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PREFACE

HISisintended as a companion to the Cambridge Tract No. 24, on

Invariants of Quadratic Differential Forms. As its name implies
it contains a set of axioms for differential geometry and develops their
consequences up to a point where a more advanced book might reasonably
begin. Formulae appear only incidentally and the reader is supposed
to obtain those needed from the tract No. 24, or from other books and
articles on the formal side of the subject.

Analytical operations with coordinate systems are continually used
in differential geometry, a typical process being to “choose a coordinate
system such that....” It is therefore natural to state the axioms in
terms of an undefined class of “allowable” coordinate systems, and to
deduce the properties of the space from the nature of the trangformations
of coordinates permitted by the axioms.

The axioms for differential geometry in general are preceded by more
special sets of axioms in which the structure of a space is defined by an
appropriate class of “preferred” coordinate systems. Thus Euclidean
geometry is characterized by the class of rectangular cartesian coordinate
systems. The “preferred” coordinate systems constitute a sub-class of
the “allowable” coordinate systems for any one of these spaces. The
former class is small, so as to characterize the structure of the space,
and the latter is large, so as to permit freedom of analytic operation.

These earlier axioms are found to be adequate for the differential
geometry of an open simply connected space, the most elementary
theorems of which occupy the greater part of Chaps. 11—v. The more
general axioms, in terms of allowable coordinate systems and without
restrictions on the connectivity of the space, are given in Chap. vi. We
believe that they provide an adequate foundation for any of the differen-
tial geometries which are now being studied. The complete theory which
should be constructed out of these axioms would be a combination of
infinitesimal geometry and analysis situs. In the final chapter we outline
some of the questions which arise, in the hope that some of the readers
of this tract may participate in the construction of a branch of mathe-
matics which we are convinced is of great importance.

0.V,
J.H.C. W.

PRINCETON, N.J.
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6HAPTER I

THE ARITHMETIC SPACE OF » DIMENSIONS

1, Arithmetic points.

Analysis habitually borrows not only terminology but also methods
and results from geometry. In the present chapter we mean to indicate
how this can be done without running into a vicious circle in the
application of analysis to geometry. We shall be particularly concerned
with the ideas clustering about the notion of linear dependence.

We shall presuppose the contents* of ¢. #. Chap. 1, and in particular
Cramer’s rule (§. . p. 6), by which a set of linear equations

(1'1) Zli:faﬁwj
can be solved to yield
(1-2) x' =3y’

provided the determinant |
a=|da]
is not zero. With the notation of Q. F.,
: i1l 4
(1'3) o=~ A,
where Aj. is the co-factor of the element a’ in the matrix Ha; ||, and oc; 18
called the normalized co-factor of ai

An ordered set of » realt numbers (z, ..., 2*) will be called an
arithmetic point, and &', ..., 2" its components. The set of all arith-
metic points, for a given value of #, will be called the arithmetic space
of n dimensions. As in Q. F. we shall denote an arithmetic point by a
single letter #, and in considering several arithmetic points shall
distinguish them by subseripts; thus z, will stand for (z1, ..., 2%).

In Euclidean geometry, for instance, all points are alike, but in the
arithmetic space each point has an individuality of its own. In particu-
lar the points (0, ..., 0),and (1, 0, ..., 0), ..., (0, ..., 0, 1) will be called

* This book is intended to run parallel to the Cambridge Tract, No. 24, by

0. Veblen, called Invariants of Quadratic Differential Forms, which will be referred
to as Q. F.

1 There is nothing to prevent our taking numbers from any field, but we shall be
content to use the real number system of analysis.

vVw 1



2 THE ARITHMETIC SPACE OF » DIMENSIONS  [CHAP. I

the origin and unit points respectively. We shall denotesthe origin by e,
and the unmit points by e, ..., ¢,.

In many books on analysis an ordered set of numbers (2%, ..., 2") 18
called simply a point (without any adjective). On the other hand in
books on algebra* it 1s often called a vector. Two fundamental opera-
tions in vector algebra are multiplication by a number and addition.
More precisely, if # is an arithmetic point (vector), and if @ is a nuniber,
then ax is the point

ax = (azt, ..., az"),
while if # and ¥ are two points, # + y 1s the point
(B +y, ..., 2" +y").
Combining these two operations we can define the difference of two
points, and in general any linear combination,
' fa, + ... + tz,
of £ points, ay, ..., #;. The theory of linear dependence has to do with
properties which can be stated in terms of these two operations.

2. Linear dependence.

The points given by t

(2°1) =tz (a=1,...,m)
are said to be lnearly dependent on 2, ..., x,. According to this
definition the origin i1s linearly dependent on any set of points. A set of
two or more points is said to be linearly independent if no one,of them
is dependent on the rest. To complete the definition we say that a single

point is linearly independent if it 1s not the origin.
A set of points, @y, ..., &, 1s independent if, and only if, the relation
(22) sk =0
implies s'=...=s™=0. For if one of these coefficients s', say, did not
vanish, (2:2) would give
pie S g S
{==5 @ = =5 &5
A relation of the form (2°1), on the other hand, is a special case of (2:2).
Let ay, ..., @, be any set of points. Either a, ..., @ all coincide with

* E. Study, Einleitung in die Theorie der Invarianten linearer Transformation auf
Grund der Vektorenrechnung, Braunschweig, 1923; also H. Weyl, Gruppentheorie
und Quantenmechanik, Leipzig, 1931.

t As in Q. F. a repeated index will imply summation. Roman indices will in-
variably run from 1 to », while the range of Greek indices will be indicated in
the text.



§§ 1, 2] LINEAR DEPENDENCE 3

the origin or one of them, a@,, say, is independent. Either they will all
depend upon a, or the set a,, a,, say, will be independent. Proceeding
in this way we shall arrive at an independent set a,, ..., a,, say, upon
which all the points @, ..., @, will be linearly dependent. We need a
criterion to determine p, and we get this by considering the matrix

(Q. F. p. 4),

1 1 1 |
Ay, gy --- 228
2 2 2
. ay az, .- Dy
Haf}sll: : : s
n n n
ay, g, - Ay

whose columns are the m arithmetic points.

If all the (p + 1)-row determinants (§. £ p. 9) vanish, but at least one
p-row determinant does not, the matrix is said to be of rank p. The
fundamental theorem of Iinear dependence 1s:

If p is the rank of the matriz || & ||, the points a., ..., an are all de-

pendent upon p of them which are themselves independent.
To prove this, first consider the case where m = n. The matrix || aj ||

is of rank p, and without loss of generality we may suppose the deter-
minant

a:la::': (K,p,zl, :p)
to differ from zero. If p=m it follows from Cramer’s rule for solving
linear equations that the points @, ..., @, are independent. For, since
@ + 0, the equations

a&;xﬁzO, (@, B=1, ..., m)

have the unique set of solutions (0, ..., 0).

If p < m the points @, ..., @, are shown to be independent by the
argument we have just used. Let A!, ..., A2 be the co-factors of
@, ..., @, i the matrix

1 1 1
al, L Y ap, “o_
P p P
a].’ ap’ Qo
Wy, - @, al

The determinant of this matrix 1s
(-1)?aa’ + A1 a}, A=1, ..., p).

For ¢ = p this vanishes since two rows have equal elements, and for i> p
it vanishes since the rank of || a} || is p. The coefficients A2 and a do

I-2



4 THE ARITHMETIC SPACE OF 7 DIMENSIONS [CHAP.I

not depend on the elements a’, ¢!, ..., ¢, and so, writing
A la=(=1)""ag,
we have
(2:3) al=aral, (c=p+1, ..., m).
If m > n we consider the points ag = (a}, ..., @z, 0, ..., 0), in the arith-

metic space of m dimensions. We can then apply the above argument
to obtain the relation (2°3), and the theorem is established for all values
of m.

3. Linear sub-spaces.

If z,, ..., 2, are k linearly independent points, the set of points lin-
early dependent on them will be called an arithmetic linear k-space*,
and the points i, ..., 2 will be said to span the linear k-space defined
in this way. 'Thus a linear 1-space consists of the points whose
components are proportional to those of a given pomt, and may
conveniently be called an arithmetic straight line through the origin.

From the equations

(3°1) C d=tazi,  (A=1, ..,k

which define a linear £-space, X, it follows that to each point (¢, ..., t*)
of the arithmetic space of £ dimensions corresponds a point of X}, the
points ¢, and e, ..., ¢, corresponding to the origin and =z, ..., @
respectively. Moreover, to each point of X, corresponds just one point
in the £-dimensional arithmetic space. For if ¢ and ¢, are points in
the latter corresponding to the same point in X3, we have

0ol =th
or (8 —td) 2% = 0.
But z,, ..., ; are independent and so ¢, =1,.

Equations of the form (3°1), therefore, define not only a linear £-space,
but a linear -space which is in (1-1) correspondence with the arithmetic
space of £ dimensions. Such a correspondence 1s called a parameteriza-
tion of the linear k-space.

All points linearly dependent on m points ay, ..., dn, In a linear
k-space, X, are contained in X3. For oy, ..., a, are given by equations
of the form

ag = tg x,

* We shall define flat sub-spaces in general in § 7 below. The linear sub-spaces
all contain the origin. They owe their importance to the fact that (with the nota-
tions explained in §1) if a linear k-space contains two points z; and z,, it also
contains x; + z,. We can express this by saying that linear k-spaces are closed under
addition.
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and any point linearly dependent on @, ..., a,, 1s obviously dependent
on 2y ..., #;. This may be called the transitive law for linear depend-
ence.

If the points z,, ..., #; span the linear £-space, X, there is no other
linear #-space containing these points. For if y,, ..., ¥x span a linear
k-space, Y}, containing @, ..., &%, we have

(3°2) z, =ty .
If the determinant | #}| were zero there would be a relation of the form
sH t}’: =0,
in which §', ..., s* were not all zero. This would 1mply
sl =0

and 2,, ..., 2, would not be independent. For each value of ¢, therefore,
the equations (3°2) can be solved by Cramer’s rule to yield equations of
the form |

(33) h=T\,.

From the transitive law for linear dependence, and from (3°2) it follows
that each point of X} lies in Y3. Similarly it follows from (3:3) that
each point of Y7 lies in X;. They are, therefore, identical. We can
express this by saying that a linear k-space is spanned by any set of £
independent points contained in it, and it follows that a linear £-space
does not contain a set of / independent points, where />£. For the
definition in §2 implies that any % points in a set of / independent points
are themselves independent, and would therefore span any linear £-space
containing the larger set.

The theorem of §2 can now be stated in the form: If p is the rank
of @ matriz || .cc:; ||, the points z,, ..., z,, are all contained in o linear
p-space but not in a linear g-space, where q <p.

4. Linear homogeneous transformations.

Any correspondence under which each point, z, in a set of points X,
corresponds to a unique point, y, is called a single valued transformation
of X into Y, where Y is the set of points to which the points of X
correspond. We may denote the transformation by

x —1.
If no two distinct points in X correspond to the same point in Y, the
transformation 2 - y will be called (1-1), or non-singular. If z—y is

any non-singular transformation there exists a unique single-valued
transformation, y — «, called the nverse of 2 —y.



6 THE ARITHMETIC SPACE OF » DIMENSIONS  [CHAP. I

A transformation which is given by equations of the form
(4°1) Y =a

1s said to be linear and homogeneous, and 1s non-singular if the deter-
minant @ =|ai| is not zero. For if @+ 0 the equations (4'1), which are
identical with (1°1), can be solved to obtain the inverse transformation
(+2) o=y,
where o is the normalized co-factor of /.
Any linear transformation #—y, whether singular or not, will carry

any point which is dependent upon a given set, #,, ..., @, into a point
which is dependent upon ¥y, ..., ¥z, where 2,—v,. For a point z, given by

(43) ¥ =t x,,

goes into a point y, given by

(4°4) y=ai2’=atrxi=t"yj.
Not only the relation of linear dependence, therefore, but also the
parameters ¢!, ..., £ by which 1t 1s expressed, are unaltered by linear
transformations. -

The unit points are carried into the colnmns of the matrix || ||, and
if p 1s the rank of the latter these columns will be contained in a lIinear
p-space X,, exactly p of them being independent. Hence the whole
arithmetic space will be carried into X, and any two points, 2, and 2,
such that

@ (@} - o) =0,
will be carried into the same point in X,. The condition a=+0 15,
therefore, not only sufficient, but also necessary in order that the
transformation given by (4'1) shall be non-singular.

An independent set of points, #4, ..., #;, 1s carried by a non-singular
linear homogeneous transformation® # -y, into an independent set
Y1, -+, Yi. For if some of the latter were dependent upon the others
we could apply the inverse transformation, ¥y = #, to show that the same
was true of @, ..., z;. Linear homogeneous transformations, therefore,

carry linear £-spaces into linear %-spaces, and from the theorem i §2
1t follows that the matrices

l2i|l, and [lyi]|=|laizl|l,
have the same rank.

* In this and the following chapters, all transformations are to be taken as non-
singular unless the contrary is stated.
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Cramer’s rule depends upon the fact that if o are given, and if « +0,
there exists a matrix || ;|| which is uniquely determined by the condition

(4:'5> 8; = a.;; al;.; .

If we regard the columns of || % || as arithmetic points this states that
there is just one linear homogeneous transformation which carries a
given set of » independent points, a,, ..., a,, Inte the unit points
€1y eny Op.

As a corollary, we see that there is at least one linear homogeneous
transformation which carries any set of £ independent points, a4, ..., @,

into the unit points e, ..., ¢,. For we can find » — £ points @p41, ---, @
such that a@,, ..., a, are linearly independent (if the determinant |a”; |,
(A, pn=1, ..., k) 1s not zero we can take @;,, =€, -.., a4, = ¢,) and there -
1s just one transformation in which a; =e¢;. A transformation which
carries an independent set of points a,, ..., a; into ey, ..., e, will carry
the linear £-space spanned by the former into that given by
(4°6) {y":t", (A=1, ..., k)
y’=0, (c=Fk+1, ...,m)

that 1s to say, into the set of all points satisfying the equations
?jk+1= O, ey ‘,I/n:().

5. Homogeneous linear equations.

There 1s a linear homogeneous transformation
(51) y=a al,

which carries a given linear k-space, X7, into the linear £-space given
by (4'6). It follows that X, consists of those, and only those points,
which satisfy the set of » — £ linear homogeneous equations

(5°2) as x7=0 (o=k+1, ..., n).

Again, if (5°2) 1s any set of »—£% linear homogeneous equations in
n variables, , such that the matrix

[la3 1]
1s of rank # — £, a transformation (5°1) can be found which carries the
set of points satisfying (5°2) into the linear k-space (4'6). Since linear

k-spaces are carried into linear £-spaces by linear homogeneous transfor-
mations, it follows that the solutions of (5°2) constitute a linear £-space.
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(5°3) b 2’ =0, (=1, ..., m)

is any set of linear homogeneous equations, such that the rank of the

matrix || 57 || is 7, there are r of these equations, which we may suppose
to be |

(5°4) bi 27=0, (o0=1,..,7)
such that the matrix ||7|| is of rank 7, and the remaining equations
are linear combinations of (5'4). Hence the points satisfying (5°4) satisfy
the full set of equations, and of course, any point satisfying (5'3) satisfies
(5°4). Bythe last paragraph the points satisfying (5°4) constitute a linear
(n — r)-space. Therefore the solutions to o set of linear homogeneous
equations constitute an (n— r)-space, where r is the rank of the matriz
of the coefficrents.

Any set of points which span the (n — r)-space is called a complete set
of solutions.

Taken with the description of the way in which a linear Z-space 1s

spanned by sets of & independent points, this summarizes the theory of
linear homogeneous equations.

6. Translations.

A transformation given by equations of the form

(6°1) yi=at+a
is called a translation. It is obvious that translations are non-singular
and that the inverse of a translation is a translation; also that if z -y

and y—z are translations, the resultant transformation # -z 1is a
translation ; also that there is just one translation, namely that given by

A )
Yy =a"+y,— 2,
which carries a given point &, into a given point ¥,.

7. Flat sub-spaces.

Any set of points which corresponds under a translation to a linear
k-space will be called an arithmetic flat k-space. For k=0, an arith-
metic flat £-space is a single point; for £=1 it is called an arithmetic
straight line, for £=2 a plane, and for £=n—1 a hyperplane. If one
of two flat &-spaces can be carried by a translation into the other, they
are said to be parallel. From the transitive property of translations 1t
follows that flat A-spaces are carried by translations into flat £-spaces,
and that two flat £-spaces which are parallel to a third, are parallel to
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each other. Through any point #, there 1s a flat Z-space parallel to a
given linear £-space, X;. This flat £-space 1s obtained from X by the
translation which carries the origin into 2,. Any flat Z-space is parallel
to 1tself by this definition, since the 1dentical transformation, which
leaves each point unaltered, 1s a special case of a translation.

If we apply the translation given by

(7'1) Y =2y

to the linear %-space whose pomts satisfy (z — £) linearly independent
linear homogeneous equations

(7°2) aj_ij:(), (c=k+1, ..., n)

we find that any flat Z-space is the set of points satisfying a set of
equations of the form

(7°3) a; y’=ag .
The constants a, are given by

%:@%ﬁ

and will be zero if, and only if, the point g, to which the origin is carried
by the translation is in the linear £-space (7-2). Similarly, if y, and y,’
are any points in the flat £-space (7°3), the translation y, -y, carries
this flat %-space into 1tself. We recall that a flat Z-space, Y, was
defined as the image of a linear £-space, X, under a translation ¢, — y,,
and it follows that Y is equally well defined as the 1mage of X under
the translation ¢, = y,, where %, is any point in Y. Therefore any
pair of flat £-spaces which are parallel to each other and have a common
point are identical. Hence there is one, and only one, flat £-space which
passes through a given point and is parallel to a given flat £-space.

Conversely, if we have a set of »—£% linear equations of the form
(7'3), such that the matrix of the coefficients on the left,

e [l
is of rank (n—£), they are satisfied by a set of points which constitute
a k-space. To prove this, we first observe that we can transpose £ of
the variables, 7, to the right of (7'3), leaving on the left n — £ variables,
y, the determinant of whose coefficients is not zero. Then substitute
arbitrary values for the ¢’s on the right, solve for the remaining ones

by Cramer’s rule, and we have a set of values g, ..., 7, which satisfy

(7'3). Now apply the translation y - inverse to (7°1), and we find
that the set of points satisfying (73) is carried into the set of points
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satisfying (7'2). In other words, the solutions of (7°3) satisfy the
definition of a flat A-space.

By definition, a linear %-space is a set of points satisfying the equa-
tions (3'1). Applying the translation (7°1) we find that a flat £-space
in general is a set of points satisfying equations of the form

(74) Y=g+ G-y, (A=1,..,0k).

Hence the theorem which we have just proved asserts that the solu-
tions of a set of equations of the form (7'3) are given by equations of
the form (7°4), and conversely, any set of points, y, given by equations
of the type (74), are the solutions of a set of equations of the form (7°3).

The flat £-space (7°4) contains the points g, ¥1, -+, ¥s. Substituting
the right-hand side of (7°4) into the right-hand side of the formula for
a homogeneous linear transformation, y =z, it follows that (7°4) 1S
carried by y — z into a flat k-space through the pots 2y, 21, «.-, 2,
where ¥,— 2,.

8. Non-homogeneous linear equations.
Consider a general set of linear equations

(81) ol @’ =ag, (=1, ..., m)

and let us refer to
[ ||
as the matrix of the coefficients, and to the matrix
Ilag|l, (¢=0,1,..., n)

with the column @ adjoined, as the augmented matrix. Let r be the
rank of the matrix of the coefficients and s the rank of the augmented
matrix. Naturally, s=». We may assume without loss of generality
that the rank of the matrix

||a)’.‘||, -()\:],...,r)
of the first = of the equations (8'1) is r, and therefore that the equations
(8°2) o2l = a)

are satisfied by all the points in some flat (n—7)-space, and only by
those. If s> r there is an equation

(8.3) (lj-fl?j = O
in the set (8°1), such that no relation of the form
(84) a,a:p)‘a,f;, A=1,...,7; 0=0,1,..., n)
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exists. But since the rank of the matrix ||af|| is » <s, there is a re-
lation of the form
a; :_p)‘ “?.

If any solution, z, of (8°2) were to satisfy (8°3) we should have

jaz :p,\ai\,

= Pa a(;)\)
contradicting the hypothesis that no relation of the form (8'4) exists.
Therefore o set of linear equations is consistent if, and only if, the

augmented matriz has the same rank as the matrix of the coefficients. [f
this rank is r the solutions constitute a flat (n — r)-space.

9. Linear transformations.

The resultant of a linear homogeneous transformation (singular or
non-singular) and a translation, is obviously given by equations of the
form

(9°1) Y =alz’ + o,
whichever is applied first. Such a transformation is called a linear
transformation. Since linear homogeneous transformations and trans-
lations both carry flat sub-spaces into flat sub-spaces, it follows that
any linear transformation has this property. By the application of a
suitable translation, many properties of linear transformations in general
may be deduced at once from the corresponding property of homo-
geneous linear transformations. For instance it follows that the érans-
Sformation (9°1) is non-singular if, and only if, @+ 0, and that there is
at least ome linear tromsformation whick corries k+1 given points
Ty, @1y ry Xy RO Yo, Ty eor s Yu Tespectively, provided neither set of
points is contained in a single flat (k—1)-space. In particular, 1if £=n,
there is just one such transformation.

The inverse of a non-singular linear transformation is obviously
linear.

10. Affine theorems.

We are now in a position to prove by purely arithmetic methods a
large number of theorems which are indicated by our geometric ter-
minology. It will be sufficient to give a few examples.

There is one and only one arithmetic flot k-space containing k+1
given points, Yo, Y1y --- » Y, Whick are not in the same flat (k—1)-space.

Let the translation y,—¢, carry the pomnts y, ..., y Into @y, ..., &4
respectively. If zy, ..., #; were contained in a linear (£ — 1)-space, X1,
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the points #,, ..., ¥, would be contained in a flat (£ — 1)-space parallel
to X_;. Therefore 2y, ..., #; span a linear A-space X}, and there is
at least one flat £-space through v,, ..., ¥, namely that which 1s parallel
to Xy, and which is given by (7'4). If Y} is any flat £-space through
Yos --- 5 Y 1t 15 carried by y,— ¢, into a linear £-space which 1s parallel
to Y, and which contains #;, ..., ;. But X is the only linear £-space
spanned by @, ..., #;, and therefore there is only one flat £-space
through v,, o1, ..., ¥z.

