WHAT'S IN THE MANUAL

Notation

The following syntax notation is used in this manual:

{ item} means any number of repetitions of the item
(or none at all)
[Hem] means the item is optional

Keywords, operators and delimiters, such as get, procedure, := and) are
written in boldface. Commentsin example Turing programs are written in
italicsin asmaller font than therest of the program. Identifiersarewritten
initalics. Explicit constants such as 27 or "Hello" are written normally.

Itemsare presented by giving their syntax, a general description of
their meaning, examples of their use, and then detailsabout theitem. The
description isintended to satisfy the reader who mainly wants to know basic
information about the item, for example, that the string type represents
character strings. The examplesillustrate important patterns of usage of
the item, and should in many cases answer the question in mind. The
detailed information that followsgivesafull technical description of the
item as well as referencesto related items. Virtually all theinformationin
the Turing Report appearsin thisManual, although not in itsoriginal form.
ThisManual takesliberties with theoriginal syntax of the language to
make explanations easier to understand. For example, the Manual
describes declarations asasingleitem, and then explainsrestrictions that
disallow certain declarations from appearing in particular contexts. By
contrast, the Report uses the form of the context free syntax toimply, ina
less obvious way, these same restrictions.

The Turing language was designed o it can be easily implemented
in a compatible way on many types of hardware. This portability of the
language is important because it allows us to write our programs without
concern for the technical details of the underlying hardware. But sometimes
the user wants the opposite of portability and wishes to use the particular
agpects of the hardware at hand. For example, graphics devices remain
highly dependent on individual hardware. To adapt to this redlity, a
number of extensions have been added to the implementations of Turing.
These extensions, such as the drawbox procedure, are described in this
Manual, along with theinherent features of the language. The reader
should be aware that these extensions may not be available in some
implementations of Turing.

Turing Reference Manual 34

pesign of the Turing Language

The Turing language has been designed to be agenerd purpose
ge meaning that itis potentially thelanguage of choicefor awide
1 siof applicat’™™- Because of its combination of convenience and
°®fessive power it is particularly attractivefor learning andteaching.
Because of itsclean syntax, Turing programsarerel atively easy toread and

write.

Thelanguage hel psin the writing of reliable programs by
eliminatingor constrainingerror-pronelanguagefeatures; forexample,
Turingeliminatesthe goto statement and constrains pointersto locete
elementsof collections. It provides many compile-time and run-time checks
to catch bugsbeforethey lead to disaster. These checksguaranteethat a
Turing program behaves according to thisreferencemanual, or dseawarning

message is given.

There are production versions of Turing that providemaximal
efficiency by allowing you to remove run-time checking. Using these
versions, Turing programs are as efficient asprograms written in
machine-oriented languages such as C. Thisefficiency arisesfrom the fact
that each construct in Turing has an obvious, efficient implementation ™'
existingcomputer hardware.

Turing hasbeen designed to eliminate the security problemsof
languagessuch asPascal. For example, Turing'svariant records(unions)
have an explicit tag field that determines the active variant of the record;
run-timechecksguaranteethat the programcan never accessfieldsthat
havebeen assgnedinadifferent variant. Inprinciple, aTuring compiler
prevents function side effects (changing vauesoutside of the function) and
aliasing (having more than one way to modify a given value). However,
existing Turingi mplementati onsdonot necessarily enforcetheserestrictions.

Turinghasmodules, whichareinformationhidingunits. These
modulesareobjectsinthesenseof " object-oriented programming"- They
allow the programmer to divided the program into unitsthat have
Precisdly controlledinterfaces.

r Turing has been extensively used to teach programming concepts,
mthedghth grade and to university graduate courses.

Turing has been designed o it can be supported by either compilers
IBM plP™*& A present (Fall 1989) the Turing system used for teaching on
SPegk COmpAtiblesiscalledan jparpreterfalthough technically

intern™f - generates do-code). Thissame
P eter runson Macintoshes, lcons, Suns, Vaxesand | BM mainframes.

naS i comF,iIerthaI

Turing Reference Manual 35

The Turing compilersand interpreters haveall been writtenin
Turing or initsextension cdled Turing Plus. Turing Plusincludes systems
programming features such as concurrency, exception handling, explicit type
cheats and separate compilation. The Turing Plus compiler optionally
generates C code instead of machine language.

Basic Conceptsin Turing

Like most programming languages, Turing has variables whose
values are changed by assignment statements. Example:

var i: int % This declaration creates variable i
i=10 % This assignment sets the value ofi to 10

This example uses comments that begin with a percent sign (%) and which
end with the end of theline. The names of items, such as)', are identifiers.

A named constant is a named item whose value cannot change. In
the following, ¢ and x are named constants:

constcr=25
congx :=gn(y)** 2

In this example, c's valueis known at compile-time, 0 it isacompile-time
(or manifest) value. In the Pascal language, all named constants are
compile-timevalues, but in Turing these values may be computed at
run-time, asisthe case for x in thisexample.

An explicit constant (or literal constant) is a constant that denotes
itsown value; for example, 27 isan explicit constant and 0 is "Hello".

InaTuring program, each named item such asavariable hasa
lifetime, which iscalled its scope. The lifetime of the item begins with its
declaration and lasts to the end of the construct (such asa procedure or a
loop) inwhichit isdeclared. More detail can be found under declarationin
the main text. Turing'sscope rulestell you where an item can be used. These
rulesarevery similar to rulesin Pasca.

Turing, like Pascd, has two kinds of subprograms, called procedures
and functions. Procedures can be thought of as named sequences of statements
and functions as operators that map values to vaues.

Turing allows you to declare an array whose sizeis not known until
run time; these are called dynamic arrays. Thisisin contrast to languages
such as Pasca in which the sizes of arrays must be known at compile time.

Turing can be thought of either as an algorithmic language, in
which you write algorithms that will not necessarily be run on a computer,

Turing Reference Manual 36

vramming language whose purpose is to be used onacomputer. In
of asaF " me language is called Ideal Turing and is a mathematical
the™™® .cn'asalgebraand arithmetic are mathematical notations. In

nOtayt an o1 ..
[r'ri n2; numbers have perfect accur thisis the nature of pure
|leal Rand therejsno Fi miton tnesi ze?g Fgl’Ogram or itsaata pgy

""ntrast, Implemented Turing is a language that you can use on actual
computers.

Implemented Turing (which we usually call simply Turing)

pproximates Ideal Turing asclosely asispractical. However, itsintegers
have a fixed maximum range (31 bits of precision) and itsrea humbers have
limited precison (about 16 decimal digits) and limited sze of exponent.
Whenever Implemented Turing cannot carry out your program in the same
way as ldeal Turing, it givesyou awarning message, although it does not
warn you about the limited precision of real numbers. For example, if your
program tries to create an array with amillion dlementsinit, but thereis
not enough space, you will be warned.

Implemented Turing checks to make sure that your running program
ismeaningful; for example, it checks that variables are initialized before
being used, that array subscripts are in bounds, and that pointerslocate
actual values. This checking guaranteesfaithful execution, which means
that your program behaves as it would in Ideal Turing or else you get a
warning message. In production versions of Turing, this checking can be
turned off, for maximal efficiency of production programs.

Compile-time expressions

In certain situations, the Turing language requiresyou to use values
that are known at compiletime. Such values are called compile-time
values. For example, the maximum length of a string type, such astheN in
string(N), must be known at compile time; you are not allowed to read a
value from theinput and use it as the maximum length of a string. Hereisa
list of the places where compile-time values are required:

(@) Themaximum size N of astring, asin string(N).
(b) The value of alabel in acase statement or in aunion type.
(c) Each valueused ininit to initialise an array, record or union.
(d) The lower bound L and upper bound U of asubrange, asinL.. U ,
ith one exception. The exception, caled a dynamic array, isan array
eclared using var or const that is not part of a record, uniort, or another
array; in adynamic array, the upper bound U (but not thelower bound L) is
alowed to be read or computed at run time.

Case (d) implies that the size of set typesisknown at compile time.

The technical definition of a compile-time valueisany expression
that consists of only:

Turing Reference Manual 37

(2) explicit integer, real, boolean and string constants, such as 25,
false, and "Charles DeGaulle", aswell as enumerated values such as
color.red.

(2) S& constructors containing only compile-time valuesor all.

(3) Named constants that name compile-time values.

(4) Results of the integer operators +, -, *, div and mod.

(5) Results of the chr and ord functions.

(6) Results of the catenation operator +.

(7) Parenthesised versions of any of these expressions.

Y ou are not alowed to use run-timevalues (any values not covered by items
1-7) in the placeslisted above (a-d).

Technical Problems

Any technical problems or questions should be directed to our
technical support line at Holt Software Associates. The humber for this
support line (416)978-8363.

Acknowledgements

JR.Cordy, the co-designer of the Turing Language, is acknowledged
as the source of much of the material in thismanual. SG. Perelgut has
rewritten the Introductory section of this manual and T.L.West has done the
final work - correcting this manual, preparing appendices and preparing it
for publication.

Turing Reference Manual 38

LIST OF TECHNICAL TERMS

abs

all

and

arctan
arctand
array
assert
assignability
assgnment
begin

bind

body
boolean
cae
catenation
cell

chr

dock
cloe

ds
collection
color
colorback
comment

absolute value function

all members of a st type
boolean operator

arctangent function (radians)
arctangent function (degrees)

ggeement ’

of an expression to avariable
Statement

Statement

declaration -.

declaration

type

Statement

joining together strings
real-to-integer function
integer-to-character function
milliseconds used procedure
file statement

clear screen graphics procedure
declaration

text color graphics procedure

background color graphics procedure

comparisonOperator

const
constantRefercnce
Ccos

cod

date

declaration

delay

div

drawarc

drawbox

drawdot

drawfill

drawline
drawoval

drawpic

enum
enumeratedValue
eof

equivalence
erealstr

exit

exp

constant declaration

use of anamed constant
cosine function (radians)
cosine function (degrees)
procedure

procedure

integer truncating division
graphics procedure
graphics procedure
graphics procedure
graphics procedure
graphics procedure
graphics procedure
graphics procedure

type

end-of-file function

of types

real-to-string function
statement
exponentiation function

Turing Reference Manual

FREREBBIBRARBSRBIIIGIRNINNTBRBRRBILSBBFALAASEREHRS

w
[{e]

explicitConstant
explicitintegerConstant
explicitReal Constant
expHcitStringConstant
explicitTrueFalseConstant

expn expression

export list

externa procedures and functions
false boolean value

fetcharg fetch argument function
floor real-to-integer function
for statement

forward declaration

frealstr real-to-string function
free statement

function declaration

functionCall

get statement

getch get character procedure
getenv get environment function
getpid get processid function
hasch has character function

id identifier

if' statement

import list

in member of st

include source files

index find pattern in string function
indexType

infix operator

init initialisation

int type

intreal integer-to-rcal function
intstr integer-to-string function
invariant assertion

length of a string function

In natural logarithm function
locate procedure

locatexy graphics procedure

loop statement

lower bound of an array or string
maxcal maximum column function
maxcol or graphics function

maxrow maximum row function
maxx graphics function

maxy graphics function

min minimum function

mod remainder (modulo) operator
module declaration

Turing Reference Manual

BERBRRRBBRRRBRRBREREREERRRREREE 8898

B
RS

=
N

4

EESEE

BRBEREE

40

named
nargs
new

nil

not
opaque
open

or

ord
palette

paramDeclaration

play
playdone
pointer
post

pre
precedence
pred

prefix
procedure
procedureCall
program
put

rand
randint
randnext
randomize
randseed
read

rea

realstr
record
repeat
result
return
round
screen

sk
separator
st
setConstructor
stscreen
sgn

sin

sind
sizepic
skip

skip

sound

types _
number of arguments function

statement

pointer to a collection
true/fal se (boolean) operator
type

file statement

boolean operator
character-to-integer function
graphics procedure
parameter declaration
procedure

function

type

assartion

assertion

of operators

predecessor function
operator

declaration

statement

an entire Turing program
statement

random real number procedure
random integer procedure
procedure

procedure

procedure

filestatement

type

real-to-string function

type

make copies of string procedure
statement

statement

real-to-integer function
procedure

file statement

between tokensin a program

type

graphicsprocedure
function

sine function (radians)
sine function (degrees)
graphics procedure
(used in get statements)
(used in put statements)
statement

Turing Reference Manual

BERERERERE

dFIFANT S

BREREB SRR R BR BB REEEEERRRE

41

qrt square root function
standardType

statement

statementsAndDeclarations

string comparison

string type

strint gring-to-integer function
srreal gtring-to-red function
subrangeType

substring of another string '

uce uccessor function

sysclock milliseconds used procedure
system statement

tag statement

takepic graphicsprocedure

tell file statement

time (hours, minutes, seconds) procedure
token

true boolean value

type declaration

typeSpec type specification

union type

upper bound of an array or string
var declaration
variableReference use of a variable

wallclock secondssince 1970 procedure
whatcolor text color graphics function
whatcolorback color of background graphics function
whatdotcol or graphics function

whatpal ette graphics function
whattextchar graphics function
whattextcolor graphics function
whattextcolorback graphics function

write file statement

Turing Reference Manual

BHUBHRRRBRENERRRNNERR

42

absolute value function

SYNTAX:

abs(expn)

DESCRIPTION: The abs function is used to find the absolute value of a
number (the expn). For example, abs (-23) is23.

EXAMPLE: This program outputs 9.83.

varx : real :=-9.83
put abS (X) % Outputs 9.83

DETAILS: The abs function accepts numbers that are either int'sor red's;
the type of the result is the same type as the accepted number. The abs
function is often used to see if one number iswithin a given distance d of
another number y; for example:

if abs(x-y)<=d then..

Turing Reference Manual 43

LU.

al all members of a set type
SYNTAX:

setTypeName (all)

DESCRIPTION: Given asat typenamed S the set of all of the possible
elementsof S iswritten S(all).

EXAMPLE:

type smallSet : set of 0 .. 2
var X : smallSet := smallSet (all)
% set x contains elements 0, 1 and 2

DETAILS: Seesettypefor detailsabout sets.

Turing Reference Manual 44

(boolean) operator

SYNTAX:

Aand B

DESCRIPTION: The and (boolean) operator yields a result of trueif and
only if both operands are true, and isa short circuit operator; for
example, if Aisfalsein A and B then B is not evaluated.

EXAMPLE:

var success : boolean :=false
var continuing :=true % the type is boolean

continuing := continuing and success

DETAILS: continuing is st to true if and only if both continuing and success
aretrue. Since Turing uses short circuit operators, once continuing is
false, success will not be looked at.

See also boolean (which discusses true/fal se values),

explidtTrueFalseConstant (which discusses the valuestrue and fal se),
precedence and expn (expression).

Turing Reference Manual 45

ar ctail arctangent function (radians)
SYNTAX:

arctan (r : real): real

DESCRIPTION: The arctan function is used to find the arc tangent of an
vaue. Theresultisgiveninradians. For example, arctan (1) ispi/4.

EXAMPLE: Thisprogram printsout the arctangent of O through 3 in
radians.

for/:0..12
constarg:=il4
put "Arc tangent of", arg," is",
arctan (arg)," radians"
end for

DETAILS: Seealso the arctand function which finds the arc tangent of an
value with theresult given in degrees. (2* pi radiansare the same as
360 degrees.)

NOTE: Theformulaefor arcsin and arccos are:
arcsin (x) = arctan (sqgrt ((x*x) /(1 - (x*x))))

arccos (x) = arctan (sqrt ((1 - (X *x)) / (X *x)))

Turing Reference Manual 46

arctangent function (degrees)

SYNTAX:
arctand (r : real) : real

DESCRIPTION: The arctand function is used to find the arc tangent of an
anglegivenindegrees. For example, arctand (0) isO.

EXAMPLE: This program printsout the arctangent of valuesfrom0Oto3in

degrees.
for/:0..12
constarg:=il 4

put "Arc tangent of ", arg, " is ",
arctand (arg) , " degrees"
end for

DETAILS: Seedso the arctan function which finds the arc tangent of an

valuewith theresult giveninradians. (2* pi radiansarethe same as
360 degrees.)

Turing Reference Manual 47

array type
SYNTAX: An array Type is

array indexType {, indexType} of typeSpec
DESCRIPTION: Anarray consgs of anumber of elements. The typeSpec
gives the type of these elements. Thereis oneelement for eachitemin
the (combinations of) range(s) of the indexType(s). In the following
example, thearray caled marks consists of 100 elements, each of
which isan integer.
EXAMPLE:

var marks :array 1 .. 100 of int

var sum :int ;=0

for/ :1 ..100 % Add up the elements of marks
sum \- sum + marks (/)
end for

DETAILS: Intheabove example, rmrks(i) isthei-th element of the marks
array. Wecall i theindex or subscript of marks. In Turing, a subscript
is surrounded by parentheses, not by square bracketsasisthecasein
the Pascal language.

EXAMPLE: The prices array shows how an array can have more than one
dimension. Thisarray has one dimension for the year (1988,1989 or
1990) and another for themonth (1 .. 12). There are 36 elements of the
array, one for each month of each year.

var price : array 1988 .. 1990,1 . 12 of int

varsum:int,:=0
for year: 1988 .. 1990 % Foreach year
for month : 1 .. 12 % For each month
sum = sum + price (year, month)
end for
end for

DETAILS: Each indexType must contain at least one item, for example, the
range 1 .. 0 would not be allowed. Eachindex type must be a subrange

Turing Reference Manual 48

of theintegersor of an enumerated type, an (entire) enumerated type,

or anamed type which isone of these,
Arrays can be assgned as a whole (to arrays of an equivalent

type), but they cannot be compared.
Anarray canbeinitialized in itsdeclaration using init; for
details, sse var and const declarations.

EXAMPLE: Inthisexample, the size of the array isnot known until run

time.

var howMany : int
get howMany
var height : array 1 .. howMany of real
...read in all the elements of this array...
function total (a: array 1 .. * of real) : real
var sum :int ;=0
for/ : 1 . upper (a)
sum = sum +a(/)
end for
result sum
end total
put "Sum of the heights is ", total (height)

DETAILS: Theends of the range of a subscript are called the bounds of the
array. |f these values are not known until run time, the array issaid
to be dynamic. In the above example, height isa dynamic array.
Dynamic arrays can be declared asvariables or constants, asin the
caefor height. However, dynamic arrays cannot appear inside other
types such as records and cannot be named types. Dynamic arrays
cannot be assigned and cannot beinitialized using init.

In the above example, upper(a) returnsthe sizeof a. Sedso
upper and lower.

In the declaration of an array parameter, the upper bound can be
givenasadar (*), asisdoneintheaboveexample. Thismeansthat
the upper bound is taken from that of the corresponding actual
parameter (from height in this example).

Y ou can havearraysof other types, for examplearraysof

record. If Risan array of records, then R(i).f isthe way to accessthe/
field of the f-th element of array R.

Turing Reference Manual 49

asser t statement

SYNTAX: AnassertSatementis:

assert trueFalseExpn

DESCRIPTION: An assert statement is used to make sure that a certain
requirement is met; this requirement is given by the trueFal seExpn.
The trueFalseExpn isevaluated. Ifitistrue, all iswell and execution
continues. If it isfalse, execution is terminated with an appropriate
message.

EXAMPLE: Makesurethat n ispositive.

assert n >= 0

EXAMPLE: Thisprogram assumes that the textFile exists and can be
opened, in other words, that the open will st thefileNumber to a
non-zero stream number. 1f thisisnot true, the programmer wants the
program halted immediately.

var fileNumber : int
open : fileNumber, "textFile", read
assert fileNumber not= 0

DETAILS: Insome Turing systems, checking can beturned off. If checkingis

turned off, assert statements may be ignored and asaresult never cause
termination.

Turing Reference Manual 50

assignability

of an expression to avariable

DESCRIPTION: A value, such as 24, isassignable to avariable, such asi,

if certain rulesarefollowed. Theserules, givenin detail below, are
cdled the assignability rules. They must be followed in assignment
statements as well as when passing values to non-var parameters.

EXAMPLES:

var/ :int

[=24 % 24 is assignable to i

var width : 0 319

width =3 */ % 3 */ is assignable to width

vara : array 1 .. 25 of string
a (/') :="Ralph" 9% "Ralph"is assignable to a(j)

var name : string (20)
name :=a (/) % a(i) is assignable to name

varb :array 1 .. 25 of string
b '= a % Array a is assignable to b

type personType :
record
age :int
name: string (20)
end record
var r, s: personType

S =T % Record r is assignable to s

. The expresson on the right of ;= must beassignable to the
variable on the left. An expression passed to a non-var parameter
must be assignable to the corresponding parameter.

An expression is defined to be assignable to a variable if the

their two root types are equivalent or if an integer value isbeing
assigned to areal variable (in which case the integer valueis

Turing Reference Manual 51

automatically converted toreal). Two typesare considered to be
equivalent if they are essentially the same type (see equivalence for
thedetailed definition of thisterm).

We now define root type. In most casesaroot typeissimply the
typeitself. The exceptionsare subranges and strings. The root type of
asubrange, such as0 .. 319, isthe type of itsbounds, int typein this
example. Theroot type of a string, such asthe type string(9), isthe
most generd stringtype, namely string.

When a subrange variable, such aswidth, isused asan
expression, for example on the right side of an assignment statement,
itstype is considered to be the root type, integer in this case, rather
than the subrange. When an expression is assigned to a subrange
variable such aswidth, the value, 3*i in thisexample, mustliein the
subrange. Analogously, any string variable used in an expression is
considered to be of the most general type of string. When a string value
isassigned to a string variableits length must not exceed the
variable's maximum length.

Turing Reference Manual 52

statement

SYNTAX: A assignmentSatement is;

variableReference := expn

DESCRIPTION: Anassignment statement cal culatesthevalueof the
expression (expn) and assigns that value to the variable

(variableReference).

EXAMPLES: A
var/ :int
| =24 % Variable i becomes 24

vara :array 1 .. 25 of string
a(/'"):="Ralph" % The i-th element of a becomes "Ralph”

varb :array 1 .. 25 of string
b '- a % Array b becomes (is assigned) array a

DETAILS: The expression on the right of := must be assignable to the
variable on the left. For example, in the above, any integer value,

such as 24, isassignableto i, but area value such as 314 would not be

not assignable toi. Entirearrays, records and unions can be assigned.
For example, intheabove, array aisassigned to array b. See
assignability for the exact rules of alowed assignments.

Y ou cannot assign a new value to a constant (const).

Turing Reference Manual 53

!
i |

|
|
|
1

begin statement declaration
SYNTAX: A beginSatement is: SYNTAX: A bindDedaration is -
begin bind [var] id to variableReference
statementsAndDeclarations {, [var] id to variableReference }
end
i DESCRIPTION: The bind declaration creates a new name (or names) for a
DESCRIPTION: A begin statement isused to limit the scope of variable reference (or references). Y ou areallowed to change the
declarationswithinit. InTuring, beginisrarely used, because named item only if you specify var.
declarations can appear wherever statements can appear and because o]
every structured statement such as if ends with an explicit end. EXAMPLE: Rename the n-th dement of array A 0 it iscaled itemand
then change this element to 15.
E>(AMPLE:
_ bind var item to A(n)
begin item =15
var bigArray : array 1 .. 2000 of real
... bigArray will exist only inside this begin statement- DETAILS: The scope of the identifier (item above) begins with the bind
end declaration and lasts to the end of the surrounding program or

statement (or to the end of the surrounding part of a case or if
gtatement). During this socope, the original name of the variable (A
above) reference cannot be used. During thisscope, a changeto a
subscript (i above) that occurred in the variabl e reference does not
change the element that the identifier refers to.

"-JET AILS: In Pascd programs, begin statements are quite common because
they arerequired for grouping two of more statements, for example, to
group the statements that follow then. In Turing thisis not necessary,
because each place where you can write a single statement, you can as

well write severdl statements. Y ou are not alowed to use bind at the outermost level of the

main program (except nested inside statements such asiif) or at the
outermost level inamodule.

Turing Reference Manual 54 Turing Reference Manual 55

. pcrRjPTION: The syntax of a bodyDeclaration presented above has
bOdy deC| aration been simplified by omitting the optional result identifier, import list,
re and post condition and init clause. See procedure and function
declarations for descriptions of these omissions.
SYNTAX: A bodyDeclaration isone of:

(@) body procedure procedureld
statementsAndDeclarations
end procedureld

(@) body function functionld
statementsAndDeclarations
end functionld

DESCRIPTION: A procedure or function isdeclared to be forward when
you want to define its header but not itsbody. Thisisthe case when
one procedure or function calls another which in turn calls the first;
this situation is called mutual recursion. The use of forward is
necessary in this case because every item must be declared before it can
beused. Following theforward declaration must come a body
declaration for the same procedure or function. For details, sse
forward declarations.

EXAMPLES: Theexample given hereis part of a complete Turing
program that is given with the explanation of forward declarations.

var token: string

forward procedure expn (var eValue: real)
import (forward term, var token)

.. other declarations appear here ...

body procedure expn
var nextValue: real

term (eValue) % Evaluate t
loop % Evaluate {+1}
exit when token not="+"

get token

term (nextValue)
eValue := eValue + nextValue
end loop
end expn

. Turing Reference Manual 57
Turing Reference Manual 56

boolean type
(the true-false type)

SYNTAX: boolean

DESCRIPTION: The boolean typeisused for values are are either true or
false. Thesetrue-false values can be combined by various operators
suchasor and and.

EXAMPLE:

var success : boolean :=false _
var continuing = true % The type is boolean

success = mark >= 60
continuing = success and continuing
if continuing then

DETAILS: Thistypeisnamed after the British mathematician, George
Boole, who formulated laws of logic.

The operatorsfor true and false are and, or, =>, and not. For two
true/false values A and B, these operators are defined as follows:

A and B is true when both are true

A or B is true when either or both are true

A=> B (A impliesB) istrue when both aretrue or
when A isfase

not A istrue when A isfalse

The and operator has higher precedencethan or, s0 A or B and C means
A01(Band C).

The operators or, and and => are short circuit operators; for
example, if Aistruein A or B, B isnot evaluated.

See adlso explicitTrueFalseConstant (which discussesthe values
true and false), precedence and expn (expression).

Turing Reference Manual 58

statement
SYNTAX: A caseSatement is

case expn of
{ label expn {, expn}:
statementsAndDeclarations }
[label :
statementsAndDeclarations |

end case

DESCRIPTION: A case statement is used to choose among a set of
Statements (and declarations). One st is chosen and executed and then
execution continues just beyond end case.

The expression (expn) following the keyword case is evaluated
and used to select one of the alternatives (sets of declarations and
statements) for execution. The selected alternative is the one having a
label value equalling the case expression. If none are equal and there
isafinal label with no expression, that alternative is selected.

EXAMPLE: Output a message based on val ue of mark.

case mark of
label9,10 put "Excellent"

label 7,8 : put "Good"

label 6 : put "Fair"
label: put "Poor"
end case

DETAILS: The case expression is required to match one of the labels or else
there must be a final label with no expression. Labd expressions must
have values known at compile time. All labels values must be distinct.
The case expression and the label values must have the same type,
which must be integer or an enum type.

