
Chapter 10

Quantum algorithms

This book started with the world’s oldest and most widely used algorithms (the ones for adding
and multiplying numbers) and an ancient hard problem (FACTORING). In this last chapter the
tables are turned: we present one of the latest algorithms—and it is an efficient algorithm for
FACTORING!

There is a catch, of course: this algorithm needs a quantum computer to execute.

Quantum physics is a beautiful and mysterious theory that describes Nature in the small,
at the level of elementary particles. One of the major discoveries of the nineties was that
quantum computers—computers based on quantum physics principles—are radically differ-
ent from those that operate according to the more familiar principles of classical physics.
Surprisingly, they can be exponentially more powerful: as we shall see, quantum computers
can solve FACTORING in polynomial time! As a result, in a world with quantum computers,
the systems that currently safeguard business transactions on the Internet (and are based on
the RSA cryptosystem) will no longer be secure.

10.1 Qubits, superposition, and measurement
In this section we introduce the basic features of quantum physics that are necessary for
understanding how quantum computers work.1

In ordinary computer chips, bits are physically represented by low and high voltages on
wires. But there are many other ways a bit could be stored—for instance, in the state of a
hydrogen atom. The single electron in this atom can either be in the ground state (the lowest
energy configuration) or it can be in an excited state (a high energy configuration). We can
use these two states to encode for bit values 0 and 1, respectively.

Let us now introduce some quantum physics notation. We denote the ground state of our
electron by

∣∣0
〉

, since it encodes for bit value 0, and likewise the excited state by
∣∣1
〉

. These are
1This field is so strange that the famous physicist Richard Feynman is quoted as having said, “I think I can

safely say that no one understands quantum physics.” So there is little chance you will understand the theory in
depth after reading this section! But if you are interested in learning more, see the recommended reading at the
book’s end.

311



312 Algorithms

Figure 10.1 An electron can be in a ground state or in an excited state. In the Dirac notation
used in quantum physics, these are denoted

∣∣0
〉

and
∣∣1
〉

. But the superposition principle says
that, in fact, the electron is in a state that is a linear combination of these two: α0

∣∣0
〉

+α1

∣∣1
〉

.
This would make immediate sense if the α’s were probabilities, nonnegative real numbers
adding to 1. But the superposition principle insists that they can be arbitrary complex num-
bers, as long as the squares of their norms add up to 1!

ground state
∣∣0
〉

excited state
∣∣1
〉

superposition
α0

∣∣0
〉

+ α1

∣∣1
〉

the two possible states of the electron in classical physics. Many of the most counterintuitive
aspects of quantum physics arise from the superposition principle which states that if a
quantum system can be in one of two states, then it can also be in any linear superposition
of those two states. For instance, the state of the electron could well be 1√

2

∣∣0
〉

+ 1√
2

∣∣1
〉

or
1√
2

∣∣0
〉
− 1√

2

∣∣1
〉

; or an infinite number of other combinations of the form α0

∣∣0
〉

+ α1

∣∣1
〉

. The
coefficient α0 is called the amplitude of state

∣∣0
〉

, and similarly with α1. And—if things aren’t
already strange enough—the α’s can be complex numbers, as long as they are normalized so
that |α0|2 + |α1|2 = 1. For example, 1√

5

∣∣0
〉

+ 2i√
5

∣∣1
〉

(where i is the imaginary unit,
√
−1) is a

perfectly valid quantum state! Such a superposition, α0

∣∣0
〉

+α1

∣∣1
〉

, is the basic unit of encoded
information in quantum computers (Figure 10.1). It is called a qubit (pronounced “cubit”).

The whole concept of a superposition suggests that the electron does not make up its mind
about whether it is in the ground or excited state, and the amplitude α0 is a measure of its
inclination toward the ground state. Continuing along this line of thought, it is tempting to
think of α0 as the probability that the electron is in the ground state. But then how are we to
make sense of the fact that α0 can be negative, or even worse, imaginary? This is one of the
most mysterious aspects of quantum physics, one that seems to extend beyond our intuitions
about the physical world.

This linear superposition, however, is the private world of the electron. For us to get a
glimpse of the electron’s state we must make a measurement, and when we do so, we get
a single bit of information—0 or 1. If the state of the electron is α0

∣∣0
〉

+ α1

∣∣1
〉

, then the
outcome of the measurement is 0 with probability |α0|2 and 1 with probability |α1|2 (luckily
we normalized so |α0|2 + |α1|2 = 1). Moreover, the act of measurement causes the system to
change its state: if the outcome of the measurement is 0, then the new state of the system is∣∣0
〉

(the ground state), and if the outcome is 1, the new state is
∣∣1
〉

(the excited state). This



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 313

feature of quantum physics, that a measurement disturbs the system and forces it to choose
(in this case ground or excited state), is another strange phenomenon with no classical analog.

