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The theory of water waves has been a source of intrigning mathematical
problems for at least 150 years. Virtually every classical mathematical
technique appears somewhere within its confines. The aim of this book is
to introduce mathematical ideas and techniques that are directly relevant
to water-wave theory (although a formal development is not followed),
enabling the main principles of modern applied mathematics to be seen in
a context that both has practical overtones and is mathematically
exciting.

Beginning with the introduction of the appropriate equations of fluid
mechanics, the opening chapters go on to consider some classical pro-
blems in linear and nonlinear water-wave theory. This sets the scene for a
study of more modern aspects, including problems that give rise to
soliton-type equations. The book closes with an introduction to the
effects of viscosity.

All the mathematical developments are presented in the most straight-
forward manner, with worked examples and simple cases carefully
explained. Exercises, further reading, and historical notes on some of
the important characters round off the book and help to make this an
ideal text for either advanced undergraduate or beginning graduate
courses on water waves.
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Preface

The theory of water waves has been a source of intriguing — and often
difficult — mathematical problems for at least 150 years. Virtually every
classical mathematical technique appears somewhere within its confines;
in addition, linear problems provide a useful exemplar for simple descrip-
tions of wave propagation, with nonlinearity adding an important level of
complexity. It is, perhaps, the most readily accessible branch of applied
mathematics, which is the first step beyond classical particle mechanics. It
embodies the equations of fluid mechanics, the concepts of wave propa-
gation, and the critically important rdle of boundary conditions.
Furthermore, the results of a calculation provide a description that can
be tested whenever an expanse of water is to hand: a river or pond, the
ocean, or simply the household bath or sink. Indeed, the driving force for
many workers who study water waves is to obtain information that will
help to tame this most beautiful, and sometimes destructive, aspect of
nature. (Perhaps ‘to tame’ is far too bold an ambition: at least to try to
make best use of our knowledge in the design of man-made structures.)
Here, though, we shall — without apology — restrict our discussion to the
many and varied aspects of water-wave theory that are essentially math-
ematical. Such studies provide an excellent vehicle for the introduction of
the modern approach to applied mathematics: complete governing equa-
tions; nondimensionalisation and scaling; rational approximation; solu-
tion; interpretation. This will be the type of systematic approach that is
adopted throughout this text.

The comments that we have offered above describe the essential char-
acter of the study of water waves, particularly as it appeared during its
first 120 years. However, the last 25 or 30 years have seen an altogether
amazing explosion in the complexity of mathematical theories for water
waves. The development of soliton theory, which itself started life in the

xi



Xii Preface

context of water waves, has completely transformed many aspects of the
mathematical description of nonlinear wave propagation. If it was
needed, soliton theory has certainly brought the theory of water waves
into the era of modern applied mathematics. This book, it is hoped,
presents the material in a way that emphasises the mathematical aspects
of classical water-wave theory, and also provides a description of the
intrinsic relation between soliton theory and water waves.

This book is based on material which has been taught to either final-
year honours mathematicians or to MSc students at the University of
Newecastle upon Tyne, at various times over the last 20 years or so. The
topics in classical water-wave theory (mainly in Chapter 2) are a consid-
erable extension of those taught, in four or five different lecture courses,
by the author during his time at Newcastle. The material on soliton
theory is based on an introductory course given to MSc students in
Applied Mathematics (and which also provided one of the bases for
the book Solitons: an introduction, written jointly with Professor Philip
Drazin). In all these courses, the aim has been to introduce mathematical
ideas and techniques directly, rather than to present a formal and rigor-
ous development. This approach, which is very much in the British tradi-
tion, enables the main principles of modern applied mathematics to be
seen in a context that both has practical overtones and is mathematically
exciting. It is intended that this text will provide an introduction to the
theory of water waves (and associated mathematical techniques) to final-
year undergraduate students in mathematics, physics, or engineering, as
well as to postgraduate students in similar areas. Some of the more
elementary material could be taught in the second year of some under-
graduate programmes. However, it must be emphasised that there is no
attempt to provide such an extensive treatment that the borders of cur-
rent research are reached, although the book may allow the student to go
some way in this direction. It should also be clear that ad hoc attempts to
describe complicated phenomena are not part of our remit, important
though some of these studies are. Furthermore, mainly in the interests of
space, a section on numerical methods, which certainly play a réle in the
broader aspects of water-wave theory, is not included.

Chapter 1 introduces the appropriate equations of fluid mechanics,
together with the relevant boundary conditions that are needed to
describe water waves. In addition, the ideas of nondimensionalisation,
scaling and asymptotic expansions are briefly explored, as are simple
concepts in wave propagation. A student with a background in elemen-
tary fluid mechanics, and some knowledge of simple mathematical
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methods, could ignore this chapter and move directly to Chapter 2. (The
only essential background that the student requires is in advanced calcu-
lus (for example, some familiarity with vector calculus), and in the meth-
ods of applied mathematics (for example, methods of solution of some
classical ordinary and partial differential equations).) Chapter 2 looks,
first, at some of the classical problems in linear water-wave theory. These
include the speed of gravity and capillary waves, the effects of variable
depth and the ship-wave pattern; the application of ray theory to pro-
blems where the background flow slowly varies is also developed. The
second part of this chapter is devoted to nonlinear problems, but still
those that are generally regarded as classical. In this area we include the
Stokes wave, nonlinear long waves via the method of characteristics (and
Riemann invariants), the hydraulic jump and bore, waves on a sloping
beach and the solitary wave. Many additional examples and applications
can be explored through the exercises at the end of the chapter.

Chapters 3 and 4 are devoted to the more modern aspects: problems
that give rise to soliton-type equations. These are, first, the equations that
belong to the Korteweg—de Vries family; some relevant results from soli-
ton theory are quoted, and these are used to help in the interpretation of
the various equations and solutions that arise. The applications are
extended to include the effects of shear and variable depth. Then the
Nonlinear Schrodinger family of equations is discussed in a similar fash-
ion, although the réles of an underlying shear flow or variable depth are
treated less fully for this family, mainly because the calculations are
very much more involved. For both families, some two-dimensional
configurations of waves are also discussed.

The final chapter provides a brief introduction to the réle and effects of
viscosity, as they are relevant in a few water-wave phenomena. This is
intended to add a broader view to water-wave theory; all the previous
discussions here are solely for an inviscid fluid (but the flow is sometimes
allowed to be rotational).

All the mathematical developments are presented in the most straight-
forward manner, with worked examples and simple cases carefully
explained. Many other aspects, relevant calculations and additional
examples are provided in the numerous exercises at the end of each
chapter. Also at the end of each chapter is a section of further reading
which indicates where more information can be found about some of the
topics; these references include both research papers and other texts.
Sections are numbered following the decimal system, and equations are
numbered according to the chapter in which they appear: for example,
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equation (1.2) is equation 2 in Chapter 1. The exercises are numbered in a
similar fashion (for example, Q2.3), as are the answers and hints at the
end of the book (for example, A2.3). Also provided at the end of the
book is a fairly extensive bibliography and author index, and also a
collection of brief historical notes on some of the important characters
who have worked on the theory of water waves. The quotations at the
beginning of each chapter, and at the start of some sections, are taken
from the poetical works of Alfred, Lord Tennyson.

I wish to put on record my very grateful thanks for the typing of the
manuscript to Mrs Heather Bliss, Mrs Helen Bell and Miss Jackie Tait,
who all played a part, but most particularly to Mrs Susan Cassidy, who
carried by far the major burden. This she did with great efficiency, speed,
dedication and, throughout, with the greatest good humour when faced
with (a) my handwritten manuscript and (b) my changes of mind. The
originals of the figures were produced on my PC, using a combination of
Mathematica and KeyDraw, and printed on my Hewlett-Packard DeskJet
printer (so I carry full responsibility for their clarity and accuracy).
Finally, T wish to thank Cambridge University Press, and particularly
Professor David Crighton, for their encouragement to write this text
(and their patience when I got behind the planned schedule).

RS}
Newcastle upon Tyne
December 1996
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Mathematical preliminaries

For nothing is that errs from law
In Memoriam A.H.H. LXXIII

Science moves, but slowly slowly, creeping on from point to
point
Locksley Hall

Before we commence our presentation of the theory of water waves, we
require a firm and precise base from which to start. This must be, at the
very least, a statement of the relevant governing equations and bound-
ary conditions. However, it is more satisfactory, we believe, to provide
some background to these equations, albeit within the confines of an
introductory and relatively brief chapter. The intention is therefore to
present a derivation of the equations for inviscid fluid mechanics
(Euler’s equation and the equation of mass conservation) and a few of
their properties. (The corresponding equations for a viscous fluid —
primarily the Navier—Stokes equation — appear in Appendix A.)
Coupled to these general equations is the set of boundary (and initial)
conditions which select the water-wave problem from all other possible
solutions of the equations. Of particular importance, as we shall see, are
the conditions that define and describe the surface of the fluid; these
include the kinematic condition and the rdles of pressure and surface
tension. Some rather general consequences of coupling the equations
and boundary conditions will also be mentioned.

Once we have available the complete prescription of the water-wave
problem, based on a particular model (such as for inviscid flow), we may
‘normalise’ in any manner that is appropriate. It turns out to be very
convenient — and is indeed typical of the applied mathematical approach
— to introduce a suitable set of nondimensional variables. Further, a useful
next step (which is particularly significant for our work in Chapters 3 and
4) is to scale the variables with respect to the small parameters thrown up
by the nondimensionalisation. All this will enable us to characterise, in a
rather precise way, the various types of approximation that we shall
employ. In the process, we shall give a summary of the equations that
represent different approximations of the full water-wave problem.



2 1 Mathematical preliminaries

Throughout, we take the opportunity to present all the relevant equations
in both rectangular Cartesian and cylindrical coordinates.

In the final stage of this preliminary discussion we provide a brief
overview of some of the ideas that will permeate many of the problems
that we shall encounter. This involves a simple introduction to the mathe-
matics of wave propagation, where we describe the important phenomena
associated with the nonlinearity, dispersion and dissipation of the wave.
Further, much of our work in the newer aspects of water-wave theory will
be with small-amplitude waves and with the slow evolution of wave
properties; these may occur separately or together. In order to extract
useful and relevant solutions in these cases, we shall require the applica-
tion of asymptotic methods. Here we present an introduction to the use
of asymptotic expansions, which will include both near-field and far-field
asymptotics and the method of multiple scales.

These mathematical preliminaries may cover material already familiar
to some readers, in whole or in part. Those with a background in fluid
mechanics could ignore Section 1.1, whereas, for example, those who
have received a basic course in wave propagation and elementary asymp-
totics could ignore Section 1.4. In Chapter 2, and thereafter, we start by
giving a summary of the equations and boundary conditions that are
relevant to each topic under discussion; this, at its simplest level, is all
that is necessary to begin those studies.

1.1 The governing equations of fluid mechanics

In these derivations we shall use a vector notation and the methods of the
vector calculus. (The tensor calculus is used in the brief derivation of the
Navier—Stokes equation given in Appendix A, although the resulting
equation is also written there in terms of vectors.) Here we shall derive
the equations of mass conservation and motion (Newton’s Second Law)
in the absence of thermal changes (which are altogether irrelevant in the
propagation of water waves). Any energy equation is therefore a conse-
quence of only the motion (through Newton’s Second Law) without any
contributions from the thermodynamics of the fluid.

The notation that we shall adopt is the conventional one: at any point
in the fluid, the velocity of the fluid is u(x, ) where x is the position vector
and ¢ is a time coordinate. The density (mass/unit volume) of the fluid is
p(x, 1) (but for water-wave applications, as we shall mention later, we
take p = constant); the pressure at any point in the fluid is P(x, 7). If the



The governing equations of fluid mechanics 3

choice of coordinates is the familiar right-handed rectangular Cartesian
system, then we write

x=(x,y,z) and u=(u,v,w).

We shall assume that u, p, and P are continuous functions (in x and ¢) -
usually called the continuum hypothesis — and that they are also suitably
differentiable functions.

1.1.1 The equation of mass conservation

Imagine a volume V, which is bounded by the surface S, within (and
totally occupied by) the fluid. We treat V as fixed relative to some chosen
inertial frame, so that the fluid in motion may cross the imaginary surface
S. Given that the density of the fluid is p(x, 7), then the rate of change of

mass in V is
d
& fpd’U
\'

where [, dv represents the triple integral over V. Now, let n be the out-
ward unit normal on S (see Figure 1.1) so that the outward velocity
component of the fluid across S is u-n. Thus the net rate at which
mass flows out of V is

Figure 1.1. The volume V bounded by the surface S; p(x, #) is the density of the
fluid, u(x, 7) is the velocity at a point in the fluid and nis the outward normal on S.
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/pu-nds,

S

where this is the double integral over S.