Turing Reference Manual 59

catenation (+)
joining together strings
SYNTAX: A catenation is:

stringExpn + stringExpn

DESCRIPTION: Two strings (stringExpns) can be joined together
(catenated) using the + operator.

EXAMPLES:

var lastName, wholeName: string
lastName = "Austere"
wholeName :="Nancy" +" " + lastName
% The three strings Nancy, a blank and Austere
% catenated together to make the string

; % "Nancy Austere". This string becomes the
% value of wholeName

DETAILS: Thelength of a catenation islimited to at most 255 characters.

Seedso substrings (for separating a strings into parts), repeat
(for making repeated catenations), string type, length, and index (to

determine where one string is located inside another).

Catenation is sometimes call concatenation.

Turing Reference Manual 60

real-to-integer function

SYNTAX:
ceil(r : real): int

DESCRIPTION: Returns the smallest integer greater than or equal to r.

DETAILS: The ceil (ceiling) function isused to convert areal number to an
integer. The result isthe smallest integer that is greater than or equal
tor. Inother words, the ceil function rounds up to the nearest integer.
For example, ceil (3) is3, ceil (2.25) is3and ceil(-843) is-8.

S dso the floor and round functions.

Turing Reference Manual 61

chr integer-to-character function

SYNTAX:
chr(/: int): string (1)

DESCRIPTION: The chr function isused to convert an integer to a
character, that is to a string of length 1. The character is the /-th
character of the ASCII sequence of characters (except on the IBM
maK\frame, which uses the EBCDIC sequence)) For example, chr (65)
iIs"A".

The selected character must not be number O (areserved
character used to mark the end of a string) or 128 (a reserved character
used to mark uninitialised strings). Theord function is theinverse of
chr, 30 for any character c, chr (ord (c)) = c.

See dlso the ord, intstr and strint functions.

Turing Reference Manual 62

millisecs used procedure

SYNTAX:
clock (varc : int)

DESCRIPTION: Theclock statement isused to determine the amount of
time since this program (process) started running. Variablecis
assigned the number of milliseconds since the program started running.

EXAMPLE: Thisprogram tells you how much timeit has used.

var timeRunning : int

clock (timeRunning)

put "This program has run ", timeRunning,
"milliseconds”

DETAILS: Szadso thedelay, time, sysclock, wallclock and date
statements.

On IBM PC compatibles, thisisthetotal time since the Turing
system was started up and the hardware resolution of duration isin
unitsof 55 milliseconds. For example, clock(i) may be of f by as much as
55 milliseconds.

On Apple Macintoshes, thisisthe total time since the machine
was turned on and the hardware resolution of duration isin units of
17 milliseconds (1/60-th of a second).

Turing Reference Manual 63

[PC, Mac and Unix only]

close file statement

SYNTAX: A closeStatementis:

close : fileNumber

DESCRIPTION: InTuring, files are read and written using a fileNumber.
In most cases, this number is gotten using the open statement, which
translates a file name, such as "Master”, to a file number, such as5.
When the program is finished using the file, it disconnects from the
file using the close statement.

EXAMPLE: Thisprogramsillustrates how to open, read and then dosea
file

var fileName: string := "Master" % Name of me
var fileNo : int % Number of me
var inputVariable: string (100)

open : fileNo, fleName, read

read : fileNo, inputVariable

close : fileNo

DETAILS: InaTuring implementation, there will generally bealimit on
the number of currently open files; this limit will typically be around
10. To avoid exceeding this limit, a program that uses many files one
after another should close files that are no longer in use.

If a program does not close a file, the file will be automatically
dosed when the program finishes.

Seedso the open, get, put, read, write, seek and tell statements.

Thereisan older and still acceptable version of close that has
this syntax:

close (fileNumber : int)

Turing Reference Manual 64

clear screen graphics procedure

SYNTAX:
as

DESCRIPTION: The és (clear. screen) procedure is used to blank the
screen. The cursor is st to the top left (to row 1, column 1).

DETAILS: In "graphics' mode al pixels are set to color number 0, so the
screen isdisplayed in background color.

The screen should be in a "screen” or "graphics' mode; if not, it
will automatically be set to "screen" mode. Seesetscreen for details.

Turing Reference Manual 65

Collection declaration

SYNTAX: A collectionDedaration is one of :

@ varid {,id } : collection of typeSpec
(t>) wvarid {,id }: collection of forward typeld

DESCRIPTION: A collection declaration crestes a new collection (or
collections). A collection can be thought of as an array whose elements
are dynamically created (by new) and deleted (by free). Elementsof a
collection are referred to by the collection's name subscripted by a
pointer. See also new, free and pointer.

EXAMPLE: Create acollection that will represent a binary tree.

var tree : collection of
record
name : string (10)
left, right: pointer to tree
end record

var root: pointer to tree
new tree, root
tree (root).name = "Adam"

DETAILS: Thestatement "new C,p" createsanew elementin collection C
and st pto point at it; however, if there is no more memory space for
the element, pisset to nil (C), whichisthe null pointer for collection
C. Thestatement "free C,p" deletes the element of C pointed to by p
and setsptonil (C) . Ineach case, pispassed asavar parameter and
must be a variable of the pointer type of C.

The keyword forward (form b above) is used to specify that the
typeld of the collection elements will be given later in the collection's
scope. Thelater declaration must appear at the sameleve (in the
same ligt of declarations and statements) as theorigina declaration.
Thisalowscyclic collections, for example, when a collection contains
pointers to another collection which in turn contains pointers to the
first collection. In this case, the typeld is the name of the type that
has not yet been declared; typeld cannot be used until its declaration
appears. A collection whose element typeis forward can be used only
to declare pointersto it until the type'sdeclaration is given.

Turing Reference Manual 66

Suppose pointer g is equal to pointer p and the element they
noint to isdeleted by "free C,p". We say <j isadangling pointer
becauseit ssemsto locate an element, but the element no longer exists.
A dangling pointer is considered to be an uninitialised value; it cannot
be assigned, compared, used as a collection subscript, or passed to free.

Collections cannot be assigned, compared, passed as parameters,

bound to, or named by a const declaration. Collections must not be
declared in procedures, functions, records or unions.

Turing Reference Manual 67

Color text color graphics procedure Colorback background color graphics

SYNTAX: procedure
color (Color: int) SYNTAX:
DESCRIPTION: The color procedureis used to change the currently active colorback (C olor: in t)
color. Thisisthe color of characters that are to be put on the screen.
The alternate spelling is colour . DESCRIPTION: The colorback procedureisused to change the current

EXAMPLE: This program printsout the message "Bravo' three times, each background color. Thealternate spefling is col ourback .

in a different color. In "screen" mode on IBM PC compatibles, this sets the
" C background color to one of the colors numbered 0to 7. Thisisthe color
setscreen (graphlcs) that surrounds characters when they are put onto the screen. On Unix
for/:1 .. 3 dumb terminals, colorback(l) turns on highlighting and colorback(O)
color (/') turnsit off. On other systems, this procedure may have no effect.
d ?Ut Bravo In "graphics' modeon IBM PC compatibles, thisisused to
ena for associate a color with pixel color number O, which is considered to be
the background color. Using colorback immediately changes the color
EXAMPLE: This program printsout amessage. The color of each letter is being displayed for all pixels with color number O.
different from the preceding letter. For letter number i the color
number is/ mod maxcolor + 1 Thiscycles repeatedly through all the EXAMPLE: Since this programisin "screen" mode, changing the
available colors background color has no immediately observable effect. When the
N N message "Greetings' is output, the background surrounding each letter
setscreen ("screen”) will bein color number 2.
const message = "Happy New Year!!" . .
for /: 1 .. length (message) setscreen ("screen”)
color (/ mod maxcolor + 1)
put message (/).. colorback (2)
end for put "Greetings"
DETAILS: See setscreen for the number of colorsavailable in the various kXAMPLE: Sincethisprogramisin "graphics' mode, changing the

background color immediately changes the colors of all pixels whose

"graphics' modes. On Unix systems, color may have no action.
color number isO.

The screen should be in a "screen” or "graphics' mode; if not, it
will automatically beset to "screen” mode. See setscreen for details. setscreen ("graphics")

Seealso colorback, whatcolor, whattextcolor and maxcolor.
colorback(2)

"AILS: Thescreen should beina "screen” or "graphics' mode; if not, it
will automatically be set to "screen” mode. See setscreen for details.
See dso color and whatcol orback.

Turing Reference Manual 68 Turing Reference Manual 69

[PConly]

A
i
(AT LA 1]
LA o
Il | 1]

“’y |
LI

comment

DESCRIPTION: A comment isaremark to the reader of the program,

which isignored by the computer. The most common form of comment
in Turing starts with a percent sign (%) and continuesto the end of the
current line; thisis called an end-of-linecomment. Thereisaso the
bracketed comment, which begins with the /* and endswith */ and
which can continue acrossline boundaries.

EXAMPLES:

% This is an end-of-line comment
Var X : real % Here is another end-of-line comment
const s = "Hello
[* Here is a bracketed comment that
lasts for two lines '/

const pi :=3.14159

DETAILS: Inthe Basic language, comments are called remarks and start

l/\)/ith the keyword REM. In Pascal, commentsare bracketed by (* and

Turing Reference Manual 70

comparisonOperator

(@)
(b)
©
(d)

%e

: A comparisonOperator is one of:

% Less than

% Greater than

% Equal

% Less than or equal; subset

<=
o % Greater than or equal; superset
not= % Not equal

DESCRIPTION: A comparison operator is placed between two valuesto

determine their equality or ordering. For example, 7> 2 istrueand 0
is"Adam" < "Cathy". The comparison operators can be applied to
numbersas well as to enumerated types. They can aso be applied to
strings to see determine the ordering between strings (see the string
type for details). Arrays, records, unions and collections cannot be
compared. Boolean values (true and false) can be compared only for
equality (= and not=); the same applies to pointer values. Set values
can be compared using <= and >=, which are the subset and superset
operators. The not= operator can be written as ~=.

See dso infix operators and precedence of operators. Seeaso
theint, real, string, set, boolean and enum types. Seealso string
comparison.

Turing Reference Manual 71

const
constant declaration

SYNTAX: A constantDeclaration is:
const id [: typeSpec] = initializingValue

DESCRIPTION: A const declaration creates a nameid for a value.

EXAMPLES:
constc ;=3
const s = "Hello" % The type ofs is string

constx :=sin(y)**2

const a: array 1.3 of int :=init(1, 2, 3)

const b: array 1.3 of int .= a

const c: array 1..2,1.2 of int := init(1, 2, 3, 4)
% So c(1,1)=1, c(1,2)=2, C(2,1)=3, c(2,2)=4

DETAILS: Theinitialising value can be an arbitrary value or elsealist of
items separated by commasinsideinit(...). The syntax of
initializingvalue is:

a expn
b. init (initializingValue, initializingValue)

Each init (...) corresponds to an array, record or union value that is
being initialized; these must be nested for initialisation of nested
types. In the Pascal language, constants must have values known at
compiletime; Turing has no such restriction.

When the typeSpec is omitted, the variable's type is taken to
be the (root) typeof theinitialising expression, for example, int or

string. The typeSpec cannot be omitted for dynamic arrays or when the

initialising valueisof theforminit (...). Thevaluesinsdeinit(...)
must be known at compile time.

The keyword pervasive can be inserted just after const. When
thisisdone, the constant isvisibleinsideall subconstructs of the
congtant's scope. Without pervasive the constant isnot visibleinside
modulesunlessexplicitly imported. Pervasiveconstantsneed not be
imported. You can abbreviate pervasive asa star (*).

Turing Reference Manual 72

constantRefer ence
use of a named constant

SYNTAX: A constantReference is
constantld {componentSelector }

DESCRIPTION: InaTuring program, a constant is declared and given a
name (constantld) and then used. Each useiscalled a constant

reference. _ o
If the constant isan array, record or union, its parts (components)

can be seected using subscripts and field names (using
componentSelectors). The form of a componentSelector is one of:

@ (expn {, expn])

(b) fieldld
Form (a) isused for subscripting (indexing) arrays. The number of
array subscripts must be the same asin the array's declaration. Form
(b) isused for sdlecting afield of arecord or union. The use of
component selectorsisthe sameasfor variable references; see
variableReference for details. Seealso const declaration and
explicitConstant.

EXAMPLES:

var radius : real
const pi :=3.14159 % Constant declaration

put "Area is:", pi * radius **2
% piis a constant reference

Turing Reference Manual 73

COS cosine function (radians)

SYNTAX:

cos(r: real): real

DESCRIPTION: The cos function is used to find the cosine of an angle given
inradians. For example, cos(0) isl

EXAMPLE: This program printsout the cosine of pi/6,2* pi/6,3* pi/6, up to
12*pi/6 radians.

constp/:=3.14159
for/:1.-12

constangle =/*pi | Q

put "Cos of", angle," is ", cos (angle)
end for

DETAILS: Seedso the cosd function which finds the cosine of an angle
givenindegrees. (2* pi radiansare the same as 360 degrees.)

Turing Reference Manual 74

cosine function (degrees)

SYNTAX:
cosd (r : real): real

DESCRIPTION: The cosd function isused to find the cosine of an angle
givenindegrees. For example, cosd (0) is1

EXAMPLE: This program prints out the cosine of 30,60,90, up to 360
degrees.

for/:1 . 12

const angle := | *30

put "Cos of", angle," is", cosd (angle)
end for

DETAILS: See a0 the cos function which finds the cosine of an angle given
inradians. (2* pi radiansarethe same as 360 degrees.)

Turing Reference Manual 75

procedur e

SYNTAX:
date (vard : string)

DESCRIPTION: The date statement is used to determine the current date.
Variabledisasigned astringintheformat "dd mmmyy”, where
mmm is the first 3 characters of the month, eg, "Apr". For example,
if thedate isChristmas 1939, d will beset to "25 Dec 89".

EXAMPLE: This program greets you and tellsyou the date.

var today : string
date (today)
put "Greetings!! The date today is ", today

DETAILS: Sedsothedeay, clock, sysclock, wallclock and time
statements.

Bewarned that on some computers such as IBM PC compatiblesor

Apple Macintoshes, the date may not be sat correctly in the operating
system; in that case, the date procedure will giveincorrect results.

Turing Reference Manual 76

[PQMacandU niX"HI

declaration

SYNTAX: A declarationisoneof:

variableDeclaration

—_
&

0) constantDeclaration
© typeDeclaration

@ DindDeclaration

© procedureDeclaration
0 functionDeclaration
9 moduleDeclaration

DESCRIPTION: A declaration createsa new name (or names) for a
variable, constant, type, procedure, function or module. These names
arecaled identifiers, whereid istheabbreviation for identifier.

EXAMPLES:

var width : int % Variable declaration
const pi :=3.14159 % Constant declaration
typerange : 0. 150 % Type declaration

procedure greet % Procedure declaration

put "Hello world"
end greet

DETAILS: Ordinarily, each new name must be distinct from names that are
already visible; that is, redeclaration is not allowed. Thereare
certain exceptions to thisrule, for example, names of parameters and
fields of records can be the same asexisting visible variables. Itisaso
alowed for variables declared inside a subprogram (a procedureand
function) to be the same as variables globa to (outside of) the
subprogram.

The effect of a declaration (its scope) lasts to the end of the
construct in which the declaration occurs; thiswill be the end of the
program, the end of the surrounding procedure, function or module, the
end of aloop, for, case or begin statement, or theend of the then, elsif,
or else clause of an if statement, or theend of the case statement
aternative.

Turing Reference Manual 77

A name must be declared before it can be used; thisis called the
DBU (Declaration Before Use) rule. The exception to thisruleisthe
form forward id, occurring in import lists and in collection
declarations.

A declaration can appear any place a statement can appear; this
is different from the Pascal language, in which declarations are
allowed only at the beginning of the program or at the beginning of a
procedure or function. Each declaration can optionally be followed by
a semicolon ().

There are certain restrictions on the placement of declarations.
Procedures and functions cannot be declared inside other procedures and
functions nor inside statements (for example, not inside an if
statement). A bind declaration cannot appear inside a procedure or
funé:tilons nor at the outer level of either the main program or a
module.

Turing Reference Manual 78

procedure

SYNTAX:
delay (duration : int)

DESCRIPTION: Thedelay statementisused to cause the program to
pause for agiven time. Thetime duration isin milliseconds.

EXAMPLE: Thisprogram printstheintegers 1 to 10 with a second delay
between esch.

for/: 1 .. 10

put /

delay (1000)
end for

DETAILS: Seedso the sound, clock, sysclock, wallclock, time and date
Statements.

% Pause for 1 second

On IBM PC compatibles, the hardwareresolution of durationis
in units of 55 milliseconds. For example, delay(SOO) will delay the
program by about half a second, but may be off by as much as 55

milliseconds.

On Apple Macintoshes, the hardware resolution of durationisin units

of 17 milliseconds (1/60th of a second). For example, delay(500) will
delay the program by about half a second, but may be of f by as much as

17 milliseconds.

Turing Reference Manual

[PC, Mac and Unix only]

SYNTAX:
div

DESCRIPTION: Theg

DETAILS:

oV 6r

operatorsand themod

80

graphics procedure [PC and Mac only]
SYNTAX:

drawarc (y, y, XRadius, yRadius : int,
initialAngle, finalAngle, Color: int)
PESCRIPTION: The drawarc procedure is used to draw an arc whose

centerisat (x y). Thisisjust like drawoval, except that you must also
give two angles, initial Angle and final Angle, which determine where

d ing> isuth odocknnt o A— H
THRYIL e, The horizoma and vertical distandds fiot] ('S

center to the arc are given by xRadius and yRadius.

yRadius
AnnalAngleX

44—\ tinltialAngle
"y) xRadius 7

idrde(actualyran roxm

oenter 1S (midxi0)r thebottomcenter of the

_ineml .
determine th/\ €T HUMPerL AeMaX gand maxy functionsare used to
A me maximum x and y val ues on thé screen.

*("graphics")
midx = maxx div 2
Qrawarc (m-/_ 0, maxy, maxy, 0, 180,1)

alette- Z/AN3 T8 of theColor numpy ey Jenends on the current
tue, see the palette statement.

% nnmode; A thesetscreen
automatically . o3 - e, Sereenisnatina v/ prg' mode, it will
yBESEtte graphics’ mode.

and drawer SeSCreemmaoamaxy,_ qrawdot, drawline, drawbox,

Turing Reference Manual 81

dr awbox graphics procedure [pcangy

SYNTAX:

drawbox (x1, yl, x2, y2, Color : int) -

DESCRIPTION: The drawbox procedureis used to draw abox on the screen
with bottom left and top right comersof (xI, yl) to (x2, y2) using the
specified Color.

(x2,y2)

EXAMPLE: Thisprogram draws alarge box, reaching to each corner of the
screen using color number 1 The maxx and maxy functionsare used to
determine the maximum x and y values on the screen. The point (0,0) is
the left bottom of the screen and (maxx, maxy) is the right top.

setscreen ("graphics”)
drawbox (0, 0, maxx, maxy, 1)

DETAILS: Themeaning of the Color number dependson the current
palette; see the pal ette statement.

The screen should be in a "graphics’ mode; see the setscreen
procedure for details. If the screenisnot in a "graphics’ mode, it will
automatically be st to "graphics' mode.

See d S0 setscreen, maxx, maxy, drawdot and drawline.

Turing Reference Manual 82

graphics procedure

[PC and Mac only]

drawdot (X, y, Color: int)

egCRIPTION: Thedrawdot procedureis used to color the dot (pixel) at
location (X, y) using the specified Color.

maxy

0123 maxx

Origin
EXAMPLE: Thisprogram randomly draws dots with random colors. The

maxx, maxy and maxcolor functions give the maximum x, y and color
values.

setscreen ("graphics")
var x, y, c: int

loop
randint (x, 0, maxx) % Random x
randint (y, 0, maxy) % Random,
randint (c, 0, maxcolor) % Random color
drawdot (X, y

end loop

DETAILS: The meaning of the Color number depends on the current
palette; s the pal ette statement.
The screen should bein a "graphics’ mode; if not, it will

automatically be st to "graphics’ mode. See setscreen for details
See dso maxx, maxy, maxcolor and drawline.

Turing Reference Manual 83

dr awfill graphics procedure
SYNTAX:

drawfill (x,y : int, fillColor, borderColor: int)
DESCRIPTION: Thedrawfill procedureisused to colorin afigurethat is

on the screen. Starting at (X, y?, the figure isfilled with/i7/Co7or to a
surrounding border whose color isborderColor.

4+——DborderColor

—— fillColor

EXAMPLE: This program drawson ova with x and y radiusof 10 in the
center of the screen using color 1. Then the oval is filled with color 2.

The maxx and maxy functions are used to determine the maximum x
and y values on the screen.

setscreen ("graphics”)

const midx := maxx div 2

const midy := maxy div 2
drawoval (midx, midy, 10,10,1)
drawfill (midx, midy, 2,1)

DETAILS: Themeaning of the Color number depends on the current
palette; see the pal ette statement.

The screen should beina "graphics" mode; see the setscreen
procedure for details. If the screenisnotina "graphics' mode, it will
automatically be st to "graphics' mode.

Seeal so setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

Warning: InVersion4.2 of Turingfor IBM PC compatibles,
drawfill fails to completely fill in some complicated figures that
contain "idands' within them surrounded by the borderColor.

Turing Reference Manual 84

[PC and Mac only]

graphics procedure

SYNTAX:
drawline (x 1, y1, x2, y2, Color : int)

DESCRIPTION: The drawline procedure is used to draw aline on the
screen from (X1,) to (X2, y2) using the specified Color.

(x2,y2)

(x1,y41)

EXAMPLE: Thisprogram drawsalarge X, reaching to each corner of the
screen using color number 1L Themaxx and maxy functionsare used to
determine the maximum x and y values on the screen. The point (0,0)
is the left bottom of the screen, (maxx, maxy) is the right top, etc.

setscreen ("graphics”)

% First draw a line from the left bottom to right top
drawline (0,0, maxx, maxy, 1)

% Now draw a line from the left top to right bottom
drawline (0, maxy, maxx, 0,1)

DETAILS: The meaning of the Color number depends on the current
palette; see the pal ette statement.

The screen should bein a "graphics' mode; see the setscreen
procedure for details. If the screenisnotina "graphics' mode, it will
automatically be st to "graphics’ mode.

See al 50 setscreen, maxx, maxy, drawdot and drawbox.

Turing Reference Manual 85

[PC and My

graphics procedure

SYNTAX:

drawoval (X, Yy, xRadius, yRadius, Color : int)

DESCRIPTION: Thedrawova procedure isused to draw an oval whose
center isat (x,y). Thehorizontal and vertical distances from the
center to the ova are given by xRadius and yRadius.

yRadius

(x, y) XRadius

h

EXAMPLE: Thisprogram draws a large ova that just touches each edge of
the screen using color number 1L The maxx and maxy functions are used
to determine the maximum x and y valueson the screen. The center of
the oval isat (midx, midy), which isthe middle of the screen.

setscreen ("graphics")

const midx := maxx div 2

const midy := maxy div 2

drawoval (midx, midy, midx, midy, 1)

DETAILS: Idedly, acircleisdrawn when xRadius = yRadius. In fact, the
agpect ratio (theratio of height to width of pixels displayed on the
screen) of the|BM PC compatibles isnot 1.0, 0 thisdoesnot draw a
truecircle. In CGA graphicsmodethisratiois5to 4.

The meaning of the Color number depends on the current palette;
e the palette statement.

The streen should be in a "graphks' mode; see the setscreen
procedure for details. If the screenisnotina "graphks” mode, it will
automatically be st to "graphics' mode.

Seea 5o setscreen, maxx, maxy, drawdot, drawline, and
drawbox.

Turing Reference Manual 86

graphics procedure [FC only]

SYNTAX:

drawpic (x,y : int, _
buffer : array 1 ..* of int,
picmode : int) \
DESCRIPTION: Thedrawpic procedure isused to copy of arectangular

picture onto the screen. The left bottom of the picture is placed at (X,
y). Inthecommon casg, the buffer wasinitialized by calling takepic.

The vaues of picmode are;

0. Copy actual picture on screen.
1 Copy pictureby XORing it onto the screen.

XORing a picture onto the screen twice leaves the screen asit was; this
isaconvenient way to moveimages for animation. XORing a picture
onto a background effectively superimposes the picture onto the

background.

DETAILS: Seetakepicfor an example of the use of drawpic and for

further information about buffers for drawing pictures.
The screen should bein a "graphics' mode; see the setscreen procedure

for details. If the screenisnotina "graphics” mode, it will
automatically be st to "graphics' mode.

See adlso takepic and sizepic.

See ds0 setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

Turing Reference Manual 87

enum type
enumerated type

SYNTAX: AnenumemtedType is:
enum (id {,id })

DESCRIPTION: The values of an enumerated type are distinct and
increasing. They can be thought of as the values 0,1,2 and 0 on, but
arithmetic is not allowed with these values.

EXAMPLE:

type color : enum (red, green, blue)
var ¢ : color := color.red
var d : COlor = SUCC(C) %d becomes green

DETAILS: Each value of an enumerated type is the name of the type
followed by a dot followed the the element’'s name, for example,
color.red. Enumerated values can be compared for equality and for
ordering. Thesucc and pred functions can be usad to find the value
following or preceding a given enumerated value. Theord function can
be used to find the enumeration position of a value, for example,
ord(color.red) is 2.

Enumerated types cannot be combined with integers or with
other enumerated types.

Turing Reference Manual 88

eflumeratedV aue

SYNTAX: AnenumeratedValue is
enumeratedTypeld . enumeratedid

DESCRIPTION: Thevaluesof an enumerated type are written as the type
name (enumeratedTypeld) followed by a dot followed by one of the
enumerated values of the type (enumeratedid).

EXAMPLE: Inthisexample, color.red isan enumeratedValue.

type color : enum (red, green, blue)

var ¢ : color = color.red
d : COlor \=SUCC(C) % dbecomes green

DETAILS: Theabove description has been simplified by ignoring the
possibility that the enum type can be exported from a module. If this
isthe case, each use of one of the enumerated val ues outside of module
M must be preceded by the module name and a dot, asin Mxolor.red.

See dso the enum type and explicit constants.

Turing Reference Manual 89

i end-of-file function
SYNTAX:

eof (streamNumber: int)

DESCRIPTION: Theeof (end of file) function isused to seeif there isany
moreinput. It returnstrue when there are no more charactersto be
read. The parameter and its parentheses are omitted when referring
to the standard input (usually thisis the keyboard); otherwise the
parameter specifies the number of a stream; this number has been
determined (in most cases) by an open statement.

EXAM F}LE: This program reads and outputsall thelinesin thefilecalled
“info".

var line : string
var fileNumber : int

open : fileNumber, "info", get
loop

exit when eof (fileNumber)
get: fileNumber, line :*
put line

end loop

DETAILS: Seedso thedescription of the get statement, which gives more
examples of the use of eof. Seeaso the open and read statements.

