
Chapter 1

Introduction

Nature at the atomic level behaves very di↵erently from the World we observe
around us. As such, it often flies in the face of our physical intuition. To
comprehend this behavior requires a new kind of physics called quantum
mechanics, which exhibits a number of unusual features:

• Complete knowledge of a system’s state is forbidden - A measurement of
the state of the system reveals only a small amount of information about
the state. Moreover, the very act of making the measurement disturbs
the state.

• Quantum entities do not have trajectories We can only say for a photon
or electron that it started at A and was measured at B at a later time.
We cannot speak about the trajectory or path of the photon from A to
B.

• It is inherently probabilistic - Measurement outcomes are inherently
probabilistic. If identical states are measured the outcome may be dif-
ferent each time.

• Wave-particle duality Unlike classical systems which can usually be de-
scribed in terms of particles or waves, quantum systems exhibit some
properties of each but behave in their own unique way.

These features may seem bizarre, and some of you might have trouble accept-
ing the claim that Nature behaves in accordance with such a theory. This is
a natural response - to quote the great physicist Niels Bohr, “Anyone who is
not shocked by quantum theory has not understood it.”

In today’s lecture, we will highlight these aspects of quantum mechanics
in the context of the iconic double slit experiment.
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By using the experiment as a means for comparing and contrasting the
behavior of classical waves and particles against the behavior of quantum
entities, we hope to motivate the existence of these strange properties, and
help develop an intuition for how they work.

1.1 The Double Slit Experiment

A great deal of insight into the quantum theory can be gleaned by addressing
the question, is light transmitted by particles or waves? Until quite recently,
the evidence strongly favored wave-like propagation. Di↵raction of light, a
wave interference phenomenon, was observed as long ago as 1655 by Grimaldi.
In fact, a rather successful theory of wave-like light propagation, due to Huy-
gens, was developed in 1678. Perhaps the most striking confirmation of the
wave nature of light was the double-slit interference experiment performed by
Young in 1802. However, a dilemma began in the late 19th century when the-
oreticians such as Wien calculated how might light should be emitted by hot
objects (i.e., blackbody radiation). Their wave-based calculation di↵ered dra-
matically from what was observed experimentally. At about the same time,
the 1890’s, it was noticed that the behavior of electrons kicked out of metals
by light, the photoelectric e↵ect, was strikingly inconsistent with any existing
wave theory. In the first decade of the 20th century, blackbody radiation and
the photoelectric e↵ect were explained by treating light not as a wave phe-
nomenon, but as particles containing discrete packets of energy, which we now
call photons.

To illustrate this seeming paradox, let us recall Young’s double-slit experi-
ment, which consists of a source of light, an intermediate screen with two very
thin identical slits, and a viewing screen; see Figure 1.1. If only one slit is
open then intensity of light on the viewing screen is maximum on the straight
line path and falls o↵ in either direction. However, if both slits are open,
then the intensity oscillates according to the familiar interference pattern pre-
dicted by wave theory. These facts can be very convincingly explained, both
qualitatively and quantitatively, by positing that light travels in waves.

Suppose, however, that you were to place photodetectors at the viewing
screen, and turn down the intensity of the light source until the photodetectors
only occasionally record the arrival of a photon, then you would make a very
surprising discovery. To begin with, you would notice that as you turn down
the intensity of the source, the magnitude of each click remains constant,
but the time between successive clicks increases. You could infer that light
is emitted from the source as discrete particles (photons) — the intensity of
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Figure 1.1: Double- and single-slit di↵raction. Notice that in the double-slit
experiment the two paths interfere with one another. This experiment gives
evidence that light propagates as a wave.

light is proportional to the rate at which photons are emitted by the source.
And since you turned the intensity of the light source down su�ciently, it
only emits a photon once every few seconds. You might now ask the question,
once a photon is emitted from the light source, where will it hit the viewing
screen. The answer is no longer deterministic, but probabilistic. You can only
speak about the probability that a photodetector placed at point x detects
the photon. So what is the probability that the photon is detected at point
x in the setup of the double slit experiment with the light intensity turned
way down? If only a single slit is open, then plotting this probability of
detection as a function of x gives the same curve as the intensity as a function
of x in the classical Young experiment. So far this should agree with your
intuition, since the photon should randomly scatter as it goes through the
slit. What happens when both slits are open? Our intuition would strongly
suggest that the probability we detect the photon at x should simply be the
sum of the probability of detecting it at x if only slit 1 were open and the
probability if only slit 2 were open. In other words the outcome should no
longer be consistent with the interference pattern. If you were to actually carry
out the experiment, you would make the very surprising discovery that the
probability of detection does still follow the interference pattern. Reconciling
this outcome with the particle nature of light appears impossible, and this is
the basic dilemma we face.