Since there is at least one linear transformation which carries (£ + 1)
given points z,, @y, ..., &y into £ + 1 given points ¥,, ¥, ..., ¥, provided
neither set 1s in a single flat (£ — 1)-space, and since linear transforma-
tions carry flat k-spaces into flat k-spaces, there is at least one linear
transformation which carries one of two flat k-spaces into the other.

The straight line joining any two points of a flat k-space lies entirely
wn the k-space.

The flat k-space can be carried by a linear transformation into the
linear £-space satisfying the equations

(10°1) x¥1=0, ..., 2" = 0.

The given line is carried into a line joining two points, 2;, 2, satisfying
(10°1). But all points of the line are given by the formula

al=at + t (- a),

and they all satisfy the conditions (10°1), since @, and «, satisfy them.
Hence the line lies entirely in the %-space.

It would be easy to continue with a long list of theorems of this class.
They all refer to properties of figures which are unaltered by non-singular
linear transformations, or affine transformations as they are sometimes
called. We may therefore call the class of theorems which we have been
lustrating, affine theorems.

11. We have seen that any linear transformation carries straight lines
into straight lines. The converse theorem is also true, though not so
obvious: any non-singular transformation of the arithmetic space of n
dimensions into itself* is linear if it carries straight lines into straight
linest.

* By a transformation, x —1v, of the arithmetic space into itself we shall always
mean a transformation of the whole space into the whole space. That is to say,
each x corresponds to some ¥, and each y is the correspondent of some z.

+ This is equivalent to one form of the fundamental theorem of projective geo-
metry. The proof is essentially that given by Darboux, ¢ Sur le théoréme fondamenta]
de la géométrie projective,’’ Math. Annalen, Vol. 17 (1880), p. 55.
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We shall prove this for n =2 and leave the reader to generalize the
theorem. Let 7" be any transformation of the arithmetic space into
itself which carries straight lines into straight lines. By this we mean
that each point on a given straight line /, corresponds under 7' to a
point on some straight line m, and each point on m is the correspondent
of some point on I. If @, #; and , are non-collinear points, they are
carried by 7 into non-collinear points, %o, 1 and ¥,, say. For if y, were
on the straight line 9,7, it would be the correspondent under 7" of a point
on @,%,, contrary to the assumption that #, 1s not on apa;. Since ¥,
y, and 7, are non-collinear, a non-singular linear transformation, S,
exists, which carries #,, 1 and y, back into a,, #; and @., respectively.

(0,2) A

/‘(z, 0)

Fig. 1.

The resultant of 7 followed by S leaves z,, #, and @, unaltered, and
carries straight lines into straight lines. We shall show that such a
transformation is the identity. It then follows that 7" is the inverse of
a linear transformation, and hence 1s linear.

We may suppose, therefore, that the points e, ¢, ¢, are left unaltered.
Since the transformation is non-singular, parallel straight lines are
carried into parallel straight lines. For let two parallel lines / and m
be carried into I’ and m’ respectively. If I’ and m’ are not parallel they
will have a point @’ in common, which will correspond to a point z in
which  and m intersect. This contradicts the hypothesis that / and m
are parallel. As indicated in the figure, therefore, it is easy to see, first
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that all points both of whose components are integers, and secondly that
all points with rational components, are left unaltered. Since straight
lines parallel to the axes are carried into straight lines parallel to the
axes, the transformation is given by equations of the form

. X =/ (),
() Yoo
Since rational points are unaltered the line

Y=
is carried into itself. This means that
S (z) = ¢ (2),

or that ¢ is the same function as /. Moreover, this function satisfies the
condition

(11°2) S (p)=p
when p is rational. Let any straight line

Y=mr+a
be carried into
Y=MX+A.
We have
S(me+a)=Mf(z)+ A.

Putting 2 =0, we have

A = f(a),
since £ (0) =0; and putting @ =0 and 2 = 1 we have

M = f(m),
since £(1)=1. From the last three equations we have

(11°3) f (mx +a) =f (m) f(z) +f(a)

It is convenient to obtain two relations from (11-3) by putting first
m =1 and then ¢ =0. We thus obtain

(11°4) (a) {f (@ +y) =S (2)+f (),
(b) U (zy)=S(2).f @),

where # and y are any real numbers *.
If % is any positive number it follows from (11°46) that

Sy ={f (R}

* These are the conditions obtained by Darboux on the assumption that the trans-
formation of a straight line into itself given by

X=f(z)
carries harmonic sets into harmonic sets. In two dimensions it can be shown by
elementary properties of the quadrilateral, that harmonic sets of points are carried
into harmonic sets.
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Since the transformation 1s non-singular, f (%) vanishes only when 4= 0,
and from (11'4«) we have

(11°5) S+ h)—f(x)=1(h)>0,
and therefore / («) 1s an increasing function.

Now let 2 be any number and let

y =J(@).
If y > « there is a rational number p, such that y > p > 2, and from (11-2)
we have
O0<y-p=r(z)—S(p)

This contradicts (11°5), and a similar contradiction arises in assuming
y <. Hence f(#) =« and the transformation 7, defined by (11°1), is
the 1dentity.

12. The elementary distance function.

Another term borrowed by analysis from elementary geometry is
distance, meaning the number

(121) d(@,9) ={@ -y P + ... + (@~ gV},
where the positive square root is taken. Thus for every two arithmetic

points there is a positive number, their distance, which satisfies con-
ditions famihar in elementary geometry. For example,

(a) 0 (.%’, x) =0,

(6) |3(z, y) =01t 2+y,

(€) |3(= y)=98(y, 2),

(d) \d(2,y)+6(y, 2) Z 8 (x, 2).

The first three of these conditions are obvious. To prove the fourth,
we observe first that if two points #, v are translated into two points
2y, then d (z, y)=48 («, '), that is to say, mutual distances are unaltered
by translations. The validity of formula (d) will therefore be unaltered
if the points z, y, # are transformed by a translation which carries ¥ nto
the origin. Thus (d) reduces to the inequality

(12'2) (3 @+ 3@ 2 36 -,
which may be verified by simple algebra.

Equality occurs in (12°2) if, and only if, # and z are on the same
straight line through the origin and if they are on different sides of the
origin. That is to say equality occurs in (d) if, and only if, #, y and 2
are related by an equation of the form

M@~ )+ (2 =) =0,
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where A and p are not both zero, and have different signs. If this con-
dition 1s satisfied, and if z +y and y + 2, y is said to lie between z and z.

It 1s not difficult to derive by purely arithmetic processes a series of
theorems which make use of the geometric terminology which we have
just indicated and which read like the theorems of elementary geometry.
These theorems have to do with properties which are not altered by
transformations of the arithmetic space which leave distances unaltered,
1.e. transformations such that if # —# and y — @, then

(123) S (& -y = 3 (@ - 7).
Since a point y 1s between two others, z and z, if, and only if,
0 (2, y) + 06 (y, 2) =3 (2, 2),
1t follows that a transformation which leaves distances unaltered carries

straight lines into straight lines. Hence by the theorem of §11, the
transformation is linear, that 1s to say it takes the form

(12°4) T'=ala +a).
If we substitute these equations in (12°3) we find that

summation with respect to ¢ being understood. Any linear homogeneous
transformation which satisfies (12°5) is called orthogonal, and its matrix
an orthogonal matriz.

An affine transformation for which the determinant, a, is positive is
sald to be direct and one for which « is negative is said to be opposite.
The direct orthogonal transformations are sometimes called proper and
the opposite ones improper. If n = 3 the proper ones are called rotations.
An affine transformation which leaves distances unaltered, i.e. which

satisties (125), is called a displacement if it is direct and a symmetry if
1t 1s opposite.



CHAPTER I1

GEOMETRIES, GROUPS AND COORDINATE
SYSTEMS

1. A Geometry as a Mathematical Science.

During the nineteenth century mathematicians arrived at the notion
that there are not one, but many geometries. This idea, which origin-
ated in attempts to prove Euclid’s axiom of parallelism, reduced in the
end to the following: Any mathematical science is a body of theorems
deduced from a set of axioms. A geometry is a mathematical science.
The question then arises why the name geometry is given to some
mathematical sciences and not to others. It is likely that there 1s no
definite answer* to this question, but that a branch of mathematics 1s
called a geometry because the name seems good, on emotional and tra-
ditional grounds, to a sufficient number of competent people.

As the words are generally used at present a geometry is the theory
of a space, and a space is a set of objects, usually called points, together
with a set of relations in which these points are involved. A space,
therefore, is not merely an abstract set of objects, but a set of objects
with a definite system of propertiesf. These properties will be referred
to as the structure of the space.

For example, the structure of what is called a metric spaceis defined
by a function & (P, @), whose argument is a pair of points, and whose
values are non-negative numbers. & (P, @) is called the distance between
the points P and @, and satisfies the conditions (cf. Chap. 1, §12):

5(P,P)=0, 8(P,Q)>0if P+,

S(Ps Q)ZS(Q’P)a
(P, Q)+3(qQ, R)=3(P,R).

* Any objective definition of geometry would probably include the whole of
mathematics. Consider, for example, the spheres in a three-dimensional Euclidean
metric space (§6) with a given point as centre. These spheres are in (1-1) corre-
spondence with the positive real numbers, each sphere corresponding to its radius,
and a negative number can be defined as a relation between two of them. Any
theorem of analysis can, therefore, be translated into a theorem about these spheres,
and it would be difficult to frame a definition of geometry which would discriminate
among such theorems.

+ We are using the word property in a very broad sense. A property may be a
point, a set of points or a set of relations. The set of arithmetic straight lines, for

example, is a property of the arithmetic space, so is the relation between parallel
lines of not intersecting.

VW 2
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According to the definition which we have adopted, two distinct spaces
may consist of the same set of points with different structures. For
example, if we set up two distance functions in the arithmetic space of
n dimensions we obtain two distinet metric spaces.

Two spaces U and V are said to be equivalent if there is a (1-1) cor-
respondence, P — @, between the points, [ P], of &/ and the points, [@],
of V, which sets up a (1-1) correspondence* between all the properties
which constitute the structure of U, and those which constitute the
structure of V. In this case P — @ may be said to carry the space U
into the space V. The two spaces have the same geometry because every
statement which can be made about the structure of U translates under
the correspondence P — € into a statement about the structure of V.

Two equivalent spaces may also be called ésomorphic and a transfor-
mation of one into the other an isomorphism. In particular, if U=V a
transformation, P — @, which carries U into itself is called an automor-
phism of U.

2. Transformation groups.

There is an important class of geometries each of which can be re-
garded as the theory of a transformation group. A group 1s a set of
elements which satisfy the following conditions :

(i) With any ordered pair of elements @, b is associated an

element ¢¢. We write
¢ = ab.

(ii) The associative law is obeyed, that 1s
(ab) ¢ = a (be).
(iii) There is an element ¢, called the unit element, such that

ai = 1a = d.

* For example, if U and V are metric spaces, P->Q will carry U into V if, and

only if, for each pair of points P and P’ of U
3(P, P)=3(Q, Q)
where P—=Q, P’ Q' and 3 (Q, Q') is the distance function for V.

As another example consider the arithmetic space of one dimension. Let the points
in the space be the real numbers and let the structure consist of the relations between
any two numbers and their sum, and between any two numbers and their product.
A transformation -»f () of the real numbers into themselves preserves this structure
if, and only if, the function f (z) satisfies the conditions (11-4) in Chap.1. Therefore
the group of automorphisms (§ 3 below) of the space reduces to the identity. This is
not true of the complex number system, for z—»z is an automorphism, where 2
and z are complex conjugate.
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(iv) To each element, a, there corresponds an element, o=, which
1s said to be inverse to @, such that

1

aa" " =ata=1.

A correspondence under which each one of a given set of objects
corresponds to an object in the set, and each object in the set is the
correspondent of at least one object, is called a transformation of the
set into 1tself. If this correspondence is(1-1), the transformation is said
to be non-singular, and a non-singular transformation may also be
described as a permutation of the objects among themselves. A set of
permutations will obviously be a group under the following conditions:

(1) 'The resultant of any two transformations in the set is also in
the set.

(1) The inverse of each transformation in the set is also in the set.

Such a set of permutations is called a transformation group.
The set of automorphisms of any space is obviously a transformation
group. There are several examples of transformation groupsin Chap. 1:

(1) Theset of all translations (§ 6) is a group, the translation group.

(1) 'The set of all non-singular homogeneous linear transformations
(§ 4) 1s a group, the linear homogeneous group or the centred affine group.

(1) The set of all linear transformations (§9)is a group, the afine
group.

(iv) The set of all orthogonal transformations is a group, the
orthogonal group.

(v) The set of all displacements and symmetries is a group, the
FEuclidean metric group.

Each of these groups has a sub-group consisting of those of its trans-

formations for which the determinant @ >0. Thus we have the direct

linear homogeneous group, the direct affine group, the direct or proper
orthogonal group, and the Euclidean displacement group.

3. Geometry and group-theory.

Let* [P] be any set of objects which are permuted among themselves
by a group G. The group G provides a method of classification by which
any two figures (1.e. sets of points) in [P] are in the same class if, and
only 1if, there is a transformation of G' which carries one into the other.
Two figures in the same class are said to be equivalent or congruent.

* We use the symbol [P] to stand for a set of which P is a typical member.

2-2
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Because G 1s a group the relation of equivalence is transitive. The
set of points [ P], with this classification for its structure, i1s a space
whose group of automorphisms 1s G. Any property which is common to
all the figures in one of the classes is said to be snvariant under G, and
the geometry of the space is often described as the study of properties
which are invariant under G, or as the invariant theory of G.

As an example let the space consist of three objects 4, B and C. The
group shall be the set of even permutations,

(ABO) (ABO) (ABC>
ABC/)’ \BCA)’ \CAB)’
The ordered triads fall into two classes,
(ABC, BCA, CAB) and (BAC, ACB, CBA),
which may be taken to define positive and negative orientations of the
space. The relation of likeness of orientation, 1.e. of belonging to the

same one of these classes, 1s a relation between two ordered triads which
1s left invariant by the group of this geometry.

4. An affine space.

Let the arithmetic space of » dimensions be the set of points, and the
group the affine group. The space will be called an qffine* space and its
geometry affine geometry.

Any two sets of points, one of which can be transformed into the other
by an affine transformation, are said to be affinely equivalent. For
example, 1t is proved in Chap. I that any two points, any two straight
lines, and in general any two flat £-spaces are affinely equivalent. Also
any two ordered sets of » + 1 points, neither of which is in a single flat
_(n—1)-space, are affinely equivalent.

The results of the first eleven sections in Chap. 1 may now be taken
over as theorems in affine geometry. Moreover, a standard method of
proof has been illustrated, namely the process of normalization. This
consists in showing that a particularly simple representative of a given
class of equivalent figures has a certain property, and then proving the
invariance of the property under the group in question. A typical
example is the proof of the third theorem in Chap. 1, §10, the linear
k-space spanned by the first £ unit points being chosen to represent
the class of flat £-spaces. The method of normalization is not confined
to geometries of the kind described in § 3, but can be used to advantage
in the geometries discussed in the later chapters. |

* Later on we shall refer to this as a flat affine space, as apart from generalized
affine spaces.
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The theorems of the class studied in Chap. 1, §10 are a sub-class of
the theorems about the arithmetic space of » dimensions. In this sense
the affine geometry of # dimensions is a sub-class of the theorems of
analysis.

5. Affine spaces.

On the other hand, affine geometry is not merely a part of the theory
of the arithmetic n-space. For example, consider the surface of a sphere
in a space of three dimensions. The planes through a point P of this
surface intersect it in a family of circles. If we refer to the circles through
P, omitting P itself from each circle, as ‘“straight lines,” we have a
family of points and straight lines with the same structure as the points
and straight lines of a two-dimensional affine space.

The two-dimensional affine space defined in this way i1s in (1-1)
correspondence with the arithmetic space of two dimensions in such a
way that the straight lines of the former correspond to the arithmetic
straight lines. According to the definition in §1, the two spaces are
isomorphic or equivalent, and have the same geometry.

There are, in fact, an nfinity of »-dimensional affine spaces, all
equivalent and having the same geometry. One of these is the arith-
metic space of » dimensions plus the affine group. Affine geometry 1s
the theory of what is alike in all these affine spaces.

6. Euclidean metric spaces.

As another example of a geometry let the space be the arithmetic
space of » dimensions, and the group the Euclidean metric group. The
geometry is then called the Huclidean metric geometry. Any point is
“congruent,” i.e. equivalent under this group, to any other point. So
is any #£-space congruent to any other £-space. But two pairs of points,
xy and 2'y’, are congruent if, and only if, & (2, y) =8 (&, ¥').

It is characteristic of this geometry that there is an invariant unit
of distance, for the pairs of points 2, ¥ such that 6 (z, y)=1 are dis-
tinguished by this fact from all other pairs of points.

7. Euclidean geometry.

The geometry described in the last section must not be confused with
the Euclidean geometry. A special case of an n-dimensional Euclidean
space is the arithmetic n-space with the group consisting of those affine
transformations,

¥ =ald’ +aj
for which
a;',a;' =poy, (p>0)
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This group is called the similarity group or the Euclidean group. Two
figures equivalent under 1t are said to be similar. Two figures equivalent
under the Euclidean metric group (the sub-group obtained by requiring
p=1) are said to be congruent.

While two pairs of points are congruent only when equidistant, any:
two pairs of points are similar. But two triads of points are similar 1f,
and only if, certain conditions are satisfied.

Among the special Euclidean spaces of three dimensions 1s the space
of the external world as it appears in pre-relativity physical theories.
Two figures are similar if they have “the same shape” and they are
congruent if, in addition to being similar, they have the ‘“same size.”
There 1s no uniquely determined unit of distance.

8. Coordinate systems.

A geometry need not necessarily be specified, as we have done 1n the
three instances above, by giving a special example of a space with 1ts
structure defined by means of a transformation group. It can also be
specified by means of a set of axioms, 1.e. a set of statements from which
all the theorems of the geometry are deducible. This has often been
done for the Euclidean and affine geometries. We propose now to give
yet another set of axioms, the excuse for which 1s that they are stated
in terms of coordinate systems which are to be fundamental in our
investigation of a much more extensive class of geometries. The axioms
will presuppose the theory of the arithmetic space, and will describe
any one of the spaces of a given geometry by means of its similarity to
the arithmetic space.

When we say “point” we mean simply one of the completely undefined
elements of the space which is to be characterized by our axioms.” We
shall sometimes distinguish this space from the arithmetic space by
calling it a “geometric space.” With a like purpose we shall sometimes
refer to 1ts points as “geometric points.”

A coordinate system is a correspondence, P—a, between a set of points
[P] and a set of arithmetic points [2]. Each geometric point P is said
to be represented by each®* arithmetic point to which 1t corresponds
under P - 2. Any arithmetic point, 2, which represents P 1s called
an image of P in P —x, and P 1s called an image of . The numbers,
2, ..., 2" which constitute any 1mage of P, are called coordigmtes of P.

An example of a coordinate system 1s a parameterizatiof . —¢ of an

* The transformation P-»z need not be (1-1) but may carry each P into a set of
arithmetic points, as, for example, in a homogeneous coordinate system (cf. § 14
below).
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arithmetic flat A-space, given by equations of the form (3-1) in Chap. 1,
$3. Here the arithmetic points [#] play the part of [P] and the points
in the arithmetic space of # dimensions play the part of [#]. The term
parameterization is often used instead of coordinate system and a set
of points [P] is said to be parameterized when referred to a coordinate
system. A set of points is a different object from the same set of points
parameterized in some way or other.

Geometric space Arithmetic space

Fig. 2.

If [y] is a set of arithmetic points in a correspondence* with [#], the
resultant of the transformation P — 2, followed by the transformation
# — 1y, is another coordinate system, P—y. We shall call z -y a
transformation of coordinates from P —xz to the coordinate system
P —y. A transformation of coordinates is given by equations of the
form

¥ =y (@)-
The inverse transformation y — 2, given by
' =a* (y),

is a transformation of coordinates from P —y to the coordinate system
P —u.

We shall use the name coordinate geometry for the theory of a space
which can be completely described by means of coordinate systems.

* The transformation z-»y need not be (1-1), e.g. when P->x is a homogeneous,
and P-s% a non-homogeneous coordinate system.
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9. A class of coordinate geometries.

Let G be a set of transformations of arithmetic points into arithmetic
points, and let us write down the following axioms, in which the un-
defined elements are points and preferred coordinate systems.

G.. Each preferred coordinate system is a (1-1) transformation of the
space wnto the arithmetic space of n dimenstons.

Gy. An  transformation of coordinates from one preferred coordinate
system to another belongs to G'.

Gs. Any coordinate system obtained from a preferred coordinate system
by a transformation belonging to G is preferred.

Gs. There is at least one preferred coordinate system.

From G, it follows that if P -2 and P — y are any two preferred
- coordinate systems, there 1s a unique transformation of coordinates,
x —1y, which transforms the first coordinate system into the second.
From G, and G5 1t follows that each transformation of G' 1s a (1-1)
transformation of the arithmetic n-space mto 1tself*.

From G,, G5 and G, 1t follows that the preferred coordinate systems
are those, and only those, obtained from a given one by transformations
of G. It also follows that G'1s a group. For there 1s at least one pre-
ferred coordinate system, P —z, by G, and by G5 any transformation,
2 -1y, of G determines a transformation to a preferred coordinate
system, P —y». By G, the inverse transformation y — 2 belongs to G.
By G any transformation y — z of G determines a transformation from
P -y to a preferred coordinate system, P —z. The transformation
of coordinates from P —z to P — z is the resultant of 2 -y followed
by v — 2, and belongs to G' by G,. Hence G satisfies the conditions for
a transformation group given in § 2.

The theory deduced from the axioms G' 1s called the geometry of
the group G.

Two spaces satisfying the axioms G, for the same group G, are
obviously equivalent. For their points can be put in a (1-1) correspon-
dence in such a way that to each preferred coordinate system of the one
corresponds a preferred coordinate system of the other.

The arithmetic space of # dimensions plus the group G 1s an example
of a space satisfying the axioms G. For if the transformations of G'are

* This condition excludes, among others, the group of linear fractional trans-
formations

; aj’.xf-}—ai
Yt = .

a; i+ a
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taken as preferred coordinate systems, the identity being the coordinate
system in which each point corresponds to itself, the axioms are satisfied.
Therefore the geometry of the group G according to § 3, is the same as
the geometry of G' according to this section. Indeed, the axioms G
constitute an analysis of the following statement : The space 1s equivalent
to the arithmetic space plus the group G.

