
WHAT'S IN THE MANUAL

Notation
The following syntax notation is used in this manual:

{ item } means any number of repetitions of the item
(or none at all)

[Hem] means the item is optional

Keywords, operators and delimiters, such as get, procedure, := and) are
written in boldface. Comments in example Turing programs are written in
italics in a smaller font than the rest of the program. Identifiers are written
in italics. Explicit constants such as 27 or "Hello" are written normally.

Items are presented by giving their syntax, a general description of
their meaning, examples of their use, and then details about the item. The
description is intended to satisfy the reader who mainly wants to know basic
information about the item, for example, that the string type represents
character strings. The examples illustrate important patterns of usage of
the item, and should in many cases answer the question in mind. The
detailed information that follows gives a full technical description of the
item as well as references to related items. Virtually all the information in
the Turing Report appears in this Manual, although not in its original form.
This Manual takes liberties with the original syntax of the language to
make explanations easier to understand. For example, the Manual
describes declarations as a single item, and then explains restrictions that
disallow certain declarations from appearing in particular contexts. By
contrast, the Report uses the form of the context free syntax to imply, in a
less obvious way, these same restrictions.

The Turing language was designed so it can be easily implemented
in a compatible way on many types of hardware. This portability of the
language is important because it allows us to write our programs without
concern for the technical details of the underlying hardware. But sometimes
the user wants the opposite of portability and wishes to use the particular
aspects of the hardware at hand. For example, graphics devices remain
highly dependent on individual hardware. To adapt to this reality, a
number of extensions have been added to the implementations of Turing.
These extensions, such as the drawbox procedure, are described in this
Manual, along with the inherent features of the language. The reader
should be aware that these extensions may not be available in some
implementations of Turing.

Turing Reference Manual 34

pesign of the Turing Language
The Turing language has been designed to be a general purpose

ge, meaning that it is potentially the language of choice for a wide
1 siof applicat'ons- Because of its combination of convenience and

° aSfessive power it is particularly attractive for learning and teaching.
Because of its clean syntax, Turing programs are relatively easy to read and
write.

The language helps in the writing of reliable programs by
eliminating or constraining error-prone language features; for example,
Turing eliminates the goto statement and constrains pointers to locate
elements of collections. It provides many compile-time and run-time checks
to catch bugs before they lead to disaster. These checks guarantee that a
Turing program behaves according to this reference manual, or else a warning
message is given.

There are production versions of Turing that provide maximal
efficiency by allowing you to remove run-time checking. Using these
versions, Turing programs are as efficient as programs written in
machine-oriented languages such as C. This efficiency arises from the fact
that each construct in Turing has an obvious, efficient implementation on

existing computer hardware.

Turing has been designed to eliminate the security problems of
languages such as Pascal. For example, Turing's variant records (unions)
have an explicit tag field that determines the active variant of the record;
run-time checks guarantee that the program can never access fields that
have been assigned in a different variant. In principle, a Turing compiler
prevents function side effects (changing values outside of the function) and
aliasing (having more than one way to modify a given value). However,
existing Turing implementations do not necessarily enforce these restrictions.

Turing has modules, which are information hiding units. These
modules are objects in the sense of "object-oriented programming"- They
allow the programmer to divided the program into units that have
Precisely controlled interfaces.

fr Turing has been extensively used to teach programming concepts,
m the eighth grade and to university graduate courses.

Turing has been designed so it can be supported by either compilers
IBM pIP"*61"8- At present (Fall 1989) the Turing system used for teaching on
sPeak COmPatibles is called an interpreterfalthough technically
intern "f " 'S * comPiler that generates pseudo-code). This same

P eter runs on Macintoshes, Icons, Suns, Vaxes and IBM mainframes.

Turing Reference Manual 35

The Turing compilers and interpreters have all been written in
Turing or in its extension called Turing Plus. Turing Plus includes systems
programming features such as concurrency, exception handling, explicit type
cheats and separate compilation. The Turing Plus compiler optionally
generates C code instead of machine language.

Basic Concepts in Turing

Like most programming languages, Turing has variables whose
values are changed by assignment statements. Example:

var i: int % This declaration creates variable i
i := 10 % This assignment sets the value ofi to 10

This example uses comments that begin with a percent sign (%) and which
end with the end of the line. The names of items, such as)', are identifiers.

A named constant is a named item whose value cannot change. In
the following, c and x are named constants:

const c r= 25
const x := sin (y) ** 2

In this example, c's value is known at compile-time, so it is a compile-time
(or manifest) value. In the Pascal language, all named constants are
compile-time values, but in Turing these values may be computed at
run-time, as is the case for x in this example.

An explicit constant (or literal constant) is a constant that denotes
its own value; for example, 27 is an explicit constant and so is "Hello".

In a Turing program, each named item such as a variable has a
lifetime, which is called its scope. The lifetime of the item begins with its
declaration and lasts to the end of the construct (such as a procedure or a
loop) in which it is declared. More detail can be found under declaration in
the main text. Turing's scope rules tell you where an item can be used. These
rules are very similar to rules in Pascal.

Turing, like Pascal, has two kinds of subprograms, called procedures
and functions. Procedures can be thought of as named sequences of statements
and functions as operators that map values to values.

Turing allows you to declare an array whose size is not known until
run time; these are called dynamic arrays. This is in contrast to languages
such as Pascal in which the sizes of arrays must be known at compile time.

Turing can be thought of either as an algorithmic language, in
which you write algorithms that will not necessarily be run on a computer,

Turing Reference Manual 36

vramming language whose purpose is to be used on a computer. In
Or as a F ^cgse^ me language is called Ideal Turing and is a mathematical
the forrne

mucn'as algebra and arithmetic are mathematical notations. In
n0ta/tr"ri'n2, numbers have perfect accuracy (this is the nature of pure
Ideal X'^ and there js no jimit on tne size of a program or its data. By
""ntrast, Implemented Turing is a language that you can use on actual
computers.

Implemented Turing (which we usually call simply Turing)
pproximates Ideal Turing as closely as is practical. However, its integers

have a fixed maximum range (31 bits of precision) and its real numbers have
limited precision (about 16 decimal digits) and limited size of exponent.
Whenever Implemented Turing cannot carry out your program in the same
way as Ideal Turing, it gives you a warning message, although it does not
warn you about the limited precision of real numbers. For example, if your
program tries to create an array with a million elements in it, but there is
not enough space, you will be warned.

Implemented Turing checks to make sure that your running program
is meaningful; for example, it checks that variables are initialized before
being used, that array subscripts are in bounds, and that pointers locate
actual values. This checking guarantees faithful execution, which means
that your program behaves as it would in Ideal Turing or else you get a
warning message. In production versions of Turing, this checking can be
turned off, for maximal efficiency of production programs.

Compile-time expressions

In certain situations, the Turing language requires you to use values
that are known at compile time. Such values are called compile-time
values. For example, the maximum length of a string type, such as the N in
string(N), must be known at compile time; you are not allowed to read a
value from the input and use it as the maximum length of a string. Here is a
list of the places where compile-time values are required:

(a) The maximum size N of a string, as in string(N).
(b) The value of a label in a case statement or in a union type.
(c) Each value used in init to initialise an array, record or union.
(d) The lower bound L and upper bound U of a subrange, as in L.. U ,

ith one exception. The exception, called a dynamic array, is an array
eclared using var or const that is not part of a record, uniort, or another

array; in a dynamic array, the upper bound U (but not the lower bound L) is
allowed to be read or computed at run time.

Case (d) implies that the size of set types is known at compile time.

The technical definition of a compile-time value is any expression
that consists of only:

Turing Reference Manual 37

(1) explicit integer, real, boolean and string constants, such as 25,
false, and "Charles DeGaulle", as well as enumerated values such as
color.red.

(2) Set constructors containing only compile-time values or all.
(3) Named constants that name compile-time values.
(4) Results of the integer operators +, -, *, div and mod.
(5) Results of the chr and ord functions.
(6) Results of the catenation operator +.
(7) Parenthesised versions of any of these expressions.

You are not allowed to use run-time values (any values not covered by items
1-7) in the places listed above (a-d).

Technical Problems
Any technical problems or questions should be directed to our

technical support line at Holt Software Associates. The number for this
support line (416)978-8363.

Acknowledgements
J.R.Cordy, the co-designer of the Turing Language, is acknowledged

as the source of much of the material in this manual. S.G. Perelgut has
rewritten the Introductory section of this manual and T.L.West has done the
final work - correcting this manual, preparing appendices and preparing it
for publication.

Turing Reference Manual 38

LIST OF TECHNICAL TERMS
abs
all
and
arctan
arctand
array
assert
assignability
assignment
begin
bind
body
boolean
case
catenation
ceil
chr
clock
close
els
collection
color
colorback
comment
comparisonOperator

absolute value function
all members of a set type
boolean operator
arctangent function (radians)
arctangent function (degrees)
type ,
statement
of an expression to a variable
statement
statement
declaration -.
declaration
type
statement
joining together strings
real-to-integer function
integer-to-character function
milliseconds used procedure
file statement
clear screen graphics procedure
declaration
text color graphics procedure
background color graphics procedure

const
constantRefercnce
cos
cosd
date
declaration
delay
div
drawarc
drawbox
drawdot
drawfill
drawline
drawoval
drawpic
enum
enumeratedValue
eof
equivalence
erealstr
exit
exp

constant declaration
use of a named constant
cosine function (radians)
cosine function (degrees)
procedure

procedure
integer truncating division
graphics procedure
graphics procedure
graphics procedure
graphics procedure
graphics procedure
graphics procedure
graphics procedure
type

end-of-file function
of types
real-to-string function
statement
exponentiation function

43
44
45
46
47
48
50
51
53
54
55
56
58
59
60
61
62
63
64
65
66
68
69
70
71
72
73
74
75
76
77
79
80
81
82
83
84
85
86
87
88
89
90
91
93
94
95

Turing Reference Manual 39

explicitConstant
explicitlntegerConstant
explicitRealConstant
expHcitStringConstant
explicitTrueFalseConstant
expn expression
export list
external procedures and functions
false boolean value
fetcharg fetch argument function
floor real-to-integer function
for statement
forward declaration
frealstr real-to-string function
free statement
function declaration
functionCall
get statement
getch get character procedure
getenv get environment function
getpid get process id function
hasch has character function
id identifier
i f ' statement
import list
in member of set
include source files
index find pattern in string function
indexType
infix operator
init initialisation
int type
intreal integer-to-rcal function
intstr integer-to-string function
invariant assertion
length of a string function
In natural logarithm function
locate procedure
locatexy graphics procedure
loop statement
lower bound of an array or string
maxcol maximum column function
maxcolor graphics function
maxrow maximum row function
maxx graphics function
maxy graphics function
min minimum function
mod remainder (modulo) operator
module declaration

96
97
98
99

100
101
102
103
104
105
106
107
109
112
113
114
116
117
120
121
122
123
124
125
127
129
130
132
133
134
136
137
138
139
140
141
142
143
144
145
146
148
149
150
151
152
153
154
155

Turing Reference Manual 40

named
nargs
new
nil
not
opaque
open
or
ord
palette
paramDeclaration
play
playdone
pointer
post
pre
precedence
pred
prefix
procedure
procedureCall
program
put
rand
randint
randnext
randomize
randseed
read
real
realstr
record
repeat
result
return
round
screen
seek
separator
set
setConstructor
setscreen
sign
sin
sind
sizepic
skip
skip
sound

types 159
number of arguments function 160
statement 161
pointer to a collection 162
true/false (boolean) operator 163
type 164
file statement 165
boolean operator 167
character-to-integer function 168
graphics procedure 169
parameter declaration 170
procedure 173
function 174
type 175
assertion 176
assertion 177
of operators 178
predecessor function 179
operator 180
declaration 181
statement 183
an entire Turing program 185
statement 186
random real number procedure 188
random integer procedure 189
procedure 190
procedure 191
procedure 192
file statement 193
type 195
real-to-string function 196
type 197
make copies of string procedure 198
statement 199
statement 200
real-to-integer function 201
procedure 202
file statement 203
between tokens in a program 204
type 205

206
graphics procedure 207
function 209
sine function (radians) 210
sine function (degrees) 21,1
graphics procedure 212
(used in get statements) 213
(used in put statements) 215
statement 216

Turing Reference Manual 41

sqrt
standardType
statement
statementsAndDeclarations

square root function

string
string
strint
strreal
subrangeType
substring
succ
sysclock
system
tag
takepic
tell
time
token
true
type
typeSpec
union
upper
var
variableReference
wallclock
whatcolor
whatcolorback
whatdotcolor
whatpalette
whattextchar
whattextcolor
whattextcolorback
write

comparison
type
string-to-integer function
string-to-real function

of another string '
successor function
milliseconds used procedure
statement
statement
graphics procedure
file statement
(hours, minutes, seconds) procedure

boolean value
declaration
type specification
type
bound of an array or string
declaration
use of a variable
seconds since 1970 procedure
text color graphics function
color of background graphics function
graphics function
graphics function
graphics function
graphics function
graphics function
file statement

217
218
219
221
222
223
224
225
226
227
228
229
230
231
232
234
235
236
237
238
239
240
242
243
244
245
246
247
248
249
250
251
252
253

absolute value function

SYNTAX:

abs(expn)
DESCRIPTION: The abs function is used to find the absolute value of a

number (the expn). For example, abs (-23) is 23.

EXAMPLE: This program outputs 9.83.

varx : real := -9.83
put abS (X) % Outputs 9.83

DETAILS: The abs function accepts numbers that are either int's or real's;
the type of the result is the same type as the accepted number. The abs
function is often used to see if one number is within a given distance d of
another number y; for example:

if abs (x - y) <= d then ...

Turing Reference Manual 42 Turing Reference Manual 43

all all members of a set type
SYNTAX:

setTypeName (all)
DESCRIPTION: Given a set type named S, the set of all of the possible

elements of S is written S (all).

EXAMPLE:

type smallSet : set of 0 .. 2
var x : smallSet := smallSet (all)

% set x contains elements 0, 1 and 2

DETAILS: See set type for details about sets.

(boolean) operator

SYNTAX:

A and B
DESCRIPTION: The and (boolean) operator yields a result of true if and

only if both operands are true, and is a short circuit operator; for
example, if A is false in A and B then B is not evaluated.

EXAMPLE:

var success : boolean := false
var continuing := true % the type is boolean

continuing := continuing and success

DETAILS: continuing is set to true if and only if both continuing and success
are true. Since Turing uses short circuit operators, once continuing is
false, success will not be looked at.

See also boolean (which discusses true/false values),
explidtTrueFalseConstant (which discusses the values true and false),
precedence and expn (expression).

Turing Reference Manual 44 Turing Reference Manual 45
LU.

arctail arctangent function (radians)

SYNTAX:

arctan (r : real): real
DESCRIPTION: The arctan function is used to find the arc tangent of an

value. The result is given in radians. For example, arctan (1) is pi/4.

EXAMPLE: This program prints out the arctangent of 0 through 3 in
radians.

fo r / : 0 . . 1 2
const arg := i 1 4
put "Arc tangent of", arg," is",

arctan (a r g) , " radians"
end for

DETAILS: See also the arctand function which finds the arc tangent of an
value with the result given in degrees. (2 * pi radians are the same as
360 degrees.)

NOTE: The formulae for arcsin and arccos are:

arcsin (x) = arctan (sqrt ((x*x) / (1 - (x*x))))

arccos (x) = arctan (sqrt ((1 - (x *x)) / (x *x)))

Turing Reference Manual 46

arctangent function (degrees)

SYNTAX:

arctand (r : real) : real
DESCRIPTION: The arctand function is used to find the arc tangent of an

angle given in degrees. For example, arctand (0) is 0.

EXAMPLE: This program prints out the arctangent of values from 0 to 3 in
degrees.

for/ :0.. 12
const arg:= i I 4
put "Arc tangent of ", arg, " is ",

arctand (arg) , " degrees"
end for

DETAILS: See also the arctan function which finds the arc tangent of an
value with the result given in radians. (2 * pi radians are the same as
360 degrees.)

Turing Reference Manual 47

array type
SYNTAX: An array Type is:

array indexType { , indexType} of typeSpec

DESCRIPTION: An array consists of a number of elements. The typeSpec
gives the type of these elements. There is one element for each item in
the (combinations of) range(s) of the indexType(s). In the following
example, the array called marks consists of 100 elements, each of
which is an integer.

EXAMPLE:

var marks : array 1 .. 100 of int

var sum : int := 0
for/ : 1 ..100 % Add up the elements of marks

sum \- sum + marks (/)
end for x

DETAILS: In the above example, rmrks(i) is the i-th element of the marks
array. We call i the index or subscript of marks. In Turing, a subscript
is surrounded by parentheses, not by square brackets as is the case in
the Pascal language.

EXAMPLE: The prices array shows how an array can have more than one
dimension. This array has one dimension for the year (1988,1989 or
1990) and another for the month (1 .. 12). There are 36 elements of the
array, one for each month of each year.

var price : array 1988 .. 1990,1 .. 12 of int

var sum : int, := 0
for year : 1988 .. 1990 % For each year

for month : 1 .. 1 2 % For each month
sum := sum + price (year, month)

end for
end for

DETAILS: Each indexType must contain at least one item, for example, the
range 1 .. 0 would not be allowed. Each index type must be a subrange

Turing Reference Manual 48

of the integers or of an enumerated type, an (entire) enumerated type,
or a named type which is one of these.

Arrays can be assigned as a whole (to arrays of an equivalent
type), but they cannot be compared.

An array can be initialized in its declaration using init; for
details, see var and const declarations.

EXAMPLE: In this example, the size of the array is not known until run
time.

var howMany : int
get howMany
var height : array 1 .. howMany of real

...read in all the elements of this array...
function total (a: array 1 .. * of real) : real

var sum : int := 0
for / : 1 .. upper (a)

sum := sum + a (/)
end for
result sum

end total
put "Sum of the heights is ", total (height)

DETAILS: The ends of the range of a subscript are called the bounds of the
array. If these values are not known until run time, the array is said
to be dynamic. In the above example, height is a dynamic array.
Dynamic arrays can be declared as variables or constants, as in the
case for height. However, dynamic arrays cannot appear inside other
types such as records and cannot be named types. Dynamic arrays
cannot be assigned and cannot be initialized using init.

In the above example, upper(a) returns the size of a. See also
upper and lower.

In the declaration of an array parameter, the upper bound can be
given as a star (*), as is done in the above example. This means that
the upper bound is taken from that of the corresponding actual
parameter (from height in this example).

You can have arrays of other types, for example arrays of
record. If R is an array of records, then R(i).f is the way to access the /
field of the f-th element of array R.

Turing Reference Manual 49

assert statement

SYNTAX: An assertStatement is:

assert trueFalseExpn

DESCRIPTION: An assert statement is used to make sure that a certain
requirement is met; this requirement is given by the trueFalseExpn.
The trueFalseExpn is evaluated. If it is true, all is well and execution
continues. If it is false, execution is terminated with an appropriate
message.

EXAMPLE: Make sure that n is positive.

assert n >= 0
EXAMPLE: This program assumes that the textFile exists and can be

opened, in other words, that the open will set the fileNumber to a
non-zero stream number. If this is not true, the programmer wants the
program halted immediately.

var fileNumber : int
open : fileNumber, "textFile", read
assert fileNumber not= 0

DETAILS: In some Turing systems, checking can be turned off. If checking is
turned off, assert statements may be ignored and as a result never cause
termination.

Turing Reference Manual 50

assignability
of an expression to a variable

DESCRIPTION: A value, such as 24, is assignable to a variable, such as i,
if certain rules are followed. These rules, given in detail below, are
called the assignability rules. They must be followed in assignment
statements as well as when passing values to non-var parameters.

EXAMPLES:

var / : int
/ := 24

var width : 0
width := 3 * /

% 24 is assignable to i

319
% 3 * / is assignable to width

var a : array 1 .. 25 of string
a (/ ') := "Ralph" % "Ralph" is assignable to a(i)

var name : string (20)
name := a (/) % a(i) is assignable to name

var b : array 1 .. 25 of string
b '.= a % Array a is assignable to b

type person Type :
record

age : int
name: string (20)

end record
var r, s: person Type

s := r % Record r is assignable to s

: The expression on the right of := must be assignable to the
variable on the left. An expression passed to a non-var parameter
must be assignable to the corresponding parameter.

An expression is defined to be assignable to a variable if the
their two root types are equivalent or if an integer value is being
assigned to a real variable (in which case the integer value is

Turing Reference Manual 51

automatically converted to real). Two types are considered to be
equivalent if they are essentially the same type (see equivalence for
the detailed definition of this term).

We now define root type. In most cases a root type is simply the
type itself. The exceptions are subranges and strings. The root type of
a subrange, such as 0 .. 319, is the type of its bounds, int type in this
example. The root type of a string, such as the type string(9), is the
most general string type, namely string.

When a subrange variable, such as width, is used as an
expression, for example on the right side of an assignment statement,
its type is considered to be the root type, integer in this case, rather
than the subrange. When an expression is assigned to a subrange
variable such as width, the value, 3*i in this example, must lie in the
subrange. Analogously, any string variable used in an expression is
considered to be of the most general type of string. When a string value
is assigned to a string variable its length must not exceed the
variable's maximum length.

statement

SYNTAX: A assignmentStatement is;

variableReference := expn
DESCRIPTION: An assignment statement calculates the value of the

expression (expn) and assigns that value to the variable
(variableReference).

EXAMPLES: ^

var / : int
/ ;= 24 % Variable i becomes 24
var a : array 1 .. 25 of string
a (/ ') := "Ralph" % The i-th element of a becomes "Ralph"

var b : array 1 .. 25 of string
b '.- a % Array b becomes (is assigned) array a

DETAILS: The expression on the right of := must be assignable to the
variable on the left. For example, in the above, any integer value,
such as 24, is assignable to i, but a real value such as 3.14 would not be
not assignable to i. Entire arrays, records and unions can be assigned.
For example, in the above, array a is assigned to array b. See
assignability for the exact rules of allowed assignments.

You cannot assign a new value to a constant (const).

Turing Reference Manual 52 Turing Reference Manual 53

begin statement

SYNTAX: A beginStatement is:

begin
statementsAndDeclarations

end

DESCRIPTION: A begin statement is used to limit the scope of
declarations within it. In Turing, begin is rarely used, because
declarations can appear wherever statements can appear and because
every structured statement such as if ends with an explicit end.

E>(AMPLE:

begin
var bigArray : array 1 .. 2000 of real
... bigArray will exist only inside this begin statement-

end

"-JET AILS: In Pascal programs, begin statements are quite common because
they are required for grouping two of more statements, for example, to
group the statements that follow then. In Turing this is not necessary,
because each place where you can write a single statement, you can as
well write several statements.

declaration

SYNTAX: A bindDedaration is: -

bind [var] id to variableReference
{ , [var] id to variableReference }

DESCRIPTION: The bind declaration creates a new name (or names) for a
variable reference (or references). You are allowed to change the
named item only if you specify var.

EXAMPLE: Rename the n-th element of array A so it is called item and
then change this element to 15.

bind var item to A (n)
item := 15

DETAILS: The scope of the identifier (item above) begins with the bind
declaration and lasts to the end of the surrounding program or
statement (or to the end of the surrounding part of a case or if
statement). During this scope, the original name of the variable (A
above) reference cannot be used. During this scope, a change to a
subscript (i above) that occurred in the variable reference does not
change the element that the identifier refers to.

You are not allowed to use bind at the outermost level of the
main program (except nested inside statements such as if) or at the
outermost level in a module.

1

Turing Reference Manual 54 Turing Reference Manual 55

body declaration

SYNTAX: A bodyDeclaration is one of:

(a) body procedure procedureld
statementsAndDeclarations

end procedureld

(a) body function functionld
statementsAndDeclarations

end functionld

DESCRIPTION: A procedure or function is declared to be forward when
you want to define its header but not its body. This is the case when
one procedure or function calls another which in turn calls the first;
this situation is called mutual recursion. The use of forward is
necessary in this case because every item must be declared before it can
be used. Following the forward declaration must come a body
declaration for the same procedure or function. For details, see
forward declarations.

EXAMPLES: The example given here is part of a complete Turing
program that is given with the explanation of forward declarations.

var token: string

forward procedure expn (var eValue: real)
import (forward term, var token)

... other declarations appear here ...
body procedure expn

var nextValue: real
term (eValue) % Evaluate t
loop % Evaluate { + 1}

exit when token not= "+"
get token
term (nextValue)
eValue := eValue + nextValue

end loop
end expn

pcrRjPTION: The syntax of a bodyDeclaration presented above has
been simplified by omitting the optional result identifier, import list,

re and post condition and init clause. See procedure and function
declarations for descriptions of these omissions.

Turing Reference Manual 56
Turing Reference Manual 57

boolean type
(the true-false type)

SYNTAX: boolean
DESCRIPTION: The boolean type is used for values are are either true or

false. These true-false values can be combined by various operators
such as or and and.

EXAMPLE:

var success : boolean := false
var continuing := true % The type is boolean

success := mark >= 60
continuing := success and continuing
if continuing then ...

DETAILS: This type is named after the British mathematician, George
Boole, who formulated laws of logic.

The operators for true and false are and, or, =>, and not. For two
true/false values A and B, these operators are defined as follows:

A and B is true when both are true
A or B is true when either or both are true
A => B (A implies B) is true when both are true or

when A is false
not A is true when A is false

The and operator has higher precedence than or, so A or B and C means
A 01 (B and C).

The operators or, and and => are short circuit operators; for
example, if A is true in A or B, B is not evaluated.

See also explicitTrueFalseConstant (which discusses the values
true and false), precedence and expn (expression).

statement
SYNTAX: A caseStatement is:

case expn of
{ label expn {, expn } :

statementsAndDeclarations }
[label :

statementsAndDeclarations]
end case

DESCRIPTION: A case statement is used to choose among a set of
Statements (and declarations). One set is chosen and executed and then
execution continues just beyond end case.

The expression (expn) following the keyword case is evaluated
and used to select one of the alternatives (sets of declarations and
statements) for execution. The selected alternative is the one having a
label value equalling the case expression. If none are equal and there
is a final label with no expression, that alternative is selected.