Before proceeding further, let us try to better understand in what sense
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the outcome of the experiment is inconsistent with the particle nature of light.
Clearly, for the photon to be detected at x, either it went through slit 1 and
ended up at x or it went through slit 2 and ended up at x. And the probability
of seeing the photon at x should then be the sum of the probabilities of the
two cases. The nature of the contradiction can be seen even more clearly at
“dark” points x, where the probability of detection is 0 when both slits are
open, even though it is non-zero if either slit is open. This truly defies reason!
After all, if the photon has non-zero probability of going through slit 1 and
ending up at x, how can the existence of an additional trajectory for getting
to x possibly decrease the probability that it arrives at x?

Quantum mechanics provides a way to reconcile both the wave and particle
nature of light. Let us sketch how it might address the situation described
above. Quantum mechanics introduces the notion of the complex amplitude
 1(x) 2 C with which the photon goes through slit 1 and hits point x on
the viewing screen. The probability that the photon is actually detected at
x is the square of the magnitude of this complex number: P1(x) = | 1(x)|2.
Similarly, let  2(x) be the amplitude if only slit 2 is open. P2(x) = | 2(x)|2.

Now when both slits are open, the amplitude with which the photon
hits point x on the screen is just the sum of the amplitudes over the two
ways of getting there:  12(x) =  1(x) +  2(x). As before the probability
that the photon is detected at x is the squared magnitude of this amplitude:
P12(x) = | 1(x) +  2(x)|2. The two complex numbers  1(x) and  2(x) can
cancel each other out to produce destructive interference, or reinforce each
other to produce constructive interference or anything in between.

Some of you might find this “explanation” quite dissatisfying. You might
say it is not an explanation at all. Well, if you wish to understand how Nature
behaves you have to reconcile yourselves to this type of explanation — this
wierd way of thinking has been successful at describing (and understanding)
a vast range of physical phenomena. But you might persist and (quite reason-
ably) ask “but how does a particle that went through the first slit know that
the other slit is open”? In quantum mechanics, this question is not well-posed.
Particles do not have trajectories, but rather take all paths simultaneously (in
superposition). As we shall see, this is one of the key features of quantum
mechanics that gives rise to its paradoxical properties as well as provides the
basis for the power of quantum computation. To quote Feynman, 1985, “The
more you see how strangely Nature behaves, the harder it is to make a model
that explains how even the simplest phenomena actually work. So theoretical
physics has given up on that.”
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1.2 Basic Quantum Mechanics

Feynman also said, “I think I can safely say that nobody understands quantum
mechanics.” Paradoxically, quantum mechanics is a very simple theory, whose
fundamental principles can be stated very concisely and are enshrined in the
three basic postulates of quantum mechanics - indeed we will go through
these postulates over the course of the next two chapters. The challenge lies
in understanding and applying these principles, which is the goal of the rest
of the book (and will continue through more advanced courses and research if
you choose to pursue the subject further):

• The superpostion principle: this axiom tells us what are the allowable
(possible) states of a given quantum system. An addendum to this axiom
tells us given two subsystems, what the allowable states of the composte
system are.

• The measurement principle: this axiom governs how much information
about the state we can access.

• Unitary evolution: this axoim governs how the state of the quantum
system evolves in time.

In keeping with the philosophy of the book, we will introduce the basic
axioms gradually, starting with simple finite systems, and simplified basis state
measurements, and building our way up to the more general formulations.
This should allow the reader a chance to develop some intuition about these
topics.