If G 15 the affine group, for example, any space satisfying the axioms
G 1s an affine space. The preferred coordinate systems are called car-
tesian coordinate systems. The image, 1n a cartesian coordinate system
of an arithmetic straight line 1s called a straight line, and from Chap. 1,
§11 it follows that, for n>1, cartesian coordinate systems are those,
and only those, transformations of an affine space into the arithmetic
space which carry straight lines into arithmetic straight lines.

Likewise if ¢ is the Euclidean metric group, G, ..., G, are a set of
axioms for the Euclidean metric geometry, and if G' is the similarity
group they are a set of axioms for Euclidean geometry. The preferred
coordinate systems for a Euclidean metric space, or for a Euclidean space,
are called rectangular cartesian coordinate systems. The set of rectan-
gular cartesian coordinate systems for a Euclidean space is a sub-set of
the cartesian coordinate systems for an affine space, and a Euclidean
space 1s an affine space with an additional element of structure, namely
the class of properties defined by this smaller class of preferred coordin-
ate systems. In general, if G" 1s a sub-group of G, i.e. a sub-set of the
transformations belonging to G which 1s 1tself a group, a space satisfy-
ing the axioms G' is a space satisfying the axioms G, with an additional
element of structure. The smaller the group, the more complicated the
space *.

10. Centred affine geometry.

A space which satisfies the axioms G, where G' 1s the group of linear
homogeneous transformations, 1s called a centred affine space of n di-
mensions. The point which corresponds to the origin in any one, and
therefore 1n all, preferred coordinate systems, 1s called the centre of the
space.

A centred affine space, 4, may be obtained by selecting an arbitrary
coordinate system K, for an affine space, A4, and taking 1t as a preferred

* The extreme cases arise when G is the group of all permutations of the arith-
metic space, and when G is the identity. In the first case the space has no structure
beyond its cardinal number, and in the second it has all the properties of the
arithmetic space.
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coordinate system for Ai This amounts to selecting an arbitrary point
in A, as centrefor A). The centred affine space having P, as its centre

will be carried into that which has any other point P, as its centre by
any affine transformation which carries P, into P,.

The points of a centred affine space may also be referred to as vectors,
and the space as a vector space. Addition and other operations with
vectors can either be defined analytically by means of preferred coor-
dinate systems and the arithmetical definitions in Chap. 1, § 1, or by means
of geometrical constructions involving straightlines and parallelism. The
coordinates of a vector in a preferred coordinate system are referred to
as the components of the vector.

Let us say that two ordered point pairs, 4B and A’'B’, of an affine
space are equipollent provided that the translation (Chap. 1, § 6) which
carries 4 to A’ also carries B to B’. Thus each ordered point pair
determines a class of all ordered point pairs which are equipollent with
it. There is a (1-1) correspondence between the points (vectors) of a
centred affine space and these classes of equipollent ordered pont pairs
of an affine space. Namely, let O be any point of the affine space and
let any point P, of the centred affine space with O as centre, correspond
to the class of equipollent point pairs which includes OP. The class
of point pairs A B, in which 4 = B, corresponds to O, the “null vector.”
Thus the theory of vectors in an affine space, where vectors are defined
as objects not having a definite localization, but such that whenever
an ‘““Initial point” and a vector are given a definite “terminal point”
is determined, 1s a centred affine geometry.

Similarly there are centred Euclidean and Euclidean metric spaces,
which satisfy the axioms G, where G is the group of homogeneous simi-
larity transformations, and the orthogonal group respectively. In a
centred Euclidean metric space each vector has a length, which 1s its
distance from the centre. Any two vectors # and y have a scalar product,
given in preferred coordinates by %/, which measures the angle between
them, multiplied by the product of their lengths. They also have a
vector product, and so on. It is this geometry which appears in most
elementary books on vector analysis.

11. Oriented Spaces.

A space which satisfies the axioms G, ..., G4, when G 1s the group of
direct affine transformations,

v =aiz' +al, (o> 0)
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18 called an oriented affine space. 1t 1s an affine space plus an additional
element of structure determined by aclass of preferred coordinate systems
within the class of cartesian coordinate systems. The latter fall into
two classes, consisting of those obtainable from a given cartesian co-
ordinate system by direct and by opposite transformations respectively.
The coordinate systems in each class are obviously the preferred co-
ordinate systems for an oriented affine space.

Thus any affine space uniquely determines two oriented affine spaces
which are affinely equivalent to each other. One of these may be
arbitrarily designated as positively oriented (or right-handed) and the
other as negatively oriented (or left-handed). This process of naming
the oriented affine spaces 1s called orienting the affine space.

An athne space may be oriented by choosing an arbitrary cartesian
coordinate system P — 2, and specifying that oriented affine space as
positively oriented for which P — z 1s a preferred coordinate system.
All preferred coordinate systems of this oriented affine space are then
sald to be positively oriented. The coordinate system P -z may be
specified by choosing »+ 1 points, P,, P, ..., P, which are not in the
same hyperplane, and requiring the coordinate system to be that cartesian
coordinate system in which P,, Py, ..., P, correspond to the arithmetic
points e, e, ..., &, respectively.

The ordered sets of # + 1 points which are not in the same hyperplane
fall into two classes, which we call sense-classes, according as the coor-
dinate system 1n which P, — ¢, is positively or negatively oriented. The
ordered sets of points of the first class are said to have positive sense,
those of the other class, negative sense.

With obvious modifications this same discussion can be made for
Euclidean and centred affine spaces. In the latter case a positive sense
1s fixed by specifying as positively oriented the preferred coordinate
system 1n which an arbitrarily chosen set of # linearly independent vec-
tors, P, ..., P,, correspond to the arithmetic pointse,, ... , ¢, respectively.
An ordered set of » independent vectors, represented in a positively
oriented coordinate system by @, ..., @, respectively, obviously has
positive or negative sense according as the determinant
N . .|
18 positive or negative.

The transformation of coordinates given by

Y =a"
18 direct 1f
(111) Cay...ap =11
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and opposite 1f
(11.2> eal,..an:'—l.

It follows that the ordered sets of vectors, P, ...,P,and P,, .., P,
have the same sense if (11°1) holds and opposite senses if (11°2) holds-

12. Oriented curves.

The whole theory of orientation is a generalization of the orientation
of a straight line, and this is a translation into mathematics of the
physical observation that a straight line joining two points, 4 and B, can
be described by a particle moving in two ways, from 4 to B and from
B to A. :

More generally, let 4 B be any arc of a continuous curve which is given
parametrically by

(12°1) ' =2 (1), (b =t = t,)
where A —#¢,, B —t,, and the functions #* (¢) are continuous. Analo-
gous to the preferred coordinate systems for an oriented affine space,
there is a class of parameterizations for the arc A B, any one of which
1s related to the parameterization (12°1) by a transformation of the
form

s=s(?),
where s (¢) is a continuous function of ¢ which increases steadily from
ty to ¢;. There is another class obtained from (12°1) by transformations,
t =3, where s () 1s a continuous decreasing function. The arc AB
associated with either of these classes of parameterizations i1s called an
oriented arc. Thus any arc joining A to B determines two oriented arcs
which we may denote by AB and by BA respectively.

13. Affine parameterizations.

In cartesian coordinates for an affine n-space, a straight line is given
by linear parametric equations

(13°1) Z' =2+t (@, — ).
The parameterizations given by equations of this form are called affine
parameterizations. They are obviously those, and only those, related
to a given affine parameterization by linear transformations of parameter.
Therefore a straight line, with affine parameterizations for cartesian
coordinate systems, satisfies the axioms G for an affine space of one
dimension*. Hence the straight line determines two oriented, or directed
straight lines, which may be called #,2, and 2,,, respectively, the

* Affine spaces of one dimension are Euclidean spaces, for the affine group in a
1-space is the same as the Euclidean group.
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former being the one for which (13'1) is a preferred coordinate
system.

This can be generalized to any flat £-space. Such a space has a family
of affine parameterizations, and determines two oriented affine spaces.
Any ordered set of £ + 1 points @y, @y, ..., 2, which are not in the same
flat (£ —1)-space, determine an oriented k-space, namely the one which
has the parameterization

&=+ th (2], — @), A=1, ..., k)
for a preferred coordinate system.

14. Projective and conformal geometry.

Projective and conformal n-spaces may also be described by axioms
stated 1n terms of preferred coordinate systems. But in neither case can
the whole space be represented in a preferred coordinate system by the
arithmetic n-space. Therefore the axioms G'must be modified. One way
of doing this 1s to introduce homogeneous coordinate systems in which
a point £, if 1t corresponds to an arithmetic point (Z7, ..., Z™), also
corresponds to the point (A Z*, ... , A Z™), where A is any non-zero factor.
No point corresponds to the origin of the arithmetic space. Thus each
geometric point 1s represented in homogeneous coordinates by each
point, except the origin, on an arithmetic straight line through the
origin.

We give a set of axioms for n-dimensional projective geometry in
terms of preferred homogeneous coordinate systems.

P,. In a preferred homogeneous coordinate system each point is re-
presented by at least one arithmetic point in the arithmetic space of n + 1
divmensions, and each arithmetic point other than the origin represents
Jjust one point.

Py. Two arithmetic points represent the same point if, and only if,
they lie on the same arithmetic straight line through the origin.

Ps. Any preferred coordinate system can be transformed into any
other by a linear homogeneous transformation.

P,. Any homogeneous coordinate system obtained from a preferred
coordinate system by a linear homogeneous transformation is a preferred
coordinate system.

Py. There is at least one preferred coordinate system.

From the axioms £, and P, it follows that each preferred coordinate
system 1s a (1-1) correspondence between the points in the projective
space and the arithmetic straight lines through the origin of the arith-
metic (n + 1)-space.
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A set of axioms for conformal geometry is obtainad by modifying
P, ..., P, so that each preferred coordinate system wor a conformal
n-space 18 a (1-1) correspondence between points in the conformal
space and the generators of the hypercone

VAVARSD YA AL W)
i the arithmetic (» + 2)-space.

The group of automorphisms of a projective space is called the
n-dimensional projective group, and the group of a conformal n-space 1s
called the n-dimensional conformal group. Projective and conformal
spaces belong to the class described in §3, for their structures are de-
fined by the projective and conformal groups respectively.

15. Point transformations. Automorphisms.

Let P — P be any transformation which permutes among themselves
the points of a space satisfying the axioms given in §9. To each pre-
ferred coordinate system P -, corresponds a coordinate system
P —~ 2, which is the resultant of the inverse transformation P — P,

P X

Y V

P 7
Fig. 3.

followed by P —a. The transformation P — P will be said to carry
the coordinate system P -~z into the coordinate system P -z, and
will be an automorphism if, and only if, each preferred coordinate system
is carried into a preferred coordinate system. For the structure of the
space is determined by the totality of preferred coordinate systems.

In any preferred coordinate system, which we now denote by K
instead of by P —a, the transformation P — P determines, and is
determined by, a transformation # — Z in the arithmetic space, which
carries the image in K of each point P into the image in A of the
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corresponding P (see diagram). The transformation P — P is said to
be represented in K by # —&. The coordinate system K, into which
K is carried by P — P, is obtained from K by the inverse transforma-
tion Z - in the arithmetic space. Therefore the necessary and
sufficient condition that P— P be an automorphism is that it is
represented in K by a transformation belonging to G'. In this case it
will obviously be represented in all preferred coordinate systems by
transformations belonging to G. T'herefore the group of automorphisms
1s represented in each preferred coordinate system by the group G,
and these two groups are simply isomorphic. Any preferred coordinate
system is an isomorphism which carries the group of automorphisms
into Q.

16. Changing views of geometry.

The concept of a mathematical science as a body of theorems deduced
from axioms seems to have been clearly understood by Aristotle if not
by earlier Greek scientists. This question is discussed by H. Scholz,
“Die Axiomatik der Alten,” in Blitter fiir Deutsche Philosophie, Vol. 4
(1930), p. 259.

For the Greeks there seems to have been only one space and this was
not necessarily a collection of points, but rather a locus in which bodies
could be moved about and compared with each other. The fundamental
relation between bodies was congruence or superposability.

It was after the development of analytic geometry that space came
to be regarded as a collection of points. With the advent of the non-
Euclidean geometries it became accepted that there are many geometries.
But the space was still a locus in which figures were to be compared, the
central idea being that of the group of congruent transformations of the
space into itself. Thus a geometry came to be regarded as the invariant
theory of a transformation group. This point of view was formulated in
the Erlanger Programm in 1870 (F. Klein, Gesammelte Mathematische
Abhandlungen, Berlin, 1921, Vol. 1, p. 460).

The idea of a transformation group synthesized and generalized all
previous concepts of motion and congruence. It also supplied a principle
of classification by which it is possible to get a bird’s-eye view of the
relations between a large number of important geometries as, for
example, all those discussed in the present chapter. For a more ex-
tensive discussion of this method of classification the reader may consult
the second volume of Veblen and Young, Projective Geometry, New
York, 1917, especially Chap. 111.
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The transition to the view of geometry as a special case of a mathe-
matical science, the latter being a body of theorems deduced from
axioms, was being made at about the beginning of the present century,
when a great many different sets of axioms were stated and studied
for a great variety of geometries by Pasch, Peano, Hilbert, Pier,
E. H. Moore, R. L. Moore, and others. On sets of axioms for affine and
Euclidean geometry see A. N. Whitehead, Aaioms of Descriptive Geo-
metry, Cambridge tract, no. 5, Cambridge, 1907, and H. G. Forder,
The Foundations of Euclidean Geometry, Cambridge, 1927. The word
affine is not used in these books, but athne geometry 1s defined by the
axioms of Euclidean geometry which do not refer to congruence.

The general concept of a mathematical science did not disturb the
Erlanger Programm in any way. For a geometry could be described as
a mathematical science which is the theory of a transformation group.
But long before the Erlanger Programm had been formulated there were
geometries in existence which did not properly fall within its categories,
namely the Riemannian geometries. We need not define a Riemannian
space here, but merely remark that there are Riemannian spaces which
are metric spaces (In the sense given these words in § 1, above) whose
groups of automorphisms reduce to the identity. Such a geometry
obviously cannot be characterized by its group. A Riemannian space,
however, has a structure in the sense explained at the beginning of the
chapter. We may speak of the length of any smooth curve, and there
is a system of curves (the geodesics) which have properties analogous
to those of the straight lines.

The notion of a space as a set of points with a structure may be said
to originate with Riemann’s Habilitationsschrift (1854) (Gesammelte
Mathematische Werke, Leipzig, 1876, p. 254), and has become well under-
stood since its application to Einstein’s Geeneral Relativity. For in this
theory physical space is no longer a locus in which objects are moved
about, but space-time is itself the only object studied in a complete
geometry. There is no such thing as a body in space, but matter is an
aspect of the space-time structure.

At the present time there are being actively studied, both for physical
and for mathematical purposes, a large class of spaces which are generali-
zations of the Riemannian spaces. Like the Riemannian geometries they
are, in general, outside the categories of the Erlanger Programm, but they
all make use of coordinates and of differential calculus. This implies,
as 1s shown in Chap. v below, that they make use of the “tangent spaces”
or “spaces of differentials” which are centred affine spaces. In many
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cases they make use of other transformation groups in the tangent spaces
than the centred affine group (see Chap. v, §15, and Chap. vi1, § 6).
There 1s, therefore, a strong tendency among contemporary geometers
to seek a generalization of the Erlanger Programm which can replace it
as a definition of geometry by means of the group concept. On this
subject the reader is referred to J. A. Schouten, “Erlanger Programm
und Uebertragungslehre. Neue Gesichtspunkt zur Grundlegung der
Geometrie,” Rendiconti del Circolo Mat. di Palermo, Vol. 50 (1926),
p. 142, and to E. Cartan, “Les Récentes Généralisations de la Notion
d’Espaces,” Bulletin des Sciences Math. Vol. 48 (1924), p. 294; also
to a paper by the same author called ‘“Rapport sur le Mémoire de
J. A. Schouten intitulé ‘Erlanger Programm...",” Bull. de la Soc. Phys.
Moth. de Kazan, Series 3, Vol. 2 (1927), p. 71. The more general point
of view that a geometry is the theory of a space with an invariant (the
same thing as a geometric object in the sense of Chap. 111 below) is set
forth by O. Veblen, ¢“Differential Invariants and Geometry,” A¢t: del
Congresso Internazionale dei Matematici, Bologna (1928), Vol. 1, p. 181.

VW 3



CHAPTER III
ALLOWABLE COORDINATES

1. Functions of class u.

- In the last chapter we have dealt with certain limited classes of-
coordinate systems, all of them such that the transformations of co-
ordinates are linear. In general it is desirable to use a much larger class
of coordinate systems, so that the transformations of coordinates shall
be as general as they can be without destroying the significance of the
analytic expressions which are to be used. The theory of the trans-
formations which we shall use depends upon the implicit function
theorem in much the same way that the algebra contained in Chap. 1
depends upon Cramer’s rule for solving linear equations. We shall need
a few definitions.
A set of points in the arithmetic space of » dimensions given by
inequalities of the form
(1°1) | @t — 2| <38,
where 6> 0, will be called a boz, and z, will be called its centre. A set
of points, [#], is called a region 1f, and only if, each # is the centre of
a box which is contained in [#]. Thus any box is a region, and so is the
arithmetic space. Moreover, the set of points, X, common to two regions,
X, and X, 1s a region. For if 2, 1s any point in X, there is a box,
given by
| &' — xf) | <41,

which is contained in X, and a box given by
I - wf) l <0,,

which is contained in X,. Therefore the box given by
| 2t — x(i) | <8,

where & is the smaller of 8, and 8, is contained in X"

A function* F (2, ..., "), defined for all points in a region X, is said
to be of class #, if it and its derivatives of order less than or equal to
u exist and are continuous at each point of X. Here % can be any positive
integer, and a function will be described as belonging to the class o« if

all 1ts derivatives exist. Continuous functions will be described as be-

* Unless otherwise stated it is to be assumed that all functions to which we refer
are single valued.
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longing to the class 0. A function, defined in a region X is said to be
analytic it 1t can be expanded in a power series about each point #, of X,
the power series being convergent for all points in some box with centre
Zy. Analytic functions will be described as belonging to the class .
Of course a function which 1s of class # in a region .Y, is of class  in
any region contained in X, and 1s also of class " if u’ <.

2. The implicit function theorem.

For #>0 the analogue of Cramer’s rule 1s the implicit function
theorem*, which we shall state without proof.

Let
fFl (@', o @5 Y oy,

‘an('{vlJ "')a;;n). ylﬂ "t ./l/nl)
be » functions which are of class « > 0 for values of # and ¥ in regions

X and Y in the arithmetic spaces of » and m dimensions, respectively.
Let there be a pomnt 2, in X and a point %, in Y such that

Fa (x03 .yO) - Oa
(I, ..., ")

oz, ..., a" )

(2°1)

and let the Jacobian

be different from zero for =, and ¥ =y,. The theorem states that
the equations

(2'2) Fe(x; y)=0
admit a unique set of solutions
z' =" (y),

where 2*(y) are functions of class  in some box contained in ¥ having
9, as 1ts centre, and where

zo=2a" ().
3. Transformations of class u.

Let o' (%), ..., ¥" (2) be n functions of class »>0 in some region Y.
By means of the equations

(3'1) ¥'=y(2)
each point # 1s made to correspond to a point », and X will corre-
spond to a set of points Y. Such a correspondence will be called a

* E. Goursat, Cours d’analyse mathématique, Paris, 1923, Vol. 1. The theorem is
proved foru=0,1, ..., o in Chap. 111, § 38, and for analytic functions in Chap. 1x, §185.
(English translation, Goursat-Hedrick, Boston, 1904, Chayp. 111, § 25 and Chap. 1x,
§ 188.)

3-2
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transformation of class w which carries X into Y. We may also refer
to # -y, defined by (3'1), as operating on X. Since the functions
¥ (z), .., y"(2) are of class » in any region X', contained in X, the
equations (3'1) will define a transformation of class » operating on
any region contained in Y.

dy

oz
mmplicit function theorem can then be applied to the equations

(32) ¥y -y () =0.
If we write

Let the Jacobian be different from zero at each point of X. The

y(l):y’& (:Z‘o),
where #, 13 any point in X, the equations (3-2) will admit a set of
solutions

(3°3) x'=a' (y),
where 2°(y) belong to the class « in some box, B,, with y, as centre.
The box B, will be in (1-1) correspondence with some set of points
contained in X, and 1s therefore contained in Y. Hence Y is a region.

If the regions X and Y are in (1-1) correspondence, the transforma-
tion # —y will admit an inverse y — «, defined by equations of the form

(3'4) x'=a' (y).
Let v, be any point in Y. We have just shown that z* () are of class u
in some box with v, as centre, and they are, therefore, of class » in Y.

A transformation of class » > 0, operating on a region X, will be called
reqular 1if, and only if, 1t 1s (1-1), and if its Jacobian does not vanish
at any point* of X.

Unless otherwise stated it is to be assumed that all transformations
to which we refer are regular. If #—-# and y -2z are two transfor-
mations of class u, which carry the region X into ¥ and Y into Z,

respectively, the resultant, £ — 2, which carries X into Z, will also be
of class u. For # — z will be given by

# =2 {y (@)},

* These two conditions are independent, as may be seen from the example
(x, y)-=(u, v), where u=e*cos y, v=e*siny, and the example y=23. In the first
0 (u, v)
d(z,y)

for all values of (z, ¥), is not (1-1). In the second example the transformation x>y
dy

is (1-1), but T vanishes at the origin.

example =e2* and nevervanishes. Butthe transformation (z,y)-—=(u,v),defined
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aszi .
-, may be calculated by the ordinary

and the derivatives, Y Ry

rules of differential calculus, while if u=wo, 2 can be expanded in a
power series {(Goursat, Chap. 1x) about each point in X. The Jacobian
of -z is given by

0z 0z
o oy
and it follows that 2 — 2 is regular if # -y and y — = are both regular.

Moreover,
o
=y

(36)
and therefore the inverse of a regular transformation is regular.

ay

ox !’

(35)

0y

o

b

4, Continuous transformations.

Differential geometry is chiefly concerned with transformations of
class w>0. But for the sake of completeness we state three theorems
about transformations of class 0.

If @ =1y s a non-singular continuous transformation of o region [«]
into a set of points [y], then [y] is also a region. This theorem is due to
L. E. J. Brouwer, ‘“Beweis der Invarianz des n-dimensionalen Gebietes,”
Math. Annalen, Vol. 71 (1912), pp. 305-13. See also H. Lebesgue,
““Sur les correspondances entre les points de deux espaces,” Fundamenta
Math. Vol. 2 (1921), 256—85. A greatly simplified proof has been given
by E. Sperner, “Neuer Beweis fiir die Invarianz der Dimensionszahl und
des Gebietes,” Abhandlungen aus dem Math. Seminar der Hamburg.
Universitit, Vol. 6 (1928), pp. 265-72. When # >0 this theorem fol-
lows immediately from the implicit function theorem, as was shown in § 3.