Under the fundamental assumption that matter (mass) is neither
created nor destroyed anywhere in the fluid, the rate of change of mass
in V is brought about only by the rate of mass flowing into V across S, so

%( /d) Y P

S

This equation is rewritten by the application of Gauss’ theorem (the
divergence theorem) to the integral on the right, to give

%([pdv)+fv'(/0“)dv=0

\4 v

where V is the familiar del operator (used here in the divergence of pu).
Further, since V is fixed in our coordinate system, the only dependence
on ¢ is through p(x, 7), so we may write

/{%+V-(pu)]dv=0. (1.1
\

(We shall write more about differentiation under the integral sign later; see
also Q1.30, Q1.31.) Now equation (1.1) is clearly applicable to any V
totally occupied by the fluid, so the limits (represented symbolically by V)
of the triple integral are therefore arbitrary; the integral is then always
zero (for a continuous integrand, which we assume here) only if

ap

E+V'(pu)=0. (1.2)

This equation, (1.2), is one form of the equation of mass conservation
(sometimes called the continuity equation, referring to the continuity of
matter). (The argument that takes us from (1.1) to (1.2) can be rehearsed
in the simple example

b
/ f(x)dx =0 for arbitrary a,b = f(x) =0;

this is left as an exercise.)
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It is usual to expand (1.2) as

d
ZHAY-W+@-V)p=0,
and then introduce
D 2
5 t=&+u.v, (1.3)

the material (or convective) derivative; see Q1.5 and Section 1.2.1.
Equation (1.2) therefore becomes

Dp

Ft+pv'“=0, (1.4)
from which we see that for an incompressible flow defined by
Dp
Br = 0, (1.5)
we have
V.u=0. (1.6)

(A function (w) which satisfies equation (1.6), so that the divergence of u
is zero, is said to be solenoidal.) Equation (1.5) describes the constancy of
p on individual fluid particles; we shall, however, interpret incompressi-
bility as meaning p = constant everywhere (which is clearly a solution of
(1.5), and a very good model for fluids like water). Some of these basic
ideas are explored in Q1.7-Q1.9.

1.1.2 The equation of motion: Euler’s equation

We now turn our attention to the application of Newton’s Second Law to
a fluid, but a fluid which is assumed to be inviscid; that is, it has zero
viscosity (internal friction). (The corresponding equation for a viscous
fluid — the Navier-Stokes equation — is described in Appendix A.)
Newton’s Second Law requires us to balance the rate of change of
(linear) momentum of the fluid against the resultant force acting on the
fluid. First, therefore, we must find a representation of the forces acting
on the fluid.

There are two types of force that are relevant in fluid mechanics: a body
force, which is more or less the same for all particles and has its source
exterior to the fluid, and a Jocal (or short-range) force, which is the force
exerted on a fluid element by other elements nearby. The body force
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which is almost always present is gravity, and this is certainly the case in
the study of water waves. We define the general body force to be F(x, ¢)
per unit mass; if F is due solely to the (constant) acceleration of gravity
(g) then we would write F = (0, 0, —g) in both Cartesian and cylindrical
coordinates (with z measured positive upwards). The local force is com-
prised of a pressure contribution together with any viscous forces that are
present; in general, of course, this is conveniently represented by the
stress tensor in the fluid: see Appendix A. Here we retain only the pres-
sure (P), which produces a normal force acting onto any element of fluid.

To proceed we define (just as before) an imaginary volume V, bounded
by the surface S, which is fixed in our frame of reference and totally
occupied by the fluid. The total force (body + local) acting on the fluid

in Vis
/ pFdv — f Pnds;
S

\4

see Figure 1.2. (We remember that n is the outward unit normal on S.)
Applying Gauss’ theorem to the second integral (see Q1.2), we obtain the
resultant force

/ (oF — VP)dv. (1.7)
\'

Figure 1.2. The volume V bounded by the surface S; the body force on an element
is pFév and the pressure force on an element of area is — Pnés.
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The rate of change of momentum of the fluid in V is simply

(cilt (/pudv) , (1.8)

\4

and the rate of flow of momentum across S into V is

—fpu(u -m)ds. (1.9

S

Now Newton’s Second Law for the fluid in V (upon recalling that V is
fixed in our coordinate frame) may be expressed as:

rate of change of momentum of fluid in V
= resultant force acting on fluid in V
+ rate of flow of momentum across S into V.

Thus from equations (1.7)-(1.9) we obtain

%(V/pudv) = !(pF— VP)dv — [pu(u-n)ds,

S

which is written more compactly by (a) taking d/d¢ through the integral
sign, (b) applying Gauss’ theorem to each component of (1.9) (see Q1.3),
and, (c¢), rearranging, to yield

d
/ E(pu)+pu(V-u)+(u-V)pu}dv= /(pF—VP)dv. (1.10)
v v
We expand the integrand on the left side of this equation as

f{pau+u%+pu(v u) + u(u - V)p+ p(u - V)u]dv_[p%:dv,
v

(1.11)

where we have used the equation of mass conservation, (1.4), and intro-
duced the material derivative, (1.3). It is clear that, with sufficient under-
standing of the notion of the material derivative (see Q1.4-Q1.6),
we could write (1.11) directly: it is the appropriate form of ‘mass
x acceleration’ for all the fluid in V.

The equation (1.10), with (1.11), now becomes
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Du
el v —
/(p & pF + P)dv 0
v

and, as before, for this to be valid for arbitrary V (and a continuous
integrand) we must have

Du 1

E_—;VP+F, (1.12)
when written in its usual form. This is Euler’s equation, which is the result
of applying Newton’s Second Law to an inviscid (that is, frictionless)
fluid. (Notice that the pressure, P, may be defined relative to an arbitrary
constant value without altering equation (1.12).)

It is convenient, particularly in view of our later work, to present the
three components of Euler’s equation, (1.12), and also the equation of
mass conservation, in the two coordinate systems that we shall use. In
rectangular Cartesian coordinates, x = (x, y, z), with u= (4, v, w) and
F=(0,0,—g), and for constant density, equations (1.12) and (1.6)
become, respectively,

Dy 10P Dv_ 13P Dw_120P
Dt~ pox’ Dt pdy’ Dt paz

where (1.13)

and

ou v ow
—+—+—=0. 1.14
dx dy + 0z (1.14)
These same equations written in cylindrical coordinates, x = (r, 6, z), with
u = (1, v, w) (where the same notation for u in this system should not
cause any confusion: it will be plain which coordinates are being used in a
given calculation) are, again with F = (0, 0, —g) and p = constant,

Du * 19P Dv wv

1

Dt r po’ Dt r P
Dw 1 09P
Dt~ p oz

(1.15)



The governing equations of fluid mechanics 9

where
D_3+u8+v 8+ d
Dt ot ar r 30 az’
and
19 1 dv ow

These equations, (1.13-1.16), will form the basis for the developments
described in Chapters 2, 3, and 4, when coupled to the appropriate
boundary conditions (Section 1.2) and — usually — after suitable simplifi-
cation (Section 1.3). (The corresponding equations for a viscous fluid are
presented in Appendix A, and are used in Chapter 5.)

1.1.3 Vorticity, streamlines and irrotational flow

A fundamental property of a fluid flow is the curl/ of the velocity field:
V.u. This is called the vorticity, and it is conventionally represented by
the vector w; the vorticity measures the local spin or rotation of the fluid
(that is, the rotational motion — as compared with the translational) of a
fluid element (see Q1.12). In consequence, flows, or regions of flows, in
which @ = 0 are said to be irrotational; such flows can often be analysed
by using particularly routine methods. Unfortunately, real flows are very
rarely irrotational anywhere, but for many flows the vorticity is very
small almost everywhere, and these may therefore be modelled by assum-
ing irrotationality. Nevertheless, many important aspects of fluid flow
require w # 0 somewhere, and the study of such flows normally involves
a consideration of the dynamics of vorticity and its properties. In water-
wave problems, however, classical aspects of vorticity play a rather minor
réle, and so a deep knowledge of vorticity is not a prerequisite for a study
of water waves. (Some small exploration of vorticity is offered in the
exercises: see Q1.13—Q1.17.)

Now, before we make use of the vorticity vector in Euler’s equation, we
introduce a very powerful — but related — concept in the study of fluid
motion: the streamline. Consider the family of (imaginary) curves which
everywhere have the velocity vector as their tangent; these curves are the
streamlines. If such a curve is described by x = x(s; ¢) (at any instant in
time), where s is the parameter which maps out the curve, then the
streamlines are the solutions, of
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dx dx

—oxu or —=u(x,1?) (atfixed 7). 1.17

- —=ux,0 ( ) (1.17)
In this second representation, the constant of proportionality has been
absorbed into the definition of s. Then, for example, in rectangular
Cartesian coordinates this vector equation becomes the three scalar

equations

or equivalently,

dx_dy_d: .18
u v w

for the streamlines. (The streamline should not be confused with the path
of a particle; this is defined (see Q1.4 and also Q1.19) by

%—? =u(x, 1), (1.19)
so particle paths and streamlines coincide, in general, only for steady
flow; see Q1.19.) The streamlines provide a particularly effective way of
describing a flow field: even a simple sketch of the streamlines for a flow
often enables important characteristics to be recognised at a glance. (An
associated concept, the stream function, is described in Q1.20~Q1.23.)

We now turn to a brief consideration of the results that can be
obtained when the vorticity, w, is introduced into Euler’s equation,
(1.12),

DD—?=%+(IJ-V)H=—%VP+F. (1.20)

For our purposes we shall assume that p = constant (but see Q1.18), and
that the body force is represented by a conservative force field: F = —VQ
for some potential function Q(x, t), where the negative sign is a conveni-
ence. (This choice for F applies to most examples of interest; for our
studies we shall use Q2 = gz where g is the (constant) acceleration of
gravity and z is measured positive upwards.) Equation (1.20) therefore
becomes

u P
-é;+(u-V)u= —V(;-}-Q),

which is rewritten by introducing the identity (see Q1.1)
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1
(u-V)u=V(§u-u) —uAn(VAaw
where V A u = @, the vorticity. Thus we obtain

ou 1 P
= Zu- ull = 1.21
8t+V(2u u+p+$2> uA, 1.21)
and there are two cases worthy of further examination.

The first is for steady flow, where u, P, and Q are all independent of
time, ¢. Equation (1.21) therefore becomes

1 P
Vizu-u+—+4+Q)=uAron,
2 P

and a simple geometrical property enables us to make headway with this
(apparently) intractable equation. (An alternative approach is to dot both
sides with the vectors u and, separately, ®.) It is a familiar result that Vf,
the gradient of f, is a vector orthogonal to the surface f(x) = constant;
thus u A @ is perpendicular to the surfaces

%u ‘u+ % + 2 = constant. (1.22)
But u A @ is also perpendicular to both the vectors u and @, so the
surfaces (1.22) must contain lines which are everywhere parallel to u
and ®. One such set of lines is the family of streamlines, (1.17) and
(1.18). Thus equation (1.22), known as Bernoulli’s equation (or theorem),
applies on streamlines; it describes the conservation of energy
(kinetic + work done by pressure forces + potential) for a steady (and
inviscid) flow with vorticity. This is a fundamental and powerful result in
the study of elementary flows. (Bernoulli’s equation is also valid on the
family of lines which has @ as the tangent to the lines at every point, but
these lines are not usually of much interest in this context.)

The second case, of some importance in water-wave problems, is for
irrotational but unsteady flow. Now for irrotational flow we have
o = VAu=0,and sou = V¢ for a potential function ¢(x, t), the velocity
potential; the study of irrotational flows reduces to the problem of deter-
mining ¢; see Q1.24. Indeed, for irrotational and incompressible flow we
have

u=V¢ and V-u=0,

so ¢ satisfies Laplace’s equation
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V2 =0. (1.22)

Thus the nonlinear Euler’s equation, (1.12), and the equation of mass
conservation, (1.6), have been replaced by a classical linear second-
order partial differential equation (provided that @ = 0 and F = —VQ).
If we use u = V¢ in equation (1.21), with @ = 0, then it follows directly
that

v(®, Lhuifia) =,
o 2 P

SO

%+%u-u+§+9=f(t), (1.23)
where f(¢) is an arbitrary function of integration. (It is always possible to
redefine ¢ as ¢ + [f(£)dt and thereby remove f(¢) from equation (1.23);
of course, this choice of ¢ does not affect the velocity field since
V([f(®)dt) =0.) Equation (1.23) is known by some authors as
Bernoulli’s equation (cf. equation (1.22)) or, at least more accurately,
as the Bernoulli equation for unsteady flow. A less confusing name —
unfortunately used rather rarely nowadays — is the pressure equation,
which we prefer; this helps to avoid the possible problems of interpreta-
tion which we mention below. (‘Pressure equation’ is used to indicate that
P is completely determined (to within initial data) once the velocity field
is known through ¢.)

If it is now assumed, in addition, that the flow is steady then equation
(1.23) becomes

%u -u+ -g + © = constant, (1.249)
which is equation (1.22) — or is it? Equations (1.23) and (1.24) describe the
fluid everywhere; there is no reference to streamlines, as there is with
equation (1.22). Equation (1.24) is associated with the same constant
throughout the fluid, whereas equation (1.22) assigns different constants
to different streamlines. This important distinction provides a contrast
between irrotational and rotational steady flows.

We complete this section by quoting Laplace’s equation, which is valid
for incompressible, irrotational flow, in both rectangular Cartesian
coordinates
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az¢ 32¢ 32¢

2
e (129)
and cylindrical coordinates

18/ 3 ¥o o

75(_)-*_? —2+—2 0. (1.26)

The corresponding velocities are

u=(3_¢ % %
T \ox’ 9y’ oz

in rectangular Cartesian coordinates, and

_(% 19 3
T \or’ r 9 oz

in cylindrical coordinates.

1.2 The boundary conditions for water waves

The boundary conditions that define water-wave problems come in var-
ious forms. We first briefly describe these before we examine them in
detail. At the surface, called a free surface because it is not defined by
velocity conditions (as on a rigid boundary, for example), the atmosphere
exerts stresses on the fluid surface. In general, these stresses will include a
viscous component (which is particularly relevant if we wish to model the
effects of a surface wind, for example). However, if the fluid may be
reasonably modelled as inviscid, then the atmosphere exerts only a pres-
sure on the surface. This pressure is often taken to be a constant — the
atmospheric pressure — but it may vary in time and also from point to
point on the surface. (The passage of a region of higher/lower pressure
could be used to model the movement of a storm or other similar phe-
nomena.) Further, any surface tension effects can also be included at a
curved surface (in the presence of a wave, for example) giving rise to the
maintenance of a pressure difference across the surface. We should com-
ment that our philosophy here is to regard the conditions obtaining at the
surface as prescribed. A more complete theory would couple the motion
of the water surface and the air above it, but the small density of air
compared with that of water makes our approach feasible. Nevertheless,
one method — not discussed in this text — for studying ocean waves, for
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example, is to consider the exchange of momentum and energy between
the air and the surface waves.

