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Editors’ Foreword

Mathematics has been expanding in all directions at a fabu-
lous rate during the past half century. New fields have
emerged, the diffusion into other disciplines has proceeded
apace, and our knowledge of the classical areas has grown
ever more profound. At the same time, one of the most
striking trends in modern mathematics is the constantly
increasing interrelationship between its various branches.
Thus the present-day students of mathematics are faced with
an immense mountain of material. In addition to the tradi-
tional areas of mathematics as presented in the traditional
manner—and these presentations do abound—there are the
new and often enlightening ways of looking at these tradi-
tiond] areas, and also the vast new areas teeming with poten-
tialities. Much of this new material is scattered indigestibly
throughout the research journals, and frequently coherently
organized only in the minds or unpublished notes of the work-
ing mathematicians. And students desperately need to learn
more and more of this material.

This series of brief topical books has been conceived as a
possible means to tackle and hopefully to alleviate some of
these pedagogical problems. They are being written by
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vi Editors’ Foreword

active research mathematicians, who can look at the latest
developments, who can use these developments to clarify and
condense the required material, who know what ideas to
underscore and what techniques to stress. We hope that
these books will also serve to present to the able undergraduate
an introduction to contemporary research and problems in
mathematics, and that they will be sufficiently informal that
the personal tastes and attitudes of the leaders in modern
mathematics will shine through clearly to the readers.

Topology is one of the branches of mathematics characteris-
tic of this century. The undergraduate curriculum from
calculus onwards has been deeply influenced by the develop-
ment of general topology; and it is apparent that the tech-
niques of classical algebraic topology have recently begun to
have an effect as well. In just the past decade or so a new
twig has sprouted from the general trunk of topology, and has
grown into one of the most active and exciting branches of
current mathematical research: differential topology. While
it will undoubtedly be some time before this field comes to
have vast general influence, it does have all the freshness and
appeal of a new subject, and the student of mathematics will
undoubtedly be curious to know something about it. Profes-
sor Wallace has provided in this book an introduction to
differential topology for nonspecialists. The problems and
techniques of differential topology are illustrated by many
special cases and examples, so that readers with very little
topological background will find the subject easily accessible;
the book ends with a survey of further reading to guide the
student whose interest has been aroused to a more detailed
study.

Robert Gunning
Hugo Rossi

Princeton, New Jersey
Waltham, Massachusetts
October 1967



Preface

What is differential topology about? If this question were
asked by a sufficiently advanced student with a good back-
ground in algebraic topology, it would be possible to give a
fairly comprehensive answer. But it would be a technical
answer. This book aims at giving an answer to a student at a
much earlier stage in his career. The idea is to stimulate some
intuitive feeling for certain aspects of the subject, while keep-
ing the mathematical prerequisites to a minimum and avoiding
the more difficult subtleties and technicalities.

Attention will be confined to the method of spherical modi-
fications and the study of critical points of functions on mani-
folds. On the one hand, these ideas lend themselves to simple
geometric description, while on the other, they have proved to
be powerful tools in the study of the structure of manifolds.
A simple illustration of their application is given in Chapter 7,
namely, to the classification of two-dimensional manifolds.

To go further with the study of manifolds, which is the
principal aim of differential topology, the geometric tools
described here must be supplemented by more powerful
algebraic tools. Some indication of the ideas required for
such a study is given in Chapter 8.

vii



viii Preface

In short, the first steps only are described here, and in this
field, as indeed in any branch of topology, the first steps should
be geometric, whereas the second or more technical steps
should be based on an intuitive geometric feeling for the
subject.

Knowledge of advanced calculus, including some properties
of differential equations, is assumed, as is some knowledge of
the behavior of quadratic forms under linear transformations
of the variables. No previous knowledge of topology is
required. All that is needed is described in the first chapter,
but a student who has already been introduced to the ideas of
open sets, closed sets, and continuous maps can safely go
straight on to Chapter 2.

Chapters 2 and 3 introduce the reader to the notions of
differentiable manifolds and maps. Then Chapter 4 discusses
one of the central topics of differential topology, namely the
theory of critical points of functions on a differentiable mani-
fold. This study is continued into Chapter 5 with an investi-
gation of level manifolds corresponding to a given function.
This leads naturally to the definition in Chapter 6 of the idea of
spherical modifications. In Chapter 7 the concepts of the
previous chapters are applied to the classification problem of
surfaces. Chapter 8 gives some guidance for further reading
and study in this field.

Andrew H. Wallace

Philadelphia, Pennsylvania
November 1967
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Set-Theoretic Symbols

The following is a vocabulary of set-theoretic symbols that are

used in this book:

zE A
ACB
ADB
AUB
ANB
U A;
N A;
c4

é

z is 2 member of the set 4
A is contained in B

A contains B

union of A and B
intersection of A and B
union of the 4;
intersection of the A;
complement of A

empty set






Topological Spaces

1-1. NEIGHBORHOODS

General or point set topology can be thought of as the
abstract study of the ideas of nearness and continuity. This
is done in the first place by picking out in elementary geome-
try those properties of nearness that seem to be fundamental
and taking them as axioms. Let E be n-dimensional Euclid-
ean space and p a point in it. The idea of a neighborhood
of p is that it should be a set of points near p and entirely
surrounding p.

To make this precise, define a neighborhood of p to be any
set U such that U contains an open solid sphere of center p.
This makes the set U in Fig. 1-1 a neighborhood of p in the
plane, since it contains an open disk with center p. But any
disk with center p in Fig. 1-2 or 1-3 will contain points out-
side U, and so U is not a neighborhood of p in these cases.
The definition of neighborhood is formulated in this way so as
to be as free as possible from any ideas of size and shape, con-
cepts that play no part in topology.

Using this definition of a neighborhood of a point in Euclid-
ean space, it is easy to see that the following properties hold.

1



2 Differential Topoloyy

FIGURE 1-1 FIGURE 1-2

FIGURE 1-3

(1) p belongs to any neighborhood of p.

"(2) If U is a neighborhood of p and V DO U, then V is a
neighborhood of p.

(3) If U and V are neighborhoods of p, sois U N\ V.

(4) If U is a neighborhood of p, then there is a neighbor-
hood V of p such that V C U and V is a neighborhood of
each of its points.

Exercise. 1-1. Prove properties 1 through 4.

A careful analysis of the properties of neighborhood and
continuity, as appearing, for example, in the theorems of cal-
culus, shows that they derive from the four properties listed
above. It is therefore reasonable to take them as axioms in an
abstract formulation. This leads to the following definition.

Definition 1-1. A topological space is a set £ along with an
assignment to each p &€ E of a collection of subsets of E, to be
called neighborhoods of p, and satisfying the four properties
listed earlier.

Examples

1-1. With neighborhoods as defined earlier, Euclidean
space is a topological space.
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1-2. Let S be the surface of a sphere, say the unit sphere
in 3-space with center at the origin. Call U a neighborhood
of p in S if, for some ¢, U contains all the points of S at dis-
tance <e from p. Verify that the axioms for neighborhoods
are satisfied. Thus S is a topological space.

1-3. Other surfaces can be treated in the same way as the
sphere. For example, the torus, the surface traced out by a
circle of radius 1 and center (2, 0, 0) when the (z, y) plane is
rotated about the y axis, is made into a topological space in
this way. Also, spheres of higher dimensions become topo-
logical spaces in exactly the same way as the 2-sphere in
Example 1-2.

Note that in Examples 1-2 and 1-3 the surrounding Euclid-
ean space plays only an auxiliary role. The topological space
in each case is a subset, and only points of that subset are of
interest in defining the topology. In the same way any sub-
set of a Euclidean space can be made into a topological space,
and in fact the same thing can be done with a subset of any
topological space. In more detail, let E be a topological space
and let F be a subset. Let p be a point of F. Then a subset
U of F will be called a neighborhood of p in Fif U =FNYV,
where V is a neighborhood of p in E. As an exercise, check
that the neighborhoods in F so defined satisfy the neighbor-
hood axioms.

Definition 1-2. When F is made into a topological space by
defining neighborhoods in this way, it is called a subspace of E.

Example

1-4. Examples 1-2 and 1-3 define the sphere and the torus
as subspaces of Euclidean 3-space.

Note that all the examples of topological spaces given so far
appear as subspaces of a Euclidean space. However, all topo-
logical spaces do not satisfy this property. For example, let
E be the set of all bounded real-valued functions on the unit
interval I of real numbers. Define U to be a neighborhood
of p in E if U contains all ¢ in E for which sup |p(z) — ¢(z)|
(x € I)isless thansomee. It iseasy to see that the neighbor-



4 Differential Topology

hood axioms are satisfied, but it can be shown (not so easily)
that E is not a subspace of any Euclidean space.

Having made this remark, however, it can be forgotten so
far as the reading of this book is concerned, for the spaces with
which this book will deal will all be subspaces of Euclidean
spaces.

1-2. OPEN AND CLOSED SETS

It turns out that there are two kinds of subsets of a topo-
logical space that are of particular importance.

Definition 1-3. If E is a topological space and U a subset,
then U is called open in E (or simply open, if no confusion is
likely) if, for each p in U, U is a neighborhood of p.

Definition 1-4. 1If E is a topological space and F' is a subset,
F is called closed in E (or simply closed) if E — F is open.

Examples

1-5. Let E be the plane and let U be an open disk in E.
Then U is an open set. Prove this as an exercise.

1-6. Let E be the plane and F a closed disk. Then F is a
closed set.

1-7. Similarly, open and closed solid spheres of any dimen-
sion are open and closed sets of the corresponding Euclidean
spaces.

1-8. In Euclidean n-space the set of points (1, Z2, . . . , Zn)
satisfying inequalities a; < z2; <b; (¢ =1,2, ... ,n) for
fixed a; and b; is open. The set of points satisfying a; < z; < b;
is closed.

The behavior of open and closed sets under the operations
of union and intersection is of fundamental importance and is
described by the following theorem.

Theorem 1-1. (1) The union of any collection of open sets in a
topological space is open.
(2) The intersection of a finite collection of open sets is open.
(8) The intersection of any collection of closed sets is closed.
(4) The union of a finite-collection of closed sets s closed.
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Proof. (1) Let a collection of open sets in E be given, and
denote the members of the collection by U, where ¢ ranges
over some set of indices. Let U = \UU; and take p in U.
Then p € U, for some ¢ and so U; is a neighborhood of p
(Definition 1-3). But U D U, and so U is a neighborhood
of p (neighborhood axiom (2)). Thus U is a neighborhood
of each of its points and so, by Definition 1-3, it is open.

(2) Let U, and U, be open sets and take p € Uy N Us.
U and U, are open and contain p, and so are neighborhoods
of p (Definition 1-3). Hence U; M Uy, is a neighborhood of p
(neighborhood axiom (3)). Thus U; M U, is a neighborhood
of each of its points and thus is open (Definition 1-3).

Parts (3) and (4) of the theorem are obtained from parts
(1) and (2) by taking complements.

Note that part (2) of the proof does not work for the inter-
section of an infinite number of open sets. For example, if
E is the real line and U, is the open interval (—1/n, 1/n),
each U, is an open set but the intersection of all the U, is the
point 0, and this is not open.

Suppose now that A is any set in a topological space E.
Theorem 1-1 says that the union Int A of all open sets con-
tained in 4 is open. Clearly it is the “largest’ open set con-
tained in 4.

Definition 1-5. Int A is called the interior of A.

Dually, the intersection A of all closed sets of E contain-
ing A4 is closed and is the “smallest” closed set containing A.

Definition 1-6. A is called the closure of A.

Definition 1-7. ¥r A = A N CA is called the frontier of A.

Example

1-9. Let E be the plane and let A be a disk including the
points of the upper half circumference but excluding those of
the lower half. Then Int A is the open disk, 4 is the closed
disk, and Fr A is the circumference of the disk.
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Exercises. 1-2. Let A be a set in a topological space. Prove that a
point p is in Int A if and only if p has a neighborhood contained in A.
Prove, too, that p is in A if and only if every neighborhood of p meets 4.
1-3. For any sets A and B in a topological space prove that A \U B =
AUBand ANBCANB.
1-4. Let E be a topological space and F a subspace. Prove that a set
UinFisopeninF if and only if U = V N F, where V is an open set in E.

1-3. CONTINUOUS MAPS

Let £ and F be topological spaces and let f be a map of E
into F. This is represented diagrammatically by the notation
f: E— F. The idea of continuity is simply that points that
are near together in £ are mapped into points that are near
together in F. This is made precise as follows.

Definition 1-8. The map f: E — F is continuous at p if, given
any neighborhood V of f(p) in F, there is a neighborhood U of
p in E such that f(U) C V. fis continuous if it is continuous
at each p in E.

Exercises. 1-5. Let E and F in Definition 1-8 both be the real line.
The usual definition of continuity in this case is that f is continuous at
z if, for any € > 0, thereisa § > 0 such that |f(z") — f(z)| < e whenever
|z’ — z| < 8. Prove that this is equivalent to Definition 1-8.

1-6. Let f: E— F be a map. Prove that f is continuous if and only
if the inverse image of any open set in F is open in E. Use this to show
that the composition of continuous maps is continuous.

1-7. Let E be the union of two closed sets A and B and let f: E — F be
a map. Suppose that the restrictions of f to A and B are continuous
maps of 4 and B into F, respectively. Show that fis continuous. Give
an example to show that this does not hold if A and B are not closed.

Continuous maps that have continuous inverses are of
special importance.

Definition 1-9. Let fbe a one-to-one map of K ontoF. Thus
there is an inverse map g of F onto E. If both f and its
inverse are continuous, f will be called a homeomorphism and
E and F will be said to be homeomorphic.
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From the point of view of general topology, homeomorphic
spaces are the same. That is to say, the properties that
interest us are those that, when true for one space, are true
for all spaces homeomorphic to it. Another way of looking
at this is to note, first, that a homeomorphism between E and
F sets up a one-to-one correspondence between the neighbor-
hoods in £ and the neighborhoods in F, and between the open
sets in E and the open sets in F. Hence, any property defined
entirely in terms of neighborhoods and open sets is a topologi-
cal property. Some examples of such properties will appear
presently.

1-4. TOPOLOGICAL PRODUCTS

This section describes a frequently used method of obtain-
ing new spaces from given ones.

Let £ and F be topological spaces. Theset E X F is defined
to be the set of pairs (p, ¢) where p € E and ¢ € F. This is
made into a topological space as follows. If (p,q) E E X F,
then a neighborhood of (p, ¢) is any set containing a set of the
form U X V, where U is a neighborhood of p in E and V is a
neighborhood of gin 7. It is not hard to see that the neighbor-
hood axioms (1) through (4) are satisfied.

Definition 1-10. E X F, made into a topological space as
just described, is called the topological product of E and F'.

Examples

1-10. If E = F = the real line, then E X F is the plane
with its usual topology as Euclidean 2-space.

1-11. If E is Euclidean 2-space and F is the real line,
E X F is Euclidean 3-space. Clearly, this can be generalized;
the topological product of Euclidean m-space and 'n-space is
(m 4+ n)-space.

1-12. If E is a real line interval and F is a circle, then
E X F is a cylinder.

1-13. It will be seen later, in detail, that the torus is the
topological product of a circle with itself.
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1-5. CONNECTEDNESS

Two important topological properties will be described in
this and the next section. The first, connectedness, is the
property of being, so to speak, all in one piece.

Definition 1-11. A space E is comnected if it cannot be
expressed as the union of two nonempty disjoint sets open in
E. A set in a topological space is connected if, as a subspace,
it is a connected space.

Examples

1-14. Let E be the space consisting of two points a, b.
The neighborhoods of a are to be the sets {a} and {a, b} and
the neighborhoods of b are to be {b} and {a, b}. It is easy to
see that the neighborhoods axioms are satisfied. Also, the
sets {a} and {b} are open; thus E is the union of two disjoint
open sets. Hence, F is not connected.

1-15. Let A be the union of two disjoint open disks in the
plane. Then A is not a connected set.

It is much more difficult to give an example of a space that
is connected, except for something trivial, such as a space with
only one point. One of the most important examples is the
line interval. Intuitively it is fairly clear that this is all in
one piece and so should be connected, but of course this needs
proof.

Theorem 1-2. Let A be an open line interval, say the set of
real numbers x such that 0 < x < 1. Then A is connecied.

Proof. Suppose that A is not connected. Then by definition
A = B\J C where B and C are nonempty disjoint open sets
on 4, and so on the real line. Since B and C are not empty,
there are points b in B and ¢ in C. Suppose for the sake of
definiteness that b < ¢. Then let D be the set of points z in B
such that z < ¢. D is not empty, since it contains b. Let d
be the least upper bound of numbers in D. The idea now is
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to show that d cannot belong to either B or C. Since, how-
ever, d is between b and ¢, it is certainly in 4, and so in B or C.
This contradiction will show that A is in fact connected.

Suppose, then, that d € B. Since all z in D satisfy z < ¢,
d satisfies d < ¢, and since d is in B, it must actually satisfy
d < c¢. B is open and so there is an open interval U contain-
ing d and contained in B. If the length of U is taken less than
¢ — d, U will then be contained in D. But then the right-
hand end of U would be in D and would be greater than d,
which is impossible since d is the upper bound of D. Hence,
d is not in B.

Suppose that d € C. Then, since C is open, there is an
open interval U containing d and contained in C. But this
means that, for a certain ¢ > 0, there are no points of B, and
so no points of D, between d — € and d, and this contradicts
the fact that d is the least upper bound of D. Hence, d & C.

Hence, d is neither in B nor in C, which leads to the required
contradiction as explained earlier, thus completing the proof
of the theorem.

It is clear that the same proof with minor modifications
would show the connectedness of intervals with one or both
end points included and of intervals that are infinite in one or
both directions.

Theorem 1-2 has a converse that is fairly trivial.

Theorem 1-3. If a set A of real numbers is connected, then
A 1s an interval (finite or infinite, with or without end points).

Proof. Let a and b be two points of A, with @ < b. Then it
is to be shown that A contains all numbers ¢ such that a <
¢ < b. Suppose that thereis a ¢ between @ and b but not in 4,
and let B be the set of all numbers in A less than ¢, C the set of
all numbers in A greater thanc. Then A = B\U C, Band C
are both open in A and are nonempty and disjoint. This con-
tradicts the assumed connectedness of A, and so there is no
such ¢ as assumed. Hence, A4 is an interval.
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It now becomes fairly easy to construct other examples of
connected spaces. The following theorems give general meth-
ods of getting new connected spaces from old ones.

Theorem 1-4. Letf: E — F be a continuous map of a connected
space onto a space F. Then F is connected.

Proof. Suppose that the theorem is false. ThenF = A\U B
where A and B are nonempty, disjoint, and open. Then £ =
Y A) Y f~YB), and f~1(4) and f~1(B) are disjoint and non-
empty, and by Exercise 1-6 they are open. This contradicts
the connectedness of E, and so F must be connected.

In particular, it follows from this that if £ is connected and
F is homeomorphic to E, then F is connected, so that con-
nectedness is a topological property. Another example of the
use of Theorem 1-4 may be had by noting that there is a con-
tinuous map of the unit interval of real numbers x such that
0 < z < 1 onto the circumference of a circle. That is, map z
on the point (cos 27z, sin 27x) in the plane. Hence, the cir-
cumference of a circle is connected.

Theorem 1-5. If E andF are connected spaces, then E X F s
connected.

Proof. As usual, the proof is by contradiction. Suppose that
E X Fisnot connected. ThenE X F = A \U B where A and
B are open, disjoint, and nonempty. Take (z, ) in A. The
set E X {y} is homeomorphic to £ and so is connected. It
follows that E X {y} is contained in A. For otherwise its
intersections with A and B would form a decomposition into
open, disjoint, and nonempty sets. But then a similar reason-
ing would show that the slice {z'} X F would be in A for
each 2’ in E, and so all of £ X F would be in 4, so that B
would be empty. This gives the required contradiction, since
B was assumed to be nonempty. Hence E X F is connected.

Example

1-16. It has already been seen that the closed line interval
I is connected. It now follows that the rectangle I2 = I X I
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is connected, and so by induction is the n-dimensional cube I™.
Similarly, since the real line is connected, n-dimensional
Euclidean space is also connected.

Exercises. 1-8. Let A be a connected set in a topological space E.
Let B be a set such that A C B C A. Then prove that B is connected.

1-9. Let A and B be connected sets in a space E and suppose that
A N Bis not empty. Prove that A \U B is connected.

Examples

1-17. Example 1-16 shows that an open disk (homeomor-
phic to I?) is connected. Then Exercise 1-8 shows that a con-
nected set is obtained by adding some or all of the points on
the circumference. A similar example can be formulated for
higher dimensions.

1-18. The surface of a sphere can be expressed as the union
of two closed disks with nonempty intersection. So by Exer-
cise 1-9 this surface is connected. Similarly, the n-sphere is
connected for any n.

1-6. COMPACTNESS

The idea of compactness is a generalization of the property
of being closed and bounded in a Euclidean space. First, the
Hausdorff separation axiom will be assumed for the spaces to
be considered. This assumption is not always made in general
topology, but it is appropriate here since the spaces of most
interest here will satisfy the condition anyway.

Definition 1-12. A topological space will be called Hausdorff
if, for any two distinct points p and ¢, there are neighborhoods
U of p and V of ¢ such that UNV = . Thus distinct
points are separated by disjoint neighborhoods.

Examples

1-19. Any Euclidean space is Hausdorff.
1-20. Any subspace of a Euclidean space is Hausdorff. In
fact, any subspace of any Hausdorff space is Hausdorff.
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Before defining compactness, some preliminary definitions
are needed.

Definition 1-13. A covering of a topological space E is a
collection of sets in £ whose union is £. It is called an open
covering if all the sets of the collection are open.

Definition 1-14. Given a covering of a topological space, a
subcovering is a covering whose sets all belong to the given
covering,.

Definition 1-15. A compact space is a Hausdorff space with
the property that any open covering contains a finite sub-
covering, that is, a subcovering consisting of finitely many
sets. A set in a topological space is compact if it is a compact
subspace.

Examples

1-21. The Borel-Lebesgue theorem of analysis shows that
a closed bounded set of a Euclidean n-space is compact (cf. [3]).

1-22. Thereal lineis not compact. For take the collection
of open intervals (n — 1, n + 1), for all integers n. This is
an open covering of the real line, but clearly no finite collection
of these intervals can cover the whole line. A similar argu-
ment shows that Euclidean n-space is noncompact, and in fact
so is any unbounded subset.

Exercises. 1-10. Show that the n-sphere is compact for any n.
1-11. Prove that a closed subset of a compact space is compact, and
that a compact set in any Hausdorff space is closed.

Note that a compact set in a Euclidean space must then be
closed (Exercise 1-11) and bounded (Example 1-22). This
gives the converse to the Borel-Lebesgue theorem. There is
a general theorem that says that the topological product of
compact spaces is compact (cf. [2]). This will not be proved
here. However, one case will be wanted, namely, that in
which the given compact spaces are subspaces of Euclidean
spaces of dimensions m and n. The product is then a sub-
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space of (m + n)-space. Since the given spaces are compact,
they are closed and bounded, by the remark just made. Thus
their product is closed and bounded (verify this!) in (m + n)-
space and, hence, compact by the Borel-Lebesgue theorem.

Since compactness is defined in terms of open sets, it is a
topological property. In fact, it is preserved by any continu-
ous map.

Theorem 1-6. Letf: Ii — F be a contznuous map of a compact
space E onto a Hausdorff space F. Then F is compact.

Proof. Let an open covering of F be given, the individual
sets being denoted by U; with the 7 running over some set of
indices. Then the sets f~!(U;) form a covering of E that, by
Exercise 1-6, is open. Since E is compact, a finite collection,
say f~Y(Uy), Y (Us), . . ., f~Y(U,), will cover it. Then U,,
U, ..., U, forms a finite subcovering of the given covering
of F. Since the Hausdorff condition has been assumed, F is
then compact.



Differentiable Manifolds

2-1. INTRODUCTION

A number of the examples already given of topological spaces
have the property that coordinates can be set up on them, at
least locally around each point. In Euclidean n-space this is
immediately evident, as a matter of definition. That is, each
point actually is a set of » real numbers, namely, its coordi-
nates. Consider on the other hand a two-dimensional sphere,
say the unit sphere z? 4+ 32 + 22 = 1, in 3-space. Take a
point in the hemisphere z > 0. Here z = (1 — 2% — y?)¥?
so that in fact the point is determined by the values of z and y.
Thus (z, y) can be thought of as the coordinates of the point
on the sphere. But they are only local coordinates in the sense
that they determine points uniquely only in a certain open set,
namely, the hemisphere 2 > 0. Note that the map taking the
point (z, ¥, z) on the sphere onto the point (z, y, 0) on the
(z, y) plane is a homeomorphism of the hemisphere z > 0 onto
the open unit disk, and we are actually using the coordinates
of the image of a point under this map as the coordinates of
the point on the hemisphere (Fig. 2-1).

