise for Q0Q1 and R0R1.

Proof. The conclusion of the lemma is equivalent to X ≤ 1 for

X = P−1/2
0 P−1/2

1 (Q0Q1 + R0R1)P−1/2
1 P−1/2

0 .

As X is positive definite, and therefore Hermitian, this in turn is equivalent to the condition that
every eigenvalue of X is at most 1.
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To establish that every eigenvalue of X is at most 1, let us suppose that u is any eigenvector
of X whose corresponding eigenvalue is λ. As P0 and P1 are invertible and u is nonzero, we have
that P−1/2

0 P1/2
1 u is nonzero as well, and therefore we may define a unit vector v as follows:

v =
P−1/2

0 P1/2
1 u∥∥∥P−1/2

0 P1/2
1 u

∥∥∥ .

It holds that v is an eigenvector of P−1
0 (Q0Q1 + R0R1)P−1

1 with eigenvalue λ, and because v is a
unit vector it follows that

v∗P−1
0 (Q0Q1 + R0R1)P−1

1 v = λ.

Finally, using the fact that v is a unit vector, we can establish the required bound on λ as
follows:

λ = v∗P−1
0 (Q0Q1 + R0R1)P−1

1 v

≤
∣∣∣v∗P−1

0 Q0Q1P−1
1 v

∣∣∣+ ∣∣∣v∗P−1
0 R0R1P−1

1 v
∣∣∣

≤
√

v∗P−1
0 Q2

0P−1
0 v

√
v∗P−1

1 Q2
1P−1

1 v +
√

v∗P−1
0 R2

0P−1
0 v

√
v∗P−1

1 R2
1P−1

1 v

≤
√

v∗P−1
0 (Q2

0 + R2
0)P−1

0 v
√

v∗P−1
1 (Q2

1 + R2
1)P−1

1 v

≤ 1.

Here we have used the triangle inequality once and the Cauchy-Schwarz inequality twice, along
with the given assumptions on the operators.

Finally, we can finish of the proof of Theorem 11.2 by proving Theorem 11.4.

Proof of Theorem 11.4. Let us define a function f : [0, 1]→ Herm (X ⊗Y) as

f (α) = (A0 + A1)
α ⊗ (B0 + B1)

1−α −
(

Aα
0 ⊗ B1−α

0 + Aα
1 ⊗ B1−α

1

)
,

and let K = {α ∈ [0, 1] : f (α) ∈ Pos (X ⊗Y)} be the pre-image under f of the set Pos (X ⊗Y).
Notice that K is a closed set, given that f is continuous and Pos (X ⊗Y) is closed. Our goal is to
prove that K = [0, 1].

It is obvious that 0 and 1 are elements of K. For an arbitrary choice of α, β ∈ K, consider the
following operators:

P0 = (A0 + A1)
α/2 ⊗ (B0 + B1)

(1−α)/2,

P1 = (A0 + A1)
β/2 ⊗ (B0 + B1)

(1−β)/2,

Q0 = Aα/2
0 ⊗ B(1−α)/2

0 ,

Q1 = Aβ/2
0 ⊗ B(1−β)/2

0 ,

R0 = Aα/2
1 ⊗ B(1−α)/2

1 ,

R1 = Aβ/2
1 ⊗ B(1−β)/2

1 .
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The conditions [P0, P1] = [Q0, Q1] = [R0, R1] = 0 are immediate, while the assumptions that
α ∈ K and β ∈ K correspond to the conditions P2

0 ≥ Q2
0 + R2

0 and P2
1 ≥ Q2

1 + R2
1, respectively. We

may therefore apply Lemma 11.5 to obtain

(A0 + A1)
γ ⊗ (B0 + B1)

1−γ ≥ Aγ
0 ⊗ B1−γ

0 + Aγ
1 ⊗ B1−γ

1

for γ = (α + β)/2, which implies that (α + β)/2 ∈ K.
Now, given that 0 ∈ K, 1 ∈ K, and (α + β)/2 ∈ K for any choice of α, β ∈ K, we have that K is

dense in [0, 1]. In particular, K contains every number of the form m/2n for n and m nonnegative
integers with m ≤ 2n. As K is closed, this implies that K = [0, 1] as required.

11.2 Strong subadditivity

We have worked hard to prove that the quantum relative entropy is jointly convex, and now it
is time to reap the rewards. Let us begin by proving the following simple theorem, which states
that mixed unitary channels cannot increase the relative entropy of two density operators.

Theorem 11.6. Let X be a complex Euclidean space and let Φ ∈ C (X ) be a mixed unitary channel. For
any choice of positive definite density operators ρ, σ ∈ D (X ) we have

S(Φ(ρ)‖Φ(σ)) ≤ S(ρ‖σ).

Proof. As Φ is mixed unitary, we may write

Φ(X) =
m

∑
j=1

pjUjXU∗j

for a probability vector (p1, . . . , pm) and unitary operators U1, . . . , Um ∈ U (X ). By Theorem 11.2
we have

S(Φ(ρ)‖Φ(σ)) = S

(
m

∑
j=1

pjUjρU∗j

∥∥∥∥∥ m

∑
j=1

pjUjσU∗j

)
≤

m

∑
j=1

pjS
(

UjρU∗j
∥∥∥UjσU∗j

)
.

The quantum relative entropy is clearly unitarily invariant, meaning

S(ρ‖σ) = S(UρU∗‖UσU∗)

for all U ∈ U (X ). This implies that

m

∑
j=1

pjS
(

UjρU∗j
∥∥∥UjσU∗j

)
= S(ρ‖σ),

and therefore completes the proof.

Notice that for any choice of positive definite density operators ρ0, ρ1, σ0, σ1 ∈ D (X ) we have

S(ρ0 ⊗ ρ1‖σ0 ⊗ σ1) = S(ρ0‖σ0) + S(ρ1‖σ1).

This fact follows easily from the identity log(P⊗Q) = log(P)⊗ 1+ 1⊗ log(Q), which is valid for
all P, Q ∈ Pd (X ). Combining this observation with the previous theorem yields the following
corollary.
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Corollary 11.7. Let X and Y be complex Euclidean spaces. For any choice of positive definite density
operators ρ, σ ∈ D (X ⊗Y) it holds that

S(TrY (ρ)‖TrY (σ)) ≤ S(ρ‖σ).

Proof. The completely depolarizing operation Ω ∈ C (Y) is mixed unitary, as we proved in Lec-
ture 6, which implies that 1L(X ) ⊗ Ω is mixed unitary as well. For every ξ ∈ D (X ⊗Y) we
have

(1L(X ) ⊗Ω)(ξ) = TrY (ξ)⊗
1Y
m

where m = dim(Y), and therefore

S (TrY (ρ)‖TrY (σ)) = S
(

TrY (ρ)⊗
1Y
m

∥∥∥∥ TrY (σ)⊗
1Y
m

)
= S

(
(1L(X ) ⊗Ω)(ρ) ‖ (1L(X ) ⊗Ω)(σ)

)
≤ S(ρ‖σ)

as required.

Note that the above theorem and corollary extend to arbitrary density operators given that
the same is true of Theorem 11.2. Making use of the Stinespring representation of quantum
channels, we obtain the following fact.

Corollary 11.8. Let X and Y be complex Euclidean spaces, let ρ, σ ∈ D (X ) be density operators, and let
Φ ∈ C (X ,Y) be a channel. It holds that

S(Φ(ρ)‖Φ(σ)) ≤ S(ρ‖σ).

Finally we are prepared to prove strong subadditivity, which turns out to be very easy now
that we have established Corollary 11.7.

Proof of Theorem 11.1. We need to prove that the inequality

S(ρXYZ) + S(ρZ) ≤ S(ρXZ) + S(ρYZ)

holds for all choices of ρ ∈ D (X ⊗Y ⊗Z). It suffices to prove this inequality for all positive def-
inite ρ, as it then follows for arbitrary density operators ρ by the continuity of the von Neumann
entropy.

Let n = dim(X ), and observe that the following two identities hold: the first is

S
(

ρXYZ
∥∥∥∥ 1X

n
⊗ ρYZ

)
= −S(ρXYZ) + S(ρYZ) + log(n),

and the second is

S
(

ρXZ
∥∥∥∥ 1X

n
⊗ ρZ

)
= −S(ρXZ) + S(ρZ) + log(n).

By Corollary 11.7 we have

S
(

ρXZ
∥∥∥∥ 1X

n
⊗ ρZ

)
≤ S

(
ρXYZ

∥∥∥∥ 1X
n
⊗ ρYZ

)
,

and therefore
S(ρXYZ) + S(ρZ) ≤ S(ρXZ) + S(ρYZ)

as required.
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To conclude the lecture, let us prove a statement about quantum mutual information that is
equivalent to strong subadditivity.

Corollary 11.9. Let X, Y, and Z be registers. For every state ρ ∈ D (X ⊗Y ⊗Z) of these registers we
have

S(X : Y) ≤ S(X : Y,Z).

Proof. By strong subadditivity we have

S(X,Y,Z) + S(Y) ≤ S(X,Y) + S(Y,Z),

which is equivalent to
S(Y)− S(X,Y) ≤ S(Y,Z)− S(X,Y,Z).

Adding S(X) to both sides gives

S(X) + S(Y)− S(X,Y) ≤ S(X) + S(Y,Z)− S(X,Y,Z).

This inequality is equivalent to
S(X : Y) ≤ S(X : Y,Z),

which establishes the claim.
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Lecture 12: Holevo’s theorem and Nayak’s bound

In this lecture we will prove Holevo’s theorem. This is a famous theorem in quantum information
theory, which is often informally summarized by a statement along the lines of this:

It is not possible to communicate more than n classical bits of information by the transmission
of n qubits alone.

Although this is an implication of Holevo’s theorem, the theorem itself says more, and is stated
in more precise terms that has no resemblance to the above statement. After stating and proving
Holevo’s theorem, we will discuss an interesting application of this theorem to the notion of a
quantum random access code. In particular, we will prove Nayak’s bound, which demonstrates that
quantum random access codes are surprisingly limited in power.

12.1 Holevo’s theorem

We will first discuss some of the concepts that Holevo’s theorem concerns, and then state and
prove the theorem itself. Although the theorem is difficult to prove from first principles, it
turns out that there is a very simple proof that makes use of the strong subadditivity of the
von Neumann entropy. Having proved strong subadditivity in the previous lecture, we will
naturally opt for this simple proof.

12.1.1 Mutual information

Recall that if A and B are classical registers, whose values are distributed in some particular way,
then the mutual information between A and B for this distribution is defined as

I(A : B) , H(A) + H(B)− H(A,B)
= H(A)− H(A|B)
= H(B)− H(B|A).

The usual interpretation of this quantity is that it describes how many bits of information about B
are, on average, revealed by the value of A; or equivalently, given that the quantity is symmetric
in A and B, how many bits of information about A are revealed by the value of B. Like all
quantities involving the Shannon entropy, this interpretation should be understood to really only
be meaningful in an asymptotic sense.

To illustrate the intuition behind this interpretation, let us suppose that A and B are dis-
tributed in some particular way, and Alice looks at the value of A. As Bob does not know what
value Alice sees, he has H(A) bits of uncertainty about her value. After sampling B, Bob’s av-
erage uncertainty about Alice’s value becomes H(A|B), which is always at most H(A) and is
less assuming that A and B are correlated. Therefore, by sampling B, Bob has decreased his
uncertainty of Alice’s value by I(A : B) bits.



In analogy to the above formula we have defined the quantum mutual information between two
registers X and Y as

S(X : Y) , S(X) + S(Y)− S(X,Y).

Although Holevo’s theorem does not directly concern the quantum mutual information, it is
nevertheless related and indirectly appears in the proof.

12.1.2 Accessible information

Imagine that Alice wants to communicate classical information to Bob. In particular, suppose
Alice wishes to communicate to Bob information about the value of a classical register A, whose
possible values are drawn from some set Σ and where p ∈ RΣ is the probability vector that
describes the distribution of these values:

p(a) = Pr[A = a]

for each a ∈ Σ.
The way that Alice chooses to do this is by preparing a quantum register X in some way,

depending on A, after which X is sent to Bob. Specifically, let us suppose that {ρa : a ∈ Σ} is a
collection of density operators in D (X ), and that Alice prepares X in the state ρa for whichever
a ∈ Σ is the value of A. The register X is sent to Bob, and Bob measures it to gain information
about the value of Alice’s register A.

One possible approach that Bob could take would be to measure X with respect to some
measurement µ : Σ → Pos (X ), chosen so as to maximize the probability that his measurement
result b agrees with Alice’s sample a (as was discussed in Lecture 8). We will not, however, make
the assumption that this is Bob’s approach, and in fact we will not even assume that Bob chooses
a measurement whose outcomes agree with Σ. Instead, we will consider a completely general
situation in which Bob chooses a measurement

µ : Γ→ Pos (X ) : b 7→ Pb

with which to measure the register X sent by Alice. Let us denote by B a classical register that
stores the result of this measurement, so that the pair of registers (A,B) is then distributed as
follows:

Pr[(A,B) = (a, b)] = p(a) 〈Pb, ρa〉

for each (a, b) ∈ Σ × Γ. The amount of information that Bob gains about A by means of this
process is given by the mutual information I(A : B).

The accessible information is the maximum value of I(A : B) that can be achieved by Bob, over
all possible measurements. More precisely, the accessible information of the ensemble

E = {(p(a), ρa) : a ∈ Σ}

is defined as the maximum of I(A : B) over all possible choices of the set Γ and the measurement
µ : Γ → Pos (X ), assuming that the pair (A,B) is distributed as described above for this choice
of a measurement. (Given that there is no upper bound on the size of Bob’s outcome set Γ, it is
not obvious that the accessible information of a given ensemble E is always achievable for some
fixed choice of a measurement µ : Γ → Pos (X ). It turns out, however, that there is always an
achievable maximum value for I(A : B) that Bob reaches when his set of outcomes Γ has size at
most dim(X )2.) We will write Iacc(E) to denote the accessible information of the ensemble E .
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12.1.3 The Holevo quantity

The last quantity that we need to discuss before stating and proving Holevo’s theorem is the
Holevo χ-quantity. Let us consider again an ensemble E = {(p(a), ρa) : a ∈ Σ}, where each ρa is
a density operator on X and p ∈ RΣ is a probability vector. For such an ensemble we define the
Holevo χ-quantity of E as

χ(E) , S

(
∑
a∈Σ

p(a)ρa

)
− ∑

a∈Σ
p(a)S(ρa).

Notice that the quantity χ(E) is always nonnegative, which follows from the concavity of the
von Neumann entropy.

One way to think about this quantity is as follows. Consider the situation above where Alice
has prepared the register X depending on the value of A, and Bob has received (but not yet
measured) the register X. From Bob’s point of view, the state of X is therefore

ρ = ∑
a∈Σ

p(a)ρa.

If, however, Bob were to learn that the value of A is a ∈ Σ, he would then describe the state of X
as ρa. The quantity χ(E) therefore represents the average decrease in the von Neumann entropy
of X that Bob would expect from learning the value of A.

Another way to view the quantity χ(E) is to consider the state of the pair (A,X) in the
situation just considered, which is

ξ = ∑
a∈Σ

p(a)Ea,a ⊗ ρa.

We have

S (A,X) = H(p) + ∑
a∈Σ

p(a)S(ρa),

S (A) = H(p),

S (X) = S

(
∑
a∈Σ

p(a)ρa

)
,

and therefore χ(E) = S(A) + S(X)− S(A,X) = S(A : X).

12.1.4 Statement and proof of Holevo’s theorem

Now we are prepared to state and prove Holevo’s theorem. The formal statement of the theorem
follows.

Theorem 12.1 (Holevo’s theorem). Let E = {(p(a), ρa) : a ∈ Σ} be an ensemble of density operators
over some complex Euclidean space X . It holds that Iacc(E) ≤ χ(E).

Proof. Suppose Γ is a finite, nonempty set and µ : Γ→ Pos (X ) : b 7→ Pb is a measurement on X .
Let A = CΣ, B = CΓ, and let us regard µ as a channel of the form Φ ∈ C (X ,B) defined as

Φ(X) = ∑
b∈Γ
〈Pb, X〉 Eb,b
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for each X ∈ L (X ). Like every channel, there exists a Stinespring representation for Φ:

Φ(X) = TrZ (VXV∗)

for some choice of a complex Euclidean space Z and a linear isometry V ∈ U (X ,B ⊗Z).
Now define two density operators, σ ∈ D (A⊗X ) and ξ ∈ D (A⊗B ⊗Z), as follows:

σ = ∑
a∈Σ

p(a)Ea,a ⊗ ρa and ξ = (1A ⊗V)σ(1A ⊗V)∗.

Given that V is an isometry, the following equalities hold:

S(ξA) = S(σA) = H(p)

S(ξABZ) = S(σAX) = H(p) + ∑
a∈Σ

p(a)S(ρa)

S(ξBZ) = S(σX) = S

(
∑
a∈Σ

p(a)ρa

)
,

and therefore, for the state ξ ∈ D (A⊗B ⊗Z), we have

S(A : B,Z) = S(A) + S(B,Z)− S(A,B,Z) = S

(
∑
a∈Σ

p(a)ρa

)
− ∑

a∈Σ
p(a)S(ρa) = χ(E).

By the strong subadditivity of the von Neumann entropy, we have

S(A : B) ≤ S(A : B,Z) = χ(E).

Noting that the state ξAB ∈ D (A⊗B) takes the form

ξ = ∑
a∈Σ

∑
b∈Γ

p(a) 〈Pb, ρa〉 Ea,a ⊗ Eb,b,

we see that the quantity S(A : B) is equal to the accessible information Iacc(E) for an optimally
chosen measurement µ : Γ→ Pos (X ). It follows that Iacc(E) ≤ χ(E) as required.

As discussed at the beginning of the lecture, this theorem implies that Alice can communicate
no more than n classical bits of information to Bob by sending n qubits alone. If the register X
comprises n qubits, and therefore X has dimension 2n, then for any ensemble

E = {(p(a), ρa) : a ∈ Σ}

of density operators on X we have

χ(E) ≤ S

(
∑
a∈Σ

p(a)ρa

)
≤ n.

This means that for any choice of the register A, the ensemble E , and the measurement that
determines the value of a classical register B, we must have I(A : B) ≤ n. In other words,
Bob can learn no more than n bits of information by means of the process he and Alice have
performed.

116



12.2 Nayak’s bound

We will now consider a related, but nevertheless different setting from the one that Holevo’s
theorem concerns. Suppose now that Alice has m bits, and she wants to encode them into fewer
than n qubits in such a way that Bob can recover not the entire string of bits, but rather any single
bit (or small number of bits) of his choice. Given that Bob will only learn a very small amount
of information by means of this process, the possibility that Alice could do this does not violate
Holevo’s theorem in any obvious way.

This idea has been described as a “quantum phone book.” Imagine a very compact phone
book implemented using quantum information. The user measures the qubits forming the phone
book using a measurement that is unique to the individual whose number is being sought. The
user’s measurement destroys the phone book, so only a small number of digits of information are
effectively transmitted by sending the phone book. Perhaps it is not unreasonable to hope that
such a phone book containing 100,000 numbers could be constructed using, say, 1,000 qubits?

Here is an example showing that something nontrivial along these lines can be realized.
Suppose Alice wants to encode 2 bits a, b ∈ {0, 1} into one qubit so that when she sends this
qubit to Bob, he can pick a two-outcome measurement giving him either a or b with reasonable
probability. Define

|ψ(θ)〉 = cos(θ) |0〉+ sin(θ) |1〉
for θ ∈ [0, 2π]. Alice encodes ab as follows:

00 → |ψ(π/8)〉
10 → |ψ(3π/8)〉
11 → |ψ(5π/8)〉
01 → |ψ(7π/8)〉

Alice sends the qubit to Bob. If Bob wants to decode a, be measures in the {|0〉 , |1〉} basis, and
if he wants to decode b he measures in the {|+〉 , |−〉} basis (where |+〉 = (|0〉+ |1〉)/

√
2 and

|−〉 = (|0〉 − |1〉)/
√

2). A simple calculation shows that Bob will correctly decode the bit he has
chosen with probability cos2(π/8) ≈ .85. There does not exist an analogous classical scheme that
allow Bob to do better than randomly guessing for at least one of his two possible choices.

12.2.1 Definition of quantum random access encodings

In more generality, we define a quantum random access encoding according to the definition that
follows. Here, and for the remainder of the lecture, we let Σ = {0, 1}.

Definition 12.2. Let m and n be positive integers, and let p ∈ [0, 1]. An m
p7→ n quantum random

access encoding is a function

R : Σm → D
(

CΣn
)

: a1 · · · am 7→ ρa1···am

such that the following holds. For each j ∈ {1, . . . , m} there exists a measurement{
Pj

0, Pj
1

}
⊂ Pos

(
CΣn

)
such that 〈

Pj
aj , ρa1···am

〉
≥ p

for every j ∈ {1, . . . , m} and every choice of a1 · · · am ∈ Σm.
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For example, the above example is a 2 .857→ 1 quantum random access encoding.

12.2.2 Fano’s inequality

In order to determine whether m
p7→ n quantum random access codes exist for various choices

of the parameters n, m, and p, we will need a result from classical information theory known as
Fano’s inequality. When considering this result, recall that the binary entropy function is defined
as

H(λ) = −λ log(λ)− (1− λ) log(1− λ)

for λ ∈ [0, 1].

Theorem 12.3 (Fano’s inequality). Let A and B be classical registers taking values in some finite set Γ
and let q = Pr[A 6= B]. It holds that

H(A|B) ≤ H(q) + q log(|Γ| − 1).

Proof. Define a new register C whose value is determined by A and B as follows:

C =

{
1 if A 6= B
0 if A = B.

Let us first note that
H(A|B) = H(C|B) + H(A|B,C)− H(C|A,B).

This holds for any choice of registers as a result of the following equations:

H(A|B) = H(A,B)− H(B),
H(C|B) = H(B,C)− H(B),

H(A|B,C) = H(A,B,C)− H(B,C),
H(C|A,B) = H(A,B,C)− H(A,B).

Next, note that
H(C|B) ≤ H(C) = H(q).

Finally, we have H(C|A,B) = 0 because C is determined by A and B. So, at this point we conclude

H(A|B) ≤ H(q) + H(A|B,C).

It remains to put an upper bound on H(A|B,C). We have

H(A|B,C) = Pr[C = 0]H(A|B,C = 0) + Pr[C = 1]H(A|B,C = 1).

We also have
H(A|B,C = 0) = 0,

because C = 0 implies A = B, and

H(A|B,C = 1) ≤ log(|Γ| − 1)

because C = 1 implies that A 6= B, so the largest the uncertainty of A given B = b can be is
log(|Γ| − 1), which is the case when A is uniform over all elements of Γ besides b. Thus

H(A|B) ≤ H(q) + q log(|Γ| − 1)

as required.
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The following special case of Fano’s inequality, where Γ = {0, 1} and A is uniformly dis-
tributed, will be useful.

Corollary 12.4. Let A be a uniformly distributed Boolean register and let B be any Boolean register. For
q = Pr(A = B) we have I(A : B) ≥ 1− H(q).

12.2.3 Statement and proof of Nayak’s bound

We are now ready to state Nayak’s bound, which implies that the quest for a compact quantum
phone book was doomed to fail: any m

p7→ n quantum random access code requires that n and m
are linearly related, with the constant of proportionality tending to 1 as p approaches 1.

Theorem 12.5 (Nayak’s bound). Let n and m be positive integers and let p ∈ [1/2, 1]. If there exists a
m

p7→ n quantum random access encoding, then n ≥ (1− H(p))m.

To prove this theorem, we will first require the following lemma, which is a consequence of
Holevo’s theorem and Fano’s inequality.

Lemma 12.6. Suppose ρ0, ρ1 ∈ D (X ) are density operators, {Q0, Q1} ⊆ Pos (X ) is a measurement,
and q ∈ [1/2, 1]. If it is the case that

〈Qb, ρb〉 ≥ q

for b ∈ Σ, then

S
(

ρ0 + ρ1

2

)
− S(ρ0) + S(ρ1)

2
≥ 1− H(q)

Proof. Let A and B be classical Boolean registers, let p ∈ RΣ be the uniform probability vector
(meaning p(0) = p(1) = 1/2), and assume that

Pr[(A,B) = (a, b)] = p(a) 〈Qb, ρa〉

for a, b ∈ Σ. By Holevo’s theorem we have

I(A : B) ≤ S
(

ρ0 + ρ1

2

)
− S(ρ0) + S(ρ1)

2
,

and by Fano’s inequality we have

I(A : B) ≥ 1− H(Pr[A = B])) ≥ 1− H(q),

from which the lemma follows.

Proof of Theorem 12.5. Suppose we have some m
p7→ n quantum random access encoding

R : a1 · · · am 7→ ρa1···am .

For 0 ≤ k ≤ m− 1 let

ρa1···ak =
1

2m−k ∑
ak+1···am∈Σm−k

ρa1···am ,

and note that
ρa1···ak =

1
2
(ρa1···ak0 + ρa1···ak1).
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By the assumption that R is a random access encoding, we have that there exists a measurement{
Pk

0 , Pk
1

}
, for 1 ≤ k ≤ m, that satisfies 〈

Pk
b , ρa1···ak−1b

〉
≥ p

for each b ∈ Σ. Thus, by Lemma 12.6,

S(ρa1···ak−1) ≥
1
2
(S(ρa1···ak−10) + S(ρa1···ak−11)) + (1− H(p))

for 1 ≤ k ≤ m and all choices of a1 · · · ak−1. By applying this inequality repeatedly, we conclude
that

m(1− H(p)) ≤ S(ρ) ≤ n,

which completes the proof.