Another, perhaps less obvious, condition requires a statement that the
(moving) surface is a surface of the fluid; that is, it is always composed of
fluid particles. This is called the kinematic condition, since it does not
involve the action of forces; the stress conditions described above
(which obviously generate forces at the surface) are called the dynamic
conditions (which reduce to just one condition for an inviscid fluid).

At the bottom of the fluid we shall assume, throughout our work, that
the bed there is impermeable. Then, if the fluid is treated as viscous, we
must impose the no-slip condition on this surface (so that fluid particles
in contact with the surface move with that surface). Thus, for a fixed rigid
boundary, the fluid velocity will be zero here. On the other hand, if the
fluid is modelled as inviscid, then the bottom topography becomes a
surface of the fluid, so that fluid particles in contact with the bed move
in this surface. This therefore mirrors the kinematic condition at the free
surface, except that the bottom is prescribed a priori. For many of our
problems, the bottom surface will be fixed and rigid (but not necessarily a
horizontal plane); however, it could move in a prescribed manner if we
wished to model a marine earthquake, for example.

In most of our applications, the fluid will be assumed to extend to
infinity in all horizontal directions. We might, rarely, encounter a bound-
ary wall which will then provide the same type of boundary condition as
the bottom topography.

Finally, we comment that the role of initial data is relatively unimpor-
tant in the type of water-wave problems that we shall discuss. Of course,
the wave must be initiated in some fashion (by a suitable disturbance of
the surface), but in most problems we shall assume that this has already
occurred. Our main interest will be in following the evolution of the wave
in many - and varied — situations.

We now turn to a careful formulation of these boundary conditions,
based on the principles that we have just outlined, for an inviscid fluid.
The corresponding results for a viscous fluid are briefly described and
presented in Appendix B.

1.2.1 The kinematic condition

The free surface, whose determination is usually the primary objective in
water-wave problems, will be represented by
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z=h(xy,1), (1.27)

where x; denotes the two-vector which is perpendicular to the z-
direction. In rectangular Cartesian coordinates we therefore have
x,; = (x,y), and in cylindrical coordinates this is x, = (r, 6). Now a sur-
face F(x,t) = constant which moves with the fluid, so that it always
contains the same fluid particles, must satisfy

DF
o ="
see Q1.5. The free surface, written in the form
z—h(x;,H) =0,

must therefore satisfy this same condition:

D
Ht{z - h(xJ.’ t)} = 0,

the fluid particles being those that move in the surface. This yields,
directly,

w— {ht+(lll . VJ_)h} =0
(where the subscript in ¢ denotes the time derivative), since

D_3+u V+wa
Dt a + 7 7%

where V, is the grad operator perpendicular to the direction of the z-
coordinate. (This symbol is usually pronounced ‘del-perp’.) The velocity
vector has been written as u = (u,, w), although both u, and V, are,
strictly, unnecessary notations here since i = h(x, ) only; we choose
to use them in order to make quite clear the structure of the boundary
condition. The kinematic condition is therefore

w=h,+ @, -V,)h onz=hx,,?), (1.28)

and the evaluation of z = h is needed to define the velocity field required
here. (An alternative derivation of equation (1.28) is discussed in Q1.27.)

1.2.2 The dynamic condition

In the absence of viscous forces, the simplest dynamic condition merely
requires that the pressure, P, is prescribed on z = h(x, ¢); the corre-
sponding result for a viscous fluid is given in Appendix B. For most
problems studied in the theory of water waves, it is usual to set
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P = P, = constant, the pressure of the atmosphere. Of course, the sim-
plicity of this boundary condition tends to obscure the fact that the
evaluation is on the free surface (z = #) whose determination is part —
often the most significant part — of the solution of the problem.

One special version of the dynamic boundary condition is offered by
the case of an incompressible, irrotational, unsteady flow. From the
pressure equation, (1.23), with = gz, we have

¢ 1 p _
at—i—zu-u+p+gz—f(t)
everywhere. We consider the problem for which P = P, on z = h(x,, t),
then continuity of pressure requires that
3 1 P, 3 B
at+2“ n+ - +gh=f() onz=h
Further, let us suppose that, somewhere (as |x, | — oo, for example), the
fluid is stationary with P = P, and h = hy = constant; then

P,
f()= ‘;+gho

SO

%+%u‘u+g(h—h0)=0 onz=~h. (1.29)
This equation, (1.29), constitutes one of the simplest descriptions of the
surface-pressure condition. This is then one of the boundary conditions
to be used in the construction of the relevant solution of Laplace’s
equation for ¢.

For a rotational flow we cannot employ the pressure equation, and so
we must solve Euler’s equation with P given on z = A. Indeed, as we shall
see, it turns out that there is very little to choose — even for irrotational
flow — between solving Euler’s equation with P = P, or Laplace’s equa-
tion with (1.29), at least in the suitably approximate forms that we
usually encounter.

Now we turn to the extension of this dynamic condition (for an inviscid
fluid) which accommodates the effects of surface tension (which supports
a pressure difference across a curved surface). The classical description of
surface tension is represented by

pressure difference = AP = (1.30)

E‘y
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where 1/R is the mean curvature

1 1 1

R - ;—1— K2 ’

and «y, k, are the principal radii of curvature. (The quantity 1/R is often
called the Gaussian curvature.) The parameter I’ (> 0) is the coefficient of
surface tension (force/unit length), and AP > 0 if the surface is convex;
see Figure 1.3. The fundamental equation, (1.30), is usually called
Laplace’s formula and, in general, T" varies with temperature; here we
shall treat I' as a constant. The result of using this equation in the
dynamic condition is to replace, for example, P = P, = constant at the
fluid surface by

P=Pa—% on z=h(x,,?), (1.31)

so that the pressure in the fluid at z = A is increased if the surface is
concave (R < 0).

It is clear that a complication in this formulation involves the precise
description required for the curvature, 1/R. Fairly elementary geometri-
cal considerations lead, for the choice of rectangular Cartesian coordi-
nates with 4 = h(x, y, 1), to

1 (U Bh + L+ Bhyy — 2hhyhy,

, 1.32
R (1 + 12+ R2)? (132

Pl
PZ
AP=P,-P,>0

Figure 1.3. A convex surface with an ‘internal’ pressure P; and an ‘external’
pressure P,, where P; > P,.
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where subscripts denote partial derivatives. A simple special case of this
result recovers the well-known expression for curvature in only one
direction:

1 hyy

R AT h = h(x, 1). (1.33)

The corresponding representation in cylindrical coordinates, where
h=h(r,0,1),is

L (14 ot {0+ ) - Z(hro——ho)hho}

R 3/2
(1 + K2 +%h§)

(1.34)

1.2.3 The bottom condition

For an inviscid fluid, the bottom constitutes — like the free surface — a
boundary which is defined as a surface moving with the fluid. Let us
represent the (impermeable) bed of the flow by

z= b(XJ_’ t);
for this to be a fluid surface then
D
E{Z —b(x., 0} =0.
Thus
w=b+@, -V, )b on z=b, (1.35)

where b(x, , ) will be prescribed in our problems. However, it should be
mentioned that there are classes of problem (which we shall not discuss)
where b is not known a priori; this situation can arise in the study of
sediment movement, for example. Most of the calculations that we shall
encounter in our work will involve a stationary bottom condition, so that
equation (1.35) becomes

w=@u,-V)b on z=b (1.36)
(In the case of one-dimensional propagation, where b = b(x) with
X, =(x,0) and u; = (%, 0), this reduces to the simple condition

db
w=ug_ on z= b(x),

which is readily understood from elementary considerations.)
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1.2.4 An integrated mass conservation condition

Now that we have written down the general conditions that describe the
kinematics of the motion at both the free surface and the bottom, we
show how they can be combined with the equation of mass conservation.
This produces a conservation condition for the whole motion, which will
prove a useful result in some of our later work. First, the equation of
mass conservation, (1.6), is written as

VJ_'II_L+WZ=0,

which is then integrated in z over the depth of the fluid; that is, from
z=>b(x_, 1) to z=h(x,, t). This yields

h
/ V. -wpdz 4wl =0,
b

and then the conditions defining w on the bottom and the surface, (1.35)
and (1.28), are introduced to give

h
/VJ_ 'llJ_dZ+h,+(llls VJ_)h— {bt+(ulb VJ_)b} =0. (137)
b

The subscripts s and b denote evaluations on the surface (z = /) and the
bottom (z = b), respectively.

To proceed, it is necessary to interchange the differential and integral
operations in the first term. This is accomplished by a careful application
of the rule for ‘differentiating under the integral sign’; see Q1.30. Here,
this term becomes

h
A PCEITRATI A
b
and so equation (1.37) can be written as
h
(h—b),+Vl-/uldz=0.
b

This equation is conveniently expressed as

d,+V, i, =0, (1.38)
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where d = h — b is the (local) depth of the water, and

h
l_ll = [llJ_dZ, (139)
b

so that 4, /d is an average of the horizontal vector components describing
the motion of the fluid. As a simple application of equation (1.38), con-
sider motion in only one horizontal direction: let u;, = (4, 0), for example;
then we obtain

dt+ﬁx=0-

If, further, we suppose that there is no motion at infinity (that is, # — 0
as |x| — 00), and that b = b(x) with A(x, t) = hy + H(x, t) where H — 0
as |x| = oo, then

d% / H(x,fH)dxz =0 or / H(x, )dx = constant. (1.40)

This latter condition means that, for all time and for all surface waves
represented by H(x, ), the mass of fluid associated with the wave
(assumed finite here) is conserved — an otherwise obvious result. It is
clear that this conclusion is true, no matter the solution for H(x, ¢t);
indeed, it may prove impossible to obtain the form of H(x, ¢) except in
special cases, and then only approximately, but (1.40) will still hold
precisely.

1.2.5 An energy equation and its integral

We have already introduced an energy equation — Bernoulli’s equation,
(1.22) — but we shall now present a more general result. This does not
require the restriction to steady flow, for example, nor to the alternative
choice of irrotational flow (which led to the pressure equation, (1.23)).
The new equation is, in a sense, a global energy equation; it describes the
consequences on general fluid motion of using Newton’s Second Law:
that is, Euler’s equation, (1.12). Once we have derived this equation, we
shall apply it to our water-wave problem by integrating it over the depth
of the fluid (exactly as we did for the mass conservation equation in
Section 1.2.4).
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We start with equation (1.21),

ou 1 P
§+V(Eu.u+;+9>—u/\w, (1.41)

which is derived from Euler’s equation for an incompressible fluid
(p = constant) and a conservative body force, F = —VE; we shall assume
that © = Q(x), which applies to most situations of practical interest. To
proceed, we take the scalar product of equation (1.41) with u to give

/(1 1 P
2(3uv)+@ 9(3uusLra)=o (1.42)

since u - (u A @) = 0 (two of the vectors are parallel). Because the fluid is
incompressible, we have V. u = 0; we choose to add to equation (1.42)
the expression

1 P
<§ll~ll+;+9)(V-ll) =0

and hence we obtain

A P 0 |

see Q1.1(a) for the relevant differential identity. It is convenient to add a
further zero contribution, namely 822/3t, to give

3 /1 1 P
&(Eu‘u+$2)+v-{u(zu-u+;+§2)} =0,

which is often rewritten (by multiplying throughout by p) as

%(%pu-u+p£2)+v-{u(%pu-u+P+pQ)}=0. (1.43)

This is an energy equation; we recognise the kinetic energy per unit
volume (% pu-u) and the corresponding potential energy (o2; for exam-
ple, pgz). The equation represents the balance between the rate of change
of the total (mechanical) energy and the energy flow carried by the velo-
city field, together with the contribution from the rate of working of the
pressure forces. Clearly this energy equation is a general result in the
theory of inviscid (and incompressible) fluids; we now apply it to the
study of water waves.

Following the development presented in Section 1.2.4, we write
equation (1.43), with Q = gz, in the form
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a1 +pgz}+V ! + P+
o \aouut g L uL{zou-u gz

] 1
+5—Z—{w(5pu~u+P+pgz)} =0

and then integrate over z, from z = b(x_, ?) to z = h(x_, #); this yields

bf”{g(;,m...wgz)m.[ul(;,,...wmgz)]}

h
+ [w(-;—pu-u+P+pgz)] =0.
b

The evaluations at the surface (s), and the bottom (b), from equations
(1.28) and (1.35), then give

h
j[%(%pu~u+pgz)+vl . I:ul(%pu-u+P+pgz):”dz

b

1
+ {h + (s - V)R (E pu - ug + Py + pgh)
1
— {6+ (uyy - VL)IB) (5 puy, - U, + Py + pgb) =0. (1.44)

As before, it is necessary to interchange the differential and integral
operations (see Q1.30); the first of these integrals (involving 9/df) gives

h
d 1 1
% [/(Epu-u+pgz)dz} - (Epus - U +pgh)h,
b

1
+ <§pub - + pgb)b,. (1.45)

The second integral (in V) similarly becomes

1 1
VL'[“L(ﬁP“'“‘i‘P‘l‘PgZ)dZ— (Ep“s'“s+Ps+pgh)(uJ.s'VJ.)h
b

1
+ (—2- puy - Wy, + Py + pgh)(uyy, - Vl)b. (1.46)
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Upon using (1.45) and (1.46) in equation (1.44), this equation reduces to

h h
%[/(%pu-u+pgz)dz +Vl./ul(%pu-u+P+pgz)dz
b b
+ Ph,— Pyb,=0. (1.47)

It is conventional to write

h
&= /(%pu ‘u+ pgz)dz (1.48)
b
and
h 1
fzjul(ipu~u+P+pgz)dz, (1.49)
b

where & is the energy in the flow, per unit horizontal area, and # is the
horizontal energy flux vector. The energy equation, (1.47), therefore
becomes

E+V,  F+P=0, (1.50)

where # = P.h, — Pyb, is the net energy input due to the pressure forces
doing work on the upper and lower boundaries of the fluid. In the case of
a stationary bottom boundary, then b, = 0; further, if the pressure in the
fluid at the surface (P;) is constant, then we may assign P, =0;
consequently # = 0 and so

E+V, - F=0. (1.51)

(If P = P, = constant, then we may redefine P in the fluid to be P + P,:
the governing equations are unaltered. With this choice the surface pres-
sure is now P, = 0, but then the form of P used in (1.49) must be adjusted
to accommodate this choice unless the P used in (1.49), and earlier, is
measured relative to P,. Of course, P; = 0 is only possible if the coeffi-
cient of surface tension is set to zero; in general, the surface tension forces
do work on the moving free surface.)