1.3 The Superposition Principle

Consider a system with k distinguishable (classical) states. For example, the
electron in a hydrogen atom is only allowed to be in one of a discrete set of
energy levels, starting with the ground state, the first excited state, the second
excited state, and so on. If we assume a suitable upper bound on the total
energy, then the electron is restricted to being in one of k di↵erent energy
levels — the ground state or one of k�1 excited states. As a classical system,
we might use the state of this system to store a number between 0 and k� 1.
The superposition principle says that if a quantum system can be in one of
two states then it can also be placed in a linear superposition of these states
with complex coe�cients.
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Let us introduce some notation. We denote the ground state of our k-state
system by |0i, and the succesive excited states by |1i , . . . , |k � 1i. These are
the k possible classical states of the electron. The superposition principle tells
us that, in general, the quantum state of the electron is ↵0 |0i+↵1 |1i+ · · ·+
↵k�1 |k � 1i, where ↵0,↵1, . . . ,↵k�1 are complex numbers normalized so thatP

j |↵j |2 = 1. ↵j is called the amplitude of the state |ji. For instance, if k = 3,
the state of the electron could be

| i = 1p
2
|0i+ 1

2
|1i+ 1

2
|2i

or

| i = 1p
2
|0i � 1

2
|1i+ i

2
|2i

or

| i = 1 + i

3
|0i � 1� i

3
|1i+ 1 + 2i

3
|2i .

The superposition principle is one of the most mysterious aspects about
quantum physics — it flies in the face of our intuitions about the physical
world. One way to think about a superposition is that the electron does not
make up its mind about whether it is in the ground state or each of the k� 1
excited states, and the amplitude ↵0 is a measure of its inclination towards
the ground state. Of course we cannot think of ↵0 as the probability that
an electron is in the ground state — remember that ↵0 can be negative or
imaginary. The measurement priniciple, which we will see shortly, will make
this interpretation of ↵0 more precise.

1.4 The Geometry of Hilbert Space

We saw above that the quantum state of the k-state system is described
by a sequence of k complex numbers ↵0, . . . ,↵k�1 2 C, normalized so thatP

j |↵j |2 = 1. So it is natural to write the state of the system as a k dimen-
sional vector:

| i =

0

BBB@

↵0

↵1
...

↵k�1

1

CCCA

The normalization on the complex amplitudes means that the state of the
system is a unit vector in a k dimensional complex vector space — called a
Hilbert space.
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Figure 1.2: Representation of qubit states as vectors in a Hilbert space.

But hold on! Earlier we wrote the quantum state in a very di↵erent (and
simpler) way as: ↵0 |0i + ↵1 |1i + · · · + ↵k�1 |k � 1i. Actually this notation,
called Dirac’s ket notation, is just another way of writing a vector. Thus

|0i =

0

BBB@

1
0
...
0

1

CCCA
, |k � 1i =

0

BBB@

0
0
...
1

1

CCCA
.

So we have an underlying geometry to the possible states of a quantum
system: the k distinguishable (classical) states |0i , . . . , |k � 1i are represented
by mutually orthogonal unit vectors in a k-dimensional complex vector space.
i.e. they form an orthonormal basis for that space (called the standard basis).
Moreover, given any two states, ↵0 |0i+↵1 |1i+ · · ·+↵k�1 |k � 1i, and � |0i+
� |1i+ · · ·+� |k � 1i, we can compute the inner product of these two vectors,
which is

Pk�1
j=0 ↵

⇤
j�j . The absolute value of the inner product is the cosine of

the angle between these two vectors in Hilbert space. You should verify that
the inner product of any two basis vectors in the standard basis is 0, showing
that they are orthogonal.

The advantage of the ket notation is that the it labels the basis vectors
explicitly. This is very convenient because the notation expresses both that
the state of the quantum system is a vector, while at the same time explic-
itly writing out the physical quantity of interest (energy level, position, spin,
polarization, etc).
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1.5 Bra-ket Notation

In this section we detail the notation that we will use to describe a quantum
state, | i. This notation is due to Dirac and, while it takes some time to get
used to, is incredibly convenient.

Inner Products

We saw earlier that all of our quantum states live inside a Hilbert space. A
Hilbert space is a special kind of vector space that, in addition to all the usual
rules with vector spaces, is also endowed with an inner product. And an inner
product is a way of taking two states (vectors in the Hilbert space) and getting
a number out. For instance, define

| i =
X

k

ak |ki ,

where the kets |ki form a basis, so are orthogonal. If we instead write this
state as a column vector,

| i =

0

BBB@

a0
a1
...

aN�1

1

CCCA

Then the inner product of | i with itself is

h , i =
�
a⇤0 a⇤1 · · · a⇤N1

�
·

0

BBB@

a0
a1
...

aN�1

1

CCCA
=

N�1X

k=0

a⇤kak =
N�1X

k=0

|ak|2

The complex conjugation step is important so that when we take the inner
product of a vector with itself we get a real number which we can associate
with a length. Dirac noticed that there could be an easier way to write this
by defining an object, called a “bra,” that is the conjugate-transpose of a ket,

h | = | i† =
X

k

a⇤k hk| .