It can be shown that there exists a classical random access encoding m
p7→ n for any p > 1/2

provided that n ∈ (1−H(p))m+O(log m). Thus, asymptotically speaking, there is no significant
advantage to be gained from quantum random access codes over classical random access codes.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 13: Majorization for real vectors and Hermitian
operators

This lecture discusses the notion of majorization and some of its connections to quantum infor-
mation. The main application of majorization that we will see in this course will come in a later
lecture when we study Nielsen’s theorem, which precisely characterizes when it is possible for
two parties to transform one pure state into another by means of local operations and classical
communication. There are other interesting applications of the notion, however, and a few of
them will be discussed in this lecture.

13.1 Doubly stochastic operators

Let Σ be a finite, nonempty set, and for the sake of this discussion let us focus on the real vector
space RΣ. An operator A ∈ L

(
RΣ) acting on this vector space is said to be stochastic if

1. A(a, b) ≥ 0 for each (a, b) ∈ Σ× Σ, and

2. ∑a∈Σ A(a, b) = 1 for each b ∈ Σ.

This condition is equivalent to requiring that Aeb is a probability vector for each b ∈ Σ, or
equivalently that A maps probability vectors to probability vectors.

An operator A ∈ L
(
RΣ) is doubly stochastic if it is the case that both A and AT (or, equivalently,

A and A∗) are stochastic. In other words, when viewed as a matrix, every row and every column
of A forms a probability vector:

1. A(a, b) ≥ 0 for each (a, b) ∈ Σ× Σ,

2. ∑a∈Σ A(a, b) = 1 for each b ∈ Σ, and

3. ∑b∈Σ A(a, b) = 1 for each a ∈ Σ.

Next, let us write Sym(Σ) to denote the set of one-to-one and onto functions of the form
π : Σ → Σ (or, in other words, the permutations of Σ). For each π ∈ Sym(Σ) we define an
operator Vπ ∈ L

(
RΣ) as

Vπ(a, b) =
{

1 if a = π(b)
0 otherwise

for every (a, b) ∈ Σ× Σ. Equivalently, Vπ is the operator defined by Vπeb = eπ(b) for each b ∈ Σ.
Such an operator is called a permutation operator.

It is clear that every permutation operator is doubly stochastic, and that the set of doubly
stochastic operators is a convex set. The following famous theorem establishes that the doubly
stochastic operators are, in fact, given by the convex hull of the permutation operators.



Theorem 13.1 (The Birkhoff–von Neumann theorem). Let Σ be a finite, nonempty set and let A ∈
L
(
RΣ) be a linear operator on RΣ. It holds that A is a doubly stochastic operator if and only if there exists

a probability vector p ∈ RSym(Σ) such that

A = ∑
π∈Sym(Σ)

p(π)Vπ.

Proof. The Krein-Milman theorem states that every compact, convex set is equal to the convex
hull of its extreme points. As the set of doubly stochastic operators is compact and convex, the
theorem will therefore follow if we prove that every extreme point in this set is a permutation
operator.

To this end, let us consider any doubly stochastic operator A that is not a permutation opera-
tor. Our goal is to prove that A is not an extreme point in the set of doubly stochastic operators.
Given that A is doubly stochastic but not a permutation operator, there must exist at least one
pair (a1, b1) ∈ Σ× Σ such that A(a1, b1) ∈ (0, 1). As ∑b A(a1, b) = 1 and A(a1, b1) ∈ (0, 1), we
conclude that there must exist b2 6= b1 such that A(a1, b2) ∈ (0, 1). Applying similar reasoning,
but to the first index rather than the second, there must exist a2 6= a1 such that A(a2, b2) ∈ (0, 1).
This argument may repeated, alternating between the first and second indices (i.e., between rows
and columns), until eventually a closed loop of even length is formed that alternates between hor-
izontal and vertical moves among the entries of A. (Of course a loop must eventually be formed,
given that there are only finitely many entries in the matrix A, and an odd length loop can be
avoided by an appropriate choice for the entry that closes the loop.) This process is illustrated in
Figure 13.1, where the loop is indicated by the dotted lines.

(a5, b5) (a2, b3) (a2, b2)

(a3, b3) (a3, b4)

(a1, b1) (a1, b2)

(a4, b5) (a4, b4)

1

2

3

4

5

6

7

8

9





Figure 13.1: An example of a closed loop consisting of entries of A that are contained in the
interval (0, 1).

Now, let ε ∈ (0, 1) be equal to the minimum value over the entries in the closed loop, and
define B to be the operator obtained by setting each entry in the closed loop to be ±ε, alternating
sign along the entries as suggested in Figure 13.2. All of the other entries in B are set to 0.
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−ε ε

−ε ε

ε −ε





Figure 13.2: The operator B. All entries besides those indicated are 0.

Finally, consider the operators A + B and A− B. As A is doubly stochastic and the row and
column sums of B are all 0, we have that both A + B and A− B also have row and column sums
equal to 1. As ε was chosen to be no larger than the smallest entry within the chosen closed loop,
none of the entries of A + B or A− B are negative, and therefore A− B and A + B are doubly
stochastic. As B is non-zero, we have that A + B and A− B are distinct. Thus, we have that

A =
1
2
(A + B) +

1
2
(A− B)

is a proper convex combination of doubly stochastic operators, and is therefore not an extreme
point in the set of doubly stochastic operators. This is what we needed to prove, and so we are
done.

13.2 Majorization for real vectors

We will now define what it means for one real vector to majorize another, and we will discuss two
alternate characterizations of this notion. As usual we take Σ to be a finite, nonempty set, and
as in the previous section we will focus on the real vector space RΣ. The definition is as follows:
for u, v ∈ RΣ, we say that u majorizes v if there exists a doubly stochastic operator A such that
v = Au. We denote this relation as v ≺ u (or u � v if it is convenient to switch the ordering).

By the Birkhoff–von Neumann theorem, this definition can intuitively be interpreted as saying
that v ≺ u if and only if there is a way to “randomly shuffle” the entries of u to obtain v, where
by “randomly shuffle” it is meant that one averages in some way a collection of vectors that is
obtained by permuting the entries of u to obtain v. Informally speaking, the relation v ≺ u means
that u is “more ordered” than v, because we can get from u to v by randomizing the order of the
vector indices.

An alternate characterization of majorization (which is in fact more frequently taken as the
definition) is based on a condition on various sums of the entries of the vectors involved. To state
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the condition more precisely, let us introduce the following notation. For every vector u ∈ RΣ

and for n = |Σ|, we write
s(u) = (s1(u), . . . , sn(u))

to denote the vector obtained by sorting the entries of u from largest to smallest. In other words,
we have

{u(a) : a ∈ Σ} = {s1(u), . . . , sn(u)},
where the equality considers the two sides of the equation to be multisets, and moreover

s1(u) ≥ · · · ≥ sn(u).

The characterization is given by the equivalence of the first and second items in the following
theorem. (The equivalence of the third item in the theorem gives a third characterization that is
closely related to the definition, and will turn out to be useful later in the lecture.)

Theorem 13.2. Let Σ be a finite, non-empty set, and let u, v ∈ RΣ. The following are equivalent.

1. v ≺ u.

2. For n = |Σ| and for 1 ≤ k < n we have

k

∑
j=1

sj(v) ≤
k

∑
j=1

sj(u), (13.1)

and moreover
n

∑
j=1

sj(v) =
n

∑
j=1

sj(u). (13.2)

3. There exists a unitary operator U ∈ L
(
CΣ) such that v = Au, where A ∈ L

(
RΣ) is the operator

defined by A(a, b) = |U(a, b)|2 for all (a, b) ∈ Σ× Σ.

Proof. First let us prove that item 1 implies item 2. Assume that A is a doubly stochastic operator
satisfying v = Au. It is clear that the condition (13.2) holds, as doubly stochastic operators
preserve the sum of the entries in any vector, and so it remains to prove the condition (13.1) for
1 ≤ k < n.

To do this, let us first consider the effect of an arbitrary doubly stochastic operator B ∈ L
(
RΣ)

on a vector of the form
eΓ = ∑

a∈Γ
ea

where Γ ⊆ Σ. The vector eΓ is the characteristic vector of the subset Γ ⊆ Σ. The resulting vector
BeΓ is a convex combination of permutations of eΓ, or in other words is a convex combination
of characteristic vectors of sets having size |Γ|. The sum of the entries of BeΓ is therefore |Γ|,
and each entry must lie in the interval [0, 1]. For any set ∆ ⊆ Σ with |∆| = |Γ|, the vector
e∆ − BeΓ therefore has entries summing to 0, and satisfies (e∆ − BeΓ) (a) ≥ 0 for every a ∈ ∆ and
(e∆ − BeΓ) (a) ≤ 0 for every a 6∈ ∆.

Now, for each value 1 ≤ k < n, define ∆k, Γk ⊆ Σ to be the subsets indexing the k largest
entries of u and v, respectively. In other words,

k

∑
j=1

sj(u) = ∑
a∈∆k

u(a) = 〈e∆k , u〉 and
k

∑
j=1

sj(v) = ∑
a∈Γk

v(a) = 〈eΓk , v〉 .
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We now see that

k

∑
i=1

si(u)−
k

∑
i=1

si(v) = 〈e∆k , u〉 − 〈eΓk , v〉 = 〈e∆k , u〉 − 〈eΓk , Au〉 = 〈e∆k − A∗eΓk , u〉 .

This quantity in turn may be expressed as

〈e∆k − A∗eΓk , u〉 = ∑
a∈∆k

αa u(a)− ∑
a 6∈∆k

αa u(a),

where

αa =

{
(e∆k − A∗eΓk)(a) if a ∈ ∆k

−(e∆k − A∗eΓk)(a) if a 6∈ ∆k.

As argued above, we have αa ≥ 0 for each a ∈ Σ and ∑a∈∆k
αa = ∑a 6∈∆k

αa. By the choice of ∆k we
have u(a) ≥ u(b) for all choices of a ∈ ∆k and b 6∈ ∆k, and therefore

∑
a∈∆k

αa u(a) ≥ ∑
a 6∈∆k

αa u(a).

This is equivalent to (13.1) as required.
Next we will prove item 2 implies item 3, by induction on |Σ|. The case |Σ| = 1 is trivial, so let

us consider the case that |Σ| ≥ 2. Assume for simplicity that Σ = {1, . . . , n}, that u = (u1, . . . , un)
for u1 ≥ · · · ≥ un, and that v = (v1, . . . , vn) for v1 ≥ · · · ≥ vn. This causes no loss of generality
because the majorization relationship is invariant under renaming and independently reordering
the indices of the vectors under consideration. Let us also identify the operators U and A we
wish to construct with n× n matrices having entries denoted Ui,j and Ai,j.

Now, assuming item 2 holds, we must have that u1 ≥ v1 ≥ uk for some choice of k ∈
{1, . . . , n}. Take k to be minimal among all such indices. If it is the case that k = 1 then u1 = v1;
and by setting x = (u2, . . . , xn) and y = (v2, . . . , vn) we conclude from the induction hypothesis
that there exists an (n − 1) × (n − 1) unitary matrix X so that the doubly stochastic matrix B
defined by Bi,j =

∣∣Xi,j
∣∣2 satisfies y = Bx. By taking U to be the n× n unitary matrix

U =

(
1 0
0 X

)
and letting A be defined by Ai,j =

∣∣Ui,j
∣∣2, we have that v = Au as is required.

The more difficult case is where k ≥ 2. Let λ ∈ [0, 1] satisfy v1 = λu1 + (1− λ)uk, and define
W to be the n× n unitary matrix determined by the following equations:

We1 =
√

λe1 −
√

1− λek

Wek =
√

1− λe1 +
√

λek

Wej = ej (for j 6∈ {1, k}).

The action of W on the span of {e1, ek} is described by this matrix:( √
λ

√
1− λ

−
√

1− λ
√

λ

)
.
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Notice that the n× n doubly stochastic matrix D given by Di,j =
∣∣Wi,j

∣∣2 may be written

D = λ1 + (1− λ)V(1 k),

where (1 k) ∈ Sn denotes the permutation that swaps 1 and k, leaving every other element of
{1, . . . , n} fixed.

Next, define (n− 1)-dimensional vectors

x = (u2, . . . , uk−1, λuk + (1− λ)u1, uk+1, . . . , un)

y = (v2, . . . , vn).

We will index these vectors as x = (x2, . . . , xn) and y = (y2, . . . , yn) for clarity. For 1 ≤ l ≤ k− 1
we clearly have

l

∑
j=2

yj =
l

∑
j=2

vj ≤
l

∑
j=2

uj =
l

∑
j=2

xj

given that vn ≤ · · · ≤ v1 ≤ uk−1 ≤ · · · ≤ u1. For k ≤ l ≤ n, we have

l

∑
j=2

xj =
l

∑
j=1

ui − (λu1 + (1− λ)uk) ≥
l

∑
j=2

vj.

Thus, we may again apply the induction hypothesis to obtain an (n− 1)× (n− 1) unitary matrix
X such that, for B the doubly stochastic matrix defined by Bi,j =

∣∣Xi,j
∣∣2, we have y = Bx.

Now define

U =

(
1 0
0 X

)
W.

This is a unitary matrix, and to complete the proof it suffices to prove that the doubly stochastic
matrix A defined by Ai,j =

∣∣Ui,j
∣∣2 satisfies v = Au. We have the following entries of A:

A1,1 = |U1,1 |2 = λ, Ai,1 = (1− λ) |Xi−1,k−1 |2 = (1− λ)Bi−1,k−1,

A1,k = |U1,k |2 = 1− λ, Ai,k = λ |Xi−1,k−1 |2 = λBi−1,k−1,

A1,j = 0, Ai,j =
∣∣Xi−1,j−1

∣∣2 = Bi−1,j−1,

Where i and j range over all choices of indices with i, j 6∈ {1, k}. From these equations we see
that

A =

(
1 0
0 B

)
D,

which satisfies v = Au as required.
The final step in the proof is to observe that item 3 implies item 1, which is trivial given that

the operator A determined by item 3 must be doubly stochastic.

13.3 Majorization for Hermitian operators

We will now define an analogous notion of majorization for Hermitian operators. For Hermitian
operators A, B ∈ Herm (X ) we say that A majorizes B, which we express as B ≺ A or A � B, if
there exists a mixed unitary channel Φ ∈ C (X ) such that

B = Φ(A).
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Inspiration for this definition partly comes from the Birkhoff–von Neumann theorem, along with
the intuitive idea that randomizing the entries of a real vector is analogous to randomizing the
choice of an orthonormal basis for a Hermitian operator.

The following theorem gives an alternate characterization of this relationship that also con-
nects it with majorization for real vectors.

Theorem 13.3. Let X be a complex Euclidean space and let A, B ∈ Herm (X ). It holds that B ≺ A if
and only if λ(B) ≺ λ(A).

Proof. Let n = dim(X ). By the Spectral theorem, we may write

B =
n

∑
j=1

λj(B)uju∗j and A =
n

∑
j=1

λj(A)vjv∗j

for orthonormal bases {u1, . . . , un} and {v1, . . . , vn} of X .
Let us first assume that λ(B) ≺ λ(A). This implies there exist a probability vector p ∈ RSn

such that
λj(B) = ∑

π∈Sn

p(π)λπ(j)(A)

for 1 ≤ j ≤ n. For each permutation π ∈ Sn, define a unitary operator

Uπ =
n

∑
j=1

ujv∗π(j).

It holds that

∑
π∈Sn

p(π)Uπ AU∗π =
n

∑
j=1

∑
π∈Sn

p(π)λπ(j)(A) uju∗j = B.

Suppose on the other hand that there exists a probability vector (p1, . . . , pm) and unitary
operators U1, . . . , Um so that

B =
m

∑
i=1

piUi AU∗i .

By considering the spectral decompositions above, we have

λj(B) =
m

∑
i=1

piu∗j Ui AU∗i uj =
m

∑
i=1

n

∑
k=1

pi

∣∣∣u∗j Uivk

∣∣∣2 λk(A).

Define an n× n matrix D as

Dj,k =
m

∑
i=1

pi

∣∣∣u∗j Uivk

∣∣∣2 .

It holds that D is doubly stochastic and satisfies Dλ(A) = λ(B). Therefore λ(B) ≺ λ(A) as
required.

13.4 Applications

Finally, we will note a few applications of the facts we have proved about majorization.
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13.4.1 Entropy, norms, and majorization

We begin with two simple facts, one relating entropy with majorization, and the other relating
Schatten p-norms to majorization.

Proposition 13.4. Suppose that ρ, ξ ∈ D (X ) satisfy ρ � ξ. It holds that S(ρ) ≤ S(ξ).

Proof. The proposition follows from fact that for every density operator ρ and every mixed uni-
tary operation Φ, we have S(ρ) ≤ S(Φ(ρ)) by the concavity of the von Neumann entropy.

Note that we could equally well have first observed that H(p) ≤ H(q) for probability vectors p
and q for which p � q, and then applied Theorem 13.3.

Proposition 13.5. Suppose that A, B ∈ Herm (X ) satisfy A � B. For every p ∈ [1, ∞], it holds that
‖A‖p ≥ ‖B‖p.

Proof. As A � B, there exists a mixed unitary operator

Φ(X) = ∑
a∈Γ

q(a)UaXU∗a

such that B = Φ(A). It holds that

‖B‖p = ‖Φ(A)‖p =

∥∥∥∥∥∑
a∈Γ

q(a)Ua AU∗a

∥∥∥∥∥
p

≤ ∑
a∈Γ

q(a) ‖Ua AU∗a ‖p = ∑
a∈Γ

q(a) ‖A‖p = ‖A‖p ,

where the inequality is by the triangle inequality, and the third equality holds by the unitary
invariance of Schatten p-norms.

13.4.2 A theorem of Schur relating diagonal entries to eigenvalues

The second application of majorization concerns a relationship between the diagonal entries of
an operator and its eigenvalues, which is attributed to Issai Schur. First, a simple lemma relating
to dephasing channels (discussed in Lecture 6) is required.

Lemma 13.6. Let X be a complex Euclidean space and let {xa : a ∈ Σ} be any orthonormal basis of X .
The channel

Φ(A) = ∑
a∈Σ

(x∗a Axa) xax∗a

is mixed unitary.

Proof. We will assume that Σ = Zn for some n ≥ 1. This assumption causes no loss of generality,
because neither the ordering of elements in Σ nor their specific names have any bearing on the
statement of the lemma.

First consider the standard basis {ea : a ∈ Zn}, and define a mixed unitary channel

∆(A) =
1
n ∑

a∈Zn

Za A(Za)∗,

as was done in Lecture 6. We have

∆(Eb,c) =
1
n ∑

a∈Zn

ωa(b−c)Eb,c =

{
Eb,b if b = c
0 if b 6= c,
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and therefore
∆(A) = ∑

a∈Zn

(e∗a Aea)Ea,a.

For U ∈ U (X ) defined as
U = ∑

a∈Zn

xae∗a

it follows that
1
n ∑

a∈Zn

(UZaU∗) A (UZaU∗)∗ = U∆(U∗AU)U∗ = Φ(A).

The mapping Φ is therefore mixed unitary as required.

Theorem 13.7 (Schur). Let X be a complex Euclidean space, let A ∈ Herm (X ) be a Hermitian operator,
and let {xa : a ∈ Σ} be an orthonormal basis of X . For v ∈ RΣ defined as v(a) = x∗a Axa for each a ∈ Σ,
it holds that v ≺ λ(A).

Proof. Immediate from Lemma 13.6 and Theorem 13.3.

Notice that this theorem implies that the probability distribution arising from any complete pro-
jective measurement of a density operator ρ must have Shannon entropy at least S(ρ).

It is natural to ask if the converse of Theorem 13.7 holds. That is, given a Hermitian operator
A ∈ Herm (X ), for X = CΣ, and a vector v ∈ RΣ such that λ(A) � v, does there necessarily exist
an orthonormal basis {xa : a ∈ Σ} of X such that v(a) = 〈xax∗a , A〉 for each a ∈ Σ? The answer
is “yes,” as the following theorem states.

Theorem 13.8. Suppose Σ is a finite, nonempty set, let X = CΣ, and suppose that A ∈ Herm (X ) and
v ∈ RΣ satisfy v ≺ λ(A). There exists an orthonormal basis {xa : a ∈ Σ} of X such that v(a) = x∗a Axa
for each a ∈ Σ.

Proof. Let
A = ∑

a∈Σ
w(a)uau∗a

be a spectral decomposition of A. The assumptions of the theorem imply, by Theorem 13.2, that
there exists a unitary operator U such that, for D defined by

D(a, b) = |U(a, b)|2

for (a, b) ∈ Σ× Σ, we have v = Dw.
Define

V = ∑
a∈Σ

eau∗a

and let xa = V∗U∗Vua for each a ∈ Σ. It holds that

x∗a Axa = ∑
b
|U(a, b)|2 w(b) = (Dw)(a) = v(a),

which proves the theorem.

Theorems 13.7 and 13.8 are sometimes together referred to as the Schur-Horn theorem.
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13.4.3 Density operators consistent with a given probability vector

Finally, we will prove a characterization of precisely which probability vectors are consistent with
a given density operator, meaning that the density operator could have arisen from a random
choice of pure states according to the distribution described by the probability vector.

Theorem 13.9. Let X = CΣ for Σ a finite, nonempty set, and suppose that a density operator ρ ∈ D (X )
and a probability vector p ∈ RΣ are given. There exist (not necessarily orthogonal) unit vectors {ua : a ∈
Σ} in X such that

ρ = ∑
a∈Σ

p(a)uau∗a

if and only if p ≺ λ(ρ).

Proof. Assume first that p ≺ λ(ρ). By Theorem 13.8 we have that there exists an orthonormal
basis {xa : a ∈ Σ} of X with the property that 〈xax∗a , ρ〉 = p(a) for each a ∈ Σ. Let ya =

√
ρxa

for each a ∈ Σ. It holds that

‖ya‖2 = 〈√ρxa,
√

ρxa〉 = x∗a ρxa = p(a).

Define

ua =

{ ya
‖ya‖ if ya 6= 0

z if ya = 0,

where z ∈ X is an arbitrary unit vector. We have

∑
a∈Σ

p(a)uau∗a = ∑
a∈Σ

yay∗a = ∑
a∈Σ

√
ρxax∗a

√
ρ = ρ

as required.
Suppose, on the other hand, that

ρ = ∑
a∈Σ

p(a)uau∗a

for some collection {ua : a ∈ Σ} of unit vectors. Define A ∈ L (X ) as

A = ∑
a∈Σ

√
p(a)uae∗a ,

and note that AA∗ = ρ. It holds that

A∗A = ∑
a,b∈Σ

√
p(a)p(b) 〈ua, ub〉 Ea,b,

so e∗a A∗Aea = p(a). By Theorem 13.7 this implies λ(A∗A) � p. As λ(A∗A) = λ(AA∗), the
theorem is proved.
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Lecture 14: Separable operators

For the next several lectures we will be discussing various aspects and properties of entanglement.
Mathematically speaking, we define entanglement in terms of what it is not, rather than what it
is: we define the notion of a separable operator, and define that any density operator that is not
separable represents an entangled state.

14.1 Definition and basic properties of separable operators

Let X and Y be complex Euclidean spaces. A positive semidefinite operator P ∈ Pos (X ⊗Y) is
separable if and only if there exists a positive integer m and positive semidefinite operators

Q1, . . . , Qm ∈ Pos (X ) and R1, . . . , Rm ∈ Pos (Y)

such that

P =
m

∑
j=1

Qj ⊗ Rj. (14.1)

We will write Sep (X : Y) to denote the collection of all such operators.1 It is the case that
Sep (X : Y) is a convex cone, and it is not difficult to prove that Sep (X : Y) is properly contained
in Pos (X ⊗Y). (We will see that this is so later in the lecture.) Operators P ∈ Pos (X ⊗Y) that
are not contained in Sep (X : Y) are said to be entangled.

Let us also define
SepD (X : Y) = Sep (X : Y) ∩D (X ⊗Y)

to be the set of separable density operators acting on X ⊗Y . By thinking about spectral decom-
positions, one sees immediately that the set of separable density operators is equal to the convex
hull of the pure product density operators:

SepD (X : Y) = conv {xx∗ ⊗ yy∗ : x ∈ S (X ) , y ∈ S (Y)} .

Thus, every element ρ ∈ SepD (X : Y) may be expressed as

ρ =
m

∑
j=1

pj xjx∗j ⊗ yjy∗j (14.2)

for some choice of m ≥ 1, a probability vector p = (p1, . . . , pm), and unit vectors x1, . . . , xm ∈ X
and y1, . . . , ym ∈ Y .

A few words about the intuitive meaning of states in SepD (X : Y) follow. Suppose X and Y
are registers in a separable state ρ ∈ SepD (X : Y). It may be the case that X and Y are correlated,

1One may extend this definition to any number of spaces, defining (for instance) Sep (X1 : X2 : · · · : Xn) in the
natural way. Our focus, however, will be on bipartite entanglement rather than multipartite entanglement, and so we will
not consider this extension further.



given that ρ does not necessarily take the form of a product state ρ = σ⊗ ξ for σ ∈ D (X ) and
ξ ∈ D (Y). However, any correlations between X and Y are in some sense classical, because ρ is a
convex combination of product states. This places a strong limitation on the possible correlations
between X and Y that may exist, as compared to non-separable (or entangled) states. A simple
example is teleportation, discussed in Lecture 6: any attempt to substitute a separable state for
the types of states we used for teleportation is doomed to fail.

A simple application of Carathéodory’s Theorem establishes that for every separable state ρ ∈
SepD (X : Y), there exists an expression of the form (14.2) for some choice of m ≤ dim(X ⊗Y)2.
Notice that Sep (X : Y) is the cone generated by SepD (X : Y):

Sep (X : Y) = {λρ : λ ≥ 0, ρ ∈ SepD (X : Y)} .

The same bound m ≤ dim(X ⊗ Y)2 may therefore be taken for some expression (14.1) of any
P ∈ Sep (X : Y).

