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PREFACE

The aim of this book is to give a systematic introduction to

the theory of surreal numbers based on foundations that are familiar to

most mathematicians. I feel that the surreal numbers form an exciting

system which deserves to be better known and that therefore an exposition

like this one is needed at present. The subject is in such a pioneering

state that it appears that there are many results just on the verge of

being discovered and even concepts that still are waiting to be defined.

One might claim that one should wait till the theory of

surreal numbers is more fully established before publishing a book on

this subject. Such a comment reminds me of the classic joke about the

person who is afraid of drowning and has vowed never to step into water

until he has learned how to swim. In fact, the time is ripe for such a

book and furthermore the book itself should contribute to developing the

subject with the help of creative readers.

The subject has suffered so far from isolation with pockets

of people in scattered parts of the world working on those facets of the

subject that interest them. I hope that this book will play a role in

eliminating this isolation and bringing together the mathematicians

interested in surreal numbers.

The book is thus a reflection of my own personal interest.

For example, Martin Kruskal has developed the theory of exponentiation

from a somewhat different point of view and carried it in different

directions from the presentation in this book. Also, I recently received

correspondence from Norman Ailing who has recently done work on a facet

of the theory of surreal numbers not discussed in the book. With greater

communication all this and more could play a role in a future edition.

The basic material is found in chapters 2 through 5. The

later chapters are more original and more specialized. Although room for



future improvement exists everywhere, chapters 7 and 8 are in an

especially pioneering position: this is where the greatest opportunity

seems to exist for knowledgeable readers to obtain new results.
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1 INTRODUCTION

The surreal numbers were discovered by J.H. Conway. He was

mainly interested in games for which he built up a formalism for gen-

eralizing the classical theory of impartial games. Numbers were obtained

as special cases of games. Donald E. Knuth began a study of these

numbers in a little book [2] in the form of a novel in which the charac-

ters are trying to use their creative talents to discover proofs.

Conway goes into much more depth in his classic book On Numbers and Games

[1].

I was introduced to this subject in a talk by M.D. Kruskal

at the A.M.S. meeting in St. Louis in January 1977. Since then I have

developed the subject from a somewhat different foundation from Conway,

and carried it further in several directions. I define the surreal

numbers as objects which are rather concrete to most mathematicians, as

compared to Conway's, which are equivalence classes of inductively

defined objects.

The surreal numbers form a proper class which contains the

real numbers and the ordinals among other things. For example, in this

system ca-l, /w, etc. make sense and, in fact, arise naturally. I

believe that this system is of sufficient interest to be worthy of being

placed alongside the other systems that are being studied by mathema-

ticians. First, as we shall see, we obtain a nice way of building up the

real number system. Instead of being compelled to create new entities at

each stage and make new definitions, we have unified definitions at the

beginning and obtain the reals as a subsystem of what we already have.

Secondly, and more important than obtaining a new way of building up a

familiar set such as the real numbers, is the enrichment of mathematics

by the inclusion of a new structure with interesting properties.
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In fact, it is because the system seems to be so natural to

the author that the first sentence contains the word "discovered" rather

than "constructed" or "created." Thus the fact that the system was

discovered so recently is somewhat surprising. Be that as it may, the

pioneering nature of the subject gives any potential reader the

opportunity of getting in on the ground floor. That is, there are

practically no prerequisites for reading this book other than a little

mathematical maturity. Thus the reader has the opportunity which is all

too rare nowadays of getting to the surface and tackling interesting

original problems without having to learn a huge amount of material in

advance.

The only prerequisite worthy of mention is a minimal

intuitive knowledge of ordinals, for example familiarity with the

distinction between non-limit and limit ordinals. For a fuller

understanding it is useful to be familiar with the basic operations of

addition, multiplication, and exponentiation.

The results and some of the proofs in the earlier chapters

are essentially the same as those in [1] but the theory begins with a

different foundation. The later chapters tend to be more original. The

ideas in Chapters 6 and 7 are new as far as I know. [1] contains several

remarks related to chapter 9 where the ideas are studied in detail. Part

of the material in chapter 10 was done independently by Kruskal. At

present, his work is unpublished. I would like to give credit to Kruskal

for pointing out to me that exponentiation can be defined in a natural

way for the surreal numbers. Using his hints I developed the theory

independently. Although naturally there is an overlap at the beginning,

it appears from private conversations that Kruskal did not pursue the

topics in sections C and D.



2 DEFINITION AND FUNDAMENTAL EXISTENCE THEOREM

A DEFINITION

Definition. A surreal number is a function from an initial segment of

the ordinals into the set {+,-}, i.e. informally, an ordinal sequence

consisting of pluses and minuses which terminate. The empty sequence

is included as a possibility.

Examples. One example is the function f defined as f(0) = +, f(l) = -

and f(2) = + which is informally written as (+-+). An example of

infinite length is the sequence of u> pluses followed by u> minuses.

The length Jt(a) of a surreal number is the least ordinal a

for which it is undefined. (Since an ordinal is the set of all its

predecessors this is the same as the domain of a, but I prefer to avoid

this point of view.) An initial segment of a is a surreal number b

such that i(b) £ £(a) and b(a) = a(a) for all a where b(a) is

defined. The tail of b in a is the surreal number c of length

£(a)-£(b) satisfying c(a) = aU(b)+a]. Informally, this is the

sequence obtained from a by chopping off b from the beginning, a

may be regarded as the juxtaposition of b and c written be.

For stylistic reasons I shall occasionally say that a(a) = 0

if a is undefined at a. This should be regarded as an abuse of

notation since we do not want the domain of a to be the proper class of

all ordinals.

Definition. If a and b are surreal numbers we define an order as

follows:

a < b if a(a) < b(a) where a is the first place where

a and b differ, with the convention that - < 0 < +, e.g.
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It is clear that this is a linear order. In fact, this is

essentially a lexicographical order.

B FUNDAMENTAL EXISTENCE THEOREM

Theorem 2.1. Let F and G be two sets of surreal numbers such that

a e F and b e G => a < b. Then there exists a unique c of minimal

length such that a e F =*> a < c and b e G =>> c < b. Furthermore c

is an initial segment of any surreal number strictly between F and G.

(Note that F or G may be empty.)

Note. Henceforth I use the natural convention that if F and G are

sets then "F < G" means "a e F and b e G =* a < b," MF < c" means

"a e F => a < c" and "c < G" means "b e G =* c < b." Thus we may

write the hypothesis as F < G.

Example. Let F consist of all finite sequences of pluses and G be

the unit set whose only member is the sequence of u> pluses. Then

F < G. It is trivial to verify directly that c consists of w pluses

followed by a minus, i.e., F < c < G and that any sequence d satisfy-

ing F < d < G begins with c.

This theorem makes an alternative approach to the one in [1]

possible. In [1] the author regards pairs (F,G) as abstract objects

where the elements in F and G have been previously defined by the

same method, as pairs of sets. (It is possible to start this induction

by letting F and G both be the null set.) Since different pairs can

give rise to the same number, the author needs an inductively defined

equivalence relation. Theorem 2.1 gives us a definite number corre-

sponding to the pair (F,G) so that we dispense with abstract pairs.

Proof. Clearly, it suffices to prove the initial segment property.

Case 1. If F and G are empty, then clearly the empty sequence works.

Case 2. G is empty but F is nonempty.

Let a be the least ordinal such that there does not exist

a e F such that a($) = + for all 3 < a. Thus a cannot equal zero,
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since any a vacuously satisfies the condition a(3) = + for all 3 < 0,

Subcase 1. a is a limit ordinal. I claim that the desired c is the

sequence of a pluses, i.e., i(c) = a and c(3) = + if 3 < a.

Since, by choice of a, no element a of F exists such

that a(3) = + for all 3 < a, every element of F is less than c.

Now let d be any surreal number such that F < d.

Suppose y < a. Then y + 1 < a, since a is a limit

ordinal. Hence, by choice of a, there exists a e F such that

a(3) = + for all 3 < y+1, i.e. 3 ± y. Since a < d, d(3) = + for all

3 <_ T. In particular, d(y) = +. Thus c is an initial segment of d.

Subcase 2. a is a non-limit ordinal, y + 1. In this case there exists

an a e F such that a(3) = + for all 3 < y but there is no a e F

such that a(3) = + for all 3 <_ Y- Hence any a e F satisfying:

(3 < Y => a(3) = +) must satisfy: (a(y) = - or 0). If all such a

satisfy a(y) = - then it is easy to see that the sequence of Y pluses

works for c. If there exist such an a e F such that a(Y) = 0, i.e.

the sequence of Y pluses belongs to F, then the sequence of ( Y + D

pluses works for c.

Case 3. F is empty but G is nonempty. This case is similar to Case 2.

Case 4. Both F and G are nonempty.

Let a be the least ordinal such that there do not exist

a e F, b e G such that a(3) = b(3) for all 3 < a. Again a * 0.

Subcase 1. a is a limit ordinal. Suppose Y < <*; then Y + 1 < <*. Hence

there exist a e F, b e G such that a(3) = b(3) for all 3 _< Y.

The value a(Y) is well-defined in the following sense. If (a ,b ) is

another pair satisfying the above properties then a(3) = a (3) for all

3 _< Y. Otherwise, suppose 6 <_y is the least ordinal for which

a(3) * a x(3). Without loss of generality assume a(6) < a ^ a ) . Then by

the lexicographical order b < alf which is a contradiction since b e G

and ax e F. Thus there exists a sequence of length a, such that for

all y < a there exist a e F and b e G such that

a(3) = d(3) = b(3) for 3 < y.



AN INTRODUCTION TO THE THEORY OF SURREAL NUMBERS 6

By hypothesis on a, d cannot be an initial segment of an

element in F as well as an element in G. Furthermore, an element of

F which does not have d as an initial segment must be less than d.

(Otherwise we obtain the same contradiction, as before.) Similarly an

element of G which does not have d as an initial segment must be

greater than d.

It follows that if d is neither an initial segment of an

element of F nor an initial segment of an element of G then d works.

Now suppose F has elements with initial segment d. Then

G does not have such elements. Let F1 be the set of tails with

respect to d of all such elements in F. Apply case 2 to F1 and 4

to obtain d1. Then the juxtaposition dd1 works.

First, as before the required inequality is satisfied with

respect to all elements in F or G which do not begin with d. Since

F1 < d1 it follows from the lexicographical order that dd' is larger

than all elements in F beginning with d.

On the other hand, let e be any element satisfying

F < e < G. Recall that for all y < a there exist a e F and b e G

such that a(3) = d(3) = b(3) for 3 <_ y. This implies by the

lexicographical order that e(3) = d(3) for 3 < a. Thus d is an

initial segment of e. Again using the lexicographical order the tail

e must satisfy F1 < e 1. Hence d1 is an initial segment of e1.

Therefore dd1 is an initial segment of e.

A similar argument applies if G has elements with initial

segment d.

Subcase 2. a is a non-limit ordinal y+1. Then there exist a e F,

b e G such that a(3) = b(3) for all 3 < Y but there do not exist

a e F, b e G which agree for all 3 ± y. As before, the values a(3)

are well-defined, and we obtain a sequence d of length y. Again, as

before, any element in F which does not have d as an initial segment

must be less than d and an element in G which does not have d as

an initial segment must be greater than d.

Let F1 be the set of tails with respect to d of elements

in F which begin with d and similarly for G1. Then as stated

previously, there do not exist a e F1, b e G1 such that a(0) = b(0).

[Note that in contrast to subcase 1, F1 and G1 are non-empty although
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one of these sets might contain the empty sequence as its only element.]

Since F1 < G1, it follows that a(0) < b(0) for all a e F1, b e G1.

Now suppose d e F and d e G. This means that neither F1

nor G1 contains the empty sequence, i.e. a(0) and b(0) are never

undefined. Since a(0) < b(0), we obtain: a(0) = - and b(0) = +. It

is then clear that d works.

Since F and G are disjoint, d belongs to at most one of

F and G. Suppose that d e G. A similar argument will apply if

d e F. Then every a in F1 satisfies a(0) = -. Let F" be the set

of tails of F1 with respect to this -. (Such an iterated tail is,

clearly, the tail with respect to the sequence (d-.) Apply case 2 to

F" and <j> to obtain d1. Then the juxtaposition c = d-d1 works. We

already know that c satisfies the required inequality with respect to

those elements that do not begin with d. Since no b e G1 has

b(0) = -, this takes care of all of G. The choice of d1 takes care

of all elements in F beginning with d (the next term of which is

necessarily - ) . On the other hand, any element e satisfying F < e < G

must begin with d. Since d e G, the next term must be -. By choice

of d1, it must be an initial segment of the tail of e with respect to

d-, i.e. e must begin with d-d1.

This completes the proof.

Definition. F|G is the unique c of minimal length such that

F < c < G.

Remark. A slightly easier but less constructive proof is possible.

First one extracts what is needed from the above proof to obtain an

element c such that F < c < G. Although this is all that is required

for the conclusion, the proof does not simplify tremendously. Neverthe-

less, it simplifies slightly since there is no concern about the initial

segment property. Once a c is obtained, the well-ordering principle

gives us a c of minimal length. At this stage it is useful to have a

definition.

Definition. The common initial segment of a and b where a * b is

the element c whose length is the least a such that a(a) * b(a) and

such that c(3) = a(3) = b(3) for 3 < a. If a = b then c = a = b.
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If one of a or b is an initial segment of the other, then

c is the shorter element. If neither is an initial segment of the

other, then either a(y) = + and b(y) = - or a(y) = - and b(y) = +.

In either case c is strictly between a and b.

Now let c satisfy F < c < G and be of minimal length.

Suppose F < d < G. Let e be the common initial segment of c and d.

Then F < e < G. Since c has minimal length and e is an initial

segment of c, e = c. Hence c = e is an initial segment of d.

C ORDER PROPERTIES

Theorem 2.2. If G = <j> then F|G consists solely of pluses.

Proof. This follows immediately from the construction in the proof of

theorem 2.1. It can also be seen trivially as follows. Suppose c has

minuses. Let d be the initial segment of c of length Y where Y

is the least ordinal at which c has the value plus. Then clearly

F < d and d has shorter length than c. This contradicts the

minimality of the length of c.

Theorem 2.2a. If F = <f> then F|G consists solely of minuses.

Proof. Similar to the above.

Note that the empty sequence consists solely of pluses and

solely of minuses!

Theorem 2.3. £(F|G) _< the least a such that Va[a e F u G => £(a) < a].

This is trivial because of the lexicographical order, since

otherwise the initial segment b of F|G of length a would also

satisfy F < b < G contradicting the minimality of F|G.

Note that < cannot be replaced by _< . For example, if

F = {(+)} and G = {(++)}, then F|G = (++-). The result also follows

from the construction in the proof of theorem 2.1. In fact, the

construction gives the more detailed information that every proper

initial segment of F|G is an initial segment of an element of FUG.

(An initial segment b of a is proper if b * a).

Theorem 2.3 has a kind of converse.
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Theorem 2.4. Any a of length a can be expressed in the form F|G

where all elements of F1JG have length less than a.

Proof. Let F = {b: Jt(b) < a and b < a} and G = {b: i(b) < a and

b > a}. Then F < a < G and every element of length less than a is,

by definition, in F or G so that a satisfies the minimum length

condition. Note that the argument is valid even if a is the empty

sequence.

The last result is a step in the way of showing the

connection between what is done here and the spirit of [1], since the

result says that every element can be expressed in terms of elements of

smaller length, thus every element can be obtained inductively by the

methods of [1]. The next theorem shows that the ordering in [1] is

equivalent to the one used here.

Theorem 2.5. Suppose F|G = c and F'|G' = d. Then c _< d iff c < G1

and F < d.

Proof. We know that F < c < G and F1 < d < G1. Suppose c _< d; then

c _< d < G' and F < c _< d. For the converse, assume c < G1 and F < d.

We show that d < c leads to a contradiction. This assumption yields

F < d < c < G. Hence c is an initial segment of d. Also

F1 < d < c < G1 so d is an initial segment of c. Hence c = d which

contradicts d < c.

This last result is of minor interest for our purpose. Its

main interest is that together with theorems 2.1 and 2.4 it shows that we

are dealing with essentially the same objects as in [1] although here

they are concretely defined. Since the present work is self-contained

this is not of urgent importance, although it is worthy of noting.

Of fundamental importance here will be what I call the

"cofinality theorems." They are analogous to classical results such as:

In the e,6 definition of a limit, it suffices to consider rational e;

and in the definition of a direct limit of objects with respect to a

directed set, a cofinal subset gives rise to an isomorphic object.

Definition. (F',G') is cofinal in (F,G) if

(VaeF)(3beF')(b>a) A (VaeG)(3beG'
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It is clear that (F,G) is cofinal in (F,G), and that

(F",GM) cofinal in (F',G') and (F',G') cofinal in (F,G) implies

(F\G") cofinal in (F,G). Also if FCF 1 and GcG 1 then (F'.G1)

is cofinal in (F,G).

The following theorems are important although they are

trivial to prove.

Theorem 2.6 (the cofinality theorem). Suppose F|G = a, F1 < a < G1, and

(F'.G1) is cofinal in (F,G); then F'|G' = a.

Proof. Suppose £(b) < £(a) and F1 < b < G1. It follows immediately

from cofinality that F < b < G, contradicting the minimality of £(a).

Hence a = F'|G\

Theorem 2.7 (cofinality theorem b). Suppose (F,G) and (F',G')

are mutually cofinal in each other. Then F|G = F'|G'.

Note that it is enough to assume that F|G has meaning since

F < G => F1 < G1.

Proof. {x:F<x<G} = {x:F'<x<G'}. Hence the element of minimal length is

the same.

Although the two above theorems are closely related they are

not quite the same. Theorem 2.6 will be especially useful in the sequel.

I emphasize that in spite of the simplicity of the proof it is more

convenient to quote the term "cofinality1' than to repeat the trivial

argument every time it is used. Also it is convenient often with abuse

of notation to say that H1 is cofinal in H. However, this is

unambiguous only if it is clearly understood whether H and H1 appear

on the left or right, i.e. we must consider whether we are comparing

(H,G) with (H'.G1) or (F,H) with (F'.H1). This is usually clear

from the context.

Cofinality will be used to sharpen theorem 2.4 to obtain the

canonical representation of a as F|G. Of course, the representation

in theorem 2.4 itself may be regarded as the "canonical" representation.

The choice is simply a matter of taste.

Theorem 2.8. Let a be a surreal number. Suppose that F1 = {b: b < a
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and b is an initial segment of a} and G = {b: b > a and b is an

initial segment of a}. Then a = F'|G'. (In the sequel F'|G' will be

called the canonical representation of a.)

Proof. We first use the representation in theorem 2.4. Then F'cF and

G'cG. Since it is clear that F1 < a < G1, it suffices by theorem 2.6

to show that (F',G') is cofinal in (F,G). Let b e F. Then

JZ,(b) < £(a). Suppose c is the common initial segment of a and b.

Then b £ c < a. Hence c e F1. A similar argument shows that G1 is

cofinal in G.

The above representation is especially succinct. It is easy

to see that F1 is the set of all initial segments of a of length 3

for those 3 such that a(3) = + and similarly G1 is the set of all

initial segments of a of length 3 for those 3 such that a(3) = -.

Thus the elements of F1 and G1 are naturally parametrized by

ordinals. Furthermore, the elements of F form an increasing function

of 3 and the elements of G form a decreasing function of 3. Thus by

a further use of the cofinality theorem we may restrict F1 or G1 to

initial segments of length y where the set of y is cofinal in the set

of 3. For example, let a = (++-+—+). Then

F1 = {( ),(+),(++-),(++-+—)} and G' = {(++),(++-+),(++-+-)}. To avoid

confusion it is important to recall that the ordinals begin with 0. So,

e.g., a(3) = +. Hence the initial segment of length 3 =

a(0),a(l),a(2)] = ++-. In other words, this terminates just before

a(3) = + so that it really belongs to F1. Note the way F' and G1

get closer and closer to a in a manner analogous to that of partial

sums of an alternating series approximating its sum. However, the

analogy is limited by the possibility of having many alike signs in a

row; e.g., in the extreme case of all pluses, there are no approximations

from above. As an application of the last remark on cofinal sets of

ordinals we also have a = {(+),(++-+—)}|{(++),(++-+-)} or even more

simply as {(++-+--)}|{(++-+-)}, since any subset containing the largest

ordinal is cofinal in a finite set of ordinals.

In view of the above it seems natural to use F1 and G1 for

the canonical representation of a. F and G on the other hand appear

to contain lots of extra "garbage."
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Finally, we need a result which may be regarded as a partial

converse to the cofinality theorem. First, it is unreasonable to expect

a true converse; in fact, it is surprising at first that any kind of

converse is possible. If a = F|G choose b so that F < b < a. Such

b exists by theorem 2.1. By the cofinality theorem FU{b}|G = a.

However, F is not cofinal in FU{b} by choice of b.

Theorem 2.9 (the inverse cofinality theorem). Let a = F|G be the

canonical representation of a. Also let a = F'|G' be an arbitrary

representation. Then (F',G*) is cofinal in (F,G).

Proof. Suppose b e F. Then b < a < G1. Since a has minimal length

among elements satisfying F1 < x < G1 and b has smaller length than

a, F' < b is impossible, i.e. (HceF1)(c>b). This is precisely what we

need. A similar argument applies to G and G1.

The same proof works if the representation in theorem 2.4 is

used. At any rate, we now have what we need to build up the algebraic

structure on the surreal numbers. It is hard to believe at this stage,

but the relatively simple-minded system we have supports a rich algebraic

structure.
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3 THE BASIC OPERATIONS

A ADDITION

We define addition by induction on the natural sum of the

lengths of the addends. Recall that the natural sum is obtained by

expressing the ordinals in normal form in terms of sums of powers of u>

and then using ordinary polynomial addit ion, in contrast to ordinary

ordinal addition which has absorption. Thus the natural sum is a

s t r i c t l y increasing function of each addend.

The following notation w i l l be convenient. I f a = F|G is

the canonical representation of a, then a1 is a typical element of F

and a" is a typical element of G. Hence a1 < a < a". We are now

ready to give the de f in i t ion .

Def in i t ion, a + b = {a'+b, a+b1}|{a"+b, a+b"}.

Several remarks are appropriate here. F i r s t , since the

induction is on the natural sum of the lengths, we are permitted to use

sums such as a'+b in the de f in i t ion . Secondly, no further def in i t ion

is needed for the beginning. Since at the beginning we have only the

empty set, we can use the t r i t e remark that {f(x):xs(j)} = <j> regardless

of f . For example, <|>|<j> + <|)|<j> = <t>|<}>. Thirdly, there is the a pr ior i

possibi l i ty that the sets F and G used in the def in i t ion of a+b do

not satisfy F < G. To make the def in i t ion formally precise, one can

use the convention that F|G = u for some special symbol u i f F < G

and that F|G = u i f u e FUG. In the sequel when a def in i t ion of an

operation is given in the above form, we w i l l show that F is always

less than G so that the operation is real ly defined, i .e . u is never

obtained as a value.

[1] is followed somewhat closely in building up the algebraic
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operations. However, some differences are inevitable because of the

d i f fe ren t foundations. We have a specif ic system with a specif ic order.

[1 ] deals with abstract elements and an order which is inductively

defined by a method which corresponds to our theorem 2.5.

Note that since we use a specif ic representation of elements

in the form F|G, the operations are automatically well defined.

Nevertheless, in order to advance i t is necessary to have the fact that

the resu l t is independent of the representation.

Let us i l l u s t r a t e the de f in i t ion with several simple

examples. Denote the empty sequence ( ) by 0 and the sequence (+)

by 1. Now (+) = {0}|(|>. ( I t is easy to get confused. Note that G is

the empty set and F is the uni t set whose only element is the empty

sequence. They are thus not the same.) Then 1+0 = {0} |<j> + <|>|<j> =

{0+<|>|<|>}|<|> = £0> 14> = 1. Simi lar ly 0+1 = 1. Also 1+1 = {0}|<j> + {0}|<|> =

{0+1,1+0}|<|> = (l}|cj) = {(+)}|<j> = (++) which is natural to cal l "2 " .

I t does look rather cumbersome to work d i rec t ly with the

d e f i n i t i o n , but so would ordinary arithmetic i f we were forced to use

{<!>}, I<1>,{$}}> instead of 1 , 2, etc. and go back to inductive

def in i t ions.

Theorem 3 .1 . a+b is always defined ( i . e . never u) and furthermore

b > c = > b > a + c and b > c = > b + a > c + a .

Remark 1. Although the first part is what is most urgent, we need the

second part to carry through the induction.

Remark 2. As a matter of style, one can prove commutativity first (which

is trivial) and then simplify the statement of the above theorem and its

proof. However, it seems preferable to prove that a+b exists as a

surreal number before proving any of its properties.

Proof. We use induction on the natural sum of the lengths. In other

words, suppose theorem 3.1 is true for all pairs (a,b) of surreal

numbers such that £(a) + £(b) is less than a. We show that the

statements remain valid if we include pairs whose natural sum is a.

Now a + b = {a'+b, a+b1} |{a"+b, a+b11}. First, we must show

that F < G. Since a1 < a", it follows from the inductive hypothesis
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that a1 + b < a"+b. Similarly a + b1 < a + b". Also a1 + b < a1 + b11

< a + b" and a + b1 < a" + b1 < a" + b. Hence a+b is defined.

By def in i t ion a1 + b < a + b < a" + b and

a + b' < a + b < a + b". This proves the required inequality when either

of b and c is an i n i t i a l segment of the other.

Now suppose that neither b nor c is an i n i t i a l segment of

the other and such that U a ) + lib) _< a and £(a) + i{c) <_ a. Let d

be the common i n i t i a l segment of b and c. Now assume b > c. Hence

b > d > c. Hence a + b > a + d > a + c and b + a > d + a > c + a .

I t follows immediately that a > b and c > d =>

a + c > b + d.

Theorem 3.2. Suppose a = F|G and b = H|K; then a + b = {f+b,a+h}|

{g+b, a+k} where f e F, g e G, h e H, k e K. I . e . although the

def in i t ion of a + b is given in terms of the canonical representation

of a and b, a l l representations give the same answer.

Remark. We shall cal l this "the uniformity theorem for addit ion," and

say that the uniformity property holds for addit ion.

Proof. Let a = F|G, b = H|K. Suppose the canonical representations are

a = A ' | A \ b = B'|B".

By the inverse cof ina l i ty theorem (theorem 2 . 9 ) , F is

cofinal in A1 and simi lar ly for the other sets involved. Consider

{f+b, a+h}|{g+b, a+k}. I t is now easy to check that the hypotheses of

the cof ina l i ty theorem (theorem 2.6) are sa t is f ied . The betweenness

property of a + b follows immediately from theorem 3 . 1 , e.g.

f + b < a + b. Also suppose a'+b is one of the typical lower elements

in the canonical representation of a+b as in the de f in i t ion . Since F

is cofinal in A1 (3 feF) ( f _> a 1 ) . By theorem 3 . 1 , f + b ^ a1 + b. A

similar argument applies to the other typical elements. Hence the

cof ina l i ty condition is sat is f ied so by theorem 2.6 we do get a+b.

This technique w i l l be used often to get uniformity theorems

for other operations. Such results f a c i l i t a t e our work with these

operations. In par t icu lar , they permit us to use the methods of [1] in

dealing with composite operations, as we shall see, for example, in the
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proof of the associative law for addition.

Theorem 3.3. The surreal numbers form an Abelian group with respect to

addition. The empty sequence is the identity, and the inverse is

obtained by reversing all signs. (Note that one should be aware of

potential set-theoretic problems since the system of surreal numbers is a

proper class.)

Proof: 1) commutative law. This is trivial because of the symmetric

nature of the definition.

2) associative law. We use induction on the natural sum of the lengths

of the addends

(a+b) + c = {(a+b)'+c, (a+b)+c'}|{(a+b)"+c, (a+b)+cM}.

By theorem 3.2 we may use a+b1 and b+a' instead of (a+b)' and similar ly

for (a+b)11. i . e . i t is convenient to use the representation in the

def in i t ion of addition rather than the canonical representation. We thus

obtain

(a+b) + c = {(a'+b)+c, (a+b')+c, (a+b)+c'}|{(a"+b)+c, (a+b")+c, (a+b)+c"}.

A similar result is obtained for a + (b+c). Associativity follows by

induction.

3) The ident i ty : Denote the empty sequence by 0. Then 0 = <|>|<j>. We

again use induction: a + 0 = {a'+0, a+01}|{a"+0, a+0"}. There are no

terms Q',0", so this simpli f ies to {a'+0}|{a"+0} which is {a ' } | {a " }

by the inductive hypothesis. We thus get a + 0 = a.

4) The inverse: We use induction. Let -a be obtained from a by

reversing a l l signs, and le t F|G be the canonical representation of a.

Again le t a1 and a" be typical elements of F and G respectively.

Note that, in general, i f b is an i n i t i a l segment of c then -b is

an i n i t i a l segment of -c and b < c => -b > -c. Hence the canonical

representation of -a may be expressed as - a " | - a ' . Therefore

a + ( - a ) = { a ' + ( - a ) , a + ( - a " } | { a " + ( - a ) , a + ( - a ' ) } . S i n c e a 1 < a < a" , i t

is clear from the lexicographical order that -a" < -a < -a1. Using

induction and the fact that addition preserves order, we obtain

a1 + (-a) < a1 + (-a1) = 0. a + (-a") < a" + (-a11) = 0.

a" + (-a) > a" + (-a11) = 0, a + (-a1) > a1 + (-a1) = 0. Hence in the

representation of a + (-a), as H|K, H < 0 < K. Since 0 vacuously

satisfies any minimality property, a + (-a) = H|K = 0.
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Thus we now know that the surreal numbers form an ordered

Abelian group. The ident i ty and inverses are obtained in a way which is

heur is t ica l ly natural .

B MULTIPLICATION

The de f in i t ion of mul t ip l icat ion is more complicated than

that of addi t ion; in fac t , i t took some time before the standard

def in i t ion for mul t ip l icat ion was discovered.

Def in i t ion, ab = {a'b + ab1 - a V , a"b +ab" - a"bn} |

{a'b + ab" - a'b11, aHb + ab1 - a "b ' } .

As par t ia l motivation note that i f a ,b ,a ' ,b ' are ordinary

real numbers such that a1 < a, b1 < b, then ( b - b ' ) U - a ' ) > 0, i . e .

a ' b + a b 1 - a ' b 1 <ab . Similar computations apply to get the appropriate

inequali t ies i f ei ther a1 is replaced by a" or b' replaced by b".

Thus the inequal i t ies are consistent with what is desired.

Theorem 3.4. ab is always defined. Furthermore a > b and

c > d =» ac-bc > ad-bd.

Proof. We use induction on the natural sum of the lengths of the

factors. We shall refer to the inequal i t ies ac - be > ad - bd as

P(a,b,c,d) and to the expression a°b + ab° - a°bo where a°,b° are

proper i n i t i a l segments of a and b respectively as f (a° ,bo) . Note

that a0 is of the form a1 or a". In the former case we cal l a0 a

lower element and in the la t te r case an upper element.

I t follows immediately from the def in i t ion that the relat ion

P is t rans i t ive on the last two variables. Since, at this point, we

can freely use the properties of addition in ordinary algebra

P(a,b,c,d) is equivalent to ac - ad > be - bd. This makes i t clear

that P is t rans i t ive on the f i r s t two variables.

Now l e t b o and b ° be i n i t i a l segments of b and

consider f(ao,b2<>) - f t a o . b ^ ) . This is

(aob+ab2o-aob2<>) - (aob+ab^-aot^o) = (ab20-a<>b20) - ( a b ^ - a o ^ o ) . I f

a > a° and b2
0 > b ° , the inductive hypothesis says that the above

expression is pos i t ive, i . e . P(a,a°,b °,b o) , so f(a°,bo) is an

increasing function of b° i f a<> < a. I f a<> > a and b ^ > b2°,
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the above expression may be written ( a ^ o - a b ^ ) - (a°b20-ab20) which,

again, is positive. Hence if a° > a, f(a<>,bo) is a decreasing function

of b°. Similarly, f(a°,bo) is an increasing function of a0 if

b° < b and decreasing if b° > b.

To show that ab is defined, we must check inequalities

such as f(a|,b') < f(a2,b"). This follows easily from the above. If

a' = a' this is immediate since b1 < b" and a' < a. More generally,

let a1 be max (a|,a'); then f(a'.b') ± f(a',b') < f(a\b n) £ f(a2,b").

We now consider f(a",b") and f(a2,b') and let a" = min (a",a2).

Then f(a",b") ± f(an,bn) < f(an,b') <_ f(a2,b'). Since the remaining

cases are similar to the ones we already checked, this shows that ab

is defined.

To prove the second statement of the theorem, assume first

that in each of the pairs {a,b},{c,d} one element is an initial segment

of the other. By definition f(a',b') < ab, f(au,bn) < ab, f(a\b") > ab

and f(a",b') > ab. Now ab - f(a',b') = ab - (a'b+ab'-aV)

= (ab-a'b) - (ab'-a'b1). Thus the first inequality says P(a,a',b,b').

Similarly, the other inequalities give P(a",a,b",b), P(a,a',b",b),

P(a",a,b,b'). This proves the statement in this special case.

Next, remove the above restriction on {a,b}, but still

assume that one of c,d is an initial segment of the other. Let e be

the common initial segment of a and b. Then a > e > b. By the above

P(a,e,c,d) and P(e,b,c,d). Hence by transitivity we obtain

P(a,b,c,d).

Finally, suppose neither c nor d is an initial segment of

the other and let f be their common initial segment. By the above, we

have P(a,b,c,f) and P(a,b,f,d), so we finally obtain P(a,b,c,d) by

transitivity. This takes care of all cases.

Theorem 3.5 (The uniformity theorem for multiplication). The uniformity

property holds for multiplication.

Proof. This is similar to the proof of theorem 3.2 and, in fact, all

theorems of this type have a similar proof once we have basic

inequalities of a suitable kind.

Now that we have theorem 3.4 and, in particular, the fact

that the inequality stated there is valid in general, the same
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computation as in the beginning of the proof of the theorem gives us the

behaviour of f(c°,d°) in general for c° * a and d° * b. (We no

longer require that c° and d° be initial segments of a and b

respectively.)

Suppose a = F|G, b = F'|G', c<> e FUG, d<> e F'UG 1. Then

f(co,d°) is an increasing function of d° if c° < a and a decreasing

function of d° for c° > a and similarly for fixed d<>.

We now check the hypotheses of the cofinality theorem. The

betweenness property of ab follows from the same computation as in the

latter part of the proof of theorem 3.4. For example, since

ab - f(c',d') = (ab-c'b) - (ad'-c'd1), P(a,c\b,d') says that

ab > f(c',d'). The other parts of the betweenness property follow the

same way. Note that we are now going in the reverse direction to the one

we went earlier, i.e. we have P and we obtain the betweenness property.

To check cofinality let e.g. f(a',b') be a lower element

using the canonical representation of ab. By the inverse cofinality

theorem (3ceF)(c2.a') and (BdeF1 )(d>b'). Then f (c,d) >_ f(c,b') >_

f(a',b'). A similar argument applies to the other cases. Actually all

the cases may be elegantly unified by noting that f(c°,x) maintains the

side of x if co < a and reverses it if c° > a. Thus f(co,x)

maintains the side of x if and only if it is an increasing function of

x. Hence in all cases f(co,x) is closer to ab if x is closer to

b. Similarly for f(x,do). This is just what is needed to obtain

cofinality.

Theorem 3.6. The surreal numbers form an ordered commutative ring with

identity with respect to the above definitions of addition and multipli-

cation. The multiplicative identity 1 is the sequence (+) = {0}|<j>.

Proof. Commutative law. Because of symmetry this is just as trivial

here as it was for addition.

Distributive law. We use induction on £(a) + lib) + i{c).

(a+b)c = {(a+b)'c + (a+b)c' - (a+b)'c',...}|... . By theorem 3.5 we may

use a+b1 and a'+b instead of (a+b)1. For unification purposes we

consider a typical term (a+b)°c + (a+b)c° - (a+b)°co in the represen-

tation of a(b+c) where an element is lower if and only if an even
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number of noughts correspond to double primes. For (a+b)o we use

{a°+b,a+b°} by the above. Thus, typical terms become

(ao+b)c + (a+b)co - (ao+b)c<> and (a+b<>)c + (a+b)c<> - (a+bo)c<>. By

induction the f i r s t term becomes a°c + be + ac° + be0 - a°c° - be0

= aoc + ac° - a°co + be. A similar result is obtained i f a + b° is

used instead of a 0 + b.

A typical term in the representation of ac+bc is

(ac)o + be which is (aOc+acO-aOcO) + be. Note that this is jus t i f i ed

by theorem 3.2 . Since a similar result applies i f we take ac + (bc)o

and since the parity rule as to which element is upper or lower is the

same as before, we see that (a+b)c = ac+bc.

We are now permitted to write ab - (a°b+abo-aObo) as

(a-ao)(b-t>o).

Associative law. We use induction on £(a) + &(b) + l(c). A typical

term in the representation of (ab)c is (ab)Oc + (ab)c° - (ab)OcO

which by theorem 3.5 may be writ ten

(a°b+abo-aObo)c + (ab)co - (aob+abo-aobo)co. Again, an element is lower

i f and only i f an even number of noughts correspond to double primes. By

the d is t r ibut ive law the above expression is

(aOb)c + (abo)c - (aObo)c + (ab)co - (a<>b)co - (abo)co + (aoDo)co. Of

crucial importance is the following kind of symmetry in the expression:

the terms are a l l obtained from (ab)c by putting a superscript on at

least one of the factors, and the term has a minus i f and only i f there

is an even number of superscripts.

Exactly the same thing happens with the expansion of a(bc)

except for the bracketing. I . e . the parity rules as to which term is

upper or lower, and which addends in a term have a minus is the same as

before. In fac t , we obtain for a typical term

a(bc) = a°(bc) + a(b0c+bc°-b0c<>) - aO(bOc+bcO-b<>c°)

= ao(bc) + a(boc) + a(bco) - a(boco) - ao(boc ) - ao(bco) + ao(bo co).

The resul t now follows by induction.

The ident i ty . F i r s t note that a*0 = 0. This follows from the

d is t r ibut ive law. I t also follows immediately from the de f in i t ion .

Since 0 = <j>|<j>, and a l l terms used in representing a product must contain

lower or upper representatives of each factor, a«0 = <j>|<j> = 0. (Note that

this was not the case for addi t ion. )
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We again use induction to compute a*l. Since 1 = {0}|<j>

the expression for a-1 reduces to a-1 = {a'-l+a-O-a'-O} |{a"-l+a-0-a"-0}

which is {a'-l}|{a"-l}|. By induction this is {a'|a"} which is a.

Compatibility of ordering. Suppose a > 0 and b > 0. Then by theorem

3.4 we have P(a,0,b,0), i.e. a-b - 0-b > a-0 - 0-0. Hence ab > 0.

Thus we now know that the surreal numbers form an integral

domain. We saw that multiplication behaves somewhat more subtly than

addition. We shall see in the next section that division is handled much

more subtly. At any rate, it is remarkable that all this is possible.

It is possible to get a nice form for the representation of

an n-fold sum and product by inductive use of the uniformity theorems.

It is trivial that ax + a2 + ••• + an may be represented as

{a1
l+a2-.-+an,a1+a2

l---+an,--.a1+a2---+an
l}|

{a1"+a2...+an,a1+a2
ll---+an,a1+a2---+an

11}.

We claim that a a •••an may be represented by terms

a1a2...an - (a1-a1°)(a2-a °)---(an-an°) where an element is lower if

and only if an even number of noughts correspond to double primes.

The identity ab - (aob+ab°-a°b0) = (a-a°)(b-b°) may be

written in the succinct form ab - (ab)° = (a-a°)(b-b°). Theorem 3.5

allows us to use this representation for ab if we multiply by other

factors. Thus it is clear by induction that

(a1a2...an) - (a1a2...an)° = ( a ^ a ^ M a ^ 0 ) . . . (an-an°). The parity

rule is easily checked. In fact, it is essentially the same as the one

in ordinary algebra for multiplying pluses and minuses.

It is possible to use the above computation to prove the

associative law. Of course, one would have to be more cautious with the

bracketing before one has that law.

C DIVISION

We w i l l define a reciprocal for a l l a > 0. As usual,

induction w i l l be used, but the def in i t ion is more involved than the

ones for the ea r l i e r operations. Let a = A'|A" be the canonical

representation. One naive attempt would be as follows. We try
x = { 0 » T * } H T I } w h e r e a" e G and a* e F - {0} . (Note that 0 e A1

a a
since a > 0 . ) Unfortunately this does not work. Although x has some
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of the properties expected of a candidate for —, xa * 1 in general. It
a

turns out that more elements are needed to get a representation for the

reciprocal. Roughly speaking, the idea is to insert as many elements

into the representation of x as is needed to force the crucial

inequalities, i.e. in the standard representation of ax as a product we

want the lower elements to be less than one and the upper elements to be

greater than one.

What is needed is more complicated. First we define

objects <a ,a f-«-,a > for every finite sequence where

a-j e A1 A" -{0}. For arbitrary b we define b°ai as the unique

solution of (a-a-j)b + a-|x = 1. This exists by the inductive hypothesis

which guarantees that aj as an initial segment of a has an inverse.

Uniqueness is automatic. Now let < > = 0 and
< a

1 »
a 2 » " " » a

n + i
> = < ai' a2'*"' an > O an+i For e x a m P l e ^ I * = °°ai = ai •

We now claim that a = F|G where F = (<a1,«-•,an>: the number of

a. e A1 is even) and G = (<a ,--«fa >: the number of a. e A1 is

odd).

Theorem 3.7. The surreal numbers form a field.

Proof. We first show that x e F ==> ax < 1 and x e G =» ax > 1. This

will show that F < G. Since < > e F, < > = 0, and a-0 = 0 < 1, the

result is valid for < >. We now use induction on the length of the

finite sequence. In other words it is enough to show that if b has

this property so does x = b°ai. Now by definition (a-a^b + axx = 1.

Clearly (a-a^b + a ^ = ab. Since a } > 0 it follows that x > b iff

1 > ab. Also it follows from the above identity that

ax = 1 + (a-a-j)(x-b).

Now for fixed al9 the map b -»• b°a1 preserves being in F

or G iff a is upper. For example, b e F and a e A* + b°a e G.

In that case ab < 1 by the inductive hypothesis, thus x > b. Since

a > &l it follows that ax = 1 + (a-a )(x-b) > 1. Hence x e G and

ax > 1 as desired. The other three cases can be unified by noting that

any change in b or ax from lower to upper leads to a change in b°a1

and hence reverses the desired inequality. At the same time, any change

in ax or b reverses the sign of a-ax and x-b respectively so it
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also reverses the inequality we actually have. This proves what we

desired, so that now we know that F < G and therefore F|G has

meaning. Let F|G = c.

Finally we compute ac. A typical element used in the

definition of the product has the form axc + ac x- a c where

ai e A'UA" and c1 e F[JG. First, 0 e A1 and 0 e F. Thus we get a

lower element in the representation of ac by choosing ax= c = 0.

Hence 0«c + a«0 - 0*0 = 0 is a lower element.

Suppose a:= 0. Then the elements in the definition of the

product reduce to ac and ac is an upper element for ac iff

c e G.

However, we know that cx e G -• a c x > 1 and

c e F > ac < 1. Hence i f ac is an upper element ac > 1 and i f

acx is a lower element acx < 1.

Now suppose ax * 0. Then c1
oa1 is defined, is contained

in FtjG, and sat isf ies the equation (a-a1)c + a ^ = 1. Now

a ^ + a c ^ a c is a lower element for ac i f f a and c are on

the same side of a and c respectively i f f c °a e G i f f c °a > c.

(This follows from the ear l ier statement regarding the map b -• b°a1*)

Since c
l°^l sat is f ies the equation (a-a1)c1+ axx = 1 and ax > 0

the inequality c1
oa1 > c is equivalent to ( a - a ^ c ^ axc < 1. The

left-hand side of this inequality is nothing but axc + a c ^ a ^ .

Hence the lower elements for ac are less than 1 and the upper

elements are greater than 1. (Note that since c °a e F(JG, i t follows

that c l °a 1 * c so that the negation of ">" may be taken to be "<"

in the proof.)

We have shown that in the expression for ac, 1 sat isf ies

the betweenness property but 0 being in the lower part does not. Hence

1 = (+) is the number of minimal length satisfying the betweenness

property. Therefore ac = 1.

Thus f i na l l y we know that we have a f i e l d . Although we don't

need the information i t is of passing interest to note how b°a varies

as a function of b and a . F i rs t , by solving the defining equation
1-U-a^b i-at,

for b°a, we get b°a, = = h + ^ — * The first expression
i x ai ai

implies that b°a1 is an increasing function of b iff a < ax and
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the second expression that b°a1 is an increasing function of a iff

ab > 1. Hence b°ax is an increasing function of one of the variables

iff the other variable is upper. At the same time the function preserves

sides iff the fixed variable is upper. All this can be unified by

saying that b°a1 gets closer to c if b gets closer to c and if

a} gets closer to a. As we already saw in dealing with addition and

multiplication, this is essentially what is needed to prove a uniformity

theorem. Since the details are routine and since we don't need it, this

will not be pursued.

Finally it is recommended to any reader who is confused by

the unified arguments to think first in terms of individual cases, e.g.

in the above assume b and a are upper and regard b°a as a

function of b for fixed a .

D. SQUARE ROOT

Frankly, i t is not of extreme importance to obtain the

existence of square roots at this time, since that can be obtained from

the theory of i n f i n i t e series which w i l l be developed la ter . However, in

view of the elegance of the theory, i t is worth seeing how square roots

can be obtained d i rect ly without further machinery. In the bottom of

page 22 in [1] credit for this is given to Clive Bach.

We assume a > 0 and use induction. I .e. we assume that

a l l i n i t i a l segments of a (they are necessarily non-negative) have

square roots. Let a = A'|A" be the canonical representation. Then a l l

elements in A'UA" have square roots. Let H be the free groupoid,

with product denoted by °, generated by the elements of A'UA". We

shall define inductively a part ia l map from H into the surreal numbers.

I f b e A'UA11 then f(b) = /b .

If b, c e H, f(b) and f(c) are defined and are not both

a+f(b)f(c)0, then f(b°c) =
f(b)+f(c)

(In analogy with this case it was possible to use the concept of free

semigroup to deal with division, but we preferred to be more concrete.