EXAMPLE: Output a message based on value of mark.

case mark of
label 9 , 1 0
label 7, 8 :
label 6 :
label:

end case

put "Excellent"
put "Good"
put "Fair"
put "Poor"

DETAILS: The case expression is required to match one of the labels or else
there must be a final label with no expression. Label expressions must
have values known at compile time. All labels values must be distinct.
The case expression and the label values must have the same type,
which must be integer or an enum type.

Turing Reference Manual 58 Turing Reference Manual 59

catenation (+)
joining together strings

SYNTAX: A catenation is:

stringExpn + stringExpn

DESCRIPTION: Two strings (stringExpns) can be joined together
(catenated) using the + operator.

EXAMPLES:

var lastName, wholeName: string
lastName := "Austere"
wholeName := "Nancy" +" " + lastName

% The three strings Nancy, a blank and Austere
% catenated together to make the string

; % "Nancy Austere". This string becomes the
% value of wholeName

DETAILS: The length of a catenation is limited to at most 255 characters.

See also substrings (for separating a strings into parts), repeat
(for making repeated catenations), string type, length, and index (to
determine where one string is located inside another).

Catenation is sometimes call concatenation.

Turing Reference Manual 60

real-to-integer function

SYNTAX:

ceil(r : real): int
DESCRIPTION: Returns the smallest integer greater than or equal to r.

DETAILS: The ceil (ceiling) function is used to convert a real number to an
integer. The result is the smallest integer that is greater than or equal
to r. In other words, the ceil function rounds up to the nearest integer.
For example, ceil (3) is 3, ceil (2.25) is 3 and ceil(-8.43) is -8.

See also the floor and round functions.

Turing Reference Manual 61

chr integer-to-character function

SYNTAX:

chr(/ : int): string (1)
DESCRIPTION: The chr function is used to convert an integer to a

character, that is, to a string of length 1. The character is the /'-th
character of the ASCII sequence of characters (except on the IBM
mainframe, which uses the EBCDIC sequence.) For example, chr (65)
is "A".

The selected character must not be number 0 (a reserved
character used to mark the end of a string) or 128 (a reserved character
used to mark uninitialised strings). The ord function is the inverse of
chr, so for any character c, chr (ord (c)) = c.

See also the ord, intstr and strint functions.

millisecs used procedure [PC, Mac and Unix only]

SYNTAX:

clock (var c : int)
DESCRIPTION: The clock statement is used to determine the amount of

time since this program (process) started running. Variable c is
assigned the number of milliseconds since the program started running.

EXAMPLE: This program tells you how much time it has used.

var time Running : int
clock (timeRunning)
put "This program has run ", timeRunning,

" milliseconds"
DETAILS: See also the delay, time, sysclock, wallclock and date

statements.

On IBM PC compatibles, this is the total time since the Turing
system was started up and the hardware resolution of duration is in
units of 55 milliseconds. For example, clock(i) may be off by as much as
55 milliseconds.

On Apple Macintoshes, this is the total time since the machine
was turned on and the hardware resolution of duration is in units of
17 milliseconds (1/60-th of a second).

Turing Reference Manual 62 Turing Reference Manual 63

close file statement

SYNTAX: A closeStatement is:

close : fileNumber

DESCRIPTION: In Turing, files are read and written using a fileNumber.
In most cases, this number is gotten using the open statement, which
translates a file name, such as "Master", to a file number, such as 5.
When the program is finished using the file, it disconnects from the
file using the close statement.

EXAMPLE: This programs illustrates how to open, read and then close a
file.

var fileName: string := "Master" % Name of me
var fileNo : int % Number of me
var inputVariable: string (1 0 0)
open : fileNo, fileName, read

read : fileNo, inputVariable

close : fileNo

DETAILS: In a Turing implementation, there will generally be a limit on
the number of currently open files; this limit will typically be around
10. To avoid exceeding this limit, a program that uses many files one
after another should close files that are no longer in use.

If a program does not close a file, the file will be automatically
closed when the program finishes.

See also the open, get, put, read, write, seek and tell statements.

There is an older and still acceptable version of close that has
this syntax:

close (fileNumber : int)

Turing Reference Manual 64

clear screen graphics procedure

SYNTAX:

els
DESCRIPTION: The els (clear. screen) procedure is used to blank the

screen. The cursor is set to the top left (to row 1, column 1).

DETAILS: In "graphics" mode all pixels are set to color number 0, so the
screen is displayed in background color.

The screen should be in a "screen" or "graphics" mode; if not, it
will automatically be set to "screen" mode. Seesetscreen for details.

Turing Reference Manual 65

Collection declaration

SYNTAX: A collectionDedaration is one of:

(a) var id { , id } : collection of typeSpec
(t>) var id { , id } : collection of forward typeld

DESCRIPTION: A collection declaration creates a new collection (or
collections). A collection can be thought of as an array whose elements
are dynamically created (by new) and deleted (by free). Elements of a
collection are referred to by the collection's name subscripted by a
pointer. See also new, free and pointer.

EXAMPLE: Create a collection that will represent a binary tree.

var tree : collection of
record

name : string (1 0)
left, right: pointer to tree

end record

Suppose pointer q is equal to pointer p and the element they
noint to is deleted by "free C,p". We say <j is a dangling pointer
because it seems to locate an element, but the element no longer exists.
A dangling pointer is considered to be an uninitialised value; it cannot
be assigned, compared, used as a collection subscript, or passed to free.

Collections cannot be assigned, compared, passed as parameters,
bound to, or named by a const declaration. Collections must not be
declared in procedures, functions, records or unions.

\

var root: pointer to tree
new tree, root
tree (root).name := "Adam"

DETAILS: The statement "new C,p" creates a new element in collection C
and set p to point at it; however, if there is no more memory space for
the element, p is set to nil (C), which is the null pointer for collection
C. The statement "free C,p" deletes the element of C pointed to by p
and sets p to nil (C) . In each case, p is passed as a var parameter and
must be a variable of the pointer type of C.

The keyword forward (form b above) is used to specify that the
typeld of the collection elements will be given later in the collection's
scope. The later declaration must appear at the same level (in the
same list of declarations and statements) as the original declaration.
This allows cyclic collections, for example, when a collection contains
pointers to another collection which in turn contains pointers to the
first collection. In this case, the typeld is the name of the type that
has not yet been declared; typeld cannot be used until its declaration
appears. A collection whose element type is forward can be used only
to declare pointers to it until the type's declaration is given.

Turing Reference Manual 66 Turing Reference Manual 67

Color text color graphics procedure
SYNTAX:

F, • .

color (Color: int)

DESCRIPTION: The color procedure is used to change the currently active
color. This is the color of characters that are to be put on the screen.
The alternate spelling is colour .

EXAMPLE: This program prints out the message "Bravo" three times, each
in a different color.

setscreen ("graphics")
for /: 1 .. 3

color (/ ')
put "Bravo"

end for

EXAMPLE: This program prints out a message. The color of each letter is
different from the preceding letter. For letter number i the color
number is /' mod maxcolor + 1. This cycles repeatedly through all the
available colors.

setscreen ("screen")
const message := "Happy New Year!!"
for /: 1 .. length (message)

color (/ mod maxcolor + 1)
put message (/)..

end for

DETAILS: See setscreen for the number of colors available in the various
"graphics" modes. On Unix systems, color may have no action.

The screen should be in a "screen" or "graphics" mode; if not, it
will automatically beset to "screen" mode. See setscreen for details.

See also colorback, whatcolor, whattextcolor and maxcolor.

Turing Reference Manual 68

Colorback background color graphics
procedure

SYNTAX:

colorback (Color: int)
DESCRIPTION: The colorback procedure is used to change the current

background color. The alternate spelling is colourback .

In "screen" mode on IBM PC compatibles, this sets the
background color to one of the colors numbered 0 to 7. This is the color
that surrounds characters when they are put onto the screen. On Unix
dumb terminals, colorback(l) turns on highlighting and colorback(O)
turns it off. On other systems, this procedure may have no effect.

In "graphics" mode on IBM PC compatibles, this is used to
associate a color with pixel color number 0, which is considered to be
the background color. Using colorback immediately changes the color
being displayed for all pixels with color number 0.

EXAMPLE: Since this program is in "screen" mode, changing the
background color has no immediately observable effect. When the
message "Greetings" is output, the background surrounding each letter
will be in color number 2.

setscreen ("screen")

colorback (2)
put "Greetings"

kXAMPLE: Since this program is in "graphics" mode, changing the
background color immediately changes the colors of all pixels whose
color number is 0.

setscreen ("graphics")

colorback(2)

' AILS: The screen should be in a "screen" or "graphics" mode; if not, it
will automatically be set to "screen " mode. See setscreen for details.
See also color and whatcolorback.

Turing Reference Manual 69

[PC only]

comment
DESCRIPTION: A comment is a remark to the reader of the program,

which is ignored by the computer. The most common form of comment
in Turing starts with a percent sign (%) and continues to the end of the
current line; this is called an end-of-line comment. There is also the
bracketed comment, which begins with the /* and ends with */ and
which can continue across line boundaries.

EXAMPLES:

% This is an end-of-line comment
Var X : real % Here is another end-of-line comment
const s := "Hello"
/* Here is a bracketed comment that

lasts for two lines '/
const pi := 3 .14159

DETAILS: In the Basic language, comments are called remarks and start
with the keyword REM. In Pascal, comments are bracketed by (* and
*).

comparisonOperator
: A comparisonOperator is one of:

(a)
(b)
(0 =
(d)
(e) >~
(0 not=

<=

% Less than
% Greater than
% Equal
% Less than or equal; subset
% Greater than or equal; superset
% Not equal

DESCRIPTION: A comparison operator is placed between two values to
determine their equality or ordering. For example, 7 > 2 is true and so
is "Adam" < "Cathy". The comparison operators can be applied to
numbers as well as to enumerated types. They can also be applied to
strings to see determine the ordering between strings (see the string
type for details). Arrays, records, unions and collections cannot be
compared. Boolean values (true and false) can be compared only for
equality (= and not=); the same applies to pointer values. Set values
can be compared using <= and >=, which are the subset and superset
operators. The not= operator can be written as ~=.

See also infix operators and precedence of operators. See also
the int, real, string, set, boolean and enum types. See also string
comparison.

Turing Reference Manual 70 Turing Reference Manual 71

const
constant declaration

SYNTAX: A constantDeclaration is:

const id [: typeSpec] := initializingValue

DESCRIPTION: A const declaration creates a name id for a value.

EXAMPLES:

% The type ofs is string
const c := 3
const s := "Hello"
const x := sin (y) ** 2
const a : array 1 ..3 of int := init(1, 2, 3)
const b: array 1 ..3 of int := a
const c: array 1 ..2,1 ..2 of int := init(1, 2, 3 , 4)

% So c(1,1)=1, c(1,2)=2, C(2,1)=3, c(2,2)=4

DETAILS: The initialising value can be an arbitrary value or else a list of
items separated by commas inside init (...). The syntax of
initializingValue is:

a. expn
b. init (initializingValue, initializingValue)

Each init (...) corresponds to an array, record or union value that is
being initialized; these must be nested for initialisation of nested
types. In the Pascal language, constants must have values known at
compile time; Turing has no such restriction.

When the typeSpec is omitted, the variable's type is taken to
be the (root) type of the initialising expression, for example, int or
string. The typeSpec cannot be omitted for dynamic arrays or when the
initialising value is of the form init (...). The values inside init (. . .)
must be known at compile time.

The keyword pervasive can be inserted just after const. When
this is done, the constant is visible inside all subconstructs of the
constant's scope. Without pervasive the constant is not visible inside
modules unless explicitly imported. Pervasive constants need not be
imported. You can abbreviate pervasive as a star (*).

Turing Reference Manual 72

constantReference
use of a named constant

SYNTAX: A constantReference is:

constantld {componentSelector }

DESCRIPTION: In a Turing program, a constant is declared and given a
name (constantld) and then used. Each use is called a constant
reference.

If the constant is an array, record or union, its parts (components)
can be selected using subscripts and field names (using
componentSelectors). The form of a componentSelector is one of:

(a) (expn {, expn])
(b) .fieldld

Form (a) is used for subscripting (indexing) arrays. The number of
array subscripts must be the same as in the array's declaration. Form
(b) is used for selecting a field of a record or union. The use of
component selectors is the same as for variable references; see
variableReference for details. See also const declaration and
explicitConstant.

EXAMPLES:

var radius : real
const pi := 3 .14159 % Constant declaration

put "Area is:", pi * radius **2
% pi is a constant reference

Turing Reference Manual 73

COS cosine function (radians)

SYNTAX:

cos (r : real): real
DESCRIPTION: The cos function is used to find the cosine of an angle given

in radians. For example, cos (0) is 1.

EXAMPLE: This program prints out the cosine of pi/6,2*pi/6,3*pi/6, up to
12*pi/6 radians.

constp/:=3.14159
f o r / : 1 . - 1 2

const angle := / * pi I Q
put "Cos of", angle," is ", cos (angle)

end for
DETAILS: See also the cosd function which finds the cosine of an angle

given in degrees. (2 * pi radians are the same as 360 degrees.)

cosine function (degrees)

SYNTAX:

cosd (r : real): real
DESCRIPTION: The cosd function is used to find the cosine of an angle

given in degrees. For example, cosd (0) is 1.

EXAMPLE: This program prints out the cosine of 30,60,90, up to 360
degrees.

f o r / : 1 .. 12
const angle := I * 30
put "Cos of", angle," is", cosd (angle)

end for
DETAILS: See also the cos function which finds the cosine of an angle given

in radians. (2 * pi radians are the same as 360 degrees.)

Turing Reference Manual 74 Turing Reference Manual 75

procedure [PQMacandUnix

SYNTAX:

date (var d : string)
DESCRIPTION: The date statement is used to determine the current date.

Variable d is assigned a string in the format "dd mmm yy", where
mmm is the first 3 characters of the month, e.g., "Apr". For example,
if the date is Christmas 1989, d will be set to "25 Dec 89".

EXAMPLE: This program greets you and tells you the date.

var today : string
date (today)
put "Greetings!! The date today is ", today

DETAILS: See also the delay, clock, sysclock, wallclock and time
statements.

Be warned that on some computers such as IBM PC compatibles or
Apple Macintoshes, the date may not be set correctly in the operating
system; in that case, the date procedure will give incorrect results.

"HI, declaration
SYNTAX: A declaration is one of:

(a)
(b)
(0
(d)
(e)
(f)
(9)

variableDeclaration
constantDeclaration
typeDeclaration
bindDeclaration
procedureDeclaration
functionDeclaration
moduleDeclaration

DESCRIPTION: A declaration creates a new name (or names) for a
variable, constant, type, procedure, function or module. These names
are called identifiers, where id is the abbreviation for identifier.

EXAMPLES:

var width : int
const pi := 3 .14159
type range : 0 .. 150

procedure greet
put "Hello world"

end greet

% Variable declaration
% Constant declaration
% Type declaration

% Procedure declaration

DETAILS: Ordinarily, each new name must be distinct from names that are
already visible; that is, redeclaration is not allowed. There are
certain exceptions to this rule, for example, names of parameters and
fields of records can be the same as existing visible variables. It is also
allowed for variables declared inside a subprogram (a procedure and
function) to be the same as variables global to (outside of) the
subprogram.

The effect of a declaration (its scope) lasts to the end of the
construct in which the declaration occurs; this will be the end of the
program, the end of the surrounding procedure, function or module, the
end of a loop, for, case or begin statement, or the end of the then, elsif,
or else clause of an if statement, or the end of the case statement
alternative.

Turing Reference Manual 76 Turing Reference Manual 77

A name must be declared before it can be used; this is called the
DBU (Declaration Before Use) rule. The exception to this rule is the
form forward id, occurring in import lists and in collection
declarations.

A declaration can appear any place a statement can appear; this
is different from the Pascal language, in which declarations are
allowed only at the beginning of the program or at the beginning of a
procedure or function. Each declaration can optionally be followed by
a semicolon (;).

There are certain restrictions on the placement of declarations.
Procedures and functions cannot be declared inside other procedures and
functions nor inside statements (for example, not inside an if
statement). A bind declaration cannot appear inside a procedure or
functions nor at the outer level of either the main program or a
module.

Turing Reference Manual 78

procedure

SYNTAX:

delay (duration : int)
DESCRIPTION: The delay statement is used to cause the program to

pause for a given time. The time duration is in milliseconds.

EXAMPLE: This program prints the integers 1 to 10 with a second delay
between each.

[PC, Mac and Unix only]

for / : 1 .. 10
put /
delay (1000)

end for
% Pause for 1 second

DETAILS: See also the sound, clock, sysclock, wallclock, time and date
statements.

On IBM PC compatibles, the hardware resolution of duration is
in units of 55 milliseconds. For example, delay(SOO) will delay the
program by about half a second, but may be off by as much as 55
milliseconds.

On Apple Macintoshes, the hardware resolution of duration is in units
of 17 milliseconds (l/60th of a second). For example, delay(500) will
delay the program by about half a second, but may be off by as much as
17 milliseconds.

Turing Reference Manual

SYNTAX:

div

DESCRIPTION: Thed

DETAILS: °V6r

operators and the mod

graphics procedure [PC and Mac only]

SYNTAX:

drawarc (x, y, xRadius, yRadius : int,
initialAngle, finalAngle, Color : int)

pESCRIPTION: The drawarc procedure is used to draw an arc whose
center is at (x y). This is just like drawoval, except that you must also
give two angles, initial Angle and final Angle, which determine where
Svlovl^ draWing> Zero de8rees is "three °'dock"' 9° d=ff«s istwelve o clock ', etc. The horizontal and vertical distances from the
center to the arc are given by xRadius and yRadius.

yRadius
AnnalAngleX

.4—-\ tlnl ti al A ngl e
' y) xRadius 7

idrde (actually' an roxm

ine ml °enter 'S (midx'0)' the bottom center of the

determine th^l°r number L ^e maxx and maxy functions are used to
^ me maximum x and y values on the screen.

11 ("graphics")
midx := maxx div 2

Qrawarc (m'̂ - 0, maxy, maxy, 0, 1 8 0 , 1)

palette- Z^^3™"8 °f the Co/or number depends on the current
F tue, see the palette statement.

* " mode; ̂ the setscreen

automaticallv bo »' - thc,screen is not in a V«P^s" mode, it willybesett° graphics" mode.

and drawer SetSCreen' maxx' maxy- drawdot, drawline, drawbox,

80

Turing Reference Manual 81

drawbox graphics procedure [pcandM

SYNTAX:

drawbox (x1, y1, x2, y2, Color : int) -

DESCRIPTION: The drawbox procedure is used to draw a box on the screen
with bottom left and top right comers of (xl, yl) to (x2, y2) using the
specified Color.

(x2 ,y2)

EXAMPLE: This program draws a large box, reaching to each corner of the
screen using color number 1. The maxx and maxy functions are used to
determine the maximum x and y values on the screen. The point (0,0) is
the left bottom of the screen and (maxx, maxy) is the right top.

setscreen ("graphics")
drawbox (0, 0, maxx, maxy, 1)

DETAILS: The meaning of the Color number depends on the current
palette; see the palette statement.

The screen should be in a "graphics" mode; see the setscreen
procedure for details. If the screen is not in a "graphics" mode, it will
automatically be set to "graphics" mode.

See also setscreen, maxx, maxy, drawdot and drawline.

graphics procedure [PC and Mac only]

drawdot (x, y, Color: int)
egCRlPTlON: The drawdot procedure is used to color the dot (pixel) at

location (x, y) using the specified Color.

maxy

0 1 2 3 maxx
Origin

EXAMPLE: This program randomly draws dots with random colors. The
maxx, maxy and maxcolor functions give the maximum x, y and color
values.

setscreen ("graphics")
var x, y, c: int
loop

randint (x, 0, maxx) % Random x
randint (y, 0, maxy) % Randomy
randint (c, 0, maxcolor) % Random color
drawdot (x, y, c)

end loop
DETAILS: The meaning of the Color number depends on the current

palette; see the palette statement.
The screen should be in a "graphics" mode; if not, it will

automatically be set to "graphics" mode. See setscreen for details
See also maxx, maxy, maxcolor and drawline.

Turing Reference Manual 82 Turing Reference Manual 83

drawfill graphics procedure
SYNTAX:

drawfill (x, y : int, fillColor, borderColor: int)

DESCRIPTION: The drawfill procedure is used to color in a figure that is
on the screen. Starting at (x, y), the figure is filled with/i7/Co7or to a
surrounding border whose color is borderColor.

borderColor

fillColor

EXAMPLE: This program draws on oval with x and y radius of 10 in the
center of the screen using color 1. Then the oval is filled with color 2.
The maxx and maxy functions are used to determine the maximum x
and y values on the screen.

setscreen ("graphics")
const midx := maxx div 2
const midy := maxy div 2
drawoval (midx, midy, 1 0 , 1 0 , 1)
drawfill (midx, midy, 2,1)

DETAILS: The meaning of the Color number depends on the current
palette; see the palette statement.

The screen should be in a "graphics " mode; see the setscreen
procedure for details. If the screen is not in a "graphics" mode, it will
automatically be set to "graphics" mode.

See also setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

Warning: In Version 4.2 of Turing for IBM PC compatibles,
drawfill fails to completely fill in some complicated figures that
contain "islands" within them surrounded by the borderColor.

Turing Reference Manual 84

graphics procedure

SYNTAX:

drawline (x 1 , y1, x2, y2, Color : int)

DESCRIPTION: The drawline procedure is used to draw a line on the
screen from (xl, yl) to (x2, y2) using the specified Color.

(x2 ,y2)

[PC and Mac only]

EXAMPLE: This program draws a large X, reaching to each corner of the
screen using color number 1. The maxx and maxy functions are used to
determine the maximum x and y values on the screen. The point (0,0)
is the left bottom of the screen, (maxx, maxy) is the right top, etc.

setscreen ("graphics")
% First draw a line from the left bottom to right top
drawline (0,0, maxx, maxy, 1)
% Now draw a line from the left top to right bottom
drawline (0, maxy, maxx, 0,1)

DETAILS: The meaning of the Color number depends on the current
palette; see the palette statement.

The screen should be in a "graphics" mode; see the setscreen
procedure for details. If the screen is not in a "graphics" mode, it will
automatically be set to "graphics" mode.

See also setscreen, maxx, maxy, drawdot and drawbox.

Turing Reference Manual 85

graphics procedure [PC and Mac

SYNTAX:

drawoval (x, y, xRadius, yRadius, Color : int)

DESCRIPTION: The drawoval procedure is used to draw an oval whose
center is at (x, y). The horizontal and vertical distances from the
center to the oval are given by xRadius and yRadius.

EXAMPLE: This program draws a large oval that just touches each edge of
the screen using color number 1. The maxx and maxy functions are used
to determine the maximum x and y values on the screen. The center of
the oval is at (midx, midy), which is the middle of the screen.

setscreen ("graphics")
const midx := maxx div 2
const midy := maxy div 2
drawoval (midx, midy, midx, midy, 1)

DETAILS: Ideally, a circle is drawn when xRadius = yRadius. In fact, the
aspect ratio (the ratio of height to width of pixels displayed on the
screen) of the IBM PC compatibles is not 1.0, so this does not draw a
true circle. In CGA graphics mode this ratio is 5 to 4.

The meaning of the Color number depends on the current palette;
see the palette statement.

The screen should be in a "graphks" mode; see the setscreen
procedure for details. If the screen is not in a "graphks " mode, it will
automatically be set to "graphics" mode.

See also setscreen, maxx, maxy, drawdot, drawline, and
drawbox.

Turing Reference Manual 86

graphics procedure

SYNTAX:

drawpic (x, y : int,
buffer : array 1 .. * of int,
picmode : int) \

DESCRIPTION: The drawpic procedure is used to copy of a rectangular
picture onto the screen. The left bottom of the picture is placed at (x,
y). In the common case, the buffer was initialized by calling takepic.
The values of picmode are:

0: Copy actual picture on screen.
1: Copy picture by XORing it onto the screen.

XORing a picture onto the screen twice leaves the screen as it was; this
is a convenient way to move images for animation. XORing a picture
onto a background effectively superimposes the picture onto the
background.

DETAILS: See takepic for an example of the use of drawpic and for
further information about buffers for drawing pictures.
The screen should be in a "graphics" mode; see the setscreen procedure
for details. If the screen is not in a "graphics " mode, it will
automatically be set to "graphics" mode.

See also takepic and sizepic.

See also setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

[PC only]

Turing Reference Manual 87

enum type
enumerated type

SYNTAX: An enumemtedType is:

enum (id { , id })

DESCRIPTION: The values of an enumerated type are distinct and
increasing. They can be thought of as the values 0,1,2 and so on, but
arithmetic is not allowed with these values.

EXAMPLE:

type color : enum (red, green, blue)
var c : color := color.red
var d : COlor := SUCC(C) %d becomes green

DETAILS: Each value of an enumerated type is the name of the type
followed by a dot followed the the element's name, for example,
color.red. Enumerated values can be compared for equality and for
ordering. The succ and pred functions can be used to find the value
following or preceding a given enumerated value. The ord function can
be used to find the enumeration position of a value, for example,
ord(color.red) is 2.

Enumerated types cannot be combined with integers or with
other enumerated types.

Turing Reference Manual 88

eflumeratedValue
SYNTAX: An enumeratedValue is:

enumeratedTypeld . enumeratedld

DESCRIPTION: The values of an enumerated type are written as the type
name (enumeratedTypeld) followed by a dot followed by one of the
enumerated values of the type (enumeratedld).

EXAMPLE: In this example, color.red is an enumeratedValue.

type color : enum (red, green, blue)
var c : color := color.red

d : COlor \=SUCC(C) % d becomes green

DETAILS: The above description has been simplified by ignoring the
possibility that the enum type can be exported from a module. If this
is the case, each use of one of the enumerated values outside of module
M must be preceded by the module name and a dot, as in Mxolor.red.

See also the enum type and explicit constants.

Turing Reference Manual 89

end-of-file function
SYNTAX:

equivalence of types

eof (streamNumber: int)

DESCRIPTION: The eof (end of file) function is used to see if there is any
more input. It returns true when there are no more characters to be
read. The parameter and its parentheses are omitted when referring
to the standard input (usually this is the keyboard); otherwise the
parameter specifies the number of a stream; this number has been
determined (in most cases) by an open statement.