14
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z

FIGURE 2-1 Identification of upper hemisphere with disk in (z, y)
plane by projection.

The interesting feature of this example from our point of
view is that the sphere can be covered by six hemispheres
with similar properties, namely, the hemispheres z > 0, z < 0,
y>0,y<0,z>0,2<0. Each hemisphere is mapped by
a homeomorphism onto an open disk and the coordinates of
points in the disk can be used as coordinates of points in the
corresponding hemisphere. For example, in the hemisphere
z > 0, (y,2) can be used as coordinates, and so on. The
sphere is in this case said to be covered by six coordinate
neighborhoods, that is, neighborhoods in which local coordi-
nates can be set up.

A similar discussion can be carried out for the torus (see
Fig. 2-2), although it is a bit more troublesome to do it all
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FIGURE 2-2 Identification of top surface of torus (shaded dark) with
shaded area of (z, y) plane.

explicitly. Take the torus to be the surface generated by
rotating the circle (x — 2)? + y? = 1in the (z, y) plane about
the y axis. Then, for example, (z, y) can be used as local
coordinates on the surface in a neighborhood of the point
(0, 0, 3).



Differentiable Manifolds 17

Exercise. 2-1. Construct a complete set of coordinate neighborhoods
covering the torus.

It will also be noticed that the foregoing examples have the
property that if (xi, z2) and (yi, y2) are the local coordinates
of a point in two overlapping coordinate neighborhoods, then
y1 and y, are differentiable functions of z; and z, and con-
versely. For example, in the case of the sphere consider the
coordinate systems as above in the hemispheres z > 0 and
z > 0. Let a point have coordinates (i, z2) in the first of
these neighborhoods and (yi, y2) in the second. Thus, if its
coordinates in the surrounding Euclidean space are (z, y, 2),
this means that z; =z, . = y, y1 = y, y2 = 2. Since 22 +
y2 + 2% = 1 on the sphere,

Y1 = T,
y2 = (1 — a3 — 25)2

I

Clearly, the functions on the right of these equations have
partial derivatives everywhere in the overlap of the two hemi-
spheres. Similarly

= (1 —yi — )2
023 Yi,

and again the functions on the right can be differentiated in
the set z > 0, £ > 0. It can also be checked easily that in
this set the determinant

o oy
6131 6x2
axy afl?2

is not zero.

The foregoing examples, particularly the features just
described of the local coordinate systems on the sphere,
motivate the definition of the type of space of special interest
here, namely, the differentiable manifold. First, some pre-
liminary definitions will be given.
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2-2. DIFFERENTIABLE FUNCTIONS AND MAPS

Definition 2-1. Let U be an open set in Euclidean n-space E
and let f be a real-valued function defined on U. Then f will
be called differentiable if it has continuous partial derivatives of
all orders with respect to the coordinates in £ at all points of U.

Examples

2-1. A polynomial in the coordinates in E is differentiable
on any open setin E. Of course, in this case all the derivatives
of sufficiently high order vanish.

2-2. In Euclidean 2-space the function (1 — z? — y?)V2%is
not differentiable on any open set containing a point of the
circle 22 4+ y? = 1, but it is differentiable on any open set not
containing any point of this circle.

2-3. Consider the function f on the real line defined as
follows:

flx) = exp <x2 — 1) when —1 <z < 1,
fl@)y =0 fe < —lorz>1.

It should be checked as an exercise that this function has
derivatives of all orders at all points of the line. Thus fis a
differentiable function of the whole line. (Remember that
1/t"ye=Vt — 0 as t — 0 from above.)

2-4. The last example can be used to construct others in
spaces of higher dimension. In Euclidean n-space let r? =
Zx? be the square of the distance from the origin, and define
a function f as follows:

fp) = exp( 5 1> when r < 1,
r2 —
fp) =0 when r > 1.

Again this is a differentiable function on all of n-space.

Note that the function just constructed has the properties
of being differentiable in all n-space, vanishing outside an
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open set (the unit solid sphere), and being nonzero inside this
set. Functions with similar properties will be useful later.

Exercise. 2-2. Use a method similar to that of the last example to
construct a function differentiable on all n-space, equal to 1 on the closed
solid sphere Ex? < 1, and vanishing outside the solid sphere 2 z? < 4.

Since functions are sometimes given on sets that are not
open, the following definition is sometimes needed to comple-
ment Definition 2-1.

Definition 2-2. Let f be a real-valued function on a set 4 in
Euclidean n-space E. f will be called differentiable on A if it
can be extended to an open set U containing A so that it is
differentiable on U.

Thus, for example, to say that a function is differentiable
at a point means that it is differentiable on a neighborhood
of the point. The following is a natural extension of the idea
of differentiability to maps between Euclidean spaces.

Definition 2-3. Let A be a set in Euclidean m-space and
let fi, fs, . . ., fa be n differentiable functions on A. Define
a map fof A into Euclidean n-space by making f(x) the point
with coordinates (fi(z), fo(z), . . . , fa(x)), forxin A. Then
fis called a differentiable map of A into n-space.

Note that if n = 1, the differentiable map simply becomes
a differentiable function as in Definition 2-2.

In the study of differentiable maps an important part is
played by the matrix of first partial derivatives of the f;, in
the notation of Definition 2-3.

Definition 2-4. The matrix with 9f;/dz; in the 7th row and
jth column is called the Jacobian matriz of the differentiable
map f. If n = m, its determinant is called the Jacobian deter-
manant of the map.

Exercises. 2-3. Let f be a differentiable map of a set A in Euclidean
m-space into n-space and let g be a differentiable map of f(A4) into p-space.
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Prove that the composition gf is a differentiable map of A into p-space.
Also, if F is the Jacobian matrix of f evaluated at a point z and if G is the
Jacobian matrix of g evaluated at f(z), prove that the Jacobian matrix
of gf evaluated at z is GF.

2-4. Let fbe a differentiable map of an open set in Euclidean n-space
into n-space and suppose that f has a differentiable inverse. Show that
the Jacobian determinant of f is nonzero at all points of U.

The result of Exercise 2-4 has a partial converse, namely,
the inverse function theorem, which can be stated as follows.

Theorem 2-1. Let f be a differentiable map of an open set U in
n-space into n-space and let p be a point of U. Suppose that the
Jacobian determinant of f is monzero at p. Then there is a
neighborhood V of p and a meighborhood W of f(p) such that
fmaps V homeomorphically on W and the inverse of f on W is a
differentiable map onto V.

For the proof of this result see [3] or [6].

Note that this theorem gives only a local inversion of f.
It is not possible in general to say anything more. For exam-
ple, let U be the (z, y) plane with the origin removed and,
using complex variable notation z = x + 7y, define a map f of
U onto itself by setting f(z) = exp(z). If the real coordinates
of f(z) are written as (u, v), then this map can be expressed in
terms of real functions by the equations

u = exp(z) cos y,
v = exp(x) sin y.

It is easy to see that this is a differentiable map of U onto
itself, and that the Jacobian determinant is nonzero on all of
U. Certainly, then, f can be inverted locally, by Theorem
2-1. In fact, the inverse is given by z = log(u + ) on any
set that does not surround the origin. But f is not one-to-one
on all of U, for if y is changed by adding to it any integral
multiple of 27, the value of f(z) is unchanged.

2-3. DIFFERENTIABLE MANIFOLDS

With the preparation of the last section it is now possible to
formulate the definition of the kind of space of special interest
here, namely, the differentiable manifold.
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Definition 2-5. An n-dimensional differentiable manifold M
is a Hausdorff topological space that has a covering by count-
ably many open sets Ui, Us, . . . , satisfying the following
conditions:

(1) For each U; there is a homeomorphism ¢;: U;— V;
where V; is an open cell in Euclidean n-space.

@) If U;N\ U; # &, the homeomorphisms ¢; and ¢; com-
bine to give a homeomorphism ¢;; = ¢;¢;* of ¢:;(U; M U,) onto
¢;(U; M Uj;), which is a differentiable map.

Note that, in condition (2), ¢; automatically has an inverse,
namely ¢, and so its Jacobian determinant will be nonzero at
all points of ¢;(U; M U;). Incidentally, the countability con-
dition included in this definition will not play any part in the
present discussion. Its inclusion in general is designed to
avoid some pathological cases.

Examples

2-5. Euclidean n-space itself satisfies the conditions of this
definition in a rather trivial way. Namely, the open covering
can be taken to consist of one set only, U;, the whole space;
V1 can also be taken as the whole n-space and ¢; as the identity
map.

2-6. Referring back to Section 2-1, we can see that the
two-dimensional sphere S? satisfies the conditions of Definition
2-5. That is, S? is covered by six open sets, the various hemi-
spheres described there, that play the part of the U.. If U,
for example, is the hemisphere z > 0, then the map ¢; is to
map the point (z, y, 2) of U on the point (z, y, 0); V is being
taken as the unit disk with the origin as center on the
(z, y) plane. Similarly, if U, is the hemisphere x > 0, then
¢2(x, y,2) = (0,y,2). The map ¢i.is then given by ¢12(0, ¥, 2)
= ((1 — y* — 2?2 y,0) and this map is differentiable. A
similar discussion can be carried out for the other ¢;;.

Exercises. 2-5. Imitating the discussion of the last example, show that
the n-dimensional sphere S» is an n-dimensional differentiable manifold.
2-6. The projective plane P? is obtained from the 2-sphere S? by
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identifying diametrically opposite points. Thus a point of P? is a pair
of antipodal points on S2. If p is a point of P defined by the pair p,,
p2 on S, take an open disk U, on S? around p; and the disk U, around p:
whose points are opposite those of U;. Then the points pairs contained
in the pair of neighborhoods U, and U, will be called a neighborhood of p
in P2, The topology of P? will be defined by taking as a neighborhood
of p any set containing a neighborhood of the type just described. Prove
that P2 is a two-dimensional differentiable manifold.

2-7. Generalize the last exercise by defining projective n-space P~
as the space obtained by identifying diametrically opposite points on the
n-sphere. The neighborhoods are to be defined as in Exercise 2-6.
Prove that P~ is a differentiable manifold.

2-8. Let X be the set of all (n + 1)-tuples of real numbers, exclud-
ing the one consisting of n + 1 zeros. Define (xo, 21, . . . , ZTn) ~
(cxo, ¢y, . . ., cx,) where ¢ is any real number except zero. Prove that
~ is an equivalence relation on X, and show that the equivalence classes
are in one-to-one correspondence with the points of the projective space P»
as constructed in Exercise 2-7. Let U, be the set of points of P* with
representatives in X for which z; ¢ 0. Such points then have represen-

tatives of the form (zo, 21, . . ., 1, . . ., 2,) with 1 in the 7th position.
Let ¢: be the map of U; into n-space carrying the point with representa-
tive (o, 21, - . ., 1, . . . ,2n) Into ey Z1, - . ., Tic1y, Tigry - - - 5 Tn)-

Show that the U; and ¢; so obtained can be taken as in Definition 2-5
to give P* as a differentiable manifold.
2.9. Exercise 2-8 suggests the following construction. Let Z be the

set of (n + 1)-tuples (2o, 21, . . . , 2z») of complex numbers excluding
the zero (n + 1)-tuple (0,0, . .., 0), and write (zo,21, . . . , 22) ~
(czo, €21, . . . , C2,) Where ¢ is any nonzero complex number. Check that

~ is an equivalence relation on Z, and let PC* be the set of equivalence
classes. Let U; be the set of elements of PC" with representatives of the
form (20,21, . . . ,1, . . ., z.) with 1 in the 7th position and let ¢; map
an element of this form on (zo, 21, . . . , Zi_1y Zix1, . . . , 2») in complex
n-space, which is topologically a Euclidean 2n-space. Show that the
topology in PC" can be defined so that the ¢; are all homeomorphisms,
and that when this is done the U; and ¢; define PC* as a 2n-dimensional
differentiable manifold. PC™ is called complex projective n-space.

2-10. Prove that the torus (see Section 2-1) is a two-dimensional
differentiable manifold.

2-4. LOCAL COORDINATES AND
DIFFERENTIABLE FUNCTIONS

Definition 2-5 contains implicitly the idea behind the next
definition. In effect, the homeomorphism ¢; identifies U; with
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V. so that the Euclidean coordinates in V; can be used to label
the corresponding points in U;. Thus ¢; can be thought of as
establishing a coordinate system in U, or at least a local coordi-
nate system, the word local signifying that the coordinates are
set up only in an open set U; and not over the whole manifold.
This suggests that we should be able to define a notion of
differentiable function on the manifold, using differentiation
with respect to the local coordinates set up by the ¢;.. The
main point is to check that, in defining such a concept, the defi-
nitions in terms of different ¢; cannot contradict one another.

To check this point, let f be a real-valued function defined
on an open set U of the differentiable manifold M. Take a
point p in U and suppose it is in the set U; of the open cover-
ing used in defining M. Consider the composed function f¢.
defined on ¢;(U M U,). This function can be thought of as f
expressed in terms of the local coordinates set up in U; by the
map ¢;. If p is also in another of the defining open sets Uj,
then in a similar way f¢; ' is defined in a neighborhood of ¢;(p).

Lemma 2-1. f¢;7' is differentiable in a neighborhood of ¢;(p)
if and only if fé;* is differentiable in a neighborhood of ¢;(p).

Proof. This follows at once, since f¢;' can be written as
fo7 0io7t = fo7 ¢ If fo¢;' is differentiable, then so is
fo7tl = fo7 ¢ii, being a composition of differentiable func-
tions (Exercise 2-3).

Thus this lemma says that if f, expressed in terms of the
local coordinates set up by ¢ is differentiable, then it is
differentiable in terms of the local coordinates set up by ¢,
and conversely.

Definition 2-6. With the foregoing notation the function f
will be said to be differentiable in a neighborhood of p if and
only if f¢:~! is differentiable in a neighborhood of ¢,(p).

The lemma says that the condition stated here is independ-
ent of the ¢; that is used.

The function f will be called differentiable on an open set U
if it is differentiable in a neighborhood of each point of U.
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It will be called differentiable on an arbitrary set A if it is dif-
ferentiable on an open set containing A.

Exercises. 2-11. Let M be the sphere z? + y? 4 22 = 1 in 3-space.
Prove that each of the BEuclidean coordinates z, y, z is a differentiable
function on M.

2-12. Repeat Exercise 2-11, taking M as the torus in 3-space, as in
Section 2-1.

2-13. Let M be a differentiable manifold, p a point on it. Show that
there is a neighborhood U of p and a differentiable function f on M that
is positive in U and is zero at all points outside U. (Hint: Take U as
a local coordinate neighborhood, mapped on an open set V of Euclidean
space. By reducing the size of U, if necessary, take V as an open solid
sphere of center the origin and choose the scale so that its radius is 1.
Then use Example 2-4.)

2-14. Let A be a compact set in a differentiable manifold M and
let U be an open set containing A. By using a suitable finite covering
of A by neighborhoods, as obtained in the last exercise, construct a dif-
ferentiable function f on M that is positive on A and zero outside U.

By using the same set of neighborhoods and some more, obtain a second
function g that is equal to f on A and is nonzero on a neighborhood of the
closure of the set where f 0. By taking the quotient f/g construct
a differentiable function on M that is equal to 1 on A to 0 outside U, and
that otherwise takes values between 0 and 1.

Note in particular that if V; is one of the open cells of Defi-
nition 2-5, then each of the Euclidean coordinates in V; is a
differentiable function on the corresponding U; in M. That
is, in each of the U; there is a set of n differentiable functions
whose values at a point can be taken (locally in U;) as coordi-
nates of the point. This suggests extending the notion of local
coordinates by taking as coordinates in some neighborhood
(not necessarily one of the U) the values of n differentiable
functions on that neighborhood. Of course, some condition
will have to be imposed to ensure that these coordinates corre-
spond to a homeomorphism of the neighborhood on a Euclid-
ean cell.

So let fi, fo, . . . , fu be n differentiable functions in some
neighborhood of a point p of M and suppose that p is in U;,
in the notation of Definition 2-5. Thus fi¢;", fod7 7, - - . ,
f»¢7" are differentiable functions in the sense of Definition 2-2
around ¢;(p) in V.. Suppose that the Jacobian determinant
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of these functions with respect to the Euclidean coordinates in
V; is not zero at ¢:(p). Then map a neighborhood of ¢:(p)
into Euclidean n-space by mapping a point 2 on the point
with coordinates (f167'(x), fod7 (%), . . . , fady'(x)); call the
resulting map f. According to Theorem 2-1 there is a neigh-
borhood V of f¢:(p) that can be taken as an open cell and a
neighborhood U’ of ¢;(p) such that f maps U’ homeomorphi-
cally on V, the inverse again being a differentiable map.
Finally, write U = ¢7'(U’) and ¢ = f¢:, so that ¢ maps a
point ¢ in U onto the point with coordinates (fi(q), f2(q),

., f2(@)) in V. Clearly, ¢ is a homeomorphism of U
onto V.

Definition 2-7. The homeomorphism ¢ will be called a local
coordinate system on the neighborhood U of p. U is called the
corresponding local coordinate neighborhood.

The motivation for this definition is that points of U are
named by the coordinates of their images under ¢. Note that
the ¢; and U; of Definition 2-5 are automatically local coordi-
nate systems in the sense of this definition.

Exercises. 2-15. Show that the definition of local coordinates around a
point is independent of the choice of ¢; used in the construction.

2-16. Let ¢ and ¢ be any two local coordinate systems around p,
mapping neighborhoods of p on open cells ¥V and W, respectively, in
Euclidean n-spaces. Show that ¢y~ is a differentiable map of an open
set in W on an open set in V, with nonzero Jacobian determinant.

Note that the result of Exercise 2-16 means that we can add to the
coordinate neighborhoods U; defining a differentiable manifold (as in
Definition 2-5) other coordinate neighborhoods, obtained as in Definition
2-7, and the combined collection of local coordinate systems will continue
to satisfy condition (2) of Definition 2-5.

2-17. Let p be a point of a differentiable manifold M and let ¢ be
a local coordinate system in a neighborhood U of p as in Definition 2-7.
Let f be a differentiable function on a neighborhood of p (Definition 2-6).
Prove that f¢~! is a differentiable function on a neighborhood of ¢(p)
in V (in the notation of Definition 2-7).

The meaning of this result is that, while the notion of differentiable
function is defined using only the coordinate neighborhoods U; of the
definition of a manifold, the same description of differentiability holds
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in terms of the additional local coordinate systems introduced by Defini-
tion 2-7.

2-18. Take the (z, y) plane as a differentiable manifold M. Show
that polar coordinates (r, #) defined by z = rcos 6, y = rsin 6 can be
used as local coordinates in any open disk not containing the origin.

2-19. Similarly, show that the spherical polar coordinates (r, 6, ¢)
defined by z = rsin ¢ cos 6, y = rsin ¢ sin 6, z = r cos ¢, can be used
as local coordinates in 3-space in any open sphere not meeting the z axis.

2-20. The spherical polar coordinates of the last exercise can be
restricted to the surface of the unit sphere by fixing r = 1. Show that
on the surface of this sphere (6, ¢) can be used as local coordinates in any
disk not containing the point with Euclidean coordinates (0, 0, +1).

2-5. DIFFERENTIABLE MAPS

It was seen in Section 2-2 that differentiable functions on
an open set in Euclidean space can be put together to define
the notion of a differentiable map. The same sort of thing is
now to be done more generally to define differentiable maps of
one manifold into another. These differentiable maps play
the same sort of role in the theory of differentiable manifolds
that continuous maps play in the theory of topological spaces
in general. The idea of the following definition is to use local
coordinate systems to transfer the already familiar Definition
2-3 to differentiable manifolds.

Definition 2-8. Let M, N be differentiable manifolds of
dimensions m and =, respectively, and let U be an open set
on M, and fa map of U into N. Let p be a point of U and
let ¢ be a local coordinate system on N in a neighborhood W
of f(p); thus ¢ is a homeomorphism of W onto an open cell V
in some Euclidean n-space. Thus ¢f becomes a map of a
neighborhood of p into V, which can be described by writing
the individual coordinates in V as functions on a neighbor-
hood of p. If these functions are differentiable, the map f
will be said to be differentiable on a neighborhood of p. f will
be called differentiable on U if it is differentiable on a neighbor-
hood of each point of U.

Note that Definition 2-8 could also be formulated as follows.
Let ¢ be a local coordinate system on a neighborhood U, of p,
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assumed to be contained in U, ¢ being a homeomorphism on
an open cell ¥V, in Euclidean n-space. Then the composition
ofYy~1is a map of Vyinto V. Definition 2-8 says that if this
map is differentiable, then f is differentiable on a neighbor-
hood of p. Another point that should be noted (and checked
as an exercise!) is that the definition of differentiability of a
map does not depend on the coordinate system used around
f(p). That is, if the stated condition holds for one such local
coordinate system, it holds for any other.

Definition 2-8 is extended to maps defined on arbitrary sets
as follows.

Definition 2-9. Let M and N be differentiable manifolds,
let A be a subset of M, and let f be a map of 4 into N. fwill
be called differentiable if it can be extended to a differentiable
map on an open set U containing 4.

Examples

2-7. If M and N are taken as Euclidean spaces, note that
Definitions 2-8 and 2-9 reduce to Definition 2-3.

2-8. Any differentiable function (Definition 2-6) on a set
U of a differentiable manifold M is a differentiable map into
Euclidean 1-space. More generally, if fy, f2, . . . , f; are dif-
ferentiable functions on U, the map taking p into (f1(p), f=(p),

., f-(p)) is a differentiable map of U into Euclidean r-space.

Exercises. 2-21. Let M be the torus in 3-space (see Section 2-1) and
let (I, m, n) be the direction cosines of the outward normal to M at p.
Then, since 12 + m? + n2 = 1, (I, m, n) can be taken as a point of the
unit 2-sphere S? in 3-space. Call this' point f(p). Then prove that
[ is a differentiable map of M into S2.

2.22. The position of a point ¢ on the torus can be specified as follows,
representing the torus as in Section 2-1. On thecircle (z — 2)2 4+ y2 =1
in the (z, y) plane, take the point whose direction from the center makes
an angle 6 with the positive direction of the z axis. Draw the circle
through this point parallel to the (z, z) plane and lying on the torus,
and take the point at angular distance ¢ round this circle (Fig. 2-3).
Then the position of ¢ can be specified by the pair (6, ¢). Note that
these are not coordinates over all of the torus, since for a given ¢ the
angles 6 and ¢ are defined only up to integral multiples of 2r. Show,
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FIGURE 2-3 Naming a point of the torus by two angles 6, ¢.

however, that (8, ¢) can be taken as local coordinates on suitable open
sets of the torus. Now take p in the (z, y) plane with coordinates (z, y)
and let f(p) be the point on the torus with the angular coordinates (in
the sense just explained) § = z, ¢ = y. Prove that f is a differentiable
map of Euclidean 2-space onto the torus.

Notice that, if the map f is restricted to the square 0 < z < 2,
0 < y < 2r, then f is one-to-one on the interior and points on the sides
opposite each other are mapped on the same point. This can be ex-
pressed pictorially by saying that the torus is obtained from the square
by identifying the pairs of opposite sides.

Another interpretation of the exercise is obtained by thinking of ¢ and
¢ each as an angular coordinate on a circle. Thus the torus is repre-
sented as the topological product of two circles.

2-23. Let M, N, and P be differentiable manifolds and let f: M —» N
and g: N — P be differentiable maps. Show that the composition gf is
a differentiable map.

2.24. Let p be a point of the 2-sphere S? and let f(p) be the point of
the projective plane P? (cf. Exercise 2-6) obtained by identifying p with
the diametrically opposite point. Show that f is a differentiable map of
S? onto P2
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In general topology we identify spaces that are homeomor-
phic. Here, however, before we can regard two differentiable
manifolds as being the same, a stronger condition must be
satisfied, namely, the condition of diffeomorphism.

Definition 2-10. Let M and N be differentiable manifolds,
and let f be a one-to-one differentiable map of M onto N such
that the inverse map is also differentiable. Then fis called a
diffeomorphism and the manifolds M and N are said to be
diffeomorphic.