Here we are stuck with this formalism since we are dealing with non-

associative juxtaposition.) By induction (Yx)[f(x)>0]. Furthermore

f(x) > 0 unless x = 0.

F and G are now defined inductively as follows.
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If b e A1 then f(b) e F. If b e A" then f(b) e G.

f(b°c) e G if f(b) and f(c) are both in F or both in G. If one of

f(b) and f(c) is in F and the other in G, then f(b°c) e F. Since

we are not assuming that f is one-one, a priori, it may seem possible

that F and G have elements in common. However, we shall prove that

F < G which in particular guarantees that F and G are disjoint.

Theorem 3.8. Every positive element has a square root.

Proof. We will show that F|G = /a". First we show that x e F =*• x2 < a

and x e G =* x2 > a. This is clearly true for x e A'UA". In order to

carry through an induction it is necessary to study the behaviour of

x°y = a*xy as a function of x and y. First

(y 2-a)(x rx 2) . . . .
x^y - x2°y = (x + y ) ( x + y ) • Hence, for fixed y, x°y is an increasing

function of x iff y2 > a iff y e G using induction. Also y e G

iff the map x -• x°y preserves presence in F or G according to the

above definition. Thus we have a similar desired situation to one we

have previously, i.e. preserving sides is equivalent to being an increas-

ing function if one variable is fixed.

Now assume x 1
ox 2 e G. First, if *1»x2 e F, let

x = max(x 1 >x 2). Then, by the above x 1
ox 2 _> x°x. Similarly, if

x ,x e G we take x = min(x ,x ) and obtain x °x >_ x°x. Now

a+x2
V O V
X * 2X

By the inductive hypothesis, i f x e F, then x2 < a and i f

x e G, then x2 > a. In either case, x2 * a. Hence (a-x2) > 0.

Thus a2 + 2ax2 + x4 > 4ax2. Therefore ( ^ i ) = a 2 + 2 a x * + x l * > a . A
^ 2x J 4x2

fo r t io r i ( x
1 ° x

2 ) > *•

Now assume x°y e F. Without loss of generality (because

x°y is symmetric in x and y) suppose x e F and y e G. Then

x2 < a and y 2 > a.

Assume f i r s t that xy = a. Then x° v = a x y = —— and
J x+y x+y

(xoy)
2 = 4xva . Clearly x 4= y since x2 < a < y2; hence 4xy

(x+y)2

Therefore (x°y)2 < a as desired.
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If xy * a, then either x < — or x > —. If x < —, we

apply the above to ^ and y to obtain f^-°y)2 < a. The above applies

since membership in F or G is not required in the argument. All we

want is that (—)2 < a. (Even the latter is not really needed since we

can get by even if all we have is (—°y)2 £ a.) Since y2 > a, x°y is

an increasing function of x and since x < ~, we have

U ' y ) 2 < (^y)2 < a.

If x > —, then y > — (x is necessarily different from 0).
a a 2

Then we apply the earlier argument to x and — and obtain (x°-) < a.
Since x2 < a, x°y is a decreasing function of y. Hence
( xo y )2 < (Xo£}

2 < a.

This finally shows that x e F => x2 < a and

x e G => x2 > a. Since x^.0 this shows that F < G. Hence F|G has

meaning. Let F|G = c.

We now compute c2. Then a typical term in the representa-

tion of c2 is c c + c c - c c . This is lower iff c and c are

on the same side of c iff c1
oc2 is an upper element, i.e.

a+CiCo
c < c1

oc2 = c +Q iff ctCj+Cg) < a +cxc2 iff cxc + c2c - c ^ < a.

The argument breaks down if c = c = 0 since c °c is

undefined. But this case leads to a lower element which is 0 which is

less than a. So lower elements are less than a and upper elements

greater than a, i.e. a satisfies the betweenness property for c2.

Now 0,/T" e F. Hence one of the lower elements in the

representation of c2 is c /IT + c(0) - (/aTMO) = c /a1" _> /a"1" /a"1" = a1.

Now /a71" e G. Hence one of the upper elements is

c /aT + c(0) - (/a^MO) = c /a71" <_ /F1" /F11" = a".

By the cofinality theorem c2 = a.

Note that as in the case of division, what we did was to

insert just enough terms into F and G in order to force the between-

ness condition. Again, just as in the case of division, we have what is

needed to prove a uniformity theorem.
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4 REAL NUMBERS AND ORDINALS

A INTEGERS

The main task of this chapter is to show that the surreal

numbers contain both the real numbers and the ordinals. (The dist inct ion

as to whether the surreal numbers contain the real numbers or a set

isomorphic to the real numbers is very much l ike the dist inct ion as to

whether the I l i a d was writ ten by Homer or by someone else of the same

name.) Along the way we shall see the e x p l i c i t representation of ord i -

nary numbers as sequences of pluses and minuses. So far we know that the

additive ident i ty 0 is the empty sequence and that the mult ip l icat ive

identity 1 is the sequence (+ ) . Since the surreal numbers form an

n times
ordered f i e l d , the expression (1+1+1 • • • ) may be ident i f ied with the

the positive integer n. We now have the following resul t which is

consistent with one's heurist ic expectations.

n times
Theorem 4 . 1 . The positive integer n is (+++ • • • ) .

Proof. We use complete induction, i . e . suppose the theorem is true for

n+1 times n t1#mes

all integers m _< n. Then 1+1+1 • • • = (1+1+1 • • • ) + 1
n times

= (+++ . . . ) + (+) by the inductive hypothesis. By applying

n times
cofinality to the canonical representation we know that (+++ • • • )

may be expressed as (+++ • • • )|<j> = {n-l}|<j> by the inductive

hypothesis. (+) is clearly {0}|<|>. Hence by def in i t ion

n+1 = { ( n - l ) + l , n+0}|<|> = {n}|(j> = (+ —eS)|<i> which is ( + + + + . . . i m e S )

again by applying cof ina l i ty to the canonical representation of
n+1 times

)
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Note that the symbol + has been used in two different

senses, once for addition, and once as one of the symbols used in the

ordinal sequences which we consider. This happens also in ordinary

algebra where, for example, in +(a+b) the two pluses have different

meanings. However, the meanings are related in such a way that i t is

convenient in practice to use the same symbol for each. In our case the

use of the symbols + and - is consistent with the intuit ive feeling

of order, i . e . plus is above zero is above minus. In any case, the

meaning should be clear from the context.

n times
Corollary. The negative integer -n is ( ) .

Proof. This is an immediate consequence of the theorem and the formula

for the additive inverse obtained previously.

B DYADIC FRACTIONS

Since the class of surreal numbers contain the rational

numbers, i t seems natural to consider them next and even to conjecture

that the rational numbers correspond to f in i te sequences of pluses and

minuses. Since 0 = ( ) < (+-) < (+) = 1 , i t is natural to conjecture

that (+-) = o- • A heuristic guess for (+—) would be a toss-up
1 1 1 1

between -j and j • Actually (+-) =-^ and (+—) = ^ •
I t turns out that the f in i te sequences correspond to the

dyadic fractions, i .e . rationals of the form — • Although they form a

proper subset of the rationals, they are dense in the reals. Thus they

can be used just as well as the rationals as building blocks later in

developing the reals.

Lemma 4.2. I f {2a}|{2b} = a+b then {a}|{b} ^

Proof. Let {a}|{b} = c. Then 2c = c+c = {a+c}|{b+c} by definition of

addition. We show that the lat ter is a+b by cofinal i ty. F i rst ,

a < c < b. Hence a + c < a + b < b + c which is the betweenness

property. Now {2a}|{2b} = a+b. Also i t follows from a < c < b that

2a < a + c and b + c < 2b. Thus we have the cofinality property. So

2c = a+b; therefore {a}|{b} = c = a + b

The above is the key lemma for dealing with dyadic fractions.
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For example 1 = {0}|<j> = {O}|{2} by cofinality. Hence the hypothesis of

lemma 4.2 is satisfied if a = 0 and b = 1. Hence {0}|{l} = \ • So

| = {( )}|{(+)} = (+-). This says that the hypothesis of the lemma

is valid for a = 0 and b = j • Hence {0}|{-i} = j • So

X = {( )| {(+-)} = {(+—)}. This sets up an induction, but only numbers

of the form — will be reached. However, we also have, for example,

3 = {0,1,2} |<|> = {2} | {4} by cofinality. Again, by the lemma we obtain

| = (

We now show that this process enables us to determine the

rational number which corresponds to an arbi t rary surreal number of

f i n i t e length.

Theorem 4 .2 . Surreal numbers of f i n i t e length correspond to dyadic

fractions.

Specifically, let d be a surreal number of length m+n which satisfies

d(m) * d ( 0 ) .

Define b ( i ) as follows.

b ( i ) = 1 i f i < m and d ( i ) = + .

b ( i ) = - 1 i f i < m and d ( i ) = - .

b ( D = 2 i - m + i 1 f i i l m and d ( i ) = + .

and

m+n-1
Then d = \ b ( i ) .

1=0

Remark. The above says informally that a plus is counted as a 1 and a

minus as -1 until a change in sign occurs at which point the sequence

of pluses and minuses is treated like a binary decimal (with 1 and -1

rather than with 1 and 0.) For example,

+. is 3_| + j.|.2|.

Proof. Let d(0) = +. A similar argument applies if d(0) = -. (As an

alternative one can take the result for d(0) = + and take the negative

of both sides.)
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The case n = 0, which is the case where there is no change

in sign, is essential ly the statement of theorem 4 . 1 .

We do the case n = 1 individual ly since this case is

special . Here we have d(m) = - . The sequence consists of m pluses

followed by a minus. To avoid confusion recal l that the ordinals begin

with 0 and the length is the least ordinal for which d is not

defined. (This may seem unnatural in the f i n i t e case, but is required i f

one wants a general de f in i t ion . ) In any case, the two "unnatural" con-

ventions cancel so that the length is real ly the number of terms in the

sequence!

Of course m > 1 [d(m)*d(0)L Now 2m-l = { 0 , 1 , 2 , . . .2m-2} |<|>.

This is the canonical representation by theorem 4 . 1 . By cof inal i ty we

obtain 2m-l = {2m-2}|{2m}.

We can now apply lemma 4.2 with a = m-1 and b = m to

obtain {m}|{m-l} = m - j • I t is easy to see direct ly from the

def in i t ion that {m}|{m-l} = d. m-1 consists of (m-1) pluses and m

of m pluses. Any surreal number between m-1 and m must by the

lexicographical order begin with m pluses followed by a minus, i . e .

have d as an i n i t i a l segment. Hence d = m - j , which is exactly what

the theorem says.

We now use induction on n. Assume that the theorem is true

for a l l n <_ r and l e t n = r + 1 .

We f i r s t note that an immediate application of induction to

lemma 4.2 shows that {2a}|{2b} = a+b - + f \ } | { ~ - } = " ^ 7 for a l l positive

integers s. We already noted that the hypothesis is val id for consecu-

t ive integers c and c+1. Hence {^-} | f | ^ } = —- + -

Let d1 be the i n i t i a l segment of d of length m+r. Then

d = d'+ or d 1 - since a has length m+n = m+r+1. Assume d = d'+. (A

similar argument applies i f d = d ' - . ) Since the case n = 1 has been

done separately, we can assume that r _> 1 , i . e . that d' begins with

m pluses followed by a minus.

Now l e t d = FIG be the canonical representation. F and G

are f i n i t e , so by cof ina l i ty a has the form {x} | {y} where x is the

largest element in F and y the smallest element in G. Since

d = d '+ , c learly x = d 1 . We cannot be as e x p l i c i t with y , since in
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this general s i tuat ion we have very l i t t l e information about the minuses

in G. We know that there is a minus af ter m pluses; hence y £ m.

Also, we can apply the inductive hypothesis to x and y. Hence

d1 = x = — for some integer c. I f we can show that y = —— then we

can apply the above formula to obtain d = {x} | {y} = •—• + — — which is

exactly what we need to prove the theorem.

Our apparent lack of control over y w i l l be overcome by the box

pr inc ip le . Let H be the set of a l l surreal numbers of length not

greater than m+r that begin with m pluses followed by a minus. The

cardinal i ty of H is 1 + 2 + 2 2 . . . 2 r - ! . By the inductive hypothesis

every element of H is of the form — for some integer k and by the

lexicographical order is s t r i c t l y between m-1 and m. Since there are

precisely 2^-1 such numbers, by the box principle every number of the

form — s t r i c t l y between m-1 and m is in H. In part icular ,

e H unless = m. In either case i[ 1 < m+r. Now

- — > — = d 1 . Since d = d' + i t follows from the lexicographical order

that - — > d. Now G C H U W . Hence every element of G has the form

— • Since — = d1 < d and d < G, — is a lower bound to G. In
2 r 2 r 2 r

fact , is actual ly an i n i t i a l segment of d. Otherwise, by consider-

ing the common i n i t i a l segment of d and we obtain an element of G

below - — which is a contradiction. Since - — > d, i t follows that
2T 2 r

$y- e G and hence the least element of G, i . e . y = - ~ - • As we said

ear l i e r , this is what we need to complete the proof.

During the proof we showed that a l l dyadic fractions are

obtained this way. Also i t is easy to see how to express a dyadic

fraction constructively as a sequence. Heurist ical ly speaking, we always

go in the r ight direction to close in on the f ract ion . For example,

consider 2g-. Since 2 < 2g < 3, we begin with +++-. This is 2j •

Since 2g- < 2y we want a minus next. Now +++-- is 2j so we need a

+. F ina l l y , +++--+ hits what we desire on the nose. More formally, one

can set up an elementary induction. We assume that a l l fractions of the

form — with a odd correspond to sequences of length m+n. Consider
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,7 • Precisely one of b and b+1 is odd.2n+i

Thus depending on which is odd we take+ r

2 n 2 n + 1 2 n 2 n + 1

the corresponding sequence of length m+n and juxtapose a plus or minus,

e.g. if b is odd we juxtapose a plus to the sequence of b. Note the

lack of choice. Since b+1 is even in that case, is a sequence of

length less than m+n. Tacking on a minus will thus not give •

This is, of course, what we expect from the beginning since the numbers

are sequences and not equivalence classes of sequences. Anyway,

whatever appearance there may be of choice, it is clearly deceptive.

The whole idea of a shift from ordinary counting to a binary

decimal computation at the first change in sign may seem unnatural at

first. However, such phenomena seem inevitable in a sufficiently rich

system.

It is an amusing exercise in arithmetic to add numbers in

this form. Carrying exists as usual but since we deal with pluses and

minuses and do not have zeros, an adjustment is necessary if we would

otherwise obtain 0 in a place. Specifically, 0+ must be replaced by

+-. Also, one must be aware of the dividing line where the shift from

ordinary counting to the binary decimal computation occurs.

Finally, a suitable succinct way of expressing the result of

arithmetical operations on dyadic fractions given in the above form may

be useful in studying certain problems in the theory of surreal numbers.

Although the dyadic fractions look like a drop in the ocean of surreal

numbers, they form an important building block. As we shall see, for

example in chapter seven, it is possible to ask questions which are

non-trivial even for a set such as the dyadic fractions.

C REAL NUMBERS

At this stage we develop a theory which is somewhat analogous

to that of Dedekind cuts. However, there is at least one important

difference. All the objects and operations are already present as a

subsystem of the surreal numbers. The analogy arises because of the

theory in chapter two. First, roughly speaking, the fundamental

existence theorem gives a well-defined element for every cut. Secondly,
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the canonical representation gives a natural cut associated with any

element. This correspondence, of course, occurs at every stage,

although the resemblance to Dedekind cuts is closer in some stages than

others.

De f in i t i on . A real number is a surreal number a which is ei ther of

f i n i t e length or is of length GO and sa t is f ies

(VnoJGniMHnzHCni^noDACna^noMCaCni) = + ] A [ a ( n 2 ) = - ] } .

In other words, the de f in i t i on simply requires that the terms

of the sequence a(n) of pluses and minuses do not eventually have

constant signs. This is analogous to the s i tuat ion for ordinary decimals

where one might rule out an eventual sequence of nines to ensure that

each number has a unique representation. In our case a sequence consist-

ing eventually of pluses w i l l be a surreal number outside the set of

reals.

To show that the set of real numbers forms a f i e l d , i t

suff ices to check the closure propert ies. However, i t is convenient to

have several lemmas in order to carry th is through.

Note f i r s t that the d is t inc t ion between surreal numbers of

length w which are real and those which are not can be expressed in

terms of the canonical representation. I f a = F | G is the canonical

representation, then a is real precisely when F and G are non-

empty, F has no maximum and G has no minimum; e.g. i f there is a las t

plus, then F has a maximal element. ( I t is clear from what we already

know that th is element is i n f i n i tes ima l l y close to a but th is issue

w i l l not be pursued now.)

The elements of FUG have f i n i t e length so they are

dyadic f rac t ions .

Lemma 4.3. Let F and G be non-empty sets of dyadic fract ions such

that F < G, F has no maximum, and G has no minimum. Then F|G is a

real number.

Proof. F|G exists by the fundamental existence theorem. Let F|G = a.

By theorem 2.3 &(a) _< w. I t suff ices to rule out the poss ib i l i t y that

£(a) = u) and a has eventually constant sign. Suppose that the constant

sign is +. (A s imi lar argument applies i f i t is - . ) The poss ib i l i t y
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that a consists exclusively of pluses is ruled out since a < G and G

is non-empty.

Now suppose a(n0) = - but n > n0 + a(n) = +. Let b be

the initial segment of a of length n0. Then b > a. By theorem 2.9,

(3ceG)(c<b) since b is an upper element in the canonical representa-

tion of b. Since G has no minimum (3dsG)(d<c). Since b,c, and

d are all dyadic fractions we can choose m so that d <_ b — - •

Let c be an initial segment of a of length n for some

n > n0. Then c is a lower element. Also, c-b has the form

+ r ... + = for some r and s. (Actually
2r 2 r + 1 2 r + s 2 r + s

s = n-no-l.) In any case, for n sufficiently high, c > b — r •
2 m

Hence a > c > b • A l s o a < d < b - — • Thus we have t h e
2m — 2 m

desired contradiction.

Lemma 4.4. Let a = F|G. Suppose that (VxeF)(3a positive dyadic

fraction r)(3y)(y>x+rAyeF) and (VxeG)(3a positive dyadic fraction r)

(3y)(y_<x-rAyeG).

Also let F1 < a < G'. Suppose that (V positive dyadic r)

Then a = F'|G'.

Proof. It is enough to check cofinality. We do this for F1. The case

for G1 is similar. Suppose x e F. Choose y and r such that r

is positive dyadic, y j> x+r and y e F. For that same r choose

w e F1 and z e G1 such that z - w _< r. Since F < a we have

a > y 2. x+r. Since G1 > a we have w > z-r > a-r _> x. Since w e F1

this proves cofinality.

Note that the hypothesis does not require any of the sets to

consist only of dyadic fractions.

Lemma 4.5. There are an infinite number of dyadic fractions between any

two distinct real numbers a and b.

Proof. It clearly suffices to obtain one dyadic fraction. If neither a

nor b is dyadic then the common segment works. More generally, if
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neither a nor b is an initial segment of the other, we can use the

common segment. Suppose a is a proper initial segment of b. (a is

necessarily dyadic.) If b is dyadic the result is trivial. Otherwise

consider the canonical representation F|G of b. a e FOG. Since F

has no maximum and G no minimum we obtain a dyadic fraction between a

and b whether a e F or a e G.

Remark. Note that if a has a last plus and b is the initial segment

of a which stops just before the last plus, then there is no dyadic

fraction between a and b. Thus the requirement in the lemma that the

numbers be real is essential.

Lemma 4.6. Let a = F|G be the canonical representation of a real

number a which is not a dyadic fraction. Then for all positive dyadic

r there exist b e F, c e G such that c-b _< r.

Proof. Since there is no last + and no last - in a, then for all

n there are elements b e F, c e G which agree in the first n terms.

Thus c-b is bounded above by an expression of the form

— + -^- ••• + +1 _< --=— • Since s can be made arbitrarily large by

a suitable choice of n this proves the lemma.

Note that it is easy to see that the requirement that a be

real can be relaxed but this is of no special concern.

We are now ready to check the closure properties.

Addition. Let a and b be real numbers. If both are dyadic fractions

then so is the sum. Suppose a is a dyadic fraction and b is not.

Let a = F|G and b = F'|G' be the canonical representations. Then

a+b = {a'+b, a+b'}|{a"+b, a+b"}. We claim that numbers of the form a+b1

are cofinal on the left. Consider a number of the form a'+b. Since

a,a1 are dyadic fractions and a > a1, a-a1 is a positive dyadic

fraction. By lemma 4.6, (3b'eF1 )(3b"eG' )(b"-b'<a-a'). Then

a+b1 2l a'+b" > a'+b. Similarly, we can see that numbers of the form

a+b" are cofinal on the right. By the cofinality theorem

a+b = {a+b'}|{a+bn}. Note that a+b' and a+b" are dyadic fractions.

Also since F' = {b1} has no maximum, neither does {a+b1}. Similarly
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{a+b11} has no minimum. By lemma 4.3, a+b is a real number.

Now suppose neither a nor b is a dyadic fraction. Again

let a+b = {a'+b, a+b1}|{a"+b, a+b"}. As before it is clear that the

left elements have no maximum and the right elements no minimum. More

specifically, since the numbers a', a", b1, b11 are all dyadic the above

representation of a+b satisfies the first condition of lemma 4.4. Now

let F1 = {a'+b1} and G1 = {a"+b"}. Then F1 < a+b < G1. Also lemma

4.6 together with the usual " j argument" shows that F1 and G1

satisfy the other conditions of lemma 4.4. Hence a = F'|G'. Finally,

F and G1 satisfy the hypothesis of lemma 4.3 so a is real.

0 and 1 are clearly real. The additive inverse of a real

is real since the definition is symmetric in pluses and minuses.

Multiplication. Let a and b be real numbers. If both are dyadic

fractions then so is the product. Now let a be a real number which is

not a dyadic fraction. There is no restriction on b. A typical element

in the representation of ab is c = ab - (a-a°)(b-bo). [Recall that,

e.g., a0 is either of the form a1 or a".] Since a is real we can

choose a ° which is on the same side of a as a° and also closer to

a (we are using a unified argument). If we use the same b° we obtain

the element cx = ab -(a-a^Mb-bO). Then c^c = (a^-aOMb-bo). Now by

applying lemma 4.5 to an arbitrary positive real r and 0 we obtain a

positive dyadic fraction d satisfying d < r. For a product of

positive reals r and r we obtain in this manner the positive

dyadic fraction d ^ 2 satisfying d d < r r . Thus we have what we

need to show that the first condition of lemma 4.4 is satisfied for the

representation of ab. The choice of F1 and G1 would depend on the

signs of a and b; however it suffices to assume that a,b > 0.

Let F1 = { a b : an is dyadic A 0 < a < a b is dyadic A
i i i ~~ l I

0 £ bx< b} and G = { a ^ : ax is dyadic Aa < a1Ab1 is dyadic Ab < b^.

(This formulation is convenient since we can obtain the required con-

clusion i f b is a dyadic fraction even though lemma 4.6 does not apply

in that case.) For arbitrary dyadic r we can choose a ,a ,b ,b

such that b2-bx _< r and a2~ai — r # ^ e usua^ argument for proving

that the l imit of a product is the product of the limits shows that the

other conditions of lemma 4.4 are satisfied. Note that we use the fact
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that for every real number a there exists an integer n such that

|a| _< n. This is clear since in the canonical representation of a as

F|G both F and G are non-empty. ( Inc identa l ly , for the surreal

number of length u> which consists solely of pluses the argument would

break down.)

Hence by lemma 4.4 ab = F ' |G ' . Again, as in the case of

addit ion, F1 and G1 satisfy the hypothesis of lemma 4 .3 , so that ab

is r e a l .

Note that during the proofs of closure we obtained nice

representations of sums and products of reals with the help of lemma 4.4 .

Since such in tu i t ive- looking representations f a i l in general, i t is

interest ing that they work in the special case of real numbers.

Reciprocals. I t is best to ignore the previous construction of

reciprocals. I t suffices to consider the case where a is a real number

larger than 0. Let F = {d: d is a dyadic fract ion A da < 1} and

G = (d: d is a dyadic fract ion A d a > 1 ) } . Clearly F < G, F and G

are non-empty and 0 e F. Also by lemma 4.5 we can find m so that

a > 1 _ . Hence 2ma > 1 .
2m

We now show that F has no maximum. Suppose d is a dyadic

fract ion sat isfying da < 1 . Then 1 - da is a real number because of

the closure properties, and 1 - da > 0. By lemma 4.5 one can f ind m

so that 1 - da > — • Now we already noted ear l ie r that a is bounded
2m n n

above by an i n t e g e r which we may j u s t as w e l l c a l l 2 , i . e . a < 2 .
Hence iSPn a < | i < 1 " d a - Thus ( d + i S T n ) a < 1 - S i m i l a r l y G

has no minimum.

By lemma 4.3 b = F|G is a real number. By closure of

multiplication ba is a real number. Now let n be arbitrary. We

would like to show that there exists an element c in G such that
ca < 1 + — • Choose m such that a < 2m.- zx\

We now consider the set P = {r:(——1 a > 1}. As a non-
1 ^2 m + n2

empty set of positive integers, P has a least element s. Then by

definition - 5 — e G. Furthermore (-^r-) a < 1. Hence
2m+n V 2 m + n

( .!+n) a _< 1 + — • Similar ly there exists an element c1 e F such that

c'a > 1 Hence 1 - — < c'a < ba < ca < 1 + — • This shows that
— 2 n 2n *~ ~" ~~ 2 n
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|ba—1| < r for any positive dyadic fraction r. It follows from lemma

4.5 that ba = 1. This completes the proof.

Note that reciprocals of dyadic fractions are not necessarily

dyadic fractions. Thus a naive attempt consisting of expressing a as

F|G and using something like -j?\j to obtain the reciprocal would cause

dfficulties. Our proof circumvents that problem.

Now we know that the real numbers form a field containing

the dyadic fractions. They therefore contain all the rational numbers.

Finally, we would like to prove the l.u.b. property, i.e.

that every bounded non-empty set of reals has an l.u.b. within the set

of reals. It's important to note that in our development the real

numbers form a proper subset of the system we are studying so that care

is needed in stating the l.u.b. property. In fact, as a special case of

theorem 2.1 we see that any set which has no maximum has no_ l.u.b. in the

class of surreal numbers.

Incidentally, it is immediate from lemma 4.5 that every real

number is the l.u.b. of all dyadic fractions below it but this is not

what we really need. Since the "ordinary" real numbers can be

characterized as an ordered field with the l.u.b. property, the latter

is all that remains to be proved.

Suppose H is a non-empty set of real numbers bounded above.

Let G be the set of upper bounds which are dyadic fractions and let F

be the set of all other dyadic fractions. F and G are clearly non-

empty. By lemma 4.5, F has no maximum. If G has a minimum b, then

b is already an l.u.b. to H and we are done. (Again, lemma 4.5 is

used since it guarantees that a least upper bound among the set of dyadic

fractions is automatically a least upper bound in the set of all real

numbers. So suppose G has no minimum. Then by lemma 4.3 r = F|G is

a real number. We now show that l.u.b. H = r. First, r is an upper

bound to H. Otherwise, (3aeH)(r<a). Let d be a dyadic fraction

satisfying r < d < a. (We are getting our money's worth out of lemma

4.5!) Since d < a e H, d e F. However r < d, contradicting the fact

that F < r. Finally, suppose s < r and s is an upper bound to H.

Let s < d < r for some dyadic d. Then d is also an upper bound to

H. Hence d e G. But d < r. This contradicts the fact that r < G.

We have finally shown the following.
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Theorem 4.3. The real numbers form an ordered field with the l.u.b.
property (i.e they are essentially the same as the "reals" defined in
more traditional ways.)

We close this section with several remarks. Let a be a
real number which is not a dyadic fraction, thus a has length u>. If
a = F|G is the canonical representation, we know that F < a < G and
that the elements of F form an increasing sequence and that the
elements of G form a decreasing sequence. Since F has no maximum and
G no minimum, both sequences are infinite. It is clear from this and
from lemma 4.6 that if an is the initial segment of A of length n
then lim an = a. Of course, in the definition of a limit it makes no

n+»
difference whether e is taken to be real, rational, or dyadic; however,
we certainly cannot use general surreal numbers.

Finally, we compare our definition with the one used in [1]
which makes no reference to sequences. It is convenient for motivation
to consider a third definition which is, roughly speaking, intermediate
in spirit between the two definitions.

Theorem 4.4. The following three conditions are equivalent.

(a) a is a real number (by our definition);

(b) For some integer n, -n < x < n and a has no initial segment

aa such that |a-aa| is infinitesimal;
(c) For some integer n, -n < x < n; and

a = {a-1, a - j, a - j - ' H ( a + l , a + j9 a + |} (the definition in [1]).

Remarks. An element a is infinitesimal if it is nonzero but for every
positive rational r, |a| < r. It is clear, for example, from what we
already know that the element a of length u which begins with + and
then after that consists only of -'s is an infinitesimal. The heuris-
tic idea in definition (c) is that of the possibility of writing a in
the form F|G without forcing either F or G to be "too close" to a.
Of course, by the cofinality theorem, if a = F|G then one still gets a
if F and G are both enlarged to include elements closer to a. The
challenge lies in the opposite direction. How far away can F and G
be from a and still have a = F|G? As a rough rule of thumb, the
larger the length of a, the closer F and G must be to a.
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Proof, (a) => (b). Since all initial segments are dyadic fractions,

this is clear.

Not (a) =«• not (b). (This contra-positive notation seems natural here

even if it may be unusual.)

Suppose a is not real. Then £(a) _> u>. If for all n

less than u>, a has a fixed sign then the condition -n < a < n fails,

as is clear from the ordering, so that case is clear. Now let aw be

the initial segment of a of length a>. Assume first that a^ consists

eventually of pluses only. (A similar argument will apply if o> consists

eventually of minuses only. ) Then we can use an argument which is essen-

tially the same as the one used in the proof of lemma 4.3. We let an

be the initial segment of a^ obtained by stopping just before the last

minus. (We already ruled out the case where aw contains no minuses.)

Then an > a. For all positive rational r we can find m sufficiently

high such that the initial segment of am of a of length m satisfies

a m < a and an - am < r. As in the proof referred to above, we use a

computation of the form — - + -^- + —r+j + ... • Hence an - a < r

for all r. Since n is fixed, we have |an-a| is infinitesimal.

Note that this part of the argument is independent of whether a is the

same as a^ or not.

Now assume that a^ does not eventually have constant sign.

Since a is not real, a * aw., i.e. aw is a proper initial segment of

a. Let r be an arbitrary positive rational. Suppose aw = F|G. Then

by lemma 4.6 there exist b e F, c e G such that c-b _< r. Now

b < a^ < c. It is also clear that b < a < c by the lexicographical

ordering. (In fact, b and c occur in the canonical representation of

a as well as a^.) Hence la^-a) < r. Therefore la^-al is

infinitesimal.

(b) =* (c). Express a canonically as F|G. Then the conclusion is

immediate by the cofinality theorem. Given a1 e F, then a - a'

is not infinitesimal. Choose n so that a - a1 > - • Then a -- > a1.

A similar argument applies to a1 e G.

(c) =» (b). Let a = {a-1, a - |, a - |,... }|{a+l, a + |, a +j,...} and

let a = F|G canonically. Then by the inverse cofinality theorem the set

{a-1, a - j9 a --=-...} is cofinal in F. Let a1 e F. Then for some

n, a " — 2 . a ' » 1"-e- a"a> 2.—* Therefore a -a1 is not infinitesimal.
A similar argument applies to G.
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In line with what was said earlier, note as a point of

caution that the theorem does not rule out the possibility that a is

real of the form F|G with elements in F or G infinitesimally close

to a. This is ruled out only for the canonical representation.

D ORDINALS

Our next task is to show that the surreal numbers contain

the ordinals. Once this is done it will be legitimate to deal with

expressions of the form u>-l or h»> First, of course, we have to make

precise what we mean by the statement that the ordinals are a subclass

of the surreal numbers. Recall that ordinary addition and multiplication

on the ordinals are not commutative. However, there do exist natural

commutative operations on the ordinals that have been considered in the

literature and they do correspond to the operations we defined on the

surreal numbers.

We identify the ordinal a with the sequence aa of length

a such that (Vn<a)[a(n) = +3.

First note that by theorem 4.1 this is consistent with the

situation for positive integers. Also it is immediate from the

lexicographical order that a < 3 => aa < a$. Furthermore, the canonical

representation of aa is {a$: 3<a}|<j>. Again, if H is a set of

ordinals then { a ^ } ^ = aa where a is the least ordinal such that

a > H. If H has a maximum 3 then a = 3+1. If H has no maximum

then a = l.u.b. H. a is called the sequent of H and denoted by

seq H in the literature. In summary, as far as the order properties are

concerned, the identification is quite reasonable. Thus for convenience

of notation we use a instead of aa. So the ordinals are the sequences

which consist only of pluses. (Incidentally, note that our definition of

cofinality [see p. 9] is consistent with the usual one for ordinals.)

We now show that addition and multiplication correspond to

what is commonly called natural addition and natural multiplication.

They are obtained by taking the usual expansion in powers of w and

operating as if they are ordinary polynomials (i.e. no absorption). In

order to state the next theorem precisely we tentatively use + for

ordinary addition, ® for natural addition and + for surreal

addition.
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Theorem 4.5. For any ordinals a and 3, a+3 = c@3.

Proof. We use induction as usual. In view of our earlier remarks

a+3 = seq (a+Y, 6+3) = seq (a©y, 603) by the inductive hypothesis. The
Y<3,<5<a y<3,6<a

problem is now reduced to an elementary exercise in the ordinary theory

of the ordinals. Specifically, we may express a and 3 respectively

in the forms a'+w and 3'+w (r or s may be 0). Then typical

lower elements are (a'+/) © (3'+Y) with Y < wS and (a'+6) © (3'+u)S)

with 6 < u>r. Without loss of generality suppose r >_ s. Then the set

(a'+tj ) + (3*+Y) with Y < w is cofinal and we clearly obtain
r s

(ct'+w ) © (3'+w ) as the sequent which is what we want.

In order to state the next theorem precisely we tentatively

use ® for natural multiplication and x for surreal multiplication.

Theorem 4.6. For any ordinals a and 3 ax3 = o®3.

Proof. Again we use induction. Now every ordinal has the form

I a) in. with r. > r. . for all i and all n-j integers. This may
1 = 1 ^ 1 k

k r.
also be wri t ten in the form I a> i with r. > r. . by breaking up a l l

r. T - 1

a) Tn. for which n. > 1 . The sum is also a natural sum and therefore
r s.

by theorem 4.5 a surreal sum. Suppose a = £ GO 1 and 3 = £o> i . By
r . . s .

the d is t r ibut ive law for surreal numbers we obtain 01x3 = J w TXID J ,
i,j

I f at least one of a and 3 is not a power of a>, then we can use the

inductive hypothesis to obtain

r. s.
ax3 = I a) l0o) J = a®3

I.j
by the distributive law for natural multiplication over natural addition.

Now suppose that both a and b are powers of u>. Let
r s

a = w and b = oj . Then by definition

ax3 = {((/x6) + (Y><WS) - (6xY)}|(j) where 6 < OJS and y < </. Note that

unlike in the case of addition, we are stuck with the surreal operation

- which does not correspond to an operation on ordinals.) First,

since there are no upper elements, by theorem 2.2 ctx3 is an ordinal.



REAL NUMBERS AND ORDINALS 43

r * * • s
The typical lower element is certainly not larger than (u> x6) + (yxw )

r s
which by the inductive hypothesis and theorem 4.5 is (w Q6) + (>Qw ).

s r v^s
Since 6 < w and y < w . This is clearly less than u> . Hence
rS&
a) satisfies the betweenness property in the definition of o©3.

Hence Ji(axg) £ a/^ and since ax$ is an ordinal, ax$ £ w .

Now if r1 < r and n is an arbitrary positive integer we

have ax3 > i/ nxoaS = i/ r®»S by the inductive hypothesis. Furthermore

this is </ ̂ n . Similarly if s1 < s we have ax$ > J^ n. We have

already noted during our proof of theorem 4.5 that seq(r'@s, r®s') = r©s.

By the basic properties of the expansion of ordinals in powers of o>, it

follows that seq((/ Sn, a)r+S|n) = </+s. Hence axg :> (/+s. So finally

ax3 = J®5 = o@e.

In view of theorems 4.5 and 4.6 we no longer need symbols

such as + and x. For convenience we will even drop the symbols ©

and © since it will be clear from the context whether natural or

ordinary operations are intended. In fact, as a rule of thumb, in dis-

cussing elements we use natural operations which, as we have just shown,

are the same as the surreal operations. On the other hand, when discus-

sing lengths and juxtaposition of sequences, the ordinary operations are

appropriate. This issue involving choice of notation will occur in other

places as well. In general, readability and reliance on context will

take precedence over a picayune attitude which complicates notation

unnecessarily.

We now know the exciting fact that the surreals form a field

containing both the reals and ordinals. So, for example, elements such

as w-1 and ju have meaning. Incidentally, our w-1 has nothing to

do with a meaning used in the literature, namely w-1 = u>, since

l+o) = a) where + stands for ordinal addition. We shall compute the

sign sequence of several such strange elements. These are all special

cases of the general theory in the next chapter. However, it is worth-

while to see some elementary concrete examples before getting involved

with a general representation theorem. In fact, there is some

pedagogical value for the reader to experiment with other elementary

examples before coping with a more general and abstract situation.

We begin with w-1 which is about the simplest looking

"exotic" element. This is a)+(-l). The canonical representation of a>
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is {n}|<j> where n stands for an arbi t rary non-negative integer and

- 1 = 4>| -CO>. Hence using the def in i t ion of addition w-1 = {n-1} |{u)+0}.

By cof ina l i ty theorem b (theorem 2 . 7 ) , the left-hand side may be replaced

by {n} ; hence we have {n}|{oj} which we can see immediately from the

def in i t ion is the sequence of length w+1 which consists of w pluses

followed by a minus.

We make several remarks before continuing with other

examples. I t is often convenient to use theorem 2.7 to simplify expres-

sions of the form F|G. Even though there is an option of using theorem

2 . 6 , theorem 2.7 has the convenience of avoiding specific reference to

a = F|G but referr ing only to F and G themselves. This helps to

streamline a computation; in fac t , in future we shall use theorem 2.7

freely without quoting i t i f i t s use is obvious ( just as in elementary

algebra one does not bother to quote the d ist r ibut ive law every time i t

i t is usedi) . For example, an expression such as {n + y}|{oj — - }

where m and n run through a l l positive integers can be replaced by

) }

Note that the last part of the computation can be done in two

ways. One can d i rect ly use the def in i t ion and see that any x sat is fy-

ing n < x < w for a l l n must necessarily begin with the sequence of

length w+1 referred to above. One can also take a good guess at the

answer and note that {n}|{oj} happens to be the canonical representa-

t i o n . This is worth emphasizing, because in more complicated situations

we often have a representation which is cofinal in a canonical represen-

t a t i o n . In these cases i t is much easier to use the second method.

Recall that by the uniformity theorems, the computations may

be performed using any representations; thus we may choose ones which

appear to be most t ractable . For example, for any real number a we may

use the representation a = F|G where F is the set of a l l dyadic

fractions below a and G is the set of a l l dyadic fractions above a.

This is a unif ied formula which applies whether or not a is a dyadic

f rac t ion . I f a is not a dyadic f rac t ion , this is mutually cofinal with

the standard representation, but i t de f in i te ly is not mutually cofinal i f

a is a dyadic f ract ion . I . e . in the l a t t e r case the representation

cannot be j u s t i f i e d by theorem 2 .7 , although theorem 2.6 clearly applies.
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As obvious as these above remarks may be, they are worth-

while to state and get out of the way once and for a l l , since i t would be

clumsy to make them in the middle of a proof. With this in mind, we can

now present computations and proofs more e f f i c i e n t l y , i . e . using con-

venient representations and simplif ications without exp l i c i t l y stating

the obvious j u s t i f i c a t i o n .

Now consider w-2. This is

u)+(-2) = {n}|<j)+cf)|{-l} = {n-2}|{o)- l} = {n}|{ur-l} which is the sequence of

length w+2 consisting of u> pluses followed by two minuses.

Using induction we can compute u)-(m+l) for a positive

integer n. In fac t , o)-(m+l) = {n}|<j>+<j>| {-m} = {n-m-1} |{a>-m}. (To avoid

confusion note that m is f ixed although n var ies . ) This is

{n}|{o)-m} which, using the obvious inductive hypothesis, gives the

sequence of length oo+m+l consisting of w pluses followed by m+1

minuses.

I t is natural now to ask what w pluses followed by u>

minuses represents. The pattern suggests naively that i t may be co-w

but this is obviously impossible. That element i s , of course, s t i l l

i n f i n i t e , i . e . above every positive integer because of the lexicographi-

cal order. In fac t , no sequence of minuses no matter how large can undo

the e f fec t of the f i r s t co pluses. We shall return to the above example

shortly.

The computation for w-m works for any l i m i t ordinal as well

as co. For example (co2+6u)) - 3 is the sequence of w2 + 6u> pluses

followed by 3 minuses. One can also apply the computation to non-l imit

ordinals to check the consistency of what we have already done. For

example (oo+6) - 1 is simply w+5. The computation w i l l thus not give

you the sequence of w+6 pluses followed by a minus i f i t is done

correctly. The step to beware of is the following. For a l im i t ordinal

a we can simplify a lower set such as {3-1:3<a} by replacing i t by

{3: 3<a}. This i s , of course, not val id for non-l imit ordinals, since

the former set is not cofinal in the l a t t e r .

We now compute a> + -z* This is
1

{n}|<j> + { 0 } | { l } = {n+2» a>+O}|{a>+l} = {w}|{u>+l}. This is the sequence of

w+1 pluses followed by a minus. In l ine with our ea r l i e r computations,

this example i l l us t ra tes the contrast between the cases where a is a
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l i m i t ordinal and where a is a non-limit ordinal in the value of a

sequence with a pluses followed by a minus.

In the same manner induction can be used to evaluate w+r

for any positive real number r. co+r = {n}|<j> + F|G where F|G is the

canonical representation of r. This is {Go+F,n+r}|{oj+G}. Since 0 e F,

the left-hand side may be replaced by oo+F and we obtain {GO+F}|{GO+G}.

By the lexicographical order and the inductive hypothesis, this is the

sequence with u> pluses followed by the sequence for r. Incidentally,

this reasoning with the lexicographical order and juxtaposition is

similar to what has already been used back in the proof of theorem 2.1

and represents an important sk i l l to f ac i l i t a te computation.

This argument works just as well when r is negative as long

as r is not an integer, in which case F is empty. The lat ter case

has in fact been done ear l ier and the general conclusion is s t i l l valid

although GO+F can no longer be used as a lower set.

As before, similar results apply i f GO is replaced by other

l im i t ordinals.

We now consider |w. This is ({0}|{l})x({n}|<j>). By the

definit ion of multiplication this is

n + O n O ^ ^ n + l n l } = { r O l I w --gn} = {n}|{u)-n}. Using the ear l ier

result for w-n, this is the sequence of length GO. 2 beginning with GO

pluses and followed by GO minuses. This answers an earl ier question

which was l e f t open.

I t is instructive to see another proof. Let a be the

sequence of GO pluses followed by w minuses. Then a = {n}|{Go-n}.

Hence 2a = a+a = {n+a} |{Go-n+a}. We now prove that this is u> by

cof ina l i ty . We know that for a l l positive integers n, n < a < Go-n.

Hence n+a < GO. Since a > n, i t follows that GO < Go-n+a. So OJ

satisf ies the betweenness condition. Since GO = {n}|<|> and n+a ^ n, the

cof inal i ty condition is sat isf ied; hence 2a = {n+a} |{u)-n+a} = w.

The f i r s t proof involves more computation but is more

routine. The second method requires a good guess at the answer and being

able to use cofinal i ty in spite of a limited knowledge of a.

2^-1 and more generally -^o+r for arbitrary real r can

be handled similarly to u>-l and Go+r. In fact , the sequence for yu+r

is the sequence for ya followed by the sequence for r. Such simple
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results make the subject quite t ractable . However, the reader is warned

that crude juxtaposition does not work in every case.

Several more remarks are worthwhile to mention at this point.

F i r s t , we take for granted obvious inequal i t ies involving i n f i n i t e or

in f in i tes imal elements ( e . g . , for a l l positive real r and integers n,

wr-n is positive i n f i n i t e ) and apply them to obtain information about

c o f i n a l i t y . Secondly, recal l the def in i t ion of mult ipl icat ion and

consider a = A1 |A" and b = B l |B". Then ab is { a ' b + a b ' - a V ,

a"b+abM-aMb l l}|{a lb+ab"-a lb", a ' ^ + a b ' - a V } . I t is often convenient to

think of the lower sums in the form a'b + ( a -a ' )b 1 and a"b - (a"-a)b"

and the f i r s t upper sum in the form a'b + (a -a ' )b" or ab" - a ' ( b " - b ) .

In spite of the t r i v i a l i t y of the algebra, a suitable form supplies a

considerable gain in i n t u i t i o n .

We now compute -rw. -r = (+-+) = { ^ I d } by our work on

dyadic f ract ions. Hence

| u = ( { | } | { l } )x ( {n } |c j ) ) = {±u + ( | - | ) n } | { l . a ) - ( l - f ) n } . Note the use of

the above remarks. Also note that a typical lower term may a l ternat ively

be wri t ten as j n + -2(w-n), but the form we have exhibits the order of

magnitude more c lear ly . In fac t , i t is immediate by cof inal i ty that

ju = {-^o+n}|{u)-n}. I f we accept the juxtaposition results for -̂ to+n we

see that this is the sequence of length u).3 consisting of w pluses

followed by w minuses and then w pluses.

By a similar process we can use a double induction to obtain

the sequence for wr, one for n in wr±n and one for r. I t turns out

to be just l i ke the sequence for r except that each sign is repeated

a) times. The ear l i e r remarks on mult ipl icat ion which are petty in an

individual numerical example gain in value as we generalize.

Now we consider u>2-a). I t is easy to see that in this case

the induction procedure for co2-n extends even to u)2-u) so we obtain

that u)2-a) consists of w2 pluses followed by w minuses. The key

point is the elementary fact about ordinals which says that

a < a)2 + a+a) < a)2. The reader can experiment with obvious generaliza-

tions in this direction and see that there are no further dramatic

surprises.