EXAMPLE: This program reads and outputs all the lines in the file called
"info".

var line : string
var fileNumber : int
open : fileNumber, "info", get
loop

exit when eof (fileNumber)
get: fileNumber, line :*
put line

end loop
DETAILS: See also the description of the get statement, which gives more

examples of the use of eof. See also the open and read statements.

When the input is from the keyboard, the user can signal
end-of-file by typing controI-Z on a PC (or control-D on Unix). If a
program tests for eof on the keyboard and the user has not typed
control-Z (or control-D) and the user has typed no characters beyond
those that have been read, the program must wait until the next
character is typed. Once this character is typed, the program knows
whether it is at the end of the input, and returns the corresponding true
or false value for eof.

1
Turing Reference Manual 90

C R l P T I : Two types are equivalent to each other if they are
essentially the same types (the exact rules are given below). When a
variable is passed to a var formal parameter, the types of the
variable and the formal parameter must be equivalent because they
are effectively the same variable. When an expression is assigned to a
variable, their root types must be equivalent, except for the special
case that it is allowed to assign an integer expression to a real
variable (see assignability for details).

EXAMPLES:

vary : int
var b : array 1 .. 25 of string

type person Type :
record

age : int
name : string (20)

end record
procedure p (var / : int,

var a : array 1 .. 25 of string,
var r : person Type)

... body of procedure p, which modifies
each of i, aandr...

end p

var s : person Type
P (/, b, S) % Procedure call to p

% i and j have the equivalent type int
% Arrays a and b have equivalent types
% Records r and s have equivalent types

Two types are defined to be equivalent if they are:

(a) the same standard type (int, real, boolean or string [(...)],
(b) subranges with equal first and last values,
(c) arrays with equivalent index types and equivalent component
types,
(d) strings with equal maximum lengths,

Turing Reference Manual 9 1

(e) sets with equivalent base types, or
(0 pointers to the same collection; in addition,
(g) a declared type identifier is equivalent to the type it names (and to

the type named by that type, if that type is a named type, etc.)

Each separate instance of a record, union or enumerated type
(written out using one of the keywords record, union or enum) creates a
distinct type, equivalent to no other type. By contrast, separate
instances of arrays, strings, subranges and sets are considered
equivalent if their parts are equal and equivalent.

Opaque type T, exported from a module M as opaque, is a special
case of equivalence. Outside of M this type is written M.T, and is
considered to be distinct from all other types. By contrast, if type LI is
exported non-opaque, the usual rules of equivalence apply. The
parameter or result type of an exported procedure or function or an
exported constant is considered to have type M.T outside of M if the
item is declared using the type identifier T. Outside of M, the opaque
type can be assigned, but not compared.

Turing Reference Manual 92

£ ealstr real-to-string function

SYNTAX:

erealstr (r : real,
width, fractionWidth, exponentWidth : int) :

string
DESCRIPTION: The erealstr function is used to convert a real number to a

string; for example, erealstr (2.5el, 10, 3, 2)="b2.500e+01 " where b
represents a blank. The string (including exponent) is an
approximation to r, padded on the left with blanks as necessary to a
length of width.

The vridth must be non-negative int value. If the width
parameter is not large enough to represent the value of r, it is
implicitly increased as needed.

The fractionWidth parameter is the non-negative number of
fractional digits to be displayed. The displayed value is rounded to
the nearest decimal equivalent with this accuracy, with ties rounded
to the next larger value.

The exponentWidth parameter must be non-negative and gives
the number of exponent digits to be displayed. If exponentWidth is
not large enough to represent the exponent, more space is used as
needed. The string returned by erealstr is of the form:

{blank)[-]digit.{digit)e sign digit (digit)

where sign is a plus or minus sign. The leftmost digit is non-zero,
unless all the digits are zeros.

The erealstr function approximates the inverse of strreal,
although round-off errors keep these from being exact inverses.

See also the frealstr, realstr, strreal, intstr and strint functions.

Turing Reference Manual 93

exit statement

SYNTAX: An exitStatement is one of:

(a) exit when trueFalseExpn
(b> exit

DESCRIPTION: An exit statement is used to stop the execution of a loop or
for statement. Form (a) is the most common. In it the true/false
expression is evaluated. If it is true, the loop is terminated and
execution jumps down and continues just beyond end loop or end for. If it
is false, the loop keeps on repeating. Form (b) always causes the loop
to terminate; this form is almost always used inside another
conditional statement such as if.

EXAMPLE: Input names until finding Jones.

var name : string
loop

get name
exit when name = "Jones"

end loop

DETAILS: Exit statements must occur only inside loop or for statements. An
exit takes you out of the mostly closely surrounding loop or for. The
only other ways to terminate a loop or for is by return (in a procedure or
in the main program, in which case the entire procedure or main
program is terminated) or by result (in a function, in which case the
entire function is terminated and a result value must be supplied).

The form "exit when trueFalseExpn" is equivalent to "if
trueFalseExpn then exit end if".

1

Turing Reference Manual 94

exponentiation function

SYNTAX:

exp (r : real): real
DESCRIPTION: The exp function is used to find e to the power r, where e is

the natural base and r is the parameter to exp. For example, exp(0)
returns 1 and exp(1) returns the value of e.

EXAMPLE: This program prints out the exponential values of 1,2,3,... up
to 100.

for /: 1 .. 100
put "Exponential of", /," is", exp (/)

end for
DETAILS: See also the In (natural logarithm) function.

Turing Reference Manual 95

explicitConstant
SYNTAX: An explicitConstant is one of:

(a) explicitStringConstant
(b) explicitlntegerConstant
(c) explicitRealConstant
(d) explicitTrueFalseConstant

%e.g.: "Hello world"
%e.g.: 25
%e.g.: 51.8
%e.g.: true

DESCRIPTION: An explicitConstant gives its value directly, for example,
the value of the explicit constant 25 is twenty-five.

EXAMPLES: In the following, the explicit constants are "Hello world",
3.14159 and 2. Note that pi is a named constant rather than an explicit
constant.

put "Hello world"
var diameter : real
const pi := 3.14159
diameter := pi* r ** 2
var x := diameter

DETAILS: In some programming languages, explicit constants are called
literals or literal values, because they literally (explicitly) give
their values.

For further details about explicit constants, see
explicitStringConstant, explicitlntegerConstant, explicitRealConstant
and explicitBooleanConstant. See also enumeratedValue.

r
eXplicit!ntegerConstant
SYNTAX: An explicitlntegerConstant is a sequence of one or more decimal

digits (0 to 9) optionally preceded by a plus or minus sign.

EXAMPLES: In the following, the explicit integer constants are 0,115 and
5.

var count : int := 0
const height := 1 1 5

count := height - 5

DETAILS: In Turing, the range of integers is from -2147483647 to
2147483647. In other words, the maximum size of integer is 2**31 - 1.

i
«

Turing Reference Manual 96 Turing Reference Manual 97

explicitRealConstant
SYNTAX: An explicitRealConstant consists of an optional plus or mfnus

sign, a significant digits part, and an exponent part.

EXAMPLES: In the following, the explicit real constants are 0.0 and
2.93e3.

var temperature : real := 0.0
const speed := 2.93e3 % vaiueis 2,930.0

DETAILS: The significant digits part (or fractional part) of an explicit
real constant consists of a sequence of one or more digits (0 to 9)
optionally containing a decimal point (a period). The decimal point is
allowed to follow the last digit as in 16. or to precede the first digit,
as in .25

The exponent part consists of the letter e or E followed
optionally by a plus or minus sign followed by one or more digits. For
example in -9.837e-3 the exponent part is e-3. The value of -9.837e-3 is
-9.837 times 0.001.

If the significant figures part contains a decimal point then the
exponent part is not required.

eXplicitStringConstant
SYNTAX: An explicitStringConstant is a sequence of characters

surrounded by quotation marks.

EXAMPLES: In the following, the explicit string constants are "Hello
world","" and "273 O'Reilly Ave.".

var name : string := "Hello world"
name := "" %Null string, containing zero characters
var address : string := "273 O'Reilly Ave."

DETAILS: Within an explicit string constant, the back slash character (\)
is used to represent certain other characters as follows:

\" quotation mark character
\n or \N end of line character
\t or \T tab character
\f or \F form feed character
\r or \R return character
\b or \B backspace character
\e or \E escape character
\d or \D delete character
\\ backslash character

For example, put "OneXnTwo" will output One on one line and Two on
the next.

Explicit string constants cannot cross line boundaries. To
represent a string that is longer than a line, break it into two or more
strings on separate lines and use + (catenation) to join the individual
strings.

An explicit string constant can contain at most 255 characters
(this is in implementation constraint).

An explicit string is not allowed to contain characters with the
code values of 0 or 128; these character values are called eos (end of
string) and uninitchar (uninitialised character). These are reserved by
the implementation to mark the end of a string value and to see if a
string variable has a value.

Turing Reference Manual 98 Turing Reference Manual 99

explicitTrueFalseConstant
SYNTAX: An explicitTrueFalseConstant is one of:

(a)
(b)

true
false

EXAMPLE: The following determines if string s contains a period. After
the for statement, found will be true if there is a period in s.

var found : boolean := false
for i: 1 .. length (s)

If s = "." then
found := true

end if
end for

DETAILS: True/false values are called boolean values. A boolean
variable, such as found in the above example, can have a value of
either true or false. See also boolean type.

Turing Reference Manual 100

expression

(a)
(b)
(0
(d)
(e)
(*)
(9)
(h)
(0

: An expn is one of:

explicitConstant
variableReference
constantReference
expn infixOperator expn
prefixOperator expn
(expn)
substring
functionCall
setConstructor
enumeratedValue

%e.g.: 25
% e.g.: width
%e.g.: pi
% e.g.: 3 + width
% e.g.: • width
% e.g.: (width - 7)
%e.g.: s (3 ..5)
%e.g.: sqrt (25)
% e.g.: modes (4, 3)
%e.g.: color, red

DESCRIPTION: An expression (expn) returns a value; in the general case,
this may involve a calculation, such as addition, as in the expression
3 + width.

EXAMPLES:

put "Hello world"
var diameter : real
const pi := 3.14159
diameter := pi * r ** 2
var x := diameter

% "Hello world" is an expn

% 3.14159 is an expn
% pi * r ** 2 is an expn
% diameter is an expn

DETAILS: In the simplest case, an expression (expn) is simply an explicit
constant such as 25 or "Hello world". A variable by itself is
considered to be an expression when its value is used, as is the case
above when the value of diameter is used to initialise x. More
generally, an expression contains an operator such as + and carries out
an actual calculation. An expression may also be a substring, function
call, set constructor or enumerated value; for details, see the
descriptions of these items.

The infix operators are: +, -, *, /, div, mod, **, <, >, =, <=, >=,
not=, not, and, or, =>, in, and not in. For details, see infixOperator.
The prefix operators are +, - and not. For details see prefix operator.

See also precedence of operators, as well as the int, real, string
and boolean types.

Turing Reference Manual 101

export list
SYNTAX: AnexportList is:

export([opaque]/c/ {,[opaque] id})

DESCRIPTION: An export list is used to specify those items declared in a
module that can be used outside of it. Items that are declared inside a
module but not exported cannot be accessed outside of the module.

EXAMPLE: In this example, the procedures names pop and push are
exported from the stack module. These two procedures are called from
outside the module on the last and third from last lines of the
example; notice that the word stack and a dot must precede the use of
these names. Since top and contents were not exported, they can be
accessed only from inside the module.

module stack
export (push, pop)
var top: int := 0
var contents: array 1 ..100 of string
procedure push... end push
procedure pop... end pop

end stack

stack. push ("Harvey")
var name : string
stack. pop (name) % This sets name to Harvey

DETAILS: Only procedures, functions, constants and types can be exported.
It is not allowed to export variables or modules.

In the most common case, the optional keyword opaque is
omitted. The keyword is allowed only in front of exported types
names. When it is used, it specifies that outside the module, the type
is considered to be distinct from all other types; this means, for
example, that if the type is an array, it cannot be subscripted outside
of the module. See module declaration for details about opaque types.

Note: The parentheses in the export statement are optional.
The export statement in the example could have been:

export pop, push

Turing Reference Manual 102

procedures and functions

[Compiler only]

SYNTAX: An externalSubprogram is: • ^

external [overrideName] subprogramHeader
DESCRIPTION: This syntax provides an extension to the Turing language

to allow the Turing program to call programs written in other
languages such as the C language. This extension is not supported in
the current Turing interpeter.

The optional overrideName must be an explicit string constant,
such as "print/". When it is omitted, the name used for external
linking is the name of the procedure or function, as given in the
subprogramHeader.

The subprogramHeader is one of:

(a) procedure id [(paramDeclaration IparamDecIaration])]
(b) function id [(paramDeclaration \jparamDeclaration])]

[id]: typeSpec

Turing Reference Manual 103

false
boolean value (as opposed to true) -

SYNTAX:

false
DESCRIPTION: A boolean (true/false) variable can be either true or false

(see boolean type).

EXAMPLE:

var found : boolean := false
var word: int
for / : 1 .. 10

get word
found := found or word- "gold"

end for
if found = true then

put "Found 'gold' in the ten words"
end if

DETAILS: The line if /owmf=true then can be simplified to if found then
with no change to the meaning of the program.

(fetch argument) function [pc,MacandUnixoniyi

SYNTAX:

fetcharg (/ : int): string
DESCRIPTION: The fetcharg function is used to access the i-th argument

that has been passed to a program from the command line. For
example, if the program is run from the Turing environment using

:rfilelfile2

then fetcharg(2) will return "file2". If a program called prog.x is run
under Unix using this command

prog.x filel file2

the value of fetcharg(2) will similarly be "filc2".

The nargs function, which gives the number of arguments passed
to the program, is usually used together with the fetcharg function.
Parameter j passed to fetcharg must be in the range 0.. nargs . See also
nargs.

The 0-th argument is the name of the running program.

EXAMPLE: This program lists its own name and its arguments.

put "The name of this program is :", fetcharg(O)
for i: 1 .. nargs

put "Argument", /," is ", fetcharg(/)
end for

Turing Reference Manual 104 Turing Reference Manual 105

floor real-to-integer function

SYNTAX:

floor(r : real): int

DESCRIPTION: Returns the largest integer that is less than or equal to r.

DETAILS: The floor function is used to convert a real number to an integer.
The result is the largest integer that is less than or equal to r. In other
words, the floor function rounds down to the nearest integer. For
example, floor (3) is 3, floor (2.75) is 2 and floor<-8.43) is -9.

See also the ceil and round functions.

Turing Reference Manual 106

statement

SYNTAX: A forStatement is:

for [decreasing] [id] : first ... last
statementsAndDeclarations

end for
DESCRIPTION: The statements and declarations in a for statement are

repeatedly executed with the identifier increasing by 1 (it decreases
by 1 if you specify decreasing) (mm first to lost, which are integer
values (or else enumerated values).

EXAMPLE: Output 1, 2, 3, up to 10.

f o r / : 1 . . 1 0
put /

end for

EXAMPLE: Output 10,9,8, down to 1.

for decreasing j: 10 .. 1
put/

end for

DETAILS: The for statement declares the counting identifier (a separate
declaration should not be be given for i or /). The scope of this
identifier is restricted to the for statement.

If first is a value beyond last, there will be no repetitions (and no
error message). The counting identifier is always increased (or
decreased) by 1; in some languages such as Basic, you can specify a step
size other than 1, but this is not possible in Turing. Executing an exit
statement inside a for statement causes a jump to just beyond end for.
You are not allowed to change the counting variable (for example, you
are not allowed to write i := 10).

The counting identifier can be omitted; the statement is just as
before, except the value of the identifier cannot be used by the
program.

Turing Reference Manual 107

If decreasing is not present, first.. last can be replaced by the
name of a subrange type, for example by dozen, declared by:
type dozen : I..12

Procedures, functions and modules cannot be declared inside a for
statement. Just preceding the statements and declarations, you are
allowed to write an "invariant clause" of the form:

invariant trueFalseExpn

This clause is equivalent to: assert trueFalseExpn.

Turing Reference Manual 108

forward declaration

SYNTAX: A forwardDedamtion is one of:

(a) forward procedure procedureld
[(paramDeclaration {, paramDeclaration })]
import (importltem {, importltem})

(a) forward function functionld
[(paramDeclaration {, paramDeclaration })]

[resultld]: resultType
import (importltem {, importltem})

DESCRIPTION: A procedure or funcdon is declared to be forward when
you want to define its header but not its body. This is the case when
one procedure or function calls another which in turn calls the first;
this situation is called mutual recursion. The use of forward is
necessary in this case because every item must be declared before it can
be used.

EXAMPLES: This example program evaluates an input expression e of the
form / { + t) where t is of the form p {* p } and p is of the form (e) or
an explicit real expression. For example, the value of 1.5 + 3.0 * (0.5 +
1.5) halt is 7.5.

var token: string

forward procedure expn (var eValue: real)
import (forward term, var token)

forward procedure term (var tValue : real)
import (forward primary, var token)

forward procedure primary (var pValue: real)
import (expn, var token)

body procedure expn
var nextValue: real
term (eValue)
loop

% Evaluate t
% Evaluate { +1}

Turing Reference Manual 109

ft.

exit when token not= "+"
get token
term (nextValue)
eValue := eValue + nextValue

end loop
end expn

body procedure term
var nextValue: real
primary (tValue) % Evaluate p
lOOp % Evaluate { * p}

exit when token not= "*"
get token
primary (nextToken)
tValue := tValue + nextValue

end loop
end term

body procedure primary
if token = "(" then

get token
eXpn(pValue) % Evaluate (e)
assert token =")"

e Ise % Evaluate "explicit real"
pValue := strreal (token)

end if
get token

end primary

get token % Start by reading first token
var answer: real
expn (answer) % Scan and evaluate input expression
put "Answer is ", answer

DETAILS: Following a forward procedure or function declaration, the body
of the procedure must be given at the same level (in the same sequence
of statements and declarations as the forward declaration). This is
the only use of the keyword body; see also body.

Turing Reference Manual 110

Any procedure or function that is declared using forward is
required to have an import list. In this list, imported procedures or
functions that have not yet appeared must be listed as forward; for
example, the import list for expn is import (forward term ...). Before
a procedure or function can be called and before its body appears and
before it can be passed as a parameter, its header as well as headers of
procedures or functions imported directly or indirectly by it must have
appeared.

The keyword forward is also used in collection declarations; see
also collections.

Turing Reference Manual 111

frealstr real-to-string function
rSYNTAX:

frealstr (r : real, width, fractionWidth,: int) :
string

DESCRIPTION: The frealstr function is used to convert a real number to a
string; for example, frealstr (2.5el, 5,1)="&25.0" where b represents a
blank. The string is an approximation to r, padded on the left with
blanks as necessary to a length of width.

The number of digits of the fraction to be displayed is given byfractionWidth.

The width must be non-negative. If the width parameter is not
large enough to represent the value of r, it is implicitly increased as
needed.

The fractionWidth must be non-negative. The displayed value
is rounded to the nearest decimal equivalent with this accuracy, with
ties rounded to the next larger value. The result string is of the form:

(blank) [-HdigitJ. {digit}
If the leftmost digit is zero, then it is the only digit to the left of the
decimal point.

The frealstr function approximates the inverse of strreal,
although round-off errors keep these from being exact inverses.

See also the erealstr, realstr, strreal, intstr and strint functions.

free statement

SYNTAX: A freeStatement is:

free collectionid, pointerVariableReference

DESCRIPTION: A free statement destroys (deallocates) an element of a
collection.

EXAMPLE: Declare a list. Allocate and then later deallocate a node.

var list : collection of
record

contents : string (1 0)
next : pointer to list

end record
var first: pointer to list
new list, first % Allocate an element of list;

% place its location in first

free list, first % Deallocate the element of list
% located by first.

DETAILS: The free statement sets the pointer variable to the nil value, in
this example, to nil (list).

See also the collection declaration, the pointer type, and the
new statement.

Turing Reference Manual 112
Turing Reference Manual 1 1 3

function declaration

SYNTAX: A functionDeclaration is:

function id
[(paramDeclaration {, paramDeclaration })]
: typeSpec
statementsAndDeclarations

end id
DESCRIPTION: A function declaration creates (but does not run) a new

function. The name of the function (id) is given in two places, just after
function and just after end.

EXAMPLES:

function doublelt (var x: real): real
result 2.0 * x

end doublelt

put doublelt (5.3) % This outputs 10.6

DETAILS: The set of parameters declared with the function are called
formal parameters; for example, in the doublelt function, x is a formal
parameter. A function is called (invoked) by a function call which
consists of the function's name followed by the parenthesised list of
actual parameters (if any); for example, doublelt (5.3) is a call having
5.3 as an actual parameter. If there are no parameters, the call does
not have parentheses. The keyword function can be abbreviated to fen.
See also functionCall and procedureDeclaration.

Each actual parameter must be assignable to the type of its
corresponding formal parameter; see also assignability.

A function must finish by executing a result statement, which
produces the function's value. In the above example, the result
statement computes and returns the value 2.0 * x.

In principle, a function should not change any variables outside
of itself (global variables); in other words, it should have no side
effects. However, this restriction is not necessarily enforced by the
implementation. A function should not have var parameters, as these
would allow the function to change values outside of itself.

Turing Reference Manual 114

The upper bounds of arrays and strings that are parameters may
declared to be star (*), meaning the bound is that of the actual

oararneter. See paramDeclaration for details about parameters.

Procedures and functions cannot be declared inside other
procedure and functions.

The syntax of a functionDeclaration presented above has been
SJmplified by leaving out the result identifier, import list, pre and
post condition and init clause; the full syntax is

function id
[(paramDeclaration {, paramDeclaration })]
[resultld] : typeSpec
(import ([[var] id {, [var] i d }])]
[pre trueFalseExpn]
[init/'d := expn {, id := expn }]
[post trueFalseExpn]
statementsAndDeclarations

end id

See import list, pre condition, init clause and post condition for
explanations of these additional features. The resultld is the name of
the result of the function and can be used only in the post condition.

A function must be declared before being called; to allow for
mutually recursive procedures and functions, there are forward
declarations with later declaration of the procedure or function body.
See forward and body declarations for explanations.

Turing Reference Manual 115

functionCall
SYNTAX: A functionCall is;

functionld [(expn { , expn})]

DESCRIPTION: A function call is an expression that calls (jnvokes or

activates) a function. If the function has parameters, a parenthesised
list of expressions (expns) must follow the function's nai^g (functionld)

EXAMPLES: This function takes a string containing a blan|< ancj returns
the first word in the string (all the characters up to the firs(. blank)

function firstWord (str: string): string
for/ : 1 .. length (str)

if str (i) = " " then
result str (1 .. / - 1)

end if
end for

end firstWord

put "The first word is:", firstWord ("Henry
Hudson")

% The function call is firstWord (sample)
% The output is Henry.

DETAILS: The parameter declared in the header of a functior^ js a (orma\
parameter, for example, sir above is a formal parameter. £3^
expression in the call is an actual parameter, for example, sampie
above is an actual parameter. In a function, a formal parameter
should not be declared using var.

Each actual parameter passed to its non-var formal parameter
must be assignable to that parameter (see assignability for
See also functionDeclaration and procedureDeclaration.

In this explanation of functionCall, we have up to thjs po
ignored the possibility of procedures exported from mod\jjes
function is being called from outside of a module from wt-^^ ^as been
exported, the syntax of the functionCall is:

moduleld. functionld [(expn {, expn} j i

Turing Reference Manual

get statement

cYNTAX: A getStatement is:

get [: streamNumber,] getltem { , getltem }

DESCRIPTION: The get statement inputs each of the getltems.
Ordinarily, the output comes from the keyboard. However, if the
streamNumber is present, the input comes from the file specified by
the stream number (see the open statement for details). Also, input can
be redirected so it is taken from a file rather than the keyboard by a
command such as a: < f ileName done in the Turing environment.

The syntax of a getltem is one of:

(a) variableReference
(b> skip
(C) variableReference: *
(d) variableReference: widthExpn

These items are used to support three kinds of input:
(1) token-oriented input: supported by forms (a) and (b),
(2) line-oriented input: supported by form (c), and
(3) character-oriented input: supported by form (d).

Examples of these will be given, followed by a detailed explanation of
the kinds on input.

EXAMPLES: Token-oriented input.

var name, title: string
var weight : real
get name % If input is Alice, it is input into name
get title % If input is "A lady", A lady is input
Var Weight % If input is 9.62, it is input into weight

EXAMPLE: Line-oriented input.

var query: string
get query :* % Entire line is input into query

EXAMPLE: Character-oriented input.

Turing Reference Manual 117

var code: string
get code : 2 % Next 2 characters are input into code.

r-TAlLS

DETAILS: A token is defined as a sequence of characters surrounded by
white space, where white space is defined as the characters blank,
tab, form feed, new line, and carriage return as well as end-of-file.
The sequence of tokens making up the token are either all non white
space or else the token must be a quoted string (an explicit string
constant). Form (a) of getltem skips white space and then reads a
token into the variableReference, which must be a string, integer or
real. If the variableReference is a string, the token is assigned to the
variable (if the token is quoted, the quotation marks are first
removed); see the examples involving name and title above. If the
variableReference is an integer or a real, the token is converted to be
numeric before being assigned to the variable; see the example
involving weight above. When the input is coming from the keyboard,
no input is done until Return is typed. The line that is input may
contain more than one token; any tokens that are not input by one get
statement will remain to be input by the next get statement.

In form (b) of getltem, skip causes white space in the input to be
skipped until non white space (a token) or the end-of-file is reached.
This is used when the program needs to determine if there are more
tokens to be input. To determine if there are more tokens to be read, the
program should first skip over any possible white space (such as a
final new line character) and then test to see if eof (end-of-file) is true.
This is illustrated in this example:

EXAMPLE: Using token-oriented input, input all tokens and list them.

var word: string
loop

get skip
exit when eof
get word
put word

end loop

In the above and the next example, if the input has been redirected so
that it is from a file, eof becomes true exactly when there are no more
characters to be read. If the input is coming from the keyboard, you can
signal eof by typing control-Z (on a PC) or control-D (on Unix).

l ' In form (c) of getltem, the variableReference is followed by :»
vhich implies line-oriented input. This form causes the entire line (or
!Ie remainder of the current line) to be read; in this case the variable
Inust be a string (not an integer or real). The new line character at the
~nd of the line is discarded. It is an error to try to read another line
then vou are already at the end of the file. The following example
shows how to use line-oriented input to read all lines in the input.

