
Chapter 3

Observables

3.1 Observables

An observable is an operator that corresponds to a physical quantity, such as
energy, spin, or position, that can be measured; think of a measuring device
with a pointer from which you can read off a real number which is the outcome
of the measurement. For a k-state quantum system, observables correspond
to k×k hermitian matrices. Recall that a matrix M is hermitian iff M

† = M .
Since M is hermitian, it has an orthonormal set of eigenvectors |φj� with
real eigenvalues λj . What is the outcome of a measurement of the quantity
represented by observable M on a quantum state |ψ�? To understand this,
let us write |ψ� = a0φ0 + · · · + ak−1φk−1 in the {|φj�}-basis. Now, the result
of the measurement must be some λj (this is the real number we read off our
measurement device) with probability |aj |2. Moreover, the state of the system
is collapsed to |φj�.

This description of a measurement relates to what we described earlier
while explaining the measurement principle: there a measurement was spec-
ified by picking an orthonormal basis {|φj�}, and the measurement outcome
was j with probability |aj |2. The sequence of real numbers λj simply pro-
vide a way of specifying what the pointer of the measurement device indicates
for the j-th outcome. Moreover, given any orthonormal basis |φj� and the
sequence of real numbers λj , we can reconstruct a hermitian matrix M as:
M =

�
k−1
j=0 λj |φj� �φj |; in the {|φj�}-basis this is just a diagonal matrix with

the λj ’s on the diagonal.
For example, suppose we wish to measure a qubit in the |+� , |−�-basis,

with measurement results 1 and −1 respectively. This corresponds to measur-
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ing the observable

M = (1) |+��+| + (−1) |−��−|

=
�

1/2 1/2
1/2 1/2

�
−

�
1/2 −1/2
−1/2 1/2

�

=
�

0 1
1 0

�

By construction M has eigenvectors |+� and |−� with eigenvalues 1 and −1
respectively.

One important observable of any physical system is its energy; the corre-
sponding hermitian matrix or operator is called the Hamiltonian, and is often
denoted by Ĥ. The eigenvectors of this operator are the states of the sys-
tem with definite energy, and the eigenvalues are the numerical values of the
energies of these eigenstates.

Consider, for example, two states ψ1 and ψ2 such that Ĥψ1 = E1ψ2 and
Ĥψ2 = E2ψ2, where E1 �= E2 (in quantum mechanical language this means
that the eigenvalues are non-degenerate). Suppose we take 106 qubits pre-
pared in state ψ1 and measure the energy of each one and make a histogram.
What does the histogram look like? See Figure 1(a).

Now suppose that we prepare 106 qubits in the state ψ� =
�

3
5ψ1 +

�
2
5ψ2,

measure each of their energies, and make a histogram. How does it look? See
Figure 1(b)

Ask yourself, is ψ� a state with well-defined energy? The answer is NO.
Why? Because ψ� is not an eigenstate of the Hamiltonian operator. Let’s
check this:

Ĥψ� = Ĥ

��
3
5
ψ1 +

�
2
5
ψ2

�
=

�
3
5
E1ψ1 +

�
2
5
E2ψ2

Does this equal (constant)×(ψ�)? No, because E1 and E2 are not equal.
Therefore ψ� is not an eigenstate of the energy operator and has no well-defined
energy.

Even though a given state |ψ� might not have a definite energy, we can
still ask the question, “what is the expected energy of this state?” i.e. if we
prepare a large number of systems each in the state |ψ�, and then measure
their energies, what is the average result? In our notation above, this expected
value would be

�
k−1
j=0 |aj |2λj . This is exactly the value of the bilinear form

�ψ|M |ψ�. Returning to our example above, where M = H, this expected
value is 3

5E1 + 2
5E2.
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How much does the value of the energy of the state |ψ� vary from mea-
surement to measurement? One way of estimating this is to talk about the
variance, var(X) of the measurement outcome. Recall that

var(X) = E(X2)− E(X)2.

So to compute the variance we must figure out E(X2), the expected value of
the square of the energy. This expected value is

k−1�

j=0

|aj |2λ2
j .

This is exactly the value of the bilinear form �ψ|M2 |ψ�. So the variance of
the measurement outcome for the state, |ψ� is

var(X) = E(X2)− E(X)2 = �ψ|M2 |ψ� − (�ψ|M |ψ�)2.

Returning to our example above,

�
ψ��� M

2
��ψ�� =

k−1�

j=0

|aj |2λ2
j =

3
5
E

2
1 +

2
5
E

2
2 .

The variance is therefore

var(X) =
3
5
E

2
1 +

2
5
E

2
2 − (

3
5
E1 +

2
5
E2)2.

Schrödinger’s Equation

Schrödinger’s equation is the most fundamental equation in quantum me-
chanics — it is the equation of motion which describes the time evolution of
a quantum state.

i�d |ψ(t)�
dt

= H |ψ(t)� .

Here H is the Hamiltonian or energy operator, and � is a constant (called
Planck’s constant).