Next, let us note that SepD (X : Y) is a compact set. To see this, we first observe that the unit
spheres S (X ) and S (Y) are compact, and therefore so too is the Cartesian product S (X ) ×
S (Y). The function

f : X ×Y → L (X ⊗Y) : (x, y) 7→ xx∗ ⊗ yy∗

is continuous, and continuous functions map compact sets to compact sets, so the set

{xx∗ ⊗ yy∗ : x ∈ S (X ) , y ∈ S (Y)}

is compact as well. Finally, it is a basic fact from convex analysis that the convex hull of any
compact set is compact.

The set Sep (X ⊗Y) is of course not compact, given that it is not bounded. It is a closed,
convex cone, however, because it is the cone generated by a compact, convex set that does not
contain the origin.

14.2 The Woronowicz–Horodecki criterion

Next we will discuss a necessary and sufficient condition for a given positive semidefinite op-
erator to be separable. Although this condition, sometimes known as the Woronowicz–Horodecki
criterion, does not give us an efficiently computable method to determine whether or not an
operator is separable, it is useful nevertheless in an analytic sense.

The Woronowicz–Horodecki criterion is based on the fundamental fact from convex analysis
that says that closed convex sets are determined by the closed half-spaces that contain them.
Here is one version of this fact that is well-suited to our needs.

Fact. Let X be a complex Euclidean space and let A ⊂ Herm (X ) be a closed, convex cone. For
any choice of an operator B ∈ Herm (X ) with B 6∈ A, there exists an operator H ∈ Herm (X )
such that

1. 〈H, A〉 ≥ 0 for all A ∈ A, and

2. 〈H, B〉 < 0.

It should be noted that the particular statement above is only valid for closed convex cones, not
general closed convex sets. For a general closed, convex set, it may be necessary to replace 0 with
some other real scalar for each choice of B.
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Theorem 14.1 (Woronowicz–Horodecki criterion). Let X and Y be complex Euclidean spaces and let
P ∈ Pos (X ⊗Y). It holds that P ∈ Sep (X : Y) if and only if

(Φ⊗ 1L(Y))(P) ∈ Pos (Y ⊗ Y)

for every positive and unital mapping Φ ∈ T (X ,Y).

Proof. One direction of the proof is simple. If P ∈ Sep (X : Y), then we have

P =
m

∑
j=1

Qj ⊗ Rj

for some choice of Q1, . . . , Qm ∈ Pos (X ) and R1, . . . , Rm ∈ Pos (Y). Thus, for every positive
mapping Φ ∈ T (X ,Y) we have

(Φ⊗ 1L(Y))(P) =
m

∑
j=1

Φ(Qj)⊗ Rj ∈ Sep (Y : Y) ⊂ Pos (Y ⊗ Y) .

A similar fact holds for any choice of a positive mapping Ψ ∈ T (X ,W), forW being any complex
Euclidean space, taken in place of Φ, by similar reasoning.

Let us now assume that P ∈ Pos (X ⊗Y) is not separable. The fact stated above, there must
exist a Hermitian operator H ∈ Herm (X ⊗Y) such that:

1. 〈H, Q⊗ R〉 ≥ 0 for all Q ∈ Pos (X ) and R ∈ Pos (Y), and

2. 〈H, P〉 < 0.

Let Ψ ∈ T (Y ,X ) be the unique mapping for which J(Ψ) = H. For any Q ∈ Pos (X ) and
R ∈ Pos (Y) we therefore have

0 ≤ 〈H, Q⊗ R〉 =
〈
(Ψ⊗ 1L(Y)) (vec(1Y ) vec(1Y )∗) , Q⊗ R

〉
= 〈vec(1Y ) vec(1Y )∗, Ψ∗(Q)⊗ R〉 = vec(1Y )∗ (Ψ∗(Q)⊗ R) vec(1Y )

= Tr (Ψ∗(Q)RT) =
〈

R, Ψ∗(Q)
〉

.

From this we conclude that Ψ∗ is a positive mapping.
Suppose for the moment that we do not care about the unital condition on Φ that is required

by the statement of the theorem. We could then take Φ = Ψ∗ to complete the proof, because

vec(1Y )∗
(
(Ψ∗ ⊗ 1L(Y))(P)

)
vec(1Y ) =

〈
vec(1Y ) vec(1Y )∗,

(
Ψ∗ ⊗ 1L(Y)

)
(P)
〉

=
〈
(Ψ⊗ 1L(Y)) (vec(1Y ) vec(1Y )∗) , P

〉
= 〈H, P〉 < 0,

establishing that (Ψ∗ ⊗ 1L(Y))(P) is not positive semidefinite.
To obtain a mapping Φ that is unital, and satisfies the condition that (Φ⊗ 1L(Y))(P) is not

positive semidefinite, we will simply tweak Ψ∗ a bit. First, given that 〈H, P〉 < 0, we may choose
ε > 0 sufficiently small so that

〈H, P〉+ ε Tr(P) < 0.

Now define Ξ ∈ T (X ,Y) as
Ξ(X) = Ψ∗(X) + ε Tr(X)1Y

133



for all X ∈ L (X ), and let A = Ξ(1X ). Given that Ψ∗ is positive and ε is greater than zero, it
follows that A ∈ Pd (Y), and so we may define Φ ∈ T (X ,Y) as

Φ(X) = A−1/2Ξ(X)A−1/2

for every X ∈ L (X ).
It is clear that Φ is both positive and unital, and it remains to prove that (Φ⊗ 1L(Y))(P) is not

positive semidefinite. This may be verified as follows:〈
vec

(√
A
)

vec
(√

A
)∗

, (Φ⊗ 1L(Y))(P)
〉

=
〈

vec(1Y ) vec(1Y )∗, (Ξ⊗ 1L(Y))(P)
〉

=
〈
(Ξ∗ ⊗ 1L(Y)) (vec(1Y ) vec(1Y )∗) , P

〉
= 〈J (Ξ∗) , P〉
= 〈J(Ψ) + ε1Y⊗X , P〉
= 〈H, P〉+ ε Tr(P)
< 0.

It follows that (Φ⊗ 1L(Y))(P) is not positive semidefinite, and so the proof is complete.

This theorem allows us to easily prove that certain positive semidefinite operators are not
separable. For example, consider the operator

P =
1
n

vec(1X ) vec(1X )∗

for X = CΣ, |Σ| = n. We consider the transposition mapping T ∈ T (X ), which is positive and
unital. We have

(T ⊗ 1L(X ))(P) =
1
n ∑

a,b∈Σ
Eb,a ⊗ Ea,b =

1
n

W,

for W ∈ L (X ⊗X ) being the swap operator: W(u⊗ v) = v⊗ u for all u, v ∈ X . This operator is
not positive semidefinite (provided n ≥ 2), which is easily verified by noting that W has negative
eigenvalues. For instance,

W(ea ⊗ eb − eb ⊗ ea) = −(ea ⊗ eb − eb ⊗ ea)

for a 6= b. We therefore have that P is not separable by Theorem 14.1.

14.3 Separable ball around the identity

Finally, we will prove that there exists a small region around the identity operator 1X ⊗ 1Y where
every Hermitian operator is separable. This fact gives us an intuitive connection between noise
and entanglement, which is that entanglement cannot exist in the presence of too much noise.

We will need two facts, beyond those we have already proved, to establish this result. The
first is straightforward, and is as follows.
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Lemma 14.2. Let X and Y = CΣ be complex Euclidean spaces, and consider an operator A ∈ L (X ⊗Y)
given by

A = ∑
a,b∈Σ

Aa,b ⊗ Ea,b

for {Aa,b : a, b ∈ Σ} ⊂ L (X ). It holds that

‖A‖2 ≤ ∑
a,b∈Σ
‖Aa,b‖2 .

Proof. For each a ∈ Σ define
Ba = ∑

b∈Σ
Aa,b ⊗ Ea,b.

We have that

‖BaB∗a ‖ =
∥∥∥∥∥∑

b∈Σ
Aa,b A∗a,b ⊗ Ea,a

∥∥∥∥∥ ≤ ∑
b∈Σ

∥∥Aa,b A∗a,b
∥∥ = ∑

b∈Σ
‖Aa,b‖2 .

Now,
A = ∑

a∈Σ
Ba,

and given that B∗a Bb = 0 for a 6= b, we have that

A∗A = ∑
a∈Σ

B∗a Ba.

Therefore
‖A‖2 = ‖A∗A‖ ≤ ∑

a∈Σ
‖B∗a Ba‖ ≤ ∑

a,b∈Σ
‖Aa,b‖2

as claimed.

The second fact that we need is a theorem about positive unital mappings, which says that
they cannot increase the spectral norm of operators.

Theorem 14.3 (Russo–Dye). Let X and Y be complex Euclidean spaces and let Φ ∈ T (X ,Y) be positive
and unital. It holds that

‖Φ(X)‖ ≤ ‖X‖
for every X ∈ L (X ).

Proof. Let us first prove that ‖Φ(U)‖ ≤ 1 for every unitary operator U ∈ U (X ). Assume
X = CΣ, and let

U = ∑
a∈Σ

λa uau∗a

be a spectral decomposition of U. It holds that

Φ(U) = ∑
a∈Σ

λaΦ (uau∗a) = ∑
a∈Σ

λaPa,

where Pa = Φ (uau∗a) for each a ∈ Σ. As Φ is positive, we have that Pa ∈ Pos (Y) for each a ∈ Σ,
and given that Φ is unital we have

∑
a∈Σ

Pa = 1Y .
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By Naimark’s Theorem there exists a linear isometry A ∈ U (Y ,Y ⊗X ) such that

Pa = A∗(1Y ⊗ Ea,a)A

for each a ∈ Σ, and therefore

Φ(U) = A∗
(

∑
a∈Σ

λa 1Y ⊗ Ea,a

)
A = A∗(1Y ⊗VUV∗)A

for
V = ∑

a∈Σ
eau∗a .

As U and V are unitary and A is an isometry, the bound ‖Φ(U)‖ ≤ 1 follows from the submul-
tiplicativity of the spectral norm.

For general X, it suffices to prove ‖Φ(X)‖ ≤ 1 whenever ‖X‖ ≤ 1. Because every operator
X ∈ L (X ) with ‖X‖ ≤ 1 can be expressed as a convex combination of unitary operators, the
required bound follows from the convexity of the spectral norm.

Theorem 14.4. Let X and Y be complex Euclidean spaces and suppose that A ∈ Herm (X ⊗Y) satisfies
‖A‖2 ≤ 1. It holds that

1X⊗Y − A ∈ Sep (X : Y) .

Proof. Let Φ ∈ T (X ,Y) be positive and unital. Assume Y = CΣ and write

A = ∑
a,b∈Σ

Aa,b ⊗ Ea,b.

We have
(Φ⊗ 1L(Y))(A) = ∑

a,b∈Σ
Φ(Aa,b)⊗ Ea,b,

and therefore∥∥∥(Φ⊗ 1L(Y))(A)
∥∥∥2
≤ ∑

a,b∈Σ
‖Φ(Aa,b)‖2 ≤ ∑

a,b∈Σ
‖Aa,b‖2 ≤ ∑

a,b∈Σ
‖Aa,b‖2

2 = ‖A‖2
2 ≤ 1.

The first inequality is by Lemma 14.2 and the second inequality is by Theorem 14.3. The positivity
of Φ implies that (Φ⊗ 1L(Y))(A) is Hermitian, and thus (Φ⊗ 1L(Y))(A) ≤ 1Y⊗Y . Therefore we
have

(Φ⊗ 1L(Y))(1X⊗Y − A) = 1Y⊗Y − (Φ⊗ 1L(Y))(A) ≥ 0.

As this holds for all positive and unital mappings Φ, we have that 1X⊗Y − A is separable by
Theorem 14.1.

136



CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 15: Separable mappings and the LOCC paradigm

In the previous lecture we discussed separable operators. The focus of this lecture will be on
analogous concepts for mappings between operator spaces. In particular, we will discuss separable
channels, as well as the important subclass of LOCC channels. The acronym LOCC is short for local
operations and classical communication, and plays a central role in the study of entanglement.

15.1 Min-rank

Before discussing separable and LOCC channels, it will be helpful to briefly discuss a general-
ization of the concept of separability for operators.

Suppose two complex Euclidean spaces X and Y are fixed, and for a given choice of a non-
negative integer k let us consider the collection of operators

Rk (X : Y) = conv {vec(A) vec(A)∗ : A ∈ L (Y ,X ) , rank(A) ≤ k} .

In other words, a given positive semidefinite operator P ∈ Pos (X ⊗Y) is contained in Rk (X : Y)
if and only if it is possible to write

P =
m

∑
j=1

vec(Aj) vec(Aj)
∗

for some choice of an integer m and operators A1, . . . , Am ∈ L (Y ,X ), each having rank at most k.
This sort of expression does not require orthogonality of the operators A1, . . . , Am, and it is not
necessarily the case that a spectral decomposition of P will yield a collection of operators for
which the rank is minimized.

Each of the sets Rk (X : Y) is a closed convex cone. It is easy to see that

R0 (X : Y) = {0}, R1 (X : Y) = Sep (X : Y) , and Rn (X : Y) = Pos (X ⊗Y)

for n ≥ min{dim(X ), dim(Y)}. Moreover,

Rk (X : Y) ( Rk+1 (X : Y)

for 0 ≤ k < min{dim(X ), dim(Y)}, as vec(A) vec(A)∗ is contained in the set Rr (X : Y) but not
the set Rr−1 (X : Y) for r = rank(A).

Finally, for each positive semidefinite operator P ∈ Pos (X ⊗Y), we define the min-rank of P
as

min-rank(P) = min {k ≥ 0 : P ∈ Rk (X : Y)} .

This quantity is more commonly known as the Schmidt number, named after Erhard Schmidt.
There is no evidence that he ever considered this concept or anything analogous—his name has
presumably been associated with it because of its connection to the Schmidt decomposition.



15.2 Separable mappings between operator spaces

A completely positive mapping Φ ∈ T (XA ⊗XB,YA ⊗YB), is said to be separable if and only if
there exists operators A1, . . . , Am ∈ L (XA,YA) and B1, . . . , Bm ∈ L (XB,YB) such that

Φ(X) =
m

∑
j=1

(Aj ⊗ Bj)X(Aj ⊗ Bj)
∗ (15.1)

for all X ∈ L (XA ⊗XB). This condition is equivalent to saying that Φ is a nonnegative linear
combination of tensor products of completely positive mappings. We denote the set of all such
separable mappings as

SepT (XA,YA : XB,YB) .

When we refer to a separable channel, we (of course) mean a channel that is a separable mapping,
and we write

SepC (XA,YA : XB,YB) = SepT (XA,YA : XB,YB) ∩C (XA ⊗XB,YA ⊗YB)

to denote the set of separable channels (for a particular choice of XA, XB, YA, and YB).
The use of the term separable to describe mappings of the above form is consistent with the

following observation.

Proposition 15.1. Let Φ ∈ T (XA ⊗XB,YA ⊗YB) be a mapping. It holds that

Φ ∈ SepT (XA,YA : XB,YB)

if and only if
J(Φ) ∈ Sep (YA ⊗XA : YB ⊗XB) .

Remark 15.2. The statement of this proposition is deserving of a short discussion. If it is the case
that

Φ ∈ T (XA ⊗XB,YA ⊗YB) ,

then it holds that
J(Φ) ∈ L (YA ⊗YB ⊗XA ⊗XB) .

The set Sep (YA ⊗XA : YB ⊗XB), on the other hand, is a subset of L (YA ⊗XA ⊗YB ⊗XB), not
L (YA ⊗YB ⊗XA ⊗XB); the tensor factors are not appearing in the proper order to make sense
of the proposition. To state the proposition more formally, we should take into account that a
permutation of tensor factors is needed.

To do this, let us define an operator W ∈ L (YA ⊗YB ⊗XA ⊗XB,YA ⊗XA ⊗YB ⊗XB) by the
action

W(yA ⊗ yB ⊗ xA ⊗ xB) = yA ⊗ xA ⊗ yB ⊗ xB

on vectors xA ∈ XA, xB ∈ XB, yA ∈ YA, and yB ∈ YB. The mapping W is like a unitary operator,
in the sense that it is a norm preserving and invertible linear mapping. (It is not exactly a unitary
operator as we defined them in Lecture 1 because it does not map a space to itself, but this is
really just a minor point about a choice of terminology.) Rather than writing

J(Φ) ∈ Sep (YA ⊗XA : YB ⊗XB)
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in the proposition, we should write

W J(Φ)W∗ ∈ Sep (YA ⊗XA : YB ⊗XB) .

Omitting permutations of tensor factors like this is common in quantum information theory.
When every space being discussed has its own name, there is often no ambiguity in omitting
references to permutation operators such as W because it is implicit that they should be there,
and it can become something of a distraction to refer to them explicitly.

Proof. Given an expression (15.1) for Φ, we have

J(Φ) =
m

∑
j=1

vec(Aj) vec(Aj)
∗ ⊗ vec(Bj) vec(Bj)

∗ ∈ Sep (YA ⊗XA : YB ⊗XB) .

On the other hand, if J(Φ) ∈ Sep (YA ⊗XA : YB ⊗XB) we may write

J(Φ) =
m

∑
j=1

vec(Aj) vec(Aj)
∗ ⊗ vec(Bj) vec(Bj)

∗

for some choice of operators A1, . . . , Am ∈ L (XA,YA) and B1, . . . , Bm ∈ L (XB,YB). This implies
Φ may be expressed in the form (15.1).

Let us now observe the simple and yet useful fact that separable mappings cannot increase
min-rank. This implies, in particular, that separable mappings cannot create entanglement out of
thin air: if a separable operator is input to a separable mapping, the output will also be separable.

Theorem 15.3. Let Φ ∈ SepT (XA,YA : XB,YB) be a separable mapping and let P ∈ Rk (XA : XB). It
holds that

Φ(P) ∈ Rk (YA : YB) .

In other words, min-rank(Φ(Q)) ≤ min-rank(Q) for every Q ∈ Pos (XA ⊗XB).

Proof. Assume A1, . . . , Am ∈ L (XA,YA) and B1, . . . , Bm ∈ L (XB,YB) satisfy

Φ(X) =
m

∑
j=1

(Aj ⊗ Bj)X(Aj ⊗ Bj)
∗

for all X ∈ L (XA ⊗XB). For any choice of Y ∈ L (XB,XA) we have

Φ(vec(Y) vec(Y)∗) =
m

∑
j=1

vec
(

AjYBT
j

)
vec

(
AjYBT

j

)∗
.

As
rank

(
AjYBT

j

)
≤ rank(Y)

for each j = 1, . . . , m, it holds that

Φ(vec(Y) vec(Y)∗) ∈ Rr (YA : YB)

for r = rank(Y). The theorem follows by convexity.
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Finally, let us note that the separable mappings are closed under composition, as the following
proposition claims.

Proposition 15.4. Suppose Φ ∈ SepT (XA,YA : XB,YB) and Ψ ∈ SepT (YA,ZA : YB,ZB). It holds
that ΨΦ ∈ SepT (XA,ZA : XB,ZB).

Proof. Suppose

Φ(X) =
m

∑
j=1

(Aj ⊗ Bj)X(Aj ⊗ Bj)
∗

and

Ψ(Y) =
n

∑
k=1

(Ck ⊗ Dk)Y(Ck ⊗ Dk)
∗.

It follows that

(ΨΦ)(X) =
n

∑
k=1

m

∑
j=1

[
(Ck Aj)⊗ (DkBj)

]
X
[
(Ck Aj)⊗ (DkBj)

]∗ ,

which has the required form for separability.

15.3 LOCC channels

We will now discuss LOCC channels, or channels implementable by local operations and classical
communication. Here we are considering the situation in which two parties, Alice and Bob, collec-
tively perform some sequence of operations and/or measurements on a shared quantum system,
with the restriction that quantum operations must be performed locally, and all communication
between them must be classical. LOCC channels will be defined, in mathematical terms, as those
that can obtained as follows.

1. Alice and Bob can independently apply channels to their own registers, independently of the
other player.

2. Alice can transmit information to Bob through a classical channel, and likewise Bob can
transmit information to Alice through a classical channel.

3. Alice and Bob can compose any finite number of operations that correspond to items 1 and 2.

Many problems and results in quantum information theory concern LOCC channels in one
form or another, often involving Alice and Bob’s ability to manipulate entangled states by means
of such operations.

15.3.1 Definition of LOCC channels

Let us begin with a straightforward formal definition of LOCC channels. There are many other
equivalent ways that one could define this class; we are simply picking one way.

Product channels

Let XA, XB, YA, YB be complex Euclidean spaces and suppose that ΦA ∈ C (XA,YA) and ΦB ∈
C (XB,YB) are channels. The mapping

ΦA ⊗ΦB ∈ C (XA ⊗XB,YA ⊗YB)

is then said to be a product channel. Such a channel represents the situation in which Alice and
Bob perform independent operations on their own quantum systems.
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Classical communication channels

Let XA, XB, and Z be complex Euclidean spaces, and assume Z = CΣ for Σ being a finite and
nonempty set. Let ∆ ∈ C (Z) denote the completely dephasing channel

∆(Z) = ∑
a∈Σ

Z(a, a)Ea,a.

This channel may be viewed as a perfect classical communication channel that transmits symbols
in the set Σ without error. It may equivalently be seen as a quantum channel that measures
everything sent into it with respect to the standard basis of Z , transmitting the result to the
receiver.

Now, the channel
Φ ∈ C ((XA ⊗Z)⊗XB,XA ⊗ (Z ⊗XB))

defined by
Φ((XA ⊗ Z)⊗ XB) = XA ⊗ (∆(Z)⊗ XB)

represents a classical communication channel from Alice to Bob, while the similarly defined
channel

Φ ∈ C (XA ⊗ (Z ⊗XB), (XA ⊗Z)⊗XB)

given by
Φ(XA ⊗ (Z⊗ XB)) = (XA ⊗ ∆(Z))⊗ XB

represents a classical communication channel from Bob to Alice. In both of these cases, the spaces
XA and XB represent quantum systems held by Alice and Bob, respectively, that are unaffected
by the transmission. Of course the only difference between the two channels is the interpretation
of who sends and who receives the register Z corresponding to the space Z , which is represented
by the parentheses in the above expressions.

When we speak of a classical communication channel, we mean either an Alice-to-Bob or Bob-
to-Alice classical communication channel.

Finite compositions

Finally, for complex Euclidean spaces XA, XB, YA and YB, an LOCC channel is any channel of the
form

Φ ∈ C (XA ⊗XB,YA ⊗YB)

that can be obtained from the composition of any finite number of product channels and classical
communication channels. (The input and output spaces of each channel in the composition is
arbitrary, so long as the first channel inputs XA ⊗XB and the last channel outputs YA ⊗YB. The
intermediate channels can act on arbitrary complex Euclidean spaces so long as they are product
channels or classical communication channels and the composition makes sense.) We will write

LOCC (XA,YA : XB,YB)

to denote the collection of all LOCC channels as just defined.
Note that by defining LOCC channels in terms of finite compositions, we are implicitly fixing

the number of messages exchanged by Alice and Bob in the realization of any specific LOCC
channel.
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15.3.2 LOCC channels are separable

There are many simple questions concerning LOCC channels that are not yet answered. For
instance, it is not known whether LOCC (XA,YA : XB,YB) is a closed set for any nontrivial choice
of spaces XA, XB, YA and YB. (For LOCC channels involving three or more parties—Alice, Bob,
and Charlie, say—it was only proved this past year that the corresponding set of LOCC channels
is not closed.) It is a related problem to better understand the number of message transmissions
needed to implement LOCC channels.

In some situations, we may conclude interesting facts about LOCC channels by reasoning
about separable channels. To this end, let us state a simple but very useful proposition.

Proposition 15.5. Let Φ ∈ LOCC (XA,YA : XB,YB) be an LOCC channel. It holds that

Φ ∈ SepC (XA,YA : XB,YB) .

Proof. The set of separable channels is closed under composition, and product channels are ob-
viously separable, so it remains to observe that classical communication channels are separable.

Suppose
Φ((XA ⊗ Z)⊗ XB) = XA ⊗ (∆(Z)⊗ XB)

is a classical communication channel from Alice to Bob. It holds that

Φ(ρ) = ∑
a∈Σ

[(1XA ⊗ e∗a)⊗ (ea ⊗ 1XB)] ρ [(1XA ⊗ e∗a)⊗ (ea ⊗ 1XB)]
∗ ,

which demonstrates that

Φ ∈ SepC (XA ⊗Z ,XA ⊗C : C⊗XB,Z ⊗XB) = SepC (XA ⊗Z ,XA : XB,Z ⊗XB)

as required. A similar argument proves that every Bob-to-Alice classical communication channel
is a separable channel.

In case the argument above about classical communication channels looks like abstract non-
sense, it may be helpful to observe that the key feature of the channel ∆ that allows the argument
to work is that it can be expressed in Kraus form, where all of the Kraus operators have rank
equal to one.

It must be noted that the separable channels do not give a perfect characterization of LOCC
channels: there exist separable channels that are not LOCC channels. Nevertheless, we will
still be able to use this proposition to prove various things about LOCC channels. One simple
example follows.

Corollary 15.6. Suppose ρ ∈ D (XA ⊗XB) and Φ ∈ LOCC (XA,YA : XB,YB). It holds that

min-rank(Φ(ρ)) ≤ min-rank(ρ).

In particular, if ρ ∈ SepD (XA : XB) then Φ(ρ) ∈ SepD (YA : YB).
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Lecture 16: Nielsen’s theorem on pure state entanglement
transformation

In this lecture we will consider pure-state entanglement transformation. The setting is as follows:
Alice and Bob share a pure state x ∈ XA ⊗ XB, and they would like to transform this state to
another pure state y ∈ YA ⊗YB by means of local operations and classical communication. This
is possible for some choices of x and y and impossible for others, and what we would like is to
have a condition on x and y that tells us precisely when it is possible. Nielsen’s theorem, which
we will prove in this lecture, provides such a condition.

Theorem 16.1 (Nielsen’s theorem). Let x ∈ XA ⊗XB and y ∈ YA ⊗YB be unit vectors, for any choice
of complex Euclidean spaces XA, XB, YA, and YB. There exists a channel Φ ∈ LOCC (XA,YA : XB,YB)
such that Φ(xx∗) = yy∗ if and only if TrXB (xx∗) ≺ TrYB (yy∗).