This object acts on a ket to give a number, as long as we remember the rule,

hj| |ki ⌘ hj|ki = �jk
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Now we can write the inner product of | i with itself as

h | i =

0

@
X

j

a⇤j hj|

1

A
 
X

k

ak |ki
!

=
X

j,k

a⇤jak hj|ki

=
X

j,k

a⇤jak�jk

=
X

k

|ak|2

Now we can use the same tools to write the inner product of any two states,
| i and |�i, where

|�i =
X

k

bk |ki .

Their inner product is,

h |�i =
X

j,k

a⇤jbk hj|ki =
X

k

a⇤kbk

Notice that there is no reason for the inner product of two states to be real
(unless they are the same state), and that

h |�i = h�| i⇤ 2 C

In this way, a bra vector may be considered as a “functional.” We feed it a
ket, and it spits out a complex number.

The Dual Space

We mentioned above that a bra vector is a functional on the Hilbert space.
In fact, the set of all bra vectors forms what is known as the dual space. This
space is the set of all linear functionals that can act on the Hilbert space.

1.6 The Measurement Principle

This linear superposition | i =
Pk�1

j=0 ↵j |ji is part of the private world of the
electron. Access to the information describing this state is severely limited —
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in particular, we cannot actually measure the complex amplitudes ↵j . This is
not just a practical limitation; it is enshrined in the measurement postulate
of quantum physics.

A measurement on this k state system yields one of at most k possible
outcomes: i.e. an integer between 0 and k� 1. Measuring | i in the standard
basis yields j with probability |↵j | 2.

One important aspect of the measurement process is that it alters the
state of the quantum system: the e↵ect of the measurement is that the new
state is exactly the outcome of the measurement. I.e., if the outcome of the
measurement is j, then following the measurement, the qubit is in state |ji.
This implies that you cannot collect any additional information about the
amplitudes ↵j by repeating the measurement.

Intuitively, a measurement provides the only way of reaching into the
Hilbert space to probe the quantum state vector. In general this is done by
selecting an orthonormal basis |e0i , . . . , |ek�1i. The outcome of the measure-
ment is |eji with probability equal to the square of the length of the projection
of the state vector  on |eji. A consequence of performing the measurement
is that the new state vector is |eji. Thus measurement may be regarded as a
probabilistic rule for projecting the state vector onto one of the vectors of the
orthonormal measurement basis.

Some of you might be puzzled about how a measurement is carried out
physically? We will get to that soon when we give more explicit examples of
quantum systems.

1.7 Qubits

Qubits (pronounced “cue-bit”) or quantum bits are basic building blocks that
encompass all fundamental quantum phenomena. They provide a mathemat-
ically simple framework in which to introduce the basic concepts of quantum
physics. Qubits are 2-state quantum systems. For example, if we set k = 2,
the electron in the Hydrogen atom can be in the ground state or the first
excited state, or any superposition of the two. We shall see more examples of
qubits soon.

The state of a qubit can be written as a unit (column) vector ( ↵� ) 2 C2.
In Dirac notation, this may be written as:

| i = ↵ |0i+ � |1i with ↵,� 2 C and |↵|2 + |�|2 = 1.

This linear superposition | i = ↵ |0i+ � |1i is part of the private world of
the electron. For us to know the electron’s state, we must make a measure-
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ment. Making a measurement gives us a single classical bit of information —
0 or 1. The simplest measurement is in the standard basis, and measuring | i
in this {|0i , |1i} basis yields 0 with probability |↵|2, and 1 with probability
|�|2.

One important aspect of the measurement process is that it alters the state
of the qubit: the e↵ect of the measurement is that the new state is exactly
the outcome of the measurement. I.e., if the outcome of the measurement
of | i = ↵ |0i + � |1i yields 0, then following the measurement, the qubit is
in state |0i. This implies that you cannot collect any additional information
about ↵, � by repeating the measurement.