If -y is a non-singular continuous transformation of a region
[2] into a region [y], the inverse transformation y — z is continuous
(F. Hausdorft, Mengenlehre, Leipzig, 1914, Chap. 1x, Theorem viIr).

Finally, 1t follows at once from the definition of continuous transfor-
mations that the resultant of a continuous transformation which carries
a region [x] into a region |y], followed by a continuous transformation
of [y] into [=], is continuous.

5. Pseudo-groups.

Instead of dealing, as in Chap. 1, with transformations which carry
the whole arithmetic space into itself, we now have to do with trans-
formations operating on portions of the space. If z—yand ¢’ -2z are
two such transformations which carry a set of points X into a set Y,
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and a set Y into a set Z, respectively, the resultant # -z will exist
if ¥ and Y’ coincide, but only in this case. We are thus led to extend
the notion of a transformation group to that of a pseudo-group. A set
of transformations will be called a pseudo-group if it satisfies the con-
ditions :

(1) If the resultant of two transformations in the set exists it is also
in the set.

(11) The set contains the inverse of each transformation in the set.

Clearly a transformation group in the arithmetic space is a special
case of a pseudo-group.

For a given value of u (either 0, 1, ..., © or o) it follows from §3
and 4 that the set of all regular transformations of class « is a pseudo-
group. This will be called the pseudo-group of class wu.

6. n-cells of class u.

Any region 1n a (1-1) correspondence of class » with a box will be
called an arithmetic n-cell of class u. Thus the arithmetic space is an
n-cell, since 1t corresponds to the box —1<a'<1 in the transformation

y' = tanh 2.
[t is obvious from the definition that all arithmetic n-cells of class & are
equivalent under the pseudo-group of class u (i.e. that there exists a
regular transformation which carries one of two given n-cells into the

other); also that any set of points in a (1-1) correspondence of class »
with an n-cell of class » 1s an n-cell of class .

7. Simple manifolds of class u.

The pseudo-group of class » contains the group of all regular trans-
formations which carry the arithmetic space into itself*. Let us denote
this group by G.. Any space satisfying the axioms G, given in Chap. 11,
§ 9, mith G =G, will be called a simple manifold of class v. Whenever
G 1s a sub-group of G, a space satisfying the axioms G is a simple
manifold of class » plus additional structure (see Chap. 11, § 9). Thus
Euclidean spaces, affine spaces, and n-cells of class »'> u are all simple
manifolds of class u, whose additional structure i1s a smaller class of
preferred coordinate systems than those described by the axioms G.
Moreover, the same simple manifold can carry several spaces of a more
complicated nature. Thus two affine spaces 4, and 4,  can have as

* This group contains the linear transformations and many others, such as

yt=x%+ 1 sin at.
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their cartesian coordinate systems two distinct sub-sets of the preferred
coordinate systems for the same simple manifold €. The straight lines
for A, and A, respectively will be two systems of curves in C,, each
of which has all the affine properties of the arithmetic straight lines.

8. Oriented simple manifolds.

A transformation  — v, of a region X into a region Y, will be called
direct if the Jacobian 1-3-’
o |
ox

From the relations (3:5) and (36) it follows that the set of all direct

transformations of class # 1s a pseudo-group.

This pseudo-group contains the group Gy, of all direct transforma-

tions of class # which carry the arithmetic space into itself. A space
satisfying the axioms given in Chap. 11, § 9, with G = G, will be called
an oriented simple manifold of class w.

As in the case of affine spaces, two oriented manifolds are associated
with any simple manifold C. The preferred coordinate systems for the
oriented manifolds are obtained from an arbitrary preferred coordinate
system for € by direct and opposite transformations respectively. The
process of specifying either one of the oriented manifolds 1s called
orienting C. Thus a simple manifold can be oriented in two, and only
two,ways. Thetwo oriented manifolds are equivalentunder the group Gr...

aZ; is positive at all points of X, and opposite if

is negative at all points* of _Y.

9. Allowable coordinate systems for a simple manifold.

Though the structure of a space may be fully determined by a class
of preferred coordinate systems, it is often convenient to use other co-
ordinates which are well adapted to particular problems (e.g. polar and
elliptic coordinates in Euclidean geometry). In this section we propose
to define a class of “allowable” coordinate systems which 1s sufhiciently
wide for the ordinary purposes of differential geometry. Any allowable
coordinate system is a (1-1) correspondence, P -, between a set of
points, [ P], and a set of arithmetic points, [#], n the arithmetic space
of n dimensions. The set [P] will be called the domain, and [x] the
arithmetic domain, of the coordinate system P — .

* A transformation may be neither direct nor opposite, for it may carry a region X,
into Y, by a direct transformation and at the same time a region X, into Y, by an
opposite transformation. This can only occur when X, and X, have no point in
common.
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Allowable coordinate systems of class % in a simple manifold of class

u' (v Z u) are those, and only those, which satisfy the following con-
ditions:

1. If [ P] is the image in o preferred coordinate system K, of an
arithmetic region [x], the correspondence P — 2, determined by K, 1s an
allowable coordinate system.

2. If [x] is an arithmetic region, P —x an allowable coordinate
system, and x — 1y & reqular transformation of class u, then the resultant
transformation, P —vy, is an allowable coordinate system.

If, in particular, the manifold is the arithmetic space with the trans-
formations of G, for preferred coordinate systems, the allowable
coordinate systems are the transformations of the pseudo-group of class
u. In general, the set of all transformations from allowable coordinate
systems to allowable coordinate systems is the pseudo-group* of class u.

The image of a box in an allowable coordinate system of class » will
be called an n-cell of class u. When the manifold is the arithmetic space,
this reduces to the definition already given of an arithmetic n-cell.
In the general case the image of a geometric n-cell in an allowable
coordinate system is obviously an arithmetic n-cell, and wvice versa.
There is at least one allowable coordinate system in which a given
n-cell T, C, is represented by the whole of the arithmetic space. With
the set of all such allowable coordinate systems as preferred coordinate
systems it may be verified from the conditions (1) and (2) that an n-cell
satisfies the axioms for a simple manifold.

By associating an n-cell with the preferred coordinate systems which
are obtained by direct transformations from a given allowable coordinate
system in which the n-cell is represented, we obtain an oriented n-cell,
which is an oriented manifold contained in the given manifold. Any
orientation of the manifold obviously determines, and 1s determined by,
an orientation of any n-cell contained n 1t.

The set of allowable coordinate systems of class u 1s independent of
%, so long as o’ Z w. To make this point clearer let us take an affine
space A,. To the cartesian coordinate systems for A4, let us adjoin all
those obtained from a given cartesian coordinate system by transforma-

* This corrects an error in Q. F. Chap. 11, § 2, where it is stated that the set of
coordinate transformations is a group.

+ We shall often omit the words ¢ of class u’’ as applied to the various objects
(e.g. transformations and n-cells) which we have defined. The class u and the
dimensionality n will figure as parameters in the greater part of our discussion. Any
discussion which involves derivatives will only apply to manifolds of a suitable class.
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tions belonging to the group Gy, forany «” = u. We then have a set of
preferred coordinate systems for a simple manifold of class . The same
set of allowable coordinate systems is obtained by stating the above
conditions, (1) and (2), in terms of either set of preferred coordinate
systems.

The space 4, is an affine space in virtue of the fact that among the
allowable coordinate systems is to be found a particular class of cartesian
coordinate systems. Having admitted the allowable coordinate systems
into our programme the central problem of affine geometry is to recover
the cartesian coordinate systems, that is to characterize the latter as
a sub-class of the former. We show how to do this in the next section.

The methods we use only apply when » Z 3, and we suppose this to be
the case.

10. The differential equations of affine geometry.

The domain of a cartesian coordinate system for an afhne space, 4,,
is the whole space, but the domain of an allowable coordinate system
may be only a part of the space. Therefore we cannot, in general, talk
about the transformation from allowable to cartesian coordinates, but

must introduce the notion of a transformation between two-coordinate
systems.

P
ﬂ /T

Fig. 4.

Let P -2 and @ — y be two coordinate systems* and let [ Z] be the
intersection of [P] and [@], that is to say the set of points common to
[P] and [Q]. If [R] is not empty there are coordinate systems £ — 2’
and R - in which each R corresponds to its image in P -2 and in
@ — v, respectively. The transformation of coordinates 2’ — 3 will be

* It is to be assumed that all coordinate systems referred to from now on are (1-1)
correspondences P->x, [z] being a set of points in the arithmetic n-space.
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called the transformation between P —a and @ —y. If the set [R] is
empty the transformation between P — 2 and ¢) — v does not exist.

The problem stated at the end of the last section 1s to determine the
transformation between a given allowable coordinate system and an
arbitrary cartesian coordinate system.

The solution will have to depend on the fact that any two cartesian
coordinate systems are related by a linear transformation. Suppose we
represent coordinates in a given allowable system by #, in a particular
cartesian system by w«, and the transformation between them by

u'=u' (2).
The transformation to any cartesian coordinate system is given by
(10°1) Y =ajw (z) + ',
where the coefficients @ are constants. The transformation from 2 to an
arbitrary cartesian coordinate system will be characterized by the dif-

ferential equations of which (10°1) are » independent solutions. To
obtain these equations we write the general solution

y=a;u(z) + a,
where a; and a are arbitrary constants, and differentiate twice. We then
have

r 0 s
(@) 5&—{3 = a,us,
(10°2) . Vay
) kawjaxk_wsuika
b o’ d . = *u’
wiere Mj = é?b'—j an ujk = W.
From (10°2@) we obtain
;%
s ="V 5:1_3’
where v, =387,
and from (10°25)
. Y _ %W
(10°3) et a0
where
(10°4) e =V Wy

Therefore the cartesian coordinate systems are given in each allowable
coordinate system by a set of differential equations of the form (10-3).
These will be called the differential equations of affine geometry.

If we make a transformation of coordinates # -z the differential
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equations (10°3) go into
"y 0Y. = .
Y _ YT
ST A

where

Lt Pt \ T
(10 5) I‘.ilk = (Fbc a@j a@k + a'z.‘ja-z,-lc> awm
since any solution of (10°3) is to be a scalar (see . £ Chap. v, § 5). From
the equations (10-4) it is evident that the functions I';, are identically
sero whenever the coordinate system P — 2 is cartesian. The formula
(10-5) with T';,=0 then gives their value in any other coordinate system
P —>27. They are of class u—2 in each allowable coordinate system.
Thus the structure of an affine space determines in every allowable
coordinate system a set of functions T. From the relation (10'5)
between the sets of functions T' and T', determined in different allowable
coordinate systems, it follows that T' are the components of an affine
connection*. Any affine connection determined in this way by a flat

affine space 1s said to be flat.

11. The differential equations of the straight lines.

The affine connection appears in various problems of flat affine
geometry. For example, in cartesian coordinates the straight lines
obviously satisfy the differential equations

ds’

~On transforming to arbitrary allowable coordinates, these differential
equations become

dgmi +T i (ng CZ‘EIC_ —
ds* ~ " ds ds

where the functions I' are those we have been discussing.
More generally, any flat #-space satisfies the differential equations
o . 07 0P
R + 2y ——— ——
dshost  7F Gt asm

0,

:O, (K,MZI,...,}&).

When expressed as solutions of these equations, the £-spaces, and In
particular the straight lines, are referred to affine parameterizations
(Chap. 11, §13).

* For a definition of an affine connection see Q. F. Chap. 111, §10, or Chap. v, §12,
below. The affine connection itself, as distinguished from its components, is an
abstract object whose existence we assume in order that something may have the
components. It is entirely analogous from the logical point of view to any other
abstract object of mathematics or physies, the number two, for example, or an
electromagnetic field. See the footnote to Q. F. p. 16.
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12. Integration of the differential equations of affine
geometry.

The question now arises, what do we get by integrating the differential
equations (10°3)? We assume the integrability conditions™
P;k =T,

)i —0

g

(12°1)

to be satisfied, where

arf”v a_F;L T 1V T 7
Ak + 1l —=1uLla:
These are necessary and sufficient conditions in order that (103) admit

a unique solution

(12:2) B =

(12°3) w(at, ..., a"),
which satisfies given initial conditions
w(zy) = a,
{(aul/awi)xo = a;,

2, being any point near which (12°1) are satisfied. The solution (12°3)
is a scalar function which is defined in some n-cell containing #,. The
general solution 1s

a,u’ (z) + a,
where the @'s are constants and ' (2), ..., w" (2) are n solutions whose

: ou | .
Jacobian, [ |, 1s not zero at z,.

The solutions u?, ..., »" are all defined in some r-cell containing 2,
and therefore an allowable coordinate system, P —y, is obtained from
P — 2 by any transformation of the form (10°1). Any such allowable
coordinate system will be called a locally cartesian coordinate system.
From § 10 it follows that locally cartesian coordinate systems are those,
and only those, in which “the components of the affine connection
vanish.

The transformation between any two locally cartesian coordinate
systems in which a given point is represented is linear, and any co-
ordinate system obtained by a linear transformation from a locally
cartesian coordinate system, is locally cartesian.

An affine connection will be called locally flat if, and ouly if, each
point at which it is defined is represented in at least one locally cartesian
coordinate system. This is the same as saying that the conditions (12°1)
are satistied wherever the affine connection is defined. A locally flat

* See Q.F. Chap. v, §4. For a treatment which does not assume analyticity see
F. Schur, Math. Annalen, Vol. 41 (1893), p. 509; or § 10 of the note referred to in
Chap. v1, §1, below.
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affine connection is flat if, and only if, the region* over which it is de-
fined 1s an n-cell, C, and if C is represented by the arithmetic space in
at least one locally cartesian coordinate system P — y. In this case C
will be a flat afhne space having P —#» as a cartesian coordinate
systemn.

In general the region of definition need not be an n-cell. But it is a
space, according to Chap. 11, § 1, whose structure is defined by the allow-
able coordinate systems in which 1t 1s represented, and by the locally
flat athine connection. Such a space will be called a locally fAat affine
space, and 1its geometry locally rfat affine geometry. 'Thus locally
flat affine geometry 1s the theory of a locally flat atfine connection.

13. Three locally flat affine spacest.

A locally flat affine structure is detined in the arithmetic space of two
dimensions by the system of curves

(13°1) au(x,y)+be(x, y)+c=0,
where
w=¢"Cos,
(132) { _ :cbe
v=¢"s81Iny,
: . 0(u,v)
«, b, and ¢ being constants. Since - (%7:?;5#0, a locally flat affine con-

nection is defined at each point by equations of the form (10°4). The
seneral solution of (10°3) i1s the left-hand side of (13°1), and the equa-
tions (13-2), with the condition y,— 7 <y <y,+ =, define a trans-
formation to a local cartesian coordinate system.

It is easy to see, however, that this is not a flat atfine space. Ior
the locus (13°1) consists of a number of disconnected segments on account
of the periodicity in y of w (2, ) and v (2, ).

In our second example the space is a cylinder on which a locally flat
affine structure is defined by rolling 1t out on a plane. Each point, P,
on the cylinder corresponds to an infinite sequence, [y,], of arithmetic
points, but a patch containing £ is in a (1-1) correspondence with a
2-cell containing any one of the points y,. Any such (1-1) correspondence
is to be taken as a local cartesian coordinate system. By imbedding
the cylinder in an affine 3-space, we can transform 1t analytically into
the ring given by |

2>+ > 1,

* A region is the image in an allowable coordinate system of an arithmetic region.

Unless otherwise stated it is to be assumed that all affine connections and tensors to

which we refer are defined over regions.
+ Cf. Chap. vi1, §3.
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in an affine plane. The system of curves on the cylinder corresponding
to the straight lines will be carried into a system of analytic curves in
the ring, and will determine a locally flat affine connection at each
point. But the general solution of the differential equations (10°3) will
be a many-valued function when considered over the whole of the rmg.

There are also locally flat affine spaces which are not equivalent to
regions in a simple manifold. For example, a locally flat affine structure
can be defined as follows on a space, K., which is topologically equiva-
lent to an anchor ring. If (2, ) is any point in the arithmetic space of
two dimensions the class of points given by

TAT, Y+ S,
where » and s are any integers, positive, negative, or zero, is to be a
single point in &,. Any coordinate system (z + 7, y +s) — (#, y) in which
a 2-cell in R, is represented by a box
I'Z_xol <1, |?/‘%l<1

is to be taken as a locally cartesian coordinate system.

The space R. belongs to the more general class of “‘regular” manifolds
which we define in Chap. v1.

14. Gieometric objects.

Anything which is unaltered by transformations of coordinates 1s
called an invariant (@. F. Chap. 11, §2). Thus a point is an invariant
and sois a curve or a system of curves. Also, strictly speaking, anything,
such as a plant oran animal, which is unrelated to the space which we
are talking about, is an invariant. For an invariant which 1s related to
the space, i.e. a property of the space in the sense of Chap. 11, §1, we
shall also use the term geometric object®.

A point is an example of a geometric object which determines a set
of numbers in each allowable coordinate system in which it 1s repre-
sented 1.

Other examples of geometric objects with components are affine con-
nections and tensors of all kinds, and we now ask the reader to take
for granted the elementary theory of these geometric objects as 1t 1s

developed in . #! Chap. 11

* This term was introduced as an alternative to ‘‘invariant’’ by J. A. Schouten
and E. R. van Kampen, Math. Annalen, Vol. 103 (1930), p. 758.

+ The totality of correspondences between a point, P, and its sets of coordinates is
invariant. A transformation of coordinate systems, -, does not alter the fact that
the correspondences P—r and P-=y, as well as the others P—z, P—>t, ..., all exist.
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15. Regular point transformations.

A correspondence P — @ between a set of points [P] and a set of
points [Q] will be called a point transformation, and will be said to carry
[P]into [@]. A point transformation P — € is a function,

Q=F(P),
whose argument is a point belonging to [ ] and whose values are the
points [@]. Unless otherwise stated it is to be assumed that any point
transformation to which we refer is non-singular, meaning it is not only
single-valued but also has a single-valued inverse.

Let P — @ be a point transformation between sets of points | P] and
[@] in the domain of the same coordinate system, A.

Fig. 5.

The transformation P — @ determines a transformation # = in the
arithmetic space, which carries the image, #, of each P into y, the image
of the corresponding . Conversely a transformation z—y between
sets of points, [#] and [y], in the arithmetic domain of the same co-
ordinate system, determines a point transformation £ — Q.

A point transformation between sets of points both of which are
represented in the same coordinate system, X, is said to be represented
by the equations

¥ =y (@),
which define the corresponding transformation in the arithmetic space.
The transformation P — ¢ may equally well be represented in any other
coordinate system, K, which contains both [ 2] and [@] in its domain.
For let the transformation of coordinates from K to K be defined by
the equations

7' =f" (z),
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and let 7 and 7 be the images in K of P and @ respectively. Then
the transformation 2—@is given in A by*
y=ry (@)}
=7 ().

A point transformation P — @, between regions [ ] and [@] in the
domain of an allowable coordinate system A, will be described as a regular
point transformation of class w' (v’ = u), if the transformation by which
it is represented in K is regular and of class «. The class of a point
transformation 1s obviously an invariant.

By Chap. 11, § 15, the group of automorphisms of a simple manifold
consists of the regular point transformations which are given in preferred
coordinates by the transformations of G,.

The set of all regular point transformations 1s, by an analogous
argument, simply 1somorphic with the pseudo-group of class % in the
arithmetic space.

16. Greometric objects and point transformations.

Gieometric objects with components, such as affine connections or
tensors, are classified by their transformation laws, which determine what
happens when the coordinates are changed. It is also necessary to say
how such a geometric object behaves under a regular point transfor-
mation. Let us denote the transformation law of such a geometric
object by

(16:1) & (z) =1 {& (@), ..., £" (@), Z (2)},
where &, ..., £™ are its components 1n an allowable coordinate system,
P>z, and &, ..., & are its components in an allowable coordinate
system, P — Z, given by

(16°2) 7 =7 (x).

Now let the equations (16°2) define a point transformation of a set of
points [z] into a set of points [Z]. Let £ be any geometric object which
is defined over [#], and which has the transformation law given by (16°1).
To ¢ corresponds the geometric object & which is defined over [Z], whose
components are given by (16°1), and which has the same transformation

law as & The point transformation # — & 1s said to carry £ into ¢. Under
these circumstances £ 1s said to be equeivalent to &.

* Denoting -y by S, z—>z by T, and T—=7 by S, we have
S=TST,
where T-! is applied first.
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17. Greometric objects and their geometries.

Any geometric object in a simple manifold determines a particular
structure and therefore a space in the sense of Chap. 1, §1. Such a
space is given when we specify a particular geometric object, ¢ and 1t8
geometry will be called the geometry of the object &. Two objects & and &
have the same geometry if, and only if, they are equivalent.

The geometric objects and the spaces which they determine are
classified by means of the pseudo-group of regular point transformations,
two objects belonging to the same class if, and only if, they are equiva-
lent. Itis this pseudo-group, rather than the group G, which is relevant,
because a geometric object is not necessarily defined over the whole of a
simple manifold (cf. the second example of a locally flat affine space in
$13). This classification of geometric objects is in the spirit of the
Erlanger Programm, equivalence under the pseudo-group being an
inevitable generalization of equivalence in the narrower sense.

The geometries referred to in the discussion of the Erlanger Programm
and its proposed extensions at the end of Chap. 11, § 16 are all theories
of geometric objects. For example a Riemannian geometry is the theory
of a symmetric tensor ¢; whose determinant does not vanish. A geometry
defined by a geometric object falls within the categories of the Erlanger
Programm if, and only if, the geometric object is characterized byits group
of automorphisms, i.e. the group of point transformations which carry
1t into 1tself.

VW



CHAPTER IV
CELLS AND SCALARS

1. Purpose of the chapter.

In this chapter we give some account of loci in a simple manifold of
class ». This should serve as an adequate foundation for the theory of
k-spaces in any particular manifold of » dimensions. The classical
differential geometry, for instance, is the theory of curves and surfaces
in a Bnclidean metric 3-space. It is specially concerned with the theory
of curves and surfaces “at a given point,” that is with the metric struc-
ture of arbitrarily small 1-cells and 2-cells (see §2 below), containing
the given point.

All these theories rest upon the notion of a A-cell, to which the
oreater part of this chapter is devoted.

2. k-cells in n-space.
A k-cell of class u 1s any set of points given by

(@) {ly"|<1, (A=1, ..., k)
(b) ly° =0, (e=k+1, ..., n)
in an allowable coordinate system.