Exercise. 2-25. Let fbe a one-to-one differentiable map of M onto N.
For any p on M, let ¢ be a local coordinate system in a neighborhood of p
and let ¢ be a local coordinate system in a neighborhood of f(p) on N, so
that yf¢~1is a differentiable map of one n-cell on another. Suppose that,
expressed in terms of the Euclidean coordinates, the Jacobian determi-
nant of this map is nonzero in a neighborhood of ¢(p); suppose that a
similar condition holds in a neighborhood of every point of M. Prove
that f is a diffeomorphism.

Note that this exercise gives an alternative way of formu-
lating Definition 2-10. Note also that diffeomorphic differ-
entiable manifolds are automatically of the same dimension.

2-6. RANK OF A DIFFERENTIABLE MAP

The definition to be given here is motivated by the obser-
vation that a differentiable map defined on a manifold may
lead to a drop in dimension. For example, consider the map f
of the plane into itself defined by mapping the point (z, ¥)
on the point (z, 0). Here fis defined on something of dimen-
sion two but its image is of dimension one. This observation
will not be exploited in full until the next chapter, but in the
meantime it should be noted that in the example just given
the Jacobian determinant of the map is everywhere zero. On
the other hand, if this determinant were everywhere nonzero,
f would have a local inverse and thus it would be expected
that its image would have dimension two. Thus the drop in
dimension should be connected in some way with the rank of
the Jacobian matrix of the map f.
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Definition 2-11. Let M and N be differentiable manifolds
and let f: M — N be a differentiable map. Let p & M and
let ¢: U— V and ¢: U’ — V'’ be local coordinate systems
around p and f(p), respectively. Thus yf¢!is a differentiable
map of the Euclidean open set V into V’. Then the rank of f
at p is defined as the rank of the Jacobian matrix of ¢¥f¢! at
¢(p). If the rank at all points is 7, then f will be said to be
of rank r.

Exercises. 2-26. Verify that Definition 2-11 is independent of the
choices of local coordinates around p and f(p).

2-27. Check that the map f of the plane into itself defined by f(z, y) =
(z, 0) has rank 1 everywhere.

2-28. Let f: M — N be a differentiable map of rank m = dim M <
n = dim N. Show that, in terms of suitable local coordinates (zi, .,

., Tm) around a point p and (yi, ¥, - . . , ¥») around f(p), the map f

is given locally by

Y = s (i=1,2,...,m),
yi = fil@y, x2y - . ., Tm) (f=m+1,...,n),

where the f are differentiable functions of their arguments.

2-7. MANIFOLDS WITH BOUNDARY

There is an important extension of the idea of a differenti-
able manifold as defined in Section 2-3. This extension is
motivated by the example of a closed disk. An interior point
p of D has a neighborhood that is an open disk, but a point ¢
on the boundary has a neighborhood (in the disk) that is a
half disk. Thus, if D is to be thought of as a differentiable
manifold, two different kinds of coordinate neighborhoods will
have to be considered, according as the point in question is
interior or not.

Definition 2-12. A differentiable manifold of dimension n with
boundary is a topological space M with a subspace N and a
countable open covering U,, U,, . . . , with homeomorphisms
¢1, ¢2, . . . , satisfying the following conditions.

(1) Each set U; of the given covering is either contained in
M — N, in which case there is a homeomorphism ¢;: U; — V,,
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where V; is a solid open sphere in n-space, or otherwise there is
a homeomorphism ¢;: U; — V; where V; is a hemisphere of the
form 272! < 1, 2, > 0, the set U; N\ N being mapped on the
subset of V,; for which z, = 0.

(2) If U; and U; are two sets of the given covering and if
¢: and ¢; are the homeomorphisms just described and if
U NU; # ¢, then ¢; = ¢:¢; is a differentiable map of
$;(U; M Uj) onto ¢:(U: M Uj).

Since homeomorphisms of the type ¢;; must carry interior
points into interior points and frontier points into frontier
points, it is clear that if those U; that meet N are restricted to
N, they form a covering that defines a structure of an (n — 1)-
dimensional differentiable manifold on N.

Example

2-9. The solid sphere and the solid torus are differentiable
3-manifolds with boundaries, the boundaries, of course, being
the sphere and the torus, respectively.

It is easy to see that the definitions given in the earlier
sections of this chapter extend to differentiable manifolds with
boundaries, with minor alterations to take care of the bound-
ary points.

It can also be shown (but the proof is difficult and it will not
be given here) that if two differentiable manifolds with bound-
aries have diffeomorphic boundaries, they can be put together
to form a differentiable manifold by identifying the boundaries.
In this way, for example, two disks can be fitted together to
form a sphere. One disk becomes the top hemisphere, the
other becomes the lower hemisphere, and the boundaries are
identified to become the equator.

In more detail, this process can be described as follows.
Let M, and M, be differentiable manifolds with boundaries
N, and N,, respectively, and let f: Ny — N, be a given diffeo-
morphism. Form a set M whose elements are the points of
M, — N,, the points of M; — N5, and the points pairs (p, f(p))
with p in N;. Thus M is the union of M, and M, with all the
pairs (p, f(p)) identified as single points. The pair (p, f(p))
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FIGURE 2-4

can thus be unambiguously called p. To make M into a topo-
logical space, neighborhoods of its points must be defined. If
pisin M; — N, or My — N,, then its neighborhoods in M, or
M,, respectively, are to be taken as its neighborhoods in M.
On the other hand, if p = (p, f(p)) is an identified pair with
p in N; and f(p) in N, then each neighborhood of p in M is
to be the union of a neighborhood of p in M, and a neighbor-
hood of f(p) in M, with the appropriate identifications of
points in N; and N,.

Thus, for example, in Fig. 2-4 the two semicircular neighbor-
hoods U, and U, of p and f(p) combine to form a neighbor-
hood U of (p, f(p)) in M.

The difficult step now is to show that M is a differentiable
manifold. For the proof in detail, see [6], Section 6. What
we must do is show that, if coordinate neighborhoods U; and
U, fit together as just described to form a neighborhood U in
M, and V, and V. fit together to form V, then the coordinate
changing functions (functions such as the ¢;; of Definition 2-12)
for Uy M Vy can be fitted together with those for Uy M V5 to
give coordinate change functions for M that are differentiable.
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3-1. THE DEFINITION

In studying differentiable manifolds, the notion of subspace
is too general. If one manifold is contained in another, it is
desirable that the local coordinate systems in the two be
related in some simple way. The following is the appropriate
definition.

Definition 3-1. Let M be a differentiable manifold of dimen-
sion m and let N be a subset of M satisfying the conditions:

(1) N is a differentiable manifold of dimension n.

(2) If p is a point of N, there is a local coordinate neighbor-
hood U of p in M with a local coordinate system ¢: U — V,
where V is an open cell in Euclidean m-space, such that
o(N M U) is the subset of V satisfying Z,41 = Tpye = + © © =
z, = 0, and ¢ restricted to U M N is a local coordinate system
for N around p.

33
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Then N is called a submanifold of M.

Condition (2) can be stated a bit more informally by saying
that local coordinates zi, 2, . . . , &, are set up around p on
M so that N has the local equatlons Tngl = Tnga = ° * ° =
Z, = 0, while xj, z2, . . . ,z, are local coordinates on N
around p. Thus, local coordinate systems on N are induced
by those on M. This condition also ensures that N is sur-
rounded, in M, by a kind of tubular neighborhood. This point
will be discussed later, but first some examples will be given.

Examples

3-1. The simplest example, of course, is obtained by tak-
ing M to be Euclidean m-space and N the Euclidean subspace
given by the equations T,41 = Tuys = * © *© = 2, = 0.

3-2. Take M to be Euclidean 3-space. The coordinates
z, y, z in 3-space can then be used as local coordinates around
any point. Take N to be the 2-sphere with equation z? 4
y? + 22 = 1. This has already been seen to be a differenti-
able manifold (Example 2-6). It will now be shown that con-
dition (2) of Definition 3-1 is satisfied. Take, for example, a
point p on the hemisphere z > 0 of N. It is evident that the
coordinates (z, ¥, 2) cannot be used as local coordinates around
p in M if condition (2) is to be satisfied. However, new coordi-
nates can be defined by the transformation

X =z,
Y=y’
Z =z-—(1—2x*— yHv

The functions on the right are differentiable, as are the func-
tions expressing the inverse transformation, and the Jacobian
determinant of X, Y, Z with respect to z,y, 2 is nonzero
around any point on the hemisphere z > 0. Thus (X, Y, Z)
are admissible as local coordinates around p (Definition 2-7).
In terms of these coordinates, N has the equation Z = 0 in a
neighborhood of p. Also, it was seen in Example 2-6 that X
and Y can be taken as local coordinates on N in the hemi-
sphere z > 0. Thus condition (2) of Definition 3-1 holds
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around p. A similar argument shows that the condition holds
around any point of N.

An important feature of this example is that it illustrates
that given local coordinate systems may not make it obvious
that a subset of a differentiable manifold is a submanifold.
Some adjustment of the local coordinate systems may be
needed before condition (2) can be seen to hold.

3-3. Take M to be the 2-sphere 2% 4 y? 4 22 = 1in 3-space
and let N be the circle in which it intersects the plane z = 0.
Since z can always be taken as one of the local coordinates on
M at any point of N, the other being either z or y, it is easy to
see that N is a submanifold of M. Clearly, this example can
be generalized to higher dimensions.

3-4. It is of interest to look at an example in which con-
dition (2) of Definition 3-1 is not satisfied. In Exercise 2-22
an example was given of a differentiable map ¢ of the plane E.
onto the torus. Let L be a straight line in £ passing through
the origin and having irrational slope. Then it is easy to see
that ¢ maps L in a one-to-one manner into the torus. Take
the torus as M and ¢(L) as N; L, a one-dimensional Euclidean
space, is a differentiable manifold. Its image N, however,
winds infinitely often round M, in fact, in such a way that if
pisin N and U is any neighborhood of p in M, then NN\ U
will consist of infinitely many disjoint segments. Thus no
choice of local coordinates around p in M can make condition
(2) of Definition 3-1 work. Thus N is not a submanifold of M.

3-2. MANIFOLDS IN EUCLIDEAN SPACE

A case of special interest is that in which the containing
manifold is a Euclidean space. So let M be a differentiable
manifold of dimension n, given as a submanifold of Euclidean
N-space E. Condition (2) of Definition 3-1 is expressed, in a
neighborhood of some point p of M, in terms of some local
coordinate system in E in a neighborhood of p. On the other
hand, the Euclidean coordinates themselves can be used as
local coordinates around p in E, so that it is natural to ask
how condition (2) of Definition 3-1 appears when expressed in
terms of the Euclidean coordinates. This question will be
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examined by making the necessary coordinate transformation
in two stages. The result will appear as Theorem 3-1.

Start with a local coordinate system in a neighborhood U
of a point p of M for which condition (2) of Definition 3-1 is
satisfied. This is a homeomorphism ¢: U — V where V is
an open cell in a second Euclidean N-space E’ in which
Y1, Y2, - - . , Yy~ will be used as coordinates. In particular, ¢
restricted to U M M is a local coordinate system on M around
p and it maps this set on the part of V for which y,41 =
Ynte = * + - =yny = 0. On the other hand, the identity
map of U on itself is a local coordinate system in U and so,
according to condition (2) of Definition 3-1, ¢! can be
expressed by equations

xi=‘//i(y1)y2y"'ny); i=1>2y-"7Nr (])
where the y; are differentiable and the Jacobian determinant
’ a(‘llly ‘I/2y R ‘I/N)
a(yb Yo, -« -, yN)

is nonzero throughout V.

In particular this determinant is not zero at ¢(p) and so,
with suitable renumbering of the z, the determinant

‘a(wh R 2

a(yly Y2y - - -, yn)

is not zero at ¢(p). So if the map 6 of a neighborhood of
¢(p) into a third Euclidean space E’/, where the coordinates

are 2y, 2, . . . , 2w, is defined by
zn =¥iyL Yz - .., YN)
Zn = ‘l’n(ylr Y2y « « -, yN) (2)

2n+1 = Ynt1

AN = Ynw,

the Jacobian of the functions on the right is not zero at ¢(p)
and so is nonzero in a neighborhood of ¢(p). It follows, by
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Theorem 2-1, that § maps a neighborhood V’ of ¢(p) homeo-
morphically on an open cell W in E’/, and 6~!, defined on W, is
differentiable.

Now let U’ = ¢~1(V’') and write x = 6¢. x is thus a
homeomorphism of U’ on W and, by combining the Eqgs. (1)
and (2) of ¢—! and 6, x must have equations of the form

21 = 21
Zn = Tn

3
Zntl = Xn+1(x1y Toy . . . 7xN) ( )
2N = XN(.'El, T, . . . ,xN).

Since x is the composition of 6 and ¢, the functions on the
right have nonzero Jacobian determinant in U’ (cf. Exercise
2-3) and so x is also a local coordinate system. Theinverse x!
will be expressed by equations of the form

X1 =21
Tn = 2

4
Tpy1 = )\n+1(21, 2oy « . ., ZN) ( )
vy = An(21, 22, . . . ,2N).

Now in the first place x(U’ M M) is precisely the set in W
satisfying the equations 2,11 = 2,02 = - - - =2y = 0, and
so, using Eqs. (4), it follows that U’ M M is the set of points
in U’ satisfying

Tny1 = )\n+1(.’l:1, Zoy « « .« , Tnp, O, 0, N ,0)
(5)

vy =A@y, T2y . . . ,2,,0,0,...,0).
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And in the second place ¢, restricted to U’ M M, gives a local
coordinate system on M and so the restriction of x is also a
local coordinate system in the neighborhood U’ M M. But it

is easy to see that x maps (1, 22, . . . , zx) on U’ M M onto
the point (21,22, . - . ,24, 0,0, . . . ,0) with z; = z; for z =
1,2, ... ,n. That is, the projection map of U’ M M into
the space Tpy1 = Toge = - - - = zy = 0 is itself a local coor-

dinate system on M M U’.
This discussion can be summed up in the following theorem.

Theorem 3-1. If M is an n-dimensional submanifold of
Euclidean N-space E and if p is a point of M, then, with suitable
numbering of the Euclidean coordinates xi, s, . . . , Ty tn E,
the projection on the space Tny1 = Tppe = * -+ =y = 0 isa
local coordinate system on M in a nerghborhood of p, while in a
neighborhood of p in E, M is the set of points satisfying equations
(obtained from (5) by change of notation)

ZTnpr = fop1(Ty, oy .« . ., Zn)
(6)
oy = fn(@y, T2 . . ., Tn)

where the f; are differentiable functions.

Example

3-5. In the case of the sphere z? + y? + 22 = 1 in 3-space
it has been seen that, around any point, two of the coordinates
z, Y, z can be used as local coordinates, so that the correspond-
ing projections are the maps defining the local coordinate sys-
tems, while the third is given as a differentiable function of
them (cf. Example 2-6).

Exercises. 3-1. Prove the following converse to Theorem 3-1. Let E
be Euclidean N-space and let M be a subset such that each point of E has
a neighborhood U for which either U N M is empty or is the set of points
in U satisfying a set of equations that, with suitable numbering of coor-
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dinates in E, can be written as

Tn41 = fap1(Ty, T2 . . ., Tn)

oy = fy(xy, T2 o . ., Za)

where the f; are differentiable. Then prove that M is a submanifold of E.

3-2. Generalize Exercise 3-1 as follows. With the other data as
given in the preceding exercise, suppose that each point of E has a neigh-
borhood U such that U M M is either empty or is the set of points in U
satisfying equations

gi(x1, Z2y . . . ,2zn) =0, =12 ...,n,

where the g; are differentiable and the Jacobian matrix of the g; with
respect to the x; is of rank n at each point of U. Prove that M is a
submanifold of E.

The two exercises just presented describe situations in which
a subset M of Euclidean N-space E turns out to be a sub-
manifold of E. Another such situation will now be discussed.
In this case it is rather more difficult to check that condition
(2) of Definition 3-1 holds. The idea here is to take the sub-
set of £ to be the one-to-one image of a differentiable mani-
fold mapped into E by a differentiable map. It was seen, of
course (Example 3-4), that such an image is not necessarily a
submanifold in general, but it will now be shown that com-
pactness along with a condition on the rank of the map ensures
that it is.

Theorem 3-2. Let M be a compact differentiable manifold of
dimension n and let E be Euclidean N-space. Let f: M — E
be a differentiable map that is one-to-one into E and s of rank n
at each point of M. Then f(M) is a submanifold of E.

Proof. Apply Exercise 2-28 to the present situation. Then
for any p in M there is a coordinate neighborhood U of p with
a local coordinate system ¢ mapping U on an open cell V in
Euclidean n-space, where the coordinates are y1, s, . . . , Ua,
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and the map f¢~! is given by equations

Ty =Y
- (@)
Tnp1 = far1(Y1, Y2, Y3, -« -, Yn)
TN = fN(yly Y2y - . . )y")
where the f; are differentiable and z;, s, . . . , x denote the

coordinates in E. Note that the first n of these equations
identify V with an open cell W in the subspace Z,41 = Zp42 =

- =xy = 0 of E, so that the image f(U) appears as the
set of points satisfying the equations

Tpy1 = fn+1(x1, Loy . . . ,x,,)
(8)
v = fn(xy, T2 . . ., Tn)
with (z1, 22, . . . , 2,) In W and the f; differentiable.

To complete the proof it must be shown that f(p) has a
neighborhood in which the only points of (M) are those satis-
fying Eqgs. (8).

So let U’ be a smaller open neighborhood of p such that
U’ C U and write V' = ¢(U’) and let W’ be the corresponding
subset of W. For any positive e the set W’(e) defined by

Fori(@y, Toy o o 0, %) — € < Tpgi < fari(Tr, T2y« . ., X)) + €
(X1, 2, . . . ,20) E W

is an open neighborhood of f(p). The idea now is to show that
if € is small enough, the only points of f(M) in W’(e) are those
given by the Eqgs. (8) with (z1, s, . . . , x,) in W’'. At first
sight it may seem an unnecessary complication to use two
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neighborhoods U and U’ of p, but it is actually a convenience
to know that, although we are working with U’, the Eqgs. (8)
remain valid for a bigger set U.

Suppose that the required result is false. Then if a decreas-
ing sequence of values of ¢ were taken, we would get a sequence
of points on M, not in U’, that would be mapped into the
corresponding sets W’(e). Since M is compact, a convergent
subsequence of these points could be picked. Thus, renum-
bering the subsequence and the corresponding values of ¢, we
would have a sequence e, €2, . . . converging to 0 and points
g1, q2, . . . on M converging to ¢, such that all the g; are out-
side U’ but f(g:) is in W'(e;) for each 2. In fact, all the ¢; must
be outside U, since no point of f(U — U’) can be in W'(e) for
any e because such points satisfy (8) with (z1, 2, . . . , Za)
not in W’. Thus the limit ¢ is outside U. But since fis con-
tinuous, f(lim ¢;) = lim f(g;) and, since ¢; tends to 0, lim f(g:)
is in f(U’). That is, f(g) is in f(U’). But since f is one-to-
one, this means that ¢ is in U’ and so a contradiction has been
reached.

It follows that, for some ¢, the neighborhood W'(e) of f(p)
satisfies the condition (2) of Definition 3-1. Such a neighbor-
hood can be found for each point of f(M) and so the theorem
is completely proved.

3-3. THE EMBEDDING THEOREM

The last section describes differentiable manifolds that are
submanifolds of Euclidean space. In fact, no essential restric-
tion is placed on the manifolds in that description, since any
differentiable manifold can be represented in this way. The
proof of this will be given here for compact manifolds only;
it is rather more difficult in the noncompact case.

When a differentiable manifold M is embedded as a sub-
manifold of some Euclidean space E, each coordinate z; in E
appears as a differentiable function on M. Thus the natural
way to try to show that a manifold can be embedded in a
Euclidean space is to try to construct a set of differentiable
functions fi, fs, . . ., fn, and then to consider the map of
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M into E defined by mapping p in M on the point with coordi-
nates (fi(p), fo(p), . . ., fxn(p)). In the first place, if this
map is to be one-to-one, these functions will have to have the
property that whenever p £ ¢, at least one of the f; has differ-
ent values at p and q. This property is usually expressed by
saying that the functions f must separate the points of M.
Obviously, in any one local coordinate neighborhood on M
the local coordinates themselves separate points. The idea
now is to extend the local coordinates in each local coordinate
neighborhood to differentiable functions on the whole mani-
fold in such a way that the extended functions separate points
on the whole manifold.

This can be done on a compact manifold M with the help of
functions constructed as in Exercise 2-13. So, for any point
p of M, construct a neighborhood U of p, contained in a local
coordinate neighborhood, and a differentiable function f on M
that is positive in U and O outside U. Since M is compact,
it can be covered by a finite collection Uy, U, . . . , U, of
such neighborhoods, each U; with its corresponding function
fi. Each U, is, of course, itself a coordinate neighborhood
with coordinate map ¢; onto an open cell V. If z{”, x{”,

., 2 denote the coordinates of a point in V,; so that
each z is a differentiable function on U, then the functions
Y = z{"f; are all differentiable functions on M. Consider
now the list of functions

€3] 1) 1) (2) (2) (2)
fl’ylayzy' .. yyn)f2)y17y2;' .. )yn)f3l coe ey

(m)

fm! y(lm)y Ya iy - - - ’y;m). (9)

We will now check that this set of functions separates points
on M.

Take two points p and g on M. If p, say, is in U; but ¢ is
not, then f; is zero at ¢ but not zero at p. Thus f; separates
p and ¢q. On the other hand, suppose that both p and ¢ are
in U;. If fip) # fi(q), then f; separates p and ¢q. But if
fi(p) = fi(g), then one of the local coordinates z{” certainly
separates p and ¢ and so the corresponding y{® = fz{® also
does.

Following the idea described at the beginning of this section,
the next step should be to use the functions (9) to define a
map of M into E. As it stands, it would turn out that the
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rank of the resulting map is not n at all points. In order
that this condition may be satisfied (to enable Theorem 3-2 to
be applied), more functions will be added to the list (9). So
write z{” for the function equal to z{’f; on U and equal to 0
outside U;. In fact, 2{’ = y{’f;, Take the expanded list of
functions consisting of (9) along with the z{?, in all 2mn + n

functions. Call these functions Fy, Fa, . . . ,Fy with N =
2mn + n and let F: M — E be the map taking p onto (F1(p),
Fi:(p), . . ., Fx(p)). Since the F; include the functions (9),

which already separate the points of M, it follows that F is
one-to-one. It will now be checked that F has rank n every-
where. This will be done by showing that, in U, at least one
of the two n X n determinants

oWy, ¥, - - .,y
2@, 2P, - ., 20)

(OO ()
l 6(21 y Ry « « o 43Ry
)

@) (2) 2)
AP, xP, . .., zP)

is nonzero at each point.

In fact, remembering that f; is explicitly given in U, as the
function exp(r} — 1)~! where r; = 2 ,(z{”)?, we can show,
by a straightforward computation, that the first determinant
is zero only when rj — 4r; + 1 = 0 and the second only when
ri — 6r + 1 = 0, and clearly these equations cannot both be
satisfied at any point. Hence, F is of rank n throughout U; for
each 7, and so over all of M.

Thus, applying Theorem 3-2, this section can be summed up
in the following theorem.

Theorem 3-3. If M is a compact differentiable manzfold, there
is a one-to-one mapping F: M — E, where E is a Euclidean
space, such that F(M) is a submanifold of E.

3-4. EMBEDDING A MANIFOLD WITH BOUNDARY

Some minor changes are needed in the foregoing definitions
and discussions to cover the case of manifolds with boundaries.
For example, if N is a manifold with boundary, condition (2)
of Definition 3-7 as stated will apply only to the nonboundary
points of N. If pis a point of the boundary of N, the appro-
priate condition is that it should have a coordinate neighbor-
hood U in M with local coordinate system ¢: U — V such that
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¢(N M U) is the subset of V given by z, > 0, Zoy1 = Tnye =

-+ =12, =0. The image of the boundary of N in U will
be given by the additional condition z, = 0.

If both M and N are manifolds with boundaries, further
adjustments are needed to get a definition of N as a sub-
manifold of M, to take care of possible relations between the
boundaries.

The proof of the embedding theorem of the last section,
with a few minor alterations, shows that if M is a manifold
with boundary, there is a one-to-one map f: M — E, where
E is a Euclidean space, such that f(M) is a submanifold of E.
This should be carried out in detail as an exercise.

