Quantum Search + quantum Zeno effect

0.0.1 NP—Completeness

Most interesting computational search problems share aoritant feature: given a proposed solution, it is easy to
verify whether its correctness. i.e. it is possible to chiacgolynomial time whether a proposed solution is indeed a
solution to the problem. Unfortunately there are exporadigtmany potential solutions to choose from, and this is the
combinatorial explosion that makes the design of efficidg@thms so challenging.

Let us consider an example — satisfiability. Here we are gavdoolean functiorf (xq,...,%,) mapping{0,1}" to
{0,1}. The challenge is to find an inp(as,...,ay) such thatf(as,...,a,) = 1. Such an input is called a satisfying
assignment. In the satisfiability problem the boolean fiands specified very explicitly via a formula (or sometimes
even a circuit). For example, in the case 3SAT (or 3-satitifigh the function f(xq,...,Xn) =C1 A ... ACm, Where
each of thec’s (called clauses) are simple functions of three ofsxtjis. More precisely each clause is of the form
(uvvvw), whereu,v,w (called literals) each stand for either a variakjeor its complement (% x;). The clause
evaluates to 1 if any af, vorwis 1.

3SAT is a prototypical example of an NP-complete problem.a¥this term means is that 3SAT is in the class NP
of problems where a proposed solution can be efficiently ldee— in this case by checking that for each clause
there is a literal that evaluates to 1. The challenge, ofsmus finding a satisfying assignment among thp&ssible
assignments of values 1q, ... X,. Saying that 3SAT is NP-complete means that it is one of thdds problems in
NP, in the sense that if you can solve 3SAT efficiently (i.epalynomial time) then you can solve any problem in
NP efficiently. There are now thousands of useful computatiproblems that are known to be NP-complete. Coping
with them in practice is one of the big challenges in the fidldlgorithms.

The question we will focus on today is whether the exponeptaver of quantum algorithms can help solve NP-
complete problems efficiently. The most naive hope is thiart svith ann-qubit register in the stath)“). Apply

the Hadamard transform to get the superposifigh;g 13n \x) . Now compute the functiofi to get the superposition

Y xe{0,1}n ]x> \ f(x)). The quantum computer has now "in parallel” compuftéx) for every value ofx and "should
somehow” be able to find an assignment such ft{a) = 1. The problem with this naive hope is that we have no
interference between the different valuesxpfand if we were to measure the quantum computation would be no
different than it would have been if we had just randomly @ms So is there any quantum algorithm that can do
better? How much better?

002 Unstructured Search

To answer these questions we will abstract our problem &mafsi we represent by a table ofN = 2" entries (one
for each input) where exactly one of the entries is 1, anchalrést are 0. The task is to find index of the unique entry
thatis 1. Ideally we want to solve the problem in polynomiiakt. i.e.O(poly(n)). The quantum algorithm is allowed
to query the table in superposition. i.e. it is allowed toateean arbitrary superpositigico,1n ax\x> , and query the

table to get the answeh,c (o 130 ax|X) | f (X)) .

Unfortunately we can show that any quantum algorithm toesttis problem must make at leagN = 2"/2 queries
to the table. The proof of this fact is beyond the scope of¢bisrse. What we will see is an algorithm, due to Grover,
that matches this bound. It give a quantum algorithm foriaglthis problem inO(v/N) steps.

Here’s the problem: You are given a boolean functian{1,...,N} — {0,1}, and are promised that for exactly one
ae{1,...,N}, f(a) =1. Think of this as a table of si2¢, where exactly one element has value 1, and all the others
are 0. Since we assunfecan be computed classically in polynomial time, we can atsojute it in superposition:

5 a0 [0) — 3 a0 |1(0)
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As we saw before, we can use circuit foto put information about (x) in the phase by effecting the transformation:

S ) — 3 (-1

0.1 Grover's A]gorithm

The quantum search algorithm starts with the superpos{it}@bl =35y ﬁ |x> For sgrtN iterations it applies a se-

guence of two operations. Each such iteration increaseantpditude of|a> by at Ieastﬁ. It follows that at the

end of the algorithm the amplitude &éta is a constant, and therefore measuring the register yaeldish constant
probability.

The first operation is a phase reflectiorkeffa: i.e. it maps the superpositigy) = 3 ax|X) to [') = Fya0x|X) —
aa\a> . Exercise: show how to use the quantum circuit for compufibgimplement a phase reflection Im‘) .

The second operation is a reflection about the mean. Bef@®ieng this operation let us imagine that we wanted
to perform a reflection ab04|0>. ie. |O> remains unchanged, but every vector orthogonal to it géiscted. This
is implemented by the operator that looks like negative titherexcept that its top left entry is 1 rather thari.
i.e. the operator iR = —I +2|0") (0"|. To perform a reflection about the mean, we have to do a refleetbout
o) = zxﬁ]@ rather than abou0") . This is carried out by first mappinglp) to |0") by applyingH®" then

applyingRand then mappinD") back to| i) by applyingH®". i.e. we apply an operat@ = H"RH®". Exercise:
show that the operat® maps the superpositid) = ¥, ax|X) to |@) = 3 Bx|x), where, = 2u — ay. Explain in
what sensgy is a reflection ooy abouty.

Grover's algorithm consists of starting in the stgigand applyingy/N iterations of:

1. Implement a phase reflection ]taf)

2. Reflect about the mean using the operéxor

This process is illustrated in FigureD.1.

Suppose we just want to firawith probability%. Until this point, the rest of the basis vectors will have ditade at
1 ; ; ; ; _ /2 _ 1

Ieastﬁ. In each iteration of the algorithna, increases by at Ieas\g:N = \/; Eventually,a, = 7 The number

of iterations to get to thisr, is < v/N.
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Figure 0.1: The first three steps of Grover’s algorithm. Vetswith a uniform superposition of all basis vectors in
(a). In (b), we have used the functidrto invert the phase af. After running the diffusion operat®, we amplify
ay while decreasing all other amplitudes.
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