If we apply this definition to the case where our space is the arith-
metic space of » dimensions it yields a definition of arithmetic £-cells.
It follows from this definition that all arithmetic £-cells of class u are
equivalent under the pseudo-group of class « (cf. Chap. 111, § 6).

The more complicated the structure of a manifold, the greater will be
the variety of the &-cells imbedded in it. Thus all £-cells in a manifold
of class O are alike. In a manifold of class u there are £-cells of class

(21)

0, 1, ..., and u, while in a Euclidean space there are curved and flat
k-cells.
The conditions (21) may also be written in the form
a A= A
22) o T o
where
(2°3) |} | <1

The relations (22) and (2°3) state that the £-cell is in (1-1) correspond-
ence with the unit box in the arithmetic space of 4 dimensions. This
correspondence is a coordinate system or parameterization, P —s, for
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the £-cell. The £-cell with the parameterization is called a parameter-
1zed k-cell.

A parameterization P —s of a £-cell has been given as the resultant
of an allowable coordinate system P —, followed by a transformation
y —s. Without altering the parameterization we can apply a trans-
formation of coordinates, given by

(24> mz‘ :fi (yl, ey yn).
The parameterization P — s 1s then given by (2'3) and
(2°5) 2 =f(s", ..., 5 0, ..., 0).

Without altering the coordinate system we can also apply a transfor-
mation of parameter, given by

(2°6) t=tr (s, ..., P
If s—¢ is a regular transformation of class w, it converts (2'5) into
equations of the form

(2:7) =2 (8, ..., ",
and the box (2'3) into an arithmetic £-cell of class w. Any parameteri-
zation obtained from the parameterization given by (2-2) by a regular
transformation of class » will be called a parameterization of class u, or
a regqular parameterization. With the regular parameterizations in
which it is represented by the arithmetic space of £ dimensions as
preferred coordinate systems, a &-cell is obviously a simple manifold of

class w.
Now let us start with a set of » equations of the form (2°7) such that

the functions on the right are of class » and independent in some
arithmetic &-cell, 7. By saying that the functions are independent we
mean that the rank of the matrix

is £. Without loss of generality we may assume that the notation is such
that there is one set of values, ¢, ..., t%, for which

o(a, ..., 2"
a(t,y ..., t¥)
From the continuity of the derivatives 1t follows that there is a box with
centre %, in the arithmetic space of £ dimensions, in which (2'8) holds

good. This implies that there is a box in the arithmetic space of
n dimensions in which the equations

(2°9) =2 (F, oo, FY+ 8 (87— 1)), (e=k+1, ..., n)

o’
oA

(2'8)
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define a regular transformation # — 2. Hence the inverse of (2'9) defines
a transformation to a coordinate system, ¢, in which an n-cell contain-
ing the point #,=2(¢,) 1s 1maged in a box with the arithmetic point
(tg, ---, t%) as centre. By an obvious transformation of this box we come
back to an allowable coordinate system 1 which (2'7) reduces to (2°1).
Hence, if the functions on the right-hand side of (2°7) are independent
at a point x,, there is a k-cell, Cy, of class u containing x,, whose points
satisfy (2°7). Moreover, there is an n-cell containing x,, such that all
points in this n-cell which satisfy (2:7) lie in C,.

3. Implicit equations of a k-cell.

Let C, be the n-cell which is the image of the box —1 <%’ <1, in the
coordinate system* y of the last section. An arbitrary coordinate system
x, in which C, is represented, is obtained from the coordinate system %
by a transformation (2'4). In this coordinate system C, is the image of
an arithmetic n-cell of arbitrary type. The £-cell C; consists of those
points of C, which satisfy (2°26), and 1s described in the coordinates x
by means of the » — £ equations,

(3:1) Fe @@,y ..., a") =0, (e=k+1, ..., n),
the functions /' being n - £ of those which represent the transformation

Y= F (@, ..., 2",
inverse to (2°4). The equations (3°1) are called the implicit equations
of the k-cell, and (2°7) are called its parametric equations.

Each equation in the set (3:1) is an implicit equation to an (n-—1)-
cell. Hence C; is represented as the intersection of n—£ (n— 1)-cells.

Conversely to the theorem that any Z-cell can be represented by
equations of the form (3'1) we have: Let the left-hand members of (3°1)
be any (n—k) functions of class u whose Jacobian matriz is of rank n—k
at a point xz, whick satisfies (3°1). There exists an n-cell, C,, containing
x,, such that all the points in C, which satisfy (3°1) lie on o k-cell, C,
and each point of C, satisfies (3°1).

To prove this we may suppose without loss of generality that the
notation is so assigned that the Jacobian

o(F*1 ..., ™)
o (2 ..., a™)

* In this and the next chapter we shall often drop into the somewhat freer
terminology used in . F. Thus a coordinate system will mean an allowable co-
ordinate system of class u. Of course anything we say which involves derivatives
will apply only to spaces of an appropriate class. We may denote a point by the

arithmetie point, x, to which it corresponds in a coordinate system, P-=»x, and we
may also use the single letter, r, to represent the coordinate system P-» .
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is not zero at a,. In the arithmetic n-space there will therefore be a
box having z, as its centre, which is carried by the transformation
{y'\:w"—m{;, A=1, ..., k)

y = IV (z) - F7 (2,), (c=k+1, ..., m)
into an arithmetic n-cell 4,, containing the origin. Let B, be a box

containing the origin and contained in 4,, and let By be the £-cell
consisting of the points of B, which satisfy the equations

(32)

y7=0.
The inverse transformation to (3-2) carries B, and By into an arith-

metic n-cell and an arithmetic £-cell, respectively, which are the images
in the coordinate system x, of the required n-cell, C,, and £-cell, Cj.

4. Scalars.

Any point function, that is to say, any correspondence which
associates a number f(P) with each point of a set [P], determines
a function of » variables by means of the relation

F(x)=7(P)
in each coordinate system P — 2, in which the set [ P] is represented.
The function £ (P) is called an absolute scalar, and the function F ()
is called its component in the coordinate system P — 2. If the compo-
nent of a scalar is of class #' = % in any one coordinate system 1t will
be so in all of them. In this case /(P) will be called a scalar of class .
We shall assume that all the scalars referred to are of class «.

A scalar determines in any coordinate system the n derivatives,

o oF

i s p
These are the components of a geometric object called the gradient of
the scalar. The gradient is a covariant vector, the components in a
coordinate system Z being connected with the components in a co-
ordinate system «, by the equations

ol oF ox’

oz’ %’ or'’

Since these equations are linear homogeneous in the components, it is
evident that if all the components of the gradient vanish at a point z,
in one coordinate system, they all vanish at this point in all coordinate
systems. In this case @, is called a singular point of the scalar, other-
wise an ordinary point.

By the last section, if z, is an ordinary point of a scalar, and F#'(z)
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the component of the scalar in any coordinate system a, an n-cell C,
can be found containing z,, such that all points of C, which satisfy the

equation

F(z) = F ()
constitute an (n— 1)-cell. Moreover, a coordinate system, ¥, can be found
in which the component of the scalar reduces to %. Thus the scalar
can be thought of as determining in the neighbourhood of any point a
layer of (n—1)-cells, like a family of parallel planes in a Euclidean

space.

5. Sets of n -k scalars.

What has been said about one scalar generalizes at once to any set
of n—k scalars (0 =4 =n—1). The (n—k)-rowed determinants,

a(FkH,...,F"):e 8F°‘k+1“‘8F.‘fn
O(&'k+1, ..., 'n) EFL TR Gl date

(51)

of the Jacobian matrix are the components of a geometrical object
called a gemneralized gradient. 1t is obviously a covariant tensor, and if
all the components of the generalized gradient vanish at a particular
point in a given coordinate system, they will vanish at this point in all
coordinate systems. Such a point is called a singular point of the set
of scalars. Any other point at which the scalars are all defined is called
an ordinary point. From the continuity of the derivatives it follows
that the set of all ordinary points is a region.

Just as in the case of a single scalar, if #, is an ordinary point, and
F7 (x), (c=k+1, ..., n), are the components of the »— £ scalars in any
coordinate system in which «, is represented, there exists an n-cell C,,
such that all points of O, which satisfy the equations

(52) Fe(z)=F" (x,)
constitute a Z-cell. Moreover, a coordinate system can be found in which
the components of the scalars reduce to »**, ..., y* respectively.

6. Sets of scalars and oriented k-cells.

Any set ofvn scalars /1 (P), ..., /" (P)in a definite order determines
a coordinate system, P — v, given by

(6:1) y =/ (P).

The transformation P -y need not be (1-1), but is a coordinate
system 1n the general sense of Chap. 11, § 8. If the scalars are of class w,
and if @ 1s an ordinary point, the equations (6°1) define an allowable
coordinate system, y, in which some n-cell, Cq, containing @ is repre-
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sented. If #1s any allowable coordinate system in which @ is represented,
the transformation between z and y is given by

Yy =F(2),
where F"(z) is the component of /* (P) in .

The n-cell Oy, associated with the totality of parameterizations ob-
tained from (6°1) by direct transformations of coordinates, is an oriented
simple manifold according to Chap. 111, §8. Hence an orientation of
Cq 1s determined by the # scalars f1(P), ..., /*(P) in a definite order.
This orientation is changed into the opposite one if any one of these
scalars is replaced by its negative. Itis unchanged by even, but altered
by odd permutations of the » scalars. This is the gist of the statement
sometimes made that an orientation is determined by giving an order
to the coordinates.

Any point, P,, in Cy is the intersection of the k-cell, Oy, given by

@) (P (B)- (A=1, ..., B)
(6) \S(P)=1(P,), (c=Fk+1, ..., n),

and the (n —/%)-cell, C,_;, given by

(a) {f* (P) =/*(Py),
(0) Lo (P)=s

These two cells may be described as dual to each other. The equations
(62a) define a parameterization for Cy, and it follows by the argument
used above that C), may be oriented by assigning a sense to the ordered
set of scalars f1(P), ..., /¥(P). An orientation thus defined will be
called an ¢nterior orientation of ). Similarly an interior orientation
is defined for C,_;, by assigning a sense to the ordered set of scalars
SE(P), ..., f*(P). The orientation of two of the cells, C, C,_; and
(g, determines an orientation of the third by means of the relation

(62)

(6°3)

(6°4) sign C;, . sign C,_; =sign Cy.

Let f*+(P), ..., f*(P) be any other ordered set of scalars which,
equated to suitable constants, give a set of implicit equations to C%. Let

e (z)=s°(P),

Fo (@) =f7(P),

in any coordinate system whose domain contams C%. At any point
on C

a Fk+1 0 Fn a Fk+1 a Fn

T g and
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are two complete sets of solutions to the algebraic equations in u,

ot
5%%:0, (A=1, ..., k)
where
xi:a/,f (tl, . tk)
are parametric equations for ;. From Chap. 1, § 3 and 5 it follows

that there are numbers a7 such that

oK opv
Yt
at any point on (. The determinant |a?| is a scalar which is defined
over Cy, and does not vanish. If it is positive the sets of scalars / and
J will be said to be positively related with respect to Cy, and negatively
related otherwise. The relation of being positively related is obviously
transitive, and if /is positively related to 7, and / negatively related to
a set of scalars 7, then £ is negatively related to /. Therefore the ordered
sets of scalars which enter in implicit equations for O} fall into two
classes, members of the same class being positively related to each other.
These classes may be called exterior sense-classes, or exterior orientations
of C.
" As 1n the case of interior orientation an exterior orientation of Cj 1s
determined by assigning a positive sense to the ordered set of scalars
JHHL), ..., f7(P), where (6°2b) are implicit equations for €. There-
fore an exterior orientation determines, and is determined by, an
interior orientation of a given (n— #)-cell which i1s dual to ). If
k-=mn—1, for example, an exterior orientation is the association of the
positive sign of /" (P) with one side of €, and of the negative sign
with the other. Any 1-cell which meets € just once may be oriented
by describing points on the negative side of C, as before points on the
positive side.

From the preceding paragragh 1t follows that the two interior, and
the two exterior orientations of €, and the two orientations of Cy, are
related by an equation analogous to (6°4). For example, an oriented
3-cell may be represented by a right-handed screw, and a screw may
either be pushed in to make 1t rotate, rotated to make 1t penetrate, or
1t may be determined as the resultant of a rotation and a translation
along the axis of the rotation.

(p,o=k+1, ..., n)

7. k-spaces in the large.
The locus which satisfies » — £ scalar equations of the form

(71) Fk+1 (.2?) — 0k+1’ e Fn (.Z') — On,
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C*+1, ..., C™ being constants, has now been characterized as being made
up of k-cells, provided we exclude all singular points. Moreover, we
can say something about how these 4-cells are pieced together to make
the whole locus, namely that if two of these k-cells have a point P in
common, there is a k-cell containing P and contained in each of the given
k-cells.

Proof: Each of the given Z-cells, according to the way they are
derived in § 3, 1s associated with an n-cell and contains all the points
common to the locus (7°1) and this n-cell. Let C, be an n-cell contain-
ing P and contained in each of these n-cells. By §3 we can find an
n-cell, C,/, contained in C,, containing P, and such that the set of points
in €, which satisfy (7°1) constitute a A-cell. This last A-cell 1s the
one whose existence we were to prove.

We can also prove that if P and Q are any two ordinary points of
the locus (71°1) there are two k-cells, one containing P, the other containing
Q), both consisting entirely of points of the locus (7°1), and having no point
in common. To see this it 1s only necessary to take two n-cells con-
taining P and @ respectively and having no point in common. By §3,
each of these n-cells contains a £-cell whose points satisfy (7-1), one
k-cell containing P and the other containing §).

The two theorems of this section together with § 2 are the essential
points in proving that the set of ordinary points of the locus (7°1) 1s
what, in Chap. v1 below, 1s called a regular manifold.

8. Liocal properties. Infinitesimal geometry.

A property will be said to be local to a point P if there 1s an n-cell
'», containing P, such that the property 1s common to all regions con-
taining P and contained in Cp. The system of local properties at £
will be called the local structure at P, and the theory of the local
structure the énfinitesimal geometry* at P. Thus the infinitesimal
geometry at P will contain theorems about the relations between P
and points near P, but will involve no statement about a specified point
other than P.

For instance P might lie at one end of the longest axis of an ellipsoid.
The infinitesimal geometry of the surface at P contains the theorem
that the Gaussian curvature at P is a minimum. But this is not a
theorem 1n the infinitesimal geometry at an arbitrary point of the
surface.

* This term is used in this sense by many writers. Others use ¢ differential
geometry’’ where we use ‘‘infinitesimal geometry.’”’ We use differential geometry
in a wider sense, which is defined in Chap. v, §9.
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In infinitesimal geometry the equivalence problem of Chap. i,
§$16 and 17, 1s replaced by the problem of local equivalence. A geo-
metrical object ¢ will be called locally equivalent at P to a geometrical
object £ at P if, and only if, ¢ and & are equivalent in n-cells containing
P and P respectively. Alllocally flat affine connections, for example,
are locally equivalent, but not equivalent.

It 1s the problem of characterizing locally equivalent geometric objects
which 1s considered in @. F. Chap. v. The solution is given for affine
connections and for quadratic differential forms.

9. Equivalence of scalars.

The local equivalence problem for scalars at ordinary points 1s solved
in §4 above. For suppose we have given two scalars, and let P be an
ordinary point for the first and ¢ for the second. It is clear that the
two scalars cannot be equivalent under a transformation which carries
P into € unless the first has the same value at P as the second at Q.
Suppose now that this condition 1s satisfied. Then by § 3 there exists
a coordinate system, w, in which P 1s represented, and in which the
first scalar has the component #'. Likewise there exists a coordinate
system, z, in which @ is represented, and in which the second scalar has
the component z’. For a sufficiently small n-cell containing P, a point
transformation 1s defined by requiring each point, #, of this cell to go
to that point whose z coordinates are given by

2' =g,
This point transformation carries the first scalar in a cell containing P
into the second scalar in a cell containing Q.

In like manner, by §5, if P and @ are ordinary points for two sets of
n —k scalars (0 =k = n—1) there 1s a point transformation carrying P,
and a cell enclosing 1t, into @ and a cell enclosing 1t, and transforming
the first set of scalars into the second set if, and only if, the two sets of
scalars take on the same values at P and @.

This discussion illustrates the distinction between local equivalence
and equivalence. For a scalar which, equated to a suitable constant,
gives a closed surface (e.g. 2°+#° +2°) 13 not equivalent to a scalar
which only gives open surfaces (e.g.  + y + 2).



CHAPTER V
TANGENT SPACES

1. Differentials of a function.

A k-cell of class 1 in the arithmetic n-space is distinguished among
the £-cells of class O by the existence of a tangent flat £-space at each
point. Similarly any simple manifold of class 1 has a ‘‘tangent space”
at each point, which may be defined without imbedding the manifold
in a space of higher dimensionality. In this chapter we give some account
of the tangent spaces, as a preliminary to which we develop the theory
of differentials more fully than is done in §. 7.

A regular function of » variables, /'(2, ..., #"), determines a function
of 2n variables

dF = a—j-? da’,
ox’
which is of class -1 in # and linear homogeneous in dz. The variables
dat, ..., da" are called the differentials of the variables 2%, ..., 2", re-
spectively, and dF is called the differential of F'(z). If in particular
F(z)=2' the function d# reduces to dz".

The function d . is not necessarily a “small quantity” though 1t tends
to zero with dz, like any other linear homogeneous function*. Moreover,
d.F represents, to a first order approximation, the change in #'(z) due
to a change from z to x+dz. For by an elementary theorem of dif-
ferential calculus

Fz+dx)- F(zx)= gdxi +e(z, dz),
where
Lim e(x, dx) _0
. . . t—=>0 t ’
if da* = p't.

If =2 there is also a function of 4n variables, called the second
diflerential of F (z),
A >V

8 ' = ) ¢ " s
dr axzbdx +6x*6x3

This is of class #—2 in z and linear in each of the sets of 7 variables
dz, 8z, and 8dz. It is the first differential of the function dF of 2n

da* 62,

* Indeed dFis defined for all values of dx, though it may only be defined for values
of x in a restricted region.
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variables 2 and d, the first differentials of these variables being now
represented by 82 and 8dz respectively. By the same theorem of calculus
as before, it represents to a first order approximation the change in d#
due to a change from 2 and da, to # + 3z and da + ddz, respectively.
When F'(z) =2, the function 3dF reduces to dda".

If w = 3 there is a function of 8n variables, the first differential of
Sd F, called the third differential of /|

~ -2
AddF = g!jYASd.:zfi + ﬂo.lj’ (Ad2 827 + da' Ad ¥ + 8da’ AxY)
ox' cx't ou?
il s
T dat S AL
o isd it dat 6’ Ax

In like manner we can define fourth differentials, and so on.

2. Transformations of differentials.

The various sets of successive differentials of the variables o are
simply additional sets of » variables each. Each set of values of each
set of variables is a point in the arithmetic space of » dimensions.
A regular transformation

(2°1) y=y(2)
determines a transformation

O i_ ay’ j

(2:2) dy —axjd.z :

If the point 2 be fixed, and dz be variable, this is a linear transformation
of the arithmetic space of » dimensions into itself.

Equally well, (2, ..., 2", da*, ..., dz") is a point in the arithmetic
space of 2n dimensions. The two sets of equations (2'1) and (2°2) to-
gether define a transformation in the arithmetic space of 2 dimensions.
The set of all these transformations in the arithmetic space of 2n di-
mensions, determined by the transformations (2°1) of any pseudo-group,
G°, is obviously a pseudo-group, G*. This new pseudo-group is called
the first extension* of G°. The higher extensions may be defined
recursively. The Ath extension of G° is a pseudo-group, G* in the
arithmetic space of 2*.n dimensions, and G**' is the first extension

of G* for k=0, 1, ..., u—1.

3. Differentials at a point.
We return now to the geometry of a simple manifold. Let
do = (da?, ..., da™)
* 8. Lie, Theorie der Transformationsgruppen, erster Abschnitt, Leipzig, 1888,
p. 525.
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be any arithmetic point associated with a pomnt P and a coordimate
system, 2, in which P is represented. The equations

o N AWR
(() 1) d:?j = <8JEJ>P(Z$]

define a transformation dr —dy of dr into an arithmetic pomt d,
associated with P and with any coordinate system y, in which P 1s
represented. The geometric object determined by this association of an
ordered set of numbers dy, ..., dy" with P and each coordinate system ¥,
is called a contravariant vector at P, ov a differential at P (cf. Q.F.
Chap. 11, § 5). The numbers dy’, ..., dy™ are called 1ts components mn ¥,
and the equations (3°1) are said to define 1ts transformation law. The
transformation (3°1) is single-valued, and therefore no two distinct
differentials have the same components in any coordinate system.

4. Tangent spaces.

The totality of differentials at any point P 1s called the tangent space
of differentials at 2. Thus a simple manifold has a tangent space at
each point, and will therefore be referred to as the underlying manifolad.
Any coordinate system, «, for the underlymn manifold determines a
unique coordinate system, dz, for the tangent .gpace at each point which
is represented in 2. Moreover, the coordinate system dz 1s a (1-1)
correspondence between the tangent space and the arithmetic space of
n dimensions. For any arithmetic point dz may be taken as the set of
components in # of a differential at a given point P, and on the other
hand the components d of any differential are the components of an
arithmetic point.

With the coordinate systems, dz, dy, ..., corresponding to the various
coordinate systems, z, v, ..., s preferred coordinate systems, the tangent
space at P satisfies the axioms given in Chap. 11, § 9, for a centred afhne
space of » dimensions. For the transformation dx — dy, between any
two of these coordinate systems is given by (31), and is linear and
homogeneous. Moreover, there are transformations of coordinates,
# — v, which determine a given linear homogeneous transformation of
coordinates, dz — dy, for the tangent space at P.

5. Oriented tangent spaces.

Consider any 1-cell of class 1. If it is oriented, the tangent at each
point is oriented (we may think of each tangent as marked with an
arrow). Conversely, if the tangent at a single point is oriented, an
orientation is determined for the 1-cell, and hence for the tangent at
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every other point. These observations generalize as follows to the theory
of simple manifolds in general.

A necessary and sufficient condition that a transformation of co-
ordinates # —y be direct, is that the corresponding transformations of
coordinates do — dy, for the tangent spaces at points in the domain of z,
be direct. For the latter are defined by (2°2), and are direct if, and only
if, the Jacobian is positive. It follows that each tangent space to an
oriented manifold is an oriented centred afhne space. Conversely, an
orientation of a single tangent space to a simple manifold determines
a class of preferred coordinate systems which are related to each other
by direct transformations. That 1s to say an orientation for the manifold
is determined, and hence an orientation for all the other tangent spaces.

