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Preface 

Dedicated to Natalia, Lidia, and Mikhail 

This book gives a systematic, self-sufficient, and yet short presentation of the mainstream 
topics of Mathematical Finance and related part of Stochastic Analysis and Statistical 
Finance that covers typical university programs. It is suitable for undergraduate and 
graduate students in Mathematics, Statistics, Finance, and Economics. It can be 
recommended also for academics and practitioners. 

The book contains sufficient reference material, including basic models, formulas, and 
algorithms, plus problems and solutions. A reader who wishes to obtain some basic 
understanding of the subject may skip proofs and use mathematical theorems as 
reference. However, there is the second goal of this book: to provide fundamentals for 
further research and study in this field that has a huge prospectus, and where so many 
problems are still unsolved. In other words, we want to help readers who intend to do 
research in Mathematical Finance. For this purpose, it was insufficient to give descriptive 
material and list the definitions and rules. We provide the fundamentals that give the 
ability to do research, in particular to create new definitions and rules. 

This is why we use the mathematically rigorous way of presentation and give all 
essential proofs. It is a hard way. To make the ideas more visible, the most technical 
details of some proofs are omitted, if the main idea of the proof still can be exposed (an 
example is the proof of the Martingale Representation Theorem in Chapter 4). However, 
certain angles cannot be cut, and some key proofs cannot be skipped.1 A reader should be 
able to set and solve certain theoretical problems after finishing this book. For this 
purpose, a set of special challenging problems is given for all main topics.2 The author 
believes that ability to solve these problems indicates that one is capable of steps toward 
original research projects. 

To keep the course compact, we concentrate on the ultimately important core topics. 
Moreover, we tried to implement the Okkam razor rule for material selection: we omitted 
everything that was not necessary for logical and structural  completeness. For instance, 
there are several important approaches to the theory of pricing that are not discussed, 
including equilibrium concept.  

Chapters 1 and 2 give a systematic introduction to probability theory that can be used 
independently as a reference. Chapter 1 can be also considered as a short introduction to 
measure and integration theory. Further, we describe generic discrete time market models 
(Chapter 3) and continuous time market models (Chapter 5). For these two types of 
models, the book provides all basic concepts of Mathematical Finance (strategies, 
completeness, risk-neutral pricing, etc.) using numerous examples and problems. Chapter 
4 gives a self-sufficient review of Ito calculus that is used for continuous time 

1 In mathematical sciences, understanding of the proofs gives ability to modify them and to extend 
for new settings. Usually, it is necessary for research. 
2 Problems 3.47, 3.70, 5.84, 5.85, 6.25, 6.34, and 9.20, and some others. 



models. In this chapter, uniqueness for the Ito equation, Kolmogorov’s parabolic 
equations, Martingale representation theorem, and Girsanov theorem, are given with 
short and relatively simple proofs such that only technical details are omitted. 

Chapter 6 addresses binomial trees and American options. Chapter 7 discusses implied 
volatility. Chapter 8 gives a review of statistical methods. Chapter 9 is devoted to 
statistical estimation of several generic models for stock prices. In particular, methods of 
forecast and estimation of the appreciation rates and the volatility are given for log-
normal and mean reverting model. Many supporting MATLAB programs are given. 

The size of this book is such that it covers approximately three consequent 
undergraduate or graduate modules such as Mathematical Finance, Statistical Finance, 
and Stochastic Analysis; for undergraduate modules, some parts can be skipped. 
Respectively, the set of problems provided is sufficient to cover tutorials for three 
modules (there are also some solutions). Actually, the book grew out from Mathematical 
Finance and Statistical Finance undergraduate modules that the author taught at the 
University of Limerick, and the problems cover the past exam papers. 

Let us list some topics that are not covered in this book. Continuous time models with 
jumps in prices are not addressed: it requires a too-advanced version of stochastic 
calculus. Optimal portfolio selection is also not covered, with the exception of the 
solution for the single period market in the simplest version of Markowitz setting (to 
cover this topic in multi-period or continuous time setting, we need facts from stochastic 
control theory). Bond market models are described very briefly. The author admits that 
the corresponding additions could be useful; however, the size of the course in that case 
would be much bigger. 

For further reading, we can recommend the mathematically challenging books of 
Karatzas and Shreve (1998), Korn (2001), Lambertone and Lapeyre (1996), which cover 
continuous market models. Discrete time market models were considered by Pliska 
(1997) and Föllmer and Schied (2002). Shiryaev (1999) considered both discrete time 
and continuous time models. These books include many advanced results outside of 
typical university undergraduate and even graduate programs; they can be recommended 
to readers with some background in stochastic analysis. A more intuitive mathematical 
approach is offered by Avellaneda (2000), Neftci (1996), Wilmott et al. (1997), and 
Higham (2004). More details for statistical methods can be found in Gujarati (1995) and 
Söderlind (2005). 
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1  
Review of probability theory 

In probability theory based on Kolmogorov’s probability axioms, the model of 
randomness is the following. It is assumed that there exists a set Ω, and it is assumed that 
subsets are random events. Some value is attached to any event 
as the probability of an event, and P(Ω)=1. To make this model valid, some axioms about 
possible classes of events are accepted such that the expectation can be interpreted as an 
integral. 

1.1 Measure space and probability space 

σ-algebra of events 

Let Ω be a non-empty set. We denote by 2Ω the set of all subsets of Ω. 
Example 1.1 Let Ω={a, b}, then 2Ω={  {a}, {b}, Ω}. 
Definition 1.2 A system of subsets is called an algebra of subsets of Ω if 

(i)  
(ii) If then  

(iii) If then  

Note that (i) and (ii) imply that the empty set always belongs to an algebra. 
Definition 1.3 A system of subsets is called a σ-algebra of subsets of Ω if 

(i) It is an algebra of subsets; 

(ii) If then  

Definition 1.4 Let Ω be a set, let be a σ-algebra of subsets, and let 
be a mapping. 

(i) We said that µ is a σ-additive measure if for any 
such that In that case, the triplet 

is said to be a measure space. 
(ii) If µ(Ω)<+∞, then the measure µ is said to be finite. 
(iii) If µ(Ω)=1, then the measure µ is said to be a probability measure. 

To make notations more visible, we shall use the symbol P for the probability measures. 



Definition 1.5 Consider a measure space Assume that some property 
holds for all where is such that µ(Ω\Ω1)=0. We say that this property 
holds a.e. (almost everywhere). In the case of a probability measure, we say that this 
property holds with probability 1, or a.s. (almost surely). 

In probability theory based on Kolmogorov’s probability axioms, the following 
definition is accepted. 

Definition 1.6 A measure space is said to be a probability space if P is a 
probability measure, i.e., P(Ω)=1. Elements are said to be elementary events, and 
sets are said to be events (or random events). Correspondingly, is the σ-
algebra of events. 

Under these axioms, A∩B means the event ‘A and B’ (or A·B), and means the 
event ‘A or B’ (or A+B), where A and B are events. 

A random event A={ω} is a set of elementary events. 
Example 1.7 For Ω=[0, 1], a probability measure may be defined such that 
P((a, b])=P([a, b))=P((a, b))=P([a,b])=b−a   

for all intervals, where 0≤a<b≤1. Clearly, the set of all intervals does not form an algebra 
and, therefore, it does not form a σ-algebra. The question arises for which σ-algebra this 
measure can be defined. A natural solution is to take the minimal σ-algebra that contains 
all open intervals. It is the so-called Borel σ-algebra discussed below. It can be shown 
that this σ-algebra contains all closed and semi-open intervals as well. 

Example 1.8 For Ω=R, a probability measure may be defined such that 
 

 

  

where p:R→R is a function such that 

 
  

Again, this measure can be defined on the minimal σ-algebra that contains all open 
intervals (Borel σ-algebra). 

Completeness 

Definition 1.9 A σ-algebra is said to be complete (with respect to a measure 
) if the following is satisfied: if and µ(A)=0, then 

 
Problem 1.10 Prove that µ(B)=0 under the assumptions of the definition above. 
Definition 1.11 Let be a measure space. Let be a minimal σ-algebra 

such that and is complete with respect to µ. Then is called the completion 
with respect to µ (in the literature, it is sometimes called the µ-augmentation of ). 
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Remark 1.12 The completion of the Borel σ-algebra defined in Example 1.7 is called 
the Lebesgue σ-algebra. 

We shall consider complete probability spaces only. 

1.2 Random variables 

Notation: Let X and Y be two sets, let f:X→Y be a mapping, and let We denote 

(Note that we do not exclude the case when the 
inverse function f−1:Y→X does not exist.) 

Definition 1.13 (i) Let be a complete measure space. A mapping ξ:Ω→R is 

said to be measurable (with respect to ), if for any open set  
(ii) Let be a probability space. A measurable mapping ξ:Ω→R is said to be 

a random variable (on this probability space). 
As can be seen from the definitions, a mapping may be a random variable for some 

and not be a random variable for some different  
Notation: iff means if and only if. 

Proposition 1.14 A mapping ξ:Ω→R is a random variable iff for any 
semi-open interval  

Problem 1.15 Introduce and describe a probability space with four elementary events 
only: Ω={a,b,c,d}. Suggest at least three different σ-algebras of events and measures. 
Describe random variables ξ:Ω→R. Give an example of non-measurable function 
ξ:Ω→R. 

Problem 1.16 Introduce and describe a probability space with Ω=[0, 1] and with a σ-
algebra of events that contains only four events. Describe measurable functions ξ:Ω→R. 
Give an example of non-measurable function. 

Definition 1.17 (i) Let be a complete measure space. A mapping ξ:Ω→Rn 
is said to be measurable (with respect to ), if for any open set  

(ii) Let be a probability space. A measurable mapping ξ:Ω→Rn is said to be 
a random vector. 

Note that ξ=(ξ1,…,ξn) is a random vector iff all components ξi are random variables. 
Definition 1.18 Two random vectors ξ1 and ξ2 are said to be P-indistinguishable (or 

P-equivalent, or equivalent) if P(ξ1≠ξ2)=0. In that case, ξ1 is said to be a modification of 
ξ2. 

1.3 Expectations 

Let be a probability space. 
Definition 1.19 (i) A random variable ξ:Ω→R is said to be finitely valued if 
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(ii) The value 

 
  

is said to be the integral ∫Ωξ(ω)P(dω) (i.e., the integral of ξ over Ω with respect to the 
measure P). It is also said to be the expectation Eξ of ξ (or the expected value, or the 
mathematical expectation, or the mean). 

Let denote the indicator function of a set A: 

 

  

Example 1.20 If than the function is measurable and finitely 
valued, and 

 
  

Note that can also be written as ∫Aξ(ω)P(dω). 
Problem 1.21 Give an example of and of a finitely valued measurable 

function. Find its expectation. 
Definition 1.221 A non-negative random variable ξ:Ω→R is said to be integrable if 

there exists a non-decreasing sequence of non-negative finitely valued random variables 
ξi(·) such that ξi(ω)→ξ(ω) as i→+∞ a.s. (almost surely) (i.e., with probability 1), and 
such that 

 
  

is finite. 
Lemma 1.24 Under the assumptions of the previous definition, there exists the limit of 

Eξn=∫Ωξn(ω)P(dω) as n→+∞. This limit is uniquely defined (i.e., it does not depend on 
the choice of {ξk}), and this limit is said to be the integral ∫Ωξ(ω)P(dω), or the expectation 
Eξ. 

Notation: We denote and x−=max(–x, 0). 
Definition 1.25 A random variable ξ:Ω→R is said to be integrable if ξ+ and ξ− are 

integrable (note that ξ=ξ+−ξ−). In that case, the value 
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is said to be  
Resuming, we may say that, for a probability space a measurable (with 

respect to ) function ξ:Ω→R is a random variable, and the integral Eξ= ∫Ωξ(ω)P(dω) is 
the expectation (or mathematical expectation, or mean). 

1 There is an equivalent definition. 
Definition 1.23 A random variable ξ:Ω→R is said to be integrable if there exists a sequence of 
finitely valued random variables ξi such that ξi(ω)→ξ(ω) as i→+∞ a.s., and such that 

 
  

Notation: Let We denote by the set of all random 
variables ξ on a probability space such that E|ξ|P<+∞. In addition, we denote 
by the set of all random variables ξ on a probability space such 
that there exists a (non-random) constant c=c(ξ)>0 such that |ξ|≤c a.s. 

With these notations, the set of all integrable random variables is  
If then Eξ2<+∞. In that case, the variance of ξ is defined: Var 

 
Note that it can happen that ξ≠η, and P(ξ≠η)=0 (in other 

words, they are P-indistinguishable). Formally, ξ and η are different elements of 
This can be inconvenient, so we introduce the following notation. 

Notation: For we denote by the set of classes of random 
variables from that are P-equivalent. In other words, if P(ξ≠η)=0, then ξ=η, 

meaning that they represent the same element of i.e., they are in the same 
class of equivalency. 

About Lp and Lp as linear spaces 

The current course is constructed such that we do not need to refer to the definition of 
linear normed spaces, inner product spaces, and their properties that are usually studied 
in Functional Analysis or Function Spaces courses. However, it may be useful for 
readers who are familiar with these definitions to note that and 

are linear spaces. In addition, is a metric space, a linear 
normed space, and a Banach space for any p≥1, and is an inner product 
space and a Hilbert space. 
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Remark 1.26 

(i) Any bounded random variable is integrable. 
(ii) The integrability is defined by the probability distribution of the random variable (the 

distributions are discussed below). 
(iii) A random variable is integrable iff |ξ| is integrable. 

Theorem 1.27 Let ξ, η be integrable ransom variables, Then 

(i) E(ξ+η)=Eξ+Eη,E(αξ)=αEξ; 
(ii) If P(ξ≠η)=0, then Eξ=Eη. 

Proof follows from the construction of an appropriate sequence of finitely valued 
functions. 

We say that a random variable ξ has the probability distribution N(a,σ2) and write 
ξ~N(a,σ2) if ξ is a Gaussian random variable such that Eξ=a and Var ξ=σ2 (see Section 
1.8 below). 

Example 1.28 It is possible that a random variable is non-integrable. For instance, if 

ξ~N(0, σ2), then is integrable for some σ>0 and it is non-integrable for some σ>0. 

Problem 1.29 Find when is integrable for ξ~N(0, σ2). 
Definition 1.30 Let ξ be a random variable that is non-integrable. 

(i) Let ξ≥0. We may say that the expectation of ξ does not exist; alternatively, we may say 
that Eξ=+∞. 

(ii) Let ξ≤0. We may say that the expectation of ξ does not exist; alternatively, we may 
say that Eξ=−∞. 

(iii) Let ξ− be integrable. It follows that ξ+ is non-integrable (since we have assumed that 
ξ is non-integrable). We may say that Eξ=+∞. 

(iv) Let ξ+ be integrable, then ξ− is non-integrable, and we may say that Eξ=−∞. 

Remark 1.31 In fact, the definitions above give a brief description of the measure theory 
and integration theory, which covers the theory of Lebesgue’s integral. 

1.4 Equivalent probability measures 

Definition 1.32 Let be two probability spaces with the same and with 
different Pi, i=1, 2. The measures Pi are said to be equivalent if they have the same sets of 
zero sets, i.e., 

   

Theorem 1.33 (Radon-Nikodim theorem). The measures P1 and P2 are equivalent iff 
there exist such that Z(ω)>0 a.s., and 
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We say that Z is the Radon-Nikodim derivative: Z=dP1/dP2. 
In that case, E1ξ=E2Zξ for any P1-integrable random variable ξ, where Ei is the 

expectation under the measure Pi. 

1.5 Conditional probability and expectation 

Definition 1.34 Let A, B be random events. The conditional probability P(A|B) is defined 

as (In fact, it is the probability of A under the condition that 
the event B occurs.) 

Remember that denotes the set of all random variables ξ on a 
probability space such that Eξ2<+∞. 

Proposition 1.35 Let Then 

   

Proof. Clearly, 
E(ξ−c)2=E([ξ−Eξ]+[Eξ−c])2 
=E(ξ−Eξ)2+2cE(ξ−Eξ)+(Eξ−c)2 
=E(ξ–Eξ)2+(Eξ−c)2≥E(ξ−Eξ)2. 

  

Proposition 1.35 states that c=Eξ is the solution of the minimization problem 
Minimize E(ξ−c)p over  
with p=2. (If p≠2, then it is not true for the general case.) This fact helps to justify the 

following definition. 
Definition 1.36 Let Let be a σ-algebra such that A 

random variable from such that 

   

is called the conditional expectation. 
(Note that is also a probability space.) 
In addition to the formal definition, it may be useful to keep in mind the following 

intuitive description: the conditional expectation is the expectation of a random 
variable ξ in an imaginary universe, where an observer knows about all events from if 
they occur or not. 

Theorem 1.37 Let a σ-algebra and a random vector ξ be given. Then: 

(i) The conditional expectation is uniquely defined (up to P-equivalency; i.e., all 
versions of are P-indistinguishable); 

(ii) for all  
(iii)  
(iv) Let be a σ-algebra such that Then  
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By this theorem, the conditional expectation may be interpreted as a projection.2 
Example 1.38 If (the trivial σ-algebra), then  
Definition 1.39 The conditional probability measure is 

defined as 

   

It can be shown that it is a probability measure, and that is a probability 
space. 

Problem 1.40 Let Ω={ω1,ω2,ω3}, P({ωi})=1/3, i=1, 2, 3. Let ξ(ωi)=i. Let 
 

(i) Prove that is a σ-algebra. (ii) Find (iii) Find  
In fact, is a probability space, where the probabilities are calculated 

by an observer who knows whether any event from occurs or not. We illustrate below 
this statement via σ-algebras generated by a random vector. 

1.6 The σ-algebra generated by a random vector 

Definition 1.41 Borel σ-algebra of subsets in Rn is the minimal σ-algebra that contains 
all sets (In fact, it is also the minimal σ-algebra that contains 
all open sets.) A function f:Rn→R is said to be measurable (or Borel measurable) if it is 
measurable with respect to this σ-algebra. 

Definition 1.42 Let ξ:Ω→R be a random variable. Let be the minimal σ-algebra 

such that includes all random events {a<ξ<b}, where We say that is the 
σ-algebra generated by ξ. 

This definition can be extended for a vector case. 
Definition 1.43 Let ξ:Ω→Rn be a random vector (i.e., all its components are random 

variables). Let be the minimal σ-algebra such that includes all events for 
all Borel sets B in Rn (or for all open sets). We say that is the σ-algebra generated by 
ξ. 

2 Usually, we do not refer to the theory of Hilbert spaces. However, it may be useful to keep in 

mind that is a Hilbert with the inner product (scalar product) Then 
is a linear subspace of and is the projection of ξ on this subspace. 

As usual, statement (ii) of Theorem 1.37 above means that for all 

here ┴ means the orthogonality, i.e., ξ┴η means that  

Notation: (i) σ(ξ) denotes the σ-algebra generated by ξ; (ii) denotes the completion 
of the σ-algebra generated by ξ. (Sometimes we use other notations, for instance,  

Definition 1.44 Let ξ and η be random variables. Then  
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In fact, the σ-algebra represents the set of all random events generated by ξ, and 

is the modification of the original probability P for an observer for whom ξ is 
known. 

Remember that is the best (in mean variance sense) estimate of η obtained 
via observations of ξ (see Definition 1.36). 

Theorem 1.45 Let ξ:Ω→Rn be a random vector. Let η be a random 
variable. Then there exists a (non-random) function f:Rn→R such that3 η=f(ξ). 

Note that any η generates its own f in the previous theorem. 
Corollary 1.46 If then there exists a function f:Rn→R such that 

 
Problem 1.47 Let be a probability space with Ω={ω1,ω2,ω3},  

   

Let ξ(ωi)=i−2. Let η=|ξ|. Find E{ξ|η}. Express E{ξ|η} as a deterministic function of η. 
Solution. We have that 

 

  

Hence η generates the σ-algebra By the definition, 
where ζ is an random variable such that 

E(ζ−ξ)2 is minimal over all random variables. An 
random variable has a form 

 

  

3 f is also measurable. 

Let f(α, β)=E(ζ−ξ)2. It suffices to find (α, β) such that f(α, β)=E(ζ−ξ)2= min. We have 
that 

 

  

and 

 

  

Hence the only minimum of f is at (α, β)=(0, 1/3). Therefore, 
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Clearly, E{ξ|η} can be expressed as a deterministic function of η: 

 

  

1.7 Independence 

Definition 1.48 Two random events A and B are said to be independent iff 
P(A·B)=P(A)P(B). 

Note that if A and B are independent events then P(A|B)=P(A). 
Definition 1.49 Two σ-algebras of events and are said to be independent if any 

events and are independent. Otherwise, these σ-algebras are said to be 
dependent. 

Definition 1.50 Two random vectors ξ:Ω→Rn and η:Ω→Rm are said to be 
independent if the σ-algebras and (generated by ξ and η respectively) are 
independent. Otherwise, these random vectors are said to be dependent. 

Theorem 1.51 The following statements are equivalent: 

• Two random vectors ξ:Ω→Rn and η:Ω→Rm are independent; 
• for any open set 

 
• for any Borel set 

 
• Ef(ξ)g(η)=Ef(ξ)Eg(η) for all functions f:Rn→R, g:Rm→R such that the corresponding 

expectations are well defined; 
• Eeiλξ+iµη=Eeiλξ Eeiµη for all λ, where  
• for any open set  
• for any Borel set  

In particular, if ξ and η are independent random variables, then Eξη=EξEη. 
Example 1.52 It can happen that Eξη=EξEη, but ξ and η are not independent. For 

instance, take η, ζ~N(0, 1) such that ζ and η are independent, and take ξ=ζη, then 
Eξη=EξEη=0 but ξ depends on η. 

Definition 1.53 Random events A1, A2,…, An are said to be mutually independent if 
for every m=2,…, n and for every subset 

of indices i1,…, im. 
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Definition 1.54 Random vectors ξ1, ξ2,…, ξn are said to be mutually independent if the 
random events are mutually independent for any Borel sets 
D1,…, Dn (or any open sets). 

1.8 Probability distributions 

In most common undergraduate courses in probability theory, random variables are 
studied via their probability distributions. It is the classical approach. (However, we also 
need the axiomatic approach described above.) 

Distribution theory is to characterize and describe random variables and vectors in 
terms of the distribution of their possible values and generated measures. 

A probability distribution on Rn is a probability measure on the σ-algebra of Borel 
subsets; i.e., it assigns a probability to every Borel set, so that the probability axioms are 
satisfied. In fact, this measure is uniquely defined by its values for sets 

that generate the Borel σ-algebra; if n=1, then the Borel σ-
algebra is generated by intervals. Every random vector gives rise to a probability 
distribution, and this distribution contains most of the important information about the 
random vector. On the other hand, for any probability distribution, one can find a random 
vector with that distribution. 

Let us consider the simplest case of one-dimensional probability distribution, when the 
distribution is defined on R. In this case, the distribution assigns to every interval of the 
real numbers a probability. If ξ is a random variable, the corresponding probability 
distribution assigns to the interval (a, b] the probability P(a<ξ≤b), i.e., the probability 
that the variable ξ will take a value in the interval (a, b]; the probability distribution of a 
random variable completely describes its probabilistic properties. The distributions of any 
real-valued random variable ξ is uniquely defined by the cumulative distribution function 
(c.d.f.) F(x)=P(ξ≤ x), where −∞<x<+∞. We have that P(a<ξ≤b)= F(b)−F(a) and P(ξ= 
x)=F(x)−F(x−0) for any real x. This function F is non-decreasing, F(x+0)=F(x) for all x, 
F(−∞)=0,F(+∞)=1. On the other hand, any function F with these properties uniquely 
defines a probability distribution. 

The support of a distribution is the smallest closed set whose complement has 
probability zero. 

A distribution is called discrete if it belongs to a random variable ξ which can only 
attain values from a certain finite or countable set. This random variable ξ is also said to 
be discrete. In this case, the distribution can be given in the form of a complete list of the 
possible realizations, and a specialization of the probability of each. This is called the 
point density function or probability mass function. In fact, ξ is discrete if and only if its 
c.d.f. F(x) is a piecewise constant step function. 

A distribution is called continuous if its cumulative distribution function is continuous, 
which means that it belongs to a random variable ξ for which P(ξ=x)=0 for all 
The corresponding random variable is also said to be continuous. Note that if ξ is a 
discrete random variable and η is a continuous random variable then ξ+η is a random 
variable which is in general neither discrete nor continuous. 
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A distribution and the corresponding random variable is called absolutely continuous 

if F(x) is absolutely continuous, i.e., for some integrable function 
p. The derivative p(x)=dF(x)/dx is said to be the probability density function (p.d.f). In 
this case 

 

  

for any a≤b, and the distribution of ξ can be described by its p.d.f. Discrete distributions 
do not admit such a density, which is not too surprising. There are continuous 
distributions that are not absolutely continuous, i.e. which do not admit a density (an 
example is a distribution supported on the Cantor set; it is a non-countable set with zero 
measure). 

Note that identity of two probability distributions does not mean identity of the 
random variables for which they belong. For example, ξ and −ξ have the same 
distribution if ξ is standard normal. 

The key concept of the theory of random variables and their distributions is the 
expectation, or mean. If ξ is discrete, then the expectation Eξ is 

 
  

provided that the series is absolutely convergent. Here {xk} is the set of all possible values 
of ξ. Since ξ is discrete, this set is at least countable. If this set is finite, then the 
expectation Eξ always exists; if this set is infinite and the series is not converging 
absolutely, we say that the expectation of ξ does not exist. If ξ has p.d.f. p(x), then 

 

  

provided that 

 

  

If then we say that E|ξ|=+∞ and that the expectation of ξ does 
not exist. 

In general, the expectation Eξ can be found as 

 

  

provided that the integral exists; and the integral exists if and only if 
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In this case, the random variable ξ is said to have expectation, or to be integrable. In fact, 
this definition is equivalent to the previous definition of Eξ as Eξ= ∫Ωξ(ω)P(dω), where 

is the probability space such that ξ:Ω→R is an mapping. Here 
Ω={ω} is the set of elementary events, is a σ-algebra of subsets of is 
a probability measure. 

In particular, for any measurable function f:R→R, η=f(ξ) is also a random variable, 
and the expectation Eη=Ef(ξ) can be found as 

 

  

provided that the random variable f(ξ) is integrable. (For example, it holds if f is bounded, 
or f is continuous and the support of the distribution of ξ is bounded.) If ξ has p.d.f. p(x), 
then 

 

  

In many problems we are interested in certain characteristics (instead of the complete 
characterization) of a random variable, for example its mean, variance, median, moments, 
quantiles, and some others. 

The kth moment of a random variable is defined as Eξk. The kth absolute moment of a 
random variable is defined as E|ξ|k. If E|ξ|k<+∞, then ξ is said to have kth moment. Note 
that (E|ξ|k)1/k≤(E|ξ|m)1/m if 0≤k≤m. It follows that if E|ξ|m<+∞ then E|ξ|k<+∞. But it is 
possible that E|ξ|k<+∞ and E|ξ|m=+∞ (for example, E|ξ|<+∞ and Eξ2=+∞). 

If the distribution of a random variable is known, then the distributions of all linear 
transformations of this variable can also be derived. Suppose that a real-valued random 
variable ξ has c.d.f. F. Let a, b be constants with b>0. Then the linear transformation 
η=a+bξ has c.d.f. Fη given by Fη(x)=F[(x−a)/(b)]. Clearly, the distribution of ξ and the 
pair (a,b) defines the distribution of η. In particular, Eη=a+bEξ, Var η=b2Var ξ. If ξ has 
density function p, then η has density function pη(x)=b−1p[(x−a)/(b)]. It is convenient to 
describe this family via the distribution of ξ with Eξ=0, Var ξ=1, or standardized 
distribution. 

Vector case 

Let us consider now the case of n-dimensional probability distribution, i.e. when the 
distribution is defined on Rn. In this case, the distribution is a probability measure that 
assigns to every measurable (Borel) set of Rn a probability. If ξ= (ξ1,…, ξn) is a random 

vector, the corresponding probability distribution assigns to the rectangle 
the probability P(ak<ξk≤bk, k=1,…, n). This defines the distribution uniquely for the Borel 
σ-algebra. Hence the distribution of any random vector ξ=(ξ1,…, ξn) is uniquely defined 
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by the cumulative distribution function F(x1,…,xn)=P(ξ1≤x1,…, ξn≤ xn), where −∞< xi<+∞. 
We call this function also the joint cumulative distribution function of random variables 
ξ1,…, ξn. The probability distribution of a random vector completely describes its 
probabilistic properties, including mutual dependence of components. The components ξk 

are independent if and only if F(x1,…, xn)= where Fk(x)=P(ξ≤x). In 
general, the probability distribution of a random vector is not uniquely defined by the set 
of probability distributions of its components. 

Probability distributions on infinite dimensional spaces are commonly used in the 
theory of stochastic processes. For example, the Wiener process studied in 
Chapter 4 is a random (infinity-dimensional) vector with values at the space C(0,T) of 
continuous functions f:[0, T]→R. It generates a probability distribution on this space (the 
so-called Wiener measure). 

Some special distributions 

The binomial coefficient is defined as here m! denotes the 
factorial of m. 

Some useful special distributions are listed below. 

Discrete uniform distribution 

The discrete uniform distribution is a distribution where all elements of a finite set are 
equally likely. This is supposed to be the distribution of a balanced coin, an unbiased die, 
or a casino roulette. 

Binomial distribution 

Let n>0 be an integer, and let A random variable ξ such that 

   

is said to have the binomial distribution. The number of successes in n repeating 
Bernoulli trials has this distribution. For this distribution, Eξ=np and Var ξ= np(1−p). 

Continuous uniform distribution 

A random variable ξ with density 

 

  

is said to have the uniform distribution on [a, b], a<b. For this distribution, all points in a 
finite interval are equally likely, and Eξ=(b−a)/2, Var ξ= (b−a)2/12. In many program 
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languages, built-in random number generators produce the uniform distribution on [0, 1] 
(in MATLAB, it is the rand command). 

Normal or Gaussian distribution 

A random variable ξ with density 

 

  

is said to be a Gaussian random variable. It is said also to have the normal or Gaussian 
distribution. It can be written as ξ~N(a, σ2). For this distribution, Eξ=a and Var ξ=σ2. If 
a=0 and σ=1, then the distribution is said to be the standard normal distribution. This is 
an extremely important probability distribution which has applications in statistics, 
probability theory, physics, and engineering. By the central limit theorem, it is the limit 
distribution for the mixing of a large number of independent random variables. 

Log-normal distribution 

Let ξ be a Gaussian random variable, i.e., ξ~N(a, σ2), where A random 
variable η=eξ is said to have log-normal distribution (i.e., In η is normal). The random 
variable η has density function 

 

(1.1) 

For this distribution, Eη=exp{a+σ2/2}, Eη2=exp{2a+2σ2} and Var η= 
exp{2a+2σ2}−exp{2a+σ2}. 

1.9 Problems 

Solve Problems 1.29 and 1.40. 
Problem 1.55 Describe the difference between an event and an elementary event in a 

probability space. Is a probability of occurrence assigned to an elementary event? 
Problem 1.56 Find an example of a probability space with Ω={a,b,c,d}, an example of 

a (non-constant) random variable ξ, and find Eξ, Eξ2, and Var ξ. Find its cumulative 
distribution function (c.d.f.) F(x)=P(ξ≤x). 

Problem 1.57 Let Ω={ω1,ω2,ω3}, Let ξ(ωi)=(i−2)2. Find the σ-algebra σ(ξ) 
generated by ξ. 

Problem 1.58 Let be a probability space such that Ω={ω1,ω2,ω3}, 

 
P({ω1})=1/4, P({ω2})=1/4, P({ω3})=1/2.   
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Let ξ(ω1)=0.1, ξ(ω2)=0, ξ(ω3)=−0.1. Let η(ω1)=η(ω3)=0.1, η(ω2)= −0.1. Find E{ξ|η}. 

Challenging problems 

Problem 1.59 Is there an example of a probability distribution on R such that its support 
coincides with the set of all rational numbers? If yes, give an example; if no, prove it. 

Problem 1.60 Let Q2 be the set of all pairs such that x and y are rational 
numbers. We consider a random direct line L in R2 such that with probability 
1, and that the angle between L and the vector (1, 0) has the uniform distribution on [0, 

π). Find the probability that the set is finite. 
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2 
Basics of stochastic processes 

In this chapter, some basic facts and definitions from the theory of stochastic (random) 
processes are given, including filtrations, martingales, Markov times, and Markov 
processes. 

2.1 Definitions of stochastic processes 

Sometimes it is necessary to consider random variables or vectors that depend on time. 
Definition 2.1 A sequence of random variables ξt, t=0, 1, 2,…, is said to be a discrete 

time stochastic (or random) process. 
Definition 2.2 Let be given. A mapping ξ:[0,T]×Ω→R is said to be a 

continuous time stochastic (random) process if ξ(t,ω) is a random variable for a.e. 
(almost every) t. 

A random process has two independent variables (t and ω). It can be written as ξt(ω), 
ξ(t,ω), or just ξt, ξ(t). 

Example 2.3 Let η be a random variable. Then and ξ2(t)=sin(ηt) are 
random processes. 

Example 2.4 Consider an ordinary differential equation 

 

  

when a(ω) is a random variable. Then the solution y(t)=y(t, ω) is a continuous time 
random process (provided that this solution exists and it is well defined). 

It can be seen that the randomness is presented only in initial time t=0 for the process 
from the last example, and the evolution of this process is uniquely defined by its initial 
data. The following definitions give examples that are different. 

Definition 2.5 Let ξt, t=0, 1, 2,…, be a discrete time random process such that ξt are 
mutually independent and have the same distribution, and Eξt≡0. Then the process ξt is 
said to be a discrete time white noise. 

Definition 2.6 Let ξt be a discrete time white noise, and let 
t=0, 1, 2,…. Then the process ηt is said to be a random walk. 

The theory of stochastic processes studies their pathwise properties (or properties of 
trajectories ξ(t, ω) for given ω, as well as the evolution of the probability distributions. 



Definition 2.7 A continuous time process ξ(t)=ξ(t, ω) is said to be continuous (or 
pathwise continuous), if trajectories ξ(t, ω) are continuous in t a.s. (i.e., with probability 
1, or for a.e. ω). 

It can happen that a continuous time process is not continuous (for instance, a process 
with jumps). 

2.2 Filtrations, independent processes and martingales 

In this section, we shall assume that either or t=0, 1, 2,…. 

Filtrations 

In addition to evolving random variables, we shall use evolving σ-algebras. 
Definition 2.8 A set of σ-algebras is called a filtration if for s<t. 
Definition 2.9 Let ξ(t) be a random process, and let be a filtration. We say that the 

process ξ(·) is adapted to the filtration if any random variable ξ(t) is measurable with 
respect to (i.e., where is any open interval). 

Definition 2.10 Let ξ(t) be a random process. The filtration generated by ξ(t) is 
defined as the minimal filtration such that ξ(t) is adapted to it. 