The energy equations presented here, particularly (1.51), can be used to
describe the energy associated with a wave motion by averaging over a
wavelength; see Section 2.1.2.
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1.3 Nondimensionalisation and scaling

The governing equations and boundary conditions that have been
described define a class of water-wave problems. For most of the discus-
sions in this text, we shall be concerned with gravity waves propagating
on the surface of an inviscid fluid. (This means that we shall often ignore
the effects of surface tension, for example.) The arguments that suggest
that such simplifying assumptions lead to problems worthy of considera-
tion will be rehearsed later. However, we take this opportunity to empha-
sise that the main thrust of our work will be towards an understanding of
the equations (and boundary conditions), and what they imply for wave
propagation. It is not our purpose to provide an engineering or physical
appraisal of the usefulness of these theories as they apply to the many and
varied types of water waves that are encountered in nature. The impor-
tance of these considerations should not be underestimated though; they
are paramount in the design of ships, offshore platforms, breakwaters,
and dams, in the prediction and avoidance of catastrophes following
earthquakes or storms, and a host of other areas of significance to man-
kind. Nevertheless, we shall extend our methods to some more obviously
relevant and practical applications, such as flows with shear (rotational
flows) and propagation over variable depth.

It is clear that our field of discussion will be somewhat restricted, but
even so we shall still face immensely difficult mathematical problems that
we wish to overcome. The most natural way forward is to develop a
suitable — but systematic — approximation procedure. To this end we
need to characterise problems in terms of the sizes of various fundamen-
tal parameters. These parameters are introduced by defining a set of
nondimensional variables.

1.3.1 Nondimensionalisation

The nondimensionalisation that we adopt makes use of the length scales,
time scales, etc., that naturally appear in the problem; this is altogether
the obvious (and conventional) choice. First we introduce the appropriate
length scales: we take Ay to be a typical depth of the water and A as the
typical wavelength of the surface wave. (These and the other scales are
depicted in Figure 1.4.) In order to define a time scale, we require a
suitable velocity scale. Now, many of the problems that we shall consider
involve the propagation of long waves, and the speed of these waves (as
we shall demonstrate later) is approximately \/gT ; we make this choice
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Figure 1.4. The scales for the water-wave problem: hy is the undisturbed or typical
depth, A is a typical wavelength, b is the bottom surface, and g is the acceleration
of gravity.

for the speed scale. This choice is still useful even if we do not study,
specifically, long gravity waves.

The characteristic speed, /ghy, and the wavelength, A, define a typical
time associated with horizontal propagation, which is what interests us
here; this is A//ghy. We use /ghy to define the scale of the horizontal
velocity components, but the vertical component (w) is treated differ-
ently. So that the equation of mass conservation makes good sense —
and to be consistent with the boundary conditions — we must take this
scale to be ho\/% /A. (One way to see this is to consider two-dimensional
motion, for example

u,+w,=0,

and then introduce the stream function, ¥(x, z, f) (see Q1.20, Q1.34), so
that

u=1vy, and w=—y,;

the scale of ¢ is therefore ho\/éﬁ_ , and that for w follows directly.)

The surface wave itself leads to the introduction of a further parameter:
a typical (perhaps the maximum) amplitude of the wave. This is most
conveniently done by writing the surface, z = h(x,, ?), as

h=hy+an(x,?) (1.52)
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where a is this typical amplitude; the function 7 is therefore nondimen-
sional. We are now able to define the set of nondimensional variables,
which we first do for rectangular Cartesian coordinates. (The cylindrical
version is very similar.) Rather than introduce a new notation for all our
variables, we choose — where convenient — to write, for example, x — Ax.
This is to be read that x is replaced by Ax, so that hereafter the symbol x
will denote a nondimensional variable. With this understanding, we
define

X—>AX, y—o> Ay, z—>hyz, t—> ()\/\/%)t, (1.53)
u— \/ghou, v— \/ghyvy, w— (hO\/%/A)w (1.54)
with
h=hy+an and b — hyb. (1.55)
Finally, the pressure is rewritten as
P = P, + pg(hy — z) + pghop (1.56)

where P, is the (constant) pressure of the atmosphere, pg(hy — z) the
hydrostatic pressure distribution (see Q1.11) and the pressure scale,
pghy, is based on the pressure at depth z = Ay. The pressure variable p
introduced here, therefore measures the deviation from the hydrostatic
pressure distribution; we shall find that p # 0 during the passage of a
wave.
The Euler equation in component form, (1.13), and the equation of
mass conservation, (1.14), now become
Du dp Dv p 82@__8!

Dr ox Dr oy Dt &z’

where v (1.57)
Dt a “ax  ay az’
and
du v ow
F 5 i 0. (1.58)

These equations are written exclusively in terms of nondimensional vari-
ables, where & = hy/A is the long wavelength or shallowness parameter; we
shall have much to write about § later.
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The corresponding nondimensionalisation for cylindrical coordinates
is precisely that given in (1.53)(1.56), but with the transformations on x
and y replaced by

r— Ar. (1.59)
The governing equations, (1.15) and (1.16), therefore become
Du #_ % Dv w__ 1% oDw__|
Dt r o’ Dt r~ ro Dt 8z’
where ¢ (1.60)
D_2, 0. vd 3
Dt ot ar r 30 az
and J
2y 2o, (1.61)

all expressed in nondimensional variables; § is defined exactly as above:
8 = hy/A. Finally, in both versions, the upper and lower surfaces of the
flmd are represented by

z=1+4+en and z=54, (1.62)

respectively. Here we have introduced the second important parameter in
water-wave theory: ¢ = a/hy, the amplitude parameter.

Now we turn to the boundary conditions, which are treated in precisely
the same fashion. Thus we see that the surface kinematic condition,
(1.28), becomes

w=e{n,+@, -V)n} on z=1+en, (1.63)

in nondimensional variables. Similarly, the most general dynamic condi-
tion that we shall use in most of our work, (1.31) with (1.32) (for
h = h(x, y, 1)), yields
r ) (A + e + (1 + 800, — 26268 n.m,m,,
pgh? (1 + 2822 + £2622)*2
onz=1+en, (1.64)

where we write T'/(pgA%) = 8°W with W = I"/(pgh3), a Weber number. (It
is usual to define this with respect to the appropriate (speed)? = gh,, and
the corresponding depth scale; sometimes, to avoid confusion, we shall
write W, for W.) This nondimensional parameter is used to measure the
size of the surface tension contribution. A corresponding result is
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obtained in cylindrical coordinates, with & = h(r, 6, 7); see Q1.36. An
alternative dynamic condition is provided by the pressure equation,
(1.29), for irrotational flow; this is discussed in Q1.37. Finally, the bottom
boundary condition, (1.35), yields the unchanged form

w=b+@, -V)b on z=h4, (1.65)

in nondimensional variables.

1.3.2 Scaling of the variables

We have described the nondimensionalisation of the governing equa-
tions, but another equally important transformation is also required.
An examination of the surface boundary conditions, (1.63) and (1.64),
yields the observation that both w and p (on z = 1 + &) are essentially
proportional to ¢; that is, proportional to the wave amplitude. This
makes good sense, particularly as ¢ - 0, for then w — 0 and p — 0:
there is no disturbance of the free surface — it becomes a horizontal sur-
face on which w = 0 = p. Thus we define a set of scaled variables, chosen
to be consistent with the boundary conditions and governing equations;
we write (again avoiding the introduction of a new notation)

p—>éep, w—oew, (u,v)—>eu,v) (oru; — eu,). (1.66)

(The original, physical, variables are easily recovered from (1.66) and
(1.53)+(1.56); for example, if w is the scaled variable from (1.66), then
e(ho\/g_ho/)t)w is the original w.)

The equations (1.57) and (1.58) become

Du @_ p ,Dw_ p
Dt~ o’ Dt ¥’ Dt~ ¥’
where
D 9 ] b d
E=E+8(ua+va_y+w§) ( (167)
and
8u+?_v_+8w__0
ax  dy J

The equations in cylindrical coordinates, (1.60) and (1.61), are,
correspondingly,
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Du svz_ dp Dv ew 1 op 21_)_w= ap

D r - ity rw i &
where
D 9 d v 0 d
— = — - = — 1.
D: 8t+8(u3r+r39+waz)  (1.68)
and
1 4 1 ov ow

The surface boundary conditions, (1.63) and (1.64), are now written as
w=n,+e@ V)

(1 + 28220 x + (1 + 2802y, — 267y, | ¢ (1.69)
(A + 28202 + 828217%)3/ 2

p=77—82W

both on z = 1 + &7, and on the bottom (1.65) becomes
w=¢'b,+(u, -V,)b on z=b. (1.70)

For this last boundary condition we shall consider problems for which b,
is proportional to ¢ (or smaller); indeed, for almost all our discussions the
bottom boundary will be stationary, so b, = 0. (The scaled dynamic con-
ditions in cylindrical coordinates, and for irrotational flow, are given in
Q1.36 and Q1.37, respectively.)

As we shall discuss in due course, scaling is not restricted to the depen-
dent variables. Much of our later work (particularly in Chapters 3 and 4)
relies on seeking solutions in appropriate scaled regions of space and
time. So, for example, we might be interested in the solution when the
depth variation is slow (for example, b = b(ex,)), and then the trans-
formation (scaling) x;, — &x, is likely to be required. This, and related
ideas, will be described more fully in the brief introduction to asymptotics
and multiple scales (Section 1.4), and when we need to develop the
techniques needed to solve specific problems.

1.3.3 Approximate equations

The significance and usefulness of the nondimensionalisation and scaling
presented above will now be made clear. The parameters, ¢ and 3§, are
used to define, in a rather precise manner, various approximate versions
of the governing equations and boundary conditions. Similar ideas apply
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to the other parameters (such as W and R, the Weber and Reynolds
numbers, respectively); we shall comment on these as it becomes
necessary.

The two most commonly used — and useful — approximations are

(a) ¢ — 0: the linearised problem;
(b) § — 0: the long-wave (or shallow-water) problem.

The first of these, case (a), requires that the amplitude of the surface wave
be small; then, in a first approximation, the equations become linear. For
example, in rectangular Cartesian coordinates, equations (1.67), (1.69),
and (1.70) simplify to

w_ dp w_ o w d ow_

w- T w L wtyTaT
with
w=r17, and p=n—82W(nxx+nyy) on z=1 r (1.71)
and
w=(m,-V)b on z=>b(<1).

In these equations we have chosen b, = 0, and treated § and W as fixed
parameters as ¢ — 0, as they clearly are. We note that, in particular, the
evaluation on the (unknown) free surface has become an evaluation on
the known surface, z = 1, even though the unknown free surface, », still
appears in the equations. The linear equations expressed in cylindrical
coordinates take a similar form (from equations (1.68) and (1.70) and
Q1.36). (The corresponding equations for irrotational flow are obtained
in Q1.38.)

For case (b), the waves are long; that is, of long wavelength (or the
water is shallow), in the sense that § = Ay/A is small. (Both descriptions
are commonly used; we shall more often use the former — long waves —
rather than the latter.) This time we keep € and W fixed, and (with b, = 0)
the approximation § — 0 yields the problem

Du_ o Dv_ & @p_, w w, w_
Dt~ o’ Dt 9 98 = ox dy o8z
where

5 2 a
Dz=at+8(“£+”5+w&) (1.72)
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with
w=n,+eu, -V,)n and p=7n on z=1+en
and
w=(@u,-Vy)b on z=5a.

The equations which describe small amplitude and long waves (so ¢ — 0
and § — 0), are clearly consistent with both sets (1.71) and (1.72): the
resulting equations are those of (1.71), but with

dp

E=O; p=n on z=1, (1.73)

or (1.72) with £ = 0.

The solutions of these various approximate equations will form the
basis for many of our descriptions in the selection of classical water-
wave problems presented in Chapter 2.

1.4 The elements of wave propagation and asymptotic expansions

In this final section we describe the basic ideas that provide the essential
background to any discussion of wave propagation. We shall present a
brief overview of the mathematical description of elementary wave pro-
pagation: d’Alembert’s solution of the wave equation, and the important
properties of dispersion, dissipation and nonlinearity. Then we shall out-
line the concept of an asymptotic expansion, and show how this can be
used to obtain appropriate asymptotic solutions of wave-like equations.
This will introduce the important technique of rescaling the variables
with respect to the (small) parameter(s) in the problem.