6. Approximate flatness near a given point.

Let 2" be any point near a given point #, and let ¢ (2') be functions
of class u—1, which are small quantities of order 1 +46, (6>0) as 2’
tends to 2. The equations

(6°1) Cdrt=gt -2t + ()
define a transformation &' — dz from some n-cell contamming #, in the
underlying manifold, to an n-cell in the tangent space. Let y be any
other coordinate system obtained from 2 by a transformation # -y, and
let ¥ be the coordinates of 2" in . From (3'1) and the theorem of
differential calculus referred to in $1, 1t follows that the transformation
given in ¥ by

(62) Ay’ =y" -y +7'(y),
where 7(y') are small quantities of order 1 + J, agrees with that given by
(6°1) as far as first order quantities are concerned. Therefore the class
of transformations given by equations of the form (6°1) from an n-cell
containing a point, #, to the tangent space at # is an invariant*. The
point # in the underlying manifold is carried by each of these trans-
formations into the origin or null-vector in the tangent space, and 1is
called the point of contact with the tangent space. The centre of any
tangent space may be said to coincide with the point of contact in the
underlying manifold.

The equations (6°1) may also be taken to define a transformation of
coordinates in the underlying manifold. Each coordinate system dz so
obtained is called a local coordinate system at the point 2. The local
coordinate system dy at the same point for any other coordinate system

* It is this invariant class of transformations which justifies the term tangent
space.
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K, is obtained from dz by a transformation which agrees with (3'1) as
far as first order terms are concerned. This approximate flatness, or
“smoothness,” distinguishes an n-cell of class 1 from a general n-cell of
class 0.

If the underlying manifold happens to be a flat affine space, A4, the
equations

dy' =y =¥,

where y are cartesian coordinates, determine an invariant transformation
of the centred affine space, 49, obtained by taking y, as the centre of
A,, into the tangent space, at ¥,. For v and dy are cartesian coordinate
systems for 4,, and for the tangent space, respectively. Therefore the
tangent space at y, may be said to coincide with A°, the centre of the
tangent space coinciding with v,.

7. Differentials and k-cells.

A k-cell, C,, may be represented in a coordinate system, a, by para-
metric equations of the form

(7'1) =2t (8, ..., t5).
The values of the differentials of the functions #* (£) at any pomnt
z,=x (%), in Oy, are the components of a differential in the tangent

space at #,. The totality of such differentials will be the parameterized
linear %-space E) (Chap. 1, § 3), given by

(72) da' = (61,‘") dt*, (A=1,..., k).

The %-cell, Cy, determines £}, and the parameterization ¢ for C; deter-
mines the parameterization, dt, for £;. The £-cell, Cy, associated with
its regular parameterizations, is a simple manifold of £ dimensions
(Chap. 1v, §2), and the hinear Z-space K may be identified with the
tangent space to Cf at .

Conversely, let a linear £-space, £ (z), be defined by

(7°3) dart = & () dit*
at each point, z, in some region X. Does there exist a family of £-cells,
one, and only one, of which passes through each pomnt #, and has K ()

for its tangent space?
The answer is yes, if, and only if, the differential equations

éad’.o

ox'

are completely integrable¥*, for then they will have »n— £ independent
* See E. Goursat, Cours d’analyse, Vol. 2, Chap. xxir, §450.
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solutions ¢**1(2), ..., ¢" (x), and the required %-cells will be given by
the implicit equations
¢7 () = 7 ().

Does there exist a set of parameterized £-cells which have the para-
meterized A-spaces given by (7'3) as tangent spaces, and whose
parameterizations determine these parameterizations of the k-spaces?

The answer is yes, if, and only if, the differential equations

o
o = 1 (2)

are completely integrable*. When £=1 the answer 1s always yes.

8. Geeometry of the tangent spaces.

The simplest geometric interpretation of tensors is in connection with
the geometry of the tangent spaces. By the definition of the tangent
spaces, a contravariant vector field V' (z) determines a pomt

dat = V' (2)
in the tangent space at each point at which it is defined. Any covariant
vector field, defined over a set of points [2], determines a linear dif-
ferential form |
:17; CZ.Z'@,
which, eqnated to a constant, gives the equation to a hyperplane in the

tangent space at each 2. A tensor of the second order determines a
quadratic differential form

(81) ¢ dat da?,
which, equated to a constant, gives the equation to a quadric whose

centre is at the origin. Each contravariant vector, X determines a
unique covariant vector given by

(82) Xi=9,;X°.
The hyperplane
(8°3) X;dat=1
is the polar of X* with respect to the gunadric
(8'4) gi; da' da’ = 1.

If the form is non-degenerate (1.e. if the determinant | ¢;;| is not zero)
any covariant vector, X;, determines a unique contravariant vector,
given by

X' =g" X,

* See the footnote to p. 44.
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which is the pole of the hyperplane (8:3) with respect to the quadric
(8°4). This is the geometric interpretation of the formal operations of

lowering and raising indices.
The quadratic form (8°'1) may be taken to define the length of the

vector dz. If it is positive definite (1.e. never negative) 1t defines a
centred Euclidean metric in each tangent space. For there 1s a class of
coordinate systems y in which the components of g; at a given point
P, are 8;. The corresponding coordinate systems, dy, may be taken
as rectangular cartesian coordinate systems in the tangent space at P,
and the length of a vector dy 1s given by
(dy' )+ -+ (dy")
A mixed tensor of the second degree, AJ’.', determines a collineation,
Su'= A d,
in the tangent space at each point at which 1t is defined. It also defines
an infinitesimal transformation
0z =do' + €Al da’.
If
Jis Aj + gsj Az = O,

this is an infinitesimal Euchdean displacement.
These examples must suffice. For a systematic account of the alge-
braic theory of tensors see J. A. Schouten, der Ricci-Kalkiil, Berhin,

1922, Chap. 1.

9. Other coordinates in the tangent spaces.

It is sometimes desirable to use other coordinates than da*, dy, ete.,
in the tangent spaces. If, for example, of (2 =1, ..., n) are » covariant
vectors, such that the determinant

o]

does not vanish, a coordinate system 1s defined by the transformation
dz — v, given by

(9°1) 0 =% dz’.
This is a cartesian coordinate system, but unlike the coordinate system
dz, which undergoes the transformation (2'2) when the underlying

coordinates undergo (2°1), i1t is unaltered by transformations of the
underlying coordinates. Thus «® are scalars and if /() are any n

scalars, |
o= F"(x)

n

VW
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designates a single point in the tangent space at each point where the
scalars are defined.

In a Riemannian space +? may be mutually orthogonal unit vectors.
The coordinate systems , given by (9:1), will then be rectangular car-
tesian. This is the basis of a method originated by Ricei and Levi-Civita
and subsequently used by many authors. See, for example, L. P. Eisen-
hart, Riemannian Geometry, Chap. 1. The more general coordinate
systems given by (9°1) are now used In various ways, especially by
Cartan and Schouten, in connection with the generalizations of Levi-
Civita’s parallel displacement. They are systematically described by
R. Lagrange in his Mémorial volume, Calcul différentiel absolu, Paris,
1926.

10. Tangent and osculating Riemannian spaces.

For the sake of clear distinctions we mention here another way in
which the term tangent space can be used. Two tensors, g; and G, 1n
the same regular n-cell determine two Riemannian spaces which are

identical as sets of points but which have different structures. Suppose
that

(10°1) 9 (%,) = Gy (%),

at a given point z,, in a given coordinate system. Since g and G are
tensors this equality will hold in all coordinate systems in which z, 1s
represented. The two Riemannian spaces are said to be tangent to each
other at #,. They both determine the same geometry in the tangent
space at x,.

The Riemannian spaces determined by g and G' are said to have con-
tact of order k, if in addition to the relation (10°1) all derivatives of g
of order less than or equal to £ — 1 are equal to the corresponding de-
rivatives of Gy at the point #,. In case 4= 2 the two Riemannian spaces
are said to osculate. Inthis case the affine connections (Christoffel sym-
bols) determined by the two spaces (§. F. Chap. 111, §9) have the same
components at z,.

Assuming the quadratic form (8:1) to be positive, and £=1 or 2, one
of the Riemannian spaces can be taken to be Euclidean, and the
relation of tangency or osculation used to carry over the results of
Euclidean to Riemannian geometry. On this subject the reader is
referred to the book by E. Cartan, Lecons sur la géométrie des espaces
de Riemann, Paris, 1928. This method gets its fullest results when the
Euchdean space of closest contact is used, namely that one in which
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the cartesian coordinates at z, are the same as the Riemannian normal
coordinates (€. /. Chap. vi, §16) for the Riemannian space.

11. Second differentials.

We have as yet said nothing about relations between tangent spaces
at different points of the underlying space. We come to such relations
when we consider second differentials. With a point #, an ordered pair
of first differentials dz, 82, and a coordinate system z, let us associate
an arithmetic point 8da = (8d2", ..., ddz"). 'Y'he equations

oy : oy’ .

(11°1) Sdy = ajc’j Sdad + aiz;jéék da? 32"
define a transformation ddx — 8dy into an arithmetic point 8dy asso-
ciated with z, the differentials dz, oz, and any coordinate system % in
which 2 is represented. The geometric object determined by this asso-
ciation of an arithmetic point, 8dz, with 2, dz, éx, and each coordinate
system, 1s called a second differential associated with x, dz, and ox.

Notice that the difference & — & between any two second differentials
¢ and &, associated with #, and the differentials da, ézis a first differ-
ential. For any transformation of coordinates # — v carries &, into »,
(A=1, 2), given by (11°1), where &, and 7, are written for ddz and ddy
respectively. Therefore

: .
77;“771 P (é:;‘” 1)-

The same argument shows that
ddx —ddx
is a first differential. Hence it is an invariant condition to equate this

difference to an arbitrary contravariant vector. In particular, the

equation
ddx — d oz =0,

which is assumed in many problems, is an invariant condition.

12. Affine connections.

Let a second differential be associated with each point, #, in some
region, and each ordered pair of first differentials at #. In any co-
ordinate system, #,let the components of the second differential associated
with 2, dz and 8z be given by

(12°1) ddat = ¥ (2, dz, o).
The functions y° are the components of a geometric object which may
be called a field of second differentials (in accordance with the usage in
5-2
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Q. F. Chap.. 11) because it determines one second differential for each
z, dz, and oz.

Let y' be linear homogeneous in 82°. The equations (12'1) may then
be written

(12°2) Sdu' =7, (x, dxw) da*

[n any other coordinate system Z the components of this second differ-
antial wre given by
oz" G

_ J N
SdZ = 5 yi 8aF + o da’ 8
=7 (&, d7) 8,
where
) ox? Foadl 7 _\ &gt
. ~ i)y
(12 3) ' <76 a aig a@-k, dx > axa,’

as follows from the identities
2x® ozl oxt ox* Az

- -+ - = ().
o’ oz oxb oxt  ox' oxloxe 0

The functions y; (#, dx) are the components of a geometrical object whose
transformation law is given by (12°3).
Now suppose that y: (#, dz) are linear homogeneous in dz, so that

(12°4) 7, (@, do)=—T% da’,
where T, are functions of z alone. From (12°3) we have
o2t da°  Pat \ 0T
. I‘z —_ a |
(12 5) gk (Pbc am; a—k + 8.2:38 ) ax

The geometric object of which the functions I' are the components 1s
called an a;ﬁne connection (see . F. Chap. 111 §10). If T} are func-
tions of class #' in the coordinate system a they will also be of class '
in 7, provided «' = u — 2. In this case «’ isan invariant and may be called

the class of the affine connection. When we refer to an affine connection
it 1s to be assumed that «' = u — 2.

In case the second differentials with which we started satisfy the
condition

(12°6) Sdx — ddz =0,
the affine connection 1s symmetric, 1.e.
sz:k = I‘?ci .

Conversely the symmetry of the affine connection implies (12°6).
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The field of second differentials,

(12°7) ddz* = — T, da’ 8a*
defined by an affine connection is very special. There exists already a
quite extensive theory of other geometric objects which arise by modi-
fying the assumptions that lead to the affine connection. There are, for
example, the fields of second differentials, d¢, given by the equations
(14'1) and (15°1) below. Another generalization is to require y to be

homogeneous of the first degree, but not necessarily linear, in dz. See
the article by L. Berwald in the Encyklopddie der Math. Wiss. Vol. 3,

part 3.

13. Parallel displacement.
Replacing da’ by & in (12°7) and & by d, we have

(13°1) d& + Th & da* = 0.
This together with any parameterized curve,
(13:2) ¥ =a' (t), (b<t<c)

where the functions ¢ (¢) are of class 1, determines a set of ordinary
differential equations,

. a8 i\ s
(13°3) 7 =70,
where
(134) () == T (@ (1) o

By a standard existence theorem*® (13°3) have a unique set of solutions
& (¢), ..., & (2),
satisfying the initial conditions
éi (to) = 583

with & arbitrary and £, any number in the segment b <¢ <c.

From the linear character of the equations (13°3) it follows that these
solutions are linear in the initial constants, that 1sto say the solutions
are of the form

(18°5) £ @)=a,(t t,) & (1),

* See G. A. Bliss, ‘“ Fundamental Existence Theorems’’ (Colloguium lectures of
the Amer. Math. Soc. Vol. 3), p. 95, or L. Bieberbach, Differentialgleichungen,
Berlin, 1926, p. 32, For a comprehensive treatment of parallel displacement making
direct use of the linearity of equations (13-3), see L. Schlesinger, ‘Parallelver-
schiebung und Kriimmungstensor,”” Math. Annalen, Vol. 99 (1928), p. 413.
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and can be regarded as defining a linear homogeneous transformation

3 (to) — ¢ <t>
from the tangent space at the point # (¢,) to the tangent space at  (¢).
By the existence theorem this holds in a certain maximum segment
b <t<c.

The transformation & (¢,) — & (¢) is non-singular for each pair of pomts
in this segment, that is to say @ (¢, ¢,) +0, where ¢ = laj'l For (Q. F.
Chap. 1, § 7)

d“ . da'
= qod Y
dt ~ " g

where of of=8&. But ! are the solutions to (13'3) which reduce to

J

&t for ¢ =¢,. Therefore

la o
di =i ),
and since @ (¢,, t,) = 1, |

a(t, &)= JEi 9 4o,

From this it follows that ' =b and ¢'=¢. For assuming ¢’ <¢, we can
start again at ¢’ and define

E(c) = &),
for some ¢ such that & <t<¢. The resultant of £(¢,) -£é(¢) and
¢ (t) — & (¢') exists, which contradicts the assumption ¢’ <¢. Therefore
¢’ = ¢, and similarly & = b.

The transformation (13°5) is independent of the coordinates because
(13°1) is an invariant equation, and it follows from the form of (13°1) that
(13°5) is independent of the parameterization of the curve (13-2). There-
fore the transformation ¢ (£,) — £ (¢), of the tangent space at ¢, into the
tangent space at ¢, is uniquely determined by the differential equations
(18°1) and the curve (13-2). It is called the parallel displacement defined
by T, of the first tangent space into the second along the curve (13-2) and
corresponding vectors are said to be parallel with respect to this curve.

Since the set of solutions to (13°3) which satisfy given initial con-
ditions is unique, 1t follows that:

IF £(¢) and £(2") are both parallel with respect to (13°2) to a given
vector £ (t), then & (t") 18 parallel to & (¢').

Letting ¢’ = ¢, we have:

If £ (t) s parallel to & (2), then &(t) is parallel to & (t).

These conditions are expressed analytically by the functional relations

(@) [ @ (", t)=al (', 1) @ (t, ),

(18°6) (b) 1a’;f (t,t) o (¢, t) =8,
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which are necessary and sufficient conditions that the transformations
(13°5) constitute a pseudo-group.

If the affine connection is flat (cf. Chap. 111, § 10), vectors which are
parallel with respect to any curve are equal and parallel, or equipollent,
in the elementary sense. For in cartesian coordinates the components of
T vanish, and (13'5) become

¢ (t) =¢ <t0)'
The analogy with the flat case is particularly close when the connection
is symmetric. For in this case coordinate systems exist at which the
components of the connection vanish at a given point,  (§. #. Chap. 111,
§13). Let #, and a, be any points near 2. Then the parallel dis-
placement from z; to @, along the curve

2=+t (2, - )
1s approximately given in these coordinates by

(137) & (2) = £ (a),
with an error of the second order as #, and «, tend to .

This analogy has led to the term infinitesimal parallelism. When T is
unsymmetric the analogy is lost, for the formulae corresponding to (13°7)
are

(13°8) £ () = 88— A (@) (k- ),
where A4 is the alternating tensor, given by

4}, =4 (T}, ~T,)
In general the formulae (13-8) have nothing much to do with parallelism
in the elementary sense. In a Euclidean space, for instance, the trans-
formation (13'5), determined by the tensor 4 and the curve (13°2),
might be the resultant of the translation in the underlying space (cf. § 6),

which carries the point ¢, into ¢, followed by a rotation.

14. Affine displacement.

Any centred flat athne space, 4° determines a unique flat affine space
A, which has the same points and straight lines as A°, the centre being
regarded as equivalent to any other point. The affine space determined
in this way by the tangent space of differentials at any point #, will be
called the tangent affine space at .

The transformations, defined by the equations for parallel displace-
ment, between the tangent spaces of differentials at different points,
are all isomorphisms between the tangent affine spaces. There are also
families of displacements which are isomorphic transformations between
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the tangent affine spaces at different points, but which do not
necessarily carry the null-vector of one space into the null-vector of

the other. Such a family is defined by differential equations of the
form

(14°1) d§'+ T & da* + B, da* =0,
where T is any affine connection, and 5 a tensor.
The equations (14'1) determine a unique transformation

(14°2) E(t)=a (¢, 1) E(t,) + o' (¢, )

from the tangent space at a given point ¢,, on the curve (13:2), to the
tangent space at £. As in the case of parallel displacement, these trans-
formations constitute a pseudo-group.

For let 4% (¢) be a particular set of solutions to the ordinary differen-
tial equations
df e,
(14°3) 7: =10 € +¥ (),

where v (¢) are given by (13°4), and

(144 Y (1) = By (@ () 2
By means of the substitution

(14°5) =& (1),
(14'3) are reduced to the equations (13'3), and we can apply the same
arguments as in § 13.

Geometrically, this means that we apply the translation which carries
% (¢) into the null-vector in the tangent space at each point of the curve
(13°2).

The transformation (14-2) will be called the affine displacement de-
fined by the composite geometric object consisting of I' together with 5,

from the tangent space at ¢,, along the curve (13°2), to the tangent space
at ¢.

15. Greneralizations.

An immediate generalization of the affine displacements is to consider
the displacement of tangent spaces defined by

(151) d&+ P T da* + Bida* — § (& Cpda” + Dyda*) =0,
where T is an affine connection, and B, C, D are tensors of the kind
indicated by the positions of the indices. This displacement is a
projective transformation of the tangent spaces. To study it out we

must introduce “points at infinity” in each tangent space and so define
tangent projective spaces.
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The theory of differentials is only one, arbitrarily chosen, method of
attaching an associated space to each point of an underlying space
(see Chap. vir, §6-10). Such associated spaces arise naturally as a
geometrical interpretation of many other geometric objects besides
differentials. The totality of geometric objects with a given transfor-
mation law which are defined at a single point, z,, is a space associated
with #,. This space satisfies the axioms given in Chap. 11, §9, G being
the transformation law of the objects in question. Thus the totality of
relative tensors which are covariant of order p, contravariant of order g,
and have a given weight, is a space of #?*? dimensions with a linear
homogeneous transformation group. Likewise the totality of affine
connections is an #*-dimensional space with a group of linear transfor-
mations. These associated spaces are the final product of a process of
evolution starting with the “systems of functions” introduced by Ricei
(Q. F. Chap. 11, §16).

Theidea of displacing associated spacesalong curves (see Chap. v11, § 6),
while it may also be regarded as a geometrical interpretation of processes
already carrent in the theory of partial differential equations, had
its real beginning with T. Levi-Civita’s discovery of infinitesimal
parallelism*, the full significance of which was brought out by H. Weylt,
who introduced the general symmetric affine connection. The idea of
displacements between associated spaces was then taken up by E. Cartan
and J. A. Schoutent, who used it as a defining principle in generalized
affine, conformal, and projective geometries. Displacements of a still
more general type had previously been introduced by R. Konig$.

* ¢“Nozione di Parallelismo in una varieth qualunque e conseguente specificazione
geometrica della curvatura Riemanniana,” Rendiconti del Circolo Mat. di Palermo,
Vol. 42 (1917), pp. 173-204. Infinitesimal parallelism was also discovered independ-
ently by J. A. Schouten, ¢ On the number of degrees of freedom of the geodetically
moving system and the enclosing Euclidean space with the least possible number of
dimensions,”” Kon. Akad. van Weten. te Amsterdam, Vol. xx1 (1919), pp. 607-613.

t H. Weyl, ¢‘Reine Infinitesimalgeometrie,’’ Math. Zeit. Vol. 2 (1918), pp. 384
411. See also H. Weyl, Raum, Zeit, Materie.

T E. Cartan, ‘“Sur les variétés & connexion affine et la théorie de la relativité
généralisée,”’ Annales de 1'Ecole Normale Supérieure, Vol. 40 (1923), pp. 325-412;
‘‘ Les espaces & connexion conforme,’’ Annales de la Soc. Polonaise de Math. (1923),
pp. 171-221, and ¢‘Sur les variétés & connexion projective,’”” Bull. de la Soc. Math.
de France, Vol. 42 (1924), p. 205; J. A. Schouten, ‘¢ On the place of conformal and
projective geometry in the theory of linear displacement,” Proc. 4kad. van Weten.
te Amsterdam, Vol. 27 (1924), pp. 407-424, and *‘ Erlanger Programm und Ueber-
tragungslehre,” Rendiconti del Circolo Mat. di Palermo, Vol. 50 (1926), pp. 142-169.

§ ‘“Beitriige zu einer allgemeinen Mannigfaltigkeitslehre,’’ Jahresbericht der Deut-
schen dMath. Vereinigung, Vol. 28 (1920), pp. 213-228.
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The working out of these conceptions has been linked up to a large
extent with the development of the generalized projective geometry, of
which the theory of projective displacements is one aspect, by the
authors cited above, by T. Y. Thomas*, and by several others.

For an account of this subject and a bibliography see E. Bortolotti,
“Connessioni proiettive,” Bollettino della Unione Matematica Italiana,
Vols. 9, 10 (1930-31).

* A projective theory of affinely connected manifolds, Math. Zeit. Vol. 25 (1926),
p. 723.