There is one further adjustment to the embedding of a
manifold with boundary in Euclidean space that will be of
importance later. It will be convenient to be able to arrange
that the boundary lie in a linear subspace. So, suppose M is
a compact manifold with boundary and suppose f: M — E is
a one-to-one map of M into N-space such that f(4) is a sub-
manifold. Let M, be the boundary of M. Suppose that the
map f takes p in M onto (Fi(p), Fa(p), . . . , Fn(p)) in E
and suppose a differentiable function Fy4; can be constructed
on M so that it vanishes on M, but is positive on M — M.
Then the map f’ that maps p in M on the point (F1(p), Fa(p),

, Fx(p), Fny1(p)) is a one-to-one differentiable map of M
into Euclidean (N + 1)-space E’ with the property that f'(M)
is a submanifold of E’. Also, the image of f’ lies in the set
defined by the inequality zx4+1 > 0, the image of the boundary
M, lies in the set zy+1 = 0, and the image of M — M, lies in
the set xy.1 > 0.

To construct Fy,i, construct a finite covering of M by
neighborhoods Uj;, each with its corresponding function f; (as
in the proof of Theorem 3-3), f; being positive on U; and
zero outside U,;. Let Uy, U, . . ., U, be those coordinate
neighborhoods whose corresponding local coordinate systems
o1, ¢2, - . . , ¢ map them onto half cells Vi, Vo, . . ., Vy;
that is, these are the neighborhoods meeting the boundary of
M. 1If the coordinates on V; are denoted by z{, z§”,
z® then, say, 2’ > 0 on the image of U; and the image of
MiN U;is given by 2 = 0. The functions z$f;, for each 1,
are differentiable functions on M ; thus 2%*_;x% f;is a differenti-
able function on M. Since all the z{f; are nonnegative, it fol-
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lows that Z¥_,2"f; is zero only when all the z{’f; are zero. For
a point in U; this means that z{° = 0 and so the point is in
f(My). Now define

k
Fyy = Z xf)f{ + z fi
i=1 i>k
where the second sum is taken over the f; corresponding to
neighborhoods U; not meeting M. Here again, all the terms
are nonnegative and it is easy to see that Fy4; is nonnegative
everywhere on M and is zero only on M;.
So, using Fy,1 among the mapping functions as described
in the foregoing, the following has been proved.

Theorem 3-4. Let M be a compact differentiable manifold with
boundary M,. Then there is a one-to-one differentiable map f
of M into Euclidean (N -+ 1)-space such that f(M) s a sub-
manifold lying in the subset xyy1 > 0, while the intersection of
F(M) with the set xxyy1 = 0 s f(M,).

Exercises. 3-3. In the foregoing notation, check that f(M,) is a
submanifold of the Euclidean N-space defined by znx,1 = 0.

3-4. Adapt the method of proof of Theorem 3-4 to show that if
M is a compact differentiable manifold whose boundary is the disjoint
union M, \JU M,, then there is a one-to-one differentiable map f of M
into a Euclidean N-space for some N such that f(M) is a submanifold,
lies entirely between the hyperplanes zy = 0 and z»x = 1, and has inter-
sections f(M,) and f(M,), respectively, with these hyperplanes.
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4-1. TANGENT LINES

If a curve C in Euclidean N-space is given by parametric
equations

2y = f1lt), 2 = fo(O), . . ., 28 = f5(O)
where the f; are differentiable, then the tangent line to C' at
the point of parameter ¢, is given by the equations
1 — filte) @2 — folto) ay — fn(to).

O D)
These equations express the geometric idea that the tangent
should be the limit of the secant joining the points of param-
eters ¢, and ¢ as t; tends to Z,.

Definition 4-1. If M is a differentiable manifold embedded as
a submanifold in a Euclidean space E and if C is a curve con-
tained in M and given by differentiable parametric equations,
then the tangent line to C at a point p will be called a tangent
line to M at p.

46
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Example

4-1. Let M be the sphere z? 4+ y? + 22 = 1 in 3-space.
The planes containing the z axis cut M in circles. The tan-
gents to these circles at (0,0, 1) are all, by Definition 4-1,
tangent lines to M. Note that they all lie in the plane z = 1.
This remark will be generalized presently.

Lemma 4-1. Let M be a differentiable manifold of dimension n
contained as a submanifold in Euclidean N-space E and let p
be a point of M. Then all the tangent lines to M at p lie in an
n-dimensional linear subspace T of E.

Proof. Using Theorem 3-1, assume that the coordinates in £
are numbered so that, in a neighborhood of p, M is the set of
points satisfying equations of the form

i = ¢ (X1, Ta, . . ., Tu), i=n-+4+1...,N, ()
with the ¢; differentiable. If C has the differentiable para-
metric equations z; = f;({)(¢ = 1,2, . . . ,N) and C is con-
tained in M, then

i) = &:(f:@®, . .., u®), di=n+1...,N (2

Assume that C passes through p and that p corresponds to the
parameter value ¢, Then Eqs. (2) can be differentiated to
give

ox;
i=1
But these equations say that every tangent line to M at p lies
in the linear space T with the equations

n

z; — filty) = z (g:) (z; — fi(t0)), i=n-+1...,N.

i=

(4)

The form of these equations shows that T is independent of C
and is of dimension 7, as required.
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Definition 4-2. The linear space T described in Lemma 4-1
is called the tangent linear space to M at p.

The following definition introduces a further convenient
piece of terminology.

Definition 4-3. If M is a differentiable submanifold of
Euclidean N-space E and T is the tangent linear space to M
at p, then any hyperplane (linear subspace of dimension
N — 1) in E containing T will be called a tangent hyperplane
to M at p.

Note that in case M is of dimension N — 1, then T is of
dimension N — 1 and so there is a unique tangent hyperplane
at p, namely, T itself.

Exercises. 4-1. Find the tangent linear space to the sphere 22 + y? +
22 = 1 in 3-space at a point (zo, Yo, 20) on it.

4-2. Let M be a differentiable manifold in Euclidean space and let 7'
be the tangent linear space to M at p. Let L be a line in T' through p.
Construct a curve C in M with differentiable parametric equations such
that L is the tangent to C at p.

Note that Lemma 4-1 simply says that T contains all tangent lines to
M at p. This exercise ensures that all lines through p in 7 are tangent
lines to M at p.

4-3. Let M be a differentiable manifold in Euclidean space and
let V be a submanifold of M. If T and Ty are the tangent linear
spaces to M and V, respectively, at a point p of V, prove that T'v C T'u.

4-2. CRITICAL POINTS

The idea to be introduced here is an extension of the concept
of maxima and minima of a function. If a differentiable func-
tion f of one variable z has a maximum or minimum for = z,,
then df/dx = 0 at zo. Similarly, if a function f of two vari-
ables x, ¥ has a maximum or minimum at (zo, ¥o), then
df/dx = 9f/dy = 0 at this point. What we are really saying
here is that the tangent plane to the surface z = f(z, y) (the
graph of f in 3-space) is horizontal at the point (zo, yo)-
Clearly, the same condition is also satisfied at a saddle point
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FIGURE 4-1 Saddlepoint.

(cf. Fig. 4-1), a point that behaves like a maximum when
approached in one way and like a minimum when approached
in another. For functions of more variables there is a wider
variety of possibilities described by a similar condition.

Now the surface with equation z = f(z, y) can be thought of
as part of a differentiable manifold M on which the local
coordinates around (xo, yo, f(xo, ¥0)) are (z,y); f is then a
differentiable function on M with the property that its partial
derivatives with respect to local coordinates vanish at (o, yo,
f(zo, yo)). Moreover, this situation can be thought of geo-
metrically as corresponding to an embedding of M in 3-space
such that the function f is identified with one of the Euclidean
coordinates (namely, z) and such that the horizontal plane
2 = f(zo, yo) is a tangent plane to M at (o, Yo, (%o, Yo)).

The preceding remarks suggest a more general situation,
which will now be described.

Let M be an n-dimensional differentiable manifold and let
f be a differentiable function on M. Take a local coordinate
neighborhood U of a point p of M and let ¢: U — V be a local
coordinate system, V being an open cell in Euclidean n-space.
The values at ¢(p) of the first partial derivatives of f¢—! with
respect to the coordinates in V will, of course, depend on the
local coordinate system chosen, and will undergo a linear
transformation if the coordinate system is changed. However,
if these partial derivatives all vanish at ¢(p), the same will be
true for any coordinate system.
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Definition 4-4. In the notation just introduced, if all the
first partial derivatives of f¢—! with respect to the coordinates
in V vanish at ¢(p), p will be called a critical point of f.

The remarks just made show that Definition 4-4 is inde-
pendent of the coordinate system used around p.

Exercises. 4-4. If M is taken as the plane and f is a differentiable
function on M, then any maximum, minimum, or saddle point for f is a
critical point.

4-5. Alternatively, if f is as at the beginning of this section but M is
taken as the graph of f, namely, the surface z = f(z, ), then any maxi-
mum, minimum, or saddle point on M is a critical point of f, regarded as a
function on the surface.

A geometric way of looking at critical points, in terms of
tangent hyperplanes, will now be described. This corresponds
to the introductory remarks to this section on a surface in
3-space. ‘

Let M be a differentiable manifold of dimension n and let f
be a differentiable function on M. By Theorem 3-3, no gen-
erality is lost by assuming that M is given as a submanifold
of a Euclidean space E. Suppose that E is of dimension
N — 1. Consider now, in N-space E’, the set of points
(x1, 22, . . ., ZTy_1, Ty) where z = (21,22, . . . ,ZTy_1) IS 2
point of M and zy = f(z). It is easy to see (using Exercise
3-1) that M’ is a differentiable submanifold of E’, and in fact
is diffeomorphic to M under the map taking (xy, 2, . . . , Zw)
onto (1, Z2, . . . , Zy_1). The point is that M’ is now a
submanifold of E’ with the property that the given differ-
entiable function f coincides with the Euclidean coordinate zy.

Now take a point p’ on M’ with coordinates (z}, 23, . . . ,
z%) and let p be the corresponding point (z%, 23, . . . , 2%_;)
of M; p has a neighborhood U in E such that the points of
M M U are the points satisfying equations of the form (with
suitable numbering of the coordinates)

;= fi(@Xy, T2y . . ., Zn), i=n+1 ..., N—1, (5

where the f; are differentiable (cf. Theorem 3-1). And so, in
a neighborhood of p’, M’ is the set of points satisfying the Egs.
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(5) along with
TN = f(:llj,, o, « « .+, x,,).

Here 24, 5, . . . , z, can be used as local coordinates on M or
M’ around p or p’, respectively. The equations of the tangent
linear space to M’ at p’ are then

n

afi .
xi—x3=2(a—%)p(xj-—x‘}), i=n+1...,N—1,
1

(6)

If now p is a critical point of f on M or, what is the same
thing, if p’ is a critical point of f on M’, the last equation of
(6) becomes

ay = zy = f(p). )

That is, (7) is the equation of a tangent hyperplane to M’ at
p’. Conversely, if (7) is a tangent hyperplane to M’ at p’,
then all the coefficients on the right of the last equation of (6)
are zero, and so p’ is a critical point of f.

This can all be summed up as follows (using the notation

in the foregoing, but dropping the primes).

Lemma 4-2. If M is a differentiable manifold and f a differ-
entiable function on it, then M can be embedded as a submanifold
of a Euclidean N-space such that the value of f at a point is the
value of zy at that point, and f has a critical point at p #f and
only if xxy = f(p) is a tangent hyperplane to M at p.

Of course, it may happen that the function f is not given
initially. We may simply be given a submanifold M of a
Euclidean N-space. Then if f is defined as zy, the conclusion
of Lemma 4-2 still holds, namely, that critical points of zx
are points at which there is a tangent hyperplane of the form
Ty = constant.
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"

FIGURE 4-2 Four critical points of z on the torus.

Example

4-2. Let M be a torus embedded as in Section 2-1 as a
submanifold of Euclidean 3-space. It is easy to see from
Fig. 4-2 that there are just four horizontal planes (that is,
planes of the form z = constant) H,, H., H; H, that are
tangent planes of M at P, P, Pj;, P respectively, corre-
sponding to the fact that the function z on M has critical
points at Pi, Ps, P3, Py.

Exercise. 4-6. Verify the last remark (that z has critical points at the
P;) by expressing z in terms of the local coordinates around these points.

Note that, in the preceding example, the critical points of z
are points around which xz and y are local coordinates, and z
could not be used as one of the local coordinates around any
of these points. This is exactly what we should expect. For
in any neighborhood where z is one of the local coordinates,
9z/9z = 1, and so the condition of Definition 4-4 for a critical
point could not be satisfied.

On the other hand, it will be noticed that P;, P, P3, P4 are
the only points around which z cannot be used as one of the
local coordinates. In addition, if C is the section of the torus
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by a horizontal plane z = ¢ other than Hy, H,, H;, H,, then in
a local coordinate neighborhood of a point on C, C is the set
satisfying 2z — ¢ = 0, with 2z, or 2 — ¢, as one of the local
coordinates. Hence, C is a submanifold of the torus.

The properties just described will now be formulated in gen-
eral for any differentiable function on a differentiable manifold.

Lemma 4-3. Let M be a differentiable manifold of dimension n,
f a differentiable function on M. Let p be a point of M that s
not a critical point of f. Then there s a local coordinate system
¢: U — V, where V is an open n-cell in which the coordinates are
21, Ta, . . . , T, SUch that f¢~' = x1. If p is a critical point
of f, then no local coordinate system around p has this property.

Proof. Suppose p is not a critical point of fandlet ¢': U’ — V'’
be a local coordinate system in the neighborhood U’ of p. Let
coordinates in V' be denoted by yi, 2, . . . , ¥. and write
fo'' =gy, ¥z, . . . ,Ya). Then, since p is not a critical
point of f, one of the partial derivatives, say d¢/dy,, is not zero
at ¢(p). Thus the functions 1, z;, . . . , . defined by

xl:g(yl; Yo, - - . yyn)
T = Y, i=2,3,...,n

have a nonzero Jacobian determinant with respect to yi, y2,
., Yn at ¢'(p). It follows (cf. Definition 2-7) that there
is a local coordinate system ¢: U — V such that z;, z2, . . .,
z, are the coordinates in V and f¢—! = x4, as required.
Conversely, if there is a coordinate system with this prop-
erty, then 4/9z; (f¢~!) = 1 at ¢(p) and so p is not a critical
point of f.

Corollary. For a constant ¢ let M, be the set of points, in the
notation of Lemma 4-3, at which f has the value c. Then if M,
contains no critical point of f, it is a submanifold of M. Its
dimension ts dim M — 1.

Proof. Take p on M,. Since p is not a critical point of f, a
local coordinate system ¢: U — V can be taken around p, as
in Lemma 4-3, such that f¢—! = z;. Thus the set ¢(M, M U)
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is the set of points in V such that z; — ¢ = 0. And since
z1 — ¢ can be taken as one of the coordinates in V, condition
(2) of Definition 3-1 is satisfied, showing that M, is a submani-
fold of dimension dim M — 1.

Expressed in terms of an embedding of M in Euclidean
space, as in Lemma 4-2, the last result means that sections of
M by hyperplanes zy = constant not containing -critical
points of zy are all submanifolds of M of dimension dim M — 1.
The hyperplanes that fail to satisfy this condition are tangent
hyperplanes to M.

4-3. NONDEGENERATE CRITICAL POINTS

In the Example 4-2 of the torus in 3-space, the function z,
expressed in terms of z and y on the surface around the critical
points P;, has a rather special form. If the torus M is thought
of as the surface traced by the circle of center (2, 0) and radius
1 in the (z, y) plane as this plane is rotated about the y axis,
then its equation is

@ 4+ 92 + 2° + 3)? = 16(z2 + 22).

Write this equation as a quadratic in 22 and solve for 22. The
result is

22 =05 — 2 — y*+ 4(1 — yH), 8)
According as the plus or minus sign is taken, this gives two
values for 22 and thus four values for z. For small values of
z and y these correspond to the local equations of M in neigh-
borhoods of the points P;. For example, to get the local

equation around Pj; take the minus sign in (8) and expand
the right-hand side in a power series. This expansion is

Z2=1+y2—'$2+3y4+ e e,

And so, taking the positive square root and expanding in a
power series, we get

p= 13—+ -,

where the remaining terms are all of degree greater than two.
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FIGURE 4-3 A critical level for the function z on the torus. The first
approzimation at Psis z = 1 + 1(y? — z?).

Thus a first approximation for the equation of M around P;
is obtained by ignoring the higher powers of z and y. This
approximationisz = 1 + 3(y? — z?) and the section by z = 1
Is y = =+z, the pair of tangents at the crossover of the figure
eight in which this plane cuts the torus (see Fig. 4-3). The
important thing to notice is that the first approximation to the
equation of M at P is given by writing z — 1 as a quadratic
in # and y which is nondegenerate; that is, whose determinant
is not zero. This determinant is the value of

9% 9%

ox* 9z dy

9% 9%z
dxdy oy

at P3.
These considerations motivate the following definition.

Definition 4-5. Let f be a differentiable function on a
differentiable manifold M of dimension n and let p be a critical
point of f. Let U be a local coordinate neighborhood of p and
¢: U— V be a local coordinate system. Write ¢ = fo~!, a
function of the n coordinates z1, z3, . . . , &, in the cell V.
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If the determinant

%
ox; ax,-

’ z’j=l’2)”’}n7

is not zero at ¢(p), the critical point p will be called nondegen-
erate. Note that the rank of the matrix (9%g/dx: z;) at ¢(p)
is thus the dimension of M.

Exercises. 4-7. Verify that Definition 4-5 is independent of the local
coordinate system used around p.

4-8. Prove that, in Example 4-2, Py, P,, P, P, are nondegenerate
critical points of the function z on the torus.

4-9. Take the torus M, as in Example 4-2, and consider y as a func-
tion on M. Check that the planes y = +1 are tangent planes to M,
each touching M along a circle, and so show that all points of these circles
are critical points for y. But show that these critical points are degen-
erate (that is, not nondegenerate).

4-10. It will be noted in Exercise 4-9 that the degenerate critical
points are not isolated. However, this state of affairs does not neces-
sarily go with degeneracy. For example, consider the function 23 + y3
on the plane. Show that (0,0) is an isolated critical point, but de-
generate.

4-11. Let f be a differentiable function of n variables z1, 23, . . . , Za
vanishing when 2, = 2z, = - - - = z, = 0. Note that
g
f@y 2, . . ., zn) =/ —fzy, txsy, . . ., tx,) dt
o dt
and hence show that f = Jx.fi, where the f; are differentiable functions
such that f;(0,0, . . ., 0) is the value of 3f/9z: at z1 =22 = - - - =
Za = 0.

If in addition all the 8f/dz; vanish when all the z; are zero, show that
f = XJriz;ifi;, where the f;; are differentiable functions such that
f:i(0, 0, . . ., 0)is the value of 8%f/9z; dz;atzy =22 = - - - =z, = 0.

This exercise means that if f is a differentiable function on a manifold
M with a critical point at p, and ¢: U — V is a local coordinate system
in a neighborhood of p, ¢(p) being the point (0,0, . . . ,0), then g =
fé~lis a quadratic in the z;, the coordinates in V, with coefficients that
coincide with the 8%/dz; dz; at #(p). It would clearly be a simplifica-
tion if local coordinates could be constructed in terms of which f would
have an expression as a quadratic with constant coefficients. The next
exercise will show that this can be done.
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4-12. Asin Exercise 4-11 let f be a differentiable function of n varia-
bles z1, z3, . . . , Z, such that f and all the §f/dz; are zero when =, =
Tz = ... =g, =0, and write f = Dziz;fi;(z). Show that there is a
transformation of variables of the form

yi = Jhij(@)z;

where the h;; are differentiable and the determinant |k;;(0)] £ 0, such
that

f= e}
and the c; are all 1, —1, or 0.

[Start by diagonalizing 3 f:;z:x; just as a quadratic function with con-

stant coefficients. That is, arrange the z; so that f1:(0) > 0 and remove
the product terms z,z; by writing

N fre SR LLON )
Yy = '\/]fu[ (xl +fu$z + +f11 In)

Then proceed by induction. Check that the coefficients of the resulting
transformation y; = Jh;;(z)z; satisfy the required conditions.]

The following theorem is an immediate consequence of the
results of the preceding exercises.

Theorem 4-1. Let f be a differentiable funclion on a differ-
entiable manifold M and let p be a nondegenerate critical point of
fon M. Then there is a local coordinate system ¢: U — V on
a neighborhood of p such that f¢—1, expressed in terms of the
coordinates in V, is Zc;y: where each c; is either 1 or —1. Here
o(p) isthepointyy =y = - - - =y, = 0.

Proof. Take any local coordinate system x: U’ — V' about p
and suppose that the coordinates in the cell V' are denoted by
Z1, T2, . . . , Ta, x(p) being the point (0,0, . . . , 0), and that
fx~!is the function g(zy, 2, . . . , x,). Make the change of
variables from the z; to the y; as in Exercise 4-12. The Jaco-
bian determinant of the y; with respect to the z; is the determi-
nant |h;;(z)|, which is not zero at x(p), and so by Definition 2-7
there is a local coordinate system ¢: U — V with the y; as
coordinates in V such that f¢=! = ZcyZ. Each ¢; will be 1.
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—1, or 0, but the value 0 is excluded by the assumption of
nondegeneracy of p.

The index of inertia of the form Zc¢;y? appearing in Theorem
4-1 (that is, the number of positive ¢; minus the number of
negative ¢;) is an invariant under linear transformation of the
variables. It follows that it depends only on the function f
and the point p. Since, for a nondegenerate critical point,
the rank of the quadratic Zc;y? is the dimension of M, this
means that the number 7 of negative ¢; depends only on p and
the function £, and not on the particular local coordinates used.

Definition 4-6. The number r just introduced associated
with the nondegenerate critical point p of f will be called the
type number of the critical point.

4-4. A STRONGER EMBEDDING THEOREM

In Exercises 4-8 and 4-9 two functions, y and 2z, were con-
sidered on the torus, one with degenerate critical points, the
other with nondegenerate critical points. A more convenient
arrangement here will be to interchange the y and z axes in
Exercise 4-9. Thus we have two embeddings of the torus in
3-space, namely, as the surface

(@ + y* + 22 + 3)% = 16(2? + 2?)

and as the surface (x2 + y2 + 22 + 3)2 = 16(2% + y?). In
each case the Euclidean coordinate z is a differentiable func-
tion on the embedded torus, in the first case with four non-
degenerate critical points (see Fig. 4-2) and in the second with
infinitely many degenerate critical points (see Fig. 4-4).
Thinking of the nondegenerate critical points as the simpler
kind, the first embedding is thus to be regarded as better than
the second. In fact, a bit of computation shows that the
horizontal embedding of Fig. 4-4 is the only bad embedding
of the torus. If the surface is rotated just a little bit out of
this position, it will turn out that z has four nondegenerate
critical points.

The situation just described is a special case of the following
general theorem.
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FIGURE 4-4 Circle C of degenerate critical points for the function z
on the horizontally embedded torus.

Theorem 4-2. Let M be a compact differentiable manifold with
boundary, the boundary consisting of a disjoint union M,\J M,.
Then there is a one-to-one differentiable map f of M into a Euclid-
ean N-space, for some N, with the following properties.

(1) f(M) s a submanifold of N-space.

(2) f(M) lies entirely in the set 0 < xzy < 1, and the inter-
sections of f(M) with the hyperplanes zy = 0 and xx = 1 are
f(My) and f(M,), respectively.

(3) The function xzx on f(M) has only a finite number of
critical points on f(M), none lying on zy = 0 or zy = 1, and
they are all nondegenerate. It can also be arranged that no two
critical points correspond to the same value of xn.

Part of condition (3) can be stated by saying that, of the
hyperplanes zx = ¢, only a finite number are tangent hyper-
planes to f(M), each such tangent hyperplane corresponding
to just one point of contact.

There is another way of formulating the theorem, of course.
The function zx on f(M) composed with the map f is a differ-
entiable function ¢ on M. Thus the theorem says that there
is a differentiable function ¢ on M taking the values 0 and 1
on M, and M,, respectively, satisfying 0 < ¢(p) < 1 at all
nonboundary points of M, and having only a finite number of
critical points on M, all corresponding to different values of ¢,
all nondegenerate, and none lying on My or M.

Note also that if M should be a compact differentiable mani-
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fold without boundary, then a similar result holds, but with
no mention of boundaries.

The proof of Theorem 4-2 is rather difficult and will not be
given here. But the formulation given suggests a possible
approach to the proof. For it has already been seen that,
given the manifold M with boundary M,\J M., there is a
one-to-one map f into a Euclidean space satisfying conditions
(1) and (2). The idea, then, is to show that this map f can be
adjusted so that condition (3) is also satisfied.