When the input is from the keyboard, the user can signal
end-of-file by typing control-Z on a PC (or control-D on Unix). Ifa
program tests for eof on the keyboard and the user has not typed
control-Z (or control-D) and the user has typed no characters beyond
those that have been read, the program must wait until the next
character is typed. Once thischaracter istyped, the program knows

whether it isat the end of theinput, and returns the corresponding true
or false value for eof.

Turing Reference Manual 90

equivalence of types

CRIPTI: Two typesareequivalent to each other if they are
essentially the same types (the exact rules are given below). When a
variable is passed to avar formal parameter, the types of the
variable and the formal parameter must be equivalent because they
are effectively the same variable. When an expressionisassigned to a
variable, their root types must be equivalent, except for the specid
caxethat it isalowed to assign an integer expression to aresl
variable (see assignability for details).

EXAMPLES:

vary : int

varb :array 1 .. 25 of string

type personType :
record
age : int
name : string (20)
end record

procedure p (var/: int, _
vara: array 1 .. 25 of string,
varr : personType)
.. body of procedure p, which modifies
each ofi, aandr...

endp

var s : pasonType

P (/, b, S) % Procedure call top
% i and j have the equivalent type int
% Arrays a and b have equivalent types
% Records rand s have equivalent types

Two types are defined to be equivalent if they are:
(a) the same standard type (int, real, boolean or string [(...)],
(b) subranges with equal first and last values,
(c) arrays with equivalent index types and eguivalent component

types, _ ,
(d) stringswith equal maximum lengths,

Turing Reference Manual 91

(e) setswith equivalent base types, or

(O pointersto the same collection; in addition,

(g) adeclared type identifier isequivaent to thetypeit names (and to
the type named by that type, if that type isanamed type, etc.)

Each separate instance of a record, union or enumerated type
(written out using one of the keywordsrecord, union or enum) createsa
distinct type, equivalent to no other type. By contrast, separate
instances of arrays, strings, subrangesand sets are considered
equivalent if their partsare equa and equivalent.

Opagque type T, exported fromamodule M as opaque, is a specid
case of equivalence. Outsideof M thistypeiswrittenM.T, and is
considered to be distinct from all other types. By contrast, if typeLl is
exported non-opagque, the usual rulesof equivalence apply. The
parameter or result type of an exported procedure or function or an
exported constant is considered to have type M.T outsideof M if the
item isdeclared using the typeidentifier T. Outside of M, the opague
type can be assigned, but not compared.

Turing Reference Manual 92

f£ealstr real-to-string function

SYNTAX:

erealstr (r : real,
width, fractionWidth, exponentWidth : int) :
string

DESCRIPTION: The eredstr function isused to convert areal number to a

string; for example, erealstr (2.56, 10, 3, 2)="b2.500e+01 " whereb
representsablank. The string (including exponent) isan
approximation to r, padded on theleft with blanks as necessary to a
length of width.

The vridth must be non-negative int value. If thewidth
parameter isnot large enough to represent thevalueof r, itis
implicitly increased as needed.

ThefractionWidth parameter is the non-negative number of
fractional digitsto be displayed. Thedisplayed valueisrounded to
the nearest decimal equivalent with this accuracy, with ties rounded
to the next larger value.

The exponentWidth parameter must be non-negative and gives
the number of exponent digits to be displayed. |f exponentWidth is
not large enough to represent the exponent, more space is used as
needed. The string returned by erealstr is of the form:

{blank)[-]digit.{ digit)esigndigit (digit)

wheresign isaplusor minussign. Theleftmost digit is non-zero,
unlessall thedigitsare zeros.

The erealstr function approximates the inverse of strreal,
although round-off errors keep these from being exact inverses.

See also the fred str, redstr, strreal, intstr and strint functions.

Turing Reference Manual 93

exit statement

SYNTAX: AnexitSatement isoneof:

(@ exit when trueFalseExpn
(b> exit

DESCRIPTION: An exit statement is used to stop the execution of a loop or
for statement. Form (@) isthe most common. Init the true/false
expressionisevaluated. If itistrue, theloop isterminated and
execution jumpsdown and continuesjust beyond end loop or end for. If it
isfalse, theloop keeps on repeating. Form (b) always causes the loop
to terminate; thisform isamost always used insde another
conditional statement such asiif.

EXAMPLE: Input names until finding Jones.

var name : string
loop

get name

exit when name = "Jones"
end loop

DETAILS: Exit statementsmust occur only inside loop or for statements. An
exit takes you out of the mostly closaly surrounding loop or for. The
only other waysto terminate aloop or for isby return (in a procedure or
in the main program, in which case the entire procedure or main
program is terminated) or by result (in a function, in which case the
entire function is terminated and a result value must be supplied).

The form "exit when trueFalseExpn" isequivalent to "if
trueFalseExpn then exit end if".

Turing Reference Manual 94

exponentiation function

SYNTAX:

exp(r: real): real

DESCRIPTION: Theexp function isused to find e to the power r, whereeis
the natural base and r isthe parameter to exp. For example, exp(0)
returns1 and exp(1) returnsthevalueof e

EXAMPLE: Thisprogram printsout the exponential valuesof 1,2,3,... up

to 100.
for/: 1 ..100 _ _

put "Exponential of", /," is", exp (/)
end for

DETAILS: Seasotheln (natural logarithm) function.

Turing Reference Manual 95

explicitConstant

SYNTAX: AnexplicitConstant is one of:

(@ explicitStringConstant %e.g.. "Hello world"
(b) explicitintegerConstant %e.g.. 25

(c) explicitRealConstant %e.g.: 51.8

(d) explicitTrueFalseConstant ~ %e.g.: true

DESCRIPTION: AnexplicitConstant givesits value directly, for example,
the value of the explicit constant 25 is twenty-five.

EXAMPLES: In thefollowing, the explicit constants are "Helo world",
314159 and 2. Note that pi is a named constant rather than an explicit
constant.

put "Hello world"

var diameter : real
const pi := 3.14159
diameter := pi* r ** 2
var X = diameter

DETAILS: In some programming languages, explicit constants are called
literals or literal values, because they literally (explicitly) give
their values.

For further details about explicit constants, se

explicitStringConstant, explicitlntegerConstant, explicitReal Constant

and explicitBooleanConstant. See also enumeratedV alue.

Turing Reference Manual 96

explicit!ntegerConstant

SYNTAX: AnexplicitintegerConstant isasequence of oneor more decimal
digits (0 to 9) optionally preceded by a plus or minussign.

EXAMPLES: |n the following, the explicit integer constants are 0,115 and
5.

var count : int:=0
constheight =115

count = height - 5

DETAILS: InTuring, the range of integersis from -2147483647 to
2147483647. 1n other words, the maximum size of integer is2¥*31 - 1

Turing Reference Manual 97

i explicitReal Constant eX plicitStringConstant

|
(A
’[f 1|" SYNTAX: AnexplicitRealConstant consists of an optiona plus or mfnus

SYNTAX: AnexplicitringConstant isasequence of characters

| ggn, asignificant digits part, and an exponent part. surrounded by guotation marks,

EXAM;LES: In the following, the explicit real constants are 0.0 and EXAMPLES: In the following, the explicit string constants are "Hello
world","" and "273 O'Reilly Ave.".
var tempera;ur_e : real = 0-00 . var name : string = "Hello world"
const speed = 2.93e3 % vaiueis 2,930.0 name = "" %Null string, containing zero characters

DETAILS: Thesignificant digits part (or fractional part) of an explicit var address : string :="273 O Rellly Ave.

red congtant conssts of a sequence of one or more digits (0 to 9)

optionally containing adecimal point (aperiod). Thedecimal pointis DETAILS: Within an explicit string constant, the back dash character (\)

alowed to follow the last digit asin 16. or to precede the first digit, is used to represent certain other characters as follows.
asin.25
! \" guotation mark character
\n or \N end of line character

The exponent part consists of the letter e or E followed
optionally by a plusor minus sign followed by one or more digits. For \tor \T tab character

| examplein -9.837e-3 the exponent partise3. Thevalueof -9837e3is \for \F form feed character
-9837 times 0.00L \ror \R return character

\b or \B backspace character
\eor \E escape character
\d or \D delete character
\\ backdash character

Il If the significant figures part contains a decimal point then the
exponent part is not required.

|
I
i !‘ I ‘ For example, put "OneXnTwo" will output One on one line and Two on
i i the next.

it A

"H i'J it Explicit string constants cannot cross line boundaries. To

]‘H “[e represent a string that islonger than aline, bresk it into two or more
\L 1 ” il strings on separate lines and use + (catenation) to join the individual
— strings.

An explicit string congtant can contain at most 255 characters
(thisisin implementation constraint).

An explicit string is not allowed to contain characters with the
codevauesof 0 or 128, thesecharacter valuesare cdled eos (end of
string) and uninitchar (uninitialised character). Theseare reserved by
the implementation to mark the end of astring value and to seif a
gtring variable has a value.

Turing Reference Manual 98 Turing Reference Manual 99

explicitTrueFalseConstant

SYNTAX: An explicitTrueFalseConstant is one of:

@ true
o false

EXAMPLE: The following determines if string s containsa period. After
the for statement, found will be trueif thereisa period in s.

var found : boolean :=false
fori: 1 .. length (s)
If s ="." then
found = true
end if
end for

DETAILS: True/falsevauesare called boolean values. A boolean

variable, such asfound in the above example, can have a value of
either true or false. See aso boolean type.

Turing Reference Manual 100

expression

: An expn is one of:

explicitConstant %e.g.: 25
@ variableReference % eg. width
® constantReference %e.g.: pi
O expn infixOperator expn %eg: 3 +width
@ prefixOperator expn % e.g. * width
) (expn) %eg. (width -7)
y substring %e.g.: s (3..5)
% functionCall %e.g.: sqrt (25)
setConstructor % e.g.. modes (4, 3)
O enumeratedVvalue %e.g.: color, red

DESCRIPTION: An expression (expn) returnsavalue; in the general case,
this may involve a calculation, such as addition, asin the expression
3+ width.

EXAMPLES:

put "Hello world" % "Hello world" is an expn
var diameter : real
const pi = 3.14159 % 3.14159 is an expn
diameter = pi* r ** 2 % pi* r ** 2 is an expn
var X = diameter % diameter is an expn

DETAILS: Inthe simplest case, an expression (expn) is simply an explicit
constant such as 25 or "Helloworld". A variable by itsdf is
considered to be an expression when its value isused, asis the case
above when the value of diameter isused toinitialisex. More
generaly, an expression contains an operator such as + and carries out
an actual calculation. An expression may aso be a substring, function
call, sat constructor or enumerated value; for details, see the
descriptions of these items.

Theinfix operators arer +, -, *, /, div, mod, **, <, >, =, <=, >=,
not=, not, and, or, =>, in, and not in. For details, se infixOperator.
The prefix operators are +, - and not. For details see prefix operator.

Seedso precedence of operators, aswell astheint, redl, string
and boolean types.

Turing Reference Manual 101

export list
SYNTAX: AnexportlList is

export([opaque]/c/ {,[opaque] id})

DESCRIPTION: An export list is used to specify those items declared in a
module that can be used outside of it. Itemsthat are declared inside a
module but not exported cannot be accessad outside of the module.

EXAMPLE: Inthisexample, the procedures names pop and push are
exported from the stack module. These two procedures are caled from
outside the module on the last and third from last lines of the
example; notice that the word stack and a dot must precede the use of
these names. Sincetop and contents were not exported, they can be
accessed only from inside the module.

module stack
export (push, pop)
var top: int :=0
var contents: array 1..100 of string
procedure push... end push
procedure pop...end pop

end stack

stack. push ("Harvey")
var name Strlng
stack. pop (name) % This sets name to Harvey

DETAILS: Only procedures, functions, constantsand types can be exported.
It isnot alowed to export variables or modules.

In the most common case, the optional keyword opaque is
omitted. The keyword isallowed only in front of exported types
names. When it isused, it specifies that outside the module, the type
is considered to be distinct from all other types;, this means, for
example, that if the typeisan array, it cannot be subscripted outside
of themodule. See module declaration for detail s about opaque types.

Note: The parentheses in the export statement are optional .
The export statement in the exampl e could have been:

export pop, push

Turing Reference Manual 102

procedures and functions

[Compiler only]

SYNTAX: AnexternalSubprogram is o A
external [overrideName] subprogramHeader

DESCRIPTION: This syntax providesan extension to the Turing language
to alow the Turing program to call programswritten in other
languages such asthe C language. Thisextension isnot supported in

the current Turing interpeter. o
The optiona overrideName must be an explicit string constant,

such as "print/". Whenit is omitted, the name used for external
linking is the name of the procedure or function, as given in the

subprogramHeader. .
The subprogramHeader is one of:

(@) procedureid [(paramDeclaration |paramDeclaration])]

(b) functionid [(paramDeclaration \jparamDeclaration])]
[id]: typeSpec

Turing Reference Manual 103

false

boolean val ue (as opposed to true) -

SYNTAX:

false

DESCRIPTION: A boolean (true/false) variable can be either true or false
(see boolean type).

EXAMPLE:

var found : boolean := false
var word: int
for/:1..10

get word

found := found or word- "gold"
end for
if found = true then

put "Found 'gold' in the ten words"
end If

DETAILS: Theline if /owmf=true then can be simplified to if found then
with no change to the meaning of the program.

Turing Reference Manual 104

(fetch argument) function [pc,MacandUnixoni,

SYNTAX:
fetcharg (/: int): string

DESCRIPTION: The fetcharg function isused to access the i-th argument
that has been passed to a program from the command line. For
example, if the program is run from the Turing environment using

rfilelfile2

then fetcharg(2) will return "file2". If a program called prog.xisrun
under Unix using this command

prog.x filel file2
the value of fetcharg(2) will similarly be "filc2".

The nargs function, which gives the number of arguments passed
to the program, isusually used together with the fetcharg function.
Parameter j passed to fetcharg must be in therangeO.. nargs. Seealso
nargs.

The 0-th argument is the name of the running program.

EXAMPLE: Thisprogram listsits own name and itsarguments.

put "The name of this program is :", fetcharg(O)
for i: 1 .. nargs

put "Argument”, /," is ", fetcharg(/)
end for

Turing Reference Manual 105

floor rea-to-integer function
SYNTAX:

floor(r : real): int

DESCRIPTION: Returnsthelargest integer that islessthan or equal tor.

DETAILS: Thefloor function is used to convert a real number to an integer.
The result isthe largest integer that islessthan or equal tor. In other
words, the floor function rounds down to the nearest integer. For
example, floor (3) is3, floor (2.75) is2 and floor<-8.43) is-9.

Seds thecell and round functions.

Turing Reference Manual 106

statement
SYNTAX: AforSatementis

for [decreasing] [id] : first... last
statementsAndDeclarations
end for

DESCRIPTION: The statements and declarationsin afor statement are
repeatedly executed with the identifier increasing by 1 (it decreases
by 1 if you specify decreasing) (mmfirst to lost, which are integer
values (or dseenumerated values).

EXAMPLE: Output1 2,3, upto 10

for/:1 ..10
put /
end for

EXAMPLE: Output 10,9,8, downto 1

fordecreasingj: 10.. 1
put/
end for

DETAILS: The for statement declares the counting identifier (a separate
declaration should not be be given for i or/). The scope of this
identifier is restricted to the for statement.

Iffirst is a value beyond last, there will be no repetitions (and no
error message). The counting identifier isalwaysincreased (or
decreased) by 1; in some languages such as Basic, you can specify a step
szeother than 1, but thisisnot possiblein Turing. Executing an exit
statement inside a for statement causes ajump to just beyond end for.

Y ou are not allowed to change the counting variable (for example, you
arenot allowed towritei := 10).

The counting identifier can be omitted; the statement isjust as
before, except the value of the identifier cannot be used by the
program.

Turing Reference Manual 107

If decreasing is not present, first.. last can be replaced by the

name of a subrange type, for example by dozen, declared by:
type dozen : 1..12

Procedures, functions and modules cannot be declared inside afor
statement. Just preceding the statements and declarations, you are
allowed to write an "invariant clause" of the form:

invariant trueFalseExpn

Thisclauseisequivalent to: assert truefFal seExpn.

Turing Reference Manual 108

forward declaration

SYNTAX: A forwardDedamtion isoneof:

@ forward procedure procedureld
[(paramDeclaration {, paramDeclaration })]
Import (importltem {, importltem})

@ forward function functionld
[(paramDeclaration {, paramDeclaration })]
[resultld]: resultType
import (importltem {, importltem})

DESCRIPTION: A procedure or funcdon is declared to be forward when
you want to define its header but not itsbody. Thisisthe case when
one procedure or function calls another which in turn calls the first;
thissituation is called mutual recursion. The use of forward is
necessary in this case because every item must be declared beforeit can
beused.

EXAMPLES:. Thisexample program evaluates an input expression e of the

form/ { +t) wheretisof theformp {* p} and pisof the form (e) or
an explicit real expression. For example, thevalueof 15+ 30* (05 +
15) halt is 75.

var token: string

forward procedure expn (var eValue: real)
import (forward term, var token)

forward procedure term (var tValue : real)
import (forward primary, var token)

forward procedure primary (var pValue: real)
import (expn, var token)

body procedure expn
var nextValue: real
term (eValue) % Evaluate t
Ioop % Evaluate { +1}

Turing Reference Manual 109

I

exit when token not= "+"
get token
term (nextValue)
eValue := eValue + nextValue
end loop
end expn

body procedure term
var nextValue: real

primary (tValue) % Evaluate p
|00p % Evaluate { * p}
exit when token not= "*"

get token

primary (nextToken)
tValue := tValue + nextValue
end loop
end term

body procedure primary
if token ="(" then

get token
eXpn(pValue) % Evaluate (e)
assert token =")"
e Ise % Evaluate "explicit real"
PVaIue = strreal (token)
end i
get token
end primary
get token % Start by reading first token
var answer: real
expn (answer) % Scan and evaluate input expression

put "Answer is ", answer

DETAILS: Followingaforward procedure or function declaration, the body

of the procedure must be given at the sameleve (in the same sequence
of statements and declarations as the forward declaration). Thisis
the only use of the keyword body; see dso body.

Turing Reference Manual 110

Any procedure or function that is declared using forward is
required to have an import list. In thislist, imported procedures or
functions that have not yet appeared must be listed as forward; for
example, the import list for expn is import (forward term ...). Before
a procedure or function can be called and before its body appears and
beforeit can be passed as a parameter, its header aswell as headers of
procedures or functions imported directly or indirectly by it must have

appeared.

The keyword forward isalso used in collection declarations; se
aso collections.

Turing Reference Manual 111

frealstr real-to-string function
SYNTAX:

frealstr (r : real, width, fractionWidth,: int) :
string

DESCRIPTION: Thefredstr function is used to convert ared number to a

string; for example, frealstr (2.5d, 5,1)="&25.0" whereb representsa
blank. The string isan approximation to r, padded on the left with
blanks as necessary to a length of width.

. i i 1 H | . .
fracti orT\Rf d?H_mber of digits of the fraction to be displayed is given by

The width must be non-negative. If the width parameter is not
Inaerggeegough to represent thevalueof r, itisimplicitly increased as

ThefractionWidth must be non-negative. The displayed value
is rounded to the nearest decimal equivalent with this accuracy, with
tiesrounded to the next larger value. The result string isof the form:

(blank) [-Hdigitd. {digit}
If the leftmost digit is zero, then it is the only digit to the left of the
decimal point.

The frealstr function approximates the inverse of strreal,
although round-off errors keep these from being exact inverses.

Seedso the erealstr, realstr, strredl, intstr and strint functions.

Turing Reference Manual 112

fr ee statement

SYNTAX: AfreeSatementis:

free collectionid, pointerVariableReference

DESCRIPTION: A free statement destroys (deallocates) an element of a
collection.

EXAMPLE: Declarealist. Allocate and then later dedlocate a node.

var list : collection of
record
contents : string (10)
next : pointer to list

end record _
var first: pointer to list
new list, first % Allocate an element of list;
% place its location in first
free list, first % Deallocate the element of list

% located by first.

DETAILS: Thefree statement sets the pointer variable to the nil value, in
this example, to nil (list).

Seealso the collection declaration, the pointer type, and the
new statement.

Turing Reference Manual 113

function declaration

SYNTAX: AfunctionDeclarationis:

functionid
[(paramDeclaration {, paramDeclaration })]
. typeSpec
statementsAndDeclarations

end id

DESCRIPTION: A function declaration creates (but doesnot run) anew

function. The name of the function (id) isgiven in two places, just after
function and just after end.

EXAMPLES:

function doublelt (var x: real): real
result 2.0 * x

end doublelt

put doublelt (5.3) % This outputs 10.6

DETAILS: The set of parameters declared with the function are called
formal parameters; for example, in the doublelt function, x isaformal
parameter. A function iscdled (invoked) by afunction call which
conggts of the function's name followed by the parenthesised list of

actual parameters (if any); for example, doublelt (5.3) isacal having
5.3 asanactual parameter. If there are no parameters, thecall does

not have parentheses. The keyword function can be abbreviated to fen.

See dsofunctionCall and procedureDeclaration.

Each actual parameter must be assignable to the type of its
corresponding formal parameter; see also assignability.

A function must finish by executing a result statement, which
produces the function'svalue. In the above example, theresult
statement computes and returns the value 2.0 * x.

In principle, a function should not change any variables outside
of itself (global variables); in other words, it should have no side
effects. However, this restriction is not necessarily enforced by the
implementation. A function should not have var parameters, as these
would allow the function to change values outside of itself.

Turing Reference Manual 114

The upper bounds of arrays and strings that are parameters may
declared to be star (*), meaning the bound is that of the actual
oararneter. SeeparamDeclaration for details about parameters.

Procedures and functions cannot be declared inside other
procedure and functions.

Thesyntax of afunctionDeclaration presented above hasbeen
smplified by leaving out the result identifier, import list, pre and
post condition and init clause; the full syntax is

function id _ _
[(paramDeclaration {, paramDeclaration })]
%resultld] : typeSpec
import ([[var] 1d {, [var]id}])]
[pre trueFalseExpn |
[init"d = expn {, id = expn }]
[post trueFalseExpn]
statementsAndDeclarations

end id

Seeimport ligt, pre condition, init clause and post condition for
explanations of these additional features. Theresultld isthe name of
the result of the function and can be used only in the post condition.

A function must be declared before being cdled; to allow for
mutually recursive procedures and functions, there are forward
declarations with later declaration of the procedure or function body.
Seeforward and body declarations for explanations.

Turing Reference Manual 115

functionCall

SYNTAX: AfunctionCall is;

functionld [(expn {, expn})]

DESCRIPTION: A function cal is an expression that calls (jwoKesor

activates) a function. If the function has parameters, a parenthesised
list of expressions (expns) must follow the function's nai”g (fuctionld)

EXAMPLES: Thisfunction takes a string containing ablani< angj returns

the first word in the string (all the characters up to the fig. blank)

function firstWord (str: string): string
for/ : 1 . length (str)

if str (i) = "" then
resultstr (1 ./-1)
end if
end for

end firstWord

ut "The first word is:", firstWord ("Henry
udson")

% The function call is firstWord (sample)
% The output is Henry.

DETAILS: The parameter declared in the header of afunctior® jsa (orma\

parameter, for example, sir above isaformal parameter. £3*
expression in the call isan actual parameter, for example, sampie

aboveisan actual parameter. Inafunction, aformal parameter
should not be declared using var.

Each actual parameter passed to its non-var formal Parameter
must be assignable to that parameter (see assignability for
SeedsofunctionDeclaration and procedureDeclaration.

In this explanation of functionCall, we have up to thjs po
ignored the possibility of procedures exported from mod\jjes

function is being called from outside of a module from wt-"" ", been
exported, the syntax of thefunctionCall is:

moduleld. functionld [(expn {, expn} ji

Turing Reference Manual

get statement

CYNTAX: A getSatement is:
get [: streamNumber,] getltem {, getltem }

DESCRIPTION: The get statement inputs each of the getltems.
Ordinarily, the output comes from the keyboard. However, if the
streamNumber is present, the input comes from the file specified by
the stream number (see the open statement for details). Also, input can
be redirected 90 it is taken from afile rather than the keyboard by a
command such as a < fileName donein the Turing environment.

The syntax of agetltem is one of:

(a) variableReference

(b>skip

(c) variableReference: *

(d) variableReference: widthExpn

Theeitemsare used to support three kinds of input:

(2) token-oriented input: supported by forms (a) and (b),

(2) line-oriented input: supported by form (c), and

(3) character-oriented input: supported by form (d).
Examples of these will be given, followed by a detailed explanation of
the kinds on input.

EXAMPLES: Token-oriented input.

var name, title: string

var weight : real

get name % Ifinput is Alice, itis input into name
get title % Ifinputis "A lady", A lady is input
Var Weight % Ifinputis 9.62, it is input into weight

EXAMPLE: Line-oriented input.

var query: string
get query :* 9% Entirelineisinput into query

EXAMPLE: Character-oriented input.

Turing Reference Manual 117

var code: string

get code : 2 % Next 2 characters are input into code.

DETAILS: A token isdefined as a sequence of characters surrounded by
white space, where white space is defined as the characters blank,
tab, form feed, new line, and carriage return as well as end-of-file.
The sequence of tokens making up the token are either all non white
space or d<e the token must be a quoted string (an explicit string
congtant). Form (a) of getltem skipswhite spaceand thenreadsa
token into the variableReference, which must beastring, integer or
red. If thevariableReferenceisastring, thetokenisassigned to the
variable (if the token is quoted, the quotation marks are first
removed); see the examples involving name and titleabove. If the
variableReferenceisan integer or ared, the token is converted to be
numeric before being assigned to the variable; sse the example
involving weight above. When the input is coming from the keyboard,
no input isdone until Return istyped. The line that isinput may
contain more than one token; any tokens that are not input by one get
statement will remain to be input by the next get statement.

Inform (b) of getltem, skip causes white space in theinput to be
skipped until non white space (a token) or the end-of-file is reached.
Thisisused when the program needs to determine if there are more

tokensto beinput. To determineif thereare moretokensto beread, the

program should first skip over any possible white space (such asa
fina new line character) and then test to seeif eof (end-of-file) is true.
Thisisillustrated in thisexample:

EXAMPLE: Using token-oriented input, input all tokensand list them.

var word: string

loop
ge_t skip % Skip over any white space
exit when eof % Are there more characters?
get word % Input next token
put word % Output the token

end loop

In the above and the next example, if the input has been redirected o
that it is from afile, eof becomes true exactly when there are no more
charactersto beread. If theinput is coming from the keyboard, you can
signal eof by typing control-Z (on a PC) or control-D (on Unix).