Using line-oriented input, input all lines and list them.

% Are there more characters?
% Read entire line

var line: string
loop

exit when eof
get line: *
put line

end loop

% Skip over any white space
% Are there more characters?
% Input next token
% Output the token

DETAILS: In form (d) of getltem, the variableReference is follows by
: widthExpn which specifies character-oriented input. This form
causes the specified number (widthExpn) of characters to be input (or
all of the remaining characters if not enough are left); if no characters
remain, the null string is read and no warning is given. In this form,
the new line character is actually input into the variableReference
(this differs from line-oriented input which discards new line
characters). The following example shows how to use
character-oriented input to read each character of the input.

EXAMPLE: Using character-oriented input, input all characters and list
them.

var ch: string (1)
loop

exit when eof
get ch: 1
put ch ..

end loop

% Are there more characters?
% Read one character
% Output the character, which
% may be a new line character

DETAILS: See also the read statement, which provides binary file input.

Turing Reference Manual 118 Turing Reference Manual 119

getCrl (get character) procedure
SYNTAX:

getch (var ch : string (1))
DESCRIPTION: The getch procedure is used to input a single character

without waiting for the end of a line. The parameter ch is set to the
most recently type character.

EXAMPLE: This program contains a procedure called pause which causes
the program to wait until a key is pressed.

setscreen ("graphics")

procedure pause
var ch : string (1)
getch (ch)

end pause

for /: 1 .. 1000
put /: 4," Pause till a key is pressed"
pause

end for
DETAILS: The screen should be in a "screen" or "graphics" mode; see the

setscreen procedure for details. If the screen is not in one of these
modes, it will automatically be set to "screen" mode.

See also the hasch (has character) procedure which is used to
see if a character has been typed but not yet read.

On the IBM PC keystrokes which do not provide an ASCII value
(left arrow key, insert key, delete key, function keys and so on) return
the scan code of the keystroke with 128 added to it, unless the scan
code already has a value of 128 or greater. This provides a unique
value for every key on the keyboard. Use a reference to the IBM PC to
find out the scan codes produced by the keyboard.

(get environment) function [Pc a

SYNTAX:

getenv (symbol: string) : string
pESCRIPTION: The getenv function is used to access the environment

string whose name is symbol. These strings are determined by the
shell (command processor) or the program that caused your program to
run. See also the nargs and fetcharg functions.

EXAMPLE: Retrieves the environment variable USERLEVEL and prints
extra instructions if USERLEVEL had been set to NOVICE. On an IBM
PC, this could be set with the command SET USERLEVEL = NOVICE
in the autoexec.bat file or in any batch file.

const userLevel: string
userLevel := getenv ("USERLEVEL")
if userLevel = "NOVICE" then

% put a set of instructions
end if

Turing Reference Manual 120 Turing Reference Manual 121

getpid (get process id) function [PCand%
SYNTAX:

getpid : int

DESCRIPTION: The getpid function is determine the process id of the
current process. On a personal computer, this number is of little use.
Under Unix, the number is used, for example, for creating a unique name
of a file. See also nargs, fetcharg and getenv.

Turing Reference Manual 122

(has character) function

hasch : boolean

DESCRIPTION' The hasch procedure is used to determine if there is a
character that has been typed but not yet been read.

EXAMPLE: The flush procedure gets rid of any characters that have been
typed but not yet read.

procedure flush
var ch : string (1)
loop

exit when not hasch
getCh (ch) % Discard this character

end loop
end flush

DETAILS: The screen should be in a "screen" or "graphics" mode; see the
setscreen procedure for details. If the screen is not in one of these
modes, it will automatically be set to "screen " mode.

Turing Reference Manual 123

id (identifier)
name of an item in a Turing program

DESCRIPTION: Variables, constants, types, procedures, etc. in Turing
programs are given names such as incomeTax, x, and height. These
names are called identifiers (ids).

An identifier must start with a letter (large or small) and can
contain up to 50 characters, each of which must be a letter, a digit (0 to
9) or an underscore (_)• Large and small letters are considered distinct,
so that A and a are different names; this is different from Pascal in
which large and small letters in names are equivalent.

Every character in a name is significant in distinguishing one
name from another.

By convention, words that make up an identifier are capitalised
(except the first one), as in incomeTax and justlnTime.

An item in a Turing program cannot be given the same name as a
keyword such as get nor as a reserved word such as index. See
appendix A for a list of keywords and reserved words.

Turing Reference Manual 124

statement

cYNTAX: An ifStatement is:

if trueFalseExpn then
statementsAndDeclarations

{ elsif trueFalseExpn then
statementsAndDeclarations }

[else
statementsAndDeclarations]

end if
DESCRIPTION: An if statement is used to choose among a set of statements

(and declarations). One set (at most) is chosen and executed and then
execution continues just beyond end if.

The expressions (the trueFdseExpressions) following the
keyword if and each elsif are checked one after the other until one of
them is found to be true, in which case the statements (and
declarations) following the corresponding then are executed. If none of
these expressions evaluates to true, the statements following else are
executed. If no else is present and none of the expressions are true, no
statements are executed and execution continues following the end if.

EXAMPLE: Output a message based on value of mark.

if mark >= 50 then
put "You pass"

else
put "You fail"

end if

EXAMPLE: Output A, B, C, D or F depending on mark.

if mark >= 80 then
put "A"

elsif mark >= 70 then
put "B"

elsif mark >= 60 then
put "C"

Turing Reference Manual 125

elsif mark >= 50 then
put "D"

else
put "F"

end if

EXAMPLE: If x is negative, change its sign.

if x < 0 then
X m^— V

»—— " /[

end if

DETAILS: Several statements and declarations can appear after a
particular then.

See also case statements for another way to select among
statements.

Turing Reference Manual 126

import list
SYNTAX: AnimportList is:

import([howlmport] id {, [howlmport] id])
DESCRIPTION: An import list is used to specify those items that a

procedure, function or module uses from outside of itself. Commonly,
procedures and functions are written without import lists, which
means that the list is determined automatically by the compiler by
looking to see what items are actually used.

EXAMPLE: In this example, the type T is imported into the stock module
and used as the type that can be pushed onto or popped off the stack.
Since no other items are imported, the only identifiers from outside of
stock that can be used in it must be predefined, such as sqrt, or declared
to be pervasive.

type T : string

% alternate: export push, pop

module stack
import (T)
export (push, pop)
var top : int := 0
var contents: array 1 ..100 of 7"
procedure push... end push
procedure pop... end pop

end stack

DETAILS: There are various ways to import items, as determined by
howlmport. The form of howlmport is one of:

(a) var
(b) forward

In the most common case, the howlmport is omitted, which means the
item cannot be changed within the body of the importing procedure,
function or module. If the howlmport is var, the item is necessarily a
variable (or a module), and the importing body is then allowed to
change the variable (or call a procedure in the module).

If the importltem is forward, the import list is necessarily part
of a forward procedure or function declaration and the imported item is
itself necessarily a procedure or function; see forward declarations for
details and an example.

Turing Reference Manual 127

Can * frCely °mitted for Procedures and functions
T T5510" Simp'y means ̂ *e implementation

t if f determT S the list ̂ l°°king at acLl use of items. By
assumes h^h'TT * °f a m°dule is omitted'the implementation
In other wnrH £ T*™* }' meaninSthat no items «r^ imported

id^

Turing Reference Manual 128

member of a set

SYNTAX:

in
DESCRIPTION: The in operator determines if an element is in a set.

EXAMPLES:

type rankSet: set of 0 .. 10
var rankings: rankSet := rankSet (0) % The set {0}

if 5 in rankings then ... % Is 5 in the ranking set?

DESCRIPTION: The not in operator is exactly the opposite of in. For
example, 7 not in rankings means the same as not (7 in rankings).

It is required that the element be in the set's index type; in the
above example this is satisfied because element 5 is in the index type
0.. 10.

See also the set type, infix operators, and precedence of
operators.

Turing Reference Manual 129

include source files

SYNTAX: An includeConstruct is:

include fileName

DESCRIPTION: An include is used to copy parts files so that they become
part of the Turing program. This copying is temporary in the since
that is does not change any files. The file name must be an explicit
string constant such as "stdstuff'.

EXAMPLE: On IBM PC compatible computers, there are arrow keys that
produce character values such as 200 and 208. Let us suppose that a file
called arrows contains definitions of these values:

const upArrow := 200
const dpwnArrow := 208
const rightArrow := 205
const leftArrow := 203
These definitions can be included in any program in the following
manner:

include "arrows"

var ch : string (1)
getch (ch)
case ord (ch) of

label upArrow:
...handle up arrow...

label downArrow:
...handle down arrow..

label rightArrow:
...handle right arrow...

label leftArrow:
...handle left arrow...

label:

% Read one character

end case
...handle any other key...

Turing Reference Manual 130

DETAILS: An include file can itself contain include constructs. This can
continue to any level, although a circular pattern of includes would be
a mistake as it would lead to an infinitely long program.

It is common to save procedures, functions and modules in
separate files, that are collected together using include.

Turing Reference Manual 131

I. !

index (find pattern in string) function

SYNTAX:

index (s, patt : string): int
DESCRIPTION: The index function is used to find the position ofpatt

within string s. For example, index ("chair", "air") is 3.

EXAMPLE: This program outputs 2, because "ill" is a substring of
"willing", starting at the second character of "willing".

var word : string := "willing"
put index (word, "ill")

DETAILS: If the pattern (patt) does not appear in the string (s), index
returns 0 (zero); for example, here is an if statement that checks to see
if string s contains a blank:

if index (s, " ") not= 0 then ...

The index is sometimes used to efficiently determine if a character is
one of a given set of characters; for example, here is an if statement
that checks to see if ch, which is declared using var ch: string (1), is a
digit:

if index ("0123456789", M not= 0 then ...

If a string contains more that one occurrence of the pattern, the leftmost
location is returned; for example, index ("pingpong", "ng") returns 3.

If patt is the null string, the result is 1.

Turing Reference Manual 132

indexType
An indexType is one of:

(B> subrangeType
n enumeratedType

(c)

w • —• - - - - - ^ ,

namodTypO % Which is a subrange or enumerated type

DESCRIPTION: An index type defines a range of values that can be used
as an array subscript, as a selector (tag) for a union type, or as the base
type of a set type.

EXAMPLE:

varz : array 1 .. 9 of real
type smallSet : set of 0 .. 2

% 0..9 is an index type
%0..2 is an index type

Turing Reference Manual 133

infix operator

SYNTAX: AninftxOperator is one of:

(a) +
(b) -
(c) *
(d) /
(e) dl'V
(f) mod
(g) **
(h) <
(0 >
G) =
(k) <=
(I) >=
(m) not=
(n) and
(o) or
(P) =>
(q) in
W not in

%
%
%

o Integer and real addition; set union; string catenation
'<, Integer and real subtraction; set difference
3 Integer and real multiplication; set intersection
> Real division
i Truncating integer division
. Remainder
• Integer and real exponentiation
Less than
Greater than
Equal
Less than or equal; subset
Greater than or equal; superset
Not equal
And (boolean conjunction)
Or (boolean disjunction)
Boolean implication
Member of set
Not member of set

DESCRIPTION: An infix operator is placed between two values or
operands to produce a third value, for example, the result of 5 + 7 is 12.
In some cases the meaning of the operator is determined by its
operands; for example, in "pine" + "apple", the + operator means
string catenation while in 5 + 7 it means integer addition. There are
also prefix operators (-, + and not), which are placed in front of a
single value; see prefix operator.

In expressions with several operators, such as 3 + 4 * 5, the order
of doing the operator is determined by precedence rules (see precedence
for a listing of these rules); in this example, the multiplication is done
before the addition, so the expression is equivalent to 3 + (4 * 5).

The numerical (integer or real) operators are +, -, *, /, div, mod,
and **. AH of these except div produce a real result when at least one
of their operands is real; if both operands are integers, the result is an
integer except for real division (/) which always produces a real result
regardless of the operands.

Turing Reference Manual 134

The div operator is like real division (/), except that it always
produces an integer result, truncating any fraction to produce the
nearest integer in the direction of zero.

The mod operator produces the remainder, which is the between
real division (/) and integer division (div). When both operands are
positive, this is the modulo, for example, 14 mod 10 is 4. If one of the
operands is negative, a negative answer may result, for example, -7
mod 2 is -1. See also the int and real types.

The comparison operators (<, >, =, <=, >=, not=) can be applied
to numbers as well as to enumerated types. They can also be applied to
strings to see determine the ordering between strings (see the string
type for details). Arrays, records, unions and collections cannot be
compared. Boolean values (true and false) can be compared only for
equality (= and not=); the same applies to pointer values. Set values
can be compared using <= and >=, which are the subset and superset
operators. The not= operator can be written as ~=.

Strings are manipulated using catenation (+) as well as substring
expressions (see substring) and the index function (see index). See also
the string type.

The operators to combine true/false values are and, or, and =>
(implication), as well as equality (= and not=). See also the boolean
type-

The set operators are union (+), intersection (*), set difference (-),
subset (<=), superset (>=), and membership (in and not in). See also
the set type.

Turing Reference Manual 135

init initialisation

SYNTAX:

init

DESCRIPTION: The init (initialisation) keyword is used for two
different purposes in Turing. The most common is for initialising
arrays, records and unions. The less common is for recording parameter
values in procedures for later use in post conditions.

EXAMPLE:

var mensNames: array 1 .. 3 of string :=
init ("Tom", "Dick", "Harry")

put mensNames (2) % This outputs Dick
var names : array 1 .. 2 , 1 .. 3 of string :=

init ("Tom", "Dick", "Harry",
"Alice", "Barbara", "Cathy")

put names (2,1) % 777/5 outputs Alice

DETAILS: The order of initialising values for multi-dimensional arrays is
based on varying the right subscripts (indexes) most rapidly. This is
called row major order. Initialisation of records and unions is
analogous to initialising arrays; values are listed in the order in
which they appear in the type. See array, record, and union types.

EXAMPLE: This procedure is supposed to set integer variable i to an
integer approximation of its square root. The init clause records the
initial value of i as/ so it can be used in the post condition to make sure
that the approximation is sufficiently accurate. The name; can be used
only in the post condition and nowhere else in the procedure.

procedure intSqrt (var i: int)
pre / >= 0
inity := /
post abs (i - sqrt (j)) <= 1
... statements to approximate square root-

end intSqrt

DETAILS: See also pre and post assertions and procedure declarations.

Turing Reference Manual 136

type

SYNTAX: -

int

DESCRIPTION: The int (integer) type has the values ... -2, -1, 0, 1, 2 ...
Integers can be combined by various operators such as addition (+) and
multiplication (*). Integers can also be combined with real numbers, in
which case the result is generally a real number. An integer can
always be assigned to a real variable, with implicit conversion to
real.

EXAMPLE:

var counter, i
vary: int := 9
var tax := 0

int

% The type is implicitly int because
%0isan integer

DETAILS' See also explidtlntegerConstant. The real type is used instead
of int when values have fractional parts as in 16.837; see the real type
for details^

The Turing operators on integers are +, -, * (multiply), div
(truncating integer division), mod (integer remainder), **
(exponentiation), as well as comparisons (+, not=, >, >=, <, <=).

Real numbers can be converted to integers using ceil (ceiling),
floor, and round (see descriptions of these functions). Integers can be
converted to real numbers using intreal, but in practice this is rarely
used, because an integer value used in place of a real value will be
automatically converted to real.

Integers can be converted to strings and back using intstr and
strint. Integers can be converted to corresponding ASCII (or EBCDIC)
characters using chr and ord. See the descriptions of these functions.

Pseudo random sequences of integers can be generated using
randint; see randint.

In Turing, the range of integers is from -2147483647 to 2147483647.
In other words, the maximum size of integer is 2**31 -1.

Turing Reference Manual 137

integer-to-real function
r

SYNTAX:

intreal (/ : int) : real

DESCRIPTION: The intreal function is used to convert an integer to a real
number. This function is rarely used, because in Turing, an integer
value can be used anyplace a real value is required; when this is done,
the intreal function is implicitly called to do the conversion from int to
real. See also the floor, ceil and round functions.

Turing Reference Manual 138

integer-to-string function

SYNTAX:

intstr (/ , width : int): string
DESCRIPTION: The intstr function is used to convert an integer to a string.

The string is equivalent to i, padded on the left with blanks as
necessary to a length of width, for example, intstr (14,4)="bbl4" where
b represents a blank. The width parameter is optional; if omitted, the
string is made just long enough to hold the value. For example, intstr
(-23) = "-23".

The width parameter must be non-negative. If width is not large
enough to represent the value of i, the length is automatically
increased as needed.

The string returned by intstr is of the form:
{blank)[-]digit{digits)

where (blank) means zero or more blanks, [-] means an optional minus
sign, and digit(digit) means one or more digits. The leftmost digit is
non-zero, or else there is a single zero digit; in other words, leading
zeros are suppressed.

The intstr function is the inverse of strint, so for any integer i,
strint (intstr (;')) = i.

See also the chr, ord and strint functions.

Turing Reference Manual 139

invariant assertion
SYNTAX: An invariantAssertion is:

invariant trueFalseExpn

DESCRIPTION: An invariant assertion is a special form of an assert
statement that is used only in loop and for statements and in modules.
It is used to make sure that a certain requirement is met; this
requirement is given by the trueFalseExpn. The trueFalseExpn is
evaluated. If it is true, all is well and execution continues. If it is
false, execution is terminated with an appropriate message. See
assert, loop and for statements and the module declarations for moredetails.

EXAMPLE: This program uses an invariant in a for loop. The invariant
uses the function namelnList to specify that a key has not yet been
found in an array of names.

var name: array 1 .. 100 of string
var key: string
... input name and key...

function namelnList (n: int): boolean
for /: 1 .. n

if key = name (/) then
result true

end if
end for
result false

end namelnList

for/ : 1 .. 100
invariant not namelnList (j - 1)
if key - name (j) then

put "Found name at", j
exit

end if
end loop

Turing Reference Manual 140

length of a string function

SYNTAX:

length (s : string): int
DESCRIPTION: The length function returns the number of characters in the

string. The string must be initialised. For example, lengthC'table") is 5.

EXAMPLE: This program inputs three words and outputs their lengths.

var word : string
for /: 1 .. 3

get word
put length (word)

end for
If the words are "cat", "robin" and "crow", the program will output 3, 5
and 4.

DETAILS: The length function gives the current length of the string. To find
the maximum length of a string, use upper; for example, given the
declaration var s: string (10), upper (s) returns 10. See also upper.

Turing Reference Manual 141

In natural logarithm function

SYNTAX:

In (r : real): real

DESCRIPTION: The In function is used to find the natural logarithm (base
e)ofanumber. For example, In (1) isO. ;

EXAMPLE: This program prints out the logarithms of 1,2,3,... up to 100.

for / : 1 .. 100
put "Logarithm of", /," is ", In (/)

end for

DETAILS: See also the exp (exponential) function. It is illegal to try to take
the logarithm of zero or a negative number.

NOTE: logn (/) = In (/) / In (n)

Turing Reference Manual 142

locate procedure

SYNTAX:

locate (row, column : ml)
DESCRIPTION: The locate procedure is used to move the cursor so that the

next output from put will be at the given row and column. Row 1 is the
top of the screen and column 1 is the left side of the screen.

EXAMPLE: This program outputs stars of random colors to random locations
on the screen. The variable coir is purposely spelled differently from
the word color to avoid the procedure of that name which is used to set
the color of output. The row number is purposely chosen so that it is one
less that maxrow to avoid the scrolling of the screen which occurs when
a character is placed in the last column of the last row.

setscreen ("screen")
var row, column, coir: int
loop

randint (row, 1 , maxrow - 1)
randint (column, 1 , maxcol)
randint (coir, 0, maxcolor)
color (coir)
locate (row, column)
put "*" .. % Use dot-dot to avoid clearing end of line

end loop
DETAILS: The locate procedure is used to locate the next output based on

row and column positions. See also the locatexy procedure which is
used to locate the output based x and y positions, where x=0, y=0 is the
left bottom of the screen.

The screen should be in a "screen " or "graphics" mode; see the
setscreen procedure for details. If the screen is not in one of these
modes, it will automatically be set "screen" mode.

See also setscreen and drawdot

Turing Reference Manual 143

locatexy graphics procedure
SYNTAX:

locatexy (x, y : int)

DESCRIPTION: The locatexy procedure is used to move the cursor so that
the next output from put will be at approximately (x, y). The exact
location may be somewhat to the left of x and below y to force
alignment to a character boundary.

EXAMPLE: This program outputs "Hello" starting at approximately (100,
50) on the screen.

setscreen ("graphics")
locatexy (100, 50)
put "Hello"

DETAILS: The locatexy procedure is used to locate the next output based
on x and y positions, where the position x=0, y=0 is the left bottom of
the screen. See also the locate procedure which is used to locate the
output based in row and column positions, where row 1 is the top row
and column 1 is the left column.

The screen should be in a "graphics" mode; see the setscreen
procedure for details. If the screen is not in a "graphics" mode, it will
automatically be set to "graphics" mode.

See also setscreen and drawdot

Turing Reference Manual 144

statement

SYNTAX: A loopStatement is:

loop
statementsAndDeclarations

end loop
DESCRIPTION: A loop statement causes the statements (and

declarations) in it to be repeatedly executed. This continues until
terminated by one of its enclosed exit statements (or by an enclosed
return or result statement).

EXAMPLE: Output on separate lines: Happy, Happy, Happy, etc.

loop
put "Happy"

end loop

EXAMPLE: Read words up to the word Stop.

var word : string
loop

get word
exit when word = "Stop"

end loop
DETAILS: A loop statement can contain more that one exit, or none at all

(in which case it is an infinite loop). When the exit when is at the
beginning of the loop, the loop works like Pascal's do while; when at
the end, the loop works like Pascal's repeat until.

Just preceding the statements and declarations, you are allowed
to write an "invariant clause" of the form:

invariant trueFalseExpn

This clause is equivalent to: assert trueFalseExpn.

Turing Reference Manual 145

Y

lower bound of an array or string
SYNTAX:

lower (arrayReference [, dimension]): int

DESCRIPTION: The lower attribute is used to find the lower bound of an
array. (See upper for finding the upper bound.) Since the lower bound
of every array is necessarily know at compile time, lower is rarely
used.

Turing Reference Manual 146

maximum function

SYNTAX: , '

max (expn , expn)
DESCRIPTION: The max function is used to find the maximum of two

numbers (the two expn's). For example, max (5, 7) is 7. If both
numbers are int the result is int, but if one or both of the numbers are
real, the result is real. See also the min function.

EXAMPLE: This program outputs 85.72.

var x : real := 74.61
var y : real := 85.72
put max (x, y) % outputs 35.72

EXAMPLE: This program inputs 10 numbers and outputs their maximum.

var m , t : real
get m % Input first number
for / : 2 .. 1 0 % Handle remaining 9 numbers

geu
m := max (m, t)

end loop
put "The maximum is ", m

Turing Reference Manual 147

(maximum column) function

SYNTAX:

maxcol : int
DESCRIPTION: The maxcol function is used to determine the number of

columns on the screen.

EXAMPLE: This program outputs the maximum column number.

put "Number of columns on the screen is ",
maxrow

DETAILS: For IBM PC compatibles as well as most Unix dumb terminals, in
"text " or "screen" mode, maxcol = 80. For the default IBM PC
compatible "graphics " mode (CG A), maxcol = 40. See the locate
procedure for an example of the use of maxcol.

Turing Reference Manual 148

fliaxcolor graphics function

SYNTAX:

maxcolor : int
DESCRIPTION: The maxcolor function is used to determine the maximum

color number for the current mode of the screen. The alternate spelling
is maxcolour.

EXAMPLE: This program outputs the maximum color number.

setscreen ("graphics")

put "The maximum color number is", maxcolor

DETAILS: The screen should be in a "screen" or "graphics" mode; if not, it
will automatically beset to "screen" mode. See setscreen for details.

See drawdot and palette for examples of the use of maxcolor.
See the color procedure which is used for setting the currently active
color.

For IBM PC compatibles in "screen" mode, maxcolor = 15. For the
default IBM PC compatible "graphics" mode(CGA),
maxcolor = 3.

Turing Reference Manual 149

(maximum row) function

SYNTAX:

maxrow : int

DESCRIPTION: The maxrow function is used to determine the number of
rows on the screen.

EXAMPLE: This program outputs the maximum row number.

put "Number of rows on the screen is ", maxrow

DETAILS: For IBM PC compatibles , maxrow = 25. For many Unix dumb
terminals, maxrow = 24. See the locate procedure for an example of
the use of maxrow.

Turing Reference Manual 150

graphics function [PC and Mac only]

SYNTAX:

maxx : int
DESCRIPTION: The maxx function is used to determine the maximum

value of x for the current graphics mode.

EXAMPLE: This program outputs the maximum x value.

setscreen ("graphics")

put "The maximum x value is", maxx

DETAILS: The screen should be in a "graphics" mode; if not, it will
automatically be set to "graphics" mode. See setscreen for details.

See drawdot for an example of the use of maxx and for a diagram
illustrating x and y positions. For the default IBM PC compatible
graphics mode (CGA), maxx = 319.

Turing Reference Manual 151

graphics function
CH

SYNTAX:

maxy : int
DESCRIPTION: The maxy function is used to determine the maximum

value of y for the current graphics mode.

EXAMPLE: This program outputs the maximum y value.

setscreen ("graphics")

put "The maximum y value is ", maxy

DETAILS: The screen should be in a "graphics" mode; if not, it will
automatically be set to "graphics" mode. See setscreen for details.

See drawdot for an example of the use of maxy and for a diagram
illustrating x and y positions. For the default IBM PC compatible
graphics mode (CGA), maxy =199.

Turing Reference Manual 152

minimum function

SYNTAX:

min (expn , expn)
pESCRIPTION: The min function is used to find the minimum of two

numbers (the two expris). For example, min (5,7) is 5. If both numbers
are int the result is int, but if one or both of the numbers are real, the
result is real. See also the max function.