Example 2.11 Let Ω={ω1,ω2,ω3}, Consider a discrete time random process 
ξt, t=0, 1,… such that 

 

  

Let us find the filtration generated by ξt for t=0, 1, 2. 
We have that ξi generates the σ-algebra i=0, 1, and ξ2 

generates the σ-algebra of all subsets of Ω. We have that 
so we can conclude that is the filtration generated by ξt: the 

filtration generated by ξt cannot consist of smaller σ-algebras, and  
Example 2.12 Let Ω={ω1,ω2,ω3}, Consider a discrete time random process 

ξt, t=0, 1,… such that 
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Let us find again the filtration generated by the process ξt, t=0, 1, 2. 
Let denote the σ-algebra generated by the random variable ξt for any given time t. 

We have that ξi generates the σ-algebra i=0, 2, and ξ1 

generates the σ-algebra of all subsets of Ω. Therefore, the filtration generated 

by the process ξt is (Note that 
i.e., the sequence is not ‘non-decreasing’), therefore is not a filtration; 

to make the sequence non-decreasing, we must replace by  

Independent processes 

Definition 2.13 Random processes ξ(·) and η(·) are said to be independent iff the events 
and are independent for all m,n, 

all times (t1,…, tn) and (τ1,…, τm), and all sets and  
In fact, processes are independent iff all events from the filtrations generated by them 

are mutually independent. 

Martingales 

Definition 2.14 Let ξ(t) be a process such that E|ξ(t)|2<+∞ for all t, and let be a 
filtration. We say that ξ(t) is a martingale with respect to if 

 

   

Note that we require that E|ξ(t)|2<+∞ because, for simplicity, we have defined the 
conditional expectation only for this case. In the literature, the martingales are often 
defined under the condition E|ξ(t)|<+∞, which is less restrictive. 

Sometimes the term ‘martingale’ is used without mentioning the filtration. 

Definition 2.15 Let ξ(t) be a process, and let be the filtration generated by this 
process. We say that ξ(t) is a martingale if ξ(t) is a martingale with respect to the 

filtration  
Problem 2.16 Prove that any discrete time random walk is a martingale. 
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Problem 2.17 Let ζ be a random variable such that E|ζ|2<+∞, and let be a filtration. 

Prove that is a martingale with respect to  
The following definitions will also be useful. 
Definition 2.18 Let ξ(t) be a process such that E|ξ(t)|2<+∞ for all t, and let be a 

filtration. We say that ξ(t) is a submartingale with respect to if 

   

Definition 2.19 Let ξ(t) be a process such that E|ξ(t)|2<+∞ for all t, and let be a 
filtration. We say that ξ(t) is a super martingale with respect to if 

   

The term sub(super)martingale can also be used without mentioning the filtration, 
meaning the filtration generated by the process itself. 

2.3 Markov times 

To discuss American options, we need some additional definitions for random times. 
Let be a filtration. 
Definition 2.20 Markov time with respect to is any random time τ such that 

for all t. 
The definition means that, for a Markov time τ, we can say at time t if τ≤ t or not if we 

know all events from  
In particular, if is the filtration generated by a random process ξ(t) and τ is a 

Markov time with respect to then we can say at time t if τ≤t or not if we know all 
values {ξ(s), s≤ t}. 

Corollary 2.21 τ is a Markov time iff the process is  
For instance, τ=min {t≥0: ξ(t)=2} is Markov time with respect to the filtration 

generated by a process ξ(t), but τ such that is not a Markov 
time. In particular, the mathematical concept of Markov time explains why one cannot 
catch the best time to sell stocks (when the price is maximal): this time exists, but we 
cannot catch it by observing current data. The same is true for the best time of exit from 
stochastic games like roulette. 

Sometimes Markov times are called stopping times. 

Definition 2.22 Let τ be a Markov time, then  
It can be shown that is a σ-algebra, and that τ and ξ(τ) are with 

respect to it, for process ξ(t) (in fact, for the case of continuous time process 
ξ(t), it is true under some additional conditions; it suffices to require that ξ(t) is pathwise 
continuous). 
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2.4 Markov processes 

Definition 2.23 Let ξ(t) be a process, and let be the filtration generated by ξ(t). We 
say that ξ(t) is a Markov (Markovian) process if 

   

for any k>0, for any times s and tm such that tm>s, for any system of open sets {Dm}, 
m=1,…, k. 

This property is said to be the Markov property. 
The Markov property means that if we want to estimate the distribution of ξ(t)|t>s 

using information of the past values ξ(r)|r≤s, it suffices to use the last observable value 
ξ(s) only. Using the values for does not give any additional benefits. This 
property (if it holds) helps to solve many problems. 

The following proposition will be useful. 
Proposition 2.24 Under the assumptions and notations of Definition 2.23, 

for all 
measurable deterministic functions F such that the corresponding random variables are 
integrable. 

Problem 2.25 Prove that a discrete time random walk is a Markov process. 

Vector processes 

Let ξ(t)=(ξ1(t),…, ξn(t)) be a vector process such that all its components are random 
processes. Then ξ is said to be an n-dimensional (vector) random process. All definitions 
given above can be extended for these vector processes. 

Sometimes, we can convert a process that is not a Markov process to a Markov 
process of higher dimension. 

Example 2.26 Let ηt be a random walk, t=0, 1, 2,…, and let 
Then ψt is not a Markov process, but the vector process (ηt,ψt) is a Markov process. 

2.5 Problems 

Problem 2.27 Let ζ be a random variable, and let 0≤a<b≤1. Let a continuous time 
random process ξ(t) be such that 

 

  

Find the filtration generated by ξ(t) for for the cases when a=0, b=1/2, and 
when a=1/4, b=2/3. 
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Problem 2.28 Let Ω={ω1,ω2,ω3}, Consider a discrete time random process 

ξt, t= 0, 1,…. Let ξt(ωi)=(i−2)2+t(t−1)/2. Find the filtration generated by ξ(t) for t=0, 1, 2. 
Problem 2.29 Let ζ be a random variable. Let the random process ξ(t) be such that 

 

  

Find the filtration generated by ξ(t) for  
Problem 2.30 Let Let a process ξt be such that 

   

Let Is it possible to find a measure P such that ηt is a martingale? If 
yes, give an example. Consider the cases: (i) a=−1, b=1; (ii) a=1, b=1/2; (iii) a=b=−1. 

Hint: in Problems 2.30 and 2.31, look for a measure in the class of measures such that 
ξt are independent. 

Problem 2.31 Let Let a process ξt be such that 

   

Let Is it possible to find a measure P such that ηt is a martingale? If 
yes, give an example. Consider the following cases: (i) a=−1, b=2, c=3; (ii) a=1, b=2, 
c=3; (iii) a=b=−1, c=2. 

Problem 2.32 Find when the desired measure P is unique in Problems 2.30 and 2.31 
(in the class of measures such that ξt are independent). 

Problem 2.33 Let τ be a Markov time with respect to a filtration, (i) Is 2τ a Markov 
time? (ii) Is τ/2 a Markov time? 
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3 
Discrete time market models 

In this chapter, we study discrete time mathematical models of markets. These models are 
relatively simple and straightforward. However, they still allow us to introduce all core 
definitions of mathematical finance such as self-financing strategies, replicating, 
arbitrage, risk-neutral measures, market completeness, and option price. Besides, these 
models have fundamental significance, and their theory is not completed yet. 

3.1 Introduction: basic problems for market models 

Market models are being created with the goal of explaining the internal logic of market 
transactions and the laws of price movement. In addition, market models target the 
following key problems: 

• Portfolio selection problem: To find a strategy of buying and selling stocks. 
• Pricing problem: To find a ‘fair’ price for derivatives (i.e., options, futures, etc.). 

There is an auxiliary problem (which is the main problem for financial econometrics): 

• To estimate the evolution law of the probability distributions from market statistics. 

Portfolio selection problem 

A generic optimal investment (or optimal portfolio selection) problem is 

Maximize EU(X(T)) over a class of investment strategies. 

Here T is the terminal time, X(T) is the wealth of an investor at time T, and U(·) is a given 
utility function that describes risk preferences. Typically, the stock prices, the wealth, and 
the strategies, are supposed to be random processes; this is why there is maximization for 
the expectation EU. 

The most common utilities are log and power functions, i.e., U(x)=ln x and 
U(x)=δ−1xδ, where δ<1 and d≠0. Another important example of utility is U(x)=kx−µx2, 
where k>0 and µ>0 are some constants. 

This generic problem allows many modifications, including: 

• optimal strategies of consumption and dividends; 
• optimal hedging of (non-replicable) claims; 
• problem with constraints on the wealth; 
• problems with T=+∞. 



The theory of optimal portfolio selection can be considered as a special part of optimal 
control theory, or, more precisely, of optimal stochastic control theory. Optimal 
investment problems are intensively studied in the literature. However, they are not 
discussed here in detail, because this course is focused on the problem of pricing (the 
only exception is Section 3.12). 

3.2 Discrete time model with free borrowing 

We introduce a model of a financial market consisting of the risky stock with price St, 
t=0, 1, 2,…, where t are times (for example, days, weeks, months, etc.). The initial price 
S0>0 is a given non-random value. 

Let us assume first that the rate for money borrowing and lending is zero. 
Let us describe investment operations, or portfolio strategies. 
Let X0>0 be the initial wealth at time t=0, and let Xt be the wealth at time t≥0. 
We assume that the wealth Xt at time t≥0 is 
 
Xt=βt+γtSt, t=0, 1, 2,…, 

(3.1) 

where βt is the quantity of cash on a bank account, and γt is the quantity of the stock 
portfolio. The pair (βt, γt) describes the state of the portfolio at time t. We call a sequence 
of these pairs strategy, or portfolio strategy. 

Note that we allow negative βt and γt, meaning borrowing or short positions. 
Some constraints will be imposed on strategies. 
Definition 3.1 A sequence {(βt, γt)} is said to be an admissible strategy if there exist 

measurable functions Ft:Rt+1→R2 such that 
 
(βt, γt)=Ft(S0, S1,…, St).   

It follows from this definition that the process (βt, γt) is adapted to the filtration generated 
by St, and that (βt, γt) does not use information about the ‘future’, or about St+m for m>0. 

Definition 3.2 We say that the strategy is self-financing if 
 
Xt+1−Xt=γt(St+1−St), t=0, 1,…. 

(3.2) 

It follows from (3.2) that 

 
(3.3) 

Here X0>0 is the initial wealth at time t=0. 
For example, for the trivial risk-free strategy, when γt≡0, the corresponding total 

wealth is Xt≡X0. 
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Note that these definitions present a simplification of the real market situation, 
because transaction costs, bid and ask gap, possible taxes and dividends, interest rate for 
borrowing, etc., are not taken into account. 

3.3 A discrete time bond-stock market model 

A more realistic model of the market with non-zero interest rate for borrowing can be 
described via the following bond—stock model. 

We introduce a model of a market, consisting of the risk-free bond or bank account 
with price Bt and the risky stock with the price St, t=0, 1, 2,…. The initial prices S0>0 and 
B0>0 are given non-random variables. 

Set 

 

  

In other words, 

 
(3.4) 

We assume that 

 
(3.5) 

Note that these conditions are technical. In particular, they ensure that St>0. It is not too 
restrictive. For instance, if the change in the stock prices is no more than 5% per time 
period, then |ξt|<0.05. 

In the case of daily transactions, 
ρt=1+interest rate/365.   

Remark 3.3 The case of ρt≡1 corresponds to the market model with free borrowing. 
Let X0>0 be the initial wealth at time t=0, and let Xt be the wealth at time t≥0. We 

assume that the wealth Xt at time t=0, 1, 2,… is 
Xt=βtBt+γtSt, 

(3.6) 

where βt is the quantity of the bond portfolio, and γt is the quantity of the stock portfolio. 
The pair (βt, γt) describes the state of the bond—stocks securities portfolio at time t. We 
call sequences of these pairs strategies. 

Some constraints will be imposed on strategies. 
Note that we allow negative βt and γt, meaning borrowing or short positions. 
Definition 3.4 A sequence {(βt, γt)} is said to be an admissible strategy if there exist 

measurable functions Ft:R2t+2→R2 such that 
(βt, γt)=Ft(S0, B0, S1, B1,…, St, Bt).   
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It follows from this definition that the process (βt, γt) is adapted to the filtration generated 
by (St, Bt), and that (βt, γt) does not use information about the ‘future’, or about (St+m, 
Bt+m) for m>0. 

The main constraint in choosing a strategy is the so-called condition of self-financing. 
Definition 3.5 A strategy {(βt, γt)} is said to be self-financing, if 
Xt+1−Xt=βt(Bt+l−Bt)+γt(St+1−St). 

(3.7) 

Remark 3.6 In the literature, a definition of admissible strategies may include 
requirements that the risk is bounded. An example of this requirement is the following: 
there exists a constant C such that Xt≥C for all t a.s. For simplicity, we do not require this, 
because this condition is always satisfied for the special problems discussed below. 

Remark 3.7 Similarly, we can consider a multistock market model, when St={Sit} and 
γt={γit} are vectors, and when the wealth is Xt=βtBt+∑i γitSit. 

Some strategies 

Example 3.8 A risk-free (‘keep-only bonds’) strategy is a strategy when the portfolio 
contains only the bonds, γt≡0, and the corresponding total wealth is 

 
Example 3.9 A buy-and-hold strategy is a strategy when γt>0 does not depend on 

time. This strategy ensures a gain when stock price is increasing. 
Example 3.10 A short position is the state of the portfolio when γt<0. This portfolio 

ensures a gain when stock price is decreasing. 
Example 3.11 A ‘doubling strategy’ is sometimes used by an aggressive gambler (for 

instance in the coin-tossing game). In fact, the stochastic market model is close to the 
model of gambling. Therefore, it is possible to suggest the analogue of this strategy for 
the stock market. Let us assume that St+1=St(1+ξt+1), where ξt=±ε is random, with given 

ε>0. An analogue of the doubling strategy is as follows: and 
γt=0, t≥τ, where τ=min{t:ξt=+ε}. 

Problem 3.12 Assume that, with probability 1, there exists a time 
such that ξτ>0. Prove that the doubling strategy ensures with probability 1 

positive gain on the unlimited time horizon. 
Example 3.13 ‘Constantly rebalanced portfolio’ is a strategy such that there is a given 

constant C>0 such that γtSt/Xt=C and βtBt/Xt=1−C. In other words, the investor keeps the 
constant proportion of investment in the bonds and in the stock. This strategy requires 
selling the stock when its price is going up and buying when it is going down. Therefore, 
this strategy makes a profit when stock prices oscillate. 

Let us describe the resulting wealth for the constantly rebalanced portfolio given C. 
For simplicity, we assume that ρt≡1. Then 

 
Xt+1−Xt=γt(St+1−St)=γtStξt+1=CXtξt+1,   
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i.e., 

 

  

For instance, let (S0, S1, S2, S3,…)=(1, 2, 1, 2, 1,…). It follows that 

Let X0=1. For the buy-and-hold strategy, 
the wealth is (X1, X2, X3,…)=(1, 2, 1, 2, 1,…). In contrast, the constantly rebalanced 

portfolio with gives the wealth of an 
exponential order of growth. (Of course, one cannot be sure that the stock prices will 
evolve in this specific way.) 

Problem 3.14 Consider a discrete time bond—stock market such that S0=1, S1=1.3, 
S2=1.1. Let the bond prices be B0=1, B1=1.1B0, B2=1.05B1. Let the initial wealth be X0=1. 
Let a self-financing strategy be such that the number of stock shares at the initial time is 

Find γ1, X1, X2, βi, i=0, 1, 2 for the constantly rebalanced portfolio.  
Solution. We have 

 

  

3.4 The discounted wealth and stock prices 

For the trivial, risk-free, ‘keep-only bonds’ strategy, the portfolio contains only the 

bonds, γt≡0, and the corresponding total wealth is Some 
loss is possible for a strategy that deals with risky assets. It is natural to estimate the loss 
and gain by comparing it with the results for the ‘keep-only bonds’ strategy. 
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Definition 3.15 The process is called the 
discounted wealth (or the normalized wealth). 

Definition 3.16 The process is called the 
discounted stock price (or the normalized stock price). 

Proposition 3.17  
The proof is straightforward. 
Theorem 3.18 

 (3.8) 

Proof of Theorem 3.18. Let be a sequence such that (3.8) holds. Then it 

suffices to prove that is the wealth corresponding to the self-

financing strategy {(βt, γt)}, where  
We have that 

 

  

This completes the proof. 
Thanks to Theorem 3.18, we can reduce many problems for markets with non-zero 

interest for borrowing to the simpler case of the market with zero interest rate (i.e., with 
free borrowing). 

For simplicity, one can assume for the first reading that ρt≡1, 

and everywhere in this chapter. After that, one can read this 
chapter again taking into account the impact of ρt≠1. 
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3.5 Risk-neutral measure 

Up to this point, we have not needed probability space, and the market model was not a 
stochastic market model. Now we assume that we are given a standard complete 
probability space (see Chapter 1). The probability measure P describes the 
probability distribution of the sequence {(ρt, ξt)}. Sometimes we shall address it as the 
original probability measure, or the prior probability measure, or the historical 
probability measure. (Some other probability measures will also be used.) 

Let be the filtration generated by (St, ρt). 
Definition 3.19 Let be a probability measure such that the process 
is a martingale under P* with respect to the filtration Then P* is said to be a risk-

neutral probability measure for the bond—stock market (3.4). E* denotes the 
corresponding expectation. 

In particular, for all τ>t. 
In literature, a risk-neutral measure is also called a martingale measure. 
Proposition 3.20 

 
(3.9) 

Proof. Let k=t−1. We have that 

 
  

Then the proof follows for k=t−1, and, therefore, for all k<t. 
Proposition 3.21 The following statements are equivalent. 

(i) A measure P* is risk neutral; 

(ii)  

(iii)  

(iv)  

Proof. We have that then equivalency of (i) and (ii)−(iii) 
follows. Further, equivalency of (i) and (iv) follows from the equation 

 
In addition, it follows that if ξt does not depend on ξt−1,…, ξ1 under P*, then the 

measure P* is risk-neutral iff  
Theorem 3.22 For any admissible self-financing strategy, the corresponding 

discounted wealth is a martingale with respect to under a risk-neutral measure P*. 
Proof. Let γt be the quantity of stock portfolio. Clearly, 
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Hence 

 

  

We have used here the fact that is a function of (i.e., the vector 

is ), and the fact that by Proposition 3.20. 
This completes the proof. 

3.6 Replicating strategies 

Let an integer T>0 be given. Let ψ be an random variable. (As we know, 
there exists a deterministic function F:R2T+2→R such that ψ=F(S., ρ.), i.e., ψ=F(S0, 
S1,…ST, ρ0, ρ1,…, ρT)). 

Definition 3.23 Let the initial wealth X0 be given, and let a self-financing strategy (βt, 
γt) be such that XT=ψ a.s. for the corresponding wealth. Then the claim ψ is called 
replicable (attainable, redundant), and the strategy is said to be a replicating strategy 
(with respect to this claim). 

Definition 3.24 Let the initial wealth X0 be given, and let a self-financing strategy (βt, 
γt) be such that XT≥ψ a.s. for the corresponding wealth. Then the strategy is said to be a 
super-replicating strategy. 

Theorem 3.25 Let the initial wealth X0 and a self-financing strategy {(βt, γt)} be such 
that XT=ψ a.s. for the corresponding wealth. Let P* be a risk-neutral measure, and let E* 
be the corresponding expectation. Let E*ψ2<+∞. Then 
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Proof. Clearly, XT=ψ iff a.s. By Theorem 3.22, it follows that 
the process is a martingale under P* with respect to the filtration i.e., 

for all t. In particular, This completes the proof. 
We have not yet referred to the original probability distribution of the process {(St, ρt)} 

(i.e., of the process {(ξt, ρt)}). All previous speculations did not use the original 
probability measure P; we used only the risk-neutral measure P* which is an artificial 
object; it was not related to the real market. Any particular market model (3.4) is defined 
by the distribution (or evolution law) for (ξt, ρt). Clearly, we cannot study a particular 
market model without taking into account the distribution of {(St, ρt)}, i.e., the original 
probability measure P. The following definition addresses the measure P for the first 
time. 

Definition 3.26 If a risk-neutral probability measure P* is equivalent to the original 
measure P, then we call it an equivalent risk-neutral measure. 

First application: the uniqueness of the replicating strategy 

Theorem 3.27 Let the market model be such that there exists an equivalent risk-neutral 
probability measure P*. Let a claim ψ be replicable for some initial wealth X0 and some 
self-financing strategy {(βt, γt)}, i.e., XT=ψ a.s. for the corresponding wealth. Let 
E*ψ<+∞. Then the initial wealth X0 is uniquely defined. Moreover, the processes Xt and 
ξt+1γt are uniquely defined up to equivalency. If ξt≠0 a.s. for all t, and the replicating 
strategy and the corresponding wealth process Xt are uniquely defined up to equivalency. 

Proof. Let the initial wealth and the strategy be such that 

a.s. for the corresponding wealth  
Let be the corresponding discounted wealth. By Theorem 3.22, it follows that the 

processes are martingales under P* with respect to the filtration i.e., 

Since it follows that 

 
  

Further, and a.s. Hence 

 
  

Finally, it follows that if ξt≠0 a.s. for all t, then a.s. for all t. Hence 

a.s. for all t.  
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3.7 Arbitrage possibilities and arbitrage-free market 

Arbitrage is a possibility of a risk-free positive gain. Let us define it formally. 
Definition 3.28 Let T>0 be given. Let {(βt, γt)} be an admissible self-financing 

strategy, let be the corresponding discounted wealth. If 

 (3.10) 

then this strategy is said to be an arbitrage strategy. If there exists an arbitrage strategy, 
then we say that the market model allows an arbitrage. 

In fact, some arbitrage possibilities may occasionally exist in real markets, but they 
cannot last for long. (There is even a special term, ‘arbitrageurs’, for traders who look for 
arbitrage.) However, we are interested in models without arbitrage possibilities, since the 
presence of arbitrage is a sign of some temporary abnormality, and it is used to be 
corrected by the market forces. Typically, models that allow arbitrage are not useful 
(unless there is a special interest in arbitrage phenomena). We shall concentrate on 
arbitrage-free models only. 

Problem 3.29 Let there exist such that ξt,≥0 a.s., P(ξt>0)>0. Prove 
that this market model allows arbitrage. Hint: take γi=0, i≠t−1, and take γt−1>0. 

Theorem 3.30 Let a market model be such that there exists a risk-neutral probability 
measure P* being equivalent to the original measure P. Then the market model does not 
allow arbitrage. 

Proof. Let {(βt, γt)} be a self-financing admissible strategy that allows arbitrage, i.e., it 
is such that (3.10) holds for the corresponding discounted wealth. Let there exist a risk-
neutral P* that is equivalent to the original measure P. In that case, 

   

Hence 

 
(3.11) 

But 

 

  

This contradicts (3.11). 
Problem 3.31 Prove that a risk-neutral equivalent probability measure does not exist 

for Problem 3.29. 
Remark 3.32 The opposite statement to the above theorem, ‘absence of arbitrage 

implies the existence of an equivalent risk-neutral measure’, is also valid under some 
additional requirements on the strategies. The proof of this assertion is beyond the scope 
of this book. The equivalence relation between the existence of equivalent risk-neutral 
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measure and the absence of (certain types of) arbitrage is called the fundamental theorem 
of asset pricing. 

3.8 A case of complete market 

Definition 3.33 Let a market model be such that there exists an equivalent risk-neutral 
probability measure P* (i.e., equivalent to the original measure P). A market model is 
said to be complete if any claim ψ such that ψ is and E*ψ2<+∞, is replicable with 
some initial wealth. 

Note that the initial wealth is in fact uniquely defined by ψ and P* (see Theorem 3.25). 
Theorem 3.34 If a market model is complete and there exists an equivalent risk-

neutral measure, then this measure is unique (as a measure on ). 

Proof. Let and let (  is the indicator function of 

A). By the assumption, the claim ψ is replicable with some initial wealth By 

Theorem 3.27, this is uniquely defined. By Theorem 3.25,  for any 
risk-neutral measure P*. Therefore, P* is uniquely defined on  

Corollary 3.35 Let a market model be such that there exists an equivalent risk-neutral 
probability measure P*. In addition, let {ξt} be independent, and let there exist t and 

such that a≠b, b≠c, c≠a, 

   

Then the market model is incomplete. 
Proof follows from the existence of more than one risk-neutral probability measure P* 

being equivalent to the original measure P and such that ξt are independent under P*. (See 
Problems 2.31 and 2.32.) 

Remark 3.36 By Theorem 3.25, if the initial wealth X0 and a self-financing strategy 
{(βt, γt)} are such that XT=ψ a.s. for the corresponding wealth, then 

 

  

Here P* is any risk-neutral measure, and E* is the corresponding expectation. By the 
uniqueness of the initial wealth X0, this expectation does not depend on the choice of the 
risk-neutral measure, even if there is more than one risk-neutral measure. It is not a 
contradiction: all expectations E* of all replicable claims are indeed uniquely defined and 
do not depend on the choice of the risk-neutral measure P*. However, it can happen that 
claims for some are not replicable. 
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3.9 Cox-Ross-Rubinstein model 

The celebrated Cox-Ross-Rubinstein model (Cox et al. 1979) is such that ρt≡ρ are non-
random and constant, and ξt are mutually independent random variables that have equal 
distribution and can have only two values, d1 and d2, where d1, d2 are given real numbers, 
−1<d1<0<d2<1. 

Risk-neutral measure for the Cox-Ross-Rubinstein model 

Proposition 3.37 A measure P* is an equivalent risk-neutral measure if and only if {ξt} 
are independent under P* and i.e., 

   

where p is such that 
d1p+d2(1−p)=0. 

(3.12) 

Proof. By Proposition 3.20, P* must be such that 
for the corresponding expectation E*. Hence 

 

  

Hence is uniquely defined from the equation d1p+ 
d2(1−p)=0. It follows that p does not depend on t and it is non-random together with the 
value Therefore, 

   

It follows that ξt does not depend on {ξ1,…, ξt−1} under P*. 

Completeness of the Cox-Ross-Rubinstein model 

Theorem 3.38 The Cox-Ross-Rubinstein market model is complete. 

Proof. Let be an arbitrary function such that 
To prove the completeness of the market, it suffices to find an admissible strategy such 

that i.e., a.s., and  
Let 

   

Mathematical Finance     34



Clearly, and 

   

Let Define the functions 
Clearly,  

Yt=Vt(ξ1,…, ξt).   

By Bayes formula, 

   

for any integrable random variable η and for any event A and Here E(·|A) is 
the expectation for the conditional probability measure P(·|A). 

We can apply this Bayes formula for the events 

   

and for the probability space We have that 

 

  

Hence 
Yt+1−Yt=Vt+1(ξ1,…, ξt+1)–Vt(ξ1,…, ξt) 
=Vt+1(ξ1,…, ξt+1)−pVt+1(ξ1,…, ξt,d1)−(1−p)Vt+1(ξ1, …, ξt,d2). 

  

Let ξt+1=d1, then 
Yt+1−Yt=Vt+1(ξ1,…, ξt,d1)−pVt+1(ξ1,…, ξt,d1)−(1-p)Vt+1(ξ1,…, ξt,d2) 
=(1−p)Vt+1(ξ1,…, ξt,d1)−(1−p)Vt+1(ξ1,…, ξt,d2). 

  

Let ξt+1=d2, then 
Yt+1−Yt=Vt+1(ξ1,…, ξt,d2)−pVt+1(ξ1,…, ξt,d1)−(1−p)Vt+1(ξ1,…, ξt,d2) 
=pVt+1(ξ1,…, ξt,d2)−pVt+1(ξ1,…, ξt,d1). 

  

In both cases, we have that 

 
  

since (3.12) implies that  
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Remember that Hence 

   

where 

 

  

Hence Yt is the discounted wealth which corresponds to the stock portfolio {γt}. We have 

that Hence Xt=ρtYt is the corresponding wealth that replicates the claim 

This completes the proof. 
Remark 3.39 It can be seen that this proof can be extended for the case when p is non-

random, and, for any t, there exists random variables d1(t) and d2(t) 
such that −1<d1(t)<0<d2(t)<1 a.s. and a.s. It 
follows that the discrete time market model is also complete for this case of conditionally 
two-point distribution of ξt. Technically, this model is more general than the Cox-Ross-
Rubinstein model. It appears that it is the most general assumption that still allows a 
discrete time market to be complete. (For instance, Corollary 3.35 states that three-point 
distribution for ξt leads to incompleteness.) 

Remark 3.40 In fact, the Cox-Ross-Rubinstein model is the most common model in 
numerical option pricing, since it leads to approximate numerical calculations of option 
prices via binomial trees, including American options (see Chapter 6). To reduce the 
number of nodes for binomial trees, it is more convenient to use a model such that 

 

  

where 

   

This choice of parameters helps to decrease the number of different possible stock prices. 
Problem 3.41 (i) Prove that p=(ρ−d)/(u−d) in Remark 3.40. 
(ii) Find the (risk-neutral) probability that ST=S0u2d for t=3. 
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3.10 Option pricing 

Options and their types 

Let us describe first the most generic options: the European call option and the European 
put option. 

A European call option contract traded (contracted and paid) in t=0 is such that the 
buyer of the contract has the right (not the obligation) to buy one unit of the underlying 
asset (from the issuer of the option) in T>0 at the strike price K. The option payoff at 

time T is where St is the asset price, and K is the strike 
price, t=0, 1,…, T. 

A European put option contract traded in t=0 gives to the buyer of the contract the 
right to sell one unit of the underlying asset in T>0 at the strike price K. The option 

payoff (at time T) is where ST is the asset price, and K 
is the strike price. 

We consider more general options. Let an integer T>0 be given. 
Definition 3.42 Let ψ=F(S., ρ.)=F(S0,…, ST, ρ0,…, ρT),where a function F:R2T+2→R is 

given. The European option with payoff ψ can be defined as a contract traded in t=0 such 
that the buyer of the contract receives an amount of money equal to ψ at terminal time T. 

The following special cases are covered by this setting: 

• (vanilla) European call option: ψ=(ST−K)+ where K>0 is the strike price; 
• (vanilla) European put option: ψ=(ST−K)+; 
• share-or-nothing European call option:  

• an Asian option: where fi are given functions. 

All options in this list are such that payoff time T is given a priori; they are all European 
options. 

An option is called a derivative of the underlying assets. For instance, let the payoff ψ 
be such that there exists a deterministic function F:RT+1→R such that ψ=F(S.), i.e., 
ψ=F(S0, S1,…, ST), where St are prices of an asset. Then the option with this payoff is a 
derivative of this asset. European put and call options are derivatives of the underlying 
stocks (since the payoff does not include ρt). 

Another important class of options is the class of so-called American options. 
Definition 3.43 Let Fk(·):R2k+2→R be a given set of functions, k=0, 1, …, T. An 

American option is a contract when the option holder can exercise the option at any time 
by his/her choice. In that case, he/she obtains the amount of money 

equal to Fτ(S0,…, Sτ, ρ0,…, ρτ) (or obtains some benefits with this market price). 
For instance, an American put option gives the right (not the obligation) to sell one 

unit of the underlying asset for a fixed price K (to the issuer of the option); the market 
value of the payoff is (K−Sτ)+. Similarly, an American call option gives the right (not the 
obligation) to sell a unit of the underlying asset (see the detailed discussion in Chapter 6). 

Discrete Time Market Models     37



Similarly to the case of European options, an American option is said to be a 
derivative of the underlying assets, if the payoff depends on these assets only. For 
instance, American put and call options are derivatives of the underlying stock (since the 
payoff does not include ρt). 

In addition to the classical American and European put and call options, there are 
many different types of options that cover different demands of the financial market (we 
can mention barrier options, lookback options, Bermudian, Israeli, Russian, Parisian, 
etc.). Most of them can still be classified as either European or American options. 
However, there are some exceptions: for instance, the Israeli option allows early exercise 
for the issuer as well as for the holder. Technically, it is not an American option.1 

Problem 3.44 Let Ft(·):RT=1→R be a given set of functions, t=0, 1,…, T. Consider the 
following option. The option holder can choose to ‘exercise’ it at any time 

This exercise time is recorded, but the actual payoff is delayed up to 
time T. At this time T, the option holder obtains the amount of money equal to Fτ(S0, 
S1,…, ST) (or obtains some benefits with this market price). Does this option belong to 
any of the classes described here (i.e., European, American, Israeli, Asian, or Irish 
options)? 

(See also Problem 3.70.) 
Problem 3.45 Let Fs,t(·):RT+1→R be a given set of functions, where s, t= 0, 1,…, T, 

s≤t. Consider the following option. The option holder can choose to ‘exercise’ it at any 
time Moreover, he/she can choose to ‘exercise’ it for a second time 
at any time Any exercise times are recorded, but the actual 
payoff is delayed up to time T. At this time T, the option holder obtains the amount of 
money equal to Fτ,θ(S0, S1,…, ST) (or obtains some benefits with this market price). Does 
this option belong to any of the classes described above? 

Remark 3.46 Note that the options described in Problems 3.44 and 3.45 may have 

economical sense. For instance, take and 
consider an electricity market, where St is the price of an electricity unit at time t. The 
corresponding option from Problem 3.44 gives the right to enter at any time τ a contract 
for buying an electricity unit every time t=τ, τ+1,…, T for a fixed price K; once started, 
the contract will continue up to time T without a possibility of early exit. A modification 
of this option with a possibility of early exit can be represented as a special case of the 
option from Problem 3.45. 

1 The author of this book suggested recently one more modification of the American option: the 
holder of this option can exercise it at any time by his/her choice; in addition, the holder can retract 
later the decision to exercise. (The author called it the Irish option, because this research was 
conducted at the University of Limerick, Ireland.) 

The following problem requires some creativity. 
Problem 3.47 Invent a new option that does not belong to any of the classes 

mentioned here. Preferably, suggest an option that has some economical sense. If 
possible, suggest a pricing method using the approach described below for European and 
American options. 
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Fair price of an option 

The key role in mathematical finance belongs to a concept of the ‘fair price’ of options. 
The following definition is a discrete time analogue of the definition introduced by 

Black and Scholes (1973) for a continuous time market. 
Definition 3.48 The fair price of an option of any type (i.e., European, American, etc.) 

is the minimal initial wealth such that this wealth can be raised to a wealth such that 
allows to fulfil the option obligation for any market situation with some admissible 
strategies. 

Let us assume that a probabilistic concept is accepted. This means that the stock price 
evolves as a random discrete time process, and a probabilistic measure is fixed. 