Turing Reference Manual 118

r-TAlL gn form (c) of getltem, the variableReference is followed by »
vhich impliesline-oriented input. This form causes the entire line (or
lle remainder of the current line) to be read; in this case the variable
Inust be a string (not an integer or real). The new line character at the
~nd of thelineisdiscarded. Itisan error to try to read another line
then vou are dready at the end of thefile. The following example
shows how to use line-oriented input to read all linesin the input.

Using line-oriented input, input al linesand list them.

var line: string

loop .
exitwhen eof % Are there more characters?
get line: * % Read entire line
put line

end loop

DETAILS: Inform (d) of getltem, the variableReferenceis followsby
: widthExpn which specifies character-oriented input. This form
causes the specified number (widthExpn) of characters to be input (or
al of the remaining charactersif not enough areleft); if no characters
remain, the null string is read and no warning isgiven. In thisform,
the new line character isactually input into the variableReference
(this differs from line-oriented input which discards new line
characters). The following example shows how to use
character-oriented input to read each character of theinput.

EXAMPLE: Using character-oriented input, input all charactersand list
them.

varch:string (1)

loop
exitwhen eof % Are there more characters?

get ch: 1 % Read one character
put ch .. % Output the character, which
% may be a new line character

end loop

DETAILS: Seeadso theread statement, which provides binary file input.

Turing Reference Manual 119

getCrl (get character) procedure
SYNTAX:

getch (varch : string (1))

DESCRIPTION: The getch procedure is used to input a single character
without waiting for theend of aline. The parameter ch isset to the
most recently type character.

EXAMPLE: This program contains a procedure called pause which causes
the program to wait until akey is pressed.

setscreen ("graphics”)

procedure pause
var ch :string (1)

getch (ch)

end pause

for /: 1 .. 1000
put/: 4," Pause till a key is pressed"
pause

end for

DETAILS: The screen should bein a "screen” or "graphics' mode; see the
setscreen procedure for details. If the screen isnot in one of these
modes, it will automatically be set to "screen” mode.

See a0 the hasch (has character) procedure which isused to
seif acharacter hasbeen typed but not yet read.

On the IBM PC keystrokes which do not provide an ASCII value
(left arrow key, insert key, delete key, function keys and o on) return
the scan code of the keystroke with 128 added to it, unlessthe scan
code already hasavalueof 128 or greater. Thisprovidesaunique
value for every key on thekeyboard. Use areferenceto the |IBM PCto
find out the scan codes produced by the keyboard.

Turing Reference Manual 120

(get environment) function pca

SYNTAX:
getenv (symbol: string): string

PESCRIPTION: Thegetenv functionisused to access the environment
string whose name issymbol. These strings are determined by the
shell (command processor) or the program that caused your program to
run. See dso the nargs and fetcharg functions.

EXAMPLE: Retrievestheenvironment variable USERLEVEL and prints
extrainstructionsif USERLEVEL had been set to NOVICE. Onan IBM
PC, thiscould be sat with the command SET USERLEVEL = NOVICE
in the autoexec.bat file or in any batch file.

const userLevel: string
userLevel .= getenv ("USERLEVEL")
if userLevel = "NOVICE" then

% put a set of instructions
end if

Turing Reference Manual 121

getpid (get processid) function (Pcandy,

SYNTAX:
getpid : int

DESCRIPTION: Thegetpid function is determine the processid of the
current process. On a persond computer, this number is of little use.

Under Unix, the number is used, for example, for creating a unique name
of afile. Seedso nargs, fetcharg and getenv.

Turing Reference Manual 122

(has character) function

hasch : boolean

DESCRIPTION' The hasch procedureis used to determineif thereisa
character that has been typed but not yet been read.

EXAMPLE: Theflush procedure getsrid of any characters that have been
typed but not yet read.

procedure flush
varch:string(1)
loop
exit when not hasch
getCh (ch) % Discard this character
end loop
end flush

DETAILS: The screen should be in a "screen” or "graphics' mode; see the
setscreen procedure for details. |f the screen isnot in one of these
modes, it will automatically be set to "screen” mode.

Turing Reference Manual 123

name of an item in a Turing program
CYNTAX: An ifSatement is.

DESCRIPTION: Variables, congtants, types, procedures, etc. in Turing
programs are given names such asincomeTax, X, and height. These
names are called identifiers (ids).

if trueFalseExpn then .
statementsAndDeclarations
{ elsif trueFalseExpn then

Anidentifier must start with aletter (Iarge or small) and can statementsAndDeclarations }
contain up to 50 characters, each of which must be a letter, adigit (0 to

; L else
9) or an underscore (_)* Largeand small lettersare considered distinct, [:
2 that A and a are different names; this isdifferent from Pasca in statementsAndDeclarations]
which largeand small letters in names are equivalent. end if
Every character in anameis significant in distinguishing one DESCRIPTION: Anif statement isused to choose among a set of statements

name from another. (and declarations). One st (at most) is chosen and executed and then

By convention, words that make up an identifier are capitalised execution continues just beyond end f.

(except the first one), as in incomeTax and justinTime. The expressions (the trueFdseExpressions) following the

keyword if and each elsif are checked one after the other until one of
them isfound to be true, in which case the statements (and
declarations) following the corresponding then are executed. If none of
these expressions eval uates to true, the statementsfollowing else are
executed. 1f no elseispresent and none of the expressons are true, no
statements are executed and execution continues following the end if.

AniteminaTuring program cannot be given the same name asa
keyword such asget nor asa reserved word such asindex. See
appendix A for alist of keywordsand reserved words.

EXAMPLE: Output a message based on value of mark.

if mark >= 50 then
put "You pass”
else
put "You fail"
end if

EXAMPLE: Output A, B, C, D or Fdepending on mark.

if mark >= 80 then
put IIAII

elsif mark >= 70 then
put IIBII

elsif mark >= 60 then
put IICII

Turing Reference Manual 124 Turing Reference Manual 125

elsif mark >= 50 then
put "D"

else
put "F"

end if

EXAMPLE: If xisnegative, changeitssign.

if x <0then

mr— Vv
— /[

end if

DETAILS: Severd statementsand declarations can appear after a
particular then.

See dso case statements for another way to select among
statements.

Turing Reference Manual

126

import list
SYNTAX: AnimportList is

import([howlmport] id {, [howlmport] id])

DESCRIPTION: An import list is used to specify those items that a
procedure, function or module uses from outside of itself. Commonly,
procedures and functions are written without import lists, which
means that the list is determined automatically by the compiler by
looking to see what items are actually used.

EXAMPLE: Inthisexample, thetype T isimported into the stock module
and used as the type that can be pushed onto or popped off the stack.
Since no other itemsare imported, the only identifiers from outside of
stock that can be used in it must be predefined, such as sqrt, or declared
tobe pervasive.

type T : string

module stack
import (T)
export (push, pop) % alternate: export push, pop
var top : int :=0
var contents: array 1..100 of 7"
procedure push... end push
procedurepop...end pop

end stack

DETAILS: Therearevarious ways to import items, as determined by

howlmport. The form of howimport is one of:

(a) var

(b) forward
In the most common case, the howlmport isomitted, which meansthe
item cannot be changed within the body of the importing procedure,
function or module. If thehowlimport isvar, theitem isnecessarily a
variable (or amodule), and the importing body is then alowed to
change the variable (or cal a procedurein the module).

If the importltem is forward, theimport list is hecessarily part
of aforward procedure or function declaration and theimported item is
itself necessarily a procedure or function; see forward declarations for
detailsand an example.

Turing Reference Manual 127

Can » frcely emitted for procedures and functions
TO510: Smpy means A * e jmplementation
tif fAStermT Sthelist A jooking at acl | use of items. By
assumes h"h'T T * ofameduleisomittedithe g ementation
I'n other wnrH £ T* Tmx hrmeaningthatnoitems (' jmported

ida

Turing Reference Manual 128

member of a set
SYNTAX:
in
DESCRIPTION: Thein operator determinesif an element isin a st.
EXAMPLES:

type rankSet: setof 0 .. 10
var rankings: rankSet :=rankSet(0) % The set {0}

if 5 in rankings then ... % Is 5 in the ranking set?

DESCRIPTION: The notin operator isexactly the opposite of in. For
example, 7 not in rankings means the same as not (7 in rankings).

Itisrequired that the element bein the set'sindex type; in the
above example thisis satisfied because element 5isin the index type
0.. 10.

See also the set type, infix operators, and precedence of
operators.

Turing Reference Manual 129

iNnclude sourcefiles

SYNTAX: AnincludeConstruct is.

include fileName

DESCRIPTION: Aninclude isused to copy partsfiles so that they become
part of the Turing program. Thiscopying istemporary in the since
that is does not change any files. The file name must be an explicit
string constant such as "stdstuff'.

EXAMPLE: OnIBM PC compatible computers, there are arrow keys that
produce character values such as 200 and 208. Let us suppose that a file
called arrows contains definitions of these values:

const upArrow = 200
const dpwnArrow = 208
const rightArrow = 205
const leftArrow = 203

These definitions can be included in any program in the fol lowing
manner:

include "arrows"

var ch : string (1)
getCh (Ch) % Read one character
case ord (ch) of
label upArrow:
...handle up arrow...
label downArrow:
...handle down arrow..
label rightArrow:
...handle right arrow...
label leftArrow:
...handle left arrow...
label:
...handle any other key...
end case

Turing Reference Manual 130

DETAILS: Aninclude file can itself contain include constructs. This can
continue to any leve, although a circular pattern of includes would be

amistake asit would lead to an infinitely long program.

Itis common to save procedures, functions and modulesin
separate files, that are collected together using include.

Turing Reference Manual

131

index (find pattern in string) function

SYNTAX:
index (s, patt : string): int

DESCRIPTION: Theindex function isused to find the position ofpatt
within strings. For example, index ("chair”, "air") is3.

EXAMPLE: Thisprogram outputs 2, because"ill" isasubstring of
"willing", starting at the second character of "willing".

var word : string = "willing"
put index (word, "ill")

DETAILS: If the pattern (patt) does not appear in the string (), index
returns O (zero); for example, hereisan if statement that checksto see
if string s containsablank:

if index (s," ") not=0then ..
The index is sometimes used to efficiently determineif a character is
one of agiven set of characters; for example, hereisan if statement
that checksto s if ch, which isdeclared using var ch: string (1), isa
digit:

if index (0123456789, M not= O then ...

If a string contains more that one occurrence of the pattern, the leftmost
location isreturned; for example, index ("pingpong", "ng") returns 3.

If patt is the null string, the result is 1

Turing Reference Manual 132

IndexType

An indexType is one of:

@ subrangeType
n .gnumeratedType
©

namodTypO
DESCRIPTION: An index type defines a range of vaues that can be used
asan array subscript, asasdector (tag) for aunion type, or asthebase

type of a st type.
EXAMPLE:

% Which is a subrange or enumerated type

varz :array 1 ..9of real % 0.9 is an index type
type smallSet : set of 0 .. 2 %0..2 is an index type

Turing Reference Manual 133

INfix operator

SYNTAX: AninftxOperator isoneof:

@ + 0 Integer and real addition; set union; string catenation
() - '<, Integer and real subtraction; set difference

c = 3 Integer and real multiplication; set intersection
@@ 7/ > Realdivision

(e dI™v i Truncating integer division

(f) mod . Remainder

(g) * * Integer and real exponentiation

h) < Less than

o > Greater than

G) = Equal

K <= % Less than or equal; subset

o >= % Greater than or equal; superset

(m) not= % Not equal

(n) and And (boolean conjunction)

(0) or Or (boolean disjunction)

Epg => Boolean implication

qg n Member of set

w not In Not member of set

DESCRIPTION: An infix operator is placed between two values or
operands to produce a third value, for example, the result of 5+ 7is 12.
I n some cases the meaning of the operator isdetermined by its
operands; for example, in "pine" + "gpple’, the + operator means
string catenation whilein 5 + 7 it meansinteger addition. Thereare
aso prefix operators (-, + and not), which are placed in front of a
single value; see prefix operator.

In expressionswith several operators, suchas3 + 4 * 5, the order
of doing the operator is determined by precedence rules (see precedence
for alisting of these rules); in this example, the multiplication isdone
beforetheaddition, so the expressionisequivalentto 3 + (4 * 5).

The numerical (integer or real) operatorsare +, -, *, /, div, mod,
and **. AH of these except div produce ared result when at least one
of their operandsisred; if both operandsare integers, theresult isan
integer except for real division (/) which always produces areal result
regardless of the operands.

Turing Reference Manual 134

The div operator islikereal division (/), except that it always
produces an integer result, truncating any fraction to produce the
nearest integer in the direction of zero.

Themod operator produces the remainder, which is the between
real division (/) and integer division (div). When both operands are
positive, thisis the modulo, for example, 14 mod 10is4. If oneof the
operandsis negative, anegative answer may result, for example, -7
mod 2 is-1 Seedsotheintand rea types.

The comparison operators (<, >, =, <=, >=, not=) can be applied
to numbers aswell asto enumerated types. They can also be applied to
strings to see determine the ordering between strings (see the string
type for details). Arrays, records, unionsand collections cannot be
compared. Boolean values (true and false) can be compared only for
equality (= and not=); the same appliesto pointer values. Set values
can be compared using <= and >=, which are the subset and superset

operators. The not= operator can be written as ~=.

Stringsare manipulated using catenation (+) aswell as substring
expressions (e substring) and the index function (see index). See dso
the string type.

The operators to combine true/false values are and, or, and =>
(implication), aswell asequality (= and not=). Seeaso the boolean

type-

The st operatorsare union (+), intersection (*), set difference (-),
subset (<=), superset (>=), and membership (inand notin). Ssedso

the set type.

Turing Reference Manual 135

iNit initialisation

SYNTAX:
init

DESCRIPTION: Theinit (initialisation) keyword is used for two
different purposesin Turing. The most common isfor initialising

arrays, recordsand unions. Thelesscommon isfor recording parameter
valuesin procedures for later usein post conditions.

EXAMPLE:

var mensNames: array 1 .. 3 of string :
init ("Tom", "Dick", "Harry")
put mensNames (2) % This outputs Dick
var names: array 1 . 2,1 .. 3 of string :
init ("Tom", "Dick", "Harry",
"Alice”, "Barbara”, "Cathy")
put names (2,1) % 775 outputs Alice

DETAILS: Theorder of initialising valuesfor multi-dimensional arraysis
basad on varying the right subscripts (indexes) most rapidly. Thisis
cadled row major order. Initialisation of recordsand unionsis
analogoustoinitialising arrays; values are listed in theorder in
which they appear in the type. See array, record, and union types.

EXAMPLE: This procedureissupposed to st integer variablei to an
integer approximation of itssquare root. The init clause records the
initial value of i as/ v it can be used in the post condition to make sure
that the approximation is sufficiently accurate. The name; can be used
only in the post condition and nowhere else in the procedure.

procedure intSqrt (var i: int)
pre/ >=0
inity =/
post abs (i - sqrt(j)) <= 1
.. Statements to approximate square root-

end intSqrt

DETAILS: Seealso pre and post assertions and procedure declarations.

Turing Reference Manual 136

type
SYNTAX: -
int

DESCRIPTION: Theint (integer) typehasthevaues...-2,-1,0, 1, 2 ..
Integers can be combined by various operators such as addition (+) and
multiplication (*). Integerscan aso be combined with real numbers, in
which casetheresult isgeneraly area number. Aninteger can
always be assigned to areal variable, with implicit conversion to
real.

EXAMPLE:

var counter, i Int

vary:int =9

var tax :=0 % The type is implicitly int because
%0isan integer

DETAILS Seedso explidtintegerConstant. Thereal typeisused instead
of int when values have fractional partsasin 16.837; see the real type
for detalls®

The Turing operatorson integersare +, -, * (multiply), div
(truncating integer division), mod (integer remainder), **
(exponentiation), aswell ascomparisons (+, not=, >, >=, <, <=).

Real numbers can be converted to integers using ceil (ceiling),
floor, and round (see descriptions of these functions). Integers can be
converted to real numbersusing intreal, but in practice thisisrarely
used, because an integer value used in place of areal value will be
automatically converted to real.

Integers can be converted to strings and back using intstr and
strint. Integers can be converted to corresponding ASCII (or EBCDIC)
charactersusing chr and ord. See thedescriptionsof these functions.

Pseudo random sequences of integers can be generated using
randint; see randint.

In Turing, the range of integersis from -2147483647 to 2147483647.
In other words, the maximum size of integer is2¥*31 -1.

Turing Reference Manual 137

integer-to-real function
SYNTAX:

intreal (/: int) : real

DESCRIPTION: Theintreal function is used to convert an integer to ared
number. Thisfunctionisrarely used, becausein Turing, an integer
value can be used anyplace ared valueisrequired; when thisisdone,

the intreal function isimplicitly caled to do the conversion from int to
red. Seedso thefloor, ceil and round functions.

Turing Reference Manual 138

integer-to-string function

SYNTAX:

intstr (/ , width : int): string

DESCRIPTION: The intstr function is used to convert an integer to a string.

The string is equivalent to i, padded on the left with blanks as
necessary to alength of width, for example, intstr (14,4)="bbl4" where
b representsablank. The width parameter is optional; if omitted, the
string is made just long enough to hold the value. For example, intstr
(-23)="-23".

The width parameter must be non-negative. If width is not large
enough to represent the value of i, thelength isautomatically
increased as needed.

The string returned by intstr is of the form:
{blank)[-]digit{ digits)
where (blank) means zero or moreblanks, [-] means an optional minus
sign, and digit(digit) means one or more digits. Theleftmost digit is
non-zero, or dse thereisa single zero digit; in other words, leading
zerosare suppressed.

Theintstr functionistheinverse of strint, so for any integer i,
strint (intstr (;)) =i.

S a0 the chr, ord and strint functions.

Turing Reference Manual 139

invariant assartion

SYNTAX: AninvariantAssertionis

invariant trueFalseExpn

DESCRIPTION: Aninvariant assertion isa specia form of an assert
statement that is used only in loop and for statementsand in modules.
It isused to make sure that a certain requirement is met; this
requirement is given by the trueFalseExpn. The trueFalseExpn is
evaluated. If itistrue, al iswell and execution continues. Ifitis
fase, execution is terminated with an appropriate message. See
@gr}sl oop and for statements and the modul e declarationsfor more

EXAMPLE: Thisprogram usesaninvariantinaforloop. Theinvariant

uses the function namelnList to specify that a key has not yet been
found in an array of names.

var name: array 1 .. 100 of string
var key: string
.. input name and key...

function namelnList (n: int): boolean
for/: 1 ..n
if key = name (/) then
result true
end if
end for
result false
end namelnList

for/:1..100
invariant not namelnList (j- 1)
if key - name (j) then
put "Found name at", |
exit
end if
end loop

Turing Reference Manual 140

length of astring function

SYNTAX:

length (s : string): int
DESCRIPTION: The length function returns the number of charactersin the
string. The string must beinitialised. For example, lengthC'table") is5.

EXAMPLE: This program inputs three words and outputs their lengths.

var word : string

for/: 1 ..3
get word
put length (word)

end for
If the words are "cat", "robin" and "crow", the program will output 3, 5
and 4.

DETAILS: The length function gives the current length of the string. To find
the maximum length of a string, use upper; for example, given the
declaration var s: string (10), upper (s) returns 10. See aso upper.

Turing Reference Manual 141

In natural logarithm function

SYNTAX:
In(r: real): real

DESCRIPTION: TheInfunction isused to find the natural logarithm (base

e)ofanumber. For example, In (1) isO. ;

EXAMPLE: Thisprogram printsout the logarithmsof 1,2,3,... up to 100.

for/:1..100
ut "Logarithm of", /," is ", In (/)
end for

DETAILS: Seedso the exp (exponential) function. Itisillega to try to take
the logarithm of zero or a negative number.

NOTE: log, (/) =In (/) /' In (n)

Turing Reference Manual 142

| ocate procedure

SYNTAX:

locate (row, column : ml)

DESCRIPTION: The locate procedureisused to move the cursor so that the
next output from put will be at the given row and column. Row 1 isthe
top of the screen and column 1 istheleft sde of the screen.

EXAMPLE: This program outputs starsof random colors to random locations

on the screen. The variable coir is purposdly spelled differently from

the word color to avoid the procedure of that name which is used to st
the color of output. Therow number is purposely chosen so that it is one
less that maxrow to avoid the scrolling of the screen which occurs when

a character is placed in the last column of the last row.

setscreen ("screen")

var row, column, coir: int

loop
randint (row, 1, maxrow- 1)
randint (column, 1, maxcol)
randint (coir, 0, maxcolor)

color (coir)

locate (row, column)

put "™ . % Use dot-dot to avoid clearing end of line
end loop

DETAILS: The locate procedure is used to locate the next output based on
row and column positions. Seeaso the locatexy procedurewhich is
used to locate the output based x and y positions, wherex=0, y=0isthe
left bottom of the screen.

The screen should beina "screen™ or "graphics' mode; se the
setscreen procedure for details. If the screenisnot in one of these
modes, it will automatically be set "screen” mode.

See dlso setscreen and drawdot

Turing Reference Manual 143

locatexy graphics procedure

SYNTAX:

locatexy (X, y : int)

DESCRIPTION: The locatexy procedure is used to move the cursor 0 that
the next output from put will be at approximately (x, y). The exact
location may be somewhat to the left of x and below y to force
alignment to a character boundary.

EXAMPLE: This program outputs "Hello" starting at approximately (100,
50) on the screen.

setscreen ("graphics”)
locatexy (100, 50)
put "Hello"

DETAILS: Thelocatexy procedure is used to locate the next output based
on x and y positions, where the position x=0, y=0 is the left bottom of
the screen. See dso the locate procedure which is used to locate the
output based in row and column positions, whererow 1 isthe top row
and column 1 is the left column.

The screen should bein a "graphics' mode; see the setscreen
procedure for details. If the screenisnot ina "graphics' mode, it will
automatically be st to "graphics' mode.

See also setscreen and drawdot

Turing Reference Manual 144

statement

SYNTAX: A loopSatement is:

loop _
statementsAndDeclarations

end loop

DESCRIPTION: A loop statement causes the statements (and
declarations) init to be repeatedly executed. Thiscontinues until
terminated by one of itsenclosed exit statements (or by an enclosed

return or result statement).

EXAMPLE: Output on separatelines: Happy, Happy, Happy, €tc.

loop
put "Happy"
end loop

EXAMPLE: Read words up to the word Stop.

var word : string

loop
get word
exit when word = "Stop"

end loop
DETAILS: A loop statement can contain more that one exit, or none at al

(inwhich caseitisan infiniteloop). When the exit whenisat the
beginning of the loop, the loop workslike Pascal's do while; when at

the end, the loop works like Pascal's repeat until.

Just preceding the statements and declarations, you are alowed

to write an "invariant clause" of the form:
invariant trueFalseExpn

Thisclauseisequivalent to: assert trueFal seExpn.

Turing Reference Manual 145

lower bound of an array or string
SYNTAX:
lower (arrayReference [, dimension]): int

DESCRIPTION: Thelower attributeisused to find the lower bound of an

array. (See upper for finding the upper bound.) Since the lower bound
lcjfsee'\d/ery array is necessarily know at compile time, lower israrely

Turing Reference Manual 146

maximum function

SYNTAX: '

max (expn , expn)

DESCRIPTION: Themax functionis used to find the maximum of two

numbers (the two expn's). For example, max (5, 7) is7. If both
numbers are int the result isint, but if one or both of the numbers are
real, theresultisreal. Seealsothemin function.

EXAMPLE: This program outputs 85.72.

var x : real :=74.61
vary :real :=85.72
put max (x, y) % outputs 35.72

EXAMPLE: Thisprograminputs 10 numbersand outputstheir maximum.

varm ,t : real

get m % Input first number

for / : 2 . 10 % Handle remaining 9 numbers
geu
m :=max (m, t)

end loop

put "The maximum is *, m

Turing Reference Manual 147

(maximum column) function

SYNTAX:

maxcol : int

DESCRIPTION: The maxcol functionis used to determine the number of
columnson the screen.

EXAMPLE: This program outputs the maximum column number.

put "Number of columns on the screen is ",
maxrow

DETAILS: For IBM PC compatiblesaswell asmost Unix dumb terminals, in
"text" or "screen" mode, maxcol = 80. For the default IBM PC
compatible "graphics" mode (CGA), maxcol = 40. Seethe locate
procedure for an example of the use of maxcol.

Turing Reference Manual 148

fliaxcolor graphics function

SYNTAX:

maxcolor : int

DESCRIPTION: The maxcolor function is used to determine the maximum
color number for the current mode of the screen. The alternate spelling
ismaxcolour.

EXAMPLE: Thisprogram outputs the maximum color number.
setscreen ("graphics")
put "The maximum color number is", maxcolor

DETAILS: The screen should beina "screen” or "graphics' mode; if not, it
will automatically beset to "screen" mode. See setscreen for details.

See drawdot and palette for examples of the use of maxcolor.
See the color procedure which isused for setting the currently active
color.

For IBM PC compatiblesin "screen" mode, maxcolor = 15. For the
default IBM PC compatible "graphics' mode(CGA),
maxcolor = 3.

Turing Reference Manual 149

(maximum row) function

SYNTAX:

maxrow : int

DESCRIPTION: Themaxrow function isused to determine the number of
rowson the screen.

EXAMPLE: This program outputs the maximum row number.

put "Number of rows on the screen is ", maxrow

DETAILS: For IBM PC compatibles, maxrow = 25. For many Unix dumb
terminals, maxrow = 24. Seethe locate procedure for an example of
the use of maxrow.

Turing Reference Manual 150

[PC and Mac only]

graphics function

SYNTAX:

maxx : int

DESCRIPTION: The maxx function is used to determine the maximum
value of x for the current graphics mode.

EXAMPLE: This program outputs the maximum x value.
setscreen ("graphics")
put "The maximum x value is", maxx

DETAILS: The screen should beina "graphics' mode; if not, it will
automatically be set to "graphics’ mode. See setscreen for details.

See drawdot for an example of the use of maxx and for a diagram
illustrating x and y positions. For the default IBM PC compatible
graphics mode (CGA), maxx = 319.

Turing Reference Manual 151

graphics function
SYNTAX:
maxy : int

DESCRIPTION: Themaxy function isused to determine the maximum
valueof y for the current graphics mode.

EXAMPLE: This program outputs the maximum y value.

setscreen ("graphics”)

put "The maximum y value is ", maxy

DETAILS: Thescreen should beina "graphics' mode; if not, it will
automatically be st to "graphics’ mode. See setscreen for details.

See drawdot for an example of the use of maxy and for a diagram

illustrating x and y positions. For the default IBM PC compatible
graphics mode (CGA), maxy =199.

Turing Reference Manual 152

CH

minimum function

SYNTAX:
min (expn , expn)

PESCRIPTION: Themin functionisused to find the minimum of two
numbers (the two expris). For example, min (5,7) is5. If both numbers
areint theresult isint, but if one or both of the numbersarereal, the
result isreal. Seealso the max function.