It may be that XA and YA do not have the same dimension, so the relationship

TrXB (xx∗) ≺ TrYB (yy∗)

requires an explanation. In general, given positive semidefinite operators P ∈ Pos (X ) and
Q ∈ Pos (Y), we define that P ≺ Q if and only if

VPV∗ ≺WQW∗ (16.1)

for some choice of a complex Euclidean space Z and isometries V ∈ U (X ,Z) and W ∈ U (Y ,Z).
If the above condition (16.1) holds for one such choice of Z and isometries V and W, it holds for
all other possible choices of these objects. In particular, one may always take Z to have dimension
equal to the larger of dim(X ) and dim(Y).

In essence, this interpretation is analogous to padding vectors with zeroes, as is done when we
wish to consider the majorization relation between vectors of nonnegative real numbers having
possibly different dimensions. In the operator case, the isometries V and W embed the operators
P and Q into a single space so that they may be related by our definition of majorization.

It will be helpful to note that if P ∈ Pos (X ) and Q ∈ Pos (Y) are positive semidefinite
operators, and P ≺ Q, then it must hold that rank(P) ≥ rank(Q). One way to verify this claim is
to examine the vectors of eigenvalues λ(P) and λ(Q), whose nonzero entries agree with λ(VPV∗)
and λ(WQW∗) for any choice of isometries V and W, and to note that Theorem 13.2 implies that
λ(WQW∗) cannot possibly majorize λ(VPV∗) if λ(Q) has strictly more nonzero entries than
λ(P). An alternate way to verify the claim is to note that mixed unitary channels can never
decrease the rank of any positive semidefinite operator. It follows from this observation that if
P ∈ Pd (X ) and Q ∈ Pd (Y) are positive definite operators, and P ≺ Q, then dim(X ) ≥ dim(Y).
The condition P ≺ Q is therefore equivalent to the existence of an isometry W ∈ U (Y ,X ) such
that P ≺WQW∗ in this case.



The remainder of this lecture will be devoted to proving Nielsen’s theorem. For the sake of
the proof, it will be helpful to make a simplifying assumption, which causes no loss of generality.
The assumption is that these equalities hold:

dim(XA) = rank (TrXB(xx∗)) = dim(XB),
dim(YA) = rank (TrYB(yy∗)) = dim(YB).

That we can make this assumption follow from a consideration of Schmidt decompositions of x
and y:

x =
m

∑
j=1

√
pjxA,j ⊗ xB,j and y =

n

∑
k=1

√
qkyA,k ⊗ yB,k,

where p1, . . . , pm > 0 and q1, . . . , qn > 0, so that m = rank (TrXB(xx∗)) and n = rank (TrYB(yy∗)).
By restricting XA to span{xA,1, . . . , xA,m}, XB to span{xB,1, . . . , xB,m}, YA to span{yA,1, . . . , yA,n},
and YB to span{yB,1, . . . , yB,n}, we have that the spaces XA, XB, YA, and YB are only as large in
dimension as they need to be to support the vectors x and y. The reason why this assumption
causes no loss of generality is that neither the notion of an LOCC channel transforming xx∗ to
yy∗, nor the majorization relationship TrXB (xx∗) ≺ TrYB (yy∗), is sensitive to the possibility that
the ambient spaces in which xx∗ and yy∗ exist are larger than necessary to support x and y.

16.1 The easier implication: from mixed unitary channels to LOCC channels

We will begin with the easier implication of Nielsen’s theorem, which states that the majorization
relationship

TrXB (xx∗) ≺ TrYB (yy∗) (16.2)

implies the existence of an LOCC channel mapping xx∗ to yy∗. To prove the implication, let us
begin by letting X ∈ L (XB,XA) and Y ∈ L (YB,YA) satisfy

x = vec(X) and y = vec(Y),

so that (16.2) is equivalent to XX∗ ≺ YY∗. The assumption dim(XA) = rank (TrXB(xx∗)) =
dim(XB) implies that XX∗ is positive definite (and therefore X is invertible). Likewise, the
assumption dim(YA) = rank (TrYB(yy∗)) = dim(YB) implies that YY∗ is positive definite. It
follows that

XX∗ = Ψ(WYY∗W∗)

for some choice of an isometry W ∈ U (YA,XA) and a mixed unitary channel Ψ ∈ C (XA). Let
us write this channel as

Ψ(ρ) = ∑
a∈Σ

p(a)UaρU∗a

for Σ being a finite and nonempty set, p ∈ RΣ being a probability vector, and {Ua : a ∈ Σ} ⊂
U (XA) being a collection of unitary operators.

Next, define a channel Ξ ∈ C (XA ⊗XB,XA ⊗YB) as

Ξ(ρ) = ∑
a∈Σ

(
U∗a ⊗ Ba

)
ρ
(
U∗a ⊗ Ba

)∗
for each ρ ∈ L (XA ⊗XB), where Ba ∈ L (XB,YB) is defined as

Ba =
√

p(a)
(

X−1UaWY
)∗
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for each a ∈ Σ. It holds that

∑
a∈Σ

B∗a Ba = ∑
a∈Σ

p(a)X−1UaWYY∗W∗U∗a (X−1)
∗
= X−1Ψ (WYY∗W∗) (X−1)

∗
= 1XA ,

and therefore
∑
a∈Σ

BT
a Ba = ∑

a∈Σ
B∗a Ba = 1XA .

It follows that Ξ is trace-preserving, because

∑
a∈Σ

(
U∗a ⊗ Ba

)∗ (U∗a ⊗ Ba
)
= ∑

a∈Σ

(
1XA ⊗ BT

a Ba
)
= 1XA ⊗ 1XA .

The channel Ξ is, in fact, an LOCC channel. To implement it as an LOCC channel, Bob may
first apply the local channel

ξ 7→ ∑
a∈Σ

Ea,a ⊗ BaξBT
a ,

which has the form of a mapping from L (XB) to L (Z ⊗YB) for Z = CΣ. He then sends the
register Z corresponding to the space Z through a classical channel to Alice. Alice then performs
the local channel given by

σ 7→ ∑
b∈Σ

(U∗b ⊗ e∗b) σ (U∗b ⊗ e∗b)
∗ ,

which has the form of a mapping from L (XA ⊗Z) to L (XA). The composition of these three
channels is given by Ξ, which shows that Ξ ∈ LOCC (XA,XA : XB,YB) as claimed.

The channel Ξ almost satisfies the requirements of the theorem, for we have

Ξ(xx∗) = ∑
a∈Σ

(
U∗a ⊗ Ba

)
vec(X) vec(X)∗

(
U∗a ⊗ Ba

)∗
= ∑

a∈Σ
vec (U∗a XB∗a ) vec (U∗a XB∗a )

∗

= ∑
a∈Σ

p(a) vec
(

U∗a XX−1UaWY
)

vec
(

U∗a XX−1UaWY
)∗

= vec(WY) vec(WY)∗

= (W ⊗ 1YB)yy∗(W ⊗ 1YB)
∗.

That is, Ξ transforms xx∗ to yy∗, followed by the isometry W being applied to Alice’s space YA,
embedding it in XA. To “undo” this embedding, Alice may apply the channel

ξ 7→W∗ξW + 〈1YA −WW∗, ξ〉 σ (16.3)

to her portion of the state (W ⊗ 1YB)yy∗(W ⊗ 1YB)
∗, where σ ∈ D (YA) is an arbitrary density

matrix that has no influence on the proof. Letting Φ ∈ C (XA ⊗XB,YA ⊗YB) be the channel
that results from composing (16.3) with Ξ, we have that Φ is an LOCC channel and satisfies
Φ(xx∗) = yy∗ as required.
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16.2 The harder implication: from LOCC channels to mixed unitary channels

The reverse implication, from the one proved in the previous section, states that if Φ(xx∗) = yy∗

for an LOCC channel Φ ∈ C (XA,YA : XB,YB), then TrXB (xx∗) ≺ TrYB (yy∗). The main difficulty
in proving this fact is that our proof must account for all possible LOCC channels, which do
not admit a simple mathematical characterization (so far as anyone knows). For instance, a
given LOCC channel could potentially require a composition of 1,000,000 channels that alternate
between product channels and classical communication channels, possibly without any shorter
composition yielding the same channel.

However, in the situation that we only care about the action of a given LOCC channel on a
single pure state—such as the state xx∗ being considered in the context of the implication we are
trying to prove—LOCC channels can always be reduced to a very simple form. To describe this
form, let us begin by defining a restricted class of LOCC channels, acting on the space of opera-
tors L (ZA ⊗ZB) for any fixed choice of complex Euclidean spaces ZA and ZB, as follows.

1. A channel Φ ∈ C (ZA ⊗ZB) will be said to be an A→B channel if there exists a finite and
nonempty set Σ, a collection of operators {Aa : a ∈ Σ} ⊂ L (ZA) satisfying the constraint

∑
a∈Σ

A∗a Aa = 1ZA ,

and a collection of unitary operators {Ua : a ∈ Σ} ⊂ U (ZB) such that

Φ(ρ) = ∑
a∈Σ

(Aa ⊗Ua)ρ(Aa ⊗Ua)
∗.

One imagines that such an operation represents the situation where Alice performs a non-
destructive measurement represented by the collection {Aa : a ∈ Σ}, transmits the result to
Bob, and Bob applies a unitary channel to his system that depends on Alice’s measurement
result.

2. A channel Φ ∈ C (ZA ⊗ZB) will be said to be a B→A channel if there exists a finite and
nonempty set Σ, a collection of operators {Ba : a ∈ Σ} ⊂ L (ZB) satisfying the constraint

∑
a∈Σ

B∗a Ba = 1ZB ,

and a collection of unitary operators {Va : a ∈ Σ} ⊂ U (ZA) such that

Φ(ρ) = ∑
a∈Σ

(Va ⊗ Ba)ρ(Va ⊗ Ba)
∗.

Such a channel is analogous to an A→B channel, but where the roles of Alice and Bob are
reversed. (The channel constructed in the previous section had this basic form, although the
operators {Ba} were not necessarily square in that case.)

3. Finally, a channel Φ ∈ C (ZA ⊗ZB) will be said to be a restricted LOCC channel if it is a
composition of A→B and B→A channels.

It should be noted that the terms A→B channel, B→A channel, and restricted LOCC channel are
being used for the sake of this proof only: they are not standard terms, and will not be used
elsewhere in the course.
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It is not difficult to see that every restricted LOCC channel is an LOCC channel, using a
similar argument to the one showing that the channel Ξ from the previous section was indeed
an LOCC channel. As the following theorem shows, restricted LOCC channels turn out to be as
powerful as general LOCC channels, provided they are free to act on sufficiently large spaces.

Theorem 16.2. Suppose Φ ∈ LOCC (XA,YA : XB,YB) is an LOCC channel. There exist complex
Euclidean spaces ZA and ZB, linear isometries

VA ∈ U (XA,ZA) , WA ∈ U (YA,ZA) , VB ∈ U (XB,ZB) , WB ∈ U (YB,ZB) ,

and a restricted LOCC channel Ψ ∈ C (ZA ⊗ZB) such that

(WA ⊗WB)Φ(ρ)(WA ⊗WB)
∗ = Ψ ((VA ⊗VB)ρ(VA ⊗VB)

∗) (16.4)

for all ρ ∈ L (XA ⊗XB).

Remark 16.3. Before we prove this theorem, let us consider what it is saying. Alice’s input space
XA and output space YA may have different dimensions, but we want to view these two spaces
as being embedded in a single space ZA. The isometries VA and WA describe these embeddings.
Likewise, VB and WB describe the embeddings of Bob’s input and output spaces XB and YB in
a single space ZB. The above equation (16.4) simply means that Ψ correctly represents Φ in
terms of these embeddings: Alice and Bob could either embed the input ρ ∈ L (XA ⊗XB) in
L (ZA ⊗ZB) as (VA ⊗VB)ρ(VA ⊗VB)

∗, and then apply Ψ; or they could first perform Φ and then
embed the output Φ(ρ) into L (ZA ⊗ZB) as (WA ⊗WB)Φ(ρ)(WA ⊗WB)

∗. The equation (16.4)
means that they obtain the same thing either way.

Proof. Let us suppose that Φ is a composition of mappings

Φ = Φn−1 · · ·Φ1,

where each mapping Φk takes the form

Φk ∈ LOCC
(
X k

A,X k+1
A : X k

B,X k+1
B

)
,

and is either a local operation for Alice, a local operation for Bob, a classical communication from
Alice to Bob, or a classical communication from Bob to Alice. Here we assume

X 1
A = XA, X 1

B = XB, X n
A = YA, and X n

B = YB;

the remaining spaces are arbitrary, so long as they have forms that are appropriate to the choices
Φ1, . . . , Φn−1. For instance, if Φk is a local operation for Alice, then X k

B = X k+1
B , while if Φk is

a classical communication from Alice to Bob, then X k
A = X k+1

A ⊗Wk and X k+1
B = X k

B ⊗Wk for
Wk representing the system that stores the classical information communicated from Alice to
Bob. There is no loss of generality in assuming that every such Wk takes the form Wk = CΓ for
some fixed finite and non-empty set Γ, chosen to be large enough to account for any one of the
message transmissions among the mappings Φ1, . . . , Φn−1.

We will take
ZA = X 1

A ⊕ · · · ⊕ X n
A and ZB = X 1

B ⊕ · · · ⊕ X n
B .

These spaces will generally not have minimal dimension among the possible choices that would
work for the proof, but they are convenient choices that allow for a simple presentation of the
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proof. Let us also define isometries VA,k ∈ U
(
X k

A,ZA
)

and VB,k ∈ U
(
X k

B,ZB
)

to be the most
straightforward ways of embedding X k

A into ZA and X k
B into ZB, i.e.,

VA,kxk = 0⊕ · · · ⊕ 0︸ ︷︷ ︸
k− 1 times

⊕xk ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
n− k times

for every choice of k = 1, . . . , n and x1 ∈ X 1
A, . . . , xn ∈ X n

A, and likewise for VB,1, . . . , VB,n.
Suppose Φk is a local operation for Alice. This means that there exist a collection of operators

{Ak,a : a ∈ Σ} ⊂ L
(
X k

A,X k+1
A

)
such that

∑
a∈Σ

A∗k,a Ak,a = 1X k
A

and
Φk(ρ) = ∑

a∈Σ

(
Ak,a ⊗ 1X k

B ,X k+1
B

)
ρ
(

Ak,a ⊗ 1X k
B ,X k+1

B

)∗
.

This expression refers to the identity mapping from X k
B to X k+1

B , which makes sense if we keep
in mind that these spaces are equal (given that Φk is a local operation for Alice). We wish to
extend this mapping to an A→B channel on L (ZA ⊗ZB). Let

{Bk,b : b ∈ ∆} ⊂ L
(
X k+1

A ,X k
A

)
be an arbitrary collection of operators for which

∑
b∈∆

B∗k,bBk,b = 1X k+1
A

,

and define Ck,a,b ∈ L (ZA) as

Ck,a,b =



1X 1
A

1X 2
A

. . .

0 Bk,b

Ak,a 0
1X k+2

A
. . .

1X n
A


for each a ∈ Σ and b ∈ ∆, define Uk ∈ U (ZB) as

Uk =



1X 1
A

1X 2
A

. . .

0 1X k+1
B ,X k

B

1X k
B ,X k+1

B
0

1X k+2
A

. . .

1X n
A


,
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and define
Ξk(σ) = ∑

a∈Σ
b∈∆

(Ck,a,b ⊗Uk) ρ (Ck,a,b ⊗Uk)
∗ .

(In both of the matrices above, empty entries are to be understood as containing zero operators
of the appropriate dimensions.) It holds that Ξk is an A→B channel, and it may be verified that

Ξk ((VA,k ⊗VB,k)ρ(VA,k ⊗VB,k)
∗) = (VA,k+1 ⊗VB,k+1)Φk(ρ)(VA,k+1 ⊗VB,k+1)

∗ (16.5)

for every ρ ∈ L
(
X k

A ⊗X k
B
)
.

In case Φk is a local operation for Bob rather than Alice, we define Ξk to be a B→ A channel
through a similar process, where the roles of Alice and Bob are reversed. The equality (16.5)
holds in this case through similar reasoning.

Now suppose that Φk is a classical message transmission from Alice to Bob. As stated above,
we assume that X k

A = X k+1
A ⊗CΓ and X k+1

B = X k
B ⊗CΓ. Define

Ck,a =



1X 1
A

1X 2
A

. . .

0 1X k+1
A
⊗ ea

1X k+1
A
⊗ e∗a 0

1X k+2
A

. . .

1X n
A


for each a ∈ Γ, define Uk,a ∈ U (ZB) as

Uk,a =



1X 1
A

1X 2
A

. . .

0 1X k+1
B
⊗ e∗a

1X k
B
⊗ ea 1X k+1

B
⊗Πa

1X k+2
A

. . .

1X n
A


,

where
Πa = ∑

b∈Γ
b 6=a

Eb,b,

and define
Ξk(σ) = ∑

a∈Γ
(Ck,a ⊗Uk,a) ρ (Ck,a ⊗Uk,a)

∗ .

It may be checked that each Uk,a is unitary and that ∑a∈Γ C∗k,aCk,a = 1ZA . Thus, Ξk is an A→B
channel, and once again it may be verified that (16.5) holds for every ρ ∈ L

(
X k

A ⊗X k
B
)
. A similar
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process is used to define a B→ A channel Ξk obeying the equation (16.5) in case Φk is a message
transmission from Bob to Alice.

By making use of (16.5) iteratively, we find that

(Ξn−1 · · ·Ξ1) ((VA,1 ⊗VB,1)ρ(VA,1 ⊗VB,1)
∗) = (VA,n ⊗VB,n)(Φn−1 · · ·Φ1)(ρ)(VA,n ⊗VB,n)

∗.

Setting VA = VA,1, VB = VB,1, WA = VA,n, WB = VA,n, and recalling that YA = X n
A and YB = X n

B ,
we have that Ψ = Ξn · · ·Ξ1 is a restricted LOCC channel satisfying the requirements of the
theorem.

Next, we observe that restricted LOCC channels can be “collapsed” to a single A→B or B→A
channel, assuming their action on a single know pure state is the only concern.

Lemma 16.4. For any choice of complex Euclidean spaces ZA and ZB having equal dimension, every
restricted LOCC channel Φ ∈ C (ZA ⊗ZB), and every vector x ∈ ZA ⊗ ZB, the following statements
hold.

1. There exists an A→B channel Ψ ∈ C (ZA ⊗ZB) such that Ψ(xx∗) = Φ(xx∗).

2. There exists a B→A channel Ψ ∈ C (ZA ⊗ZB) such that Ψ(xx∗) = Φ(xx∗).

Proof. The idea of the proof is to show that A→B and B→A channels can be interchanged for
fixed pure-state inputs, which allows any restricted LOCC channel to be collapsed to a single
A→B or B→A channel by applying the interchanges recursively, and noting that A→B channels
and B→ A channels are (separately) both closed under composition.

Suppose that {Aa : a ∈ Σ} ⊂ L (ZA) is a collection of operators for which ∑a∈Σ A∗a A = 1ZA ,
{Ua : a ∈ Σ} ⊂ U (ZB) is a collection of unitary operators, and

Ξ(ρ) = ∑
a∈Σ

(Aa ⊗Ua)ρ(Aa ⊗Ua)
∗

is the A→B channel that is described by these operators. Let X ∈ L (ZB,ZA) satisfy vec(X) = x.
It holds that

Ξ(xx∗) = Ξ(vec(X) vec(X)∗) = ∑
a∈Σ

vec (AaXUT
a ) vec (AaXUT

a )
∗ .

Our goal is to find a collection of operators {Ba : a ∈ Σ} ⊂ L (ZB) satisfying ∑a∈Σ B∗a Ba = 1ZB

and a collection of unitary operators {Va : a ∈ Σ} ⊂ U (ZA) such that

VaXBT
a = AaXUT

a

for all a ∈ Σ. If such a collection of operators is found, then we will have that

∑
a∈Σ

(Va ⊗ Ba) vec(X) vec(X)∗(Va ⊗ Ba)
∗ = ∑

a∈Σ
vec(VaXBT

a ) vec(VaXBT
a )
∗

= ∑
a∈Σ

vec(AaXUT
a ) vec(AaXUT

a )
∗ = ∑

a∈Σ
(Aa ⊗Ua) vec(X) vec(X)∗(Aa ⊗Ua)

∗,

so that Ξ(uu∗) = Λ(uu∗) for Λ being the B→A channel defined by

Λ(ρ) = ∑
a∈Σ

(Va ⊗ Ba)ρ(Va ⊗ Ba)
∗.
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Choose a unitary operator U ∈ U (ZA,ZB) such that XU ∈ Pos (ZA). Such a U can be found
by considering a singular value decomposition of X. Also, for each a ∈ Σ, choose a unitary
operator Wa ∈ U (ZA,ZB) such that

AaXUT
a Wa ∈ Pos (ZA) .

We have that

AaXUT
a Wa = (AaXUT

a Wa)
∗ = (Aa(XU)U∗UT

a Wa)
∗ = W∗a UaU(XU)A∗a ,

so that
AaXUT

a = W∗a UaUXUA∗aW∗a .

Define
Va = W∗a UaU and Ba = (UA∗aW∗a )

T

for each a ∈ Σ. Each Va is unitary and it can be checked that

∑
a∈Σ

B∗a Ba = 1ZB .

We have VaXBT
a = AaXUT

a as required.
We have therefore proved that for every A→B channel Ξ ∈ C (ZA ⊗ZB), there exists a B→A

channel Λ ∈ C (ZA ⊗ZB) such that Ξ(xx∗) = Λ(xx∗). A symmetric argument shows that for
every B→A channel Ξ, there exists an A→B channel Λ such that Λ(xx∗) = Ξ(xx∗).

Finally, notice that the composition of any two A→B channels is also an A→B channel, and
likewise for B→A channels. Therefore, by applying the above arguments repeatedly for the A→B
and B→A channels from which Φ is composed, we find that there exists an A→B channel Ψ such
that Ψ(uu∗) = Φ(uu∗), and likewise for Ψ being a B→A channel.

We are now prepared to finish the proof of Nielsen’s theorem. We assume that there exists
an LOCC channel Φ mapping xx∗ to yy∗. By Theorem 16.2 and Lemma 16.4, we have that there
is no loss of generality in assuming x, y ∈ ZA ⊗ZB for ZA and ZB having equal dimension, and
moreover that Φ ∈ C (ZA ⊗ZB) is a B→A channel. Write

Φ(ρ) = ∑
a∈Σ

(Va ⊗ Ba)ρ(Va ⊗ Ba)
∗,

for {Ba : a ∈ Σ} satisfying ∑a∈Σ B∗a Ba = 1ZB and {Va : a ∈ Σ} being a collection of unitary
operators on ZA.

Let X, Y ∈ L (ZB,ZA) satisfy x = vec(X) and y = vec(Y), so that

Φ(vec(X) vec(X)∗) = ∑
a∈Σ

vec(VaXBT
a ) vec(VaXBT

a )
∗ = vec(Y) vec(Y)∗.

This implies that
VaXBT

a = αaY

and therefore
XBT

a = αaV∗a Y

for each a ∈ Σ, where {αa : a ∈ Σ} is a collection of complex numbers. We now have

∑
a∈Σ
|αa |2 V∗a YY∗Va = ∑

a∈Σ
XBT

a BaX∗ = XX∗.

Taking the trace of both sides of this equation reveals that ∑a∈Σ |αa |2 = 1. It has therefore been
shown that there exists a mixed unitary channel mapping YY∗ to XX∗. It therefore holds that
XX∗ ≺ YY∗ (or, equivalently, TrZB(xx∗) ≺ TrZB(yy∗)) as required.
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CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 17: Measures of entanglement

The topic of this lecture is measures of entanglement. The underlying idea throughout this discus-
sion is that entanglement may be viewed as a resource that is useful for various communication-
related tasks, such as teleportation, and we would like to quantify the amount of entanglement
that is contained in different states.

17.1 Maximum inner product with a maximally entangled state

We will begin with a simple quantity that relates to the amount of entanglement in a given state:
the maximum inner product with a maximally entangled state. It is not necessarily an interesting
concept in its own right, but it will be useful as a mathematical tool in the sections of this lecture
that follow.

Suppose X and Y are complex Euclidean spaces, and assume for the moment that dim(X ) ≥
dim(Y) = n. A maximally entangled state of a pair of registers (X,Y) to which these spaces are
associated is any pure state uu∗ for which

TrX (uu∗) =
1
n

1Y ;

or, in other words, tracing out the larger space leaves the completely mixed state on the other
register. Equivalently, the maximally entangled states are those that may be expressed as

1
n

vec(U) vec(U)∗

for some choice of a linear isometry U ∈ U (Y ,X ). If it is the case that n = dim(X ) ≤ dim(Y)
then the maximally entangled states are those states uu∗ such that

TrY (uu∗) =
1
n

1X ,

or equivalently those that can be written

1
n

vec(U∗) vec(U∗)∗

where U ∈ L (X ,Y) is a linear isometry. Quite frequently, the term maximally entangled refers
to the situation in which dim(X ) = dim(Y), where the two notions coincide. As is to be ex-
pected when discussing pure states, we sometimes refer to a unit vector u as being a maximally
entangled state, which means that uu∗ is maximally entangled.

Now, for an arbitrary density operator ρ ∈ D (X ⊗Y), let us define

M(ρ) = max{〈uu∗, ρ〉 : u ∈ X ⊗Y is maximally entangled}.

Clearly it holds that 0 < M(ρ) ≤ 1 for every density operator ρ ∈ D (X ⊗Y). The following
lemma establishes an upper bound on M(ρ) based on the min-rank of ρ.



Lemma 17.1. Let X and Y be complex Euclidean spaces, and let n = min{dim(X ), dim(Y)}. It holds
that

M(ρ) ≤ min-rank(ρ)
n

for all ρ ∈ D (X ⊗Y).