CHAPTER VI
A SET OF AXIOMS FOR DIFFERENTIAL GEOMETRY

1. Purpose of the chapter.

We have now completed our account of simple manifolds of class w,
having been mainly concerned with their local structure. The greater
part of present-day differential geometry 1s the infinitesimal geometry
of simple manifolds, and the previous chapters contain the elementary
properties which are presupposed in most books on the subject.

But there are many spaces whose geometry can be studied by means
of allowable coordinate systems, which do not satisfy the axioms of
Chap. 11, because there is no (1-1) continuous correspondence between
the space and the arithmetic space. A projective space 1s a case in point.
So is any closed sub-space, S;, given by (n— k) implicit equations (see
Chap. 1v, § 7) without singular points, for example a sphere or an anchor
ring in the arithmetic 3-space.

The object of this chapter is to characterize a general class of spaces,
of which S is a typical example. We do this axiomatically in terms of
an undefined class of ‘“allowable” coordinate systems, which are in
many ways similar to the allowable coordinate systems for a simple
manifold. But in general there is no allowable coordinate system in
which the whole space 1s represented.

The axioms fall into three groups, 4, B and C. The axioms A4 de-
scribe the local structure completely, and the axioms € impose certain
general restrictions on the topology of the spaces*. The axioms B
determine the class of allowable coordinate systems. Thus the structure
is built up from the small to the large, in contrast to Chap. 1v, §§ 3 and 7,
where the local structure of a £-space 1s deduced from 1ts representa-
tion as a whole.

The axioms describe a large class of spaces which are not all
equivalent. In order to arrive at a particular geometry it is necessary
to add further postulates of a more special nature.

* Any space satisfying the axioms 4 and C is a topological space with the same
local structure as a simple manifold of classu. This, and other topological questions,
are discussed in a paper called ‘‘ A set of axioms for differential geometry,’”’ Proc.
Nat. Acad. of Sciences, Vol. 17 (1931), p. 551, in which the independence of the axioms
is also proved.
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2. The first group of axioms.

The axioms will be stated in terms of “points” and “allowable
coordinate systems.” Points are completely undefined and allowable
coordinate systems constitute an undefined class of (1-1) correspondences,
P — 2, between sets of points and sets of arithmetic points in the arith-
metic n-space.

The properties of the allowable coordinate systems will be described
in terms of regular transformations of class » in the arithmetic space,
and » 1s to be fixed, either as 0, 1, ..., ® or .

The image of an arithmetic n-cell in an allowable coordinate system
will be called an n-cell of class w. As in the previous chapters we shall
often omit the words “of class »” as applied to transformations and n-cells.
The axioms of the first group are:

Ay, The transformation of coordinates between two allowable coords-
nate systems which have the same domain is regular, provided one of
them, at least, has a region for its arithmetic domain.

As. Any coordinate system obtained by o regular transformation of
coordinates from an allowable coordinate system is allowable.

As. The correspondence in which each point of an n-cell corresponds
to its image in an allowable coordinate system is an allowable coordinate

system.

3. The geometry of an n-cell.

We are now in a position to prove two theorems which justify our
previous remark that the axioms A describe the local structure com-
pletely. The first theorem is:

Theorem 1. The image of an n-cell in any allowable coordinate system
18 an arithmetic n-cell.

Let X be the image of an n-cell, C, in an allowable coordinate system
K. By the definition of an n-cell, O is the image in some allowable co-
ordinate system, K,, of an arithmetic n-cell, X,. By A4, the correspon-
dences between C'and X, in K,, and between C'and X in K, are allowable
coordinate systems. By A, the transformation of coordinates from X, to
X 1s regular, and therefore X is an arithmetic n-cell.

The second theorem is:

Theorem 2. If C is any n-cell and X any arithmetic n-cell, there
exists an allowable coordinate system having C for its domain and X for

its arithmetic domain.
By the definition of an n-cell, € is theimage in some allowable coordinate

system of an arithmetic n-cell, Y. By A; the correspondence between ¢
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and Y is an allowable coordinate system. There is a regular transforma-
tion which carries Y into X, and the theorem follows from 4.,.

The axioms A are sufficient to characterize an n-cell completely.
For let an n-cell, C, be given and let us confine our attention to C. In
other words let us add to the axioms A4 the further condition:

A. The space is an n-cell of class u.

The arithmetic space is an arithmetic n-cell (Chap. 11, § 6), and by
theorem 2 at least one allowable coordinate system exists in which a
space satisfying 4 and A is in (1-1) correspondence with the arithmetic
space. With the set of all such allowable coordinate systems as preferred
coordinate systems, an n-cell is obviously a simple manifold according
to Chap. 111, §7. Conversely, it is obvious that a simple manifold with
the allowable coordinate systems defined in Chap. 111, § 9, satisfies the
axioms 4 and 4.

4. The union of coordinate systems.

Let [P] and [Q] be the domains of (1-1) coordinate systems £ -
and P — y respectively, [#] and [¢] their arithmetic domains, and [£]

Fig. 6.
the intersection of [ 2] and [@]. It may happen that each R 1s repre-
sented by the same arithmetic point, 2, in P -z as in @ -y, or else
that [R] and the intersection of [#] and [y] are both empty. In either
case there is a (1-1) coordinate system in which each P corresponds
to its image in P —, and each @ to its image in @—y. This co-
ordinate system will be called the union of P — z and @ —y.

Let [K,] be a set (finite or infinite) of (1-1) coordinate systems such
that the union of each pair, K,, Kg, exists. Let us denote the domain
and arithmetic domain of K, by U, and X, respectively. Also let U
denote the set of all points each of which is in at least one U,, and let
X denote the set of points each of which is in at least one X,. Let K
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be the correspondence in which each point of U corresponds to each
arithmetic point by which it is represented in at least one K,. If a point
of U corresponded in this way to two different arithmetic points of X
there would be two coordinate systems, K,, Kz, in which this point
corresponded to different arithmetic points, and the union of A, and
K5 would not exist. Hence each point of U corresponds in K to oue,
and only one, point of X. Similarly no two points of {7 correspond to
the same arithmetic point, and therefore the correspondence X 1s (1-1).
We call K the union of the set of coordinate systems [ A,]. The theorem
which we have proved is that any set of (1-1) coordinate systems, [ Ag],
has a union if the union of each pair, A,, Kz, exists.

5. The second group of axioms.

The purpose of the axioms B is to characterize the class of allowable
coordinate systems in a space satisfying the axioms 4. The section
above describes the class of allowable coordinate systems whose domains
are n-cells, and the axioms B say that the total class of allowable
coordinate systems consists of the unions of these.

The axioms are:

B,. Any coordinate system which is the union of a set of allowable
coordinate systems whose domains are n-cells, s allowable.

B,. Eack allowable coordinate system is the union of a set of allowable
coordinate systems whose domains are n-cells.

6. Consequences of axioms A and B.

From B, it follows that the union of any set of allowable coordinate
systems, if it exists, is the union of a set of allowable coordinate systems
whose domains are n-cells, and from B; we have:

Theorem 8. If the union of a set of allowable coordinate systems
exists, it is an allowable coordinate system.

A set of points [ P] will be called a region 1f, and only if, each P is
in an n-cell which is contained in [ P].

Theorem 4. The domain of an allowable coordinate system is a region.

For any allowable coordinate system, A is the union of a set of
allowable coordinate systems whose domains are n-cells, and each point
in the domain of K is contained in one of these n-cells. Each of these
n-cells 1s contained in the domain of K, which is therefore a region.

The image in an allowable coordinate system of any arithmetic region
is obviously a region, and from theorem 1 it follows that a region which
is contained in the domain of an allowable coordinate system 1is



§§ 4-8] REGIONS 79

represented in this coordinate system by an arithmetic region. From
theorem 4 we have, therefore:

Theorem 5. The arithmetic domain of an allowable coordinate system
18 a reqgion.

Theorem 6. The correspondence between any region in the domain of
an allowable coordinate system and its image in this coordinate system,
28 itself an allowable coordinate system.

Let X be the image of a region, U, in an allowable coordinate system,
K. By the remark above, X" is a region. Hence there is a set of boxes,
[X.], each contained in .Y, and such that each point of X is contained
in at least one X,. If U, is the image in K of X, it follows from the
definition of an n-cell that U, is an n-cell, and from 4, that the
correspondence in K between U, and X, is an allowable coordinate
system, K,. It is obvious that each union, K,, K, exists and therefore
the union A’ of [K,] exists, and is an allowable coordinate system by
B,. The arithmetic domain of A" is X and its domain 15 U.

Since the image in an allowable coordinate system of an arithmetic
region 1s a region, we have:

Theorem 1. The correspondence between a region in the arithmetic
domain of an allowable coordinate system, and its image in this coordi-
nate system is itself an allowable coordinate system.

7. The third group of axioms.

C,. If two n-cells hawe a point in common they have in common an
n-cell containing this point.

C,. If P and Q are any two distinct points there is an n-cell Cp

containing P, and an n-cell Cy containing ), suck that Cyhas no point
tn common with Cp.

C,. There exist at least two points.

The relation between these axioms and those given by F. Hausdorff
(Grundziige der Mengenlehre, Leipzig, 1914, p. 213) for a topological
manifold, is discussed in the note referred to in §1 of this chapter.

8. Consequences of axioms A, B and C.

From C, and C, it follows that the space is a region. From C we have:

Theorem 8. Two regions with a common point intersect in a region.

For let P be any point which is contained in each of two regions U
and U'. By the definition of a region there are n-cells C and C” con-
taining P, and contained in U and U, respectively. By C; there is an
n-cell C” containing P, and contained in the intersection of C and (",
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and therefore in the intersection of &7 and U’. Therefore the intersection
of U and U’ 1s a region.

From theorem 4 1t follows that the domains of two allowable coordinate
systems intersect in a region, if at all, and from theorem 6, theorem 5
and A, we have:

Theorem 9. The transformation of coordinates between any two allow-
able coordinate systems, whose domains have a point in common, is reqular.

Theorem 10. There 1s an allowable coordinate system in which two
given points, P and @), are both represented.

By C; there are n-cells, Cp and (), containing P and @ respectively,
and having no point in common. Let C, and C, be any two arithmetic
n-cells having no point in common. By theorem 2 there are allowable
coordinate systems, K, and K, in which Cp corresponds to C, and Co
to €, respectively. Neither Cp and € nor €, and O, have points in
common, therefore the union of K, and K, exists, and is an allowable
coordinate system by B;.

Theorem 11. The totality of transformations between allowable coords-
nate systems 18 the pseudo-group of class u.

By theorem 9 any transformation between two allowable coordinate
systems belongs to the pseudo-group of class .

Conversely any regular transformation # — , operating on an arith-
metic region X, is the transformation between some pair of allowabie
coordinate systems. For there 1s at least one n-cell, and at least one
allowable coordinate system in which a given n-cell is represented by
the arithmetic space. From theorem 7 it follows that the region X is
the arithmetic domain of some allowable coordinate system, and by 4.,
that #—y is the transformation of coordinates between two allowable

coordinate systems.

9. Manifolds of class u.

The general definitions and theorems which we have worked out in
the last three chapters for simple manifolds, apply to any space satisfying
the axioms A4, B, and €. Nothing needs to be changed in the definition
of k-cells, sealars and other geometric objects, nor in the discussion of
tangent spaces, higher differentials, infinitesimal displacement, and so on.

The same remark applies to the contents of €. F.
A space which satisfies the axioms* 4, B and C will be called an

* By defining a new class of allowable coordinate systems in terms of the old ones,
if necessary, any space satisfying the axioms 4 and C alone can be made to satisfy
the axioms 4, B and C, and is therefore a regular manifold.
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n-dimensional manifold of class w, or a reqular manifold. A simple
manifold of class », as defined in Chap. 111, 1s obviously a special case
of a regular manifold. A manifold of class O satisfies our intuitive idea
of continuity, and a manifold of class 1 our idea of “smoothness.” The
latter 1s expressed mathematically by the theory of first differentials.

Let U be any region in a regular manifold, M,, and let the allowable
coordinate systems for M, whose domains are contained in U, be taken
as allowable coordinate systems for {/. This set of allowable coordinate
systems obviously satisfies the axioms 4 and B, and also the axioms €]
and C,. If U contains a single point it contains all the points in some
n-cell, and therefore satisfies C;. We have therefore:

Theorem 12. Any region in a reqular manifold is itself a reqular
manifold, provided 1t contains at least one point.

Let [ K] be the totality of allowable coordinate systems for a manifold
M,, of class u>0. Let [K'] be the set of coordinate systems, any one
of which is obtained from a A by a transformation of class «, for any
w <u. With[K']as allowable coordinate systems M, obviously satisfies
the axioms for a manifold of class . A manifold of class » is therefore
a manifold of class # with an additional element of structure, namely
the sub-class of coordinate systems [A]. In fact the pseudo-group of
class » 1s one of many which can be used to define particular classes of
manifolds of class 0, just as the group G, defined 1 Chap. 111, §7, is
one of many which can be used to define particular simple manifolds*.

Differential geometry may now be defined as the general theory of
manifolds of class 1, as apart from the geometry of manifolds of class 0
which is a branch of Analysis Situs. The theory of tensors, tangent
spaces, and smooth sub-spaces 1s present in all differential geometry.
The general theory of manifolds of class 2 is a sub-class of differential
geometries, which contain the theory of affine connections, curvature
and osculating sub-spaces. Similarly there are differential geometries
of class 3, class 4, ..., until we come to analytic manifolds, which have
all the properties implied by power series expansions.

10. k-spaces in the large.

Theorem 13. If P, is an ordinary point of n—k scalars of class uw> 0,
SE(L)y ey ST(P), whick are defined over a regqular manifold, the set
of ordinary points which satisfy the equations,

(10°1) S (P)=r°(Py), (c=k+1, ..., n),

18 a reqular manifold of k dimensions.
* See Chap. vi1, § 4, and also § 8 of the note referred to in §1 above.
VW 6
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By the argument used in Chap. 1v, § 3, 1t follows that each ordinary
point on the locus (10°1) is contained 1n a %-cell consisting of points on
the locus. Moreover, there 1s a class of parameterizations for each £-cell
which are given in allowable coordinates by equations of the form

wizw’i, (tl, v tk)’
the functions # (¢) being of class w. If these parameterizations and their
unions are taken as allowable coordinate systems the axioms 4 and B
are obviously satisfied. From the axioms C for the n-space, 1t follows
by the argument used in Chap. 1v, § 7, that the axioms C are satisfied
by the locus (10°1). Therefore the latter is a regular manifold of
k dimensions.

11. Regular point transformations.

From theorem 10 1t follows that the definition of point transformations
given 1n Chap. 111, § 15 1s adequate for a discussion of local equivalence,
where local equivalence on a regular manifold 1s defined as in Chap. 1v, §8.
But for macroscopic equivalence we need a theory of point transforma-
tions between regions which are not necessarily represented in a single
allowable coordinate system. This section contains the elements of such
a theory.

With this as a basis 1t will be evident that §§16 and 17 of Chap. 111
may be applied to the theory of regular manifolds in general.

The general class of regular point transformations is defined in terms
of a special sub-set which we define first. Let P — @ be a non-singular
point transformation of an n-cell [ P] into some set of points [@], in the
same or in a different regular mamfold. The transformation P - @
will be described as regular if, and only if, there are allowable coordinate
systems P -z and € -, having [P] and [@] respectively as their
domains, having the same arithmetic domain, and such that P — @ 1s
the resultant of P — 2 followed by # - .

From this definition it follows that [@] is an n-cell. Therefore the
inverse transformation ¢ — P is regular. It also follows from A that
the transformation P — @), operating on each n-cell contained in [ P]1s
regular. Moreover, a regular point transformation exists which carries
one of two given n-cells into the other. For there is an allowable co-
ordinate system in which a given n-cell corresponds to a given arithmetic
n-cell.

A non-singular point transformation P — Q,operating on a region [ P),
will be called reqular if, and only if, each P 1s contained in an n-cell
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Cp, which is contained in [ P) and is such that P — @), operating on Cp,
18 reqular.

From this defimition it follows that [@] is a region and that @ — P
1s also regular. Let U be any region contained in [ ] and let P be any
point in U. There exists an n-cell Op, containing P, such that P — @),
operating on Cp, is regular, and by theorem 8 there is an n-cell Cp
contained in the intersection of ¢/ and Cp. By a previous remark P - @),
operating on Cp, is regular. Therefore P — @), operating on any region
contained in [ P], 1s regular.

In case [P] is an m-cell it is necessary to prove that the second of
the definitions given above implies the first. This follows as a special
case of the following theorem.

Theorem 14. Let [P) be the domain of any allowable coordinate
system P — x, and let P — Q) be a transformation of [ P into any set of
points [Q). The resultant, Q — z, of Q — P followed by P — x, is an
allowable coordinate system 1f, and only if, P — @Q is reqular.

First assume ) — & to be an allowable coordinate system, and let C,
be any nm-cell in the arithmetic domain of ¢ — 2. The images of C, 1n
P — 2 and @ — 2, respectively, are n-cells, and it follows at once from
Aj that P — @) is regular.

Conversely if P — @ is regular there i1s an n-cell, Cp, containing a
given P and contained in [P)], such that P — @, operating on Cp, is
regular. That is to say there exist allowable coordinate systems, P -y
and ¢ — vy, with the same arithmetic domain, which have as their re-
spective domains Cp and the n-cell Cy into which Cp is carried by
P— (. Since P> and P -y are allowable coordinate systems, the
transformation, £ —y, between them is regular by theorem 9. Since
x -y 1s regular, the coordinate system which carries each point in Cy
into its image in @ -« is allowable by 4,. Therefore ¢ - z is the
union of allowable coordinate systems whose domains are n-cells, and
is an allowable coordinate system by B,.

As a corollary it follows that a transformation, P— Q, of a region
[ P] into a region [ Q] is reqular if, and only if, P — Q, operating on
each n-cell in [ P, is reqular according to the first definition given in
this section.

We now show that the definition given in this section agrees with
that given in Chap. 11

Tiwarem 15. A point transformation, P - Q, of a region [ P] into a
set of points [Q], where [ P] and [ Q] are both in the domain of a single
6-2
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allowable coordinate system, K, is reqular if, and only if, it is repre-
sented 1n K by a reqular transformation in the arithmetic space.

Let [2] be the image of [P] in K, [¢] the image of [ @], and let 2 -y
be the transformation by which P — @ is represented in K. First
suppose # =y to be regular. Let P — 2 be the coordinate system in
which each P corresponds to its image in K, and ¢ — y the coordinate
system 1n which each ) corresponds to its image in A. By theorem 6,
P — 2 and @ — y are allowable coordinate systems, and the transforma-
tion y - 1s a regular transformation of coordinates from ¢ — ¥ to a
coordinate system € — z, in which [@] is represented by [#]. The co-
ordinate system ¢ — 2 is allowable by A4, and is the resultant of @ — P
followed by P - 2. By theorem 14 the transformation P — ) 1s regular.

Conversely let P-— (@ be regular. Then ¢ -z is an allowable co-
ordinate system by theorem 14, and the transformation 2 — ¥ is regular
by A4,.

Theorem 16. A point transformation P — Q, of a region [ P], into a
set of points, [ Q), is reqular if, and only if, for each P there is an n-cell
Cp, containing P and contained in | P), such that Cpand its image, Cq,
in P —Q are in the domain of a single allowable coordinate system, in
whick the transformation P — Q from Cp to Cqy is represented by a
requiar transformation in the arithmetic space.

This condition 1s sufficient by theorem 15 and the definition of a
regular point transformation operating on a region. Therefore assume
P — @ to be regular, and let P and @ be any pair of corresponding
points. By theorem 10 there is an allowable coordinate system A,
having P and € in its domain. Let U be the domain of K, Cp the
intersection of [ ] with U, and let Cy be the image of Cp' in P — Q.
By theorem 8, Cp' is a region and therefore €y’ is a region since P — @
is regular. Therefore the intersection of €y and U is aregion. Let Cy
be any n-cell containing ¢ and contained in this intersection, and let
Cp be the 1mmage of Cyin @~ P. Then Cp is an n-cell, the regular
transformation P — @ carries Cp into Cy, and the theorem follows from
theorem 15.

12, The pseudo-group of regular point transformations.

Let P — @ be a regular point transformation which carries an n-cell
[ P] into an n-cell [@], and ¢ — R a regular transformation of [ §] into
an n-cell [R]. Then P — @ is the resultant of the transformations
P -2 and # — @, where P -2z and ¢ - are allowable coordinate
systems with the same arithmetic domain [#]. Similarly @ — £ 1s the
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resultant of the transformations ¢ —y and y — R, where ¢ —» and
R —y are allowable coordinate systems with the same arithmetic
domain, [y]. Leta— ybe the transformation of coordinates from @ — #
to @ =y. By A,, x =y 1s regular, and by 4, the coordinate system
P — y, obtained from P —« by the transformation # — v, is allowable.
Therefore the transformation P — R, which is the resultant of the
transformations P -y and y — £, 1s regular. That is to say point
transformations between n-cells have the transitive property.

Theorem 17. The totality of reqular point transformations between
regions in a reqular manifold is a pseudo-group.

We have already remarked that the inverse of a regular point trans
formation 1s regular. Let P — @ be a regular point transformation
which carries a region [ /] into a region [§], and ¢ — & aregular point
transformation of [@] into a region [R]. By the corollary to theorem 14
P — @ carries any n-cell, Op, in P into an n-cell, Cy, by a regular trans-
formation, and ¢ — R carries Oy into an n-cell, Cr, by a regular
transformation. From the transitivity of regular point transformations
between n-cells it follows that # — R carries Cp into Oy by a regular
transformation. Therefore P — £, operating on the region [ P], is regular,
and the theorem established.



CHAPTER VII
VARIOUS GEOMETRIES

1. Greneralities.

In specializing from the general theory of the axioms 4, B and € to
some particular class of geometries, one may start by adding assump-
tions about the topology of the spaces, or one may specify some form of
local structure. The one type of assumption may, to a certain extent,
be made independently of the other. But many forms of local structure
imply some restriction on the topological character of the space. For
example, if 7 is even, a continuous vector-field without singular ponts
cannot exist all over an n-sphere*.