Before studying the ultimate representation theory, i t is

worthwhile to see what happens in the other d i rect ion, i . e . with

expressions such as — We prefer to ignore our previous construction of
0)
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reciprocals jus t as we did in our study of the real numbers. Our primary

in teres t in the l a t t e r construction was, of course, in the issue of

existence since i t is usually not convenient to use such an inductive

construction for computation even i f i t is possible.

Instead, we use the good guess approach. Let e be the

sequence of length w which consists of a single plus followed by u

minuses. This is c lear ly a posit ive i n f i n i t es ima l . In fac t , i t is

immediate that i t is the unique posit ive in f in i tes imal of length co;

hence i t may be regarded as the canonical i n f i n i t es ima l . Heur is t ica l ly ,

th is is a reasonable candidate for being the reciprocal of the canonical

i n f i n i t e l y large number w. We now prove th is fac t . Note that the

canonical representation of e is 0 | {—} . Hence
ew = ( 0 | ^ } ) X ( W | < J 0 = (0|{~})x({m}|<j0 = {em+0ur-0u)}|{em + ia> _ im} =

{em}|{em + p j — -pjiri}. Now 1 = {0}|<j>. We now check the conditions of the

co f i na l i t y theorem. Since e is i n f i n i t es ima l , a typical lower element

which is em is less than 1. A typical upper element -w - -m + em is

c lear ly i n f i n i t e . Hence 1 sat is f ies the betweenness condit ion. The

co f i na l i t y part requires minimal work. Regardless of m, em >̂  0. Hence

we do obtain 1 as required.

Note that in spite of the existence of in f in i tes imals there

is no connection with nonstandard analysis. So far we have not had any

transfer p r inc ip le . In fac t , no model-theoretic ideas of any kind have

played a ro le .

Let us now consider r + e where r is a real number.

F i r s t , l e t r be a dyadic f rac t ion . Then r has the form { s } | { t } for

suitable uni t sets where s and t are also dyadic. Then

r + e = { s } | { t } + {0 } | {~ } = { r+0,s+e} | { r + J , t + e } = { r } | { r + ^ } = {r} |G

where G is the set of a l l dyadic fract ions above r. I t is immediate

from the de f in i t i on that th is is the juxtaposi t ion of the sequence for

for r with the sequence for —. Note that th is argument applies to

a l l dyadics including integers since by co f ina l i t y we can always insert

an s or t . Note also that we can now f i l l a gap which remained since

our discussion of the real numbers, since we see from the above that a l l

sequences whose terms are eventually minus are obtained th is way. Thus

a l l sequences of length u> are ei ther r e a l , ±w, of the form r +— for
1 w

dyadic r, or of the form r - — for dyadic r.
(A)
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Now l e t r be non-dyadic. Let r = R'|R". Then

r+e = R'|R" + {0 } | {~ } = { r+0, r ' + e } | { r + p r"+e} = { r } | { r + | } = r|G

where G is the set of a l l reals above r. (G may be taken to be the

set of dyadics instead. I t makes no d i f ference.) I t is immediate from

the de f i n i t i on that we now obtain the sequence for r followed by a

single plus. Thus we have a sequence of length w+1. We have here a

counter-example to naive jux tapos i t ion . In f ac t , the f i na l "poor" plus

is worth only e! Note that in both cases we are juxtaposing a sequence

to the sequence for r but the sequence added on depends on whether r

is dyadic or not. This brings some subtlety to the subject.

Next, we compute 2e. This is

{0 } | { ^ } + { 0 } | { ^ } = {0+e}|{ |+e} = {e}\{h-e} = {e}|{-J} by mutual

c o f i n a l i t y . Hence 2e is the sequence for e followed by a plus. Note

the contrast between th is case and that of 2u>. Again the f i na l plus has

value only e.

Consider | e . This is ( { 0 } | { l } ) x ( { 0 } \ { ± } ) which is

4 ^ } = { 0 } l { e } - T h 1 s 1s t h e s e ( l u e n c e o f length w+1
which is that of e followed by a minus. We can say that the value of
the last sign is only -ze. The inflation rate is growing rapidly! Again

6 i
note the contrast between th is case and that of -*& where u> minus

1signs took care of the y .

Next we consider re for a typ ica l posi t ive real number

which is not an integer. This has the form

R'|RMx{0}|{J} = { e r \ e r M - ^ ( r " - r ) } | { e r " , e r ' + - J ( r - r ' ) } . By mutual

co f i na l i t y th is s imp l i f ies to e r ' , e r " } . This enables us to obtain the

pattern by induct ion. We obtain the sequence for e followed by the

t a i l of the sequence for r a f te r the f i r s t +. For example
3 3

x = (+-+) . Hence -je is the sequence for e followed by ( -+) . To

jus t i f y the induction we need to ver i fy the pattern for posi t ive integers

as we l l . In that case R" i s empty and the expression s impl i f ies

instead to { e r ' } | {—} . However, the pattern works in any case although

here there are no in f in i tes ima l upper elements as before.

A natural expression to consider next is e2 = —? • In

analogy wi th e = — one natural candidate for the sequence is a plus

followed by w2 minuses. But
{ ! } ) = {0>£ + £ . 1_ } ( {£ } = { O } ! ^ } . I t{ } ^

follows from the previous result for rw that the result is the sequence
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consisting of a single plus followed by u>-2 minuses. In particular,

we do not have w2 minuses as one may naively guess. Of course, the

contrast between the behaviour of ru and re should make an alert

reader suspicious of such a guess at the outset.

It is next of interest to investigate e+e2. Is it the

sequence for e followed by the sequence for e2? Well

{0}|{^-} + {0}|{^} = {e,e2}|{e + ^,e 2 + -} = {e}|{de} where d is the

set of all dyadic fractions larger than 1. Using the previous result

for re thus leads to the sequence for e followed by the sequence for

e! Thus, again, juxtaposition behaves subtly. The e2 term is con-

tributed by the annexation of the term for e.

The examples we have done illustrate the most basic tricky

phenomena that occur in attempting to find the sign sequence for various

algebraic expressions. We close by considering the expression /u>.

We ignore our previous construction of square roots and use a

good guess method. Let b be the sequence consisting of u> pluses

followed by w2 minuses. We consider the canonical representation and

obtain a cofinal upper set by restricting ourselves to those sequences

for which the number of minuses is a multiple of OJ. So by earlier

computations we have b = {n}|{~-} = {n}}{~}. Note first that this is

a priori a plausible candidate for /a!" since n < /uT and

/w n

b 2 = {bn, + bno - n,no, — + } I {nb + — — ~ } '
1 *• i ^ mi m2 ^1^2 ^ ^

Now a) = {n}|<f>. So we must verify the conditions for the cofinality

theorem. As usual in a proof of this form all we know about b in

advance is that n < b < —, i.e. that b and T- are both infinite.

There is a trap which is a temptation to use circular reasoning (i.e.,

that b2 = a)). In this respect this proof is similar to the one dealing

with — and the second proof for the sign sequence for -jw-

The conditions are easily verified.

bnx+ bn2 - n ^ 2 <_ b(n1+n2) < w since j- is infinite. For the same

reason — + — - < 0 < u>. Also nb + S— - ̂  > A > a> since
m^ m2 m1m2 2m 2m — 2m

b is infinite.
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This verifies the betweenness condition. If we let

ni = n2 = 1, we obtain 2b-l as a lower element which clinches the co-
finality condition since b is infinite. In fact, the same element 2b-l
works for all n. This shows that b2 = w.

The supply of surreal numbers is very rich. Continuing in
the above manner is like using a teaspoon to empty an ocean. It is time
now to get some sort of hold on more general elements.



AN INTRODUCTION TO THE THEORY OF SURREAL NUMBERS 52

5 NORMAL FORM

A COMBINATORIAL LEMMA ON SEMIGROUPS

So far we have more or less accepted everything we needed

from outside the theory of surreal numbers since the material was very

elementary. However, in order to study the normal form we need a

combinatorial lemma which is not as well known, and since it is interest-

ing in its own right we shall prove it here.

Lemma 5.1. Let T be a set of positive well-ordered elements in a

linearly-ordered semigroup. Then the set S of finite sums of elements

of T is also well-ordered and each element of S can be expressed as a

sum of elements of T in only a finite number of ways.

Proof. Both parts will follow if we show that any sequence {sn} of

elements of S such that sn _> sn+i for all n in which the represen-

tations are distinct must eventually terminate. We will assume an

infinite sequence and obtain a contradiction.

Case 1. Suppose that we have only binary sums. Let sn = an+bn where
an e T and bn e T. Since T is well ordered, there exists a subse-
quence ai of an such that ai > a-j for all n. We can obtain

n n+i ~ n

such a subsequence as follows. Choose i such that a-f is the least

value of the a's. If i' < i* ... < in have been chosen, then choose

in+l > in sucn that ai is the least value of the a's with index
n+i

larger than in. Similarly there exists a subsequence of bj of bf
n n

such that bi > bi for all n. Then ai > ai and bi > biJn+i - Jn Jn+i - Jn Jn+i ~ Jn
for all n. Since ai + bi < ai + bi , we obtain thatJn+i V i - Jn V
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a-j = ai and bi = bi , contradicting the hypothesis that theJn+i Jn Jn+i V

representations are distinct.

Case 2. Suppose that we have only sums of k terms for fixed k. Then

the proof is essentially the same, but the notation is minutely more

complicated. If sn has the form ani + an2 ••• sink "then we simply

iterate the process of taking subsequences for all fixed j _< k.

Case 3. If only a finite number of k's occur, then we can reduce to

case 2 since at least one of these k's must appear infinitely often.

Case 4. Suppose an infinite number of k's occur, i.e. the value of k-

is unbounded. Then we can choose a subsequence {sn1} of {Sn> as

follows: SJ 1 = aii + a-f2 ... + ain- where ni is a strictly increasing

function of i. In particular, nj >̂  i. Also, we express the sums in non-

increasing order, i.e. a-ji >̂  ai2 2. ••• 1. ain-« We now choose a subse-

quence of {sn'} such that a-ji is monotonic increasing, a subsequence

such that ai2 is monotonic increasing, etc. By the usual diagonal

method we obtain a subsequence sn" such that a-jj for fixed j is

monotonic increasing as a function of i for i >_ j. [Since ni >_ i,

a-f j is defined for i _> j.] First we show that necessarily ni > i

for all i. Suppose ni = i. Then consider

si" = aii + ai2 ... aii
and

Since ai+i^j >_ ai5j for all j _< i, and si+i" contains an extra

term a-j+î -f+i which has no analogue in si", it follows that

s i + l " > s i " . T n is contradicts the assumption that the sequence is
monotonic decreasing.

For arbitrary i we now compare:

Si" = aii+ ai2 . . . ai i + a i , i+ i . . . * i n .
with 7

sn." = an.i + an.2 ... an.i + an.,i+i ... an.n.
 + ••• •

Since an.j >̂  aij for j _< i, since sn" contains more terms than si"

and since sn" is monotonic decreasing, there must exist k such that
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i < k £ n-j with ajk > a ^ . Hence aji >_ aj|< > a^k I a ^ i y By

induction we may now define a function b(i) as follows: b(l) = 1 and

b(i+l) = nb(j). Then {^b(i),b(i)^ 1S an infinite strictly decreasing

sequence of elements of T, which is our final contradiction. This

completes the proof.

B THE a) MAP

Up to now we have considered real numbers, ordinals, and

algebraic combinations of these. What we need now is a more tractable

way of looking at a general surreal number. We begin by studying orders

of magnitude, a concept which has meaning in any linearly ordered field

containing the real numbers.

We define an equivalence relation on the positive surreal

numbers.

Definition, a - b iff (3 integer n)(na _> b and nb >_ a). This is

trivially an equivalence relation. The equivalence classes are called

"orders of magnitude." Related to this is another definition.

Definition, a » b iff (V integers n) (nb <_ a), a « b iff b » a.

We say in words that a has a higher order of magnitude than b.

Clearly we have a » b, b » a, or a ~ b.

We shall assume that the reader has no trouble in seeing the

most obvious consequences of these relations, so that they will be freely

used without a detailed explanation when needed.

a « b =» na « b, a « c and b « c =<• a+b « c. One property of

special interest is a ~ b and a < c < b =*> a ~ c, i.e. the equivalence

classes are convex.

One basic fact which is special about the surreal numbers is

that each equivalence class has a canonical number.

Theorem 5.1. Let a be a positive surreal number. Then there exists a

unique x of minimal length such that x ~ a.

Proof. The argument uses only the convexity. Because of well-ordering

there certainly exists an x of minimal length such that x ~ a.



NORMAL FORM 55

Suppose x and y are d i s t i n c t , both have minimal length and

x ~ a ~ y . Let z be the common i n i t i a l segment. By the convexity

property z - a. Also l(z) < £ (x ) which contradicts the minimal i ty of

Remark. The same argument shows that the element of minimal length is an

initial segment of every other element equivalent to a.

Similarly to the above one can define additive orders of

magnitude using addition rather than multiplication.

Notation, x ~ a iff (3 integer n)(a+n j> b) and (b+n _> a).

Since this is less important for our purpose and, besides, is

similar to the case of multiplicative orders of magnitude including the

possession of the convexity property, we do not give the details. It

suffices to note that here also every equivalence class has a canonical

member which is defined in a similar way.

We now come to one of Conway's most remarkable discoveries

[1, page 31]. The canonical elements can themselves be parametrized by

the surreal numbers in a natural way.

For every surreal number b we shall define an element

written u> which may be thought of as the canonical element of the bth

order of magnitude. (Although there are philosophical objections to the

use of the exponential notation which have some validity, there is

enough in common with exponentiation to make the notation psychologically

convenient.) As usual, we use induction and assume that a)C has been

defined for all proper segments of b. Then.

h k ' k11

D e f i n i t i o n . u> = {0,ro> } |{sw } where r and s run through the set

of a l l pos i t i ve rea l numbers, and b1 and b" run as in our usual

notation through the lower and upper elements of the canonical

representation of b.

By c o n f i n a l i t y we can, of course, l i m i t r to integers and

s to dyadic f r a c t i o n s with numerator 1 .

Theorem 5 . 2 . w i s always defined and greater than 0. Furthermore,

b < c > w << OJ .



AN INTRODUCTION TO THE THEORY OF SURREAL NUMBERS 56

Proof. We prove this by induction on the length of b. Since b1 < b11
~—"——•—~ , i ,n

we have u> << o> by the inductive hypothesis. Hence, for a l l

posit ive reals r and s, rw < sw . Also, 0 < sw . Hence to is

defined. Since 0 is a lower element in the de f in i t ion , 0 < w .

To conclude the proof, we use a method which is similar to

the one we used for the arithmetical operations. Here the computation is

immediate. Suppose b < c and d is the common i n i t i a l segment. I f

d = b or c then the conclusion is immediate from the de f in i t ion .

Otherwise we have a> « w « u)C.

Corol lary. The uniformity theorem holds for a> , i . e . i f b = F|G for

an arbi t rary representation the same formula holds, i . e .

cob = { 0 , r / } | { s o ) G } . ( / = {u)X: xeF} and similar ly for G.)

Proof. As usual, this follows from the inequality b < c -• w < w

using the inverse cof ina l i ty and the cof ina l i ty theorems.

Theorem 5.3. An element has the form w i f and only i f i t is the

element of minimal length in an equivalence class under ~.

i r s t consider an element
b \ , r b \ T , b

Proof. F i r s t consider an element of the form w . We have

u> = {0,ro) }|{su) } . I f x ~ a) then x also sat isf ies
b' b"

ro> < x < so) since r and s are arbi t rary positive reals . Hence

w is an i n i t i a l segment of x, so i(u ) <_ i{x).

For the converse, we show that every positive element is

equivalent to an element of the form u> . In view of the inequality

b < c -»- w « u)C, such an element is unique i f i t exists . We use

induction. Let a = A'|A"• Then 0 e A1. By the inductive hypothesis

every element in A'UA" is equivalent to an element of the form w .

Let F = {y: (3xeA') U~J)} and G = {y: (3xeA")(x~a)y)}. Suppose

FOG t ft and l e t y e FUG. Then J ~ x e A1 and u>y ~ z e A".

Since x < a < z i t follows that a ~ < / .

Now suppose FOG = <j>. We claim that F < G. For suppose

x e F, y e G and x > y. Then wX ~ a1 e A' and wy ~ a" e A". Hence
x v

x > y + w » u> + a1 » a". This is impossible since a1 < a". Since

F < G, F|G has meaning. Let z = F|G. Then w is a complete set of

representatives for the equivalence classes containing the elements of
P

A1 - {0} and similarly for a) with respect to A". We now consider
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three cases.

Case 1 . ra) _>. a f ° r s o m e positive real r and some x e F. Let

a1 e A'