We now rewrite Definition 3.48 more formally for European options. 
Definition 3.49 The fair price of the European option with payoff ψ is the minimal 

initial wealth X0 such that there exists an admissible self-financing strategy {(βt, γt)} such 
that 

XT≥ψ a.s.   

for the corresponding wealth. 
For a complete market, Definition 3.49 leads to replication. 
Theorem 3.50 Let a market be complete. Then the fair price cF of the option from 

Definition 3.49 is 

 

  

and it is the initial wealth X0 such that there exists an admissible self-financing strategy 
such that 

XT≥ψ a.s.   

for the corresponding wealth. 
Proof. From the completeness of the market, it follows that the replicating strategy 

exists and the corresponding initial wealth is equal to ρ−T E*ψ. Let us show that it is the 

fair price. Let be another initial wealth, then 

ψ for the corresponding discounted wealth Hence it 

cannot be true that a.s. 
Remark 3.51 Similarly to Propositions 5.44 and 5.45 below, it can be shown that the 

fair price introduced above is the only price that does not allow arbitrage opportunities 
either for the buyer or for the seller of an option. 

Corollary 3.52 Consider the Cox-Ross-Rubinstein model such that 
ρt≡ρ. Let ψ=F(ST) be the payoff, where F(·) is a given function. Then the fair price of the 
option is 
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where 

   

and where is such that E*ξ=0, i.e., pd1+(1−p)d2=0. 
Proof. We have that ST=ρT S0(1+d1)ν(1+d2)T−v, where v=v(ω) is the (random) number 

of the values d1 in the set of the values of ξt, t=1,…, T. Clearly, v has binomial law under 
P*. 

Problem 3.53 Consider the Cox-Ross-Rubinstein model such that ξt=±ε, Bt≡ Bt−1, 
S0=1, ε=1/4, T=1. Find the fair price of the option with payoff ψ=max(ST−1, 0). 

Solution. We have 

 
  

Problem 3.54 Consider the Cox-Ross-Rubinstein model such that ξt=±ε, Bt=1.1Bt−1, 
S0=1, ε=1/4, T=2. Find the fair price of the option with payoff F(S1,…, ST)=max(ST−1, 
0). 

Solution. We have 

 

  

 

  

For incomplete markets, Definition 3.49 leads to super-replication. That is not always 
meaningful. Therefore, there is another popular approach for incomplete markets. 

Definition 3.55 (mean-variance hedging). The fair price of the option is the initial 
wealth X0 such that E|XT−ψ|2 is minimal over all admissible self-financing strategies. 
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In many cases, this definition leads to the option price calculated as the expectation 
under a risk-neutral equivalent measure which needs to be chosen by some optimal way, 
since a risk-neutral equivalent measure is not unique for an incomplete market. 

3.11 Increasing frequency and continuous time limit 

In reality, prices may change and be measured very frequently. For instance, prices can 
be given for every five minutes. Therefore, it is reasonable to consider the case when 
T→+∞ and ξt→0 (in certain senses). A large number of trading operations per day and 
per hour leads to a limit model where prices and portfolio are continuous time processes. 
(In fact, it is a model where a trader can adjust the portfolio with increasingly high 
frequency.) Therefore, the corresponding continuous time market model for this limit can 
be useful. 

Let P(t) be a continuous time process that describes a stock price, and let 

be the corresponding discounted price. Here r>0 is the bank interest 
rate, τ>0 is given terminal time. 

Let us assume first that is a continuous non-constant function, such that the 

derivative is bounded. 

Let t0=0, tk+1=k∆, k=0,…, T, where Note that tn=τ. 

Consider discrete time discounted prices  
Consider the discrete time market model with discounted stock prices and with 

the self-financing strategy defined by the stock portfolio {γk}, where γk=g(tk), and where 

Let be the corresponding discounted wealth. We 
have that 

 

  

as ∆=maxk |tk+1−tk|→0, i.e., 

 

  

Hence 

 
  

It follows that a market model with differentiable is non-realistic. 

Let us consider a different model such that where 
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obeys the so-called square root law:2 
Var ξk~T−1,   

i.e., 

 

  

Therefore, 

 
  

i.e., 

   

This property of matches the one for the so-called diffusion (Ito) processes that are 
non-differentiable (they are studied below). To describe these processes, we need Ito 
calculus (or stochastic calculus). In fact, the diffusion market model (based on Ito 
calculus) is the ultimate continuous time model. 

2 It was Bachelier (1900) who first discovered that the square root law is a law for evolution of 
stock prices. In fact, Bachelier’s model can be approximated to the discrete time market such that 
St+1=St+ξt+1, t=1, 2,…, i.e., when St=ξ0+ξ1+…+ξt. (See also comment in Section 5.9.) 

Theorem 3.56 Consider the Cox-Ross-Rubinstein market model with T→+∞, and 
d1=−ε, d2=ε, ε=δT−1/2.   

Then the sequence is such that converges under P* in distribution 
to the log-normal random variable S0eη, where η~N(−δ2/2, δ2). (More precisely, 

any interval ) 
Proof. We have that 

 

  

where v is the (random) number of positive values +ε in the set of all values of ξt, t=1,…, 
T, and where v−=T−v. Hence 
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We have that 
ln(1+ε)=ε−ε2/2+O(ε3), ln(1−ε)=−ε−ε2/2+O(ε3).   

Here O(ε3) is a function such that 0(ε3)/ε3 is bounded as ε→0. 
Remember that v+v−=T. Hence 
v ln(1+ε)+v− ln(1−ε)=vε−ν−ε−Tε2/2+T·O(ε3).   

Here O(ε3) is a random variable such that O(ε3)/ε3 is bounded uniformly in Let 

 
  

We have that 
  

Clearly, and v has binomial law under P*. We 
have that v−v−=2ν−T, and  

 

  

By the de Moivre-Laplace theorem, we have that αT converges under P* in distribution to 
a Gaussian random variable N(0, 1), i.e.,  for any interval 

where ζ~N(0, 1). Hence converges in distribution under P* to 

where η~N(−δ2/2,δ2). Then the proof follows. 
Corollary 3.57 Let r>0 and ρ=ρ(T) be such that ρT→erτ as T→+∞. Under the 

assumptions of Theorem 3.56 and Corollary 3.52, 
ρ−TE*F(ST)→e−rτEF(erτS0eη) as T→+∞,   

where 

 
  

For the case of call and put options, the limit in the last corollary gives the so-called 
Black—Scholes price that will be discussed below. 
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3.12 Optimal portfolio selection 

In addition to the pricing problem, let us discuss briefly the problem of optimal portfolio 
selection. Consider the following portfolio selection problem: 

Maximize over self-financing admissible strategies. 

Here T is the terminal time is the discounted wealth at time t=0, 1,…, T, and U(·) is a 
given utility function that describes risk preferences. 

Let T=1, then the problem can be rewritten as 

 
(3.13) 

A solution γ0 of problem (3.13) can be found given the probability distribution of ξ1 and 
given U. 

Let U be a strictly convex function, then it can be shown that if Var ξ1>0 then 
EU(X0+γ0S0ξ1)→+∞ as |γ0|→+∞. Clearly, it is meaningless to estimate the performance 
of a strategy using this U, since this performance criterion leads to the strategies with 
infinitely large values of |γ0| which make no sense from a practical point of view. 
Therefore, the optimality criteria with strictly convex U are not practical. The most 
popular utility functions U are concave, for instance U(x)=ln x and U(x)=δ−1xδ, where 
δ<1 and δ≠0. Another important example of a concave utility function is U(x)=kx−µx2, 
where k>0 and µ>0 are some constants. Note that non-concave functions U are also used: 

for instance, if then The optimal 
strategy for this utility function maximizes the probability that the goal value K is 
achieved for the discounted wealth (i.e., it solves a goal-achieving problem).  

Problem 3.58 (mean-variance optimization). Assume that U(x)=kx−µx2, where k>0 
and µ>0 are some constants. Find optimal γ0 explicitly given Eξ1 and Var ξ1. 

To solve this problem, it suffices to represent the expected utility as 

where are constants, and c0>0. 
The solution to Problem 3.58 represents the special single-stock case of the celebrated 

Markowitz optimal portfolio in mean-variance setting (Markowitz 1959) which is widely 
used in practice for multi-stock markets. With some standard techniques from quadratic 
optimization, its solution can be used for practically interesting problems with constraints 
such as EX1→max, VarX1≤const., or VarX1→min, EX1≥const. 

Remark 3.59 The solution of the optimal investment problem for a discrete time 
market with T>1 is much more difficult. For instance, Markovitz’s results for quadratic U 
were extended for the case of T>1 only recently (Li and Ng, 2000). 
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3.13 Possible generalizations 

The discrete time market model allows some other variants, some of which are described 
below. 

• One can consider an additive model for the stock price, when St=S0+ξ1+ …+ξt. This 
approach leads to the very similar theory. Increasing frequency leads to a normal 
distribution of prices and allows St<0. 

• One can consider a multi-stock market model with N stocks Sit, i=1,…, N, N≥1, when 
γt={γit} are vectors of dimension N, and when the wealth is Xt=βtBt+ΣiγitSit. The model 
with N>1 has different properties compared with the case of N=1. For instance, as far 
as we know, there are no examples of complete discrete time markets with N>1. Some 
special effects can be found for N→+∞ (such as strategies that converge to arbitrage). 
Note also that the most widely used results in practice for optimal portfolio selection 
are obtained for the case of single-period multi-stock markets, i.e., with T=1 and N>1 
(Markowitz mean-variance setting). 

• Transaction costs (brokerage fees), bid-ask gap, gap between lending and borrowing 
rate, taxes, and dividends, can be included in the condition of self-investment. 

• Additional constraint can be imposed on the admissible strategies (for instance, we can 
consider only strategies without short positions, i.e., with γt≥0). 

• In fact, we addressed only the so-called ‘small investor’ setting, when the stock prices 
are not affected by any strategy. For a model that takes into account the impact of a 
large investor’s behaviour, (ρm, Sm) is affected by {γk}k<m. 

3.14 Conclusions 

• A discrete time market model is the most generic one, and it covers any market with 
time series of prices. Strategies developed for this model can be implemented directly. 
The discrete time model does not require the theory of stochastic integrals. 

• Unfortunately, discrete time models are difficult for theoretical investigations, and their 
role in mathematical finance is limited. A discrete time market model is complete only 
for the very special case of a two-point distribution (for the Cox-Ross-Rubinstein 
model and for a model from Remark 3.39). Therefore, pricing is difficult for the 
general case. Some useful theorems from continuous time setting are not valid for the 
general discrete time model. Many problems are still unsolved for discrete time market 
models (including pricing problems and optimal portfolio selection problems). 
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• The complete Cox-Ross-Rubinstein model of a discrete time market is the main tool in 
computational finance, since it leads to the so-called method of binomial trees for 
calculation of option prices. However, this model is restrictive because of a fixed norm 
of change of price for every step. Formally, the negative impact of this can be reduced 
by increasing the frequency, i.e., increasing the number of periods and decreasing the 
size of |ξk|. Obviously, this leads to numerical difficulties for the large number of 
periods. 

• Continuous time limit models allow a bigger choice of complete markets and provide 
more possibilities for theoretical investigations. 

3.15 Problems 

Discrete time market: self-financing strategies 

Problem 3.60 Consider a discrete time market model with free borrowing. Let the stock 
prices be S0=1, S1=1.3, S2=1.1. Let a self-financing strategy be such that the number of 
stock shares is γ0=1, γ1=1.2, γ2=1000. Let the initial wealth be X0=1. Find wealth X1, X2 
and the quantity of cash in a bank account βt, t=0, 1, 2, 3. 

Problem 3.61 Consider a discrete time bond-stock market model. Let the stock prices 
be S0=1, S1=1.3, S2=1.1. Let the bond prices be B0=1, B1=1.1B0, B2=1.05B1. Let a self-
financing strategy be such that the number of stock shares is γ0=1, γ1=1.2. Let the initial 
wealth be X0=1. Find the wealth X1, X2 and the quantity of bonds βt, t=0, 1, 2. 

Problem 3.62 Consider a discrete time bond—stock market with prices from Problem 
3.61. Let the initial wealth be X0=1. Let a self-financing strategy be such that the number 
of stock shares at the initial time be γ0=1/2. Find γ1, X1, X2, βi, i=0, 1, 2 for the constantly 
rebalanced portfolio. 

Solve Problems 3.11 and 3.12. 
Problem 3.63 (Make your own model). Introduce a reasonable version of the discrete 

time market model that takes into account transaction costs (a brokerage fee), and derive 
the equation for the wealth evolution for self-financing strategy here. (Hint: transaction 
costs may be per transaction, or may be proportional to the size of transaction or may be 
of a mixed type.) 

Discrete time market: arbitrage and completeness 

Solve Problem 3.29. 
Problem 3.64 Prove that an equivalent risk-neutral probability measure does not exist 

for Problem 3.29. 
Problem 3.65 Let a market model be such that ρt≡ρ, where ρ is non-random and 

given, {ξt} are independent, and let there exist such that 
for all t. Explain in which cases the market is arbitrage-free, allows 

arbitrage, complete or incomplete: 
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(i) ρ=1, a=b=0.1, c=−0.05, 

 
(ii) ρ=1.1, a=b=0.15, c=−0.05, 

 
(iii) ρ=1.1, a=b=0.15, c=1.1, 

 
(iv) ρ=1.1, a=b=0, c=−0.05, 

 
(v) ρ=1.1, a=0.05, b=0.1, c=−0.05, 
P(ξt=a)>0, P(ξt=b)>0, P(ξt=c)>0; 

(vi) ρ=1.1, a=−0.05, b=0.15, c=−0.05, 
P(ξt=a)>0, P(ξt=b)>0, P(ξt=c)>0. 

Problem 3.66 Let a market model be such that ρt≡ρ, where ρ is non-random and given, 

{ξt} are independent, and let there exist such that 

for all t, where Explain in which cases the market is arbitrage-free, allows 
arbitrage, complete or incomplete: 

(i) ρ=1, a=b=1.1, c=0.95, 
 

(ii) ρ=1.1, a=b=1.15, c=0.95, 
 

(iii) ρ=1.1, a=b=1.15, c=1.1, 

 
(iv) ρ=1.1, a=b=1, c=0.95, 

 
(v) ρ=1.1, a=1.05, b=1.1, c=0.95, 

P(ηt=a)>0, P(ηt=b)>0, P(ηt=c)>0; 
(vi) ρ=1.1, a=0.95, b=1.15, c=0.95, 

P(ηt=a)>0, P(ηt=b)>0, P(ηt=c)>0. 

Problem 3.67 Let be given such that a≤b, 
P(St/St−1=a)>0, and P(St/St−1=b)>0 for all t. In addition, let Bt= 1.07·Bt−1 for all t. Find 
conditions on a and b such that the market is arbitrage-free. 
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Option price for the Cox-Ross-Rubinstein model 

Problem 3.68 Consider the Cox-Ross-Rubinstein model such that 
Let Bt≡Bt−1, S0=1, F(S.)=max(ST−1.1, 0), ε=1/5, T=1. Find the fair price 

of the option. 

Problem 3.69 Consider the Cox-Ross-Rubinstein model such that 
Let Bt=1.1 Bt−1, S0=1, F(S.)=max(ST−1.2, 0), T=2. Find the fair price of 

the option. 

Challenging problem 

Problem 3.70 Consider the option described in Problem 3.44. Prove that there exists an 
American option (Definition 3.43) such that its fair price is equal to the fair price of the 
option from Problem 3.44. 
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4 
Basics of Ito calculus and stochastic 

analysis 

This chapter introduces the stochastic integral, stochastic differential equations, and core 
results of Ito calculus. 

4.1 Wiener process (Brownian motion) 

Let T>0 be given,  
Definition 4.1 We say that a continuous time random process w(t) is a (one-

dimensional) Wiener process (or Brownian motion) if 

(i) w(0)=0; 
(ii) w(t) is Gaussian with Ew(t)=0, Ew(t)2=t, i.e., w(t) is distributed as N(0, t); 
(iii) w(t+τ)−w(t) does not depend on {w(s), s≤t} for all t≥0, τ>0. 

Theorem 4.2 (N. Wiener). There exists a probability space such that there 
exists a pathwise continuous process with these properties. 

This is why we call it the Wiener process. The corresponding set Ω in Wiener’s proof 
of this theorem is the set C(0, T). Remember that C(0, T) denotes the set of all continuous 
functions f:[0, T]→R. 

Corollary 4.3 Let ∆t>0, then Var ∆w=∆t. 
Corollary 4.4 

 

  

This can be interpreted as  

 

  

This means that a Wiener process cannot have pathwise differentiable trajectories. Its 
trajectories are very irregular (but they are still continuous a.s.). 

Let us list some basic properties of w(t): 



• sample paths maintain continuity; 
• paths are non-differentiable; 
• paths are not absolutely continuous, and any path of the process (t, w(t)) is a fractal line 

in R2, or a very irregular set. 

Definition 4.5 We say that a continuous time process w(t) = (w1(t),…, wn(t)): [0, 
+∞)×Ω→Rn is a (standard) n-dimensional Wiener process if 

(i) wi(t) is a (one-dimensional) Wiener process for any i=1,…, n; 
(ii) the processes {wi(t)} are mutually independent. 

Remark 4.6 Let be a matrix such that Then the 

process is also said to be a Wiener process (but not a standard Wiener 
process, since it has correlated components). 

We shall omit the word ‘standard’ below; all Wiener processes in this book are 
assumed to be standard. 

For simplicity, one can assume for the first reading that n=1, and all 
processes used in this chapter are one-dimensional. After that, one can 
read this chapter again taking into account the general case. 

Proposition 4.7 A Wiener process is a Markov process. 
Proof. We consider an n-dimensional Wiener process w(t). Let be the filtration 

generated by w(t). We have that w(t+τ)=w(t+τ)−w(t)+w(t). Further, let times {ti} and s 
be such that ti>s, i=1,…, k. Clearly, w(s) is measurable and does not depend on 

For any bounded measurable function F:Rnk→R, we have that 

 

  

for some measurable functions F1:Rnk→R and F2:Rn→R. It follows that w(s) is a Markov 
process. 

Proposition 4.8 Let be a filtration such that an n-dimensional Wiener process w(t) 
is adapted to and w(t+τ)−w(t) does not depend on Then w(t) is a martingale with 
respect to  

Proof. We have that w(t+τ)=w(t+τ)−w(t)+w(t). Hence 

 

  

since w(t+τ)−w(t) does not depend on Therefore, the martingale property holds. 
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Corollary 4.9 A Wiener process w(t) is a martingale. (In other words, if is the 
filtration generated by w(t), then w(t) is a martingale with respect to ) 

Up to the end of this chapter, we assume that we are given an n-dimensional Wiener 
process w(t) and the filtration such as described in Proposition 4.8. One may assume 
that this filtration is generated by the process (w(t), η(t)), where η(S) is a process 
independent from w(·). We assume also that where T>0 is given deterministic 
terminal time. 

4.2 Stochastic integral (Ito integral) 

Stochastic integral for step functions 

Let w(t) be a one-dimensional Wiener process. Repeat that is a filtration such as 
described in Proposition 4.8. 

Notation: Let be me set of functions f(t, ω) such that there exists an 
integer N>0, a set of times 0=t0<t1<…<tN=T, and a sequence 

such that f(t)=ξk for  
Clearly, all these functions are pathwise step functions. 

Problem 4.10 Prove that, in the definition above, ξk are  

Definition 4.11 Let The value 

 

  

is said to be the Ito integral of f, or stochastic integral, and it is denoted as 

i.e.,  

 

  

Theorem 4.12 Let Then 

(i)  

(ii)  

(iii)  

Proof is straightforward and follows from the definitions given above. 
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Theorem 4.13 Let Then  

Cauchy sequences in  

First, let us describe some properties of random variables from  
Definition 4.14 Let and let be a sequence 

such that E|ξk−ξ|2→0. Then we say that this sequence converges to ξ in (or 
ξk→ξ as k→+∞ in or ξ=lim ξk in  

Remember that is the set of classes of P-equivalent random variables 
from 1 

Definition 4.15 Let be a sequence such that, for any ε>0, there 
exists N>0 such that E|ξk−ξm|2<ε for all k and m such that k>N, m>N. Then we call this 
sequence a Cauchy sequence in  

Theorem 4.16 

(i) Any Cauchy sequence {ξk} in has a unique limit in In 
other words, there exists a unique (up to P-equivalency) element 
such that ξi→ξ in  

(ii) Let and let be a sequence. If ξk→ξ in 
then Eξk→Eξ and E|ξk|2→E|ξ|2. 

(iii) Let and let be 
some sequences. If ξk→ξ and ηk→η in then Eξkηk→Eξη. 

Ito integral for general functions 

Notation: We denote by the set of all random processes that can be approximated by 

processes from in the following sense: for any there exists a sequence 

such that as k→+∞  

1 We do not need to refer to the definition of Banach and Hilbert spaces and their properties that 
are usually studied in functional analysis or function spaces courses. However, it may be useful to 
note that is a Banach space and a Hilbert space with the norm ||ξ ||=(E|ξ |2)1/2. 

Note that all processes from are adapted to the filtration (more precisely,if 
then f(t) is for a.e. (almost every) t.2 

Theorem 4.17 Let and let be such that 
as k→+∞. Then is a Cauchy sequence in where 
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This sequence converges in and its limit depends 
only on f and does not depend on the choice of the approximating sequence (in the sense 
that all possible modifications of the limit are P-equivalent). 

Definition 4.18 The limit of I(fk) in from the theorem above is said to be 
the Ito integral (stochastic integral) 

 

  

Theorem 4.19 Let Then 

(i)  

(ii)  

(iii)  

Proof follows from the properties for approximating functions from  
Theorem 4.20 Let Then 

(i)  

(ii)  

(iii)  

Proof follows again from the properties for approximating functions from  
Definition 4.21 A modification of a process ξ(t, ω) is any process ξ′(t, ω) such that 

ξ=(t, ω))=ξ′(t, ω) for a.e. t, ω.  

2 In fact, processes are measurable as mappings ξ:[0, T]×P→R with respect to the 

completion of the σ-algebra generated by all mappings ξ0:[0, T]×P→R such that  

Theorem 4.22 Let T>0 be fixed, and let Then the process is 
pathwise continuous in (more precisely, there exists a modification of the 

process that is continuous in a.s. (i.e., with probability 1, or for 
a.e. (almost every) ω). 
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Note that 

(i) a stochastic integral is defined up to P-equivalency; 
(ii) it is not defined pathwise, i.e., we cannot construct it as a function of T for a fixed ω). 

Ito integral for a random time interval 

Let be the filtration generated by the Wiener process w(t), and let Let τ be a 
Markov time with respect to Then In that case, we 
can define the Ito integral for a random time interval [0, τ] as 

 

  

It follows that 

 

  

In particular, it can be shown that hence Ew(τ)=0. Note 
that it holds for Markov times τ and may not hold for arbitrary random time τ. For 
instance, if time τ is such that then τ is not a Markov time and 
Ew(τ)>0. 

In addition, 

 

  

Vector case 

Let w(t) be an n-dimensional Wiener process, and let be a filtration such as described 
in Proposition 4.8. Let f=(f1,…, fn):[0,T]×Ω→R1×n be a (vector row) process such that 

for all i. Then we can define the Ito integral 

 

  

The right-hand part is well defined by the previous definitions. 

Ito processes 

Definition 4.23 Let w(t) be an n-dimensional Wiener process, 
Let a random process β=(β1,…, βn) take values in R1×n, and let 

for all i. Let 
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Then the process y(t) is said to be an Ito process. The expression 
dy(t)=α(t)dt+β(t)dw(t)   

is said to be the stochastic differential (or Ito differential) of y(t). The process α(t) is said 
to be the drift coefficient, and β(t) is said to be the diffusion coefficient. 

Theorem 4.24 An Ito process 

 

  

is a martingale with respect to if and only if α(t)≡0 up to equivalency. 
Proof. By Theorem 4.20, it follows that if α≡0 then y is a martingale. Proof of the 

opposite statement needs some analysis. 

4.3 Ito formula 

One-dimensional case 

Let us assume first that are one-dimensional processes, and w(t) is a one-
dimensional process 

 

  

i.e., y(t) is an Ito process, and 
dy(t)=α(t)dt+β(t)dw(t).   

Let V(·, ·):R×[0, T]→R be a continuous function such that its derivatives are 
continuous (and such that some additional conditions on their growth are satisfied). 

Theorem 4.25 (Ito formula, or Ito lemma). The process V(y(t), t) is also an Ito 
process, and its stochastic differential is 

(4.1) 

Note that the last equation can be rewritten as 

 
  

where is the differential operator 
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Remark 4.26 In fact, the formula for the drift and diffusion coefficients of the process 
V(y(t), t) was first obtained by A.N.Kolmogorov as long ago as 19313 for the special case 
when y(t) is a Markov (diffusion) process. It gives (4.1) for this case (see Shiryaev 
(1999), p. 263, where it was outlined that it would be natural to call it the Kolmogorov-
Ito formula). 

Proof of Theorem 4.25 is based on the Taylor series and the estimate 

   

where (∆w)2~∆t. 
Example 4.27 Let y(t)=w(t)2, then dy(t)=2w(t)dw(t)+dt. 
Let  
dyi(t)=αi(t)dt+βi(t)dw(t), i=1, 2.   

Theorem 4.28 Let then  
dy(t)=y1(t)dy2(t)+y2(t)dy1(t)+β1(t)β2(t)dt.   

3 Mathematische Annalen 104 (1931), 415–458. 

The vector case 

Let us assume first that w(t) is an n-dimensional Wiener process. Let random processes 
a=(a1,…, am) and β={βij} take values in Rm and Rm×w respectively, and let and 

for all i, j. Let y(t) be an m-dimensional Ito process, and 
dy(t)=α(t)dt+β(t)dw(t),   

i.e., 

 

  

Here βi are the columns of the matrix β. (It is an equation for a vector process that has not 
been formally introduced before; we simply require that the corresponding equation holds 
for any component). Let V(·, ·):Rm×[0, T]→R be a continuous function such that the 

derivatives are continuous (and such that some additional conditions on their 

growth are satisfied). Note that takes values in R1×m, and takes values in Rm×m. 
Theorem 4.29 (Ito formula for the vector case). The process V(y(t), t) is also an Ito 

process, and its stochastic differential is 
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Note that the last equation can be rewritten as 

 
  

where is the differential operator 

 

  

In addition, it can be useful to note that 

 

  

where Tr denotes the trace of a matrix (i.e., the summa of all eigenvalues). 
Problem 4.30 Prove that Theorem 4.28 follows from Theorem 4.29. 

4.4 Stochastic differential equations (Ito equations) 

4.4.1 Definitions 

Let f(x, t, ω):Rm×[0, T]×Ω→Rm and b(x, t, ω):Rm×[0, T]×Ω→Rm×n be some functions. 
Let the processes f(x, t, ω) and b(x, t, ω) be adapted to the filtration for all x. 

Definition 4.31 Let a=(a1,…, am) be a random vector with values in Rm such that 
Let an m-dimensional process y(t)=y1(t),…, ym(t) be such that 

and 

 

  

We say that the process y(t), is a solution of the stochastic differential 
equation (Ito equation) 

 
(4.2) 
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Let be the set of functions f:[s, T]×Ω→R defined similarly to  
Definition 4.32 Let and let a=(a1,…, am) be a random vector with values 

in Rm such that Let an m-dimensional process y(t)=y1(t),…, ym(t) 
be such that and  

(4.3) 

We say that the process y(t), is a solution of the stochastic differential 
equation (Ito equation) 

 
(4.3) 

Problem 4.33 Does it make a difference if one requires that (4.3) holds a.s. for all t 
(instead of ‘for all t a.s.’)? 

Example 4.34 The following result is immediate. Let 
The equation  

 
(4.5) 

has a solution 

 

  

Remark 4.35 For the case when f(x, t):Rm×[0, T]→Rm and b(x, t):Rm× [0, T]→Rm×n are 
non-random, the solution y(t) of equation (4.2) is a Markov process. In that case, it is 
called a diffusion process. 

For the general case of random f or b, the process y(t) is not a Markov process; in that 
case, it is sometimes called a diffusion-type process (but not a diffusion process). 

In particular, if n=m=1, f(x, t)≡ax, b(x, t)≡σx, then the equation for y(t) is the equation 
for the stock price dS(t)=S(t)[adt+σdw(t)], which we will discuss below. 

4.4.2 The existence and uniqueness theorem 

Theorem 4.36 (The existence and uniqueness theorem). Let (random) functions f(x, t, 
ω):Rm×[0, T]×Ω→Rm, b(x, t, ω):Rm×[0, T]×Ω→Rm×n be continuous in (x, t) with 
probability 1. Further, let the processes f(x, ·) and b(x, ·) be for all x, and let 
there exist a constant C>0 such that 

|f(x, t, ω)|+|b(x, t, ω)|≤C(|x|+1), 
|f(x, t, ω)−f(x1, t, ω)|+|b(x, t, ω)−b(x1, t, ω)|≤C|x-x1| 
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for all a.s. Let and let Then 
equation (4.4) has a unique solution (unique up to equivalency). 

Here and below denotes the Euclidean norm for and 

denotes the Frobenius matrix norm for  
We shall deal mostly with Ito equations with known solutions, when it can be verified 

that the Ito equation is satisfied. However, a question arises over whether this solution is 
unique. Therefore, for our purposes, it is more important to prove the uniqueness claimed 
in the theorem. Let us prove the uniqueness only. 

Proof of Theorem 4.36 (uniqueness). Let yi(t) be two solutions. We have that  

 

  

Hence 

 

  

We have used here the inequality (a+b)2≤2a2+2b2, and the inequality 
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that holds for all square integrable functions g:[0, t]→R. 
Proposition 4.37 (Bellman inequality). Let T>0 and ki≥0 be given, i=1, 2. Then there 

exists C>0 such that for any function m(·): [0, T]→R such that 

 

  

Let and  
We have that 

 

  

By Bellman inequality, it follows that 0≤m(t)≤0, i.e., m(t)≡0, i.e., y1(t)=y2(t) a.s. for all t. 
This completes the proof of the uniqueness in Theorem 4.36. 

Note that the solution of the Ito equation (4.4) is not defined backward (i.e., for t<s); 
in other words, the Cauchy condition y(s)=a cannot be imposed at the end of the time 
interval. This is different from the case of ordinary differential equations, where the 
simple change of time variable from t to −t makes forward and backward equations 
mutually interchangeable. 

4.4.3 Continuous time white noise 

Sometimes, especially in engineering literature, the Ito equation appears in the form 

 

(4.6) 

This way is legitimate, provided that integral equation (4.3) is assumed. In that case, we 
do not need to give an interpretation for [dw/dt](t). (Remember that the process w(t) is 
non-differentiable, and y(t) is also non-differentiable.) Alternatively, the derivative dw/dt 
can be defined in a class of so-called generalized random processes (constructed similarly 
to the generalized deterministic functions such as the delta function). This generalized 
process dw/dt is a continuous time analogue of the discrete time white noise. This 
approach is used mainly for the case of linear equations with constant b in control system 
theory. 

4.4.4 Examples of explicit solutions for Ito equations 

In Problems 4.38, 4.39, and 4.41 below, we assume that n=m=1. 
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Processes with log-normal distributions 

Problem 4.38 Let Show that the equation 

 
(4.7) 

has the unique solution 

 

  

Hint 1: For the uniqueness, use the existence and uniqueness Theorem 4.36. 
Hint 2: Apply the Ito formula for y(t). For instance, set V(x, t)=ex, ξ(t)= In 

y0+at−(σ2/2)/t+σw(t). Then the process y(t)=V(ξ(t), t) is such that y(0)=y0. The Ito 
formula should be used to verify that the stochastic differential equation is satisfied for 
the process y(t)=V(ξ(t), t). 

Problem 4.39 Let Show that the equation 

 
(4.8) 

has the unique solution 

 

  

Note that the solutions of equations (4.7) and (4.8) are distributed log-normally 
conditionally given ys. 

A generalization 

Problem 4.40 Let w(t) be an n-dimensional Wiener process, let 
σ(t)=(σ1(t),…, σn(t)) be a process with values in R1×n such that and let some 
conditions on the growth for a, σ be satisfied (it suffices to assume that they are 
bounded). Let Show that the equation 

 
(4.9) 

has the unique solution 
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Ormtein-Uhlenbek process 

Problem 4.41 Let Show that the equation 

 
(4.10) 

has a unique solution 

 

  

Hint: use that  

 

  

If λ>0, then the solution y(t) of (4.10) is said to be an Ornstein-Uhlenbek process. This 
process converges (in a certain sense) to a stationary Gaussian process as t→+∞ 
(continuous time stationary processes; this convergency will be discussed in Chapter 9). 

4.5 Diffusion Markov processes and Kolmogorov equations 

One-dimensional case 

Let (non-random) functions f:R×[0, T]→R and b:R×[0, T]→R be given. Let y(t) be a 
solution of the stochastic differential equation 

 
(4.11) 

We shall denote this solution as ya,s(t). As was mentioned above, this process is called a 
diffusion process; it is a Markov process. 

Let functions Ψ:R→R and φ:R×[0, T]→R be such that certain conditions on their 
smoothness and growth are satisfied (for instance, it suffices to assume that they are 
continuous and bounded). 

Let V(x, s) be the solution of a Cauchy problem for the parabolic equation 

 

(4.12) 

Here  
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Note that (4.12) is a so-called backward parabolic equation, since the Cauchy condition is 
imposed at the end of the time interval. 

We assume that the functions f, b, Ψ, φ are such that this boundary value problem 

(4.12) has a unique solution V such that it has continuous derivatives and  
Theorem 4.42  

 
  

Proof. By the Ito formula, 

 

  

Then the proof follows. 

Vector case 

Let w(t) be an n-dimensional Wiener process. Let (non-random) functions f:Rm×[0, 
T]→Rm and b:Rm×[0, T]→Rm×n be given, Let y(t) be a solution of the 
stochastic differential equation 

 
(4.13) 

We shall denote this solution as ya,s(t). 
Let functions Ψ:Rm→R and φ:Rm×[0, T]→R be such that certain conditions on their 

smoothness and growth are satisfied (it suffices again to assume that they are continuous 
and bounded). 

Let V(x, s) be the solution of the Cauchy problem for the parabolic equation 

 

(4.14) 

Here  
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Here bi are the columns of the matrix b. 
Again, (4.12) is a so-called backward parabolic equation, since the Cauchy condition 

is imposed at the end of the time interval. 
Theorem 4.43 

 

  

Proof repeats the proof of Theorem 4.42. 
The following corollary gives the probabilistic representation of the solution V of the 

Cauchy problem for the parabolic equation. 
Corollary 4.44 

 

  

Case of a bounded domain 

The same approach is used for boundary value problems for parabolic equations: the 
solution can be represented via expectation of a function of a random process. If there is a 
boundary of the domain, then these functions include first exit time from the domain for 
the random process. 

Let be a domain with the boundary ∂D. 

Under the assumptions of Theorem 4.43, let  
Let the domain D have a regular enough boundary ∂D, and let functions ψ: D→R and 

φ:D→R be such that certain conditions on their smoothness and growth are satisfied (for 
instance, it suffices to assume that they are continuous and bounded). 

Let V(x, s) be the solution of the boundary problem for the parabolic equation 

 

(4.15) 

Theorem 4.45 
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Proof is again similar to the proof of Theorem 4.42. 
The following corollary gives the probabilistic representation of V. 
Corollary 4.46 

 

  

Remark 4.47 A similar approach can be used for Dirichlet problems for elliptic 
equations: their solution can be represented via functions of diffusion processes with 
time-independent coefficients and with infinite time horizon T=+∞. 