EXAMPLE: This program outputs 74.61.

var x : real := 74.61
var y : real := 85.72
put min (x, y) % outputs 74.61

EXAMPLE: This program inputs 10 numbers and outputs their minimum.

var m , t : real
get m % Input first number
for / I 2 .. 1 0 % Handle remaining 9 numbers

getf
m := min (m, t)

end loop
put "The minimum is ", m

Turing Reference Manual 153

mod remainder (modulo) operator
SYNTAX:

mod

DESCRIPTION: The mod (modulo) operator produces the remainder of
one number divided by the another. For example, 7 mod 2 produces 1
and -7 mod 2 produces -1.

EXAMPLES: In this example, eggCount is the total number of eggs. The
first put statement determines how many dozen eggs there are. The
second put statement determines how many extra eggs there are
beyond the last dozen.

var eggCount : int
get eggCount
put "You have ", eggCount div 12, " dozen eggs"
put "You have", eggCount mod 1 2 , " left over"

DESCRIPTION: See also infix operators, precedence of operators and the
div operator.

Turing Reference Manual 154

jX\odule declaration

SYNTAX: A moduleDeclaration is:

module id
[import ([var] id {, [var] id })]
[export ([opaque] id • { , [opaque] id })]
statementsAndDeclarations

end id
DESCRIPTION: A module declaration creates a package of variables,

constants, types and subprograms, and sub-modules. The name of the
module (id) is given in two places, just after module and just after end.

EXAMPLE: Implement a stack of strings:

module stack
export (push, pop)

var top: int := 0
var contents: array 1 .. 100 of string

procedure push (s : string)
top := top + 1
contents (top) := s

end push

procedure pop (var s: string)
s := contents (top)
top := top -1

end push
end stack

stack. push ("Harvey")
var name : string
stack.pop (name) % This sets name to Harvey

Turing Reference Manual 155

DETAILS: In other programming languages, the term used for a module is a
package, cluster or object.

A module declaration is executed (and the module is initialised)
by executing its declarations and statements; for example, the stack
module is initialised by setting the top variable to 0. This
initialisation executes all the statements and declarations in the
module that are not contained in procedures or functions. The
initialisation is completed before any procedure or function of the
module can be called from outside the module. Such a call to a
procedure or function simply executes the body of that procedure or
function (the module is not initialised with each such call).

The import list gives the names of items declared outside the
module that can be accessed inside the module; since stack has no
import list, it is not allowed to access any names declared outside of it.

The export list is used to implement information hiding, which
means isolating implementation details inside a module. The export
list gives the names of items declared inside the module that can be
used outside the module; for example, push and pop are exported from
stack. Each such use of an exported item must be preceded by the
module name and a dot, for example, stack.push. Names that are not
exported, such as top and contents, cannot be accessed outside the
module.

Only procedures, functions, constants and types can be exported;
variables and (sub)modules cannot be exported.

The opaque keyword is used (only) to precede type names that
have declarations in the module. Outside of the module, the type will
be distinct from all others types, this means, for example, that if the
opaque type is a record, its fields cannot be accessed outside of the
module. Opaque types are used to guarantee that certain items are
inspected and manipulated in only one place, namely, inside the
module. These types are sometimes called abstract data types.

Turing Reference Manual 156

EXAMPLE: Use an opaque type to implement complex arithmetic.

module complex
export (opaque value, constant, add,

... other operations...)
type value:

record
realPt, imagPt : real

end record

function constant
(realPt, imagPt: real): value

var answer : value
answer. realPt := realPt
answer. imagPt := imagPt
result answer

end constant

function add (L, R: value): value
var answer : value
answer .realPt := L .realPt + R .realPt
answer .imagPt :=L . imagPt +R .imagPt
result answer

end add
... other operations lor complex arithmetic go here ...
end complex

var c,d-.complex .value :=complex.constant(1,5)
% c and d become the complex number (1,5)

var e : complex .value := complex.add (c,d)
% e becomes the complex number (2,10)

DETAILS: Module declarations can be nested inside other modules but
cannot be nested inside procedures or functions. A module must not
contain a bind as one of its (outermost) declarations. A return
statement cannot be used as one of the (outermost) statements in a
module.

Turing Reference Manual 157

The syntax of a moduleDeclaration presented above has been
simplified by leaving out pre, invariant and post conditions; the full
syntax is:

module id
[import ([var] id {, [var] id })]
[export ([opaque] id {, [opaque] id })]
[pre trueFalseExpn]
statementsAndDeclarations
[invariant trueFalseExpn]
statementsAndDeclarations
[post trueFalseExpn]

end id

Turing Reference Manual 158

named type
SYNTAX: A namedType is one of:

(a) typeld
(b) module Id. typeld
DESCRIPTION: A type can be given a name (typeld) and later this name

can be used instead of writing out the type.

EXAMPLE: In this example, phoneRecord is a named type.

type phoneRecord :
record

name : string (20)
phoneNumber : int
address : string (50)

end record

var oneEntry : phoneRecord
var phoneBook : array 1 .. 100 of phoneRecord

DETAILS: Form (a) is the most common kind of named type. Form (b) is
used when the type name has been exported from a module.

Arrays whose bounds are not known at compile time
cannot be named.

Turing Reference Manual 159

nargS number of arguments IPC,
SYNTAX:

nargs : int
DESCRIPTION: The nargs function is used to determine the number of

arguments that have been passed to a program from the command line.
For example, if the program is run from the Turing environment using

:rfilelfile2
then nargs will return 2. If a program called prog.x is run under Unix
using this command

prog.x filel file2
the value of nargs will similarly be 2.

The nargs function is usually used together with the fetcharg
function to access the arguments that have been passed to the program.
See fetcharg for an example of the use of nargs.

Jnixn

Turing Reference Manual 160

statement

SYNTAX: AnewStatementis:

new collectionld, pointerVariableReference

DESCRIPTION: A new statement creates (allocates) an element of a
collection and assigns its location to the pointer variable.

EXAMPLE: Declare a list and allocate one of its nodes.

var list : collection of
record

contents : string (1 0)
next : pointer to list

end record
var first: pointer to list
new list, first % Allocate an element of list,

% located by first.

DETAILS: The opposite of allocating an element of a collection, namely,
deallocating it, is done by the free statement.

If there is no more space to allocate an element, new will set the
pointer to be the nil value, in this example, to nil (list).

See also the collection declaration, the pointer type, and the
free statement.

Turing Reference Manual 161

nil pointer to a collection
SYNTAX: "

nil (collectionld)

DESCRIPTION: The nil pointer for a collection does not locate any
element of the collection. This pointer is distinct from pointers to
actual elements of the collection and it can be compared to these
pointers. It is also distinct from the uninitialised pointer value.

EXAMPLE: In this example, the pointer called first is set to the nil
pointer of collection c, that is, to nil(c).

var c : collection of
record

name : string (50)
next: pointer to c

end record
var first: pointer to c := nil (c)

DETAILS: See also collection declaration.

Turing Reference Manual 162

jlOt true/false (boolean) operator

SYNTAX:

not
DESCRIPTION: The not (boolean negation) operator produces the

opposite of a true/false value. For example, not (x >y) is equivalent to
x<=y.

EXAMPLES:

var error : boolean := talse
var success : boolean
• ••

success := not error % success becomes the
% opposite of error

DETAILS: The not operator takes true and produces false and takes false
and produces true. The not operator can be written as ~. See also the
boolean type, prefix operators, and precedence of operators.

Turing Reference Manual 163

opaque type
DESCRIPTION: When a type T is exported from module M using-the

keyword opaque, the type M.T is distinct from all other types.
Opaque types are used to guarantee that all updates to values of the
type are done within module M.

See module declarations for an example of an opaque type used to
implement complex arithmetic. See equivalence of types for the
definition of the type matching rules for opaque types.

Turing Reference Manual 164

file statement
SYNTAX: An openStatement is one of:

(a)
open : fileNumberVar, fileName , ioCapability

{ , ioCapability }

open : fileNumberVar, argNumber , ioCapability
{ , ioCapability }

DESCRIPTION: The open statement connects the program to a file so the
program can perform operations such as read on the file. In form (a),
the open statement translates a fileName, such as "Master", to a file
number such as 5. Form (b) , which is less commonly used, opens a file
whose name is given by a program argument; this is described below.

The read statement uses the file number, not the file name, to
access the file. When the program is finished using the file, it
disconnects from the file using the close statement. Each ioCapability
is the name of an operation, such as read, that is to be performed on
the file.

EXAMPLE: This programs illustrates how to open, read and then close a
file.

var fileName : string := "Master" % Name
Var fileNo : int % Number of file
var inputVariable : string (100)
open : fileNo, fileName, read

read : fileNo, inputVariable

close : fileNo
DETAILS: The open statement always sets the fileNumber to a positive

number. If the open fails (generally because the file does not exist),
the fileNumber is set to zero.

An ioCapability is one of:
get, put, read, write, seek, mod

A file can be accessed using only the statements corresponding to the
input/output capabilities with which it was opened. Note: tell is
allowed only if the open is for seek.

Turing Reference Manual 165

,,< 'f\

The open statement truncates the file to length zero if the
ioCapabilities include put or write but not mod (which stands for
modify). In all other cases, open leaves the existing file intact. The
mod ioCapability specifies that the file is to be modified without
being truncated. Each open positions to the beginning of a file. There is
no mechanism to delete a file. To open for appending to the end of the
file, one has to open for seek (and for write or put) and then seek to the
end (see the seek statement).

Mixed mode files, which combine get and read (or put and
write), are supported by some operating systems, such as Unix, but not
by others, such as MS-DOS.

Form (b) of the syntax allows opening of a file whose name is
given as a program argument on the command line. For example, under
Unix, the command line

prog.x infile outfile
specifies to execute prog.x with program arguments infile and outfile.
Similarly, in the Turing programming environment, the run command
can accept program arguments. The argNumber is the position of the
argument on the command line. (The first argument is number 1.) The
name of the file to be opened is the corresponding program argument.
If there is no such argument, or if the file cannot be opened successfully,
fileNumberVariable is set to zero. See also nargs, which gives the
number of arguments, and f etcharg, which gives the n-th argument
string.

Program argument files referenced by argument number and used
in put, get, read or write statements need not be explicitly opened, but
are implicitly opened with the capability corresponding to the
input/output statement in which they are first used. (The fileNumber
gives the number of the argument.)

The operating system standard files (error, output and input) are
accessed using file numbers 0, -1, and -2, respectively. These files are
not opened explicitly, but are used simply by using form (b) with the
number. Beware of the anomalous case of a failed open that gives you
file number 0. A subsequent use of this number in a put will produce
output that goes to the standard error stream, with no warning that
the file you attempted to open is not actually being used.

See also the close, get, put, read, write, seek and tell statements.

There is an older and still acceptable version of open that has
this syntax:

open (var fileNumber : Int, fileName : string, mode : string)

The mode must be "r" (for get) or "w " (for put).

Turing Reference Manual 166

or (boolean) operator
SYNTAX:

AorB
DESCRIPTION: The or (boolean) operator yields a result of true if at

least one (or both) of the operands is true, or is a short circuit operator;
for example, if A is true in A or B then B is not evaluated.

EXAMPLE:

var success: boolean := false
var continuing := true % the type is boolean

continuing := continuing or success
DETAILS: continuing is set to false if and only if both continuing and success

are falsae. Since Turing uses short circuit operators, once continuing is
true, success will not be looked at.

See also boolean (which discusses true/false values),
explicitTrueFalseConstant (which discusses the values true and false),
precedence and expn (expression).

Turing Reference Manual 167

Ord character-to-integer function

SYNTAX:

ord (ch : string (1)): int
DESCRIPTION: The ord function accepts an enumerated value or a string

of length 1 and returns the position of the value in the enumeration or
of the character in the ASCII (or EBCDIC for IBM mainframes)
sequence. Values of an enumerated type are numbered left to right
starting at zero. For example, ord ("A") is 65. The ord function is the
inverse of chr, so for any character c, chr (ord (c)) = c.

See also the chr, intstr and strint functions.

palette graphics procedure

SYNTAX:

palette (p: ml)
)ESCRIPTION: The palette procedure is used to change the palette

number to p.

[EXAMPLE: This program shows all the colors of palette number 3 for an
IBM PC compatible using CGA graphics. The first line of output, for
color 0, will not be visible, because the background is also color 0.

setscreen ("graphics")
palette (3)
for colorNumber: 0 .. maxcolor

color (colorNumber)
put "Color number", colorNumber

end for
)ETAILS: The meaning of the palette depends on the display hardware

on the computer. On IBM PC compatibles under CGA (the default
graphics mode), there are palettes numbered 0 to 3. The main palettes
are numbers 2 and 3. Here is the meaning of the color numbers under
these CGA palette numbers .

Palette 2: 1 = cyan (blue), 2 = magenta (red), and 3 = white.
Palette 3:1= green, 2 = red, 3 = brown.

Palette number 0 is like 2 but not as bright. Palette 1 is like 3 but not as
bright.

The palette procedure is meaningful only in a "graphics" mode.
See setscreen for a description of the graphics modes.

See also whatpalette, which is used to determine the current
palette number. See also drawdot and maxcolor.

[PC only]

Turing Reference Manual 168 Turing Reference Manual 169

paramDeclaration
parameter declaration

SYNTAX: A paramDeclaration is one of:: ,

(a) [var] id {, id } : typeSpec

(t>) procedure id
[(paramDeclaration {, paramDeclaration })]

(c) function id
[(paramDeclaration {, paramDeclaration })]
: typeSpec

DESCRIPTION: A parameter declaration, which is part of the header of
a procedure or function, specifies a formal parameter (see also
procedure and function declarations). Form (a) above is the most
common case. Forms (b) and (c) specify procedures and functions that
are themselves passed as parameters.

EXAMPLES:
• * . - • - . *

procedure putTitle (title: string)
% The parameter declaration is: title: string
put title

end putTitle

procedure x (var s : array 1 .. * of string (*))
% Set each element of s to the null string
for / : 1 . . upper (s)

s (i) := ""
end for

end x

DETAILS: Parameters to a procedure may be declared using var, which
means that the parameter can be changed inside the procedure; for
example, s is changed in the x procedure. If a parameter is declared
without var, it cannot be changed. (This is different from the Pascal
language, in which non-var parameters can be changed.) Parameters

Turing Reference Manual 170

to functions cannot be declared to be var.

Parameters declared var are passed by reference, which means
that a pointer to the value is passed to the procedure, rather than
passing the actual value. This implies that in the call p (a (0), in
which array element fl(i') is passed to procedure p, a change to i in p
does not change the element referred to by p's actual parameter. Every
non-scalar (not integer, subrange, real, boolean, enumerated or pointer)
parameter is passed by reference whether or not declared var. In all
other cases (scalar non-var parameters) the parameter is passed by
value (the actual value is copied to the procedure).

The upper bound of an array or string that is a formal parameter
may be specified as star (*), as is done above for parameter s in
procedure x. This specifies that size of the upper bound is inherited
from the corresponding actual parameter. Parameters declared using
star are called dynamic parameters.

The names of the formal parameters must be distinct from each
other, from the procedure or function name, and from pervasive
identifiers. However, they need not be distinct from names outside of
the procedure or function.

EXAMPLE: Find the zero of function f. This example illustrates form (c),
which is a parameter that is a function.

function findZero (function f (x : real): real,
left, right, accuracy: real): real

pre sign (f (left)) not= sign (f (right)))
and accuracy > 0

var L : real := left
var R: real := right
var M: real
const signLeft := sign (f (left))
loop

M := (R + L) / 2
exit when abs (R - L) <= accuracy
if signLeft =sign (f (M)) then

L:=M
else

R := M
end if

end loop

Turing Reference Manual 171

result M
end findZero

DETAILS: Forms (b) and (c) of paramDedaration are used to specify
formal parameters that are themselves procedures or functions. For
example, in the findZero function,/is a formal parameter that is
itself a function.

Turing Reference Manual 172

play procedure
SYNTAX:

play (music : string)
DESCRIPTION: The play procedure is used to sound musical notes on the

computer.

EXAMPLE: This program sounds the first three notes of the C scale.

play ("cde")
DETAILS: The play procedure takes strings that contain characters that

specify notes, rests, sharps, flats, duration. The notes are the letters a
to g (or A to G). A rest is p (for pause). A sharp is + and a flat is -. The
durations are 1 (whole note), 2 (half note), 4 (quarter note), 8 (eight
note) and 6 (sixteenth note). The character > raises to the next octave
and < lowers. For example, this is the way to play C and then C sharp
one octave above middle C with a rest between them, all in sixteenth
notes: play(">6cpc+"). Blanks can be used for readability and are
ignored by play.

Under some systems such as Unix, the play procedure has no
effect.

See also the playdone function which is used to see if a note has
finished sounding. See also the sound procedure which makes a sound
of a given frequency (Hertz) and duration (milliseconds).

[PC only]

Turing Reference Manual 173

T
playdone function
SYNTAX:

playdone: boolean
DESCRIPTION: The playdone function is used to determine when notes

played by the play procedure have finished sounding.

EXAMPLE: This program sounds the first three notes of the C scale and
outputs "All done" as soon as they are finished. Without the loop, the
message would come out before the notes are finished.

play("cde")
loop

exit when playdone
end loop
put "All done"

DETAILS: Under some systems such as Unix, the playdone procedure is
meaningless.

See also the play procedure. See also the sound procedure
which makes a sound of a given frequency (Hertz) and duration
(milliseconds).

pointer type
gYNTAX: A pointer-Type is:

pointer to collectionld '
pESCRIPTION: A variable declared by a pointer type is used to located

the elements of the collection whose name is collectionld. The new
statement creates a new element of the collection and places the
element's location in a pointer variable. The free statement destroys
an element located by a pointer variable.

EXAMPLE: Create a collection that will represent a binary tree.

var tree : collection of
record

name : string (1 0)
left, right: pointer to tree

end record

var root: pointer to tree
new tree, root
tree (root).name := "Adam"

DETAILS: In Turing, a pointer is effectively a subscript (an index) for a
collections. Pointers can be assigned, compared for equality and passed
as parameters.

See collections for more details about the use of pointers. See
also, new and free statements.

Turing Reference Manual 174 Turing Reference Manual 175

post assertion

SYNTAX: An post Assertion is:

post trueFalseExpn

DESCRIPTION: A post assertion is a special form of an assert statement
that is used in a procedure or function. It is used to give requirements
that the body of the procedure or function is supposed to satisfy.
These requirements are given by the trueFalseExpn. After the body
has executed and just before the procedure or function returns, the
trueFalseExpn is evaluated. If it is true, all is well and execution
continues. If it is false, execution is terminated with an appropriate
message. See assert statements and procedure and function
declarations for more details. See also pre and invariant assertions.

EXAMPLE: This function is supposed to produce an integer approximation
of the square root of integer i. The post condition requires that this
result, which is called answer, must be within a distance of 1 from the
corresponding real number square root.

function intSqrt (i: int) answer : int
pre / >= 0
post abs (answer- sqrt(/ '))<= 1
... statements to approximate square root-

end intSqrt

DETAILS: A post assertion can also be used in a module declaration to make
sure that the initialisation of the module satisfies its requirements;
see module declaration for details.

assertion

SYNTAX: An preAssertion is:

pre trueFalseExpn
pESCRIPTION: A pre assertion is a special form of an assert statement

that is used in at the beginning of a procedure or function. It is used to
give requirements that the caller of the procedure or functions is
supposed to satisfy. These requirements are given by the
trueFalseExpn. The trueFalseExpn is evaluated. If it is true, all is
well and execution continues. If it is false, execution is terminated
with an appropriate message. See assert statements and procedure
and function declarations for more details. See also post and invariant
assertions.

EXAMPLE: This function computes the average of n values. Its pre
condition requires that n must be strictly positive, to avoid the
possibility of dividing by zero when computing the average.

function average (a: array 1 .. * of real,
n: int): real

pre n > 0 .
var sum: real := 0
f or /: 1 .. n

sum := sum* a(/)
end for
result sum/n

end average
DETAILS: A pre assertion can also be used in a module declaration to make

sure that requirements for initialisation of the module are met; see
module declaration for details.

Turing Reference Manual 176 Turing Reference Manual 177

I precedence of operators
DESCRIPTION: The order of applying operators in an expression such as

3 + 4*5 are determined by Turing's precedence rules. These rules state,
for example, that multiplication is done before addition, so this
expression is equivalent to 3 + (4 * 5).

Parenthesised parts of an expression are evaluated before being
used; for example, in (1 + 2) * 3, the addition is done before the
multiplication.

The precedence rules are defined by this table, in which
operators appearing earlier in the table are applied first; for example
multiplication is applied before addition:

(1) -
(2) prefix + and -
(3) *, /,div,mod
(4) infix +,-
(5) <, >, =, <=, >=, not=, in, not in
(6) not
(7) and
(8) or
(9) => (boolean implication)

Operators appearing on a single line in this table are applied from left
to right; for example, a-b-c is the same is (a-b)-c.

Here are some examples illustrating precedence, in which the
left and right expressions are equivalent:

-1**2
a+b*c
a*blc
bore and d
x <y andy < z

-d**2)

b or (c and d)
(x < y) and (y < z)

The final example illustrates the fact that in Turing, parentheses are
not required when combining comparisons using and and or; these would
be required in the Pascal language.

See also infix and prefix operators and the int, real, string,
boolean, set and enum types.

Turing Reference Manual 178

predecessor function

SYNTAX: . - ;

pred (expn)
DESCRIPTION: The pred function accepts an integer or an enumerated

value and returns the integer minus one, or the previous value in the
enumeration. For example, pred (7) is 6.

EXAMPLE: This part of a Turing program fills up array a with the
enumerated values red, yellow, green, red, yellow, green, etc.

type colors : enum (green, yellow, red)
var a : array 1 .. 1 00 of colors
var c : colors := colors .red
for /: 1 ..100

a (/) := c
if c = colors . green then

c := colors . red
else

c:= pred (c)
end if

end for
DETAILS: It is illegal to apply pred to the first value of an enumeration.

See also the succ function.

Turing Reference Manual 179

prefix operator

SYNTAX: AprefixOperator is one of:

(a) +
(b) -
(c) not

% Integer and real identity (does not change value)
% Integer and real negation
% Not (Boolean negation)

DESCRIPTION: A prefix operator is placed before a value or operand to
produce another value, for example, if the value of x is seven then -x is
negative seven. There are also infix operators such as multiplication
(*) and addition (+), which are placed between two values to produce
a third value; see infix operator.

The + and - prefix operators can be applied only to numeric
values (integer and real). The not prefix can be applied only to
true/false (boolean) values; for example not (x > y) is equivalent to x
<= y. The not operator produces true from false and false from true.

See also the int, real and boolean types, as well as precedence
(for the order of applying operators) and infix operators.

Turing Reference Manual 180

procedure declaration

SYNTAX: A procedureDecluration is:

procedure id
[(paramDeclaration {, param Declaration })]
statementsAndDeclarations

end id

DESCRIPTION: A procedure declaration creates (but does not run) a new
procedure. The name of the procedure (id) is given in two places, just
after procedure and just after end.

EXAMPLES:

procedure greetings
put "Hello world"

end greetings

greetings % This outputs Hello world

procedure sayltAgain (msg: string , n : int)
for / : 1 .. n

put msg
end for

end sayltAgain

sayltAgain ("Toot" , 2) % Toot is output twice

procedure double (var x: real)
x := 2 * x

end double

vary : real := 3.14
double (y) % This doubles the value of y

Turing Reference Manual 181

DETAILS: The set of parameters declared with the procedure are called
formal parameters; for example, in the double procedure, x is a formal
parameter. A procedure is called (invoked) by a procedure call
statement which consists of the procedure's name followed by the
parenthesised list of actual parameters (if any); for exarhple,
double(y) is a call having y as an actual parameter. If there are no
parameters (see the greet procedure above), the call does not have
parentheses. The keyword procedure can be abbreviated to proc.

Ordinarily, a procedure returns (finishes and goes back to the
place where it was called) by reaching its end. However, the return
statement in a procedure causes it to return immediately. Note that
return can also be used in the main program to cause it to halt
immediately.

Only parameters declared using var may be changed in the
procedure, for example, x is changed in the double procedure. The
upper bounds of arrays and strings that are parameters may be
declared to be star (*), meaning the bound is that of the actual
parameter. See paramDedaration for details about parameters.

Procedures and functions cannot be declared inside other
procedure and functions.

The syntax of a procedureDeclaration presented above has been
simplified by leaving out the import list, pre and post condition and
init clause; the full syntax is

procedure id
[(paramDedaration {,paramDeclaration })]
[import ([[var] id {, [var] id }])]
[pre trueFalseExpn]
[init id := expn {, id := expn }]
[post trueFalseExpn]
statementsAndDeclarations

end id ,

See import list, pre condition, init clause and post condition for
explanations of these additional features.

A procedure must be declared before being called; to allow for
mutually recursive procedures, there are forward declarations of
procedures with later declaration of each procedure body. See forward
and body declarations for explanations.

Turing Reference Manual 182

statement
SYNTAX: AprocedureCall is;

procedureld [(expn { , expn})]
DESCRIPTION: A procedure call is a statement that calls (invokes or

activates) a procedure. If the procedure has parameters, a
parenthesised list of expressions (expns) must follow the procedure's
name (procedureld).

EXAMPLES:

procedure greet
put "Hello"

end greet

greet % This is a call to the greet procedure

procedure times (var i: int, factor : int)
/ := factor * i

end times

vary: int
times (j, 4) % Multiply j by 4

DETAILS: The parameter declared in the header of a procedure, is a formal
parameter, for example, i and factor above are formal parameters.
Each expression in the call is an actual parameter, for example, / and 4
above are actual parameters.

If a formal parameter is declared using var, then the expression
passed to that parameter must be a variable reference (so its value can
potentially be changed by the procedure); this means for example that
it would be illegal to pass ;'+3 as the first parameter to times. The
variable reference and the formal parameter must have equivalent
types (see equivalence for details).

Each actual parameter passed to a non-var formal parameter
must be assignable to that parameter (see assignability for details).
See also procedureDeclaration.

Turing Reference Manual 183

T
In this explanation of procedureCall, we have up to this point

ignored the possibility of procedures exported from modules. If the
procedure is being called from outside of a module from which has been
exported, the syntax of the procedureCall is:

moduleld. procedureld [(expn {, expn})]
In other words, the module's name and a dot must precede the
procedure's name.

program an entire Turing program

SYNTAX: A program is:

statementsAndDeclarations
DESCRIPTION: A Turing program consists of a list of statements and

declarations.