Figure 10.2 Measurement of a superposition has the effect of forcing the system to decide on
a particular state, with probabilities determined by the amplitudes.

with prob |α0|2

with prob |α1|2
α0

∣∣0
〉

+ α1

∣∣1
〉

state
∣∣0
〉

state
∣∣1
〉

The superposition principle holds not just for 2-level systems like the one we just described,
but in general for k-level systems. For example, in reality the electron in the hydrogen atom
can be in one of many energy levels, starting with the ground state, the first excited state, the
second excited state, and so on. So we could consider a k-level system consisting of the ground
state and the first k − 1 excited states, and we could denote these by

∣∣0
〉
,
∣∣1
〉
,
∣∣2
〉
, . . . ,

∣∣k − 1
〉

.
The superposition principle would then say that the general quantum state of the system is
α0

∣∣0
〉

+ α1

∣∣1
〉

+ · · · + αk−1

∣∣k − 1
〉

, where
∑k−1

j=0 |αj |2 = 1. Measuring the state of the system
would now reveal a number between 0 and k − 1, and outcome j would occur with probability
|αj |2. As before, the measurement would disturb the system, and the new state would actually
become

∣∣j
〉

or the jth excited state.
How do we encode n bits of information? We could choose k = 2n levels of the hydrogen

atom. But a more promising option is to use n qubits.
Let us start by considering the case of two qubits, that is, the state of the electrons of two

hydrogen atoms. Since each electron can be in either the ground or excited state, in classi-
cal physics the two electrons have a total of four possible states—00, 01, 10, or 11—and are
therefore suitable for storing 2 bits of information. But in quantum physics, the superposition
principle tells us that the quantum state of the two electrons is a linear combination of the
four classical states,

∣∣α
〉

= α00

∣∣00
〉

+ α01

∣∣01
〉

+ α10

∣∣10
〉

+ α11

∣∣11
〉
,

normalized so that
∑

x∈{0,1}2 |αx|2 = 1.2 Measuring the state of the system now reveals 2 bits
2Recall that {0, 1}2 denotes the set consisting of the four 2-bit binary strings and in general {0, 1}n denotes the

set of all n-bit binary strings.



314 Algorithms

Entanglement
Suppose we have two qubits, the first in the state α0

∣∣0
〉

+ α1

∣∣1
〉

and the second in the state
β0

∣∣0
〉

+ β1

∣∣1
〉

. What is the joint state of the two qubits? The answer is, the (tensor) product
of the two: α0β0

∣∣00
〉

+ α0β1

∣∣01
〉

+ α1β0

∣∣10
〉

+ α1β1

∣∣11
〉

.
Given an arbitrary state of two qubits, can we specify the state of each individual qubit

in this way? No, in general the two qubits are entangled and cannot be decomposed into the
states of the individual qubits. For example, consider the state

∣∣ψ
〉

= 1√
2

∣∣00
〉

+ 1√
2

∣∣11
〉

, which
is one of the famous Bell states. It cannot be decomposed into states of the two individual
qubits (see Exercise 10.1). Entanglement is one of the most mysterious aspects of quantum
mechanics and is ultimately the source of the power of quantum computation.

of information, and the probability of outcome x ∈ {0, 1}2 is |αx|2. Moreover, as before, if
the outcome of measurement is jk, then the new state of the system is

∣∣jk
〉

: if jk = 10, for
example, then the first electron is in the excited state and the second electron is in the ground
state.

An interesting question comes up here: what if we make a partial measurement? For
instance, if we measure just the first qubit, what is the probability that the outcome is 0? This
is simple. It is exactly the same as it would have been had we measured both qubits, namely,
Pr {1st bit = 0} = Pr {00} + Pr {01} = |α00| 2 + |α01| 2. Fine, but how much does this partial
measurement disturb the state of the system?

The answer is elegant. If the outcome of measuring the first qubit is 0, then the new
superposition is obtained by crossing out all terms of

∣∣α
〉

that are inconsistent with this
outcome (that is, whose first bit is 1). Of course the sum of the squares of the amplitudes is no
longer 1, so we must renormalize. In our example, this new state would be

∣∣αnew
〉

=
α00√

|α00| 2 + |α01| 2
∣∣00
〉

+
α01√

|α00| 2 + |α01| 2
∣∣01
〉
.

Finally, let us consider the general case of n hydrogen atoms. Think of n as a fairly small
number of atoms, say n = 500. Classically the states of the 500 electrons could be used to store
500 bits of information in the obvious way. But the quantum state of the 500 qubits is a linear
superposition of all 2500 possible classical states:

∑

x∈{0,1}n

αx

∣∣x
〉
.

It is as if Nature has 2500 scraps of paper on the side, each with a complex number written
on it, just to keep track of the state of this system of 500 hydrogen atoms! Moreover, at each
moment, as the state of the system evolves in time, it is as though Nature crosses out the
complex number on each scrap of paper and replaces it with its new value.

Let us consider the effort involved in doing all this. The number 2500 is much larger than
estimates of the number of elementary particles in the universe. Where, then, does Nature
store this information? How could microscopic quantum systems of a few hundred atoms



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 315

Figure 10.3 A quantum algorithm takes n “classical” bits as its input, manipulates them so
as to create a superposition of their 2n possible states, manipulates this exponentially large
superposition to obtain the final quantum result, and then measures the result to get (with
the appropriate probability distribution) the n output bits. For the middle phase, there are
elementary operations which count as one step and yet manipulate all the exponentially many
amplitudes of the superposition.

Exponential
superposition

Input x Output y
n-bit stringn-bit string

contain more information than we can possibly store in the entire classical universe? Surely
this is a most extravagant theory about the amount of effort put in by Nature just to keep a
tiny system evolving in time.