1.4.1 Elementary ideas in the theory of wave propagation

Wave propagation theories, at their simplest, usually involve the applica-
tion of fundamental physical principles (to the motion of a stretched
string, for example), leading to the classical one-dimensional wave
equation

Uy — Gy = 0. (1.74)

The function u(x, ) represents the amplitude of the wave, ¢ (> 0) is a
constant, and the subscripts denote partial derivatives. This equation has
the general solution
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u(x, ) = f(x — ct) + g(x + c1), (1.75)

written in terms of the characteristic variables (x £ ct); this solution,
(1.75), is commonly described as d’Alembert’s solution, where f and g
are arbitrary functions. If, as is usual, x is a spatial coordinate and ¢ a
time coordinate, then c is a speed, so the solution represents right (f) and
left (g) propagating waves. The functions f and g can be determined, for
example, from suitable initial data, such as » and u, prescribed at t =0
(the Cauchy problem); see Q1.39.

The two wave components, f and g, propagate at constant speed (c)
with unchanging form; they do not interact with themselves nor with each
other. This is equivalent to the statement that the governing equation is
linear which, of course, is precisely the form of (1.74). Each component is
a separate and independent linear wave.

Now, for most of our work on water waves, we shall describe waves
that propagate only in one direction (which usually will be to the right).
One simple way to do this is simply to set g = 0; an alternative is to
suppose that the initial data is on bounded (or compact) support. Then,
after an appropriate finite time, the two components (f and g) will move
apart and no longer overlap (see Q1.40). In either event, it is then possible
to follow just the one component. An equivalent approach is to restrict
the discussion, ab initio, to waves propagating in one direction only; this
is accomplished by working with the equation

U+ cu, =0, (1.76)
which has the general solution
u(x, t) = f(x — c1). Q1.77)

This is then completely determined, given the function u(x, 0) = f(x).

Wave propagation equations, at least when derived from more
complete physical models, are unlikely to be as simple as (1.74) or
(1.76). More careful analyses, but with the restriction to unidirectional
propagation, might lead to the linear equations

U+t + Uy, =0 (1.78)
or
U, +u, —uy, =0. (1.79)

(In these two equations, the coefficients have been normalised; this is
always possible by redefining x — ax, ¢t — B¢, for suitable constants
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a, B.) One very familiar method for solving linear partial differential
equations is to seek the harmonic solution

u(x, 1) = elkx—o (1.80)

where k& is a real parameter. (A real solution for u can be
constructed by taking the real or imaginary part, or by forming
A explikx — wt)} + complex conjugate, where A(k) is complex valued.)
Upon substitution of (1.80) into (1.78) and (1.79), it follows that (1.80) is
a solution of (1.78) if

w=k—k, (1.81)
and of (1.79) if
=k —ik% (1.82)
In the case of (1.81), we see that
kx — ot = k{x — (1 — K1},
so that the speed of propagation,

21K (1.83)
k
is a function of k. Thus waves with different wave number, k, travel at
different speeds (which, in this example, might be to the left or the right,
depending on whether k% > 1 or k> < 1, respectively). This property of a
wave is known as dispersion, and the wave is said to be dispersive; equa-
tion (1.78) is the simplest (unidirectional) dispersive wave equation and
(1.81) is its dispersion relation. A solution of this equation, which is the
sum of two components, each associated with different values of k,
exhibits the property that each component will move at its own speed
given by (1.83). Thus, if the solution is initially on compact support, the
two components will move apart, or disperse. The separate components
do not change shape, although the observed sum does give the
appearance of a changing profile.

The speed, w/k, is called the phase speed of the wave; this describes the
motion of each individual component. However, as we shall discuss later,
another speed, defined by dw/dk, describes the motion of a group of
waves. This is called the group speed and, as we shall explain later, it is
the speed at which energy is propagated.

A similar discussion for equation (1.79) yields

u(x, 1) = explik(x — 1) — K’t);
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this describes a wave which propagates at a speed of unity (to the right)
for all &, but which decays as ¢ — +oo (for k # 0). This phenomenon of a
decaying wave is called dissipation; it usually arises from a physical sys-
tem that incorporates some frictional behaviour, such as fluid viscosity.
The values of the coefficients in equation (1.79) are unimportant, but
the relative sign of the terms #, and u,, is; if this changes then the
wave amplitude will grow without bound as ¢t - +oo. (Further one-
dimensional linear wave equations of this type can be constructed, with
combinations of even and/or odd derivatives in x; see Q1.41.)

Finally, for us, a significant property of many of the waves that we
shall encounter is that they are nonlinear. The simplest model equations
usually involve linearisation (and so, perhaps, might lead to equations
(1.78) or (1.79)), but a more careful analysis will often lead to a nonlinear
equation, such as

u,+ (1 +wu, =0. (1.84)

The general solution of this equation is obtained directly from the method
of characteristics:

. dx
u = constant on lines — =1 4 wu.

dr
Thus, supposing that we are given u(x, 0) = f(x), the solution of (1.84) is
u(x, t) = f{x - (1 + u)t} (1.85)

which, for general f, provides an implicit relation for u(x, £). Only when f
is particularly simple is it possible to solve for u explicitly; see Q1.43.
Nevertheless, the solution can always be represented geometrically by
using the information carried along the characteristic lines. Thus any
point on a wave profile, at which u takes the value u,, will propagate
at the constant speed 1+ ;. Consequently, points of larger ¥, move
faster than those of smaller uy; this implies that a wave profile will change
shape, as represented in Figure 1.5. This might result in a profile which
becomes multivalued after a finite time, as our figure shows; this corre-
sponds to the intersection of the characteristic lines. When this happens,
it is usual to regard the solution as unacceptable, because we normally
expect the solution-function to be single-valued (in x for any ). The
solution can be made single-valued by the insertion of a discontinuity
(or jump) which separates the characteristic lines and does not allow
them to intersect; this is shown in Figure 1.6. (A discontinuous function
is not, strictly, a proper solution of the equation (1.84), but it should be a
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ua

t=0 t=1, t=¢

—_— — — = >

Figure 1.5. A breaking wave, according to equation (1.85); at ¢ = £, the wave is
about to break and at t = ¢; (> 7;) the wave has broken.

Figure 1.6. The insertion of a discontinuity (or jump) to make the solution single-
valued.

solution of the underlying integral equation; see, for example, equations
(1.1) and (1.2). A fuiler discussion of discontinuous solutions will be
given in Section 2.7.)

The form of the wave, for ¢ > ¢, in Figure 1.5, is reminiscent of a wave
breaking on a beach; indeed, this type of solution of a nonlinear equation
is often called a breaking wave. However, this similarity is altogether
superficial; waves that approach a beach, and then break, are described
by a much more involved theory (which essentially requires the full
water-wave equations). A related problem is described in Section 2.8.

1.4.2 Asymptotic expansions

Finally, we introduce the ideas that form the basis for handling the
equations and problems that we encounter in water-wave theory, at
least in the initial stages of much of the work. The technique that we
adopt involves the construction of asymptotic expansions. This branch of
mathematics has a reasonably long history, and one that has not been
divorced from controversy (mainly over the interpretation of divergent
series, which often appear in this work). The first systematic approach, to
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both the definition and use of asymptotic expansions, is due to Poincaré;
we shall follow his lead.
First we require a little bit of notation: we write

J(x) =0(g(x)); f(x)=0(@Kx); [f(x)~gx),
as x = Xxp, if

Jlim [£G0/g(0)]

is zero, finite non-zero, or unity, respectively. These are usually read as
‘little oh’, ‘big oh’ and ‘varies as’ (or ‘asymptotically equal to’), respec-
tively; the function f(x) is the given function under discussion, and g(x) is
a suitable gauge function. We can then write in this notation

1 -1
f(x)=2+x2=o(x ) as |x| - oc;
1
f(x)=m=0(1) as x — 0;
f(x) =sin2x ~ 2x as x —> 0,

for example. It should be noted that the limit in which the behaviour
occurs must be included in the statement of the behaviour.
This description of a function (in a limit) is now extended: we write

N-1

S =3 89~ en(x) asx— x,
n=0

for every N > 1, where f(x) ~ go(x) as x — x;. It is then usual (and
convenient) to express this property in the form

S~ ign(x) as x = Xxg, (1.86)
n=0

where N has been taken to infinity here; this ‘series’ is called an asymp-
totic expansion of f(x), as x = xy. Of course, this is only a shorthand
notation and does not imply any convergence (or otherwise) of the series
in (1.86). In practice, asymptotic expansions are rarely taken beyond a
few terms, but it must be possible — in principle — to find them all.
This representation is merely a compact way of describing a sequence
of limiting processes (as x — xp) on the functions {f(x)/g¢(x)},
[{f (x) — go(x)}/g1(x)], etc. However, the functions that we shall be work-
ing with involve one (or more) parameters; this is now introduced into
our definition.
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The asymptotic expansions that we require are defined with respect to a
parameter, & say, as € — 0, at fixed x. The asymptotic expansion of
f(x; &) is then written as

f(x;8) ~ if,,(x; g) as &— 0 at fixed x (or x = O(1)), (1.87)

n=0

where f,,,1(x; £) = off,(x; ©)} (as ¢ — 0) for every n > 0. If this asymp-
totic expansion, (1.87), is defined for all x in the domain of the function,
f(x; &), the expansion is said to be uniformly valid. However, if there is
some x (in the domain), and some » for which

Jur1(x; €) # off(x; &)}

as ¢ — 0, then the asymptotic expansion is said to break down, or to be
non-uniform. Here we have written each term in the expansion as f,(x; ¢),
but quite often this occurs in the much simpler separable form:
Ju(x; €) = £"a,(x). Happily, this is usually the situation for our problems
in water waves.

Briefly, we describe these ideas by considering the example

fe)=(+ex+e™), 1<x<2, (1.88)

for £ = 0%. For any x = O(1), in the given domain, we may therefore
write

f(x;8) ~ 1 —ex + x> (1.89)
or
f(x;8) ~ ’2 &"(—x)" (1.90)
or even _
f(x; €) ~ ios"(—x)" —e7e, 1.91)
/e

(In this last case, it should be remembered that e /¢ = o(¢") as ¢ — 0™,
for every n, if x > 0.) Now let us take the same function, (1.88), but define
the domain as 0 < x < 2; the asymptotic expansions, (1.89)-(1.91), are
clearly not uniformly valid when x = O(g), for then e™*/¢ = O(1). This
choice of x is usually expressed by writing

x=¢X, X=0() ase— 0
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the original function then becomes
f(eX;e)=F(X;e) =1 +&X +e )7,

SO

X

1
F(X: &)~ —
(X: ) l+e X 14+eX

as & — 0. (1.92)

Finally, if we further extend the domain to 0 < x < 00, the asymptotic
expansions, (1.89)(1.91), are now not uniformly valid also for
x = O(¢™Y). For an x of this magnitude, we define

x=x/e, x=0(1) ase—0,
and then
f/ee)=F (e =0+ x+ e—x/ez)—l

which gives
F(x e)~ﬁ as ¢ — 0. (1.93)

These various asymptotic expansions also satisfy the matching princi-
ple. To demonstrate this, we consider the asymptotic expansions (1.89),
(1.92), and (1.93). Thus

f~loex+e®xX =1-X+6*X?~1-X ase— 0", X =0(1),

matches with

1 X +
F~1+e_x—1+e_x=~l—sx ase— 0", x=0(Q).

Similarly,
feloex+e?x=1-x+xX2~1=—x+x ase— 0", x=0(Q),
matches with

1 1

~——= ~1-— 2y 0%, x=0(1).
F Trx - T+ex ex+¢ex" ase— x=0(1)

Simple asymptotic expansions, and the matching principle, are briefly
explored in Q1.45, Q1.46; the reader who requires a more expansive
and comprehensive discussion of asymptotic expansions, the matching
principle, etc., should consult the texts mentioned at the end of this
chapter.
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The application of asymptotic methods to the solution of differential
equations, at least in the context of wave-like problems, is reasonably
straightforward and requires no deep knowledge of the subject. The pro-
cess is initiated — almost always — by assuming that a solution exists (for
O(1) values of the independent variables) as a suitable asymptotic expan-
sion with respect to the relevant small parameter. The form of this expan-
sion is governed by the way in which the parameter appears in the
equation and, perhaps, also how it appears in the boundary/initial con-
ditions. Usually, a rather simple iterative construction will suggest how
this expansion proceeds. In order to explain and describe how these ideas
are relevant in theories of wave propagation (and, therefore, to our study
of water waves), we consider the partial differential equation

Uy — Uy = (U + Uy - (1.94)

The small parameter, &, in this equation (which here represents the
characteristics of both small amplitude and long waves) suggests that
we seek a solution in the form

00
ux, 56)~ Y 'u(x, 1) ase— 0, (1.95)
n=0

for x =0(1), t = O(1). We shall suppose that equation (1.94) is to be
solved in ¢ > 0 and for —oo0 < x < 00, with appropriate initial data being
prescribed on ¢ = 0 (that is, the Cauchy problem). The expansion (1.95) is
then a solution of equation (1.94) if

) )
Uy — Upxx = 0; Uy — Uxx = (uO + qux)xx’

and so on. To obtain these, we simply collect together like powers of &
and set to zero each coefficient of &".