This can be done by first showing that f can be approxi-
mated by a map f’ such that f/(M) is part of an algebraic
variety, that is, the set of zeros of a finite set of polynomial
equations in the Euclidean coordinates z1, 2, . . . , zy. Note
that in the examples given of embedding of the torus in 3-space,
this stage has already been reached. That is, in each case the
torus is given as an algebraic surface.

The second step of the proof is to show that the coordinates
in N-space can be adjusted so that zy satisfies condition (3)
relative to f'(M). The idea here is to consider the function
2ux; where the u; are real numbers. It turns out that the
condition that this function should have infinitely many criti-
cal points or degenerate critical points on M is that the wu;
should satisfy certain polynomial equations. So choose a set
of values of the u; not satisfying these equations, and then
make a change of coordinates so that Zuxx; becomes the new
Nth coordinate. Condition (3) will now be satisfied.



Critical and Noncritical Levels

5-1. DEFINITIONS AND EXAMPLES

Suppose that M is a compact differentiable manifold with
boundary M,\J M,, embedded in Euclidean N-space so that
it lies entirely between the hyperplanes zy = 0 and zy = 1,
its intersections with these hyperplanes being M, and M,
respectively. A careful study is now to be made of the rela-
tions between the various sections of M by hyperplanes zy =
constant. It would come to the same thing to study the level
sets of a differentiable function on M without reference to a
Euclidean space, but the Euclidean embedding automatically
provides a notion of perpendicularity that will be needed
presently.

Definition 5-1. If the section M, of M by the hyperplane
Zy = ¢ contains a critical point of zy, M. will be called a criti-
cal level of xy. Otherwise it will be called a noncritical level
Of rN.

For instance, in Example 4-2 the function z on the torus has
61
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four critical levels, namely, the sections by H,, H., H;, H,.
Now it will be noticed in that example that, if M, is a non-
critical level of z, it is surrounded by neighboring nonecritical
levels, all of which are homeomorphic to each other. For
example (see Fig. 5-1), between H; and H, all the noncritical
levels are circles. On the other hand, as we cross a critical
level, a change takes place. The noncritical levels immedi-
ately below H, are different from those immediately above.
The main object of this chapter is to show that the remarks
just made are valid in general, and further, to examine exactly
what happens as we make the transition from one side of a
critical level to the other.

This study will be carried out with the help of the family of
orthogonal trajectories of the sections M, that is, a family of
curves in M with differentiable parametric equations, cutting
the M. at right angles (except at critical points). The idea
can be illustrated by the following rather trivial example.

Let M be a 2-sphere in Euclidean 3-space. The function z
has two critical points, namely, the north and south poles.
The noncritical levels of z are the circles of latitude. The
orthogonal trajectories of these are the circles of longitude.
One can think of one noncritical level as being mapped on
another by sliding the points of one along the circles of longi-
tude till they reach the other. In addition, if M, is a non-
critical level, a neighborhood of it can be expressed as a union

FIGURE 5-1 Critical and noncritical levels for the function z on the
torus.
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of arcs of the circles of longitude so that it has the form M, X I,
where I is a line interval. It will turn out that a similar situ-
ation holds in general. Then, of course, the behavior of the
orthogonal trajectories near a critical point will have to be
studied. As can already be seen from the example just given,
it will no longer be true that a critical point lies on just one
trajectory.

In the first place, the family of orthogonal trajectories to
the M. must be constructed in the general case. This will be
done by setting up differential equations for them and then
appealing to the appropriate existence theorem from the theory
of differential equations.

So start off with a neighborhood U in Euclidean N-space in
which M is the set of points satisfying equations of the form

Tpyl1 = fn+1($1, o, . . . ,x,.)

ey = fa(xy 22 . . ., Tn)

where the f; are differentiable functions. If U M M contains
no critical point of zy, Lemma 4-3 implies that zx itself can be
taken as one of the local coordinates in U M M. This means
that, with suitable renumbering of the coordinates, U N M
will be the set of points satisfying equations of the form

;= fi(y, T2y . . ., Tu_y, TN),

i=nn+1...,N—1 (1)

The set U M M., if nonempty, will then be given by Egs. (1)
with the additional equation zy = c.

Let p be a point of U M M. Use the notation z;(p) for the
value of the coordinate z; at p. Thus, for the level M, through
p, ¢ = zx(p). Let T, be the tangent linear space of M at p,
T, that of M, at p. Then T, and T, are of dimensions n and
n — 1, respectively, and Tz', C T, (cf. Exercise 4-3). Since p
is not a critical point for zx (for there is no critical point in U),
T, does not lie in the hyperplane zy = ¢ = zn(p). On the
other hand, T;, clearly does, and so a direction in 7', orthogo-
nal to Tz', is not in the hyperplane zy = zx(p). Thus a curve
in M through p and with tangent line orthogonal to T; should
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have parametric equations of the form

z; = ¢i(zn), i=12 ...,N—1
and its tangent line will have direction ratios
¢;.(xN)y ¢,2(xN)> < ey ¢’,N—1(xN)r 1> (2)

the derivatives all being evaluated at p.
The equations of T, are

n—1

w=a®) = ) (L) G- no0 + (L) @ - eato)
=1

®)

where the subscript p on the right-hand side denotes evalu-
ation at p. The equations of T;, are

n—1

w=a@) = ) (L) @ - o). @
1

i=
Since the direction (2) is to be orthogonal to T;, it must be
orthogonal to a set of » — 1 linearly independent directions
in T;,. Such a set of directions will be a set of linearly inde-
pendent solutions of the Eqs. (4), regarded as linear equations
in the z; — z:(p). The following n — 1 sets of direction
ratios form such a set of solutions:

1,0,0,...,0 (a_f_> ,<afn+1>, o ’<6fN_1> .
a.’l?]_ » axl b4 63:1 ?

07 17 0; ... ;0; <%> ’ (afn+1> g s e ey <afN—l) , 0
0> » 9z, P Axe »

n n a _
0,0,0, . .. ,1,(6f )(@f_+1> . ’<fN 1)’0.
axn—l P 6x,,_1 » 3xn_1 »

Thus the direction (2) must be orthogonal to these, and must
also satisfy the Eqs. (3) when substituted for the z; — z:(p)
(thus ensuring that it lies in 7',).

)

Exercise. 5-1. Prove that the resulting set of linear equations satisfied
by (2) has a unique solution, expressing the d¢;/dzy(z = 1,2, . . .,
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N — 1) as differentiable functions on M with the critical points of zn
removed.

Now there is a theorem in differential equation theory (cf.
[5]) that guarantees that a set of differential equations such as
has just been obtained, expressing the d¢./dzy as differenti-
able functions, has a set of solutions consisting of a family of
curves ¥ on M, with the critical points of zy removed, with
the property that exactly one curve of F passes through each
point. The method of derivation of the differential equations
shows that the family F is the required family of orthogonal
trajectories to the M,. The same theorem on differential
equations gives further information, namely, that the equa-
tions of a member of F in a neighborhood on M not containing
a critical point of zx can be written as

T = ¢,’($2, xg) e 7x2—1’ xN)’ (6)

where zy is used as the parameter on the curve, and z}, zJ,

., z)_, are the local coordinates of the point in which the
curve in question meets some fixed M,, and the ¢; are differ-
entiable in all the variables.

Exercises. 5-2. Prove that (6) can be used to introduce a new coordi-
nate system in a neighborhood of a noncritical point of zw, specifying
a point by its parameter zx on the appropriate curve of F, along with the
coordinates of the point in which that curve meets a fixed M..

Hence, show that if M, is a noncritical level of zw, it has a neighbor-
hood on M that is diffeomorphic to M. X I, where I is an open interval
of values of zy. Note that a similar result will also hold for a critical
level if a neighborhood of the critical point is removed.

5-3. Deduce from the last exercise that if M., and M., are two con-
secutive critical sections (that is, such that all the levels M. with ¢; <
¢ < ¢y are noncritical), then the part of M between M. and M., is
diffeomorphic to M. X I where¢; < ¢ < ca.

5-4. Also deduce from Exercise 5-2 that if two noncritical levels
have no critical level between them, they are diffeomorphic.

5-2. A NEIGHBORHOOD OF A CRITICAL
LEVEL; AN EXAMPLE

The results of the last section show that as ¢ increases from
0 to 1, the section M, of M by xzy = ¢ remains the same
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(diffeomorphic manifolds being regarded as the same) so long
as we stay between two critical levels. However, M, changes
when we cross a critical level, and the next step is to investi-
gate the nature of this change.

So let M, be a critical level for zx and let P be the critical
point on it. As already noted, the orthogonal trajectories F
around any point of M, except P behave in essentially the
same way as around a noncritical level. The important thing,
then, is to examine their behavior around P.

To introduce the discussion, consider the function z on the
torus M, embedded in Euclidean 3-space as in Example 4-2,
and in particular fix attention on a neighborhood of the criti-
cal point P;. It has already been remarked (Section 4-3) that
a first approximation to the torus near this point is the surface
z =1+ 4(y? — 2z?). This is made more precise by Theorem
4-1. An alternative way of stating that result is: There is a
diffeomorphism ¢ of a neighborhood of P; on the torus onto a
neighborhood of the point (0, 0, 0) of the surface z = y* — x2
(the factor % is removed by a suitable change of scale). Of
course, ¢ will not necessarily carry orthogonal trajectories to
the horizontal sections of the torus into orthogonal trajectories
to the horizontal sections of z = y2 — z2.  On the other hand,
it is convenient to study the latter, so that, in effect, we will
have a standard description of a neighborhood of any saddle
point. To allow this, it will be shown that the orthogonal
trajectories F to the horizontal sections of the torus can be
adjusted in a neighborhood of P; to give a new family F’ with
similar properties, but such that ¢ carries F’ in a neighbor-
hood of P; into the family Fy of orthogonal trajectories to the
horizontal sections of z = y? — 2

The device to be used is quite simple. At each point p
near P; on the torus (but not equal to P;) there are two sets of
direction ratios assigned, those of the tangent to the curve of
the family F through p and those of the tangent to the curve
of the family ¢—1(F,) through p. Denote these sets of ratios
by 11, ls, 1 and Ay, Mg, 1, respectively. Now assign to p the
direction given by

g>\1 + (1 - g)lb g)\i + (1 - g)l21 17 (7)

where g is a differentiable function on the torus equal to zero
outside a neighborhood of P; and to 1 inside a smaller neighbor-
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hood. Then construct a new family of curves F’ tangent to
this direction at p. Note that as we approach P, the direc-
tion (7) gradually changes from Iy, I2, 1 to A1, A2, 1. Thus the
family F’ will be equal to F outside a neighborhood of P; but
will coincide with ¢—1(F,) in a smaller neighborhood.

As pointed out earlier, this means that a neighborhood of
H, on the torus can be studied by using the adjusted orthogo-
nal trajectories F’, and this in turn means that a neighborhood
of P; can be studied by looking at the origin on the surface
2z = y* — z?, using the curves F, on that surface.

5-3. NEIGHBORHOOD OF A CRITICAL LEVEL;
GENERAL DISCUSSION

The ideas illustrated in the last section by a two-dimensional
example will now be formulated in general. That is, a neigh-
borhood of a nondegenerate critical point of a function on a
given manifold will be compared with a neighborhood of some
kind of standard critical point (corresponding to the origin on
the surface z = y2 — x2).

So let M be a differential manifold of dimension 7, let f be a
differentiable function on M, and let p be a nondegenerate
critical point of f. By adding a suitable constant it can be
assumed that f(p) = 0. Use Theorem 4-1 to set up a local
coordinate system ¢: U — V in a neighborhood U of p such
that

= i ey’ ®)

i=1

where the y; are the Euclidean coordinates in V and each ¢; is
+1. The y; are all zero at ¥(p).
At the same time, in a Euclidean space of dimension n + 1,

in which the coordinates are denoted by (y1, ¥2, - . . , Yn, 2),
consider the hypersurface @ with the equation
z = Zcys 9)

¥V can be identified with a neighborhood of the origin in the
hyperplane z = 0. Write V’ for the neighborhood on @ that
projects on V. Then define the map ¢: U — V' by mapping
gon (Y1, Y2, - . . , Yn, 2) where ¢(q) is the point (y1, y2, . . . ,
¥») and z is given by (9). Note now that the value of f¢—! at
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Y1, Y2, - - - , Yn, 2) On Q is the same as that of fy=1 at (y4, ¥,

.+, Yn), namely, Zciy?, and by (9) this is z.

Thus ¢: U — V' is a map into an open set on @ such that
the value of f¢~!is the value of z. In particular, this means
that the subsets f = constant in U are mapped into the sec-
tions of @ by the hyperplanes z = constant.

Next assume (cf. Lemma 6-2) that M is embedded as a sub-
manifold in some Euclidean N-space, such that the function f
on M is zn, and construct, as in Section 5-1, the orthogonal
trajectories F' to the sections of M by the hyperplanes zy =
constant. The F are now to be adjusted in a neighborhood
of p as illustrated in Section 5-2.

So let Fo be the family of orthogonal trajectories on the
quadratic hypersurface @ to the family of sections by the
hyperplanes z = ¢. F, can be defined at all points except the
origin. ¢~1(F,) will then denote the image in U of the family
Foin V. Thus through any point ¢ in U other than p there
are two curves, one of the family F and one of the family
¢~ 1(Fo). Write the direction ratios of their tangent lines as

ll(q); l2(Q), U ;lN—l(q)) 1; (10)

(), No(g), - - -, Av—a(9), 1, (11)

respectively. Note here that it is admissible to take the last
ratio as 1 in each case, since neither of these directions is
horizontal.

Next let U, be a second neighborhood of p such that U, C U.
For the sake of simplicity U; may as well be a cell. Define (cf.
Exercise 2-14) a differentiable function g on M such thatg = 1
on U, and g = 0 outside U. Then to each point ¢ of U assign
the set of direction ratios

g @M + (1 — g(@)h(), - - ., g(@rv-1(q)
+ (1 — g(9)in-1(g), 1. (12)

Note that this assignment extends naturally outside U simply
by assigning I3, ls, . . . , Iny_1, 1 to a point outside U. Then,
to find a family of curves F’ whose tangent directions at each
point are given by (12), solve the differential equations

da;
(J&) = g(@N(@ + (A — g9(@)k(@),
i=1,2...,N—1 (13)
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Since the right-hand sides are differentiable functions at all
points of M except critical points of zn, the existence theorem
previously quoted (cf. [5]) shows that there is a family F’ of
differentiable curves on M, one through each point except
critical points of zy. Also, since (12) coincides with (11) in
U, and with (10) outside U, it follows that F’ coincides with
¢~ 1(Fo) in U, and with F outside U, as required.

5-4. NEIGHBORHOOD OF A CRITICAL POINT

As already indicated, the first thing is to examine the special
case of a neighborhood of the origin on a quadratic hyper-
surface (9). The information will then be transferred to M
by the map ¢! of the last section. Most of the argument for
the main result of this section will be carried out in sequences
of exercises.

Exercises. 5-5. Let H be a hypersurface with equation z = f(y1, s,

., ¥n) in Euclidean (n + 1)-space. Prove that the orthogonal tra-
jectories on H of the sections by the hyperplanes z = constant project
onto the orthogonal trajectories in the n-space z = 0 of the family of
sets f = constant.

(The point is to see that the tangent linear space to a horizontal section
of H projects into the tangent linear space to a set f = constant and
that a line orthogonal to the first projects into a line orthogonal to the
second.)

5-6. Working now in the n-space with the coordinates y1, y2, . . . ,
Yn, consider the family of hypersurfaces f(y1, ¥2, - - . , ¥») = constant.
Show that the orthogonal trajectories to these satisfy the differential
equations

d d AYn
W _dy (14)

fl f2 fn

where f; = 9f/dy;.
Hence, show that for the family of hypersurfaces

vityit - +y; —yra — - - - —y, = constant,  (15)

the equations of the orthogonal trajectories are

’ ’ 7 ’
YY1 = N1Y2y + - - 5 YY1 = YiYn (16)

’ / / U
Yogolrer = YepaYre2y o o o 5 YplUre1r = Yrn1Yny
’ ot
YYrs1r = Y1iYrsns
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where yi, ys, . . . , ¥, are constants. In fact, the set of equations above
is the orthogonal trajectory through the point (y;, ¥, - - - , ¥5)-

Note that there is exactly one curve of the family (16) through each
point (y;, ¥s, - - - ,¥,) except (0,0, . ..,0). Note also that the
member of the family (15) through the origin is an (n — 1)-dimensional
cone with vertex at the origin; thus, we would not expect the orthogonal-
ity condition to work at that point.

5-7. Note that all the Egs. (16) except the last are linear, and in fact
are linearly independent except when ¥, or y. 41 is zero. Thus when
Yy # 0, y;+1 # 0 the Eqs. (16) represent a hyperbola. Note that
the condition on y, and ¥, +1 18 an accident of the numbering of the y..
Show by suitable arrangement of the equations of the orthogonal tra-
jectories that, so long as one of ¥}, ¥,, . . . , y. is nonzero and one of
y:+1, y£+2, . . ., Y, is nonzero, the trajectory through (yi, v3, . . . , ¥n)
is a hyperbola.

5-8. As a complement to the last exercise show that if one of the
orthogonal trajectories has y; = 0 at any point, then y; = 0 all along it.
(Deduce this directly from the differential equations.) Use this to

show that a trajectory containing a point withy; = y; = - - - =y, =0
is a straight line segment ending at the origin. Obtain a similar result
for a trajectory containing a point with y,,, = y,,, = - - - = y, = 0.

In addition, show that if we consider the orthogonal trajectories to
the family (15) with —1 < ¢ < 1, then the set of trajectories in the linear

space Y1 =y = - -+ =y, =0 forms an (n — r)-cell E*»" whose
boundary sphere S8*~7~! is in (15) with ¢ = —1, while the trajectories
satisfying y,41 = Yry2 = + + - = y, = 0 form an r-cell E* whose bound-

ary sphere 8™11is in (15) with ¢ = 1. Note that the two cells E" and
E~—r have only the origin in common.

Before going any further with the general discussion, it is
useful to look more closely at the example withn = 3. Chang-
ing notation for convenience, consider the family of surfaces

¥ —yt— 22 =c¢

with —1 < ¢ < 1. Note that the two surfaces obtained by
putting ¢ equal to —1 and 1 are hyperboloids of one sheet
and two sheets, respectively, the two-sheeted surface being
inside the one-sheeted one (cf. Fig. 5-2).

The orthogonal trajectories to this family of surfaces are all,
as shown earlier, arcs of hyperbolas, except for a set of line
segments forming the cells E! and E?, as described in Exercise
5-8. The boundaries of these cells are marked in Fig. 5-2 as
S° and S, respectively.
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FIGURE 5-2 Anorthogonal trajectory T beginning in a neighborhood
of S8° ends in a neighborhood of S.

(8° X8 x1I

S X E?

FIGURE 5-3 8? decomposed into 3 sets obtained from Figure 5-2.
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Consider now those trajectories beginning in a neighborhood
of 8° and ending in a neighborhood of S*. The neighborhood
of 8% in question is the union of two disks and that of S! is
a circular strip around the one-sheeted hyperboloid. These
neighborhoods can be represented as S° X E? and E! X S,
respectively. Also, it can be seen intuitively that if these two
neighborhoods are taken to be the right size, then the orthogo-
nal trajectories beginning in one are exactly those ending in
the other. And the union of all these arcs, along with the
cells E* and E?, forms a 3-cell. The boundary of this cell is
a 2-sphere decomposed as indicated in Fig. 5-3. That is, it
consists of the union of S° X E? and E!' X S! (the above-
mentioned neighborhoods of S° and S! on the two hyperbo-
loids) and the set shaded in the figure. The latter is the union
of orthogonal trajectories joining the points of the boundaries
of S° X E? and E! X S!' (both boundaries being S° X S?).
This set can thus be represented as (S° X SY) X I, where I is
a line segment.

The following sequence of exercises aims at generalizing the
description just given.

Exercises. 5-9. Let S*1 be the sphere

x3+x§+ PP +x:=1
in n-space. Let S! be the (r — 1)-sphere on S*! given by
+2i+ - Fai=1,
Trpt = Tpya = + + + =25 =0,

and let 8»~*—! be the (» — r — 1)-sphere on S*~1 given by

Zi=zp= -+ =2z =0,
2 2 2 —
Ttz t+ ooz, =1

Check that any point p on S! and any point ¢ on S»~*~! are joined
by a unique great circle arc that is a quarter circumference. That is,
the directions of p and ¢ from the center of S make an angle of =/2.
Also show that two such arcs pg and p’¢’ have no point in common, except
possibly an end point, if p = p’ or ¢ = ¢'.

5-10. Fix p on 877, and for any great circle arc pg with ¢ on S»—!
(as in the last exercise) let ¢; be the midpoint. Show that, as ¢ varies
throughout 8»~"~1, p being fixed, the union of the arcs pg: is an (n — 7)-
cell. Hence, show that the set of points on S*~! at angular distance
< /4 from 81 is of the form 8! X E»* where Er " is an (n — r)-
cell.
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5-11. Deduce from the last exercise that S*~! is the union of S™1 X
E»7and E* X S»1. Note that these sets have a common boundary in
S7~1, namely, S™! X S*1. Another way of saying all this is, S*~!is
the union of the spaces S~! X E»— and Er X S~ 1, the point (p, q) in
81 X 81 = 81 X (boundary of E*r) being identified with (p, q)
in 8~1 X S»—-1 = (boundary of Er) X S»1,

5-12. There is a variation of the last exercise. Namely, show that
S»~1is the union of three sets A, B, C where A, the set of points at angu-
lar distance < #/6 from S, is of the form S~! X E»r; B, the set of
points at angular distance < x/6 from S» 1, is of the form Er X Sr—r-1;
while C, the set at angular distance > /6 from 8! and < »/6 from
S»==1 is of the form (S—! X S»—1) X I, where I is a line segment, say
the unit interval (0, 1). Here the point (p, q¢) on A with g in S»1 =
boundary of E»~ is identified with (p, ¢, 1) in C and (p, ¢) in B with p in
8t = boundary of E", is identified with (p, g, 0) in C.

Note that this decomposition of S*~1 corresponds to the decomposition
of S2 described earlier (Fig. 5-3), except that there S? appeared not as
the surface of the unit sphere, but as a set associated with a family of
quadratic surfaces. This situation will now be reproduced in the gen-
eral case.

5-13. Consider the family of quadratic hypersurfaces in n-space

ntaa+ -t -l — - —azl=c 17)

with —1 <¢ <1.

Note that the spheres 871 and S»—~1 of Exercise 5-9 lie on the mem-
bers of this family with ¢ = 1 and ¢ = —1, respectively. Also check
that the direction from the origin to any point of 8~1or 8»~"~! makes an
angle > 7/4 with any line in the cone

2 2 2 2 2 _
ton+ o, - —2, =0

This implies that the sets A and B of Exercise 5-12 project homeo-
morphically from the origin into the hypersurfaces (17) with ¢ = 1 and
¢ = —1, respectively. Denote this projection by =. Let p and ¢ be
points of the boundaries of A and B, respectively, that are joined by one
of the great circle arcs, say «, of which C is composed. Verify that =(p)
and #(g) are on a hyperbolic arc 8, one of the orthogonal trajectories of
the family (17), and that « projects onto 8 from the origin.

Thus there is a homeomorphic image of S*~! under = consisting of the
union of w(4) and #(B) on (17) with ¢ = 1 and ¢ = —1, respectively,
and =(C), a union of arcs of orthogonal trajectories of the family (17).

5-14. Verify that the last two exercises imply the existence of a dif-
ferentiable function f on the n-cell E» (whose boundary is S»~1) such that
f=0o0onA,f=1o0n B, and f = ¢ on the subset 8! X S»1 X {t} of
C=8"1tX8 1 XI.
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5-5. NEIGHBORHOOD OF A CRITICAL LEVEL;
SUMMING UP

All the results necessary for describing the neighborhood of
a critical level of a differentiable function have now been ob-
tained, and will simply be put together in this section.

Theorem 5-1. Let M be a differentiable manifold of dimension
n and let f be a differentiable function and, in the notation of
Definition 5-1, let M, be a critical level of f with one nondegen-
erate critical point P on it. Let M, and M, be noncritical levels
of fwitha < ¢ < b, M, being the only critical level between them.
Then P has a neighborhood E™ on M, an n-cell whose boundary
S»=1 is the union of three sets A, B,C. A is on M, and is
diffeomorphic to S X E*— (for some r), B is on My and is
diffeomorphic to E* X S» 1 while C, lying between M, and M,
can be expressed as S—1 X St X I. Hereapoint (p, q) of A
with p € 8! and ¢ € S*—1 = boundary of E* is identified
with (p, ¢, 0) on C, and a point (p, q) of B with p in S =
boundary of E™ and q in S is identified with (p, q, 1) in C.