More generally, we may choose any orthogonal basis {|vi , |wi} and mea-
sure the qubit in that basis. To do this, we rewrite our state in that basis:
| i = ↵0 |vi + �0 |wi. The outcome is v with probability |↵0| 2, and |wi with
probability |�0| 2. If the outcome of the measurement on | i yields |vi, then
as before, the the qubit is then in state |vi.

Examples of Qubits

Atomic Orbitals

The electrons within an atom exist in quantized energy levels. Qualitatively
these electronic orbits (or “orbitals” as we like to call them) can be thought
of as resonating standing waves, in close analogy to the vibrating waves one
observes on a tightly held piece of string. Two such individual levels can be
isolated to configure the basis states for a qubit.





Figure 1.3: Energy level diagram of an atom. Ground state and first excited
state correspond to qubit levels, |0i and |1i, respectively.
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Photon Polarization

Classically, a photon may be described as a traveling electromagnetic wave.
This description can be fleshed out using Maxwell’s equations, but for our
purposes we will focus simply on the fact that an electromagnetic wave has a
polarization which describes the orientation of the electric field oscillations (see
Fig. 1.4). So, for a given direction of photon motion, the photon’s polarization
axis might lie anywhere in a 2-d plane perpendicular to that motion. It is thus
natural to pick an orthonormal 2-d basis (such as ~x and ~y, or “vertical” and
“horizontal”) to describe the polarization state (i.e. polarization direction)
of a photon. In a quantum mechanical description, this 2-d nature of the
photon polarization is represented by a qubit, where the amplitude of the
overall polarization state in each basis vector is just the projection of the
polarization in that direction.

The polarization of a photon can be measured by using a polaroid film
or a calcite crystal. A suitably oriented polaroid sheet transmits x-polarized
photons and absorbs y-polarized photons. Thus a photon that is in a super-
position |�i = ↵ |xi+ � |yi is transmitted with probability |↵|2. If the photon
now encounters another polariod sheet with the same orientation, then it is
transmitted with probability 1. On the other hand, if the second polaroid
sheet has its axes crossed at right angles to the first one, then if the photon is
transmitted by the first polaroid, then it is definitely absorbed by the second
sheet. This pair of polarized sheets at right angles thus blocks all the light. A
somewhat counter-intuitive result is now obtained by interposing a third po-
lariod sheet at a 45 degree angle between the first two. Now a photon that is
transmitted by the first sheet makes it through the next two with probability
1/4.

To see this first observe that any photon transmitted through the first
filter is in the state, |0i. The probability this photon is transmitted through
the second filter is 1/2 since it is exactly the probability that a qubit in the
state |0i ends up in the state |+i when measured in the |+i , |�i basis. We
can repeat this reasoning for the third filter, except now we have a qubit in
state |+i being measured in the |0i , |1i-basis — the chance that the outcome
is |0i is once again 1/2.

Spins

Like photon polarization, the spin of a (spin-1/2) particle is a two-state system,
and can be described by a qubit. Very roughly speaking, the spin is a quantum
description of the magnetic moment of an electron which behaves like a spin-
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











Figure 1.4: Using the polarization state of light as the qubit. Horizontal polar-
ization corresponds to qubit state, |x̂i, while vertical polarization corresponds
to qubit state, |ŷi.

ning charge. The two allowed states can roughly be thought of as clockwise
rotations (“spin-up”) and counter clockwise rotations (“spin-down”). We will
say much more about the spin of an elementary particle later in the course.

Measurement Example I: Phase Estimation

Now that we have discussed qubits in some detail, we can are prepared to
look more closesly at the measurement principle. Consider the quantum
state,

| i = 1p
2
|0i+ ei✓p

2
|1i .

If we were to measure this qubit in the standard basis, the outcome would
be 0 with probability 1/2 and 1 with probability 1/2. This measurement
tells us only about the norms of the state amplitudes. Is there any mea-
surement that yields information about the phase, ✓?

To see if we can gather any phase information, let us consider a mea-
surement in a basis other than the standard basis, namely

|+i ⌘ 1p
2
(|0i+ |1i) and |�i ⌘ 1p

2
(|0i � |1i).
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What does |�i look like in this new basis? This can be expressed by first
writing,

|0i = 1p
2
(|+i+ |�i) and |1i = 1p

2
(|+i � |�i).