hence a

~~~~~""1""'~~~' X X XX
a1 e A' sat isfy a1 ~ oo . Then a1 _< a <_ rw but a' ~ u ~ ru> ;

Case 2. ru> _< a for some positive real r and some x e G. Let

a" e A" sat isfy a" ~ < / . Then ru>x <_ a £ a" but rwX ~ </ ~ a";

hence a ~ a> .

Case 3. Neither case 1 nor case 2 is sa t is f ied . This says that

rJ < a < sa)G. Now l e t a1 e A1 - {0 } . Then (3xeF)(a'~u)X>. In

part icular , for some real r, ruX >_ a1. Similarly for a" e A" we have

(3xeG)(a"~a)X). Hence for some positive real s, sooX <_ a". Since

a = A'|AM this shows that the cof ina l i ty condition is sat isf ied for

{0,ru) }|{SUJ } . Hence a = {0,rw }|{su) } = w .

The theorem now follows immediately, for i f a has minimal

length in i t s equivalence class, then a ~ u> ->• a = u> since, as we have

already shown, o> has the minimal length property.

Our next resul t gives some jus t i f i ca t ion for the exponential

notation.

Theorem 5.4. (a) w = 1 , (b) w w = w , (c) for ordinals a our u>

is the same as the ordinal u in the usual sense.

Proof. By def in i t ion oo0 = {0}|<|> = 1 . We prove (b) by induction as

usual. Let a = A'lA" and b = B'|B". Then by the formula for

addition and the uniformity theorem, using the facts that

u)a = {0,ra)a l}|{su)a M} and a)b = { O . r ^ ' } ! { s ^ " } , we obtain that

a)a+b = {0 , ra ) a < + b , r 1 a) a + b I } | {sa ) a l l + b , s 1 a) a + b "} . Similarly for mult ipl icat ion

we obtain that

a b „ a ' b b ' a a ' b b ' a a ' b 1 a " b b" a
a) a) = {O,roj (o 9r^ a) ,rw co + r.oo a> - rr.u a) ,sa) w + s.co a)

a" b1' T a" b b" a a1 b b" a a1 b11 a" b
-SS.u) 0) J-|iSo) a) ,S.o) 0) ,rco co + S.U) w - rs .o) a) , So) a)

+ r u i a) - r so) a) } .

By the inductive hypothesis this may be written

s / '+a

• s / ' + a
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We now show that the representations for u> and u> w

are mutually co f ina l . One direction is immediate since the terms for

u>a are among the terms for wau) . Since b > c • o> » u)C the other

direct ion follows easily by elementary reasoning with orders of magni-

tude. First

Next,
II , r II

Next, soua + s ^ a - ss1oa

dominates the other terms. Now we consider a typical upper

element rwa + s ^ a - rs^ . Since the term containing u> a

dominates the other terms, i t follows that for any s2 < s the element

is above s2u> a . Since the same argument applies i f a and b are

interchanged, this ver i f ies the co f ina l i t y .

(c) follows easily by induction. Let a = {a'}|<|>. For the

purpose of this proof l e t us temporarily use F(c) instead of a> for

our order of magnitude, and use u> in i ts usual sense in the theory of

ordinals. Then F(a) = {0 ,F (a * ) } |<j> = {0,n</ }|<j> = o)S. The last equality

is a basic fact concerning the ordering of the ordinals. This completes

the proof.

Corol lary. u> o> = 1 .

Theorem 5.4 gives some jus t i f i ca t ion for the exponential

notat ion. However, the main jus t i f i ca t ion comes from the nice way the

operations behave on the normal forms of the surreal numbers which we

w i l l see l a t e r .

Remark. Note that i f F contains no maximum, then rw may be replaced
F x1

simply by w because of co f ina l i t y . For suppose rco e F. I f
v' x1 v1 x1

y e F and y > x then ur >> w ; hence or > rw . A similar
P

remark applies to sw .

C NORMAL FORM

We now obtain something which is analogous to the normal form

for ordinals. Here we need transfinite sums. We shall define

expressions of the form I W ">r-f where (aj) is a strictly decreasing
i
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t r a n s f i n i t e sequence of order type a and r-j i s a real number d i s t i n c t

from 0 for a l l i . This is done induct ive ly on a.

Case 1 . a is a n o n - l i m i t o r d i n a l . Let a = 3+1 . Then

Case 2. a is a l i m i t ordinal . We obtain I OJ ir^ in the
i<a

form F|G.

A typical element of F has the form I u is-j , where 3 < a
i<3

such that s-j = r-j for i < 3, and S3 = r$ - e where e is positive

real.

Similar ly a typical element of G has the form £ oa 1#Sj,
i<3

where 3 < a, such that s-j = r-j for i < 3, and for S3 = r3+e where

e is positive r e a l . (We use the natural notation

I w ir-j as an a l ternat ive for I w 1#Sj.)
i i l

I f 0 is regarded as a l i m i t ordinal the def in i t ion leads to

the empty sum being <|>|<j> = 0. For a f i n i t e , the expression is just the

ordinary f i n i t e sum. For a i n f i n i t e , a proof that F < G is needed in

order to show that the def in i t ion makes sense. In fac t , we shall show

that the ordering on surreal numbers is consistent with the lexicographic

ordering with respect to the a's and r 's in the normal form. F i rs t

we define the lexicographical order on expressions I a> i r - j .
i<a

Let x = I a) "ir-i and y = ][ u> "isj.
i<a i<3

Let y be the least ordinal such that ( a Y , r Y ) * ( b Y , s Y ) .

I f y < min(a,3) then x > y i f f aY > bY or aY = bY and rY > sY .

I f Y = 3, then x > y i f f rY > 0. I f Y = a then x > y i f f

sy < 0.

Note that this is consistent with the situation for the

normal form for ordinals.

Theorem 5.5. The expression £ 03 ir-j is defined for a l l s t r i c t l y
i<a

decreasing sequences (a-j) and a l l nonzero real r-j. The ordering is

given by the lexicographical order. Furthermore for a l l 3 < a,
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I I ̂ r j - I u>afrj| « o)aJ if j < 3. (We call the latter inequality

the "tail property".)

Proof. We use induction on a.

Case 1. a is a non-limit ordinal. Let a = 3+1. Then
a. a. a

1<3 a. b.
To begin with, let x = J u irj and y = I w 1s^ and

i <a i <a
suppose x > y in the lexicographical order. We must show that x > y
as surreal numbers. If (Vi<B)C(a-f,r-f) = (bj,si)] then either a3 > bg

or a3 = b3 and r3 > S3. In either case u> ̂ 3 > u> &S3 by elementary
reasoning with orders of magnitude. Since addition preserves order, it
follows that x > y.

Next assume (aY,rY) * (bY,sY) for some y < 3 but
(a6>r,s) = (b6,ss) for 6 < y. Then either aY > bY or aY = bY and

rY > sY. In either case u> Y r Y - u
 Y s Y _> «

 Yt for some positive real t.

Hence I u> 'r-,- - I u 's-f = ( ), w "r-f + w rY) - [ I o>
 1s-f + u> sYJ

3y by ay si • b •
= o) TrY - a) Tsy ^ a) T t . However I <*> ̂ j and X w 1s1 n a v e t n e

i<3 i<3
property by the inductive hypothesis. Hence

I I a) *rj I a) 1#rj| « a) Y and \ I u isj J u> 1#Si| « o> Y .
i i l i i l

Therefore J OJ 1#r«| - I u "• s-f >̂  w Y t ' for a positive real t 1 . (We can
i<3 i<3

bo b a
use any t less than t . ) Again, since a> p « m Y £ co Y, we obtain

x-y = I a) V j - I a) 1#Si = J u 1#rj - I 10 1#s-i + w &>3 - u Ŝ3 _> u Yt"
i<a i<a i<3 i<3

for a positive real t". In particular x > y.

The same argument applies i f only one of x and y have a

representation of length a. A slight difference in notation is needed

i f one is picayune since ae and be are not both present, but in any

case the superiority which x gains in the Y th stage is necessarily

maintained since whichever one of the above is present is s t i l l of lower
aY

order of magnitude than u> . (There is even a possible case where aY is
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bY
not p resent . Then we use u> ' i n s t e a d . )

We now check the t a i l p rope r t y . Let y < a and j < y .

Consider | I co i r j - I to ""r-f | . Th is i s
i <a i <y

| w 3r 3 + ( I to 1r-f - I a) ">r-f) | . I f y = 3 t h i s reduces to |to &ra|
i<3 i<y

a •; a
which is certainly of lower magnitude than co J . Otherwise |to ^r^| is

ajcertainly s t i l l of lower magnitude than to , and so is

| £ a) i r j - ^ a) "• r-f | by the inductive hypothesis. Hence the absolute
i<8 i<y

value of the sum is also, and we are done.

Case 2. a is a l imi t ordinal.

By the inductive hypothesis the ordering for elements in

FUG is given by the lexicographical ordering; hence F < G.

We now verify the ta i l property. Let 3 < a and j < 3.

We must consider | I co i r j - £ co "• r-f | . Now among the typical elements
i<a i<3

a. a. a-;
of F in the representation of J u V j is I u> "• r-f - co Je. This is

i<a i< j

immediate from the definit ion, since I co ir-f + co Jr-j = I co i r j . (One
i< j 1<j

must be cautious in reasoning with these inf in i te "sums". Other results

which may appear to be just as obvious might require a technical proof

because of our specialized definition of in f in i te sums.) Similarly,
a. a j

among the typical elements of G is [ w T J + u e, Hence
i< j

a . a •; a . a . a j
I co ' r j - co ue < 2, w 1 r j < I w l r i + w e« By t n e lexicographical

i< j i<a i< j
order, and the inductive hypothesis, we have
I co i r j - a) Je < I co i r j < I co i r j + co Je. Therefore

i<j i<3 i<j
a. a. a j

| I co V j - I to "• m-f | < co J(2e). Since e is an arbitrary positive
i<a i<8

a. a. a j
real this shows that X ^ 1 r i ~ I w 1 p i l <K w a s desired. The proof

i<a i<8
that the lexicographical order is the correct order is similar to the
proof in the non-limit ordinal case. As before, let x = I co i r j

i
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and y = J u i s j and suppose x > y i n the l e x i c o g r a p h i c a l o rder .
i<a

Suppose (a$,r$) = (b,s,ss) for a l l 6 < y for some y < a but
a. b. aY

(aY , rT ) * (bY ,sY ) . Then J u ^ j - I u> ">sn- _> u> t for some positive
i£y i£y

real t . By the t a i l property,
a. a. ay b • b • by av

| I a) "'r-j - I a) "> m-f | « a) Y and I I to ""s-j - J ^ S J I « u < u .
i<a i<y i<a i<y

~ a . b. aY ~~
Therefore ). w l r i " I w l s i 2. w t § f o r some pos i t i ve real t .

i <a i <a

I f only one of x and y has a representat ion of length a,

then the e a r l i e r remark in the non - l im i t ord inal case remains v a l i d .

This completes the proof.

The next theorem gives us the importance of the t r a n s f i n i t e

sums we have been d iscuss ing.

Theorem 5.6. Every surreal number can be expressed uniquely in the form

I 1

Proof. Uniqueness is immediate from the fact that the ordering is given

by the lexicographical ordering.

Now le t x be an arbitrary non-zero surreal number. We know

by Theorem 5.3 that |x| ~ cua for some a. Let S be the set of a l l

real numbers s such that su>a <_ x. Since |x| ~ </, S is non-empty and

is bounded above. Let r = £.u.b. S. Then (r+e)w > x and (r-e)co < x

for a l l posit ive real e; hence |x-war| « wa. Since |x| ~ ( / i t

follows that r t 0. I t is clear that the above property determines r

uniquely. For convenience in the proof we shall use the notation

i f x * 0.

Now assume that x cannot be expressed in the form

A(x) = war i f x * 0.

\ a) 1r1*. We define a sequence (a-j,r-j) where i runs through a l l the
i<a
ord ina l s . Suppose (a-j,r-j) i s defined for a l l i < a. Then

A[x- I a) 1^1 = a) <*ra.
i<a

Intuitively speaking, we are getting better and better

approximations to x as a is increasing. We first show that the a's

are decreasing, so that the sums make sense.
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a a
First let a = 3+1. Then A[x- I u> ir-j] = u Prp.

i<3
a a. a. a a

o> a r a = Afx- X a) ""r-jl = Af (x- I u> 1r1
#) - a) ^ 3 ] « a> & by the inductive

i<a i<3
def in i t ion of (agjrg). Hence aa < a$.

Now le t a be a l im i t ordinal and le t 3 < a. We already

know that |x- I u> i r - j | ~ Afx- I w "• r-f ] « u> &. By the t a i l
i<3 i<3
a. a. a a. a

property | I w ir-j - £ w Tr-j | « u> &. Hence |x- J u 1 r - j | « w P.
i<a i<3 i<a
a a. ao

Therefore u a r a = A(x- £ w l r i ) <<: w • So f i na l l y aa < a$.
i<a

Since by hypothesis x cannot be expressed as a sum,

I a) ir-j has meaning for a l l a.
i<a

We next show that a[ J w ir- j) > a for any general sum.
i<a

Although this inequality is crude i t suffices for our immediate purpose.

Let a < 3. Then the elements of F and G used in the

representation of J o> ""r-f are also used in the representation of
i<a

a.
I a) ir-j. Hence the former is an initial segment of the latter and thus

i<3

it has smaller length. The uniqueness of representations as sums guaran-

tees that the length is strictly smaller. This is enough to verify the

inequality since every strictly increasing function f from ordinals to

ordinals necessarily satisfies f(x) >_ x for all x.

If a is a limit ordinal we already know that
a. a

|x - I a) ir-f I « a> & for any 3 < a. This shows that x satisfies
i<a

F < x < G for the F and G used in the representation of J u ir-j.
i<a

a.
Hence a( I u> ">r-,-) < £(x). This is true for all a. In view of the

i<a
earlier inequality this implies that i[x) is above every ordinal, which

is absurd. This contradiction completes the proof.

We have now established the normal form for surreal numbers.

The usual representation of ordinals in terms of powers of u> is a

special case of this, since finite sums correspond to ordinary addition
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and this agrees with ordinal addition i f terms are arranged so that there

is no absorption.

Next we shall show the fundamental fact that the basic

operations can be performed on elements in the normal form analogously to

usual operations on polynomials. This is the main just i f icat ion for the

summation as well as the exponential notation.

I f x = J in i r j , we shall call a the normal length of x,.
i<a

abbreviated n£(x). This is quite different from i{x) which was

defined at the beginning. We shall study n£(x) in more detail later.

We now need some lemmas which wil l help us deal with the

normal form.

Lemma 5.2. u> r = {w (r-e)}|{a) (r+e)} where e is an arbitrary positive

real number.

We know that r = {r -e} | {r+e} for any real r. Also,

a>a = {0,su>a }|{ta)a } by definition where s and t are arbitrary

positive rea l . Hence u*r has the form

e}.

Let el be positive, rea l , and less than e. Since

OJ « a) « a) , i t is immediate that the lower terms are below

a) ( r - e ^ and the upper terms above w ( r + e ^ . Hence the result follows

by the cofinal i ty theorem.

The above proof is a good typical example of reasoning with

orders of magnitude and cof inal i ty . This technique helps to give the

normal form i ts t ractab i l i ty .

a. a. a a. a
Lemma 5.3. I w ir-j = { I u Vi+w a ( r a - e ) } | { I w Vi+ca a ( r a + e ) } .

i i i

Proof. Assume first that a is a limit ordinal. Then since
„ a. a. a a.
1 w ' n = I a) 'r-| + a) a r a we can obtain a representation of J u 1r-\

i<a i<a i«x
by using the definition for the f i r s t addend and lemma 5.2 for the second

a 8 a
addend. Typical lower terms are J u i ^ - w e + <D a r a where 3 < a

i<e
and 2. u> 1r1- + u> a ( r a - e ) . The lat ter terms are clearly cofinal by the

i
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lexicographical order. Since the argument is similar for the upper terms

terms, the result follows in this case.

In general, every ordinal a has the form a'+n where a'

is a limit ordinal. We can now use induction on n. For convenience of

notation we can assume the result for I u> ir-j and then prove it for
i<a

I irj. The proof is now similar to the above. The only difference

is that the typical lower terms which are discarded because of cofinality
a. a

now have the form J u V j - w ae by the inductive hypothesis; the
i<a

upper terms are similar.

It is convenient to extend the definition of I u ir-f to
i<a

the case where r-j may take the value 0. In fact, we use exactly the
same definition, but we of course no longer have unique representation.

Lemma 5.4. Let r-j be a sequence of length a, and let {nj} for i < 3

be the subsequence of i's such that r-\ * 0. Furthermore, suppose
a. b.

t>i = an. and si = rn.. Then i u ] H = I u l s 1 -
1 ! i<a i<3

Proof. Although this appears to be completely t r i v i a l , a proof is needed

because of the special definition of infinite summation. Essentially we

must show that including terms with r-j = 0 does not affect sums. We do

this inductively on the length of the partial sums of J u> ir-j. For a
i<a

non-limit ordinal this is clear since we are dealing with ordinary

addition. For limit ordinals caution is required since in the expres-

sion I a) "ir-,*, the B^ term plays a role even i f r$ = 0, since i t

i<a

leads to elements in FUG such as J m V j + ew P. However, by the
i<3

cofinality theorem we s t i l l obtain the same element. The trickiest case

which occurs is the following: a = 3+w, r$ * 0 and rg+n = 0 for all

integers n. We want to show that \ a> 1#rj = J to i r j . The left-hand
i i

side is defined in terms of an F and G whereas the right-hand side is

an ordinary sum. A typical lower term in the definition of \ u> ir-j
i
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a. Y

is 2. w l r i " w e W 1 ' t n y < &+a)> a n d there is a similar expression for a
i<T

typical upper term. By lemma 5.3 the right-hand side is

{ J w 1#rj - a) &e}|{ I w 1#r-j + u &e}. Hence by the cof ina l i ty theorem the
i<3 i<3

right-hand side equals the left-hand side.

The case just considered represents a transit ion where we

invoked lemma 5.3 . In a l l other cases cof ina l i ty is a l l that is needed.

I f we are given two surreal numbers the above lemma permits
a. a.

us to wri te them in the form i u> "*r-f and I co 1 s-f, using the same a
i<a i<a

and a-j's, by insert ing zeros where needed.

Lemma 5.5 (the associative law). I u> ir-j = ][ w * r i + I o> J r a + j .
i<a+3 i<a j<3

Proof. We use induction on 3. I f 3 is a non-l imit ordinal this is

just an instance of the ordinary associative law. I f 3 is a l i m i t

ordinal we compute the right-hand side using the representations in the

def in i t ion for the r ight addend, whereas for the l e f t addend we use the

representation in the def in i t ion or in Lemma 5.3 depending on whether a

is a l i m i t or non-l imit ordinal . I f I u> a + J r a + j = F|G then by
j<3

cof ina l i ty the right-hand side may be expressed as

{ I a) * r j+F} | { I to fr-f+G}. (We invoke the lexicographical order and
i <a i <a

reason as in the proof of lemma 5.3. Thus a typical lower term has the

form I u) ir-j + ( I u a + J r
a + j - ew a + Y ) for y < 3 which by

i< j<y
the

inductive hypothesis is I w ir-j - ew a Y. A typical upper term can
i

be written similarly. But this is cofinal in the representation for
a.

I u) Tr-f so the proof is completed.
i<a+3

The above lemmas show that in spite of the apparently

artificial definition of infinite sums they behave in many ways in a

manner expected of sums. We now come to the important fact that formal

polynomial addition works.
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a. a. a.
Theorem 5.7. J u ] r j + I u> "" s-f = J u Mrj+s-j) .

i <a i <a i <a

Proof. F i rs t note that lemma 5.4 allows us to express the fact that

formal polynomial addition works in this convenient form. As usual we

use induction on a. I f a = 3+1 this is immediate. In fact,

X a) ">r-f + I a) 1#Sj = I u ^r-i + to &rg + £ w *isj + a> &S3. By the
i<a i<a i<3 i<3
inductive hypothesis this is

a. a a a.
I a) Mr-j+sj) + a) &r$ + ca &S3 = I w "•(r-f+s-j) using the ordinary

i<3 i<a
distributive law and the definition of summation.

Now suppose a is a limit ordinal. One typical lower

element of the sum is ( J u ir-j - u &e) + ( I w isj)
i<3 i<a

= ( J u i 'rj - to ^e) + ( J u ">s-f + I a) is-,*) by lemma 5 . 5 .
i < 3 i<3 3<i<a

a. a .
( I w 1 s i has the natural meaning I u> 3+1+1S3+1+-J.) By the
3<i<a i<a - (3+ l )

inductive hypothesis this is I u> i(r-j+s-|) - (w ee) + I a> ""SJ. By
i<3 3<i<a

the lexicographical order this is mutually cofinal with

I a) Mr-j+s-j) - a) Be# By symmetry we obtain the same expression i f we
i<3

begin with a lower sum of the form I to "»r-j + ( J u 1#s-f - w &e)9 and
i i

we obtain a s imi lar expression for a typical upper sum. But th is gives

us exact

for some

a.
us exactly I u> Mr-i+s-j) by d e f i n i t i o n , or by lemma 5 .4 , i f r-j+si = 0

i

We now turn to multipl ication, and prove the remarkable fact

that formal polynomial multiplication works. This i s , of course, the

main just i f icat ion for the exponential notation and the normal form.

F i rs t we prove a special case which can be thought of as the

inf in i te distr ibutive law.

b a. b+a.
Lemma 5.6. o> [ I 00 "• r-§ "| = J u ">r-j.

i <a i <a

Proof. We use induction on a. I f a = 3+1 then we have
b a. b a. a b 3. b a

a) [ I a) i r - j ] = a) [ I a) "• r-f + w & r $ ] = u> [ I OJ T r - f l + o> a> e r $ by t h e
i i
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ordinary distributive law. By the inductive hypothesis and theorem 5.4
b+a. b+a b+a.

this is I u Tr-j + a) prp = J u '•r-j. Of course we need the fact
i <a i <a

that addition preserves order so that (b+a-j) is also a strictly

decreasing sequence for the above to make sense.

Now suppose a is a limit ordinal. We then compute the

product using the standard representations u> = {0,oo s}|{oo t} and

va. a. a a. a
), u) 1r1* = ( J a) Tr-j-a) 3e} I { i a) ir-j+a) 3e}. In order to simplify the

notat ion, i f the l a t t e r is wri t ten in the form d = {d ' } | {d M } then both
a a

d"-d and d-d1 have the form oo 3e+c where |c| « oo 3. Hence for
a a

e < e < e they are between oo 3e and oo 3e We can write the

product in the form {u>bd\u>bd'+u>bls(d-d' hooV-oo^' tCd"^)} |

j oo d , oo d +oo t (d—d ) ,oo d —oo s(d —d) [ •
L II L L I

Since oo >> oo » w , we obtain by elementary reasoning

with orders of magnitude that
b" b1 b" a b a b

oo t (d" -d ) + a) s (d-d ' ) _> oo tu> 3ex > oo [oo H2e2)] _> u [ d " - d ' ] . Hence

a)bd I I-a)b"t(d l l-d) ± oobd l+oob's(d-d1). Similarly

h" h' h
oo t ( d - d ' ) + oo s(d"-d) _> oo [ d " - d ' ] ; hence

oobd"-o)b s(d"-d) £oobd' + o)b t ( d - d ' ) . Therefore by cof ina l i ty wbd can

be expressed in the form

{ o o V , a)bd l+a)b ls(d-d I)H{a)bd l l ,oJ
bdM-a)b ls(du-d)}. Let d x ' and d / be

lower and upper elements respectively corresponding to ex for the same
b b a b1 a b1 y

3. Then OJ (dx ' - d 1 ) = oo [oo P U - e ^ ] > oo soo B(e2) >_ oo s ( d - d ' ) . Hence
K K K' K K'

oo d x ' > oo d'+oo s ( d - d ' ) . Similarly w (d ' -d^ 1 ) > oo s(d"-d) . Hence

w ^ j " ± u>bd1-u)b's(d11-d).

Thus again we can simplify by cofinality and obtain

o)bd = {u)bd'}|{a)bd"}.

F i n a l l y we can use the i n d u c t i v e hypothes is and o b t a i n t h a t
b b a . a b a . a b+a. b+a

oo d = {oo [ T oo ^r-j-oo Be]}j{co [ Y oo ^r-f+oo P e l } = { / OJ ^r-j-oo G j

b+a . b+a b+a .
{ I oo ir-j+oo B e } , which by d e f i n i t i o n i s I oo i r - j .
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We are now ready to consider formal polynomial multiplication.

If x = I w I'r-j and y = J u ̂ Sj then we define the formal product
i <a i <3

a.+bi
x°y to be J u 1 r-jsj. By lemma 5.1 each exponent aj+bj occurs only

i<a

finitely many times and the set of all aj+bj is well-ordered. Hence

the expression has meaning. (To be technical, when we consider an

expression such as J ^ l r i we are applying the lemma to the positive
i<a

elements ao-a-f. This is adequate because we are dealing with binary

products only. In more general situations we want a0 to be 0 to

avoid trouble.)

I t is well-known and easy to verify that with respect to

formal polynomial multiplication and addition one gets a ring. In fact,

i t is an ordered ring with respect to the ordering we have.

a. b. a.+b .
Theorem 5.8 ( I u i r j ) ( I u> 1s1-) = J u 1 Jr j s j» i .e. the product

i <a i <3 i <a
j<3

agrees with the formal product.

Proof. Again we use induction. Also we tentatively use the symbol *

for formal multiplication.

First suppose that either a or e is a non-limit ordinal.

Assume a = Y + 1 . The same argument applies i f 8 = Y + 1 . Then

( i w^nH I u>biSi) = ( I <oairi+u/\Y)( I u>biSi) = ( I «a1ri)( I , X i )
i«x KB KY i<8 1<Y i<6

a-y b •
+ u r y ( I w 1 s i ) ^ t l i e ordinary distributive law. We now apply the

i<3
inductive hypothesis to the lef t addend and lemma 5.6 to the right

addend to obtain

f r a + b i n aY+b.
[ i ID i °r-jsi + ]. w l rYs i )« T^e argument is now completed by
i<Y i<3
j<6

theorem 5.7 which tells us that formal addition works.
Now suppose that a and 3 are both limit ordinals. We

simplify the notation as follows: y = J i c V j , z = \ u> 1#SJ and
i<a i<6

y ,z are lower or upper elements in the representation of y and z
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respectively in the basic de f in i t ion . Then a typical lower or upper

element of yz has the form yz + y z - y z . (As at times in the past

we use a unif ied notation since the four kinds of terms involved are

dealt with s i m i l a r l y . ) By the inductive hypothesis this may be written

yxz + y xz - y xz = (yxz) - (y-y )x(z-z ) by ordinary algebra.

(Recall that we already know that surreal addition agrees with formal

addi t ion . ) Recall now that we get a lower element for yz i f and only

i f y° and z° are on the same side.

Now y-y° has the form ±u> Ye x + cx for some y < a, some

a v o
posit ive real e1 and some |c11 « co . Similarly z-z has the form

±a) 6e + c for some 6 < 3, some positive real e and some |c | « u> 5 .

Therefore ( y - y ° ) x ( z - z 0 ) has the form ±w Y 6 e
1

e
2

 + S * w n e r e

|c | « a) Y 6 . By the sign rule for mult ipl icat ion for lower elements

we have a plus in front of u> 6 and for upper elements a minus. By

aY+a aY+a

mutual co f ina l i ty we can now write yz = (yxz-w 6e)|(yxz+w T $e).

(Mutual co f ina l i ty follows from the observation that i f | c 1 1 , |c 2 | « u>

and r < r are two real numbers then u> r. + c < to r + c . )

We must now show that the right-hand side is yxz. Now
a a

yxz = (yxz-o) ye)|(yxz+w ye) , where ay is a typical exponent in the

series for yxz. This again follows by co f ina l i t y . By lemma 5.3 this is

va l id even i f yxz has a last term. Now every exponent in yxz has the

form aY+a<5 (though the converse is not necessarily val id because of the

possibi 1 i t y of cancel lat ion) . Hence by cof ina l i ty yxz does equal the

r ight-hand side in the representation of yz , i . e . yxz = yz. This

completes the proof.

Remark. Note that in view of the above remark about the converse we do

not have mutual c o f i n a l i t y . Fortunately, since the required inequality

is t r i v i a l l y sa t i s f i ed , we don't need i t . At any ra te , although very

often i t makes no dif ference, in general we must be careful as to which

cof ina l i t y theorem is being used. For example, in the f i r s t part of the

proof, we need mutual cof ina l i ty since otherwise we would require an

inequali ty which is not at a l l obvious.
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Theorems 5.7 and 5.8 give us a powerful tool for dealing with

surreal numbers. In fact, for many purposes we can simply work with

these generalized power series and ignore what surreal numbers are in the

first place. This is an example of the whole spirit of abstraction in

mathematics. However, there are limits to what can be accomplished by

general power series methods since the surreal numbers are somewhat

special. Note, for example, that the class of exponents is precisely the

class of all surreal numbers, which in itself is unusual.

Let us see what the power series methods accomplish. First,

we have an alternative way of dealing with inverses and square roots

which is much easier than the direct method used in chapter three. Let

us consider, for example, the inverse. The essential idea is as follows

follows. Let x = cj °r 0 ( J u I'SJ) where bj = a-j-a0 and s-j = -7-.
i <a ro

a -a
Since the inverse of w ° is u> 0 and since r0, of course, has an

inverse, it suffices to find the inverse of expressions of the form

I a) I'SJ where b 0 = 0 and s 0 = 1, i.e. of series which begin with 1.
i<a

In fact, if 1 + I co ir-j is a series beginning with 1, we get the
i<a

inverse by formally substituting I u> ir-j for x in l-x+x2-x3 ••• .
i<a

First, by lemma 5.1 this leads to a series which has meaning so that we

obtain a surreal number. Then, theorems 5.7 and 5.8 guarantee that this

is the inverse of 1+x since (l-x+x2-x2...)(l+x) = 1 for ordinary

formal series.

There is another method of using generalized power series to

obtain existence results which does not depend on familiarity with iden-

tities for ordinary formal series. We shall apply this method to show

that every positive surreal number has an n*n root for any integer n.

The same method can also be used to prove the existence of inverses. It

is a generalization of the well-known procedure for ordinary formal power
00

series I a-jx1 where the coefficients of the various powers of x are
1=0

obtained recursively. I like this method because of its elementary self-

contained algebraic nature. We avoid any use of analysis and in

particular the binomial theorem for fractional exponents.
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Theorem 5.9. Every positive surreal number has an n t h root for every

posit ive integer n.

a.
Proof. Let J. u l r i &e a surreal number. This can be expressed in the

form GO ° r o [ l + I u> is j" | . Now GO ° r 0 has an n t h root, namely
0<i<a

GO ° /n n / r ^ , from theorem 5.4 and the fact that r0 is posit ive. Hence

i t suffices to consider series which begin with 1 .
a.

Consider a series 1 + I GO i r j . We shai 1 express i t in the

form (1+ I GO i y j ) n by determining XJ and y j inductively. (For

ordinary power series a = 3 = GO and the a j ' s and x j ' s are simply

the integers. In our case the situation is s l ight ly t r i c k i e r . For

example, 3 might be d i f ferent from a . )

Suppose that (1+ I GO i y j ) n agrees with 1 + I GO i r j for

a l l terms GO where z _> XJ for some i < Y , but

(1+ I GO i y j ) n * 1 + I GO i r j . (Recall that in our generalized power
i <Y i <<*

series the exponents are decreasing.) Then we claim that there exists

x and y such that x < XJ for a l l i < y and that
x. x n a. x

(1+ 2, w 1yj+to y) agrees with 1 + I GO i r j for a l l terms GO where
i <Y i <a

z >_ x. Furthermore, i f a l l XJ are f i n i t e l inear combinations of the

aj with integral coef f ic ients , then so is x. (The fact that xj is

not simply the same as aj makes the process t r i ck ie r than the one for

ordinary power ser ies . )

In f ac t , l e t x be the f i r s t exponent for which the coef-
X X A

ficients of u in (1+ I GO i y j ) n and 1+ I GO i r j differ. Then x < XJ
i <Y 1<a

for all i , and the respective coefficients, s and t , satisfy s * t .

Note that s or t may be 0. Now consider an expression of the form
x. x n a. 2

(1+ ). w !yj+oj y) . This agrees with 1+ J. GO i r j for all terms GO

where z >̂  Xj for some i . The earliest term for which there is pos-

sible disagreement is GO and, in fact, its coefficient is s+ny. Since

s * t there exists a non-zero y satisfying s+ny = t . (Uniqueness

does not concern us.) With the above values for x and y the claim is
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clearly satisfied. Since x is either of the form a-j or a sum of

x-j's, the second condition is clearly satisfied.

We now assume that 1 + J w 1#rj does not have an n*n root
i<a

and obtain a contradiction. We use the claim above to define a sequence

(xi»yi) inductively where i runs through the class of ordinals by

letting (xyyy) be the pair (x,y) obtained above. Since later terms

have no effect on the coefficients of earlier exponents the induction

works. However, since each xi is a finite sum of a-j's, the

collection of possible XJ'S is a set so that eventually the sequence

x-| must terminate. This contradiction proves the theorem.

Remark. It is interesting to compare this with a classical situation in

which one is interested in power series which permit fractional exponents

but only series of length u>. In that case one has the burden of showing

that the sequence of exponents approaches °°. Fortunately, we do not

have this problem. For example, consider

1 + GO l + uT^ + uT^"1 ... +a)~(1)""n ... . This is a series of length GO.

If we compute the square root using the proof of theorem 5.9 we begin

1 -1 1 -1 1 "2

with 1 + -pU and then obtain 1 + -sw - -gw , etc. It is clear that

we would need a sequence of length greater than GO. (For example, it

it would take us "forever and a day" to reach the GO W term!) However,

the proof shows that we must eventually terminate at some ordinal.

D APPLICATION TO REAL CLOSURE

We shall use the same technique as in the previous section to

show that the class of surreal numbers forms a real closed f ie ld.

Specifically, we adapt the classical Hensel's lemma argument to our

transfinite series.

n
Lemma 5.7 (Variation on Hensel's lemma). Let f(x) = xn + I hix11"1 be

i=l
a polynomial of degree n in the surreal numbers where hj has the form

r-j+dj with r-f real and d-j infinitesimal. (Thus all terms in the

series expansion of h-j have non-positive exponents.) Suppose, further-
n

more, that xn + 1 r-jx11 1 factors into two relative prime polynomials
i=l

n
Po and Qo. Then x + I hjx " factors into two polynomials, P and

i l
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Q, where P and Q have the same degrees as Po and Qo respectively

and the first terms of the series expansions of the coefficients of P

and Q are the same as the coefficients of Po and Qo respectively.

Proof. First, by regrouping we regard the polynomial f(x) as a series
a.

of the form i w TSJ where s-f is a polynomial over the reals of
i<a

degree at most n-1 for i > 0. Since a finite union of well-ordered

sets is well-ordered, the a-j's are well ordered. By hypothesis ao = 0
n

and s 0 = x
n + I n x " " 1 .

i=l

Let the degrees of Po and Qo be r and s respectively

so r+s = n. We now extend Po and Qo in an inductive manner similar

to that in our construction of nth roots. Suppose ( £ u 1#P-j)( I w "iQ-j)
i<3 i<3

agrees with f(x) for all exponents y such that y _> bj for some

i < B where the Pi's and Qi's are polynomials of degrees at most

r-1 and s-1 respectively for i > 0, but ( J u "• P-f)( I u "• Q-f) * f(x).
i<3 i<3

We shall find b$ such that a$ < a-f for all i < 3 and

polynomials P3 and Q3 of degrees at most r-1 and s-1 respectively

b b b. b
so that ( I a) iPj+w 3pB)( I a) TQi+o) % ) agrees with f(x) for all

i<3 i<3
exponents y such that y _> b^.

Let be be the first exponent x for which the coefficients

of u>x in ( I a) iPj)( I a) iQ-f) and f(x) differ. Then bg < bf for
i<3 i<3

a l l i . Now consider the series I w ip-j+o) Ĝ and I w iQ-f+w Ĥ
1 <3 i <3

where G and H are polynomials to be determined l a t e r . Then
b b b. b

( I a) Pi+w G G ) ( I w TQ^+U eH) agrees with f ( x ) for a l l terms up to
i i

a) ̂ . The condition for agreement for the coefficients of a> ̂  is an

equation of the form HP0 + GQ0 = S for some polynomial S of degree at

most n-1 because of the bounds on the degrees of P-j and Q-,*. Since

Po and Qo are relatively prime there exists G of degree at most r-

and H of degree at most s-1 satisfying the above equation. Let
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P3 = G and Q$ = H. Also, as in the case of ntn roots, if the b-j's

are finite sums of the a-j then so is b$. The rest of the argument is

identical to the argument for n^n roots.

We regroup at the end so that we end up with monic poly-

nomials of degree r and s over the surreals. (The justification for

regrouping is the same as for ordinary polynomials in two variables. Of

course the existence of bounds for the degrees of the polynomials is

crucial for the regrouping to make sense.)

We are now ready for the main result of this section.

Theorem 5.10. Every polynomial equation of odd degree with surreal

coefficients has a root. Furthermore the exponents which occur in the

series expansion of the roots are rational linear combinations of the

exponents which occur in the series expansions of the coefficients of the

polynomial.

Proof. Let P(x) = bQx
n + ̂ x11""1 + b 2x

n" 2 ... bn be a polynomial of odd

degree. We may assume that b = 1 and bL = 0 by making the substi-
b n

tution x = y - —• The polynomial now has the form xn + I a-jx11"1.
n i=2

Now suppose that the normal form of aj begins with u>Clrj. Assume that

n n ci
the polynomial is not simply x . Let c = max —. We now make the sub-

1 = 2 1 n
s t i tu t ion x = yoo0. The equation becomes (ywC)n + Y a-jfyu)0)11""1 = 0,

i=2

which can be wri t ten in the form yn + I ajaT^y11""1 = 0. The coef-
i=2

f i c i e n t of y begins with (u> r-j)o) . By choice of c we have
ci

— <_ c with equality for at least one i, i.e. ci - ic £ 0. Thus all

coefficients begin with terms with non-positive exponents and at least

one term begins with exponent 0.

If an odd degree polynomial is factored into irreducible

factors at least one of its factors must have odd degree. Hence to prove

the theorem it is enough to show that an irreducible polynomial of odd

degree must have degree one. If we apply the above construction to an

irreducible polynomial the polynomial remains irreducible. Hence by the
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contrapositive of lemma 5.7 the real part of the polynomial does not have

two relatively prime factors, i.e. has the form (x-a) or (x +bx+c) .

Since the degree is odd the latter possibility is ruled out. Hence the

real part of the polynomial has the form (x-a)n. Since the coefficient

of x11"1 is 0, it follows that a = 0. Therefore the real part of the

polynomial has the form x . This contradicts the fact that at least one

term besides x11 begins with exponent 0.

Since the construction leads to a contradiction, the poly-

nomial itself must be x11. (We are not talking about the real part.)

Since the polynomial is irreducible n must be 1.

The last part of the theorem follows from the same proof.

For this purpose we restrict ourselves to surreal numbers whose exponents

are of the form referred to in the statement of the theorem.

E SIGN SEQUENCE

Our aim in this section is to obtain a formula which

expresses the sign sequence for I u> ">r-f in terms of the sign sequences

for a-j and r-j.

It is natural to look first for the sign sequence for w .

However, in order to carry through an induction we need to know the sign

sequence for certain special finite sums along the way. Thus caution is

required with the induction in order to avoid circular reasoning.

Specifically, we deal with finite sums of the form £ w 1#r-f,
i<n

where aj+i is an initial segment of aj for all i and rj is either

an integer or a dyadic fraction with numerator 1. (It is understood

that the aj's are strictly decreasing, since we are working with normal

forms.)

We first need some lemmas which are roughly variations on

lemmas 5.2 and 5.3. In proving these lemmas we used the fact that

r = {r-e}|{r+e}, which in the case where r is dyadic involves throwing

out information. (This representation is cofinal but not mutually

cofinal with the standard representation of r.) We now see what happens

if we do not throw out information. In order to cut down on duplication

later we shall deal with a general dyadic although for our immediate

purpose we need only integers and dyadic fractions with numerator one.
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Recall that by applying c o f i n a l i t y to the canonical represen-

ta t ion of a dyadic f rac t ion r we obtained r in the form { s } | { t } i f

r is not an integer and in the form {r-l}|<j> i f r is a posi t ive

integer . For the special case where r = — with n > 0 we have

Lemma 5 . 8 . (a) I f r = { r ' } | { r " } and the set of lower elements of a

is non-empty, then o> r = {w r'+w n}|{o> r"-u> n} where a1 as usual

is a typ ica l lower element in the canonical representation of a and

n is an a r b i t r a r y posi t ive in teger . I f the set is empty then

A = {a)V}|{u)V}.

b) If n is a positive integer greater than one then

a a a1 a"

a) n = {u> (n-1) +a) m}|{a) e} i f the set of lower elements of a is non-

empty, where m is an a r b i t r a r y posi t ive in teger , a1 is as before, a"

is as usual a typ ica l upper element in the canonical representation of

a, and e is an a r b i t r a r y posi t ive dyadic f rac t ion with numerator 1 .

I f the set is empty then o>an is {o>a(n-l)} | {o>a e } .

Proof, (a) We compute o> r as in the proof of lemma 5 .2 .
a a1 a" a

Again u = {0 ,sw } | { t w } . Hence u> r i s

{ A 1 , A ' + U c / ' M r - r 1 ) , AMtu) a l ' ) ( r l l - r ) } | {cA 1 1 , A ' M s c / )(rll-r)9

a) r1 + (to) M r - r 1 ) } . By cof ina l i ty we can eliminate the third terms

among the upper and lower elements and replace terms such as
a a' a a'

w r1 + (soo )(r-ri) by w r1 + w m. Also i f the set of a1 is non-

empty we can eliminate the f i r s t terms by co f ina l i t y . Thus we get the

desired form,

(b) In this case there is no r". The computation is the same except

that now we need the th i rd term of the upper elements since the other
a" a

terms are not present. Since u> >> o> , by cof ina l i ty this term may be
a"

replaced by u> e.

Note that negative integers can be handled by sign reversal .

Also, r1 = 0 for dyadic fractions with numerator one so that the

formulas simpli fy. I f the set of a's is non-empty then a typical lower

element is u> n. Otherwise 0 is the only lower element.

We are now ready to consider f i n i t e sums. A convenient

representation for n-fold sums has already been mentioned in Chapter 3.
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n
In fact, £ a-,* can be expressed as

i l

{ a 1 + a 2 . . . + a . ' . . . + a n > | { a x + a 2 . . . + a k " . . . a n > where 1 £ j <_ n and
1#1 £ k £ n. We now apply this to sums of the form I w 1#rj referred

i<n
to earlier and use cofinality to simplify. I t is understood that r-\ * 0

for all i .

r a.
Lemma 5.9. Let 2. w 1r1- be a surreal number where for all i , a . , , is

i<n n l

an in i t ia l segment of aj less than a-j and r-,- is a dyadic fraction.
a.

Then I w ir-j can be expressed in the form F|G where a typical element
i<n

x in G is obtained as follows:

(a) I f r is not a positive integer let r " be the minimum

upper element in the canonical representation of r , . Then

x = I to ir-j + a) n - 1 r " - a) T"1 m where a ' is a typical
1<n-l n " i n " i

lower element in the canonical representation of a , and m is an

arbitrary positive integer. ( I f there is no a ' the last term is

omitted.)

(b) I f r , is a positive integer but rj is not a positive integer

for at least one i , then let j be the largest index for which r j is
a . a •; n a • ; ' ••

not a positive integer. Then x = I oo 1r1- + u J r j - u> J m where r j

is the minimum upper element in the canonical representation of r j ,

aj is a typical lower element in the canonical representation of aj

and m is an arbitrary positive integer.

(c) I f r-j is a positive integer for all i and a0 is not an ordinal
a "

then x = w ° 6 where a0 is a typical upper element in the canonical

representation of a0 and 6 is a positive dyadic fraction with

numerator one.

(d) I f r-j is a positive integer for all i and a0 is an ordinal

then G is empty. (In fact, such an x is clearly an ordinal.)

A typical element of F is obtained similarly.

Proof. This follows easily from lemma 5.8 and the representation of

n-fold sums discussed earlier using cofinality. Specifically, in the
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expression I w ir-j we replace u k r by x for some k where x is
i<n a

an element in the representation of u> Krk given by lemma 5 .8 . We

consider G. F can be handled s i m i l a r l y .

In par t (a) the s i tuat ion is analogous to that of lemma 5 .3 ,

i . e . by the lexicographical order, the terms obtained by replacing
a

a) n - i r by x are c o f i n a l . This gives us the r e s u l t . For part (b)
a

l e t us analyze more e x p l i c i t l y what happens when u> krk is replaced

by x. I f rfc is not a posi t ive integer I ou i r i is replaced by
i<n

I a) ir-j + a) krfc" - w k m + J u i r j , In p a r t i c u l a r , the f i r s t term
i<k k<i<m

a,
a l t e r e d is the u> k term. I f r^ is a posi t ive integer the sum is

a a " a a "
replaced by I <a ir-j + oo k 6 + I u> ir-j. The higher term u k is

i<k k<i<n
introduced. Thus in either case when co kr^ is replaced by x the

term that is altered is at least the u k term.
a i

Now i f k = j , i t follows that the u term is the f i rst

one that is altered. For k < j the term that is altered is necessarily

higher (either u> k or s t i l l higher). Thus the terms obtained by alter-
a-;

ing a) J r j are cofinal with respect to the terms obtained by altering
a

w ^r^ for k < j . (So far this may be regarded as a more detailed proof

of part (a) i f j is replaced by n.) Now suppose k > j . Recall that

a^" is an in i t ia l segment of â  and a^" > a^. Since â  is an

in i t ia l segment of aj so is ak". Furthermore â 11 > a j . Since
ak < a j we aPPear "to have an inequality going in the wrong direction to

apply transitivity. Nevertheless the inequality follows from the nature

of in i t ia l segments. Suppose a^" has length a. Since a^" > a^, we

have of au(a) = - . Since a^ is an ini t ia l segment of a-i, then
a-j

aj(a) = - . Hence a^" > a j . Thus the terms obtained by altering u> r j
a,

are cofinal with respect to the terms obtained by altering u> krk for

k > j .

We have shown that the upper terms may be simplified to

v a - a j " a j ' r a -

2, a) 'r-j +o) u r j - a) m + I w "'r-j, i . e . by cof inal i ty the only term
i < j j<i<n
we need a l te r is the j ^ 1 term.
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I f b = maxUj 1 , ai+ ) then for m1 su f f i c ien t l y high
b a j 1 a.

a) m1 - a) m > | I a) 1 r j | . Hence i t is clear by mutual cofinality
j<i<n

that the above expression can be simplified to
a . a -i H a - j '

I co ir- j + u) J r j - co ° m. This completes the proof of part (b ) .
i<k

In par t (c) a l l sums obtained have the form
,, a. a. " a.
2, o) i r j + a) k 6 + I a) ir-f . I t is standard by now that this is

i<k k<i<n
a a

mutually cof inal with I co ir-j + OJ k 6. During our proof of part (b)
i<k

we already saw that a^" is an i n i t i a l segment of a0 and that „
a k" > ao« Hence the above expression is mutually cofinal with co k 6.

a "
When k = 0 th is is simply co ° 6. F ina l l y , since every element of the

ii n

form a|< is also of the form a0 , we need only terms for which k = 0,

thus completing the proof of part (c) .

Part (d) follows immediately since there are no a©11. (Recall

that a0 being an ordinal is equivalent to a0 consisting only of pluses

which is in turn equivalent to the non-existence of any a0 " . )

I t is interest ing to contrast the si tuat ions in parts (a) and

(c) with regard to co f i na l i t y . In part (a) the las t term contributes the

cof inal part whereas the reverse is true in part (c ) .

We are now ready to determine the formula for the sign

sequence for co . Let aa be the number of pluses in the i n i t i a l seg-

ment of a of length a, and l e t a+ be the tota l number of pluses in

a.

Theorem 5.11. (a) The sign sequence of u>a is as fol lows. We begin
a *• i

with a plus. Then for each a we have a s t r ing of co a pluses i f

(b) The sign sequence of co n, where n is a posit ive integer greater

than 1 is obtained by beginning with the sequence for u> and fol low-
a+ a i

ing i t by u> (n-1) pluses. The sign sequence of u> — where n is a

posi t ive integer is obtained by beginning with the sequence for co and

fol lowing i t by by co n minuses. For negative coeff ic ients we use sign

reversal . (Note that we s t i l l count the pluses in a since a is

unaltered.)
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a.
(c) The sign sequence of I w 1r1

# , where r-j is e i ther an integer or a

dyadic f rac t ion with numerator one, and, for a l l i , a-j+i is an i n i t i a l

segment of a j , is obtained by juxtaposing a l l the modified sign
a.

sequences for each i , where the modified sign sequence of o> ">r-f is

obtained as fo l lows: For i = 0 we use the rule in part ( b ) . For
b.

i > 0 we apply ru le (b) to the element u i r j , where b-j is obtained

from a-j by ignoring a l l minuses.

Before proving the theorem we i l lust ra te with several

examples. F i rs t le t a = ( + - ) . Then w begins with a plus. Then the

f i r s t term in a, which is +, gives rise to u>° l = u pluses and the
1+1 9

second term, which is - , gives rise to w = u> minuses. So a l to-

gether we have 1+w = u> pluses followed by w2 minuses. (In juxtapos-

ing sequences ordinal addition is what is relevant.) Incidentally,

since a = j this is /w" (by the law of exponents), so that this is

consistent with an example which was done in Chapter 4.

Now l e t a0 = (-+-++), ax = (-+-+) and a2 = ( -+-) . We
a a i a

compute a) °5 + w ^j - a) 2 3 . By rule (a) we begin with a plus, w

minuses, u> pluses, w2 minuses, oo2 pluses, and f ina l ly w3 pluses.

(The group of w2 pluses gets absorbed by the UJ3 pluses.) By rule (b)

this is followed by a>34 pluses contributed by the "5". The contribu-
a i

tion from u ^ follows. By rule (c) this is the sequence obtained from
b i 2

u> ^r where bx = (++). This consists of UJ2 pluses followed by u 2
minuses. (Note that the contribution of the j is the same for

a i b 1
u) ^j and a) ^ j . ) Finally we have w-3 minuses because of sign reversal

^ ^ a2

since we would have had w-3 pluses i f the term was +00 3.

The example suggests that the formula can be simplified i f we

consider blocks of pluses and minuses in a surreal number a rather than

individual signs. In fact , this can and wi l l be done later . However,

the present form is appropriate for the inductive proof.

Proof (of Theorem 5.11). We do this by induction on the length of the

sign sequence g(x) obtained from x = I <*> *• r-f by the formula in the

statement of the theorem. We want to prove that g(x) = x.
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a.
First we show that g is one-one. Suppose x = I GO ""r-j,

b. 1<m

y = I " 1Sj, and g(x) = g(y). Assume first that a0 = b0. Then g(x)
i<n

and g(y) have the same tail after discarding the initial segments
a b

corresponding to <*> o = w o. Now a +,a +, ..., a + is a decreasing

sequence of ordinals since a. < a-j and a.+1 is an initial segment

of a-j. Hence the length of the tail has the form J ID i n-j.
i<m

Thus the length of the tail determines a-j+ and n-,*

uniquely. Furthermore, a-j + determines a-j uniquely. This is because

a-j is obtained from ao by stopping at a plus. Finally, the signs of

the various strings determine whether r-j is an integer or a dyadic with

numerator 1 and the value of n-j determines r-j. Thus x = y.

Now we rule out the possibility that a0 t b0. If neither

a 0 nor b0 is an initial segment of the other, then clearly a discrep-

ancy between g(x) and g(y) arises at the point where a0 and b 0

differ. Suppose without loss of generality that a0 is an initial

segment of b0, and consider the tail following the sequence for GO °.
a.+

The length of the tail of g(x) has the form J u 1 n-j which is less
i<m

a + +i a ++i
than u) ° . The t a i l of g(x) begins with a str ing of to °

ident ical signs. So certainly g(x) * g(y).

I t is clear that g(x) has f i n i t e length only i f x has the

form o)°r = r, in which case the formula is consistent with what we

already know about dyadic fract ions.

Now l e t x = GO . We look at the canonical representation

g(x) = F|G. An element of F is obtained by stopping just before a plus

in the sequence for g(x). I f a consists only of minuses then the only

plus in x is at the beginning so F = {0} . Otherwise a plus in x

rises from a plus in a at some place a where a(a) = +. Let b be

the i n i t i a l segment of a of length a. There are GO pluses in x

ar is ing from that plus in a. Then the typical element of F is

obtained by juxtaposit ion of the sequence arising from b with c

pluses where c < to . By cof ina l i ty we may just as well l im i t our-

selves to values of c of the form GO n for positive integers n. But

by case (b) and the inductive hypothesis, such an element is GO (n+1).
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Similarly an element of G is obtained by stopping just before a minus

in the sequence for g(x). Let b be an initial segment of a of

length a where a(a) = -. Then (again using cofinality) we obtain the

typical element of G by juxtaposition of the sequence arising from b

wb n minuses. By the inductive hypothesis this is co (jn). Therefore

g(x) = jO,u) nf Nco I—Jf - co = x.
2"

Next l e t x = co n, where n is a positive integer larger than

one. Since g(x) is obtained from g(co ) by adding pluses only, both

have the same upper elements. For the lower elements we may l im i t our-

selves to the contribution of the term V by co f ina l i t y . Thus we add

on c pluses to the sequence for co , where c < coa (n-1). Again by co-
a+ b

f i n a l i t y we assume that c has the form co (n-2) + co m where b is an

ordinal less than a+ and m is a positive integer. Now as a' runs

through a l l the i n i t i a l segments of a less than a, a l + runs through

a l l ordinals less than a+ , so c has the form coa (n-2) + w m# But

th is is exactly g(coa(n-l) + wa m) = coa(n-l) + ua m by the inductive

hypothesis. ( I f there are no terms a' this reduces to co (n-1).) In

any case the upper and lower elements for g(x) are just what we need by

lemma 5.8(b) to deduce that g(x) = co n = x.

Now le t x = u>a(—-). Since this is similar to the previous

case i t suffices to outl ine the argument. g(x) has the same lower

elements as g(u ) = co . The upper elements are obtained by adding on

coa (n-1) + coa m minuses. By the inductive hypothesis this is

coa(——) - coa m. Since — = {0}|(——) we have just what we need by

lemma 5.8(a) to deduce that g(x) = co I—J = x.
We now le t x = I co i r - j . The argument is a straightforward

application of lemma 5.9. Let g(x) = F|G be the canonical represen-

tat ion of g(x). Suppose f i r s t that r is not a positive integer but