EXAMPLE: This program outputs 74.61.

varx : real =74.61
vary : real :=85.72
put min (x, y) % outputs 74.61

EXAMPLE: Thisprogram inputs 10 numbers and outputs their minimum.

varm,t : real

get m % Input first number

for / 1 2 . 10 % Handle remaining 9 numbers
getf
m :=min (m, t)

end loop

put "The minimum is ", m

Turing Reference Manual 153

mod remainder (modulo) operator
SYNTAX:

mod

DESCRIPTION: Themod (modulo) operator produces the remainder of

one number divided by theanother. For example, 7 mod 2 produces 1
and -7 mod 2 produces-1

EXAMPLES:. In thisexample, eggCount isthe total number of eggs. The
first put statement determines how many dozen eggs there are. The

second put statement determines how many extra eggs there are
beyond the last dozen.

var eggCount : int
get eggCount

put "You have ", eggCountdiv 12," dozen eggs"
put "You have", eggCount mod 12, " left over"

DESCRIPTION: Seedso infix operators, precedence of operators and the
div operator.

Turing Reference Manual 154

jX\odule declaration

SYNTAX: A moduleDeclarationis:

module id
[lmporté[var] id { évarﬂ id })]
export ([opaque] i opaque]id })]
statementsAndDeclarations

end id

DESCRIPTION: A module declaration creates a package of variables,

constants, typesand subprograms, and sub-modules. The name of the
module (id) is given in two places, just after module and just after end.

EXAMPLE: Implement a stack of strings:

module stack
export (push, pop)

var top: int:=0
var contents: array 1 .. 100 of string

procedure push (s : string)
top :=top +1
contents (top) =s
end push

procedure pop (var s: string)
s = contents (top)
top :=top -1
end push
end stack

stack. push ("Harvey")
var name : string

stack.pop (name) % This sets name to Harvey

Turing Reference Manual 155

DETAILS: Inother programming languages, the term used for amoduleisa
package, cluster or object.

A module declaration is executed (and the moduleisinitialised)
by executing its declarations and statements; for example, the stack
moduleisinitialised by setting the top variableto 0. This
initialisation executesall the statements and declarationsin the
module that are not contained in procedures or functions. The
initialisation is completed before any procedure or function of the
module can be called from outside the module. Suchacall toa
procedure or function simply executes the body of that procedure or
function (the module is not initialised with each such call).

The import list gives the names of items declared outside the
module that can be accessed inside the module; since stack has no
import list, it isnot allowed to access any names declared outside of it.

The export list is used to implement information hiding, which
means i solating i mplementation detailsinside a module. The export
list gives the names of items declared inside the module that can be
used outside the module; for example, push and pop are exported from
stack. Each such use of an exported item must be preceded by the
module name and a dot, for example, stack.push. Names that are not
expdortled, such as top and contents, cannot be accessed outside the
module.

Only procedures, functions, constants and types can be exported;
variables and (sub)modul es cannot be exported.

The opaque keyword is used (only) to precede type names that
have declarationsin the module. Outside of the module, the type will
be distinct from all others types, this means, for example, that if the
opague type isarecord, its fields cannot be accessed outside of the
module. Opague types are used to guarantee that certain itemsare
inspected and manipulated in only one place, namely, inside the
module. These types are sometimes called abstract data types.

Turing Reference Manual 156

EXAMPLE: Usean opaque type to implement complex arithmetic.

module complex
export (opaque value, constant, add,
... other operations...)
type value:
record
realPt, imagPt : real
end record

function constant
(realPt, imagPt: real): value
var answer : value
answer. realPt = realPt
answer. imagPt = imagPt
result answer
end constant

function add (L, R: value): value
var answer : value
answer .realPt = L .realPt + R .realPt
answer .imagPt =L . imagPt +R .imagPt
result answer

end add

... other operations lor complex arithmetic go here ...
end complex

var c,d-.complex .value :=complex.constant(1,5)
% c and d become the complex number (1,5)

var e : complex .value := complex.add (c,d)
% e becomes the complex number (2,10)

DETAILS: Module declarations can be nested inside other modules but
cannot be nested inside procedures or functions. A module must not
contain a bind as one of its (outermost) declarations. A return
statement cannot be used as one of the (outermost) statementsin a

module.

Turing Reference Manual 157

The syntax of amoduleDeclaration presented above hasbeen n am ed t e
simplified by leaving out pre, invariant and post conditions; the full yp

syntax is.
SYNTAX: A namedType isone of:
module id
[import ([var]id {,[var]id })] (@ typeld
[export ([Of)aque] id {, [opaque]id })] @ Mmoduleld. typeld
pre truekalseExpn] . .
statementsAndDeclarations DESCRI PTION.: A typecar? pegwen aname (typeld) and later this name
[invariant trueFalseExpn] can be used instead of writing out the type.
statementsAndDeclarations EXAMPLE: Inthisexample, phoneRecord isanamed type.
[post trueFalseExpn]
end id type phoneRecord :

record
name : string (20)
phoneNumber : int
address : string (50)

end record

var oneEntry : phoneRecord
var phoneBook array 1 .. 100 of phoneRecord

DETAILS: Form (@) isthe most common kind of named type. Form (b) is
used when the type name has been exported from a module.
Arrayswhose boundsare not known at compile time

cannot be named.

Turing Reference Manual 158 Turing Reference Manual 159

nar gS number of arguments IPC,

SYNTAX:
nargs : int

DESCRIPTION: Thenargs function isused to determine the number of

arguments that have been passad to a program from the command line.

For exarppl)l elz,f j}‘ tgle program is run from the Turing environment using
rfilelfile
then nargs will return 2. If a program caled prog.x isrun under Unix
using thiscommand
progx filel file2
the value of nargs will similarly be 2.

The nargs function is usually used together with the fetcharg

function to access the arguments that have been passed to the program.

Seefetcharg for an exampl e of the use of nargs.

Turing Reference Manual 160

Jn:

iXp

statement

SYNTAX: AnewStatementis:
new collectionld, pointerVariableReference

DESCRIPTION: A new statement creates (allocates) an element of a
collection and assignsitslocation to the pointer variable.

EXAMPLE: Declarealist and allocate one of its nodes.

var list ; collection of

record
contents : string (10)
next : pointer to list
end record

var first: pointer to list
new list, first % Allocate an element of list,
% located by first.

DETAILS: Theopposite of allocating an element of a collection, namely,
deallocating it, is done by the free statement.

If there is no more space to allocate an element, new will set the
pointer to be the nil value, in thisexample, to nil (list).

See dlso the collection declaration, the pointer type, and the
free statement.

Turing Reference Manual 161

nil pointer to a collection

SYNTAX: "
nil (collectionld)

DESCRIPTION: Thenil pointer for a collection does not locate any
element of the collection. This pointer isdistinct from pointers to
actual elements of the collection and it can be compared to these
pointers. Itisaso distinct from the uninitialised pointer value.

EXAMPLE: Inthisexample, the pointer calledfirst is st to the nil
pointer of collection ¢, that is, to nil(c).

var ¢ : collection of
record
name : string (50)
next: pointer to ¢
end record
var first: pointerto ¢ := nil (¢)

DETAILS.: Seedso collection declaration.

Turing Reference Manual 162

jlOt true/false (boolean) operator

SYNTAX:

not

DESCRIPTION: Thenot (boolean negation) operator produces the

opposite of atrue/false value. For example, not (X >Yy) isequivalent to
X<=y.

EXAMPLES

var error : boolean :=talse
var success : boolean

success := not error % success becomes the
% opposite of error

DETAILS: The not operator takes true and produces false and takes false

and produces true. The not operator can be written as~. Seedso the
boolean type, prefix operators, and precedence of operators.

Turing Reference Manual 163

opaque type

DESCRIPTION: WhenatypeT isexported from moduleM using-the
keyword opaque, thetype M.T isdistinct from all other types.
Opaquetypesare used to guarantee that all updates to values of the
type aredone within module M.

Semoduledeclarationsfor an exampl e of an opaque type used to
implement complex arithmetic. See equivalence of typesfor the
definition of the type matching rules for opague types.

Turing Reference Manual 164

file statement

SYNTAX: AnopenSatement isoneof:

open : fileNumberVar, fleName , ioCapabilit
{ , ioCapability

open : fileNumberVar, argNumber , ioCapability
{ , ioCapability }

DESCRIPTION: The open statement connects the program to afile so the
program can perform operations such asread on thefile. Inform (a),
the open statement trandlates afileName, such as "Magter”, to a file
number suchas 5. Form (b) , which islesscommonly used, opensafile
whose nhameis given by a program argument; thisis described below.

The read statement uses the file number, not the file name, to
access the file. When the program is finished using the file, it
disconnects from the file using the close statement. Each ioCapability
isthe name of an operation, such asread, that isto be performed on
the file.

EXAMPLE: This programsillustrates how to open, read and then dosea
file

var fileName : string := "Master" % Name

Var fileNo : int % Number of file
var inputVariable : string (100)

open : fileNo, fileName, read

read : fileNo, inputVariable

close : fileNo

DETAILS: The open statement always sets thefileNumber to a positive
number. If the open fails (generally because the file does not exist),
thefileNumber is st to zero.

An ioCapability is one of:
get, put, read, write, seek, mod
A file can be accessed using only the statements corresponding to the
input/output capabilitieswith which it was opened. Note: tell is
alowed only if the open isfor seek.

Turing Reference Manual 165

The open statement truncates the file to length zero if the
ioCapabilities include put or write but not mod (which stands for
modify). Inall other cases, open leaves the existing fileintact. The
mod ioCapability specifies that the file is to be modified without
being truncated. Each open positions to the beginning of afile. Thereis
no mechanism to delete afile. To open for appending to the end of the
file, one hasto open for seek (and for write or put) and then seek to the
end (see the seek statement).

Mixed mode files, which combine get and read (or put and
write), are supported by some operating systems, such as Unix, but not
by others, such asMS-DOS.

Form (b) of the syntax allows opening of a file whose nameis
given asa program argument on the command line. For example, under
Unix, the command line

prog.x infile outfile
specifies to execute prog.x with program argumentsinfile and outfile.
Similarly, in the Turing programming environment, the run command
can accept program arguments. The argNumber is the position of the
argument on the command line. (The first argument is number 1) The
name of the file to be opened is the corresponding program argument.

If there is no such argument, or if the file cannot be opened successfully,
fileNumberVariable is st to zero. Seeaso nargs, which givesthe
number of arguments, and f etcharg, which givesthe n-th argument
string.

Program argument files referenced by argument number and used
in put, get, read or write statements need not be explicitly opened, but
areimplicitly opened with the capability corresponding to the
input/output statement in which they are first used. (ThefileNumber
givesthe number of theargument.)

The operating system standard files (error, output and input) are
accessad using file numbers 0, -1, and -2, respectively. These filesare
not opened explicitly, but are used simply by using form (b) with the
number. Beware of the anomal ous case of a failed open that gives you
file number 0. A subsequent use of this number in a put will produce
output that goes to the standard error stream, with no warning that
the file you attempted to open is not actually being used.

Sedso theclose, get, put, read, write, seek and tell statements.
Thereisan older and till acceptable version of open that has
this syntax:

open (var fileNumber : Int, fileName : string, mode : string)

The mode must be "r* (for get) or "w " (for put).

Turing Reference Manual 166

or (boolean) operator

SYNTAX:
AorB

DESCRIPTION: The or (boolean) operator yields aresult of trueif at
least one (or both) of the operandsistrue, orisa short circuit operator;
for example, if Aistruein A or B then B isnot eva uated.

EXAMPLE:

var success: boolean :=false
var continuing = true % the type is boolean

continuing := continuing or success

DETAILS: continuingis set to falseif and only if both continuing and success
arefalsae. Since Turing uses short circuit operators, once continuing is
true, success will not be looked at.

See dlso boolean (which discusses true/fal se values),
explicitTrueFal seConstant (which discussesthevaluestrueand false),

precedence and expn (expression).

Turing Reference Manual 167

Ord character-to-integer function

SYNTAX:
ord (ch : string (1)): int

DESCRIPTION: The ord function accepts an enumerated value or a string
of length 1 and returns the position of the value in the enumeration or
of the character in the ASCII (or EBCDIC for IBM mainframes)
sequence. Values of an enumerated type are numbered | eft to right
starting at zero. For example, ord ("A") is65. Theord function is the
inverse of chr, so for any character c, chr (ord (c)) = c.

See dso the chr, intstr and strint functions.

Turing Reference Manual 168

palette graphics procedure

SYNTAX:

palette (p: ml)

JESCRIPTION: The palette procedure is used to change the palette
number to p.

[EXAMPLE: Thisprogram showsall the colors of palette number 3 for an
IBM PC compatible using CGA graphics. Thefirst line of output, for
color O, will not be visible, because the background isaso color O.

setscreen ("graphics")
palette (3)
for colorNumber: 0 .. maxcolor
color (colorNumber)
put "Color number”, colorNumber
end for

)JETAILS: Themeaning of the palette depends on thedisplay hardware
on the computer. On IBM PC compatibles under CGA (the default
graphics mode), there are pal ettes numbered 0 to 3. Themain palettes
arenumbers2 and 3. Hereisthe meaning of the color numbersunder
these CGA palette numbers.

Pdette2: 1 =cyan (blue), 2 = magenta (red), and 3 = white.
Palette 3: 1= green, 2 = red, 3 = brown.
Palette number O islike 2 but not asbright. Palette 1 islike 3 but not as
bright.

The palette procedure is meaningful only in a "graphics' mode.
See setscreen for adescription of thegraphicsmodes.

S dso whatpal ette, which is used to determine the current
palette number. Seeaso drawdot and maxcolor.

Turing Reference Manual 169

[PConly]

paramDeclaration
parameter declaration

SYNTAX: A paramDeclaration is one OF “: ,
(@ [var] id { id } : typeSpec

(t>) procedureid
[(paramDeclaration {, paramDeclaration })]

(¢ functionid
[(paramDeclaration {, paramDeclaration })]
. typeSpec

DESCRIPTION: A parameter declaration, which is part of the header of
a procedure or function, specifies a formal parameter (ssedso
procedure and function declarations). Form (a) aboveisthe most
common case Forms (b) and (c) specify procedures and functions that
are themselves passed as parameters.

EXAMPLES:

procedure putTitle (title: string)
% The parameter declaration is: title: string
put title

end putTitle

procedure x (vars : array 1 .. * of string (*))
% Set each element ofs to the null string
for / : 1.. upper (S)
S (i) :: mnm
end for
end X

DETAILS: Parameters to a procedure may be declared using var, which
means that the parameter can be changed inside the procedure; for
example, s ischanged in the x procedure. If a parameter isdeclared
without var, it cannot be changed. (Thisisdifferent from the Pasca
language, in which non-var parameters can be changed.) Parameters

Turing Reference Manual 170

to functions cannot be declared to be var.

Parameters declared var are passed by reference, which means
that a pointer to the valueis passed to the procedure, rather than
passing the actual value. Thisimpliesthat inthecall p (a(0), in
which array element fl(i') is passed to procedurep, achangetoiinp
does not change the element referred to by p'sactual parameter. Every
non-scalar (not integer, subrange, real, boolean, enumerated or pointer)
parameter is passed by reference whether or not declared var. Inall
other cases (scalar non-var parameters) the parameter is passed by
value (the actual valueis copied to the procedure).

The upper bound of an array or string that isa formal parameter
may be specified as star (*), asis done above for parameter s in
procedure x. This specifies that size of the upper bound isinherited
from the corresponding actual parameter. Parameters declared using

star are called dynamic parameters.

The names of the formal parameters must be distinct from each
other, from the procedure or function name, and from pervasive
identifiers. However, they need not be distinct from names outside of
the procedure or function.

EXAMPLE: Find the zero of function f. Thisexampleillustrates form (c),

which is a parameter that is a function.

function findZero (function f (x : real): real,
left, right, accuracy: real): real
pre sign (f (left)) not= sign (f (right)))
and accuracy > 0
var L : real = left
var R: real = right

var M: real
const signLeft := sign (f (left))
loop

M:=(R+L)/2
exit when abs (R - L) <= accuracy
if signLeft =sign (f (M)) then

else
R =M
end if
end loop

Turing Reference Manual 171

result M
end findZero

DETAILS: Forms(b) and (c) of paramDedaration are used to specify
formal parameters that are themselves procedures or functions. For
example, in thefindZero function,/is a formal parameter that is
itsdf a function.

Turing Reference Manual 172

play procedure [PConly]
SYNTAX:

play (music : string)

DESCRIPTION: The play procedureis used to sound musical hotes on the
computer.

EXAMPLE: This program sounds the first three notes of the C scale.

play ("cde")

DETAILS: The play procedure takes strings that contain characters that
specify notes, rests, sharps, flats, duration. The notes are the letters a
tog(orAtoG). Arestisp (for pause). A sharpis+andaflatis-. The
durationsare 1 (whole note), 2 (half note), 4 (quarter note), 8 (eight
note) and 6 (sixteenth note). Thecharacter > raises to the next octave
and < lowers. For example, thisisthe way to play C and then C sharp
one octave above middle C with arest between them, al in sixteenth
notes: play(">6cpc+"). Blankscan beused for readability and are
ignored by play.

Under some systems such as Unix, the play procedure has no
effect.

S dso the playdone function which is used to s if a note has

finished sounding. See dso the sound procedure which makesa sound
of agiven frequency (Hertz) and duration (milliseconds).

Turing Reference Manual 173

playdone function

SYNTAX:

playdone: boolean

DESCRIPTION: The playdone function is used to determine when notes

played by the play procedure have finished sounding.

EXAMPLE: This program sounds the first three notes of the C scde and
outputs"All done" as soon asthey arefinished. Without theloop, the

message would come out before the notes are finished.

play("cde")
loop

exit when playdone

end loop
put "All done"

DETAILS: Under some systems such as Unix, the playdone procedure is

meaningless.

S also theplay procedure. See also the sound procedure
which makes a sound of a given frequency (Hertz) and duration

(milliseconds).

Turing Reference Manual

174

pointer type

gYNTAX: A pointer-Type is:

pointer to collectionld

PESCRIPTION: A variable declared by a pointer type is used to located
the elements of the collection whose nameis collectionld. The new
statement creates a new element of the collection and places the
element'slocation in a pointer variable. The free statement destroys

an eement located by a pointer variable.

EXAMPLE: Create a collection that will represent a binary tree.

var tree : collection of

record _
name : string (10)
left, right: pointer to tree

end record

var root: pointer to tree
new tree, root
tree (root).name = "Adam"

DETAILS: InTuring, apointer iseffectively a subscript (anindex) for a
collections. Pointers can be assigned, compared for equality and passed

as parameters.

S collections for more detailsabout the use of pointers. See
aso, new and free statements.

Turing Reference Manual 175

post assertion

SYNTAX: AnpostAssertionis:

post trueFalseExpn

DESCRIPTION: A post assertion isa special form of an assert statement
that isused in aprocedure or function. It isused to give requirements
that the body of the procedure or function is supposed to satisfy.

These requirements are given by the trueFalseExpn. After the body
has executed and just before the procedure or function returns, the
trueFalseExpn isevaluated. If itistrue, al iswell and execution
continues. If it isfalse, execution is terminated with an appropriate
message. Seeassart statementsand procedure and function
declarations for more details. Seeaso pre and invariant assertions.

EXAMPLE: Thisfunction is supposed to produce an integer approximation
of the square root of integer i. The post condition requiresthat this
result, which is called answer, must be within a distance of 1 from the
corresponding real number square root.

function intSqrt (i: int) answer : int
pre / >= 0
post abs (answer- sqgrt(/'))<=1
.. Statements to approximate square root-

end intSqrt

DETAILS: A post assertion can also be used in a modul e declaration to make

sure that the initialisation of the modul e satisfiesits requirements;
se module declaration for details.

Turing Reference Manual 176

assertion

SYNTAX: AnpreAssertionis:

pre trueFalseExpn

PESCRIPTION: A preassertionisa special form of an assert statement
that isused in at the beginning of a procedure or function. It isused to
give requirements that the caller of the procedure or functionsis
supposed to satisfy. These requirements are given by the
trueFalseExpn. The trueFalseExpn isevaluated. If itistrue dl is
well and execution continues. If it isfalse, execution is terminated
with an appropriate message. See assert statements and procedure
and function declarations for more details. Seeadso post and invariant

assertions.

EXAMPLE: Thisfunction computes the average of nvalues. Itspre
condition requiresthat n must be strictly positive, to avoid the
possibility of dividing by zero when computing the average.

function average (a: array 1 .. * of real,
n: int): real
pren>0
var sum: real :=0
for/:1 ..n
sum = sum* a(/)
end for
result sum/n
end average

DETAILS: A pre assertion can aso be used in amodul e declaration to make

sure that requirementsfor initialisation of the modul e are met; s
module declaration for details.

Turing Reference Manual 177

precedence of operators

DESCRIPTION: The order of applying operatorsin an expression such as
3 +4*5 aredetermined by Turing's precedence rules. Theserules state,
for example, that multiplication is done before addition, so this
expressionisequivalentto3+ (4* 5).

Parenthesised parts of an expression are evaluated before being
used; forexample, in (1 + 2) * 3, theadditionisdonebeforethe
multiplication.

The precedence rules are defined by this table, in which
operators appearing earlier in the table are applied first; for example
multiplication is applied before addition:

@ -
(2) prefix+ and -
3 * /,div,mod

(4) infix+,-

(5 < > = <= >=not=,in, notin

(6) not

7y and

8 or

©9 = (boolean implication)

Operators appearing on a single line in this table are applied from left
to right; for example, a-b-c isthe sameis (a-b)-c.

Here are some examplesillustrating precedence, in which the
left and right expressions are equivalent:

_1**2 _d** 2)
atbrc

a*blc

boreandd b or (cand d)

x<yandy<z (x <y)and(y <2
The final example illustrates the fact that in Turing, parentheses are
not required when combining comparisons using and and or; these would
be required in the Pascal language.

Sedsoinfix and prefix operatorsand theint, redl, string,
boolean, set and enum types.

Turing Reference Manual 178

predecessor function

SYNTAX: .o

pred (expn)

DESCRIPTION: Thepred function accepts an integer or an enumerated
value and returns the integer minus one, or the previous value in the

enumeration. For example, pred (7) is6.

EXAMPLE: Thispart of a Turing program fillsup array a with the
enumerated valuesred, yellow, green, red, yellow, green, etc.

type colors : enum (green, yellow, red)
vara:array 1 .. 100 of colors
var ¢ : colors = colors .red

for /: 1 ..100
a(/):=c
if ¢ = colors . green then
¢ = colors . red
else
c.= pred (c)
end if
end for

DETAILS: Itisillega to apply pred to the first value of an enumeration.
See o the succ function.

Turing Reference Manual 179

pr efix operator

SYNTAX: AprefixOperator isoneof:

@ + % Integer and real identity (does not change value)
) - % Integer and real negation
€ not % Not (Boolean negation)

DESCRIPTION: A prefix operator is placed before a value or operand to
produce another value, for example, if thevalueof xisseven then -xis
negative seven. There are aso infix operators such as multiplication
(*) and addition (+), which are placed between two values to produce
athird vaue; seinfix operator.

The + and - prefix operators can be applied only to numeric
values (integer and real). The not prefix can be applied only to
true/fal se (boolean) values; for example not (x > y) isequivalent to x
<=vy. Thenot operator produces true from false and false from true.

Sedsotheint, real and boolean types, aswell asprecedence
(for the order of applying operators) and infix operators.

Turing Reference Manual 180

pr ocedur e declaration

SYNTAX: A procedureDecluration is:

procedureid _ .
[(paramDeclaration {, paramDeclaration })]
statementsAndDeclarations

end id

DESCRIPTION: A proceduredeclaration creates (but doesnot run) anew
procedure. The name of the procedure (id) isgiven in two places, just
after procedure and just after end.

EXAMPLES

procedure greetings
put "Hello world"
end greetings

greetings % This outputs Hello world
procedure sayltAgain (msg: string , n:int)
for/:1 ..n
put msg
end for

end sayltAgain
sayltAgain ("Toot" , 2) % Toot is output twice
procedure double (var x: real)
X = 2*X
end double

vary :real = 3.14
double (y) % This doubles the value of y

Turing Reference Manual 181

DETAILS: The st of parameters declared with the procedure are called
formal parameters; for example, in the double procedure, x is a formal statement
parameter. A procedure is called (invoked) by a procedure call

statement which consists of the procedure's name followed by the . .

parenthesised list of actual parameters (if any); for exarhple, SYNTAX: AprocedureCall is

double(y) isacall havingy as an actual parameter. If there are no

parameters (see the greet procedure above), the call does not have procedureld [(expn {, expn})]

parentheses. The keyword procedure can be abbreviated to proc.) .
DESCRIPTION: A procedure call is a statement that calls (invokes or

activates) aprocedure. If the procedure has parameters, a

Ordinarily, a procedure returns (finishes and goes back to the) . 1
parenthesised list of expressions (expns) must follow the procedure's

place where it was called) by reaching itsend. However, thereturn
statement in a procedure causesit to return immediately. Notethat name (procedureld).
return can also be used in the main program to causeit to halt
immediately. EXAMPLES:

Only parameters declared using var may be changed in the
procedure, for example, X is changed in the double procedure. The pro Celjjtu r.%gﬁce).? t
upper bounds of arrays and strings that are parameters may be P

end greet

declared to be star (*), meaning the bound is that of the actual

parameter. SeeparamDedaration for detailsabout parameters.
) o greet % This is a call to the greet procedure
OcedProced(LjJr]gs argd functions cannot be declared inside other
procedireand fnctions. procedure times (var i: int, factor : int)
Thesyntax of aprocedureDecl ar ation presented abovehasbeen / = factor * i
simplified by leaving out theimport list, pre and post condition and end times
init clause; the full syntax is
procedure id \t/ir?]ry:mt' . - Mo | b 4
. . % Multi
[(paramDedaration {,paramDeclaration })] es (1.4) YR
[import ([[var] id {, [var]id }])] DETAILS: The parameter declared in the header of a procedure, is aformal
pre truekalseExpn | parameter, for example, i and factor above are formal parameters.
Each expression in the call isan actual parameter, for example, / and 4

initid = expn { id := expn
[P { P }] above are actual parameters.

| post trueFalseExpn]
If aformal parameter is declared using var, then the expression

statementsAndDeclarations
end id , passed to that parameter must be a variable reference (o its value can
potentially be changed by the procedure); this means for example that
Seeimport list, pre condition, init clause and post condition for it would be illegal to pass 3 as the first parameter to times. The
explanations of these additional features. variable reference and the formal parameter must have equivalent
types (see equivalence for details).
A procedure must be declared before being cdled; to allow for
mutually recursive procedures, there are forward declarations of Each actual parameter passed to a non-var formal parameter
procedures with |ater declaration of each procedure body. See forward must be assignable to that parameter (see assignability for details).
See aso procedureDeclaration.

and body declarationsfor explanations.