Proof. Let us assume dim(X ) ≥ dim(Y) = n, and note that the argument is equivalent in case
the inequality is reversed.

First let us note that M is a convex function on D (X ⊗Y). To see this, consider any choice of
σ, ξ ∈ D (X ⊗Y) and p ∈ [0, 1]. For U ∈ U (Y ,X ) we have

1
n

vec(U)∗ (pσ + (1− p)ξ) vec(U)

= p
1
n

vec(U)∗σ vec(U) + (1− p)
1
n

vec(U)∗ξ vec(U)

≤ pM(σ) + (1− p)M(ξ).

Maximizing over all U ∈ U (Y ,X ) establishes that M is convex as claimed.
Now, given that M is convex, we see that it suffices to prove the lemma by considering

only pure states. Every pure density operator on X ⊗ Y may be written as vec(A) vec(A)∗ for
A ∈ L (Y ,X ) satisfying ‖A‖2 = 1. We have

M (vec(A) vec(A)∗) =
1
n

max
U∈U(Y ,X )

|〈U, A〉|2 =
1
n
‖A‖2

1 .

Given that
‖A‖1 ≤

√
rank(A) ‖A‖2

for every operator A, the lemma follows.

17.2 Entanglement cost and distillable entanglement

We will now discuss two fundamental measures of entanglement: the entanglement cost and the
distillable entanglement. For the remainder of the lecture, let us take

YA = C{0,1} and YB = C{0,1}

to be complex Euclidean spaces corresponding to single qubits, and let τ ∈ D (YA ⊗YB) denote
the density operator

τ =
1
2
(e0 ⊗ e0 + e1 ⊗ e1)(e0 ⊗ e0 + e1 ⊗ e1)

∗,

which may be more recognizable to some when expressed in the Dirac notation as

τ =
∣∣φ+

〉 〈
φ+
∣∣ for

∣∣φ+
〉
=

1√
2
|00〉+ 1√

2
|11〉 .

We view that the state τ represents one unit of entanglement, typically called an e-bit of entan-
glement.
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17.2.1 Definition of entanglement cost

The first measure of entanglement we will consider is called the entanglement cost. Informally
speaking, the entanglement cost of a density operator ρ ∈ D (XA ⊗XB) represents the number
of e-bits Alice and Bob need to share in order to create a copy of ρ by means of an LOCC
operation with high fidelity. It is an information-theoretic quantity, so it must be understood to be
asymptotic in nature—where one amortizes over many parallel repetitions of such a conversion.
The following definition states this more precisely.

Definition 17.2. The entanglement cost of a density operator ρ ∈ D (XA ⊗XB), denoted Ec(ρ), is
the infimum over all real numbers α ≥ 0 for which there exists a sequence of LOCC channels
{Φn : n ∈N}, where

Φn ∈ LOCC
(
Y⊗bαnc

A ,X⊗n
A : Y⊗bαnc

B ,X⊗n
B

)
,

such that
lim
n→∞

F
(

Φn

(
τ⊗bαnc

)
, ρ⊗n

)
= 1.

The interpretation of the definition is that, in the limit of large n, Alice and Bob are able
to convert bαnc e-bits into n copies of ρ with high fidelity for any α > Ec(ρ). It is not entirely
obvious that there should exist any value of α for which there exists a sequence of LOCC channels
{Φn : n ∈N} as in the statement of the definition, but indeed there always does exist a suitable
choice of α.

17.2.2 Definition of distillable entanglement

The second measure of entanglement we will consider is the distillable entanglement, which is
essentially the reverse of the entanglement cost. It quantifies the number of e-bits that Alice and
Bob can extract from the state in question, again amortized over many copies.

Definition 17.3. The distillable entanglement of a density operator ρ ∈ D (XA ⊗XB), denoted
Ed(ρ), is the supremum over all real numbers α ≥ 0 for which there exists a sequence of LOCC
channels {Φn : n ∈N}, where

Φn ∈ LOCC
(
X⊗n

A ,Y⊗bαnc
A : X⊗n

B ,Y⊗bαnc
B

)
,

such that
lim
n→∞

F
(

Φn
(
ρ⊗n) , τ⊗bαnc

)
= 1.

The interpretation of the definition is that, in the limit of large n, Alice and Bob are able to
convert n copies of ρ into bαnc e-bits with high fidelity for any α < Ed(ρ). In order to clarify the
definition, let us state explicitly that the operator τ⊗0 is interpreted to be the scalar 1, implying
that condition in the lemma is trivially satisfied for α = 0.

17.2.3 The distillable entanglement is at most the entanglement cost

At an intuitive level it is clear that the entanglement cost must be at least as large as the distillable
entanglement, for otherwise Alice and Bob would be able to open an “entanglement factory” that
would violate the principle that LOCC channels cannot create entanglement out of thin air. Let
us now prove this formally.
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Theorem 17.4. For every state ρ ∈ D (XA ⊗XB) we have Ed(ρ) ≤ Ec(ρ).

Proof. Let us assume that α and β are nonnegative real numbers such that the following two
properties are satisfied:

1. There exists a sequence of LOCC channels {Φn : n ∈N}, where

Φn ∈ LOCC
(
Y⊗bαnc

A ,X⊗n
A : Y⊗bαnc

B ,X⊗n
B

)
,

such that
lim
n→∞

F
(

Φn

(
τ⊗bαnc

)
, ρ⊗n

)
= 1.

2. There exists a sequence of LOCC channels {Ψn : n ∈N}, where

Ψn ∈ LOCC
(
X⊗n

A ,Y⊗bβnc
A : X⊗n

B ,Y⊗bβnc
B

)
,

such that
lim
n→∞

F
(

Ψn
(
ρ⊗n) , τ⊗bβnc

)
= 1.

Using the Fuchs–van de Graaf inequalities, along with triangle inequality for the trace norm,
we conclude that

lim
n→∞

F
(
(ΨnΦn)

(
τ⊗bαnc

)
, τ⊗bβnc

)
= 1. (17.1)

Because min-rank(τ⊗k) = 2k for every choice of k ≥ 1, and LOCC channels cannot increase
min-rank, we have that

F
(
(ΨnΦn)

(
τ⊗bαnc

)
, τ⊗bβnc

)2
≤ 2bαnc−bβnc (17.2)

by Lemma 17.1. By equations (17.1) and (17.2), we therefore have that α ≥ β.
Given that Ec(ρ) is the infimum over all α, and Ed(ρ) is the supremum over all β, with the

above properties, we have that Ec(ρ) ≥ Ed(ρ) as required.

17.3 Pure state entanglement

The remainder of the lecture will focus on the entanglement cost and distillable entanglement for
bipartite pure states. In this case, these measures turn out to be identical, and coincide precisely
with the von Neumann entropy of the reduced state of either subsystem.

Theorem 17.5. Let XA and XB be complex Euclidean spaces and let u ∈ XA ⊗ XB be a unit vector. It
holds that Ec(uu∗) = Ed(uu∗) = S(TrXA(uu∗)) = S(TrXB(uu∗)).

Proof. The proof will start with some basic observations about the vector u that will be used to
calculate both the entanglement cost and the distillable entanglement. First, let

u = ∑
a∈Σ

√
p(a) va ⊗ wa

be a Schmidt decomposition of u, so that

TrXB(uu∗) = ∑
a∈Σ

p(a) vav∗a and TrXA(uu∗) = ∑
a∈Σ

p(a)waw∗a .
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We have that p ∈ RΣ is a probability vector, and S(TrXA(uu∗)) = H(p) = S(TrXB(uu∗)). Let us
assume hereafter that H(p) > 0, for the case H(p) = 0 corresponds to the situation where u is
separable (in which case the entanglement cost and distillable entanglement are both easily seen
to be 0).

We will make use of concepts regarding compression that were discussed in Lecture 9. Recall
that for each choice of n and ε > 0, we denote by Tn,ε ⊆ Σn the set of ε-typical sequences of length
n with respect to the probability vector p:

Tn,ε =
{

a1 · · · an ∈ Σn : 2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε)
}

.

For each n ∈N and ε > 0, let us define a vector

xn,ε = ∑
a1···an∈Tn,ε

√
p(a1) · · · p(an) (va1 ⊗ wa1)⊗ · · · ⊗ (van ⊗ wan) ∈ (XA ⊗XB)

⊗n.

We have
‖xn,ε‖2 = ∑

a1···an∈Tn,ε

p(a1) · · · p(an),

which is the probability that a random choice of a1 · · · an is ε-typical with respect to the probabil-
ity vector p. It follows that limn→∞ ‖xn,ε‖ = 1 for any choice of ε > 0. Let

yn,ε =
xn,ε

‖xn,ε‖

denote the normalized versions of these vectors.
Next, consider the vector of eigenvalues

λ
(

TrX⊗n
B

(
xn,εx∗n,ε

))
.

The nonzero eigenvalues are given by the probabilities for the various ε-typical sequences, and
so

2−n(H(p)+ε) < λj

(
TrX⊗n

B

(
xn,εx∗n,ε

))
< 2−n(H(p)−ε)

for j = 1, . . . , |Tn,ε |. (The remaining eigenvalues are 0.) It follows that

2−n(H(p)+ε)

‖xn,ε‖2 < λj

(
TrX⊗n

B

(
yn,εy∗n,ε

))
<

2−n(H(p)−ε)

‖xn,ε‖2

for j = 1, . . . , |Tn,ε |, and again the remaining eigenvalues are 0.
Let us now consider the entanglement cost of uu∗. We wish to show that for every real

number α > H(p) there exists a sequence {Φn : n ∈N} of LOCC channels such that

lim
n→∞

F
(

Φn

(
τ⊗bαnc

)
, (uu∗)⊗n

)
= 1. (17.3)

We will do this by means of Nielsen’s theorem. Specifically, let us choose ε > 0 so that α >
H(p) + 2ε, from which it follows that bαnc ≥ n(H(p) + ε) for sufficiently large n. We have

λj

(
TrY⊗bαnc

B

(
τ⊗bαnc

))
= 2−bαnc
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for j = 1, . . . , 2bαnc. Given that

2−n(H(p)+ε)

‖xn,ε‖2 ≥ 2−n(H(p)+ε) ≥ 2−bαnc,

for sufficiently large n, it follows that

TrY⊗bαnc
B

(
τ⊗bαnc

)
≺ TrX⊗n

B

(
yn,εy∗n,ε

)
. (17.4)

This means that τ⊗bαnc can be converted to yn,εy∗n,ε by means of an LOCC channel Φn by Nielsen’s
theorem. Given that

lim
n→∞

F
(

yn,εy∗n,ε , (uu∗)⊗n
)
= 1

this implies that the required equation (17.3) holds. Consequently Ec (uu∗) ≤ H(p).
Next let us consider the distillable entanglement, for which a similar argument is used. Our

goal is to prove that for every α < H(p), there exists a sequence {Ψn : n ∈N} of LOCC channels
such that

lim
n→∞

F
(

Ψn
(
(uu∗)⊗n) , τ⊗bαnc

)
= 1. (17.5)

In this case, let us choose ε > 0 small enough so that α < H(p)− 2ε. For sufficiently large n we
have

2bαnc ≤ ‖xn,ε‖2 2n(H(p)−ε).

Similar to above, we therefore have

TrX⊗n
B

(
yn,εy∗n,ε

)
≺ TrY⊗bαnc

B

(
τ⊗bαnc

)
,

which implies that the state yn,εy∗n,ε can be converted to the state τ⊗bαnc by means of an LOCC
channel Ψn for sufficiently large n. Given that

lim
n→∞

∥∥(uu∗)⊗n − yn,εy∗n,ε
∥∥

1 = 0

it follows that

lim
n→∞

∥∥∥Ψn
(
(uu∗)⊗n)− τ⊗bαnc

∥∥∥
1

≤ lim
n→∞

(∥∥Ψn
(
(uu∗)⊗n)−Ψn

(
yn,εy∗n,ε

)∥∥
1 +

∥∥∥Ψn
(
yn,εy∗n,ε

)
− τ⊗bαnc

∥∥∥
1

)
= 0,

which establishes the above equation (17.5). Consequently, Ed (uu∗) ≥ H(p).
We have shown that

Ec(uu∗) ≤ H(p) ≤ Ed(uu∗).

As Ed(uu∗) ≤ Ec(uu∗), the equality in the statement of the theorem follows.
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Lecture 18: The partial transpose and its relationship to
entanglement and distillation

In this lecture we will discuss the partial transpose mapping and its connection to entanglement
and distillation. Through this study, we will find that there exist bound-entangled states, which are
states that are entangled and yet have zero distillable entanglement.

18.1 The partial transpose and separability

Recall the Woronowicz–Horodecki criterion for separability: for complex Euclidean spaces X
and Y , we have that a given operator P ∈ Pos (X ⊗Y) is separable if and only if

(Φ⊗ 1L(Y))(P) ∈ Pos (Y ⊗ Y)

for every choice of a positive unital mapping Φ ∈ T (X ,Y). We note, however, that the restriction
of the mapping Φ to be both unital and to take the form Φ ∈ T (X ,Y) can be relaxed. Specifically,
the Woronowicz–Horodecki criterion implies the truth of the following two facts:

1. If P ∈ Pos (X ⊗Y) is separable, then for every choice of a complex Euclidean space Z and a
positive mapping Φ ∈ T (X ,Z), we have

(Φ⊗ 1L(Y))(P) ∈ Pos (Z ⊗Y) .

2. If P ∈ Pos (X ⊗Y) is not separable, there exists a positive mapping Φ ∈ T (X ,Z) that reveals
this fact, in the sense that

(Φ⊗ 1L(Y))(P) 6∈ Pos (Z ⊗Y) .

Moreover, there exists such a mapping Φ that is unital and for which Z = Y .

It is clear that the criterion illustrates a connection between separability and positive map-
pings that are not completely positive, for if Φ ∈ T (X ,Z) is completely positive, then

(Φ⊗ 1L(Y))(P) ∈ Pos (Z ⊗Y)

for every completely positive mapping Φ ∈ T (X ,Z), regardless of whether P is separable or not.
Thus far, we have only seen one example of a mapping that is positive but not completely

positive: the transpose. Let us recall that the transpose mapping T ∈ T (X ) on a complex
Euclidean space X is defined as

T(X) = XT

for all X ∈ L (X ). The positivity of T is clear: X ∈ Pos (X ) if and only if XT ∈ Pos (X ) for every
X ∈ L (X ). Assuming that X = CΣ, we have

T(X) = ∑
a,b∈Σ

Ea,bXEa,b = ∑
a,b∈Σ

Ea,bXE∗b,a



for all X ∈ L (X ). The Choi–Jamiołkowski representation of T is

J(T) = ∑
a,b∈Σ

Eb,a ⊗ Ea,b = W

where W ∈ U (X ⊗X ) denotes the swap operator. The fact that W is not positive semidefinite
shows that T is not completely positive.

When we refer to the partial transpose, we mean that the transpose mapping is tensored with
the identity mapping on some other space. We will use a similar notation to the partial trace: for
given complex Euclidean spaces X and Y , we define

TX = T ⊗ 1L(Y) ∈ T (X ⊗Y) .

More generally, the subscript refers to the space on which the transpose is performed.
Given that the transpose is positive, we may conclude the following from the Woronowicz–

Horodecki criterion for any choice of P ∈ Pos (X ⊗Y):

1. If P is separable, then TX (P) is necessarily positive semidefinite.

2. If P is not separable, then TX (P) might or might not be positive semidefinite, although
nothing definitive can be concluded from the criterion.

Another way to view these observations is that they describe a sort of one-sided test for entan-
glement:

1. If TX (P) is not positive semidefinite for a given P ∈ Pos (X ⊗Y), then P is definitely not
separable.

2. If TX (P) is positive semidefinite for a given P ∈ Pos (X ⊗Y), then P may or may not be
separable.

We have seen a specific example where the transpose indeed does identify entanglement: if Σ is
a finite, nonempty set of size n, and we take XA = CΣ and XB = CΣ, then

P =
1
n ∑

a,b∈Σ
Ea,b ⊗ Ea,b ∈ D (XA ⊗XB)

is certainly entangled, because

TXA(P) =
1
n

W 6∈ Pos (XA ⊗XB) .

We will soon prove that indeed there do exist entangled operators P ∈ Pos (XA ⊗XB) for
which TXA(P) ∈ Pos (XA ⊗XB), which means that the partial transpose does not give a simple
test for separability. It turns out, however, that the partial transpose does have an interesting
connection to entanglement distillation, as we will see later in the lecture.

For the sake of discussing this issue in greater detail, let us consider the following definition.
For any choice of complex Euclidean spaces XA and XB, we define

PPT (XA : XB) = {P ∈ Pos (XA ⊗XB) : TXA(P) ∈ Pos (XA ⊗XB)} .

The acronym PPT stands for positive partial transpose.
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It is the case that the set PPT (XA : XB) is a closed convex cone. Let us also note that this
notion respects tensor products, meaning that if P ∈ PPT (XA : XB) and Q ∈ PPT (YA : YB), then

P⊗Q ∈ PPT (XA ⊗YA : XB ⊗YB) .

Finally, notice that the definition of PPT (XA : XB) does not really depend on the fact that the
partial transpose is performed on XA as opposed to XB. This follows from the observation that

T(TXA(X)) = TXB(X)

for every X ∈ L (XA ⊗XB), and therefore

TXA(X) ∈ Pos (XA ⊗XB) ⇔ TXB(X) ∈ Pos (XA ⊗XB) .

18.2 Examples of non-separable PPT operators

In this section we will discuss two examples of operators that are both entangled and PPT. This
shows that the partial transpose test does not give an efficient test for separability, and also
implies something interesting about entanglement distillation to be discussed in the next section.

18.2.1 First example

Let us begin by considering the following collection of operators, all of which act on the complex
Euclidean space CZn ⊗CZn for an integer n ≥ 2. We let

Wn = ∑
a,b∈Zn

Eb,a ⊗ Ea,b

denote the swap operator, which we have now seen several times. It satisfies Wn(u⊗ v) = v⊗ u
for all u, v ∈ CZn . Let us also define

Pn =
1
n ∑

a,b∈Zn

Ea,b ⊗ Ea,b , Rn =
1
2

1⊗ 1− 1
2

Wn ,

Qn = 1⊗ 1− Pn , Sn =
1
2

1⊗ 1 +
1
2

Wn.

(18.1)

It holds that Pn, Qn, Rn, and Sn are projection operators with Pn + Qn = Rn + Sn = 1⊗ 1. The
operator Rn is the projection onto the anti-symmetric subspace of CZn ⊗CZn and Sn is the projection
onto the symmetric subspace of CZn ⊗CZn .

We have that

(T ⊗ 1)(Pn) =
1
n

Wn and (T ⊗ 1)(1⊗ 1) = 1⊗ 1,

from which the following equations follow:

(T ⊗ 1)(Pn) = −
1
n

Rn +
1
n

Sn, (T ⊗ 1)(Rn) = −
n− 1

2
Pn +

1
2

Qn,

(T ⊗ 1)(Qn) =
n + 1

n
Rn +

n− 1
n

Sn, (T ⊗ 1)(Sn) =
n + 1

2
Pn +

1
2

Qn.
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Now let us suppose we have registers X2, Y2, X3, and Y3, where

X2 = CZ2 , Y2 = CZ2 , X3 = CZ3 , Y3 = CZ3 .

In other words, X2 and Y2 are qubit registers, while X3 and Y3 are qutrit registers. We will
imagine the situation in which Alice holds registers X2 and X3, while Bob holds Y2 and Y3.

For every choice of α > 0, define

Xα = Q3 ⊗Q2 + αP3 ⊗ P2 ∈ Pos (X3 ⊗Y3 ⊗X2 ⊗Y2) .

Based on the above equations we compute:

TX3⊗X2(Xα) =

(
4
3

R3 +
2
3

S3

)
⊗
(

3
2

R2 +
1
2

S2

)
+ α

(
−1

3
R3 +

1
3

S3

)
⊗
(
−1

2
R2 +

1
2

S2

)
=

12 + α

6
R3 ⊗ R2 +

4− α

6
R3 ⊗ S2 +

6− α

6
S3 ⊗ R2 +

2 + α

6
S3 ⊗ S2.

Provided that α ≤ 4, we therefore have that Xα ∈ PPT (X3 ⊗X2 : Y3 ⊗Y2).
On the other hand, we have that

Xα 6∈ Sep (X3 ⊗X2 : Y3 ⊗Y2)

for every choice of α > 0, as we will now show. Define Ψ ∈ T (X2 ⊗Y2,X3 ⊗Y3) to be the unique
mapping for which J(Ψ) = Xα. Using the identity

Ψ(Y) = TrX2⊗Y2 [J(Ψ) (1⊗YT)]

we see that Ψ(P2) = αP3. So, for α > 0 we have that Ψ increases min-rank and is therefore not a
separable mapping. Thus, it is not the case that Xα is separable.

18.2.2 Unextendible product bases

The second example is based on the notion of an unextendible product basis. Although the construc-
tion works for any choice of an unextendible product basis, we will just consider one example.
Let X = CZ3 and Y = CZ3 , and consider the following 5 unit vectors in X ⊗Y :

u1 = |0〉 ⊗
(
|0〉 − |1〉√

2

)
u2 = |2〉 ⊗

(
|1〉 − |2〉√

2

)
u3 =

(
|0〉 − |1〉√

2

)
⊗ |2〉

u4 =

(
|1〉 − |2〉√

2

)
⊗ |0〉

u5 =

(
|0〉+ |1〉+ |2〉√

3

)
⊗
(
|0〉+ |1〉+ |2〉√

3

)

There are three relevant facts about this set for the purpose of our discussion:
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1. The set {u1, . . . , u5} is an orthonormal set.

2. Each ui is a product vector, meaning ui = xi ⊗ yi for some choice of x1, . . . , x5 ∈ X and
y1, . . . , y5 ∈ Y .

3. It is impossible to find a sixth non-zero product vector v⊗ w ∈ X ⊗ Y that is orthogonal to
u1, . . . , u5.

To verify the third property, note that in order for a product vector v ⊗ w to be orthogonal to
any ui, it must be that 〈v, xi〉 = 0 or 〈w, yi〉 = 0. In order to have 〈v⊗ w, ui〉 for i = 1, . . . , 5 we
must therefore have 〈v, xi〉 = 0 for at least three distinct choices of i or 〈w, yi〉 = 0 for at least
three distinct choices of i. However, for any three distinct choices of indices i, j, k ∈ {1, . . . , 5} we
have span{xi, xj, xk} = X and span{yi, yj, yk} = Y , which implies that either v = 0 or w = 0, and
therefore v⊗ w = 0.

Now, define a projection operator P ∈ Pos (X ⊗Y) as

P = 1X⊗Y −
5

∑
i=1

uiu∗i .

Let us first note that P ∈ PPT (X : Y). For each i = 1, . . . , 5 we have

TX (uiu∗i ) = (xix∗i )
T ⊗ yiy∗i = xix∗i ⊗ yiy∗i = uiu∗i .

The second equality follows from the fact that each xi has only real coefficients, so xi = xi. Thus,

TX (P) = TX (1X⊗Y )−
5

∑
i=1

TX (uiu∗i ) = 1X⊗Y −
5

∑
i=1

uiu∗i = P ∈ Pos (X ⊗Y) ,

as claimed.
Now let us assume toward contradiction that P is separable. This implies that it is possible

to write

P =
m

∑
j=1

vjv∗j ⊗ wjw∗j

for some choice of v1, . . . , vm ∈ X and w1, . . . , wm ∈ Y . For each i = 1, . . . , 5 we have

0 = u∗i Pui =
m

∑
j=1

u∗i (vjv∗j ⊗ wjw∗j )ui.

Therefore, for each j = 1, . . . , m we have
〈
vj ⊗ wj, ui

〉
= 0 for i = 1, . . . , 5. This implies that

v1 ⊗ w1 = · · · = vm ⊗ wm = 0, and thus P = 0, establishing a contradiction. Consequently P is
not separable.

18.3 PPT states and distillation

The last part of this lecture concerns the relationship between the partial transpose and entan-
glement distillation. Our goal will be to prove that PPT states cannot be distilled, meaning that
the distillable entanglement is zero.

Let us begin the discussion with some further properties of PPT states that will be needed.
First we will observe that separable mappings respect the positivity of the partial transpose.
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Theorem 18.1. Suppose P ∈ PPT (XA : XB) and Φ ∈ SepT (XA,YA : XB,YB) is a separable mapping.
It holds that Φ(P) ∈ PPT (YA : YB).

Proof. Consider any choice of operators A ∈ L (XA,YA) and B ∈ L (XB,YB). Given that P ∈
PPT (XA : XB), we have

TXA(P) ∈ Pos (XA ⊗XB)

and therefore
(1XA ⊗ B)TXA(P)(1XA ⊗ B∗) ∈ Pos (XA ⊗YB) .

The partial transpose on XA commutes with the conjugation by B, and therefore

TXA ((1XA ⊗ B)P(1XA ⊗ B∗) ∈ Pos (XA ⊗YB) .

This implies that

T (TXA ((1⊗ B)P(1⊗ B∗))) = TYB ((1⊗ B)P(1⊗ B∗)) ∈ Pos (XA ⊗YB)

as remarked in the first section of the lecture. Using the fact that conjugation by A commutes
with the partial transpose on YB, we have that

(A⊗ 1YB)TYB ((1⊗ B)P(1⊗ B∗) (A∗ ⊗ 1YB) = TYB ((A⊗ B)P(A∗ ⊗ B∗)) ∈ Pos (YA ⊗YB) .

We have therefore proved that (A⊗ B)P(A∗ ⊗ B∗) ∈ PPT (YA : YB).
Now, for Φ ∈ SepT (XA,YA : XB,YB), we have that Φ(P) ∈ PPT (YA : YB) by the above

observation together with the fact that PPT (YA : YB) is a convex cone.

Next, let us note that PPT states cannot have a large inner product with a maximally entangled
states.