We see immediately that the general solution of u, (d’Alembert’s
solution) is

X, ) =f(x—0+gx+1,

and we will suppose that the initial data is such as to generate only the
right-going wave; for example

u(x,0;8) =f(x), u(x,0;¢) = —f'(x). (1.96)

(This choice is not strictly necessary, even for our purposes; we could
prescribe initial data on compact support as we have mentioned before
(with x = O(1)) and then, for large enough time (as we use below), the
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right- and left-going waves move apart and we may elect to follow just
one component; see Q1.40.)
Now, with u, = f(x — t), we see that

Upy — Ui = (F2 1), (1.97)

where the prime denotes the derivative with respect to (x — #). To pro-
ceed, it is convenient to introduce the characteristic variables for this
equation,

E=x—1t, {=x+1,
so that equation (1.97) becomes
_4u15; — (fZ +f”)”,

and hence

Wi, ) =~ 3807 +1"Y + AQ) + BQ),

where f = f(§). The arbitrary functions, 4 and B, are determined from
the initial data: if we use that choice given above, (1.96), then we require
(for L] (xa t))

u(x,00=0, u,(x,00=0

(since these data, (1.96), are independent of ¢), so
w8, ) = }[(s — O+ @Y+, Q)+ O - 1® -1 ®)
or
u(x, 0= —%tF’(x -0+ %{F(x + 1) — F(x — 1)},
where F = f2 + f”. The asymptotic expansion, so far, is therefore
u(x, t;€) ~ f(x — 1) — f—‘{ZtF’(x — D+ F(x—0)—F(x+16). (198)

For f(x) on compact support (and suitably differentiable), or at least
for f(x) — 0 (sufficiently rapidly) as |x| — oo, it is clear that the asymp-
totic expansion (1.98) is not uniformly valid for et = O(1). Further, for
our stated condition on f(x), we need consider only § = O(1) and thus we
now examine the solution of equation (1.94) for

E=x—t=0(), 1=6t=0() ase—0. (1.99)
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(The asymptotic expansion, (1.98), will also be non-uniform at any values
of & for which the first, second, or third derivatives of f(£) are undefined;
we do not normally countenance this possibility in these types of prob-
lem. From the above, we see that (1.98) is non-uniform in ¢ no matter
how well-behaved f(£) might be — and we note that f = constant is of no
practical interest!)

In wave-like problems, the region where a large time (or distance)
variable is used (like 7 in (1.99)) is usually called the far-field; the corre-
sponding region for + = O(1) is then referred to as the near-field. We note
that, for £ = x — t = O(1), then ¢ = O(¢™") implies that x = O(e~!); this
relationship between the various asymptotic regions is made clear in
Figure 1.7.

The transformation (1.99), applied to equation (1.94), makes use of the
identities

a 3 d k) a9

ax o N uTn
then the equation for u(x, t; &) = U(§, T; £) becomes
Uz — 22Uy = (U? + Ugee. (1.100)

An asymptotic solution of this equation is sought in the form
UE o)~ ) U1, -0, (1.101)
n=0

for £ = O(1), T = O(1), and then U, will satisfy the equation
2Uge + (U + Ugge)s = 0,

Y S

Figure 1.7. A schematic representation of the far-field, where x = O(z™"),
t =O(™"), with x — £ = O(1); the wavefront is x — ¢ = 0.
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or
2U01: +2UOU0§ + UOEEE = 0, (1102)

where we have invoked decay conditions as |£§] — oo. This equation,
(1.102), is a third-order nonlinear partial differential equation, which is
one variant of a very famous equation: the Korteweg—de Vries equation,
of which we shall write much (Chapter 3). It turns out that we can
formulate the solution of this equation which satisfies (the matching
condition)

Uy—>f(§) ast—0,

which corresponds to the initial-value problem for equation (1.102); this
solution exists provided f(£) decays sufficiently rapidly as |§] — oo. (The
method of solution required here is at the heart of inverse scattering
transform — or soliton — theory.) The solution thus obtained, for U,
constitutes a one-term uniformly valid asymptotic expansion for r > 0
and = 0(1) (as ¢ - 0). The next term in this expansion satisfies the
equation

2U e + 2(UgUy)ge + Urgege = Upee
or
22U + 2(UgUy)g + Uy = —(U§ + Uoze)-»

where we have used equation (1.102) for Uy, and again imposed decay
conditions as |§] — oc. The analysis hereafter is not particularly straight-
forward; the solution for U; is obtained by writing U, = Uy V (4, 1),
which can then be examined to see if the asymptotic expansion (1.101)
is uniformly valid as T — oo. This involves very detailed and lengthy
discussions, particularly if the general term (U,) is to be included; such
an analysis is altogether beyond the scope of our investigations. Suffice it
to record that, for an f(x) which is smooth enough and which decays
rapidly (exponentially, for example) at infinity, the far-field expansion in
problems of this type is usually uniformly valid. (For some problems,
though, it is necessary to write the characteristic variable itself as an
asymptotic expansion, a technique related to the familiar method
known as the method of strained coordinates. That this might be required
is easily seen if we attempt to find a representation of the exact charac-
teristics of the original equation. Some of these ideas are touched on in
the exercises; see Q1.47-Q1.49, Q1.53.)
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Finally, we describe one other type of asymptotic formulation which is
often used in wave-like problems; this is based on the method of multiple
scales. As before, we explain the salient features by developing the ideas
for a particular equation (which will be typical of some of our problems
in water-wave theory). We consider the equation

Uy — Uyy — U+ (uu,), = 0; (1.103)

for ¢ =0 this equation has a travelling-wave solution, expressed as a
harmonic wave (see (1.80)),

u=Ae® 4 cc., (1.104)

which c.c. denotes the complex conjugate. This solution, (1.104), for an
arbitrary complex constant A4, leads to the dispersion relation (for £ = 0)

o’ =k —1,
which possess real solutions for @ only if |k| > 1. We shall suppose that

k > 1, and then there are two possible waves with speeds

w
¢ =7=+/1-k2, (1.105)

where the subscript p is used to denote the phase speed. Now, for a given k
and one choice of ¢,, we seek a harmonic-wave solution of equation
(1.103) which evolves slowly on suitable scales. For these problems, a little
investigation (or some experience) suggests that we should introduce slow
variables
{=e(x—ct), t= e,
where the speed ¢, is, in general, not equal to the phase speed, ¢, and is
unknown at this stage. In addition, upon writing
§=Xx—cpt,

the original equation, (1.103), is transformed according to

a = 3 + 83 . 2 = C, 2 —_— a 2 a

ax ot oy P
to yield (with u(x, t; &) = U(§, ¢, T; €))

(¢ — DUg — U + 26(cyc, — DUy + 67{(c; — DUy ~ 2¢,Up,)
+ &(UU); + €{(UUy), + (UUy)} = O(&?),

where terms only as far as O(s?) have been written down. Thus the
function u(x, t; ¢) is now treated as a function of the variables (¢, ¢, 1):
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this is the method of multiple scales (the scales here being O(1), O(s™}),
0(8'2), respectively).
We seek a solution in the form of the asymptotic expansion

UE, 2,1, 8) ~ Ze”U,,(f;, £,1) ase— 0, (1.106)
n=0

for &, ¢, T all O(1). Thus
(012, - l)Uog‘f’; bt UO = 0,

and we take the solution
i ) 1
Uo = AOI(;’ T)Clks +c.C. with Cg =1- 'k—2 (k > 1),

where the first subscript in 4y, denotes the term €%, and the second is
associated with the choice

E' =¢.
At the next order, el, we obtain the equation

(c; — DUy — Uy = 2(1 — c,cg)Upgr + (Up Uge )
= 2(1 — ¢ e )ik Ao E + c.c.) — 2k 45, E* +c.c.),

and U, is a harmonic function only if
CpCe =1, (1.107)

which determines c,. If this choice for c, is not made, then U, will include
a particular integral proportional to £¢E which would lead to a non-
uniformity in the asymptotic expansion, (1.106), as |§| — oco; terms like
&E are usually called secular, whereas uniformity in £ is guaranteed only if
terms periodic (harmonic) in £ are allowed in U,. The speed, ¢, which
describes the motion of the amplitude Ay, is the group speed for this
wave. To see this we start with the definition (see Section 1.4.1)

do d
Cg = @ = &(kcp),

and so we have

de , 1, dc
€ =¢ +kd—lg or ¢y =2¢p +§k—d—kg
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which, from (1.105), yields

1 1
Cpcg=1—E2'+k(E§-) =1,

as required (see (1.107)). The solution for U; may therefore be written as

2Kk2 43,

__KAn gy
wi-a-1= T

U =41 DE+

2
= AUE +§k2A(2)1E2 +c.c.

where A, is (so far) unknown; this gives a correction (of O(¢)) to the
amplitude of the fundamental, E. We note that U; includes a higher
harmonic, E? (and its complex conjugate, E~2).

To proceed, the equation for U, is obtained, which, with (1.107)
incorporated, is

(cp — DUy — U = (1 — ) Uy + 2¢,Upge — (U)g, — (UpUy)ge. (1.108)

Again, we impose the condition that U, is to contain only terms periodic
in & to this end, any terms in E' which appear in the forcing terms in
equation (1.108) must be removed. Such terms can arise only from

(1 = cp)Uogg + 26, Unge — (Up U g
= (1 — (Ao E + c.c.) + 2¢,(dgiikE +c.c.)

& - 2 2 - -

~3 {(AOIE + AmE*l)(gsz(anz + §szglE—z + Ay E+ A“E-‘) }
where the overbar denotes the complex conjugate. In this expression, the
coefficient of E which is to be set to zero (and, of course, its conjugate for
terms E') is

. 2
2ike, dorr + (1 = 2 Agr; + §k4A01|A01|2 =0; (1.109)

all other terms generate higher harmonics in U,, which is acceptable for
uniform validity as |§] — oo. The equation which describes the evolution
of the amplitude of the leading term, equation (1.109), is one version of
another important and well-known equation: it is the Nonlinear
Schrodinger equation, which we shall describe more fully later (Chapter
4). Other derivations of this type of equation are discussed in Q1.50 and
Q1.54.
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Further reading

This chapter, ailthough it aims to provide a minimal base from which to
explore the theory of water waves, cannot develop all the relevant topics
to any depth. The following, therefore, referenced by the section numbers
used in the chapter, is intended to present some useful — but not essential
— additional reading.

1.1

There are many texts — and many good texts — on fluid
mechanics; readers may have their favourites, but we list a few
that can be recommended. A wide-ranging and well-written text
is Batchelor (1967); more recent texts are Paterson (1983) and
Acheson (1990), this latter including an introduction to waves in
fluids. A more descriptive approach is provided by Lighthill
(1986), and there are the classical texts: Lamb (1932),
Schlichting (1960), Rosenhead (1964) and Landau & Lifschitz
(1959).

1.2, 1.3 We shall provide many references to research papers and texts

1.4.1

1.4.2

later, but two texts that can be mentioned at this stage are Stoker
(1957) and Crapper (1984). A more general discussion of waves
in fluids is given by Lighthill (1978).

For an excellent introduction to the theory of waves (including
water waves), see Whitham (1974). An exploration of the con-
cept of group velocity is given by Lighthill (1965). Of course,
there is an extensive literature on the theory of partial differen-
tial equations; we mention as pre-eminent Garabedian (1964),
and Bateman (1932) is also excellent, but good introductory
texts are Haberman (1987), Sneddon (1957) and Weinberger
(1965); two compact but wide-ranging texts are Vladimirov
(1984) and Webster (1966). Finally, two excellent texts on gen-
eral mathematical methods, including much work on partial dif-
ferential equations, are Courant & Hilbert (1953) and Jeffreys &
Jeffreys (1956).

The classical text, for applications to fluid mechanics, is van
Dyke (1964). Introductory texts that cover a wide spectrum of
applications, including examples on wave propagation, are
Kevorkian & Cole (1985), Hinch (1991) and Bush (1992).
More formal approaches to this material are given by Eckhaus
(1979) and Smith (1985). The properties of divergent series
are described in the excellent text by Hardy (1949), and their
everyday use is described by Dingle (1973).
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Exercises

Some differential identities. Given that ¢(x) is a scalar function,
and u(x) and v(x) are vector-valued functions, show that

@ V-(pwy=u-V)p+¢V-u

(b) VA(¢u) = (Vo) Au+¢(V Au);

©) uA(VAW=V(3u-w)—(u- V)

d VA@AY)=u(V-V)—(u-V)v+(v- VIu—v(V-u);

[A subscript notation, used together with the summation
convention, is a very compact way to obtain these identities.]
Two integral identities. A volume V is bounded by the surface S
on which there is defined the outward normal unit vector, n.
Given that ¢(x) is a scalar function, use Gauss’ theorem to

show that
] Vodu = / ¢nds,

\4 S

and, for the vector function wu, that

/VAudv:/n/\uds.

v S

[It is convenient to introduce suitable arbitrary constant vectors
into Gauss’ theorem.)

Another integral identity. By considering, separately, each
component of the vector A, show that

f AQu-n)ds = f {(u- V)A + A(V - u)}dv.
\'

S

Acceleration of a fluid particle. The velocity vector which
describes the motion of a particle (point) in a fluid is
u = u(x, ), so that the particle follows the path on which

dx
Frin U@ = u{x(y), t}.

Write x =(x,y,z) and u= (¥, v, w) (in rectangular Cartesian
coordinates), and hence show that the acceleration of the particle

1S
dU o6u Du
T u @ Vu=g

the material derivative.
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Material derivative.

(a) A fluid moves so that its velocity is w= (2xz, —yt, —zi),
written in rectangular Cartesian coordinates. Show that the
surface

F(x,y,z, 1) = x* exp(—28%) + (5% + 22%) exp(#*) = constant

moves with the fluid (so that it always contains the same fluid
particles; that is, DF /Dt = 0).
(b) Repeat (a) for

u= (—%, ——2%,%;) and F=~7x*+ ty2 —-Zt——j.
Eulerian vs. Lagrangian description. The Eulerian description of
the motion is represented by u(x, #): the velocity at any point and
at any time, The Lagrangian description follows a given particle
(point) in the fluid; the Lagrangian velocity is u(xy, f), where
X = xg at ¢ = 0 labels the particle.