EXAMPLES: This is a complete Turing program. It outputs Alan M.
Turing.

put "Alan M. Turing"

EXAMPLES: This is a complete Turing program. It outputs a triangle of
stars.

var stars: string := "*"
loop

put stars
stars := stars + "*"

end loop
EXAMPLES: This is a complete Turing program. It outputs Hello once

and Goodbye twice.

procedure sayltAgain (what: string, n : int)
for /: 1 .. n

put what
end for

end sayltAgain

sayltAgain ("Hello", 1)
sayltAgain ("Goodbye", 2)

Turing Reference Manual 184
Turing Reference Manual 185

put statement

SYNTAX: AputStatementis:

put [: fileNumber,} putltem { , putltem} [. .]

DESCRIPTION: The put statement outputs each of the putltems.
Ordinarily, after the final putltem, a new line is started in the output.
However, if the optional dot-dot (..) is present, subsequent output will
be continued on the current output line. With character graphics, the
omission of dot-dot causes the remainder of the output line to be
cleared to blanks.

Ordinarily, the output goes to the screen. However, if the
fileNumber is present, the output goes to the file specified by the file
number (see the open statement for details). Also, output can be
redirected from the screen to a file by a command such as :r >
fileName

EXAMPLE:

var n : int := 5
put "Alice owes me $", n

% Output is: Alice owes me $5
% Note that no extra space Is
% output before an integer such as n.

EXAMPLES:

Statement

put 24
put 1 / 1 0
put 100/10
put 5/3
put sqrt (2)
put 4.86 *10**9
put 121 :5
put 1.37 : 6 :3
put 1.37 :11 : 3 : 2
put "Say VHelloV"
put "XX": 4, "Y"

Output

24
0.1
10
1.666667
1.414214
4.86e9
bb121
b1.370
bb1.370e+00
Say "Hello"
XXbbY

Notes

Trailing zeros omitted
Decimal point omitted
6 fraction digits
6 fraction digits
Exponent for > 1 e6
Width of 5; "b" is blank
Fraction width of 3
Exponent width of 2

Blank shown as b

EXAMPLE: A single blank line is output this way:

put "" % Output null string
then new line

This put statement is sometimes used to close off a line that has been
output piece by piece using put with dot-dot.

DETAILS: The general form of a putltem is one of:

(a) expn [: uridthExpn [: fradionWidth [: exponentWidth]]]
(b) skip

See the above examples for uses of widthExpn, fradionWidth and
exponentWidth; for the exact meaning of these three widths, see the
definitions of the functions realstr, frealstr and erealstr. The skip
item is used to end the current output line and start a new line.

Turing Reference Manual 186 Turing Reference Manual 187

rand random real number procedure

SYNTAX:

rand (var r : real)
DESCRIPTION: The rand statement is used to create a pseudo-random

number in the range zero to one. For example, if x is a real number,
after rand(x), x would have a value such as 0.729548 or 0.352879.

EXAMPLE: This program repeatedly and randomly prints out "Hi ho, hi
ho" or "It's off to work we go".

var r : real
loop

rand (r)
if r> 0.5 then

put "Hi ho, hi ho"
else

put "It's off to work we go"
end if

end loop
DETAILS: The rand statement sets its parameter to the next value of a

sequence of pseudo-random real numbers that approximates a uniform
distribution over the range 0<r <1.

Each time a program runs, rand uses the same pseudo-random
number sequence. To get a different sequence (actually, to start the
sequence at a different point), use the randomize procedure.

To use several sequences of repcatable pseudo-random number
sequences, use the randseed and randnext procedures.

See also randint, randomize, randseed and randnext.

Turing Reference Manual 188

f anoint random integer procedure

SYNTAX:

randint (var / : int, low, high : int)
DESCRIPTION: The randint statement is used to create a pseudo-random

integer in the range low to high, inclusive. For example, if i is an
integer, after randintO', 1,10), i would have a value such as 7 or 2 or
10.

EXAMPLE: This program simulates the repeated rolling of a six sided die.

var roll: int
loop

randint(/, 1 , 6)
put "Rolled", /

end loop
DETAILS: The randint statement sets its parameter to the next value of a

sequence of pseudo-random integers that approximates a uniform
distribution over the range low <i < high . It is required that
low < high.

Each time a program runs, randint uses the same pseudo-random
number sequence. To get a different sequence (actually, to start the
sequence at a different point), use the randomize procedure.

To use several sequences of rcpeatable pseudo-random number
sequences, use the randseed and randnext procedures.

See also rand, randomize, randseed and randnext.

Turing Reference Manual 189

randnext procedure

SYNTAX:

randnext (var v : real, seq : 1 .. 10)
DESCRIPTION: The randnext procedure is used when you need several

sequences of pseudo-random numbers, and you need to be able to exactly
repeat these sequences for a number of simulations. The randnext
procedure is the same as rand, except seq specifies one of 10
independent and repeatable sequences of pseudo-random real numbers.

The randseed procedure is used to start one of these sequences at a
particular point. See also randseed, randint, rand and randnext.

procedure

SYNTAX: :.-

randomize
DESCRIPTION: This is a procedure with no parameters that resets the

sequences of pseudo-random numbers produced by rand and randint, so
different executions of the same program will produce different results.

EXAMPLE: This program simulates the repeated rolling of a six sided die.
Each time the program runs, a different sequence of rolls occurs (unless
there is quite a coincidence or you run the program a lot of times!)

randomize
var roll: int
loop

rand (/)
put "Rolled", /

end loop
DETAILS: If randomize is not used, each time a program runs, rand and

randint use the same pseudo-random number sequences. To get a
different sequence (actually, to start the sequence at a different point),
use randomize.

To use several sequences of repeatable pseudo-random number
sequences, use the randseed and randnext procedures.

See also randint, rand, randseed and randnext.

Turing Reference Manual 190 Turing Reference Manual 191

randseed procedure

SYNTAX:

randseed (seed : int, seq : 1 .. 1 0)
DESCRIPTION: The randseed procedure restarts one of the sequences

generated by randnext. Each restart with the same seed causes
randnext to produce the same sequence for the given sequence. See also
randnext, randint, rand, and randomize.

file statement
SYNTAX: A readStatement is:

read ifileNumber [istatus], readltem{, readltem}
DESCRIPTION: The read statement inputs each of the readltems from

the specified file. These items are input directly using the binary
format that they have on the file. In other words, the items are not in
source (ASCII or EBCDIC) format. In the common case, these items
have been output to the file using the write statement.

By contrast, the get and put statement use source format, which
a person can read using an ordinary text editor.

EXAMPLE: This example shows how to input a complete employee record
using a read statement.

var employeeRecord:
record

name: string (30)
pay: int
dept: 0 .. 9

end record
var fileNo: int
open : fileNo, "payroll", read

read : fileNo, employeeRecord

DETAILS: The fileNumber must specify a file that is open with read
capability (or else a program argument file that is implicitly opened).

The optional status is an int variable that is set to
implementation dependent information about the read. If status is
returned as zero, the read was successful. Otherwise status gives
information about the incomplete or failed read (which is not
documented here). The common case of using status is when reading a
record or array from a file and you are not sure if the entire item exists
on the file. If it does not exist, the read will fail part way through,
but your program can continue and diagnose the problem by inspecting
status.

Turing Reference Manual 192 Turing Reference Manual 193

IfB !̂

A readltem is:
variableReference [: requestedSize [: actualSize]]

Each readltem specifies a variable to be read in internal form.
The optional requestedSize is an integer value giving the number of
bytes of data to be read. The requestedSize should be less than or
equal to the size of the item's internal form in memory (else a warning
message is issued). If no requestedSize is given then the size of the
item in memory is used. The optional actualSize is an int variable
that is set to the number of bytes actually read.

An array, record or union may be read and written as a whole.

See also the write, open, close, seek, tell, get and put statements.

teal type
(the real number type)

Turing Reference Manual 194

SYNTAX:

; real
DESCRIPTION: The real number type is used for number that have

fractional parts, for example, 3.14159. Real numbers can be combined
by various operators such as addition (+) and multiplication (*). Real
numbers can also be combined with integers (whole numbers, such as 23,
0 and -9), in which case the result is generally a real number. An
integer can always be assigned to a real variable, with implicit
conversion to real.

EXAMPLE:

var weight, x : real
var x: real := 9.83
var tax := 0.7 % The type is implicitly real because

%0.7 is a real number

DETAILS: See also explicitRealConstant. The int type is used when
values that are whole numbers; see int for details.

Real numbers can be converted to integers using ceil (ceiling),
floor, or round. Real numbers can be converted to strings using erealstr,
frealstr, and realstr; these conversion functions correspond exactly to
the formatting that is available when using the put statement with
real numbers. Strings can be converted to real numbers using strreal.
See descriptions of these conversion functions.

The predefined functions for real numbers include min, max, sqrt,
sin, cons, arctan, sind, cosd, arcand, In and exp. See the descriptions fo
these functions.

Pseudo random sequences of real numbers can be generated using
rand. See the description of this procedure.

Real numbers in Turing are implemented using 8 byte floating
point representation, which provides 14 to 16 decimal digits of
precision and an exponent range of at least -38 .. 38. The PC and
Macintosh versions of Turing have 16 decimal digits of accuracy
because they use IEEE standard floating point representation.

Turing Reference Manual 195

realstr real-to-string function

SYNTAX:

realstr (r : real, width : int) : string
DESCRIPTION: The realstr function is used to convert a real number to a

string; for example, realstr (2.5el, 4)= "bb25" where b represents a
blank. The string is an approximation to r, padded on the left with
blanks as necessary to a length of width.

The width parameter must be non-negative. If the width
parameter is not large enough to represent the value of r it is
implicitly increased as needed. The displayed value is rounded to the
nearest decimal equivalent with this accuracy, with ties rounded to
the next larger value.

The string realstr (r, width) is the same as the string frealstr (r,
width, defaultfw) when r =0 or when le-3 < abs (r) < Ie6, otherwise
the same as erealstr (r, width, defaultfw, defaultew), with the
following exceptions. With realstr, trailing fraction zeroes are
omitted and if the entire fraction is zero, the decimal point is omitted.
(These omissions take place even if the exponent parts is printed.) If
an exponent is printed, any plus sign and leading zeroes are omitted.
Thus, whole number values are in general displayed as integers.

Defaultfw is an implementation defined number of fractional
digits to be displayed; for most implementations, defaultfw will be 6.
Defaultew is an implementation defined number of exponent digits to
be displayed; for most implementations, defaultew will be 2.

The realstr function approximates the inverse of strreal,
although round-off errors keep these from being exact inverses.

See also the erealstr, frealstr, strreal, intstr and strint functions.

Turing Reference Manual 196

tecord type
SYNTAX: A recordType is:

record
id {, id }: typeSpec

{id {, id } : typeSpec }
end record

DESCRIPTION: Each value of a record type consists of fields, one field for
each name (id) declared inside the record. In the following example,
the fields are name, phoneNumber and address.

EXAMPLE:

type phoneRecord :
record

name : string (20)
phoneNumber : int
address : string (50)

end record

var oneEntry : phoneRecord
var phoneBook : array 1 .. 100 of phoneRecord
var/ : int
oneEntry .name := "Turing, Alan"

phoneBook (/ ') := oneEntry % Assign whole record

DETAILS: In a record, id's of fields must be distinct. However, these need
not be distinct from identifiers outside the record. Records can be
assigned as a whole (to records of an equivalent type), but they cannot
be compared. A semicolon can optionally follow each typeSpec.

Any array contained in a record must have bounds that are
known at compile time.

Turing Reference Manual 197

repeat (make copies of string) function

SYNTAX:

repeat (s : string, / : int) : string
DESCRIPTION: The repeat function returns i copies of string s catenated

together. For example, repeat ("X", 4) is "XXXX".

EXAMPLE: This program outputs "HoHoHo".

var word : string := "Ho"
put repeat (word, 3)

DETAILS: If /' is less than or equal to zero, the null string"" is returned.
The repeat function is often used for spacing of output; for example,
this statement skips 20 blanks before outputting x.

put repeat (" " ,20), x

result statement
i
SYNTAX: A resultStatement is:

result expn
DESCRIPTION: A result statement, which must appear only in a function,

is used to provide the value of the function.

EXAMPLE: This function doubles its parameter.

function double (x : real) : real
result 2*x

end double
put double (5.3) % This outputs 10.6

EXAMPLE: This function finds the position of a name in a list.

function find (a : array 1 . .100 of string): int
for i: 1 .. 100

if a (/) = name then
result;

end if
end for

end find

DETAILS: The execution of a result statement computes the value of the
expression (expn) and terminates the function, returning the value as
the value of the function.

The expression must be assignable to the result type of the
function, for example, in double, 2*x is assignable to real. (See the
ossignmentStatement for the definition of assignable.)

A function must terminate by executing a result statement and not
be reaching the end of the function.

Turing Reference Manual 198 Turing Reference Manual 199

return statement

SYNTAX: A returnStatement is:

return
DESCRIPTION: A return statement terminates the procedure (or main

program) in which it appears. Ordinarily, a procedure (or main
program) terminates by reaching its end; the return statement is used
cause early termination.

EXAMPLE: This procedure takes no action if the errorHasOccurred flag
has been set to true.

procedure double
if errorHasOccurred then

return % Terminate this procedure
end if
... handle usual case in this procedure ...

end double

DETAILS: A return must not appear as a statement in (the outermost level
of) a module, nor can it appear in a function.

round real-to-integer function

SYNTAX:

round (r : real): int
DESCRIPTION: The round function is used to convert a real number to an

integer. The result is the nearest integer to r. In case of a tie, the
numberically larger value is returned. For example, round (3) is 3,
round (2.85) is 3 and round (-8.43) is-8.

See also the floor and ceil functions.

1

Turing Reference Manual 200 Turing Reference Manual 201

Screen procedure
SYNTAX:

screen (mode : int)
DESCRIPTION: The screen procedure is used to set the mode of the screen.

AH the options of screen has been incorporated into the newer
procedure called setscreen; it is recommended that you use setscreen
instead of screen. See the setscreen procedure for details.

The modes set by screen are:

0 Exit screen mode

1 Enter screen mode (implied by using other screen mode
commands such as els)

2 Echo (as characters are typed, they appear on the
screen)

-2 No echo (as characters are typed, they do not appear on
the screen; however, characters read by get are always
echoed)

3 Turns on cursor on IBM PCs and Apple Macintoshes, but
has no effect under Unix

-3 Turns off cursor on IBM PC's and Apple Macintoshes, but
has no effect under Unix

4 Line input

-4 Single character input

5 On input RETURN (control-M or ASCII 13 or "\r")
becomes NEWLINE (control-J or ASCII 11 or "\n")
On output NEWLFNE becomes RETURN followed by
NEWLINE

-5 On input RETURN remains unchanged
On output RETURN and NEWLINE remain unchanged

Seek file statement

Turing Reference Manual 202

SYNTAX: A seekStatement is one of:

(a) seek ifileNumber, filePosition
(b) seek :fileNumber, *
DESCRIPTION: Random access of both source (ASCII or EBCDIC) and

internal form (binary) files is provided by the seek and tell
statements. The seek statement repositions the specified file so that
the next input/output operation will begin at the specified point
(filePosition) in the file.

The fileNumber must specify a file that is open with seek
capability. The filePosition is a non-negative integer offset in bytes
from the beginning of the file; in the common case, this is a number
returned by the tell statement. (The first position in the file is
position zero.)

Form (b) specifies that the next operation is to begin at the
position immediately following the current end of the file. A
filePosition of zero specifies that the next operation is to start at the
beginning of the file. Seeking to a position beyond the current end of
the file and then writing automatically fills the intervening
positions with the internal representation of zero.

EXAMPLE: This example shows how to use seek to append to the end of a
file.

var employeeRecord:
record

name: string (30)
pay: int

end record
var fileNo: int
open : fileNo, "payroll", write, seek, mod
Seek : fileNo, * % Seek to the end of the file
write : fileNo, employeeRecord % This record

% is added to the end of the file

DETAILS: See also the read, write, open, close, tell, get and put
statements. Another example use of seek is given with the
explanation of the tell statement.

Turing Reference Manual 203

separator
between tokens in a program

DESCRIPTION: A Turing program is made up of a sequence of tokens (see
tokens), such as var, x,:, and int. These tokens may have separators
between them. A separator is a comment (see comment), blank, tab,
form feed or an end of line.

Set type

«Hr

Turing Reference Manual 204

SYNTAX: A setType is:

set of typeSpec
DESCRIPTION: Each value of a set type consists of a set of elements.

The typeSpec, which is restricted to being a subrange or an
enumerated type, gives the type of these elements.

EXAMPLE: The srmllSet type is declared so that it can contain any and
all of the values 0,1 and 2. Variable s is initialized to be the set
containing 1 and 2.

type smallSet : set of 0 .. 2
var s : smallSet := smallSet (0 ,1)
• ••

if 2 in s then ...
DETAILS: In classical mathematics, the set consisting of 0 and 1 is written

as (0,1). This is written in Turing using a set constructor consisting of
the name of the set type followed by a parenthesized list of elements,
which in this example is smalllnt (0,1). The empty set is written, for
example, as smalllnt (). The full set is written as smalllnt (all), so
smalllnt (all) = smalllnt (0,1,2).

Sets can be assigned as a whole (to sets of an equivalent type).
See also equivalence of types.

The operators to combine two sets are union (+), intersection (*),
set subtraction (-), equality (=), inequality (not=), subset (<=), strict
subset (<), superset (>=), and strict superset (>). Only sets with
equivalent types (equal bounds on their index types) can be combined
by these operators. The operators to see if an element is or is not in a
set are in and not in; for example, the test to see if 2 is in set s is
written in the above example as: 2 Ins.

The indexType of a set type must contain at least one element,
for example, the range 1 .. 0 would not be allowed. See also
indexType. The compiler may limit the typeSpec to at most a small
range, for example, to no more than 31 possible elements.

See also precedence of operators for the order of applying set
opeations.

Turing Reference Manual 205

setConstructor graphics procedure [PC, Mac and Unix only)

SYNTAX: A setConstructor is:

setTypeld (membersOfSet)
DESCRIPTION: Each value of a set type consists of a set of elements. In

classical mathematics, the set consisting of 0 and 1 is written as (0,1).
This is written in Turing using a set constructor consisting of the name
of the set type (setTypeld) followed by a parenthesized list of
elements.

EXAMPLE: The smallSet type is declared so that it can contain any and
all of the values 0,1 and 2. Variable s is initialized to be the set
containing 1 and 2. The set (0,1) is written in this Turing example as
smalllnt (0,1).

type smallSet : set of 0 .. 2
var s : smallSet := smallSet (0,1)
• • • r

if 2 in s then ...
DETAILS: The form of membersOfSet is one of:

(a) expn Cexpn) List of members of set
(b) all All member of index type of set
(c) Nothing, meaning the empty set

The empty set is written, for example, as smalllnt (). The full set is
written as smalllnt (all), so smalllnt (all) = smalllnt (0,1,2). See also
the set type.

The syntax of setConstructor as given above has been
simplified by ignoring the fact that set types can be exported from
modules. When a set type is exported and used outside of a module,
you must write the module name, a dot and then the type name. For
example, the set constructor above would be written as
m.smallSet(\,2), where m is the module name.

SYNTAX: ;; -

setscreen (s : string)
EXAMPLE: Here are example uses of the setscreen procedure. In many

cases, these will appear as the first statement of the program.
However, they can appear any place in a program.

setscreen("graphics")
setscreenj "graphics:e16")
setscreen("screen")
setscreen("nocursor")
setscreen("noecho")

% IBM CGA graphics
% IBM EGA graphics
% Jo use locate
% Turn off cursor
% Do not echo keys

Turing Reference Manual 206

DESCRIPTION: The setscreen statement is used to change the mode of
the screen as well as the way of doing input and output. The
parameter to setscreen is a string, such as "graphics". The string
contains one or more options separated by commas, such as
"text,noecho".

DETAILS: Many of the options to setscreen are specific to IBM PC
compatible computers and Apple Macintoshes and may have no
meaning on other systems such as Unix.

Where the options to setscreen are mutually exclusive, they are
listed here with the default underlined. Here are the options:

"text", "screen", "graphics" - Sets mode to the given mode; "text" is the
default character output mode; "screen" is character graphics mode,
allowing the locate procedure; "graphics" is "pixel graphics" mode.
By default, "graphics" is CGA graphics on IBM PC compatibles. On
Unix dumb terminals, "graphics" is meaningless. A suffix can be given,
as in "graphics:h16", to specify another version of pixel graphics
(assuming the corresponding hardware is available). The set of
"graphics" options is given on the next page. On Apple Macintoshes,
the graphics screen is 480x275 by default. The size of the screen can
also be set with a suffix in the form "gr«phtcs:150;250", which would
set the graphics output window to be 150x250 pixels. Macintoshes also
allow you to set the window size in screen mode. The default is 25 rows
by 80 columns but this can be changed with "screen:W;100" to be 10 rows
by 100 columns.

Turing Reference Manual 207

Mode maxx+1 maxy+1
"graphics" 320 200
"graphicsrmono" 320 200
"graphics:hmono" 640 200
"graphics:16" 320 200
"graphics:h!6" 640 200
"graphics:e!6" -640 350
"graphics:v2" 640 480
"graphics: vl 6" 640 480
"graphics:m256" 320 200
"graphics:150;250" 150 250

maxcolor+1
4 (CGA)
4 (gray)
2

16
16
16
2

16
256

2 (Mac only)

Warning: in Version 4.2 of Turing for IBM PC compatibles, it is not
possible to change modes directly from one "graphics" mode to
another, but rather you must change from a "graphics" mode to
"text" mode and then to the next "graphics" mode.

"cursor", "nocursor" - Causes the cursor to be shown (or hidden). There is
never a cursor showing in "graphics " mode. On Unix dumb terminals,
the cursor cannot be hidden. There is an optional suffix for "cursor"
that determines the shape of the cursor. In CGA graphics, the cursor
is constructed out of horizontal lines numbered 0,1,2, up to 7, with 0
being the top. The suffix gives the range of lines to be used for the
cursor, for example, "cursor.5,7" specifies a cursor consisting of lines 5
through 7. In general, this form is "cursor:startline;endline", where
startline and endlinc are integer literals such as 5 and 7. On the
Apple Macintosh, it is possible to set the cursor size from 0-10.

"echo", "noecho" - Causes (or suppresses) echoing of characters that are
typed. Echoing is commonly turned off in interactive programs to
keep typed characters from being echoed at inappropriate places on
the screen.

"line", "char" - Causes a whole line (line) to be read at once or else a single
character (char). [PC and Unix only]

"retmap". "noretmap" - Causes RETURN on input to be mapped to
NEWLINE, and NEWLINE on output to be mapped to RETURN
followed by NEWLINE. Using "noretmap" stops this mapping.
[PC and Unix only]

DETAILS: The setscreen procedure supports all the features of the older
screen procedure; although the screen procedure is still supported, it
is recommended that setscreen be used instead.

See also drawdot, drawline, drawoval, drawarc, whatdotcolor,
color, colorback, takepic and drawpic.

Turing Reference Manual 208

sign function

SYNTAX:

sign (r : real): -1 .. 1
DESCRIPTION: The sign function is used to determine whether a number

is positive, zero or negative. It returns 1 if r > 0,0 if r = 0, and -1 if r <
0. For example, sign (5) is 1 and sign (-23) is -1.

EXAMPLE: This program reads in numbers and determines if they are
positive, zero or negative:

var x : real
get x
case sign (x) of

label 1 : put "Positive"
label 0 : put "Zero"
label -1 : put "Negative"

end case

Turing Reference Manual 209

•

Sin sine function (radians)
SYNTAX:

sin (r : real): real
DESCRIPTION: The sin function is used to find the sine of an angle given

in radians. For example, sin (0) is 0.

EXAMPLE: This program prints out the sine of pi/6,2*pi/6,3*pi/6, up to
12*pi/6 radians

constp/:=3.14159
f o r / : 1 . .12

const angle := i *pi / 6
put "Sin of", angle, " is ", sin (angle)

end for

DETAILS: See also the sind function which finds the sine of an angle given
in degrees. (2 * pi radians are the same as 360 degrees.)

Turing Reference Manual 210

sine function (degrees)

SYNTAX:

sind (r : real): real
DESCRIPTION: The sind function is used to find the sine of an angle

given in degrees. For example, sind (0) is 0.

EXAMPLE: This program prints out the sine of 30,60,90, up to 360 degrees.

for /: 1 .. 12
const angle := / * 30
put "Sin of", angle, " is ", sind (angle)

end for
DETAILS: See also the sin function which finds the sine of an angle given

in radians. (2 * pi radians are the same as 360 degrees.)

Turing Reference Manual 211

Sizepic graphics function
SYNTAX:

sizepic (x1, y1, x2, y2 : mi): int
DESCRIPTION: The sizepic function is used to determine the size buffer

needed to record a picture from the screen (see description of takepic).
This gives the minimum number of elements of the int array used by
takepic . The buffer is used by drawpic to make copies of the picture on
the screen.

EXAMPLE: This program outputs the size of array needed to hold a picture
with left bottom comer at x=10, y=20 and right top comer at x=50,
y=60.

setscreen ("graphics")

put "The size of the array needs to be",
sizepic (1 0 , 20,50,60)

DETAILS: See takepic for an example of the use of sizepic and for further
information about buffers for drawing pictures.
The screen should be in a "graphics" mode; see the setscreen procedure
for details. If the screen is not in a "graphks " mode, it will
automatically be set to "graphics" mode.

See also drawpic.

See also setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

[PC only.
Skip (used in get statement)

SYNTAX:

skip
DESCRIPTION: Using skip as an input item in a get statement causes the

current input to be ignored until a non-whitespace token is encountered.
Whitespace includes all blanks, tabs, form feeds and newlines.

EXAMPLE: The skip input item is most frequently used to skip past an
end-of-line (newline) character to see if the end of the input file has
been reached. Thus, it is most frequently seen paired with eofin a loop
body as follows

loop
get skip
exit when eof
get...
• • •

end loop
DETAILS: The skip bypasses all whitespacc characters including any

trailing newlines and blank lines. By skipping these characters, a true
end-of-file condition can be detected. Otherwise, the end-of-file is
obscured by the exisitng whitespace until a following get which will
fail since there is no trailing data.