Some terminology 

• The differential operator is said to be the differential operator generated by the 
process y(t). 

• Equation (4.12) is said to be the backward Kolmogorov (parabolic) equation for the 
process y(t) (or Kolmogorov-Fokker-Planck equation). Historically, diffusion Markov 
processes were studied via these equations before the appearance of the Ito calculus. 
The novelty of the Ito calculus was that it gave a very powerful method that covers 
very general settings, in particular non-Markov processes. 

• The equation for the probability density function of y(t) is called the forward 
Kolmogorov equation (forward Kolmogorov-Fokker-Planck equation). It is the so-
called adjoint equation for equation (4.12) and it can be derived from (4.12). 

For the examples below, we assume that n=m=1. 
Example 4.48 Let y(t)=yx,s(t) be a solution of the stochastic differential equation 

 

  

Here are given. Then the function u(x, s)=EΨ(yx,s(T)) can be 
represented as the solution of the Cauchy problem for the parabolic equation 

 

  

It suffices to apply Theorem 4.42 with f(x, t)≡ax, b(x, t)≡σx, and the corresponding 
operator is 

 

  

Example 4.49 The Cauchy problem for the heat equation (heat parabolic equation) is 
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allows solution  
u(x, s)=EΨ(yx,s(T))=EΨ(w(T)−w(s)+x)=EΨ(η), 

(4.16) 

where η=w(T)−w(s)+x is Gaussian with law N(x, T−s). It suffices to apply Theorem 4.42 
with f≡0, b≡1, then yx,s(t)=w(t)−w(s)+x, and the corresponding operator is 

 
In Example 4.49, representation (4.16) is said to be the probabilistic representation of 

the solution. In particular, it follows that 

 

  

where 

 

  

is the probability density function for N(x, T−s). Note that this function is also well 
known in the theory of parabolic equations: it is the so-called fundamental solution of the 
heat equation. 

The representation of functions of the stochastic processes via solution of parabolic 
partial differential equations (PDEs) helps to study stochastic processes: one can use 
numerical methods developed for PDEs (i.e., finite differences, fundamental solutions, 
etc.). 

On the other hand, the probabilistic representation of a solution of parabolic PDEs can 
also help to study PDEs. For instance, one can use Monte Carlo simulation for numerical 
solution of PDEs. Some theoretical results can also be proved easier with probabilistic 
representation (for example, the so-called maximum principle for parabolic equations 
follows from this representation: if φ≥0 and Ψ≥0 in (4.15), then V≥0). 

Remark 4.50 It follows that the diffusion process y(t) can be considered as the 
characteristics of the parabolic equation, by an analogy with the first-order hyperbolic 
equations (the case of b≡0). It is known from physical models that the propagation 
described by the first-order hyperbolic equations has a bounded speed, and that the speed 
of heat propagation is infinite, i.e., the ‘physical’ diffusion process has unlimited speed. 
This fact is linked with non-differentiability of y(t). 
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4.6 Martingale representation theorem 

In this section, we assume that w(t) is an n-dimensional vector process, is the filtration 
generated by w(t), and a wider filtration is not allowed. 

The following result is known as the Clark theorem or Clark-Hausmann-Ocone 
theorem. 

Theorem 4.51 Let Then there exists an n-dimensional process 
f=(f1,…, fn) with values in R1×n such that for all i and 

 

  

Proof. (a) Let us consider first the case when where 
and where gk:Rn→R are some measurable 

bounded functions, k=1,…, n. Let m=1, then the theorem’s statement follows from 
Theorem 4.43 applied for Ψ(x)=g1(x), T=t1, and y0,0 (t)=w(t). 

For m>1, we use the induction by m. Therefore, it suffices to show that if the theorem 

holds for m−1, then it implies that it holds for m. Let Let us 
assume that there exists an n-dimensional process fm−1= (fm−1,1,…, fm−1,n) with values in 
R1×n such that for all i and 

 

  

(It is the induction assumption.) Clearly, and 

 

  

By the Markov property of w(t), it follows that there exists a measurable bounded 

function such that Hence 

where It follows that 

 

  

Basics of Ito Calculus and Stochastic Analysis     67



By Theorem 4.43 applied for and T=tm, we have that there exists an n-

dimensional process with values in R1×n and with components from such that 

 

  

Then the proof follows for this special ξ. 
(b) By the linearity of the Ito integral, the proof follows for all random variables 

with some constants ck, and with random events 

where and 

where Jik are measurable subsets of Rn. (Note that so the 

theorem statement proved in (a) can be used for )  
(c) For the case when is of the general type, the proof follows from the fact 

that the set of random variables described in (b) is dense in (We omit this 
part.) 

Note that Theorem 4.51 allows equivalent formulation as the following martingale 
representation theorem. 

Theorem 4.52 Let ξ(t) be a martingale with respect to the filtration generated by a 
Wiener process w(t) such that Eξ(T)2<+∞. Then there exists a process f(t) with values in 
R1×n and with components from such that 

 

  

Proof. Apply Theorem 4.51 to ξ(T). 
Corollary 4.53 Any martingale described in Theorem 4.52 is pathwise continuous. 
Problem 4.54 Prove that the process f(t) in Theorems 4.51 and 4.52 is uniquely 

defined up to equivalency. 

4.7 Change of measure and the Girsanov theorem 

In this section, we assume again that is a filtration such that an n-dimensional Wiener 
process w(t) is adapted and w(t+τ)−w(t) does not depend on In particular, we 
allow that is the filtration generated by the process (w(t), η(t)), where η(t) is a random 
process that does not depend on w(·). 

Let θ(t)=(θ1(t),…, θn(t)) be a bounded random process with values in Rn 
and with components from  

Let 

 
(4.17) 
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Change of the probability measure 

Proposition 4.55 Let the process θ be bounded.4 Then 

(i)  

4 Instead of boundedness of θ, we could assume that the less restrictive so-called Novikov’s 
condition is satisfied: 

 
  

Clearly, this condition is satisfied for all bounded processes θ. 

(ii) Let mapping be defined via the equation 

 (4.18) 

Then P* is a probability measure on equivalent to the original measure P. 
Remember that (4.18) means that 

 

  

i.e., 

   

and 

   

for any integrable random variable ξ (see Section 1.4). 
Proof of Proposition 4.55. Let us prove (i). We have that where y(t) is 

the solution of the equation 

 

  

Then 

 

  

Hence To prove (ii), it suffices to verify that all probability 
axioms are satisfied. For instance, we have that  

Example 4.56 We have  
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Example 4.57 Let n=1. We have that Let θ be non-random 
and constant, then 

 

  

Girsanov’s theorem 

Let 

 

  

The following is a special case of the celebrated Girsanov’s theorem. 
Theorem 4.58 Let the assumptions of Proposition 4.55 be satisfied, and let the 

measure P* be defined via the equation 

 
  

Then w*(t) is a Wiener process under P*. 
Proof of Theorem 4.58. We are going to prove only that 

 (4,19) 

for all deterministic continuous functions f(·):[0, T]→R1×n. (In fact, it suffices; it follows 
that w(·) and w*(·) have the same distributions as processes in and 

respectively.) 
Let 

   

Proposition 4.59 

 

  

Proof of Proposition 4.59. Let y(t) be the solution of the equation 
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Then 

 

  

Hence Ey(T)=1. On the other hand, 

 

  

This completes the proof of Proposition 4.59. 

Proposition 4.60 E for all 
deterministic continuous functions f(·):[0, T]→R1×n. 

Proof. Apply Proposition 4.59 with θ(t)≡0. 
Let us complete the proof of Theorem 4.58. We have that 

 

  

It follows from Propositions 4.59 and 4.60 that 

 
  

This completes the proof of Theorem 4.58. 
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Example 4.61 Let us reconsider Example 4.57. We have that 

Hence 

 

  

(Remember that w* is a Wiener process with respect to P*, hence E*w*(T)=0.) One can 

verify that the integral in Example 4.57 has the value for the 
case of non-random and constant θ.  

4.8 Problems  
Problems  

In these problems, all processes are one-dimensional. 

Ito integral 

Problem 4.62 Let Find explicitly 

(i.e., express these integrals as functions of w(·)). 
Problem 4.63 Let f and g be defined in the previous problem. Find 

 
Problem 4.64 Let Find explicitly 

(i.e., express the integrals as functions of w(·)). 
Problem 4.65 Let f be defined in the previous problem. Let Find 

 

Problem 4.66 Let f(t)=et, g(t)=w(t). Find 

 
Problem 4.67 Let f(t)=et, g(t)=e−2t. Let be the filtration generated by w(t). Find 
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Ito differential and Ito formula 

Problem 4.68 Let y(t)=w(t)2. Prove that dy(t)=2w(t)dw(t)+dt. 
Problem 4.69 Let y(t)=w(t)3. Find dy(t). Find Ey(t). 
Problem 4.70 Let y(t)=w(t)4. Find dy(t). Find Ey(t). 
Problem 4.71 Let y(t)=sin w(t). Find dy(t). 
Problem 4.72 Let y(t)=sin z(t), where z(t)=w(t)2+t. Find dy(t). 
Problem 4.73 Let y(t)=cos z(t), where z(t)=w(t)2−t. Find dy(t). 
Problem 4.74 Let y(t)=ew(t). Prove that dy(t)=y(t)dw(t)+(1/2)y(t)dt. Find dy(t). Find 

Ey(t). 
Problem 4.75 Let y(t)=ew(t)−t/2. Prove that dy(t)=ydw(t). Find Ey(t). 
Problem 4.76 Let y(t)=e2w(t)+3t. Find dy(t). Find Ey(t). 
Problem 4.77 Let y(t)=ew(t), x(t)=w(t). Find d(y(t)x(t)). 

Ito equations 

Solve Problems 4.38−4.41. 
Problem 4.78 For Problem 4.41, find equations for Ey(t) and Ey(t)2. 
Problem 4.79 Show that the equation 

 
(4.20) 

has a solution y(t)=w(t)2/2, t≥0. Can we apply the existence and uniqueness theorem 4.36 
to verify the uniqueness? 

Markov processes and Kolmogorov equations 

Problem 4.80 Find the probabilistic representation of solutions of the Cauchy problem 
for the parabolic equation 

 

  

Problem 4.81 Let y(t)=ya,s(t) be a solution of the stochastic differential equation 

 
(4.21) 

Find deterministic equations for the function u(x, s)=EΨ(yx,s(T)) for a given function Ψ. 
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Problem 4.82 Let y(t)=ya,s(t) be a solution of the stochastic differential equation  

 
 

Find deterministic equations for the function u(x, s)=EΨ(yx,s(T)) for a given function Ψ. 
Problem 4.83 Let f(x, t)≡sin x, b(x, t)≡sin(x−1). Find deterministic equations for the 

function u(x, s)=EΨ(yx,s(T)) for a function Ψ. 
Problem 4.84 Given a function Ψ, find the probabilistic representation of the solution 

of the Cauchy problem for the parabolic equation 
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5 
Continuous time market models 

In this chapter, the most mainstream models of markets with continuous time are studied. 
These models are based on the theory of stochastic integrals (stochastic calculus); stock 
prices are represented via stochastic integrals. Core concepts and results of mathematical 
finance are given (including self-financing strategies, replicating, arbitrage, risk-neutral 
measures, market completeness, and option price). 

5.1 Continuous time model for stock price 

We assume that we are given a standard complete probability space (see 
Chapter 1). Sometimes we shall address P as the original probability measure. Other 
measures will also be used. 

Consider a risky asset (stock, bond, foreign currency unit, etc.) with time-series prices 
S1,S2,S3,…, for example daily prices. The premier model of price evolution is such that 
Sk=S(tk), where S(t) is a continuous time Ito process. (Note that Ito processes are pathwise 
continuous. For a more general model, continuous time process S(t) may have jumps; this 
case will not be considered here.) 

We consider evolution of the price S(t) for where t is time, T is some 
terminal time. 

The initial price S0>0 is a given non-random value, and the evolution of S(t) is 
described by the following Ito equation: 

dS(t)=S(t)(a(t)dt+σ(t)dw(t)). 
(5.1) 

Here w(t) is a (one-dimensional) Wiener process, and a and σ are market parameters. 
Sometimes in the literature S(t) is called a geometric Brownian motion (for the case of 

non-random and constant a, σ), sometimes ln S(t) is also said to be a Brownian motion. 
Mathematicians prefer to use the term ‘Brownian motion’ for w(t) only (i.e., Brownian 
motion is the same as a Wiener process). 

Definition 5.1 In (5.1), a(t) is said to be the appreciation rate, σ(t) is said to be the 
volatility. 

Note that, in terms of more general stochastic differential equations, the coefficient for 
dt (i.e., a(t)S(t)) is said to be the drift (or the drift coefficient), and the coefficient for 
dw(t) (i.e., σ(t)S(t)) is said to be the diffusion coefficient. 

Definition 5.2 If σ(t) is such that σ(t)≠0 a.e. (i.e., for almost every t with probability 
1), then equation (5.1) (and the market model) is said to be non-degenerate 



We assume that there exists a random process η(t) that does not depend on w(·). This 
process describes additional random factors presented in the model besides the driving 
Wiener process w(t). 

Let be the filtration generated by (w(t),η(t)), and let be the filtration generated 
by the process w(t) only. 

It follows that and that w(t+τ)−w(t) does not depend on for all t and 
τ>0. (Note that the case when is not excluded.) 

We assume that the process (a(t), σ(t)) is In particular, it follows that 
(a(t), σ(t)) does not depend on w(t+τ)−w(t) for all t and τ>0. 

Without loss of generality, we assume that  
Remark 5.3 The assumptions imposed imply that the vector (r(t), a(t), σ(t)) can be 

presented as a deterministic function of  
Let us discuss some basic properties of the Ito equation (5.1). 
Lemma 5.4 

 

  

Proof follows from the Ito formula (see Problem 4.40). 
Note that the stochastic integral above is well defined. 
The process S(t) has the following properties (for the case of non-zero σ): 

• sample paths maintain continuity; 
• sample paths are non-differentiable; 
• if a, σ are deterministic and constant, then 

 

  

• if a, σ are deterministic, then the probability distribution of S(t) is log-normal (i.e., its 
logarithm follows a normal law); 

• if a, σ are deterministic, then the relative increments [S(t)−S(τ)]/S(τ) are independent 
from the past prices S(s)|s≤τ for 0≤τ<t; 

• if a, σ are deterministic and constant, then the probability distribution of relative 
increments does not depend on time shift. More precisely, the probability distribution 
of [S(t)−S(τ)]/S(τ) is identical to the distribution of [S(t−τ)−S(0)]/S(0), 0≤τ<t. 

5.2 Continuous time bond-stock market model 

The case of the market with a non-zero interest rate for borrowing can be described via 
the following bond—stock model. 

We introduce a market model consisting of the risk-free bond or bank account with 
price B(t) and the risky stock with the price S(t), t>0. The initial prices S(0)>0 and B(0)>0 
are given non-random variables. We assume that the bond price is 

Mathematical Finance     76



 
(5.2) 

where r(t) is the process of the risk-free interest rate. We assume that the process r(t) is 
(in particular, it follows that r(t) does not depend on w(t+τ)− w(t) for all t, 

τ>0). Typically, it suffices to consider non-negative processes r(t) (however, we do not 
assume this, because it can be restrictive for some models, especially for bond markets). 

Let X(0)>0 be the initial wealth at time t=0, and let X(t) be the wealth at time t>0. We 
assume that, for t≥0, 

X(t)=β(t)B(t)+γ(t)S(t). 
(5.3) 

Here β(t) is the quantity of the bond portfolio, y(t) is the quantity of the stock portfolio. 
The pair (β(·), γ(·)) describes the state of the bond-stocks portfolio at time t. Each of these 
pairs is called a strategy (portfolio strategy). 

We consider the problem of trading or choosing a strategy in a class of strategies that 
does not use future values of (S(t), r(t)). Some constraints will be imposed on current 
operations in the market, or in other words, on strategies. 

Definition 5.5 A pair (β(·), γ(·)) is said to be an admissible strategy if β(t) and γ(t) are 
random processes adapted to the filtration and such that 

 
(5.4) 

Definition 5.6 A pair (β(·), γ(·)) is said to be a self-financing strategy, if  
dX(t)=β(t)dB(t)+γ(t)dS(t). 

(5.5) 

Note that condition (5.4) ensures that the process X(t) is well defined by equation (5.5) as 
an Ito process. 

We allow negative β(t) and γ(t), meaning borrowing and short positions. 
We shall consider admissible self-financing strategies only. 
Remark 5.7 In literature, a definition of admissible strategies may include 

requirements that the risk is bounded. An example of this requirement is the following: 
there exists a constant C such that X(t)≥C for all t a.s. For simplicity, we do not require 
this. 

Remark 5.8 The case of r(t)≡0 corresponds to the market model with free borrowing. 

Some strategies 

Example 5.9 For risk-free, ‘keep-only-bonds’, the strategy is such that the portfolio 
contains only the bonds, γ(t)≡0, and the corresponding total wealth is 
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Example 5.10 Buy-and-hold strategy is a strategy when γ(t)>0 does not depend on 
time. This strategy ensures a gain when the stock price is increasing. 

Example 5.11 Merton’s type strategy is a strategy in a closed-loop form when 

γ(t)=µ(t)θ(t)X(t), where µ(t)>0 is a coefficient, X(t) is the wealth, 

is the so-called market price of the risk process. This strategy is 
important since it is optimal for certain optimal investment problems (including 
maximization of E ln X(T)). 

Example 5.12 (‘buy low, sell high’ rule). Let T=+∞. Consider a strategy when 
where C>0 is a constant, τ=min{t>0: S(t)=K}. Here K> S(0) is a ‘high’ 

price K>S(0), or the goal price. Let X(0)=S(0) and β(t)≡0, then X(τ)=S(τ)=K>X(0). This 
strategy has interesting mathematical features for the non-degenerate diffusion model 
(i.e., when σ(t)≥c>0 for some constant c>0). In this case, we have that P(τ<+∞)=1 for all 
K>0 (i.e., any ‘high’ price will be achieved with probability 1. However, Eτ=+∞ (i.e., the 
risk-free gain is achieved for stopping time that is not reasonably small). (See related 
Problem 5.83 below.) 

5.3 The discounted wealth and stock prices 

For the trivial, risk-free, ‘keep-only-bonds’ strategy, the portfolio contains only the 
bonds, y(t)≡0, and the corresponding total wealth is 

Some loss is possible for a strategy that deals with risky assets. It 
is natural to estimate the loss and gain by comparing it with the results for the ‘keep-only-
bonds’ strategy. 

Definition 5.13 The process is 
called the discounted wealth (or the normalized wealth). 

Definition 5.14 The process is called the 
discounted stock price (or the normalized stock price). 

Let  

Proposition 5.15  
The proof is straightforward. 
Theorem 5.16 The property of self-financing (5.5) is equivalent to 

 (5.6) 

i.e., 

 
(5.7) 
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Proof of Theorem 5.16. Let be a process such that (5.6) holds. Then it 

suffices to prove that is the wealth corresponding to the 
self-financing strategy (β(·), γ(·)), where β(t)=(X(t)−γ(t)X(t))B(t)−1. 

We have that 

 

  

This completes the proof. 
Thanks to Theorem 5.16, we can reduce many problems for markets with non-zero 

interest for borrowing to the simpler case of the market with zero interest rate (free 
borrowing). In particular, it makes calculation of the wealth for a given strategy easier. 

Example 5.17 Let r(t)≡r. Let where 0≤t1<t2≤T. Then 

 
  

and  

Example 5.18 Let r(t)≡r, a(t)≡a, σ(t)≡σ be constant. Let where 
Then 

 

  

Continuous Time Market Models     79



Clearly, It can be seen that the random variable is 
Gaussian with the law N(kãT, k2σ2T). 

Example 5.19 Let r(t)≡r, a(t)≡a, σ(t)≡σ be constant. Let where 
k>0, ã=a−r. Then 

 

  

Clearly, It can be seen that the random variable is 
Gaussian with the law N(kã2T, k2a2σ2T). It can also be seen that this strategy gives 
positive average gain if ã≠0. 

For simplicity, one can assume for the first reading that (a, σ) is non-

random and constant, η(t)≡0, and that r(t)≡0, B(t)≡B(0), 

and everywhere in this chapter. After that, one can read this 
chapter again taking into account the general case. 

5.4 Risk-neutral measure 

Definitions 

Remember that and is the filtration generated by the process (w(t), η(t)), 
where η(·) is a process independent from w(·) that describes additional random factors 
presented in the model besides the driving Wiener process (see also Remark 5.3). 

Definition 5.20 Let be a probability measure such that the 

process is a martingale with respect to the filtration for P*. Then P* is said to be 
a risk-neutral probability measure for the bond—stock market (5.1), (5.2). 

In the literature, a risk-neutral measure is also called a martingale 
measure. As usual, E* denotes the corresponding expectation. 

In particular, for all τ>t. 

Definition 5.21 If a risk-neutral probability measure P* is equivalent to the original 
measure P, we call it an equivalent risk-neutral measure. 
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Market price of risk 

Remember that Let a process θ be a solution of the equation 
σ(t)θ(t)=ã(t). 

(5.8) 

This process θ is called the market price of risk process; this term came from optimal 
portfolio selection theory. If the market is non-degenerate, i.e., σ(t)≠0, then 
θ(t)=σ(t)−1ã(t)=σ(t)−1[a(t)−r(t)] a.e.   

Up to the end of this chapter, we assume that the following condition is satisfied. 
Condition 5.22 The market price of risk process exists for a.e. t, ω, and there exists a 

constant c>0 such that |θ(t, ω)|≤c a.s. for a.e. t.1 
Clearly, this condition ensures that if σ(t)=0 then ã(t)=0 a.e., i.e., a(t)=r(t) for a.e. t 

a.s. 

1 Instead of Condition 5.22, we could assume that the less restrictive Novikov’s condition is 
satisfied. We say that Novikov’s condition is satisfied if 

 
  

Clearly, Novikov’s condition is satisfied if Condition 5.22 is satisfied. 

It follows that if the market is non-degenerate (i.e., |σ(t)|≥ const. >0), and the process 
(r(t), σ(t), a(t)) is bounded, then Condition 5.22 is satisfied. 

A measure P* defined by the market price of risk 

Let 

 
(5.9) 

By Proposition 4.55, it follows that 

(i)  
(ii) If the mapping is defined via the equation 

 (5.10) 

then P* is a probability measure on equivalent to the original measure P. 

Remember that (5.10) means that for any and 
for any integrable random variable ξ. 
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Application of the Girsanov theorem 

Let 

 

  

Here θ is defined by (5.8). 
Note that 
ã(t)dt+σ(t)dw(t)=σ(t)dw*(t).   

Hence 

   

P* as an equivalent risk-neutral measure 

Theorem 5.23 Let Condition 5.22 be satisfied, and let the measure P* be defined by 
equation (5.10). Then 

(i) w*(t) is a Wiener process under P*; 
(ii) P* is an equivalent risk-neutral measure. 

Proof. Statement (i) follows from the Girsanov theorem (4.58), as well as the statement 
that P* is equivalent to P. Let us prove the rest of part (ii). 

We have that 

   

By Theorem 4.58, w*(t) is a Wiener process under P*. Then 

 

  

This completes the proof. 
Theorem 5.24 Let Condition 5.22 be satisfied, and let P* be the equivalent risk-

neutral measure defined in Theorem 4.58. For any admissible self-financing strategy, the 

corresponding discounted wealth is a martingale with respect to under P*. 
Proof. We have that 

Mathematical Finance     82



 

  

where γ(t) is the number of shares. By Girsanov’s theorem, w*(t) is a Wiener process 
under P*. Then 

 

  

This completes the proof. 

5.5 Replicating strategies 

Remember that T>0 is given. 
Let ψ be a random variable. 
Definition 5.25 Let the initial wealth X(0) be given, and let a self-financing strategy 

(β(·), γ(·)) be such that X(T)=ψ a.s. for the corresponding wealth. Then the claim ψ is 
called replicable (attainable, redundant), and the strategy is said to be a replicating 
strategy (with respect to this claim). 

Definition 5.26 Let the initial wealth X(0) be given, and let a self-financing strategy 
(β(·), γ(·)) be such that X(T)≥ψ a.s. for the corresponding wealth. Then the strategy is 
said to be a super-replicating strategy. 

Theorem 5.27 Let Condition 5.22 be satisfied, and let P* be the equivalent risk-
neutral measure such as defined in Theorem 5.23. Let ψ be an random 
variable such that E*ψ2<+∞ Let the initial wealth X(0) and a self-financing strategy (β(·), 
γ(·)) be such that X(T)=ψ a.s. for the corresponding wealth. Then 

 

  

Proof. Clearly, X(T)=ψ iff a.s. We have that 
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We have used here the fact that w*(t) is a Wiener process under P*, and ∫·dw* is an Ito 
integral under P*, so E* ∫·dw*=0. 

First application: the uniqueness of the replicating strategy 

Theorem 5.28 Let Condition 5.22 be satisfied, and let P* be the equivalent risk-neutral 
measure defined in Theorem 5.23. Let ψ be an random variable, 
E*ψ2<+∞. Let the initial wealth X(0) and a self-financing strategy (β(·), γ(·)) be such that 
X(T)=ψ a.s. for the corresponding wealth X(t). Then the initial wealth X(0) is uniquely 
defined. Moreover, the processes X(t) and σ(t)γ(t) are uniquely defined up to equivalency. 
If σ(t)≠0 for a.e. t, then the replicating strategy and the corresponding wealth process 
X(t) are uniquely defined up to equivalency. 

Proof. Let the initial wealth X(i)(0) and the strategy (β(i)(·), γ(i)(·)) be such that X(i)(T)=ψ 
a.s. for the corresponding wealth X(i)(t), i=1, 2. 

Let be the corresponding discounted wealth. 
Set 

   

We have that Y(T)=0 a.s. Hence 

 

  

Then a.s., Y(0)=0, and 

 

  

Hence 
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Hence Г(t)σ(t)=0 for a.e. t a.s. If σ(t)≠0 a.e., then and (β(1)(t), 
γ(1)(t))=(β(2)(t), γ(2)(t)) for a.e. t a.s. 

5.6 Arbitrage possibilities and arbitrage-free markets 

Similarly to the case of the discrete time market, we define arbitrage as a possibility of a 
risk-free positive gain. The formal definition is as follows. 

Definition 5.29 Let T>0 be given. Let (β(·), γ(·)) be an admissible self-financing 

strategy, and let be the corresponding discounted wealth. If 

 (5.11) 

then this strategy is said to be an arbitrage strategy. If there exists an arbitrage strategy, 
then we say that the market model allows an arbitrage. 

As we have mentioned in Chapter 3, we are interested in models without arbitrage 
possibilities. If a model allows arbitrage, then it is usually not useful (despite the fact that 
arbitrage opportunities could exist occasionally in real-life market situations). 

Problem 5.30 Let there exist t1 and t2 such that 0≤ t1<t2≤T and σ(t)=0, ã(t)≠0 for 
a.s. Prove that this market model allows arbitrage. Hint: take 

 
Theorem 5.31 Let a market model be such that Condition 5.22 is satisfied (in 

particular, this means that there exists an equivalent risk-neutral probability measure 
that is equivalent to the original measure P). Then the market model does not allow 
arbitrage. 

Proof. Let (β(·), γ(·)) be a self-financing admissible strategy that ensures arbitrage, i.e., 
it is such that (5.11) holds for the corresponding discounted wealth. Let P* be the 
equivalent risk-neutral measure defined in Theorem 4.58. Then 

 (5.12) 

Hence 

 (5.13) 

Continuous Time Market Models     85



But 

 

  

since w* is a Wiener process under P*. This contradicts (5.13). We have used again the 
fact that w*(t) is a Wiener process under P*, and ∫·dw* is an Ito integral under P*, i.e., E* 
∫·dw*=0. 

Problem 5.32 Prove that an equivalent probability measure does not exist for Problem 
5.30. (Suggest a proof that is not based on Theorem 5.31.) Assume that (ã(t), σ(t) is a 
non-random continuous function. Hint: use the fact that there exists ε>0 such that the 
sign of a(t) is constant for  

Remark 5.33 We can repeat here Remark 3.32 regarding the ‘fundamental theorem of 
asset pricing’. 

5.7 A case of complete market 

Let be the filtration generated by the process (S(t), r(t)). (Note that and, 

for the general case, is larger than  

In fact, any random variable ψ can be presented as ψ= F(S(·), B(·)) 
for a certain mapping F(·):C(0, T)×C(0, T)→R (see related Theorem 1.45). 

Definition 5.34 A market model is said to be complete if any 
random claim ψ such that E*|ψ|2<+∞ for some risk-neutral measure P* is replicable with 
some initial wealth. 

Theorem 5.35 If a market model is complete and there exists an equivalent risk-

neutral measure, then this measure is unique (as a measure of ). 

Proof. Let By the assumption, the claim is replicable 
with some initial wealth XA(0) (  is the indicator function of A). By Theorem 5.28, this 
XA(0) is uniquely defined. By Theorem 5.27, for any risk-neutral 

measure P*. Therefore, P* is uniquely defined on  

5.8 Completeness of the Black-Scholes model 
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The so-called Black-Scholes model (Black and Scholes 1973) is such that the vector (r(t), 
a(t), σ(t))≡(r, a, σ) is non-random and constant, a≠0. For this model, we assume that the 

filtration is generated by w(t) (or by S(t), or by ). 
Let w* and P* be defined as above, i.e., Remember that w*(t) is a 

Wiener process with respect to P*, and 

 
(5.14) 

Theorem 5.36 The Black-Scholes market is complete. 
Proof. Let be an arbitrary claim. By the martingale 

representation theorem (or by Theorem 4.51) applied to the probability space 
it follows that there exists a process such that 

 

  

(We mean the space defined with respect to the measure P*.) By (5.14), it follows 
that 

 

  

Hence the process is the discounted wealth 
generated by a self-financing strategy such that the quantity of the stock portfolio is γ(t). 
Since it is easy to see that this strategy is admissible. 

Corollary 5.37 The measure P* is the only equivalent risk-neutral measure on  
Theorem 5.36 does not explain how to calculate the replicating strategy and the 

corresponding initial wealth. The following theorem gives a method of calculation for an 
important special case. 

Theorem 5.38 Let functions Ψ:R→R and φ:R×[0, T]→R be such that certain 
conditions on their smoothness and growth are satisfied (it suffices to require that Ψ and 
φ are continuous and bounded). Let 

 

  

Then this claim is replicable with the initial wealth and with the stock 

quantity The corresponding discounted wealth is 
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where is the solution of Problem (5.15). In addition, 

 

  

Moreover, 

 
  

Proof. Let be the solution of the Cauchy problem for the backward parabolic 
equation 

 

(5.15) 

Here x>0,  

 

  

Note that the assumptions on Ψ and φ have not yet been specified. Starting from now, we 
assume that they are such that problem (5.15) has a unique classical solution in the 
domain {(x, s)}=(0, +∞)×[0, T].2 

Let Similarly to Theorem 4.42, by Ito formula, 

 

  

Hence 

 

  

For τ=T, this gives 
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Hence this claim is replicable with the initial wealth and with the stock 

quantity The corresponding discounted wealth is 

 

  

2 At this point, note that the change of variable x for y=In x makes this equation a non-degenerate 
parabolic equation in the domain {(y,s)}=R×[0, T]. This can help to see which conditions for φ and 
Ψ are sufficient. 

and 

 

  

The corresponding wealth is and the amount of bonds is β(t)= 
[X(t)−γ(t)S(t)]B(t)−1. This completes the proof. 

Remark 5.39 If the volatility process σ(t) is non-random but time dependent and such 
that |σ(t)|≥const.>0 and some regularity conditions are satisfied, then the market is also 
complete. The proof of Theorem 5.38 can be repeated for this case with σ replaced by 
time-dependent σ(t) in the definition for  

Problem 5.40 Under the assumptions of Theorem 5.38, find an initial wealth and a 

strategy that replicates the claim  
Solution. We need to find for Ψ(x)=e−rTx−1 and φ≡0. In this case, can be found 

explicitly: (verify that this is the solution of (5.15)). Then 

and 

 

  

The initial wealth is  
Problem 5.41 Under the assumptions of Theorem 5.38, find an initial wealth and a 

strategy that replicates the claim  

Solution. We have that where Ψ(x)=e−rTx2. We need 
to find for this Ψ and φ≡0. In this case, can be found explicitly: 

(verify that this is the solution of (5.15)). Then 

and 
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The initial wealth is  

5.9 Option pricing 

5.9.1 Options and their prices 

Let us repeat the definitions of the most generic options: the European call option and the 
European put option. Let terminal time T>0 be given. 

A European call option contract traded (contracted and paid) in t=0 is such that the 
buyer of the contract has the right (not the obligation) to buy one unit of the underlying 
asset (from the issuer of the option) in T>0 at the strike price K. The market price of 
option payoff (in T) is max(0, S(T)−K), where S(T) is the asset price, and K is the strike 
price. 

A European put option contract traded in t=0 gives to the buyer of the contract the 
right to sell one unit of the underlying asset in T>0 at the strike price K. The market price 
of option payoff (in T) is max(0, K−S(T)), where S(T) is the asset price, and K is the strike 
price. 

In a more general case, for a given function F(x)≥0, the European option with payoff 
F(S(T)) can be defined as a contract traded in t=0 such that the buyer of the contract 
receives an amount of money equal to F(S(T)) at time T>0. 

In the most general setting, a non-negative function F:C(0, T)×C(0, T)→R is given. 
Let ψ=F(S(·), B(·)) The European option with payoff F(S(·), B(·)) is a contract traded in 
t=0 such that the buyer of the contract receives an amount of money equal to ψ at time 
T>0.3 

The following special cases are covered by this setting: 

• (vanilla) European call option: where K>0 is the strike price; 
• (vanilla) European put option:  

• share-or-nothing European call option:  

• an Asian option: where fi are given functions. 

There are many other examples, including exotic options of the European type. 
The key role in mathematical finance belongs to a concept of the ‘fair price’ of 

options, or derivatives. 
The following pricing rule was suggested by Black and Scholes (1973) and has its 

origins in the model suggested by Bachelier (1900).4 
Definition 5.42 The fair price of an option at time t=0 is the minimal initial wealth 

such that, for any market situation, it can be raised with some acceptable strategies to a 
wealth such that the option obligation can be fulfilled. 
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In fact, we assume that Definition 5.42 is valid for options of all types. We rewrite it 
now more formally for European options. 

3 The options with payoff at given time T are said to be European options. Another important class 
of options is the class of so-called American options. For these options, the option holder can 
exercise the option at any time by his/her choice (see related Definition 3.43; more 
details are given in Chapter 6). 
4 In our notations, the Bachelier model corresponds to the case when S(t)=S(0)+at+σw(t). This 
model is less popular than the one introduced above, because it gives less realistic distribution of 
the stock prices: for instance, S(t) may be negative. However, the mathematical properties of this 
model are very close to the properties of the model introduced above. 