In this phenomenon lies the basic motivation for quantum computation. After all, if Na-
ture is so extravagant at the quantum level, why should we base our computers on classical
physics? Why not tap into this massive amount of effort being expended at the quantum level?

But there is a fundamental problem: this exponentially large linear superposition is the
private world of the electrons. Measuring the system only reveals n bits of information. As
before, the probability that the outcome is a particular 500-bit string x is |αx|2. And the new
state after measurement is just

∣∣x
〉

.

10.2 The plan

A quantum algorithm is unlike any you have seen so far. Its structure reflects the tension
between the exponential “private workspace” of an n-qubit system and the mere n bits that
can be obtained through measurement.

The input to a quantum algorithm consists of n classical bits, and the output also consists
of n classical bits. It is while the quantum system is not being watched that the quantum
effects take over and we have the benefit of Nature working exponentially hard on our behalf.

If the input is an n-bit string x, then the quantum computer takes as input n qubits in



316 Algorithms

state
∣∣x
〉

. Then a series of quantum operations are performed, by the end of which the state
of the n qubits has been transformed to some superposition

∑
y αy

∣∣y
〉

. Finally, a measurement
is made, and the output is the n-bit string y with probability |αy|2. Observe that this output
is random. But this is not a problem, as we have seen before with randomized algorithms
such as the one for primality testing. As long as y corresponds to the right answer with high
enough probability, we can repeat the whole process a few times to make the chance of failure
miniscule.

Now let us look more closely at the quantum part of the algorithm. Some of the key
quantum operations (which we will soon discuss) can be thought of as looking for certain kinds
of patterns in a superposition of states. Because of this, it is helpful to think of the algorithm
as having two stages. In the first stage, the n classical bits of the input are “unpacked” into
an exponentially large superposition, which is expressly set up so as to have an underlying
pattern or regularity that, if detected, would solve the task at hand. The second stage then
consists of a suitable set of quantum operations, followed by a measurement, which reveals
the hidden pattern.

All this probably sounds quite mysterious at the moment, but more details are on the way.
In Section 10.3 we will give a high-level description of the most important operation that
can be efficiently performed by a quantum computer: a quantum version of the fast Fourier
transform (FFT). We will then describe certain patterns that this quantum FFT is ideally
suited to detect, and will show how to recast the problem of factoring an integer N in terms
of detecting precisely such a pattern. Finally we will see how to set up the initial stage of the
quantum algorithm, which converts the input N into an exponentially large superposition
with the right kind of pattern.

The algorithm to factor a large integer N can be viewed as a sequence of reductions (and
everything shown here in italics will be defined in good time):

• FACTORING is reduced to finding a nontrivial square root of 1 modulo N .

• Finding such a root is reduced to computing the order of a random integer modulo N .

• The order of an integer is precisely the period of a particular periodic superposition.

• Finally, periods of superpositions can be found by the quantum FFT.

We begin with the last step.

10.3 The quantum Fourier transform

Recall the fast Fourier transform (FFT) from Chapter 2. It takes as input an M -dimensional,
complex-valued vector α (whereM is a power of 2, sayM = 2m), and outputs anM -dimensional



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 317

complex-valued vector β:




β0

β1

β2
...

βM−1




=
1√
M




1 1 1 · · · 1
1 ω ω2 · · · ωM−1

1 ω2 ω4 · · · ω2(M−1)

...
1 ωj ω2j · · · ω(M−1)j

...
1 ω(M−1) ω2(M−1) · · · ω(M−1)(M−1)







α0

α1

α2
...

αM−1



,

where ω is a complex Mth root of unity (the extra factor of
√
M is new and has the effect

of ensuring that if the |αi|2 add up to 1, then so do the |βi|2). Although the preceding equa-
tion suggests an O(M 2) algorithm, the classical FFT is able to perform this calculation in just
O(M logM) steps, and it is this speedup that has had the profound effect of making digital sig-
nal processing practically feasible. We will now see that quantum computers can implement
the FFT exponentially faster, in O(log2M) time!

But wait, how can any algorithm take time less than M , the length of the input? The
point is that we can encode the input in a superposition of just m = logM qubits: after all,
this superposition consists of 2m amplitude values. In the notation we introduced earlier, we
would write the superposition as

∣∣α
〉

=
∑M−1

j=0 αj

∣∣j
〉

where αi is the amplitude of the m-bit
binary string corresponding to the number i in the natural way. This brings up an important
point: the

∣∣j
〉

notation is really just another way of writing a vector, where the index of each
entry of the vector is written out explicitly in the special bracket symbol.

Starting from this input superposition
∣∣α
〉

, the quantum Fourier transform (QFT) manip-
ulates it appropriately in m = logM stages. At each stage the superposition evolves so that it
encodes the intermediate results at the same stage of the classical FFT (whose circuit, with
m = logM stages, is reproduced from Chapter 2 in Figure 10.4). As we will see in Section 10.5,
this can be achieved with m quantum operations per stage. Ultimately, after m such stages
and m2 = log2M elementary operations, we obtain the superposition

∣∣β
〉

that corresponds to
the desired output of the QFT.

So far we have only considered the good news about the QFT: its amazing speed. Now it
is time to read the fine print. The classical FFT algorithm actually outputs the M complex
numbers β0, . . . , βM−1. In contrast, the QFT only prepares a superposition

∣∣β
〉

=
∑M−1

j=0 β
∣∣j
〉

.
And, as we saw earlier, these amplitudes are part of the “private world” of this quantum
system.

