
Cryptanalysis

Cryptanalysis is the discipline of deciphering a ciphertext without having access
to the keytext (see cryptosystem), usually by recovering more or less directly
the plaintext or even the keytext used, in cases favorable for the attacker by
reconstructing the whole cryptosystem used. This being the worst case possible
for the attacked side, an acceptable level of security should rest completely in
the key (see Kerckhoffs’ and Shannon’s maximes). “A systematic and exact
reconstruction of the encryption method and the key used” (Hans Rohrbach,
1946) is mandatory if correctness of a cryptanalytic break is to be proved, e.g.
when a cryptanalyst is witness for the prosecution.

1) Terminology

Cryptanalysis can be passive, which is the classical case of intercepting the
message without giving any hint that this was done, or active, which consists
of altering the message or retransmitting it at a later time, or even of inserting
own messages ( some of these actions may be detected by the recipient).

A compromise is the loss (or partial loss) of secrecy of the key by its exposure
due to cryptographic faults. We shall describe various kinds of key compro-
mises.
A plaintext-ciphertext compromise is caused by a transmission of a message in
ciphertext followed (e.g. because the transmission was garbled) by transmission
of the same message in plaintext. If information on the encryption method is
known or can be guessed, this results in exposure of the key. This attack may
be successful for a plaintext of several hundred characters.
A plaintext-plaintext compromise is a transmission of two isologs i.e. two dif-
ferent plaintexts, encrypted with the same keytext. If the encryption method
is such that the encryption steps form a group (see key group and pure crypto-
system), then a ‘difference’ p1 − p2 of two plaintexts p1, p2 and a ‘differ-
ence’ c1−c2 of two plaintexts c1, c2 may be defined and the role of the keytext is
cancelled out: c1− c2 = p1− p2 . Thus, under suitable guesses on the plaintext
language involved, e.g. on probable words and phrases, a ‘zig-zag’ method (see
below), decomposing c1 − c2, gives the plaintexts and then also the keytext.
This compromise is not uncommon in case of a shortage of keying material. It
is even systemic if a periodic key is used.
A ciphertext-ciphertext compromise is a transmission of two isomorphs, i.e. the
same plaintext, encrypted with two different keytexts. Exchanging the role of
plaintext and keytext, this case is reduced to and can be treated as a plaintext-
plaintext compromise. This compromise is even systematic in message sets,
where the same message is sent in different encryption to many places, such as
it is common in public key cryptosystems.

One speaks of a brute force attack or exhaustive key search if all possible key-
texts are tried out to decrypt a ciphertext (knowing or guessing the cryptosys-
tem used). At present, with the still growing speed of supercomputers, every
ten years the number of trial and error steps that are feasible is increased by a
factor of roughly 25 .
Further commonly used terminology will be given now. In a ciphertext-only
attack, only one or more ciphertexts under the same keytext are known. In
a known-plaintext attack one knows one or more matching pairs of plaintext-
ciphertext. Frequently, this attack is carried out with rather short fragments of
the plaintext (e.g. probable words and phrases). In a chosen-plaintext attack
one can choose plaintexts and obtain the corresponding ciphertexts. Sometimes
this can be done with the proviso that the plaintexts may be chosen in a way
that depends on the previous encryption outcomes. How to foist the plaintext
on the adversary is not a cryptographers problem, but one of cunning and is
to be executed by the secret services. Finally, in a chosen-ciphertext attack
one has the possibility to choose different ciphertexts to be decrypted, with
the cryptanalyst having access to the decrypted plaintext. An example may
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be the investigation of a tamperproof decryption box, with the hope of finding
the key.