Definition 5.43 The fair price at time t=0 of the European option with payoff ψ is the 
minimal wealth X(0) such that there exists an admissible self-financing strategy (β(·), 
γ(·)) such that 

X(T)≥ψ a.s.   

for the corresponding wealth X(·). 

5.9.2 The fair price is arbitrage-free 

Starting from now and up to the end of this section, we assume that a continuous time 
market is complete with constant r and σ. 

Let us extend the definition of the strategy by assuming that a strategy may include 
buying and selling bonds, stock and options. Short selling is allowed but all transactions 
must be self-financing; they represent redistribution of the wealth between different 
assets. There are no outputs or inputs of wealth. For instance, a trader may borrow an 
amount of money x to buy k options with payoff ψ at time t=0, then his/her total wealth at 
time T will be kψ−erTx. Assume that Definition 5.29 is extended for these strategies. 

Proposition 5.44 Assume that an option seller sells at time t=0 an option with payoff 
ψ for a price c+ higher than the fair price cF of the option. Then he/she can have an 
arbitrage profit. 

Proof. Assume that the seller has zero initial wealth and sells the option for the price 
c+. After that, the seller can invest the wealth c+−cF>0 to bonds, and use the initial wealth 

with the replicating strategy (that exists) to replicate the claim ψ. Therefore, 
the option obligation will be fulfilled, and the seller will have a profit equal to 
erT(c+−cF)>0. 

Proposition 5.45 Assume that an option buyer buys at time t=0 an option with payoff 
for ψ a price c− that is lower than the fair price cF of the option. Then he/she can have an 
arbitrage profit. 

Proof. Assume that the buyer has zero initial wealth. He/she can borrow money and 
buy the option for the price c−<cF. The option holder receives the amount of money equal 
to ψ at time t=T and needs to repay his debt erT c− (with the interest), so the resulting 
wealth is ψ−erT c−. In addition to this portfolio, the buyer may create the auxiliary 
portfolio with some self-financing strategy such that the discounted wealth is 
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Here γ(t) is the quantity of the stock in the self-financing strategy that replicates the claim 

ψ with the initial wealth cF, i.e., Clearly, The 
total wealth for both portfolios is erT(cF−c−)>0. Therefore, the buyer will have a risk-free 
profit equal to this amount. 

Corollary 5.46 The fair price of options is the only price that does not allow arbitrage 
opportunities either for the option seller or for the option buyer. 

Problem 5.47 Is it possible to prove analogs of Propositions 5.44 and 5.45 for the 
discrete time market model? 

5.9.3 Option pricing for a complete market 

For a complete market, Definition 5.43 leads to replication. 
Theorem 5.48 Let the market be complete, and let a claim ψ be such that E*ψ2< +∞, 

and ψ=F(S(·)), where F(·):C(0, T)→R is a function. Then the fair price (from Definition 
5.43) of the European option with payoff ψ at time T is 

e−rTE*ψ, 
(5.16) 

and it is the initial wealth X(0) such that there exists an admissible self-financing strategy 
(β(·), γ(·)) such that 

X(T)=ψ a.s.   

for the corresponding wealth. 
Proof. From the completeness of the market, it follows that the replicating strategy 

exists and the corresponding initial wealth is equal to e−rTE*ψ. Let us show that it is the 
fair price. Let X′(0)<cF be another initial wealth, then 

for the corresponding discounted wealth 

Hence it cannot be true that a.s. 
We shall refer to the price (5.16) as the Black-Scholes price of a European option for 

the case of a complete market. 
Corollary 5.49 Let the assumptions of Theorem 5.38 be satisfied. Let functions 

Ψ:R→R and φ:R×[0, T]→R be such that certain conditions on their smoothness and 
growth are satisfied such that problem (5.15) has a unique classical solution in {x, s}=(0, 
+∞)×[0, T]. Let an option claim ψ be such that 

 

  

Then the fair price (Black-Scholes price) of the option at time t=0 is 

where is the solution of problem (5.15). 
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Proof. By Theorem 5.38, is the initial wealth for the replicating 
strategy. 

Corollary 5.50 The Black-Scholes price does not depend on the appreciation rate a(·). 

Proof. By Theorems 5.48 and 5.38, the fair price is and the equation for 
does not include a. Then the proof follows. Another way to prove this corollary is to 

notice that i.e., the distribution of under P* 
does not depend on a. 

Corollary 5.51 (Put-call parity). Let K>0 be given. Let Hp be the Black-Scholes price 
of the call option with payoff Fc(S(T))=(S(T)−K)+, and let Hc be the Black-Scholes price 
of the put option with payoff Fp(S(T))=(K−S(T))+. Then Hc−Hp=S(0)−e−rTK. 

Proof. It suffices to note that (S(T)−K)+−(K−S(T))+=S(T)−K, and Hc−Hp=e−rT 

E*(S(T)−K)=S(0)−e−rTK. 
Theorem 5.52 Consider the Black-Scholes model given volatility σ and the risk-free 

rate r. Let where Ψ:R→R is a function. Then the fair price of the 
option at time t=0 is 

   

where 

 

  

We have that η0~N(−σ2T/2, σ2T) under P*. In other words, the price is 

(5.17) 

Proof. It suffices to apply the previous result, bearing in mind that 

 
Corollary 5.53 The Cox-Ross-Rubinstein market model with an increasing number of 

periods gives the Black-Scholes price as the limit. 
Proof. The proof for the case when T=1 follows from Corollary 3.57 and Theorem 

5.52, since the corresponding formulae for the expectation are identical. For the case 

when T≠1, it suffices to note that Var In  
Problem 5.54 Under the assumptions of Theorem 5.38, find the fair price of the 

option with payoff ψ=S(T)2, i.e., find e−rT E*S(T)2. 

Solution 1. We have that where Ψ(x)=erTx2. We need to 
find the solution of (5.15) for this Ψ and φ≡0. In this case, can be found explicitly: 

(verify that this is the solution of (5.15)). The initial wealth 
is 
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In addition, we can obtain the replicating strategy: we have that 
and 

 

  

Solution 2. Set We have that 
dy(t)=2S(t)dS(t)+S(t)2σ2dt=2S(t)2[adt+σ dw(t)]+S(t)2σ2 dt 
=2y(t)[adt+σ dw(t)]+y(t)σ2 dt=2y(t)[rdt+σ dw*(t)]+y(t)σ2 dt. 

  

Hence 

 

  

We have that y(0)=S(0)2. 

Set We have that M(0)=S(0)2, 

 

  

It follows that dM(t)/dt=[2r+σ2]M(t). Hence Therefore, 

Then the price of the option is 

 

5.9.4 A code for the fair option price 

We give below some examples of codes that illustrate how to apply our formulae in 
numerical calculation. This course is not intended to be a course in programming, so all 
codes provided here are very illustrative and generic, they are not optimal in terms of 
effectiveness. You may prefer to write your own codes. For instance, we do not use 
MATLAB functions for integral or MATLAB erf functions. 

Example 5.55 Let (s,T,v,r)=(1,1,0.2, 0.07). Then the fair price of the option with 
payoff F(S(T)), where F(x)=1+cos(x) is 1.4361. Let (s, T, v, r)= (2, 1, 0.2, 0.07). Then 
the price of the option is 0.5443. 

MATLAB code for the price of an option with payoff F(x)=1+cos(x) 

function [f]=option(s,r,T,v) 
N=800; eps=0.01;  f=0; pi=3.1415; 
for k=1:800;   x=-4+eps*(k-1); 
f=f+eps/sqrt(2*pi*T) 
*exp(-x^2/(2*T))*(1+cos(s*exp((r-v^2/2)*T+v*x))); 
end; f=exp(-r*T)*f; 
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Problem 5.56 (i) Write your own code for calculation of the fair price for payoff F(S(T)) 
where F(x)=|sin(4x)|ex. (ii) Let (S(0), T, σ, r)=(2, 1, 0.2, 0.07). Find the option price with 
payoff F(S(T)). 

5.9.5 Black-Scholes formula 

We saw already that the fair option price (Black-Scholes price) can be calculated 
explicitly for some cases. The corresponding explicit formula for the price of European 
put and call options is called the Black—Scholes formula. 

Let K>0, σ>0, r≥0, and T>0 be given. We shall consider two types of options: call 
and put, with payoff function ψ where ψ=(S(T)−K)+ or ψ=(K−S(T))+, respectively. Here 
K is the strike price. 

Let HBS,c(x, K, σ, T, r) and HBS,p(x, K, σ, T, r) denote the fair prices at time t=0 for call 
and put options with the payoff functions F(S(T)) described above given (K, σ, T, r) and 
under the assumption that S(0)=x. Then 

HBS,c(x, K, σ, T, r)=xΦ(d+)−Ke−rTΦ(d−), 
HBS,p(x, K, σ, T, r)=HBS,c(x, K, σ, T, r)−x+Ke−rT, (5.18) 

where 

 

  

and where 

 

(5.19) 

This is the celebrated Black-Scholes formula. Note that the formula for put follows from 
the formula for call from the put-call parity (Corollary 5.51). 

Numerical calculation via the Black-Scholes formula 

MATLAB code for Φ(·) 

function[f]=Phi(x) 
N=400; eps=abs(x+4)/N; f=0; pi=3.1415; 
for k=1:N; y=x-eps*(k-1); 
f=f+eps/sqrt(2*pi)*exp(-y^2/2); end; 

Here N=400 is the number of steps of integration that defines preciseness. One can try 
different N=10, 20, 100,…. (See also the MATLAB erf function.) 

Continuous Time Market Models     95



MATLAB code for Black-Scholes formula (call) 

function[x]=call(x, K, v, T, r) x=max(0, s-K); 
if T>0.001 
d=(log(s/K)+T*(r+v^2/2))/v/sqrt(T); 
d1=d-v*sqrt(T); 
x=s*Phi(d)-K*exp(-r*T)*Phi(dl); end; 

MATLAB code for Black-Scholes formula (put) 

function[x]=put(x,K,v,T,r) 
x=call(x,K,v,T,r)-s+K*exp(-r*T); end; 

Problem 5.57 Assume that r=0.05, σ=0.07, S(0)=1. Write a code and calculate the 
Black-Scholes price of the call option with the strike price K=2 for three months. (Hint: 
three-month term corresponds to T=1/4.) 

5.10 Dynamic option price process 

In this section, we consider again the Black-Scholes model with non-random volatility σ 
and non-random risk-free interest rate r. 

Definition 5.58 The fair price of the option at time t is the minimal 
random variable (the initial wealth) X(t) such that there exists an admissible  

self-financing strategy such that 
X(T)≥ψ a.s.   

for the corresponding wealth. 
Theorem 5.59 The fair price of the option from Definition 5.58 is 

 (5.20) 

and it is the wealth X(t) such that there exists an admissible self-financing strategy 
such that 

X(T)=ψ a.s.   

for the corresponding wealth. 
Proof. Let (β(·), γ(·)) be the replicating strategy that replicates the claim ψ at the time 

interval [0, T] with the corresponding wealth X(t) and the discounted wealth We 
have that 
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Let Then 

 
(5.21) 

Clearly, Theorem 5.16 can be rewritten for the case when [0, T], and are 

replaced for [t, T], and It follows that (γ(s), β(S))|[t,T] is the replicating strategy 
on the interval [t, T] with the initial wealth X(t). Further, the theorem statements follow 
after taking the condition expectation of both parts of (5.21). 

Let us show that X(t) is the fair price. Let X′(t) be another initial wealth at time t such 

that P(X′(t)<X(t))>0, then and 

for the corresponding discounted wealth 

Hence it cannot be true a.s. 
Definition 5.60 Let c(t) be the price of an option at time The process e−rt 

c(t) is said to be the discounted price of the option. 
Corollary 5.61 Let Ψ=F(S(T)) where F:R→R is a function. Let the function Ψ:R→R 

be such that F(x)=erTΨ(e−rT x), i.e.,  
Then the following holds: 

(i) The fair price of the option at time depends only on (S(t), t), and it is 

 (5.22) 

Here is the solution of (5.15) for this Ψ and φ≡0, and 

 
(5.23) 

(ii) The discounted fair price of the option is 

   

and it is a martingale with respect to the risk-neutral measure P*. 

Proof. Statement (i) follows from Theorem 5.38 (with φ≡0). Further, it follows from 

(5.22) that for all t<T. Then statement (ii) follows. 
(See, for example, Problem 2.17.) 

Corollary 5.62 Let be given. Under the assumptions of Corollary 5.61, the 
fair price V(S(t), t) of the option at time t given the current stock price S(t) is such that, 
for any non-random time  
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In particular, 

   

Corollary 5.62 allows us to calculate V consequently starting from t=T. 

Black-Scholes parabolic equation 

By (5.23), we have that 

where is the solution of (5.15) with φ≡0. It follows that 

With this change of the variables, parabolic equation (5.15) 
is converted to the equation 

 

(5.24) 

This is the so-called Black-Scholes parabolic equation. 

5.11 Non-uniqueness of the equivalent risk-neutral measure 

Typically, an equivalent risk-neutral measure is not unique in the case of random 
volatility (even if it is constant in time). If an equivalent risk-neutral measure is not 
unique then, by Theorem 5.35, the market cannot be complete, i.e., there are claims ψ that 
cannot be replicable. 

In this section, we assume that r is non-random and constant. Let be the filtration 

generated by the process S(t). (For this case of non-random For the 

general case, the filtration generated by the process (w(t), η(t) is larger than  

5.11.1 Examples of incomplete markets 

An example with a≡r 
Let a(t)≡r(t), and let σ=σ(t, η), where η is a random process (or a random vector, or a 

random variable), independent from the driving Wiener process w(t) (for instance, η may 
represent another Wiener process). Clearly, any original probability measure P=Pη is a 
risk-neutral measure (note that for any η). Any probability measure is defined by 
the pair (w, η), therefore it depends on the choice of η. In other words, different η may 
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generate different risk-neutral measures. Clearly, it can happen that two of these different 
measures are equivalent (it suffices to take two η=ηi, i=1, 2, such that their probability 
distributions are equivalent, i.e., have the same sets of zero probability). Therefore, an 
equivalent risk-neutral measure depends on the choice of η, and it may not be unique. It is 
different from the case of non-random σ. 

The simplest example is the following. 
Example 5.63 Consider a single stock market model with traded options on that stock. 

Assume that all option prices are based on the hypothesis that under any risk-neutral 
measure the volatility is random, independent from time, and can take only two values, σ1 
and σ2, with probabilities p and 1−p respectively, where is given. Let E* be 
the expectation generated by the measure P* such that 

P*(A)=pP*(A|σ=σ1)+(1−p)P*(A|σ=σ2)   

for all random events A. In this case, the pricing formula e−rTE*ψ applied to the price of 
call option with the strike price K and expiration time T gives 

e−rTE*max(0, S(T)−K)=pHBS,c(S(0), K, σ1, r, T) 
+(1−p)HBS,c(S(0), K, σ2, T, r), 

  

where HBS,c(S(0), K, σi, T, r) is the Black—Scholes price for call with non-random 
volatility σi given (S(0), K, r, T). Clearly, any defines its own risk-neutral 

probability measure, and therefore it defines its own  
The model in this example can be described as σ(η, t)≡η, where η is a time-

independent random variable that can take only two values, σ1 and σ2, with probabilities p 
and 1−p respectively. In ths case, any defines the distribution of η, and it 

defines its own risk-neutral probability measure on and on and all these 
measures with are mutually equivalent. Therefore, the equivalent risk-neutral 

measure is not unique on in this case. In particular, any η defines its own E*ψ. 

Case when a≠r, and (a, σ) are random 

Let (a, σ)=f(t, η), for some deterministic function f and for a random vector η 
independent from w(·). Formally, any η generates its own risk-neutral measure P* defined 
by Theorem 4.58, since depends on η. It can happen that two of these measures are 

equivalent but different on (i.e., the equivalent risk-neutral measure is not unique on 

in this case). 
Remark 5.64 Usually, it can be proved that the pricing rule e−rTE*ψ is arbitrage-free 

for a wide selection of P*. However, the claim F(S(T)) is non-replicable for the general 
case of random volatility. 
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Case when a is random but σ is non-random 

Let σ(t) be non-random, and let a=f(t, η) for some deterministic function f and for a 
random vector η that does not depend on time and on w(·). Formally, any η generates 
again its own risk-neutral measure P* defined in Theorem 4.58, since depends on η. 

However, for any η, we have that where w*(·) is a process 

defined in Theorem 4.58. Therefore, the distribution of and S(·) is uniquely defined 
by the distribution of w*(·). Since w*(·) is a Wiener process under the corresponding 
measure P* for any η, then the distribution of S(·) is the same under all these P*. In other 

words, all these measures coincide on  
In addition, note that theoretical problems also arise for the case of random r. 

5.11.2 Pricing for an incomplete market 

Mean-variance hedging 

Similarly to the case of the discrete time market, Definition 5.43 leads to super-
replication for incomplete markets. Clearly, it is not always meaningful. Therefore, there 
is another popular approach for an incomplete market. 

Definition 5.65 (mean-variance hedging). The fair price of the option is the initial 
wealth X(0) such E|X(T)−ψ|2 is minimal over all admissible self-financing strategies. 

In many cases, this definition leads to the option price e−rTE*ψ, where E* is the 
expectation for a risk-neutral equivalent measure that needs to be chosen by some 
optimal way, since this measure is not unique for an incomplete market. This measure 
needs to be found via solution of an optimization problem. In fact, this method is the 
latest big step in the development of modern pricing theory. It requires some additional 
non-trivial analysis outside of our course. 

Completion of the market 

Sometimes it is possible to make an incomplete market model complete by adding new 
assets. For instance, if σ(t) is random and evolves as the solution of an Ito equation driven 
by a new Wiener process W(t) then the market can be made complete by allowing trading 
of any option on this stock (say, European call with given strike price). All other options 
can be replicated via portfolio strategies that include the stock, the option, and the bond. 

A similar approach can be used for the case of random r. Remember that, in our 
generic setting, we called the risk-free investment a bond, and it was considered as a risk-
free investment. In reality, there are many different bonds (or fixed income securities). In 
fact, they are risky assets, similarly to stocks (discussed in the next section). If r is 
random, then the market can be made complete by including additional fixed income 
securities. 
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5.12 A generalization: multistock markets 

Similarly, we can consider a multistock market model, when there are N stocks. Let 
{Si(t)} be the vector of the stock prices. The most common continuous time model for the 
prices is again based on Ito equations, which now can be written as 

 

  

Here w(t)=(w1(t),…, wn(t)) is a vector Wiener process; i.e., its components are scalar 
Wiener processes. Further, a(t)={ai(t)} is the vector of the appreciation rates, and 
σ(t)={σij(t)} is the volatility matrix. 

We assume that the components of w(t) are independent. 
The equation for the stock prices may be rewritten in the vector form: 
dS(t)=S(t)[a(t)dt+σ(t)dw(t)],   

where S(t)=(S1(t),…, SN(t) is a vector with values in RN, S(t) is a diagonal matrix in RN×N 
with the main diagonal (S1(t),…, SN(t)). 

Similarly to the case of single stock markets, we assume there is also the risk-free 
bond or bank account with price B(t) such as described in Section 5.2. In particular, we 
assume that (5.2) holds, where r(t) is a process of risk-free interest rates that is adapted 
with respect to the filtration generated by (w(t), η(t)), where η(t) is some random process 
independent from w(·). 

The strategy (portfolio strategy) is a process (β(t), γ(t)) with values in R×RN, 
γ(t)=(γ1(t),…, γN(t)), where γi(t) is the quantity of the ith stock, and β(t) is the quantity of 
the bond. The total wealth is X(t)=β(t)B(t)+∑iγi(t)Si(t). A strategy (β(·), γ(·)) is said to be 
self-financing if there is no income from or outflow to external sources. In that case, 

 

  

To ensure that S(t) and X(t) are well defined as Ito processes, some restrictions on 
measurability and integrability must be imposed for the processes a, σ, γ, and β. 

It can be seen that 

 

  

Let be the discounted stock price. Similarly to 
Theorem 5.16, it can be shown that 
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where is the discounted wealth. 
Then absence of arbitrage for this model can be described loosely as the condition that 

a risk-free gain cannot be achieved with a self-financing strategy. 
The following example shows that absence of arbitrage for single stock markets 

defined for isolated stocks does not guarantee that the corresponding multistock market 
with the same stocks is arbitrage-free. 

Example 5.66 Let N=2, n=1, and let 

   

where ãi(t) and σi(t) are some pathwise continuous processes, σ2(t)≥const.>0. 

Let and  
γ1(t)≡I(t), γ2(t)≡−I(t)ψ(t).   

Then 

 

  

Hence 

 

  

Clearly, this two-stock market model allows arbitrage for some ãi(·). 
In the last example, the model was such that N>n. However, it is possible that N>n 

and the market is still arbitrage-free. 
Similarly to the case when n=m=1, it can be shown that the market is arbitrage-free if 

there exists an equivalent risk-neutral measure such that the discounted stock price vector 

is a martingale. 
Let us show that there is no arbitrage if there exists a process θ(t) with values in Rm 

such that 
σ(t)θ(t)=ã(t) 

(5.25) 

and such that some conditions of integrability of θ are satisfied. (These conditions are 
always satisfied if the process θ(t) is bounded.) This process θ(t) is called the market 

price of risk process. Here where  
Let us show that the existence of the process θ(·) implies existence of an equivalent 

risk-neutral measure. It suffices to show that the measure P* defined in the Girsanov 
theorem (4.58) for this θ is an equivalent risk-neutral measure. Set 
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By the Girsanov theorem (4.58), w*(t) is a Wiener process under P*. Clearly, 
σ(t)dw*(t)=ã(t)dt+σ(t)dw(t).   

In addition, where is a diagonal matrix with the 
main diagonal Hence 

   

It follows that is a martingale under P*. 
For instance, if n=N and the matrix σ is non-degenerate, then θ(t)= σ(t)−1ã(t). If this 

process is bounded, then the market is arbitrage-free. 
Problem 5.67 Consider the Black-Scholes market model with stock, bond, and the call 

options on this stock with the strike prices Ki and expiration times Ti, i=1,…, N−1. These 
options are priced by the Black-Scholes formula. Consider these options as new risky 
assets. The new market can be considered as a multistock market model with N stocks 
(N−1 options plus the original stock). Is this market arbitrage-free? (Hint: consider first 
N=2 and Ti≥T.)  

5.13 Bond markets 

Bonds are being sold an initial time for a certain price, and the owners are entitled to 
obtain certain amounts of cash (higher than this initial price) in fixed time (we restrict our 
consideration to zero-coupon bonds only). Therefore, the owner can have fixed income. 
Typically, there are many different bonds on the market with different times of maturity, 
and they are actively traded, so the analysis of bonds is very important for applications. 

For the bond-and-stock market models introduced above, we refer to bonds as a risk-
free investment similar to a cash account. For instance, it is typical for the Black-Scholes 
market model where the bank interest rate is supposed to be constant. In reality, the bank 
interest rate is fluctuating, and its future evolution is unknown. Investments in bonds are 
such that money is trapped for some time period with a fixed interest rate. Therefore, the 
investment in bonds may be more or less profitable than the investment in cash account. 
Thus, there is risk and uncertainty for the bond market that requires stochastic analysis, 
similarly to the stock market. 

General requirements for bond market models 

The main features of models for bond markets that generate requirements for the pricing 
rules are the following: 

(i) the process r(t) of bank interest rate is assumed to be random; 
(ii) the range for the discounted price processes is bounded; 
(iii) the number of securities is larger than the number of driving Wiener processes. 
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The last feature (iii) has explicit economical sense: there are many different bonds (since 
bonds with different maturities represent different assets) but their evolution depends on 
few factors only, and the main factors are the ones that describe the evolution of r(t). 

The multistock market model can be used as a model for a market with many different 
bonds (or fixed income securities). Assume that we are using a multistock market model 
described above as the model for bonds (i.e., Si(t) are the bond prices). Feature (iii) can 
be expressed as the condition that σij(t)≡0 for all j>n,=1,…, N, where n is the number of 
driving Wiener processes, N is the number of bonds, N>>n. It follows that the matrix a is 
degenerate. This is a very essential feature of the bond market. To ensure that the process 
θ(t) is finite and the model is arbitrage-free, some special conditions on a must be 
imposed such that equation (5.25) is solvable with respect to θ. To satisfy these 
restrictions, the bond market model deals with ã being linear functions of σ. 

In addition, we have feature (ii): the process (ã, σ) must be chosen to ensure that the 
price process is bounded (for instance, a.s. if Si(t) is the price 
for a zero-coupon bond with the payoff 1 at terminal (maturing) time T). 

Consider the case when the bank interest rate r(t) is non-random and known. Let P(t) 
be the price of a bond with payoff 1 at terminal time T (said to be the maturity time). 
Clearly, the only price of the bond that does not allow arbitrage for seller and for buyer is 

 

  

In this case, investment in the bond gives the same profit as investment in the cash 
account. However, this formula cannot be used for the case when r(s) is a random 
process, since it requires future values of r. In fact, a model for bond prices suggests that 
the price is 

 
(5.26) 

where EQt is the expectation generated by a probability measure Qt, is the filtration 
generated by all observable data. The measure Qt has to be chosen to satisfy the 
requirements mentioned above. The choice of this measure may be affected by risk and 
risk premium associated with particular bonds. (For instance, some bonds are considered 
more risky than others; to ensure liquidity, they are offered for some lower price, so the 
possible reward for an investor may be higher.) 

Models for bond prices are widely studied in the literature (see the review in 
Lambertone and Lapeyre, 1996). 

An example: a model of the bond market 

Let us describe a possible model of a market with N zero-coupon bonds with bond prices 

Pk(t), where and where is a given set of maturing times, 
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We consider the case where there is a driving n-dimensional Wiener process w(t). Let 
be a filtration generated by this Wiener process. We assume that the process r(t) is 

adapted to (To cover some special models, we do not assume that r(t)≥0.) In addition, 
we assume that we are given an and bounded process q(t) that takes values 
in Rn. 

Set the bond prices as 

 (5.27) 

In this model, different bonds are defined by their maturity times. 
Clearly, the processes Pk(t) are adapted to and 

a.s. In addition, it can be seen that (5.26) 
holds for the measure Qt=Qt,k such that Qt,k/dP=Zk(t), where  

 

  

Theorem 5.68 Pricing rule (5.27) ensures that, for any k, there exists an 
process σk(t) with values in Rn such that 

(5.28) 

Proof. Let k be fixed. We have that 

 
(5.29) 

where 

 

  

It follows from the Clark theorem (4.51) that there exists a square integrable n-
dimensional process with values in Rn such that 

 

  

Note that Then 
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By the Ito formula, it follows that 

 
  

Set Finally, the Ito formula applied to (5.29) implies that (5.28) 
holds. This completes the proof. 

It follows from (5.28) that this bond market is a special case of the multistock market 
described above, when Sk(t)=Pk(t), k=1,…, N, where 

and where σ(t) is a matrix process with values in RN×n such 

that its kth row is zero for t>Tk and it is equal to for t≤Tk. The process ã(t) is such 
that 

 

  

Then the corresponding market price of risk process θ(t) is θ(t)≡−q(t). This process θ(t) 
is bounded if q(t) is bounded, since θ(t)≡−q(t). Note that the case N>>n allowed, and the 
bond market is still arbitrage-free. 

To derive an explicit equation for Pk(t) and σk(t), we need to specify a model for the 
evolution of the process (r(t), q(t)). The choice of this model defines the model for the 
bond prices. For instance, let n=1, let the process q be constant, and let r(t) be an 
Ornstein-Uhlenbek process described in Problem 4.41. Then this case corresponds to the 
so-called Vasicek model (see, e.g., Lambertone and Lapeyre (1996, p. 127)). In this case, 
Pk(t) can be found explicitly from (5.27). 

5.14 Conclusions 

• Continuous time models allow explicit and complete solution for many theoretical 
problems, and they are the main models in mathematical finance. 

• A continuous time market model is complete for a generic case of non-random constant 
volatility (this case can be considered as a limit for the Cox-Ross-Rubinstein model 
with increasing frequency). 
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• Continuous time models allow the solution of many pricing problems via Kolmogorov 
partial differential equations. 

• A continuous time market model is based on Ito calculus, and it needs some 
interpretation to be implemented for a real market with time series of prices. Strategies 
developed for this model cannot be applied immediately, because they include Ito 
processes that are not explicitly presented in real market data. For instance, there is the 
question of how to extract the appreciation rate a(t) and volatility σ(t) from the time 
series of prices. 

Interpretation of historical data in view of continuous time models is studied in Chapter 
9. 

5.15 Problems 

Below, a is the appreciation rate, σ is the volatility, r is the risk-free rate, S(t) is the stock 

price, X(t) is the wealth, is the discounted stock price, is the discounted wealth, 
(β(·), γ(·)) is a self-financing strategy, where γ is the quantity of the stock shares, β is the 
quantity of the bonds. 

Self-financing strategies for a continuous time market 

Problem 5.69 Let r(t)≡0. Let 

where 0≤t1<T. Let S(0)=1, S(t1)=1.1, S(T)=0.95. Find and X(T). 
Problem 5.70 Solve the previous problem for the case when r(t)≡0.05. 

Problem 5.71 Let r(t)≡r, a(t)≡a, σ(t)≡σ>0 be constant. Let 

Find  

Problem 5.72 Let r(t)≡r, a(t)≡a, σ(t)≡a>0 be constant. Let 

where is the corresponding wealth, Find (Hint: derive a closed Ito 

equation for and use the known solutions of these equations.) 
Problem 5.73 Let there exist t1, t2:0≤ t1<t2≤T such that 

a.s. Prove that this market model allows arbitrage. (Hint: take 
 

Claim replication and option price 

Assume that (a, r, σ, r) is non-random and constant, and they are given. Assume that 
S(0)>0 and T>0 are also given. 

Problem 5.74 Under the assumptions of Theorem 5.38, find an initial wealth and a 

strategy that replicates the claim Find the option price 
for this claim. 
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Problem 5.75 Find an initial wealth and a strategy that replicates the claim 

(Hint: use Theorem 5.38, and find the solution V of the boundary 
value Problem 5.15 from the proof of Theorem 5.38 for φ(x, t)=e−rT x/T, Ψ≡0; V can be 
found explicitly.) 

Problem 5.76 Find an initial wealth and a strategy that replicates the claim 

(Hint: use Theorem 5.38 and find the solution V of the boundary value 
problem 5.15 from the proof of Theorem 5.38 for φ(x, t)=e−rT ert x/T, Ψ≡0; V can be 

found explicitly as  

Problem 5.77 Consider an option with payoff where K>0 (it is the 
so-called digital option). Express the option price via an integral with the probability 
density function of a Gaussian random variable. 

Problem 5.78 (Bachelier’s model). Consider a market model where the risk-free rate 
r≥0 is constant and known, and where the stock price evolves as 

dP(t)=adt+σ dw(t),   

where σ>0 is a given constant, w(t) is a Wiener process. Assume that the fair 
price for a call option is e−rTE* max(P(T)−K, 0), where K is the strike price, T is 
termination time. Here E* is the expectation defined by the risk-neutral probability 
measure (this measure gives the same probability distribution of P(·) as the original 
measure for the case when r=a). Find an analogue of the Black-Scholes formula for the 
call option. (Hint: (1) find the expectation via calculation of an integral with a certain 
(known) probability density; (2) for simplicity, you may take first r=0.) 

Black-Scholes formula 

Problem 5.79 Let HBS,c(s, K, r, T, σ) and HBS,p(s, K, r, T, σ) be the Black-Scholes prices 
for call and put options respectively. Here is the volatility, r≥0 is the bank interest 
rate, s=S(0) is the initial stock price, K is the strike price. 

(i) Are these functions increasing (decreasing) in s? Prove. (Hint: use the basic risk-
neutral valuation rule.) 

(ii) Find the limits for these functions as: (a) T→+∞; (b) σ→+∞; (c) T→+0; (d) σ→+0. 
(Hint: use the Black-Scholes formula.) 

Challenging problems 

Problem 5.80 Let ã(t)≡â≠0 not depend on time, and let a self-financing strategy be 

defined in closed-loop form such that where is 
the corresponding discounted wealth. Here k>0 and K>0 are given constants. Prove that 

In addition, prove that if X(0)>K, then 

Mathematical Finance     108



for all t>0 a.s., and if X(0)<K, then for all t>0 a.s. Is bounded from 
below? 

Problem 5.81 Let X(0)=1, and let a self-financing strategy be defined in closedloop 

form such that where is the corresponding 

discounted wealth. Here is a given constant. Prove that for all t>0 
a.s. In addition, prove that if σ(t)=σ>0 is constant, then, for any ε>0, 

as s→+∞ 
Problem 5.82 Let ã(t)≡â≠0 not depend on time, and let a self-financing strategy be 

defined in closed-loop form such that where is 
the corresponding discounted wealth. Here k>0 is a given constant, K(t)>0 is a given 
deterministic function bounded in t>0 together with its derivative dK(t)/dt. Let 

X(0)>K(0). Is it possible that for all t>0 a.s.? Is it possible that if X(0)<K, 

then for all t>0 a.s.? Investigate the properties of the process 

 
Problem 5.83 (see Example 5.12). Let σ>0 and a be constant, let T=+∞, and let 

τ=min{t>0: S(t)=K}, where K≠S(0). Prove that P(τ<+∞)=1 and Eτ=+∞. (Hint: the last 
equality is easier to prove for a=r=0.) 

For simplicity, you can assume that S(t)=S(0)+w(t); it does not remove the main 
challenge for the previous problem as well as for the following problem. 

Problem 5.84 John’s initial wealth is X(0)=S(0), and he uses the following strategy: 
where denotes the indicator function. (This means that John keeps 

one share of stock when S(t)≥S(0) and keeps zero amount of shares if S(t)<S(0), i.e., in 
that case all his money is in a cash account). John hopes to have the wealth 
X(T)=max(S(0), S(T)) at time T. Is it feasible? (Hint: some special topics of stochastic 
analysis omitted in the present book may help to solve the last problem (local time).) 

Problem 5.85 An investor looks for opportunities to obtain an annual profit of 1000%, 
and asks a quantitative analyst to create a self-financing strategy for the Black-Scholes 
model with given T=1 (year), σ>0, r≥0, S(0)=$1, such that the initial wealth X(0)=$1000 
has to be raised to the wealth X(T) such that 

X(T)≥$11 000 if either S(T)≤$1000 or S(T)≥$1001.   

(Note that it is allowed that X(T)<$11 000 if $1000<S(T)<$1001; this situation is 
considered as an unfavourable market scenario that has a low chance of occurring.) Does 
this strategy exist? 
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6 
American options and binomial trees 

This chapter introduces numerical methods for option pricing based on the so-called 
binomial trees. The binomial trees method is important since it can be used for 
complicated cases when the Black-Scholes formula is not applicable: 

• for American options and exotic options; 
• for models with time-variable random volatility or the risk-free rate. 

We will first demonstrate how to apply the binomial trees for European options, and then 
this method will be extended for American options. 