Thus the only way to get our hands on this result is by measuring it! And measuring the
state of the system only yields m = logM classical bits: specifically, the output is index j with
probability |βj |2.

So, instead of QFT, it would be more accurate to call this algorithm quantum Fourier
sampling. Moreover, even though we have confined our attention to the case M = 2m in this
section, the algorithm can be implemented for arbitrary values of M , and can be summarized
as follows:



318 Algorithms

Figure 10.4 The classical FFT circuit from Chapter 2. Input vectors of M bits are processed
in a sequence of m = logM levels.

��

��

��

��

�	


�

�


�� ��

��

��

��

��

��

��

��  !

"#

$%

&'

()

*+

,-

./

α0

α4

α2

α6

α1

α5

α7

α3

1

4

4

4

4

6

6 7

4

4

2

2
6

3

2
5

4

β0

β1

β2

β3

β4

β5

β6

β7

Input: A superposition of m = logM qubits,
∣∣α
〉

=
∑M−1

j=0 αj

∣∣j
〉

.

Method: Using O(m2) = O(log2M) quantum operations perform the quantum FFT
to obtain the superposition

∣∣β
〉

=
∑M−1

j=0 βj

∣∣j
〉

.

Output: A random m-bit number j (that is, 0 ≤ j ≤ M − 1), from the probability
distribution Pr[j] = |βj |2.

Quantum Fourier sampling is basically a quick way of getting a very rough idea about the
output of the classical FFT, just detecting one of the larger components of the answer vector.
In fact, we don’t even see the value of that component—we only see its index. How can we
use such meager information? In which applications of the FFT is just the index of the large
components enough? This is what we explore next.

10.4 Periodicity
Suppose that the input to the QFT,

∣∣α
〉

= (α0, α1, . . . , αM−1), is such that αi = αj whenever
i ≡ j mod k, where k is a particular integer that divides M . That is, the array α consists
of M/k repetitions of some sequence (α0, α1, . . . , αk−1) of length k. Moreover, suppose that



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 319

exactly one of the k numbers α0, . . . , αk−1 is nonzero, say αj. Then we say that
∣∣α
〉

is periodic
with period k and offset j.

Figure 10.5 Examples of periodic superpositions.

0 M − 6

· · ·
3 6 9 M − 3

M − 7 M − 3

· · ·
1 5 9

period 4

period 3

It turns out that if the input vector is periodic, we can use quantum Fourier sampling to
compute its period! This is based on the following fact, proved in the next box:

Suppose the input to quantum Fourier sampling is periodic with period k, for some
k that divides M . Then the output will be a multiple of M/k, and it is equally likely
to be any of the k multiples of M/k.

Now a little thought tells us that by repeating the sampling a few times (repeatedly preparing
the periodic superposition and doing Fourier sampling), and then taking the greatest common
divisor of all the indices returned, we will with very high probability get the number M/k—
and from it the period k of the input!



320 Algorithms

The Fourier transform of a periodic vector
Suppose the vector

∣∣α
〉

= (α0, α1, . . . , αM−1) is periodic with period k and with no offset (that
is, the nonzero terms are α0, αk, α2k, . . .). Thus,

∣∣α
〉

=

M/k−1∑

j=0

√
k
M

∣∣jk
〉
.

We will show that its Fourier transform
∣∣β
〉

= (β0, β1, . . . , βM−1) is also periodic, with period
M/k and no offset.

Claim
∣∣β
〉

= 1√
k

∑k−1
j=0

∣∣ jM
k

〉
.

Proof. In the input vector, the coefficient α` is
√
k/M if k divides `, and is zero otherwise.

We can plug this into the formula for the jth coefficient of
∣∣β
〉

:

βj =
1√
M

M−1∑

`=0

ωj`α` =

√
k

M

M/k−1∑

i=0

ωjik.

The summation is a geometric series, 1 + ωjk + ω2jk + ω3jk + · · · , containing M/k terms and
with ratio ωjk (recall that ω is a complex Mth root of unity). There are two cases. If the
ratio is exactly 1, which happens if jk ≡ 0 mod M , then the sum of the series is simply the
number of terms. If the ratio isn’t 1, we can apply the usual formula for geometric series to
find that the sum is 1−ωjk(M/k)

1−ωjk = 1−ωMj

1−ωjk = 0.
Therefore βj is 1/

√
k if M divides jk, and is zero otherwise.

More generally, we can consider the original superposition to be periodic with period k,
but with some offset l < k:

∣∣α
〉

=

M/k−1∑

j=0

√
k
M

∣∣jk + l
〉
.

Then, as before, the Fourier transform
∣∣β
〉

will have nonzero amplitudes precisely at multi-
ples of M/k:

Claim
∣∣β
〉

= 1√
k

∑k−1
j=0 ω

ljM/k
∣∣ jM

k

〉
.

The proof of this claim is very similar to the preceding one (Exercise 10.5).

We conclude that the QFT of any periodic superposition with period k is an array that is
everywhere zero, except at indices that are multiples of M/k, and all these k nonzero coeffi-
cients have equal absolute values. So if we sample the output, we will get an index that is a
multiple of M/k, and each of the k such indices will occur with probability 1/k.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 321

Let’s make this more precise.