r-j is a positive integer for i > j . In order to get a set G1 cofinal

in G, i t suffices to consider a set of minuses in g(x) which is

a rb i t r a r i l y far out. We obtain this from the contribution of the term
a-j

w °rj. Thus a typical element of G is obtained by juxtaposing the

sequence obtained from the truncated sum up to the j t n term with a

typical upper element in the canonical representation of g(co r j ) , where
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bj is obtained from aj as in the statement of part (c) of the theorem.

In other words, the typical element of G1 has the form

g( I a ir-j + a) Jrj" - w J'm) where rj", aj 1, and m are as in the

statement of lemma 5.9(b). This follows by the earlier part of the proof

dealing with monomials. By the inductive hypothesis this is
a. a i a i'

j. u) irj + a) Jrj" - w J m.

If r-j is a positive integer for all i, then g(x) is
a

obtained from g(o> o) by adding on pluses only. Hence g(x) and
a a "

g(w o) have the same upper elements, namely u o e,

A similar argument applies to the lower elements. In all

cases the upper and lower elements obtained for g(x) are just what we

need by lemma 5.9 to deduce that g(x) = x. (For convenience we unified

various cases. For example, in lemma 5.9 part (a) may be regarded as a

special case of part (b) and part (d) of part (c). There is a pedagogi-

cal advantage in separating cases at the beginning for the sake of

concreteness, but at a later stage it is repetitious and tedious.)

We are now ready to determine the sign sequence of a general
sum I u) i*rj. First, we define what we mean by a reduced sequence a$'

of a$, where 3 < a.

The reduced sequence a$° of a3 is obtained from a$ by

discarding the following minuses occurring in ae :

I i f a$(6) = - and there exists y < 3 such that

(Vx <̂  6)[aY(x) = ag(x) ] , then the 6th minus is discarded

II i f 3 is a non-limit ordinal, a has a , followed by a minus as

an i n i t i a l segment, and r . is not dyadic, then the last minus is

discarded.

For example, if a0 = (+-++) and ax = (+-+-) then

a^0 = (++-), i.e. the first minus is discarded but not the second one.

If a 0 = (+++) and a = (+++-) then a ° = (+++) if r0

is not dyadic but a ' = a if r0 is a dyadic fraction.

Roughly speaking, we ignore minuses which occur earlier;

however, the second part gives a special situation where even a new

minus is ignored.
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Theorem 5 .12 . (a) The s ign sequence f o r o>ar f o r p o s i t i v e rea l r i s

ob ta ined by j ux tapos ing the sequence f o r u w i t h the sequence obta ined

from r by omitting the f i r s t plus and repeating each sign in r, w

times.

(b) I f r is negative the sign sequence in (a) is reversed.

(c) The sign sequence for I w i r j is obtained by juxtaposition of
i<a 0

a. o
the sign sequence for the successive u> "• rT- where a-j is the
reduced sequence of a-j.

Remarks. Theorem 5.11 is, of course, a special case of theorem 5.12. In

fact, recall that in theorem 5.11 we were interested primarily in the

sign sequence for w and therefore used only those sums which were

needed for the induction.

We illustrate theorem 5.12(a) with a simple example.

Consider u2{^-). Here a = (+-) and r = (+-+). We already saw
l

earlier that GO2 gives rise to w pluses followed by w2 minuses.

Since a+ = 1 the contribution from r is w minuses followed by u>

pluses.
L I

As a simple example of theorem 5.12(c) consider u>2 + w8.

— = ( + — ) . Since -x = ( +-) we ignore the f i r s t minus in determining8 2 k

the contribution of the term m8. This therefore becomes a> pluses

followed by a>22 minuses.

Proof. We f i r s t consider the case where the surreal number has the form

I u) "ir-i with r-j arbi t rary dyadic. This is a s l ight generalization of
i<n
theorem 5.11. The proof that g is one-one extends immediately to this

case. For example, the signs of the strings s t i l l determine r-\

uniquely. Recall also that lemmas 5.8 and 5.9 deal with general dyadic

coef f ic ients. This gives us a head star t in imitat ing the proof of

theorem 5.11.
The subcase where x = war with r a positive dyadic

fract ion but neither an integer nor a dyadic fract ion with numerator one

is similar to the cases x = wan and x = ^("fj") dealt with in the

proof of theorem 5.11. In fact , le t r = { r ' } | { r n } . Note that r' is
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the i n i t i a l segment of r obtained by stopping just before the last plus

and r" by stopping just before the last minus. By hypothesis r

begins with a plus following which there is at least one plus and one

minus. Hence in the canonical representation of g(x) we obtain co-

f i n a l i t y on both sides by l im i t ing ourselves to the contribution of the

term " r " . By further use of cof ina l i ty a typical upper element is

obtained by adding on w m minuses to g(w r") and similar ly for

typical lower elements. By the inductive hypothesis such a typical upper
a a'element is u> r'-co m. This and a similar result for lower elements

gives us what we need by lemma 5.8(a) to deduce that g(x) = w r = x.

For f i n i t e sums the proof is identical to that of theorem

5.11(c) since no use is made there of the assumption that the dyadics r-j

have numerator one.

Next, we consider the case x = co r where r is not dyadic.

The last part of the proof that g is one-one, which depends only on

length, no longer works. For example, g(w2) and g(oj/7) have the same

length u2 by the formula. (Of course, i f one is interested, the proof

can be extended to the present case by noting that even i f the length of
a ++i

the t a i l of g(x) is u) ° the signs are necessarily not a l l al ike

so g(x) * g(y). On the other hand, this is not too important now since

i t is no longer urgent to know in advance that g is one-one.)

Let r = R1|R" be the canonical representation. By lemma

5.2 ojar may be expressed as ajaR'|toaR" since r is not dyadic. (Note

the crucial s impl i f icat ion for non-dyadic coeff icients where we get by

with lemma 5.2 rather than lemma 5.8(a)). Consider the lower elements in

the canonical representation of g(x). Since r does not have a last

plus we obtain a cofinal subset by taking only those i n i t i a l segments

which stop just before a str ing of pluses which correspond to a plus in

r. But this is precisely of the form g(w r ' ) = w r1 since we have the

resul t for dyadic coeff ic ients. Similarly a typical upper element has

the form U a r " ) . Hence g(x) = codr'|coar" = coar = x.

The fact that i t is possible for x to be an i n i t i a l segment

of y and s t i l l have n£(x) > n£(y) has helped to complicate the proof

so far . We were unable to use induction on n£(x) which a pr ior i seems

l ike the natural type of induction to use. Fortunately, for the rest of

the proof we can use induction on a quantity closely related to n£(x)
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instead of the length of g(x).

We now define rni{x) (the reduced normal length of g(x).

Let I oj ir-j be the normal form of x. First we define h(i)
i<a

for i < a.

(a) If r-j is not dyadic then h(i) = i+1 providing i+1 < a.

(b) If r-j is dyadic then h(i) is the least j exceeding i such

that either rj is not dyadic or 3k(i £ k < j) and aj is not

an initial segment of a^) providing j < a], h(i) may be

undefined for some i.

We now obtain a subsequence dj of a as follows:

(a) d0 = 0.

(b) d . + 1 = h ( d . ) .

(c) If 6 is a limit ordinal then d$ = lim dy providing lim dy < a.
Y<3 Y<3

Finally, rn£(x) is the ordinal type of the sequence {dj} (i.e the

least i:dj is undefined).

Note that the definition says that if h(i) = j then for

i <_ k < k+1 < j, a. is an initial segment of a. . Hence necessarily
j = i+n for a finite n. Furthermore I oi kr^ is a sum of the kind

we considered earlier since again by the definition all r^ are neces-

sarily dyadic if the sum does not reduce to a monomial. Thus, inform-

ally, we obtain the reduced normal length of x by regarding all such

finite blocks in the expansion of x as a single term.

We now need a lemma which bears the same relation to lemma

5.9 that lemma 5.3 bears to lemma 5.2. Let x have the form I u> ir-j
i <a+n

where for all i _> a, a-j+i is an initial segment of a-,- and r-j is
a.

dyadic. I .e. x has the form I u> "»r-j + y where y is a f i n i t e sum
i<a

a.
of the kind considered earlier. Note that rn£(x) _< rn£( I a> ">r-j) + 1.

i<a
a.

Lemma 5.10. Let x have the normal form I co ir-j and express x as
i<a+n

a.
I a) Tr-j + y. Suppose that y is a surreal number which satisfies the

i<a
hypothesis of lemma 5.9. Then x can be expressed in the form F|G
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where a typical element x" of G is obtained as follows:

(1) If y satisfies case (a) or (b) of lemma 5.9 then

x" = I w "»rj + y" where y" is as in the lemma.

(2) If y satisfies case (c) and (3aa")(Yi(i<a +a a"<ai) then
.. v ai » "

x = J. w lri + w 6«

(3) If y satisfies case (c) and no such aa" exists or if y

satisfies case (d) (in which case there certainly does not exist an

aa") then x" is a typical upper element in the representation of

v a *
I a) ir-j as given by the def in i t ion i f a is a l im i t ordinal and

by lemma 5.3 i f a is a non-l imit ordinal.

A typical element of F is obtained s imi lar ly .

Proof of lemma. Typical elements x" are I u> ir-j + y" and z"+y

a.
where z" is a typical upper element of I w ">r-f. In cases (1) and (2)

terms of the former type are clearly cofinal by the lexicographical order

thus proving the lemma in these cases. In case (3) consider a typical
a . a "

element of the former type. This has the form I OJ 1 r-f + w a e.

Then by d e f i n i t i o n o f case ( 3 ) ( 3 j ) ( j < a A a j £ a a " ) , Now
a. a. a. a "

I a) nr-j + OJ Je1 is clearly less than I a> ">r-f + u> a e for e1 < e by
i<j i<a

the lexicographical order. This guarantees that terms of the type

z" + y are cofinal in this case. As usual, by cofinality such terms

may be replaced by z". This completes the proof of the lemma.

The distinction between case (2) and case (3) can be

expressed in terms of the sign sequences of the a-j's. Recall that case

(3) is characterized by the condition (Vaa
n)Paj)(j<a aj£aa"). Since

the a-j's are decreasing and since the aa" are initial segments

corresponding to minuses in aa, an aj corresponds to aa" by the above

condition precisely if it either equals aa" or has aa
M followed by a

minus as an initial segment. Furthermore, the existence of an aj

satisfying aj < aa" for a given aa" is precisely condition I in the

definition of reduced sequence for discarding minuses for the minus aa

corresponding to this aa".
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Let us ma in ta in the c o n d i t i o n f o r case (3) but assume t h a t

for some a a " there i s no a j s a t i s f y i n g a j < a a " . Then the c o r r e -

sponding a j sat is f ies a j = aa" . Since there is no aj satisfying
a j < a a " , j must be an immediate predecessor of a, i.e a = j+1 . This

is condition ( I I ) in the def in i t ion of reduced sequence except for the

lack of reference to the nature of r a - i . Furthermore the minus corre-

sponding to aa" must be the last minus in aa .

We now have what we need for the main induction on rn£(x).

First suppose that rn£(x) is a non-l imit ordinal . Let x = I OJ nr-j
i <a+n

where f(Vi^ot)(a-f+i is an i n i t i a l segment of aj and r-j is dyadic) or

(n=l and r-j is non-dyadic)l. Then x = I u> 1#r-j + y where y is a
i<a

f in i te sum of the kind considered ear l ie r . By the inductive hypothesis

a. 0
)

a. 0

we may assume the result for J u V j . We now use induction on Jig(y )
i

a

y°= I i
a o

where y°= I to i r-j. The argument is similar to the one used in
a<i<a+n

the proof of theorem 5.11; however, there is a complication because of

the need to consider reduced sequences. In this connection note the

obvious fact concerning juxtaposition of sequences that i f A = F|G

where F and G are both non-empty then SA = SF|SG.

As before, we desire to show that g is one-one, but now we

regard g as a function of y using the reduced sequence for fixed

I a i"r j . This can d i f fe r from the ear l ier case only by the contribution

of aa to the sign sequence since a l l minuses occuring in aj for

i > a are automatically ignored. Thus i t suffices to show that

aa + aa° is one-one. The immediate reaction may be that i t is

unreasonable to expect this but recall that (Yi<a)(aj>aa) so that the

apparently obvious way of getting counter-examples f a i l s .

Speci f ica l ly , suppose aa * ba but aa° = ba°. Assume

*aU) * ba(J) but a a ( i ) = b a ( i ) for i < j . Without loss of

generality the "dangerous" case occurs i f a a ( j ) = minus and the minus

is ignored in a a° . Hence (33<a)(Vk<j)[aB(k) = a o ( k ) ] . By the

lexicographical order, since ba < bg = a$, b a ( j ) is necessarily minus

regardless of whether condition I or I I holds in the def in i t ion of

reduced sequence, thus leading to a contradiction.



AN INTRODUCTION TO THE THEORY OF SURREAL NUMBERS 90

a.
Now the sign sequence for g( I o> 1 r-j) is the juxtaposi-

i <a+n
t ion [g( I u> V j J j C g t y 0 ) ] . (Note that we already know by theorem 5.11

i<a
that g(y) = y and simi lar ly for y1 , y , etc. but i t is convenient to

maintain the notation g(y) for consistency of notation in dealing with

juxtaposi t ion.

Suppose y is posit ive. A similar argument w i l l apply i f y

is negative. Suppose f i r s t that g(y ) contains a minus not contributed

by aa . This corresponds to y as in lemma 5.10(1). We can obtain

subsets cofinal in the canonical representation of g(x) by considering

pluses and minuses in the segment within g(y°). Now i f y = { y ' } | { y " }

then y° = { y ' 0 } | { y " 0 } and furthermore

( I O H g ] { [ ( I ^ ^ i ) 1 [ g ( y ' ° ) 1 } I { [ g ( I ^ i r , - ) 1 [ g ( y " 0 ) ] }
i<ct i<a i<a

by t r iv ia l reasoning with juxtaposition.
By the inductive hypothesis this is

a. a. a.
{ 1 « ̂ i + y'}|{ I " lri + y"} which is I u ̂  + y as desired by
i <a i <a i <a

lemma 5.10(1). It is worth remarking that juxtaposition works trivially

in the argument here since the minuses ignored in y depend only on the

nature of a-,- for i < a so they are the same for all y1 and y".

Now suppose all minuses in g(y°) are contributed by aa,

i.e. by minuses in a a which are not ignored. Such a minus corresponds

to an aa". Assume first that case 2 of lemma 5.10 holds. Then by

cofinality we may limit ourselves to such aa" and the juxtaposition

argument is identical to that of the earlier case.

The most subtle case occurs when case 2 is not satisfied. By

the remarks following the proof of lemma 5.10 this can happen only when

a has the form j+1 and the minus corresponding to aa" = aj is the

last minus in aa. Since we are dealing with a minus in a which is not

ignored, ra-i is dyadic. (This case is the most delicate with regard to

the issue of ignoring of minuses.) We obtain a subset cofinal in the

upper elements of the canonical representation of g(x) by taking
a +

sequences of the form g( I <*> i>j) followed by </a pluses and

a) a n minuses for some integer n. This follows because first all

minuses preceding the one corresponding to aa" are ignored in y .
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Next i t follows from the ident i ty I a)1+1 = a/* that g(y°) begins
+ i<a

with a) pluses.

F ina l ly , there are no minuses following the succeeding
a ++i „

a) a minuses contributed by the minus corresponding to aa . Now
., a . a . a •; a .
1 a) ir^ = I a) i r j + w J r j . Also the tai l of g( J u ^ j ) contributed

i<a i < j i<a
a. a j + a j

by a) J r j followed by the OJ pluses and OJ n minuses is exactly
a-;

the contr ibut ion of a term of the form OJ (rj+e) for some posit ive

dyadic e to g[ I OJ ir-j + u> J ( r j + e ) ] , which is I OJ i r j + OJ Je by
i < j i<a

the main inductive hypothesis (the one on rn£(x) ) . Hence g(x) has
a. a. a-j

the form { I OJ V- j + y ' } | {a> i r j + GO J e} which i s x by lemma 5.10(3) .
i<a

Now suppose g (y° ) does not contain a minus. Then any

upper element [ g ( x ) ] n i n the canonical representa t ion of g(x)
a.

corresponds to a minus in g( £ OJ 1 r 1 - ) , i .e is an upper element in the
i<a

canonical representation of the l a t t e r . Now g( J u V j ) = I OJ ir-j
i <a i <a

= { I w l r i " w Y e l l l I u i r i + w Y e " } where Y < a and e ' ,e" are
i <y i <y

positive dyadic with numerator 1.

By the inverse co f ina l i t y theorem for arb i t rary (g(x))M

there exists y and e such that

[g(x) ] " > I u i r f + w Ye = g[ I OJ V J + OJ Ye] by the main inductive
i<Y i<Y

hypothesis.

(Note that since e is dyadic i t is guaranteed that

rn£[ I OJ iVj + o)Yel _< rni[ I OJ i r ^ ] . )
i<Y i<a

a. Y
We must now show that gf I OJ V-j + OJ e] is greater than

[g( >] « a i r i ) ] [ g ( y 0 ) ] = g(x) .
i<a

Of course g| ), u i r j + OJ e] = ]i u i r j + OJ e > I OJ Tr-j

a. i^Y i^Y i<a
= 9( 1 w 1 r i ) . Thus by the lexicographical order the only d i f f i c u l t y

i
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i i i i i l f I V Yearises when I a> i r j is an in i t ia l segment of I w V j + w Ye. In
i<a i<Y

a. aY

order for this to occur rY is necessarily dyadic. I u> "• r-f + 03 'e is
i

the sequence I u> 1#rj followed by u> Y pluses and w Y n minuses
i<y

a.
for some integer n. Therefore the contribution of I u V-j to

a.
£ a) V j consists only of pluses. Necessarily y < i + r-j is a

i<a
positive integer and y _< i -• ai+i is an initial segment of a-,*. The
latter follows since a-j+i < a-j as, otherwise, a-j+i would have a minus

not occurring in aj and, a fortiori, not in any aj for j < i, and
a.

would thus contribute a minus to J u V j . It follows that a = y+n
i<a

a. _ a.+

for some integer n. So I w "*r̂  contributes I w "• r-j pluses to
i y<i<a

I to V j where y <_ i -• a-|+ > a. j + i + . Furthermore g(y°) contains
i<a
only pluses. Since r a - i is dyadic a l l minuses in aa are contained in

a a - i ; hence the number of pluses in g(y ) is bounded above by a number
a +

of the form o> m for some integer m. Since aa
+ < aa _ i + this

f i n a l l y shows that g( J u ir- j)g(y°) consists of the sequence I u> V j
i<a i<Y

aY
+

followed by less than a> pluses. This proves the inequali ty.

We now have what we need by the cof ina l i ty theorem to deduce

that g(x) may be expressed in the form

{ I w *H + y ' } | { I OJ ""rj + 03 Ye} . Case (3) of lemma 5.10 applies, so
i<a i<y

the above is a representation of x, thus f i na l l y g(x) = x.

This completes the induction for the case where rn£(x) is

a non-l imit ordinal . Now suppose rnl(x) is a l i m i t ordinal. Then

rn£(x) = n£(x). (In general, i f n£(x) has the form u>a + m, then

rn£(x) has the form coa + n since the blocks used in the def in i t ion

of rn&(x) are a l l f i n i t e . ) Thus we may assume that x has the form

I o) "Jr.: for a l i m i t ordinal a and that the result is known to be
i<a

a.
val id for jj u V j for 3 < a. We shall show that the representations

i
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of x given by the definition and the canonical representation of g(x)

are mutually cofinal which is enough to guarantee that g(x) = x. It

suffices to consider upper sums since the argument is similar for lower

sums.

Let y be an arbitrary upper element of g(x). Then y is

an initial segment of x determined by a minus sign contributed by a

term u r$ for 3 < a. Since a is a limit ordinal, 3+1 < a.

Consider z = £ a> ir-j + w &+1e which is an upper element of x. By

the inductive hypothesis this is g(z) which contains g( I o> 1#rj) as
i<3

an i n i t i a l segment which in turn contains y followed by a minus as an

i n i t i a l segment. Hence z < y by the lexicographical order.

Now l e t y be an arbi t rary upper element of x. Then y

has the form I u> "ir-j + w 3e where we may assume that e is a
l<3

dyadic with numerator one.

We claim f i rs t that the set of y for which u YrY con-

tributes a minus to g(x) is cofinal in a. Otherwise suppose there

exists a Y such that the contribution of J u ir-j to g( J u ir-j)
Y<i<ct i<a

consists only of pluses. As in the proof of the case where a is a non-

l imi t ordinal we obtain that a-j+i is an i n i t i a l segment of a-,* for

Y £ i . However, since a is a l i m i t ordinal this already is a

contradiction.

I t follows that g(x) cannot be an i n i t i a l segment of y

since otherwise a l l contributions of u> ir-j for 3 < i to g(x) would

consist only of pluses which we just noted is impossible.

Hence g(x) is defined at the least ordinal j for which

g(x) and y d i f f e r . The sign [ g ( x ) ] ( j ) is contributed from a term

aY
a) rY. Suppose ( g ( x ) ) ( j ) = +. By the lexicographical order this would

imply that y < g( I u ir-j) = ( J w V j ) where 6 = max(3+1,Y) which is
i<6 i<<5

false. Hence ( g ( x ) ) ( j ) = - . By what was said ear l i e r there exists

6 > y such that a) 6r$ also contributes a minus to g (x ) . This

determines an upper element z of g (x ) . g(z) contains g( J u i'rj)
i
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as an initial segment since 6 > y. Hence by the lexicographical order

z = g(z) < y which is precisely what we need.

This finally completes the proof that g(x) = x in all

cases.

Now that we have the fundamental relation between the sign

sequence of a surreal number and its normal form, we can study the

surreal numbers in more detail. For this purpose it will be convenient

to express theorem 5.11(a) in a form which considers contributions to the

sign sequence of u> by strings of pluses and minuses. Specifically, if

a string begins at the i t n place in a then the next string begins at

the j t n place where j is the least ordinal larger than i such that

Corollary 5.1. The sign sequence of a> consists of the following

juxtaposition. We begin with a plus. For each string of pluses in a

we have a string of u> pluses where b is the total number of pluses

in a up to and including the string. For each string of minuses in a

we have a string of w c minuses where b is the total number of

pluses in a up to the string and c is the number of minuses in the

string, a is regarded as beginning with a string of pluses.

Proof. This follows immediately from theorem 5.11(a). For pluses we use

the identity I w1 l = w a for 3 < a. For minuses aa remains fixed
i

during a string. (No minus contributes a plus!) Finally if a begins

with a minus then a may be regarded as beginning with 0 pluses giving

rise to w = 1 plus in a> . Thus the last statement is a convenient

way of unifying the cases where a begins with a plus and where a

begins with a minus. In the former case the first plus is superfluous by

absorption, so the statement gives the plus precisely when it should.

To illustrate this we refer back to the second example

following the statement of theorem 5.11. We had a0 = (-+-++). The

string of two pluses at the end gives rise to w3 pluses since there is

a total number of three pluses up to and including that string.

Note finally how strings of pluses and strings of minuses are

treated in entirely different ways.
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6 LENGTHS AND SUBSYSTEMS WHICH ARE SETS

Up to now we have considered basic material which in some

form is contained in [1], At this point we begin to consider problems

that are new and more specialized. In this chapter we are interested in

information regarding upper bounds of lengths of surreal numbers obtained

by various operations. This will allow us to obtain subclasses of the

proper class of surreal numbers which are actually subsets and closed

under desirable operations. Our first result is an easy one.

Theorem 6.1. &(a+b) ± £(a) ® lib).

Proof. We use induction as usual. A typical upper or lower element in

the canonical representation of a+b has the form a°+b or a+b°.

Without loss of generality consider a°+b. By the inductive hypothesis

£(a°+b) <_ £(a°) S U ( b ) < £(a) © £ ( b ) . The result follows by theorem 2.3.

This result is sharp. In fact, we already know that in the

special case where a and b are ordinals we obtain equality. If a

and b are not ordinals then we usually have a proper inequality. For

example, SL[1) = 1 but i[j) = 2, hence i(l) < iij) + £(~).

Incidentally, the sign sequence formula of the preceding chapter makes it

comparatively routine to study the question of when equality is obtained.

We do not pursue this here since we are at present more interested in

bounds.

Theorem 6.2. a(ab) £ 3
£ ( a ) ® £ ( b )

# [We are u s i n g ordinary ordinal

exponentiation.]

Proof. Using induction as in the proof of theorem 6.1 we must consider

elements of the form a°b + ab° - a°b°.
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Since £(-a) = £(a) and since theorem 6.1 extends trivially

to arbitrary finite sums we have:

£(a°b + ab°-a°bo) <_ £(aob) © £(ab°) © Jt(a°bO). Let c = maxU(a) © £(b°),

©£(b)]. Then by the inductive hypothesis £(a°b) _< 3C and

_< 3C. Clearly £(a°) © i(b°) < c. Hence £(a°b<>) < 3C. There-

fore Ji(a°b+ab°-aObO) < 3c + 3c + 3c = 3C+1. Furthermore

c < £(a) © £(b), hence c+1 _< £(a) @ i(b). We have shown that an

arbitrary element in the canonical representation of ab has length less

then 3*(a) ® ^^K thus the result follows by theorem 2.3. [Note that

3C is necessarily a monomial in the expansion of ordinals in terms of

powers of «o so that © and + agree with addends of the form 3C,

hence the above computation is justified.]

It is strongly conjectured that £(ab) £ £(a) * i(b) in

analogy with the case for addition. In fact, it appears as if a routine

but extremely messy proof is possible using the sign sequence formula

(theorem 5.12). However, I feel that if the conjecture is true there

should exist an elegant proof. [In fact, the referee of the original

manuscript claims to have a proof. Since, as is pointed out later,

theorem 6.2 is adequate for the future, this is not being pursued here.]

It is possible to prove theorem 6.1 using the sign sequence formula. In

view of the simplicity of our proof this would be silly. On the other

hand, such a proof would give us detailed information on the comparison

of £(a+b) and £(a) (+) i(b).

Fortunately theorem 6.2 suffices for important future results

in spite of the crudeness of the bound used. For example, to begin with

we have the following corollary.

Corollary 6.1. The set of surreal numbers with length less than a fixed

e number is a subring of the class of surreal numbers.

The situation for reciprocals is more complicated. The fact

that 1(3) = 3 and i(j) = JO makes it clear that a different type of

result is needed. Specifically we shall deal with the cardinality of the

lengths.

Theorem 6.3. U ( ~ ) | £ X o U ( a ) | [i.e. unless £(a) is a finite ordinal

a —
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Proof. We use the construction in chapter 3C. Let d = max( |n(a)|,X 0).

The collection of all elements of the form <a1,a2,*••,an> used in the

above construction has cardinality bounded above by d since all aj are

initial segments of a.

Our main induction will be on £(a) and we shall show that

|£<ax,a2,• • • »an>| £ d using a subsidiary induction on n. Consider

<a1,a2,---,an+1> and let b = <a1,a2,--• ,an>. Then <a 1»a 2»'"'
an+i >

is the unique solution of the equation (a-aj+^b + a.j+1x = 1.

|£(a-j +1)| _< d. |&(b)| <_ d by the subsidiary inductive hypothesis and

U ( - )| < d by the main inductive hypothesis. Hence by theorems
ai+i "

6.1, 6.2 and elementary facts about ordinals \l(x)\ _< d. (Note that for

infinite ordinals a, |3a| = |a|.)

Hence the upper and lower elements in the representation of

a consist of at most d numbers each of which has length of at most

cardinality d. Hence there is a single ordinal a of cardinality d

which is an upper bound to the lengths of all the upper and lower

elements. (Such an ordinal is obtained as an ordinal sum of all the

lengths since d = d.)

Finally l(—) < a+1 by theorem 2.3 and certainly
|o+l| = |a| £ d. a "

Theorem 6.3 can also be proved by using the normal form in a

manner similar to the proof we shall use for theorem 6.4. I feel that it

is worthwhile to have proofs of both kinds, i.e. those that use the

normal form and those that don't. Even if there is a known proof of one

type for a certain theorem a search for a proof of the other type can

lead to certain new insights. It is tempting to make an analogy with

synthetic and analytic proofs in geometry, with analytic proofs corre-

sponding to proofs which use the normal form. This makes some sense

although analogies always have their limitations.

Theorem 6.4. If the cardinality of the lengths of all the coefficients

in a polynomial of odd degree is bounded above by an infinite d, then

the polynomial has a root b such that \i(b)\ <_ d.

The result will follow from several lemmas dealing with

lengths of elements in normal form. All these lemmas follow from theorem

5.12.
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Lemma 6 . 1 . I f a is not dyadic then | & U a ) | = | i ( a ) | .

Proof. Since every term in a gives r ise to at least one term in co

( in fac t at least a> terms), i t is clear that £(a) £ (u ) hence

cer ta in ly | i t (a) | <_ |*(a>a)|.

Now given any surreal number a, l e t b be obtained from a

by replacing a l l minuses in a by pluses. [Although formally we can say

that b = i t (a), i t is preferable to keep surreal ordinals and ordinals

regarded as lengths apart , especial ly because the algebraic operations

a r e d i f f e r e n t . ]

S i n c e t he c o n s t r u c t i o n o f the s i g n sequence f o r w i n v o l v e s

c o u n t i n g t h e number o f p l u s e s a t v a r i o u s s t a g e s , c l e a r l y i{u ) <_ £(co ) .

However , | * ( a ) b ) | = | i t ( b ) | = | U a ) | . Hence \i{>/)\ <_ | * ( a ) | . ( R e c a l l

t h e f a c t t h a t I u ) a + 1 = < A )

Lemma 6.2. \i{^ r)\ = \i[u> )| for any non-zero real r i f a * 0.

Proof. Since w is an i n i t i a l segment of u> r i t fol lows that

i t(w
a) £ £((oar).

Now u> r is obtained by fo l lowing w by at most a> str ings

each of which is obtained from w by ignoring minuses. Hence

£(war) £ U(o) a ) ] [u) ] . Therefore | i ( w a r ) | ± X0\i{^)\. I f a * 0 then

a has i n f i n i t e length. This completes the proof.

Lemma 6.3. I f w r is one of the terms in the normal form of b then

Note f i r s t that th is is not as obvious as i t looks. I f OJ r

i s the f i r s t term then i t is an i n i t i a l segment of b so the resu l t is

immediate. In general the d i f f i c u l t y is caused by the fac t that because

of the ignoring of minuses the contr ibut ion of ID to the sign sequence

of b is not necessarily the sign sequence of u .

Consider the example -w"1 + uT2. This consists of a minus

fol lowed by w+1 pluses and u> minuses, w"2 consists of a plus

fol lowed by u>.2 minuses. Thus uT2 cannot be a subsequence of

-uT^uT 2 but they both have the same length.

Nevertheless the idea of the proof is not too hard. I f a
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minus is ignored in the term u> r there is a corresponding minus which

makes a contribution earlier. (There is an exception which is handled

separately, namely that of the extra minus ignored.)

Proof. We show that UJ r is a subsequence of b providing the

distinction between pluses and minuses in the sign sequence is ignored.

Consider a minus occurring in a which is ignored in the contribution of

war to b. Then the initial segment of a consisting of the sequence up

to and including this minus occurs as an initial segment of an aa for a

a a a
r or the term w r

a a a
term w a r a preceding the term w r, or the term w r has a

a
predecessor which has the form w ar a with aa the initial segment up
to but not including the minus and with ra non-dyadic. For each minus

such that the first condition holds we choose the first term satisfying

the condition. Thus corresponding to the sequence of minuses in w r

which are ignored, except possibly for the last one, we obtain a sequence

t1,t2
#**t3. If y < 6 then ty _< t<$ since the condition for agreement

is more stringent for larger y. It is not necessarily strictly

increasing. For each t in the sequence let Dt = {a:ta=t}. Then Dt

is a partition of all the minuses ignored except possibly the last one.

If s < t, y e D s and 6 e Dt then y < 6. We now obtain the following

subsequence of b by juxtaposition. From each term a> V t we extract
a

the contribution to w t of those signs such that the first minus not

preceding it corresponds to a term in Dt. By brute force this juxta-

position gives the part of the sign sequence of w r up to and including

the contribution of all minuses in a which are ignored except possibly

for the qualification mentioned above.

We still must consider the complication caused by minus signs

which are ignored although they do not occur previously. This may happen
a a

in w r r t as well as w r. In this case we use the rest of the cont r i -

bution of the preceding term. The lack of any contribution from the

ignored minus sign is precisely made up by the contribution from the

preceding non-dyadic coef f ic ient . ' Recall that i f c has a pluses and

i f d is c followed by a minus then the minus contributes ooa l signs

to a) . This is the same as ooaco which is the number of signs

contributed by a non-dyadic r to w r since r has u> signs, each

contributing u signs.
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a
Lemma 6.4. Let a = I u> <*ra. Then |e| _< |*L.u.b. U(aa)u>]|.

Remark. It turns out that this lemma is not needed for the proof of the

theorem. However, I feel that it is of interest in itself and fits in

naturally in our present discussion of lengths. A similar remark applies

to lemma 6.5. What is really needed is lemma 6.5a which strengthens both

the hypothesis and conclusion of lemma 6.5. Lemma 6.5 is of interest

because of the surprising fact that the bound is sharp in spite of the

lack of any hypothesis on the length of 3.

Proof. If £(aa) is finite for all a then there can be at most w

terms so we need only consider the case where at least one aa has

infinite length.

Let d = |i£.u.b. £(a a)|. Then all aa terminate at d or

earlier. By a simple cardinality argument there are at most 2^ such

sequences. This is not good enough for our purpose, and in fact we shall

show that this can be strengthened using the fact that the a's are

well-ordered.

In fact, assume that there exists a well-ordered decreasing

sequence of surreal numbers (aa) containing d+ > d members where d+

is the successor of d. We show that this leads to a contradiction.

First consider the sequence a a(0). Since this can take on

only the values plus, minus, and 0 by the lexicographical order there

exists an aa such that aa(0) is fixed for a > a0. [E.g. if aa(0)

is minus for any a it must be minus for all larger a.] If the fixed

value is 0 we have an immediate contradiction since this says in

particular that aa = aa +x = 0. (Recall that 0 stands for

"undefined.")

We now construct a monotonic increasing sequence (aj)

defined for all i _< fc.u.b. £(aa) satisfying aa(i) = aai.(i) for

all a > aj.

Suppose otj is defined for i _< j. Since aj is mono-

tonic increasing we know that aa(i) = aa.{i) for all a > aj and all

i _< j. Consider the subsequence aa(j+l) where a > aj. By the lexi-

cographical order this is monotonic decreasing. Hence the same argument

as in the case aa(0) shows that there exists an aj+x such that

a(j+l) = aa # (j+1) for all a2. a-+i« Note "tnat the subsequence
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considered still has d+ members.

Now suppose j is a limit ordinal and a-j is defined for all

i < j. Since | j| _< d the set of all a-,- for i < j is bounded above

by a certain 6. By the same argument as before considering the

subsequence of aa for a_> e we can find a suitable aj.

Finally consider the case i = a.u.b. £(a a). The construction

gives us an a-j such that for all a > a-j we have aa(j) = aa.(j) for

j _< i. However, aa(j) is undefined for j > i (even for j=i). Hence

&OL = aa. for a > a.. Since all aa are distinct this is a

contradiction.

Remark: Note that the theorem refers to the cardinality of the A.u.b. of

a set of ordinals. This is not the same as the £.u.b of the cardinali-

ties of the set of ordinals, so caution is required in the statement of

the theorem. To see the distinction it suffices to consider the case

where the set consists of all the countable ordinals. Following this
a

through if we let a = I u> a where aa consists of a plus followed by

a<ojj

a minuses then we see tha t the conclusion of lemma 6.4 cannot be

expressed as | 3 | _< £ . u . b . | £ ( a a ) | since the r igh t -hand side i s X o .

a
Lemma 6.5. If a = \ o> a r a then |£(a)| <_ |£.u.b. it(aa), u>|.

a<3

Proof. By lemmas 6.1 and 6.2 we know that
a

U(o) a r a ) | _< |*(a a)| X o 1 d where d = |£.u.b £(a a), u|. Hence the
a

contribution of <J a r a to the sign sequence of a has at most

cardinality d since signs may be ignored but no extra signs added. By

lemma 6.4 there are at most d terms in the expansion of a. Hence

there are at most d = d signs in the sign sequence for a.

The following corollary is immediate from lemmas 6.3 and 6.5.

a
Corollary 6.2 If a = ). u a r a where not all a a are dyadic then

a
Lemma 6 . 5 a . I f a = I co ° r a a n d i . u . b . ( | a ( B ) | , U ( a a ) | , X ) < d

a<6 °
then |t(a)| < d.
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Proof. This is the same as the last part of the proof of lemma 6.5.

Note that the bound here is slightly sharper than the one in lemma 6.5.

This bound we actually have to "pay for" although the early bound came

free thanks to lemma 6.4.

Lemma 6.6. If ax,a2... an are arbitrary surreal numbers and
ri> r2 ••• rn are rational then U(Ir-|aj)| _< |max £(aj)|y0.

Proof. We know that for any real r i(r) _< u so |£(r-j) £ X o for all

i. The lemma then follows from theorems 6.1 and 6.2. (Of course, all

that is used is a weakened form of these theorems which refer only to

cardinalities of lengths.)

We now have all we need to prove theorem 6.4. This may seem

strange since none of the lemmas have anything to do with polynomials of

odd degree! In fact, the proof of the theorem will not make direct

reference to such polynomials. The aspect of theorem 5.10 which is

crucial is that the exponents are rational linear combinations of the

given exponents, so that the same proof works for reciprocals.

Proof of Theorem 6.4. This follows easily from the lemmas by a kind of

back and forth argument.

Let a be an ordinal of infinite cardinal d which is an

upper bound to the lengths of all the coefficients. By lemmas 6.3 and

6.1 (used in that order) a is also an upper bound to the lengths of the

exponents occurring in the normal forms of the coefficients. Since

n£(a) <_ £(a) for any surreal number, a is also an upper bound to the

normal lengths of all the coefficients. By lemma 6.6 d is an upper

bound to the cardinalities of the lengths of the exponents occurring in

the normal form of the constructed root, d is also an upper bound to

the cardinality of the normal length of the constructed root. (By

elementary cardinal arithmetic, the cardinality of the set of all finite

rational linear combinations of an infinite set S has the same

cardinality as S.) By lemma 6.5a the cardinality of the length of the

constructed root is bounded above by d.

Remark. A proof using lemma 6.5 is also possible although our approach

seems simpler. For such a proof we need a strengthened form of lemma 6.6
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which makes fuller use of theorems 6.1 and 6.2. This will enable us to

obtain an ordinal upper bound of cardinality d to the lengths of the

exponents occurring in the normal form of the constructed root. In fact

the least e number larger than a works.

Finally, as a culmination of the results of this chapter we

have shown that the subset of surreal numbers a such that |£(a)| £ d

for any fixed infinite cardinal d is a real closed field. Since all

operations concerned depend on only finitely many elements the condition

£(a) _< d may be replaced by £(a) < d. [The latter formulation gives

more fields.] These are all "honest" fields since their carriers are

sets.

Not all subfields have the above form. In fact, the two most

well-known fields found in nature, the rationals and reals, both consist

of all surreals of finite length together with some but not all surreals

of length w.

The field of all surreals of countable length should be a

worthwhile object for further study.
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7 SUMS AS SUBSHUFFLES, UNSOLVED PROBLEMS

This chapter i s s t i l l a t a pioneering l e v e l . I have a strong

fee l i ng that there is a r i g h t way of looking at the subject which when

discovered w i l l great ly enrich the theory of surreal numbers.

A sequence <c0 , c l 5 « " c^> is a shuf f le of the sequences
< ao>a i> • " a a > a n d < b o , b 1 " *b3> i f there ex i s t s t r i c t l y increasing

sequences < i i , i 2 > m ' # 1 a > a n d < J i»J2* # # J6 > s u c n t n a t

(Vk _< a)(a|< = CJ )A(Vk _< 3)(b|< = CJ ) and such that every ordinal not

larger than y i s one of the i ' s or j ' s but not both. A subshuffle

of two sequences is a subsequence of a shuf f le of the two given

sequences.

This d e f i n i t i o n is consistent wi th the i n t u i t i v e meaning of a

s h u f f l e . For ord inals i t is known that a + 3, where + refers to

surreal a d d i t i o n , is the largest ordinal which can be obtained as a

shu f f le of a and 8. For example, i f a = OJ+5 and 3 = w+3 then the

" t r i v i a l " shuf f les ct+3 and 3+a give w2+3 and u«2+5 respect ive ly .

However, the shuf f le o)+u)+5+3 ( i . e . we f i r s t take the co from a then

the u> from 3 and then take the res t of a fol lowed by the rest of

3) gives w2+8 which is a+3.

This chapter is devoted to the proof of the fo l lowing theorem

which strengthens theorem 6 . 1 .

Theorem 7 . 1 . For any surreal numbers a and b, a+b is a subshuffle

of a and b.

Proof, (a) We do th i s f i r s t in the case where &(a) and Jt(b) are

f i n i t e , using induc t ion . (This seems easier than the use of ar i thmet ic of

dyadic f rac t ions as discussed at the end of chapter 4B, where the strange

nature of the carry ing causes compl icat ions.) For the purpose of the
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proof it is convenient to think of a subshuffle of a and b informally

as a sequence obtained by moving along, selecting a sign from either a

or b with the restriction that the signs from a and b must be taken

in the order they occur although signs may be omitted.

Now a+b = {a'+b,a+b'} |{a"+b,a+b11}. Suppose a+b ends with

a plus (a+b is a finite sequence). A similar argument will apply if it

ends in a minus.

Let a+b = d+. By the inverse cofinality theorem there

exists an a1 such that a'+b j> d or there exists a b1 such that

a+b' j> d. Since both cases are similar it suffices to assume that

a'+b _> d.

Since a+b > a'+b _> d, a'+b must have d as an initial

segment. (This includes the possibility d = a'+b.) By the inductive

hypothesis a'+b and hence a fortiori d is a subshuffle of a' and

b. Now a1 is by definition a subsequence of a obtained by stopping

at a plus, i.e. this is a plus in a occurring after all the signs in

a'. Thus d+ can be obtained as a subshuffle of a and b by using

the representation of d as a subshuffle of a1 and b followed by

that plus.

As a technical detail for the future we need the following:

If a > 0, b < 0, and a+b > 0 then the subshuffle for a+b may be

chosen so that the first plus comes from a. This is not a trivial

requirement. For example, let a = (+-), b = (-++—) and c = (++--+).

Then c can be expressed as a subshuffle of a and b by beginning

with the segment (++—) of b. However, if one tries to begin with the

plus in a one gets stuck at the last plus in c. Of course c * a+b

since it is immediate that c > 1 and that a+b < 1.

By hypothesis a begins with a plus, b with a minus, and

a+b with a plus. In the inductive hypothesis we consider terms such as

a°, a°+b, etc. (Recall that a° is either of the form a1 or a".)

First suppose that a° > 0, and a°+b > 0. Then the triple (a , b,

a +b) satisfies the technical hypothesis. Since the subshuffle used for

a+b obtained in the proof begins with the subshuffle used for a + b it

follows that the first plus in a+b is taken from a.

To complete the proof of the technical detail we must examine

the cases where terms such as a and a +b do not satisfy the hypothe-

sis. Recall in the proof that a +b has d as an initial segment where
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a+b = d followed by a plus [or d followed by a minus if a has the

form a"]. Hence the only cases where terms such as a0 and a°+b fail

to satisfy the technical hypothesis occur when terms such as

a , b , or d are 0.

If b = 0, it certainly contains no pluses so the first

plus in a+b is necessarily taken from a (i.e. no inductive hypothe-

sis is needed).

If d = 0 then a+b = (+) [a+b > 0]. The plus can certainly

be taken from a since a is positive and thus contains at least one

plus, for example the first sign.

If a0 = 0 then a°+b = b < 0. Since a+b > 0 and both

a+b and a +b begin with d it follows that d = 0; thus we are back

in the previous case.

Of course a similar result applies if all signs are reversed.

(b) It is now easy to see that the result is valid for all real a and

b. Since the finite case is the same as the dyadic case it suffices to

assume that a is not dyadic. This case is now trivial. Since a has

both pluses and minuses arbitrary far out and a+b has length ao we can

obtain a+b from a alone; in fact no matter what we do we can't

possibly get stuck because of the availability of signs from a. In

particular, the technical detail referred to earlier can be satisfied.

(c) We now prove this for numbers of the form u> r and w s. Recall

that the sign sequence for wdr is given by a contribution from wa

followed by the contribution from r which resembles r itself except

that the first sign is ignored and each other sign from r is repeated

u> times where a is the number of pluses in a. If the first sign

were not ignored in the rule the proof would follow trivially from (b).

The subshuffle for w (r+s) could be simply obtained by selecting the

contribution of ooa from a suitable one of war or was and each block

of signs in the contribution of r+s from the corresponding place where

the corresponding sign in r+s is obtained. This is clearly a sub-

shuffle if the contribution of u> is selected from a term whose coef-

coefficient has the same sign as r+s. (At least one of r and s has

the same sign as r+s. Since the result is vacuously true when r+s = 0

we can ignore that case.)

We have to adjust the construction to take account of the

fact that the first signs of the coefficients are ignored in the sign
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sequence rule. (Of course, we do not mean that it is totally ignored.

The first sign determines whether war is positive or negative and thus

affects the contribution of w .)

Let x,y, and z be sequences corresponding to w r, w s,

and u> (r+s) in which the first signs are not ignored so that by the

above z is a subshuffle of x and y. We show how this can be used to

obtain OJ (r

into cases.

obtain OJ {r+s) as a subshuffle of to r and u> s. We break this up

Suppose r and s are positive. Then so is r+s. The

contribution of u> consists of w pluses with possibly some minuses

interspersed among them. We need less but there is also less to choose

from. In expressing a sequence as a subshuffle of other sequences no

harm can ever be done by selecting at any time the earliest place where a

sign occurs in the sequence (since any continuation which was legal

before is a fortiori still legal). We may therefore assume that in the

representation of r+s as a subshuffle of r and s the first plus is

taken either as the first plus in r or the first plus in s. Suppose

without loss of generality that it is the first plus in r. The first

plus in s may also have been used in the representation of r+s. (If

not our work is easier.) If so, then s could not have been used for

earlier terms in the representation by the definition of a shuffle. We

now obtain the representation of a> (r+s) as a subshuffle as follows.

The contribution of u> is taken from the contribution of w in u r.

The section in z and x which is missing in OJ (r+s) and w r

respectively is ignored. The only possible difficulty remaining occurs

if the representation of z makes use of the segment of y which is

not contained in a s. i.e. the first plus in s is used in the

representation of r+s. We then still can obtain a subshuffle by using

the ua pluses contributed by wa in u>as since they have not yet been

used, and by the above, the ordering requirement is still maintained.

If r and s are negative the result follows by sign

reversal.

Now suppose r is positive and s is negative. Also sup-

pose without loss of generality that r+s is positive. The construction

is similar to the previous one thanks to the technical condition referred

to in part (a). We may thus assume that the first plus in r+s is taken

as the first plus in r. The only possible difficulty now occurs if the

minus which s begins with is used in the representation of r+s. Just
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as in the previous case we can now use the u minuses which a> con-

tributes to a) s. (Since s is negative these w minuses are present

by sign reversal because of the u> pluses in to .)

(d) We now prove the result in general. If we allow the use of zero
a. a.

coefficients, we may assume that x = I w "*r-j, y = ^ w 1s1- and
i <a i <a

x+y = I co i(r-j+s-j). Now if no minuses were ignored in the sign

sequence formulas the result would be trivial. Juxtaposition of all the

subshuffles as we run through all i would lead to a subshuffle of x

and y. Furthermore, minuses "missing" in x+y cause no trouble; in

fact, this makes things easier. The difficulties occur only when minuses

in x or y are "missing." As in the proof of part (c) we must show

that other sources for these minuses exist so that x+y can still be

obtained as a subshuffle. (It is ironic that the main cases of diffi-

culty occur when r-j+si = 0 for some i! Since the corresponding term

in x+y vanishes, the subshuffle requirement appears to be vacuous.

However, the issue of ignored minuses arises in later terms when the

above equality holds.)

We shall obtain x+y as a subshuffle of x and y by
a.

induction on a. We assume that I u> Mr-j+s-j) has been obtained

a. a.
as a subshuffle of I w ir-j and I u> ">Sj and show that

I CJ i(rj+Sj) can be obtained as a subshuffle of I w ">r-f and I GO 1#SJ

as a continuation of the earlier subshuffle. (The last part is crucial

for reaching limit ordinals. Subshuffles for i < y for all y < 8 do

not lead in an obvious way to a subshuffle for i < 8 unless they

satisfy the continuation property.)

Suppose that there is a minus in 8 which is not ignored in

the contribution of w 3 to x+y but is ignored in the contribution of

OJ 3 to either x or y, say x. Otherwise, as noted before, the con-

tinuation of the subshuffle is trivial. We now use an argument which is

similar to the one used in the proof of lemma 6.3. Suppose that the

minus is ignored in the contribution to x because it occurs in an

exponent aY for y < 3 in the normal form of x. The other possi-

bility for ignoring minuses will be considered later. Then aY does
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not occur as an exponent in the normal form of x+y. Furthermore every

exponent between aY and a$ also contains the minus so it cannot occur

in the normal form of x+y otherwise the minus would be ignored in the
a

contribution of u> 8. Thus y _< 6 < 3 => r<5+s<s = 0, i.e. r<$ = -s,$.
We can now use the same type of construction used in the

a.
proof of lemma 6.3 The contributions of w ° to x and y now give us

a supply of pluses and minuses which may be used to obtain the subshuffle

needed. As in the proof of lemma 6.3 we first consider the case where

all minuses considered do take part in the contribution of wa"Y for

for the least y in which they occur. Only one little detail is needed

to supplement the argument in lemma 6.3. The contribution of the con-

cerned minuses in a3 to x+y depend upon the sign of r3+S3.

However, since a$ and b<$ have opposite signs, we have available

whichever sign we need.

We now consider a minus not ignored in the contribution of

o) to x+y but ignored in the contribution to x and not occurring in

an exponent y < 3 in the normal form of x. We know that x has an

immediately previous term with non-dyadic coefficient. The exponent of

that term may occur in x+y but if so it must also be an immediately

previous term with a dyadic coefficient (because of the rule for ignoring

minuses). Whether or not the exponent occurs in the normal form of

x+y it must be the exponent of the previous term of y and have a non-

dyadic coefficient. This is the situation we now have. The normal
a a

forms of x and y consist of terms GO &~lro and m &~lso where
P -1 P - I

r_ and s are non-dyadic and r. + s. . is dyadic (in
p-1 p-1 p-1 p-1

particular it may be 0). ao . may or may not occur as an exponent in
p-i

the normal form of x+y. In any case the inductively defined subshuffle

makes use of only a finite number of pluses and minuses in the

contributions of r0 . and so to x and y respectively. (If one
p-i p-i