Lemma 18.2. Let X and Y be complex Euclidean spaces and let n = min{dim(X ), dim(Y)}. For any
PPT density operator

ρ ∈ D (X ⊗Y) ∩ PPT (X : Y)

we have M(ρ) ≤ 1/n.

Proof. Let us assume, without loss of generality, that Y = CZn and dim(X ) ≥ n. Every maximally
entangled state on X ⊗Y may therefore be written

(U ⊗ 1Y )Pn(U ⊗ 1Y )
∗

for U ∈ U (Y ,X ) being a linear isometry, and where Pn is as defined in (18.1). We have that

〈(U ⊗ 1Y )Pn(U ⊗ 1Y )
∗, ρ〉 = 〈Pn, (U ⊗ 1Y )

∗ρ(U ⊗ 1Y )〉 ,

and that
(U ⊗ 1Y )

∗ρ(U ⊗ 1Y ) ∈ PPT (Y : Y)

is a PPT operator with trace at most 1. To prove the lemma it therefore suffices to prove that

〈Pn, ξ〉 ≤ 1
n

for every ξ ∈ D (Y ⊗ Y) ∩ PPT (Y : Y).
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The partial transpose is its own adjoint and inverse, which implies that

〈(T ⊗ 1)(A), (T ⊗ 1)(B)〉 = 〈A, B〉

for any choice of operators A, B ∈ L (Y ⊗ Y). It is also clear that the partial transpose pre-
serves trace, which implies that (T ⊗ 1)(ξ) ∈ D (Y ⊗ Y) for every ξ ∈ D (Y ⊗ Y) ∩ PPT (Y : Y).
Consequently we have

〈Pn, ξ〉 = |〈Pn, ξ〉| = |〈(T ⊗ 1)(Pn), (T ⊗ 1)(ξ)〉| = 1
n
|〈Wn, (T ⊗ 1)(ξ)〉| ≤ 1

n
‖(T ⊗ 1)(ξ)‖1 =

1
n

,

where the inequality follows from the fact that Wn is unitary and the last equality follows from
the fact that (T ⊗ 1)(ξ) is a density operator.

Finally we are ready for the main result of the section, which states that PPT density operators
have no distillable entanglement.

Theorem 18.3. Let XA and XB be complex Euclidean spaces and let ρ ∈ D (XA ⊗XB)∩PPT (XA : XB).
It holds that Ed(ρ) = 0.

Proof. Let YA = C{0,1} and YB = C{0,1} be complex Euclidean spaces each corresponding to a
single qubit, as in the definition of distillable entanglement, and let τ ∈ D (YA ⊗YB) be the
density operator corresponding to a perfect e-bit.

Let α > 0 and let
Φn ∈ LOCC

(
X⊗n

A ,Y⊗bαnc
A : X⊗n

B ,Y⊗bαnc
B

)
be an LOCC channel for each n ≥ 1. This implies that Φn is a separable channel. Now, if
ρ ∈ PPT (XA : XB) then ρ⊗n ∈ PPT

(
X⊗n

A : X⊗n
B
)
, and therefore

Φn(ρ
⊗n) ∈ D

(
Y⊗bαnc

A ⊗Y⊗bαnc
B

)
∩ PPT

(
Y⊗bαnc

A : Y⊗bαnc
B

)
.

By Lemma 18.2 we therefore have that〈
τ⊗bαnc, Φn(ρ

⊗n)
〉
≤ 2−bαnc.

As we have assumed α > 0, this implies that

lim
n→∞

F
(

Φn(ρ
⊗n), τ⊗bαnc

)
= 0.

It follows that Ed(ρ) < α, and from this we conclude that Ed(ρ) = 0.
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Lecture 19: LOCC and separable measurements

In this lecture we will discuss measurements that can be collectively performed by two parties by
means of local quantum operations and classical communication. Much of this discussion could
be generalized to measurements implemented by more than two parties—but, as we have been
doing for the last several lectures, we will restrict our attention to the bipartite case.

19.1 Definitions and simple observations

Informally speaking, an LOCC measurement is one that can be implemented by two (or more)
parties using only local quantum operations and classical communication. We must, however,
choose a more precise mathematical definition if we are to prove mathematical statements con-
cerning these objects.

There are many ways one could formally define LOCC measurements; for simplicity we will
choose a definition that makes use of the definition of LOCC channels we have already studied.
Specifically, we will say that a measurement

µ : Γ→ Pos (XA ⊗XB)

on a bipartite system having associated complex Euclidean spaces XA and XB is an LOCC mea-
surement if there exists an LOCC channel

Φ ∈ LOCC
(
XA, CΓ : XB, C

)
such that

〈Ea,a, Φ(ρ)〉 = 〈µ(a), ρ〉 (19.1)

for every a ∈ Γ and ρ ∈ D (XA ⊗XB). An equivalent condition to (19.1) holding for all ρ ∈
D (XA ⊗XB) is that

µ(a) = Φ∗(Ea,a).

The interpretation of this definition is as follows. Alice and Bob implement the measurement
µ by first performing the LOCC channel Φ, which leaves Alice with a register whose classical
states coincide with the set Γ of possible measurement outcomes, while Bob is left with nothing
(meaning a trivial register, having a single state, whose corresponding complex Euclidean space
is C). Alice then measures her register with respect to the standard basis of CΓ to obtain the
measurement outcome. Of course there is nothing special about letting Alice perform the mea-
surement rather than Bob; we are just making an arbitrary choice for the sake of arriving at a
definition, which would be equivalent to one allowing Bob to make the final measurement rather
than Alice.

As we did when discussing channels, we will also consider a relaxation of LOCC measure-
ments that is often much easier to work with. A measurement

µ : Γ→ Pos (XA ⊗XB)



is said to be separable if, in addition to satisfying the usual requirements of being a measurement,
it holds that µ(a) ∈ Sep (XA : XB) for each a ∈ Γ.

Proposition 19.1. Let XA and XB be complex Euclidean spaces and let

µ : Γ→ Pos (XA ⊗XB)

be an LOCC measurement. It holds that µ is a separable measurement.

Proof. Let Φ ∈ LOCC (XA,YA : XB,YB) be an LOCC channel for which

µ(a) = Φ∗(Ea,a)

for each a ∈ Γ. As Φ is an LOCC channel, it is necessarily separable, and therefore so too is Φ∗.
(This may be verified by considering the fact that Kraus operators for Φ∗ may be obtained by
taking adjoints of the Kraus operators of Φ.) As Ea,a = Ea,a ⊗ 1 is an element of Sep

(
CΓ : C

)
for

every a ∈ Γ, we have that µ(a) = Φ∗(Ea,a) is separable for each a ∈ Γ as required.

It is the case that there are separable measurements that are not LOCC measurements—
we will see such an example (albeit without a proof) later in the lecture. However, separable
measurements can be simulated by LOCC measurement in a probabilistic sense: the LOCC mea-
surement that simulates the separable measurement might fail, but it succeeds with nonzero
probability, and if it succeeds it generates the same output statistics as the original separable
measurement. This is implied by the following theorem.

Theorem 19.2. Suppose µ : Γ → Pos (XA ⊗XB) is a separable measurement. There exists an LOCC
measurement

ν : Γ ∪ {fail} → Pos (XA ⊗XB)

with the property that ν(a) = γµ(a), for each a ∈ Γ, for some real number γ > 0.

Proof. A general separable measurement µ : Γ→ Pos (XA ⊗XB) must have the form

µ(a) = ∑
b∈Σ

Pa,b ⊗Qa,b

for some finite set Σ and two collections

{Pa,b : a ∈ Γ, b ∈ Σ} ⊂ Pos (XA) ,
{Qa,b : a ∈ Γ, b ∈ Σ} ⊂ Pos (XB) .

Choose sufficiently small positive real numbers α, β > 0 such that

α ∑
a,b

Pa,b ≤ 1XA and β ∑
a,b

Qa,b ≤ 1XB ,

and define a measurement νA : (Γ× Σ) ∪ {fail} → Pos (XA) as

νA(a, b) = αPa,b and ν(fail) = 1XA − α ∑
a,b

Pa,b,

and a measurement νB : (Γ× Σ) ∪ {fail} → Pos (XB) as

νB(a, b) = βQa,b and ν(fail) = 1XB − β ∑
a,b

Qa,b.
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Now, consider the situation in which Alice performs νA and Bob independently performs νB.
Let us suppose that Bob sends Alice his measurement outcome, and Alice compares this result
with her own to determine the final result. If Bob’s measurement outcome is “fail,” or if Alice’s
measurement outcome is not equal to Bob’s, Alice outputs “fail.” If, on the other hand, Alice and
Bob obtain the same measurement outcome (a, b) ∈ Γ× Σ, Alice outputs a. The measurement ν
that they implement is described by

ν(a) = ∑
b∈Σ

νA(a, b)⊗ νB(a, b) = αβ ∑
b∈Σ

Pa,b ⊗Qa,b = αβµ(a)

and
ν(fail) = 1XA ⊗ 1XB − αβ ∑

a∈Γ
µ(a).

Taking γ = αβ completes the proof.

It is the case that certain measurements are not separable, and therefore cannot be performed
by means of local operations and classical communication. For instance, no LOCC measurement
can perfectly distinguish any fixed entangled pure state from all orthogonal states, given that one
of the required measurement operators would then necessarily be non-separable. This fact triv-
ially implies that Alice and Bob cannot perform a measurement with respect to any orthonormal
basis

{ua : a ∈ Γ} ⊂ XA ⊗XB

of XA ⊗XB unless that basis consists entirely of product vectors.
Another example along these lines is that Alice and Bob cannot perfectly distinguish sym-

metric and antisymmetric states of CZn ⊗ CZn by means of an LOCC measurement. Such a
measurement is described by the two-outcome projective measurement {Rn, Sn}, where

Rn =
1
2
(1−Wn) and Sn =

1
2
(1 + Wn),

for Wn denoting the swap operator (as was discussed in the previous lecture). The fact that Rn is
not separable follows from the fact that it is not PPT:

(T ⊗ 1)(Rn) = −
n− 1

2
Pn +

1
2

Qn,

where Pn and Qn are as defined in the previous lecture.

19.2 Impossibility of LOCC distinguishing some sets of states

When we force measurements to have non-separable measurement operators, it is clear that
the measurements cannot be performed using local operations and classical communication.
Sometimes, however, we may be interested in a task that potentially allows for many different
implementations as a measurement.

One interesting scenario along these lines is the task of distinguishing certain sets of pure
states. Specifically, suppose that XA and XB are complex Euclidean spaces and {u1, . . . , uk} ⊂
XA ⊗ XB is a set of orthogonal unit vectors. Alice and Bob are given a pure state ui for i ∈
{1, . . . , k} and their goal is to determine the value of i. It is assumed that they have complete
knowledge of the set {u1, . . . , uk}. Under the assumption that k is smaller than the total dimen-
sion of the space XA⊗XB, there will be many measurements µ : {1, . . . , k} → Pos (XA ⊗XB) that
correctly distinguish the elements of the set {u1, . . . , uk}, and the general question we consider is
whether there is at least one such measurement that is LOCC.
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19.2.1 Sets of maximally entangled states

Let us start with a simple general result that proves that sufficiently many maximally entangled
pure states are hard to distinguish in the sense described. Specifically, assume that XA and XB
both have dimension n, and consider a collection U1, . . . , Uk ∈ U (XB,XA) of pairwise orthogonal
unitary operators, meaning that

〈
Ui, Uj

〉
= 0 for i 6= j. The set{

1√
n

vec(U1), . . . ,
1√
n

vec(Uk)

}
therefore represents a set of maximally entangled pure states. We will show that such a set cannot
be perfectly distinguished by a separable measurement, under the assumption that k ≥ n + 1.

Suppose µ : {1, . . . , k} → Pos (XA ⊗XB) is a separable measurement, so that

µ(j) =
m

∑
i=1

Pj,i ⊗Qj,i

for each j = 1, . . . , k, for {Pj,i} ⊂ Pos (XA) and {Qj,i} ⊂ Pos (XB) being collections of positive
semidefinite operators. It follows that

〈
µ(j), vec(Uj) vec(Uj)

∗〉 = m

∑
i=1

Tr
(

U∗j Pj,iUjQT
j,i

)
≤

m

∑
i=1

Tr
(

U∗j Pj,iUj

)
Tr
(

QT
j,i

)
=

m

∑
i=1

Tr
(

Pj,i
)

Tr
(
Qj,i
)
=

m

∑
i=1

Tr
(

Pj,i ⊗Qj,i
)
= Tr(µ(j))

for each j (where the inequality holds because Tr(AB) ≤ Tr(A)Tr(B) for A, B ≥ 0). Thus, it holds
that

1
k

k

∑
j=1

〈
µ(j),

1
n

vec(Uj) vec(Uj)
∗
〉
≤ 1

nk

k

∑
j=1

Tr(µ(j)) =
n
k

,

which implies that the correctness probability of any separable measurement to distinguish the
k maximally entangled states is smaller than 1 for k ≥ n + 1.

Naturally, as any measurement implementable by an LOCC protocol is separable, it follows
that no LOCC protocol can distinguish more than n maximally entangled states in XA ⊗ XB in
the case that dim(XA) = dim(XB) = n.

19.2.2 Indistinguishable sets of product states

It is reasonable to hypothesize that large sets of maximally entangled states are not LOCC distin-
guishable because they are highly entangled. However, it turns out that entanglement is not an
essential feature for this phenomenon. In fact, there exist orthogonal collections of product states
that are not perfectly distinguishable by LOCC measurements.

One example is the following orthonormal basis of CZ3 ⊗CZ3 :

|1〉 ⊗ |1〉 |0〉 ⊗
(
|0〉+|1〉√

2

)
|2〉 ⊗

(
|1〉+|2〉√

2

) (
|1〉+|2〉√

2

)
⊗ |0〉

(
|0〉+|1〉√

2

)
⊗ |2〉

|0〉 ⊗
(
|0〉−|1〉√

2

)
|2〉 ⊗

(
|1〉−|2〉√

2

) (
|1〉−|2〉√

2

)
⊗ |0〉

(
|0〉−|1〉√

2

)
⊗ |2〉

A measurement with respect to this basis is an example of a measurement that is separable but
not LOCC.
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The proof that the above set is not perfectly LOCC distinguishable is technical, and so a
reference will have to suffice in place of a proof:

C. H. Bennett, D. DiVincenzo, C. Fuchs, T. Mor, E. Rains, P. Shor, J. Smolin, and W. Wootters.
Quantum nonlocality without entanglement. Physical Review A, 59(2):1070–1091, 1999.

Another family of examples of product states (but not product bases) that cannot be distin-
guished by LOCC measurements comes from an unextendible product set. For instance, the set
discussed in the previous lecture cannot be distinguished by an LOCC measurement:

|0〉 ⊗
(
|0〉−|1〉√

2

) (
|0〉−|1〉√

2

)
⊗ |2〉

(
|0〉+|1〉+|2〉√

3

)
⊗
(
|0〉+|1〉+|2〉√

3

)
|2〉 ⊗

(
|1〉−|2〉√

2

) (
|1〉−|2〉√

2

)
⊗ |0〉

This fact is proved in the following paper:

D. DiVincenzo, T. Mor, P. Shor, J. Smolin and B. Terhal. Unextendible Product Bases, Uncom-
pletable Product Bases and Bound Entanglement. Communications in Mathematical Physics,
238(3): 379–410, 2003.

19.3 Any two orthogonal pure states can be distinguished

Finally, we will prove an interesting and fundamental result in this area, which is that any two
orthogonal pure states can always be distinguished by an LOCC measurement.

In order to prove this fact, we need a theorem known as the Toeplitz–Hausdorff theorem,
which concerns the numerical range of an operator. The numerical range of an operator A ∈ L (X )
is the set N (A) ⊂ C defined as follows:

N (A) = {u∗Au : u ∈ X , ‖u‖ = 1} .

This set is also sometimes called the field of values of A. It is not hard to prove that the numer-
ical range of a normal operator is simply the convex hull of its eigenvalues. For non-normal
operators, however, this is not the case—but the numerical range will nevertheless be a compact
and convex set that includes the eigenvalues. The fact that the numerical range is compact and
convex is what is stated by the Toeplitz-Hausdorff theorem.

Theorem 19.3 (The Toeplitz-Hausdorff theorem). For any complex Euclidean space X and any oper-
ator A ∈ L (X ), the set N (A) is compact and convex.

Proof. The proof of compactness is straightforward. Specifically, the function f : X → C defined
by f (u) = u∗Au is continuous, and the unit sphere S (X ) is compact. Continuous functions map
compact sets to compact sets, implying that N (A) = f (S (X )) is compact.

The proof of convexity is the more difficult part of the proof. Let us fix some arbitrary choice
of α, β ∈ N (A) and p ∈ [0, 1]. It is our goal to prove that pα + (1− p)β ∈ N (A). We will assume
that α 6= β, as the assertion is trivial in case α = β.

By the definition of the numerical range, we may choose unit vectors u, v ∈ X such that
u∗Au = α and v∗Av = β. It follows from the fact that α 6= β that the vectors u and v are linearly
independent.
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Next, define

B =
−β

α− β
1X +

1
α− β

A

so that u∗Bu = 1 and v∗Bv = 0. Let

X =
1
2
(B + B∗) and Y =

1
2i
(B− B∗).

It holds that B = X + iY, and both X and Y are Hermitian. It therefore follows that

u∗Xu = 1, v∗Xv = 0,
u∗Yu = 0, v∗Yv = 0.

Without loss of generality we may also assume u∗Yv is purely imaginary (i.e., has real part equal
to 0), for otherwise v may be replaced by eiθv for an appropriate choice of θ without changing
any of the previously observed properties.

As u and v are linearly independent, we have that tu + (1− t)v is a nonzero vector for every
choice of t. Thus, for each t ∈ [0, 1] we may define

z(t) =
tu + (1− t)v
‖tu + (1− t)v‖ ,

which is of course a unit vector. Because u∗Yu = v∗Yv = 0 and u∗Yv is purely imaginary, we
have z(t)∗Yz(t) = 0 for every t. Thus

z(t)∗Bz(t) = z(t)∗Xz(t) =
t2 + 2t(1− t)<(v∗Xu)
‖tu + (1− t)v‖ .

This is a continuous real-valued function mapping 0 to 0 and 1 to 1. Consequently there must
exist some choice of t ∈ [0, 1] such that z(t)∗Bz(t) = p. Let w = z(t) for such a value of t, so that
w∗Bw = p. We have that w is a unit vector, and

w∗Aw = (α− β)

(
β

α− β
+ w∗Bw

)
= β + p(α− β) = pα + (1− p)β.

Thus we have shown that pα + (1− p)β ∈ N (A) as required.

Corollary 19.4. For any complex Euclidean space X and any operator A ∈ L (X ) satisfying Tr(A) = 0,
there exists an orthonormal basis {x1, . . . , xn} of X for which x∗i Axi = 0 for i = 1, . . . , n.

Proof. The proof is by induction on n = dim(X ), and the base case n = 1 is trivial.
Suppose that n ≥ 2. It is clear that λ1(A), . . . , λn(A) ∈ N (A), and thus 0 ∈ N (A) because

0 =
1
n

Tr(A) =
1
n

n

∑
i=1

λi(A),

which is a convex combination of elements of N (A). Therefore there exists a unit vector u ∈ X
such that u∗Au = 0.

Now, let Y ⊆ X be the orthogonal complement of u in X , and let ΠY = 1X − uu∗ be the
orthogonal projection onto Y . It holds that

Tr(ΠYAΠY ) = Tr(A)− u∗Au = 0.
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Moreover, because im(ΠYAΠY ) ⊆ Y , we may regard ΠYAΠY as an element of L (Y). By the
induction hypothesis, we therefore have that there exists an orthonormal basis {v1, . . . , vn−1} of Y
such that v∗i ΠYAΠYvi = 0 for i = 1, . . . , n− 1. It follows that {u, v1, . . . , vn−1} is an orthonormal
basis of X with the properties required by the statement of the corollary.

Now we are ready to return to the problem of distinguishing orthogonal states. Suppose that

x, y ∈ XA ⊗XB

are orthogonal unit vectors. We wish to show that there exists an LOCC measurement that
correctly distinguishes between x and y. Let X, Y ∈ L (XB,XA) be operators satisfying x =
vec(X) and y = vec(Y), so that the orthogonality of x and y is equivalent to Tr(X∗Y) = 0.
By Corollary 19.4, we have that there exists an orthonormal basis {u1, . . . , un} of XB with the
property that u∗i X∗Yui = 0 for i = 1, . . . , n.

Now, suppose that Bob measures his part of either xx∗ or yy∗ with respect to the orthonormal
basis {u1, . . . , un} of XB and transmits the result of the measurement to Alice. Conditioned on
Bob obtaining the outcome i, the (unnormalized) state of Alice’s system becomes

(1XA ⊗ uT
i ) vec(X) vec(X)∗ (1XA ⊗ ui) = Xuiu∗i X∗

in case the original state was xx∗, and Yuiu∗i Y∗ in case the original state was yy∗.
A necessary and sufficient condition for Alice to be able to correctly distinguish these two

states, given knowledge of i, is that

〈Xuiu∗i X∗, Yuiu∗i Y∗〉 = 0.

This condition is equivalent to u∗i X∗Yui = 0 for each i = 1, . . . , n. The basis {u1, . . . , un} was
chosen to satisfy this condition, which implies that Alice can correctly distinguish the two possi-
bilities without error.
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Lecture 20: Channel distinguishability and the completely
bounded trace norm

This lecture is primarily concerned with the distinguishability of quantum channels, along with a
norm defined on mappings between operator spaces that is closely related to this problem. In
particular, we will define and study a norm called the completely bounded trace norm that plays
an analogous role for channel distinguishability that the ordinary trace norm plays for density
operator distinguishability.

20.1 Distinguishing between quantum channels

Recall from Lecture 3 that the trace norm has a close relationship to the optimal probability of
distinguishing two quantum states. In particular, for every choice of density operators ρ0, ρ1 ∈
D (X ) and a scalar λ ∈ [0, 1], it holds that

max
P0,P1

[λ 〈P0, ρ0〉+ (1− λ) 〈P1, ρ1〉] =
1
2
+

1
2
‖λρ0 − (1− λ)ρ1‖1 ,

where the maximum is over all P0, P1 ∈ Pos (X ) satisfying P0 + P1 = 1X , i.e., {P0, P1} representing
a binary-valued measurement. In words, the optimal probability to distinguish (or correctly
identify) the states ρ0 and ρ1, given with probabilities λ and 1− λ, respectively, by means of a
measurement is

1
2
+

1
2
‖λρ0 − (1− λ)ρ1‖1 .

One may consider a similar situation involving channels rather than density operators. Specif-
ically, let us suppose that Φ0, Φ1 ∈ C (X ,Y) are channels, and that a bit a ∈ {0, 1} is chosen at
random, such that

Pr[a = 0] = λ and Pr[a = 1] = 1− λ.

A single evaluation of the channel Φa is made available, and the goal is to determine the value
of a with maximal probability.

One approach to this problem is to choose ξ ∈ D (X ) in order to maximize the quantity
‖ρ0 − ρ1‖1 for ρ0 = Φ0(ξ) and ρ1 = Φ1(ξ). If a register X is prepared so that its state is ξ, and X
is input to the given channel Φa, then the output is a register Y that can be measured using an
optimal measurement to distinguish the two possible outputs ρ0 and ρ1.

This, however, is not the most general approach. More generally, one may include an auxiliary
register Z in the process—meaning that a pair of registers (X,Z) is prepared in some state ξ ∈
D (X ⊗Z), and the given channel Φa is applied to X. This results in a pair of registers (Y,Z)
that will be in either of the states ρ0 = (Φ0 ⊗ 1L(Z))(ξ) or ρ1 = (Φ1 ⊗ 1L(Z))(ξ), which may then
be distinguished by a measurement on Y ⊗ Z . Indeed, this more general approach can give a
sometimes striking improvement in the probability to distinguish Φ0 and Φ1, as the following
example illustrates.



Example 20.1. Let X be a complex Euclidean space and let n = dim(X ). Define channels
Φ0, Φ1 ∈ T (X ) as follows:

Φ0(X) =
1

n + 1
((Tr X)1X + XT) ,

Φ1(X) =
1

n− 1
((Tr X)1X − XT) .

Both Φ0 and Φ1 are indeed channels: the fact that they are trace-preserving can be checked
directly, while complete positivity follows from a calculation of the Choi-Jamiołkowski represen-
tations of these mappings:

J(Φ0) =
1

n + 1
(1X⊗X + W) =

2
n + 1

S,

J(Φ1) =
1

n− 1
(1X⊗X −W) =

2
n− 1

R,

where W ∈ L (X ⊗X ) is the swap operator and R, S ∈ L (X ⊗X ) are the projections onto the
symmetric and antisymmetric subspaces of X ⊗X , respectively.

Now, for any choice of a density operator ξ ∈ D (X ) we have

Φ0(ξ)−Φ1(ξ) =

(
1

n + 1
− 1

n− 1

)
1X +

(
1

n + 1
+

1
n− 1

)
ξT

= − 2
n2 − 1

1X +
2n

n2 − 1
ξT.

The trace norm of such an operator is maximized when ξ has rank 1, in which case the value of
the trace norm is

2n− 2
n2 − 1

+ (n− 1)
2

n2 − 1
=

4
n + 1

.

Consequently

‖Φ0(ξ)−Φ1(ξ)‖1 ≤
4

n + 1
for all ξ ∈ D (X ). For large n, this quantity is small, which is not surprising because both Φ0(ξ)
and Φ1(ξ) are almost completely mixed for any choice of ξ ∈ D (X ).

However, suppose that we prepare two registers (X1,X2) in the maximally entangled state

τ =
1
n

vec(1X ) vec(1X )∗ ∈ D (X ⊗X ) .