Lemma Suppose s independent samples are drawn uniformly from

0,
M

k
,
2M

k
, . . . ,

(k − 1)M

k
.

Then with probability at least 1−k/2s, the greatest common divisor of these samples is M/k.

Proof. The only way this can fail is if all the samples are multiples of j ·M/k, where j is some
integer greater than 1. So, fix any integer j ≥ 2. The chance that a particular sample is a
multiple of jM/k is at most 1/j ≤ 1/2; and thus the chance that all the samples are multiples
of jM/k is at most 1/2s.

So far we have been thinking about a particular number j; the probability that this bad
event will happen for some j ≤ k is at most equal to the sum of these probabilities over the
different values of j, which is no more than k/2s.

We can make the failure probability as small as we like by taking s to be an appropriate
multiple of logM .

10.5 Quantum circuits
So quantum computers can carry out a Fourier transform exponentially faster than classical
computers. But what do these computers actually look like? What is a quantum circuit made
up of, and exactly how does it compute Fourier transforms so quickly?

10.5.1 Elementary quantum gates
An elementary quantum operation is analogous to an elementary gate like the AND or NOT
gate in a classical circuit. It operates upon either a single qubit or two qubits. One of the most
important examples is the Hadamard gate, denoted by H, which operates on a single qubit.
On input

∣∣0
〉

, it outputs H(
∣∣0
〉
) = 1√

2

∣∣0
〉

+ 1√
2

∣∣1
〉

. And for input
∣∣1
〉

, H(
∣∣1
〉
) = 1√

2

∣∣0
〉
− 1√

2

∣∣1
〉

.
In pictures:

1√
2

∣∣0
〉

+ 1√
2

∣∣1
〉

H
∣∣1
〉

H
∣∣0
〉

1√
2

∣∣0
〉
− 1√

2

∣∣1
〉

Notice that in either case, measuring the resulting qubit yields 0 with probability 1/2 and
1 with probability 1/2. But what happens if the input to the Hadamard gate is an arbitrary
superposition α0

∣∣0
〉

+α1

∣∣1
〉

? The answer, dictated by the linearity of quantum physics, is the
superposition α0H(

∣∣0
〉
)+α1H(

∣∣1
〉
) = α0+α1√

2

∣∣0
〉

+ α0−α1√
2

∣∣1
〉

. And so, if we apply the Hadamard
gate to the output of a Hadamard gate, it restores the qubit to its original state!

Another basic gate is the controlled-NOT, or CNOT. It operates upon two qubits, with the
first acting as a control qubit and the second as the target qubit. The CNOT gate flips the
second bit if and only if the first qubit is a 1. Thus CNOT(

∣∣00
〉
) =

∣∣00
〉

and CNOT(
∣∣10
〉
) =

∣∣11
〉

:



322 Algorithms

∣∣00
〉 ∣∣00

〉 ∣∣10
〉 ∣∣11

〉

Yet another basic gate, the controlled phase gate, is described below in the subsection
describing the quantum circuit for the QFT.

Now let us consider the following question: Suppose we have a quantum state on n qubits,∣∣α
〉

=
∑

x∈{0,1}n αx

∣∣x
〉

. How many of these 2n amplitudes change if we apply the Hadamard
gate to only the first qubit? The surprising answer is—all of them! The new superposition
becomes

∣∣β
〉

=
∑

x∈{0,1}n βx

∣∣x
〉

, where β0y =
α0y+α1y√

2
and β1y =

α0y−α1y√
2

. Looking at the
results more closely, the quantum operation on the first qubit deals with each n− 1 bit suffix
y separately. Thus the pair of amplitudes α0y and α1y are transformed into (α0y + α1y)/

√
2

and (α0y−α1y)/
√

2. This is exactly the feature that will give us an exponential speedup in the
quantum Fourier transform.

10.5.2 Two basic types of quantum circuits
A quantum circuit takes some number n of qubits as input, and outputs the same number of
qubits. In the diagram these n qubits are carried by the n wires going from left to right. The
quantum circuit consists of the application of a sequence of elementary quantum gates (of the
kind described above) to single qubits and pairs of qubits.

At a high level, there are two basic functionalities of quantum circuits that we use in the
design of quantum algorithms:

Quantum Fourier Transform These quantum circuits take as input n qubits in
some state

∣∣α
〉

and output the state
∣∣β
〉

resulting from applying the QFT to
∣∣α
〉

.
Classical Functions Consider a function f with n input bits and m output bits,
and suppose we have a classical circuit that outputs f(x). Then there is a quantum
circuit that, on input consisting of an n-bit string x padded with m 0’s, outputs x
and f(x):

f(x)x C

x

f(x)

x

0

Classical circuit Quantum circuit

Now the input to this quantum circuit could be a superposition over the n bit
strings x,

∑
x

∣∣x, 0k
〉

, in which case the output has to be
∑

x

∣∣x, f(x)
〉

. Exercise 10.7
explores the construction of such circuits out of elementary quantum gates.

Understanding quantum circuits at this high level is sufficient to follow the rest of this
chapter. The next subsection on quantum circuits for the QFT can therefore be safely skipped
by anyone not wanting to delve into these details.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 323

10.5.3 The quantum Fourier transform circuit
Here we have reproduced the diagram (from Section 2.6.4) showing how the classical FFT cir-
cuit for M -vectors is composed of two FFT circuits for (M/2)-vectors followed by some simple
gates.