6.1 The binomial tree for stock prices 

6.1.1 General description 

Binomial trees are used to approximate the distributions of continuous time random 
processes of the stock price S(t) via discrete time processes. It is suggested to replace the 
price process by a random process with the following properties: 

• The process changes only at discrete times t0=0, t1=∆t,…, tk=k∆, tN=T, where 
∆=T/N, T is terminal time, and ∆ denotes the one time step. 

• If the price of the underlying asset is at time tk, then it may take only one of two 

possible values, at time tk+1, where and u>1 (see 
Figure 6.1). 

• The probability p of moving up to is known, as well as the 

probability q=1−p of moving down to  

The dynamics of the process can be visualized via a graph called a binomial tree. 
If the risk-free interest rate r is non-random and constant, then the corresponding 

market model is equivalent to the Cox-Ross-Rubinstein discrete time market model for 

the discrete time prices  
The parameters p, u, and d are chosen to match the stock price expectation and 

volatility. 



 

Figure 6.1 Price evolution in the 
binomial model. 

When binomial trees are used in practice, the life of the option is typically divided into a 
large enough number of steps to ensure good approximation. With 20 time steps, 220>106 
stock price paths are possible. However, if one chose u=1/d, then ud=1, and the number 
of possible price paths will be less. Figure 6.2 gives an example of a tree for five steps if 
ud=1. 

 

Figure 6.2 Binomial tree for N=5 
when ud=1. 
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Note that higher multinomial trees, for example a trinomial tree, are also widely used. 

6.1.2 Choice of u, d, p for the case of constant r and σ 

The most popular binomial tree represents the Cox-Ross-Rubinstein discrete time market 
model described in Section 3.9. It is known as the Cox-Ross-Rubinstein binomial tree. 

Let us assume that the continuous time stock price process S(t) is the solution of the 
Ito equation 

dS(t)=S(t)(adt+σ dw(t)), 
(6.1) 

where σ and a are constants. We assumed also that the risk-free interest rate r is constant 
and non-random. 

It was shown above that the Cox, Ross, and Rubinstein model ensures approximation 
of the continuous time Black-Scholes model for a large number of periods. This means 
that the options prices calculated via binomial trees approximate the fair prices. 

Let P* be the risk-neutral equivalent measure. For the Black-Scholes market model 
with constant non-random (σ, a, r), this measure exists and it is uniquely defined (see 
Theorem 4.58). (Remember that this measure coincides with the original probability 
measure iff a=r.) Let E* be the corresponding conditional expectation. 

Let be the filtration generated by w(s), s≤t. (Note that is also the filtration 

generated by S(t), and it is also the filtration generated by or by w(t).) Under the 

measure P*, the discounted price process is a martingale with respect to 
 

We shall model the probabilistic characteristics of the price evolution under the risk-
neutral measure P*, as required by the Black-Scholes approach. This means that 

S(tk+1)=S(tk)Mk+1,   

where 

 

  

Here w*(t) is a Wiener process under P*, and ξk are i.i.d. (independent identically 
distributed) random variables with law N(0, 1) under P*. 

Proposition 6.1 Let γ~N(0, σ). Then and  
Problem 6.2 Prove Proposition 6.1. 
Let us describe our choice of parameters for the binomial tree. Let Sk be the prices at 

time t=tk modelled by the binomial tree. 
It is natural to assume that 
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where are random variables such that 

 

  

We want the discrete time approximation to be close in some sense to the original 
continuous stock price. There are three unknown parameters (u, d, p), hence three 
restrictions can be satisfied. The most popular choice of the restrictions is 

 (6.2) 

We have that 
E*Mk+1=er∆, Var ln Mk=σ2∆.   

(The first equation here follows from Proposition 6.1.) Hence we have the following 
restriction for parameters: 

   

or 

 

  

Further, we need to choose u to ensure that Var ln ln Mk with d=1/u. It leads 
to the following rule. 

Rule 6.3 (choice of parameters for the binomial tree). The most popular choice of 
parameters is 

 

  

In that case, (6.2) holds. 
For example, this rule is used in MATLAB Financial Toolbox (Version 2). 
Problem 6.4 Prove that the equalities for the variances in (6.2) hold. 
Note that the market with the prices (ρk, sk), where ρk=B(0)er∆k, is a special case of the 

Cox-Ross-Rubinstein model introduced in Section 3.9, and d=ρ(1+ d1), u=ρ(1+d2), where 
di are parameters from Section 3.9. 
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6.1.3 Pricing of European options via a binomial tree 

Let us apply the binomial tree described above to pricing of European options. It was 
shown above that the Black-Scholes formula gives an explicit formula for European put 
and call (under certain assumptions). Moreover, formula (5.17) gives a good enough 
solution for a European option general payoff function F(S(T)). In addition, it will now be 
demonstrated how to apply the binomial trees for European options, and then this method 
will be extended for American options. 

Rule 6.5 For a European call option with payoff F(S(T)) the option prices at times tk 
can be estimated as V(sk, tk), and these values can be calculated backward starting from 
tN=T, and 

V(sN, tN)=F(sN), 
V(sk−1, tk−1)=e−r∆[pV(usk−1, tk)+(1−p)V(dsk−1, tk)],  
k=N, N−1,…, 1. 

(6.3) 

Here The price at time t0=0 is V(s0, 0), where 
s0=S(0). 

(Compare with Corollary 5.62.) 
Note that the parameters d, u, p do not depend on the type of option (i.e., on F(·)). 
Figure 6.3 shows an example of a tree for the stock prices and the corresponding tree 

for the call option prices. 

6.2 American option and non-arbitrage prices 

We describe the American option in the continuous time setting. However, all definitions 
given below are valid in the discrete time setting as well (see Definition 3.43). 

Up to the end of this chapter, we assume that the risk-free rate r≥0 is a non-random 
constant, and that the process (a(t), σ(t)) is adapted to the filtration and 

are as described in Section 5.1. 
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Figure 6.3 Binomial tree for the stock 
prices and for the call option prices. It 
is assumed that S(0)=100, T=1, σ=0.2, 
N=3, r=0, K=100 (the strike price). 
Note that the tree for the prices does 
not depend on r, and u=1.12, d=0.89, 
p=0.47. 
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We assume that all Markov times mentioned below are Markov times with respect to this 
 

Definitions 

An American call (put) option contract traded at time t may stipulate that the buyer 
(holder) of the contract has the right (not the obligation) to buy (sell) one unit of the 
underlying asset (from the writer, or issuer of the option) at any time (by 
his/her choice) at the strike price K. The option payoff (in s) is max(0, S(s)−K) for call 
and max(0, K−S(s)) for put, where S(s) is the asset price. 

More generally, an American option with payoff can be defined as a 
contract traded at time t that stipulates that the buyer of the contract receives an amount 
of money equal to F(S(s)) at any time by his/her choice. 

We assume that F(x) is a given function such that F(x)≥0. 
If the option holder has to fulfil the option obligations at time τ, we say that he or she 

exercises the option, and τ is called the exercise time. 

Sub (super) martingale properties for non-arbitrage prices 

Similarly to Section 5.9, we shall use the extended definition of the strategy assuming 
that a strategy may include buying and selling bonds, stock, and options. Short selling is 
allowed for stocks and bonds and not allowed for options. All transactions must be self-
financing; they represent redistribution of the wealth between different assets. For 
instance, a trader may borrow an amount of money x to buy k American options at time t 
with payoff then his/her total wealth at exercise time s is kF(S(s))−er(s−t) 

x. We assume that Definition 5.29 is extended for these strategies. In addition, we assume 
that the wealth and strategies are defined for Markov random initial times θ such that 

All definitions can be easily rewritten for this case. 
In particular, let X(0) be an initial wealth, and let be the discounted wealth 

generated by an admissible self-financing strategy (β(·), γ(·)). For any Markov time τ such 
that we have 

 

  

since a(t)dt+σ(t)dw(t)=σ(t)dw*(t), where is a Wiener 
process with respect to the risk-neutral measure  
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Similarly, let X(θ) be an initial wealth at Markov initial time θ such that 

and let be the discounted wealth generated by an admissible self-financing strategy 
(β(·), γ(·)). For any Markov time τ such that  

we have 

 

  

Lemma 6.6 Let C(t) be the market price at time t for an American option with the payoff 
(this price is not necessarily the fair price). We assume that this process 

is adapted to Assume that the market does not allow arbitrage for the option buyer. 
Then 

   

for any two Markov times θ and τ such that θ≤τ≤T a.s. In other words, is a 
supermartingale with respect to the risk-neutral measure P*. 

Proof. Let the lemma’s statement be untrue. Then there exists a Markov time θ such 
that θ≤τ and 

   

where ψ is an random variable such that ψ≥0 a.s., and 
Assume that the buyer has zero initial wealth. He/she buys the option at time θ 

for the market price In addition, he/she invests erθ ψ in the bonds. To 
obtain cash for these purchases, he/she creates an auxiliary portfolio with negative initial 

wealth and with some self-financing strategy such that the 

discounted wealth is such that (this wealth and strategy exist since the 
market is complete). Note that the initial wealth for the combined portfolio is zero. At 
time τ, the buyer sells the option for the market price C(τ), and this is sufficient to cover 
the debt generated by the second portfolio that has the total wealth −C(τ) at this time. The 
remaining wealth originated from the investment of the amount erθ ψ in bonds gives the 
arbitrage profit. 

Lemma 6.7 Let C(t) and be the processes described in Lemma 6.6. Let 

be the discounted option price. Let τ be a Markov time such that the 
option is not exercised at Assume that the market does not allow arbitrage for 
the option seller. Then 
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for any Markov time θ such that In other words, is a submartingale on 
time interval [t, τ) with respect to the risk-neutral measure P*. 

Proof. Let the lemma’s statement be untrue. This means that there exists a Markov 
time θ such that and 

   

where η is an random variable such that η≥0 a.s., and P*(η>0)>0. Assume that the 

seller sells the option at time θ for the market price At this time, 
he/she invests the wealth erθ η to bonds, and starts the portfolio with the self-financing 
strategy such that the corresponding discounted wealth is such that 

and Remember that the option is not exercised 

before τ. At time τ, the seller is using the wealth to buy back the 
option from the buyer (or, equivalently, to buy the same option and keep it up to the time 
when the buyer exercises the option). This allows to fulfil obligations for the option that 
had been sold. The remaining wealth originated from the investment of erθ η in bonds 
gives the arbitrage profit. 

Corollary 6.8 Let C(t) and be the processes described in Lemma 6.6. Assume 
that the market does not allow arbitrage for the option buyer and for the option seller. In 

that case, is a supermartingale on [0, T] under the measure P*. Further, let θ and τ 
be Markov times such that θ≤τ and the option is not exercised at [θ, τ). Then 

   

for any Markov time θ such that θ≤τ a.s. In other words, is a martingale on time 
interval [θ, τ) with respect to the risk-neutral measure P*. 

6.3 Fair price of the American option 

The following pricing rule is similar to the rule for European options from Definitions 
5.42 and 5.43. 

Definition 6.9 The fair price of an American option at time t is the minimal initial 
wealth X(t) such that, for any market situation, this wealth can be raised with some 
acceptable strategies to the wealth that can cover option obligations. 

We now rewrite Definition 6.9 more formally. 

Definition 6.10 The fair price at time t of an American option with payoff 
is the minimal random variable cF(t) such that, for any stock price 

scenario, there exists an admissible self-financing strategy such 
that for the corresponding wealth X(s) and for all times s such that  
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X(s)≥F(S(s)) a.s.   

The fair price does not allow arbitrage 

Lemma 6.11 Assume that an option seller sells at time t an American option with the 
payoff for a price c+(t) such that c+(t)>cF(t), where cF(t) is the fair price 
of this option. Then he/she can have an arbitrage profit. 

Proof. Assume that the seller has zero initial wealth and sells the option for the price 
c+(t). After that, the seller can invest the wealth c+(t)−cF(t)>0 to bonds, and create an 

additional portfolio with the initial wealth and with an admissible self-
financing strategy (that exists) such that X(s)≥F(S(s)) a.s. for all Therefore, 
the option obligation will be fulfilled, and the seller will have the risk-free (arbitrage) 
profit equal to er(T−t)(c+(t)−cF(t))>0. 

Lemma 6.12 Assume that an option seller sells at time t an American option with the 
payoff for a price c−(t) such that c−(t)≤cF(t), where cF(t) is the fair price 
of this option. Then he/she cannot have an arbitrage profit. 

Proof. Assume that the initial wealth of the option seller is zero. At time t, he/she sells 
the American option for the price c−(t) and creates a portfolio using this amount of cash 
as the initial wealth. Let X(s) be the wealth obtained by an admissible self-financing 
strategy with this initial wealth X(t)=c−(t). By the definition of the 
fair price, it follows that there exists time such that P(X(θ)<F(S(θ)))>0 (this 
time may depend on the strategy). If the option holder exercises the option at time θ, then 
the seller has losses. Therefore, arbitrage gain for the seller is impossible for any 
admissible self-financing strategy. Then the proof follows. 

Corollary 6.13 The fair price of options is the only price that does not allow arbitrage 
opportunities for the seller and such that the option obligations may be fulfilled with 
probability 1 for the wealth generated from this price with a self-financing strategy. 

Lemma 6.14 Assume that the market price of an American option with the payoff 
is the fair price cF(t). Then a buyer of the option cannot have an 

arbitrage profit. 
Proof. Assume that the option buyer has the initial wealth cF(t) at time t. He/she buys 

the option, so his/her total wealth at time s≥t is either F(S(s)) (if the option is exercised) 
or cF(S) (if it is being sold). 

Assume first that the option is exercised. By the definition of the fair price, there exists 
an admissible self-financing strategy Гt=(β(·), γ(·))|[t,T] such that X(s)≥F(s) for the 
corresponding total wealth X(s) such that the initial wealth is X(t)=cF(t). The strategy Гt 
does not allow arbitrage, and the wealth X(s) is the same or bigger than the buyer’s 
wealth (obtained after the exercise of the option). Therefore, the buyer cannot have 
arbitrage profit if the option is exercised. 

Further, we have that X(s)≥cF(s), since the initial wealth X(t)=cF(t) must ensure that 
X(q)≥F(S(q)) for all q≥t, and the initial wealth X(s, s)=cF(S) must ensure that X(q, 
s)≥F(S(q)) for q≥s only, where X(q, s) is the total wealth for the self-financing strategy 
that can cover the option’s obligations after time s. Hence X(s)≥X(s, s)=cF(S). Again, the 
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strategy Гt does not allow arbitrage, and its wealth at time s is the same or bigger than the 
buyer’s wealth. Therefore, the buyer cannot have arbitrage profit at time s. 

Corollary 6.15 Let cF(t) be the fair price of the American option, and let 
be the discounted fair price. Then 

(i) is a supermartingale for  
(ii) Let θ and τ be Markov times such that θ≤τ and the option is not exercised at [θ,τ). 

Then for any Markov time ρ such that In other 
words, is a martingale on time interval [θ, τ) with respect to the risk-neutral 
measure P*. 

Proof follows from Corollary 6.8 and Lemmas 6.6 and 6.7. 

6.4 The basic rule for the American option 

Up to the end of this chapter, we assume that the market is complete with constant r≥0 
and a>0. 

In addition, we assume that is the filtration generated by S(t) (i.e., by w(t), or by 

 
Let the function F(x)≥0 be such that some technical conditions are satisfied (it suffices 

to require that F(x) is continuous and |F(x)|≤ const. (|x|+1)). For instance, the functions 
F(x)=(x−K)+ and F(x)=(K−x)+ are admissible. 

Theorem 6.16 Let initial time the risk-free rate r≥0 and volatility σ>0 be 
given. Consider an American option with the payoff Let cF(t) be the fair 
price of this option at time Then the following holds: 

(i) cF(T)≡F(S(T)); 
(ii) cF(t)≥F(S(t)) for all and there exists (random) Markov time τ=τ(ω)=τ(t, 
ω) such that for all ω and  

   

(If cF(t)=F(S(t)), then τ=t.) Moreover, the option will not be exercised at time [t, 
τ) by a rational investor. 

(iii) cF(0)=E*e−rτ F(S(τ)). 
(iv) The fair price cF(0) is the solution of the optimal stopping problem 

 (6.4) 

where the supremum is over all (random) Markov times such that 
for all ω. Time τ from (ii) is the optimal stopping time for this 

problem. 
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The process cF(t) and random time τ are uniquely defined up to equivalency, i.e., 
P(τ=τ′)=1 for any other optimal τ′. 

In fact, Theorem 6.16 (iv) defines the fair price for an American option uniquely for a 
wide class of F(·) but it is not an explicit formula. An explicit solution is still unknown. 
Theorem 6.16 (iv) states that the optimal exercise time τ for an option’s buyer is the 
solution of the optimal stopping problem, when τ is the optimal stopping time. It can be 
shown that this optimal time τ is the first time that S(t) hits a certain optimal level, Г(t). 
Therefore, the problem can be reduced to calculation of this Г(t). An explicit solution is 
unknown even when r and σ are known constants. A possible and most popular numerical 
solution is described below; it is based on binomial trees. There is much literature 
devoted to approximate methods of solution; the pricing of American options is not easy. 

Proof of Theorem 6.16. Statement (i) is obvious. Let us prove statement (ii). Assume 
that cF(t)<F(S(t)). Then an option buyer can exercise the option immediately at time t of 
its purchase and obtain the risk-free gain. It contradicts Lemma 6.14. Hence cF(t)≥F(S(t)). 

Further, if the holder exercises the option when cF(S)>F(S(s)), then he/she obtains the 
value F(S(t)) which is less than the market price cF(s) of the option. Clearly, he or she 
would prefer to sell the option rather than exercise it. It follows that τ is the first 
reasonable time that the option can be exercised. This τ can be found as the first time 
before T when cF(τ)=F(S(τ)); if this does not occur before T, then τ=T, because of (i). It 
follows that this τ is a Markov time, since it is constructed as a time of first achievement 
for the currently observable process. Then (ii) follows. 

Further, let t=0 be initial time. Let X(0) be the initial wealth equal to the option price 
cF(0). We have that 

 

  

for any Markov time and for any self-financing admissible strategy (β(·), 

γ(·)) with the corresponding discounted wealth The option writer needs to obtain 
the total wealth X(t) such that for all possible exercise times 

i.e., 

 (6.5) 

For Markov times it follows that  

   

By (ii), it follows that τ is a Markov time. By Lemma 6.12, it follows that the option 
seller cannot have an arbitrage profit if the price is fair. By Lemma 6.7, it follows that 

X(0)=cF(0)≤E*e−rτ cF(τ)=E*e−rτ F(S(τ)).   

Remember that (6.5) holds for all Markov times Hence 
X(0)=cF(0)=E*e−rτ F(S(τ)),   
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and 

   

for all Markov times Then (iii) and (iv) follow. 
Remark 6.17 By equation (ii) from Theorem 6.16, it follows that the price for an 

American option cannot be less than the price of the corresponding European option 
which is E*e−rτ F(S(τ)) with fixed τ≡T. This can also be seen from the economical 
meaning of conditions for both options: the American option gives more opportunities to 
its holder. 

Markov property and price at time t>0 

Clearly, all definitions can be rewritten for a market model such that time interval [0, T] 
is replaced for time interval [t, T], where is non-random, and where the initial 
stock price S(t) is non-random. The complete analogue of Theorem 6.16 (iii)–(iv) is valid 
(the proof is similar). By this theorem (rewritten for the market with new time interval), 
the price at time s is 

 
  

where supremum is taken over Markov times τ such that for all ω. 
Formally, we cannot apply this result directly to the original model for the case when 

t>0, because S(t) is random and cF(t) is an random variable. However, 
we can use that S(t) is a Markov process under P* (see Remark 4.35). It follows that 

   

In particular, cF(t)=E*{cF(t)|S(t)}, since cF(t) is  
Now observe that the following is satisfied: 

(a) The conditional probability space with the probability P*(·|S(t)) (i.e., under the 
condition that S(t) is known) is such that Theorem 6.16 (iii)–(iv) (rewritten for the 
market with time interval [t, T]) can be applied (by the reasons described above). 

(b) Let c[t,T](s) denote the option fair price for the corresponding market at time 
on the conditional probability space with the probability P*(·|S(t)) (i.e., 

under the condition that S(t) is known). Then c[s,T](s)=c[0,T](s) (remember that the first 
value here is defined on the conditional probability space given S(s)). 

These observations lead to the following useful addition to Theorem 6.16. 
Theorem 6.18 Under the assumptions and notations of Theorem 6.16, the following 

holds: 

(i) cF(t)=E*{e−r(τ−t)F(S(τ))|S(t)}, where τ=τ(t, ω) is as described in Theorem 6.16 (ii); 
(ii) The fair price cF(t) is the solution of the optimal stopping problem 
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where the supremum is over all (random) Markov times such that 
for all ω. Time τ is the optimal stopping time for this problem. 

Corollary 6.19 Under the assumptions and notations of Theorem 6.18, it follows that 
time τ is the best time for the option holder to exercise the option in the following sense: 

   

for all (random) Markov times such that for all ω. Here 
denotes the terminal wealth for the option buyer if he/she exercises the option at 

time obtains the amount of cash and invests this amount in the bonds (or in 
the bank account with interest rate r). 

Proof of Corollary 6.19. By Theorem 6.18 (ii), it follows that time τ is such that 

   

for all (random) Markov times such that for all ω. Clearly, 

Hence 

 

  

This completes the proof. 

The fair price at random time 

Theorem 6.16 (iii) can be generalized as the following. 
Theorem 6.20 Let cF(t) be the fair option at time Then, under the 

assumptions and notations of Theorem 6.16, 

 
  

for any Markov time θ such that θ≤τ. 
Proof. Note that the statement of the theorem for θ=0 follows from Theorem 6.16. Let 

us extend the corresponding proof for the general case of random θ. 
Let the initial wealth X(θ) at Markov time θ be equal to the option price cF(θ). We 

have that 

 

  

for any Markov time and for any self-financing admissible strategy (β(·), 

γ(·)) with the corresponding discounted wealth The option writer needs to obtain 
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the total wealth X(·) such that for all possible exercise times 
i.e., 

(6.6) 

Here For Markov times it follows that 

   

Remember that τ is a Markov time. By Lemma 6.12, it follows that the option seller 
cannot have an arbitrage profit for the fair price. By Lemma 6.7, it follows that 

   

Remember that (6.6) holds for all Markov times Hence 

   

Then the proof follows. 
The following theorem establishes some causality property for the price of the 

American option: the price at a given time can be represented via the price at a later time. 
Theorem 6.21 Under the assumptions and notations of Theorem 6.20, 

 
  

for all Markov times ψ and θ such that θ≤ψ≤τ a.s. 
Proof follows from Theorem 6.20. 

6.5 When American and European options have the same price 

Note that it is possible that the Black-Scholes price of a European put option at time t 
with the strike price K is less than (K−S(t))+ (to see this, solve Problem 5.79 (i) for put 
with r>0). In contrast, it is impossible for the American put, so the price for the 
American put can be higher than the price of the corresponding European put. The 
question arises as to whether there are cases when American and European options have 
the same price. 

Theorem 6.22 (Merton’s theorem). Consider an American call option, i.e., with the 
payoff F(S(t))≡(K−S(t))+. Then the fair price for this option is the same as for the 
corresponding European call. 

Proof. We only consider the case of t=0, the other cases being similar. Since 

is a martingale under P*, for any Markov time taking values in [0, T], 

we have that and 
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Clearly, 

   

Hence 

   

By taking expectations, we obtain 
E*e−rτ (S(τ)−K)+≤E*e−rT (S(T)−K)+=e−rTE*(S(T)−K)+,   

and it is the Black-Scholes price. By Remark 6.17, it follows that the fair price of the 
American option cannot be less then the Black-Scholes price. Then the proof follows. 

The previous theorem can be generalized as the following. 
Theorem 6.23 Consider an American option with the payoff such that 

the function F(x) is convex in x>0, and such that the function αF(x/α) is non-increasing in 
Then, under the notations of Theorem 6.16, τ≡T, and the fair price is the 

same for American and European calls. 
Proof. We only consider the case of t=0; the other cases are similar. It follows from 

the assumptions about F(·) that, for any Markov time taking values in [0, T], 

   

Since is a martingale under P*, we have In 
addition, let us assume that P(τ<T)>0. We have that the support of the conditional 
distribution of S(z) given S(θ) is (0, +∞). Since F(·) is convex and non-linear, it follows 
from Jensen’s inequality1 that 

   

Hence 

   

By taking expectations, we obtain 

   

i.e., it is the fair price of the European option. Therefore, the supremum over all τ is 
achieved only for τ=T. Then the proof follows. 

Note that the function F(x)=(x−K)+ (for the American call option) is such that the 
assumptions of Theorem 6.23 are satisfied. 

Theorem 6.24 Consider an American option with convex function F(x), for a market 
with r=0 (i.e., with zero risk-free interest rate). Then, under the notations of Theorem 
6.16, τ≡T, and the fair price is the same for American and European options with this 
F(·). 

Problem 6.25 (challenging problem). Prove Theorem 6.24. (Hint: use Jensen’s 
inequality.) 
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1 Let be given, −∞≤a<b≤+∞. Let f: [a, b]→R be a function that is convex in 
Let ξ be an integrable random variable such that f(ξ) is also integrable. Then f(Eξ)≤ 

Ef(ξ). (This is Jensen’s inequality.) 

Corollary 6.26 Note that the American put option has convex payoff function 
F(x)=max(K−x, 0). Then, under the notations of Theorem 6.16, τ≡T, and the fair price is 
the same for the American and European put options, if r=0. (In addition, it was proved 
already that the fair price is the same for American and European call options for r≥0.) 

However, the prices for the corresponding American and European put options are 
different if r>0. Thus, we need a numerical calculation algorithm for the fair prices of 
American put options for r>0. 

6.6 Stefan problem for the price of American options 

In this section, we assume that the function F(x) is absolutely continuous and such that 
|F(x)|+|dF(x)/dx|≤ const. 

By Theorem 6.18 (ii), it follows that the solution cF(t) of the optimal stopping problem 
(6.6) can be represented as cF(t)=V(S(t), t), where 

 (6.7) 

and where supremum is taken over Markov times τ such that for all ω. 
By Theorem 6.21 (i)−(ii), it follows that V(x, T)≡F(x) and V(x, s)≥F(x). 
Let 

 
  

Let i.e., Then 

 
Let us assume that the solution V of optimal stopping problem (6.7) is continuous and 

locally bounded in D together with the derivatives and By the Ito formula, it 
follows that 

 
  

when t evolves inside a connected time interval such that (Remember that 

and On the other hand, 
is a martingale under P* for this time interval (Corollary 6.15 (ii)). It follows that 

 
  

2 Locally bounded means that it is bounded on any bounded subset of  
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Hence 

 

  

where This equation can be re-
written as 

 

  

It follows that V is a solution of the boundary value problem for the parabolic equation 

 

  

where 

 
(6.8) 

Remark 6.27 In fact, (6.8) is the Bellman equation (or the dynamic programming 
equation) for the optimal stopping problem (6.7). It is one of the basic results of the 
classical theory of optimal stochastic control (for the special case of the optimal stopping 
problem). 

Condition of smooth fitting 

In fact, the solution V of (6.8) is not unique in the class of all functions that are smooth 
inside D such as was described. Therefore, not any solution of this Stefan problem 
represents the option fair price. Typically, the solution V of (6.8) is unique in the class of 
functions V: (0+∞)→R such that the derivative ∂V(x, t)/∂x is continuous in 

(in addition to the assumptions about the properties of V inside D 
formulated above). This new assumption implies that the so-called condition of smooth 
fitting holds: 

 (6.9) 

The proof follows from the fact that the function u(x, t)=V(x, t)−F(x) is continuous 
together with ∂u(x, t)/∂x, and u(x, t)≡0 for  

Let us explain briefly why we need condition (6.9) to ensure that the solution V of 
(6.8) represents the solution of the optimal stopping problem (6.7). 
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It can be seen that V(x, t)=max(U(x, t), F(x)), where U(x, t) is a function that is 
absolutely continuous in x>0 together with the derivative and such that U|D≡V|D. 
It follows that 

 
  

Let us assume that a solution V of problem (6.8) is such that 

 
  

for some In this case, the process e−rt V(S(t), t) cannot be a supermartingale. The reason 
can be described, in short words, as the following: formal application by the Ito formula 
gives that the process e−rt V(S(t), t) has some ‘drift coefficient’ represented as the summa 
of a bounded process plus some unbounded positive part. The last one is generated by the 
derivative ∂2 V(x, t)/∂x2 presented in the Ito formula; this derivative turns out to be a delta 
function at (To describe the situation in a mathematically correct way, we need to 
use some special results from the Ito calculus related to so-called local time). We have 
proved in Corollary 6.15 that the process is a supermartingale. 
Therefore, the fair price can be presented as cF(t)=V(S(t), t) only for V that is a solution of 
the Stefan problem (6.8) such that (6.9) holds. 

Remark 6.28 We derived (6.8) only under the assumption that V is smooth enough 
inside D. Typically, the solvability and uniqueness of (6.8) can be proved 
unconditionally, i.e., under some assumptions for F(·), r, σ, T only. It is a more 
challenging problem. 

6.7 Pricing of the American option via a binomial tree 

We found that the fair price of an American option can be obtained via solution of a 
Stefan problem (6.8) for a parabolic equation. 

The main difference with the related problem (5.24) is that the domain 
(where the parabolic equation is valid) is not fixed a priori and needs to be found together 
with V(·). A boundary value problem with this feature is said to be a Stefan problem. As 
was mentioned above, an explicit solution of this problem is unknown even for our 
relatively simple case of constant (r, σ) and scalar state variable x. One possible approach 
is a numerical solution. 

Note that Theorem 6.21 implies that 

 

  

where This leads to the following rule. 
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Rule 6.29 (calculation of American option prices). For the binomial tree described in 
Section 6.1, the American option prices at times tk can be estimated as V(sk, tk), and these 
values can be calculated backward starting from tN=T, and 

 

  

where 

(6.10) 

Here The price at time t0=0 is V(s0, 0), where s0=S(0). 

(Compare with Rule 6.5.) The process is described in Section 6.1. 
The corresponding MATLAB code is given below. Note that the MATLAB Financial 

Toolbox has the built-in program binprice; it covers more options (including ones that 
take into account dividends) but it uses the same algorithm for the same binomial tree. 

MATLAB code for pricing of the American put via a binomial tree 

function[c]=amerput(N,s0,K,vol,T,r) 
DT=T/(N-1); 
rho=exp(-DT*r); 
u=exp(vol*sqrt(DT)); 
d=1/u; 
s=zeros(N, N); ff=s; S(1,1)=s0; 
for k=1:N   form=k:N 
    s(k,m)=s(1,1)*u^(m-k)*d^(k-1); 
end; end; 
      p=(exp(DT*r)-d)/(u-d); 
         for k=1:N ff(k,N)=max(0,K-s(k/N)); end; 
         V=ff; for m=1:N-1 for k=1:m 
         y=s(k,m); end; end; 
for k=1:N-1 kk=N-k; for m=1:kk 
wV=rho*(p*V(m,kk+1)+(1-p)*V(m+l,kk+1)); 
V(m,kk)=max(max(K-s(m,kk),0),wV); end; end; 
%PutPricesTree=V 
c=V(1,1); 

Figure 6.4 shows examples of trees for European and American put prices at times t0, t1, 
t2, t3, for the case when the tree for the stock prices is given by Figure 6.3. It can be seen 
that the early exercise for American put is possible at time t2 if S2=79.37; if the stock 
price in the binomial tree model does not hit this value at time t2, then the option is 
exercised at terminal time t3=T. 
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Figure 6.4 Binomial trees for 
European and American put. 
It is assumed that S(0)=100, T=1, 
σ=0.2, N=3, r=0.07, K= 100 (the strike 
price). The corresponding tree for the 
stock prices is given in Figure 6.3; 
u=1.12, d=0.89, p=0.47. 
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6.8 Problems 

Problem 6.30 Complete the tree in Figure 6.2. 
Problem 6.31 Using a binomial tree with two time periods, calculate the price of a 

European put option with the strike price K=100 for a three-month term with r=0.05, 
σ=0.2, S(0)=100. (Hint: a three-month term corresponds to T=1/4.) 

Problem 6.32 Using a binomial tree with three time periods, calculate the price of an 
American put option with the strike price K=100 for a three-month term with r=0.05, 
σ=0.2, S(0)=100. 

Problem 6.33 Let N be the number of time periods in a binomial tree. Let the prices 
for American and European put be calculated using a binomial tree. Is it possible that 
prices are different for American and European put if N=1? if N=2? 

Challenging problem 

Solve Problem 6.25. 
Problem 6.34 Suggest a pricing rule for the option described in Remark 3.46. (Hint: 

use Problem 3.70.) 
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7 
Implied and historical volatility 

In this chapter, we consider again stocks and options prices in the framework of the 
continuous time diffusion market model. Some connections between the Black-Scholes 
model and the analysis of empirical market data will now be discussed. 

7.1 Definitions for historical and implied volatility 

Consider a risky asset (stock) with the price S(t). The basic assumption for the continuous 
time stock price model is that the evolution of S(t) is described by an Ito stochastic 
differential equation 

dS(t)=a(t)S(t)dt+σ(t)S(t)dw(t). 
(7.1) 

Here w(t) is a Wiener process such that w(t)~N(0, t), i.e., the distribution law for w(t) is 
N(0, t). 

Remember that the coefficient σ(t) is said to be the volatility, and a(t) is said to be the 
appreciation rate. 

It was shown above that 

 
(7.2) 

where 

 

  

Clearly, 

 
(7.3) 

If S(0), σ(t), and σ(t) are deterministic, then the distribution of log asset price 

In S(T) is normal with mean In and variance  



Historical volatility 

For the generic Black-Scholes model, we accept the hypothesis that a and σ are non-
random constants. However, empirical research shows that the model may better match 
empirical data if the process (a(t), σ(t)) is allowed to be time-varying and random. A 
number of different hypotheses based on less or more sophisticated deterministic and 
stochastic equations for (a, σ) have been proposed in the literature. We saw that the 
option price depends on the volatility (but not on a), hence it is especially important for 
derivatives pricing to evaluate and model random volatility. 

Proposition 7.1 For any  

 
(7.4) 

Problem 7.2 (i) Prove Proposition 7.1. (ii) Let be a filtration such as described in 

Chapter 5, and let where r(s) is a random bounded 
process. Prove that 

 

  

It follows that σ(t)2 can be represented as an explicit function of past stock prices {S(s), 
t−ε<s<t} for any ε>0. This is true for the case of random and time-varying volatility, as 
well as for constant volatility. 

In theory, formula (7.4) gives a complete description of past and present values of 
σ(t)2 given past price observations for a very general class of processes σ(t). However, 
this formula is not really useful in practice: the stochastic integral cannot be calculated 
precisely, since it must be replaced by a summa defined by the observed time series for 
prices. There are many working statistical methods of volatility estimation (usually, they 
require certain a priori assumptions about the evolution of the volatility process). We 
shall consider below some of these methods, including a method based on the hypothesis 
that volatility is constant, and a method based on so-called ARCH and GARCH models. 
These methods have in common that the volatility is calculated from historical stock 
prices. The resulting estimation is called historical volatility. 