Turing Reference Manual 182 Turing Reference Manual 183

In this explanation of procedureCall, we have up to this point
ignored the possibility of procedures exported from modules. If the
procedure is being called from outside of a module from which has been
exported, the syntax of the procedureCall is:

moduleld. procedureld [(expn {, expn})]
In other words, the module's name and a dot must precede the
procedure's name.

Turing Reference Manual 184

program anentire Turing program

SYNTAX: Aprogram is

statementsAndDeclarations

DESCRIPTION: A Turing program consggtsof alist of statements and
declarations.

EXAMPLES: Thisisacomplete Turing program. It outputs Alan M.
Turing.

put "Alan M. Turing"

EXAMPLES: Thisisacomplete Turing program. It outputsatriangle of
stars.

var stars: string :="*"
loop

put stars

stars = stars + "*"

end loop

EXAMPLES: Thisisacomplete Turing program. It outputs Hello once
and Goodbye twice.

procedure sayltAgain (what: string, n : int)
for/:1 ..n
put what
end for
end sayltAgain

sayltAgain ("Hello", 1)
sayltAgain ("Goodbye", 2)

Turing Reference Manual 185

put statement

SYNTAX: AputStatementis:
put [: fileNumber,} putltem {, putltem} [..]

DESCRIPTION: The put statement outputs each of the putltems.
Ordinarily, after the final putltem, a new line is started in the output.
However, if the optional dot-dot (..) is present, subsequent output will
be continued on the current output line. With character graphics, the
omission of dot-dot causes the remainder of the output line to be
cleared to blanks.

Ordinarily, the output goes to the screen. However, if the
fileNumber is present, the output goes to the file specified by the file
number (see the open statement for details). Also, output can be
redirected from the screen to a file by a command such as r >
fileName

EXAMPLE:

varn:int:=5
put "Alice owes me $', n
% Output is: Alice owes me $5

% Note that no extra space Is
% output before an integer such as n.

EXAMPLES:
Statement Output Notes
put 24 24
put 1/10 0.1 Trailing zeros omitted
put 100/10 10 Decimal point omitted
put 5/3 1.666667 6 fraction digits
put sgrt (2) 1.414214 6 fraction digits
put 486 *10**9 4.86€9 Exponent for > 1 6
put 121 :5 bb121 Width of 5; "b" is blank

putl.37:6:3 b1.370 Fraction width of 3
putl.37:11:3:2 bb1.370e+00 Exponentwidth of 2
put "Say VHelloV" Say "Hello"

put"XX":4,"Y" XXbbY Blank shown as b

Turing Reference Manual 186

EXAMPLE: A singleblank lineisoutput thisway:
put ™ % Output null string

then new line

This put statement is sometimes used to dose of f alinethat hasbeen
output piece by piece using put with dot-dot.

DETAILS: Thegenera form of aputltemisone of:
(@) expn [: uridthExpn [: fradionWidth [: exponentWidth]]]
(b) skip

See the above examples for uses of widthExpn, fradionWidth and
exponentWidth; for the exact meaning of these three widths, sse the
definitions of the functions realstr, frealstr and erealstr. The skip
item is used to end the current output line and start a new line.

Turing Reference Manual 187

rand random real number procedure

SYNTAX:

rand (varr : real)

DESCRIPTION: Therand statement is used to create a pseudo-random
number in the range zero to one. For example, if X isarea number,
after rand(x), x would have a value such as 0.729548 or 0.352879.

EXAMPLE: Thisprogram repeatedly and randomly printsout "Hi ho, hi
ho" or "It's off to work we go".

var r: real
loop
rand (r)
if r> 0.5 then
put "Hi ho, hi ho"
else
put "It's off to work we go"
end if
end loop
DETAILS:. Therand statement setsits parameter to the next value of a
sequence of pseudo-random real numbers that approximatesa uniform
distribution over the range O<r <1.
Each time a program runs, rand uses the same pseudo-random
number sequence. To get adifferent sequence (actualy, to start the
sequence at a different point), use the randomize procedure.

To use severd sequences of repcatable pseudo-random number
sequences, use the randseed and randnext procedures.

See also randint, randomize, randseed and randnext.

Turing Reference Manual 188

fanoint random integer procedure

SYNTAX:
randint (var/ : int, low, high : int)
DESCRIPTION: Therandint statement is used to create a pseudo-random
integer in the rangelow to high, inclusive. For example, if i isan
integer, after randintO', 1,10), i would have avaluesuchas7or 2 or
10.

EXAMPLE: This program simulates the repeated rolling of asix sided die.

var roll: int

loop
randint(/,1,6)
put "Rolled", /

end loop

DETAILS: Therandint statement setsits parameter to the next value of a
sequence of pseudo-random integers that approximates a uniform
distribution over therange low <i < high . Itisrequired that
low< high.

Each time a program runs, randint uses the same pseudo-random
number sequence. To get adifferent sequence (actually, to start the
sequence at a different point), use the randomize procedure.

To use severa sequences of rcpeatabl e pseudo-random number
sequences, use the randseed and randnext procedures.

Seedlso rand, randomize, randseed and randnext.

Turing Reference Manual 189

randnext procedure
SYNTAX:

randnext (varv : real,seq : 1..10)

DESCRIPTION: The randnext procedure is used when you need severa
sequences of pseudo-random numbers, and you need to be able to exactly
repest these sequencesfor anumber of simulations. Therandnext
procedure isthe same as rand, except seq specifiesone of 10
independent and repeatable sequences of pseudo-random real numbers.

Therandseed procedureis used to start one of these sequencesat a
particular point. Seealso randseed, randint, rand and randnext.

Turing Reference Manual 190

procedure
SYNTAX:

randomize

DESCRIPTION: Thisis a procedure with no parameters that resets the
saquences of pseudo-random numbers produced by rand and randint, o
different executions of the same program will produce different results.

EXAMPLE: Thisprogram simulates the repeated rolling of a six sided die.
Each time the program runs, a different sequence of rolls occurs (unless
thereis quite a coincidence or you run the program alot of times!)

randomize
var roll: int
loop
rand (/)
put "Rolled", /
end loop

DETAILS: If randomizeisnot used, each time a program runs, rand and
randint use the same pseudo-random number sequences. Toget a
different sequence (actualy, to start the sequence at a different point),
use randomize.

To use several sequences of repeatabl e pseudo-random number
sequences, use the randseed and randnext procedures.

Seedso randint, rand, randseed and randnext.

Turing Reference Manual 191

randseed procedure

SYNTAX:

randseed (seed : int,seq : 1..10)

DESCRIPTION: Therandseed procedure restarts one of the sequences
generated by randnext. Each restart with the same seed causes

randnext to producethe sameseguencefor the given sequence. Seedso
randnext, randint, rand, and randomize.

Turing Reference Manual 192

file statement
SYNTAX: A readSatement is:

read ifleNumber [istatus], readltem{, readltem}

DESCRIPTION: Theread statement inputs each of the readitems from

the specified file. These items are input directly using the binary
format that they have on thefile. In other words, theitemsarenot in
source (ASCII or EBCDIC) format. In the common case, theseitems
have been output to the file using the write statement.

By contrast, the get and put statement use source format, which
aperson can read using an ordinary text editor.

EXAMPLE: Thisexample showshow to input a complete employee record
using aread statement.

var employeeRecord:
record
name: string (30)
pay: int
dept: 0.9
end record
var fileNo: int
open : fileNo, "payroll", read

read : fileNo, employeeRecord

DETAILS: ThefileNumber must specify a file that is open with read
capability (or else a program argument file that isimplicitly opened).

The optional status isan int variable that is st to
implementation dependent information about the read. If status is
returned as zero, the read was successful. Otherwise status gives
information about the incomplete or failed read (which is not
documented here). The common case of using statusiswhen reading a
record or array from a fileand you are not sureif the entire item exists
on thefile. If it doesnot exist, the read will fail part way through,
but your program can continue and diagnose the problem by inspecting
status.

Turing Reference Manual 193

BN

A readitem is
variableReference [: requestedSize [: actualSze |]

Each readltem specifies a variable to be read in internal form.
The optional requestedSze isan integer val ue giving the number of
bytes of data to be read. The requestedSze should beless than or
equal to the size of the item'sinternal form in memory (elsea warning
messageisissued). If no requestedSze isgiven then the size of the
item in memory isused. Theoptional actualSze isan int variable
that is s&t to the number of bytesactually read.

An array, record or union may beread and written asawhole.

Seedso thewrite, open, close, seek, tell, get and put statements.

Turing Reference Manual 194

teal type

(the real number type)

SYNTAX:

real

DESCRIPTION: Therea number typeisused for number that have

fractional parts, for example, 314159. Real numbers can be combined
by various operators such as addition (+) and multiplication (*). Real
numbers can aso be combined with integers (whole numbers, such as 23,
O and -9), in which case theresult isgenerally areal number. An
integer can always be assigned to areal variable, with implicit
conversiontoreal.

EXAMPLE:

var weight, x : real
var x: real :=9.83

var tax = 0.7 % The type is implicitly real because
%0.7 is a real number

DETAILS: Seeaso explicitRealConstant. The int typeis used when

values that are whole numbers; see int for details.

Real numbers can be converted to integers using ceil (ceiling),
floor, or round. Real numbers can be converted to strings using erealstr,
frealstr, and realstr; these conversion functions correspond exactly to
the formatting that is available when using the put statement with
real numbers. Strings can be converted to real numbers using strreal.
See descriptions of these conversion functions.

The predefined functions for real numbersinclude min, max, sqrt,
sin, cons, arctan, sind, cosd, arcand, In and exp. See the descriptions fo
thesefunctions.

Pseudo random sequences of real numbers can be generated using
rand. See the description of this procedure.

Rea numbersin Turing areimplemented using 8 byte floating
point representation, which provides 14 to 16 decimal digits of
precision and an exponent range of at least -38 .. 38. The PC and
Macintosh versions of Turing have 16 decimal digits of accuracy
because they use |EEE standard floating point representation.

Turing Reference Manual 195

realstr real-to-string function tecord type

SYNTAX: SYNTAX: A recordTypeis.
realstr (r : real, width : int): string record
- id {, id }. typeSpec
DESCRIPTION: The realstr function is used to convert areal number to a {id { id } typeSpec }
string; for example, realstr (2.5d, 4)="bb25" whereb representsa ! '
blank. The string is an approximation to r, padded on the left with end record

blanks as necessary to alength of width.
DESCRIPTION: Each value of arecord type consists of fields, onefield for

The width parameter must be non-negative. If the width each name (id) declared inside therecord. In the following example,
parameter is not large enough to represent the valueof r it is the fields are name, phoneNumber and address.
implicitly increased as needed. Thedisplayed value isrounded to the
nearest decimal equivalent with thisaccuracy, with tiesrounded to EXAMPLE:
the next larger value.)
The string realstr (r, width) is the same as the string freal str (r, type phoneRecord :
width, defaultfw) when r =0 or when le-3 < abs (r) < €6, otherwise record
the same as erealstr (r, width, defaultfw, defaultew), with the name : string (20)

following exceptions. With realstr, trailing fraction zeroes are

omitted and if the entire fraction is zero, the decimal point isomitted. phoneNumber : Int

(These omissions take place eveniif the exponent partsis printed.) If address : string (50)
an exponent is printed, any plus sign and leading zeroes are omitted. end record
Thus, whole number values are in general displayed asintegers.
Defaultfw is an implementation defined number of fractional var OneEntry ' p_honeRecord
digits to be displayed; for most implementations, defaultfw will be 6. var phoneBook . array 1.100 of phoneRecord
Defaultew is an implementation defined number of exponent digits to var/:int
be displayed; for most implementations, defaultew will be 2. oneEntry name = "Turing, Alan"

Therealstr function approximates the inverse of strreal, ".
although round-off errors keep these from being exact inverses. phoneBook (/'):

oneEntry % Assign whole record

Seedso theereddr, frealstr, strredl, intstr and strint functions. DETAILS. Inarecord, id'sof fields must bedistinct. However, these need
not be distinct from identifiers outside the record. Records can be
assigned asawhole (to records of an equivalent type), but they cannot
be compared. A semicolon can optionally follow each typeSpec.

Any array contained in arecord must have bounds that are
known at compile time.

Turing Reference Manual 196 Turing Reference Manual 197

repeat (make copies of string) function i r esult statement

SYNTAX: SYNTAX: A resultSatementis:
repeat (s : string,/ : int) : string result expn
DESCRIPTION: Therepeat function returnsi copiesof string s catenated DESCRIPTION: A result statement, which must appear only in a function,
together. For example, repeat ("X",4) is "XXXX". isused to provide the value of the function.
EXAMPLE: This program outputs "HoHoHo'". EXAMPLE: Thisfunction doublesits parameter.
var word : string := "Ho" function double (x :real) : real
put repeat (word, 3) result 2*x
S end double
DETAILS: If /' islessthan or equal to zero, the null string"" isreturned. put double (5_3) % This outputs 10.6

The repeat function isoften used for spacing of output; for example,

this statement skips 20 blanksbefore outputting x. EXAMPLE: Thisfunction finds the position of a namein alist.

putrepeat (" ,20), x function find (a :array 1 ..100 of string): int

fori: 1 ..100
if a (/) = name then
result;
end if
end for
end find

DETAILS: The execution of aresult statement computes the value of the
expression (expn) and terminates the function, returning the value as
the value of the function.

The expression must be assignable to theresult type of the
function, for example, in double, 2*x isassignableto real. (Seethe
ossignmentStatement for the definition of assignable)

A function must terminate by executing a result statement and not
be reaching the end of the function.

Turing Reference Manual 198 Turing Reference Manual 199

retur n statement

SYNTAX: AreturnSatementis:

return

DESCRIPTION: A return statement terminates the procedure (or main
program) inwhich it appears. Ordinarily, a procedure (or main
program) terminates by reaching itsend; the return statement isused
cause early termination.

EXAMPLE: This procedure takes no action if the errorHasOccurred flag
has been st to true.

procedure double
if errorHasOccurred then
return % Terminate this procedure
end if
... handle usual case in this procedure ...
end double

DETAILS: A return must not appear as a statement in (the outermost level

of) amodule, nor can it appear in afunction.

Turing Reference Manual 200

round real-to-integer function

SYNTAX:

round (r : real): int

DESCRIPTION: Theround functionisused to convert areal number to an
integer. Theresultisthenearestinteger tor. In caseof atie, the
numberically larger valueisreturned. For example, round (3) is3,
round (2.85) is3 and round (-8.43) is-8.

S dso the floor and ceil functions.

Turing Reference Manual 201

Scr een procedure
SYNTAX:

screen (mode : int)

DESCRIPTION: The screen procedureis used to set the mode of the screen.
AH the options of screen hasbeen incorporated into the newer
procedure called setscreen; it isrecommended that you use setscreen
instead of screen. See the setscreen procedurefor details.

Themodes st by screen are;

0 Exit screen mode

1 Enter screen mode (implied by using other screen mode
commands such asels)

2 Echo (ascharacters are typed, they appear on the
screen)

-2 No echo (ascharacters are typed, they do not appear on
the screen; however, charactersread by get arealways
echoed)

3 Turnson cursor on IBM PCsand Apple Macintoshes, but
has no effect under Unix

-3 Turnsoff cursor on IBM PC'sand Apple Macintoshes, but
has no effect under Unix

4 Lineinput

-4 Single character input

5 Oninput RETURN (control-M or ASCII 13 or "\r")
becomes NEWLINE (control-J or ASCII 11 or "\n")
On output NEWL FNE becomes RETURN followed by
NEWLINE

-5 Oninput RETURN remains unchanged
On output RETURN and NEWLINE remain unchanged

Turing Reference Manual 202

Seek file statement

SYNTAX: A seekSatementisoneof:

(@) seek ifileNumber, filePosition
(b) seek :fileNumber, *

DESCRIPTION: Random access of both source (ASCII or EBCDIC) and
internal form (binary) filesis provided by the seek and tell
statements. The seek statement repositions the specified file o that
the next input/output operation will begin at the specified point
(filePosition) in the file.

ThefileNumber must specify afile that is open with seek
capability. ThefilePosition isa non-negative integer offset in bytes
from the beginning of the file; in the common casg, thisis a number
returned by the tell statement. (The first position in the fileis
position zero.)

Form (b) specifiesthat the next operation is to begin at the
position immediately following the current end of the file. A
filePosition of zero specifies that the next operation isto start at the
beginning of the file. Seeking to a position beyond the current end of
the file and then writing automatically fills the intervening
positions with theinternal representation of zero.

EXAMPLE: Thisexample showshow to use seek to append to theend of a
file

var employeeRecord:
record
name: string (30)
pay: int
end record
var fileNo: int
open : fileNo, "payroll", write, seek, mod
Seek : fileNo, * % Seek to the end of the file

write : fileNo, employeeRecord % This record
% is added to the end of the file

DETAILS: Seedsotheread, write, open, close, tell, get and put

statements. Another example use of seek is given with the
explanation of the tell statement.

Turing Reference Manual 203

separator
between tokens in a program

DESCRIPTION: A Turing program ismade up of a sequence of tokens (see
tokens), such asvar, x,:, and int. These tokens may have separators

between them. A separator isa comment (see comment), blank, tab,
form feed or an end of line.

Turing Reference Manual 204

«Hr

Set type
SYNTAX: A sType is:

set of typeSpec

DESCRIPTION: Each value of a st type conssts of a set of ements.
The typeSpec, which is restricted to being a subrange or an
enumerated type, givesthe type of these elements.

EXAMPLE: The srmllSet type is declared <o that it can contain any and
dl of thevalues0,1 and 2. Variablesisinitidized to bethe s
containing 1 and 2.

type smallSet : setof 0 .. 2
var s : smallSet = smallSet (0,1)

if 2in s then ..

DETAILS: Inclassica mathematics, the st consisting of 0 and 1 iswritten
as (0,1). Thisiswrittenin Turing using a set constructor consi sting of
the name of the st type followed by a parenthesized list of elements,
whichin thisexampleissmalllnt (0,1). Theempty st iswritten, for
example, assmallint (). The full s&t is written assmallint (all), 0
smalllnt (all) = smallint (0,1,2).

Sets can be assigned as awhol e (to sets of an equivalent type).
Seedso equivalence of types.

Theoperatorsto combine two setsareunion (+), intersection (*),
st subtraction (-), equality (=), inequality (not=), subset (<=), strict
subset (<), superset (>=), and strict superset (>). Only satswith
equivalent types (equa boundson their index types) can be combined
by these operators. The operatorsto seif anelementisorisnotina
starein and not in; for example, thetest to seif 2isin st sis
written in the above exampleas 2 Ins.

TheindexType of aset type must contain at least one element,
for example, therange 1 .. 0 would not beallowed. Seedso
indexType. The compiler may limit the typeSpec to at most a small
range, for example, to no more than 31 possible elements.

See as0 precedence of operators for the order of applying set
opestions.

Turing Reference Manual 205

setConstructor

SYNTAX: A setConstructor is:

setTypeld (membersOfSet)

DESCRIPTION: Each valueof a set type consists of a set of elements. In

classicd mathematics, the set consisting of 0 and 1 iswritten as (0,1).
Thisiswritten in Turing using aset constructor consisting of the name

of the st type (setTypeld) followed by a parenthesized list of
elements.

EXAMPLE: The smallSet type is declared s0 that it can contain any and
al of thevalues0,1 and 2. Variablesisinitialized to be the s&t

containing 1 and 2. The st (0,1) iswritten in thisTuring example as
smalllnt (0,2).

type smallSet : setof 0 .. 2
var s : smallSet := smallSet (0,1)

r
eee

if 2 Ins then ..

DETAILS: Theform of membersOfSat is one of:

@ expn Cexpn) List of members of set
(b) al All member of index type of set
(© Nothing, meaning the empty set

The empty st is written, for example, assmallint (). The full st is
written assmalllnt (all), so smallint (all) = smallint (0,1,2). Seedso
the settype.

The syntax of setConstructor asgiven above hasbeen
simplified by ignoring the fact that set types can be exported from
modules. When a set typeis exported and used outside of a module,
you must write the module name, adot and then the type name. For
example, the st constructor above would be written as
m.smallSet(\,2), wherem isthe module name.

Turing Reference Manual 206

graphics procedure [PC, Mac and Unix only)

SYNTAX: -

setscreen (s : string)

EXAMPLE: Hereare example uses of the setscreen procedure. In many
cass, these will appear as thefirst statement of the program.
However, they can appear any placein aprogram.

setscreen("graphics") % 1BM CGA graphics
setscreenj "graphics:el16") % 1BM EGA graphics
setscreen("screen”) % Jo use locate
setscreen("nocursor") % Tum off cursor
setscreen("noecho") % Do not echo keys

DESCRIPTION: The setscreen statement is used to change the mode of
the screen aswel as the way of doing input and output. The
parameter to setscreen isastring, such as "graphics’. The string
containsone or more options separated by commas, such as
"text,noecho”.

DETAILS: Many of the optionsto setscreen are specific to IBM PC
compatible computers and Apple Macintoshes and may have no
meaning on other systems such as Unix.

Where the options to setscreen are mutually exclusive, they are
listed here with the default underlined. Here are the options:

"text", "screen”, "graphics' - Sets mode to the given mode; "text" isthe
default character output mode; "screen” is character graphics mode,
alowing the locate procedure; "graphics' is "pixel graphics' mode.
By default, "graphics' isCGA graphicson IBM PC compatibles. On
Unix dumb terminals, "graphics' is meaningless. A suffix can be given,
asin "graphics:h16", to specify another version of pixel graphics
(assuming the corresponding hardwareis available). The set of
"graphics’ optionsis given on the next page. On Apple Macintoshes,
the graphics screen is480x275 by default. The size of the screen can
a0 be st with a suffix in the form "grephtcs150;250", which would
<t the graphics output window to be 150x250 pixels. Macintoshes also
alow you to st the window size in screen mode. The default is25 rows
by 80 columnsbut this can be changed with "screen:W;100" to be 10 rows
by 100 columns.

Turing Reference Manual 207

Mode maxx+1 maxy+1 maxcolor +1 - :
"graphics’ 300 200 4 (CGA) sign function
"graphicsrmono” 320 200 4 (gray)
"graphics.hmono” 640 200 2 .
"graphics.16" 320 200 16 SYNTAX:
"graphicsh!6" 640 200 16 . .]
"graphics.el6" -640 30 16 sign (r. real). 1.1
"graphicsv2" 640 480 2
%rre;r‘)aﬁlccssv vi 6 640 480 16 DESCRIPTION: The sign function is used to determine whether a number
"graphicsm256" 320 200 256 ispositive, zero or negative. Itreturnslifr >0,0ifr=0,and-1ifr<
"graphics 150;250" 150 250 2 (Maconly) 0. Forexample, sign(5)islandsign(-23) is-1
Warning: in Version 4.2 of Turing for IBM PC compatibles, it isnot EXAMPLE: This program readsin numbers and determinesif they are
possible to change modes directly from one "graphics’ mode to positive, zero or negative:
another, but rather you must change from a "graphics' mode to
"text" mode and then to the next "graphics' mode. var X : real
"cursor”, "nocursor" - Causes the cursor to be shown (or hidden). Thereis get X
never a cursor showingin "graphics” mode. On Unix dumb terminals, case sign (X) of -
the cursor cannot be hidden. There isan optional suffix for "cursor” label 1 : put "Positive"
that determines the shape of the cursor. In CGA graphics, the cursor label O : put "Zero"

is constructed out of horizontal lines numbered 0,1,2, upto 7, with 0) " T
being the top. The suffix gives the range of lines to be used for the label -1 : put Negatlve
cursor, for example, "cursor.5,7" specifiesacursor consisting of lines5 end case

through 7. In general, thisformis "cursor:startline;endline”, where

startline and endlinc are integer literals such as5 and 7. On the

Apple Macintosh, it is possible to set the cursor size from 0-10.

"echo", "noecho" - Causes (or suppresses) echoing of characters that are
typed. Echoing iscommonly turned off in interactive programsto
keep typed characters from being echoed at inappropriate places on
the screen.

"ling", "char" - Causesawholeline (line) to beread at once or dseasingle
character (char). [PC and Unix only]

"retmap". "noretmap” - CausesRETURN on input to be mapped to
NEWLINE, and NEWLINE on output to be mapped to RETURN
followed by NEWLINE. Using "noretmap” stops this mapping.

[PC and Unix only]

DETAILS: The setscreen procedure supportsall the features of the older
screen procedure; although the screen procedureis still supported, it
isrecommended that setscreen be used instead.

See also drawdot, drawline, drawoval, drawarc, whatdotcolor,
color, colorback, takepic and drawpic.

Turing Reference Manual 208 Turing Reference Manual 209

Sin sine function (radians)
SYNTAX:
sin(r: real): real

DESCRIPTION: Thesin functionisused to find the sine of an angle given
inradians. For example, sin(0) isO.

EXAMPLE: This program prints out the sine of pi/6,2* pi/6,3* pi/6, up to
12*pi/6 radians

constp/:=3.14159
for/:1 ..12

const angle := i *pi / 6

put "Sin of", angle, "is ", sin (angle)
end for

DETAILS: Seedso thesind function which finds the sine of an angle given
indegrees. (2* pi radiansare the same as 360 degrees.)

Turing Reference Manual 210

sine function (degrees)

SYNTAX:
sind (r : real): real

DESCRIPTION: The sind function is used to find the sine of an angle
givenindegrees. For example, sind (0) isO.

EXAMPLE: Thisprogram printsout the sine of 30,60,90, up to 360 degrees.
for/:1..12
const angle == / * 30 _
put "Sin of", angle, "is ", sind (‘angle)
end for

DETAILS: Sz dso the sin function which finds the sine of an angle given
inradians. (2* pi radiansarethe same as 360 degrees.)

Turing Reference Manual 211

Sizepic graphics function
SYNTAX:
sizepic (x1,yl,x2,y2 : mi): int

DESCRIPTION: The sizepic function is used to determine the sze buffer
needed to record a picture from the screen (see description of takepic).
This gives the minimum number of elementsof theint array used by
takepic . Thebuffer isused by drawpic to make copies of the picture on
thescreen.

EXAMPLE: This program outputs the size of array needed to hold a picture
with left bottom comer at x=10, y=20 and right top comer at x=50,
y=60.

setscreen ("graphics”)

put "The size of the array needs to be",
sizepic(10,20,50,60)

DETAILS: Seetakepic for an example of the use of sizepic and for further
information about buffers for drawing pictures.
The screen should be in a "graphics' mode; see the setscreen procedure
for details. If thescreenisnotina "graphks" mode, it will
automatically be st to "graphics' mode.

Seedso drawpic.

See dso setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

Turing Reference Manual 212

SKip (used in get statement)

SYNTAX:

(PConly.

skip

DESCRIPTION: Using skip asan input item in a get statement causes the
current input to be ignored until a non-whitespace token is encountered.
Whitespace includesall blanks, tabs, form feeds and newlines.