is picayune, in order for the proof to be formally correct, this aspect

of the construction should be included in the inductive hypothesis.

However, an excess of formalism would complicate the exposition

unnecessarily.) Recall that a non-dyadic real has pluses and minuses

arbitrarily far out. Thus there is enough left over in the contributions
of r_ and s, . to the sign sequence of x and y respectively to

p-i p-i

continue the subshuffle of x+y to include the contribution of the minus.

(The number of signs needed was calculated in the proof of lemma 6.3.)
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There is still the problem of a similar situation occurring

for some y < 3. This can be handled as before by letting the (y-l)st

term play the role previously played by the ($-l)st term.

This finally completes the proof of the theorem.

By comparing the proofs of theorem 6.1 and 7.1 we see the

contrast between a proof using the normal form and one which does not. I

referred earlier to the analogy between this and the contrast between

synthetic and analytic proofs in geometry. Very often there is a choice

between a lengthy tedious but routine analytic proof and a quick

synthetic proof using an appropriate theorem. We see the contrast also

in our work on surreal numbers. The use of the normal form gives us a

proof which is somewhat routine but messy because of the quirks in the

sign sequence formula. However, even if there is a shorter proof which

does not use the normal form, the proof using the normal form still may

have value because of its constructive nature.

I conjecture that a result similar to theorem 7.1 is valid

for multiplication. This would involve orderings obtained from cartesian

products of sequences of signs. However, this is far beyond our present

pioneering level. Further insights on dealing with sign sequences are

needed before one can tackle such problems the right way.
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8 NUMBER THEORY

A BASIC RESULTS

This chapter overlaps chapter five in [1] to some extent. We

study a subring of the class of surreal numbers for which there are

results analogous to those in number theory. By the results of chapter

six the theory is essentially unchanged if one restricts oneself to

certain suitable subsets of the class of surreal numbers so that we deal

with "honest" rings.

Definition. A surreal number a is an integer if the exponents in the

normal form of a are all non-negative, and if a zero exponent occurs

then the real coefficient is an ordinary integer.

For example, M2-^-! is an integer (the •=• does not prevent

this) whereas u>2+̂ - is not. Also, w2 + uT37 is not an integer.

This definition, which is equivalent to the one used in [1],

may seem artificial at first. There certainly exists a wide choice of

other subrings. However, this definition leads to desirable theorems.

Moreover the existence of equivalent definitions, one of which can be

expressed simply in terms of the sign sequence and the other in terms of

the relation a = F|G, suggest on philosophical grounds that our

definition leads to a "natural" system.

Theorem 8.1. The following are equivalent

(1) a is an integer.

(2) There does not e x i s t an ord ina l a such tha t a(a) and

a(a+ l ) have opposite s igns.

(3) a = {a-l}|{a+l}.
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Proof (1) =*> (2). This is immediate from the sign sequence formula. If

b > 0, to begins with an infinite number of pluses, and in <o r all

signs are repeated infinitely often. Fortunately, the ignoring of

minuses in sums does not cause any extra complications. For b = 0 we

know that an integer corresponds to a finite sequence of signs which are

all alike.

Not (1) =» not (2). For b = 0, we know that if r is not an integer,

then r = (o r has length at most w and there is a change in sign

somewhere, i.e. we have not (2). If b < 0, then u> begins with a plus

followed by a minus. This almost proves not (2). What remains is to

consider the possibility that the minus may be ignored. Let b be the

first negative exponent occurring in the normal form of a. If the first

minus sign in b is ignored then there is a previous term with exponent

zero and non-dyadic coefficient so again we have not (2).

(1) =o (3). First, assume that all exponents are positive. Then the

result follows immediately by cofinality, where we use the definition if

there is no last term in the normal form and lemma 5.3 if there is a last

term. If a zero exponent does occur then it necessarily occurs in the

last term with an integer coefficient. The result then follows by

cofinality from lemma 5.10. (Actually, since 0 has no proper initial

segments we need only a simpler version of the lemma.)

Not (1) => not (3). Let the normal form consist of terms with negative

exponent and express a as b+c where c is the tail in the normal

form consisting of all terms with negative exponent. Then by the

lexicographical order a-1 < b < a+1. Clearly i[a) > lib) by the sign

sequence formula (in fact, b is a proper initial segment of a), so

a * {a-1}|{a+1}.

Now let us consider the other possibility, i.e a has the
,. b.

form I a) Trj + ra where b-j > 0 and ra is not an integer. Then
i<a

if ra is replaced by either the largest integer less than ra or the

smallest integer greater than ra we obtain a number c satisfying

a-1 < c < a+1. One of these necessarily has smaller length than a, so

again a * {a-l}|{a+l}.

Each of the equivalent definitions has its own intrinsic

interest. (2) requires nothing more than the definition of surreal

numbers and thus can even be used in the beginning of chapter two. (3)
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is used by Conway in [1], This is consistent with his style of making

the relation a = F|G fundamental. Our definition (1) is also mentioned

by Conway. The latter definition appears to be most useful for proofs.

In fact, many of the arguments depend only on the generalized group ring

structure given by the normal form and make no essential use of the fact

that the exponents are surreal numbers. Thus by taking theorems 5.7 and

5.8 as definitions for a set consisting of generalized power series we

can obtain a theory which is independent of the theory of surreal numbers

although the results will be valid for surreal numbers as one special

case. One convenient hypothesis for the exponents is that they form a

divisible abelian group.

The following result is immediate by theorems 5.7 and 5.8.

Theorem 8.2. The integers form a subring of the surreal numbers.

Remark. This can also be proved easily using definition (3).

Theorem 8.3. Every surreal number is a quotient of two integers.

a.
Proof. Let a = i w V j .

i<a
Suppose c = <j>|{O,a-j}. Then c < 0 and (V i) (c < a-j). Then

a) c is an integer. Now co ca = I ID i""cr-j. Since a-j-c > 0 for all i,
i<a

- c uTca
co a is also an integer. Of course a = •

co"c

C.
Let a = I w ir-j. For convenience, express this as y+r+z,

i<a
where y consists of all terms with positive exponent, z consists of

all terms with negative exponent, and r is a real number which may be

0.

Unless r is an integer and z is negative let p = y+n

where n is the largest integer in r.

If r is an integer and z is negative let p = y+r-1.

It is clear from the lexicographical order that p is the

largest integer not greater than a. It is also clear that p is the

unique integer satisfying p _< a and a-p < 1. Incidentally, this

remark on the spacing of the integers among the surreal numbers is

further justification for our definition of "integer."
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Theorem 8.4. The division algorithm holds, i.e. if a and b are

positive integers there exist unique integers q and r such that

a = bq+r and 0 _< r < b.

Proof. Let q be the largest integer not greater than •£•• Then

~ >_ q and ^ - q < 1. If r = -̂  - q it is immediate that 0 £ r < b.

Conversely, the conditions a = bq+r and 0 £ r < b imply

that 7- _> q and q - T- < 1. We have already noted that this character-

izes q uniquely.

Fortunately, for finite, i.e. ordinary, integers divisibility

in the surreal sense is equivalent to ordinary divisibility. However,

strange things do happen soon so that our system differs in important

ways from ordinary number theory. For example, w is divisible by

every finite integer since — is an integer for all finite n by our
n

definition. In fact, more generally every integer whose normal form does

not contain a term with zero exponent is divisible by every finite

integer.

B PARTIAL RESULTS AND UNSOLVED PROBLEMS

We first note that the ring of integers is not Noetherian.
1 i I

In fact, the principal ideals (a>), (w 2), (w3) ••• (GO11) form a strictly

ascending chain of ideals. Any reader who is dissatisfied with using

concepts such as Noetherian for rings which are proper classes should

reread the remarks in the first paragraph of this chapter.

Slightly less obvious is the following.

Theorem 8.5. There exists an ideal with two generators which is not

principal.

Proof. In fact, let I = (w,aV2"). We show by contradiction that I is

not a principal ideal. Let U,oo/2) = (a). If d < 1 then u)d divides

both a) and co/2; hence it divides a. Hence no exponents occurring in

the normal form of d can be less than 1.

Now a divides GO, i.e. — is an integer.
a
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Let a = I a) ir-j. If we write a in the form w Oro [l+£ w "is-j] it is
ii a

1 "b 1clear that the normal form of — begins with a> ° — (as in dealings
a r0

with ordinary power series). Therefore the normal form of 7- begins
a

with a) ° — . Since - is an integer b0 < 1. Since we also know
r0 a

that b0 2. 1 we n^ve b0 = 1. Furthermore i t follows that j can't

contain any further terms so — = — where r0 is the reciprocal of an
a VQ

integer, i.e. a has the form ~ for some integer n. But then a

does not divide w/2" so we have a contradiction.

We are interested in the classification of primes. By our

earlier discussion for ordinary integers, a number is a prime in our

system if and only if it is an ordinary prime. It is an open problem

whether other primes exist. However, we have partial results which tell

us that various surreal numbers are composite so that the search for

primes can be narrowed significantly.
b.

For example, let a = J u "• r-j be a surreal integer. If
i<a

bi > 0 for all i then we can let c = {0}|{bi}. Clearly w C divides

a so that a is not a prime. Hence the normal form of all primes

necessarily end with a term whose exponent is 0. Furthermore, n
v b-divides 1 w Vj+n so that the last term in the normal form of a prime

i<a
is necessarily ±1.

Consider next ordinary polynomials in w. Every polynomial

of degree larger than two factors since any factorization of polynomials

obviously leads to a factorization when the indeterminate x is replaced

by 00. Furthermore, any polynomial may be regarded as a polynomial of

of degree larger than two in 00 ; hence any polynomial factors, e.g.
j_ 2_ l_

U3+1 = (w3 + lJ((o7-(/+l).

The same idea can be extended to any finite sum where all the

exponents are rational multiples of a fixed surreal a.

The following result, which is a big help in narrowing down

our search for primes, is being honoured by being designated as a theorem.

. b.
Theorem 8.6. Let a = 2. w lri be an integer. Suppose that there exists

i
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j such that b 0 >> bj and bj * 0. Then a is composite.

Proof. Let k be the least j such that b0 >> bj. Then we may write

b. b.
a = x+y where x = \ w ir-j and where y begins with a> ̂ r^.

i<k
Now all exponents in y""1 are rational linear combinations

of the exponents bj. Since the b's are decreasing and non-negative,

every exponent bj satisfies b0 >> bj. Hence all the exponents in y"1

have lower order of magnitude than b0. Furthermore, by choice of k

every exponent in x has the same magnitude as b0. This shows that all

exponents in xy""1 are positive. (In fact, they have the same order of

magnitude as b0.) Hence xy"1 is an integer.

By theorem 8.6 we can narrow our search for primes to those

integers all of whose exponents with the exception of the zero at the end

have the same order of magnitude, i.e. are finite non-infinitesimal

multiples of a fixed surreal a. Furthermore, since a factorization of
. ab.

a number of the form I u> ir-j automatically leads to a factorization
i<a

, b.
of l uj V j , we may just as well limit ourselves to finite non-

i<a
infinitesimal exponents.

We now mention a device which permits us to regard the

exponents as ordinary real numbers but with the price of being stuck with

a larger coefficient field.

The class of all surreal numbers in which the exponents

occurring in their normal form are all finite forms a subfield since the

set of all finite numbers is certainly closed with respect to finite

linear rational combinations. Similarly, the class of all surreal

numbers in which the exponents occurring in their normal form are all

infinitesimal forms a subfield.

Now consider a surreal number a of the form I u> irj where
i<ct

bj is finite for all i. It is well known and easy to prove that every

finite number a can be expressed uniquely in the form r+e where r

is real and e is infinitesimal. (In the language of nonstandard

analysis r is called the standard part of a.) We now group together

all terms which have the same standard part. Specifically, corresponding

to every real number r we obtain an expression of the form I w isj
i



NUMBER THEORY 117

where c-j) is the subsequence of (b-j) consisting of all b-j whose

real part is r. [For some r the set of Cj's may be empty; in fact,

because of the well ordering it is not too hard to show that the set is

empty except for countably many reals.] This can be expressed as

a) ( I w isj) where ej is a decreasing sequence of infinitesimals.
i<a

As r varies we may thus regard the whole sum as a gen-

eralized series with real exponents with coefficients themselves power

series with infinitesimal exponents. (Since the set of a's is well-

ordered, so is the set of r's.) It is clear from the nature of formal

multiplication of series that the latter point of view leads to a system

isomorphic to the original.

Thus in a search for primes it is natural to investigate

surreal numbers for which the exponents occurring in their normal forms

are real numbers.

Among the simplest looking numbers for which the problem

reamains open is u)/2+u>+l.

Open Problem. Is wvT+w+l a prime?

We suspect that no matter whether the answer turns out to be

yes or no, the proof will make no essential use of the number /2 but in

fact will use only the fact that /2 is irrational. Moreover, the proof

would probably be extendable to more general polynomials. The following

unsolved problem is found in [1].

1 i l

Open Problem. Is OJ+W +w ••• u> ••• +1 a prime?

(Do not let an earlier remark confuse you. We had stated that if all the

exponents in a polynomial are rational multiples of a fixed number then

the polynomial is composite. The discussion there concerned itself with

polynomials of finite length.)

It is of some interest to classify the factors of u>. Among

the obvious factors are finite integers and numbers of the form w

where r < 1. It is clear from the proof of theorem 8.3 that any number

such as I w ir-j where a0 is infinitesimal (e.g., uP + 1) is a
i
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factor. With caution one can take certain products of these such as
1 j_

(o)"2"-7)(u)s+l). Of course one cannot take all possible products; e.g.,

l-i I
(u) w)(OJ^+1) > to, so it is certainly not a factor of w.

The question is whether there exists factors of a more subtle
a.

kind. Specifically, can there exist factors such as J u V-j where
i<a

aQ-a! is not infinitesimal? I feel that this question is of interest in

connection with the open problems concerning primes. Although we have no

theorems to the effect that an answer to the latter question will imply

an answer to any of our questions on primes, I believe that the

techniques of the proof will supply insights to study the classification

of primes.

Furthermore, the above question leads to algebraic questions

of interest which are independent of the theory of surreal numbers. I

believe that generalized power series in which exponents may be

irrational and lengths may be larger than to are worthy of study for

their own sake. Generalized series do arise in certain subjects such as

valuation theory, but as a whole such objects have been neglected in the

1iterature.

We close this chapter by proving a partial result concerning

possible factorizations of GO.

a.
Theorem 8.7. to cannot be expressed in the form cd where c = I to ir-j

i<oo
b.

and d = I to is-j are integers, and all the a's and b's are real
i<oo

numbers.

Remark. No restriction on the field of coefficients is needed for the

proof. Also we are tacitly assuming that the r's and s's are distinct

from 0, i.e. the series are in normal form.

a. b.
Proof. Suppose w = ( I w 1r-,-)( I to 1s1-). By suitable normalization

i <to i <to
a . b

t h i s may be e x p r e s s e d i n t h e f o r m 1 = (1+ £ a i r - j ) ( i + £ u i S j ) w i t h ,
i <w i <OJ

of course, not necessar i ly the same a ' s , b ' s , r ' s and s ' s .

Since we are consider ing formal m u l t i p l i c a t i o n only we may
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rep lace co by x . A l so , since c and d are in tegers the o r i g i n a l

exponents are p o s i t i v e ; , hence in the norma l i za t ion a l l the exponents are

bounded above by 1 . Thus we f i n a l l y have 1 = ( l+£x i r - j X l + ^ x is-,-)

where (a-,-) and ( b j ) are s t r i c t l y inc reas ing bounded ord inary ( i . e . of

l eng th w) sequences of rea l numbers. We would l i k e to show tha t t h i s

is impossible regardless of the f i e l d of coeff ic ients. ( I t i s , of course,

t r i v i a l to satisfy the above identi ty i f we do not require that (a-j) and

(b-j) be bounded.)

Let sup(aj) = l and sup(bj) = m. I f i < m then we can

write r l = (xm -*+ Ixa i+ m -V i K l + I xbiS i ) . Then

sup(a-j+m-£) = i+m-i = m = sup b j . The equality says that a l l terms after

the f i r s t cancel. Thus we f ina l l y have the following si tuat ion. We have

two series I u i r j and I u> ">s-f with (CJ) and (dj) both increasing

bounded sequences of real numbers with the same sup I such that a l l

pairs cancel except for the product of the f i r s t terms. For convenience

we may choose r0 = s0 = 1. We w i l l now obtain a contradiction.

We now choose an arbitrary but fixed CJ. Let

6 = min [c j -C j - 1 , (c i -d j :d j<c- | ) ] . [Since sup(cj) = sup(dj), (dj :d j<cj)

is f i n i t e . ] 6 > 0. Now choose n0 such that n _> n0 -• dn > £-6.
c. d

Now the term (x 1r1-)(x nsn) for n ^ n0 must cancel in the

product. (We may just as well assume that n0 _> 1, so that the excep-

t ion consisting of the product of the f i r s t terms w i l l not arise.)

Hence there must exist a pair (j,m) d is t inc t from ( i ,n ) such that

Cj + dn = Cj + dm. (This is certainly a necessary condition for cancel-

la t ion . ) Therefore Cj + dn > CJ + £-6 _> CJ-X + I •> C|< + dm for any

k _< i -1 and any m. Hence j > i . Furthermore, i f dm were less than

Cj we would obtain similar ly that cj + dn > cj + SL-& >_ dm + £ >_ CJ + dm

for a l l j . This contradicts the equality. Hence dm _> CJ .

Now le t 6' = min [c j + 1 -c j , ( d j - c j : d j >c j ) ] . This exists since

dj is increasing. Then CJ+£ •> CJ + dn = Cj + dm >_ CJ + 6'+dm. Hence

l _> (S l+dm, i .e . dm <_ £ -6 ' . Thus i f we vary n the set of m's which

occur is f i n i t e . Simi lar ly, i f dm > CJ we obtain

dm + A _> CJ + 6 '+ i _> CJ + 61 + dn = CJ + 6' + dm. Hence l _> 6' + c j ,

i .e . CJ <̂  A - 6 1 . Thus the set of j ' s which occur is f i n i t e .

We have shown that for dm * CJ these are only f i n i t e l y many
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pairs (j,m) such that Cj + dm = c-j + dn for any n _> n0. Hence there

exists an nx such that for n j> nx the only possible pair (j,m) which

satisfies Cj + dm = c-j + dn must have dm = Cj and hence Cj = dn.

Since i was arbitrary to begin with and also since the same argument

can be applied to dj this shows that CJ = d-} for all i. Further-

more, because of cancellation we must have r-,*sn = -rnsj for n_> nlt

If we begin with i = 0, since r0 = s 0 = 1 this tells us

that for n 2. "i> rn = ~
sn« Now let i = ni« Tnen f° r m 2. n2 we nave

rm sn = " r n % - Since rn = -s n * 0 this gives rm = sm.

Hence if ni^max(n 1,n 2) then rm = sm and rm = -s m; i.e.

sm = 0 which is a contradiction.

Unfortunately, the proof breaks down for lengths other than

u). The limited interest of the theorem is due to the fact that it is

the only result we have which gives some restriction to factorizations,

thus giving us minimal hope for the existence of non-trivial primes.

All our other results give circumstantial evidence against the existence

of such primes.
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9 GENERALIZED EPSILON NUMBERS

A EPSILON NUMBERS WITH ARBITRARY INDEX

On page 35 in [1] Conway makes some remarks on the possi-

bility of extending the transfinite sequence of epsilon numbers to more

general indices, e.g. he gives a meaning to e-1# He also mentions

other interesting surreal numbers. He mentions that the equation

u) X = x has a unique solution and that there exist various pairs (x,y)
"~X ""V

satisfying oo = y and w = x. In this chapter we study this

systematically. Moreover, we also discuss higher order fixed points, e.g.

in the sequence of ordinary e numbers eo>ei ••• there exist a such

that ea = a and such a can be parametrized by ordinals. It is

interesting that a general elegant theory exists for surreal numbers

which have such fixed point properties.

First, we summarize the situation for ordinals. It comes as

a surprise to the beginner that although w apparently increases much

faster than a, there exist ordinals such w = a. Such ordinals, known

as epsilon numbers, can be arranged in an increasing transfinite sequence
eo»si '" 8cr Not only is this sequence defined for all a but there

exist a such that ea = a. Furthermore, this construction can be

extended indefinitely. Specifically, let us use the notation eo(a) = ea

and let e1(0) be the least a such that eo(a) = a. Then for every

ordinal 3, there is an increasing sequence e$(0) ,£$[1), • • • ,£3(0))

where £3(a) runs through all ordinals which are fixed for every e^

with y < 3.

It is possible to do even more by using a kind of

"diagonalization.11 It turns out that the function ea(0) is continuous

as a function of a, so there exist a such that ea(0) = a. [If

is regarded as a double array, the sequence ea(0) looks more like a
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first column than a diagonal but it plays the role of a diagonalization.

On the other hand, ea(a) is not a continuous function of a and is thus

not worth considering.] It is hence possible to form a new double array

and then continue as before.

We now turn to surreal numbers. First, we shall deal with

epsilon numbers. Although the results are special cases of theorems

about general fixed points which we shall prove later, we feel that it is

pedagogically reasonable to handle this relatively concrete case first.

Define w (a) inductively for all positive integers n and
a OJ (a)

surreal numbers a as follows: ^ ( a ) = u> and w +1(a) = u
 n . We

are now ready to define e, inductively for arbitrary surreal numbers

b. Let b = B'|B" be the canonical representation of b. Then

e. = (w (1), co [e. ,+1]}|{OJ [e.,,-1]} where n is an arbitrary positive

integer and as usual b1 and b" are general elements of B1 and B"

respectively.

Before stating the basic theorem we look at several examples.

The definition gives e = {m (1)}U = l.u.b. {a (1)} which is the
o n 1 n

ordinary f i r s t e number. We abbreviate e as e. Then
0) _ £ - 1

e 1 = { a ) ( l ) } | { o ) n ( e - l ) > W h i c h i s ( u ) , ^ , ^ , " ' l | | e - l , a i E , u ) W , • • • } .

Note that the sequence which comprises the upper set is decreasing

although this might run counter to intuition. This is so because

a)c << we = e whereas e-1 ~ e. Moreover, once we know that

OJ£ < e-1 the decreasing nature of the sequence follows by induction.

e.

Theorem 9 .1 . e, is defined for a l l b and sat isf ies OJ D = e, . e, is
b b b

a s t r i c t l y increasing function of b and e > OJ (1) for a l l b and a l l

posit ive integers n.

Proof. As usual we do this by induction. Since b1 < b", e, , < e. „ .

Hence e. , = </£>' « u> b" = e ,. Since e „ > w (1) = to i t is clear
that e. ,,-2 ~ e. „ . Therefore e.,,-2 > e. i , i .e . e.n-1 > e u i + l - Thusb b b b b b

for a l l posit ive integers n, w (e. ,+1) < co (e.,,-1). Also, w (1) < e „ .

Since both sides have the form w i t follows that
u n ( 1 ) " V ~ e b"- 1 ' So u n ( 1 ) < eb""1 '

e. , + 1 e. i e k ' + 1

Now u) b » u) b = e ~ e, , + 1 . Hence to b > e, , + 1 .
b b b



GENERALIZED EPSILON NUMBERS 123

Similarly uTb" « ^b" = e ,, ~ e ,,-l, hence GO b" < eb,,-l. This

implies that w U b'+1) is an increasing function of n and that

a) (e ,,-1) is a decreasing function of n. Hence if m and n are
n b

arbitrary positive integers we have
um(V+1) < ( Vn (V + 1 ) ^ W ^ ' 1 * W V " 1 * ' Sit1Ce <on(1) 1s

certainly an increasing function of n we also have w (1) < w (e. ,,-1).

We now have exactly what we need to conclude that s is defined.

The fact that w (1) < e is immediate since w (1) occurs

among the lower elements. It is also immediate from the definition that

e < ^ ( e ,,-1) < e.,,-1 < e. „. Similarly, e., < e. „. The usual argument

using common initial segments shows that e. is strictly increasing.

Since the set {w (1)}, {w (e, ,+1)} contains no maximum andn n b
the set {OJ (e, ,,-1)} contains no minimum we know thatn b

by cofinality. This completes the proof.

Corollary 9.1. The uniformity theorem is valid for e, .

Remark. Recall that this means that any representation b = F|G will

give us the same result.

Proof. This follows from the usual argument using the inverse cofinality

theorem and the cofinality theorem since e. is an increasing function.

We generalize the usual definition of epsilon numbers to

surreal numbers by defining an epsilon number to be any surreal number

such that a) = a. We thus have a class of epsilon numbers parametrized

by the surreal numbers.

Theorem 9.2. Any epsilon number between e. , and e. „ has e. as an

initial segment.

Proof. Suppose e.i < e < e. H. Since u> = e it follows that e > 0.

Hence e = w > w = 1 . Similarly e > w. We obtain immediately by

induction that e > w (1) for all n. Assuming e > u> (1) we obtain
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£ 0) (1 )

t h a t e = a) > a) n = a) + 1 ( 1 ) . Epsi lon numbers are in p a r t i c u l a r

powers of u>. Hence e < e. „ => e « e. „ . Therefore e < eb»""l .
S i m i l a r l y e. , < e => e, ,+1 < e. Hence u> [e , ,+1] < w (e ) < w ( e , , , - l ) .b b n b n n b
But a) (e) = e by induction. Hence e. is ar

since e sa t is f ies the required inequal i t ies .

But a) (e) = e by induction. Hence e. is an i n i t i a l segment of e

Corollary 9 .2 . I f b is an i n i t i a l segment of c then e is an

i n i t i a l segment of e .

Proof. Let b = B'|B" be the canonical representation. By the

lexicographical order B1 < c < B". Hence e. , < e < e.,, so that the

resul t follows from theorem 9.2 .

Remark. Note that the proof of theorem 9.2 makes no use of the fact that

the representation of b is canonical.

Theorem 9.3 . Every epsilon number e is of the form e. for some b.

Proof. Let e = F|G be the canonical representation of e. Also l e t C

be the set of indices of epsilon numbers in F and D the set of

indices of epsilon numbers in G. Since F < G, i t follows that C < D.

Let a = C|D. Now e~ < e < e~ by choice of C and D. Hence, by

theorem 9.2 e is an i n i t i a l segment of e. On the other hand any
a

epsilon number of the form e which is a proper i n i t i a l segment of e

must be contained in the set e r U e n , so i t cannot equal e . Hence
u u a

ea = e-

Thus the parametrization we have gives us the whole class of

epsilon numbers.

Note. Induction is not used in the above proof. We do not need the fact

that every epsilon number in F U G has the form ea for some a.

B HIGHER ORDER FIXED POINTS

We now prove a general fixed point theorem.

Theorem 9.4. Let f be a function from surreal numbers to surreal

numbers satisfying the following:
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(a) For all a, f(a) is a power of u>.

(b) a < b ̂ f ( a ) < f(b).

(c) There exist fixed sets C and D such that if a = G|H

with G containing no maximum and H no minimum then

f(a) = [

Then there exists a function g which is onto the set of all

fixed points of f and which satisfies the above hypotheses with respect

to the sets f (C) and f (D), where n is an arbitrary positive

integer and f stands for the nth iterate of f.

Remark. Note that w satisfies the hypothesis if we let C = {0} and

D = <j>. Note also that the theorem permits us to obtain higher order

fixed points by induction, since the conclusion says that g satisfies

the hypothesis. Finally, (c) may be regarded as a generalization of

continuity for ordinal functions.

Proof. This is essentially a generalization of the proof of theorem 9.1.

We define g(b) inductively as

g(b) = {fn(C), fn[2g(B')]}Hfn(D), fn[|g(B
n)]}. (Note that in contrast

to the proof of theorem 9.1 we are multiplying and dividing by two rather

than adding and subtracting one. This is better in general since multi-

plying or dividing by two is guaranteed to preserve order of magnitude.

Adding one does, not as the example w"1 4 u)-1+l shows. Some functions

we consider do have such small values in the range. Anyway, any function

which preserves the order of magnitude and satisfies the required

inequalities can be used in the proof and it is easy to see by mutual

cofinality that the same result is obtained.)

We first show inductively that g(b) is defined for all b,

is an increasing function of b, and that f(g(b)) = g(b) for all b.

First, because of condition (a), it follows that

f(a) < f(b) + f(a) « f(b). Now by the inductive hypothesis

g(b') < g(b"). Hence f[g(b')] = g(b') < g(b") = f[g(b")]. Therefore, by

the above remark f[g(b')] « f[g(bM)], i.e. g(b') « g(b"). Thus

2g(b') <2U(b H). Also, since every element of C is below every element

in the range of f by condition (c), it follows that
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c e C =^c < g ( b " ) ^ c « g ( b n ) =$> c < ^ ( b " ) . [ C o n d i t i o n ( c ) i s a p p l i -

cable since any surreal a can be represented in the required form by

brute force in a t r i v i a l manner even i f the canonical representation does

not satisfy the hypothesis of the condit ion.] Similarly

d £ D •»2g(b l) < d.

Now i f a is a fixed point of f then a is positive since

i t is a power of w. Hence a < 2a. Therefore f(a) < f (2a), thus

a = f(a) « f (2a) . Therefore 2a ~ a < f (2a). Simi lar ly,

f ( j a ) « f(a) = a. Hence fC-^a) < -^a. Combining this with the fact that

C < range f < D we see that i f x e CU2g(B') then f (x) > x and i f

x e DUygCB") then f (x) < x. I t follows by induction that fn (x) is

an increasing function of n i f x £ CU2g(B') and a decreasing

function of n i f x £ D yg(B"). Since f (x) is an increasing

function of x, by condition (b) and a t r i v i a l application of induction

we obtain

fnCCU2g(BM)] < fn+m[CU2g(B')] < V m [ D U i g ( B " ) ] < V D u | g ( B " ) ] . This
shows f i na l l y that f (b) is defined.

I t is immediate that g is increasing by the usual argument

using common i n i t i a l segments. Moreover, in the def in i t ion of g(b)

the lower terms have no maximum and the upper terms no minimum. Hence

condition (c) applies and we obtain

f [ g (b ) ] = {C , f f n (C) , f f n [2g (B ' ) ]H{D, f f n (D) , f f n [ | g (B 1 1 ) ] } which is g(b)

by co f ina l i t y .

g(a) is clearly a power of w for a l l a since a fixed

point of f is a f o r t i o r i in the range of f . The uniformity theorem is

va l id by the usual argument. So i f b = G|H then

g(b) = ( f n (C) , f n [ 2g (G) ] } | { f n (D ) , f n [ | g (H ) ] } .

Now suppose G has no maximum. We claim that f [2g(G)] is

mutually cofinal with g(G). One direction is clear since we already

know that i f x is a fixed point of f then f(2x) > 2x > x. On the

other hand, consider any element of the form f [2g(x)] where x £ G.

Since G has no maximum there exists y £ G such that y > x. Then

g(y) > g(x). In fact , since they are both powers of u>, g(y) » g(x),

hence g(y) > 2g(x). Applying f to both sides we obtain

f g(y) > f [2g(x)L Since g(y) is a fixed point of f this says that

g(y) > f [2g(x)3. This is exactly what we need. A similar argument
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app l ies to the upper elements. Therefore by the c o f i n a l i t y theorem we

obta in t ha t g(b) = { f ( C ) , g ( G ) } | { f (D) ,g (H) } . Thus g s a t i s f i e s

cond i t i on (c) w i th respect to the sets f (C) and f (D). ( I nc iden-
n n

tally, note that it is not necessary for n to run through the set of

all positive integers. By cofinality any subset containing arbitrarily

large integers will work as well.)

To complete the proof of the theorem we still must show that

every fixed point of f is in the image of g. We first show that the

analogue of theorem 9.2 is valid. In fact, let x be a fixed point

between g(B') and g(B"). Then c < x. Since g(B') < x it follows

that g(B') « x, hence 2g(B') < x. Therefore fn[2g(B')] < fp(x) = x

and similarly f (C) < x. Since the same reasoning applies to the upper

elements, it follows from the definition that g(b) is an initial segment

of x. Also the analogue of corollary 9.2 as well as the remark

following the corollary remain valid. We now verify the analogue of

theorem 9.3 which is what we need. As in the earlier argument we let x

be a fixed point and let x = F|G be the canonical representation. Let

A be the set of all a such that g(a) e F and B the set of all b

such that g(b) e G. Then A < B. Let c = A|B. Then g(c) is an

initial segment of x. However, g(c) ^ g(A)Ug(B), hence g(c) f F(jG.

Thus g(c) is not a proper initial segment of x so g(c) = x.

Theorem 9.4 allows us to construct higher order fixed points

by induction. We begin with any f satisfying the hypothesis, e.g. w .

Suppose we call the fixed point function f . By induction there exist

fixed point functions {f } for all positive integers n where f +1
is obtained from f by the construction in the proof of the theorem.

We now indicate how the sequence can be extended to functions with

transfinite indices. For this purpose we extend theorem 9.4 to certain

ordinal sequences of functions.

Theorem 9.4a. Let f0 be a function satisfying the hypotheses of

theorem 9.4. Then there exist functions fa for every ordinal a

satisfying the hypotheses and such that for a > 0, fa is onto the set

of all common fixed points of fg for 3 < a and satisfies condition

(c) with respect to the sets g(C) and g(D) where g runs through all

finite compositions of f$ for $ < a.
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Outline of Proof. We do this by induction. Specifically we assume that

we have functions f3 for all $ < a satisfying the requirements and

show how to construct fa. Since the proof is similar to the proof of

theorem 9.4, to avoid tedious repetition we note only the minor

modifications required.

First let us note several consequences of the above given

properties of f3 for 3 < a. First f3[fY(x)] = fy(x) if 3 < y.

Furthermore, if 3 < Y every fixed point of fy is a fortiori in the

range of fy, hence is a fixed point of f3. This implies for example

that if a is a non-limit ordinal 6+1 then the common fixed points of

f3 for 3 < a are simply the fixed points of f$.

We now look at functions g = f^lf^2"'f^n more closely. By

the above we may assume that 3j >_ 3i+i for all i. Suppose that

f3(x) > x for all 3. It follows by induction and transitivity that

g(x) > x for all g. Let g have the above form with 3i > 32 and

let h be any composition with all indices less than 3 ^ Since f3(x)

is a fixed point for all fy with y < 3, it follows that

hf3l(x) = f 3 l(x). Hence f3l(x) = hf3l(x) > h(x). Now let hx also be

any composition with all indices less than 3]_. Then

f$ h ^ x ) > f3,(x) > h(x). By induction and transitivity

f 3 1
m M * ) > f3i n h< x) if m > n- Similar results hold if f3(x) < x

for all 3. These give us the basic inequalities among all the compo-

sitions g for a fixed x.

Now if x e C or x has the form 2y where y is a common

fixed point of all f3 then f3(x) > x for all 3 by our earlier

proof. Similarly if x e D or x has the form ^y where y is a

common fixed point then f3(x) < x for all 3. The above inequalities

now allow us to imitate the proof of theorem 9.4.

Incidentally, we must be careful in our reasoning with

inequalities. For example, assuming f3(x) > x for all 3, we easily

obtain f3fT(x) > f 3(x). However, we do not obtain f3fT(x) > fY(x). In

fact, if 3 < y we have equality.

We now define fa(b) inductively on b as follows.

fa(b) = {(gCCj^CZfafB'JlHlgfDl^E^-falB11)]}. In the case where

a = 6+1 the above inequalities show that we obtain cofinal subsets if we
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consider only g's of the form f§n. Thus the formula for fa(b) is

consistent with the one obtained in theorem 9.4 starting with the

function f$. For general a the proof proceeds as before. The first

problem that arises is that we need a g bearing the same relation to an

arbitrary pair (gx,g2) which fm+n bears to the pair (fm»fn)
 ln the

proof of theorem 9.4. If gl = f0
 m hx and g2 = f$2

n h2, then

9 = fm "'/o a \ will work because of the above inequalities. So fa is
i i i a x v p i P 2 '

defined for all a.

The above inequalities also guarantee that the lower terms in

the definition have no maximum and the upper terms no minimum. This

allows us to write the following, as we did in the earlier theorem:

where g1 is the subset of g consisting of those products for which

all subscripts are less than 3. (We are, of course, using the inductive

hypothesis on the ordinals.) The above inequalities give us the required

cofinality to conclude that this is fa(b). The rest of the argument is

identical to the one used in proving theorem 9.4.

Although the most canonical example of the above is the class

of higher order epsilon numbers, we will later investigate another

interesting fixed point sequence. At any rate we have obtained a rich

supply of exotic surreal numbers.

In the next section we return to a more concrete situation

when we study sign sequences of epsilon numbers. We hope that the reader

is curious about the sign sequence of e_l5 for example.

C SIGN SEQUENCES FOR FIXED POINTS

As an example let us compute the sign sequence of e-x

directly. Recall that e-x = {u>n(l)}|{a>n(e-l)}. a)n(l) consists of un

pluses, e-1 consists of e pluses followed by one minus, w6"1

consists of a>e = e pluses followed by w e + 1 minuses. (Note the

convenience of thinking in terms of blocks of like signs in computations

as referred to in chapter five.) We have here an explicit confirmation

of the fact stated earlier that u> < e-1. to = w u = eu. We can

now determine u> (e-1) by induction. The number of pluses remains

unchanged, i.e. is e for all n. As for the number of minuses at each
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stage we premultiply by oo8 l = eta. (Recall that ordinal multiplication

is what is relevant here.) Hence wn(e-l) has (eoo) minuses following

the e pluses. This simplifies to enw.

{e CJ} is mutually cofinal with {e }. It follows directly

from the definition that e-j consists of e pluses followed by e

minuses.

We now turn to general epsilon numbers.

For convenience of notation we regard an arbitrary surreal

number a as beginning with a0 pluses followed by b0 minuses, then

ax pluses, bx minus ... aa pluses, ba minuses, etc., i.e. we

partition the sequence a into strings of like sign. In this notation

aa, of course, may be 0 if a is a limit ordinal.

Theorem 9.5. a is an epsilon number if and only if a0 * 0; all aa

different from 0 are ordinary epsilon numbers satisfying
â u)

aa > l.u.b. a$; and furthermore ba is a multiple of u> for aa * 0
3<a

and a multiple of u> a where ca = I a$ for aa = 0.
3<a

Proof. We compute w by Corollary 5.1 to the sign sequence formula.

The blocks in wa correspond to the blocks in a. The a t n block of

pluses in wd has order type w and the atn block of minuses
(ca+aa+i) a

has order type m b a. w = a if and only if the following

equations are satisfied:
ca+aa a

(1) 03 = aa for a l l a such that aa * 0 and OJ ° = a0 .

ca+aa+i
( 2 ) a) ba = ba for a l l a.

Note: Since the sign sequence formula for a power of u> begins with a

plus, special consideration is needed for a0.

Consider the f i r s t equation <D = aa. Since w _> x for ordinals

this can be expressed as a conjunction of two equations:
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The first says that aa is an epsilon number. Since epsilon

numbers are additive absorbing, the second condition can be expressed as

ca < aa. In particular, (aa) is a strictly-increasing sequence.

Furthermore as epsilon numbers the aa are a fortiori powers of a>.

Thus we can use the above squeeze argument to deal with I a$. In
3<a

general, I u> _< (l.u.b. w )2. (We really need the "two" here. For
d<a d<a

example, consider 1+oo+w •••+o) • ••+u)W.) Hence

I a3 1 ca 1 (l.u.b. 33)2. Since epsilon numbers are multiplicative
3<a B<a
absorbing the condition ca < aa can be replaced by the condition

l.u.b. a$ < aa.
3<a

Now le t us rephrase condition (2) given that condition (1) is
aa+i

sa t is f ied . Since ca + aa = aa this becomes w ba = ba. We now use

elementary facts with regard to absorption of ordinals. An ordinal x

addi t ively absorbs a i f and only i f x _> aw. Hence an ordinal y
aa+i

mul t ip l ica t ive ly absorbs u> i f and only i f a l l exponents in the

normal form are at least (aa+l)w = aa«. ( I f aa = 0 we apply the above

reasoning with ca replacing aa .) This completes the proof.

Remark. The above theorem with the aid of theorem 9.2 gives us an

immediate evaluation of e-i since i t is clear now that every epsilon
£ (A)

number less than e 0 must begin with e0 pluses and w ° minuses.

One interesting question that can be asked is the following.

For which a is it possible to obtain an infinite sequence (a-j) where

a = a) l and for all i a-,- = u> 1 + 1? Epsilon numbers obviously have this

property. It may be surprising at first that this property characterizes

epsilon numbers since it looks substantially weaker than the equation

a = w . However, this follows easily from the sign sequence formula.

For ordinals we know that u>X >. x for all x hence the sequence
a.

terminates and it is immediate by induction that w "• = a-,- implies

a) = a. In general the length of each block is monotonic decreasing and

hence is eventually constant. Since the n at which the length becomes

constant a priori may depend on a, a little caution is required.

However, we can use induction on a to show that the length has been
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constant from the beginning. For the sequence of aa's we can use the

same argument we used for ordinals using the fact that the earlier aa's

are constant. The same argument works for the ba's. To see this note

that the above argument for ordinals works for any function f which

satisfies f(x) ̂ > x for all x (the argument makes no use of any

special properties of u> ) so that it applies in particular to

functions such as u x.

We next obtain a formula for the sign sequence of ea. The

work is facilitated by the next lemma.

Lemma 9.1. Let f and g be strictly increasing maps from the surreal

numbers onto the same class S which preserve the initial segment

property. Then f = g.

Remark. A function f preserves the initial segment property if for all

a and b such that a is an initial segment of b, f(a) is an initial

segment of f(b). For example, corollary 9.2 says that the function ex

has this property.

Proof. As usual we use induction. Let b = B'|B" and suppose

f(x) = g(x) for all x e B'LJB11. Now g(b) e S. Therefore g(b) = f(c)

for some c. g(B') < g(b) < g(B"). Therefore f(B') < f(c) < f(B").

Since f is an increasing function B1 < c < B". Therefore b is an

initial segment of c thus f(b) is an initial segment of f(c) = g(b).

Similarly g(b) is an initial segment of f(b). Therefore f(b) = g(b).

Since e. is an increasing function which preserves the

initial segment property by corollary 9.2 it suffices because of theorem

9.5 to find a sign sequence formula using "good judgment."

Theorem 9.6. Using the notation of theorem 9.5 let da = £ ag. Then

the ath block of pluses in ea consists of e. pluses and the atn

block of minuses of (s . ) ba minuses.aa

Proof. Let f(a) be the function given by the above sign sequence rule.

It is immediate from theorem 9.5 that the above is an epsilon number for

all a. (Note that in general a>ea) = {if)® = ew.) It is also clear
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that g is onto the class of all epsilon numbers. In fact, given any e

number the inverse image with respect to f is obtained as follows:

(1) aa = da - l.u.b. dg where e is the length of the ath block

of pluses.

(2) b a is the unique solution of the equation (e^J^x = c where c

is the length of the a"th block of minuses.

It is clear that f is increasing and has the initial

segment property. This is because roughly speaking f maps larger

blocks into larger blocks. Hence f(a) = ea.

The above theorem gives us a "concrete" way of looking at the

epsilon numbers. The term "concrete" is of course relative since this

depends on regarding the ordinary epsilon numbers for ordinals as

concrete objects. To illustrate the relativeness of the terms "concrete"

and "abstract," we may think of the integer "5" as abstract compared to

the phrase "5 apples." On the other hand, an abstract category is a

concrete example of an internal category!

We next show that higher order fixed points can be handled in

a similar manner, i.e. we desire to express the lengths of the blocks in

the sign sequences explicitly in terms of corresponding higher order

fixed points for ordinals. It turns out that it is easy to generalize

theorems 9.5 and 9.6.

Theorem 9.7. Let f be a function from surreal numbers to surreal

numbers. Suppose that g and h are functions on the ordinals such

that g is strictly increasing continuous with image in the class of

powers of w and h arbitrary except that it never takes on the value

0. Finally assume that the sign sequence for the function f is given

as follows:

(1) The a^n string of pluses of f(a) has length g(da).

(2) The atn string of minuses of f(a) has length h(da)ba where

we are using the notation of theorem 9.6. Then f(a) = a iff

for all a, g(aa) = aa, aa > l.u.b. a$, and b a is a multiple of
3<a

Proof. This is similar to the proof of theorem 9.5. In fact, it is
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easier in the sense that we are given a "handicap," i.e. the analogue of

some of the results obtained on the way in the above proof are contained

here in the hypothesis.

f(a) = a if and only if the following equations are

satisfied:

(1) g(da) = aa.

(2) [h(da)]ba = ba.

As before, equation (1) can be expressed as a conjunction of

two equations g(aa) = aa and ca + aa = aa. The first condition says

that aa is a fixed point. This implies in particular that aa is a

power of a). As before, with the help of the first condition the second

condition can be replaced by aa > l.u.b. a$. (In the earlier proof we
3<a

did not need the full multiplicative absorbing property. It was enough
to absorb 2 multiplicatively.)

The equation [h(da)]ba = ba is equivalent to the condition

[h(da)] divides ba by the theory of ordinals. This completes the

proof.

Remarks. We do not require that the range of h consists only of powers

of OJ although this does occur in the main examples. Strictly speaking,

continuity of g is not used in the proof. Continuity guarantees fixed

points for g, hence fixed points for f.

Other variations of the theorem are possible and in fact one

will be considered later. At this time we are concerned specifically

with higher order epsilon numbers. We now state an analogue of theorem

9.6.

Theorem 9.8. Let f satisfy the hypotheses of theorems 9.4 and 9.7.

Then the formula for the sign sequence of the fixed point function f1

given by theorem 9.4 is as follows.

The a t n block of pluses in f'(a) has length g'(da)

where g1 is the fixed point function of g in the theory of ordinals

and the a t n block of minuses has length [hg'(da)] ba.

The proof is identical to that of the proof of theorem 9.6.

Note now that the conclusion says that f satisfies the hypothesis of

theorem 9.7 to make an induction possible. We let g' play the role of
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g and (hg ' ) w the role of h. By theorem 9.6 the funct ion e sa t i s f i es

the hypothesis of theorem 9.8 so we can use the theorem to determine the

sign sequence of en for f i n i t e n.

As a convenient reference for computation and recognizing a

pattern l e t us use the diagram [g ,h ] > [ g ' , ( h g ' ) ] which express the

parameters for the given func t ion . Then e0 corresponds to [e,eW ] so

el corresponds to { e i , [ ( e e j " ] ^ } . Since the image of ex consists of

f ixed points of e by de f in i t ion , this simpli f ies to [ e ^ U j ) " * 1.

By our ear l ier remarks we now have a setup for induction

which allows us to express the higher order fixed point functions of

f i n i t e index for surreals in terms of the corresponding functions for
n+i

ordinals. Thus the pair corresponding to en
 1S [£n»(£n) 1-

We now outl ine the continuation to t ransf in i te indices. The
a

pair corresponding to ea is [e a , (e a )w ] . The term ea in the pair is
a

clear. The j us t i f i ca t i on of ( e ^ ^ follows from the remark that any

mult iple of u> for a l l 8 < a where a is a l im i t ordinal is

necessarily a multiple of w01, hence a multiple of x for a l l

8 < a is necessarily a multiple of x*w .

I t is nice that such a comparatively exp l i c i t description of

higher order f ixed points exists.

D QUASI e-TYPE NUMBERS

In this section we introduce other interesting surreal

numbers. F i r s t , we prove the existence of a solution to the equation

oTx = x. In fact , we l e t a = 0 and a , = u> n . Then heurist ical ly
o n+i

speaking, (a ) is an alternating sequence converging to the unique

solution of the above equation. We shall also construct other pairs
"X ™"V

(x,y) such that eo = y and w = x. For convenience let

f(x) = w"x and g(x) = ff(x).
Theorem 9.9. to x = x has a unique solution which is obtained as follows:

-a
Let a = 0 and define a inductively by a = w n. Then (a )

is a strictly increasing sequence, (a2 ) is a strictly decreasing

sequence, and a2 < a2 for all n. The unique solution is then
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given by { a 2 r ) } | { a 2 n + 1 } .

~"X

Proof. Since w is a decreasing function of x it is immediate that

the equation w x = x has at most one solution. Now f(x) = w is a

strictly decreasing function of x, hence g(x) = ff(x) is a strictly

increasing function. a2 is certainly a power of u> hence

g(a ) = a > 0 = a . So by induction a is a strictly increasing
sequence. From ao 1O > ao we obtain

2n+2 2n
a

2 n + 3 " f ( a 2 n « ) < f ( a 2 n ) = a
2 n + i ; t h e r e f o r e a

2 n + 1
 i s a s t r 1 c t 1 y

decreasing sequence. Again, &l i s a power of co so a < a . Since

g is a s t r i c t l y increasing funct ion we obtain by induction that

ao < ao , . I t fol lows that for a rb i t ra ry ao and ao , we have
2n 2n+i J 2m 2n+i

a2m - a2m+2n < a2m+2n+i - a 2n+r

Since a l l even terms are less than a l l odd terms,

{ a 2 n } ' { a 2 n + i } h a s m e a n 1 n 9 - L e t a = { a 2 n } ' { a 2 n + i } * T h e n

-a = { -a 2 + 1 > U " a 2 } . Since the lower terms have no maximum and the

upper terms no minimum, we have

a
} = ( 0 , f ( a 2 n + 1 ) } | { f ( a 2 n ) }

Instead of beginning with 0 one can begin with any a such

that g(a) is between a and f (a ) and s t i l l obtain the same kind of

"convergence." Our la te r work w i l l enable us to easi ly f ind examples of

a which sat is fy the above condit ion as well as examples which do not.

I t is easy to see that g sa t i s f i es the hypothesis of

theorem 9.4. In f ac t , conditions (a) and (b) are immediate. Now suppose

that a = G|H with G containing no maximum and H no minimum. Then

-a = -H|-G hence uTa = {0,a>~H} | {uTG} . Therefore

-uTa = {-u>"G}|{0,-uTH}. F ina l l y , g(a) = o)"w"a = {0,arw~G} | {u,o,aruTH} =

{O,g(G)} | { l ,g (H)>. Therefore condit ion (c) is sa t i s f i ed with c = {0}

and D = {1 } .

Recall that for the ea r l i e r f ixed points D was the empty

set, so that i t would have been adequate to state condit ion (c) in the

form f (a ) = [ C , f ( G ) ] | [ f ( H ) ] for the immediate appl icat ions. The more
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general form was used in the statement of theorem 9.4 with the present

example in mind.

At any rate, we now know that we have a fixed point function

g1 for g. Note that since g(x) = ff(x), any pair of the form (x,y)

where x is a fixed point of g and y = f(x) satisfies u> x = y
— y

and 0 0 = x. I f x i s a f i x e d po in t of g so i s f ( x ) . We now show