Note that estimation (7.4) does not give future values of volatility. 

Implied volatility 

Let HBS,c(x, K, σ, T, r) and HBS,p(x, K, σ, T, r) be the Black-Scholes prices at time t=0 for 
call and put, where K is the strike price, σ is the volatility, r is the risk-free rate, T is the 
termination time, under the assumption that S(0)=x. Remember that call and put options 
have payoff functions F(S(T)), where F(S(·))=(S(T)−K)+ or F(S(·))=(K−S(T))+, 
respectively. Let us repeat the Black-Scholes formula (5.18): 
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HBS,c(x, K, σ, T, r)=xΦ(d+)−Ke−rT Φ(d–), 
HBS,p(x, K, σ, T, r)=HBS,c(x)−x+Ke−rT, (7.5) 

where 

 

  

and where 

 

  

Lemma 7.3 The Black-Scholes prices for put and call are monotonically strictly 
increasing functions with respect to σ. 

Proof. It suffices to find the derivatives ∂HBS,c/∂σ and ∂HBS,p/∂σ (i.e., to solve the 
problem below). Then it will be seen that these derivatives are positive. 

Problem 7.4 Find the derivatives mentioned in the proof of Lemma 7.3. 
Lemma 7.3 has clear economical sense: the price for options is higher for a market 

with bigger uncertainty (i.e., with a bigger σ). In other words, a more volatile market 
defines a higher price for risk. 

By Lemma 7.3, there is a one-to-one correspondence between the Black-Scholes 
option prices for put or call and the volatilities (if all other parameters are fixed). 

Consider a market where a stock and options on this stock are traded. Let 
VBS(σ)=VBS(S(0), K, σ, T, r) denotes the Black-Scholes price for either put or for call, 
where K is the strike price, σ is the volatility, and r is the risk-free rate. It is reasonable to 
assume that the market prices of options are meaningful and that they reflect some 
essential market factors. For instance, one can assume that a market price is based on 
offers made by major financial institutions, who set prices accurately using sophisticated 
models and refined methods to estimate volatility. 

Assume that an investor does not collect the historical prices and does not measure 
volatility from the historical prices, but observes stock and option prices. This investor 

may try to calculate volatility by solving the equation with respect to σ, 
where is the market price of the option. (It follows from Lemma 7.3 that VBS(σ) is a 
strictly increasing function in σ, so this equation is solvable.) The solution σ=σimp of the 

equation is called implied volatility. 
Definition 7.5 A value σimp is said to be implied volatility at time t=0 for the call 

option given K, r, T, if the current market price of the option at time t=0 can be 
represented as HBS,c(S(0), K, T, σimp, r), where HBS,c(S(0), K, T, σ, r) is the Black-Scholes 
price for call, where K is the strike price, σ is the volatility, r is the risk-free rate, and T is 
the terminal time. 

The definition for the implied volatility for a put option is similar. 
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If a market is exactly the Black-Scholes market with constant σ, then σimp does not 
depend on (T, K), and it is equal to this σ (which is also the historical volatility). 
However, in the real market, σimp depends usually on (T, K) (and on the type of option), 
and the implied volatility differs from the historical volatility. In this case, we can 
conclude that the Black-Scholes model does not describe the real market perfectly, and its 
imperfections can be characterized by the gap between the historical and implied 
volatilities. 

Varying K and T gives different patterns for implied volatility. Similarly, the evolving 
price S(t) gives different patterns for implied volatility for different t for a given K. 

The most famous pattern is the so-called volatility smile (or volatility skew) that 
describes dependence of σimp on K. Very often these patterns have the shape of a smile (or 
sometimes skew). These shapes are carefully studied in finance, and very often they are 
used by decision-makers. They are considered to be important market indicators, and 
there are some empirical rules about how to use them in option pricing. For instance, 
there is some empirical evidences that the Black-Scholes formula gives a better estimate 
of at-the-money options (i.e., when K~S(t)), and a larger error for in-the-money and out-
of-the-money options (i.e., the historical volatility is closer to the implied volatility when 
K~S(t)). In addition, different models for evolution of random volatility are often tested 
by comparing the shape of volatility smiles resulting from simulation with the volatility 
smile obtained from real market data. 

7.2 Calculation of implied volatility 

By Lemma 7.3, any Black-Scholes price V(σ) for call or put is a monotonic increasing 
function in σ. An example of its shape is given in Figure 7.1. The code that creates this 
graph is given below. 

MATLAB code for representation of the Black-Scholes price as a 
function of volatility 

function[v]=volprice(N,eps,s,K,T,r) v=zeros(1,N); 
op=v; for k=1:N, v(k)=eps*k; op(k)=call (x, K, v (k), 
T,r); end; 
plot(v(1:N), op(1:N),'b-'); 

Since V is monotonic, finding the root of the scalar equation is a simple 
numerical problem. A very straightforward, and the simplest, solution is  
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Figure 7.1 Option price as a function 
of volatility. 
It is assumed that (N, eps, s, K, T, 
r)=(500, 0.01, 1, 1, 1, 0.07). 

to calculate all values of V(σ) with some small enough step (i.e., to calculate the Black-
Scholes price as a function of volatility), and then find the best matching value. The 
corresponding code is given below. 

MATLAB code for extracting implied volatility from the call price 

function[vol]=impvol(N,eps,price,s,K,T,r) v=zeros(1,N); 
op=v; 
delta=100; m=0; for k=1:N,v(k)=eps*k;op(k)=call 
(x,K,v(k),T,r); 
    if abs(op(k)-price)<delta 
    delta=abs(op(k)-price); m=k;  end; 
end; 
vol=v(m); pr=price*ones (1,N); 
plot(v(1:N),op(1:N),'b-',v(1:N),pr(1:N),'r-.'); 

Another way is to use any modification of the gradient method (for this, the explicit 
formula for V′(σ) can be used). For example, the Newton-Raphson method of solution of 
the equation f(x)=0 is to find a root via sequence xk+1=xk−f′(x)/f(x), k=0, 1, 2,…. Note 
that MATLAB Financial Toolbox has a program blsimpv for calculating implied 
volatility that is based on a precise numerical solution of the scalar equation. 
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Problem 7.6 Suggest an algorithm of calculation of implied volatility using a gradient 
method. 

7.3 A simple market model with volatility smile effect 

Consider a single stock market model from Example 5.63 with traded options on that 
stock. For this model, all options are priced on the basis of the hypothesis that, for any 
risk-neutral measure, volatility is random, independent of time, and can take only two 
values, σ1 and σ2, with probabilities p and 1−p respectively, where is given. 
Further, assume that the pricing rule for an option with payoff function F(S(T)) is 
e−rTE*F(S(T)). Here E* is the expectation generated by the measure P* such that 

P*(A)=pP*(A|σ=σ1)+(1−p)P*(A|σ=σ2)   

for all random events A. In particular, the price of the call option with the strike price K 
and expiration time T is 

HBS,c(S(0), K, T, σ1, r)+(1−p)HBS,c(S(0), K, T, σ2, r). 
(7.6) 

Figure 7.2 represents the implied volatility calculated for this market using the code given 
below. It can be seen that even this very simple volatility model generates a volatility 
smile. 

 

Figure 7.2 Implied volatility, the 
market with random volatility from 
Example 5.63. It is assumed that (N, 
eps, s, T, r)=(24, 0.125, 2, 1, 0.1). 
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MATLAB code for modelling of volatility smile (Example 5.63) 

function[v]=volsmile(N,eps,s,T,r) p=0.5; v1=0.3; 
v2=0.7; N1=100; 
eps1=1/100; v=zeros(1,N);  op=v;  K=v;  K0=max(0.1, s-
N*eps/2); for 
k=1:N K(k)=K0+eps*k; 
    op(k)=p*call(x,K(k),v1,T,r)+(1-
p)*call(x,K(k),v2,T,r); 
    v(k)=impliedvol(N1,eps1,op(k),s,K(k),T,r); 
end; plot(K(1:N),v(1:N),'ro'); 

7.4 Problems 

Problem 7.7 Assume that we observe prices for two different stocks at time t=0, i=1, 
2. We assume that the risk-free rate is constant and known. Assume also that European 
call options on these two stocks, with the same strike price K and same expiration time 

T>0, have market prices C(i) at time t=0, i=1, 2. Let C(1)>C(2). Let be the 
corresponding implied volatilities, i=1, 2. Indicate which statement is most correct and 
explain your answer: 

 

  

Problem 7.8 Solve Problem 7.7 assuming put options instead of call options. 
Problem 7.9 Assume that r= 0.05, S(0)=1, and T=1. Using a code that represents the 

Black-Scholes price of a call option as a function of volatility, draw a graph that 
represents the option price with this parameter as a function of the volatility. Further, 
assume that the price of the call option with strike price K=1 is 0.25. Estimate the implied 
volatility using the figure. 

Problem 7.10 Calculate the implied volatility using a code. Assume that the price of a 
call option with strike price K=100 is 25, and r=0.05, S(0)=100, T=1. 

Problem 7.11 Assume that r=0.05, S(0)=100, T=0.5. The price of a call option with 
strike price K=90 is 25. Calculate the implied volatility. 

Problem 7.12 For the market model described in Section 7.3, calculate the implied 
volatility for K=S0±0.1, ±0.2, ±0.3 given (S(0), r, T, p)=(1, 0.03, 1, 0.45). 
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8 
Review of statistical estimation 

In this chapter, we collect some core facts from mathematical statistics and statistical 
inference that will be used later to estimate parameters for continuous time market 
models. 

8.1 Some basic facts about discrete time random processes 

In this section, several additional definitions and facts about discrete time stochastic 
processes are given. 

Definition 8.1 A process ξt is said to be stationary (or strict-sense stationary), if the 
distribution of the vector does not depend on m for any N>0, t1,…, 
tN. 

Definition 8.2 A (vector) process ξt is said to be wide-sense stationary, if and 

does not depend on time shift m for all t, θ, and m. 
It can happen that a process is wide-sense stationary, but it is not stationary. In fact, 

stationarity in a wide sense is sufficient for many applications. 
Definition 8.3 Let ξt, t=0, 1, 2,…, be a discrete time random process such that ξt are 

mutually independent and have the same distribution, and Eξt≡0. Then the process ξt is 
said to be a discrete time white noise. If, in addition, ξt are normally distributed, then it is 
said to be a Gaussian white noise. 

The main feature of a white noise process is that its value cannot be predicted. More 
precisely, whatever large statistic one collects, it will not help to improve forecasting. A 
typical example is the outcome of the coin tossing game: it is meaningless to collect 
historical data to predict the result. The standard approach in data analysis is to represent 
the observable process as a summa of a white noise and a meaningful process that 
evolves under a certain law (and it appears that this meaningful part is zero for the case of 
the coin tossing game). 

On the other hand, a white noise can be used as a basic construction block for the 
modelling of random processes. For instance, one can model a stationary discrete time 
process with given characteristics as the output of an autoregression, where a white noise 
is used as the input. In contrast to the white noise, the resulting output process can be 
statistically forecasted in a certain sense. 

Sometimes in the literature white noise is defined as a wide-sense stationary process 
with no correlation and with zero mean. 

Let xk and yk, k=1,…, T, be two sequences. 



Definition 8.4 The sample mean of the sequence {xk} is The sample 

second moment of the sequence {xk} is The sample variance of {xk} is 

The sample covariance for sequences {xk} and 

{yk} is  
Theorem 8.5 Let {xk}, {yk}, and {(xk, yk)} be wide-sense stationary random processes. 

Then 

 

  

Corollary 8.6 Let xk be i.i.d. (independent identically distributed) and have the same 
probability distributions as a random variable X. Further, let yk be i.i.d., and let (xk, yk) 
be i.i.d. and have the same probability distributions as a random variable Y and a 
random vector (X, Y) respectively. Then 

 

  

One may think that, under the assumptions of Corollary 8.6, xk are random variables 
generated as the results of measurement of the random variable X. In this case, it is 
common to use the following definition. 

Definition 8.7 Assume that we have results x1,…, xT of measurements of a random 

variable X. The sample mean of X is The sample second moment of X is 

The sample variance of X is  
A similar definition exists for sample covariance and sample correlations of two 

sequences of random variables, and for results of measurements of two random variables. 
Remark 8.8 Note that some authors prefer to define the sample variance of {xk} as 

This is an unbiased estimate. The 
distinction between two definitions may be a source of confusion, and one should be 
aware which definition is used. We shall use the definition with 1/T.  

For simplicity, we shall use below stationary processes and white noise in the sense of 
Definitions 8.1–8.3, but all results are valid for wide-sense stationary processes and for 
the white noise defined as a wide-sense stationary process with no correlation and zero 
mean. 

8.2 Simplest regression and autoregression 

The first-order regression model can be described by a one-dimensional equation 
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yt=β0+βxt+εt, t=1, 2,…. 
(8.1) 

Here yt and xt represent observable discrete time processes; yt is called the regressand, or 
dependent variable, xt is called the regressor, or explanatory variable, εt is an unobserved 
error term, and are parameters that are usually unknown. 

The standard assumption is that 

 
(8.2) 

Special case: autoregression (AR) 

Let us describe the first-order autoregressive process, AR(1), as 
yt=β0+βyt−1+εt, 

(8.3) 

where εt is a white noise process, are parameters. 
The AR(1) model is a special case of the simplest regression (8.1), where xt= yt−1. 
It can be shown that εt is uncorrelated with {ys}s<t. 

If −1<β<1, then there exists a stationary process such that as 
t→+∞. 

If β=1 and β0=0 in (8.3), then yt is a random walk (see Definition 2.6). A random walk 
is non-stationary and it does not converge to any stationary process. 

In fact, if |β|≥1, then Var yt→+∞ as t→+∞. This implies that many standard tools for 
forecasting and testing coefficients etc. are invalid. To avoid this, we can try to study 
changes in yt instead: for example, the differences zt=yt−yt−1 may converge to a stationary 
process. If not, the differences zt−zt−1 (i.e., the second differences yt−2yt−1+yt−2) may 
converge to a stationary process. 

8.3 Least squares (LS) estimation 

Consider again the basic regression model (8.1)–(8.2). Suppose that either β0 or β, or the 

entire pair (β0, β) is unknown, and that we have a sample of data  
The problem arises as to how to estimate (β0, β) most effectively using all results of 

observations available. 

Let and be some estimates of parameters β0 and β. 
The term 

   

is called the fitted value of observation. The term 
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is called the residual, or fitted residual. 
Definition 8.9 The LS estimator (or OLS—ordinary least squares estimator) of β0 and 

β chooses the estimates and that minimize the loss function 

 
(8.4) 

Remark 8.10 LS methods allow many modifications. For instance, it can be reasonable 

to minimize where ct>0 are some given weight coefficients. For example, it 
can be useful when the variance of errors εt is not constant. In that case, one can take 

it is natural, since terms with more uncertainty should have reduced 
impact on the decision. 

Note that least squares is only one of many possible ways to estimate regression 
coefficients. Some of them will also be discussed here. 

Remark 8.11 Note that (β0, β) is the true (unobservable) value which we estimate to 

be Even if (β0,β) is an unknown deterministic vector, is a random vector 
since it is calculated as a function of the random sample of {(yt, xt)}. 

We shall use below the following elementary fact. 
First-order condition for minimizing for square polynomial: assume that we want to 

find the value of e that solves the problem 
Minimize f(x) over    

where f(x)=ax2+bx+c, a>0. Then the minimum exists, it is unique, and it is for the value 
of x where df (x)/dx=0. 

Since is a quadratic polynomial with respect to and with respect to β, it 

follows that the minimum of this summa is achieved for and such that  

 
(8.5) 

Case of known β 

Proposition 8.12 Consider a model with known and given β. Then the LS estimate for β0 
is 

 

  

Proof. By (8.5), 
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(8.6) 

The solution is straightforward. By (8.6), we have Hence 

This completes the proof. 

Case of known β0=0 

Proposition 8.13 Consider a model with known β0=0. In addition, we assume that yt and 
xt have zero expectation. Then the LS estimate for β is 

 
(8.7) 

Proof By (8.5), 

 

(8.8) 

Then 

 

  

Then (8.7) follows. This completes the proof. 
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Case of unknown (β0, β) 

Theorem 8.14 For the case of unknown (β0, β), the LS estimator is 

 
(8.9) 

 
(8.10) 

To make these formulae more visible, we can rewrite them as 

 (8.11) 

 
(8.12) 

Here and (x, 
y)=∑ixiyi. 

Remark 8.15 Remember that is 
the sample covariance. It follows that the estimator for β is the sample covariance of yt 
and xt, divided by the sample covariance of the regressor xt. 

Remark 8.16 If (xt, yt) is a stationary process, then there is a convergence of LS 
estimates: 

 
  

Proof of Theorem 8.14. By (8.5), 

(8.13) 

(8.14) 

We have two equations and two unknowns The solution is straightforward. 
By (8.13), we have  
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Hence 

 

  

Substituting into (8.14) gives 

 

  

Hence 

 

  

Then (8.9) and (8.10) follow. This completes the proof of Theorem 8.14. 
Remark 8.17 Note that (8.13) and (8.14) can be rewritten as 

 

  

This can be seen as the sample analogues of the assumptions in (8.2) that Eεt=0 and 
Cov(xt, εt)=0. 

Problem 8.18 Estimate parameters (β0, β) for the series 

(i) x=(1, −2, 3, 1, 0, 0, 1); y=(1, −2, 3, 1, 0.5, 0, 1); 
(ii) yt=ln S1(t)−ln S1(t−1), xt=ln S2(t)−ln S2(t−1), where S1(t) and S2(t) are daily prices 

stored in some files. 

Problem 8.18 may be solved using the following codes. 
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MATLAB code for the LS estimator for Problem 8.18 (i) 

function[b0, b]=ols(m) 
m=7; 
x=[1 −2 3 1 0 0 1]; y=[1 −2 3 1 0.5 0 1]; 
%load OLSdat -ascii; xxx=OLSdat; Another way to load 
data 
one=ones (size(x)); b=1; 
%figure (1); plot (t (1:m1), xxx(1:m1), ′b-′); 
b=(sum(y .*x) −sum(y .*one) *sum(x .*one) /m) / (sum (x 
.*x) 
−sum(x.*one) ^2/m); 
b0=sum(y .*one) /m-b*sum(x .*one) /m; 

MATLAB code for the LS estimator for Problem 8.18 (ii) 

It is assumed that the prices are stored in the ASCII files NCP.mat and ANZ.mat placed 
in the working directory; these files contain matrices, where the second column 
represents the prices under consideration. 

function[b0,b] = ols(m) 
load ncp -ascii; xxx=ncp; 
load anz -ascii; 
yyy=anz; yy=ones(m,1); xx=yy; m1=m−1; y=ones(m1,1); 
x=y; one=y; b=1; 
t=one; for k=1:m t(k)=k; 
    yy (k) = log (yyy (k,2)); xx (k) = log (xxx (k,2)); 
end; for k=1:m1 
    y (k) = (yy(k+1)) − (yy(k)); x(k) = (xx(k+1)) − 
(xx(k)); 
end; plot(t(1:m1), x(1:m1)−y(1:m1), ′b-′); 
b=(sum(y .*x)−sum(y .*one) *sum(x .*one)/m1)/(sum (x 
.*x) 
−sum(x.*one)^2/m1); b0=sum (y .*one)/m1−b*sum(x 
.*one)/m1; 

8.4 The LS estimate of the variance of the error term 

Consider the linear regression model (8.1). 
Definition 8.19 The value 

 
(8.15) 

is said to be the LS estimate of the variance of the error term. 
Let be the filtration generated by the observations, i.e., by the process (xt, yt). 
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Definition 8.20 (homoscedasticity and heteroscedasticity). We say that the errors εt 

are homoscedastic if there exists a constant σ2 such that for all t. 
Otherwise, the errors are said to be heteroscedastic. 

Theorem 8.21 Let the errors be homoscedastic, and let for 
all t. Then, under some additional conditions, the estimate (8.15) of σ2 is unbiased. 

8.5 The case of AR(1) 

The AR(1) model is a special case of the simplest regression (8.1), where xt=yt−1 (since εt 
and yt−1 are uncorrelated). Hence AR(1) can be estimated with LS. 

Remark 8.22 For LS applied for the AR(1) model and series (y0,…, yT) we use the 

initial value y0 only to produce x1=y0; we apply the LS for 

 
Problem 8.23 Consider the sequence (1, −1, 0.5). Estimate the parameters for the 

autoregression model 
yk=βyk−1+εk, k=1, 2,…,   

where εk is a white noise process, and where a is an unknown parameter. 
Solution. This model is a special case of the regression model 
yk=βxk+εk, where (x1, x2)=(1, −1), (y1, y2)=(−1, 0.5).   

The LS estimator (the case of β0=0) estimates β as 

 

  

8.6 Maximum likelihood 

If εt in (8.1) are i.i.d. (i.e., independent identically distributed) with the distribution N(0, 
σ2), then (β0, β, σ) can be estimated via maximization of a likelihood function. The 
probability density function of εt is 

 
(8.16) 

Since the errors are independent, the joint probability density function of the (ε1, ε2,…, εT) 
is the product of the probability density functions of each of the errors 

(8.17) 
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The maximum likelihood estimation method requires finding the value of that 
maximizes pε1,… εT(u1,…, uT) given the observations (x1,…, xT, y1,…, yT), where 

 
It is more convenient to maximize the logarithm of the probability density function, or 

the log-likelihood function 

(8.18) 

This likelihood function L is maximized by minimizing the last term, which is 
proportional to the sum of squared errors similarly to (8.4). 

Corollary 8.24 The ML estimate for (β0, β) is the same as the LS estimate when the 
errors are i.i.d. with normal law (but only then). 

Remark 8.25 If errors εt are independent with law where are 
known deterministic values (not necessarily equal), then the ML estimate leads to 

minimization of which can be considered as a modification of the LS 
method with weighted terms. 

Further, 

 

  

where Equality gives the following corollary. 
Corollary 8.26 The ML estimate of σ2 is 

 
(8.19) 

It follows that ML and LS estimates for σ are different, but they converge as T→+∞ (see 
Definition 8.19). By Theorem 8.21, it follows that the ML estimate for σ is biased. 

Since the ML method is based on the hypothesis that the fitted errors are Gaussian, it 
may require some preliminary analysis of the distributions. 

8.7 Hypothesis testing 

The distribution of and properties of error 

Repeat that the estimated coefficients are different from the true coefficients (β0, β) in 

(8.1). Moreover, the estimated coefficients are random variables since they 
depend on a particular sample. 

Let us consider the simple case when β0=0, Ext=0, and Eyt=0.1 By (8.7), 
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(8.20)  

 
(8.21) 

Here E is the error of estimation, and yt=βxt+εt. Remember that Cov(xt, εt)≡0. Under 
some conditions of stationarity of (xt, yt), we have that 

 
(8.22) 

In this case, E→0 as T→+∞, and we say that the estimator of β is consistent. 
Further, it can be seen that it is difficult to find explicitly the distribution of E, even if 

the distribution of εt are known. A possible way is to find the distribution of via Monte 
Carlo simulation. Another way is to use the asymptotic distribution for T→+∞ as an 
approximation. 

Asymptotic distribution 

Suppose that is consistent, i.e., there is a non-random limit β such that as 

T→+∞. In this case, the distribution of will typically converge to a non-
trivial normal distribution. To see why, note that (8.20) implies 

 
(8.23) 

A central limit theorem ensures (under some standard conditions) that the distribution of 

converges to the normal distribution N(0, ν2) as T→+∞, where 

In other words, has an 
asymptotic normal distribution, i.e.,  

 (8.24) 

1 The case with β≠0 can also be reduced to this case in a multi-dimensional setting (see Problem 
8.28). 

in distributions, as T→+∞. If εt is independent from xt, and εt are i.i.d., then (8.24) can be 
simplified as 

 (8.25) 
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Testing hypotheses about β 

Suppose that the asymptotic distribution of an estimator is normal with mean β and 
variance v2, i.e., 

 (8.26)  

Let βH be a hypothesis about the value of β. The problem of testing the hypotheses that 
β=βH now arises. 

Confidence interval 

Recall that if η~N(0, 1), then 
P(|η|<x)=Φ(x)−Φ(−x).   

Further, if ξ~N(0, v2) then ξ/v~N(0, 1) and 
P(|ξ/v|< x)=Φ(x)−Φ(−x).   

Let us consider the inverse problem: given a probability find an interval that 
contains a random variable ξ with this probability, if ξ~N(0, v2). In other words, we need 
to find y such that The solution is the following: first find x such 
that Φ(x)−Φ(−x)=p. Further, 

P(|ξ|<v · x)=P(|ξ/v|<x)=Φ(x)−Φ(−x)=p.   

(We assume that v>0.) Hence y=v · x. 
For instance, 
P(|ξ|<1.65v)=P(|ξ/v|<1.65)=Φ(1.65)−Φ(−1.65)=0.9, 
P(|ξ|<2ν)=P(|ξ/v|<2)=Φ(2)−Φ(−2)=0.95. 

  

Hence 
P(|ξ|<1.65 · v)=0.9, P(|ξ|<2 · v)=0.95.   

We say that [−1.65v, 1.65v] is the confidence interval of significance level 10%, and that 
[−2v, 2ν] is the confidence interval of significance level 5%. 

For instance, consider the hypothesis that the true value of β in the linear regression is 
βH=0. If this is true, then 

   

We then say that we reject the hypothesis that β=0 at the 5% significance level (95% 

confidence level) if the test statistic is larger than 2. This means that if the 

hypothesis is true then this rule gives the wrong decision in 5% of the cases. In 
fact, this estimate is only an approximation, since we are using the normal distribution as 
an approximation, instead of the true (and typically unknown) distribution. 
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Algorithm of hypothesis test 

Assume that we have regression with β0=0. We need to test the hypothesis that β=βH with 
confidence level p using an LS estimator. The discussion given above can be summarized 
as the following algorithm: 

• Find x>0 such that P(|ξ|<x)=p for ξ~N(0, 1), i.e., 

 

  

• Calculate using the LS estimator; 
• Calculate 

 

  

where  

• Find  
• If M>x, then reject the hypothesis that β=βH. 

Note that the expression for v contains biased sample estimates of variances. 
The following MATLAB codes support this algorithm. 

MATLAB code for the inverse of Φ(x)−Φ(−x) 

function[x]=interval(p,N) v=zeros(1, N); 
eps=4/N; v=99; 
for k=1:N 
v(k)=eps*k; 
    if abs(Phi(v(k))-Phi(-v(k))-p)<v x=v(k); end; 
end; 
pp=Phi(x) − Phi(−x) 

MATLAB code for the hypothesis test 

It is assumed again that the prices are stored in the ASCII files NCP.mat and ANZ.mat 
placed in the working directory; these files contain matrices, where the second column 
represents the prices under consideration. To verify that β0~0 and Ext~0, Eyt~0, one can 
find (β0, β) and sample means preliminary with the LS estimator (see Problem 8.18 (ii)). 
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function[b,H]=htest(p, B, m) 
% p is the probability, B is the value tested, m is the 
number 
% of prices 
load ncp -ascii; xxx=ncp; load anz -ascii; yyy=anz; 
yy=ones(m,1); xx=yy; m1=m−1; y=zeros(m1,1); x=y; 
one=y; b=1; t=one; 
                                 for k=1:m 
t(k)=k; yy(k)=log(yyy(k,2)); xx(k)=log(xxx(k,2)); 
                                 end; 
b=sum(y .*x)/(sum(x.*x); 
                              for k=1:m1 
    Y(k)=(yy(k+l))−(yy(k)); x(k)=(xx(k+1))−(xx(k)); 
                                 end; 
u=b*x−y; sigmaLS=sqrt(sum(u .*u)/(m1−1)); 
sigmaML=sqrt(sum(u.*u/(ml) 
v2=sum(u .*u)/sum(x.*x); v=sqrt(v2); 
M=abs(sqrt(m1)*(b−B)/v); x=interval(p,1000); H=1; if 
M>x H=0; end; 

8.8 LS estimate for multiple regression 

The previous results can be extended for a multiple regression. 
Consider the linear model 

 (8.27) 

where yt and εt are scalars, and is a vector of the true coefficients. 

Let be an estimate of β. Let be the fitted residuals. The LS 
estimator minimizes the summa 

 
(8.28) 

by choosing the vector The first-order conditions are  

 
(8.29) 

where 0Rk denotes a zero vector in Rk, or 
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which can be solved as 

 
(8.30) 

Definition 8.27 The value 

 
(8.31) 

is said to be the LS estimate of the variance of the error term for linear regression model 
(8.27). 

Problem 8.28 Show that regression (8.1) with β0≠0 is a special case of multiple 
regression (8.27), where k=2 and x1t≡1. 

Error of LS estimator for multiple regression 

By (8.27)–(8.30), it follows that 

 

  

Hence 

 
(8.32) 

Similarly to (8.24), the distribution of this vector converges a vector normal distribution 
under some conditions of stationarity. 

More general models 

The pth-order autoregressive process, AR(p), is a straightforward extension of the AR(1) 
model: 

yt=β0+β1yt−1+β2yt−2+…+ βpyt−p+εt. 
(8.33) 

Here are parameters. It is usually assumed that εt does not depend on 

 
In fact, the AR(p) model is a special case of the multiple regression (8.27), where 

xkt=yt−k. Hence AR(p) can be estimated with the multi-dimensional version of the LS 
estimator. 

A qth-order moving average (MA) process is 
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yt=εt+θ1εt−1+…+θqεt−q, 
(8.34) 

where εt is a white noise. 
Autoregressive-moving average models (ARMA(p,q)) are combinations of a moving 

average and an autoregression model. For instance, the ARMA(2, 1) model has the 
following evolution law: 

yt=β1yt−1+β2yt−2+εt+θ1εt−1,   

where εt is a white noise. 

8.9 Forecasting 

Conditional expectation as the best estimation 

Suppose we observed first the t terms of time series y0, y1,…, and we want to estimate a 
(random variable) ξ that can be correlated with the series. That means that we want to 
find a deterministic function Ft:Rt+1→R such that the estimate can be obtained as 

Note that the mapping Ft(·) cannot depend on realizations of yt, 
but can (and must) be constructed using our knowledge about the distributions of (ξ, {yt}). 

Let Et denote the conditional expectation given (y0, y1,…, yt), i.e., 

   

In other words, it is the conditional expectation with respect to the σ-algebra generated by 
the random vector (y0,…, yt). (See Definitions 1.42–1.44.) Let Vartξ=Et(ξ2−(Etξ)2) (i.e., it 
is the conditional variance, or the variance for the conditional probability space under the 
condition that (y0,…, yt) is known). 

Let Eξ2<+∞, let and let η be any random variable that is measurable with 
respect to (y0,…, yt) and such that Eη2<+∞. By Definition 1.36 for the conditional 

expectation, it follows that In that sense, is the 
best estimate of ξ. 

Repeat that can be represented as Ft(y0, …, yt) for some function Ft: Rt→R 
(see Theorem 1.45). 

Forecasting for AR(1) 

Forecasting with known parameters 

Suppose we have estimated an AR(1) described by (8.3), i.e., 
yt+1=β0+βyt+εt 

(8.35) 
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with white noise εt such that Assume that we know β0, β and σ2 
(for instance, we had estimated them by the LS method precisely enough). 

We want to forecast yt+1 using information available in t. In fact, Etyk is the best 
forecast of yk, k>t (in the sense of Definition 1.36). Since Etξt+1=0, then 

Etyt+1=βyt+β0. 
(8.36) 

Further, 
yt+2=βyt+1+β0+εt+2=β(βyt+β0+εt+1)+β0+εt+2 
=β2yt+ββ0+βεt+1+β0+εt+2. 

  

Since Etεt+1=0 and Etεt+2=0, it follows that 
Etyt+2=β2yt+ββ0+β0. 

(8.37) 

Repeating this, we obtain 

(8.38) 

(The last equality holds if β≠1.) 
Remark 8.29 If β=β0=0 in (8.3), then yt is a white noise process. By (8.38), the 

forecast in this case is a constant (zero) for all forecasting horizons. 

Conditional variance of the forecast error 

We have that  
yt+1−Etyt+1=εt+1, Vartyt+1=Vartεt+1=Var εt=σ2, 
yt+2−Etyt+2=βεt+1+εt+2, Vartyt+2=β2σ2+σ2. 

  

Similarly, it can be shown that 

 
  

where the last equality holds if |a|≠1. In fact, vs=Vartyt+s, i.e., it is the conditional 
variance given y1,…, yt (the variance on the conditional probability space). 

Problem 8.30 Let 
yk=βyk−1+εk, k=1, 2,…,   

where εk is the white noise process, and where β=2, σ2=1/2. Find E{y9|y1,…, 

y6} and  
Solution. We have 
y9=βy8+ε9=β(βy7+ε8)+ε9=β(β(βy6+ε7)+ε8)+ε9 
=β3y6+β2ε7+βε8+ε9. 
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We have that εk does not depend on ym, m<k. Hence E{y9|y0
, y1,…, y6}= β3y6=8y6. 

Further, {yk}k≤6, ε7, ε8, ε9 are mutually independent. Hence β3y6, β2ε7, βε8, ε9 are 
mutually independent, and β3y6, β2ε7, βε8, ε9 are mutually independent given y1,… y6. 
Hence 

 

  

Estimation of the probability that the error is in a given interval 

Assume that εt+s are normally distributed as i.i.d. N(0, σ2) . Then yt+s is normal with 
variance vs conditionally given y0, y1,…, yt. In other words, yt+s is normal with the 
conditional variance 

 
  

i.e., with the variance on the conditional probability space given y0, y1,…, yt. 
Recall that if ξ~N(0, 1), then P(|ξ|<x)=Φ(x)−Φ(−x). Further, if then 

and Hence we can 
estimate the conditional probability that the absolute value of the difference between yt+s 
and its forecast Etyt+1 is less than a given  

Pt(|yt+s–Etyt+s|<vs · x)=Φ(x)−Φ(−x),   

where or 
Pt(|yt+s−Etyt+s|<x)=Φ(x/vs)−Φ(−x/vs).   

Confidence interval 

Let us consider the following problem: find an interval that contains yt+s with a given 
probability p. 

Again, we need to find x such that Φ(x)−Φ(−x)=p. 

For instance, if then 
 

Hence 
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By this method, we can define confidence intervals around the point forecasts. For 
instance, the interval ±1.65vs gives a 90% confidence interval. 

Forecasting with unknown (β0, β) 

The most straightforward approach is to find an estimate of (β0, β) (for instance, 

by the LS estimate method), and then apply the forecasting rule with this The 
same approach can be applied to estimate the confidence interval. Clearly, the 

replacement of (β0, β) for generates an additional error, but we are not going to 
discuss its impact here. 