EXAMPLE: The skip input item is most frequently used to skip past an
end-of-line (newline) character to see if the end of the input file has
been reached. Thus, itismost frequently seen paired with eofinaloop

body as follows

loop
get skip
exit when eof
get...

end loop

DETAILS: The skip bypassesall whitespacc charactersincluding any
trailing newlinesand blank lines. By skipping these characters, atrue
end-of-file condition can be detected. Otherwise, the end-of-file is
obscured by the exisitng whitespace until a following get which will
fail since there is no trailing data.

EXAMPLE: Another use of skip isto correctly identify the start of along
string (usually to beread in line or counted mode) by skipping the
whitespace and trailing newline as follows

vari: int
var line: string
loop

get i, skip, line:

end]oop

Turing Reference Manual 213

DETAILS: Thefirstitemin the get statement reads an integer by skipping
all whitespace and reading digits until whitespace is encountered.
The input stream is then left with the whitespace as the next input
character. The skip then skips past the whitespace effectively
beginning the next input at the next non-whitespace character. This
truncates leading blanks and has another, potentially more important,
effect. If theinteger isthe last data on aline and the stringison a
following line, the skip is necessary to avoid setting line to a null
string value.

See ds0 get statement; and loop statement.

Turing Reference Manual 214

SKip (used in put statement)

SYNTAX:
skip

DESCRIPTION: Using skip asan output item in a put statement causes
the current output line to be ended and a new line to be started.

EXAMPLE: Thisexample, To be isoutput ononelineand Or not to beon
the next.

put "To be", skip, "Or not to be"

DETAILS: Usingskip isequivaent to outputting the newline character

"“\n".

Turing Reference Manual 215

SOUNd statement

SYNTAX:

sound (frequency, duration : int)

DESCRIPTION: Thesound statement isused to cause the computer to
sound anote of agiven frequency for agiventime. Thefrequency isin
cycdles per second (Hertz). Thetimeduration isin milliseconds. For
example, middle A onapiano is440 Hertz, o sound(440,1000) plays
middle A for onesecond.

EXAMPLE: Thisprogram sounds the frequencies 100,200 up to 1000 each for
half a second.

for/:1..10

put /

sound(100*/, 500) % Sound note (or 1/2 second
end for

DETAILS. Seedso the play statement, which plays notes based on
musical notation; for example, play("8C") playsan eighth note of
middleC. Sz also thedelay, clock, sysclock, wallclock, time and
date statements.

On IBM PC compatibles, the hardware resolution of duration is
in unitsof 55 milliseconds. For example, sound(440,500) will delay the
program by about half a second, but may be off by as much as 55
milliseconds.

Turing Reference Manual 216

[PC 0niy)

SCJft square root function

SYNTAX:
sqrt (r : real): real

DESCRIPTION: The sgrt functionis used to find the square root of a
number. Forexample sart(4) is2.

EXAMPLE: Thisprogram printsout the squarerootsof 1,2,3,... up to 100.

for/: 1 ..100
put "Square root of",/," is", sqrt (/)
end for

DETAILS: Itisillegal to try to take the square root of anegative number.
The result of sgrt isalways positive or zero.

The opposite of asquareroot isthe square; for example, the
square of x is written is x**2.

Turing Reference Manual 217

standard type

SYNTAX: A sandardType is one of:

@ int

(b) real
() string [(maximumLength)]
<d) boolean

DESCRIPTION: The standard types can be used throughout a program.
Theséshould not beincluded inanimport list. Seedsoint, red, string
and boolean.

Turing Reference Manual 218

statement
SYNTAX: A statement isoneof:
@ assignmentStatement % variableReference := expn
o) openStatement % open ...
@ CcloseStatement % close ...
@ PutStatement % put ...
@ getStatement % get ...
@ readStatement % read ...
@ writeStatement % write...
n seekStatement % seek...
v tellStatement % tell...
éis forStatement % for ... end for
) loopStatement % loop ... end loop
o €xit [when trueFalseExpn]
m IifStatement % if... endif
) caseStatement % case ...endcase
o assert trueFalseExpn
) begin _
statementsAndDeclarations
end
@ PrOCedurecCall % procedureld [(parameters))
© return
e result expn

new collectionld, pointerVariableReference
free collectionld, pointerVariableReference
tag unionVariableReference, expn

,_\A,\
=
S ==~

DESCRIPTION: A statement (or command) causesa particular action, for
example, the putSatement
put "Hello"
outputs Hello. See the descriptions of the individual statements for
explanations of their actions. Each statement can optionaly by
followed by a semicolon (;).

Turing Reference Manual 219

EXAMPLES:

width :=24 % Assignment statement
put "Hello world" % Put statement
exitwhen /=100 % Exit statement
assert width < 320 % Assen statement

DETAILS:. Youcanusearesult statement only inafunction. You canusea
return statement only to terminate a procedure or the main program

(but not to terminatetheinitialization of amodule). Seedsoresult
and return.

There are a number of predefined procedures, such as drawline,

which are not listed as statements above; usss of these are considered
to be procedure calls, which is one form of statement.

Turing Reference Manual 220

statementsAndDedar ations

SYNTAX: SatementsAndDedar ationsare:

{statementOrDeclaration }

DESCRIPTION: SatementsAndDedarations are a list of statements and
declarations. For example, a Turing program consists of alist of
statements and declarations. The body of aprocedureisalist of
statements and declarations.

Each statementOrDeclaration is one of:
(@ statement
(b) declaration

See dso statement and declaration.

EXAMPLES: Thislist of statements and declarationsisa Turing program
that outputs Hello Rrank.

var name : string
name = "Frank"
put "Hello", name

Turing Reference Manual 221

Stringcomparison
SYNTAX: A stringComparison isoneof:

(@ stringExpn = stringExpn
(b> stringExpn not= stringExpn
(c> stringExpn > stringExpn
(d> stringExpn < stringExpn
(e) stringExpn >= stringExpn
(0 stringExpn <= stringExpn

DESCRIPTION: Strings (stringExpns) can be compared for equality (= and
not=) and for ordering (>, <, >=and <=).

EXAMPLES:

var name: string = "Nancy"
var HcenceNumber : string (6)
HcenceNumber :="175AJN"

DETAILS: Two strings are considered to beequal (=) if they have the same
length and are made up, character by character, of the same
characters, otherwise they are considered to be unequa (not=).

Orderingamong stringsis essentially alphabetic order. String S
isconddered to comebefore string T, that isS < T, if thetwo are
identical up to a certain position and after that position, either the
next character of S comes before the next character of T or else there
areno more charactersin S and T contains more characters.

S>T (S comesafter T) meansthe samethingas7<S. S>=T
means the samethingasS>TorS=T. S<=T meansthe samethingas
S<TorS=T.

The ordering among individual charactersisgiven by ASCII,
which specifiesamong other things that letter capital L comes
alphabetically before capital letter M and similarly for small (lower
case) letters.

On IBM mainframe computers, the EBCDIC specification of
characters may be used instead of ASCII.

Turing Reference Manual 222

string type
SYNTAX: A stringType is:
string [(maximumLength)]

DESCRIPTION: Each variable whose type isatringType can contain a
sequence (astring) of characters. Thelength of this sequence must not
exceed the stringType's maximum length.

EXAMPLES:

var name: string

name = "Nancy"

var HcenceNumber : string (6)
HcenceNumber :="175AJN"

DETAILS: Stringscan be assigned and they can be compared for both
equality and for ordering; see dso string comparison and assignment
statement.

Strings can be catenated (joined together) using the + operator
and separated into substrings; see catenation and substring. String
functions are provided to find the length of a string, to find were one
string appears inside another, and to make repeated copies of a string
al joined together; see length, index, and repeat.
SeeexplicitSringConstants for exact rulesfor writing string values
such as "Nancy".

A string type written without amaximum length islimited to
holding at most 255 characters.

The maximumLength of astring, if given asapart of thetype,
must be known at compile time, and must be at least 1 and at most 255.
The maximum length of a string is given by upper, for example,
uppeiilicenceNumber) is 6; see adso upper.

In the declaration of a string that is a var formal parameter of a
procedure or function, the maximumLength can be written asa star (*),
in which case the maximum length is taken to be that of the
corresponding actual parameter, asin:

procedure deblank (var s : string(*)).

The star can aso be used when the parameter is an array of strings.

Turing Reference Manual 223

Strint string-to-integer function

SYNTAX:
strint (s : string): int

DESCRIPTION: The strint function is used to convert a string to an integer.
Theinteger isequivalent to string s. For example, strint("-47") = -47.

String s must consist of a possibly null sequence of blanks, then an

optional plusor minus sign, and finally a sequence of one or more digits.

Theintstr functionistheinverse of strint, so for any integer i,
strint (intstr (i)) =i.

Seedso the chr, ord and intstr functions.

Turing Reference Manual 224

Strreal string-to-real function

SYNTAX:

strreal (s: string): real

DESCRIPTION: Thestrreal function is used to convert astringto areal
number; for example, strreal ("2.56") will produce an approximation
to the number 25.0.

String s must consist of a possibly null sequence of blanks, then an
optional plus or minus sign and finally an explicit unsigned real or
integer constant.

Thereastr, erealstr and frealstr functions approximate the
inverse of strreal, although round-off errors keep these from being
exact inverses.

Seaso therealstr, erealstr, frealstr, intstr and strint functions.

Turing Reference Manual 225

subrangeType
SYNTAX: A subrangeType is:

expn .. expn

DESCRIPTION: A subrange type defines a set of values, for example, the
subrange 1.. 4 consstsof 1,2,3 and 4.

EXAMPLES:
Var/ : 1 .. 10 % / canbe 1,2... upto 10
type xRange : 0 .. 319 % Define integer subrange

var pixels : array xRange of int
% Array elements are
% numbered O, 1,... 319
for k : XRange % k ranges from 0 to 31!9
pixels (k) =0
end for

DETAILS: A subrange must contain at least one element; in other words,

the second expression (expn) must be at least as large as the second
expression.

The lower bound of a subrange must be known at compile time.
The upper bound is allowed to be a run-time value only in one situation
and that is when the it gives the upper bound of an array being
declared in a variable declaration, in other words when declaring a
dynamic array.

In the most common case, subranges are a subset of the integers, as
in 1.. 10. You can aso have subranges of enumerated types.

Turing Reference Manual 226

Substring of another string
SYNTAX: A substring isoneof:

(@ stringReference (leftPosition .. rightPosition)
(b) stringReference (charPosition)

DESCRIPTION: A substring selects a part of another string. In form (a) the
substring starts at the left position and runs to theright position. In
form (b), the substring isonly a single character.

EXAMPLES:

var word: string := "bring"

put Word (2 . 4) % Outputs rin

put word (3) % outputs |

put Word (2 .. *) % Outputs ring; the star (') means
% the end of the string.

put Word (* -2 . *- 1) % Outputs in

DETAILS: Theleftmost possible positionin astring isnumbered 1 The
last position in a string can be written as a star (*); for example, word
(2 .. *) isequivalent to word (2 .. length(word)).

Each of leftPosition, rightPosition, and charPosition must have
one of these forms:
(@) expn
(b)*
(©* -expn
The exact rules for the allowed values of |eftPosition and
rightPosition are;
(1) leftPosition must beat least 1,
(2) rightPosition must be at most length(stringReference), and
(3) thelength of the sdected substring must zero or more.
This specifically allows null substrings such asword(\,G) in which
rightPosition is 0 and word(6$) in which leftPosition is one more that
length(stringReference).

Note that substrings are not assignable. The statement var s:
string §(3) :="d" isillega in Turing.

Turing Reference Manual 227

Irafll

SUCC successor function

SYNTAX:
succ (expn)

DESCRIPTION: The succ function acceptsan integer or an enumerated
value and returns the integer plus one, or the next valuein the
enumeration. For example, succ (7) is8.

EXAMPLE: Thispart of a Turing program fills up array a with the
enumerated valuesgreen, yellow, red, green, yellow, red, etc.

type colors : enum (green, yellow, red)
var a: array 1 .. 100 of colors
var ¢ : colors = colors .green
for/:1..100
a(/):=c
if ¢ = colors. red then
c:= colors. green
else
c.=succ (c)
end if
end for

DETAILS: Itisillegal to apply succ to the last value of an enumeration.
See dso the pred function.

Turing Reference Manual 228

millisecsused procedure IPC,MacandUnixoniyi

SYNTAX:

sysclock (var c : int)

DESCRIPTION: Thesysclock statement is used on a multitasking system
such as Unix to determine the amount of time that has been used by
this program (process). Variable cisassigned the number of central
processor milliseconds assigned to this program. Thisis of little use on
apersona computer.

EXAMPLE: OnaUnix system, this program tellsyou how much time it
hasused.

var timeilsed : int
sysclock (timeUsed) :
put "This program has used ", timeUsed,

" milliseconds of CPU time"

DETAILS: Seedsothedelay, time, clock, wallclock and date statements.

Turing Reference Manual 229

System statement

SYNTAX:
system (command : string, var ret : int)

DESCRIPTION: The system statement is used to execute the shell
(operating system) command, asif it were typed at the terminal. The
returncodeisinret. A return code of O (zero) meansno detected errors.
A return code of 127 means the command processor could not be accessd.
A return code of 126 means the command processor did not haveroom to
run on the PC.

EXAMPLE: Thisprogram creates a directory listing when run under DOS
on an IBM PC compatible computer; the same program will run under
Unix by changing "dir" to "Is".

var success : int
system ("dir", success)
if success not= 0 then
if success = 127 then
put "Sorry, can't find ‘dir
elsif success = 126 then
put "Sorry, no room to run 'dir
else
put "Sorry, 'dir' did not work"
end if
end if

1I|

Ill

DETAILS: Seedsothe nargs, fetcharg and getenv functions.

Turing Reference Manual 230

nix

only

tag statement

SYNTAX: A tagSatementis:

tag unionVariableReference, expn

DESCRIPTION: A tag statement isa specid purpose assignment that is
used for changing thetag of aunion variable.

EXAMPLE: In thisexample, the tag field of union variablev is st to be
passenger, thereby activating the passenger field of v.

type vehiclelnfo : ,
union kind : passenger .. recreational

label passenger :
cylinders : 1..16

label farm : ,
farmClass -.string (10)
label : % No fields for "otherwise" clause
end union

var v : vehiclelnfo

tag V , passenger % Activate passenger part

DETAILS: A tag statement isthe only way to modify the tag field of a
union variable (other than by assigning an entire union value to the

union variable).

It isnot allowed to access aparticular st of fields of aunion
unlessthetag is set to match the corresponding label value. Seedso

union types.

Turing Reference Manual 231

takepic graphics procedure
SYNTAX:

takepic (x1,y1,x2,y2 : int,
var buffer: array 1 .. *of int)

DESCRIPTION: The takepic procedureis used to record the pixel values
in a rectangle, with left bottom and right right corners of (xI, yl) and
(x2,y2), inthebuffer array. This requiresa sufficiently large buffer
(see sizepic). Thedrawpic procedureis used to make copies of the
recorded rectangle on the screen.

EXAMPLE: After drawinga happy face, this program copies the face to a

new location.
First position Copy of
of face face
100:5—
00

/N

0 100 200

setscreen ("graphics")

... draw happy face in the box (0,0) to (100,100)...

% Create buffer big enough to hold happy face

var face: array 1 .. sizepic(0,0,100,100) of int
% Copy picture into the buffer, which is the face array
takepic(0,0,100,100, face)

% Redraw the picture with its left bottom at (200,0)

drawpic(200,0, face,0)

DETAILS:. Theinteger valuesthat takepic placesin the buffer can be
read or written (using theread and write statements). Unfortunately,
assgnment (by :=) and put of theindividual integer valuesin the
buffer will fail in the case in which a value happens to be the pattern
used to represent the uninitialized val ue (the largest negative number

Turing Reference Manual 232

tPCOinly]

the hardware can represent).

The screen should be in a "graphics’ mode; see the setscreen
procedure for details. If the screenisnot ina "graphics” mode, it will
automatically be st to "graphics’ mode.

See dso sizepic and drawpic.

See dlso setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

Turing Reference Manual 233

tell file statement

SYNTAX: AntdlSatementis:
tell :fileNumber, filePositionVar

DESCRIPTION: Thetell statement setsfilePositionVur, whose type
must be int, to the current offset in bytes from the beginning of the
specified file. ThefileN'umber must specify a file that is open with
seek capability (or ese a program argument file that isimplicitly
opened). Thetell statement is useful for recording the file position of
acertain piece of data for later access using seek.

EXAMPLE: Thisexample showshow to usetell to record thelocationin a
file of arecord. Thislocation is later used by seek to allow the record
to be read.

var employeeRecord:
record
name: string (30)
pay: int
dept: 0.9
end record
var fileNo: int
var location: int
open : fileNo, "payroll", write, seek

tell : fileNo, location % Make note of this location

write : fileNo, employeeRecord % write record
%at this location

seek : fileNo, location % GO bhack to location

read : fileNo, employeeRecord % Readthe record
% that was previously written

DETAILS: Seedsotheread, write, open, close, seek, get and put
Statements.

Turing Reference Manual 234

time (hours, minutes, seconds) [PC, Mac and Uniix only]

procedure

SYNTAX:

time (vart : string)

DESCRIPTION: Thetime statement isused to determine the current rime
of day. Variablet isassigned a string in the format "hh:tnm:ss'. For
example, if the time is two minutes and 47 seconds after nine A.M., t
will be st to "09:02:47". Twenty-four hour timeis used; for example,

eleven thirty P.M. givesthe string "23:30:00".

EXAMPLE: Thisprogram greetsyou and tellsyou the time of day.

var timeOfDay : string

time (timeOfDaw1 o _
put "Greetings!! The time is ", timeOfDay

DETAILS: Seedsothedelay, clock, sysclock, wallclock and date
Statements.

Be warned that on some computers such asIBM PC compatiblesor
Apple Macintoshes, the rime may not be set correctly in the operating
system; in that case, thetime procedure will give incorrect results.

Turing Reference Manual 235

token true

DESCRIPTION: A token isessentially aword, a number or a special boolean value (as opposed to false)

symbol such as:=. InaTuring program there are four kinds of tokens:
keywords such as get, identifiers such as incomeTax, operators and SYNTAX:
specia symbols, such as + and :=, and explicit constants, such as 15 :
and "Hello". Some keywords, such as index, are reserved and cannot

be used in programs to name variables, procedures, etc. tfrue
A get statement, such as
get incomeTax DESCRIPTION: A boolean (true/false) variable can be either true or false
usestoken-oriented input. Thismeansthat white space (blanks, tabs, (see boolean type).
etc) are skipped before reading the input item. See the get statement
for details. EXAMPLE:
EXAMPLES: In thisexample, thetokensal’evar, X, real, X, = and 9.84. var passed boolean = true

var x : real var mark. int
X = 984 for/:1..10

T get mark

passed = passed and mark >= 60
end for

if passed = true then
put "You passed all ten subjects”

end if

DETAILS: Theline if passed=true then can be simplified to if passed then
with no change to the meaning of the program.

Turing Reference Manual 236 Turing Reference Manual 237

type declaration

SYNTAX: A typeDeclaration is:

type id : typeSpec

DESCRIPTION: A typedeclaration givesaname to atype. This namecan

be usad in place of the type.

EXAMPLES:

type nameType : string (30)
typerange : 0..150
type entry :
record
name: nameType
age: int
end record

DETAILS

The keyword pervasive can be inserted just after type. When
thisisdone, thetypeisvisibleinsideall subconstructsof the type
scope. Without pervasive the typeis not visible inside modul es unless
explicitly imported. Pervasive typesneed not beimported. You can
abbreviate pervasive asa star (*).

Turing Reference Manual 238

typeSpec

type specification

SYNTAX: A typeSpec (type specification) is one of:

(k)
0)

int

real

boolean

stringType % Example: string (20)
subrangeType % Example: 1.. 150

enumeratedType % Example: enum (red, green, blue)
arrayType % Example: array 1.. 150 of real
setType % Example: setof 1.. 10

recordType % Example: record ... end record
unionType % Example: union ... end union
pointerType % Example: pointer to collectionVar
namedType % Example: colorRange

DESCRIPTION: A type specification determines the allowed values for a

variable or constant. For example, if variable xisan integer (its
typeSpec is int), the possible values for x are numbers such as-15,0,3
and 348207. If x isareal number (its typeSpec isreal), then its possible
valuesinclude 7.8, -350, and 1562. If x isaboolean, itspossible
valuesaretrue and false. If A:isastring, itspossible valuesinclude
"Hello" and "Good-bye'.

EXAMPLES:

var numberOfSides int
varx,y : real
typerange :0.. 150 % The typeSpec here is 0.. 150

type entry : % Here is a record typeSpec
record
name: string (25)
age: range
end record

Turing Reference Manual 239

union type

SYNTAX: A unionTypeis:

union [id] : indexType
label labelExpn {, labelExpn}:
{id % id }: typeSpec}

{label labelExpn {, labelExpn}:
{id {, id }: typeSpec}}
[label: {id {, id } : typeSpec} |
end union

DESCRIPTION: A union type (also called a variant record) islike a
record in which thereis a run-time choice among sets of accessible
fields. Thischoice ismadeby the tag statement, which deletes the
current set of fields and activates a new st

EXAMPLE: Thisunion type keeps track of variousinformation about a
vehicle, depending on the kind of vehicle.

const passenger =0
const farm =1
const recreational =2

type vehiclelnfo :
union kind : passenger .. recreational
label passenger :
cylinders : 1..16

l[abel farm :
farmClass :string (10)
label | % No fields for "otherwise" clause
end union

var v : vehicleRecord

tag v, passenger % Activate passenger part
v.cylinders = 6

DETAILS: The optional identifier following the keyword union is the name

of the tag of the union type. If theidentifier isomitted, the tagis still

Turing Reference Manual 240

considered to exist, although its value cannot be accessed. The tag
must be of anindex type, for example 1..7. Y ou should limit the range
of thisindex type, asthe compiler may have alimit (at least 255) on
the maximum range it can handle.

Each labelExpn must be known at compile time and must lie
within therange of the tag'stype. Thefields, including thetag, of a
union value are referenced using the dot operator, asin v.cylinders and
these can be used as variables or constants. A field can be accessed only
when the tag matches one of the label expressions corresponding to the
field. The tag can be changed by the tag statement and but it cannot be
assigned to, passed to avar parameter or bound to using var.

Inaunion, id's of fields, including the tag, must be distinct.
However, these need not be distinct from identifiers outside the union.
Unions can be assigned as awhole (to unions of an equivalent type), but
they cannot be compared. A semicolon can optionally follow each

typeSpec.

Any array contained in a union must have bounds that are known
at compiletime.

Turing Reference Manual 241

Upper bound of an array or string

SYNTAX:

upper (arrayReference [, dimension]): int

DESCRIPTION: Theupper attributeisused to find the upper bound of an
array or string. (Seelower for finding the lower bound.)

EXAMPLE: Inaprocedure, seeif thebound of array parameter a islarge
enough so it can be subscripted by i. If 0 seta(i) to zero.

procedure test (vara: array 1 .. * of real)
if / <= upper (a) then
a (/):=0.0
end if
end test

DETAILS: Inasimilar way, if s isastring, itsupper bound (not length!) is
given by upper (s). If an array has more than onedimension, asinvar b

s array 1.101 .60 of int, you must specify the dimension, for example,
upper (b, 2) returnse0.

Turing Reference Manual 242

»

var declaration

SYNTAX: A variabkDedarationisoneof:

(@ varid {,id } [: typeSpec] [= initializingValue]
(b) collectionDeclaration

DESCRIPTION: A variable declaration creates anew variable (or
variables). Only form (&) will be explained here; se
collectionDeclaration for explanation of form (b). The typeSpec of
form (a) can be omitted only if theinitializing value is present.

EXAMPLES:

vary, k " int =1 %/ and k are assigned value 1
Var/ := "Sample" % The type of tis string
var v : array 1 .. 3 of string (6) :=

init ("George", "Fred","Alice")

DETAILS: Theinitializing value, if present, must be an expression or esea

list of items separated by commasinsideinit (...). Thesyntax of
initializingValue is one of:

(@ epn =~
(b) init(initializingValue {, initializingValue})

Each init (...) corresponds to an array, record or union value that is
being initialized; these must be nested for initialization of nested

types.

If the typeSpec is omitted, the variable's type is taken to be
the (root) type of theinitializing expression, for example, int or string.
The typeSpec cannot be omitted for dynamic arrays or when the
initializing valueisof theform init (...). Thevauesinsideinit (...)
must be known at compile time.

See also callection, bind, procedure and function declarations,

parameter declarations, and import lists for other uses of the keyword
va.

Turing Reference Manual 243

variableReference
use of avariable

SYNTAX: A variableReference is:

variableld { componentSelector }

DESCRIPTION: InaTuring program, avariable isdeclared and given a
name (variableld) and then used. Each useiscalled avariable
reference.

If the variableisan array, collection, record or union, its parts
(components) can be sdlected using subscripts and field names (using
componentSelectors). The form of a componentSelector is one of:

@ (expn (, expn])

(b) fieldid
Form (a) isused for subscripting (indexing) arraysand collections. The
number of array subscripts must be the same asin thearray's
declaration. A collection has exactly one subscript, which must be a
pointer to the collection. Form (b) isused for selecting afield of a
record or union.

EXAMPLES: Followingthedeclarationsof k,aand r, each of k, a (k) and
r.name are variable references.

var k : int
vara:array 1 .. 100 of real
var r
record
name : string (20)
phone : string (8)
end record
k:=5
a(/c):=3.14159
r. name = "Steve Cook"

DETAILS: A variable reference can contain more than one component
sdector, for example, when the variableisan array of records; for an

example, ssetherecord type. Seeaso constantReference and var
declaration.

Turing Reference Manual 244

W allclock seconds since 1970 [PC, Mac and Unix only]
procedure

SYNTAX:

wallclock (var c : int)

DESCRIPTION: Thewallclock statement is used to determinethetimein
seconds since 00:00:00 GM T (Greenwich Mean Time) January 1,1970.

EXAMPLE: This program tellsyou how many seconds since 1970.

var seconds : string

wallclock (seconds)

put "The number of seconds since 1970 is ",
seconds

DETAILS: Seedsothedelay, time, clock, sysclock and date statements.

Bewarned that on some computers such asIBM PC compatiblesor
Apple Macintoshes, the time may not be set correctly in the operating
system; in that case, thewallclock procedure will give incorrect
results. Also, on IBM PC compatibles, the call isdependent on having
thetime zone TZ variable correctly set. Onan IBM PC, thedefault
time zoneis set to PST (6 hoursfrom GMT).

On the Apple Macintosh, wallclock procedure returns the number
of seconds since 00:00:00 local time Jan. 1,1970.

Turing Reference Manual 245

W hatcolor text color graphics
function

SYNTAX:

whatcolor : int
DESCRIPTION: Thewhatcolor function is used to determine the current
(foreground) color, ie, the color used for characters that are output
using put. Thealternate spelling iswhatcolour.