To understand Schrödinger’s equation, it is instructive to analyze what
it tells us about the time evolution of the eigenstates of the Hamiltonian H.
Let’s assume we are given a quantum system whose state at time t = 0 is,
|ψ(0)� = |φj�, an eigenstate of the Hamiltonian with eigenvalue, λj . Plugging
this into Schrödinger’s equation,

d |ψ(0)�
dt

= − i

�H |φj� = − i

�λj |φj�
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So let us consider a system that is in the state |ψ� at time t = 0 such
that that |ψ(0)� = |φj�, an eigenvector of H with eigenvalue λj . Now by
Schrödinger’s equation,

d |ψ(0)�
dt

= −H |φj� /� = −iλj/� |φj� .

Thus |ψ(t)� = a(t) |φj�. Substituting into Schrödinger’s equation, we get:

i
da(t) |φj�

dt
= H |a(t)φj� = a(t)λj |φj� .

Thus i�da(t)
a(t) = λjdt. Integrating both sides with respect to t: i� ln a(t) = λjt.

Therefore a(t) = e
−iλjt/�, and |ψ(t)� = e

−iλjt/� |φj�.
So each energy eigenstate |φj� is invariant over time, but its phase precesses

at a rate proportional to its energy λj .
What about a general quantum state |ψ(0)� =

�
j
aj |φj�? By linearity,

|ψ(t)� =
�

j
aje

−iλjt |φj�.
In the basis of eigenstates of H, we can write this as a matrix equation:

|ψ(t)� =





e
− i

�λ1t 0
.

.

0 e
− i

�λdt









a0

.

.

ak−1



 = U(t) |ψ(0)�

We have proved that if the Hamiltonian H is time independent, then
Schrödinger’s equation implies that the time evolution of the quantum sys-
tem is unitary. Moreover, the time evolution operator U(t) is diagonal in the
basis of eigenvectors of H, and can be written as U(t) = e

−iHt

� .
Returning to our running example, suppose ψ(x, t = 0) = ψ1(x) where

Ĥψ1 = E1ψ1(x). What is ψ(x, t �= 0)? The answer is,

ψ(x, t) = ψ1(x)e−iE1t/�

But what if ψ(x, t = 0) = ψ� =
�

3
5ψ1 +

�
2
5ψ2? What’s ψ(x, t �= 0) in this

case? The answer then becomes,

ψ(x, t) =
�

3
5
ψ1e

−iE1t/� +
�

2
5
ψ2e

−iE2t/�

Each different piece of the wavefunction with differnt well-defined energy
dances to its own little drummer. Each piece spins at frequency proportional
to its energy.
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Conservation Laws and the Hamiltonian

Energy is typically the most important physical observable characterizing any
system. You might still wonder, “why is energy so intimately related to the
time evolution of a quantum system?” In this section we will try to answer this
question. The answer is related to a fundamental physical principle, namely
the conservation of energy.

We start by assuming that the time evolution of the state |ψ� in Schrödinger’s
equation is governed by some arbitrary hermitian operator M , or equivalently
that the evolution of the system is given by some unitary transformation
U = e

−iMt (with a little bit of work this can be shown to follow from the third
axiom of quantum mechanics in the “time independent situation”, where the
external conditions the system is subject to do not change over time). So
our question reduces to asking, why is the operator M necessarily the energy
operator?

To see this, we must first show that if A is any observable corresponding
to a physical quantity that is conserved in time, then A commutes with M

(as defined above).
Let |ψ� be the initial state of some physical system, and |ψ�� = U |ψ� =

e
iMt |ψ� be the state after an infinitesimal time interval t.

Since A corresponds to a conserved physical quantity, �ψ�|A |ψ�� = �ψ|A |ψ�.
i.e. �ψ|U †

AU |ψ� = �ψ|A |ψ�.
Since this equation holds for every state |ψ�, it follows that U

†
AU = A.

Substituting for U , we get
LHS = e

−iMt
Ae

iMt ≈ (1− iMt)A(1 + iMt) ≈ A− it[M,A]
where [M, A] = MA−AM .
It follows that [M, A] = 0.

So any observable corresponding to a conserved quantity must commute
with the operator M that describes the time evolution. Now, in addition to
energy, there are situations where other physical quantities, such as momen-
tum or angular momentum, are also conserved. These are in a certain sense
”accidental” conservation relations — they may or may not hold. Energy how-
ever is always conserved. Hence the operator H cannot be just any operator
that happens to commute with M , but must have some universal property
for all physical systems. An intrinsic reason that H might commute with M

is that H = f(M). i.e. H is some function of M . Since any function of M

commutes with M we now assume that H = f(M).
The next critical point to show is that if H = f(M), then f must nec-

essarily be a linear function. Consider a quantum system consisting of two
subsystems that do not interact with each other. If M1 and M2 are the
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time evolution operators corresponding to each subsystem, then M1 + M2

is the time evolution operator of the system (since the two subsystems do
not interact). So the total energy of the system is f(M1 + M2). On the
other hand, since the two subsystems do not interact, the system hamilto-
nian, H = H1 + H2 = f(M1) + f(M2). Hence f(M1 + M2) = f(M1) + f(M2),
and therefore f is a linear function f(M) = �M , where � is a constant. So
H = �M and U(t) = e

iHt/�. Since Ht/� must be dimensionless, the constant
� must have units of energy x time.