α0
α2

α3

j + M/2

j
α1

βj+M/2FFTM/2

FFTM/2
...

...

βj

FFTM (input: α0, . . . , αM−1, output: β0, . . . , βM−1)

αM−2

αM−1

Let’s see how to simulate this on a quantum system. The input is now encoded in the 2m

amplitudes of m = logM qubits. Thus the decomposition of the inputs into evens and odds,
as shown in the preceding figure, is clearly determined by one of the qubits—the least sig-
nificant qubit. How do we separate the even and odd inputs and apply the recursive circuits
to compute FFTM/2 on each half? The answer is remarkable: just apply the quantum circuit
QFTM/2 to the remaining m− 1 qubits. The effect of this is to apply QFTM/2 to the superpo-
sition of all the m-bit strings of the form x0 (of which there are M/2), and separately to the
superposition of all the m-bit strings of the form x1. Thus the two recursive classical circuits
can be emulated by a single quantum circuit—an exponential speedup when we unwind the
recursion!

QFTM/2

least significant bit

m− 1 qubits QFTM/2

H

Let us now consider the gates in the classical FFT circuit after the recursive calls to
FFTM/2: the wires pair up j with M/2 + j, and ignoring for now the phase that is applied
to the contents of the (M/2 + j)th wire, we must add and subtract these two quantities to ob-
tain the jth and the (M/2 + j)th outputs, respectively. How would a quantum circuit achieve
the result of these M classical gates? Simple: just perform the Hadamard gate on the first
qubit! Recall from the preceding discussion (Section 10.5.1) that for every possible configura-
tion of the remaining m − 1 qubits x, this pairs up the strings 0x and 1x. Translating from
binary, this means we are pairing up x andM/2+x. Moreover the result of the Hadamard gate
is that for each such pair, the amplitudes are replaced by the sum and difference (normalized
by 1/

√
2) , respectively. So far the QFT requires almost no gates at all!

The phase that must be applied to the (M/2 + j)th wire for each j requires a little more
work. Notice that the phase of ωj must be applied only if the first qubit is 1. Now if j is



324 Algorithms

represented by the m − 1 bits j1 . . . jm−1, then ωj = Πm−1
l=1 ω2jl . Thus the phase ωj can be

applied by applying for the lth wire (for each l) a phase of ω2l if the lth qubit is a 1 and the
first qubit is a 1. This task can be accomplished by another two-qubit quantum gate—the
conditional phase gate. It leaves the two qubits unchanged unless they are both 1, in which
case it applies a specified phase factor.

The QFT circuit is now specified. The number of quantum gates is given by the formula
S(m) = S(m−1)+O(m), which works out to S(m) = O(m2). The QFT on inputs of sizeM = 2m

thus requires O(m2) = O(log2M) quantum operations.

10.6 Factoring as periodicity
We have seen how the quantum Fourier transform can be used to find the period of a periodic
superposition. Now we show, by a sequence of simple reductions, how factoring can be recast
as a period-finding problem.

Fix an integer N . A nontrivial square root of 1 modulo N (recall Exercises 1.36 and 1.40)
is any integer x 6≡ ±1 mod N such that x2 ≡ 1 mod N . If we can find a nontrivial square
root of 1 mod N , then it is easy to decompose N into a product of two nontrivial factors (and
repeating the process would factor N ):

Lemma If x is a nontrivial square root of 1 modulo N , then gcd(x+1, N) is a nontrivial factor
of N .

Proof. x2 ≡ 1 mod N implies that N divides (x2 − 1) = (x + 1)(x − 1). But N does not divide
either of these individual terms, since x 6≡ ±1 mod N . Therefore N must have a nontrivial
factor in common with each of (x + 1) and (x − 1). In particular, gcd(N,x + 1) is a nontrivial
factor of N .

Example. Let N = 15. Then 42 ≡ 1 mod 15, but 4 6≡ ±1 mod 15. Both gcd(4− 1, 15) = 3 and
gcd(4 + 1, 15) = 5 are nontrivial factors of 15.

To complete the connection with periodicity, we need one further concept. Define the order
of x modulo N to be the smallest positive integer r such that xr ≡ 1 mod N . For instance, the
order of 2 mod 15 is 4.

Computing the order of a random number x mod N is closely related to the problem of
finding nontrivial square roots, and thereby to factoring. Here’s the link.

Lemma Let N be an odd composite, with at least two distinct prime factors, and let x be
chosen uniformly at random between 0 and N − 1. If gcd(x,N) = 1, then with probability
at least 1/2, the order r of x mod N is even, and moreover xr/2 is a nontrivial square root of
1 mod N .

The proof of this lemma is left as an exercise. What it implies is that if we could compute
the order r of a randomly chosen element x mod N , then there’s a good chance that this order
is even and that xr/2 is a nontrivial square root of 1 modulo N . In which case gcd(xr/2 + 1, N)
is a factor of N .



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 325

Example. If x = 2 and N = 15, then the order of 2 is 4 since 24 ≡ 1 mod 15. Raising 2 to
half this power, we get a nontrivial root of 1: 22 ≡ 4 6≡ ±1 mod 15. So we get a divisor of 15 by
computing gcd(4 + 1, 15) = 5.