One may also introduce some form of structure which implies both
local and topological restrictions. A good example is to be found n the
theory of continuous groups. An n-dimensional econtinuous group 1s a
regular manifold with a continuous function, F (P, @), defined over all
ordered pairs of points. The values of the function are points in the
manifold, and it satisfies the conditions for a group given in Chap. 11, § 2.
For a brief account of this theory, and for references, see E. Cartan’s
Mémorial, La théorie des groupes finis et continus et Panalysis situs,
Paris, 1930, No. XLIL

As another example let a set of n scalars f*(P), ..., /" (£), of class
w> 0, having no singular point, be defined at each point of a regular
manifold. These scalars determine a coordinate system, P —y, given by

¥ =7"(P),
in which a given point, P, has a single image, y. Several points may
correspond to the same arithmetic point, but each 7 is contamned in an
n-cell which is carried by P —y into an arithmetic n-cell. Therefore
the manifold is carried into an arithmetic region.

If we think of each point P as lying on the corresponding arithmetic
point, the regular manifold may be one which overlaps 1tself in the
manner indicated in fig. 7. Each point in the portion A4 of the diagram
represents one point of the arithmetic space, but two points of the

* MThis theorem is due to L. E. J. Brouwer, ‘Ueber eineindeuntige, stetige Trans-
formationen von Flachen in sich,’’ Math. Annalen, Vol. 69 (1910). A simplified proof
has been given by J. W. Alexander, ‘‘On transformations with invariant points,”
Trans. Am. Math. Soc. Vol. 23 (1922), p. 94.



§§ 1, 2] SPECIAL SPACES 87

regular manifold. Such a manifold is said to lie smoothly on the
arithmetic space.

Fig. 7.

There can be no folding of the regular manifold on the arithmetic
space. For a fold would imply an edge, i.e. a locus of singular points
for the n scalars. Thus the regular manifold in the two-dimensional
case could not be a sphere or an anchor ring or any other closed surface.
Nor could it be obtained from an anchor ring by removing a finite
number of 1solated 2-cells.

2. The geometry of paths.

A space of paths is one in which there 1s, in addition to the proper-
ties of mere extension postulated in the axioms 4, B and C, a system
of curves, called paths, by means of which one may, so to speak, find
his way about. There i1s a “best” path joining any two nearby points,
P, and P,, which may be given by a parametric equation of the form

P=F(P, P,,?t),

and we suppose F'(P,, P,,t) to be continuous i P,, P, and ¢ The
best path might well be taken as an undefined term in a system ot
axioms, but 1s generally defined by more specific conditions on the local
structure. In a Riemanman space, for example, 1t 1s the shortest geo-
desic.

In building up a particular geometry of paths we may assume various
topological properties, either in the large, e.g. that any two points are
joined by at least one path, or in the small, e.g. that a 2-cell, given by

P=F(F(0, A, u), F(O, B, v), w),
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with suitable restrictions on #, v and w, is generated by the best paths
joining points on two given paths with a common point.

Other assumptions may refer to classes of parameterizations for the
individual paths. Thus an affine space of paths is one in which every
path has a local structure defined by a family of affine parameterizations
for each of its 1-cells. The affine parameterizations are those, and only
those, obtained from a given one by linear equations

s*=as+b.
Thus each path.is a locally Euclidean 1-space, for which the affine
parameterizations are locally cartesian coordinate systems (cf. Chap. 11,
§13; Chap. 111, §12, and §3 below).
The affine spaces of paths which have been most widely studied are

those in which the paths are given in allowable coordinates by the

differential equations y

.. d*at . dad dab

(2:1) ES—Q—JFI‘%%E;—O,
where Tj; are the components of a symmetric affine connection. The
existence of best paths follows from the fact that such a space 1s locally
convex. That is to say, if P is a given point in a given region U, there
13 an n-cell Cp, containing P and contained in U, such that two given
points in Cp are joined by one, and only one, arc of a path which does
not leave T Cbp.

The equations

(22) E,;c = O)
where £ is a contravariant vector, and the comma denotes covariant
differentiation with respect to T', may be interpreted in terms of an in-
finitesimal parallelism as in Chap. v, §13. The tangents at different
points of a path are parallel with respect to the path. Other parallel

displacements for which the paths are the self-parallel curves arise as
the geometrical interpretation of differential equations

(2:3) £i+ Al E=0,
where 4 is a tensor which is alternating in its covariant indices.
Similarly affine displacements may be defined by means of the equations
(2:4) Ei+ AL &+ B, =0,
where B¢ is any mixed tensor.
The theory of a particular family of affine displacements belongs to

the geometry of the composite geometric object consisting of the sym-

+ J. H. C. Whitehead, ¢‘Convex regions in the geometry of paths,”’ Quarterly
Journal of Math, (Oxzford series), Vol. 3 (1932), p. 33.
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metric athine connection together with the tensors A and B. Its relation
to the geometry of T' alone 1s analogous to that which Eunclidean geometry
bears to affine geometry. Moreover the additional elements of structure
are defined by tensors in both cases.

Symmetric affine connections have been studied in some detail when
# = w. The elementary theory of normal coordinates and normal tensors
1s to be found in . F. Chap. vi. Many results are independent of the
restriction » = w, and a brief discussion of normal coordinates for # < w
18 to be found in the note referred to in Chap. vi, §1.

These geometries have been generalized by allowing the components
I',in (2°1) to depend on the direction dz', ..., dz" as well as on the
point z. They are therefore homogeneous of degree zero in the variables
da?, ..., da”. For an account of this theory the reader is referred to
J. Douglas, “The general geometry of paths,” Annals of Math. Vol. 29
(1928), p. 143.

As yet there does not exist a systematic geometry of paths of class
=0, 1 or 2, which must get along without the formalism available
when # > 2. But the beginnings of this geometry are to be found in the
“Textile mathematics” of W. Blaschke and his school, a general account
of which may be found 1n the article by W. Blaschke, ¢ Neue Strémungen
der Differentialgeometrie,” Jahresbericht der Deutschen Math. Ver.
Vol. 40 (1931), p. 1.

3. Locally flat affine spaces.

The definitions and results of Chap. 111, § 12 can be extended n a few
words to regular manifolds in general. A regular manifold over which a
locally flat affine connection 1s defined will be called a locally flat affine
space. Thus a locally flat affine space is an affine space of paths accord-
ing to the last section,

The locally cartesian coordinates are defined as in Chap. 111, § 12, and
each point is represented in at least one locally cartesian coordinate
system. Moreover, the locally flat cartesian coordinate systems obviously
satisfy the axioms A and B if the word “linear” 1s substituted for
“regular” in A4, and 4,.

Conversely, let us substitute in the axioms A and B the word “linear”
for “‘regular” and “locally cartesian” for ‘“‘allowable.” We thus obtain
new sets of axioms, 4 and B, which, together with C as they stand,
form a consistent set. For they are satisfied by a flat affine space. From
the formal argument used in Chap. 111, § 10, 1t follows that a locally flat
affine connection i1s defined all over any space satisfying these axioms.
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Therefore the class of locally flat affine spaces is the class of spaces which
satisfy the axioms obtained by substituting for the pseudo-group of class
uin A, B and C the pseudo-group of linear transformations operating
on arbitrary regions.

Locally Euclidean spaces may be defined in the same way, as well as
spaces of constant positive or negative curvature. For a very clear
account of the history and significance of these spaces, with references
to the work of W. K. Clifford, W. Killing, and himself, see F. Klein,
““Ziur Nicht-Euklidischen Geometrie,” Math. Annalen, Vol. 37 (1890), or
Gesammelte Mathematische Abhandliungen, Berlin, 1921, Vol. 1, p. 353.
For modern work on the same series of problems, see H. Hopf, “Zum
Clifford-Kleinschen Raumproblem,” Math. Annalen, Vol. 95 (1925),
p. 313, and E. Cartan, Legons sur la géométrie des espaces de Riemann,
Paris, 1928 (Chap. 1m).

4. Other pseudo-groups.

The characterization of locally flat affine spaces by means of a set of
axioms similar to A, B and C, but using a sub-pseudo-group of the
pseudo-group of class u, is an example of a general method by which
particular differential geometries can be defined. It is analogous to the
passage from the geometry of a group as defined in Chap. 11, § 9, to the
geometry of a sub-group.

Thus there 1s a class of spaces (locally flat projective spaces) defined
by the pseudo-group of linear fractional transformations between regions.
Similarly, the pseudo-groups of conformal, of contact, of volume pre-
serving, and of many other types of transformations between regions,
give rise to classes of spaces which deserve study. A few of these are
mentioned in the paper referred to in Chap. vi, §1.

5. Oriented manifolds.

Any manifold determined by the pseudo-group of direct transforma-
tions of class #> 0 (Chap. 111, §8), will be called an oriented manifold of
class . A regular manifold 1s called orientable if there 1s a sub-set of
its allowable coordinate systems, associated with which it satisfies the
axioms for an oriented manifold. In § 10 below 1t 1s shown that if an
orientable manifold is connected, i.e. does not consist of two regular
manifolds having no common point, there are two, and only two, such
sub-sets of its allowable coordinate systems. The coordinate systems in
one of these sub-sets may be arbitrarily described as positively oriented.
This is called orienting the manifold.

A simple manifold is orientable as follows from Chap. 111, §8.
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6. Displacements of associated spaces.

A large class of geometries are concerned with the theory of displace-
ments of associated spaces to which reference has been made at the end
of Chap. v. These displacements are generalizations of the affine dis-
placements described in Chap. v. The general process may be described
in abstract terms as follows :

With each point P of an underlying regular manifold there 1s as-
sociated a space S (P), and all these spaces are isomorphic. A family
of displacements is a set of transformations, S (P)— S(Q), such that:

(1) Any displacement S (P)— S () is an isomorphic transforma-
tion of S (P) mnto S(Q).

(2) If P and @ are any two points of the underlying mamfold there
exists at least one displacement S (P) - S ().

(3) The resultant of a displacement S(P)—S(Q) followed by a
displacement S (Q) — S (R) is a displacement S (P)— S (£).

(4) The inverse of any displacement S (P)—S(§) 1s a displacement
S(Q) =8 (P).

Thus a family of displacements is a pseudo-group of 1somorphisms
between associated spaces. The standard method of determining a family
of displacements is by means of a geometric object, such as an affine
connection, which, together with a curve joining two points P and @,
determines a transformation S(P)—S(€). This was worked out in
Chap. v for parallel and affine displacements in a simple manifold. We
propose now to show how this argument can be extended * to an arbitrary
connected manifold, formulating the discussion so that it applies to any
geometric object which has certain abstract local properties in common
with an affine connection.

Let a space S (P) be associated with each point P of the underlying
manifold. Let A be a geometric object which determines a pseudo-group
of displacements along any 1-cell of classt «’, and therefore along any
arc (by which we mean a closed interval in a 1-cell, c¢f. Chap. 11, §12).

We shall show that A determines a pseudo-group of displacements
along any curve consisting of a finite number of arcs, oy, ..., oy, the
last point of o, being the first point of o,,,. Such a curve may be

* The essential generalization is to curves which are not necessarily represented in
any single allowable coordinate system.

t+ The class u’is 1 for affine displacements, 2 for displacements defined by differen-
tial equations involving second derivatives of the functions defining the 1-cell, and
SO on.
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represented as the sum of the ares, thus
“/—_'—0'1+ ‘e +O'N.
It may have any number of multiple points.

The theorem follows by an induction on the number N. Assuming
it true for the sum, y 5 _., of any N —1 arcs, we have to prove 1t for

any curve

Y=Vy_1TO
which can be represented as the sum of NV arcs. Let A be the last point
of v, _, and the first point of the arc o. Then the displacement

S (P)—~S(P’), where P and P’ are any points on y, may be defined as
the resultant of S(P)— S(4), followed by S(A4) S (P’). The set of
all such displacements is obviously a pseudo-group. It follows from the
hypothesis of the induction and the original assumptions about A, that
S(P)—S(P’) 1s an isomorphic transformation of S(P) into S(F).
Therefore the theorem follows from the fact that it is true for N =1.

Any two points in a connected manifold are joined by at least one
such curve, and therefore A determines a pseudo-group of displacements
over the manifold if the latter is connected.

7. The holonomic group.

It P is any point in a manifold over which a pseudo-group of dis-
placements is defined, the set of displacements which carry S(P) into
itself is obviously a group contained in the pseudo-group. It is a sub-
group of the group of automorphisms of S (P), and 1s called the kolonomic
group® at P. The holonomic groups at any two points P and @ are
simply 1somorphic. For there 1s a displacement S (P)— §(Q), and the
two groups are obviously conjugate under any such displacement.

If, in particular, the holonomic group at any one point reduces to the
1dentity, it reduces to the identity at every point, and the displacement
1s sald to be Aolonomic. This 1s the case for example with parallel dis-
placements in a flat affine geometry (cf. Chap. v, §13). The displace-
ment 1s necessarily holonomic if the group of automorphisms of S(P)
1s the 1dentity.

When the displacement is holonomic, there is a unique transformation,
S(P)—8(Q). Forif there were two distinct displacements of S (P)
into S(§), the resultant of either one followed by the inverse of the
other would be a transformation, other than the identity, of the holonomie
group at P.

* See K. Cartan, ‘‘Les groupes d’holonomie des espaces généralisés,” Acta Math.
Vol. 48 (1926), p. 1.
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If the displacements S (P) - S(§) are defined along curves having
P and @ as their end-points, the holonomic group at P, consists of the
displacements round closed curves,

P=P ), (te=t=t)
where P (t,)=P(t)=P,.

8. Liocally holonomic displacements.

Let U be any region in a manifold over which there is a family of
displacements along curves. This family contains a sub-pseudo-group
consisting of all the displacements along curves which are contained in
U. If this sub-pseudo-group of displacements is holonomie the original
family may be described as holonomic in U. The family will be described
as locally holonomic if, and only if, each point 1s contained in an n-cell
i1 which the displacement is holonomic. Thus the parallelism defined
by a locally flat affine connection 1s locally holonomic¥*,

9. The holonomic group of an affine displacement.

Let G' (P) be the holonomic group at a point P, of the family of affine
displacements determined by the equations (2°4). A transformation of
G (P) 1s obviously given by equations of the form

(9°1) Eeai(y) & +ai(y),

where @’ (y) and @i (y) are functions of the closed curves which begin
and end at P. Since G (P) is a group it follows that

(9°2) aj- (1 +7v2) = (sz (y2) a,;f (7)),

@' (1 +7y2) = @, (y2) @ (1) + & (72),
where a (y, + y,) are the coeflicients which define the displacement round
the curve y; + v,.

It can be proved that the coefficrents a(y) are continuous jfunctions
of the curvey. Also that the set of transformations given by (9°1), where
v is & curve which can be continuously deformed into P, s an invariant
sub-group of G (P).

If v is given in a coordinate system # by the quadrangle whose
vertices are z, x + dz, x + dx + dx, and @ + dx respectively, the transforma
tion (9°1) may be written

(9'3) ézzzgz -—E') -R;M dmk Bxl—Rild«ZJa BJ/’L'*' Gi,

* A Mobius band with a locally flat affine structure is an example of a locally flat
affine space on which the parallelism is not holonomic. (See p. 319 of the paper by
Hopf referred to in § 3.)
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where € 15 a small quantity of the third order in d2 and 8z, and

{R;u = B;:kl + A;m,

Ria=Bi,— Bj .+ B 4, — B; A},

In these formulae B, are given by (12-2) Chap. 111, A}, by the same
formulae with A% substituted for 'y, and the comma denotes covariant
differentiation with respect to I'. This follows by arguments similar to
those used by Eisenhart, Non-Riemannian geometry, Chap. 1,§10. The
calculations can be simplified by using normal coordinates for I'. The
tensors R}, and Rj; are called the tensors of curvature and torsion,
respectively, and play a central role in the researches covered by

references to Cartan and others in Chap. v, §15.

(94)

10. Displacement of orientation.

The tangent space of differentials 7(P), at any point P, determines
two oriented tangent spaces, T (P) and T, (P). There is thus an asso-
ciated space S (L), which contains just two points, namely 7, (P) and
T, (P). An orientation of the tangent space at any point P determines
a unique orientation of any n-cell, Cp, containing P, and this orienta-
tion of Cp determines an orientation of the tangent space at each point
in Cp (Chap. v, §5). Therefore an orientation of 7' (P) determines an
orientation of the tangent space at each point in Cp, and in particular
at each point P’ of any 1-cell, o, containing P and contained in Om
If two n-cells determine the same oriented tangent space at a common
point, P, they obviously determine the same orientation of any n-cell
containing P and contained in their intersection. It follows by a simple
argument that the orientations of the tangent spaces at points of the
1-cell, o, are determined independently of the particular n-cell, Cp, by
a given orientation of 7' (P). That is to say a pseudo-group of displace-
ments 1s defined between the two-point spaces, S ('), associated with
points of o, and hence a pseudo-group of displacements is defined over
the whole manifold, provided the manifold is connected. The displace-
ments are between the associated spaces S (P), and are along curves ot
the sort considered in §6.

It 1is obvious from the definition that this family of displacements is
locally holonomic. 1t is holonomic if, and only if, the underlying mani-
“old is orientable.

Progf. 1f the manifold is orientable a unique orientation can be
assigned to every n-cell in such a way that two n-cells with a common
point, P, determine the same orientation of 7'(P). Therefore a unique
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orientation is assigned to every tangent space by the method used in
defining the displacement, and the latter is holonomic,

Conversely, if the displacement is holonomic, a unique orientation,
T, (0), of the tangent space at a given point O, determines a unique
orientation, 7% (P), of the tangent space at each point P. Let P and
P’ be two points in any n-cell, C. The oriented tangent space 7} (F)
determines an orientation of €, which is the same as that determined
by 7.(P’), since the displacement is holonomic. Therefore a unique
orientation is assigned to every n-cell, which agrees with the orienta-
tion, 77 (P), of the tangent space at any point in the n-cell.

The underlying manifold, associated with the positively oriented co-
ordinate systems for these oriented n-cells, obviously satisfies the axioms
A,, A, and C for an oriented manifold. The axiom A4; is satisfied be-
cause any two n-cells with a common point, P, determine the same
orientation of 7 (P), namely 7 (P), and so they determine the same
orientation of any n-cell containing P and contained in their inter-
section. Therefore the underlying manifold is orientable.

It follows that a connected oriented manifold carries two, and only
two, oriented manifolds, as stated n §5.

The two-point associated spaces may be thought of as a notational
device. Essentially the same argument as above may be made by ob-
serving that the way in which the orientation of a tangent space 7'(P),
at any point of an n-cell C, determines an orientation of the tangent
space at any other point of C, is by letting each differential at 2 corre-
spond to the differential at @ which has the same components in some
allowable coordinate system whose domain is the cell ¢. This amounts
to displacing 7' (P) to 7 (Q) by the locally flat affine connection whose
components are zero in this coordinate system. We are thus consider-
ing the pseudo-group of all parallel displacements which can be affected
between tangent spaces by locally flat affine connections. The holonomic
group of this family of displacement is either the group of direct linear
homogeneous transformations of a tangent space into itself, or the whole
centred affine group. In the first case the underlying manifold is orient-
able, 1n the second case not.

A locally holonomic displacement on a manifold in which any closed
curve is deformable into a point is obviously holonomic. It follows that
such a manifold 1s orientable.

11. Covering manifolds.

The associated spaces, S (P), need have no structure beyond their
cardinal number. They may then be regarded as the sets of values of
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some function® ¢ (P). Let Abealocally holonomic family of displacements
between such a set of associated spaces, which 1s defined over a regular
manifold A,. Let U be any region in which A 1s holonomic, P, a fixed
and P a variable pointin U. Let & (P,) be a given value of ¢ (P,) and
§ (P) the value of £(P) into which & (P,) 1s displaced by A. The
single-valued function & (/Y is called a branch of ¢ (2). The number of
these branches is the cardinal number, ®, of each associated space S (P).

Let a new manifold, M,, be defined as follows. A point, [P, & (P)],
in M, is to be a point, P, in M,,, associated with a point, & (P), in S (P).
The coordinate system

[Pa fl (P)] >

1s to be an allowable coordinate system for M,, where P — 2 is any
allowable coordinate system for M, over whose domain A 1s holonomic,
and & (P) is one of the single-valued branches described above. With
this family of allowable coordinate systems M, obviously satisfies the
axioms for a regular manifold. To each point of M, corresponds just
one point of M, and to each point of M, correspond & points of M.
The manifold M, is said to cover M, & times.

The above transformation of M, into M, carries ¢ (P) into a single-
valued function defined over M,, namely the function whose value at
[P, & (P)]1s & (P).

When S (P)consistsof thetwooriented tangent spaces Ty (P)and T, (P)
the covering manifold M, is orientable. For, by definition, a closed curve
on M, is one which begins and ends with a given point, P, associated
with the same orientation of 7'(P), and it follows that the displacement
of orientation in M, is holonomic. M, is a connected manifold if M, is
connected and not orientable, and 1s a pair of connected manifolds if M,
1s connected and orientable.

* The values of this function may or may not be numbers.



INDEX OF DEFINITIONS

Affine connection, 43, 68
— geometry, 21
— parameterizations, 28
— theorems, 12
— transformations, 12
Allowable coordinate systems, 40, 76
Arithmetic domain of a coordinate
system, 39
Arithmetic flat k-space, 8
— linear k-space, 4
— n-cell of class u, 38
— point, 1
— region, 34
— space, 1
Associated spaces, 73, 91

Box, 34

Class of a function, 34
— of a manifold, 38, 80
— of an n-cell, 38, 40, 76
—  of a transformation, 36, 48, 82
Components of an arithmetic point, 1
— of a geometric object, 43, 46
Coordinate system, 22

Differential equations of affine geometry,
42

Differential geometry, 81

Displacements, €9, 91

Domain of a coordinate system, 39

Equipollent, 26
Equivalence, 18, 20, 48
Exterior orientation, 56

Flat affine connection, 43
Geometric objects, 46

Holonomic group, 92

Infinitesimal geometry, 57
Interior orientation, 55

k-cells in n-space, 50

Local equivalence, 58
— structure, 57

Locally cartesian coordinate systems,
44, 89

Locally flat affine connections, 44
— flat affine spaces, 45, 89

Manifold of class u, 38, 81

n-cell of class w, 40, 76
Normalized co-factor, 1

Oriented curves, 28
—  n-cellg, 40
—  spaces, 27, 39, 90

Point transformations, 30, 47, 82
Preferred coordinate systems, 24
Pseudo-group, 38

Regions, 34, 73
Regular manifold, 81
—  point transformations, 47, 82
— transformations in the arith-
metic space, 36

Sense-class, 20, 27, 56
Simple manifolds, 38
Structure of a space, 17

Tangent affine spaces, 71
—  Euclidean spaces, 66
—  spaces of differentials, 61
Transformations between coordinate
systems, 41

Union of coordinate systems, 77

PRINTED BY WALTER LEWIS, M.A., AT THE UNIVERSITY PRESS, CAMBRIDGE