In addition, if the cell E* is removed from the part of M between
M, and My, the remainder can be represented as (M, — A) X I
where (M, — A) X {0} is identified with M, — A and (M, — A)
X {1} with M, — B.

Proof. It follows from Exercise 5-4 that it is only necessary
to prove the present theorem for values of @ and b near c;
just how near will be determined in the course of the proof.

Start by taking a neighborhood U of P, as in Section 5-3,
and construct the modified family F’ of orthogonal trajectories
of the level sets of f. Remember that in a smaller neighbor-
hood U’ of P, these coincide with ¢~ 1(F,) where ¢ is as in
Section 5-3 and Fy denotes the family of orthogonal trajecto-
ries of the horizontal sections of a hypersurface

z = Zcy:

in (n + 1)-space with the ¢ all +1. By Exercise 5-5, project-
ing on the space z = 0, F, projects on the orthogonal trajecto-
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ries of the family
Zeyl = c. (18)

If necessary, by a change of scale in the y; it can be assumed
that the cell E» described in Exercise 5-14 is in the image of
U’ under ¢. The inverse image of this cell in M then gives
the cell E» described in the statement of this theorem, provided
that M, and M, are taken as the noncritical levels that, in U’,
are mapped by ¢ into (18) with ¢ equal to —1 and 1, respec-
tively. The properties described in Exercise 5-13 then carry
over to M showing that the boundary of E» has all the proper-
ties stated in the present theorem.

The arcs of the family F’ beginning on M, — A (and so, by
the foregoing, ending on M, — B) can then be used, as in Exer-
cise 5-2, to check that the part of M between M, and M, after
the removal of the cell E» is (M, — A) X I. This completes
the proof of the theorem.

Some further information on the present situation can be
extracted from Exercise 5-9: that exercise implies that there is
a sphere S~—! on M, and a sphere S*— ! on M, such that mem-
bers of F’ starting on M, — S*~! end on M, — S*"! (and the
other way round), while the members of F’ through points of
S—1or S*1all end at P. Thus M contains two cells E” and
E»— having boundaries on M, and M,, respectively, and hav-
ing just the point P in common.

Note, in addition, that S7—! has a neighborhood in M, of the
form St X E~ and S~! in M, has a neighborhood of the
form S»——1 X E".



Spherical Modifications

6-1. INTRODUCTION

The object of this chapter is to look at the material of the
preceding one from a different point of view. In the last chap-
ter the starting point was a compact differentiable manifold M
with boundary M,\JU M,;. A differentiable function f was
given on M, or alternatively an embedding of M in a Euclid-
ean space was given, and neighborhoods of critical and non-
critical levels were studied. Here attention is to be paid rather
to the way in which the level manifolds of f vary, starting from
M, and ending with M.

It was seen in Section 5-1 that, as ¢ increases from 0 to 1,
the level manifold M, remains the same, topologically speak-
ing, except when ¢ crosses a critical level. Thus to get from
M, to M, through the family of levels of f, we perform a finite
number of operations, one corresponding to each critical level.
Each operation transforms M, just below a critical level (think-
ing here of the levels as horizontal sections of M suitably em-
bedded in Euclidean space) into M, just above that level. The
operation in each case consists in removing a neighborhood
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(4 in the notation of Theorem 5-1) of a sphere embedded in
M, and replacing it by a neighborhood (namely, B) of a sphere
of different dimension. The main object of this chapter, then,
is to study this kind of operation on manifolds.

6-2, DIRECT EMBEDDING

As just indicated, the definitions about to be given are based
exactly on the result of Theorem 5-1, but the notation is
changed. The manifold M discussed here corresponds to a
noncritical level of the function f on the manifold of that
theorem.

So let M be a differentiable manifold of dimension n and let
N be a submanifold of dimension 7. Take a point p on N and
a local coordinate system around p satisfying the conditions
of Definition 3-1. Suppose that the corresponding coordinate
neighborhood U (or rather its image in Euclidean space) is
specified by inequalities |z;| < 8(: = 1,2, . . . ,n); U can be
thought of as a topological product V' X F where Vis U M N,
namely, a neighborhood of p in N, and F is a neighborhood of
the origin in a Euclidean (n — r)-space, that is, a space in
which Z,y1, .42, . . . , . are the coordinates, F being speci-
fied by inequalities |z;| < 8, ¢ =r + 1,r+2, . .. ,n. The
sets in V X F of the form {¢q} X F, with ¢ in V, are (n — r)-
cells cutting across N and each meeting N at just one point.
Thus U can be thought of as a union of slices, each slice being
an (n — r)-cell cutting N at one point. A union of coordinate
neighborhoods of the type just described will be called a tubu-
lar neighborhood of N in M. It can be shown (but this will
not be needed here) that the entire tubular neighborhood can
be expressed as a union of (n — r)-cells each cutting across N
at one point; that is, the slices of overlapping coordinate neigh-
borhoods can be made to coincide in the overlap.

Here one case is of special interest, namely, that in which a
tubular neighborhood of N is diffeomorphic to N X F where
Fis an (n — r)-cell.

Definition 6-1. When this happens, N will be said to be
directly embedded in M.
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Examples

6-1. Let N be the circle 22 + y2 = 1, z = 0 in Euclidean
3-space, and let M be the 3-space itself. N is certainly a sub-
manifold of M. Now let B be a solid torus with N as its center
line (see Fig. 6-1). Let F be the section of B by the planey = 0
and lying in the half space x > 0. F is a circular disk, that is,
a2-cell. Now take any point p in B, and take a plane through
p and the z axis. This plane makes an angle 8 with the (z, z)
plane. @ can, of course, be taken as coordinate on N. Also
draw a circle C through p parallel to the (z, y) plane, meeting
Fin q. Thus to p in B there corresponds a pair (6, q). It is
not hard to see that this expresses B as the product N X F.
Hence, N is directly embedded in M.

6-2. An example will now be given of a submanifold that
is not directly embedded. Let M be the projective plane (Ex-
ample 2-6). It was seen that this space can be represented as
a hemisphere with the pairs of diametrically opposite points
on the edge identified. As N, take a circle obtained by join-

z

FIGURE 6-1 Tubular neighborhood of S! and E3 as a product.
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ing the ends of a great semicircle on the hemisphere. It is
easy to see that N is a submanifold of M. A tubular neighbor-
hood B of N in M can be constructed first on the hemisphere,
where it appears as a strip having N as center line. Certainly
B can be expressed as a union of slices, 1-cells cutting across N,
that is, arcs of circles on the hemisphere at right angles to N.
However, the identification of diametrically opposite points
means that, to construct B, the strip on the hemisphere is
given a half twist before the ends are joined up. Thus B is a
Mobius strip. It can be shown that this is not homeomorphic
to a product N X F, where F is a 1-cell. So N is not directly
embedded in M.

The last example illustrates a point that is worth pursuing
further, as it leads to an important distinction between two
kinds of manifolds. The existence (as in Example 6-2) of a
nondirectly embedded circle means that, as we travel along
such a circle, returning to the starting point, the manifold de-
velops a kind of twist. Thus a neighborhood of the circle in
Example 6-2 is a twisted strip. Such a twisting cannot hap-
pen if every circle in the manifold is directly embedded.

Definition 6-2. Let M be a differentiable manifold. If
every circle embedded in M as a submanifold is directly
embedded, M will be called orientable, otherwise nonorientable.
This definition, equivalent to others more usually given in the
literature, is appropriate here because this is the way the con-
cept is to be used.

Example

6-3. The sphere is orientable but the projective plane is
not.

It can be shown (cf. Chapter 7) that the compact two-
dimensional manifolds can be completely classified. That is,
each such manifold is homeomorphic to a sphere with p handles
(for some p) or to a sphere with k holes (for some k), the dia-
metrically opposite points on the circumference of each hole
being identified. The torus is an example of the first kind,
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with p = 1, and the projective plane is an example of the
second kind, with k¥ = 1. The manifolds of the first kind are
all orientable and those of the second kind are nonorientable.
The second statement is easy to see, since an arc on the k-holed
sphere joining diametrically opposite points on one of the holes
becomes, after the identification, a nondirectly embedded cir-
cle. To see that a sphere with p handles is orientable, let S be
a circle on it, embedded as a submanifold, and let B be a tubu-
lar neighborhood of S. Fix a direction along S, and at p on S
take the tangent line pointing in that direction. Then take a
tangent to the surface at p, with a direction marked on it,
perpendicular to S at p and making a right-handed system
with the directed tangent to S and the outward normal of the
surface. This defines at each p of S a positive direction in B
at right angles to S, and so defines B as a product S X 1.

It can be shown (but this will not be done here) that the
definition of orientability can be formulated in terms of local
coordinate systems. That is, a manifold M is orientable if
and only if it has a covering by local coordinate neighborhoods
such that, for any two that overlap, the Jacobian determinant
of the corresponding coordinate transformations is positive.

Exercise. 6-1. Show that the six coordinate neighborhoods on S? in
Example 2-6 satisfy the condition just stated, provided that the pair of
coordinates in each neighborhood is taken in the right order.

6-3. DEFINITION OF MODIFICATIONS

The notion of spherical modification can now be described.
Let M be an n-dimensional differentiable manifold and sup-
pose that S” is an r-dimensional sphere that is a directly em-
bedded submanifold of M. Briefly, S will be called a directly
embedded r-sphere. Thus S has a neighborhood in M that is
diffeomorphic to S* X E» where E*» is an (n — r)-cell.
Now the boundary of B is the manifold 87 X S»——1; thus, if
the interior of B is removed from M, a manifold with bound-
ary is obtained, the boundary being S* X S*~1 On the
other hand, S X S»~1is also the boundary of the differenti-
able manifold Ev+! X S*~1. And so, as explained in Sec-
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tion 2-7, the union of M — Int B and E™! X S»—1 can be
formed with identification of the boundaries. In fact, this
can be done so that the result is a differentiable manifold M’.

Definition 6-3. M’ will be said to be obtained from M by a
spherical modification of type r (the dimension of the sphere
whose neighborhood was removed).

Examples

6-4. Let M be a 2-sphere and take a zero-dimensional
sphere S° in M (see Fig. 6-2). S° has a neighborhood consist-

<o

FIGURE 6-2 Torus by modification out of sphere.



FIGURE 6-3 Sphere by modification out of torus, the sphere ap-
pears in the third diagram as a cylinder with the ends closed by disks.
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ing of two disjoint disks. This is certainly of the form S° X E?,
and so S° is directly embedded. This neighborhood is to be
taken as B. M — Int B is a sphere with two holes in it.
E' X 8! is a cylinder, and when its ends are attached to the
circumferences of the two holes, the resulting surface is a sphere
with one handle, in other words, a torus. Thus the torus is
obtained from the 2-sphere by a spherical modification of
type 0.

6-5. As another example of a spherical modification, con-
sider the reverse operation: that is, take M to be the torus,
St a circle as shown in Fig. 6-3. S! has a neighborhood
St X E' in M, namely, a strip wrapped around the torus.
When the interior of this strip is removed, the remainder has
boundary S* X 8°. This is also the boundary of E? X S a
pair of disjoint disks, and if these are inserted, the result is a
2-sphere M’. Thus the 2-sphere is obtained from the torus
by a spherical modification of type 1.

The situation illustrated by the foregoing examples, trans-
forming a sphere into a torus and then back into a sphere,
is quite general. That is, if M’ is obtained from M by a
spherical modification, then M can be obtained from M’ by
a spherical modification. For suppose, as in Definition 6-3,
that M’ is obtained from M by removing the tubular neighbor-
hood 8™ X E»— of 87, replacing it by E ! X S»7 1. Now
Er+1 % S»—=! contains the sphere {po} X S, where po is
some interior point of Ev+1, It follows that M’ contains the
sphere {po} X S* ! and that this sphere has the tubular
neighborhood E7+! X S»—=1! in M’, so that it is directly em-
bedded. And so M is obtained from M’ by removing this
tubular neighborhood of {pe} X S8»~1, replacing it by S X
E»—.  This is a spherical modification of typen — r — 1.

Example

6-6. A general type of example is obtained from Theorem
5-1: If W is a differentiable manifold and f a differentiable
function on it and if M and M’ are level manifolds of f sepa-
rated by one critical level, then M’ is obtained from M by a
spherical modification.
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6-4. THE TRACE OF A MODIFICATION

Example 6-6 shows how a function with a critical point gives
rise to a spherical modification. It will now be shown that
every spherical modification can be obtained in exactly this
way. The idea is to take a pair of manifolds related by a
spherical modification and to assemble a manifold with bound-
ary and construct on it a function that will have the given
manifolds as noncritical levels separated by a critical level.
The pattern for this construction is given by the knowledge of
what the neighborhood of a critical level should look like.

As a guide to understanding the general construction, con-
sider the following example.

Example

6-7. In Example 6-4 it was seen that a torus M, can be
obtained from a sphere M, by a modification of type 0. The
set Int By that is removed from M, consists of two disjoint
open disks, so that M, — Int By is a sphere with two holes.
For the present purpose it is more convenient to think of
M, — Int By as the surface of a cylinder, bent round as shown
in Fig. 6-4; (M, — Int Bo) X I is then a thickened cylinder.
As Fig. 6-4 indicates, the ends of this cylinder are unions of
radial line segments, each segr;lent being a set of the form
{p} X I, where p is in the boundary of My — Int B,. The
union of the ends of the cylinder can, of course, be expressed
as (S° X 8') X I. The inner surface of the cylinder, namely,
(M, — Int By) X {0} is to be thought of as My — Int B,, and
the outer surface, (M, — Int Bo) X {1}, as M; — Int B;. B,
is a pair of disks, whereas B; (cf. Example 6-4) is a cylinder
E' X 8t So the inner surface of (M, — Int Bp) X I can be
made into a sphere by replacing B,, while the outer surface
can be made into a torus by adding B;.

On the other hand, consider a 3-cell E? with its bound-
ary S? decomposed into the three sets S° X E2, S' X E!, and
(8° X 8*) X I, in fact, the A, B, C of Exercise 5-12 (see Fig.
6-5). Note that these sets can be identified, respectively, with
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B,
/\ If B, is replaced, one gets a sphere.

69

B, =E'X S8

(Mo — Int Bo) X 1

FIGURE 6-4 B, added to the inner surface of (Mo — Int Bo) X I
gives a sphere, B, added to the outer surface gives a torus.

B,, B;, and the ends of the thick cylinder (M, — Int By) X I.
Moreover, the radial line segments on the ends of the cylinder
can be identified in a one-to-one manner with the great circle
arcs forming (S° X S!') X I on the surface S2. So if the set
(89 X S8') X I on the surface of the cell E? is identified with
the corresponding set on the ends of the thick cylinder, a solid
M is obtained, with By and B; automatically falling into place
to make an inner boundary M, and an outer boundary M,.
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FIGURE 6-5 The sets Bo, By, and (S° X S') X I put together to form
a 2-sphere, the boundary of a 3-cell.

Another piece of information comes out of the preceding
construction: it was seen in Exercise 5-14 that there is a dif-
ferentiable function f on the 3-cell E? with the following
properties. On the boundary S? of E3 f =0 on the set
By = 8°X E? f=1 on the set By = E! X 8!, and on the
subset (S° X S1) X {t} of (8° X 8t) X I, f =t. Otherwise
f takes values between 0 and 1 on E?® and has just one non-
degenerate critical point at the center. Clearly, f can be ex-
tended to the whole of M, as constructed in the last paragraph,
by setting f = ¢ on the points of (M, — Int By) X {t} in
(Mo — Int Bg) X I. If it has been arranged already that
(M, — Int By) X I and E?® have been put together to form a
differentiable manifold, then f will be a differentiable function
equal to 0 on M, and to 1 on M,;, and with just one non-
degenerate critical point at the center of E3.

With this example in mind, the corresponding construction
can now be described in the general case. Suppose that M, is
a differentiable manifold of dimension n and that M, is ob-
tained from it by a spherical modification of type r. The
modification is carried out by removing from M, a set By
diffeomorphic to S* X E», a tubular neighborhood of the
directly embedded sphere S7, and then replacing it by B; =
Er+1 X 8S»—1, To construct M, following the pattern of the
preceding example, start with (M, — Int Bg) X I. Part of
the boundary of this is of the form (S* X S8»—1) X I. On
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the other hand, the boundary S» of an n-cell E»*! can be ex-
pressed as the union 4 \U B\U C (cf. Exercise 5-12), where
A =8 XE~, B=E* X8 71andC = (8 X S1) X
I. Form the union now of (M, — Int By) X I and En+!,
identifying the subsets S7 X S» 1! X I appearing in both.
This automatically replaces A = By in M, — Int B, to form
My and B = By in M; — Int B; to form M;, and so forms a
manifold M having the disjoint union of M, and M, as
boundary.

Moreover, a function f is to be constructed on M as in the
three-dimensional example. Take a function f on E*+! as in
Exercise 5-14, such that on the boundary sphere 8*, f = 0 on
A, f=1on B, and on C, f has the value ¢ on the set 87 X
S»——1 X {t}. Also, f has exactly one nondegenerate critical
point at the center of E*+1. Then f can be extended to all of f
by setting it equal to ¢ on the set (Mo, — Int Bo) X {¢} in
(Mo - IntBo) X I.

If (Mo — Int By) X I and E"*! have been put together
properly, M will be a differentiable manifold and f will be a -
differentiable function. On (M, — Int Bo) X I the value of
f, namely ¢, the parameter on I, can always be taken as one
of the local coordinates, and so, by Lemma 4-3, f has no criti-
cal point there. In other words, its only critical point is the
nondegenerate one with type number r + 1 at the center of
Fnt+1,

The result obtained can be summed up as follows.

Theorem 6-1. Let M, be obtained from M, by a spherical
modification of type r. Then there is a differentiable manifold M
whose boundary s the disjoint union of Mo and M, and a differ-
entiable function f on M, equal to O on M, equal to 1 on M,
otherwise having values between 0 and 1 and having exactly one
nondegenerate critical point with type number r + 1.

A finite number of applications of this theorem gives the
following result.

Theorem 6-2. Let M, be obtained from M, by a finite number
of spherical modifications. Then there is a differentiable mani-
fold M whose boundary is the disjoint union Mo,\J M, and a
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differentiable function f on M with value 0 on My, 1 on M,,
otherwise with values between 0 and 1 and with a nondegenerate
critical point corresponding to each modification.

Definition 6-4. The manifold M constructed in this theorem
will be called the trace of the sequence of modifications trans-
forming M, into M,.

Another piece of terminology is useful. If a modification ¢
leading from M, to M, consists in removing a neighborhood
of a sphere 8" in M,; then, looking at the trace of ¢ and at the
orthogonal trajectories to the level sets of the corresponding
function f (in the notation of Theorem 6-1), it will be seen
(cf. Exercise 5-8) that the trajectories starting at points of S~
all end at the critical point of f. Thus as we go through the
levels of f from M, to M, S’ shrinks to a point along the
orthogonal trajectories. And then, as we continue beyond
the critical level, the sphere S*— ! appears, expanding from
the critical point along the orthogonal trajectories till it reaches
M,. And so it is convenient to speak of ¢ as shrinking S™ and
introducing S* 1L

6-5. COBOUNDING MANIFOLDS

There is another way of expressing Theorem 6-2, in terms of
a relation between manifolds known as cobounding.

Definition 6-5. Two compact differentiable manifolds M,
and M, are said to cobound or to be cobounding if there is a
compact differentiable manifold M such that the boundary of
M is the disjoint union M,\JU M;. In particular, if M, is
empty, M, is called a bounding manifold.

Examples

6-8. A sphere S” is a bounding manifold, since it is the
boundary of E»t+1,

6-9. If M, is a sphere with p handles, it is a bounding
manifold, for it is the boundary of the solid sphere with p
solid handles.
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These examples may seem rather trivial, but it is hard to
give significant examples. In general, the tests that must be
applied to a pair of manifolds to see if they are cobounding
are very complicated, and will not be described here.

On the other hand, the following result can be stated.

Theorem 6-3. If M, and M, are compact differentiable mansi-
folds, then they are cobounding if and only if each can be obtained
from the other by a finite number of spherical modifications.

Proof. If M, and M, are given cobounding, that is, if it is
given that their disjoint union is the boundary of a manifold
M, then by Theorem 6-2 there is a function f on M equal to
0 and 1 on M, and M,, respectively, with just a finite number
of critical points, all nondegenerate and all on different criti-
cal levels. Consider the level sets M. of f as ¢ increases from
0 to 1. By Exercise 5-4, M, remains topologically the same
until a critical level is passed, and then (Theorem 5-1) it is
changed by a spherical modification. This happens just a
finite number of times on the way from M, to M.

Conversely, if M, is obtained from M, by a finite number
of spherical modifications, Theorem 6-2 says that M, and M,
are cobounding.

6-6. DISPLACEMENT AND ISOTOPY

If the definition of a spherical modification is examined, it
appears that the operation depends on the sphere S” to be
shrunk and also on the expression, as a product, of a tubular
neighborhood of S” in the given manifold M,. On the other
hand, the first step in the construction of the modification is
the removal of the tubular neighborhood of S*. So another
sphere S7 with the same tubular neighborhood as S” would
give rise to the same modification. This will happen, for ex-
ample, if S is obtained from S* by a small displacement such
that ST meets each cellular slice of the product S™ X E» (the
tubular neighborhood of 87) in one point. 8”7 X E»~" can then
automatically be expressed as S7 X E», and so the same
modification is obtained whether we start with S”or S7. That
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is, the result M, of applying the modification shrinking S7 is
the same as that of the modification shrinking S7. Also, it is
not hard to see that the traces of these modifications are the
same.

Here it will be noticed that the product structure on the
tubular neighborhood of S} is determined by the correspond-
ing structure for 8. It is important to note that, even with-
out changing the sphere S’, a change in the product structure
of the tubular neighborhood of S* may change the result of
the corresponding modification. This is illustrated by the
following simple example.

Example

6-10. Take the sphere S? and the O-sphere S° on it as in
Example 6-4. Now there are actually two ways of express-
ing a neighborhood of S° as a product S° X E?, one obtained
from the other by reversing the sense of rotation on one of the
disks. This means that, when S X E?! is attached with the
appropriate identifications on the boundaries, the identifica-
tion can be done in two ways. One (the orientable way) is
as described in Example 6-4, the result being a torus. The
other (the nonorientable way) will give the one-sided Klein
surface (cf. Fig. 7-22).

Exercises. 6-2. Let S be a directly embedded sphere in a manifold M
and let B be a tubular neighborhood of S*. If two expressions of B as a
product S* X E~ are given, this corresponds to giving a diffeomorphism
fof Bon itself. That is, the point (p, ¢) in one product representation
of Bismapped by f on the point (p, g) in the other representation. Prove
that if f can be extended to a diffeomorphism of M on itself, the modifica-
tions corresponding to the two expressions will have the same result and
the same trace.

6-3. As a variation of the last exercise, suppose that S~ is directly
embedded in M and that B; and B; are two tubular neighborhoods of S,
both expressed as 87 X E». Thus, as in the foregoing, there is a map
fof Bion B,. Prove that if f can be extended to a diffeomorphism of M
on itself, the modifications constructed using B, and B, have the same
result and the same trace.

6-4. There is a special case of the last exercise that is important.
Let S have tubular neighborhoods B, C B; C Bs, where B; = 8" X E;,
1 =1,2,3, and the E; are solid spheres with center the origin in some
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(n — r)-space, and E; C E: C E;. Construct a diffeomorphism of
(n — r)-space on itself that is the identity outside E; and that maps
Ez onto F 1.

(Hint: Construct the map by shifting points radially inward to the
origin, the distance of shift being determined by a function like that of
Example 2-4.)

Hence, show that there is a diffeomorphism of M onto itself mapping
B; onto B;.

Combined with Exercise 6-3, the point of Exercise 6-4 is
that, in performing a modification shrinking a sphere S, the
tubular neighborhood of S* that is used can be taken arbi-
trarily small.

There are some more general forms of the results just de-
scribed, but the details will not be given here. The most im-
portant situation is that of two directly embedded spheres S,
and 8. that are the images of isotopic maps of S” into M.
Here in effect we can think of S, as being obtained from S,
by a large displacement that is made up of a sequence of small
displacements, as described at the beginning of the section.
It can be shown that a given product structure on a tubular
neighborhood of S; will induce a product structure on a tubu-
lar neighborhood of S: such that the corresponding modifi-
cations shrinking S; and S; give the same results and have
the same trace. This can be seen, for example, by repeated
application of the corresponding result on small displacements.