Problem 8.31 Forecast the fourth and fifth terms in the sequence 1, −1, 0.5, assuming 
the autoregression model 

yk=βyk−1+εk, k =1, 2,…,   

where εk is the white noise process, and where β is unknown. 
Solution. Our model is a special case of the regression model  
yk=βxk+εk, where (x1, x2)=(1, −1), (y1, y2)=(−1, 0.5).   

By the formula from Chapter 2 (the case of β0=0), the LS estimate of β is 

 

  

We have proved above that E{yk+s|y0, y1,…, yk}=βsγk. We do not know β, so we are in a 

position to replace it by its estimate Then the forecast is 

   

i.e., 

 

  

Problem 8.32 Using historical daily prices for 100 days and a MATLAB program, 
forecast the return for N days. Estimate an interval such that it contains the increments of 
the log of prices (and/or prices) for 102, 110, 200 days with probability 0.9. 

Solution is represented by the following program. (It is assumed that the prices are 
stored in the ASCII file ANZ.mat and are placed in the working directory; this file 
contains a matrix, where the second column represents the prices under consideration.) 
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MATLAB code for the forecast of price return 

function[forecast, Confid_interval]=forecast06(m,N,p) 
%m - number of days observed; m=100; N day forecasts 
%p - probability; p=0.9 
load anz -ascii; yyy=anz; yy=zeros(m, 1); xx=yy; 
m1=m−2; 
y=ones(m1,1); x=y; 
one=ones(m1,1); b=1; t=one; 
for k=1:m 
    yy(k)=log(yyy(k,2)); 
end; for k=1:m1 t(k)=k; 
    y(k)=yy(k+2)−yy(k+1); x(k)=yy(k+1)−yy(k); 
end; 
b=(sum(y .*x)−sum(y .*one)*sum(x .*one)/m1)/(sum(x 
.*x)−sum(x 
.*one)^2/ml); b0=sum(y .*one)/m1−b*sum(x .*one)/m1; 
forecast=y(m1)*(b^N)+b0*(1−b^(N−1))/(1−b); kk=m1+N; 
TrueValue=log(yyy(k+2,2))−log(yyy(k+1,2)) 
u=b0*ones(m1,1)+b*x−y; 
sigmaLS=sqrt(sum(u .*u)/(m1−1)); x=interval(0.9,1000) 
Confid_interval=x*sqrt((1−b^(2*N))/(1−b^2))*sigmaLS 

Remark 8.33 Typically, the reliability of forecasts for financial data is relatively low, 
since the trend is usually overshadowed by the volatility. In addition, the stationarity 
conditions do not usually hold for financial data, and there is no guarantee that a given 
evolution law holds for long enough. In Problem 8.32, the forecast is a conditional 
expectation calculated for a certain model for autoregression. Similar forecast algorithms 
are used in practice (with more sophisticated models and with a larger number of 
parameters). These and other methods of forecast for finan¬ cial data are intensively 
studied. A very popular approach for financial forecast is so-called technical analysis 
(which is usually considered as a non-academic approach); the algorithms in this 
framework are based on statistical methods as well as on empirical rules. 

Forecasting with an AR(p) 

All the previous calculations can be extended for a pth-order autoregressive process, 
AR(p) 

yt=β1yt−1+β2yt−2+βpyt-P+εt.   

As an example, consider a forecast of yt+1 based on the information in t by using an 
AR(2) 

yt+1=β1yt+β2yt−1+εt+1. 
(8.39) 

This immediately gives the one-period point forecast 
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Etyt+1=β1yt+β2yt−1. 
(8.40) 

We can use (8.39) to write yt+2 as 

(8.41) 

Similarly, formulae for forecasts and forecast error variances can be obtained for p>2. 

8.10 Heteroscedastic residuals, ARCH and GARCH 

Suppose we have estimated a regression model, and obtained the fitted residuals ut for 
t=1,…, T, and we are not sure if the errors are homoscedastic, i.e., if the conditions of 
Definition 8.20 are satisfied for εt. The real errors εt are non-observable, so we may try to 

verify whether ut are homoscedastic, or for all t, where is the 
filtration generated by the observations. 

Definition 8.34 If the conditions of Definition 8.20 are not satisfied for ut, i.e., 

for all t, we say that the residuals ut are heteroscedastic. 
Heteroscedasticity and homoscedasticity are important characteristics of statistical 

data, and the related analysis is crucial for many models. For instance, stock price models 
with time-varying random volatility lead to heteroscedastic models, and 
heteroscedasticity may have an impact on hypothesis testing in the LS setting described 
above. However, the LS method is consistent (converges to the true value as the sample 
size increases) even if the residuals are heteroscedastic. 

8.10.1 Some tests of heteroscedasticity 

In fact, heteroscedasticity can be detected by testing the autocorrelation of if there is 
autocorrelation, then the residuals are heteroscedastic. 

Engles test 

Consider the AR(q) model for residual 

 

  

Then one can test the hypothesis that βi=0 for i=1,…, q. (If it is not true, then the 
residuals are autocorrelated and heteroscedastic.) 
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Durbin–Watson test 

The classic test for autocorrelation is the Durbin-Watson test. It requires us to find 

 

  

Clearly, 

 

  

For large T, the differences in the ranges of the summations in this expression can be 
ignored, and 

 

  

We have that It follows that µDW ranges through [0, 4] (for large T). 
The following criteria are commonly accepted: 

• If µDW<2 for positive autocorrelation; 
• If µDW>2 for negative autocorrelation; 
• If µDW~2 for zero autocorrelation. 

Clearly, one may use the value instead of µDW; for instance, means zero 
autocorrelation. 

In fact, exact critical values cannot be computed and instead an upper bound and a 
lower bound are used to test the null or zero autocorrelation. 

8.10.2 ARCH models 

Let us describe the Autoregressive Conditional Heteroscedastic Model (ARCH) using as 
an example the so-called ARCH(1) model. Consider first the following regression: 

 
(8.42) 

Here yt and xt are observable values, The vector is a non-
observable parameter, εt are non-observable errors. 

We call this model the ARCH(1) model since depends only on εt−1. 
Let Et denote the conditional expectation given observations y0, y1,…, yt, x0, x1,…, xt. 

Let Vart denote the corresponding conditional variance. 
Further, we assume that 

(8.43) 
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where ηt is the normalized error, and is the conditional variance 
(conditional given observations y0, y1,…, yt, x0, x1,…, xt). 

Finally, we assume the following evolution law for 

 (8.44) 

Here α0 and a1 are some parameters that are usually unknown and need to be estimated 
from statistical data. 

By (8.43), it follows that 

 (8.45) 

It is clear that the unconditional distribution of εt is non-normal even if we assume that ηt 
are i.i.d. N(0, 1). 

Note that the conventions for the time subscript of the conditional variance can be 

different. Some authors use to indicate the variance in t. 

Starting value of σ2 

Note that we need a starting value of To obtain σ1, we need ε0. It is 
why we have a sample running from t=0 to t=T, but observation t=0 is only used to 

construct a starting value of  

Restrictions on α0 and a1 

To guarantee that we require that 
α0≥0, α1≥0, α0+α1>0.   

In addition, we require that 
α1<1   

to ensure that the unconditional variance is bounded as t→+∞. To see this, use (8.45) to 
write (8.44) as 

 (8.46) 

which implies 

   

Set We have that this process evolves as a deterministic dynamic system 
Vt=α0+α1Vt−1, t=0, 1, 2, ….   
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Clearly, this equation has a bounded solution if and only if |α|<1. It can be seen from  

   

Forecasting of and for known (α0, α1) 

By (8.45), Hence 

 
  

Hence 

 
  

Therefore, it suffices to describe forecasting of Similarly to (8.46), we have 

 
  

By (8.46), 

 (8.47) 

It follows that 

(8.48) 

Continuation of this process gives 

 

  

Remark 8.35 If |α1|< 1 then, for any εt−1 

 
  

Problem 8.36 Prove Remark 8.35. 

8.10.3 Estimation of parameters for ARCH(1) with the ML method 

The most common way of estimating the model is to assume that ηt are i.i.d. with law 
N(0, 1) and to set up the likelihood function. The log-likelihood is easily found, since the 
model is conditionally Gaussian. 
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Remember that This means that if is given, then is 

given (for known non-random α0 and α1). On the other hand, the value of is the only 
information from (εt−1, εt−2, …, ε0) that can have an impact on εt. Therefore, the 
conditional probability density function of εt given (εt−1, εt−2, …, ε0) is  

 

  

Thus, we get the joint probability density function of the (ε1, ε2, …, εT) (conditional given 
so) by multiplying the conditional probability density functions of each of the errors 

 

  

It is more convenient to use the logarithm of the probability density function, or the log-
likelihood function 

 

  

Assume that we are given the observations (x0, x1, …, y0, y1, …,yT). We are looking for a 

set of estimates of unknown parameters (β, α0, α1). 

The ML estimation method requires us to find the value of that maximizes 
L(u1, …, uT) given the observations (x0, x1, …, xT, y0, y1, …, yT). 

Therefore, we need to maximize over  

(8.50) 

where the fitted residuals and their fitted variances are defined by and by the 
observations as 

(8.51) 

The likelihood function L is maximized by minimizing the last two terms in (8.50). 

Substitute values from (8.51) for ut and then L is a function of Then L is 
maximized with respect to the parameters. This requires some optimization methods. 

Review of Statistical Estimation     163



Note that ML methods give the same results as an LS with weight coefficient 
described in Remark 8.10 (with errors replaced by residuals). 

Problem 8.37 Consider the following model:  

(8.52) 

Here yt are observable values, and the parameter is non-
observable. Et denotes the conditional expectation given observations {ys}s<t. In addition, 
we assume that ηt are i.i.d. N(0, 1), and ηt does not depend on {ys}s≤t−1. 

Assume that we are given a series of data yk=ln S(tk)−ln S(tk−1) for quarterly prices 
(S(t0), S(t1), S(t2), S(t3))=(e0, e1.1, e3.1, e4.6), where (t0, t1, t2, t3)= (January 1st, April 1st, 
July 1st, October 1st). Find out which set of parameters is more likely to be the true one: 

 
Solution. We are given a series of data {yt}={1.1, 2, 1.5}. Apply the algorithm 

described above for the case when xt= yt−1. We have that: 

• u1 is defined by (x1, y1) or by (y0, y1); 
• is defined by u0; 
• u0 is defined by (x0, y0), or by (y−1, y0). 

Therefore, we need terms y−1 and y0 to proceed. Since we have only three terms, we must 
take T=1 and (y−1, y0, y1)=(1.1, 2, 1.5). 

We have 

   

If then 

 

  

and 

 

  

Similarly, if then  
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and 

 

  

Thus, the set of parameters is more likely to be the true 
set. 

In addition, if one finds that all other hypotheses with are less likely than the 
ones with then it may be concluded that the right model is heteroscedastic (of 
course, the reliability of this conclusion is low for this particular Problem 8.37, since the 
size of the statistical series is small). 

The solution of Problem 8.37 shows how to use optimization techniques for 
maximization of the likelihood function, since it is clear now how to form the optimality 
criteria. 

8.10.4 ARCH(q) and GARCH models 

The ARCH(q) is the regression (8.42) together with 

(8.53) 

The GARCH(1,1) (generalized ARCH) model is the regression (8.42) together with 

 
(8.54) 

Restrictions for parameters α0, α2, β1 for GARCH(1, 1) 

To ensure that we need to take α0≥0, α2≥0, β1≥0. 

Let us show that the restriction α1+β1<1 ensures that process is such that the 

unconditional variance is finite if is bounded as T→∞. To see this, note that 
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Hence  

   

Set We have that 
Vt=α0+(α1+β1)Vt−1, t→+∞.   

Clearly, this equation has a bounded solution if and only if |α1+β1|<1. In this case 

 (8.55) 

The GARCH(1, 1) corresponds to an ARCH(∞) 

Solution of (8.54) recursively by substituting for gives 

 

  

Therefore, the GARCH(1, 1) model can be interpreted as an ARCH model with unlimited 
memory (with exponentially declining coefficients for long memory, since 0≤β1<1). 

Forecasting with GARCH(1, 1) 

Similarly to the case of the ARCH model (8.49), but with the sum of α1 and β1 as the 
AR(1) parameter, repeated substitutions show that 

(8.56) 

It is the forecasting formula for errors. 

Estimation of parameters 

To estimate the model consisting of (8.42) and (8.54) we can still use the likelihood 
function as was described for the ARCH model (with some adjustment). We need to 
create the starting value of ε0 as in the ARCH model (use y0 and x0 to create ε0), but for 

GARCH(1, 1) we also need a starting value of It is often recommended that we use 

where ut are the residuals from an LS estimation of (8.42) (clearly, this 
is applicable if the process is stationary). 
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GARCH(p, q) 

The GARCH(p, q) is the regression (8.42) together with 

 

  

where  

8.11 Problems 

Problem 8.38 Estimate the parameters (a, σ) by an LS estimator in the AR(1) models 
yt=βyt−1+εt, Var εt=σ2, for the series: (i) (1, −2, 3, 1, 0, 0, 1); (ii) (1, −1, 1, −1, 1, −1, 1). 

Problem 8.39 Forecast the series with AR(1) model for k steps: (i) (1, −2, 3, 1, 0, 0, 
1); (ii) (1, −1, 1, −1, 1, −1, 1). (Hint: it is the series from Exercise 8.38.) 

Problem 8.40 Let yk=R(tk), where R(t)=ln S(tk), and where S(tk) are the daily prices for 
some stock, k=1, …, N, for some large enough N. (Find some prices on the internet or in 
newspapers.) 

(i) Using the LS estimator, forecast yk for N+2, N+10, N+100 days. Use this result to 
forecast the corresponding R(t). 

(ii) Estimate intervals that contain these increments of log of prices (and/or prices) with 
probability 0.7. 
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9 
Estimation of models for stock prices 

In this chapter, methods of statistical analysis are applied to historical stock prices. We 
show how to estimate the appreciation rate and the volatility for some continuous time 
stock price models. Some generic methods of forecast of evolution of prices and 
parameters are also given. 

9.1 Review of the continuous time model 

Let us consider again the stock price equation 
dS(t)=a(t)S(t)dt+σ(t)S(t)dw(t), 

(9.1) 

where a(t) is the appreciation rate, σ(t) is the volatility, w(t) is a Wiener process, 
w(t)~N(0, t). 

Remember that 

 
(9.2) 

Let us repeat the proof that was given above in a different form. Let f(x)=ex. By the Ito 
formula, it follows that 

 

  

Hence 
dtf(R(t))=f(R(t))(a(t)dt+σ(t)dw(t)).   

By uniqueness of the solution of the Ito equation for S(t), it follows that f(R(t))=S(t) if 
S(0)=f(R(0)). Hence f(R(t))/f(R(0))=S(t)/S(0), and 
R(t)=ln[f(R(0))S(t)/S(0)]=ln(S(t)/S(0))+R(0). 



Usually, it is more convenient to apply statistical methods to the process R(t), since it 
is more likely that its evolution has stationary characteristics. 

Clearly, R(0)=0 and 

 
(9.3) 

where 

 

  

We can only observe prices as time series at a limited number of times, so we need to 
understand how the time series of prices is connected to the continuous time process 
(9.3). 

9.2 Examples of special models for stock price evolution 

The following two models are based on a certain hypothesis about (µ, σ). 

The log-normal model without mean-reverting 

For this model, µ and σ are non-random constants. Then the distribution of log price R(T) 
at time T is normal with some mean µ and with variance Tσ2. In this case, 

R(t)=R(t−h)+µh+q(t), h>0, 
(9.4) 

  

where 

 

  

Clearly, 

 

  

and q(t) is a Gaussian random variable distributed as N(0, σ2h). 
Moreover, if tk=hk, k=0, 1, …, where h>0, then {q(tk)} are mutually independent, and 
R(tk)=βR(tk−1)+β0+εk,   

where β=1 and β0=µh, and {εk} is a random discrete time process that represents 
stochastic changes. It is a Gaussian discrete time white noise process, εk=q(tk), Eεk=0, 

and  
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Problem 9.1 Show that if µ and σ are constants then 

(9.5) 

Mean-reverting model 

Let σ>0 be a non-random constant. We say that R(t) is a process with mean reverting if 
dR(t)=(α−λR(t))dt+σdw(t), 

(9.6) 

where σ≠0, λ>0 are some non-random constants. In this case, µ=µ(t)≡α−λR(t). 
The solution of the closed equation for R(t) can be expressed as 

(9.7) 

Hence 
R(t)=e−λhR(t−h)+λ−1(1−e−λh)α+q(t), h>0. 

(9.8) 

Here are Gaussian random variables, Eq(t)=0, 

 

  

Theorem 9.2 For the mean-reverting model, Var R(t) is bounded in t>0, and R(t) 
converges to a stationary process. More precisely, there exists a stationary process1 R0(t) 
such that E|R(t)−R0(t)|2→0 as t→+∞. In fact, this process R0(t) can be expressed as 

 
  

Note that we need a small modification of the definition of w(t) and of the stochastic 

integral, to define Normally, a Wiener process is defined on the time 
interval [s0, +∞), where is initial time; we had introduced Wiener processes for 
time interval [0, +∞) only. We can use the following definition: 

where is some standard Wiener 
process independent from w(·). 

Proof of Theorem 9.2. To proof convergency, one should notice that R0 satisfies 

(9.9) 
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and satisfies 
dY(t)=−λY(t)dt, Y(0)=R0(0), 

(9.10) 

i.e., Y(t)=R0(t)−R(t)=e−λtR0(0). This process converges to zero in the required sense. 
If t=t1, t2, … and h=tk−tk−1, then {q(tk)} are mutually independent, and 
R(tk) = βR(tk−1)+β0+εk,   

where and and is a random discrete 
time process that represents stochastic changes. It is a discrete time white noise process, 

Eεk=0, and  
In the following chapters, we shall study estimation of market parameters from the 

observation of {R(tk)}. 
Note that the process R(t) can be thought of as the limit of the discrete time process 

R(tk) as the time interval h becomes very small. 
Remark 9.3 The stock price in the mean-reverting model has log-normal distribution 

as well as for the log-normal model. The log-normal model can be considered as a special 
case of the mean-reverting model with λ=0. 

1 A process R0(t) is said to be stationary if the distribution of the vector (R(t1+h), …, R(tN+h) does 
not depend on the time shift h for any N>0 and any set (t1, …, tN). 

Another version of the mean-reverting model 

For simplicity, assume that α=0. Then the model described above gives S(t)= S(0)eR(t) 

with and this R(t) converges to a stationary process with 
zero mean. In fact, this process oscillates near zero. On the other hand, the risk-free 
investment with initial wealth equal to S(0) gives the total wealth equal to 

It is unnatural to expect that the risk-free investments have bigger 
systematic growth than risky stocks (in this case, it would be meaningless to invest in 
stocks). It would be more realistic to consider a model where the log prices oscillate near 

This feature can be taken into account by the following model: 

 

  

where σ≠0, and λ>0 are some non-random constants, and where r(t) is the 

currently observable risk-free interest rate. In this case, Since 
r(t) is an observable parameter and the process R(t) is observable, we have that the 
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process is observable as well, and one may apply the method described above for 

the estimation of parameters (α, λ, σ) of the equation for  

Other models for stock prices 

There are many other special types of diffusion models for stock prices: 

• The volatility is non-random, and the appreciation rate a(t) is an Ito process that evolves 
as 

   

where and where is some Wiener process; 
• (a(t), σ(t))=f(ξ(t)), where f is a deterministic function, ξ is a Markov chain process; 
• σ(t)=CS(t)p, where  
• the volatility σ(t) is an Ito process that evolves as 

   

where and where is some Wiener process. 

All these models (and many others) need statistical evaluation in implementation with 
real market data, and that is one of the mainstream research fields in financial 
econometrics and statistical finance. 

For a practical estimation of parameters of price models from historical data, we need 
statistical methods. 

9.3 Estimation of models with constant volatility 

Consider asset (stock) with the price S(t) defined by (9.1). We shall use notations from 
Section 7.1. Up to the end of this section, we assume that the volatility σ is non-random 
and constant but its value is unknown a priori. 

Remember that the Black-Scholes formula for the option price includes volatility and 
does not depend on µ (or on a) (Corollary 5.50). 

9.3.1 Estimation of the log-normal model without mean-reverting 

Consider the case when a, µ, and σ are constant. Then the distribution of log asset price 
R(t) in T is normal with the variance Tσ2 and the mean µT (not important for the option 
price). 

Let t=t1, t2,… and h=tk−tk−1. We have found in Section 9.2 above that if t= t1, t2,… and 
h=tk−tk−1, then 

R(tk)=βR(tk−1)+β0+εk,   
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where β=1 and β0=µh, and {εk} is a random discrete time process that represents 
stochastic changes. It is a discrete time white noise process, εk=q(tk), Eεk=0, and 

 

The LS estimator 

By Proposition 8.12 and Definition 8.19, it can be seen that the LS estimator gives 

(9.11) 

and where h=tk−tk−1. 
Example 9.4 If we have daily data, then h=1/365 (or possibly something like 1/250 if 

only weekdays are counted). If σ2h estimated on daily data is 0.162/250, then the 
volatility in the Black-Scholes formula is σ2=0.16. 

Of course, the estimate can change as new data points are added to the sample. 

The ML estimator  

By the results from Section 8.6, it can be seen that the ML estimator gives 

 

(9.12) 

and where h=tk−tk−1. 
Note that the data for the two estimators described above can be obtained from the 

prices S(t) directly as 

 

  

Note that we do not assume that the sample mean is zero, even if this assumption is often 
made (to simplify the calculations). 

Problem 9.5 Let the quarterly stock prices (S(t1), S(t2), S(t3), S(t4))= (e0, e0.3, e0.5, e0.4) 
be given. Estimate parameters for the log-normal continuous time model without mean-
reverting. 
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Solution. Note that h=1/4. Take yk=R(tk)=ln S(tk),xk=yk−1, k=1, 2, 3, and apply the LS 

estimator with T=3, when β=1 is known. Then 

hence Further, we have fitted 
residuals 

   

hence the LS estimate for the volatility σ can be found from 

 

  

The estimate for the appreciation rate a is  
Let us show how the estimation of parameters described above can be applied for 

forecasting. 
Problem 9.6 Under the assumptions and notations of the previous problem, find a 

forecast for the return R(t4) and R(t5) based on observations for times (t0, t1, t3) and 
presuming that tk−tk+1 is three months for all k. 

Solution. By (8.36), the desired forecast of R(t4) is E{R(t4)|y0, y1, y2, y3}= R(t3)+µh. As 
was suggested in Section 8.9, we can replace this expectation by 

Similarly, (8.37) implies that the forecast of 
R(t5) is  

9.3.2 Estimation of the mean-reverting model 

Let us estimate the parameters for the model 
S(t)=S(0)eR(t), 
dR(t)=(α−λR(t))dt+σdw(t), R(0)=0. 

  

We have found in Section 9.2 that if t=t1, t2,…, Z and h=tk−tk–1, then 
R(tk)=βR(tk−1)+β0+εk,   

where and and {εk} is a random discrete time 
process that represents stochastic changes. It is a discrete time white noise process, 

Eεk=0, and (see (9.8)). Then estimates and can be 
found by LS or ML methods, as well as the LS or ML estimate of the variance (square) 

of Then an estimate of unknown parameters can be found 
from the system 
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Clearly, this system can be solved explicitly: 

 

  

Problem 9.7 Consider quarterly prices (S(t1), S(t2) S(t3), S(t4))=(e0, e0.3, e0.5, e0.4). 
Estimate parameters for a mean-reverting continuous time model. 

Solution. Note that h=1/4. Take yk=R(tk)=ln S(tk), xk=yk−1, k=1, 2, 3, and apply LS 
with T=3 for the regression yt=β0+βγt−1+εt. Then the LS estimates of the parameters here 

are Further,  

 

  

We have fitted residuals 

   

hence the LS estimate for error variance (for a time series) is 

 

  

hence 

 

  

Problem 9.8 Under the assumptions and notations of the previous problem, find a 
forecast of the return R(t4) and R(t5) based on observations for times (t0, t1, t3). Presume 
that tk−tk+1 is three months for all k. 

Solution. Let us use the estimates obtained in the previous solution. By (8.36), the 
desired forecast of R(t4) is E{R(t4)|y0, y1, y2, y3}=βR(t3)+β0). As was suggested in Section 

8.9, we can replace this expectation by 
Similarly, (8.37) implies that the forecast of R(t5) is 
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Remark 9.9 It can be seen that the forecast above is different from the one obtained in 
Problem 9.6 for the same data set but for a different model. It is no surprise, since we 
have assumed more general autoregression now (in Problem 9.6, it was assumed a priori 
that β=1). This outlines one more challenge for the reliability of forecasts for financial 
data: the results depend on the model choice. (See the discussion in Remark 8.33.) 

9.4 Forecast of volatility with ARCH models 

We assume that the risk-free interest rate r is a non-random constant. Consider the 
diffusion market model with a single stock such that its price S(t) evolves as (9.1) and 
such that the volatility process σ(t) is random. Typically, an equivalent risk-neutral 
measure is not unique in this case. If an equivalent risk-neutral measure is not unique on 
the σ-algebra generated by the stock prices, then the market cannot be complete 
(Theorem 5.35), i.e., there are claims F (S(·)) that cannot be replicable. The question 
arises as to how to price these claims. 

9.4.1 Black-Scholes formula and forecast of volatility square 

For brevity, we shall denote by HBS the corresponding Black-Scholes prices of different 
options, i.e., HBS=HBS,c or HBS=HBS,p, for call and put respectively. 

Let 

 

  

Lemma 9.10 Let V be non-random. Then: 

(i) the initial wealth HBS(S(0), K, V1/2, T, r) ensures replication of the option claim; 
(ii) e−rTE*F(S(T))=HBS(S(0), K, V1/2, T, r) for any risk-neutral measure P*, where E* is the 

corresponding expectation2 

Clearly, examples of a random volatility with non-random v can be invented: for 
instance, assume that σ(t)=σ1 for σ(t)=σ2 for where 
h>0, σ1, σ2 are given non-random values, and τ is a random time independent from w(·) 
and such that 0≤τ≤τ+h≤T a.s. Then the corresponding V is non-random. 

Proof of Lemma 9.10. Note that (ii) follows from (i). Therefore, it suffices to prove (i) 

only. Set and set f(x, K)=(x−K)+ or f(x, K)=(K−x)+ for call and put 

respectively. We introduce the function such that 

   

It is easy to see that 
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Let where 

 

  

By Ito formula, we obtain that  

 

  

2 Hull and White (1987), p. 245. 

Hence 

   

This completes the proof. 
Corollary 9.11 Assume that HBS=HBS,c or HBS=HBS,p. Then 
e−rTE*F(S(T))=E*HBS(S(0), K, V1/2, T, r)   

for any risk-neutral probability measure P* such that σ(·) does not depend on w(·) under 
P*. 

Proof. It suffices to observe that e−rTE*F(S(T))=e−rTE*E*{F(S(T))|V}.  

Clearly, is random in the general case of stochastic σ, and 
the assumptions of Lemma 9.10 are not satisfied. In this case, there is no simple solution 
for the option pricing problem (even if σ(t) is constant over time). 

By Lemma 9.10, it is natural to use an estimate (forecast) 

 
(9.13) 

as a replacement for unknown and random V. For some volatility models, can be 
estimated using well-developed ARCH and GARCH models for heteroscedastic time 
series. This approach may provide an approximate option price, when V is replaced by its 
estimate (forecast)  

9.4.2 Volatility forecast with GARCH and without mean-reverting 

We consider again the stock price model (9.1) 
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dS(t)=a(t)S(t)dt+σ(t)S(t)dw(t).   

Let Assume that 
R(0)=0, dR(t)=µdt+σ(t)dw(t), 

(9.14) 

where µ is a constant, i.e., 

 
(9.15) 

We assume also that σ(t) with probability 1 is a piecewise constant function with jumps 
only in tk, k=1, 2, 3,…, where t0=0, tk=hk, h>0 is given. In addition, we assume that 
σ(t)≡σ(t+0). 

In this case, the process R(t) is such that 

 
(9.16) 

where are Gaussian random variables, In other words, 
R(tk)=R(tk−1)+µh+εk, h>0, 

(9.17) 

where 

 

  

Note that ηk are Gaussian random variables distributed as N(0, 1). 
Let T=Nh, where N is an integer. We have that 

 
(9.18) 

Assume that we accept the hypothesis that the evolution of qk=σ(tk)h1/2 is defined by the 
ARCH(1) model such that 

 
  

and that we have obtained estimates of (µ, α0, σ1). In addition, assume that we 
estimate ε0 as the corresponding residual, i.e., ε0 be estimated as the corresponding 
residual, i.e., By (9.18) and (8.49), we obtain 

(9.19) 
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Assume that we accept the hypothesis that the evolution of qk is defined by the 
GARCH(1, 1) model such that 

 
  

and that we have obtained estimates of (µ, α0, α1, β1). Again, assume that 
we estimate ε0 as the corresponding residual, i.e., ε0 is estimated as the corresponding 
residual. 

Let T=Nh, where N is an integer. By (9.18) and (8.56), we obtain 

(9.20) 

9.4.3 Volatility forecast with GARCH and with mean-reverting 

Assume that the process evolves as 
dR(t)=µ(t)dt+σ(t)dw(t), 

(9.21) 

where 
µ(t)=α−λR(t),   

where are unknown constants. 
We assume again that σ(t) with probability 1 is a piecewise constant function with 

jumps only in tk, k=1, 2, 3,…, where t0=0, tk=hk, h>0 is given, and that α(t)≡σ(t+0). 
In this case, the process R(t) is such that 

(9.22) 

Hence 

(9.23) 

where are Gaussian random variables, 

 

  

In other words,  
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R(tk)=βR(tk−1)+β0+εk, 
(9.24) 

where 

 

  

and where are Gaussian random variables 
distributed as N(0, 1). 

Assume again that we accept the hypothesis that the evolution of is 

defined by the ARCH(1) model, and that we have obtained an 

estimate of (β, β0, α0, α1). In addition, we estimate ε0 as the corresponding 

residual, i.e.,  
Let T=Nh, where N is an integer. Then (9.18) holds again. By (8.49), we obtain (9.19) 

again. 
Assume that we accept the hypothesis that the evolution of qk is defined by the 

GARCH(1, 1) model and that we have obtained 

estimates of the coefficients. Again, assume that we estimate ε0 as the 
corresponding residual. In this case, (9.18) holds again, with T=Nh, where N is an 
integer. By (8.56), we obtain (9.20). 

9.5 Problems 

Problem 9.12 Find ER0(t) and Var R0(t) for the mean-reverting model. 
Problem 9.13 Find E{R(t)|R(s)} and conditional variance of R(t) given R(s), s<t, for a 

log-normal model without mean-reverting. 
Problem 9.14 Assume that the stock price S(t) is defined by Ito equation (9.1), (9.2). 

Find the conditional expectation E{R(t)|R(s)} under the assumption that µ(t)=a− λR(t), 
where are known constants, for t=2, s=1, a=2, λ=1, σ=1. 

For the following problems, assume that all time periods tk−tk−1 are one-quarter of a 
year. 

Problem 9.15 Assume that we are given the sequence of historical stock prices (S(t0), 
S(t1), S(t2), S(t3))=(e0, e0.1, e0.3, e0.3), where (t0, t1, t2, t3)= (January 1st, April 1st, July 1st, 
October 1st). Assume that the price S(t) is defined by Ito equation (9.1), where 
and are constants. Using the LS estimation procedure, estimate the parameters (a, 
σ). 

Problem 9.16 Under the assumptions and notations of the previous problem, find a 
forecast of the return R(t4) and R(t5) based on observations for times (t0, t1, t3) and 
presuming that tk−tk+1 is three months for all k. 
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Problem 9.17 Assume that the stock price S(t) is defined by Ito equation (9.1), (9.2) 
such that µ(t)=α−λR(t), where (i.e., assume the mean-reverting 
model). Using the LS estimation procedure and the sample data (S(tk), tk) given in 
Problem 9.15, estimate the parameters (α, λ). 

Problem 9.18 Under the assumptions and notations of the previous problem, find a 
forecast of the return R(t4) and R(t5) based on observations for times (t0

, t1
, t3) and 

presuming that tk−tk+1 is three months for all k. 
Problem 9.19 Consider the following ARCH(1) model: 

  

In addition, assume that ηk are mutually independent and distributed as N(0, 1), and ηk do 
not depend on {ym}m≤k−1. 

Here yk are observable values, and α0, α1 and are unknown constants; Ek 
denotes the conditional expectation given observations (yk, yk−1, yk−2,…). 

Assume that we are given the sample of data yk=ln S(tk)−ln S(tk−1), where (S(tk), tk) are 
given in Problem 9.15. Using the ML approach, find out which set of estimates of the 

parameters (β, α0, α1) is more likely to be the true one: or 

 

Challenging problem 

Problem 9.20 Suggest a method for estimating the parameters (σ1, σ2, p) under the 
hypothesis that the appreciation rate is a non-random constant, and the volatility 
σ=σ(ω) is random and has the two-point distribution described in Section 7.3. 
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Legend of notations and abbreviations 

a.e. —almost everywhere, or for almost every 

a.s. —almost surely 

c.d.f. —cumulative distribution function 

iff —if and only if 

i.i.d. —independent identically distributed 

p.d.f. —probability density function 

C(0, T) —the set of all continuous functions f:[0, t]→R 
Eξη=E(ξη) 

F(S(·)) means that F is a function of the whole path S(t), 
 

F(S.) means that F is a function of the whole path S1, …, ST 

 is the indicator function of an event A 

LS —least squares 

ML —maximum likelihood 

N(a, σ2) —the normal distribution law with mean a and variance 
σ2 

 —empty set 

2Ω —the set of all subsets of Ω 

σ(ξ) is the σ-algebra of events generated by a random vector 
ξ 

x+ 
x−=max(–x, 0) 

|x| 
for  

 means that x is defined such that x=X 

ξ~N(0, v2) —the random variable ξ has the distribution law N(0, v2) 

 —if and only if 

� —end of a proof or solution. 



Selected answers and key figures 

Chapter 1 
Problem 1.58: E{ξ|η}(ω1)=0, E{ξ|η}(ω2)=1/30. 

Chapter 2 
Problem 2.33: (i) no, (ii) yes. 

Chapter 3 
Problem 3.67: a<1.07<b or a=b= 1.07; Problem 3.69:0.302. 

Chapter 4 

Problem 4.33: yes; Problem 4.67: The second expectation is 

 

Chapter 5 

Problem 5.71:(a−r)2T; Problem 5.74:  

Chapter 6 
Problem 6.31:4.66; Problem 6.32:5.78; Problem 6.33: yes in both cases. 

Chapter 7 
Problem 7.7:(c); Problem 7.10:0.59; Problem 7.11: 0.7. 

Chapter 8 
Problem 8.18 (i):(β0, β)=(0.0833, 0.9792); Problem 8.38 (i):(1.6333, −0.3333); Problem 
8.39 (i):(−0.3333)k. 

Chapter 9 
Problem 9.14:0.36R(s)+1.2642; Problem 9.15:  Problem 

9.17:  Problem 9.19:(0.1, 0.3, 0.2). 
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