EXAMPLE: Another use of skip is to correctly identify the start of a long
string (usually to be read in line or counted mode) by skipping the
whitespace and trailing newline as follows

var i: int
var line: string
loop

get i, skip, line:'
• • •

end loop

Turing Reference Manual 212 Turing Reference Manual 213

DETAILS: The first item in the get statement reads an integer by skipping
all whitespace and reading digits until whitespace is encountered.
The input stream is then left with the whitespace as the next input
character. The skip then skips past the whitespace effectively
beginning the next input at the next non-whitespace character. This
truncates leading blanks and has another, potentially more important,
effect. If the integer is the last data on a line and the string is on a
following line, the skip is necessary to avoid setting line to a null
string value.

See also get statement; and loop statement.

I

Skip (used in put statement)

SYNTAX:

skip
DESCRIPTION: Using skip as an output item in a put statement causes

the current output line to be ended and a new line to be started.

EXAMPLE: This example, To be is output on one line and Or not to be on
the next.

put "To be", skip, "Or not to be"
DETAILS: Using skip is equivalent to outputting the newline character

"\n".

Turing Reference Manual 214 Turing Reference Manual 215

SOUnd statement

SYNTAX:

sound (frequency, duration : int)

DESCRIPTION: The sound statement is used to cause the computer to
sound a note of a given frequency for a given time. The frequency is in
cycles per second (Hertz). The time duration is in milliseconds. For
example, middle A on a piano is 440 Hertz, so sound(440,1000) plays
middle A for one second.

EXAMPLE: This program sounds the frequencies 100,200 up to 1000 each for
half a second.

for /: 1 ..10
put /
sound(100*/, 500)

end for
% Sound note (or 1/2 second

DETAILS: See also the play statement, which plays notes based on
musical notation; for example, play("8C") plays an eighth note of
middle C. See also the delay, clock, sysclock, wallclock, time and
date statements.

On IBM PC compatibles, the hardware resolution of duration is
in units of 55 milliseconds. For example, sound(440,500) will delay the
program by about half a second, but may be off by as much as 55
milliseconds.

Turing Reference Manual 216

[PC oniy]
SCJft square root function

SYNTAX:

sqrt (r : real): real
DESCRIPTION: The sqrt function is used to find the square root of a

number. For example, sqrt (4) is 2.

EXAMPLE: This program prints out the square roots of 1,2,3,... up to 100.

for /: 1 .. 100
put "Square root of",/," is", sqrt (/)

end for
DETAILS: It is illegal to try to take the square root of a negative number.

The result of sqrt is always positive or zero.

The opposite of a square root is the square; for example, the
square of x is written is x**2.

Turing Reference Manual 217

standard type

SYNTAX: A standardType is one of:

(a) int
(b) real
(c) string [(maximumLength)]
<d) boolean

DESCRIPTION: The standard types can be used throughout a program.
They should not be included in an import list. See also int, real, string
and boolean.

statement
SYNTAX: A statement is one of:

(a)
(b)
(c)
(d)
(e)
(f)
(9)
(h)
(i)
(i)
(k)
(I)
(m)
(n)
(o)
(P)

(q)
(0
(s)
(t)
(u)
(v)

% variableReference := expn
% open ...
% close ...
% put ...
% get ...
% read ...
% write...
% seek...
% tell...
% for ... end for
% loop ... end loop

assignmentStatement
openStatement
closeStatement
putStatement
getStatement
readStatement
writeStatement
seekStatement
tellStatement
forStatement
loopStatement %
exit [when trueFalseExpn]
if Statement % if... end if
caseStatement % case ...endcase
assert trueFalseExpn
begin

statementsAndDeclarations
end
prOCedureCall % procedureld [(parameters)]
return
result expn
new collectionld, pointerVariableReference
free collectionld, pointerVariableReference
tag unionVariableReference, expn

DESCRIPTION: A statement (or command) causes a particular action, for
example, the putStatement

put "Hello"
outputs Hello. See the descriptions of the individual statements for
explanations of their actions. Each statement can optionally by
followed by a semicolon (;).

Turing Reference Manual 218 Turing Reference Manual 219

EXAMPLES:

width :=24
put "Hello world"
exit when / = 100
assert width < 320

% Assignment statement
% Put statement
% Exit statement
% Assen statement

DETAILS: You can use a result statement only in a function. You can use a
return statement only to terminate a procedure or the main program
(but not to terminate the initialization of a module). See also result
and return.

There are a number of predefined procedures, such as drawline,
which are not listed as statements above; uses of these are considered
to be procedure calls, which is one form of statement.

Turing Reference Manual 220

statementsAndDedarations
SYNTAX: StatementsAndDedarations are:

{statementOrDeclaration }
DESCRIPTION: StatementsAndDedarations are a list of statements and

declarations. For example, a Turing program consists of a list of
statements and declarations. The body of a procedure is a list of
statements and declarations.

Each statementOrDeclaration is one of:
(a) statement
(b) declaration

See also statement and declaration.

EXAMPLES: This list of statements and declarations is a Turing program
that outputs Hello Rrank.

var name : string
name := "Frank"
put "Hello", name

Turing Reference Manual 221

String comparison
SYNTAX: A stringComparison is one of:

(a) stringExpn
(b> stringExpn
(c> stringExpn
(d> stringExpn
(e) stringExpn
(0 stringExpn

= stringExpn
not= stringExpn
> stringExpn
< stringExpn
>= stringExpn
<= stringExpn

DESCRIPTION: Strings (stringExpns) can be compared for equality (= and
not=) and for ordering (>, <, >= and <=).

EXAMPLES:

var name: string := "Nancy"
var HcenceNumber : string (6)
HcenceNumber :="175AJN"

DETAILS: Two strings are considered to be equal (=) if they have the same
length and are made up, character by character, of the same
characters; otherwise they are considered to be unequal (not=).

Ordering among strings is essentially alphabetic order. String S
is considered to come before string T, that is S < T, if the two are
identical up to a certain position and after that position, either the
next character of S comes before the next character of T or else there
are no more characters in S and T contains more characters.

S >T (S comes after T) means the same thing as 7 <S. S >=T
means the same thing as S>TorS =T. S <=T means the same thing as
S<TorS=T.

The ordering among individual characters is given by ASCII,
which specifies among other things that letter capital L comes
alphabetically before capital letter M and similarly for small (lower
case) letters.

On IBM mainframe computers, the EBCDIC specification of
characters may be used instead of ASCII.

string type
SYNTAX: A stringType is:

string [(maximumLength)]

DESCRIPTION: Each variable whose type is a stringType can contain a
sequence (a string) of characters. The length of this sequence must not
exceed the stringType's maximum length.

EXAMPLES:

var name: string
name := "Nancy"
var HcenceNumber : string (6)
HcenceNumber :="175AJN"

DETAILS: Strings can be assigned and they can be compared for both
equality and for ordering; see also string comparison and assignment
statement.

Strings can be catenated (joined together) using the + operator
and separated into substrings; see catenation and substring. String
functions are provided to find the length of a string, to find were one
string appears inside another, and to make repeated copies of a string
all joined together; see length, index, and repeat.
See explicitStringConstants for exact rules for writing string values
such as "Nancy".

A string type written without a maximum length is limited to
holding at most 255 characters.

The maximumLength of a string, if given as a part of the type,
must be known at compile time, and must be at least 1 and at most 255.
The maximum length of a string is given by upper, for example,
uppeiilicenceNumber) is 6; see also upper.

In the declaration of a string that is a var formal parameter of a
procedure or function, the maximumLength can be written as a star (*),
in which case the maximum length is taken to be that of the
corresponding actual parameter, as in:

procedure deblank (var s : string(*)).

The star can also be used when the parameter is an array of strings.

Turing Reference Manual 222 Turing Reference Manual 223

Strint string-to-integer function

SYNTAX:

strint (s : string): int

DESCRIPTION: The strint function is used to convert a string to an integer.
The integer is equivalent to string s. For example, strint("-47") = -47.

String s must consist of a possibly null sequence of blanks, then an
optional plus or minus sign, and finally a sequence of one or more digits.

The intstr function is the inverse of strint, so for any integer i,
strint (intstr (i)) = i.

See also the chr, ord and intstr functions.

Strreal string-to-real function

SYNTAX:

strreal (s: string): real
DESCRIPTION: The strreal function is used to convert a string to a real

number; for example, strreal ("2.5el") will produce an approximation
to the number 25.0.

String s must consist of a possibly null sequence of blanks, then an
optional plus or minus sign and finally an explicit unsigned real or
integer constant.

The realstr, erealstr and frealstr functions approximate the
inverse of strreal, although round-off errors keep these from being
exact inverses.

See also the realstr, erealstr, frealstr, intstr and strint functions.

*

Turing Reference Manual 224 Turing Reference Manual 225

subrangeType
SYNTAX: A subrangeType is:

expn .. expn

DESCRIPTION: A subrange type defines a set of values, for example, the
subrange 1.. 4 consists of 1,2,3 and 4.

EXAMPLES:

Var / : 1 .. 1 0 % / can be 1,2... up to 10
type xRange : 0 .. 319 % Define integer subrange
var pixels : array xRange of int

% Array elements are
% numbered 0, 1,... 319

for k : XRange % k ranges from 0 to 31[9
pixels (k) := 0

end for

DETAILS: A subrange must contain at least one element; in other words,
the second expression (expn) must be at least as large as the second
expression.

The lower bound of a subrange must be known at compile time.
The upper bound is allowed to be a run-time value only in one situation
and that is when the it gives the upper bound of an array being
declared in a variable declaration, in other words when declaring a
dynamic array.

In the most common case, subranges are a subset of the integers, as
in 1.. 10. You can also have subranges of enumerated types.

Turing Reference Manual 226

Substring of another string

SYNTAX: A substring is one of:

(a) stringReference (leftPosition .. rightPosition)
(b) stringReference (charPosition)

DESCRIPTION: A substring selects a part of another string. In form (a) the
substring starts at the left position and runs to the right position. In
form (b), the substring is only a single character.

EXAMPLES:

var word: string := "bring"
put Word (2 .. 4) % Outputs rin
put word (3) % outputs i
put Word (2 .. *) % Outputs ring; the star (') means

% the end of the string.
put WOrd (* - 2 .. * - 1) % Outputs in

DETAILS: The leftmost possible position in a string is numbered 1. The
last position in a string can be written as a star (*); for example, word
(2 .. *) is equivalent to word (2 .. length(word)).

Each of leftPosition, rightPosition, and charPosition must have
one of these forms:

(a) expn
(b)*
(c) * - expn

The exact rules for the allowed values of leftPosition and
rightPosition are:

(1) leftPosition must be at least 1,
(2) rightPosition must be at most length(stringReference), and
(3) the length of the selected substring must zero or more.

This specifically allows null substrings such as word(\,G) in which
rightPosition is 0 and word(6$) in which leftPosition is one more that
length(stringReference).

Note that substrings are not assignable. The statement var s:
string s(3) := "a" is illegal in Turing.

Turing Reference Manual 227

SUCC successor function

SYNTAX:

succ (expn)
DESCRIPTION: The succ function accepts an integer or an enumerated

value and returns the integer plus one, or the next value in the
enumeration. For example, succ (7) is 8.

EXAMPLE: This part of a Turing program fills up array a with the
enumerated values green, yellow, red, green, yellow, red, etc.

type colors : enum (green, yellow, red)
var a: array 1 .. 100 of colors
var c : colors := colors .green
for/: 1 .. 100

a (/) : = c
if c = colors. red then

c:= colors. green
else

c:= succ (c)
end if

end for
DETAILS: It is illegal to apply succ to the last value of an enumeration.

See also the pred function.

Irafll

Turing Reference Manual 228

millisecs used procedure IPC, Mac and Unix oniyi

SYNTAX:

sysclock (var c : int)
DESCRIPTION: The sysclock statement is used on a multitasking system

such as Unix to determine the amount of time that has been used by
this program (process). Variable c is assigned the number of central
processor milliseconds assigned to this program. This is of little use on
a personal computer.

EXAMPLE: On a Unix system, this program tells you how much time it
has used.

var timeilsed : int
sysclock (timeUsed) ,
put "This program has used ", timeUsed,

" milliseconds of CPU time"
DETAILS: See also the delay, time, clock, wallclock and date statements.

Turing Reference Manual 229

System statement

SYNTAX:

system (command : string, var ret : int)
DESCRIPTION: The system statement is used to execute the shell

(operating system) command, as if it were typed at the terminal. The
return code is in ret. A return code of 0 (zero) means no detected errors.
A return code of 127 means the command processor could not be accessed.
A return code of 126 means the command processor did not have room to
run on the PC.

EXAMPLE: This program creates a directory listing when run under DOS
on an IBM PC compatible computer; the same program will run under
Unix by changing "dir" to "Is".

var success : int
system ("dir", success)
if success not= 0 then

if success = 1 27 then
put "Sorry, can't find 'dir1"

elsif success = 1 26 then
put "Sorry, no room to run 'dir"1

else
put "Sorry, 'dir' did not work"

end if
end if

DETAILS: See also the nargs, fetcharg and getenv functions.

nix only tag statement

SYNTAX: A tagStatement is:

tag unionVariableReference, expn

DESCRIPTION: A tag statement is a special purpose assignment that is
used for changing the tag of a union variable.

EXAMPLE: In this example, the tag field of union variable v is set to be
passenger, thereby activating the passenger field of v.

type vehiclelnfo :
union kind : passenger .. recreational

label passenger :
cylinders : 1 . .16

label farm :
farmClass -.string (1 0)

label : % No fields for "otherwise" clause

end union
var v : vehiclelnfo

tag V , passenger % Activate passenger part

DETAILS: A tag statement is the only way to modify the tag field of a
union variable (other than by assigning an entire union value to the
union variable).

It is not allowed to access a particular set of fields of a union
unless the tag is set to match the corresponding label value. See also
union types.

Turing Reference Manual 230 Turing Reference Manual 231

takepic graphics procedure
SYNTAX:

takepic (x1, y1, x2, y2 : int,
var buffer: array 1 .. * of int)

DESCRIPTION: The takepic procedure is used to record the pixel values
in a rectangle, with left bottom and right right corners of (xl, yl) and
(x2, y2), in the buffer array. This requires a sufficiently large buffer
(see sizepic). The drawpic procedure is used to make copies of the
recorded rectangle on the screen.

EXAMPLE: After drawing a happy face, this program copies the face to a
new location.

tPCo,inly]

First position
of face

Copy of
face

100

100 200

setscreen ("graphics")
... draw happy face in the box (0,0) to (100,100)...
% Create buffer big enough to hold happy face
var face: array 1 .. sizepic(0,0,100,100) of int
% Copy picture into the buffer, which is the face array
takepic(0,0,100,100, face)
% Redraw the picture with its left bottom at (200,0)
drawpic(200,0, face,0)

DETAILS: The integer values that takepic places in the buffer can be
read or written (using the read and write statements). Unfortunately,
assignment (by :=) and put of the individual integer values in the
buffer will fail in the case in which a value happens to be the pattern
used to represent the uninitialized value (the largest negative number

Turing Reference Manual 232

the hardware can represent).

The screen should be in a "graphics" mode; see the setscreen
procedure for details. If the screen is not in a "graphics " mode, it will
automatically be set to "graphics" mode.

See also sizepic and drawpic.

See also setscreen, maxx, maxy, drawdot, drawline, drawbox,
and drawoval.

Turing Reference Manual 233

tell file statement

SYNTAX: An tellStatement is:

tell :fileNumber, filePositionVar

DESCRIPTION: The tell statement sets filePosition Vur, whose type
must be int, to the current offset in bytes from the beginning of the
specified file. The fileN'umber must specify a file that is open with
seek capability (or else a program argument file that is implicitly
opened). The tell statement is useful for recording the file position of
a certain piece of data for later access using seek.

EXAMPLE: This example shows how to use tell to record the location in a
file of a record. This location is later used by seek to allow the record
to be read.

var employeeRecord:
record

name: string (30)
pay: int
dept: 0 .. 9

end record
var fileNo: int
var location: int
open : fileNo, "payroll", write, seek

tell : fileNo, location % Make note of this location
write : fileNo, employeeRecord % write record

%at this location

seek : fileNo, location % GO back to location
read : fileNo, employeeRecord % Read the record

% that was previously written

DETAILS: See also the read, write, open, close, seek, get and put
statements.

[PC, Mac and Unix only]time (hours, minutes, seconds)
procedure

SYNTAX:

time (var t : string)
DESCRIPTION: The time statement is used to determine the current rime

of day. Variable t is assigned a string in the format "hh:tnm:ss". For
example, if the time is two minutes and 47 seconds after nine A.M., t
will be set to "09:02:47". Twenty-four hour time is used; for example,
eleven thirty P.M. gives the string "23:30:00".

EXAMPLE: This program greets you and tells you the time of day.

var timeOfDay : string
time (timeOfDay)
put "Greetings!! The time is ", timeOfDay

DETAILS: See also the delay, clock, sysclock, wallclock and date
statements.

Be warned that on some computers such as IBM PC compatibles or
Apple Macintoshes, the rime may not be set correctly in the operating
system; in that case, the time procedure will give incorrect results.

Turing Reference Manual 234 Turing Reference Manual 235

token
DESCRIPTION: A token is essentially a word, a number or a special

symbol such as :=. In a Turing program there are four kinds of tokens:
keywords such as get, identifiers such as incomeTax, operators and
special symbols, such as + and :=, and explicit constants, such as 1.5
and "Hello". Some keywords, such as index, are reserved and cannot
be used in programs to name variables, procedures, etc.

A get statement, such as
get incomeTax

uses token-oriented input. This means that white space (blanks, tabs,
etc) are skipped before reading the input item. See the get statement
for details.

EXAMPLES: In this example, the tokens are var, x,:, real, x, := and 9.84.

var x : real
x := 9.84

Turing Reference Manual 236

true
boolean value (as opposed to false)

SYNTAX:

true
DESCRIPTION: A boolean (true/false) variable can be either true or false

(see boolean type).

EXAMPLE:

var passed : boolean := true
var mark: int
for / : 1 . .10

get mark
passed := passed and mark >= 60

end for
if passed = true then

put "You passed all ten subjects"
end if

DETAILS: The line if passed=true then can be simplified to if passed then
with no change to the meaning of the program.

Turing Reference Manual 237

type declaration
SYNTAX: A typeDeclaration is:

type id : typeSpec

DESCRIPTION: A type declaration gives a name to a type. This name can
be used in place of the type.

EXAMPLES:

type nameType : string (30)
type range : 0 .. 150
type entry :

record
name: nameType
age: int

end record

DETAILS:
The keyword pervasive can be inserted just after type. When

this is done, the type is visible inside all subconstructs of the type
scope. Without pervasive the type is not visible inside modules unless
explicitly imported. Pervasive types need not be imported. You can
abbreviate pervasive as a star (*).

typeSpec
type specification

SYNTAX: A typeSpec (type specification) is one of:

(a) int
real

(c) boolean
(d) stringType
(e) subrangeType
(f) enumeratedType
<g) arrayType
(h) setType
(0 recordType
G) unionType
(k) pointerType
(i) namedType

% Example: string (20)
% Example: 1 . . 150
% Example: enum (red, green, blue)
% Example: array 1.. 150 of real
% Example: set of 1 . . 10
% Example: record ... end record
% Example: union ... end union
% Example: pointer to collectionVar
% Example: colorRange

DESCRIPTION: A type specification determines the allowed values for a
variable or constant. For example, if variable x is an integer (its
typeSpec is int), the possible values for x are numbers such as -15,0,3
and 348207. If x is a real number (its typeSpec is real), then its possible
values include 7.8, -35.0, and 15el2. If x is a boolean, its possible
values are true and false. If A: is a string, its possible values include
"Hello" and "Good-bye".

EXAMPLES:

intvar numberOfSides
var x, y : real
type range : 0 .. 150
type entry :

record
name: string (25)
age: range

end record

% The typeSpec here is 0.. 150
% Here is a record typeSpec

Turing Reference Manual 238 Turing Reference Manual 239

union type
SYNTAX: A unionType is:

union [id] : indexType
label labelExpn { , labelExpn}:

{id {, id } : typeSpec}
{label labelExpn { , labelExpn}:

{id {, id } : typeSpec}}
[label: { id {, id } : typeSpec}]

end union

DESCRIPTION: A union type (also called a variant record) is like a
record in which there is a run-time choice among sets of accessible
fields. This choice is made by the tag statement, which deletes the
current set of fields and activates a new set.

EXAMPLE: This union type keeps track of various information about a
vehicle, depending on the kind of vehicle.

const passenger := 0
const farm := 1
const recreational := 2

type vehiclelnfo :
union kind : passenger .. recreational

label passenger :
cylinders : 1 . .16

label farm :
farmClass :string (1 0)

label I % No fields for "otherwise" clause
end union

var v : vehicleRecord

tag v, passenger
v.cylinders := 6

% Activate passenger part

DETAILS: The optional identifier following the keyword union is the name
of the tag of the union type. If the identifier is omitted, the tag is still

Turing Reference Manual 240

considered to exist, although its value cannot be accessed. The tag
must be of an index type, for example 1..7. You should limit the range
of this index type, as the compiler may have a limit (at least 255) on
the maximum range it can handle.

Each labelExpn must be known at compile time and must lie
within the range of the tag's type. The fields, including the tag, of a
union value are referenced using the dot operator, as in v.cylinders and
these can be used as variables or constants. A field can be accessed only
when the tag matches one of the label expressions corresponding to the
field. The tag can be changed by the tag statement and but it cannot be
assigned to, passed to a var parameter or bound to using var.

In a union, id's of fields, including the tag, must be distinct.
However, these need not be distinct from identifiers outside the union.
Unions can be assigned as a whole (to unions of an equivalent type), but
they cannot be compared. A semicolon can optionally follow each
typeSpec.

Any array contained in a union must have bounds that are known
at compile time.

Turing Reference Manual 241

Upper bound of an array or string

SYNTAX:

upper (arrayReference [, dimension]): int

DESCRIPTION: The upper attribute is used to find the upper bound of an
array or string. (See lower for finding the lower bound.)

EXAMPLE: In a procedure, see if the bound of array parameter a is large
enough so it can be subscripted by i. If so set a(i) to zero.

procedure test (var a : array 1 .. * of real)
if / <= upper (a) then

a (/):=0.0
end if

end test

DETAILS: In a similar way, if s is a string, its upper bound (not length!) is
given by upper (s). If an array has more than one dimension, as in var b
: array 1..10,1 ..60 of int, you must specify the dimension, for example,
upper (b, 2) returns 60.

»

var declaration

SYNTAX: A variabkDedaration is one of:

(a) var id { , id } [: typeSpec] [:= initializingValue]
(b) collection Declaration

DESCRIPTION: A variable declaration creates a new variable (or
variables). Only form (a) will be explained here; see
collectionDeclaration for explanation of form (b). The typeSpec of
form (a) can be omitted only if the initializing value is present.

EXAMPLES:

vary, k ". int := 1 %/ and k are assigned value 1
Var/ := "Sample" % The type of t is string
var v : array 1 .. 3 of string (6) :=

init ("George", "Fred", "Alice")

DETAILS: The initializing value, if present, must be an expression or else a
list of items separated by commas inside init (...). The syntax of
initializingValue is one of:

(a) expn
(b) init (initializingValue {, initializingValue})

Each init (. . .) corresponds to an array, record or union value that is
being initialized; these must be nested for initialization of nested
types.

If the typeSpec is omitted, the variable's type is taken to be
the (root) type of the initializing expression, for example, int or string.
The typeSpec cannot be omitted for dynamic arrays or when the
initializing value is of the form init (...). The values inside init (...)
must be known at compile time.

See also collection, bind, procedure and function declarations,
parameter declarations, and import lists for other uses of the keyword
var.

Turing Reference Manual 242 Turing Reference Manual 243

variableReference
use of a variable

[PC, Mac and Unix only]

SYNTAX: A variableReference is:

variableld { componentSelector }

DESCRIPTION: In a Turing program, a variable is declared and given a
name (variableld) and then used. Each use is called a variable
reference.

If the variable is an array, collection, record or union, its parts
(components) can be selected using subscripts and field names (using
componentSelectors). The form of a componentSelector is one of:

(a) (expn (, expn])
(b) .fieldld

Form (a) is used for subscripting (indexing) arrays and collections. The
number of array subscripts must be the same as in the array's
declaration. A collection has exactly one subscript, which must be a
pointer to the collection. Form (b) is used for selecting a field of a
record or union.

EXAMPLES: Following the declarations of k, a and r, each of k, a (k) and
r.name are variable references.

var k : int
var a : array 1 .. 100 of real
var r :

record
name : string (20)
phone : string (8)

end record
•••

k:=5
a (/c):= 3.14159
r. name := "Steve Cook"

DETAILS: A variable reference can contain more than one component
selector, for example, when the variable is an array of records; for an
example, see the record type. See also constantReference and var
declaration.

Wallclock seconds since 1970
procedure

SYNTAX:

wallclock (var c : int)
DESCRIPTION: The wallclock statement is used to determine the time in

seconds since 00:00:00 GMT (Greenwich Mean Time) January 1,1970.

EXAMPLE: This program tells you how many seconds since 1970.

var seconds : string
wallclock (seconds)
put "The number of seconds since 1970 is ",

seconds
DETAILS: See also the delay, time, clock, sysclock and date statements.

Be warned that on some computers such as IBM PC compatibles or
Apple Macintoshes, the time may not be set correctly in the operating
system; in that case, the wallclock procedure will give incorrect
results. Also, on IBM PC compatibles, the call is dependent on having
the time zone TZ variable correctly set. On an IBM PC, the default
time zone is set to PST (6 hours from GMT).

On the Apple Macintosh, wallclock procedure returns the number
of seconds since 00:00:00 local time Jan. 1,1970.

Turing Reference Manual 244 Turing Reference Manual 245

Whatcolor text color graphics
function

SYNTAX:

whatcolor : int
DESCRIPTION: The whatcolor function is used to determine the current

(foreground) color, ie., the color used for characters that are output
using put. The alternate spelling is whatcolour.

EXAMPLE: This program outputs the currently active color number. The
color of the message is that is this color.

setscreen ("graphics")

put "This writing is in color number", whatcolor

DETAILS: The screen should be in a "screen" or "graphics" mode; see
setscreen for details.