A particle moves so that

x = {xq exp(2£), yo exp(—1>), zg exp(— 1)},

written in rectangular Cartesian coordinates, where

X = Xg = (Xp, Vo, 2p) at £ = 0.

(a) Find the velocity of the particle in terms of x, and ¢ (the
Lagrangian description), and show that it can be written as

u = (4xt, —2yt, —2z1),

the Eulerian description.

(b) Now obtain the acceleration of the particle from the
Lagrangian description.

(c) Also write down the Eulerian acceleration, du/dt, where
u = u(x, ?).

(d) Show that the Lagrangian acceleration (that is, following a
particle) is recovered from

Du adu
E_§+(u-V)u where u=u(x, f).

Incompressible flows. Show that the velocity vectors introduced
in Q1.5 (a), (b) and Q1.6 (a) all satisfy the condition for an
incompressible flow, namely V-u = 0.
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Steady, incompressible flow. Show that the particle which moves
according to

X = (x06™, yoe?', zoe”),

written in rectangular Cartesian coordinates, where
x = (X, Vo, 29) at £ = 0 and «, B and y are constants, is a steady
flow (that is, u = u(x)). Find the condition which ensures that
V-u=0.

Another incompressible flow. A velocity field is given by

u=fx, r=Ixl=x2+2+2,

written in rectangular Cartesian coordinates, where f(r) is a
scalar function. Find the most general form of f(r) so that u
represents an incompressible flow.

A solution of Euler’s equation. Written in rectangular Cartesian
coordinates, the velocity vector for a flow is

u = (xt, yt, —2zf) where x=(x,y,2);

show that V-u = 0. Given, further, that the density is constant
and that the body force is F = (0, 0, —g), where g is a constant,
find the pressure, P(X, t), in the fluid which satisfies P = Py(¢) at
x=0.

Hydrostatic pressure law. Consider a stationary fluid (u = 0) with
p = constant, and take F = (0,0, —g) with g = constant. Find
P(z) which satisfies P =P, on z = h;, where z is measured
positive upwards. What is the pressure on z = (0?

Vorticity. Consider an imaginary circular disc, of radius R,
whose arbitrary orientation is described by the unit vector, n,
perpendicular to the plane of the disc. Define the component,
in the direction n, of the angular velocity, €, at a point in the
fluid by

) 1
Q.n= hm0 W*u-dl ,
C

where C denotes the boundary (rim) of the disc. Use Stokes’
theorem, and the arbitrariness of n, to show that
1

Q=§0),
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where ® = V A u is the vorticity in the fluid at R = 0.

[This definition is based on a description applicable to the

rotation of solid bodies. Confirm this by considering
u=U+QAr, where U is the translational velocity of the
body, Q is its angular velocity and r is the position vector of a
point relative to a point on the axis of rotation.]
A simple flow with vorticity. Written in rectangular Cartesian
coordinates, with F = (0, 0, —g) where g is constant, show that
u=(U(2),0,0) with P= Py — pgz (P, and p constants) is an
exact solution of Euler’s equation and the equation of mass
conservation. What is the vorticity for this flow? Repeat this
calculation for U = U(y).

[A classical example is U(z) = Uy + (U, — Up)H(z) where U,
and U, are constants, and H(z) is the Heaviside step function; this
is called a vortex sheet.)

Helmholtz’s equation. Given that p = constant and F = —VQ,
take the curl of Euler’s equation to show that

% = (- V).
Hence, for a flow that varies in only two spatial dimensions,
show that @ - V = 0 and so @ = constant on particles. (The vor-
ticity then remains ‘trapped’ perpendicular to the plane of the
flow; cf. Q1.13.)
Helmholtz’s equation for compressible flow. Show, for a com-
pressible flow (which satisfies the general equation of mass
conservation, (1.4)) with F = —VQ, that

20)-[6) -3l

cf. Q1.14. Hence, given that the fluid is barotropic (see Q1.18) so
that P = P(p), show that this equation is that given in Q1.14 with
o replaced by @/p.
Vorticity in cylindrical coordinates. Given that the velocity vector
for a flow is u= (6u, u, 0u), written in cylindrical coordinates
(r, 6, 2), find the vorticity when u = u(r).

[The vorticity vector for (u, v, w) in cylindrical coordinates is

1 1 1
(;WO — Vg Uy — Wy, ;(I"U)r - ;u0)°]
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Rankine’s vortex. Find the vorticity for the velocity field

0,30r, 0), 0<r<a

u= (0,%a)a2/r,0), r>a,

written in cylindrical coordinates (see Q1.16), where w is a con-
stant. Confirm that this u describes an incompressible flow. With
p = constant and F = —VQ, use Euler’s equation to find an
expression for (P/p)+ Q that is continuous on r=a and
which satisfies {(P/p) + Q} = Py/p as r - oo. What condition
on P, ensures that (P/p) + Q > 0? (This condition is particularly
relevant if Q =0.)

Barotropic fluid. Given that a fluid is described by P = P(p),

show that
lVP = V(/g)
P P

[This generalises V(P/p) as used in equation (1.21); a barotropic
fluid (Greek: Bapog, weight) is one in which lines of constant
density coincide with lines of constant pressure.]

Particle paths and streamlines. For these flows, expressed in rec-
tangular Cartesian coordinates, find the particle paths that pass
through (xq, ¥, zp) at ¢ = 0. In each case, also find the general
equations describing the streamlines. Verify that each flow is
incompressible.

(@) u=(cx, —cy, 0); (b) u=(2xt, —2y1,0);

©) u=(x—1-y,0); () = {cx?, ey?, =2c(x + y)z},
where ¢ is a constant.

Stream functions. The stream function, ¥(x, y, t), satisfies the
equation of mass conservation for incompressible flow

U, +v, =0

with 4 = ¢, and v = —,. For each of the velocity fields given in
Q1.19 (a), (b), and (c), find the stream function.

The stream function. For the two-dimensional flow field,
u = (u,v) with x = (x, y), use the definition of the streamline
(equation (1.17)) to show that i = constant (at fixed ¢) on
streamlines; see Q1.20.

Stream function in polar coordinates. Following Q1.20, define a
stream function, ¥(r, 6, t), for the equation of mass conservation
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Hence find the stream function for the flow with speed U(¢) along
the x-axis; that is, along 6 = 0.

Stream function in cylindrical polars. Define a stream function for
the equations of mass conservation

19 ow 1dv ow
(€)) ;5(”4)"‘32——0, (b)—‘“"'a

see Q1.22.

Irrotational flow. Show that these velocity fields describe
irrotational flows, and find the velocity potential in each case:
(@ u=(a-x)b+(b-x)a (a,b arbitrary constant vectors);

() u E{ “2xyz (P =) y }

(x2 +y2)2 ’ (x2 +y2)2 T X2 +y2

in rectangular Cartesian coordinates.

Complex potential. An incompressible, irrotational flow in two
dimensions, with u = (¢, v) and x = (x, y), leads to the introduc-
tion of the stream function, i, and velocity potential, ¢; see
Q1.29 and Section 1.1.3. Show that ¢ and i satisfy the
Cauchy—Riemann relations, and hence that there exists a function
w(z) = ¢ +iy (with z= x+iy), the complex potential. Also
demonstrate that

dw
—_—=Uu-—- l'l)

dz

the complex velocity. What flow is represented by the function
w(z) = U(He*z,

where « (a constant) and U(f) are both real?

Vector potential. Introduce the stream function, y(x, y, ), for the
incompressible flow field u = (i, v) with x = (x, y); see Q1.20.
Define the vector potential ¥ = (0, 0, /) and hence show that

VAY =u

Kinematic condition. Fluid particles move on the path, x = x(?),
in the free surface

z(t) = h{x (1), 1}.
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Differentiate this equation with respect to ¢, and hence show that
w=h+@, -V))h on z=h(xg,?).

A two-dimensional bubble. An incompressible fluid, p = constant,
is at rest on a flat horizontal surface and the surface tension
causes it to form into a bubble. The pressure in the fiuid satisfies
the equation of hydrostatic equilibrium, and the free surface is in
contact with the atmosphere at pressure P = P, = constant.
Assuming that the ‘bubble’ exists only in the two-dimensional
(x, z)-plane, for —xy < x < x¢ and 0 < z < h(x), write down the
equation for A(x).

An axisymmetric bubble. See Q1.28: now assume that the bubble
is defined for 0 <r <ry, 0 <z < h(r), with 0 < 6 < 27, expressed
in cylindrical coordinates. Write down the equation for A(r).
With the notation h(0) = hy, define R =r/ry and H(R) = h/hy;
hence write your equation in terms of H(R). Given that
& = hy/ry < 1, show that an approximate solution exists which
(for suitable parameter values) satisfies

HO0)=1, H'(0)=0, H(1)=0,

provided ¢y < ¢ < a; where o = pgra/T (which uses the stan-
dard notation). Here, /g (> 0) is the first zero of the Bessel
function J,, and /@ (> 0) is the second zero of J;. Find H'(1)
and sketch the shape of the bubble.

Differentiation under the integral sign. Given

b(x)

1) = [ £G6,9)dy,
a(x)

show that

b
&= [rend+sb T -fea s
a

where the integral of f,, and @’ and b’, are assumed to exist.
Verify that this formula recovers a familiar and elementary result
in the case: f = f(»), b(x) = x, a(x) = constant.

[You may find it helpful to introduce the primitive of f(x, y) at
fixed x: g(x,y) = [f(x,y) dy]



54
Q1.31

QL.32

Q1.33

1 Mathematical preliminaries

Differentiation under the integral sign: examples. Use the formula
given in Q1.30 to
(a) find an expression for d//dx, where

x?
¥
I(x) = /7dy, x>0

X

(b) show that
1 t
s = [@ =g+,
—t

where g is a twice differentiable function, is a solution of the
partial differential equation

n
Dux ~— du _‘t‘¢t =0,

for a certain value of the positive integer, n, which should be
determined. [Hint: integrate your expression for ¢,, by parts,
twice.]
An energy equation. An incompressible, inviscid flow with
F = —VQ is described by Euler’s equation. Take the scalar pro-
duct of this equation with the velocity vector, u. Integrate the
resulting equation over the volume V, which is fixed in space, and
hence show that

d [l 1
5 [3mondo== [(Gou-utpp0)u-nas
A\ S

where S bounds V.
Energy and a uniqueness theorem.
(a) The kinetic energy of the fluid occupying the volume V is

1
T=§/pu-udv;
v

see Q1.32. For an incompressible, irrotational flow, show
that

T=%/p¢u-nds, u=Vg.
s
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(b) The result in (a) can be used to provide a uniqueness theo-
rem. Suppose that there are two possible flows, u; = V¢, and
u, = V¢, both satisfying the same given conditions on S.
Write U = u; —u, and & = ¢; — ¢,, and show that

I=/U-Udv=/<l>U-nds,
v S

and hence that I = 0 if either ¢ or u is prescribed on S. With
these boundary conditions, deduce that U =0, so u; = u,:
the velocity field is unique.
Elementary nondimensionalisation. A two-dimensional flow, with
u = (¢, w) and x = (X, 2), is both incompressible and irrotational.
Nondimensionalise according to

u—>cu, x—>ix, z-— hz,

and hence obtain the nondimensionalisation of the stream func-
tion, ¥, of the velocity potential, ¢, and of w. Write down the
nondimensional version of w = ¢,.

A Reynolds number. Use the scheme described in Section 1.3 to
nondimensionalise the Navier-Stokes equation (Appendix A),
and hence obtain the nondimensional parameter which incorpo-
rates the viscosity, u, and is based on the scales associated with
the horizontal motion.

[The reciprocal of this parameter is called the Reynolds num-
ber; knowledge of its size is of fundamental importance in the
study of fluid mechanics.]

Dynamic condition in cylindrical coordinates. Use the non-
dimensionalisation described in Section 1.3.1 to obtain the
corresponding boundary condition written in cylindrical coordi-
nates; cf. equation (1.64). Further, by suitably scaling the pres-
sure in terms of ¢, and by using an appropriate definition of the
Weber number, rewrite this condition and then approximate it
for ¢ —> 0.

Nondimensionalisation of the pressure equation. Use the non-
dimensionalisation described in Section 1.3.1, followed by the
scaling adopted in Section 1.3.2, to obtain the appropriate
form of the pressure boundary condition, equation (1.29).
(This will require a nondimensionalisation and scaling of the
velocity potential, ¢; see Q1.34.)
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Irrotational flow: approximations. Write down the non-
dimensional, scaled equations for irrotational flow in the absence
of surface tension (see Q1.37) and for a bottom boundary which
is independent of time. Hence obtain the approximate form of
these equations in the limit of small amplitude, ¢ — 0. Also write
down the corresponding approximate boundary condition when
surface tension is included.

The classical wave equation. Use the method of characteristics to
derive d’Alembert’s solution of the wave equation

Uy — czuxx =0,

and hence obtain that solution which satisfies u(x, 0) = p(x) and
u(x, 0) = g(x), —00 < x < 00.

Data on compact support. See Q1.39; now suppose that both p(x)
and ¢g(x) are zero for x < 0 and x > x (> 0). Describe the form
of the solution for ¢ > x3/(2¢).