We have
(Φa ⊗ 1L(X ))(τ) =

1
n

J(Φa)

for a ∈ {0, 1}, and therefore

(Φ0 ⊗ 1L(X ))(τ) =
2

n(n + 1)
S and (Φ1 ⊗ 1L(X ))(τ) =

2
n(n− 1)

R.

Because R and S are orthogonal, we have∥∥∥(Φ0 ⊗ 1L(X ))(τ)− (Φ1 ⊗ 1L(X ))(τ)
∥∥∥

1
= 2,
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meaning that the states (Φ0 ⊗ 1L(X ))(τ) and (Φ1 ⊗ 1L(X ))(τ), and therefore the channels Φ0 and
Φ1, can be distinguished perfectly.

By applying Φ0 or Φ1 to part of a larger system, we have therefore completely eliminated the
large error that was present when the limited approach of choosing ξ ∈ D (X ) as an input to Φ0
and Φ1 was considered.

The previous example makes clear that auxiliary systems must be taken into account if we
are to understand the optimal probability with which channels can be distinguished.

20.2 Definition and properties of the completely bounded trace norm

With the discussion from the previous section in mind, we will now discuss two norms: the
induced trace norm and the completely bounded trace norm. The precise relationship these norms
have to the notion of channel distinguishability will be made clear later in the section.

20.2.1 The induced trace norm

We will begin with the induced trace norm. This norm does not provide a suitable way to
measure distances between channels, at least with respect to the issues discussed in the previous
section, but it will nevertheless be helpful from a mathematical point of view for us to start with
this norm.

For any choice of complex Euclidean spaces X and Y , and for a given mapping Φ ∈ T (X ,Y),
the induced trace norm is defined as

‖Φ‖1 = max {‖Φ(X)‖1 : X ∈ L (X ) , ‖X‖1 ≤ 1} . (20.1)

This norm is just one of many possible examples of induced norms; in general, one may
consider the norm obtained by replacing the two trace norms in this definition with any other
choice of norms that are defined on L (X ) and L (Y). The use of the maximum, rather than the
supremum, is justified in this context by the observation that every norm defined on a complex
Euclidean space is continuous and its corresponding unit ball is compact.

Let us note two simple properties of the induced trace norm that will be useful for our
purposes. First, for every choice of complex Euclidean spaces X , Y , and Z , and mappings
Ψ ∈ T (X ,Y) and Φ ∈ T (Y ,Z), it holds that

‖ΦΨ‖1 ≤ ‖Φ‖1 ‖Ψ‖1 . (20.2)

This is a general property of every induced norm, provided that the same norm on L (Y) is taken
for both induced norms.

Second, the induced trace norm can be expressed as follows for a given mapping Φ ∈
T (X ,Y):

‖Φ‖1 = max{‖Φ(uv∗)‖1 : u, v ∈ S (X )}, (20.3)

where S (X ) = {x ∈ X : ‖x‖ = 1} denotes the unit sphere in X . This fact holds because the
trace norm (like every other norm) is a convex function, and the unit ball with respect to the
trace norm can be represented as

{X ∈ L (X ) : ‖X‖1 ≤ 1} = conv{uv∗ : u, v ∈ S (X )}.
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Alternately, one can prove that (20.3) holds by considering a singular value decomposition of any
operator X ∈ L (X ) with ‖X‖1 ≤ 1 that maximizes (20.1).

One undesirable property of the induced trace norm is that it is not multiplicative with respect
to tensor products. For instance, for a complex Euclidean space X , let us consider the transpose
mapping T ∈ T (X ) and the identity mapping 1L(X ) ∈ T (X ). It holds that

‖T‖1 = 1 =
∥∥∥1L(X )

∥∥∥
1

but ∥∥∥T ⊗ 1L(X )

∥∥∥
1
≥
∥∥∥(T ⊗ 1L(X ))(τ)

∥∥∥
1
=

1
n
‖W‖1 = n (20.4)

for n = dim(X ), τ ∈ D (X ⊗X ) defined as

τ =
1
n

vec(1X ) vec(1X )∗,

and W ∈ L (X ⊗X ) denoting the swap operator, as in Example 20.1. (The inequality in (20.4) is
really an equality, but it is not necessary for us to prove this at this moment.) Thus, we have∥∥∥T ⊗ 1L(X )

∥∥∥
1
> ‖T‖1

∥∥∥1L(X )

∥∥∥
1

,

assuming n ≥ 2.

20.2.2 The completely bounded trace norm

We will now define the completely bounded trace norm, which may be seen as a modification of
the induced trace norm that corrects for that norm’s failure to be multiplicative with respect to
tensor products.

For any choice of complex Euclidean spaces X and Y , and a mapping Φ ∈ T (X ,Y), we
define the completely bounded trace norm of Φ to be

|||Φ|||1 =
∥∥∥Φ⊗ 1L(X )

∥∥∥
1

.

(This norm is also commonly called the diamond norm, and denoted ‖Φ‖�.) The principle behind
its definition is that tensoring Φ with the identity mapping has the effect of stabilizing its induced
trace norm. This sort of stabilization endows the completely bounded trace norm with many nice
properties, and allows it to be used in contexts where the induced trace norm is not sufficient.
This sort of stabilization is also related to the phenomenon illustrated in the previous section,
where tensoring with the identity channel had the effect of amplifying the difference between
channels.

The first thing we must do is to explain why the definition of the completely bounded trace
norm tensors Φ with the identity mapping on L (X ), rather than some other space. The answer
is that X has sufficiently large dimension—and replacing X with any complex Euclidean space
with larger dimension would not change anything. The following lemma allows us to prove this
fact, and includes a special case that will be useful later in the lecture.

Lemma 20.2. Let Φ ∈ T (X ,Y), and let Z be a complex Euclidean space. For every choice of unit vectors
u, v ∈ X ⊗Z there exist unit vectors x, y ∈ X ⊗X such that∥∥∥(Φ⊗ 1L(Z))(uv∗)

∥∥∥
1
=
∥∥∥(Φ⊗ 1L(X ))(xy∗)

∥∥∥
1

.

In case u = v, we may in addition take x = y.
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Proof. The lemma is straightforward when dim(Z) ≤ dim(X ); for any choice of a linear isometry
U ∈ U (Z ,X ) the vectors x = (1X ⊗U)u and y = (1X ⊗U)v satisfy the required conditions. Let
us therefore consider the case where dim(Z) > dim(X ) = n.

Consider the vector u ∈ X ⊗Z . Given that dim(X ) ≤ dim(Z), there must exist an orthogonal
projection Π ∈ L (Z) having rank at most n = dim(X ) that satisfies u = (1X ⊗Π)u and therefore
there must exist a linear isometry U ∈ U (X ,Z) such that u = (1X ⊗UU∗)u. Likewise there must
exist a linear isometry V ∈ U (X ,Z) such that v = (1X ⊗ VV∗)v. Such linear isometries U and
V can be obtained from Schmidt decompositions of u and v.

Now let x = (1⊗U∗)u and y = (1⊗V∗)v. Notice that we therefore have u = (1⊗U)x and
v = (1⊗V)y, which shows that x and y are unit vectors. Moreover, given that ‖U‖ = ‖V‖ = 1,
we have ∥∥∥(Φ⊗ 1L(Z))(uv∗)

∥∥∥
1
=
∥∥∥(Φ⊗ 1L(Z))((1⊗U)xy∗(1⊗V∗))

∥∥∥
1

=
∥∥∥(1⊗U)(Φ⊗ 1L(X ))(xy∗)(1⊗V∗)

∥∥∥
1

=
∥∥∥(Φ⊗ 1L(X ))(xy∗)

∥∥∥
1

as required. In case u = v, we may take U = V, implying that x = y.

The following theorem, which explains the choice of taking the identity mapping on L (X )
in the definition of the completely bounded trace norm, is immediate from Lemma 20.2 together
with (20.3).

Theorem 20.3. Let X and Y be complex Euclidean spaces, let Φ ∈ T (X ,Y) be any mapping, and let Z
be any complex Euclidean space for which dim(Z) ≥ dim(X ). It holds that∥∥∥Φ⊗ 1L(Z)

∥∥∥
1
= |||Φ|||1 .

One simple but important consequence of this theorem is that the completely bounded trace
norm is multiplicative with respect to tensor products.

Theorem 20.4. For every choice of mappings Φ1 ∈ T (X1,Y1) and Φ2 ∈ T (X2,Y2), it holds that

|||Φ1 ⊗Φ2|||1 = |||Φ1|||1 |||Φ2|||1 .

Proof. Let W1 and W2 be complex Euclidean spaces with dim(W1) = dim(X1) and dim(W2) =
dim(X2), so that

|||Φ1|||1 =
∥∥∥Φ1 ⊗ 1L(W1)

∥∥∥
1

,

|||Φ2|||1 =
∥∥∥Φ2 ⊗ 1L(W2)

∥∥∥
1

,

|||Φ1 ⊗Φ2|||1 =
∥∥∥Φ1 ⊗Φ2 ⊗ 1L(W1⊗W2)

∥∥∥
1

.

We have

|||Φ1 ⊗Φ2|||1 =
∥∥∥Φ1 ⊗Φ2 ⊗ 1L(W1⊗W2)

∥∥∥
1

=
∥∥∥(Φ1 ⊗ 1L(Y2) ⊗ 1L(W1⊗W2)

) (
1L(X1) ⊗Φ2 ⊗ 1L(W1⊗W2)

)∥∥∥
1

≤
∥∥∥(Φ1 ⊗ 1L(Y2) ⊗ 1L(W1⊗W2)

)∥∥∥
1

∥∥∥(1L(X1) ⊗Φ2 ⊗ 1L(W1⊗W2)

)∥∥∥
1

= |||Φ1|||1 |||Φ2|||1 ,
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where the last inequality follows by Theorem 20.3.
For the reverse inequality, choose operators X1 ∈ L (X1 ⊗W1) and X2 ∈ L (X2 ⊗W2) such

that ‖X1‖1 = ‖X2‖1 = 1, |||Φ1|||1 = ‖(Φ1 ⊗ 1W1)(X1)‖1, and |||Φ2|||1 = ‖(Φ2 ⊗ 1W2)(X2)‖1. IT
holds that ‖X1 ⊗ X2‖1 = 1, and so

|||Φ1 ⊗Φ2|||1 =
∥∥∥Φ1 ⊗Φ2 ⊗ 1L(W1⊗W2)

∥∥∥
1

≥
∥∥∥(Φ1 ⊗ 1L(W1) ⊗Φ2 ⊗ 1L(W2)

)
(X1 ⊗ X2)

∥∥∥
1

=
∥∥∥(Φ1 ⊗ 1L(W1)

)
(X1)⊗

(
Φ2 ⊗ 1L(W2)

)
(X2)

∥∥∥
1

=
∥∥∥(Φ1 ⊗ 1L(W1)

)
(X1)

∥∥∥
1

∥∥∥(Φ2 ⊗ 1L(W2)

)
(X2)

∥∥∥
1

= |||Φ1|||1 |||Φ2|||1

as required.

The final fact that we will establish about the completely bounded trace norm in this lecture
concerns input operators for which the value of the completely bounded trace norm is achieved.
In particular, we will establish that for Hermiticity-preserving mappings Φ ∈ T (X ,Y), there
must exist a unit vector u ∈ X ⊗X for which

|||Φ|||1 =
∥∥∥(Φ⊗ 1L(X ))(uu∗)

∥∥∥
1

.

This fact will give us the final piece we need to connect the completely bounded trace norm to
the distinguishability problem discussed in the beginning of the lecture.

Theorem 20.5. Suppose that Φ ∈ T (X ,Y) is Hermiticity-preserving. It holds that

|||Φ|||1 = max
{∥∥∥(Φ⊗ 1L(X ))(xx∗)

∥∥∥
1

: x ∈ S (X ⊗X )
}

.

Proof. Let X ∈ L (X ⊗X ) be an operator with ‖X‖1 = 1 that satisfies

|||Φ|||1 =
∥∥∥(Φ⊗ 1L(X ))(X)

∥∥∥
1

.

Let Z = C{0,1} and let

Y =
1
2

X⊗ E0,1 +
1
2

X∗ ⊗ E1,0 ∈ Herm (X ⊗X ⊗Z) .

We have ‖Y‖ = ‖X‖ = 1 and∥∥∥(Φ⊗ 1L(X⊗Z))(Y)
∥∥∥

1
=

1
2

∥∥∥(Φ⊗ 1L(X ))(X)⊗ E0,1 + (Φ⊗ 1L(X ))(X∗)⊗ E1,0

∥∥∥
1

=
1
2

∥∥∥(Φ⊗ 1L(X ))(X)⊗ E0,1 + ((Φ⊗ 1L(X ))(X))∗ ⊗ E1,0

∥∥∥
1

=
∥∥∥(Φ⊗ 1L(X ))(X)

∥∥∥
1

= |||Φ|||1 ,
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where the second equality follows from the fact that Φ is Hermiticity-preserving. Now, because
Y is Hermitian, we may consider a spectral decomposition

Y = ∑
j

λjuju∗j .

By the triangle inequality we have

|||Φ|||1 =
∥∥∥(Φ⊗ 1L(X⊗Z))(Y)

∥∥∥ ≤∑
j

∣∣λj
∣∣ ∥∥∥(Φ⊗ 1L(X⊗Z))(uju∗j )

∥∥∥
1

.

As ‖Y‖ = 1, we have ∑j
∣∣λj
∣∣ = 1, and thus∥∥∥(Φ⊗ 1L(X⊗Z))(uju∗j )

∥∥∥
1
≥ |||Φ|||1

for some index j. We may therefore apply Lemma 20.2 to obtain a unit vector x ∈ X ⊗ X such
that ∥∥∥(Φ⊗ 1L(X ))(xx∗)

∥∥∥
1
=
∥∥∥(Φ⊗ 1L(X⊗Z))(uju∗j )

∥∥∥
1
≥ |||Φ|||1 .

Thus
|||Φ|||1 ≤ max

{∥∥∥(Φ⊗ 1L(X ))(xx∗)
∥∥∥

1
: x ∈ S (X ⊗X )

}
.

It is clear that the maximum cannot exceed |||Φ|||1, and so the proof is complete.

Let us note that at this point we have established the relationship between the completely
bounded trace norm and the problem of channel distinguishability that we discussed at the
beginning of the lecture; in essence, the relationship is an analogue of Helstrom’s theorem for
channels.

Theorem 20.6. Let Φ0, Φ1 ∈ C (X ,Y) be channels and let λ ∈ [0, 1]. It holds that

sup
ξ,P0,P1

[
λ
〈

P0, (Φ0 ⊗ 1L(Z))(ξ)
〉
+ (1− λ)

〈
P1, (Φ1 ⊗ 1L(Z))(ξ)

〉]
=

1
2
+

1
2
|||λΦ0 − (1− λ)Φ1|||1 ,

where the supremum is over all complex Euclidean spaces Z , density operators ξ ∈ D (X ⊗Z), and
binary valued measurements {P0, P1} ⊂ Pos (Y ⊗Z). Moreover, the supremum is achieved for Z = X
and ξ = uu∗ being a pure state.

20.3 Distinguishing unitary and isometric channels

We started the lecture with an example of two channels Φ0, Φ1 ∈ T (X ,Y) for which an auxil-
iary system was necessary to optimally distinguish Φ0 and Φ1. Let us conclude the lecture by
observing that this phenomenon does not arise for mappings induced by linear isometries.

Theorem 20.7. Let X and Y be complex Euclidean spaces, let U, V ∈ U (X ,Y) be linear isometries, and
suppose

Φ0(X) = UXU∗ and Φ1(X) = VXV∗

for all X ∈ L (X ). There exists a unit vector u ∈ X such that

‖Φ0(uu∗)−Φ1(uu∗)‖1 = |||Φ0 −Φ1|||1 .
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Proof. Recall that the numerical range of an operator A ∈ L (X ) is defined as

N (A) = {u∗Au : u ∈ S (X )} .

Let us define ν(A) to be the smallest absolute value of any element of N (A):

ν(A) = min {|α| : α ∈ N (A)} .

Now, for any choice of a unit vector u ∈ X we have

‖Φ0(uu∗)−Φ1(uu∗)‖1 = ‖Uuu∗U∗ −Vuu∗V∗‖1 = 2
√

1− |u∗U∗Vu|2.

Maximizing this quantity over u ∈ S (X ) gives

max{‖Φ0(uu∗)−Φ1(uu∗)‖1 : u ∈ S (X )} = 2
√

1− ν(U∗V)2.

Along similar lines, we have

|||Φ0 −Φ1|||1 = max
u∈S(X⊗X )

∥∥∥(Φ0 ⊗ 1L(X ))(uu∗)− (Φ1 ⊗ 1L(X ))(uu∗)
∥∥∥

1
= 2

√
1− ν(U∗V ⊗ 1X )2,

where here we have also made use of Theorem 20.5.
To complete the proof it therefore suffices to prove that

ν(A⊗ 1X ) = ν(A)

for every operator A ∈ L (X ). It is clear that ν(A ⊗ 1X ) ≤ ν(A), so we just need to prove
ν(A⊗ 1X ) ≥ ν(A). Let u ∈ X ⊗X be any unit vector, and let

u =
r

∑
j=1

√
pj xj ⊗ yj

be a Schmidt decomposition of u. It holds that

u∗(A⊗ 1X )u =
r

∑
j=1

pjx∗j Axj.

For each j we have u∗j Auj ∈ N (A), and therefore

u∗(A⊗ 1X )u =
r

∑
j=1

pjx∗j Axj ∈ N (A)

by the Toeplitz–Hausdorff theorem. Consequently

|u∗(A⊗ 1X )u| ≥ ν(A)

for every u ∈ S (X ⊗X ), which completes the proof.
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Lecture 21: Alternate characterizations of the completely
bounded trace norm

In the previous lecture we discussed the completely bounded trace norm, its connection to the
problem of distinguishing channels, and some of its basic properties. In this lecture we will
discuss a few alternate ways in which this norm may be characterized, including a semidefinite
programming formulation that allows for an efficient calculation of the norm.

21.1 Maximum output fidelity characterization

Suppose X and Y are complex Euclidean spaces and Φ0, Φ1 ∈ T (X ,Y) are completely positive
(but not necessarily trace-preserving) maps. Let us define the maximum output fidelity of Φ0 and
Φ1 as

Fmax(Φ0, Φ1) = max {F(Φ0(ρ0), Φ1(ρ1)) : ρ0, ρ1 ∈ D (X )} .

In other words, this is the maximum fidelity between an output of Φ0 and an output of Φ1,
ranging over all pairs of density operator inputs.

Our first alternate characterization of the completely bounded trace norm is based on the
maximum output fidelity, and is given by the following theorem.

Theorem 21.1. Let X and Y be complex Euclidean spaces and let Φ ∈ T (X ,Y) be an arbitrary mapping.
Suppose further that Z is a complex Euclidean space and A0, A1 ∈ L (X ,Y ⊗Z) satisfy

Φ(X) = TrZ (A0XA∗1)

for all X ∈ L (X ). For completely positive mappings Ψ0, Ψ1 ∈ T (X ,Z) defined as

Ψ0(X) = TrY (A0XA∗0) ,
Ψ1(X) = TrY (A1XA∗1) ,

for all X ∈ L (X ), we have |||Φ|||1 = Fmax(Ψ0, Ψ1).

Remark 21.2. Note that it is the space Y that is traced-out in the definition of Ψ0 and Ψ1, rather
than the space Z .

To prove this theorem, we will begin with the following lemma that establishes a simple
relationship between the fidelity and the trace norm. (This appeared as a problem on problem
set 1.)

Lemma 21.3. Let X and Y be complex Euclidean spaces and let u, v ∈ X ⊗Y . It holds that

F (TrY (uu∗), TrY (vv∗)) = ‖TrX (uv∗)‖1 .



Proof. It is the case that u ∈ X ⊗ Y is a purification of TrY (uu∗) and v ∈ X ⊗ Y is a purification
of TrY (vv∗). By the unitary equivalence of purifications (Theorem 4.3 in the lecture notes), it
holds that every purification of TrY (uu∗) in X ⊗ Y takes the form (1X ⊗U)u for some choice of
a unitary operator U ∈ U (Y). Consequently, by Uhlmann’s theorem we have

F (TrY (uu∗), TrY (vv∗)) = F (TrY (vv∗), TrY (uu∗)) = max{|〈v, (1X ⊗U)u〉| : U ∈ U (Y)}.

For any unitary operator U it holds that

〈v, (1X ⊗U)u〉 = Tr ((1X ⊗U)uv∗) = Tr (U TrX (uv∗)) ,

and therefore

max{|〈v, (1X ⊗U)u〉| : U ∈ U (Y)} = max{|Tr (U TrX (uv∗))| : U ∈ U (Y)} = ‖TrX (uv∗)‖1

as required.

Proof of Theorem 21.1. Let us take W to be a complex Euclidean space with the same dimension
as X , so that

|||Φ|||1 = max
{∥∥∥(Φ⊗ 1L(W))(uv∗)

∥∥∥
1

: u, v ∈ S (X ⊗W)
}

= max {‖TrZ [(A0 ⊗ 1W ) uv∗ (A∗1 ⊗ 1W )]‖1 : u, v ∈ S (X ⊗W)} .

For any choice of vectors u, v ∈ X ⊗W we have

TrY⊗W [(A0 ⊗ 1W )uu∗(A∗0 ⊗ 1W )] = Ψ0 (TrW (uu∗)) ,
TrY⊗W [(A1 ⊗ 1W )vv∗(A∗1 ⊗ 1W )] = Ψ1 (TrW (vv∗)) ,

and therefore by Lemma 21.3 it follows that

‖TrZ [(A0 ⊗ 1W )uv∗(A∗1 ⊗ 1W )]‖1 = F(Ψ0(TrW (uu∗)), Ψ1(TrW (vv∗))).

Consequently

|||Φ|||1 = max {F (Ψ0(TrW (uu∗)), Ψ1(TrW (vv∗))) : u, v ∈ S (X ⊗W)}
= max {F(Ψ0(ρ0), Ψ1(ρ1)) : ρ0, ρ1 ∈ D (X )}
= Fmax(Ψ0, Ψ1)

as required.

The following corollary follows immediately from this characterization along with the fact
that the completely bounded trace norm is multiplicative with respect to tensor products.

Corollary 21.4. Let Φ1, Ψ1 ∈ T (X1,Y1) and Φ2, Ψ2 ∈ T (X2,Y2) be completely positive. It holds that

Fmax(Φ1 ⊗Φ2, Ψ1 ⊗Ψ2) = Fmax(Φ1, Ψ1) · Fmax(Φ2, Ψ2).

This is a simple but not obvious fact: it says that the maximum fidelity between the outputs of
any two completely positive product mappings is achieved for product state inputs. In contrast,
several other quantities of interest based on quantum channels fail to respect tensor products in
this way.
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21.2 A semidefinite program for the completely bounded trace norm (squared)

The square of the completely bounded trace norm of an arbitrary mapping Φ ∈ T (X ,Y) can be
expressed as the optimal value of a semidefinite program, as we will now verify. This provides
a means to efficiently approximate the completely bounded trace norm of a given mapping—
because there exist efficient algorithms to approximate the optimal value of very general classes
of semidefinite programs (which includes our particular semidefinite program) to high precision.

Let us begin by describing the semidefinite program, starting first with its associated primal
and dual problems. After doing this we will verify that its value corresponds to the square of
the completely bounded trace norm. Throughout this discussion we assume that a Stinespring
representation

Φ(X) = TrZ (A0XA∗1)

of an arbitrary mapping Φ ∈ T (X ,Y) has been fixed.

21.2.1 Description of the semidefinite program

The primal and dual problems for the semidefinite program we wish to consider are as follows:

Primal problem

maximize: 〈A1A∗1 , X〉
subject to: TrY (X) = TrY (A0ρA∗0) ,

ρ ∈ Pos (X ) ,
X ∈ Pos (Y ⊗Z) .

Dual problem

minimize: ‖A∗0(1Y ⊗Y)A0‖
subject to: 1Y ⊗Y ≥ A1A∗1 ,

Y ∈ Pos (Z) .

This pair of problems may be expressed more formally as a semidefinite program in the following
way. Define Ξ ∈ T ((Y ⊗Z)⊕X , C⊕Z) as follows:

Ξ
(

X ·
· ρ

)
=

(
Tr(ρ) 0

0 TrY (X)− TrY (A0ρA∗0)

)
.

(The submatrices indicated by · are ones we do not care about and do not bother to assign a
name.) We see that the primal problem above asks for the maximum (or supremum) value of〈(

A1A∗1 0
0 0

)
,
(

X ·
· ρ

)〉
subject to the constraints

Ξ
(

X ·
· ρ

)
=

(
1 0
0 0

)
and

(
X ·
· ρ

)
∈ Pos ((Y ⊗Z)⊕X ) .

The dual problem is therefore to minimize the inner product〈(
1 0
0 0

)
,
(

λ ·
· Y

)〉
,

for λ ≥ 0 and Y ∈ Pos (Z), subject to the constraint

Ξ∗
(

λ ·
· Y

)
≥
(

A1A∗1 0
0 0

)
.
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One may verify that

Ξ∗
(

λ ·
· Y

)
=

(
1Y ⊗Y 0

0 λ1X − A∗0(1Y ⊗Y)A0

)
.

Given that Y is positive semidefinite, the minimum value of λ for which λ1X − A∗0(1Y ⊗Y)A0 ≥ 0
is equal to ‖A∗0(1Y ⊗Y)A0‖, and so we have obtained the dual problem as it is originally stated.

21.2.2 Analysis of the semidefinite program

We will now analyze the semidefinite program given above. Before we discuss its relationship to
the completely bounded trace norm, let us verify that it satisfies strong duality. The dual problem
is strictly feasible, for we may choose

Y = (‖A1A∗1‖+ 1)1Z and λ = ‖A1A∗1‖ ‖A0A∗0‖+ 1

to obtain a strictly feasible solution. The primal problem is of course feasible, for we may choose
ρ ∈ D (X ) arbitrarily and take X = A0ρA∗0 to obtain a primal feasible operator. Thus, by Slater’s
theorem, strong duality holds for our semidefinite program, and we also have that the optimal
primal value is obtained by a primal feasible operator.