See also the color procedure, which is used to set the color. See
also colorback and whatcolorback.

[PC °nly]
whatcolorback color of

background graphics function

SYNTAX:

whatcolorback: int
DESCRIPTION: The whatcolorback function is used to determine the

current background color. The alternate spelling is whatcolourback .

EXAMPLE: This program outputs the currently active backgournd color
number. The background color of the message is determined by this
number.

setscreen ("screen")

put The background of this writing"
put "is in color number", whatcolorback

DETAILS: The screen should be in a "screen" or "graphics" mode. Beware
that the meaning of background color is different in these two modes;
see colorback for details.

See also color and whatcolor.

[PC only]

Turing Reference Manual 246 Turing Reference Manual 247

whatdotcolor graphics function

SYNTAX:

whatdotcolor (x, y: int) : int

DESCRIPTION: The whatdotcolor function is used to determine the color
number of the specified pixel. The alternate spelling is whatdotcolour

EXAMPLE: This program draws a line which bounces off the edges of the
screen and makes a beep when it finds a pixel that has already been
colored.

setscreen ("graphics")
var x, y: int := 0
var dx, dx: int := 1
loop

if whatdotcolor (x, y) not= 0 then
f sound (400, 50)

end if
drawdot (x,y, 1)
x := x + dx
y:=y+dy
if x = 0 or x = maxx then

dx := -dx
end if
if y = 0 or y = maxy then

dy := -dy
end if

end loop
DETAILS: The screen should be in a "graphics " mode; if not, it will

automatically be set to "graphics" mode. See setscreen for details.

See also drawdot, which is used for setting the color of a pixel.
See also maxx and maxy which are used to determine the number of
pixels on the screen. See also sound which causes the computer to make
a sound.

mly]

whatpalette graphics function

SYNTAX:

whatpalette : int
DESCRIPTION: The whatpalette function is used to determine the current

palette number.

EXAMPLE: This program outputs the current palette number.

setscreen ("graphics")

put "The current palette number is ", whatpalette
DETAILS: The whatpalette function is meaningful only in a "graphics"

mode.

See also the setscreen procedure for a description of the graphics
modes. See also the palette statement, which is used to set the palette
number.

[PC only]

Turing Reference Manual 248 Turing Reference Manual 249

whattextchar graphics function [PC only]

SYNTAX:

whattextchar : string (1)
DESCRIPTION: The whattextchar function is used to determine the

character on the screen at the current location.

EXAMPLE: This program outputs a message and then changes the
foreground color (the color of the letters) of the message to color number
1 and the background color (surrounding each letter) to color number 7.
The actual message (each letter) is not changed.

setscreen ("screen")
const message := "Happy New Year!!"
put message

for column : 1 .. length (message)
locate (1, column)
COlor (1) % Color of letter
COlorback (7) % Color around letter
put Whattextchar .. % Use same letter

end for
DETAILS: The whattextchar function is meaningful only in "screen" mode.

In "graphics" mode, the concept of text on the screen is replaced by the
concept of pixels on the screen.

See also setscreen which describes modes. See also color,
whattextcolor, anad whattextcolorback.

whattextcolor graphics function

SYNTAX:

whattextcolor: int
DESCRIPTION: The whattextcolor function is used to determine the color

of the character on the screen at the current location. The alternate
spelling is whattextcolour.

EXAMPLE: This program prints out a message with each letter in a
random color and then prints the same message on the next line in
exactly the reverse colors.

setscreen ("screen")
var clr: int
const message := "Happy New Year!!"
for column : 1 .. length (message)

randint (clr, 1 , maxcolor)
color (clr) •
locate (1, column)
put message (i)..

end for
locate (1 , 1)
for column : 1 .. length (message)

locate (1 , length (message) + 1 - c)
clr := whattextcolor
color (clr)
locate (2, column)
put message (i)..

end for
DETAILS: The whattextcolor function is meaningful only in "screen" mode.

In "graphics" mode, the concept of text on the screen is replaced by the
concept of pixels on the screen.

See also setscreen which describes modes. See also color,
whattextchar, and whattextcolorback.

[PC only]

Turing Reference Manual 250 Turing Reference Manual 251

whattextcolorback graphics
function

SYNTAX:

whattextcolorback: int
DESCRIPTION: The whattextcolorback function is used to determine the

background color of the character on the screen at the current location.
The alternate spelling is whattextcolourback.

EXAMPLE: This program prints out a message with each letter in a
random background color and then prints the same message on the next
line in exactly the reverse background colors.

setscreen ("screen")
var dr: int
const message := "Happy New Year!!"
for column : 1 .. length (message)

randint (clr, 1 , maxcolor)
colorback(clr)
locate (1, column)
put message (i)..

end for
locate (1 , 1)
for column : 1 .. length (message)

locate (1 , length (message) + 1 - c)
clr := whattextcolorback
colorback (c l r)
locate (2, column)
put message (/)..

end for

DETAILS: The whattextcolorback function is meaningful only in "screen"
mode. In "graphics " mode, the concept of text on the screen is replaced
by the concept of pixels on the screen.

See also setscreen which describes modes. See alsocolor,
whattextchar, and whattextcolor.

[PC only) Write file statement

SYNTAX: A writeStatement is:

write : fileNumber [-.status], writeltem{, writeltem}

DESCRIPTION: The write statement outputs each of the writeltems to
the specified file. These items are output directly using the binary
format that they have in the computer. In other words, the items are
not in source (ASCII or EBCDIC) format. In the common case, these
items will later be input from the file using the read statement.

By contrast, the get and put statement use source format, which
a person can read using an ordinary text editor.

EXAMPLE: This example shows how to output a complete employee record
using a write statement.

var employeeRecord:
record

name: string (30)
pay: int
dept: 0 .. 9

end record
var fileNo: int
open : fileNo, "payroll", write

write : fileNo, employeeRecord

DETAILS: An array, record or union may be read and written as a whole.
The fileNumber must specify a file that is open with write capability
(or else a program argument file that is implicitly opened).

The optional status is an int variable that is set to
implementation dependent information about the write. If status is
returned as zero, the write was successful. Otherwise status gives
information about the incomplete or failed write (which is not
documented here). The common case of using status is when writing a
record or array to a file and you are not sure if there is enough room on
the disk to hold the item. If there is not, the write will fail part way
through, but your program can continue and diagnose the problem by
inspecting status.

A writeltem is:

Turing Reference Manual 252 Turing Reference Manual 253

reference [-.requestedSize [wctualSize]]

Each writeltem is a variable, or a named non-compile-time
constant, to be written in internal form. The optional requestedSize is
an integer expression giving the number of bytes of data to be written.
The requestedSize should be less than or equal to the size of the item's
internal form in memory (else a warning message is issued). If no
requestedSize is given then the size of the item in memory is used. The
optional actualSize is set to the number of bytes actually written.

See also the write, open, close, seek, tell, get and put statements.

Turing Reference Manual 254

Appendices
Appendix A List of Predefined Functions and 256

Procedures -
List of Keywords

Appendix B List of Predefined Functions and 258
Procedures By Category Without
Arguments

Appendix C List of Predefined Functions and 262
, Procedures By Category With

Arguments

Appendix D IBM PC Keyboard Codes 266

Appendix E Turing Operators 268

Appendix F Turing File Statements and 270
Functions

Appendix G Turing Control Constructs 271

Appendix H Using The Printer From Turing on 272
IBM PC's and Compatibles

Turing Reference Manual 255

Appendix A A List of Keywords

A List of Predefined
Functions and Procedures

abs arctan arctand
clock close els
colour colourback cos
delay drawarc drawbox
drawline drawoval drawpic
exp fetcharg floor
getenv getpid hasch
intstr length In
lower max maxcol
maxrow maxx maxy
nil open ord
playdone pred rand
randomize randseed
round screen setscreen
sind sizepic sound
strreal succ sysdock
time upper wallclock
whatcolorback whatcolour
whatdotcolor whatdotcolour
whattextchar whattextcolor

ceil chr
color colorback
cosd date
drawdot drawfill
eof erealstr
frealstr getch
index intreal
locate locatexy
maxcolor maxcolour
min nargs
palette play
randint randnext
realstr repeat
sign sin
sqrt strint
system takepic
whatcolor

whatcolourback
whatpalette
whattextcolorback

whattextcolour whattextcolourback

all and
bind body
collection const
elsif end
external false
free function
in init
loop mod
not of
pervasive pointer
procedure put
result return
string tag
true type
write

array
boolean
decreasing
enum
fen
get
int
module
opaque
post
read
seek
tell
union

assert
case
div
exit
for
if
invariant
new
open
pre
real
set
then
var

begin
close
else
export
forward
import
label
nil
or
proc
record
skip
to
when

Turing Reference Manual 256 Turing Reference Manual 257

Appendix B

A List of Predefined
Functions and Procedures

By Category without Arguments
Math

abs
arctan
arctand

' cos
cosd
exp
In
max
min

sind
sqrt

Type Conversion
From Int

intreal
intstr

From Real
ceil
floor
round
realstr
frealstr
erealstr

From String
strint
strreal

To/From ASCH
chr
ord

absolute value function
arctangent with result in radians
arctangent with result in degrees
cosine of angle in radians
cosine of angle in degrees
exponentiation function
natural logarithm function
maximum value function
minimum value function
returns the sign of the argument
sine of angle in radians
sine of angle in degrees
square root function

convert integer to real
convert integer to string

ceiling of argument producing integer
floor of argument producing integer
round argument to nearest integer
convert real to string
convert real to string
convert real to string withexponent

convert string to integer
convert string to real

convert integer to ASCII equivalent
convert character to ASCII equivalent

Turing Reference Manual 258

Time
clock
date
sysclock
time
wallclock

System
getenv
getpid
nargs
fetcharg
system
delay

Sound
play
playdone
sound

time in milliseconds since process began
date in "DD Mmm YY" format
CPU time in milliseconds used by process
time in "HH:MM:SS" format
time in seconds since 00:00:00 GMT
Jan 1,1970

return the environment string
return the process id
return the number of command line args
return the specified command line arg
execute operating system command
pause program for duration in milliseconds

play musical notes
determine if play command finished
play specified sound

Character Graphics
els
color
colour
colorback
colourback
locate
maxcol
maxrow
maxcolor
maxcolour
screen
setscreen
whatcolor
whatcolour
whatcolorback
whatcolourb ack
whattextchar
whattextcolor
whattextcolour
whattextcolorb ack
whattextcolourback

clear the screen
set text color
set text colour
set text background color

' set text background colour
place cursor at specified character position
returns the number of screen text columns
returns the number of screen text rows
returns the maximum screen text color
returns the maximum screen text colour
set the mode of the screen
set the mode of the screen
return the currently active text color
return the currently active text colour
return the current text background color
return the current text background colour
returns the character at cursor position
returns the character color at cursor
returns the character colour at cursor
returns the character background color at cursor
returns the character background colour at cursor

Turing Reference Manual 259

Pixel Graphics
els
color
colour
colorback
colourback
drawarc
drawbox
drawdot
drawfill
drawline
drawoval
takepic
drawpic
sizepic

locate
locatexy
maxcol
maxrow
maxcolor
maxcolour
maxx
maxy
palette
screen
selscreen
whatcolor
whatcolour
whatcolorback
whatcolourback
whatdotcolor
whatdotcolour
whatpalette

Strings
index
length
repeat

Files
eof

clear the screen
set text color
set text colour
instantly change background color
instantly change background colour
draws an arc on screen
draws a box on screen
draws a dot on screen
fills in a figure of color borderColor
draws a line on screen
draws an oval on screen
copies a rectangular area from screen into buffer
copies a rectangular area from buffer onto the screen
determine the necessary size of a buffer to hold area
from screen
place cursor at specified character position
place cursor at specified pixel position
returns the number of screen text columns
returns the number of screen text rows
returns the maximum screen color
returns the maximum screen colour
returns the maximum x pixel value
returns the maximum y pixel value
sets the colour palette to use
set the mode of the screen
set the mode of the screen
return the currently active text color
return the currently active text colour
return the current background color
return the current background colour
return the color of a pixel
return the colour of a pixel
return the current palette number

find position of patt within string s
returns the length of the string
copies string s concatenated i times

returns whether stream is at end of file

Turing Reference Manual 260

Character Input
getch
hasch

Attributes
lower

upper

get a single character from the keyboard
returns whether there is a keystroke in the
keyboard buffer

returns the lower bound of array in
specified dimension
returns the upper bound of array in
specified dimension

Random Numbers
rand generate a random number from 0 to 1
randint generate a random integer from low to

high inclusive
randnext produce next pseudo-random number in

specified sequence
randomize resets random number sequence
randseed restarts the specified sequence of

pseudo-random numbers with seed

Enumerated Types
pred returns the argument minus one or the

previous value in the enumerated sequence
succ returns the argument plus one or the

next value in the enumerated sequence

Turing Reference Manual 261

Appendix C

A List of Predefined
Functions and Procedures

By Category with Arguments

Math
abs (x: int): int
abs (x: real): real
arctan (x : real): real •
arctand (x: real): real
cos (angle : real): real
cosd (angle: real): real
exp (r : real): real
In (r : real): real
max (x, y: int): int ~
max (x, y: real): real
min (x, y: int): int w
min (x , y: real): real
sign (r: real):-!..!
sin (angle : real): real
sind (angle : real): real
sqrt (r : real): real

Type Conversion
From Int

intreal (i: int): real
intstr (i, width : int): string

From Real
ceil (r : real): int
floor (r : real): int
round (r: real): int

absolute value function

arctangent with result in radians
arctangent with result in degrees
cosine of angle in radians
cosine of angle in degrees
exponentiation function (er)
natural logarithm function (lne r)
maximum value function

minimum value function

returns the sign of the argument
sine of angle in radians
sine of angle in degrees
square root function

convert integer to real
convert integer to string

ceiling of argument producing integer
floor of argument producing integer
round argument to nearest integer

realstr (r: real, width: int): string
convert real to string

frealstr (r: real, width, fractionWidth : int): string
convert real to string

erealstr (r : real, width, fractionWidth, exponentWidth: int): string
convert real to string withexponent

From String
strint (s : strung): int
strreal (s : string): real

To/From ASCH
chr (i : int): string (1) convert integer to ASCII equivalent
ord (ch: string (1)): int convert character to ASCII equivalent

convert string to integer
convert string to real

Turing Reference Manual 262

Time
clock (var c : int)
date (var date : string)
sysclock (var c : int)
time (var t: string)
wallclock (var c : int)

time in milliseconds since process began
date in "DD Mmm YY" format
CPU time in milliseconds used by process
time in "HH:MM:SS" format
time in seconds since 00:00:00 GMT
Jan 1,1970

System
getenv (symbol: string): string
getpid: int
nargs: int
fetcharg (i : int): string

•• - !__•__

return the environment string
return the process id
return the number of command line args
return the specified command line argtetcnarg 11: im ,. <>u».b

system (command: string, var ret: int)execute operating system command
delay (duration: int) pause program for duration in milliseconds

Sound
play (music: string)
playdone: boolean
sound (freq, duration: int)

Character Graphics
els
color (clr: int)
colour (clr: int)
colorback (clr: int)
colourback (clr: int)
locate (row, col: int)
maxcol: int
maxrow: int
maxcolor: int
maxcolour: int
screen (mode: hit)
setscreen (s: string)
whatcolor: int
whatcolour: int
whatcolorback: int
whatcolourback: int
whattextchar: string (1)
whattextcolor: hit
whattextcolour: int
whattextcolorback: int

whattextcolourback: int

play musical notes
determine if play command finished
play specified sound

clear the screen
set text color
set text colour
set text background color
set text background colour
place cursor at character position (row,col)
returns the number of screen text columns
returns the number of screen text rows
returns the maximum screen text color
returns the maximum screen text colour
set the mode of the screen
set the mode of the screen
return the currently active text color
return the currently active text colour
return the current text background color
return the current text background colour
returns the character at cursor position
returns the character color at cursor
returns the character colour at cursor
returns the character background color
at cursor
returns the character background colour
at cursor

Turing Reference Manual 263

Pixel Graphics
els
color (clr: int)
colour (clr: int)
colorback (clr: int)
colourback (clr: int)

clear the screen
set text color
set text colour
instantly change background color
instantly change background colour~J ~ ""O"" «--«-'N_.i.£2» vw« »w *_vn-«u.

drawarc (x, y, xRadius, yRadius , initialAngle, finalAngle, clr: int)
draws an arc on screen centred at (x,y)

drawbox (xl, yl, x2, y2, clr: int) draws a box on screen
drawdot (x, y, clr: int) draws a dot on screen at (x,y)
drawfill (x , y, fillColor, border-Color: int)

fills in a figure of color borderCoIor
drawline (xl, yl, x2, y2, clr: int) draws a line on screen
drawoval (x , y, xRadius, yRadius, clr: int)

draws an oval on screen centred at (x,y)
takepic (xl, yl, x2, y2: int, var buffer: array 1..* of int)

copies a rectangular area from screen
into buffer

drawpic (x , y: int, buffer: array 1..* of int, picmode: int)
copies a rectangular area from buffer
onto the screen

sizepic (xl, yl, x2, y2 : int): int determine the necessary size of a buffer
to hold area from screen

locate (row, col: int) place cursor at character position (row, col)
locatexy (x, y: int) place cursor at pixel position (x,y)
maxcol: int returns the number of screen text columns
maxrow: int returns the number of screen text rows
maxcolor: int , returns the maximum screen color
maxcolour: int , returns the maximum screen colour
maxxrint • • - . returns the maximum x pixel value
maxy: int returns the maximum y pixel value
palette (p : int) sets the colour palette to use
screen (mode: int) . s e t the mode of the screen
setscreen (s: string) •.-••••. set the- mode of the screen
whatcolor: int , return the currently active text color
whatcolour: int return the currently active text colour
whatcolorback: int return the current background color
whatcolourback: int return the current background colour
whatdotcolor (x, y: int): int return the color of pixel at (x,y)
whatdotcolour (x, y: int): int return the colour of pixel at (x,y)
whatpalette : int return the current palette number

Turing Reference Manual 264

Strings
index (s, part: string): int
length (s : string): int

find position of patt within string s
returns the length of the string

repeat (s : string, i: int): string copies string s concatenated i times

returns whether stream is at end of file
Files

eof (streamNo: int): boolean

Character Input
getch (var ch: string (1)) get a single character from the keyboard
hasch: boolean returns whether there is a keystroke in the

keyboard buffer

Attributes
lower (array [, dimension]): int returns the lower bound of array in

specified dimension
upper (array [, dimension]): int returns the upper bound of array in

specified dimension

Random Numbers
rand (var r: real) generate a random number from 0 to 1
randint (var i: int, low, high : int)

generate a random integer from low to
high inclusive

randnext (var v: real, seq : 1..10) produce next pseudo-random number in
specified sequence

randomize resets random number sequence
randseed (seed : int, seq: 1..10) restarts the specified sequence of

pseudo-random numbers with seed

Enumerated Types
pred (enumerated value): enumerated value
pred (i : int): int - returns the argument minus one or the

previous value in the enumerated sequence
succ (enumerated value): enumerated value
succ (i : int): int returns the argument plus one or the

next value in the enumerated sequence

Turing Reference Manual 265

Appendix D

IBM PC Keyboard Codes
The ascii value of the character

returned by getch

0 (space)
Ctrl-A
Ctrl-B

Ctrl-D
Ctrl-E
Ctrl-F
Ctrl-G

Ctrl-H / BS
Ctrl-I / TAB
Ctrl-J / CR

Ctrl-K
Ctrl-L

Ctrl-M
Ctrl-N
Ctrl-0
Ctrl-P
Ctrl-Q
Ctrl-R
Ctrl-S
Ctrl-T
Ctrl-U
Ctrl-V

Ctrl-W

Ctrl-1

Ctrl-X
Ctrl-Y
Ctrl-Z
;/ESC
CtrlA
Ctrl-]
Ctrl-A

Ctrl-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1
"
#
$

%
&
'

(
)
*
+
,
-

/
0
1
2
3
4
5
6
7
8
9

*
<
=
>
?

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

@
A
B
C
D
E
F
G
H

I
J

K
L

M
N
O
P
Q
R
S
T
U
V
w
X
Y
Z
[
\
]
A

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

•
a
b
c
d
e
f
g
h
i
J

k
1

m
n
o
P
q
r
s
t
u
V

w
X

y
Z

{
1
)

Ctrl-BS

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Alt-9
Alt-0
Alt-
All—

Ctrl-PgUp

--

Back TAB
Alt-Q

Alt-W
Alt-E
Alt-R
Alt-T
Alt-Y
Alt-U
Alt-I

Alt-O
Alt-P

Alt-A
Alt-S

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Alt-D
Alt-F
Alt-G
Alt-H

Alt-J
Alt-K
Alt-L

Alt-Z
Alt-X
Alt-C
Alt-V
Alt-B
Alt-N
Alt-M

Fl
F2
F3
F4
F5

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Ctrl-®, Ctrl-C and Ctrl-Break will

-

'"}

F6
F7
F8
F9

F10

Home
Up Arrow

PgUp

Left Arrow

Right Arrow

End
Down Arrow

PgDn
Ins

Del
Shift-Fl
Shift-F2
Shift-F3
Shift-F4
Shift-F5
Shift-F6
Shift-F7
Shift-F8
Shift-F9

Shift-FlO
Ctrl-Fl
Ctrl-F2

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Ctrl-F3
Ctrl-F4
Ctrl-F5
Ctrl-F6
Ctrl-F7
Ctrl-F8
Ctrl-F9

Ctrl-FlO
Alt-Fl
Alt-F2
AU-F3
Alt-F4
AU-F5
AU-F6
AU-F7
AU-F8
AH-F9

AU-F10

Ctrl-L Arrow
Ctrl-R Arrow

Ctrl-End
Ctrl-PgDn
Ctrl-Home

Alt-1
Alt-2
Alt-3
Alt-4
Alt-5
Alt-6
Alt-7
Alt-8

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

terminate a Turing Program

Turing Reference Manual 266 Turing Reference Manual 267

Appendix E

Turing Operators
Mathematical Operators
Operators on Integers and Reals

i Set Operators
Operators on Sets

Operator
Prefix +
Prefix -

"*
• • • • • . • • •
• *

/
div
mod**
<
>

-•5 '

<=

> =

not=

Operation
Identity
Negative
Addition
Subtraction
Multiplication
Division
Integer Division
Remainder
Exponentiation
Less Than
Greater Than
Equals
Less Than or Equal
Greater Than or Equal
Not Equal

Result Type
As Operands
As Operands
As Operands
As Operands
As Operands
As Operands
Integer
Integer
As Operands
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Boolean Operators
Operators on Booleans

Operator
Prefix not
and
or
=>

Operation
Negation
And
Or
Implication

Result Type
Boolean
Boolean
Boolean
Boolean

I

Result Type
As Operands
As Operands
As Operands
As Operands
As Operands
As Operands
Integer
Integer
As Operands
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

v.

Result Type
Boolean
Boolean
Boolean
Boolean

• Operator
+
-
*••

=

not=
<=
<
>=
>

Operation
Union
Set Subtraction
Intersection
Equality
Inequality
Subset
Strict Subset
Superset
Strict Superset

Special Set Operators
Operators on Members and Sets

in Member of Set
not in Not Member of Set

Result Type
Set
Set
Set
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Boolean
Boolean

Operator Precedence
0)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

**
prefix + and -
* , / , d i v
+ ,-
< / > / = /
not
and
or
=>

, mod

< = , > = , not= , in , not in

Turing Reference Manual 268 Turing Reference Manual 269

Appendix F

Turing File Statements
File Commands

open open a file
close close a file
put write alphanumeric text to a file
get read alphanumeric text from a file
write binary write to a file
read binary read from a file
seek move to a specified position in a file
tell report the current file position
eof check for end of file

File Command Syntax
open: streamNo, fileName, ioCapability { , ioCapability}

ioCapabilility is one of get, put, read, write, seek, mod
put or write capability will cause any existing file

to be truncated to zero length unless the mod
capability is also specified.

seek capability is needed to use seek or tell
commands.

close: streamNo
get: streamNo, getltem { , getltem}
put: streamNo, putltem { , putltem}
read: streamNo [: fileStatus], readltem { , readltem}
write: streamNo [: fileStatus], writeltem { , writeltem}
seek: streamNo, f ilePosition or seek : streamNo, *
tell: streamNo, filePositionVar
(function call) eof (streamNo)

Turing Reference Manual 270

FOR

Appendix G

Turing Control Constructs

for [decreasing] variable : startValue.. endValue
... statements...
exit when condition
... statements ...

end for

LOOP loop
... statements...
exit when condition
... statements...

end loop

IF if condition then
... statements...

{elsif condition then
... statements...}

[else
... statements...]

end if

CASE case expn of
{label expn { , expn} :

... statements ... }
[label:

... statements...]
end case

Any number of exit and exit when constructs can appear at any
place inside for.. end for constructs and loop .. end loop
constructs

Turing Reference Manual 271

Appendix H

Using The Printer From Turing on IBM
PC's and Compatibles

There are three methods for producing output on a printer from within
Turing programs running on IBM PC's and compatibles. The first is to direct
output to the screen as usual and to use the SHIFT-PRINTSCREEN from your
keyboard to print a copy of the information on the screen. Note that this will
only print information that is on the screen at the time you press the
PRINTSCREEN. Any information that has scrolled off the top of the screen
is lost and information not yet displayed will not be printed at this time.
Also, this is the only way in Turing to print pixel graphics output.

The second method is to specify that all standard output is to be directed
to the printer. Under MS-DOS, the filename PRN is reserved to mean the
printer. Thus you can use output redirection to run your program and route the
output to file PRN. For example, instead of using the Fl key to run the
program, type: : r > prn. See page 13 for more information on the :r
command and input/output redirection.

The third method is frequently the closest to what a typical user wants.
Output is directed to the screen or to the printer under program control. To do
this, you must open file PRN for put and you must explicitly direct output to
the appropriate location within your program. Here is an example program:

var prnStream : int
open :prnStream, " P R N " , put
% verify that the printer is available
assert prnStream > 0
put "You will see this line on the screen."
put rprnStream, "This line is printed."

Run the program normally and output will appear as directed by each put
statement.

Turing Reference Manual 272