t h a t the ind ices of x and f ( x ) are re la ted in a simple manner.

Theorem 9.10. g ' ( - b ) = f [ g ' ( b ) ] .

Proof. By the general formula g'(0) = [g (C)]|[g (D)]. This is
n n

precisely {a2 }|{a2 } in the notation of theorem 9.9. Hence g'(0)

is the unique solution of oTx = x. Hence f[g'(O)] = g'(0) = g'(-0) so

the theorem is true when b = 0. (Although we did not need a separate

proof for the case b = 0 it is of interest to see it explicitly,

especially since the proof is so simple.)

We now need several inequalities before setting up the

induction as usual.

We first claim that 2f(x) < f(~x) < ff[2f(x)3 for any

fixed point x of g. Since a fixed point x is necessarily larger

than 0, we have yx < x. Hence f(x) < ftax). Since the range of f
1consists of powers of w and 2f(x) ~ f(x), we even have 2f(x) < f(-̂ -x).

Also 2f(x) > f(x), hence f(2f(x)] < ff(x) = x since x is a fixed

point of g(x) = ff(x). Again since we are dealing with powers of u>

we have f(2f(x)] « x. Therefore f[2f(x)] < jx so finally

f(jx) < ff[2f(x)].

Similarly we obtain the inequality ff[jf(x)] < f(2x) < -^fU).

First, f(2x) « f(x) so f(2x) < ~f(x). Also |f(x) < f(x); therefore

f[^f(x)l » ff(x) = x. Hence f[-|f(x)] > 2x. Finally we obtain

ff||f(x)l < f(2x).

We are now ready for the induction. By theorem 9.4

g'(b) = {gn(0),gn[2g
l(bl)]H{gn(l),gn[|g'(b

11)}. As we saw in the proof

of the latter theorem, the lower elements have no maximum and the upper

elements no minimum, hence
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f[g'(b)] = {0,fgn(l),fgnf|g
l(b")l}Ufgn(0),fgn[2g

1(b')]}. (Note the

reversal of sides since f(x) = u"x.) Since g(x) = ff(x) and f(0) = 1

the right-hand side is

{gn(O),fgn[|g'(b")]H{gn(l),fgn[2g'(b
l)3}. Also -b = {-b"}|{-b-'} hence

g'(-b) = {gn(o),gnC2g
1(-b")]}|{gn(i),gn[|g'(-b

1)]}

= {gn(0),gn[2fg
1(b")J}|{gn(l),gn[-|fg'(b

1)]}

by the inductive hypothesis.

The inequalities we obtained earlier are just what are needed

to check mutual cofinality. First we have 2f(x) < f(jx) < ff[2f(x)]

for any fixed point, in particular for x of the form g'(b"). Since

g is an increasing function this gives

gn[2f(x)] < 9nf(|x) < gn+1[2f(x)]. Similarly from the

inequality ff[jf(x)] < f(2x) < ̂ f(x) we obtain

gn+1[|f(x)] < gnf(2x) < gn[-|f(x)]. Hence g'(-b) = f[g'(b)].

The fixed points we obtained here are quite different from

the earlier kind. Generalized epsilon numbers are all above w (1) for

all n. The present ones are all infinitesimal. They may be regarded as

"large infinitesimals." Since they are all squeezed between a2 and

a in the notation of theorem 9.9, it is of interest to determine the

first few terms of (a ) to get an intuitive idea of the size of these
n I

fixed points. In fact, a = 0 , ax = 1, a2 = — and a3 = oo . Thus

a2 is the canonical infinitesimal, and a3 being above u> for all

positive integers n is a large infinitesimal. A study of the sign

sequences will enhance the intuition further.

E SIGN SEQUENCE IN QUASI CASE

First, we determine the sign sequence of the unique solution a
""X

of u) = x which we feel is a surreal number of special significance

(just like the first epsilon number for ordinals). There are essentially

two different approaches which can be used for the computation. One can

compute the sequence (a ) inductively and use theorem 9.9 or work

directly with the equation uTx = x. By direct computation the beginning
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terms of (a ) are as follows: a is the null sequence, ax = (+), a2

consists of a plus followed by u> minuses, a consists of a plus

followed by co minuses and co pluses, a^ consists of a3 followed

by w^"1"1^ = oa^'2 minuses. (Note how the sign sequence so far suggests

the heuristic idea of "large infinitesimal.") We now see a pattern

emerging which allows us to obtain an for all n by induction as well

as a. For convenience regard a general surreal number as beginning

with c pluses d minuses, c1 pluses, dl pluses ••• c pluses, d

minuses, etc.

Theorem 9.11. The unique solution of w = x has the following
d

sequence: c = 1; d = to; for each non-negative integer n, c = to n

and d + 1 = (c + 1 ) 2 ; and for a _> to both c and d are zero.

Proof. We f i r s t show that the above pattern is followed by a l l a in
————— P

the sense that a is the initial segment consisting of the first n

strings of like signs. We already know this for all a with n _< 4

and use complete induction on n, i.e. assume that the pattern is

followed for all a where m _< n. We will show that the pattern
remains valid for a ,,.

n+i
Now a is obtained from a by adding a sequence of like

-a -a

signs. Hence a = u> n is obtained from a = GO n"1 by adding a

sequence of like signs by the sign sequence formula. Because of the

minus in the exponent the signs are opposite to those in the last string
of a . We now separate the even and odd case to determine the length of

n n-i

i=odi

the ex t ra s t r i n g . By the sign sequence formula cp = ^ and

d = (c w)c . Now, since the square of a power of to i s also a power of

a), i t i s c lear t ha t a l l c ' s and d 's w i th the exception of c are

powers of to. Also the sequence c , d , c , d , • • • i s s t r i c t l y
n-i

i n c reas ing . Therefore I d . = d _1# Also c _> GO i f n _> 1 . There-

2 d

fore c we simplifies to c . Thus the above becomes c = to n~x and
n n n n
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There are now two ways to conclude, each of which is immedi-

ate. First {a2 } and {a2 +1> are cofinal sets in the canonical

representation of the proposed sign sequence. Thus the sequence is

{a2 }|{a2 } = a. (It is possibly easier to go back to the definition

of F|G.) Second, one can ignore the individual a and note that the

above computation shows directly that the proposed sequence satisfies
-x

= x.
It may seem at first that this method can produce other

""X

solutions of OJ = x. This leads to the scary feeling that something is

wrong; however, fortunately the attempt fails and instead the computation

leads to information which is consistent with what we have so far. In

fact, uniqueness can be checked by sign sequence reasoning by a method

which is similar to what was used in the above proof (which, inciden-

tally, is somewhat analogous to the technique of solving differential

equations by power series.) c and d are all uniquely determined.

If the sequence for x continues beyond this, i.e. if c or d t 0
-x -x w w

then a) must continue with an opposite sign so to cannot possibly
equal x. Thus the uniqueness follows directly from the sign sequence
formula.

-x
We next classify the fixed points of g(x) = oTw .

Theorem 9.12. x is a fixed point of g if and only if x begins with

a and then all c's and d's are epsilon numbers larger than e ,

each being larger than the least upper bound of the predecessors.

Remark. Note that in contrast to the earlier type of fixed points here

the c's and d's have similar restrictions.

Proof. Note first that the length of a is e . This follows easily
o

from a Cantor-Bernstein type argument since i t is immediate that
<_ e and that fc(a) _> e .

A fixed point of g must begin with a. Conversely, for any

sequence x beginning with a the first u> strings of like signs in

x and g(x) are alike. Thus it suffices to study the strings of like

signs beyond a.



GENERALIZED EPSILON NUMBERS 141

If ca and da are lengths of strings in x let ca' and

da' be the corresponding lengths in f(x) = <o (the signs shift of

course) and ca" and da" be the corresponding lengths in
*~x

g(x) = w~w . (Note that by the sign sequence formula for a >_ u>, the

ath string of g(x) correspond to the ath string of x. This is in

contrast to the case a < w where the ath string in x gives rise to

the (a+l)st string in f(x).) We now compute ca
M and da".

• ( 3<a > . . i 3<aFirst ca = (w Jca and da = ca

Similarly ca" = < /
< a and da" = (u)3<a )d a\

It would be messy to express ca" and da" in terms of

ca and da. Fortunately this is not needed in order to obtain the

decisive inequalities.

Suppose the sign sequence has the form described in the

statement of the theorem, then we can reason similarly as in the proof

of theorem 9.5. By absorption ca' = ca and da' = da. (Beware that

this does not say that w = x since all signs are reversed.)

Similarly ca" = ca' and da" = da'. Since the signs have been reversed

twice, this shows that g(x) = x.

Now suppose g(x) = x. Then ca" = ca and da" = da.

(Recall that we are dealing only with a > u>.) From the above formulas

ca" 2. w il w • Hence ca = ca" >_ w thus ca is an epsilon number.
da

Similarly da = da" _> da' >_ a> hence da is also an epsilon number.

Furthermore da = da" >_ da' >_ I d$ and
3<a

ca = ca" 1. I ce' 1 I C3- Tnis shows that the c's and d's have the
3<a 3<a

required properties when regarded as separate sequences. However, we
also have ca = ca" _> ca' >_ I d and da = da" >_ I c ' •_> I c .

3<a P 3<a P 3<a p

Finally, if we take into account the terms in a we obtain that all

ca's and da's are larger than e0. This is enough to complete the

proof of the theorem.

We can now continue in a manner which is similar to what we

did for ordinary epsilon numbers except that now things are easier
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because of the similar treatment of pluses and minuses. We now no longer

discriminate against the poor minuses but use cumulative sums. Thus,

regardless of whether the ath string of x consists of pluses or

minuses, the a t n string of g'(x) beyond a is made up of the same

sign and has length e. , where ba is the total length of the sequence

of x up to and including the a*" string.

The fixed points we obtained seem interesting because of

their contrast with epsilon numbers. Higher order fixed points may be

constructed by theorem 9.4, but this does not seem to be interesting

enough to pursue in much detail. It suffices to note that we need a

variation of theorem 9.7. On the one hand we use cumulative sums rather

than da and treat pluses and minuses alike so a function h is not

needed. On the other hand, we need a preliminary sequence such as our

element a. A fixed point of f necessarily begins with the juxtaposi-

tion [a,f (a),f (a),«••]. Finally, to guarantee a fixed point one must

make sure that the length of the latter sequence gets absorbed when added

to the fixed points of g to ensure that we obtain a fixed point of f.
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10 EXPONENTIATION

A GENERAL THEORY

As was mentioned in the introductory chapter, Kruskal

discovered that a theory of exponentiation for the surreal numbers is

possible. Taking advantage of his hints I discovered that an elegant

natural theory does exist, i.e. exp x can be defined in a uniform way

for all surreal numbers x and it has the properties that are expected

of an exponential function. Note that the function wx is not suitable

as an exponential function even though the theory in chapter five makes

this notation convenient. For example, it is certainly not onto since no

two numbers in the range have the same order of magnitude. (The word

"exponent" used in the past is a convenient abuse of language.)

Although we begin with a unified definition of exp x the

subject breaks up naturally into three cases.

(a) x is real,

(b) x is infinitesimal,

(c) x is purely infinite (i.e. all "exponents" in the normal form

of x are positive).

The unified form is somewhat complicated to deal with, whereas

the theory simplifies in each of the above cases for different reasons.

(Note that any surreal number is uniquely a sum of three numbers each of

which satisfies one of these cases.) Case (c) is the only one which is

worthy of a substantial discussion. In case (a) it suffices to show that

the unified definition is consistent with the usual one and in case (b)

that the unified definition is consistent with the result by formal

expansion in the spirit of chapter five.

Although the notation 'u)x" will continue to be used with

its original meaning there should be no danger of confusion since the
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exponential function will consistently be written as exp x. This is

because it is obvious how to define general exponentiation in terms of

exp x and its inverse function thus there is no need for us to consider

expressions such as a in particular u> in the sense of

exponentiation.

The motivation for the definition of exponentiation (as it

was for multiplication) is based on suitable inequalities satisfied by

ordinary real numbers. Usually the construction of a definition requires

some ingenuity; one must include enough inequalities to obtain the

desired result and avoid circular reasoning. We recall, for example,

that for ordinary real numbers we have the implication

(ax < a)A(b x< b) — • abx + axb - a1b1 < ab.

Such implications make the definition of multiplication possible. Recall

also that in the study of reciprocals in chapter three we could not get

by with the obvious inequalities but we were forced to use some subtlety

instead.

In searching for a definition of exponentiation similar

difficulties occur. It is natural to attempt to use Taylor series

approximations. For example, if x is positive, 1+x + ̂ y "' "pT is a

lower approximation to exp x. However, {0,1+1 + ̂ 7 ... "ryll^ = 3 * exp 1

so this is not adequate. Also the sets {l+u> + JJ ••• — } and

{1 + - ^ y j — ... -~-j—} are mutually cofinal so that caution is required

in framing a definition to guarantee that exp w t exp(w2). Actually

the idea of using Taylor series does work as long as one uses proper

refinements.
x x^

We use the notation [x] for 1+x + ̂ 7 • • • --7 for an

arbitrary surreal number x. For negative x we will be interested only

in odd n for which [x] is positive. Thus when we use the notation

[xl ,, when x is negative, it is understood that [xL ,, is
2n+i 2n+i

positive. This awkwardness when x is negative is a price that is paid

for unification. Note that in case (b) all [x] 2 +1 are positive and in

case (c) we have the other extreme where no [x] 2 +1 is positive. Thus

we have the ironic fact that case (a) which we already know all about

from elementary analysis is the one that causes the greatest awkwardness

when combined with the other cases! This is why we prefer as soon as
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possible to split the subject into the three parts according to the

different cases. On the other hand, although the theory can be developed

by considering each case separately from the beginning, we prefer not to

do so since the subject then takes on an ad hoc form with definitions

that should really be theorems. In fact, the whole beauty of the subject

of surreal numbers from the very beginning lies in the possibility of

making uniform definitions which reduce to what is desired in various

special cases.

As in the past we use the canonical representation of an

element x to define exp x inductively as follows:

exp x = {0,(exp x' )[x-x']n,(exp x")[x-x"]2 X X
n LX x j 2 n + 1

The restriction of [x]2 to positive values for the upper

elements is essential in order to have any hope for the above definition

to work since 0 is a lower element. On the other hand, by cofinality,

no harm is done if negative values are included among the lower elements.

(Of course, no good is done either!) Also, it turns out that expressions

involving [x] for negative x and even n are redundant. On the

other hand, examples such as ones we mentioned earlier suggest that we

need all the terms we have.

Before proving that exp x is defined and investigating its

properties, we mention several needed inequalities among elements of the

form [x] .n
(1) For positive, x,y we have [x]n[y]n >_ [x+y]n and

[x +y] 2 p > [x]n[y]n.

The above inequalities depend only on ordered field properties and follow

immediately from the binomial theorem. Also we note the obvious fact

that [x] is an increasing function of n.

For negative x the situation is more complicated. Anyway,

for infinite x there are no [x] to consider, so the problem

reduces to the case where x = r+e where r is real and e is

infinitesimal.

First, for real r we can apply plain ordinary analysis.
r2 -r

Since 1-r + yp ... —• e > 0 there certainly exists n such that
r2 ' r2n+i

1-r + pT ... - >pn+i\i
 > °- Necessarily r < 2n+l. Hence it follows that

if n is the least n for which the latter expression is positive,

[r] is defined precisely when n >_ n , [r] is an increasing
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_y» X"f"V X V

function of n and lim[r]2 = e . Since e = e e , it is a

trivial exercise in analysis to show that

and

Vm 3no(n > nQ - Cx] 2 n + 1Cy] 2 n + 1 > [x+y]2|n+1)

Vm 3nQ(n > nQ -* [ x + y ] 2 n + 1 >. [x] 2 m + 1Cy] 2 r a + 1).

Since [ - x ] 2 n + 1 < e"x and [ x ] 2 n + 1 < e x , clearly [ - x ] 2 n + 1 [ x ] 2 n + 1 < 1

for x > 0.
For infinitesimal e the work simplifies since we can reason

purely algebraically using orders of magnitude. Clearly [ e ] 2 n + 1 is

defined for all n and is increasing.

For negative infinitesimals x and y we also have the

inequalities [x ] 2 n + 1 [ y ] 2 n + 1 > [x+y] 2 n + 1 and [ x + y ] , ^ > C x ] 2 n + 1 [ y ] 2 n + r

These follow from the binomial theorem by reasoning with orders of

magnitude. In both inequali t ies 2n+2 is the lowest total degree of

terms occurring in the l e f t and not on the r igh t , and a l l such terms have

posit ive coeff ic ients. Also, [-e] + I t
e ^ 2 +1 < "̂  ^ o r e > ^' ~^1S

follows from the fact that on the left-hand side a l l terms involving e

beyond e = 1 for i £ 2n+l cancel by the binomial theorem but the

coef f ic ient of e n is negative. Furthermore

s 1 n c e

Finally, we consider a finite element of the form r+e with

r real and e infinitesimal such that r > 0. Then r+e > 0. Hence

[-(r+e)]o , differs from [-rl , by an infinitesimal. If [-rV
2n+i 2n+i 2n+i

is positive so is [-(r+e)] . Similarly, if [-r] is increasing

for n 2. n so is [-(r+e)] . A petty nuisance is caused by the

possibility that [-r] equals zero for some n. However, we can use
the above argument for real r for the improper inequality

r2 r2n+i
I ° and stl'11 obtai'n an n

0- ^ r^2n+i and there~
fore [-(r+e)] will still be increasinq for n > n . Thus there may

2n+i " — o
be an n for which [-(r+e)L , is considered but not [-rl al buto 2n+i 2n+i
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by the above th is can happen for at most one n and no harm is done.

The resul ts re la t ing [ x ] 2 n + 1 , £y]2 n + 1> and [ x+y l 2 m + 1

s t i l l remain v a l i d . Since [ x ] is a s t r i c t l y increasing function of

n for a l l x, the improper inequalit ies in the above theorems for real

x and y can be replaced by proper inequalit ies (by making n larger

i f necessary). The results for numbers of the form r+e then follow

immediately from the results for the real parts r.

Again we have [ - ( r+e ) ] 2 n + 1 [ r+e ] 2 n + 1 < 1.

This gives us the basic properties of [ x ] 2 + 1 for negative x.

For the sake of symmetry between the cases for positive and negative x

and for the sake of uniformity, a l l of our results relat ing [x ] , [y ]

and [x+y] can be expressed in the form given for negative real

numbers, i .e . we have no need for the exp l i c i t value of n given in

several of the cases. What real ly matters for our purpose is what

happens for suf f ic ient ly large n.

Now that we are armed with the needed inequal i t ies, we are

ready to prove the basic theorem.

Theorem 10.1. exp x is defined for a l l x. Furthermore, i f x < y

then exp x [ y - x ] n < exp y and ex

t ive integers n. Also exp x > 0.

then exp x [ y - x ] n < exp y and exp y [x-y] < exp x for a l l posi-

Proof. Recall that exp x = {0,exp x ' [ x - x ' ] ,(exp x" ) [x -x" ]
n

A v r» \ / Ayr. \ / *

{fv" vi > r ' i }• We use induction as usual. First we must show
LX - x j n LX - x J 2 n + 1

that the lower terms are below the upper terms, so that exp x is defined.

The inequali t ies involving 0 are immediate in view of our

res t r i c t ion that a l l the terms of the form [ x ' - x ] are posit ive, and
the inductive hypothesis that exp x' and exp x" are posit ive.

We now compare terms of the form exp x ' [ x - x ' ] m , and . ..

F i r s t suppose m = n. Choose p so that [ x " - x ' ] >_ [x" -x ] [x -x 1 ] .

By the inductive hypothesis exp x ' [ x " - x ' ] < exp x". Therefore

exp x ' [ x " - x ] [x -x 1 ] < exp x", i .e . exp x ' [ x - x ' ] < T^Tr~-4-. Sincemm m L X —XJm
[x] n is an increasing function of n, the result for general m and n

exp r

n
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follows immediately. In fact,

exp x'[x-x']m < exp x ' C x - x
1 ] ^ , < Lx"-xJ

P * . ± 1 3 ^ x 7 "
max(m,n) n

Exactly the same argument shows that

exp x"[x-x"L +1 < r ?
x p

n
x ' — • (In fact, we deliberately ignored them Lx ~xj

fact that p can be taken to equal 2m in the above proof in order to

make i t possible to use the same argument in both cases.

Note that we also have [ x ' - x ] [ x -x 1 ] < 1 for arbitrary
2m+i n

posit ive integers m and n by an argument similar to one used above.

Hence exp x ' [ x - x ' ] < r ? x p« x • However, this is not enough. We need
n L x "XJ2m+i

an inequality of the form exp x ' [x-x '] < H 2 where x ' and
L x ' x J

x ' are two arbitrary lower elements not necessarily equal. It turns

out that we can use a device which is similar to what we used for

different subscripts m and n which will also be important later; in

fact, it is the same cofinality idea which we used, for example, in our

development of multiplication in chapter three.

Specifically, we desire to prove the following: Let
xi' < X 2 " Then Vm ^ n! e xP X

1'C
X~ X

1'] £ exp x2'[x-x2'] }. In fact,

choose n so that [x-x '] [x '-x '] > [x-x '] . Then
2 n 2 i n — i m

exp x 2 ' [ x - x 2 ' ] > exp x 1
l [ x 2 ' - x 1 ' ] [ x - x 2 ' ] > exp x 1 ' [ x - x 1 ' ] , where we

used the inductive hypothesis in the f i r s t inequali ty. Simi lar ly, we

exp x2' exp xx'
have Vm 3n [r , •, < , , •, 1. Hence, if x ' = max(x \ x ' ) ,

Lx2 -xj - LX X "
xJ 2 m + 1 3 1 2

then for a sufficiently high p we have
exp x3' exp x2'

exp x '[x-x ' ] m <_ exp x '[x-x '] < r . •• <_ r . -i •
1 6 6 p L X3 " X J2p+i L X2 "XJ2n+i

Similarly, if x 2 < x " we have the following inequalities:

Vm 3n[exp x
1"t

x"" x
1
l l] 2 +1 £

 e xP
and

exp x
Vm 3n r 2
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exp x2"
so that we obtain exp x " [x -x " ] < r H •• •

Thus we f i n a l l y have what we need to conclude that exp x is

def ined. In add i t ion , the l a t t e r inequal i t ies give us important

c o f i n a l i t y resu l t s ; e.g. i f x ' > x 2 ' we can dispense with x 2 ' in

computing exp x.

Since 0 is a lower element in the de f in i t i on of x

cer ta in ly exp x > 0. The inequal i ty exp x [y -x ] < exp y for x < y

is immediate from the de f i n i t i on i f e i ther y or x is an i n i t i a l

segment of the other. Otherwise we can use the same technique as in

chapter three by considering the common i n i t i a l segment of x and y.

Let x < z < y where z is that common i n i t i a l segment. Now

Vn 3 p [ z - x ] p [ y - z ] p > [ y - x ] R . Hence

exp y > exp z [y -z ] > exp x [z -x ] Cy-z] > exp x [y -x ] . Simi lar ly

exp y [ x - y ] ,, < exp x. This completes the proof.

Corol lary 10.1 . The uniformity theorem is va l id for exponentiation.

Proof. This is immediate from the inequal i t ies obtained in the proof of

the above theorem using as usual the inverse co f i na l i t y and co f i na l i t y

theorems.

We are now ready to study the main cases separately. For

real r l e t us temporarily use the notation e for the ordinary

exponential funct ion.

Theorem 10.2. exp r = e for real r.

Proof. Note f i r s t that exp 0 = {0}|<j> = 1 which is a good s ta r t

although we have a long way to go!

Since a l l proper i n i t i a l segments of reals are reals ( in fact

dyadic) we may use induct ion. Hence we have

exp r = { 0 , e r ' ( r - r ' ) n , e r " [ r - r " ] 2 n + 1 | •• f , , - ^ r ^ 1- We u s e

n 2n+i

c o f i n a l i t y to show that th is expression gives e . Recall that e , l i ke

any real number, can be expressed in the form {e -e } | {e +e} where e is

pos i t ive r e a l . I t is immediate from our ear l ie r inequal i t ies that e

sa t i s f i es the betweenness property. For example,
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e [r-r1] < e e = er. Cofinality is also easy. If r > 0 then

0, which is one possible value of r1, gives rise to lower elements
1 1 r

[r] and upper elements T — T Since lim [r] = lim -i--^ = e ,
n L"rJ2n+i n>0° n n+~ L"rJ2n+i

these elements are cofinal in the above expression for e . Similarly, if

r < 0, we can use 0 as a possible value of r". This completes the

proof.

Remark. Note that we used the fact that lower terms in r contribute to

upper terms in exp r and vice versa. Also, in this case the only

initial segment we needed was 0. This is not true in general although

cofinality results permit us to cut down to some extent on the set of x1

and xM needed to compute exp x. [For example, as we saw earlier the

use of x1 = 0 only would not distinguish exp u> and exp(oo»2).]

For infinitesimal x there is a different approach. In

this case the formal sequence 1+x + |y + ... has meaning by the results

of chapter five. This is purely algebraic in contrast to the analytic

spirit for real x. Again we use the temporary notation ex, this time

using it for the formal sum.

Theorem 10.3. exp x = ex for infinitesimal x. More generally, if x

has the form r+e where r is real and e is infinitesimal, then

exp(r+e) = e e .

Proof. Recall that every finite number x can be expressed uniquely in

the form r+e where r is real and e is infinitesimal. Since we

already have theorem 10.2 we may assume that e * 0. Note also that e

has real part one and in general [r+e] is finite and has real part

Since all initial segments of finite surreals are finite, we

may use induction. We show first that by cofinality that in the repre-

sentation of exp x we can restrict ourselves to initial segments of the

form r+6 where 6 is infinitesimal. (Note that r+e might have no

pupper segments of the above form; e.g., 1+— has only numbers such as

as upper segments, so that this does not follow immediately from our

earlier cofinality results.) The basic idea is that r is an initial

segment of r+e and regardless of whether e is positive or negative,
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terms containing exp r contribute to both upper and lower terms of

exp(r+e).

Suppose y = s+5 is a lower initial segment of x = r+e

where s < r (necessarily 6 = 0 as is easily seen, but this fact is

irrelevant for our purpose). By the inductive hypothesis and our earlier

remarks the real part of exp x[x-y] is exp s[r-s] which is less

than e r. Similarly the contributions of y to the upper elements all
P

have real part larger than e . On the other hand, the contributions of
r r

r such as e [e] all have real part e . Since the same reasoning
applies to upper terms this proves the desired cofinality.

Since all the upper and lower terms remaining in the repre-
r 6

sentation of exp x now have essentially the form e e x[6 ] it remains

to study expressions such as e l[& ] n .

First, the identity e le 2 = e l 2 for infinitesimals

x and x2 follows from the identity for formal power series. Also, by

reasoning with formal power series we have [x] < e and

Now if r+5 is a lower initial segment of r+e then we have

terms such as exp(r+6)[e-6] in the representation of exp(r+e). By

the inductive hypothesis this is (exp r)e [e-6] , which is less than

(exp r)e e e = (exp r)e . 8

A similar argument for the other terms in the representation of

exp(r+e) shows that (exp r)e satisfies the betweenness condition for

these terms. Thus to complete the proof it suffices to show that the

terms are cofinal in a representation of (exp r)ee. We use the standard

representation dealt with in chapter five, i.e. if (exp r)ee has the

form ) a) ir-j then we have
i<a

(exp r)ee = { I a> frf-co ^6}|{ I GO ir-j+w $6} where 3 < a and 6 is
i<3 i<6

positive real.

Suppose x has the form, I w i*rj. Then every exponent b
i<a

e n
in (exp r)e is a finite sum of a's. Let b = I a-j . if

a. j = 1 '
a^ = min(ai .) then b 2. na$« Now y = I u> V-f is an i n i t i a l segment

J i<3
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a.
of I m Tr-j and hence participates in obtaining upper and lower terms

i<a
to exp x. Let z = x-y = I w "irj.

i>3
Suppose first that z > 0. Then exp y[z] n is a lower term

in the representation of exp x. Now

(exp y)ez - exp y[z] n = (exp y ) | " ^ + ^ , +•••"!. The first term in exp y

has exponent 0. Hence the first exponent in the latter expression is

(n+Da^ which is smaller than na$. (As a technicality, in case all

a-j . are zero, we can choose 3 to be 1 so that a^ < 0.) Hence
j

(exp y)e and exp y[z] n agree in all terms up to and including the

terms with exponent na$, a fortiori the terms with exponent b.

For z < 0 the argument is identical except for the fact

that we consider only odd n.
b.

Also note that in general if two expressions I w is-j agree
i<B

in all terms up to and including exponent c, then so do their reciprocals

since it is clear that by formally taking inverses terms with given

exponents cannot give rise to terms with earlier exponents. Therefore

the above argument applies equally well to expressions such as ~ —

and fSU.LZJn
If y = r+6 then by the inductive hypothesis

exp y = (exp r)e . Hence
7 V~r Z V~Y*~^'Z. £

(exp y)e = (exp r)eJ e = (exp r)eJ = (exp r)e . The same

argument applies to upper elements. Thus we have shown that for any

given exponent ag occurring in (exp r)e there are terms in the

representation of exp(r+e) which agree with (exp r)ee for all terms

up to and including the terms with exponent ag. By the lexicographical

order such terms are cofinal in the above standard representation of

of (exp r)e . This completes the proof.

We now know that exp x agrees with what is expected for

finite x. Also exp x is clearly strictly increasing and satisfies

exp(x+y) = exp x exp y. This is clear from theorem 10.3 and the

corresponding identities for reals and infinitesimals separately.

For real x we have the function £n(l+x) which for suf-2
ficiently small x may be expressed as 1-x + y~ '' * • Then
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exp £n(l+x) = 1+x. This identity is valid for formal series, hence it is

applicable to infinitesimal surreal numbers, i.e. it is possible to

define a log function in the natural way. For any infinitesimal

exp £n(l+e) = 1+e. This shows in particular that the function x maps

the infinitesimals onto the class of all surreal numbers of the form 1+e

where e is infinitesimal. Combining this with the behaviour of exp

for ordinary real numbers, we see that exp maps the finite numbers into

the class of all positive finite non-infinitesimal numbers.

This essentially completes the theory for the finite case.

There were no surprises. On the contrary, the fact that the unified

definition agrees with what is expected gives some philosophical

justification for using it for the infinite case where we lack an a

priori alternative. This is the realm where exotic results occur and, as

mentioned earlier, the case of main interest.

From now on we would like to limit our study to the case

where x is purely infinite, i.e. where all exponents in the normal form

of x are positive. However, before doing so we need a "piecing

together" result.

Theorem 10.4. If x = y+z where y is purely infinite and z is

finite, then exp x = exp y exp z.

Proof. We again use induction. Note that if x has the form I u> irj,
i<a

then y necessarily has the form I u ir-j and z the form I u> irj.
i<3 i>0

Hence y is an initial segment of x. We use an argument similar to the

one used in the proof of theorem 10.3 to show that in the representation

of exp x we can restrict ourselves to initial segments of the form

y+u where u is finite.

Regardless of whether z is positive or negative, terms con-

taining exp y contribute to both upper and lower terms in exp(y+z).

Now suppose x-x is positive infinite. Consider a term exp x [x-x ] .

Note that [x-x ] x » [x-x ] by elementary reasoning with orders of

magnitude. Therefore exp x > exp x1[x-x1] +1 » exp x ^ x - x ^ . A

similar inequality applies if x-x is negative infinite. On the other

hand, y contributes terms such as exp y[z] or exp y[z] if z

is negative. Now [z]p _> 1 if z is positive. If z is negative we
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can certainly choose n so that [z] is not infinitesimal. In fact,

by our earlier discussion [z]2 can be infinitesimal for at most one

value of n for each z. [z]2 is certainly finite. Hence such a

term is of the same order of magnitude as exp y. It follows from the

above and the inequalities in the statement of theorem 10.1 that

exp y ~ exp x. Thus y contributes a lower term in the representation

of exp x of the same order of magnitude as exp x. This is thus larger

than exp x [x-x ] by our earlier inequality.

Since a similar argument applies to upper terms this proves

the cofinality.

Now the sign sequence of an element of the form y+u is the

sign sequence of y followed by the sign sequence of u. This follows

from the fact that all exponents in the normal form of y begin with a

plus whereas those in u do not, so that by the sign sequence formula y

does not contribute to minuses which are ignored in the sign sequence for

y+u. Hence the initial segments of y+z are of two types: proper

initial segments of y, and y followed by an initial segment u of z.

Since y is an initial segment of y+w for any finite w,

y+w is certainly not a proper initial segment of y, so the first type

cannot have that form. On the other hand, the second type consists

precisely of all numbers of the form y+v where v is an initial

segment of z. This says that our cofinality result restricts the

initial segments considered precisely to those of the second type, i.e.

those of the form y+u where u is an initial segment of z.

Thus the formula for exp x = exp(y+z) involves terms such

as exp(y+u)[z-u] which by the inductive hypothesis is

exp y exp u[z~u] . exp u[z-u] is, of course, a typical term used in

the computation of exp z. Similar remarks apply to the other terms so

that we finally obtain that exp(u+z) may be represented as

{exp y F}|{exp y G} where F|G is the representation used in the

definition of exp z. (exp y F stands for the set of all products of

exp y with elements of F and similarly for exp y G.) We must prove

that exp y exp z = {exp y F } | {exp y G} which heuristically is a kind

of distributivity. In general there certainly is no such "distributive

law" for multiplication. In the present case we make use of the special

known properties of y, z, F, and G.
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F i r s t , since 0 is a lower element of exp y then exp y F

and exp y G appear among the terms in the formula for the product

exp y exp z. I t therefore suff ices to show that these par t icu lar terms

are cof inal with respect to a l l other terms in the formula for th is

product.

For th is purpose we need some information regarding orders of

magnitude. For convenience, l e t H|K be the representation of exp y

used in the d e f i n i t i o n . Since y is purely i n f i n i t e , any proper i n i t i a l

segment z of y sa t i s f i es |y-z | is i n f i n i t e . I f z < y we have a

typ ica l term of the form exp y [ y - z ] . As we already noted,

exp z [ y - z ] « exp z [ y -z ] < exp y. S imi lar ly i f z > y we have

r i >> r X j % Z — > exp y. Also recal l that for negative i n f i n i t e x
L y j n L y j n + i
there are no terms of the form [ x ] . Thus we have shown that in the

2n+i

representation exp y = H|K, h e H =5> h « exp y and k e K ̂  exp y « k.

We now look at the representation exp z = F|G. Suppose

u < z. Then u contributes terms such as exp u[z-u] to F and
r,.e*i — to G. If z-u is not infinitesimal, then neither
LU~ZJ2n+i

[z-u] - [z-u] nor -r-—T r—T is infinitesimal. Also,
L J2n+i 2n+3

exp(z-u) - [z-u]n _> [z-u] n + 1 - [z-u]n hence exp[z-u] - [z-u]n is

not infinitesimal. Similarly r -i exp[z-u] is not infinitesimal.
L J2n+i

Since all the expressions considered are f in i te , we obtain by multiplica-
tion with exp u that
exp u ~ exp u[z-u] +1 - exp u[z-u] ~ exp u[exp(z-u)] - exp u[z-u] ~

exp u „ expu expu
] [ ] [

c o u r s e
[u"z ]2n+ i

exp u exp(z-u) = , _ v = exp z. What the above essentially says is

that the various orders of magnitude of differences of elements of F

and G with each other and with exp z are the same.

I f z-u is inf ini tesimal we need more caution. Suppose

z-u ~ oj , i . e . a is the f i r s t exponent occurring in the normal form of

z-u. Then [z-u] - [z-u] ~ u> . By formal mult ipl icaion
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[z-u] - U-u] ~ u . Again using formal reciprocals we see that

^r— " T ^ *(2n+2)a and ^ - - (exp(z-u) ~ *<2"+2>a.

Hence exp u[z-u] -exp u[z-u]n ~ exp z -exp u[z-u]

exp u _

exp z - exp u[z-u]2n+1 ~ [ u « * j ^ exp z.

We have similar results if u > z.

Now we are ready to study the terms in the product

exp y exp z = (H|K)(F|G). Recall that this has the form

{h exp z + f exp y - hf, k exp z + g exp y - kg}|{h exp z + g exp y - hg,

k exp z + f exp y - kf} where h e H, k e H, f e F, and g e G. Recall

also that we desire to prove the cofinality of terms of the form

f exp y and g exp y. First, consider h exp z + f exp y - hf =

f exp y + h(exp z-f). f has a form such as exp u[z-u]n. Suppose

f = exp u[z-u] . Then f' - f ~ exp z - f . Also h « exp y.

Therefore f exp y + h(exp z-f) < f exp y + exp y(f'-f) = f1 exp y

which gives us precisely what we need. Now consider

k exp z + g exp y - kg = g exp y - k(g-exp z). g has a form such as

F _XS • If we let f = exp u[z-u] then we have

g - exp z ~ exp z - f . g - f ~ g-exp z. Also exp y « k. Therefore

g exp y - k(g-exp z) < g exp y - exp y(g-f) = f exp y.

The upper terms in the representation of the product can be

handled the same way. For this purpose express h exp z + g exp y - hg

in the form g exp y - h(g-exp z) and k exp z + f exp y - kf in the

form f exp y + k(exp z-f).

This completes the proof.

We are now ready to study the purely infinite case.

B SPECIALIZATION TO PURELY INFINITE NUMBERS

We begin by inviting the reader to share with us the pleasure

of the simplification obtained in the case of purely infinite numbers.

Recall that a purely infinite number is a number in which all

the exponents in its normal form are positive. The number itself may be

positive or negative. Also 0 is a purely infinite number! This may
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sound strange at first but it is consistent with the usual meaning in
logic of universal quantification over the empty set and is natural for
the theoretical development. Such numbers can be characterized also in a
way which does not mention the normal form. Just as surreal numbers of
the form o>a are the elements of smallest length among numbers of the
same multiplicative order of magnitude, purely infinite numbers are
elements of smallest length among numbers of the same additive order of
magnitude. Although this point of view does not play a significant role
in our work it does add a certain beauty to some later theorems such as
theorem 10.7.

If x is a purely infinite number then we already know that
every initial segment y satisfies |x-y| is infinite. Hence no terms
of the form [z] where z is negative arise in the definition of
exp x. Thus lower initial segments of x do not contribute to upper
terms in the definition of exp x and vice versa. Therefore we have

exp = {0, exp x'Ex-x'imfffl K }. Also for positive infinite z
n

zn + 1 > [z] and [z] > z . Hence by mutual cofinality we may

simplify the representation of exp x to {0, exp x'(x-x')n}\{ex[ x }.
\X ~X/

Thus we no longer have to bother with sums of the form [x] .
We now go one step further by showing that we need consider

purely infinite initial segments only. In fact, suppose x1 = y+z where
x1 is a lower initial segment of x, y is purely infinite, and z is
finite. Since x-x1 is infinite it follows that y < x. Also y is an
initial segment of x' hence also an initial segment of x. We claim
now that terms in the representation of exp x contributed by x1 are
mutually cofinal with terms contributed by y. First
exp x1 = exp(y+z) = exp y exp z ~ exp y since exp z is finite. Now
consider an arbitrary expression of the form (u+v)n where u is
positive infinite and v is finite.

If v is negative then certainly (u+v)n £ u11 « un+ 1. If
v is positive we have:

n . . n . n
/ , x n v / n x l n - i „ r / n » n n - i r i r r / n * n - i i n + i
(u+v) = ), ( . )u v < I ( . )u v = u I ) ( . )v I « u

1=0 1 " i=0 ^ i=0 ]

So in ei ther case (u+v)n « u n + 1 . I f we apply this to the above we
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obtain exp x ' ( x - x ' ) n ~ exp y ( x - x ' ) n = exp y [ x - ( y+z ) ] n = exp y (x -y -z ) n «

exp y ( x - y ) n + 1 . Hence exp x 'U -x 1 ) 1 1 < exp y ( x - y ) n + 1 . A similar argument

applies to upper i n i t i a l segments. We state the f ina l s impl i f i ca t ion as

theorem 10.5.

Theorem 10.5. For purely i n f i n i t e x exp x has the form

{0,exp x ' ( x - x ' ) n } | { ^ x j | * } where x1 runs through a l l purely i n f i n i t e
\ x ~x /

lower i n i t i a l segments of x and xM runs through a l l purely i n f i n i t e

upper i n i t i a l segments of x.

As an example consider exp u>. 0 is the only purely

i n f i n i t e lower segment. Therefore exp w = {0,OJ }|<j> = w . Since w

i s , of course, d i f f e ren t from e th is i l l u s t r a tes that to as defined

in chapter f i ve should not be regarded as exponentiation in the sense

that is being developed here. We shall see la ter what arises natural ly

as the value for exp (x in w) a f ter we study the function £n.

A s imi lar resu l t applies i f x is expressed in a form F|G

which is not necessarily canonical but some caution is required. Suppose

that y e FUG=^ |x -y | is i n f i n i t e . In general the purely i n f i n i t e part

of an element in FUG need not be in FUG. [By the i n f i n i t e part of

an element y is meant the unique purely i n f i n i t e number z such that

y-z is f i n i t e . ] However, by the uniformity theorem for exp x we can

s ta r t with using F and G and s t i l l do the same s impl i f i ca t ion as in

the canonical representation but instead of taking subsets of FUG at

the end we use the i n f i n i t e parts of a l l the elements of F for the

lower terms and of G for the upper terms.

In future x, y, and z w i l l refer to purely i n f i n i t e

numbers unless spec i f i ca l l y stated otherwise. For reference we state two

inequa l i t ies which are s imi lar to ones we had ea r l i e r . Assume x and y

are pos i t i ve ;
, X2n n n(x+y) > x y

n+i n+i v / Nnx y > (x+y) .

The first is clear since by the binomial theorem ( )x y is one of the

terms in the expansion of (x+y)2n. The second is clear since a typical

term ("jxV"""1 in the expansion of (x+y)n satisfies
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("jx1^""1 « xn+1yn+1. Although the latter inequality may be strength-

ened there is not much point to i t for our purpose. ( I t is much like

showing that one can use -JTT instead of TT in analysis!)

Recall that by theorem 10.1, i f x < y, then

exp x[y-x]n < exp y. Hence exp x(y-x) < exp x[y-x]n+1 < exp y. Thus
we may replace the term [y-x] by (y-x)n in the inequality stated as
part of the above theorem. Since y-x is inf in i te, this shows
immediately that x < y + exp x « exp y. As we recall, the function OJX

has this property, but there is a crucial distinction, namely for </
this applies to the whole domain, but to exp x this applies only to the
subclass of purely inf inite numbers. In fact, i f y-x is f ini te then

x ye ~ e . At any rate, because of the above property the proof of the
addition formula for exp x resembles the proof of the corresponding
formula for u .

Theorem 10.6. exp(x+y) = exp x exp y.

Proof. We use induction. Without loss of generality a typical element
in the representation of x+y has the form x + y. Since x is purely
in f in i te , |x-x°| is inf in i te, hence so is |(x+y)-(x°+y)|. Therefore in
the computation of exp(x+y) we may use the inf inite parts of elements
such as x+y. Since y is purely inf inite the inf inite part of x +y
is y plus the inf inite part of x°. Also, as x° runs through all
proper in i t ia l segments of x the inf inite parts of x° run through all
proper purely inf inite in i t ia l segments and the inf inite part of x is
on the same side of x as x . This permits us to write exp(x+y) in
the form {0,exp(x'+y)[(x+y)-(x'+y)]n, exp(x+y')[(x+y)-(x+y')]n}|

{ ,
T[(xn+y)-(x+y)]n [ (x+y")-(x+y)ln

exp(x+y") }

" ) ( ) l n r

{0,exp x [ x - x ' ] n } l { e x p X \ and s imi la r ly for y. Using the inductive1 (x"-x)n

hypothesis, a typical lower term simplifies to exp x1 exp y(x-x') and

an upper term to e x p X—exp y • 0 is , of course, also a lower term.
(x"-x)n

These are terms occurring in the representation of exp x exp y since
0 is a lower element of both x and y. Thus, as in the proof of
theorem 10.4, i t remains to prove that these terms are cofinal with
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respect to the other terms in the formula for the product. If x or y

is 0, there are no other terms so the result is clear. (That case is

trivial anyway and could just as well be eliminated in advance.)

First, we have a lower term such as exp x exp y'(y-y') +

exp y exp x'(x-x')n - exp y'(y-y')m exp x'(x-x')n. Suppose

exp x exp y'(y-y') £ exp y exp x'(x-x')11. Then

exp x exp y'(y-y')m + exp y exp x ' U - x 1 ) " - exp y'fy-y1)"1 exp x'(x-x')n

£ exp x exp y'iy-y1)™ + exp y exp x'(x-x')n £ 2 exp y exp x'(x-x')n

< exp y exp x1(x-x1)n+i A similar result applies if

exp y exp x'(x-x')n _< exp x exp y'(y-y')m.

Now consider a lower term such as

exp x exp y" exp y exp x" _ e*£

(y"-y)
exp x"

(x"-x)n (y"-y)m (x"-x)n

exp y" exp x"

We know that

> exp x hence »
(y"-y)m (x"-x)n (y"-y)

exp x.

Similarly
(y"-y)m (x"-x)n (x"-x)r exp y.

Therefore the above expression is negative, so that for cofinality it

suffices to take the term zero.

Finally we must consider a term such as

exp x"exp x exp y'(y-y')m + exp y exp x
n - exp y'(y-y')

(xM-x)n (x"-x)n
Now

exp y exp x

(xn-x)n
exp y, l)m

(x"-x)n
Therefore certainly

exp x exp y'fy-y1)111 + exp y
(xH-x)n —

L > \ exp y ^
(xM-x)n ~~ * (x"-x) (xM-x)n+i

A similar result applies if we interchange the role of x and y. This

proves the cofinality and completes the proof.

Corollary 10.1. exp(x+y) = exp x exp y for all x and y.

Proof. This follows immediately from theorem 10.6 with the help of

theorem 10.4 and the corresponding result for finite x and y.
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Corollary 10.2. exp x exp(-x) = 1.

Our next aim is to show that as x runs through all purely

infinite numbers, exp x runs through all numbers of the form u>a where

a >_ 0. (Of course, if a = 0 we obtain exp 0 = 1 = u>° so our main

concern is with a > 0.) One direction is almost immediate. The other

direction will be proved by means of the function Jin x.

Theorem 10.7. exp x is a power of GO.

Proof. We already know that every lower term such as exp x'(x-x)

satisfies exp x'(x-x') « exp x and similarly every upper term such

exD x"satisfies exp x « —^ • Hence every number y of the
(x"-x)n

same order of magnitude as x also satisfies

exp x'(x-x')n < y < e xP x— • Therefore x is an initial segment of y.
(x"-x)n

So by theorem 5.3 x is a power of w.

The above result is especially striking if one recalls that

purely infinite elements are canonical elements in an additive order of

magnitude. The theorem says that such elements are mapped into canonical

elements in a multiplicative order of magnitude. This is further

heuristic evidence that exp behaves the way an exponential should.

We now define in x. This definition will be made only for

x of the form co .

b"-b

Def in i t ion . £n(w ) = {in{m )+n, £n(w ) - OJ }|{£n(w )-n,

b-b1

£n(w ) + a) } where n runs through a l l positive integers.

Note that lower i n i t i a l segments in b contribute to upper

elements in the representation of £n(a) ). This is essential. For
l

example, l e t b = 1 . Then in oo = {£n(oj°) }+n| {£n(o)°)+(o)1 ) n } . With no

upper terms t h i s would be {n}|(j> = GO. Since exp w = w w i th t h i s

d e f i n i t i o n in x would not be the inverse func t ion of exp x. On the
i_ l

other hand the given d e f i n i t i o n leads to in to = {n}|{u> } = w . This
i_

does seem more reasonable a priori. In fact, let us compute ^
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i A
— = {O} | { - } . Then w^ = {0,n}|{u)n}. Hence by res t r ic t ing ourselves to

- - 7F
i n f i n i t e parts exp (to") = {(exp O)a)u)}HexP(a)

1
) }. The lower terms are

{ n * ] m

u o -to J

n_ A i i ^
simply to . Now by the addi t ion formula exp (to ) = (exp to) = (to ) = to .

1 A L

Also ( J 1 - ^ ) " 1 < (u)n)m = / for some real number r ( in f a c t - ). So— n
_L i£ - H H

exp(gjn) > a)" > a). Now a) = {n}|t|). Since to03 < oi and ^ is

inf in i te i f n ̂  1, the conditions of the cofinality theorem are
i_

s a t i s f i e d and exp(co ) = to.

Inc iden ta l l y , the reader may be interested in experimenting

wi th various other computations using the d e f i n i t i o n . We prefer to

postpone a discussion of e x p l i c i t resu l ts un t i l we have proved some

remarkable resu l ts which w i l l s impl i fy the computation tremendously. We

s t i l l have a distance to go before t h i s . For example, we don' t yet even

know that in x i s def ined!

Theorem 10.8. in x is defined. Furthermore, i f a > b then

a-b

&n(to ) - £n(to ) is positive i n f i n i t e and &n(to ) - Jtn(to ) < u) for

a l l posit ive integers n. In part icular , i f a > 0 then in{u ) is

posit ive i n f i n i t e and £n(toa) < to11.

Proof. I t is no longer surprising that we use induction. We now show

that the lower terms are real ly less than the upper terms. Since
h" h1 h1 h"

£n(to ) - Jtn(to ) is i n f i n i t e , then certainly £n(to )+n < £n(io )-m.

b-b1
 f f b-b'

Since to n is i n f i n i t e then certainly an(u> )+n < £n(a> ) + to m

However, such an inequality is not adequate for our purpose since we must

consider two arbi t rary i n i t i a l segments of b not necessarily a l ike.

(The use of the same b ' , which is a natural mistake, leads to an

incomplete proof . ) So we must show that £n(to )+n < £n(oo ) +

b-d
m

0)
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where c and d are two lower i n i t i a l segments of b. This is t r i v i a l

c-d b-d

i f d 2. c. I f c > d we have £n(toC) - £(tod) < to m < to m - n . Hence

b-d

&n(ioc)+n < ir\{ud) + to m . Similarly for upper i n i t i a l segments c and

c-b

d of b we must show that £n(toC) - a> < £n(toC)-n. As before this is

c-d c-b

t r i v i a l i f c < d. I f c > d we have £n(to ) - £n(w ) < w < u> -n

"~ £±
hence £n(<oC) - u> m < £n(to ) -n .

b"-b b-b'

n(<o )

b"-b'
i i

(w ) <

b"-b b"-b b-b' 1 b"-b b-b'

bb b
I t remains to prove that £n(to ) - to < £n(<o ) + to

in i i j

By the inductive hypothesis we have £n(co ) - £n(w ) < w for a l l

n. Now to 2n = [(o n (o n ] <i[u> n + a) n ] by the arithmetico-

geometric inequality which is valid in any ordered f ie ld. Hence
b"-b b"-b b-b' x

£ to + to . Since to is a decreasing function of n then

bM-b b"-b b-b'

for r = max(m,n) we have to _< to + to . Hence

b"-b b-b' ( b"-b ( b-b'
/ b \ / b v n m / b \ n / b \ m

£n (to ) — in (to ) ^ (0 + ui so in (to ) — to ^ &n(to ) + to ,

We now know that in (to ) is defined. For a > b i t is
immediate from the definition that £n(tod) - £n(<o ) is infinite i f one
of a and b is an in i t ia l segment of the other. In the general case
i t suffices to consider the common in i t ia l segment of x and y since
the sum of two positive inf inite numbers is clearly inf ini te.

For the final inequality let c be the common in i t ia l
segment of a and b where a < b so that a < c < b. (Again i f
c = a or b the result is t r iv ia l . ) Then from the definition we have

c-a b-c

£n(aja) > in(toc) - to n and £n(tob) < &n(o)C) + to n . Then

b-c c-a b-c b-a c-a b-a
*,n(tob)-£n(toa) < a) n + to n . Now to n « to n and to n « to n .
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b-c c-a b-a

Therefore w n + to n < w n . This finally gives us the inequality
b-a

Jln(u) ) - £n(ooa) < oa n . This completes the proof.

We would like to show next that Jln(x) is the inverse

function of exp x where the domain of exp is restricted to the purely

infinite numbers. For this purpose we f i rs t need the following theorem.

Theorem 10.8. £n(co ) is purely infinite for all b.

Proof. Let F|G be the representation of Jin(u) ) given by the

definition. We claim that c e F =*> (3deF)(d>x+l) and

c e G =* (3deG)(d<c-l). This is easy to see. I f c has the form

£n(u) )+n we get d = £n(oj ) + (n+1) and i f c has the form

b"-b M b"-b

£n(u> ) - oo n then we may choose d = £n(u> ) - oo n . (In the

second case d-c is inf ini te. ) A similar argument applies to upper

terms. By induction 1 can be replaced by any positive integer.

This is enough to show that £n(oo )+r satisfies

F < an(o> )+r < G for any real r. Hence £n(a> ) is an ini t ia l segment

of its purely infinite part, so £n(a> ) must itself be purely infinite.

We are now ready for the theorem which completes the basic

theory.

Theorem 10.9. exp nn(oo ) = to .

Proof. Again we use induction.
, „ b"~b

£n(oo ) = F|G where F = {£n(oob ) + n , Jtn(oob ) - to n } and