Now we are equipped to rewrite | i in the {|+i , |�i}-basis,

| i = 1p
2
|0i+ ei✓p

2
|1i)

=
1

2
(|+i+ |�i) + ei✓

2
(|+i � |�i)

=
1 + ei✓

2
|+i+ 1� ei✓

2
|�i .

Recalling the Euler relation, ei✓ = cos ✓+i sin ✓, we see that the probability
of measuring |+i is 1

4((1+cos ✓)2+sin2 ✓) = cos2 (✓/2). A similar calcula-
tion reveals that the probability of measuring |�i is sin2 (✓/2). Measuring
in the (|+i , |�i)-basis therefore reveals some information about the phase
✓.

Later we shall show how to analyze the measurement of a qubit in a
general basis.

Measurement example II: General Qubit Bases

What is the result of measuring a general qubit state | i = ↵ |0i+� |1i, in
a general orthonormal basis |vi ,

��v?
↵
, where |vi = a|0i+ b|1i and |v?i =

b⇤|0i � a⇤|1i? You should also check that |vi and
��v?
↵
are orthogonal by

showing that
⌦
v?|v

↵
= 0.

To answer this question, let us make use of our recently acquired bra-
ket notation. We first show that the states |vi and

��v?
↵
are orthogonal,
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that is, that their inner product is zero:

D
v?|v

E
= (b⇤ |0i � a⇤ |1i)† (a |0i+ b |1i)

= (b h0|� a h1|)† (a |0i+ b |1i)
= ba h0|0i � a2 h1|0i+ b2 h0|1i � ab h1|1i
= ba� 0 + 0� ab

= 0

Here we have used the fact that hi|ji = �ij .
Now, the probability of measuring the state | i and getting |vi as a

result is,

P (v) = |hv| i|2

= |(a⇤ h0|+ b⇤ h1|) (↵ |0i+ � |1i)|2

= |a⇤↵+ b⇤�|2

Similarly,

P (v
?) =

���
D
v?| 

E���
2

= |(b h0|� a h1|) (↵ |0i+ � |1i)|2

= |b↵� a�|2

Unitary Operators

The third postulate of quantum physics states that the evolution of a quantum
system is necessarily unitary. Geometrically, a unitary transformation is a
rigid body rotation of the Hilbert space, thus resulting in a transformation of
the state vector that doesn’t change its length.

Let us consider what this means for the evolution of a qubit. A unitary
transformation on the Hilbert space C2 is specified by mapping the basis states
|0i and |1i to orthonormal states |v0i = a |0i+ b |1i and |v1i = c |0i+ d |1i. It
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is specified by the linear transformation on C2:

U =

✓
a c
b d

◆

If we denote by U † the conjugate transpose of this matrix:

U † =

✓
a⇤ b⇤

c⇤ d⇤

◆

then it is easily verified that UU † = U †U = I. Indeed, we can turn this around
and say that a linear transformation U is unitary if and only if it satisfies this
condition, that

UU † = U †U = I.

Let us now consider some examples of unitary transformations on single
qubits or equivalently single qubit quantum gates:

• Hadamard Gate. Can be viewed as a reflection around ⇡/8 in the real
plane. In the complex plane it is actually a ⇡-rotation about the ⇡/8
axis.

H =
1p
2

✓
1 1
1 �1

◆

The Hadamard Gate is one of the most important gates. Note that
H† = H – since H is real and symmetric – and H2 = I.

• Rotation Gate. This rotates the plane by ✓.

U =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

• NOT Gate. This flips a bit from 0 to 1 and vice versa.

NOT =

✓
0 1
1 0

◆

• Phase Flip.

Z =

✓
1 0
0 �1

◆

The phase flip is a NOT gate acting in the |+i = 1p
2
(|0i+ |1i) , |�i =

1p
2
(|0i � |1i) basis. Indeed, Z |+i = |�i and Z |�i = |+i.



1.8. PROBLEMS 17

How do we physically e↵ect such a (unitary) transformation on a quantum
system? To explain this we must first introduce the notion of the Hamiltonian
acting on a system; you will have to wait for three to four lectures before we
get to those concepts.

1.8 Problems

Problem 1

Show that
HZH = X

Problem 2

Verify that
U †U = UU † = I

for the general unitary operator,

U =

✓
a c
b d

◆