Now let us verify that the optimal value associated with this semidefinite program corre-
sponds to |||Φ|||21. Let us define a set

A = {X ∈ Pos (Y ⊗Z) : TrY (X) = TrY (A0ρA∗0) for some ρ ∈ D (X )} .

It holds that the optimal primal value α of the semidefinite program is given by

α = max
X∈A
〈A1A∗1 , X〉 .

For any choice of a complex Euclidean spaceW for which dim(W) ≥ dim(X ), we have

|||Φ|||21 = max
u,v∈S(X⊗W)

‖TrZ [(A0 ⊗ 1W )uv∗(A1 ⊗ 1W )∗]‖2
1

= max
u,v∈S(X⊗W)
U∈U(Y⊗W)

|Tr [(U ⊗ 1Z )(A0 ⊗ 1W )uv∗(A1 ⊗ 1W )∗]|2

= max
u,v∈S(X⊗W)
U∈U(Y⊗W)

|v∗(A1 ⊗ 1W )∗(U ⊗ 1Z )(A0 ⊗ 1W )u|2

= max
u∈S(X⊗W)
U∈U(Y⊗W)

‖(A1 ⊗ 1W )∗(U ⊗ 1Z )(A0 ⊗ 1W )u‖2

= max
u∈S(X⊗W)
U∈U(Y⊗W)

Tr [(A1A∗1 ⊗ 1W )(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗]

= max
u∈S(X⊗W)
U∈U(Y⊗W)

〈A1A∗1 , TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗]〉 .

It now remains to prove that

A = {TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] : u ∈ S (X ⊗W) , U ∈ U (Y ⊗W)}
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for some choice ofW with dim(W) ≥ dim(X ). We will chooseW such that

dim(W) = max{dim(X ), dim(Y ⊗Z)}.

First consider an arbitrary choice of u ∈ S (X ⊗W) and U ∈ U (Y ⊗W), and let

X = TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] .

It follows that TrY (X) = TrY (A0 TrW (uu∗)A∗0), and so X ∈ A. Now consider an arbitrary element
X ∈ A, and let ρ ∈ D (X ) satisfy TrY (X) = TrY (A0ρA∗0). Let u ∈ S (X ⊗W) purify ρ and let
x ∈ Y ⊗Z ⊗W purify X. We have

TrY⊗W (xx∗) = TrY⊗W ((A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗) ,

so there exists U ∈ U (Y ⊗W) such that (U ⊗ 1Z )(A0 ⊗ 1W )u = x, and therefore

X = TrW (xx∗) = TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] .

We have therefore proved that

A = {TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] : u ∈ S (X ⊗W) , U ∈ U (Y ⊗W)} ,

and so we have that the optimal primal value of our semidefinite program is α = |||Φ|||21 as
claimed.

21.3 Spectral norm characterization of the completely bounded trace norm

We will now use the semidefinite program from the previous section to obtain a different char-
acterization of the completely bounded trace norm. Let us begin with a definition, followed by a
theorem that states the characterization precisely.

Consider any mapping Φ ∈ T (X ,Y), for complex Euclidean spaces X and Y . For a given
choice of a complex Euclidean space Z , we have that there exists a Stinespring representation

Φ(X) = TrZ (A0XA∗1) ,

for some choice of A0, A1 ∈ L (X ,Y ⊗Z) if and only if dim(Z) ≥ rank(J(Φ)). Under the
assumption that dim(Z) ≥ rank(J(Φ)), we may therefore consider the non-empty set of pairs
(A0, A1) that represent Φ in this way:

SΦ = {(A0, A1) : A0, A1 ∈ L (X ,Y ⊗Z) , Φ(X) = TrZ (A0XA∗1) for all X ∈ L (X )} .

The characterization of the completely bounded trace norm that is established in this section
concerns the spectral norm of the operators in this set, and is given by the following theorem.

Theorem 21.5. Let X and Y be complex Euclidean spaces, let Φ ∈ T (X ,Y), and let Z be a complex
Euclidean space with dimension at least rank(J(Φ)). It holds that

|||Φ|||1 = inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} .
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Proof. For any choice of operators A0, A1 ∈ L (X ,Y ⊗Z) and unit vectors u, v ∈ X ⊗W , we have

‖TrZ [(A0 ⊗ 1W )uv∗(A∗1 ⊗ 1W )]‖1 ≤ ‖(A0 ⊗ 1W )uv∗(A∗1 ⊗ 1W )‖1

≤ ‖A0 ⊗ 1W ‖ ‖uv∗‖1 ‖A1 ⊗ 1W ‖ = ‖A0‖ ‖A1‖ ,

which implies that |||Φ|||1 ≤ ‖A0‖ ‖A1‖ for all (A0, A1) ∈ SΦ, and consequently

|||Φ||| ≤ inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} .

It remains to establish the reverse inequality. Let (B0, B1) ∈ SΦ be an arbitrary pair of oper-
ators in L (X ,Y ⊗Z) giving a Stinespring representation for Φ. Given the description of |||Φ|||21
by the semidefinite program from the previous section, along with the fact that strong dual-
ity holds for that semidefinite program, we have that |||Φ|||21 is equal to the infimum value of
‖B∗0(1Y ⊗Y)B0‖ over all choices of Y ∈ Pos (Z) for which 1Y ⊗ Y ≥ B1B∗1 . This infimum value
does not change if we restrict Y to be positive definite, so that

|||Φ|||21 = inf{‖B∗0(1Y ⊗Y)B0‖ : 1Y ⊗Y ≥ B1B∗1 , Y ∈ Pd (Z)}.

For any ε > 0 we may therefore choose Y ∈ Pd (Z) such that 1Y ⊗Y ≥ B1B∗1 and∥∥∥(1Y ⊗Y1/2
)

B0

∥∥∥2
= ‖B∗0(1Y ⊗Y)B0‖ ≤ (|||Φ|||1 + ε)2 .

Note that the inequality 1Y ⊗Y ≥ B1B∗1 is equivalent to∥∥∥(1Y ⊗Y−1/2
)

B1

∥∥∥2
=
∥∥∥(1Y ⊗Y−1/2

)
B1B∗1

(
1Y ⊗Y−1/2

)∥∥∥ ≤ 1.

We therefore have that∥∥∥(1Y ⊗Y1/2
)

B0

∥∥∥ ∥∥∥(1Y ⊗Y−1/2
)

B1

∥∥∥ ≤ |||Φ|||1 + ε.

It holds that ((
1Y ⊗Y1/2

)
B0,

(
1Y ⊗Y−1/2

)
B1

)
∈ SΦ,

so
inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} ≤ |||Φ|||1 + ε.

This inequality holds for all ε > 0, and therefore

inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} ≤ |||Φ|||1
as required.

21.4 A different semidefinite program for the completely bounded trace norm

There are alternate ways to express the completely bounded trace norm as a semidefinite pro-
gram from the one described previously. Here is one alternative based on the maximum output
fidelity characterization from the start of the lecture.

As before, let X and Y be complex Euclidean spaces and let Φ ∈ T (X ,Y) be an arbitrary
mapping. Suppose further that Z is a complex Euclidean space and A0, A1 ∈ L (X ,Y ⊗Z)
satisfy

Φ(X) = TrZ (A0XA∗1)
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for all X ∈ L (X ). Define completely positive mappings Ψ0, Ψ1 ∈ T (X ,Z) as

Ψ0(X) = TrY (A0XA∗0) ,
Ψ1(X) = TrY (A1XA∗1) ,

for all X ∈ L (X ), and consider the following semidefinite program:

Primal problem

maximize:
1
2

Tr(Y) +
1
2

Tr(Y∗)

subject to:

(
Ψ0(ρ0) Y

Y∗ Ψ1(ρ1)

)
≥ 0

ρ0, ρ1 ∈ D (X )

Y ∈ L (Z) .

Dual problem

minimize:
1
2
‖Ψ∗0(Z0)‖+

1
2
‖Ψ∗1(Z1)‖

subject to:

(
Z0 −1Z

−1Z Z1

)
≥ 0

Z0, Z1 ∈ Pos (Z) .

I will leave it to you to translate this semidefinite program into the formal definition we have
been using, and to verify that the dual problem is as stated. Note that the discussion of the
semidefinite program for the fidelity function from Lecture 8 is helpful for this task. In light of
that discussion, it is not difficult to see that the optimal primal value equals Fmax(Ψ0, Ψ1) = |||Φ|||1.
It may also be proved that strong duality holds, leading to an alternate proof of Theorem 21.5.
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Lecture 22: The finite quantum de Finetti theorem

The main goal of this lecture is to prove a theorem known as the quantum de Finetti theorem. There
are, in fact, multiple variants of this theorem, so to be more precise it may be said that we will
prove a theorem of the quantum de Finetti type. This type of theorem states, in effect, that if a
collection of identical quantum registers have a state that is invariant under permutations, then
the reduced state of a comparatively small number of these registers must be close to a convex
combination of identical product states.

There will be three main parts of this lecture. First, we will introduce various concepts
concerning quantum states of multiple register systems that are invariant under permutations of
these registers. We will then very briefly discuss integrals defined with respect to the unitarily
invariant measure on the unit sphere of a given complex Euclidean space, which will supply
us with a useful tool we need for the last part of the lecture. The last part of the lecture is the
statement and proof of the quantum de Finetti theorem.

It is inevitable that some details regarding integrals over unitarily invariant measure will be
absent from the lecture (and from these notes). The main reason for this is that we have very
limited time remaining in the course, and certainly not enough time for a proper discussion of
the details. Also, the background knowledge needed to formalize the details is rather different
from what was required for other lectures. Nevertheless, I hope there will be enough information
for you to follow up on this lecture on your own, in case you choose to do this.

22.1 Symmetric subspaces and exchangeable operators

Let us fix a finite, nonempty set Σ, and let d = |Σ| for the remainder of this lecture. Also let n
be a positive integer, and let X1, . . . ,Xn be identical quantum registers, with associated complex
Euclidean spaces X1, . . . ,Xn taking the form Xk = CΣ for 1 ≤ k ≤ n.

22.1.1 Permutation operators

For each permutation π ∈ Sn, we define a unitary operator

Wπ ∈ U (X1 ⊗ · · · ⊗ Xn)

by the action
Wπ(u1 ⊗ · · · ⊗ un) = uπ−1(1) ⊗ · · · ⊗ uπ−1(n)

for every choice of vectors u1, . . . , un ∈ CΣ. In other words, Wπ permutes the contents of the
registers X1, . . . ,Xn according to π. It holds that

WπWσ = Wπσ and W−1
π = W∗π = Wπ−1 (22.1)

for all π, σ ∈ Sn.



22.1.2 The symmetric subspace

Some vectors in X1 ⊗ · · · ⊗ Xn are invariant under the action of Wπ for every choice of π ∈ Sn,
and it holds that the set of all such vectors forms a subspace. This subspace is called the symmetric
subspace, and will be denoted in these notes as X1 6 · · ·6Xn. In more precise terms, this subspace
is defined as

X1 6 · · ·6Xn = {u ∈ X1 ⊗ · · · ⊗ Xn : u = Wπu for every π ∈ Sn} .

One may verify that the orthogonal projection operator that projects onto this subspace is given
by

ΠX16···6Xn =
1
n! ∑

π∈Sn

Wπ.

Let us now construct an orthonormal basis for the symmetric subspace. First, consider the
set Urn(n, Σ) of functions of the form φ : Σ→N (where N = {0, 1, 2, . . .}) that satisfy

∑
a∈Σ

φ(a) = n.

The elements of this set describe urns containing n marbles, where each marble is labelled by
an element of Σ. (There is no order associated with the marbles—all that matters is how many
marbles with each possible label are contained in the urn. Urns are also sometimes called bags,
and may alternately be described as multisets of elements of Σ having n items in total.)

Now, to say that a string a1 · · · an ∈ Σ is consistent with a particular function φ ∈ Urn(n, Σ)
means simply that a1 · · · an is one possible ordering of the marbles in the urn described by φ.
One can express this formally by defining a function

fa1···an(b) =
∣∣{j ∈ {1, . . . , n} : b = aj}

∣∣ ,

and by defining that a1 · · · an is consistent with φ if and only if fa1···an = φ. The number of
distinct strings a1 · · · an ∈ Σn that are consistent with a given function φ ∈ Urn(n, Σ) is given by
the multinomial coefficient (

n
φ

)
,

n!
∏a∈Σ (φ(a)!)

.

Finally, we define an orthonormal basis of X1 6 · · ·6Xn as
{

uφ : φ ∈ Urn(n, Σ)
}

, where

uφ =

(
n
φ

)−1/2

∑
a1···an∈Σn

fa1 ···an=φ

ea1 ⊗ · · · ⊗ ean .

In other words, uφ is the uniform pure state over all of the strings that are consistent with the
function φ.

For example, taking n = 3 and Σ = {0, 1}, we obtain the following four vectors:

u0 = e0 ⊗ e0 ⊗ e0

u1 =
1√
3
(e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0)

u2 =
1√
3
(e0 ⊗ e1 ⊗ e1 + e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0)

u3 = e1 ⊗ e1 ⊗ e1,
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where the vectors are indexed by integers rather than functions φ ∈ Urn(3, {0, 1}) in a straight-
forward way.

Using simple combinatorics, it can be shown that |Urn(n, Σ)| = (n+d−1
d−1 ), and therefore

dim(X1 6 · · ·6Xn) =

(
n + d− 1

d− 1

)
.

Notice that for small d and large n, the dimension of the symmetric subspace is therefore very
small compared with the entire space X1 ⊗ · · · ⊗ Xn.

It is also the case that

X1 6 · · ·6Xn = span
{

u⊗n : u ∈ CΣ
}

.

This follows from an elementary fact concerning the theory of symmetric functions, but I will
not prove it here.

22.1.3 Exchangeable operators and their relation to the symmetric subspace

Along similar lines to vectors in the symmetric subspace, we say that a positive semidefinite
operator P ∈ Pos (X1 ⊗ · · · ⊗ Xn) is exchangeable if it is the case that

P = WπPW∗π

for every π ∈ Sn.
It is the case that every positive semidefinite operator whose image is contained in the sym-

metric subspace is exchangeable, but this is not a necessary condition. For instance, the identity
operator 1X1⊗···⊗Xn is exchangeable and its image is all of X1⊗ · · · ⊗ Xn. We may, however, relate
exchangeable operators and the symmetric subspace by means of the following lemma.

Lemma 22.1. Let X1, . . . ,Xn and Y1, . . . ,Yn be copies of the complex Euclidean space CΣ, and suppose
that

P ∈ Pos (X1 ⊗ · · · ⊗ Xn)

is an exchangeable operator. There exists a symmetric vector

u ∈ (X1 ⊗Y1)6 · · ·6 (Xn ⊗Yn)

that purifies P, i.e., TrY1⊗···⊗Yn(uu∗) = P.

Proof. Consider a spectral decomposition

P =
k

∑
j=1

λjQj, (22.2)

where λ1, . . . , λk are the distinct eigenvalues of P and Q1, . . . , Qk are orthogonal projection oper-
ators onto the associated eigenspaces. As WπPW∗π = P for each permutation π ∈ Sn, it follows
that WπQjW∗π = Qj for each j = 1, . . . , k, owing to the fact that the decomposition (22.2) is unique.
The operator

√
P is therefore also exchangeable, so that

(Wπ ⊗Wπ) vec
(√

P
)
= vec

(
Wπ

√
PWT

π

)
= vec

(
Wπ

√
PW∗π

)
= vec

(√
P
)

.
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Now let us view the operator
√

P as taking the form
√

P ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn)

by identifying Yj with Xj for j = 1, . . . , n. We therefore have

vec
(√

P
)
∈ Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn.

Let us take u ∈ (X1⊗Y1)⊗ · · · ⊗ (Xn ⊗Yn) to be equal to this vector, but with the tensor factors
re-ordered in a way that is consistent with the names of the associated spaces. It holds that
TrY1⊗···⊗Yn(uu∗) = P, and given that

(Wπ ⊗Wπ) vec
(√

P
)
= vec

(√
P
)

for all π ∈ Sn it follows that u ∈ (X1 ⊗Y1)6 · · ·6 (Xn ⊗Yn) as required.

22.2 Integrals and unitarily invariant measure

For the proof of the main result in the next section, we will need to be able to express certain
linear operators as integrals. Here is a very simple expression that will serve as an example for
the sake of this discussion: ∫

uu∗ dµ(u).

Now, there are two very different questions one may have about such an operator:

1. What does it mean in formal terms?

2. How is it calculated?

The answer to the first question is a bit complicated—and although we will not have time to
discuss it in detail, I would like to say enough to at least give you some clues and key-words in
case you wish to learn more on your own.

In the above expression, µ refers to the normalized unitarily invariant measure defined on the
Borel sets of the unit sphere S = S (X ) in some chosen complex Euclidean space X . (The space
X is implicit in the above expression, and generally would be determined by the context of the
expression.) To say that µ is normalized means that µ(S) = 1, and to say that µ is unitarily invariant
means that µ(A) = µ(U(A)) for every Borel set A ⊆ S and every unitary operator U ∈ U (X ).
It turns out that there is only one measure with the properties that have just been described.
Sometimes this measure is called Haar measure, although this term is considerably more general
than what we have just described. (There is a uniquely defined Haar measure on many different
sorts of measure spaces with groups acting on them in a particular way.)

Informally speaking, you may think of the measure described above as a way of assigning an
infinitesimally small probability to each point on the unit sphere in such a way that no one vector
is weighted more or less than any other. So, in an integral like the one above, we may view that it
is an average of operators uu∗ over the entire unit sphere, with each u being given equal weight.
Of course it does not really work this way, which is why we must speak of Borel sets rather than
arbitrary sets—but it is a reasonable guide for the simple uses of it in this lecture.

In formal terms, there is a process involving several steps for building up the meaning of an
integral like the one above starting from the measure µ. It starts with characteristic functions for
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Borel sets (where the value of the integral is simply the set’s measure), then it defines integrals
for positive linear combinations of characteristic functions in the obvious way, then it introduces
limits to define integrals of more functions, and continues for a few more steps until we finally
have integrals of operators. Needless to say, this process does not provide an efficient means to
calculate a given integral.

This leads us to the second question, which is how to calculate such integrals. There is
certainly no general method: just like ordinary integrals you are lucky when there is a closed
form. For some, however, the fact that the measure is unitarily invariant leads to a simple answer.
For instance, the integral above must satisfy∫

uu∗ dµ(u) = U
(∫

uu∗ dµ(u)
)

U∗

for every unitary operator U ∈ U (X ), and must also satisfy

Tr
(∫

uu∗ dµ(u)
)
=
∫

dµ(u) = µ(S) = 1.

There is only one possibility: ∫
uu∗ dµ(u) =

1
dim(X )

1X .

Now, what we need for the next part of the lecture is a generalization of this fact—which is
that for every n ≥ 1 we have(

n + d− 1
d− 1

) ∫
(uu∗)⊗n dµ(u) = ΠX16···6Xn ,

the projection onto the symmetric subspace. This is yet another fact for which a complete proof
would be too much of a diversion at this point in the course. The main result we need is a
fact from algebra that states that every operator in the space L (X1 ⊗ · · · ⊗ Xn) that commutes
with U⊗n for every unitary operator U ∈ U

(
CΣ) must be a linear combination of the operators

{Wπ : π ∈ Sn}. Given this fact, along with the fact that the operator expressed by the integral
has the correct trace and is invariant under multiplication by every Wπ, the proof follows easily.

22.3 The quantum de Finetti theorem

Now we are ready to state and prove (one variant of) the quantum de Finetti theorem, which is
the main goal of this lecture. The statement and proof follow.

Theorem 22.2. Let X1, . . . ,Xn be identical quantum registers, each having associated space CΣ for |Σ| =
d, and let ρ ∈ D (X1 ⊗ · · · ⊗ Xn) be an exchangeable density operator representing the state of these
registers. For any choice of k ∈ {1, . . . , n}, there exists a finite set Γ, a probability vector p ∈ RΓ, and a
collection of density operators {ξa : a ∈ Γ} ⊂ D

(
CΣ) such that∥∥∥∥∥ρX1···Xk −∑

a∈Γ
p(a)ξ⊗k

a

∥∥∥∥∥
1

<
4d2k

n
.
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Proof. First we will prove a stronger bound for the case where ρ = vv∗ is pure (which requires
v ∈ X1 6 · · ·6Xn). This will then be combined with Lemma 22.1 to complete the proof.

For the sake of clarity, let us write Y = X1 ⊗ · · · ⊗ Xk and Z = Xk+1 ⊗ · · · ⊗ Xn. Let us also
write

S(m) =

(
m + d− 1

d− 1

) ∫
(uu∗)⊗m dµ(u),

which is the projection onto the symmetric subspace of m copies of CΣ for any choice of m ≥ 1.
Now consider a unit vector v ∈ X1 6 · · ·6Xn. As v is invariant under every permutation of

its tensor factors, it holds that
v =

(
1Y ⊗ S(n−k)

)
v.

Therefore, for σ ∈ D (Y) defined as σ = TrZ (vv∗) we must have

σ = TrZ
((

1Y ⊗ S(n−k)
)

vv∗
)

.

Defining a mapping Φu ∈ T (Y ⊗Z ,Y) for each vector u ∈ CΣ as

Φu(X) =
(

1Y ⊗ u⊗(n−k)
)∗

X
(

1Y ⊗ u⊗(n−k)
)

for every X ∈ L (Y ⊗Z), we have

σ =

(
n− k + d− 1

d− 1

) ∫
Φu(vv∗)dµ(u).

Now, our goal is to approximate σ by a density operator taking the form

∑
a∈Γ

p(a)ξ⊗k
a ,

so we will guess a suitable approximation:

τ =

(
n + d− 1

d− 1

) ∫ 〈
(uu∗)⊗k, Φu(vv∗)

〉
(uu∗)⊗k dµ(u).

It holds that τ has trace 1, because

Tr(τ) =
(

n + d− 1
d− 1

) ∫ 〈
(uu∗)⊗n, vv∗

〉
dµ(u) =

〈
S(n), vv∗

〉
= 1,

and τ also has the correct form:

τ ∈ conv
{
(ww∗)⊗k : w ∈ S

(
CΣ
)}

.

(It is intuitive that this should be so, but we have not proved it formally. Of course it can be
proved formally, but it requires details about measure and integration beyond what we have
discussed.)

We will now place an upper bound on ‖σ− τ‖1. To make the proof more readable, let us
write

cm =

(
m + d− 1

d− 1

)
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for each m ≥ 0. We begin by noting that

‖σ− τ‖1 ≤
∥∥∥∥σ− cn−k

cn
τ

∥∥∥∥
1
+

∥∥∥∥ cn−k

cn
τ − τ

∥∥∥∥
1
= cn−k

∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
+

(
1− cn−k

cn

)
. (22.3)

Next, by making use of the operator equality

A− BAB = A(1− B) + (1− B)A− (1− B)A(1− B),

and writing ∆u = (uu∗)⊗k, we obtain∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
=

∥∥∥∥∫ (Φu(vv∗)− ∆uΦu(vv∗)∆u)dµ(u)
∥∥∥∥

1

≤
∥∥∥∥∫ Φu(vv∗)(1− ∆u)dµ(u)

∥∥∥∥
1
+

∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)
∥∥∥∥

1

+

∥∥∥∥∫ (1− ∆u)Φu(vv∗)(1− ∆u)dµ(u)
∥∥∥∥

1
.

It holds that ∥∥∥∥∫ Φu(vv∗)(1− ∆u)dµ(u)
∥∥∥∥

1
=

∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)
∥∥∥∥

1
,

while ∥∥∥∥∫ (1− ∆u)Φu(vv∗)(1− ∆u)dµ(u)
∥∥∥∥

1
= Tr

(∫
(1− ∆u)Φu(vv∗)(1− ∆u)dµ(u)

)
= Tr

(∫
(1− ∆u)Φu(vv∗)dµ(u)

)
≤
∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)

∥∥∥∥
1

.

Therefore we have ∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
≤ 3

∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)
∥∥∥∥

1
.

At this point we note that ∫
Φu(vv∗)dµ(u) =

1
cn−k

σ

while ∫
∆uΦu(vv∗)dµ(u) = TrZ

∫
(uu∗)⊗nvv∗ dµ(u) =

1
cn

σ.

Therefore we have ∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
≤ 3

(
1

cn−k
− 1

cn

)
,

and so

‖σ− τ‖1 ≤ 3 cn−k

(
1

cn−k
− 1

cn

)
+

(
1− cn−k

cn

)
= 4

(
1− cn−k

cn

)
.
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To finish off the upper bound, we observe that

cn−k

cn
=

(n− k + d− 1)(n− k + d− 2) · · · (n− k + 1)
(n + d− 1)(n + d− 2) · · · (n + 1)

≥
(

n− k + 1
n + 1

)d−1

> 1− dk
n

,

and so
‖σ− τ‖1 <

4dk
n

.

This establishes essentially the bound given in the statement of the theorem, albeit only for pure
states, but with d2 replaced by d.

To prove the bound in the statement of the theorem for an arbitrary exchangeable density
operator ρ ∈ D (X1 ⊗ · · · ⊗ Xn), we first apply Lemma 22.1 to obtain a symmetric purification

v ∈ (X1 ⊗Y1)6 · · ·6 (Xn ⊗Yn)

of ρ, where Y1, . . . ,Yn represent isomorphic copies of X1, . . . ,Xn. By the argument above, we
have

‖σ− τ‖1 <
4d2k

n
,

where σ = TrZ (vv∗) for Z = (Xk+1 ⊗Yk+1)⊗ · · · ⊗ (Xn ⊗Yn) and where

τ ∈ conv
{
(uu∗)⊗k : u ∈ S

(
CΣ ⊗CΣ

)}
.

Taking the partial trace over Y1 ⊗ · · · ⊗ Yk then gives the result.
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