Hence we have reduced FACTORING to the problem of ORDER FINDING. The advantage of
this latter problem is that it has a natural periodic function associated with it: fixN and x, and
consider the function f(a) = xa mod N . If r is the order of x, then f(0) = f(r) = f(2r) = · · · = 1,
and similarly, f(1) = f(r + 1) = f(2r + 1) = · · · = x. Thus f is periodic, with period r. And
we can compute it efficiently by the repeated squaring algorithm from Section 1.2.2. So, in
order to factor N , all we need to do is to figure out how to use the function f to set up a
periodic superposition with period r; whereupon we can use quantum Fourier sampling as in
Section 10.3 to find r. This is described in the next box.

Setting up a periodic superposition
Let us now see how to use our periodic function f(a) = xa mod N to set up a periodic super-
position. Here is the procedure:

• We start with two quantum registers, both initially 0.

• Compute the quantum Fourier transform of the first register modulo M , to get a su-
perposition over all numbers between 0 and M − 1: 1√

M

∑M−1
a=0

∣∣a, 0
〉

. This is because
the initial superposition can be thought of as periodic with period M , so the transform
is periodic with period 1.

• We now compute the function f(a) = xa mod N . The quantum circuit for doing this
regards the contents of the first register a as the input to f , and the second register
(which is initially 0) as the answer register. After applying this quantum circuit, the
state of the two registers is:

∑M−1
a=0

1√
M

∣∣a, f(a)
〉

.

• We now measure the second register. This gives a periodic superposition on the first
register, with period r, the period of f . Here’s why:
Since f is a periodic function with period r, for every rth value in the first register, the
contents of the second register are the same. The measurement of the second register
therefore yields f(k) for some random k between 0 and r − 1. What is the state of
the first register after this measurement? To answer this question, recall the rules
of partial measurement outlined earlier in this chapter. The first register is now in
a superposition of only those values a that are compatible with the outcome of the
measurement on the second register. But these values of a are exactly k, k + r, k +
2r, . . . , k +M − r. So the resulting state of the first register is a periodic superposition∣∣α
〉

with period r, which is exactly the order of x that we wish to find!



326 Algorithms

10.7 The quantum algorithm for factoring
We can now put together all the pieces of the quantum algorithm for FACTORING (see Fig-
ure 10.6). Since we can test in polynomial time whether the input is a prime or a prime
power, we’ll assume that we have already done that and that the input is an odd composite
number with at least two distinct prime factors.

Input: an odd composite integer N .
Output: a factor of N .

1. Choose x uniformly at random in the range 1 ≤ x ≤ N − 1.

2. Let M be a power of 2 near N (for reasons we cannot get into here, it is best to choose
M ≈ N2).

3. Repeat s = 2 logN times:

(a) Start with two quantum registers, both initially 0, the first large enough to store a
number modulo M and the second modulo N .

(b) Use the periodic function f(a) ≡ xa mod N to create a periodic superposition
∣∣α
〉

of
length M as follows (see box for details):

i. Apply the QFT to the first register to obtain the superposition
∑M−1

a=0
1√
M

∣∣a, 0
〉

.
ii. Compute f(a) = xa mod N using a quantum circuit, to get the superposition∑M−1

a=0
1√
M

∣∣a, xa mod N
〉

.
iii. Measure the second register. Now the first register contains the periodic super-

position
∣∣α
〉

=
∑M/r−1

j=0

√
r
M

∣∣jr + k
〉

where k is a random offset between 0 and
r − 1 (recall that r is the order of x modulo N ).

(c) Fourier sample the superposition
∣∣α
〉

to obtain an index between 0 and M − 1.

Let g be the gcd of the resulting indices j1, . . . , js.

4. If M/g is even, then compute gcd(N,xM/2g + 1) and output it if it is a nontrivial factor of
N ; otherwise return to step 1.

From previous lemmas, we know that this method works for at least half the choices of x,
and hence the entire procedure has to be repeated only a couple of times on average before a
factor is found.

But there is one aspect of this algorithm, having to do with the number M , that is still
quite unclear: M , the size of our FFT, must be a power of 2. And for our period-detecting idea
to work, the period must divide M—hence it should also be a power of 2. But the period in
our case is the order of x, definitely not a power of 2!

The reason it all works anyway is the following: the quantum Fourier transform can detect
the period of a periodic vector even if it does not divide M . But the derivation is not as clean
as in the case when the period does divide M , so we shall not go any further into this.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 327

Figure 10.6 Quantum factoring.

1√
M

∑M−1
a=0

∣∣a, 0
〉

1√
M

∑M−1
a=0

∣∣a, xa mod N
〉

f(a) =

xa mod N

QFTM QFTM measure0

0

Let n = logN be the number of bits of the input N . The running time of the algorithm
is dominated by the 2 logN = O(n) repetitions of step 3. Since modular exponentiation takes
O(n3) steps (as we saw in Section 1.2.2) and the quantum Fourier transform takes O(n2) steps,
the total running time for the quantum factoring algorithm is O(n3 log n).



328 Algorithms

Quantum physics meets computation
In the early days of computer science, people wondered whether there were much more
powerful computers than those made up of circuits composed of elementary gates. But since
the seventies this question has been considered well settled. Computers implementing the
von Neumann architecture on silicon were the obvious winners, and it was widely accepted
that any other way of implementing computers is polynomially equivalent to them. That
is, a T -step computation on any computer takes at most some polynomial in T steps on
another. This fundamental principle is called the extended Church-Turing thesis. Quantum
computers violate this fundamental thesis and therefore call into question some of our most
basic assumptions about computers.