b-b 1

h" h 1 —n

G = {iin(u> )-n, £n(to ) + to }. We already know that

c e F =» (3deF)(d>c+l) and c e G => (ideG)(d<c-l). This implies that

c e F =» £n(to )-c is infinite and d e G=^>d-iin(to ) is infinite. Thus

by our earlier remarks we may use the infinite parts of the elements in

F and G to compute exp £n(to ). By theorem 10.8 and the fact that any

positive power of to is infinite, the infinite parts of the elements in

b"-b
. i . i i — r

F have the forms £n(oo ) and £n(to ) - to , and similar ly those
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b-b1

in G have the form £n(aj ) and &n(u> ) + w . Therefore the

typical lower terms besides 0 in the formula for exp[fcn(o) ) ] have

the form expUn(u>b ) ]Un(a j b ) -£nU b ) ] n and

bM-b b"-b
K K" m

exp[<w(ub )-u n l{nn(u) )-[itn(co )-u> n ]} , and similarly the upper

b-b'

terms have the form ^ " ^ " ^ „ and « x p [ t n ( ^ ) « t . " ] •

We use cofinality to show that this gives rise to u> which

is {0 ,A} | {a) b "s} .

First, we check the betweenness condition.
h1 h h' n

By the inductive hypothesis exp £n(oo )[£n(u> )-£n(oi ) ]
b-b1

b r „ / bx „ / b x-in b ^ n >.n b b-b b o . . . _
= a L£n(a) )-£n(w ) ] < a) (a) J = w a) = u) . Similarly

L I I L I I L M

) ] = J2 > £2 = w
 b Fortunately the other

b\ * bA1n b -b

terms are not as hard to deal with as i t may appear. F i rs t ,

b"-b (i b"-b
)" \ n i i m

bM-b

- [*n(u)b ) - a) n

expU )
b"-bb11

n )m
 s 1 n Ce

,n+m

b"-b b .

" " ^ = ^ b - = l°b- S i m i l a r l y
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b-b' b-b1 b-b'

explwi(cob':
b-t

[Un(tobVto n

b-b1

t o b ' ( o ) n ) m ' n

b-b 1

la) J

b
= (0

]

*n(.b)]

1 b-b'
(0

m ^

b
= 0) .

tob<

t n ( t o b ' ]

This

r n

b-b1

l+co n - ^r

verifies

)

l (o )D]

the

v to explco
b-b 1

kim r n >

betweenness cor

n ~\

The cofinality condition is easier to check since the simpler

lower and upper terms are all we need for the purpose.
h' h

o) r is a typical lower term in the representation of to .

One of the lower terms found in the representation of £n(to ) is

expUn(tob )]Un((ob-*,n(tob )] . The f i rs t factor is <ob .

£n(o) ) > £n(w ) and both are purely inf inite. Hence £,n(to ) - £n(w )

is inf ini te. So we may take n = 1 and we have an element which is
L I L II

larger than o> r since r is , of course, f in i te . Similarly o> s is

a typical upper term in the representation of to . Here we consider
o) ) ] b " £ i $ 1 nf i n l- t e s 1 m a l # (A g a i n(

Un(coD )-*n(coD )] n

h "

we may use n = 1.) This is smaller than to s. The proof is now

complete.

It is immediate from theorem 10.9 that the function exp x

defined for x purely infinite is onto the class of numbers of the form

wd. By theorem 10.4 and earlier information on exp x for finite x it

follows that the range of exp x where x runs through the class of all

surreal numbers consists of all numbers of the form u> b where b is

the class of all positive finite non-infinitesimal numbers. This is

precisely the class of all numbers of the form £ w i'bj with b 0 > 0
i<a
a c.

s i n c e t h e l a t t e r can be e x p r e s s e d i n t h e f o r m o> ° ( b o + I " ' b )
l

This is in turn the class of all positive surreals. Thus we have

Corollary 10.3. exp x is onto the class of all positive numbers.

We now know that exp x behaves as it should with respect to

the main properties expected of an exponential function. Thus we have

good philosophical grounds in designating our function as "the
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exponential f unc t i on . " Squeamishness about proper classes can be handled

by the techniques of chapter s i x .

With the basics out of the way we are now ready to move

towards the exot ic surprises of the exponential func t ion .

C REDUCTION TO THE FUNCTION g

The central problem of i n te res t can be expressed as fo l lows.

Given x = I w "ir-j, what can we say about exp x? I .e . we desire to be

i<a
as e x p l i c i t as possible. We repeat that our i n te res t is l im i ted to the

purely i n f i n i t e case since we already know what goes on in the f i n i t e

case. I t turns out there is much that can be said but the subject is

n o n - t r i v i a l , i . e . there is no single theorem which closes the subject as

rap id ly as in the cases where x is real or i n f i n i t e s i m a l . A

tremendous amount of fu r ther s imp l i f i ca t i on is possib le; however, in

sp i te of th is there are enough complications remaining so that the

subject remains subs tan t ia l . (This means that we don' t go out of

business by exhausting the subject too rap id l y . )

We are f i n a l l y ready for the f i r s t of the beaut i fu l resu l t s .

b
Theorem 10.10. I f a > 0 then exp(wa) has the form ww .

Proof. We do not use induc t ion ! ! Since we are studying purely i n f i n i t e

numbers only at th i s time, the condit ion a > 0 is understood. Hence in

the canonical representat ion of a a l l terms are non-negative. Thus i f

we express w as {0,a>a r}|{u) s} a l l terms are purely i n f i n i t e and

have i n f i n i t e distance from <*> . Therefore we may use these terms for

the computation of exp(w ). So exp (to ) i s
a"

{0,(exp Q)(a)a)n,[exp(a)a'r)](u)a-a)a>r)nH{exp,(,aj s) }. We now use mutual/ a ̂  a \ n
(a) S-U) )

cofinality to simplify. The term 0 is superfluous because of the

second group of lower terms which are of the form w . Now

(o)a-a)a'r)n+1 > ( w
a) n > U a - i / ' r ) n and

(u) s-u) ) > (co ) n > (w s-u> ) . (We may just as well assume that

s _< 1 by cofinality or alternatively we can use the inequality

(u)a ) n + 1 > U a s-wa)n.) At any rate, the representation for exp((oa)
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s imp l i f i es to {( ton a , [exp(toa >r) ] ton a} | { e x p ( l » s ) } - Since 0 is ana
to

possible value of a1 and 1 a possible value of r the first group of

lower terms are superfluous. Since in general exp x > exp 0(x ) = x

we have exp(u)a"§) > (a)a"f)n+1 > tona". Thus

" ! - ) = e x p ( a ) , , s ) < e x p ( a ) , , s ) - Hence t h e upper te rms may be l i m i t e d
^ ( a s ~\ na

exp[o) j) a)

to terms of the form exp (to s ) . So exp(u) ) s imp l i f i es fur ther to

{[exp(w r)]o) }|{exp(o) s ) } . Also we may l i m i t r to integers and s
a' a' r

to dyadic f r ac t i ons . Hence we may wr i te exp(w r ) as [exp(o) ) ] and
exp(wa s) as [exp(toa ) J S .

a1 a"
By theorem 10.7 exp (to ) and exp (to ) are powers of to.

(Note that we are not assuming the stronger fac t that exp(w ) and
a"

exp(u) ) are i t e ra ted powers of a> as we would in a typ ica l proof by

induc t ion . ) Let exp (to ) = a> and exp(u) ) = w . Then exp((o )

can be expressed as

r b ' r na , , b"s

Note that we use the a d d i t i v i t y theorem for both exp x and w to

j u s t i f y the above. We may j u s t as well wr i te th i s as

/ n b ' r n a . . , b 'V , n b ' r+na , , , b"s,
{0,<O 0) } |{0) } = {0,0) }|{U) } .

Since the set {b'r+na} has no maximum and bMs has no minimum, this

may be expressed as a power of to, speci f ical ly w where

b = {b ' r+na} | {b l ls}. I t is redundant to try to show that b'r+na < b"s

since we began with something which was defined and used mutual

co f ina l i t y at every step, so we already know that to < to s .

Consider the representation b = {0,b ' r+na}| {bns}. I f b ~ c then

b'r+na < c < b"s hence b is an i n i t i a l segment of c. Therefore b

is a power of w. Let b = toC. Then a = ww .

By theorem 10.10 exp x induces a function g with domain
g(a)

consisting of a l l positive surreal s such that exp (to ) = tow . We now

use the above proof to obtain an inductive formula for g(a). For this

purpose we define ind a as follows: I f a has the normal form

v *\*
I u irj then ind a = b0. b0 can also be characterized as the unique

i
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surreal x such that a ~ u)X. We also use the temporary notat ion

exp(ujx) = / ( x ) fo r x > 0 so that f (a ) = u>g ( a ) . I f x = 0 we set

f ( 0 ) = 0. From the above proof we have using th is notation

f ( a ) = { r f ( a ' ) + n a } | { s f (a11)}. Since one value of a1 i s 0 in which

case f ( a ' ) = 0, we may cer ta in ly wr i te f (a ) = { 0 , r f (a1 )+na} | { s f (a11)}

by c o f i n a l i t y . Now among a l l the elements of the form a1 we single out

0 and wr i te th is as

f ( a ) = {0 ,na , r f ( a ' )+na } | { s f (a 1 1 ) } .

Of course, there may be no other a1 j u s t as there may be no a"

a l together .

We may now replace f ( x ) by or which is va l id for

x > 0. So we obtain f (a ) = {0 ,na, ru j 9 ( a }+na}| {su)9(a } } . Let c = ind a,

i . e . a ~ u)C. Then na is equicof inal wi th nwC and rou9 +na is

equicof ina l wi th ru + nw which is in turn equicof inal wi th

f (a ) = { 0 ) n u
c , n u

m a x [ 9 ( a ' ) ' c ] } | { s o o 9 ( a " ) } .

Since f ( a ) = w9 we can now determine g(a) . In f ac t ,

g(a) = { c ,max [g (a ' ) , c ] } | { g (a " ) } which is the same as

{ c , g ( a l ) } | { g ( a " ) } by c o f i n a l i t y .

We have thus ended up with a rather remarkably simple-looking

formula. However, the reader is warned that the presence of the term c

gives r i se to t r i c ky phenomena. For example, the presence of c

prevents g from simply being the i den t i t y funct ion as we shall see. In

f a c t , g can take on negative values as we shal l also see. This is
x

consistent wi th what we have since w" i s pos i t ive i n f i n i t e for a l l x.

Note that there is no zero among the lower terms in the expression for

g(a) . This i l l u s t r a t e s that in general the inc lus ion of 0 among the

lower terms must be treated with caution to ensure that i t is l ega l .

In view of i t s importance for the rest of our work we state

the formula for g(x) as a theorem.

a u>g(a)

Theorem 10.11. I f a i s pos i t ive exp(w ) has the form w where
g(a) = { c ,g (a ' ) } | { g ( a " ) } and c is such that a ~ u> . [ I t is under-
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s tood t h a t 0 i s no t a p o s s i b l e va lue f o r a 1 . ]

L e t us app ly theorem 10.11 to o b t a i n exp(u)W). F i r s t we

e v a l u a t e exp a>. Since w = w1 we have a = 1 . Since w° = 1 we have

c = 0. I n t h i s case we rega rd A1 and A" as <j> s ince 1 = {0}|<j>

and 0 i s separa ted o u t . Hence g ( l ) = {0}|<}> = 1 . Thus g ( l ) = 1 .
l

Therefore exp u = w = w which agrees with the result we obtained by

the earl ier methods. We use induction to obtain g(—). Assume

g(—) = —. Then

= q f {0 } | { (4 : ) } l = l ind ( I — - ) } | { g ( i - n = {0} I { -U = 4 r r r . There-

fore g(^) = g[ {0} | { -~} ] = { i n d ^ K g ^ ) } = {-1>|{|^> = 0. Hence

— o
expdo^) = OJW =w which again agrees with what we obtained earl ier.

a
We show next a kind of converse; namely that in{^ ) is a

power of co for a l l a. In a way this is redundant since i t wi l l also

follow from later results. However, the proof is of interest since i t

leads to an expl ic i t inductive formula for the inverse of g. For this

we need a lemma which states that the uniformity theorem is valid for the

function £n x. This result probably deserves to be a theorem but since

we have no lemmas in this chapter so far and since we are thus already

top heavy with theorems we leave this as a lemma. Besides, we are

interested primarily in the function exp x, so that the function £n x

is introduced primarily to help us prove results about exp x, e.g.

exp x is onto the set of a l l positive surreals.

Lemma 10.1. The uniformity theorem is valid for £n x.

Proof. Recall that this means that we can obtain £n(a) ) by using any

representation of a in the form a = F|G instead of being restricted

to the canonical representation. As in a l l proofs of such theorems in

which we use the inverse cof inal i ty theorem followed by the cofinal i ty

theorem we need inequalities of a certain kind. In this case we have

b"-b b-b1

K b1
 x / b " x n 1 i r / b " x , b \ n i
) + n , £n(co ) - oo } | {£n(a) ) - n , £n(w )+io } .

x b1

I f b ' < x < b then £n(w )+n > £n(w )+n and
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b-x b-b1

/ xx n , n , b \ ^ n
icn v a) ; + 03 ^ ion 103 j + 03

I f b < y < b" then Jtn(o3y)+n <_ ZnU )+n and

y-b b"-b
/ Vv n / b"» n

£n(co ) - 03 > £n(o3 ) - 03

The first inequalities of each pair are obvious since &n(o3X)

is an increasing function of x. The proofs of the second ones in each

b-b' b-x x-b1 b-b'

pair are similar . F i rs t 03 n - 03 n > 03 n since 03 has a

b-x x-b'

higher order of magnitude than either 03 n or 03 n . Also

x-b' b-x b-b'

03 n > £n(ojx) - £n(o3b ) . Hence £n(o3X) + a> n < nn(o3b ) + 03 n ,

b"-b y - b b"-y

S i m i l a r l y O 3 n - o > n > o 3 n > £n(o3b ) - Jtn(o3y). Hence

y - b b"-b
/ Y\ n / bM

x n
>inio3 j - 03 > Jcnio3 j - 03

a
Theorem 10.12. For a l l a, >m(o3W ) is a power of 03.

Proof. The lemma allows us to apply the formula in the def in i t ion to

e
a" a

the r e p r e s e n t a t i o n {0,w }|{u> } of 03 . Hence

a' a"a
r ) + n , £n(o3W s ) - co n

a n a a
11 03 - U 1 03 - 0 3a ^ —-— a —

^ ) c \ / 0 \ n z' w v» > n5 j - n , x,n{03 j+03 , x,n[o3 ' j + 03

We now simplify. As a star t we can get r id of Jin(03 ) , which

is 0, thus getting n as a lower term. Since we may assume that r is
a1 a'

an integer we have £n(o)W r ) = r£n(o3W ) . Note that the addition

formula for the function in x follows from the corresponding property

for exp x since we already know that i t is the inverse function. Note
a'

that i f x > 0 &n(o3X) is positive i n f i n i t e . Hence inl^ ) is

a1 a'
i n f i n i t e so r£n(o3W ) is mutually cofinal with rJm(o3W )+n.
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a" _ ^a
Now consider — which occurs as an exponent.

a" a" a a
dearly - ^ < " *"" - Since i t n ^ s) < u

 n this shows that all

the lower terms in the third group are negative and hence can be dis-

carded because of the presence of n. So the set of lower terms have
a

been simplified to {n,r£n(a)a) )}. Similarly for the upper terms we
may assume that s is dyadic and drop n so that the first group of

a1

terms simplify to sln^u* ). The second group of terms have the form
a

^n~ a- a'r a a'r -a
a) . Now consider -—^ which occurs as an exponent. -—p- >

a1

Since £n(a)W r ) > 0 we may discard the third troup of terms by

cofinality because of the second group. Thus the set of upper terms
a a a

II GJ__ 0) 0)

simplify to { s J l n ^ ), w n } . Again, since w11 < sw n we may again
by co f ina l i ty s l igh t ly unsimplify the set of upper terms to

a

a
The final representation now exhibits £n(u)W ) as a surreal

of the form </. In fact, if we define h(x) so that in(u* ) = w h ( x )

a
then h(a) = {O,h(a')} |{h(a"), ̂ } .

Note that h(a) > 0 for all a. This shows that the range

of g consists of the class of all surreal numbers. Thus exp x

induces a map from the class of positive surreals onto the class of all

surreals! This sounds like the opposite of what an exponential function

does but recall that the map goes from exponents to iterated exponents so

that there is nothing unreasonable about that, although the existence of

such a g is a surprising phenomenon.

The uniformity theorem is valid for g and h. This is

clear since x _< y •* ind x _< ind y. We are primarily interested in g

and it is thus convenient to know that we may use any representation of

b to compute g(b) from the formula given by theorem 10.11.

We next prove that exp x has a kind of generalized

linearity property. This will enable us to reduce the study of exp x

for purely infinite x entirely to the study of the function g.
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Theorem 10.13. I f a-,- > 0 for a l l i then

exp J w i 'r j = coY where y = £ a> i r-j.
i

Proof. Since exp(x+y) = exp x exp y and u> J = w O3J the resu l t is

clear for f i n i t e sums and rat ional r-j. We shall prove f i r s t that the

resu l t is va l id for monomials for a rb i t ra ry real r j and then prove the

resu l t for a rb i t ra ry sums.

Consider war where r is r e a l . Then toar may be

expressed as {oo r'}|{o3 r"} where a l l elements of the form r1 and r"

are dyadic, in par t i cu la r r a t i o n a l , so that the resu l t is known for u> r1

and w V . Then exp(o>ar) = {0,exp(a)V ) U a r - a ) V )"} | { e 5 p (

u) r"

a}5 Pn}.
r"-ajar)

Since the set of elements of the form r1 is non-empty we can eliminate

0. Since ( A V r 1 )n+2 > O3a(n+1) > U a r - u > V ) n we may simplify the

set of lower elements by mutual cof ina l i ty and simi lar ly for the upper

elements so that we obtain

r ' na11 r a) r" - n a i
03 }|{o3 }{o3 03= {0,03 03 } | { o

g(a) „
n a J U ^ r"- na}.

9(a) / v
Now exp(oja) > 03na, i . e . ^ > O3na thus o ) 9 ( a j > na in

general. Since this is true for a l l positive integers we also have

tt9(a) > ( J - . j a , i .e . . g ( a ) r - O39(a)r' > na hence

cog (a )r ' + na < O39(a)r. Similarly u>g(a)rM - na > O39(a)r. This proves

g(a)
that O3W r sat is f ies the betweenness condition with respect to the

representation of exp(o3 r ) . Now 039 r can be expressed as

{or1 a r ' } | { o 3 9 r " } . Since the lower terms have no maximum and the

uppper terms no minimum we have

03
03

g(a)
Y = {0,

g(a) g(a)
03 y » ' " | r O 3 v » l

3 r \ {03 ' }

Certainly u
g ( a ) r ' + na >_ u

9 ( a l ) r ' and u
g ( a ) r " - na < u

g ( a ) r " so

co f ina l i t y is immediate, completing the proof in the case for monomials.

For arbi t rary sums we use induction on a. For non-l imit
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ord ina ls the r e s u l t fo l lows immediately from the add i t i ve propert ies of

the funct ions exp x and 03 since the problem reduces to one of

ordinary add i t i on . For l i m i t ord inals we need an argument which is

roughly s im i la r to the one used before for monomials.

where y < a and e is pos i t i ve . Hence

expH uaiH) = {0, expH u ^ - i A o t / V ) " } I

{exp( I 03 irf+u) T )(o3 V ' ) ~ n } where e1 is such that

aY 1 aY . . a .
0 3 £ = o ) I £ + 2,0) T r j and s i m i l a r l y for e" . | e - e ' | and

Y<i<a

Ie-e" I are i n f i n i t e s i m a l . Also

y g ( a i } . g ( a i ) . g ( a Y }
 Y 9 ( a i ) 9(aY)

Since the lower terms have no maximum and the upper terms no minimum we

have 03 = {0,03 } | {03 } where F stands for the set of lower

terms and G for the set of upper terms.

We now use c o f i n a l i t y to show that the representat ion of

exp( I 03 "ir-j) does give w

First we verify the betweenness condition. By mutual cofinal-

ity terms such as (03 e ' ) n may be replaced by w Y. Now we know that

ur > na for all integers n. Since e is not infinitesimal we have

u Y > na for all integers n. Now a typical term among the lower

d • d • d *Y ii d *\/

terms of exp( I 03 1r1-) is exp( [ u ^ j - m eju . This is of the form

Y u r 9(a
n-) 9(aY)

03 where y = 1 CJ « rj-03 e + naY using the inductive hypothesis

and addition theorem for the function exp x. This in turn is smaller
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then

v g(a. ) g(aY) g(aY)e . g(a.)
), a) ' r^-a) e + a) y which is less than \ w ! r j by

the lexicographical order. This is exactly what we need. A simi lar

argument applies to the upper terms.

Co f ina l i t y is immediate since a typical term of w has the
a. aY

form exp( I u> Vj-u) Ye) by the inductive hypothesis, thus a l l we

need is the fac t that to >_ 1. The s i tua t ion is s imi lar for

terms of the form w . This completes the proof.

The study of the function exp x has now been reduced to the

study of g. Recall from theorem 10.11 that g(a) =

{ i n d ( a ) , g ( a ' ) } | { g ( a " ) } where ind a is the unique c such that a ~ </

Thus, as has been promised e a r l i e r , the subject has in one respect become

great ly s imp l i f i ed . On the other hand, g behaves in t r i cky in terest ing

ways so that the subject is s t i l l far from t r i v i a l .

D PROPERTIES OF g AND EXPLICIT RESULTS

We shal l f i r s t determine g for ord ina ls . We know already

that g ( l ) = 1. I t is easy to see that g(2) = 2, g(3) = 3 , . . . ,g (w) = o>,

g(u)2) = co2, g{u^) = u/"3, etc. We thus have an excel lent phys ic is t ' s proof

that g(x) = x for a l l ordinals which is s imi lar but somewhat superior

to the phys ic i s t ' s proof that a l l odd numbers are prime! At least in

th i s case the f i r s t counter-example is not a f i n i t e number such as 9.

Before keeping the reader in too much suspense l e t us

consider an epsilon number e. By de f i n i t i on </ = e hence ind e = e.

However, ind e appears as a lower element in the formula for g(e) .

Hence g(e) > e. This can also be seen from the formula for exp x.
e

F i r s t , we have a>e = e and w03 = e. Now exp(x) > xn for posi t ive
e

purely inf ini te numbers. So certainly exp e > e, i.e. exp(we) > o)W .

Thus the subject of the exponential function has taken on a

new twist. We shall see that epsilon numbers and numbers related to them

play an important part in the determination of an explicit formula for g.

Incidentally, i t is impossible to give an explicit definition

of "explicit ." The reader may claim that theorem 10.11 already gives a

definition. However, we shall see that we can obtain results which are
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much more e x p l i c i t , although unl ike the ea r l i e r part of the theory in

th i s chapter there is a fee l ing of lack of f i n a l i t y in some of the

r e s u l t s . For example, what we do not do in general is obtain the sign

sequence of g(x) d i r e c t l y from the sign sequence of x though in a

sense we approximate th is in some respects to an extent which is

conveniently t ractab le and i n te res t i ng .

F i r s t , we obtain a formula for g(a) in the special case where

a is an o rd ina l .

Theorem 10.14. I f a is an o rd ina l , then g(a) = a unless a sa t i s f i es

the inequal i ty e _< a < e + w for some epsilon number e, in which case

g(a) = a+1.

Proof. I f a is an ordinal g(a) has the form { ind a, g(a')}|<j> since

a" i s empty. Hence g(a) is an o rd ina l . We now use induct ion.

F i r s t suppose that a is less than the f i r s t epsilon

number. Then ind a < a. By the induct ive hypothesis g(a) =

{ ind a, a'}|<j>. Since ind a < a th i s is a by the c o f i n a l i t y theorem.

Now l e t a be the f i r s t epsilon number. Then g(a) =

{ ind a, a'}|<j> = {a,a'}|<j> = a+1.

We now determine g(a+n) induct ive ly on n where n is a

pos i t i ve integer g(a+n+l) = { ind(a+n+l ) , g(a+n)}|<|> by c o f i n a l i t y . Now

ind(a+n+l) = a. Hence we obtain {a,a+n+l} |<)> = a+n+2.

Next we determine g(a+w). In f ac t , g(a+w) = {ind(a+w),

g(a+n)}|<j> = {a, a+n+l}|<|> = a+a>. Thus we get back to the equal i ty

g(x) = x. I t is now easy to see that g(x) = x from now on un t i l we get

to the next epsi lon number. The general argument is s imi lar to what we

have so f a r . In f ac t , suppose the theorem is va l id for a l l a such that

a _< ea where ea i s the ath epsilon number. Then by the same argument

as for the f i r s t epsi lon number we have by induction on n that

g(ea+n+l) = | i nd (e a +n+ l ) , g(ea+nH«j> = {ea ,ea+n+l} \$ = ea+n+2 and

g(ea+o>) = {ea ,ea+n+l} |<J> = ea+u>. I f x > u> but ea+x < e a + 1 then we

have g(ea+x) = { ind(e a +x) , (e a+x) ' } |<j>. Since ind(ea+x) < ea+x th is is

ea+x by c o f i n a l i t y . Then g(ea + 1 ) = { i n d ( e a + 1 ) , ( e a + 1 ) ' } | = e a + i + l -

To complete the proof we s t i l l must consider ea where a

i s a l i m i t o rd ina l , but th is is also more or less s imi lar to what we had

previously . In f a c t , by c o f i n a l i t y ea = {ea'}|<J>, hence
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g(ea) = (1nd ea,g(ea')}|4> = {ea»£a
l+l} l<fr = ea+l since certainly

ea«+l < ea for any a1.

The above theorem is the first example of a phenomenon which

occurs in the study of g. Essentially we have a kind of "singularity"

in the neighborhood of an epsilon number. This helps to make the study

of g somewhat tricky.

We now consider the special case where a consists of a plus

followed by a sequence of minuses. These sequences lead to arbitrarily

small positive surreals and is thus a natural class of surreals to

consider after the ordinals, which lead to arbitrarily large surreals.

Actually we already computed the result when the number of

minuses is finite or exactly u>. In fact, we have g(—) = — and

g(—) = 0. We note here that the pattern g(x) = x is broken at — in
to co

a different way than at epsilon numbers.

Now by the sign sequence formula 2 GO where n is a

positive integer and b is an ordinal consists of a plus followed by

cob+n minuses. Thus we are interested in a formula for g(2 a> ).

In the sequel we expect the reader to have some facility in

computing expressions F|G from the sign sequences of elements in F

and G. This is an essential skill for the study of the function g.

Theorem 10.15. g ( 2 ~ V b ) = -b + 2~n.

Proof. We use induction on b and induction on n for fixed b.
Suppose g l2~V b ) = -b + 2~n. Consider 2~ n "V b . This is

{0}|{2 GO } by the sign sequence formula and cofinality. (This can
also be seen by other methods from chapter five, but i t is easiest to
quote the sign sequence formula.) Hence

g ( 2 ' n " V b ) = lind 2 " n - V b m g ( 2 - V b ) } = {-b} | |-b+2~n} = -b+2""-1.

g(uTb) = { ind(uTb} | |g(2~Vb ' j } = {-b} | {-b'+2~n} = -b+1 = -b+2*"0. So the
formula is valid in this case.

Remark. Note that -b+1 is simply the negative of an ordinal when b
is a non-limit ordinal but is different when b is a l imit ordinal. In
fact, i f b is a non-limit ordinal -b+1 consists of b-1 minuses,
whereas i f b is a l imit ordinal -b+1 consists of b minuses followed
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by a plus. In either case the computation {-b}|{-b'+2 } = -b+1 is

valid. (Note that -b consists of a sequence of b minuses and

-b'+2 n consists of a sequence of less than b minuses followed by a

plus and a finite number of minuses.)

The next case of interest is an ordinary e number followed

by a sequence of minuses. This case has some resemblance to the case

just considered. Here we feel that it is more instructive to use a

somewhat more informal approach.

Now clearly ind b is a monotonic function of b. As we add

on more and more minuses to e, ind b remains constant until we reach a

certain point at which the value is decreased. We first investigate the

pattern while ind b is constant and then determine when ind b changes

and the effect of the change on g(b).

We know that g(e) = e+1 which is e followed by a plus. If

b consists of e followed by a sequence of a minuses then the lower

elements of g(b) have the form {ind b,x}. Since ind b = e and

x < e we may simply replace this by e. The upper elements of g(b)

have the form g(x) where x consists of e followed by 3 minuses

where 3 < a. It now follows trivially by induction that g(b) consists

of e followed by a plus and a minuses. This is an example of the

convenient fact which we shall see in a more general form later that as

long as ind b does not change, then roughly speaking g(b) continues

the same way as b. Complications are caused by changes in ind b

although not all changes in ind b cause problems. In fact, we have

already seen that for ordinals tricky changes occur at epsilon numbers

although indices change at many other ordinals. (For example, although

ind b changes at w2, this causes no complication in the computation of

gU 2).)

We now study the variation in ind b as the number of

minuses is increased. For this we need the sign sequence formula. In

fact, if c is e followed by a minuses, then w is e followed by

eaja minuses and more generally 2 w is e followed by ewe + en

minuses. This is enough information for the determination of ind b. In

fact, if b is e followed by 3 minuses, then ind b is e followed

by a minuses where a is the quotient obtained by dividing 3 by ew

using the division algorithm; i.e. informally speaking, as minuses are

added to b, minuses are added to ind b at intervals of length eu.
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So the above description of g(b) applies if the number of

minuses after e is less than eco. If there are exactly ew minuses

after e, then ind b is e followed by a minus. The set of lower

elements now have the form {e-l,x}. The upper elements all consist of

e followed by a plus and a sequence of minuses. It is clear by

cofinality that g(b) = e, i.e. g(we l) = e. We now have a setup for a

double induction.

We lead the reader by the hand for a short distance. If b

has ew+1 minuses after e then we may express g(b) as {e-l}|{e}

by cofinality. Hence g(b) consists of e followed by a minus and a

plus, e-1 remains as a lower element until we obtain e w 2 minuses;

hence as we noted earlier g(b) continues the same way as b. Hence if

b has ew+r minuses after e where r is finite, then g(b) is e

followed by a minus and plus followed by r-1 minuses. If r is

infinite then g(b) also has a tail of r minuses since the shortage

by one gets wiped out at ew + w.

When b has eu>-2 minuses after e, e-1 no longer occurs

as a lower element and we thus easily obtain g(b) = e-1. The situation

for eu>-2 + r is similar to what we had before, the only difference being

that g(b) has two minuses after e rather than just one. This

continues in a similar way up to any b which consists of e followed

by ewn + r minuses. g(b) consists of n minuses after e followed

by a plus and the contribution of r.

We now write 3 = ewa + r. The induction on a works the

same way for all non-limit ordinals. In fact, if 3 = ewa then g(b)

consists of e followed by a-1 minuses. If 3 = ewa + r for finite

r then g(b) consists of e followed by a minuses, a plus, and r-1

minuses. If 3 = ewa + r for infinite r then g(b) consists of e

followed by a minuses, a plus, and r minuses. A slight difference

occurs if a is a limit ordinal. The case 3 = ew2 is typical. In

this case ind b which is e followed by u> minuses is cofinal in the

set of lower elements. For the upper elements we have the cofinal set

consisting of the elements of the form e followed by n minuses.

Hence g(b) consists of e followed by w minuses and a plus. If

3 = ew2 + r then g(b) consists of e followed by GO minuses, a plus,

and r minuses. Note that for finite r this is different from the

case where a is a non-limit ordinal because of the start at r = 0. In
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general, if 3 = ewa + r where a is a limit ordinal g(b) consists

of e followed by a minuses, a plus, and r minuses.

Note that if b is e followed by ecoa + em + r minuses

then b has the form 2 or - r where y is e followed by a

minuses. The r minuses in the tail of b contribute -r to the

value of b. On the other hand, the corresponding minuses in g(b)

contribute something entirely different. For example, if g(b) consists

of e followed by a plus and r minuses then g(b) = e+y where y is

the sequence consisting of a plus followed by r minuses. We already

noted just before the proof of theorem 10.15 that y is of the form
0-n -a

2 a) .

The above computation does not appear to be too interesting

in general. It seems that the most succinct way to look at the behavior

of g(b) is to describe b in terms of a normal form followed by a

sequence of pluses and minuses. We shall see that some nice general

results exist if b is expressed in this form. On the other hand,

attempts to deal with b described purely in algebraic form or purely as

a sign sequence lead rapidly to messy computations.

We now turn to a study of more general b. We shall see that

the special cases considered are basic building blocks for such a study.

First, we have a rather general inequality.

Theorem 10.16. If b >_ 1 then g(b) _> b.

Proof. By theorem 10.14 this is true if b is an ordinal. (In fact,

the theorem gives more precise information concerning g(b).) We use

induction on the length of b. Since we know the result for b = 1 we

may assume that b > 1. Hence b begins with at least two pluses.

Therefore in the canonical representation of b all lower terms b1

begin with at least two pluses unless b1 = 0 or 1. Since 0 is

discarded in the computation of g(b), we may thus assume that b1 ^ 1,

hence g(b') ^ b1. Certainly every upper term b" satisfies b" 2. 1,

hence g(b") ± b".

Now g(b) = {ind b, g(b')>|{g(b")>. Of course we have

b = {b'}|{b"}. We now apply theorem 2.5. b < b" _< g(b"). Also

b1 ± g(b') < g(b) if b1 * 0. If b1 = 0 we have 0 <_ g(l) < g(b),

hence b < g(b).
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Remarks. Although the c o f i n a l i t y theorems have been frequently used

throughout the book th is is our f i r s t and only use of theorem 2.5. I t

happens to be convenient to use th is theorem here since we are proving an

inequal i ty.

There is a technical i ty to watch for. I f b1 = 0 then there

is no g (b ' ) . In our proof we used g ( l ) , which is legal,since 1 is a

lower element of b. I f one is not cautious about th is , one can get a

false proof that g(b) >_ b for a l l b.

The requirement b _> 1 can be s l ight ly weakened. We shall

sharpen theorem 10.16 la ter . At any rate, we know that g(—) = 0 so
1 w

g ( b ) < b i f b < —. This gives us a l imi tat ion as to how much the
— w

hypothesis can be weakened. Actually, we may replace b j> 1 by b _> 2
for a l l positive integers n thanks to the fact that g(2 ) = 2 . On

the other hand, this does not give the ultimate in sharpness since there

is s t i l l a question concerning inf ini tesimals which are larger than — •

We now generalize part of theorem 10.14 from ordinals to more
general b.

Theorem 10.17. If ea+cu <_ b _< a < ea+i for some epsilon number e a and

some ordinal a then g(b) = b. The same conclusion applies if

1 _< b £ a < e 0.

Note. The inequality b _< a < e a + 1 cannot be replaced by b < e a+ 1 # In

fact, if b has the form e-1 then we already know that g(b) > b.

Proof. Since we already have the result when b is an ordinal we may

assume that b is not an ordinal, so ea+u) < b < a. We use induction.

Let 3 be the least ordinal larger than b. Then ea+u) < b < 3. Since

b is not an ordinal, it follows from the definition of 3 that b

consists of 3 followed by a minus and possibly other terms. So 3 is

an upper element in the canonical representation of b and all other

upper elements are less than 3. For the lower elements we may assume

by cofinality that they are all at least e a+ w. Hence all numbers in the

representation of b satisfy the hypothesis of the theorem so that by

the inductive hypothesis g(b) = {ind b,g(b*)}|{g(b")} = {ind b,b'}|{b"}.

(As a technical point, we may reinsert all ordinals which are less than
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ea+w into the set of all b' so that the lower set {ind b,b'} has its

usual meaning.)

Now 3 is not an epsilon number since it is strictly between

ea and eOL+l. Hence ind 3 is an ordinal less than 3. Therefore

ind b _< ind 3 < b. Therefore {ind b, b'}|{b"} = b by cofinality. This

completes the proof.

The same argument applies to the second part. As we noted

earlier, as a technical point we need the element one as a lower element

so that we can reintroduce zero by cofinality. Formally speaking, if one

is picayune and use the notation B' for the set of all b1, the set of

lower elements should be expressed first as {ind b},(B'-{0}) which

simplifies to {ind b},{B'} by cofinality. We prefer a slight abuse of

notation for the sake of readability.

The above theorem shows that the equality g(b) = b is par

for the course, i.e in a rough sense "most" numbers are covered by the

theorem. We now consider numbers which are "close" to epsilon numbers.

Theorem 10.18. If e _< b _< e+n for some epsilon number e and integer

n then g(b) is obtained from b as follows. If the sign sequence of

b is e followed by the sequence S then g(b) is the juxtaposition

e followed by a plus and then S.

Note. By a careful look at the sign sequence formula one can show that

g(b) = b+1, as was stated as part of theorem 10.14 in the special case

where b is an ordinal. We prefer to deemphasize this point of view

since in general a simple operation such as inserting a plus into a

sequence can have a complicated effect on the normal form. This is

because the existence of the plus affects the contribution of the

subsequent signs. Although the general problem concerning the effect of

insertion of signs on the algebraic value of a surreal number is of

intrinsic interest, it is far removed from the theory of exponentiation.

For our purpose it suffices to attempt to express the function g in

what appears to be the most tractable way.

Proof. The result is known for ordinals. We may thus assume that for

some integer n>0 we have b = ea+n+c where -Kc<0, i.e. b begins

with e+n pluses followed by a minus. Hence a cofinal lower set in the
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canonical representat ion of b may be obtained by r e s t r i c t i n g to numbers

which begin wi th e+(n- l ) pluses. A l l upper elements begin with e+n

pluses and except for e+n i t s e l f continue with a minus. Thus b1 and

b" sa t i s fy the hypothesis of the theorem so we can use induct ion. Since

ind e = ind(e+w) = e then ind b = e. Also, since g[e+n- l ] = e+n is

a lower element of g (b) , ind b = e is superfluous by c o f i n a l i t y . Hence

g(b) = { g ( b * ) } { g ( b " ) } . By the induct ive hypothesis a l l the elements of

the form g(b ' ) and g(b") have a plus inserted a f te r e. By the

lexicographical order g(b) also has th is property.

We now f i l l one of the gaps in our study of b and

strengthen theorem 10.17 s l i g h t l y .

Theorem 10.19. I f for some epsi lon number e and a l l integers n,

e+n _< b but b < e+w, then g(b) = b.

Note. This takes care of one of the gaps l e f t by theorems 10.17 and

10.18.

Proof. Such a b begins with e+co fol lowed by a minus.

g(b) = { ind b g ( b ' ) } | { g ( b " ) } . ind b = e and since g(e+n) = e+n+1 is a

lower element, e i s superfluous. Hence g(b) = { g ( b ' ) } | { g ( b " ) } .

Assume f i r s t that a f te r the e+w pluses and minus there are

no fu r ther changes in s ign. We then set up an easy induct ion. I f there

is only one minus a f te r the e+w pluses then

g(b) = { g ( b ' ) } | { g ( b M ) } = {e+n+1} |{e+w} = {e+n}|{e+w} = b. An easy

induct ion gives the resu l t in th is case.

I f there are fur ther changes in sign then we have lower

elements b1 which sa t i s fy g(b ' ) = b1 by the previous case. So using

induct ion we have a cof ina l set of lower elements sa t is fy ing

g(b ' ) = b1 , so g(b) = { g ( b ' ) } | { g ( b " ) } = { b ' } | { b n } = b.

There is only one "border" area l e f t . Namely, th is is the

one where b begins with e pluses for an epsi lon number e fol lowed

by a minus, i . e . b < e but for no ordinal $ < e does b sa t is fy

b _< 3. This turns out to be the most complicated case. We include

numbers less than 1 in to th is case, i . e . numbers beginning with a plus

fol lowed by a minus. Note that a l l other numbers have been handled by
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earlier theorems. These two classes of numbers behave in a similar

manner. It seems strange to regard 1 as an epsilon number, yet when it

comes to the study of g, 1 behaves enough like an epsilon number so

that it is convenient for the sake of efficiency to study the classes

simultaneously. So in future when we refer to an epsilon number followed

by minuses it is understood that this includes the case where we have one

plus followed by minuses.

In theorem 10.15 and in the discussion afterwards we already

saw what happens when the continuation consists solely of minuses. The

main characteristic of this case is that ind b changes as the number of

minuses is increased at various intervals so that g(b) changes in an

abrupt way rather than continuing in the same manner as b.

Suppose that the number of minuses after e before the next

plus is expressed in the form ewa+r where r < eu>. We now break this

up into several subcases, only one of which is especially tricky.

Case 1. r > w. Here we obtain an upper element d in the canonical

representation of b by taking e followed by ewa+w minus and a lower

element c by taking e followed by ewa+r minuses. Now ind x is

constant for c <_ x £ d. Furthermore g(d) has the form p followed

by w minuses and g(c) has the form p followed by r minuses. (In

this case p consists of e followed by a minuses followed by a plus.

However, since the subsequent reasoning is independent of the specific

nature of p it is convenient for the sake of generality to ignore this

fact now.) Any time we have such a situation we can easily determine

g(x) by induction for any x satisfying c <_ x £ d by a type of

argument we have already used several times. First, since

ind x = ind c < g(c) and c is a lower element in the canonical

representation of x, it is superfluous to have ind x as a lower

element by cofinality. By a further use of cofinality we may limit the

upper and lower elements used in the representation to numbers y such

that c _< y _< d. Then by an obvious induction and use of the lexi-

cographical order we see that if any number x satisfying c _< x £ d

is expressed as the juxtaposition consisting of e followed by ewa+w

minuses followed by q then g(x) is the juxtaposition p followed by

CJ minuses followed by q.
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Case 2. r > 0 and a is a limit ordinal. Then the same reasoning

applies exactly providing w is replaced by the empty sequence.

Case 3. r = u> and a is a non-limit ordinal. In this case we replace

u) by any finite n larger than 0. We note that if d is the

juxtaposition of e followed by ewa+n minuses then the last string of

minuses in g(d) contains only n-1 minuses. However, since n runs

through the set of all positive integers in obtaining upper sums, this

makes no essential difference.

Case 4. r > 1 and a is a non-limit ordinal. We can now replace u>

by 1. This is otherwise like case 1 except that the r minuses in x

give rise to r-1 minuses in g(x).

Case 5. r = 1 and a is a non-limit ordinal. Here we let d = e

followed by ewa minuses and c = e followed by ewa+1 minuses. This

is essentially the same as the other cases, the only difference being

that the last minus in c contributes a minus followed by a plus in

g(c). For c _< x <_ d the sign sequence in g(x) continues as in x.

Note only that if there is a finite string of n pluses after the

ewa+1 minuses in x, g(x) will have a string of n+1 pluses because

of the extra plus at the beginning.

At any rate all these cases in which r > 0 are essentially

the same, differing only in very minor ways. In all cases the sign

sequence of g(x) continues as in x. The cases where r = 0 are more

challenging. Roughly speaking, we are then closer to the "border" where

ind x changes.

Case 6. r = 0 and a is a non-limit ordinal. This case also turns out

not to be too complicated. Recall that if c is e followed by ewa

minuses then g(c) is e followed by a-1 minuses; and if dr is e

followed by eco(a-l)+r minuses where r is less than ew and non-zero,

then g(dr) is e followed by a-1 minuses followed by a plus and r-1

or r minuses depending on whether r is finite or not. Here we have
c — x i. dr f° r a<ll r < ew« Ind x is n°t fixed in this interval.

However, ind x _< ind dr = g(c), so if x > c then ind x is

superfluous in the representation of g(x).
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Now let b = c followed by a plus. Then it is easy to see

that g(b) = {g(c)}|{g(dr} which is e followed by a-1 minuses

followed by a plus and ew minuses. In other words, the final plus

contributes a plus followed by ew minuses. It is now easy to see that

for any x satisfying c _< x <_ dr the sign sequence of g(x) for x

beyond e, the ewa minuses, and plus continues as in x. So this case

is much like the cases where r > 0, the main difference being the

existence of a plus in x which contributes a plus followed by eco

minuses in g(x).

Case 7. r = 0 and a is a limit ordinal. This is the only case left

to consider and the only case which is really fundamentally different.

Let c = e followed by ewa minuses and dg = e followed by ea)3

minuses where 3 < a. g(c) is e followed by a minuses and a plus.

Vie may assume by cofinality that 3 is a non-limit ordinal in which case

g(dg) is e followed by 3-1 minuses. We are now interested in the

interval c <_ x _< de for all 3 < a.

As in the last case let b = c followed by a plus. Then

g(b) = {ind b, g(c)}|{g(d6)}. It is immediate that this is e followed

by a minuses and two pluses. (Note that we use the fact that

ind b = ind c since an extra plus cannot change the value of ind.)

So far this case looks easier than the previous one since the

extra plus contributes simply a plus. One can almost say that for an

arbitrary x satisfying c _< x <_ d$ the sign sequence for the rest of

g(x) continues as in x. However, we must beware of the contribution of

ind x.

In fact, suppose that after e and the ewa minuses we have

only pluses. The variation in ind x as the number of pluses keeps

increasing can be determined from the sign sequence formula. When the

number of plus reaches ew then ind x increases by the juxtaposition

of a single plus. Since this is precisely g(c) it can be discarded by

cofinality. However, consider what happens when the number of plus

reaches the first epsilon number above e. The continuation of the sign

sequence in x is precisely ind x. We almost have a generalized

epsilon number as discussed in chapter nine. What is missing is that we

are not assuming that a absorbs ew multiplicatively. At any rate, at

that point ind x can no longer be discarded, and, in fact, is cofinal

by itself as a lower element in the computation of g(x). So g(x) gets



EXPONENTIATION 187

an extra plus.

This is similar to what happens in the simple case for

ordinals at the first epsilon number. In fact, for any x such that
c Ji x JS d$ the same reasoning we used so far including the splitting up

into various cases can be applied to the tail of c in x in order to

determine the sign sequence of the rest of g(x). Again we are left with

only one case to consider further. Specifically, the case consists of an

element beginning with c followed by e pluses for some epsilon number

e greater than e and then followed by e^ft minuses for some limit

ordinal 3.

We now have a set up for a "grand" induction. At every stage

we are left with one case to consider further so it appears that we will

never be done. The pattern is as follows. We have strings of pluses and

minuses, the ith string of pluses has length e. where (e.) is a

strictly increasing sequence of epsilon numbers, and the ith string of

minuses has length e.uxx. where a. is a limit ordinal for all i.

What we do next is to consider a sequence b such as the one

described above where i runs through the set of all positive integers.

By the induction described above we know the value of g for every

proper initial segment of b. Now g(b) = {ind b, g(b')}|{g(b")}. By

cofinality we may limit ourselves to those initial segments b° of b

which consist of full strings. Hence by the inductive hypothesis g(b°)

has the following form: the ith string of pluses has length e., the

ith string of minuses has length a. and a plus is added at the end.

(This is valid whether the last string in b° consists of pluses or

minuses.) Also, ind b has the same form but, of course, with no plus at

the end. By mutual cofinality we can ignore the plus at the end in

g(b°). This is easy to see since the lower element obtained by stopping

after the ith string of minuses then followed by a plus is less than

the element obtained by stopping after the (i+l)st string of minuses,

and the upper element obtained by stopping after the ith string of

pluses is greater than the element obtained by stopping after the

(i+l)st string of minuses then followed by a plus.

Hence g(b) simplifies to {ind b, ind b1}|{Ind b"}. If we

apply the remark concerning restricting oneself to full strings by

cofinality to ind b, it follows that {ind b'}|{ind b'1} is precisely

ind b.
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We have shown that g(b) has the form {ind b, F}|{G} where

F|G = ind b and F and G are initial segments of ind b. It follows

easily that g(b) is ind b followed by a plus. We see this directly

as follows. If we denote ind b followed by a plus by c then clearly

F < ind b < c. Since G is an initial segment of ind b and

ind b < G, c < G by the lexicographical order. Hence F < c < G. Since

ind b < c, we see that c satisfies the betweenness condition. On the

other hand, suppose F < x < G and ind b < x. Since F|G = ind b it

follows that ind b is an initial segment of x. Since ind b < x it

follows that x must begin with ind b followed by a plus, i.e. x has

c as an initial segment.

It is now easy to see that the situation after the co

strings of pluses and minuses behaves the same way as the situation after

e discussed earlier. Furthermore, the same argument used above for to

strings of pluses and minuses applies to a strings of pluses and

minuses where a is any limit ordinal.

Thus our discussion takes care of the value of g for an

arbitrary sequence of pluses and minuses. Although the final result

could be expressed as a formal theorem we feel that this would make the

pattern look more complicated than it is, i.e. we feel that it is most

lucid to express the procedure in the somewhat informal manner which we

used.

However, we shall end this book by a formal theorem which

b b

describes precisely when g(b) = b, i.e. exp w = ^ . This result

should be of interest since it is a natural culmination of earlier

theorems.

Theorem 10.20. g(b) = b if and only if b has either of the following

two forms.

(1) b is less than some ordinal a < e 0 where e 0 is the first

epsilon number and — < b for all integers n.

(2) b begins with at least e 0 pluses and the first string in the

sequence for b such that the initial segment of b which terminates at

the end of the string is not a generalized epsilon number is a string of

pluses. Furthermore, if a is the number of pluses then choose e to

be the largest number of pluses such that e < a and the sequence
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obtained by replacing the final string of a pluses by e pluses is a

generalized epsilon number. Then b > e+n for all integers n. (Such an

e exists since the I.u.b. of e numbers is an e number.)

Proof. The proof is easier than the statement of the theorem!

Essentially it follows directly from the preceding discus-

sion. First suppose that b is less than some ordinal a < e0. The

case b ̂  1 is taken care of by theorem 10.17. The result for b = —

has been mentioned earlier. This is the case of a plus followed by a

finite number of minuses. Now the earlier discussion dealing with an

epsilon number e followed by a sequence of minuses applies to a single

plus followed by a sequence of minuses, as was also noted earlier. Hence

if b begins with a plus followed by a finite number of minuses, g(b)

continues the same way as b so g(b) = b. Since

g(^) = 0, g(b) * b for b <_±.

We still must consider the subcase where b begins with a

plus followed by u> minuses, and a plus. The earlier discussion dealing

with e followed by ewa minuses followed by a plus where a is a

non-limit ordinal actually applies to this case. Since we regard e as

1, a) = euxx with a = 1. The plus followed by a> minuses contributes

the empty sequence to g(b) (we know that g(—) = 0). The next plus

contributes a plus followed by w minuses and from then on g(b)

continues the same way as b. Note that we obtain g(b) resembling b

for a strange reason: i.e. the plus at the end contributes precisely

what has been previously discarded. g(b), however, does not have the

extra plus in b. It is thus clear that g(b) = b precisely if the

string of pluses following the plus and w minuses contains at least u>

members. This is precisely the condition that — < b for all integers
GO

n.

Now suppose that for no ordinal a < e0 does b satisfy

b _< a. This is equivalent to the condition that b begins with at least

e0 pluses.

Now assume that b is not a generalized epsilon number but

b consists of c followed by a string of minuses and c is a gen-

eralized epsilon number. Then ind b consists of c followed by a

string of minuses of length smaller than the corresponding last string in

c. Hence ind b > b. Since g(b) > ind b it follows that g(b) * b.
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This argument extends immediately to any sequence having b

as an initial segment. A very weak use of the sign sequence formula is

all that is needed.

If b is a generalized epsilon number then certainly

g(b) > ind b = b. We know in fact that g(b) consists of b followed

by a plus. Now let b be a generalized epsilon number followed by a

string of a pluses. Then g(b) begins with c followed by a string

of 1+a pluses. Then the situation resembles the one in the proof of

theorem 10.17. The distinction between a and 1+a is wiped out

precisely when a is infinite in which case g(x) = x. This completes

the proof.

In concluding this book we hope that the reader is convinced

that the class of surreal numbers is a fascinating class of objects found

in nature. Since the study of these numbers is still at an early stage,

we are confident that there are many exciting results which are just

waiting to be discovered by an alert reader. For this reason we expect

and even hope that much of the presentation here will be improved as new

insights are gained.
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