EXAMPLE: This program outputs the currently active color number. The
color of the messageis that is this color.

setscreen ("graphics”)

put "This writing is in color number", whatcolor

DETAILS: The screen should bein a "screen” or "graphics’ mode; see
setscreen for details.

See dso the color procedure, which is used to set the color. See
also colorback and whatcolorback.

Turing Reference Manual 246

[FC

°nly]

whatcolor back color of FConiy)
background graphics function

SYNTAX:

whatcolorback: int

DESCRIPTION: The whatcolorback function is used to determine the
current background color. The alternate spelling is whatcolourback .

EXAMPLE: Thisprogram outputs the currently active backgournd color

number. The background color of the message is determined by this
number.

setscreen ("screen")

put The background of this writing"
put "is in color number”, whatcolorback

DETAILS. The screen should bein a "screen” or "graphics' mode. Beware
that the meaning of background color is different in these two modes;
e colorback for details.

Seedso color and whatcolor.

Turing Reference Manual 247

whatdotcolor graphics function

SYNTAX:
whatdotcolor (x, y: int) : int

DESCRIPTION: Thewhatdotcolor function is used to determine the color
number of the specified pixel. The alternate spelling is whatdotcol our

EXAMPLE: This program drawsa line which bounces off the edges of the

screen and makes a beep when it finds a pixel that has already been
colored.

setscreen ("graphics"”)
var x,y:int := 0
var dx, dx: int ;=1
loop
if whatdotcolor (x, y) not= 0 then
f sound (400, 50)
end if
drawdot (x,y, 1)
X = X+ dx
y:=y+dy
if X =0 or x = maxx then
dx := -dx
end if
if y =0 ory =maxy then
dy := -dy
end if
end loop

DETAILS: The screen should beina"graphics” mode; if not, it will
automatically be st to "graphics' mode. See setscreen for details.

Seedso drawdot, which is used for setting the color of a pixel.
See dlso maxx and maxy which are used to determine the number of
pixels on the screen. See dso sound which causes the computer to make
asound.

Turing Reference Manual 248

mly]

whatpalette graphics function [FC only]

SYNTAX:

whatpalette : int

DESCRIPTION: Thewhatpalette function is used to determine the current
pal ette number.

EXAMPLE: This program outputs the current palette number.
setscreen ("graphics")

put "The current palette number is ", whatpalette

DETAILS: The whatpalette function is meaningful only in a "graphics'
mode.

See d 0 the setscreen procedure for a description of the graphics

modes. See dso the palette statement, which is used to set the palette
number.

Turing Reference Manual 249

whattextchar graphics function

SYNTAX:
whattextchar : string (1)

DESCRIPTION: Thewhattextchar function isused to determine the
character on the screen at the current location.

EXAMPLE: Thisprogram outputs a message and then changes the

foreground color (the color of the letters) of the message to color number
1 and the background color (surrounding each letter) to color number 7.

The actual message (eech letter) is not changed.

setscreen ("screen")
const message = "Happy New Year!!"
put message

for column : 1 . length (message)
locate (1, column)

COlor (1) % Color of letter

COlorback (7)) % Color around letter

put Whattextchar .. % Use same letter
end for

DETAILS: Thewhattextchar function is meaningful only in "screen” mode.
In "graphics' mode, the concept of text on the screen is replaced by the

concept of pixels on the screen.

See also setscreen which describes modes. See also color,
whattextcolor, anad whattextcol orback.

Turing Reference Manual 250

[(PConly]

whattextcolor graphics function

SYNTAX:
whattextcolor: int

DESCRIPTION: Thewhattextcolor function is used to determine the color
of the character on the screen at the current location. The alternate
spelling iswhattextcol our.

EXAMPLE: This program prints out a message with each letter in a
random color and then prints the same message on the next linein
exactly thereverse colors.

setscreen ("screen”)
varclr:int
const message = "Happy New Year!!"
for column : 1 .. length (message)
randint (clr, 1 , maxcolor)
color (clr) .
locate (1, column)
put message (i)..
end for
locate (1,1)
for column: 1 .. length (message)
locate (1 , length (message) + 1 - c)
clr := whattextcolor
color (clr)
locate (2, column)
put message (i)..
end for

DETAILS: The whattextcolor function is meaningful only in "screen” mode.
In "graphics' mode, the concept of text on the screen is replaced by the
concept of pixels on the screen.

See dlso setscreen which describes modes. See also color,
whattextchar, and whattextcol orback.

Turing Reference Manual 251

[PConly]

whattextcolorback graphics
function

SYNTAX:

whattextcolorback: int

DESCRIPTION: The whattextcolorback function is used to determine the

background color of the character on the screen at the current location.
The aternate spelling is whattextcol ourback.

EXAMPLE: Thisprogram printsout a message with each letter in a
random background color and then prints the same message on the next
line in exactly the reverse background colors.

setscreen ("screen”)

var dr: int

const message := "Happy New Year!!"

for column : 1 . length (message)
randint (clr, 1 , maxcolor)
colorback(clr)
locate (1, column)
put message (i)..

end for

locate (1,1)

for column : 1 . length (message)
locate (1 , length (message) + 1 - ¢)
clr := whattextcolorback
colorback (clr)
locate (2, column)
put message (/)..

end for

DETAILS: The whattextcolorback function is meaningful only in "screen"
mode. In "graphics" mode, the concept of text on the screen is replaced
by the concept of pixels on the screen.

See also setscreen which describes modes. See alsocolor,
whattextchar, and whattextcolor.

Turing Reference Manual 252

Write file statement

SYNTAX: AwriteSatement is:

write :fileNumber [-.status], writeltem{, writeltem}

DESCRIPTION: The write statement outputs each of the writeltems to
the specified file. These items are output directly using the binary
format that they havein the computer. In other words, theitemsare
not in source (ASCII or EBCDIC) format. Inthecommon case, these
items will later be input from the file using theread statement.

By contrast, the get and put statement use source format, which
a person can read using an ordinary text editor.

EXAMPLE: Thisexample shows how to output a compl ete employee record
usingawrite statement.

var employeeRecord:

record
name: string (30)
pay: int
dept:0.9

end record

var fileNo: int
open : fileNo, "payroll", write

write : fileNo, employeeRecord

DETAILS: Anarray, record or union may be read and written asa whole.
ThefileNumber must specify a file that is open with write capability
(or dsea program argument file that isimplicitly opened).

The optional status is an int variable that is st to
implementation dependent information about the write. If status is
returned as zero, the write was successful. Otherwise status gives
information about the incomplete or failed write (which is not
documented here). The common case of using status is when writing a
record or array to a fileand you are not sure if there is enough room on
the disk to hold theitem. If thereis not, the write will fail part way
through, but your program can continue and diagnose the problem by
inspecting status.

A writeltem is:

Turing Reference Manual 253

reference [-.requestedSze [wetualSze |]

Each writeltem isavariable, or a named non-compile-time
constant, to be written in internal form. The optional requestedSze is
an integer expression giving the number of bytes of data to be written.
The requestedSize should be less than or equal to the size of theitem's
internal form in memory (else a warning message isissued). If no
reguestedSze is given then the size of the item in memory isused. The
optional actualSze is st to the number of bytes actually written.

Sedso thewrite, open, close, seek, tell, get and put statements.

Turing Reference Manual 254

Appendix A

Appendix B

Appendix C
Appendix D
Appendix E

Appendix F

Appendix G

Appendix H

Appendices

List of Predefined Functions and
Procedures -
List of Keywords

List of Predefined Functions and
Procedures By Category Without
Arguments

List of Predefined Functions and
Procedures By Category With
Arguments

IBM PC Keyboard Codes
Turing Operators

Turing File Statements and
Functions

Turing Control Constructs

Using The Printer From Turing on
IBM PC'sand Compatibles

Turing Reference Manual

256

258

262

266

268

270

271

272

255

Appendix A

A List of Predefined
Functions and Procedures

abs arctan arctand
clock close ds
colour colourback cos
delay drawarc drawbox
drawline drawoval drawpic
exp fetcharg floor
getenv getpid hasch
intstr length In

lower max maxcol
Maxrow maxx maxy

nil open ord
playdone pred rand
randomize randseed
round screen setscreen
sind sSizepic sound
strreal succ sysdock
time upper wallclock
whatcol orback whatcol our

whatdotcolor
whattextchar
whattextcol our

whatdotcol our
whattextcolor
whattextcol ourback

cell

color
cod
drawdot
eof
frealstr
index
locate
maxcolor
min
palette
randint
reastr
sgn

srt
system
whatcolor

chr
colorback
date
drawfill
erealstr
getch
intreal
locatexy
maxcolour
nargs
play
randnext
repeat
sin

strint
takepic

whatcol ourback
whatpal ette
whattextcol orback

Turing Reference Manual 256

A List of Keywords

al and
bind body
collection const
dsf end
external fdse
free function
in init
loop mod
not of
pervasive pointer
procedure put
result return
string tag
true type
write

array assert
boolean case
decreasing div
enum exit
fen for
get if

int invariant
module new
opague open
post pre
read real
ek Set
tell then
union var

begin
cloe
dse
export
forward
import
labdl
nil

or
proc
record
ip

to
when

Turing Reference Manual 257

Appendix B

A List of Predefined

Functions and Procedures
By Category without Arguments

Math
abs
arctan
arctand
oS
cod
exp

In

max
min

dnd
rt

Type Conversion

From Int
intreal
intstr

From Red
cell
floor
round
real str
frealstr
erealstr

From String
strint
strreal

To/From ASCH
chr
ord

absolute value function
arctangent with result in radians
arctangent with result in degrees
cosine of anglein radians
cosine of anglein degrees
exponentiation function

natural logarithm function
maximum value function
minimum value function

returns the sign of the argument
sineof anglein radians

sneof anglein degrees

square root function

convert integer to real
convert integer to string

ceiling of argument producing integer
floor of argument producing integer
round argument to nearest integer
convert real to string

convert real to string

convert real to string withexponent

convert string to integer
convert string to real

convert integer to ASCII equivalent
convert character to ASCII equivalent

Turing Reference Manual

258

Time

dock
date
sysclock
time
wallclock

System

getenv
getpid
nargs
fetcharg
system
delay

Sound

play
playdone
sound

color

colour

colorback
colourback

locate

maxcol

maxrow

maxcol or
maxcolour

screen

setscreen
whatcolor

whatcol our
whatcolorback
whatcol ourback
whattextchar
whattextcolor
whattextcol our
whattextcolorback
whattextcol ourback

Character Graphic
es

time in milliseconds since process began
datein"DD Mmm YY" format

CPU time in milliseconds used by process
timein "HH:MM:SS' format

time in seconds since 00:00:00 GMT
Jan1,1970

return the environment string

return the processid

return the number of command line args
return the specified command line arg
execute operating system command

pause program for duration in milliseconds

play musical notes
determine if play command finished
play specified sound

S

clear the screen

s text color

<t text colour

st text background color

st text background colour

place cursor at specified character position
returns the number of screen text columns
returns the number of screen text rows
returns the maximum screen text color
returns the maximum screen text colour

st the mode of the screen

st the mode of the screen

return the currently active text color
return the currently active text colour
return the current text background color
return the current text background colour
returns the character at cursor position
returnsthe character color at cursor
returns the character colour at cursor
returns the character background color at cursor
returns the character background colour at cursor

Turing Reference Manual 259

Pixel Graphics
ds

color
colour
colorback
colourback
drawarc
drawbox
drawdot
drawfill
drawline
drawova
takepic
drawpic
sizepic

locate

locatexy
maxcol
maxrow
maxcolor
maxcolour
maxx

maxy

palette

reen
selscreen
whatcolor
whatcolour
whatcol orback
whatcol ourback
whatdotcolor
whatdotcol our
whatpal ette

Strings
index
length
repeat

Files
eof

clear the screen

<t text color

st text colour

instantly change background color
instantly change background colour
drawsanarcon screen

drawsabox on screen

drawsadot on screen

fillsin a figure of color borderColor
drawsalineon screen

drawsan ovd on screen

copies a rectangular area from screen into buffer
copies a rectangular area from buffer onto the screen
determine the necessary size of a buffer to hold area
from screen

place cursor at specified character position
place cursor at specified pixel position
returns the number of screen text columns
returns the number of screen text rows
returns the maximum screen color

returns the maximum screen colour

returns the maximum x pixel value
returns the maximum y pixel value
setsthe colour paletteto use

=t the mode of the screen

st the mode of the screen

return the currently active text color
return the currently active text colour
return the current background color

return the current background colour
return the color of a pixel

return the colour of a pixe

return the current pal ette number

find position of patt within string s
returnsthe length of the string
copiesstring sconcatenated i times

returns whether stream is at end of file

Turing Reference Manual 260

Character Input .
getch get a single character from the keyboard

hasch returns whether there is a keystrokein the
keyboard buffer

Attributes
lower returns the lower bound of array in
specified dimension
upper returnsthe upper bound of array in

Specified dimension

Random Numbers

rand generate a random number from 0 to 1

randint generate arandom integer from low to
high inclusive

randnext produce next pseudo-random number in
specified sequence

randomize resets random number sequence

randseed restarts the specified sequence of

pseudo-random numbers with seed

Enumerated Types

pred returns the argument minus one or the
previous valuein the enumerated sequence
ucc returns the argument plus one or the

next value in the enumerated sequence

Turing Reference Manual

261

Appendix C

A List of Predefined
Functions and Procedures
By Category with Arguments

Math
abs(x:int):int
abs(x:real): rea
arctan (x: real): red
arctand (x: real): red
cos(angle:real): red
cod (angle: real): real
exp(r:real):rea
In(r:real): red
max (x,y:int):int
max (X,y:real): rea
min(x,y:int):int
min (x,y:real): real
sign(r:real):-1..!
sin(angle:real): rea
sind (angle:real): rea
sgrt (r:real): red

Type Conversion
From Int
intreal (i:int): real

absolute value function

. arctangent with result in radians
arctangent with result in degrees
cosine of anglein radians
cosine of anglein degrees
exponentiation function (€)
natural logarithm function (Ine r)

maximum value function

W minimum value function
returns the sign of the argument
sineof angleinradians

sine of anglein degrees
square root function

convert integer to real

intstr (i, width:int): string ~ convert integer to string

From Red
cel (r:real): int
floor (r: real): int
round (r: real): int

ceiling of argument producing integer
floor of argument producing integer
round argument to nearest integer

realstr (r: real, width: int): string

convert red to string

frealstr (r: real, width, fractionWidth : int): string

convert real to string

eredstr (r: real, width, fractionWidth, exponentWidth: int): string

From String
strint (s: strung): int

strreal (s: string): real

To/From ASCH

chr (i: int): string (1)
ord (ch: string (1)): int

convert real to string withexponent

convert string to integer
convert string to redl

convert integer to ASCII equivalent
convert character to ASCII equivalent

Turing Reference Manual 262

Time
clock (var c:int)
date (var date: string)
sysclock (var ¢ : int)
time (var t: string)
wallclock (var c: int)

System , _
getenv (symbol: string): string
getpid: int
nargs.int
f I1: imt). sing

timein milliseconds since process began
datein"DD MmmYY" format

CPU timein milliseconds used by process
timein "HH:MM:SS' format

timein seconds since 00.00:00GMT
Jan1,1970

return the environment string

return the processid)

return the number of command line args
return the specified command line arg

system (command: string, varret: i Q)%Ctneoper ating system command

delay (duration: int)

Sound
play (music: string)
playdone: boolean
sound (freq, duration: int)

Character Graphics
els
color (clr: int)
colour (clr: int)
colorback (clr: int)
colourback (clr: int)
locate (row, col: int)
maxcol: int
maxrow: int
maxcolor: int
maxcolour: int
screen (mode: hit)
setscreen (s: string)
whatcolor: int
whatcolour: int
whatcolorback: int
whatcolourback: int
whattextchar: string (1)
whattextcolor: hit
whattextcolour: int
whattextcolorback: int

whattextcol ourback: int

pause program for duration in milliseconds

play musica notes
determineif play command finished
play specified sound

clear the screen

<t text color

st text colour

st text background color

st text background colour

place cursor at character position (row,col)
returns the number of screen text columns
returns the number of screen text rows
returns the maximum screen text color
returns the maximum screen text colour
et the mode of the screen

et the mode of the screen

return the currently active text color
return the currently active text colour
return the current text background color
return the current text background colour
returns the character at cursor position
returns the character color at cursor
returns the character colour at cursor
returns the character background color
at cursor

returns the character background colour
at cursor

Turing Reference Manual 263

Pixel Graphics

ds) clear the screen
color (clr: int) st text color
colour (clr: int) =t text colour

colorback (clr: int) instantly change background color
colourback (clr: int) instantly change background colaur
drawarc (X, y, xRadius, yRadius, initialAngle, finalAngle, clr: int)
drawsan arc on screen centred at (X,y)
drawbox (xI, yl, x2,y2, clr: int) drawsabox on screen
drawdot (X, Y, clr: int) drawsadot on screen at (X,y)
drawfill (x,y, fillColor, border-Color: int)
fillsin a figure of color borderColor
drawline (xI, yl, x2, y2, clr: int) draws a line on screen
drawoval (X, Yy, xRadius, yRadius, clr: int)
drawsan ova on screen centred at (X,Y)
takepic (xI, yl, x2, y2: int, var buffer: array 1L* of int)
copies a rectangular area from screen
into buffer
drawpic (X, y: int, buffer: array 1* of int, picmode: int)
copies a rectangular area from buffer
onto the screen
sizepic (xI, yl, x2,y2 :int): int determine the necessary sze of a buffer
to hold area from screen

locate (row, col: int) place cursor at character position (row, col)

locatexy (X, y: int) place cursor at pixel position (x,y)
maxcol: int returns the number of screen text columns
maxrow: int returns the number of screen text rows
maxcolor: int , returns the maximum screen color

returns the maximum screen colour

maxcolour: int ,
returns the maximum x pixel value

maxxrint o o

maxy: int returns the maximum y pixel value
paette (p : int) sets the colour palette to use

screen (mode: int) . set the mode of the screen

setscreen (s: string) o.-eeee. &t the- mode of the screen
whatcolor: int , return the currently active text color
whatcolour: int return the currently active text colour
whatcolorback: int return the current background color
whatcolourback: int return the current background colour
whatdotcolor (x, y: int): int return the color of pixd at (X,y)
whatdotcolour (X, y: int): int return the colour of pixel at (x,y)
whatpalette : int return the current pal ette number

Turing Reference Manual 264

Strings , - o
index (s, part: string): int find position of patt W|th|n_str|ng S
length (s: string): int returnsthe length of the string

repeat (s: string, i:int): string copiesstring s concatenated i times

Files
eof (streamNo: int): boolean returns whether stream is at end of file

Character Input
getch (var ch: string (1))

hasch: boolean

get a single character from the keyboard
returnswhether thereisakeystrokein the

keyboard buffer

Attributes

lower (aray [, dimension]): int returns the lower bound of array in
specified dimension

upper (array [, dimension]): int returns the upper bound of array in
specified dimension

Random Numbers
rand (var r: real) generate arandom number from0O to 1

randint (var i: int, low, high : int) .
generate arandom integer from low to

high inclusive

randnext (varv:real, seq: 1.10) produce next pseudo-random number in
specified sequence

randomize resets random number sequence

randseed (seed : int, seq: 1L.10) restarts the specified sequence of
pseudo-random numbers with seed

Enumerated Types

pred (enumerated value): enumerated value

pred (i: int): int - returns the argument minus one or the
previous value in the enumerated sequence

succ (enumerated val ue): enumerated value
succ (i:int): int returns the argument plusone or the

next value in the enumerated sequence

Turing Reference Manual 265

Ctrl-A
Ctrl-B

Ctrl-D
Ctrl-E
Cirl-F
Ctrl-G
Ctrl-H / BS
Ctrl-1 / TAB
Ctrl-J / CR
Ctrl-K
Ctrl-L
Ctrl-M
Ctrl-N
Citrl-0
Ctrl-P
Ctrl-Q
Ctrl-R
Ctrl-S
Ctrl-T
Ctrl-U
Ctrl-Vv
Ctrl-W
Ctrl-X
Ctrl-Y

CtrI-],'%é-E

CtrlA
Ctrl-
Ctrl-

Citrl-

888%88@'ﬁaBBBBEQSE?@BﬁB@mqmmwaHO

Appendix D
IBM PC Keyboard Codes

The ascii value of the character
returned by getch

(S|oat36)1

#

$
%
&

OCO~NOUIRARWNERON e + ke~ .
BRR B8RP ALD B EEREHREDREBLULRRRL

OV A

64
65
66
6
68
69
70
7
72

73
74

~

>._./,_.N—<><§<C_|m;u,o-UoZ§|—7<<_,_Ic.')-nrnU(')UJZD@
—i = N<xZ2<c~+p0OUVOS3 e~ . —TQ ~0 Q20 TV .
NERRERREBEREERREREERBEEEE2E88BB8g8ay

BFRECRCBBIRREBIBRBIFI I 3

Ctrl-BS

Turing Reference Manual

266

Alt-9
Alt-0
Alt-
All—
Ctrl-PgUp

Back TAB
Alt-Q
Alt-W
Alt-E
AltR
AlET
Alt-Y
Alt-U

Alt-
Alt-O
Alt-P

Alt-A
Alt-S

BEUBRRBREBER

5

141

HEEERS5EER

BEOEHRER

Alt-D
Alt-F
Alt-G
Alt-H
Alt-J
Alt-K
Alt-L

Alt-Z
Alt-X
Alt-C
Alt-V
Alt-B
Alt-N
Alt-M

=
2
F3
F4
5

160 F6
161 F7
162 B
163 F
164 F10
165

166

167 Home
163 Up Arrow
10 PgUp
170

171 Left Arrow
172

173 Right Arrow
174

175 End
176 Down Arrow
177 PgDn
178 Ins
179 Dd
180 Shift-Fl
181 Shift-F2
182 Shift-F3
183 Shift-F4
78 Shift-F5
186 Shift-F6
186 Shift-F7
187 Shift-F8
183 Shift-F9
189 Shift-FIO
190 Ctrl-Fl
191 Ctrl-F2

192

3

1

88

197

el

201
202

SERE

207

5

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Ctrl-F3
Ctrl-F4
Ctrl-F5
Ctrl-F6
Ctrl-F7
Ctrl-F8
Ctrl-F9
Ctrl-FHO
Alt-FI
Alt-F2
AU-F3
Alt-F4
AU-F5
AU-F6
AU-F7
AU-F8
AH-F9
AU-F10

Ctrl-L Arrow
Ctrl-R Arrow
Ctrl-End
Ctrl-PgDn
Ctrl-Home
Alt-1

Alt-2

Alt-3

Alt-4

Alt-5

Alt-6

Alt-7

Alt-8

Ctrl-®, Ctrl-C and Ctrl-Break will terminate a Turing Program

"'}

Turing Reference Manual 267

224
225
226
227
228
229
230

232

Appendix E

Turing Operators

Mathematical Operators
Operators on Integers and Reals

Operator Operation _Result Type
Prefix + [dentity AsOperands
Prefix - Negative AsOperands
T Addition AsOperands
IR Subtraction AsOperands
’ Multiplication AsOperands
/ Division AsOperands
div Integer Division Integer
[nod Remainder Integer
Exponentiation AsOperands
< Less Than Boolean
> Greater Than Boolean
5 Equals Boolean
<= Less Than or Equal Boolean
>= Greater Than or Equal Boolean
not= Not Equal Boolean
Boolean Operators v
Operators on Booleans
Operator Operation Result Type
Prefix not Negation Boolean
and And Boolean
or Or Boolean
=> Implication Boolean

Turing Reference Manual 268

Set Operators
Operators on Sets

(3)
(4)
(5)
(6)

(8)

Operator Operation Result Type
+ Union i
- St Subtraction S
- Intersection St
= Equality Boolean
not= Inequality Boolean
<= Subset Boolean
< Strict Subset Boolean
>= Superset Boolean
> Strict Superset Boolean
Special St Operators
Operatorson Membersand Sets
in Member of Set Boolean
not in Not Member of S¢ Boolean
" Operator Precedence
prefix + and -
* [,div, mod
+ - _
<[>]=/<=,>=,not=,in,notin
not
and
or
=>

©)

Turing Reference Manual 269

Appendix F

Turing File Statements

File Commands

open open afile

cloe dose afile

put write alphanumeric text to afile

get read alphanumeric text from afile
write binary write to afile

read binary read from afile

sk move to a specified position in afile
tell report the current file position

eof check for end of file

File Command Syntax
open: streamNo, fileName, ioCapability { , ioCapability}
ioCapabilility isone of get, put, read, write, seek, mod
put or write capability will cause any existing file
to be truncated to zero length unless the mod
capability is also specified.
seek capability is needed to use seek or tell
commands.
close: streamNo
get: streamNo, getlitem { , getltem}
put: streamNo, putltem{ , putltem}
read: streamNo [: fileStatus], readltem { , readltem}
write: streamNo [: fileStatus], writeltem { , writeltem}
seek: streamNo, f ilePosition or seek : streamNo, *
tell: streamNo, filePositionVar
(function call) eof (streamNo)

Turing Reference Manual 270

FOR

LOOP

CASE

Appendix G

Turing Control Constructs

for [decreasing] variable : startVaue.. endVaue

.. Statements...
exit when condition
.. Statements ...

end for

loop
... Statements...
exit when condition
... Statements...

end loop

if condition then

... Statements...
{ elsif condition then

.. Statements...}
[dse

... Statements...]
end if

case expn of
{label expn{ , expn} :
... Statements. ... }
[label:
.. Statements... |
end case

Any number of exit and exit when constructs can appear at any
placeinsidefor.. end for constructs and loop .. end loop

constructs

Turing Reference Manual 271

Appendix H

Using The Printer From Turing on IBM
PC's and Compatibles

There are three methods for producing output on a printer from within
Turing programs running on IBM PC's and compatibles. Thefirstisto direct
output to the screen as usual and to use the SHIFT-PRINTSCREEN from your
keyboard to print a copy of the information on the screen. Note that this will
only printinformation that is on the screen at the time you pressthe
PRINTSCREEN. Any information that has scrolled off the top of the screen
islost and information not yet displayed will not be printed at thistime.

Also, thisis the only way in Turing to print pixel graphicsoutput.

The second method isto specify that al standard output is to be directed
to the printer. Under MS-DOS, the filename PRN isreserved to mean the
printer. Thusyou can use output redirection to run your program and route the
output to file PRN. For example, instead of using the Fl key to run the
program, type: :r > prn. Seepage 13 for moreinformation on the:r
command and input/output redirection.

The third method is frequently the closest to what atypical user wants.
Output isdirected to the screen or to the printer under program control. To do
this, you must open file PRN for put and you must explicitly direct output to
the appropriate location within your program. Hereisan example program:

var prnStream : int

open :prnStream "PRN", put

%verify that the printer is available
assert prnStream> 0

put "You will see this line on the screen.”
put rprnStream "This line is printed."

Run the program normally and output will appear as directed by each put
Statement.

Turing Reference Manual 272