2) Statistical approaches to classical cryptosystems

We shall now discuss some statistical methods that can be used by the cryptana-
list.
Frequency matching is a cryptanalytic method for breaking monoalphabetic
(Cæsar type) encryptions. One determines the frequency of the characters
in a ciphertext and compares them with the frequency of the characters in a
language known or assumed to be used for the plaintext. To give an example:
the frequency profile of the English language looks like

a b c d e f g h i j k l mn o p q r s t u v w x y z

If a ciphertext of 349 characters has the following distribution:

1 0 5 36 9 10 9 54 9 10 21 23 1 8 8 10 41 3 4 0 19 22 24 18 0 4

A B C D E F G H I J K L M N O P Q R S T U V WX Y Z

it is easy to guess a Cæsar encryption that counts down three letters in the
standard alphabet: a =̇ D, b =̇ E, c =̇ F, .., z =̇ C. More difficult is the situation
if a mixed alphabet is to be expected. Then the first step is to group the letters
in cliques: the most frequent ones, the very rare ones, and some in between

{etaoin} {srh} {ld} {cumfpgwyb} {vk} {xjqz} ,
and to refine the decryption within these cliques by trial and error.

Depth is a notion used in connection with the cryptanalysis of polyalphabetic
encryptions. It means the arrangement of a number of ciphertexts suppos-
edly encrypted with the same keytext—for periodic polyalphabetic encryption
broken down according to the assumed period.
Example: a depth of five lines:
TCCVL E S KP T XMP VW HYMVG XB ORV CWARF
VL L B V CKWF P E HE CF CGNZ E KKKVI HDDI D
MYYRD MJ WMC UI GL O KMXL R E WHXM TJ HAS
B KQTZ B Z WKW Z XGZ O VTB AT KWMGM RJ KL P
MYYVH B WJ DX CP CZ O HVTS I VME B S OHRAU .
The lines of a depth are isologs: they are encrypted with the same key text
and represent a plaintext-plaintext compromise.
By forming differences of the elements in selected columns, a reduction of depth
to a monoalphabetic (Cæsar type) encryption is accomplished. This makes it
possible to derive the keytext
TRUTH I S S OP RE CI O US THA TI TNE E DS AB

which decrypts the depth (by means of the Vigenère table) to
a l i c e wa s b e g i n n i n g t o g e t v e r y t i r e
c u r i o u s e r a n d c u r i o u s e r c r i e d a l i c
t h e y w e r e i n d e e d a q u e e r l o o k i n g p a r
i t wa s t h e wh i t e r a b b i t t r o t t i n g s l o
t h e c a t e r p i l l a r a n d a l i c e l o o k e d a t .
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Forming a depth is possible as soon as the value of the period of the periodic
polyalphabetic encryption has been found, for instance by the Kasiski method
below. Forming a depth is not possible, if the key is non-periodic. But even
for periodic polyalphabetic encryptions, forming a depth of sufficiently many
elements (usually more than six) is not possible if the keytext is short enough.

When the alphabets used in a polyalphabetic periodic substitution are a mixed
alphabet and a shifted version of it, symmetry of position is the property that
for any pair of letters their distance is the same in all rows of the encryption
table. For a known period, it may allow, after forming a depth, the complete
reconstruction of the substitution (Auguste Kerckhoffs, 1883).

Kasiski’s method : If in a periodic polyalphabetic encryption the same plaintext
sequence of characters happens to be encrypted with the same sequence of key
characters, the same ciphertext sequence of characters will occur. Thus, in
order to determine the period of a periodic polyalphabetic encryption, the
distance between two “parallels” in the ciphertext (pairs, triples, quadruples
etc. of characters) is to be determined; the distance of genuine parallels will
be a multiple of the period. The greatest common divisor of these distances is
certainly a period—it may, however, not be the smallest period. Moreover, the
period analysis may be disturbed by faked parallels. Kasiski developed in 1863
this fundamental test for key periodicity and shattered the widespread belief
that periodic polyalphabetic encryption is unbreakable.