Can quantum computers be built? This is the challenge that is keeping busy many re-
search teams of physicists and computer scientists around the world. The main problem is
that quantum superpositions are very fragile and need to be protected from any inadver-
tent measurement by the environment. There is progress, but it is very slow: so far, the
most ambitious reported quantum computation was the factorization of the number 15 into
its factors 3 and 5 using nuclear magnetic resonance (NMR). And even in this experiment,
there are questions about how faithfully the quantum factoring algorithm was really imple-
mented. The next decade promises to be really exciting in terms of our ability to physically
manipulate quantum bits and implement quantum computers.

But there is another possibility: What if all these efforts at implementing quantum com-
puters fail? This would be even more interesting, because it would point to some fundamen-
tal flaw in quantum physics, a theory that has stood unchallenged for a century.

Quantum computation is motivated as much by trying to clarify the mysterious nature
of quantum physics as by trying to create novel and superpowerful computers.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 329

Exercises
10.1.

∣∣ψ
〉

= 1√
2

∣∣00
〉

+ 1√
2

∣∣11
〉

is one of the famous “Bell states,” a highly entangled state of its two
qubits. In this question we examine some of its strange properties.

(a) Suppose this Bell state could be decomposed as the (tensor) product of two qubits (recall
the box on page 314), the first in state α0

∣∣0
〉

+ α1

∣∣1
〉

and the second in state β0

∣∣0
〉

+ β1

∣∣1
〉

.
Write four equations that the amplitudes α0, α1, β0, and β1 must satisfy. Conclude that the
Bell state cannot be so decomposed.

(b) What is the result of measuring the first qubit of
∣∣ψ
〉

?
(c) What is the result of measuring the second qubit after measuring the first qubit?
(d) If the two qubits in state

∣∣ψ
〉

are very far from each other, can you see why the answer to
(c) is surprising?

10.2. Show that the following quantum circuit prepares the Bell state
∣∣ψ
〉

= 1√
2

∣∣00
〉

+ 1√
2

∣∣11
〉

on input∣∣00
〉

: apply a Hadamard gate to the first qubit followed by a CNOT with the first qubit as the
control and the second qubit as the target.

H

What does the circuit output on input 10, 01, and 11? These are the rest of the Bell basis states.
10.3. What is the quantum Fourier transform modulo M of the uniform superposition 1√

M

∑M−1
j=0

∣∣j
〉

?

10.4. What is the QFT modulo M of
∣∣j
〉

?

10.5. Convolution-Multiplication. Suppose we shift a superposition
∣∣α
〉

=
∑

j αj

∣∣j
〉

by l to get the
superposition

∣∣α′〉 =
∑

j αj

∣∣j + l
〉

. If the QFT of
∣∣α
〉

is
∣∣β
〉

, show that the QFT of α′ is β′, where
β′

j = βjω
lj . Conclude that if

∣∣α′〉 =
∑M/k−1

j=0

√
k
M

∣∣jk + l
〉

, then
∣∣β′〉 = 1√

k

∑k−1
j=0 ω

ljM/k
∣∣jM/k

〉
.

10.6. Show that if you apply the Hadamard gate to the inputs and outputs of a CNOT gate, the result
is a CNOT gate with control and target qubits switched:

H

HH

H
≡

10.7. The CONTROLLED SWAP (C-SWAP) gate takes as input 3 qubits and swaps the second and third
if and only if the first qubit is a 1.

(a) Show that each of the NOT, CNOT, and C-SWAP gates are their own inverses.
(b) Show how to implement an AND gate using a C-SWAP gate, i.e., what inputs a, b, c would

you give to a C-SWAP gate so that one of the outputs is a ∧ b?
(c) How would you achieve fanout using just these three gates? That is, on input a and 0,

output a and a.



330 Algorithms

(d) Conclude therefore that for any classical circuit C there is an equivalent quantum circuit Q
using just NOT and C-SWAP gates in the following sense: if C outputs y on input x, then Q
outputs

∣∣x, y, z
〉

on input
∣∣x, 0, 0

〉
. (Here z is some set of junk bits that are generated during

this computation).
(e) Now show that that there is a quantum circuit Q−1 that outputs

∣∣x, 0, 0
〉

on input
∣∣x, y, z

〉
.

(f) Show that there is a quantum circuit Q′ made up of NOT, CNOT, and C-SWAP gates that
outputs

∣∣x, y, 0
〉

on input
∣∣x, 0, 0

〉
.

10.8. In this problem we will show that if N = pq is the product of two odd primes, and if x is chosen
uniformly at random between 0 and N −1, such that gcd(x,N) = 1, then with probability at least
3/8, the order r of x mod N is even, and moreover xr/2 is a nontrivial square root of 1 mod N .

(a) Let p be an odd prime and let x be a uniformly random number modulo p. Show that the
order of x mod p is even with probability at least 1/2. (Hint: Use Fermat’s little theorem
(Section 1.3).)

(b) Use the Chinese remainder theorem (Exercise 1.37) to show that with probability at least
3/4, the order r of x mod N is even.

(c) If r is even, prove that the probability that xr/2 ≡ ±1 is at most 1/2.