There is one other point in this connection that must be
examined; that is, a comparison must be made between the
traces of two sequences of modifications where the spheres
shrunk in one sequence are obtained from those shrunk in the
other by small displacements. The thing to notice is that it
is not sufficient to look at the traces of the individual modifi-
cations; attention must also be paid to the way in which they
are put together to form the traces of the sequences.

For the present purpose it is sufficient to look at the follow-
ing special case. Let ¢ be a modification transforming a
manifold M, into M,, the construction starting with the re-
moval of a tubular neighborhood B of a directly embedded
sphere S in M,. Let ¢’ be a second modification on Mo, which
starts by removing a tubular neighborhood B’ of a sphere S,
and suppose that there is a continuous map F: Mo X I — M,
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such that F restricted to M, X {0} acts as the identity of M,
on itself; restricted to M, X {1} it carries B’ X {1} onto B,
with the appropriate product structure; and restricted to each
set Mo X {t} it is a homeomorphism. Write g for the restric-
tion of F to Mo X {1}. Then, using the method of Exercise
6-3 there is a homeomorphism @ of the trace W of ¢ onto the
trace W’ of ¢’ whose restriction to M,is g=1. The idea now is
to adjust G so that its restriction to M, is the identity.

To do this define a map H of W’ on itself as follows. Noting
that, since M, is a noncritical level of a function on W’ (cf.
Theorem 6-2) it has a neighborhood of the form M, X Iin W',
with M, X {0} identified with M, (Exercise 5-2). Define H
to be the identity outside this neighborhood, and on this
neighborhood M, X I define

Note that H(p, 1) = F(p, 0) = p and so the definitions of
H on M, X I and outside M, X I fit together to form a con-
tinuous map. In fact, the conditions on F ensure that H is a
homeomorphism. Next, H(p, 0) = F(p, 1) = ¢g(p). Thus H
restricted to M, in W’ coincides with g. It follows that the
map HG is a homeomorphism of W on W’ whose restriction to
M, is gg7! = identity. Summing up the result:

Lemma 6-1. Let ¢ and ¢’ be modifications on M, satisfying the
conditions described in the foregoing. Then ¢ and ¢’ have the
same results and there is a homeomorphism between their traces
whose restriction to M, is the identity.

This can now be applied to sequences of modifications.
Suppose, for example, that a sequence of two modifications
¢1 and ¢ is applied to Mo, ¢; transforming M, into M, and
¢2 transforming M, into M,. Suppose also that ¢ is replaced
by a modification ¢, related to ¢, in the same manner as ¢’
and ¢ in Lemma 6-1. Write W,, W, W, for the traces of
é1, 2, By, respectively. Then the trace of the sequence ¢1, ¢»
is W=W,;U W, and that of the sequence ¢, ¢2 is W' =
WU W3, in each case the union being formed with the identi-
fication of the points of M;. Lemma 6-1 implies at once that
there is a homeomorphism of W onto W’; in fact, it is the
identity on W,.
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A similar idea can be applied to sequences of any number of
modifications.

Exercise. 6-5. Let S be a directly embedded sphere in M, with
tubular neighborhood B expressed as a product S X E. Let S’ be a
second sphere, a submanifold of B, meeting each cellular slice of B at one
point, and let B’ be a tubular neighborhood of S’ contained in B and such
that each slice of B’ is contained in a slice of B. Prove that S, §’, B, B’
satisfy the conditions of Lemma 6-1.

The result of this exercise is going to be important in Sec-
tion 6-8 on the rearrangement of modifications.

6-7. GENERAL POSITION

The idea on which the results of the next section are to be
based is quite easy to grasp intuitively, but the details of the
proofs are too complicated to be given here. The concept in-
volved will be motivated by means of examples.

Consider first two curves in the plane, intersecting at a
point p. If one or other of the curves is displaced slightly in
the plane, the displaced curves will continue to have a point
of intersection near p (Fig. 6-6). On the other hand, if one of
the curves is displaced out of the plane into 3-space, the inter-

FIGURE 6-6 Displaced blue curve in the plane still cuts the black
curve. Displace it upwards into 3-space and the intersection is removed.
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section is removed. Of course, a pair of curves in the plane
may not have isolated intersection points. But if, for ex-
ample, two curves have an arc in common, a small displace-
ment of one will give a pair of curves with isolated intersections
(Fig. 6-7). The idea illustrated here is that a pair of curves
in general position in the plane have isolated points of inter-
section, whereas if they are in general position in 3-space.
they have no points in common. Also, intersections of curves
in 3-space can be removed by small displacements.

To see what part the dimensions play in this we should
think of points in the plane as having two degrees of freedom.
That is, two coordinates have to be given to fix a point. A
point on a curve, however, has just one degree of freedom,
and so the condition of lying on a curve removes one degree
of freedom. Thus the condition of lying on two curves re-
moves two degrees of freedom. In general, therefore, the set
of intersections of the two curves should have no degrees of
freedom, and so should consist of isolated points. On the
other hand, a point in 3-space has three degrees of freedom,
whereas if it is to lie on a curve, it will have only one. Thus
the condition of lying on a curve in 3-space removes two de-
grees of freedom. The condition of lying on two curves will
remove four degrees of freedom, but since there are, in fact,
only three degrees of freedom, two curves in 3-space should
in general have no intersections at all. In addition, the dis-
cussion of Figs. 6-6 and 6-7 suggests that general position in
3-space can be achieved by means of small displacements.

Now, to carry out a similar intuitive argument in a more
general context, let M be a differentiable manifold of dimen-
sion n and N a submanifold of dimension r. A point of M
has n degrees of freedom, but if it lies on N, it has only 7.
The condition of lying on N thus removes n — r degrees of
freedom. If N’ is a second submanifold of dimension 7/, then
the condition of lying on both N and N’ should in general
remove n — r + n — r’ degrees of freedom. If this number
turns out to be greater than n, we would expect no inter-
sections. That is, submanifolds of dimensions r and ' with
r 4+ " < n should, if they are in general position, be disjoint.
Moreover, given any submanifolds N and N’, it should be
possible to attain this general position by a slight displace-
ment of one of them. Here a displacement of N, say, means
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FIGURE 6-7 Inlersections of curves in the plane are made isolated by
displacement.

replacing the inclusion map f: N — M by another map g¢:
N — M such that g(N) is a submanifold and g(p) is always

near f(p) = p.

6-8. REARRANGEMENT OF MODIFICATIONS

The results of the last two sections will now be combined
to prove an important theorem on sequences of modifications.
The first step is to show that, under suitable conditions, the
order of performance of two modifications can be switched
around.

So let ¢;1 be a modification of type r transforming a given
compact differentiable manifold M, into M; with trace W,
and let ¢, be a modification of type s transforming M, into
M, with trace W,. ¢; and ¢, are to shrink spheres 8™ in M,
and 8¢ in M, to points P; and P, in W, and W, respectively,
and introduce spheres S»——1 and S

Now suppose that s < r. Then the discussion of Section
6-7 shows that a slight displacement of S° can be made so that
it does not meet S*~1. By Exercise 6-5 this displacement of
S can be done so that the conditions of Lemma 6-4 are satis-
fied, thus neither the result nor the trace of the sequence ¢1, ¢-
of modifications is affected. In addition, S* and S*1, now
being disjoint, have disjoint neighborhoods. Since a modifi-
cation can be defined by using arbitrarily small tubular neigh-
borhoods of the spheres to be shrunk (remark following Exer-
cise 6-4), it follows that ¢: and ¢, in reverse can be defined by
using disjoint tubular neighborhoods of S»——1! and 8¢ and
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again this makes no difference to the result of the sequence
¢1, ¢2 or to its trace. The following has thus been proved.

Lemma 6-2. Let ¢1 and ¢, be as described at the beginning of
this section. Then, without changing the result or the trace of
this sequence of modifications, it can be assumed that the S* in
M, shrunk by s ts disjoint from the S*—! introduced by ¢:.
In fact, the tubular neighborhoods of these spheres corresponding
to the modifications ¢2 and ¢y in reverse are disjoint.

This lemma has an immediate consequence. For let B,
and B be the disjoint tubular neighborhoods of S»—! and
S¢ mentioned there. These would be the sets removed from
M, to start the construction of ¢; in reverse and ¢., respec-
tively. Now, referring back to the construction of the trace
of a modification, it will be seen that W, is the union of
(M, — Int By) X I with an (n + 1)-cell E;, while W, is the
union of (M, — Int B;) X I with an (n + 1)-cell E,, in each
case with the appropriate identifications. Also E; /M M, is
exactly By and Es /M M, is B.. Now it is easy to see that
W, contains the set B, X I, as a subset of (M; — Int By) X I,
while W, contains By X I, as a subset of (M; — Int By) X I.
Also, the union of E; and B; X I is still an (n + 1)-cell,
E} meeting M, in a set Bj homeomorphic to S»——1 X Er+,
and the union of E, and B, X I is an (n + 1)-cell, E; meeting
M, in a set B, homeomorphic to S¢ X Er—.

Exercise. 6-6. Check the statement made in the last sentence.

This all means, however, that the two modifications ¢, and
¢2 can be thought of as performed simultaneously on M,.
That is, if the sets B, and Bj are removed from M, and re-
placed by B; and a set S»——! X E*+!, all with the appropri-
ate identifications, M, is obtained. Moreover, the trace W =
W1 \U W, of the pair of modifications ¢, ¢ is constructed by
adding the cells E; and Ej; to (M, — Int By — Int By) X I with
the appropriate identifications. Hence, both with respect to
the final result and to the construction of the trace, the two
modifications ¢; and ¢, appear on an equal footing.

Note that all this has been done with the hypothesis s < r.




Spherical Modifications 97

The point of this was to ensure that S*—1 and S*in M, could
be made disjoint. The same conclusion would hold if these
spheres were given to be disjoint, regardless of the relation
between s and r.

Continuing with the main argument, because ¢; and ¢» now
appear on an equal footing, we can switch the order of per-
forming them. That is, we can construct the modification ¢,
first and then perform ¢; on the result, and the final result
and the trace will be the same as for the given sequence ¢1, ¢..
This gives the main theorem of this section.

Theorem 6-4. If M, s obtained from M, by two modificalions,
o1 of type r followed by ¢2 of type s with s < r, then the same
result M, can be obtained by a modification of type s followed by
a modification of type r, and the trace of the new sequence will be
the same as that of the given one.

Repeated application of this result yields the following
theorem.

Theorem 6-5. If a sequence of modifications is given, it can be
rearranged, without changing final result or trace, so that modifi-
cations of type s are performed before those of type r whenever
s<r.

6-9. AN APPLICATION TO 3-MANIFOLDS

Let M be a compact orientable three-dimensional differenti-
able manifold. If two disjoint cells are removed from M, a
manifold M’ is obtained with a boundary consisting of two
disjoint 2-spheres M, and M,. Thus M’ can be thought of
as the trace of a sequence of modifications transforming M,
into M.. In this case the only possible types of modification
are 0 and 1, and by Theorem 6-5 it can be assumed that all
those of type O are done first, giving a manifold M;. Then
the modifications transforming M, into M, are all of type 1
or, what comes to the same thing, the modifications transform-
ing M, into M, are all of type 0. Remember that all this re-
arrangement does not affect M’. Replacing the 3-cells that
were removed, we now see that M is the union of two mani-
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folds W, and W, with the common boundary M,;. Since the
modifications leading from a 2-sphere to M, are all of type 0
and of the orientable kind, W, and W, are both solid spheres
with handles. Hence, the following has been prowved.

Theorem 6-6. A compact orientable three-dimensional mani-
fold s the union of two solid spheres with handles, the surfaces
being identified.

6-10. INTERPRETATION OF THEOREM 6-5
IN TERMS OF CRITICAL POINTS

Throughout this chapter not much attention has been paid
to making the constructions differentiably. To do this re-
quires some extra care. For example, when the trace of a
modification is constructed, the various pieces must be put
together to form a differentiable manifold. It was remarked
that this can be done, and in Theorem 6-1 it was stated with-
out proof that each modification of type r will then correspond
to a differentiable function on the trace with a critical point of
type number r 4+ 1. Similarly, the construction described in
Section 6-8 for rearranging modifications can be done in such
a way that the pieces are always put together to form differ-
entiable manifolds. Thus, suppose that M is a differentiable
manifold with boundary M,\J M;, regarded as the trace of a
sequence of modifications transforming M, into M,, and sup-
pose that the sequence is arranged as described in Theorem 6-5.
It then follows that there is a differentiable function f on M,
with values between 0 and 1, equal to 0 on M, and equal to
1 on M,, with a finite number of nondegenerate critical points
such that if P; and P, are two of them with the type number
of P, less than that of P,, then f(P;) < f(P:). Such a func-
tion is described in [7] as a nice function on M.
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7-1. INTRODUCTION

As an illustration of the use of the ideas introduced up to
this point, the classification of two-dimensional manifolds will
now be described. In the classical approach to this problem
the manifolds are given as simplicial complexes that are then
reduced to a set of canonical forms by a sequence of cutting
and pasting operations. It is shown in this way that a com-
pact connected orientable 2-manifold is homeomorphic to a
sphere with a number of handles attached, and a compact
connected nonorientable 2-manifold is homeomorphic to a
sphere in which circular holes have been cut, after which dia-
metrically opposite pairs of points on the circumferences of
the holes have been identified. In each case the number of
handles or number of holes is a topological invariant of the
surface. These results will now be obtained by taking the
manifolds to be differentiable and then by studying the criti-
cal points of functions on them. The orientable and non-
orientable cases will be examined separately.

99
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7-2. ORIENTABLE 2-MANIFOLDS

Let M be a compact, connected, orientable 2-manifold and,
as in Theorem 4-2, construct on it a function f with a finite
number of nondegenerate critical points. In this situation
there are just three types of critical points, minimum, saddle
point, and maximum, corresponding to type numbers 0, 1, and
2, respectively. The argument of Theorem 6-5 shows that f
can be so chosen that the minima all correspond to smaller
values of f than the saddle points and these in turn corre-
spond to smaller values than the maxima. In Fig. 7-1, M is
pictured as being in 3-space with f equal to the value of the
last coordinate, and the critical points are arranged as just
described. Incidentally, it is not yet obvious, although it
happens to be true, that M can be embedded in a space of
dimension three.

As in Chapter 6 we can now think of M as the trace of a se-
quence of modifications on one-dimensional manifolds. Each
minimum corresponds to the introduction of a circle, so that,

FIGURE 7-1
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FIGURE 7-2

if we consider the family of levels of f, starting from the bot-
tom, a finite number of circles will have been introduced after
all the minima are passed. Next, on this 1-manifold, a union
of circles, a number of modifications of type 0 are performed,
corresponding to the saddle points on M. Finally, modifi-
cations are performed corresponding to the various maxima of
f, a circle being extinguished at each such point.

Considering first the type 0 modifications, it will be noticed
that these are of three kinds, which can be conveniently called
connecting, disconnecting, and twisting. A connecting modi-
fication performed on a level M, of f reduces the number of its
components by one, two of the circles being joined to form one.
Figure 7-2 shows part of M that forms the trace of such a
modification. For example, in Fig. 7-1 the modification corre-
sponding to the critical point P, is of the connecting kind.
The disconnecting kind works in exactly the opposite way (cf.
Fig. 7-3). In Fig. 7-1, for example, the modification corre-
sponding to @ is a disconnecting modification.

FIGURE 7-3
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FIGURE 7-4

In the third kind of modification of type 0, a O-sphere on a
circle is to be shrunk (cf. Fig. 7-4), but this time the circle is
twisted over in a neighborhood of one of the component points
of the O-sphere (Fig. 7-5). The result of the modification (Fig.
7-6) is again a circle. The twisting of the circle in this kind of
modification means that the level curves of the corresponding
function are not plane curves, and so the trace of the modifi-
cation cannot be contained nonsingularly in Euclidean 3-space.

FIGURE 7-5

FIGURE 7-6
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FIGURE 7-7

Consider now the trace W of the modification illustrated in
Figs. 7-4, 7-5, and 7-6. There is a function f on W having
one critical point P. The corresponding critical level consists
of two circles C; and C intersecting at P (cf. Fig. 7-7). The
third circle C in Fig. 7-7 is supposed to be a noncritical level
of f below P; in other words, a circle on which the twisting
modification is to be performed. The shaded strip in Fig. 7-7
is supposed to be the part of W between C and Cy. Also, Fig.
7-8 represents a rectangle with the ends identified as shown by
the arrows to form a Mobius strip. The shaded strip on W in
Fig. 7-7 can be mapped on the shaded part of the Mobius strip
by identifying Cy with the center line of the strip and identi-
fying arcs on W orthogonal to the levels of f with the vertical
segments on the rectangle of Fig. 7-7. Similarly, the other
half of the Mobius strip can be identified with part of W
between C; and a noncritical level above P. Thus C; has a
neighborhood on W that is a Mobius strip. That is, C; is not
directly embedded in W, which is therefore nonorientable.
For the moment, orientable manifolds only are being dis-
cussed, and so the O-type modifications will be all connecting
or disconnecting.

Suppose now that C;\U C>\J - - - U' C, is a level M of f
above all the minima. Thus it is the 1-manifold to which the

FIGURE 7-8
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type 0 modifications are to be applied. And suppose that the
type 0 modifications can be divided into two sets, one oper-
ating only on C; U C.\JU - - - U (C,_; and the other only on
C.. The traces of these two sets, with cells added at the top
and bottom corresponding to the maxima and minima of f,
would then be disjoint 2-manifolds whose union would be M,
contradicting the connectedness of M. Hence, there must be
a modification, necessarily of the connecting kind, shrinking a
O-sphere that consists of a point on C, and a point on one of
the other C;. Rearrange the O-type modifications so that this
one is done first. The remaining modifications of type 0 then
operate on a;union of n — 1 circles. Repeating this argument,
it follows that the given sequence of modifications can be re-
arranged so that the first n — 1 of them join the n circles C; to
form a single circle Co. Geometrically this means that the
saddle points P; in Fig. 7-1 are pulled down so that they lie
below the others.

Now any two of the C,, say C and Cs, are the boundaries of
2-cells E; and E, on M. If they are joined by a connecting
modification, the resulting circle also bounds a 2-cell (Fig. 7-9)
obtained by adding E, and E, to the trace of the modification.

FIGURE 7-9
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Repeating this n — 1 times, we find that the part of M below
Co is a 2-cell E,. We can now replace f by a new function
whose level curves above Cy are as before, but whose level
curves below Cy form a family of circles shrinking to a point
on E, That is, f will have just one minimum on M.

A similar argument shows that the initial function f can be
adjusted so that it has just one maximum on M. The result
so far obtained can be formulated as follows.

Lemma 7-1. On a compact connected orientable 2-manifold
there is a function whose critical points are all saddle points
except for one minimum and one maximum.

Alternatively this lemma says that the manifold can be re-
garded as the trace of a sequence of modifications of type O,
starting with a circle C and ending with a circle C;, with cells
E, and E, added at the top and bottom (Fig. 7-10). With
this terminology, the next step is to rearrange the modifica-
tions leading from C, to C; so that all the disconnecting modi-
fications are done first.

Now the cell E, (cf. Fig. 7-10) is homeomorphic to a 2-sphere
with a hole in the surface, the hole having boundary C,. If
the trace of a disconnecting modification (cf. Fig. 7-3) is added,
with identification along C,, the result is a sphere with two
holes in the surface. Proceeding inductively, we see that,
if the trace of k¥ — 1 disconnecting modifications is added to E,
the result is a sphere M, with k holes in it having boundaries
I'y, Ty . . ., T%say. The remainder M, of M is obtained as
the trace of connecting modifications on the union of the T,
the cell E; being added on top. However, connecting modi-
fications leading from C, to C; are disconnecting modifications
leading from C; to Co, so that M, is also a sphere with k holes.
M is then constructed by forming the union of M; and M,
with identification of the boundaries of the holes in pairs.
The following result has thus been proved.

Lemma 7-2. A compact connected orientable 2-manifold s
homeomorphic to a manifold M (k), for some k, where M (k) is
the union of two spheres each with k holes, the circumferences
of the holes being identified in pairs (cf. Fig. 7-11).
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-

FIGURE 7-10

FIGURE 7-11
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This lemma yields a sequence of manifolds, namely the M (k),
such that every compact, connected orientable 2-manifold is
homeomorphic to one of them. But to give this real meaning
as a classification theorem, it will have to be shown that, for
h £ k, M(h) and M (k) are not homeomorphic. However, the
M (k) are not in the form normally used for classifying the
2-manifolds, and so first Lemma 7-2 will be translated into a
more usual form.

To make the translation, M (k) will be looked at from a
different point of view: suppose a set of k — 1 circles C,, Cs,
... ,Ck_1 is drawn on M (k) as indicated in Fig. 7-11. If
M (k) is split into two spheres each with & holes with bounda-
ries 'y, Ty, . . . , T, then on each copy a set of arcs is drawn
joining a point of T'; to a point of I'iy; for each 7, and the
C; are obtained by joining up these arcs in pairs to form circles.
The C; are directly embedded in M (k), and if the modifications
on M (k) that shrink these circles are performed, the result is a
2-sphere. Reading this statement backward, we see that M (k)
is the result of performing ¥ — 1 modifications of type on the
2-sphere, all the modifications being of the orientable kind (cf.
Example 6-10). Each such modification has the effect of at-
taching a handle to the 2-sphere (Fig. 6-2). Thus if Z;_; de-
notes the surface of a 2-sphere with k¥ — 1 handles, it follows
that M (k) is homeomorphic to Z;_i.

With a suitable change of notation, Lemma 7-2 takes the
following form.

Lemma 7-3. A compact connected orientable 2-manifold is
homeomorphic to Z, for some p, where Z, is a sphere with p
handles.

Exercise. 7-1. Give an alternative proof that M (k) is homeomorphic
to 21 by applying to 2:_; the sequence of steps in the proofs of Lemmas
7-1, 7-2. ’

The final step in this discussion is to show that 2, and Z,
are not homeomorphic if p # gq.

First note that there are p disjoint circles on Z,, one for
each handle, as indicated in Fig. 7-12, such that if 2, is cut
along them, the resulting surface is still connected. The



108 Differential Topology

FIGURE 7-12

maximum number of disjoint circles with this property on a
surface is clearly a topological invariant of the surface.

Definition 7-1. The maximum number of disjoint circles
along which a surface can be cut without disconnecting it is
called the genus of the surface.

There is a theorem, which will not be proved here, that says
that the genus of a compact 2-manifold is finite, and in par-
ticular that of a sphere is zero (cf. [9]). This theorem will be
needed in the following discussion. The proof that 2, and
24 are not homeomorphic when p 5 q is essentially a matter
of proving that the genus of 2, is p.

Lemma 7-4. Let the surface M’ be obtained from M by a modifi-
catton of type 0. Then the genus of M’ is greater than that of M.

Proof. Let the genus of M be p and let Cy, Co, . . . , Cp be
disjoint circles on M such that M remains connected when cut
along them. It can be assumed (c¢f. Lemma 6-1) that the
O-sphere to be shrunk in transforming M to M’ does not meet
the C;. Then (Fig. 7-13) Cy, Cs, . . . , C, still appear in M’,
but in addition there is a circle Cpy1 around the added handle,
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FIGURE 7-13

not meeting Cy, Cy, . . . , C, and such that M’ can be cut
along Cy, Cs, . . ., Cpy1 without disconnecting it. Hence,
the genus of M’ is at least p + 1, which is greater than the
genus of M.

If this lemma is applied repeatedly, the following result is
obtained.
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Lemma 7-5. Let the genus of M be p and let M’ be obtained
from M by p modifications of type 1, remaining connected all the
time. Then M’ is a sphere.

Proof. After each modification in the transformation from
M to M’, Lemma 7-4 implies that the genus is decreased by
at least 1. It follows that after p modifications, the genus
must be zero. But the resulting M’ will be a sphere with
¢ handles for some ¢, and since the genus is zero, ¢ must be
zero. Thus M’ is a sphere.

Note. The modifications leading from M to M’ here must,
in fact, shrink a set of p disjoint circles on M. Also, looking
at the process backward, this means that the surface M of
genus p must be homeomorphic to a sphere with p handles.
The essential content of Lemma 7-5 for the present purpose
is that a finite number (equal to the genus) of modifications
of type 1 will reduce an orientable surface to a sphere, and
any further modifications will disconnect it, since the genus of
a sphere is 0.

The main result of the section can now be proved.