The Kappa test is based on the relative frequency κ(T, T ′) of pairs of text
segments T = (t1, t2, t3, . . . tM ) , T ′ = (t′1, t

′
2, t

′
3, . . . t

′
M ) of equal length, M ≥

1, with the same characters at the same positions (that is why this method
is also called the index of coincidence, often abbreviated to I.C., William F.
Friedman 1925). The value of Kappa is rather typical for natural languages,
since the expected value of κ(T, T ′) is

∑N
i=1 p2

i , where pi is the probability of
occurrence of the i-th character of the vocabulary to which T and T ′ belong.
For sufficiently long texts, it is statistically roughly equal to 1/15 =6.67%
for the English language and 1/12.5 = 8% for the French language and the
German language. Most importantly, it remains invariant if the two texts
are polyalphabetically encrypted with the same keytext. If, however, they are
encrypted with different keytexts or with the same key sequence, but with
different starting positions, the character coincidence is rather random and
the value of Kappa is statistically close to 1/N , where N is the size of the
vocabulary. The Kappa test applied to a ciphertext C and a cyclically shifted
versions C(u) of the ciphertext, where u denotes the number of shifts, yields the
value κ(C, C(u)). If the keytext is periodic with period d, then for u = d and
for all multiples of d, a value significantly higher than 1/N will occur, while in
all other cases a value close to 1/N will be found. This is the use of the Kappa
examination for finding the period; it turned out to be a sharper instrument
than the Kasiski method.

The Kappa test may also be used for adjusting two ciphertexts C, C ′ which
are presumably encrypted with the same keytext, but with different starting
positions (called superimposition). By calculating κ(C(u), C ′), a shift d, deter-
mined as a value of u, for which κ(C(u), C ′) is high, brings the two ciphertexts
C(d) and C ′ ‘in phase’ i.e. produces two isologs. In this way, a depth of n texts
can be formed by superimposition from a ciphertext-ciphertext compromise of
n ciphertexts.

The De Viaris attack is a cryptanalytic method invented by Gaëtan Henri Léon
de Viaris, 1893 to defeat a polyalphabetic cryptosystem proposed by Étienne
Bazeries, in which the alphabets did not form a Latin square. ( A Latin square
for a vocabulary of N characters is a N -by-N matrix over this alphabet such
that each character occurs just once in every line and in every column.)

Pattern finding is a cryptanalytic method that can be applied to monoalpha-
betic encryptions. It makes use of patterns of repeated symbols. For example,
the pattern 1211234322 with “signature” 4+3+2+1 (4 two’s, 3 ones, 2 three’s
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and 1 four) most likely allows in English nothing but peppertree, the pattern
1213143152 with the signature 4+2+2+1+1 nothing but initiation (Andree
1982, based on Merriam-Webster’s Dictionary).

Non-coincidence exhaustion: some cryptosystems show peculiarities: genuine
selfreciprocal permutations never encrypt a letter by itself. Porta encryptions
even always encrypt a letter from the first half of the alphabet by a letter from
the second half of the alphabet and vice versa. Such properties may serve to
exclude many positions of a probable word (a probable word is a word or phrase
that can be expected to be present in a message according to the context; it
may form the basis for a known-plaintext attack).

Zig-zag exhaustion: for encryptions with a key group (see key), the difference
of two plaintexts is invariant under encryption: it equals the difference of the
corresponding ciphertexts. Thus in case of a plaintext-plaintext compromise
(with a depth of two), the difference of the ciphertexts can be decomposed
into two plaintexts by starting with probable words or phrases in one of the
plaintexts and determining the corresponding plaintext fragment in the other
plaintext, and vice versa. This may lead in a zig-zag way (“cross-ruff”) to
complete decryption.
Theoretically, the decomposition is unique provided the sum of the relative
redundancies of the two texts is at least 100%. For the English language, the
redundancy (see information theory) is about 3.5 [bit/char] or 74.5% of the
value 4.7 ≈ log226 [bit/char].

Multiple anagramming is one of the very few general methods for dealing
with transposition ciphers, requiring nothing more than two plaintexts of the
same length that have been encrypted with the same encryption step (so
the encrypting transposition steps have been repeated at least once). Such
a plaintext-plaintext compromise suggests a parallel to Kerkhoffs’ method of
superimposition. The method is based on the simple fact that equal encryption
steps perform the same permutation of the plaintext letters. The ciphertexts
are therefore written one below the other and the columns thus formed are kept
together.

Friedrich L. Bauer
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