Theorem 7-1. A compact connected ortentable 2-manifold s
homeomorphic to some Z,, and any two Z, and Z, with p # q
are not homeomorphic.

Proof. The first part was proved in Lemma 7-3. Suppose
now that 2, is homeomorphic to 2, with ¢ > p. A sequence
of ¢ — p modifications of type 1 can be performed on X,
shrinking circles round ¢ — p of its handles, giving Z, as the
result. But the assumption that 2, and Z, are homeomorphic
means that these modifications can be thought of as performed
on 2, giving 2, as the result. Applying the same modifi-
cations repeatedly would result in an arbitrarily long sequence
of modifications of type 1 operating on 2, and leaving it con-
nected. This contradicts the earlier remark that after a cer-
tain finite number of modifications of type 1 on a compact
orientable 2-manifold it must become disconnected. Hence,
2, and Z, cannot be homeomorphic.
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Exercises. T7-2. Prove that if a modification of type 1 is performed on
2., the result, if connected, is 2, with ¢ < p.

(Hint: Show that if ¢ > p, there would be an arbitrarily long sequence
of modifications of type 1 on 2, leaving it connected.)

7-3. Prove that the genus of 2, is p. (It is trivial that the genus of
2, is at least p. Suppose it is greater. Construct a sequence of modi-
fications, using the last exercise, that will reduce 2, to a sphere, but
will leave it with genus greater than 0.)

7-3. THE NONORIENTABLE CASE

Before looking at the nonorientable case in general, it will
be helpful to examine a simple special case, to get some under-
standing of the way in which a twisting modification works
(cf. Figs. 7-4, 7-5, 7-6). Consider, then, the projective plane;
it can be represented as the surface of a 2-sphere with all pairs
of diametrically opposite points identified. Thus if the sphere
is taken to be z2 + y? + 22 = 1 in 3-space, the point (z, y, 2)
is to be identified with (—z, —y, —z). Since the function

f@,y,2) = «* + 2y* + 32°

takes the same value at (—z, —y, —2) as at (z, y, 2), this for-
mula defines a function f on the projective plane. We can
now work out the behavior of the level curves of f on the
projective plane by examining the levels of 2 4+ 2y2? 4 32% on
the sphere, remembering that pairs of opposite points are to
be identified.

The level curves on the sphere are the intersections of the
sphere with the family of ellipsoids

x? 4+ 2y + 322 = c.

Clearly, if ¢ < 1, there are no real intersections. Whene = 1,
there are two points of intersection, namely (+1, 0, 0) (see
Fig. 7-14). This, of course, means one point on the projective
plane, and will correspond to the minimum P, of f on the projec-
tive plane. As cincreases from 1 to 2, the intersection will be a
pair of ovals on the sphere (Fig. 7-15). The identification of
opposite points means that this appears as one circle on the
projective plane. When ¢ = 2, the intersection of the ellipsoid
and the sphere is as in Fig. 7-16. Thus f has a critical point at
(0, £1, 0), which again represents one point P; on the pro-
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FIGURE 7-14

jective plane. Then as ¢ varies from 2 to 3 the intersection
of the sphere and the ellipsoid is again a pair of circles, as in
Fig. 7-17, representing one circle on the projective plane.
These shrink, as ¢ tends to 3, to the points (0, 0, +1) on the
sphere, representing one point P, on the projective plane.

FIGURE 7-15

FIGURE 7-16



Two-Dimensional Manifolds 113

FIGURE 7-17

Examining more closely the transition across the critical
level through P,, we note that the projective plane can be
regarded as the hemisphere y < 0 on the unit sphere, with
the opposite points of the circumference identified. For con-
venience this hemisphere is flattened out into a disk in Fig.
7-18. This figure shows the critical level of f through P,, as
well as noncritical levels on either side of it. The arcs a and b
form the lower noncritical level, the arcs ¢ and d the upper one,
and the lettering round the edge indicates the identification of
opposite points. The arrows on a and b show a direction of
rotation round the lower level of f, and it will be noticed that
in a neighborhood of P, they lie in the same direction. Com-
paring this figure with Fig. 7-5 permits us to see that the tran-
sition from the lower to the upper noncritical level involves a
twisting modification.

Another way of describing the foregoing situation is that
the trace of a twisting modification is a projective plane with

FIGURE 7-18
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FIGURE 7-19 Step-by-step construction of a crosscap.

two holes cut in it. Thus the trace of a sequence of k twisting
modifications can be obtained by taking k projective planes,
each with two holes in it, and identifying the boundary of one
hole in each plane with the boundary of one hole in the next.

There is another convenient terminology that can be used in
the last construction. Let M; and M. be any two connected
manifolds of the same dimension. Take points P; and P; on
M, and M., respectively, and remove cellular neighborhoods
U, and U, of Py and P,, respectively. Form the union of
M; — Uyand M, — U,, identifying the boundaries of U; and
U,. The result is called the connected sum of M, and Mo,.
Note that it is the result of a modification of type 0 performed
on M,\J M,, shrinking the sphere P;\U P,.

Thus, using the terminology just introduced, the trace of a
sequence of k twisting modifications is the connected sum of
k projective planes with two holes cut in the final result.

The construction of the connected sum of a manifold M with
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a projective plane can be described alternatively as follows.
The plane can be represented as a disk with diametrically
opposite points of the circumference identified. To connect
this to M, holes are cut in both M and the disk. The disk
thus becomes an annulus or, what is the same thing, a cylinder,
with the diametrically opposite points on one end identified.
If this identification is actually carried out in 3-space (cf. Fig.
7-19), a surface called a cross-cap is obtained. Note that the
self-intersection is simply the accidental result of trying to
construct the cross-cap in 3-space. So the connected sum of
M and the projective plane is obtained by identifying the
boundary of the cross-cap with the boundary of a circular
hole in M. This operation is called attaching a cross-cap to
M. Note that the same result would be obtained by cutting
a hole in M and identifying diametrically opposite points of
its boundary.

The rest of the discussion of nonorientable 2-manifolds will
be carried out in the following sequence of exercises.

Exercises. 7-4. Let M be a compact connected nonorientable 2-mani-
fold. Show, as in Section 7-2, that there is a function f on M with one
maximum, one minimum, and a finite number of saddle points. Re-
arrange the saddle points so that the corresponding modifications of
type O are arranged with the disconnecting kind done first, then the
connecting kind, and finally the twisting kind. Hence, show that M is
the connected sum of an M (k), as in Lemma 7-2, and a number of pro-
jective planes. Or, in other words, M can be represented as a sphere
with holes in it, some pairs of holes being joined by handles, other holes
being filled by cross-caps.

7-5. In Fig. 7-20 the letters and arrows show identifications, so that
the union of the two annuli with the given identifications is the con-
nected sum of two projective planes, or two cross-caps joined base to

4 c

FIGURE 7-20
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FIGURE 7-21

base. By cutting along e, f, g, h as shown and reassembling, show that
this surface is homeomorphic to a cylinder with the ends identified as
shown in Fig. 7-21. (This surface is the Klein bottle.) Figure 7-22
shows the identification carried out. Again note that there is a self-
intersection when the surface is constructed in 3-space.

7-6. Give an alternative proof of the last exercise by constructing
a function on the Klein bottle with one maximum, one minimum, and
two saddle points corresponding to twisting modifications.

7-7. Note that the Klein bottle is the result of performing a modifica-
tion of type 0 on the sphere in the nonorientable way (cf. Example 6-10).

Now if M is a projective plane and a type 0 modification is performed
on it, there is no way of telling whether it is of the orientable kind or not.
Hence, show that the connected sum of a Klein bottle and a projective
plane is homeomorphic to the connected sum of a torus and a projective
plane. Deduce that the connected sum of a torus and a projective plane
is homeomorphic to the connected sum of three projective planes.

FIGURE 7-22
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7-8. By repeated application of the last exercise, show that the con-
nected sum of a 2, with any number of projective planes is itself a con-
nected sum of projective planes.

7-9. The preceding exercises show that a compact connected non-
orientable 2-manifold is homeomorphic to a manifold N(k), the con-
nected sum of k projective planes, for some %, or the result of attaching
k crosscaps to a sphere. It is now to be shown that N (k) is not homeo-
morphic to N(k) for o % k. Check first that if N’ is obtained from N by
attaching a crosscap, the genus of N’ is greater than that of N. Hence
(cf. Lemma 7-5), show that there is a finite number of operations, each
of which is either a type 1 modification or the removal of a cross-cap,
that reduces a given surface to a sphere, while any further such operations
will disconnect it.

7-10. Use an argument like that of Theorem 7-1 to show that N(h)
and N (k) are not homeomorphic if & = k.

7-11. Prove that the genus of N (k) is k.



Second Steps

The aim of this chapter is to give some indication of the
way in which this subject can be developed beyond the very
elementary ideas described up to now. To do this in detail
would require a deeper knowledge of a number of topics in
algebraic topology, and as this is beyond the scope of this
book, the ideas treated here will only be sketched in an intui-
tive manner. To follow this up in more detail, the guide to
further reading should be consulted.

8-1. KILLING OF HOMOTOPY CLASSES

The idea involved here has already been illustrated in Ex-
ample 6-5, where a torus was transformed into a sphere by a
modification of type 1. This transformation is a process of
simplification. That is, the sphere can be thought of as sim-
pler than the torus, in the sense that any closed path on the
surface of the sphere can be shrunk to a point on the surface,
whereas, for example, the circle a in Fig. 8-1 cannot be shrunk
to a point on the surface of the torus. (These statements are
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FIGURE 8-1

made as being intuitively obvious; for a rigorous treatment
they need accurate formulation and proof.)

Consider now how this idea can begeneralized. The first
step is to describe a classification of closed curves in a mani-
fold M. A closed path based ona point 2 of M is a continuous
map f: I — M where I is the unit interval of real numbers,
with the condition that f(0) = f(1) = z. Alternatively, f can
be thought of as a map of a circle into M, a selected point of
the circle being mapped on z. Two such paths f and g will be
called homotopic, the notation being f ~ g, if there is a con-
tinuous map F: I X I — M such that

F(S, 0) = f(S)
F(s, 1) = g(s) | forall s€&€ I,

FO,t) = F(1,t) = z, forall t& I.

Geometrically this means that F maps a square into M so that
the bottom is mapped by f, the top by g, and the vertical
sides onto . And intuitively this means that if ¢ is thought
of as standing for time, then throughout a unit time interval
the path f is continuously deformed into g. It turns out that
this relation between paths is an equivalence relation, and so
the set of closed paths based on z can be divided into equiva-
lence classes, known in this context as homotopy classes.

The set of homotopy classes of closed paths on M based on z
will be denoted by =1(M, ). This set can now be given an
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algebraic structure as follows. If f and g are two closed paths
based on z, define fg to be the path obtained by tracing out f
first, followed by g. The defining formulas for A~ = fg are

h(s) = f(2s), 0<s<4%
h(s) =g(2s — 1), F<s<1L

Then if f ~ f' and g ~ ¢, it can be shown that fg ~ f'¢’ and
so, denoting the homotopy class of f by f, and similarly for
other paths, the product of two homotopy classes can be de-
fined by
1§ =1rg

the point to notice being that the right-hand side depends only
on the classes f and § and not on the particular paths f and ¢
representing them. It can be shown (cf. [9]) that this multi-
plication is a group operation, the identity being the class of
the constant path, which maps all of I on z, and the inverse
being obtained by reversing paths. Thus =:1(M, x) becomes a
group, the fundamental group of M.

All the foregoing can be done for any topological space.
However, since M is a compact differentiable manifold, it can
be shown that =1 (M, z) is finitely generated. Moreover, if the
dimension of M is greater than 2, a general position argument
(Section 6-7) shows that a given homotopy class always con-
tains a path f that is a differentiable homeomorphism of a
circle into M. If M is orientable, then this circle will be
directly embedded (Definition 6-2).

Suppose now that M is an orientable differentiable mani-
fold of dimension greater than 2, and let @i, @, . . . , @ be
generators of w1(M, z). As described in the foregoing, @, can
be represented by a circle «, directly embedded in M. Per-
form a modification of type 1, shrinking «, and transforming
M into M’'. Roughly speaking, this modification has the effect
of supplying a disk (in M’) of which e, is the boundary. And
so it turns out that in M’ «, is homotopic to a constant. In
other words, the homotopy class @ becomes the identity. It
can be shown that the transformation of M into M’ does not,
however, interfere with the other generators @i, @z, . . . , @r-1.
Thus the fundamental group of M’ is obtained from that of M
by replacing the one generator @, by the identity. This oper-
ation is usually called killing the class a@,. Clearly, if this kind
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of operation is repeated for the other generators, the whole
fundamental group can be killed.

This result can be stated by saying that a given orientable
differentiable manifold can be transformed by spherical modi-
fications of type 1 into a manifold with trivial fundamental
group. Or, using Theorem 6-3, the given manifold cobounds
a manifold with trivial fundamental group. Note that the
condition that the dimension be greater than 2 is not needed,
since an orientable 2-manifold is a sphere with handles, and
it is easy to see that this can be transformed into a sphere by
modifications of type 1, each shrinking a circle around a handle.

The ideas just presented can be generalized in yet another
way. An element of (M, x) can be thought of as a homotopy
class of circles in M. Other groups =.(M, ) can be defined
whose elements are homotopy classes of r-spheresin /. Then
classes represented by directly embedded r-spheres can be
killed by modifications of type r. Operations of this type
can lead to simplifications of the structure of the given mani-
fold and can be of assistance in classification problems.

8-2. COMPLEMENTARY MODIFICATIONS
AND CANCELLATION

It has already been seen that if M’ is obtained from M by a
modification of type r, shrinking S” and introducing S»——1,
then we can return from M’ to M by a modification of type
n — r — 1, shrinking S»—"—! and introducing S~. Under cer-
tain conditions, however, there is a more interesting and less
obvious way of reversing the effect of a modification. Con-
sider first the following example.

Example

8-1. Start with a 2-sphere M and transform it into a torus
by a modification ¢ of type O (orientable!) shrinking a 0-sphere
S°, as described in Example 6-4. Let B be a tubular neighbor-
hood of S°, namely, a pair of disjoint disks. The boundary of
B is of the form S° X 8! (a pair of circles) and this contains a
set S° X {p} for a fixed p, which can be thought of as a dis-
placed copy of S°.
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Now 8° is the boundary of a 1-cell E! in M. This can be
adjusted so that it meets the boundary of B in §° X {p}, and,
to save extra notation, the part of Ej in B will be dropped,
so that S° X {p} appears as its boundary.

Now to get the torus M’ the handle E' X 8! is attached to
M — B. There is a segment E' X {p} on this handle whose
end points join up with those of Ej to form a circle S* on the
torus. Clearly, if a modification ¢’ of type 1 is performed on
the torus, shrinking this circle, the 2-sphere is recovered.

Examining this process more closely, we can obtain some
more information. It has already been seen that the trace of
¢ is a solid torus with a spherical hole cut out of it, the bound-
ary of the hole being M and the outer boundary of the torus
being M’ (Example 6-7). The level surfaces of the associ-
ated function (c¢f. Theorem 6-7) start off with A/ and are all
2-spheres until the critical level is reached. This level has
the form of a torus with a circle pinched to a point. Beyond
the critical level all the level surfaces are tori. It will be seen
that, as we go through the set of level surfaces, the segment E
appears on each one, until its ends are joined together on the
critical level to form S, and then beyond that a copy of S!
appears on each level surface. Now construct the combined
trace of ¢ followed by ¢’ or, what comes to the same thing,
attach the trace of ¢’ to that of ¢ that has already been con-
structed. The level surfaces in the trace of ¢’ can be thought
of as an expanding family of tori with the circle S! shrinking
to the critical point corresponding to the modification ¢’
Beyond that critical level, the levels are all 2-spheres, and so
the combined trace turns out to be a solid sphere with a spheri-
cal hole cut out of it. The interesting point to note is that
this combined trace is actually of the form M X I. In other
words, the two modifications ¢ and ¢’ not only cancel, in the
sense that the sequence ¢ followed by ¢’ leads back to M,
but they also have the most trivial possible trace, namely,
M X I.

It will be seen that the essential point that makes the pre-
ceding example work is that the sphere S” shrunk in the first
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modification is the boundary of a cell E5*! in M, which is
closed up to form a directly embedded sphere S*+! in M’.
Then the second modification ¢’ shrinks that sphere. It will
now be shown that whenever this condition holds, the se-
quence of modifications ¢ followed by ¢’ has the trace M X I.

So let S* be a directly embedded sphere in a manifold M
and suppose that S is the boundary of a cell E5*' homeomor-
phically and differentiably embedded in M. A modification
¢ is going to be constructed, shrinking the sphere S* with a
product structure on a tubular neighborhood satisfying this
additional condition: the tubular neighborhood B has the form
S™ X E* and its boundary has the form S X S»——1,  Assume
that E5*' can be adjusted by a small displacement so that its
intersection with the boundary of B is of the form 8™ X {p},
where p is a point of S»——1. It will now be convenient to
think of E%+! as being contained in M — B; then its boundary
sphere 8” X {p} is on the common boundary of Band M — B.

The construction of M’, the transform of M by ¢, is carried
out by adding E™*! X S*——1to M — B with suitable identifi-
cation of boundary points. In particular, the cells E~+! X {p}
and E§+! are joined along their boundaries to form a sphere
S™+1in M’. Assume the additional condition that this sphere
S+ is directly embedded. There are ways of ensuring this
by conditions on the product structure on B used in con-
structing ¢, but this will not be discussed here. Of course,
this condition is not automatically satisfied. It is not satis-
fied, for example, in the case of a modification of type O that is
nonorientable.

Assuming, then, that S7+! is directly embedded, let B’ be a
tubular neighborhood of it, expressed as a product, and let ¢’
be the corresponding modification of type r 4+ 1 shrinking S+
Note that if S»—"—!is expressed as the union of two cells 7!
and E5~—1 the former containing p, then B’ can be expressed
as the union of the neighborhood E7! X E}~1 of the cell
E+1 X {p} in Et! X S* ! and a neighborhood of the cell
Eittin M — B. The latter neighborhood is itself an n-cell Ej.

Now consider the construction of the combined trace of the
sequence of modifications ¢ followed by ¢’. It will be remem-
bered that the trace of ¢ is obtained from (M — B) X I by
adding an (n + 1)-cell E, with suitable identification of bound-
ary‘points. The intersection of E with M is B, while its inter-
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section with M’ is the set E/t! X S»—1 added to M — B in
the construction of ¢. On the other hand, the trace of ¢’ is
obtained from (M’ — B’) X I by adding an (n + 1)-cell E’
whose intersection with M’ is B’. Thus the intersection of
E and E’ is the intersection of B’ with the set Ev+1 X Sr——1,
This intersection can be written as E™+! X E}~1 (cf. the re-
mark made earlier on the construction of B’). The point is
that this is an n-cell. Thus the (n 4+ 1)-cells £ and E’ inter-
sect in an n-cell that lies on the boundary of each. It follows
that E\J E’ is an (n + 1)-cell.

Some more pieces are to be added now to K \U E’, so that
the result is still an (n + 1)-cell. First, add the set Ef X I
in (M — B) X I, where E} is the neighborhood of Ej*! in
M — B, as introduced earlier.

This set meets £\U E’ in the union of two sets, namely,
Ej X {1} (which is its intersection with E’) and a set of the
form S” X E}—=! X I (which is its intersection with E; this
arises since the intersection of Ej with B is of the form S X
Ei—1). It is then easy to see that the union of this set
E} X I with E'\U E’ is still an (n 4+ 1)-cell.

As an indication of the method of proof of this last state-
ment, note that whenever E»*! is an (n + 1)-cell with bound-
ary sphere S*, then for any n-manifold K with boundary
K C 8», the union of E**! and K X I, the points of K being
identified with those of K X {0}, is an (n + 1)-cell. This is
almost trivial. The present situation is a little more difficult:
there is a subset L of the boundary of K such that S* contains
aset L X I withL X {0} identified with L, L X I being other-
wise disjoint from K, and this set L X I in S* is identified
with L X I in K X I. And it has to be shown that the
resulting union is still an (n + 1)-cell.

Now it will be noticed that the points added to £ \U E’ as
just described are all in the trace of ¢. It will also be noticed
that there is a sort of symmetry between ¢’ and ¢ in reverse.
That is, ¢ and ¢’ shrink S™+! and S*——! (in M’), respectively,
the latter being spheres with just one point in common. The
further points to be added to E\U E’ are in the trace of ¢/,
and bear the same relation to ¢’ in reverse as the points £f X I
already added bear to ¢. That is, a set of the form E7 X [ is
to be added, where E7 is a neighborhood in M’ of E}~"1 (the
second half of S»— 1) and boundary points are identified so
that the resulting union is still an (n + 1)-cell.
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Let E’" denote the (n + 1)-cell obtained by adding sets as
just described to £ \JU E’. Consider now what is left of the
traces of ¢ and ¢’ when E’’ is removed. What is left of the
trace of ¢ is (M — B) X I with the set Ej X I removed.
This is a set of the form N X I, where N = M — B — Ej.
Note that N X {1} is then the complement in M’ of neighbor-
hoods of S»—*—1 and S+ Similarly, the complement of E”
in the trace of ¢’ is a product N’ X I. However, since this
has the same intersection with M’ as N X I, it follows that
N = N’. Thus the complement of £’ in the combined trace
of ¢ and ¢’ is of the form N X I. Here, if I is expressed as
the union of the two half intervals I, and I,, N X I; will be
in the trace of ¢ and N X I, in that of ¢’. In addition, the
product structure of N X I induces a product structure on
part of the boundary of E”’, while the remainder of this bound-
ary consists of n-cells, namely, B \U E} in the initial M and a
similar set in the result of ¢ followed by ¢’ (which is also M).
This product structure can then be extended to an expression
of E” as a product of I and an n-cell, and when this is put
together with N X I it will turn out that the trace of the se-
quence ¢ followed by ¢’ is expressed as a product M X I. In
particular this means that the result of ¢ followed by ¢’ is the
identity transformation of M.

The two modifications ¢ and ¢, related as described in the
foregoing, will be called complementary. Thus the result ob-
tained can be summed up by saying that the composition of a
pair of complementary modifications is the identity transfor-
mation on M and the combined trace is M X I.

8-3. A THEOREM ON 3-MANIFOLDS

The result of the last section has an interesting consequence
concerning the structure of an oriented three-dimensional
manifold.

In the first place, note that in general, if ¢ is a spherical
modification of type r on M satisfying the condition of the
last section, then ¢ transforms M into M’ and the comple-
mentary modification ¢’ transforms M’ back into M. But
this means that ¢’ in reverse transforms M into M’, and ¢’ in
reverse is of type n — r — 2. That is, if M is transformed
into M’ by a modification of type r satisfying the condition
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of the last section, then M can also be transformed into M’
by a modification of typen — r — 2.

Now let M be a compact orientable three-dimensional differ-
entiable manifold. There is a theorem that says that such a
manifold is always the boundary of an orientable 4-manifold
(cf. [4]). A 4-cell can be removed from this 4-manifold, leav-
ing a manifold whose boundary is the disjoint union of M and
a 3-sphere. Hence (Theorem 6-3), M can be obtained from a
3-sphere by a finite sequence of modifications, and those of
types 0 and 2 will be of the orientable kind. Now a modifi-
cation of type 0 of the orientable kind certainly satisfies the
condition of the last section that the sphere S° shrunk in such
a modification is the boundary of a cell E! that closes up to
form a directly embedded 1-sphere. Hence, by the remark
made earlier, each modification of type 0 on the way from
S3 to M can be replaced by a modification of type 1. The
modifications of type 2 are of type 0 in reverse, and so they
can also be replaced by modifications of type 1 (here the re-
verse of a modification of type 1 is also of type 1). Hence,
the given M is obtained from the 3-sphere by a finite sequence
of modifications, all of type 1.

Stating explicitly what a modification of type 1 actually does
leads to the following theorem.

Theorem 8-1. An orientable compact three-dimensional manz-
fold can be obtained from a 3-sphere by cutting out a finite num-
ber of disjoint solid tori (sets of the form S* X E?) and filling the
holes again with solid tori, with some suitable identification of
boundaries.

The point here is that the boundary of each hole is of the
form S! X S!, and there are in fact infinitely many ways of
identifying this with the boundary of a solid torus, and so
there are infinitely many different constructions of this kind.
It is, however, not easy to decide when two of these apparently
different constructions give the same result. In the first place,
to do this we would need'a solution of the Poincaré problem,
which asks whether an orientable 3-manifold in which every
1-sphere can be shrunk to a point is in fact a 3-sphere.
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