Dispersion relation. Discuss the nature of the solution of the
equation

Up Uyt Uy — Uy = 0,

on the basis of its dispersion relation.
Dispersion relations compared. Compare the dispersion relations
for the two equations

ut+ux+uxxx=0; ut+ux"uxxt=0’

particularly for long waves (k — 0) and short waves (k — o0).
Nonlinear wave equation. Obtain, explicitly, the solution of the
equation

u,+ (1 +wu, =0,

which satisfies

ax, 0<x<l
u(x,0)={a(2—x), l<x<2
0, otherwise,

where « is a positive constant. Also, by using the characteristics,
sketch this solution at various times, ¢ > 0, and include ¢ = 1/a.
An implicit solution. Find the (implicit) solution of the equation

U, +uu, =0,
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which satisfies u(x, 0) = cos rx. Show that u(x, ?) first has a point
where u, is infinite at time ¢{=n"'. What happens to this
solution if it is allowed to develop beyond ¢ = 717

Asymptotic expansions I.

(a) Obtain the first two terms in the asymptotic expansion of

fGe)=( +sx—8+Lx+e"‘”)_l, x>0,¢>0,

for x = O(1) as ¢ — 0. Also obtain the leading order terms in
the expansions valid for (i) x = O(g), (il)) x = O(e'l). Show
that your expansions satisfy the matching principle.

(b) Obtain the first three terms in an asymptotic expansion of

fxe)=(1 +sx+62x4)“1/2, x>0,e>0,

for x =0(1) as ¢ —> 0. Show that your expansion is not

uniformly valid as x — co. In the two further asymptotic

expansions that are required, find the first two terms in

each and confirm that they satisfy the matching principle.
Asymptotic expansions II. The function

fe)=(1—ex—&*x =2 g0,

is real for 0 < x < xy(¢). Construct asymptotic expansions of

f(x; &), as € = 0, as follows:

(a) x = 0O(1): first two terms algebraic in &, first exponentially
small;

(b) x = O(e): first two terms;

(¢) x=0("): first two terms.

Show that your expansions satisfy the matching principle and,

from your expansion obtained in (c), deduce that xo(e) ~ ¢! — 1

as € — 0%,

Long—distance scale. For the propagation equation

2
Uy — Upx = 8(“ + uxx)xx’

introduce the characteristic variable & = x — ¢, and the long-
distance variable X = ex, and hence obtain the appropriate
Korteweg—de Vries equation which describes the first approxima-
tion to u (as ¢ — 0) in the far-field. (You may assume that u — 0
as |&| —> 00.)
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Left-going wave. See Q1.47; for this equation, find the Korteweg—
de Vries equation (as the first approximation for ¢ — 0) in the
far-field defined by ¢ = x+ ¢ = O(1) and t = &t = O(1).

Left- and right-going waves. See Q1.47 (and also Q1.48); intro-
duce the characteristic variables §=x—1¢, {=x41¢, and the
long-time variable t = ¢t. Seek a solution

u ~f(§1 t) +g(§', T) + 6“1(5, 4’ T)’
for & ¢ and t all O(1) as ¢ — 0, in which f and g separately
satisfy appropriate Korteweg—de Vries equations. (You may
assume that f(g) decays as |&] — oo (as |¢| = o00).) What, then,
is the solution for #,?
Nonlinear Schriodinger equation. A wave is described by the equa-
tion
Uy —Uxxy — U= 8{(ux)2 - uuxx}-
Use the method of multiple scales with
E=x—cpt, (=e(x—cgt), 1= e,

and seek an asymptotic solution in the form

00 n+1
u~ Z & Z A&, DE™ +cc.,
n=0 m=0

as ¢— 0, which is uniformly valid as |£] - oo. Here,
E = exp(iké) and k (> 1) is a given (real) number. Find c,(k)
and c,(k) (and confirm that ¢, = d(kc,)/dk), and show that

a4 32
2ike, °1+(1— g) °‘ — 8k* gy ) Agy | = 0.

Wave hierarchies I. A wave, which satisfies u — 0 as x - +00, is
described by the multiwave speed equation
5 3u

2+(c1+«€ u)—+e a_} —+ (2 +&u)— }

+¢ {-a—t+(c+8u)5§}u=0,

where c¢;, ¢, and ¢ are constants. Show that, if ¢; < ¢ < ¢,
then on the time scale &2 the wave moving at speed c;
decays exponentially in time, to leading order as ¢ - 0%. (To
accomplish this, you will find it convenient to introduce
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E=x—ct=0(Q), t= = O(1).) Now show that this same
property is exhibited by the wave moving at speed c,.

Wave hierarchies II. See Q1.51; show that, on the time scale g4,
the wave moving at speed ¢ has diffused over a distance O(s~>)
about its wavefront. In particular, show that this wave is
described by an equation of the form

or + ddx = APy,

to leading order as ¢ — 0%, (Similar to Q1.51, it is useful to
introduce X =é&*(x — ¢r) = 0(1), T =¢&*t=0(1).) Determine
the constant A, and confirm that A > 0 provided ¢; < ¢ < ¢,.
Find the solution of this leading-order problem which describes
a steady wave and which satisfies u > 0 as X — oo, u —> 1 as
X - —o0.

[This equation, here expressed in terms of ¢, is a famous and
important equation: it is the Burgers equation, which can be
linearised by the Hopf~Cole transformation ¢ = —21.9(In6)/3X.]
A nonlinear wave equation. A wave motion is described by the

equation
D\ eud P Pu_ du
ot ox ar T Tt

Introduce £ = x — ¢ and t = &t, and hence show that the leading
approximation (as ¢ — 0) satisfies the equation

2u,§ + 2qu5 + u§ =+ Uggre = 0, (*)

where £ = O(1), T = O(1).
Now introduce two characteristic variables

E~x—t+ef(x+t,1); n~x+t+eg(x—1tr1),
and seek a solution
u=F( 1)+ G(n, )+ 0o(e)

as ¢ — 0, where F satisfies (x) and G satisfies the corresponding
equation for left-running waves. Confirm that the resuits are
consistent when only left- or right-running waves alone are
present.

Bretherton’s equation. A weakly nonlinear dispersive wave is
described by

3
U+ Uy + Uy U= U,
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Introduce the variables X = sx, T = et and 6, where
9x=k(X*T)9 9:=—‘0(X,T)»

and seek an asymptotic solution
o0
u~Y U, 0,X,T), &0,
n=0

which is uniformly valid as [8] — oo. Write
Uy=AX,T )eio +cc.,

and obtain the equation for 4 which ensures that U, is periodic
in 6. Introduce the dispersion relation, relating @ and k, and
hence show that

3i

) 1
Ar + o' (K)Ay = %AlAIZ - Ekxw”(k)A,

and then re-express this by writing 4 = ae'? (for a, B real).
[This model equation for the weakly nonlinear interaction of

dispersive waves was introduced by Bretherton (1964).]

Steady travelling waves. Seek a solution of each of these equa-

tions in the form u(x, ) =f(x — ct), where ¢ is a constant,

satisfying the boundary conditions given:

@) u, — 6uu, + u,,, = 0 with u, u,, u,, > 0 as |x| - oo;

) u,+uu, =u,, with u—0 as x—> 0o, u— uy (>0) as

X — —00.

[The solution to (a) is the solitary wave of the Korteweg—de Vries

equation, and (b) gives the Taylor shock profile of the Burgers

equation.]
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Some classical problems in water-wave theory

Yet let us hence, and find or feel a way
Thro’ this blind haze

The Passing of Arthur

The study of problems in water-wave theory, particularly under the
umbrella of the linear approximation, goes back over 150 years. In the
intervening time, many different problems — and extensions of standard
problems — have been discussed by many authors. In a text such as ours,
it is necessary to make a selection from this body of classical work; we
cannot hope to describe all the various problems, nor all the subtle var-
iants of standard problems. Our intention is, of course, to include the
simplest and most fundamental results (such as, for example, the speed of
waves over constant depth and the description of particle paths), but
otherwise we choose those topics which contain some interesting and
relevant mathematics. However, since we shall not present all that
some readers might, perhaps, expect or prefer, we endeavour to remedy
this by introducing additional examples through the exercises. The suffi-
ciently dedicated reader is therefore directed to the exercises, particularly
if a broader spectrum of water-wave theory is desired.

The material here is presented under two separate headings. The first is
linear problems, where, apart from the elementary aspects mentioned
above, we single out those topics that are attractive and which will
prove relevant to some of our later discussions. Thus we describe waves
on sloping beaches, as well as the phenomenon of edge waves. We shall
also develop some rather general ideas associated with ray theory, and
apply the results to variable depth, ship waves, and waves on currents.
Under the second heading, nonlinear problems, we extend the application
to waves on a sloping beach in order to include the effects of nonlinearity.
We also describe the Stokes expansion (which produces higher approx-
imations to the classical linear wave), and introduce the fully nonlinear
solitary wave — a very famous wave. Other nonlinear waves that we shall
describe include the hydraulic jump and bore, and we shall explain the

61
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analogy between nonlinear water waves and (nonlinear) gas dynamics;
this leads us to introduce the notion of simple waves and the ré6le of the
Riemann invariants.

I Linear problems
Our hoard is little, but our hearts are great.
The Marriage of Geraint

The linear equations (defined by ¢ — 0, keeping all other parameters
fixed) have been described, for an inviscid fluid, in Section 1.3.1. These
equations, expressed in Cartesian coordinates, are

Uy = —Dx; Ut = —Py; 82wt =—p;; Uyt Uy +w,=0,)
with
w=n, and p=n—8W(,+n,)onz=1 2.1

and

w=ub, +vb, on z=b. J

Correspondingly, written in cylindrical coordinates, these equations
become

1 1
uy=—p; v =—=ps; &w,=—p; (), +-vp+w,=0,)

r r r

with
2 1 1
w=mn and p=n-—3§ W(nrr+;nr+;2'ﬂ90)onz=l e (2.2)
and
w = ub, +§bg on z = b(r, 6).

Most of the problems that we present, however, will be based on
rectangular Cartesian geometry.

2.1 Wave propagation for arbitrary depth and wavelength

We consider, first, the simplest problem of all: the propagation of a plane
harmonic wave in the x-direction over constant depth. The depth, in
nondimensional variables, is 1 —5 (> 0), but we may choose b =0
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(since the actual depth is subsumed into the length scale in the z-direction;
see Section 1.3.1). The governing equations, (2.1), therefore reduce to

uy=—py; Ewo=-—p; U+w,=0
with 2.3)
w=n, p=n—8Wn,onz=1, w=0onz=0.
The surface wave is described by
n=Ae® 4 cc., 249

where A4 is a complex constant; this represents a wave whose initial form
(att=0)is

n=Ae** +cec.,

where k is the (nondimensional) wave number.
It is convenient to write

E = expli(kx — wt)},

and then to seek a solution (upon the suppression of the complex
conjugate) in the form

u=UQR)E, w=WI(EE, p=P)E. 2.5

To avoid the obvious confusion, the Weber number is rewritten here as
W.; the equations (2.3) now give, presented in the same order as above,

%U:P; P =iwsW; W’ +ikU=0 (2.6)
(where the prime denotes the derivative with respect to z), with
wW(Q) = —iwd; PQ)=(1+8KW)H4; W(O0)=0. (2.7

From equations (2.6) we see, directly, that
W' = —ikU = —%P' = 8w,
so the general solution for W(z) is

W = BCSkz + Ce—&kz

where B and C are arbitrary constants. The two boundary conditions for
W(z) (given in (2.7)) then yield the solution

— oA (smh 8kz). 2.9

sinh 6k
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Also, equations (2.6) show that
=9 o,
PQ) T uQ) 2 w'(1)

and hence the boundary condition on P (in (2.7)) gives

sw* cosh 8k
2 e —
1+80W, == i
or
() 2_ 2 _ 2 tanh 5k .
Q)—Q—U+JFM%7;—@®, 2.9)

this is the dispersion relation for (plane) surface waves and so determines
w(k) (and hence the phase speed c,(k)).

Thus for waves of any wave number, k, and with the surface tension
contribution included, we can find the speed, c,, of these waves. (We
observe that (2.9) is an expression for 012,, so it is possible to have propa-
gation both to the right (¢, > 0) and to the left (¢, < 0), as we would
expect.) The dispersion relation is a function of 8k = hy/A, where
A = MA/k is the (physical) wavelength of the wave initiated at t =0. We
may now examine the special cases of $k — 0 and 8k — oo.

The first case, 8k — 0, which describes long waves (or shallow water),
gives rise to the very simple result

& ~1, (2.10)
which, in original physical variables, produces the speeds of propagation
¢, ~ £/ ghy, 2.11)

which is independent of the wave number, and so these waves are non-
dispersive. (This speed of propagation, \/ghy, confirms the choice of scales
adopted in Section 1.3.1.) The speeds given by (2.10) are also independent
of the Weber number, but directly related to g, so waves that travel at
these speeds are called gravity waves (see (2.11)). Indeed, the gravity wave
describes an oscillatory balance between kinetic and potential energy, in
the gravitational field.

On the other hand the limit §k — oo, which describes short waves (or
deep water), yields

c; ~ kW, (2.12)

and waves moving at the speeds obtained from (2.12) are called
capillary waves (or, sometimes, ripples). We comment that our preferred
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terminology is to emphasize the wavelength of the wave rather than the
depth of the water (provided that this depth remains finite); we therefore
discuss long waves or short waves as the limiting forms.

Now, if we consider an environment for which it is reasonable to
ignore the effects of surface tension altogether (that is, W, is always
negligibly small), equation (2.9) becomes

2o tanh 8k

P sk
for gravity waves of any wavelength. Then for short waves, where
8k — oo, we obtain

(2.13)

1
¢, ~+t— (or +./gA in dimensional variables);
P m ( g )

this time the speed is not dependent on the depth. These various proper-
ties of the dispersion relation, expressed in terms of the phase speed c,,
are shown in Figure 2.1. It is evident that there is a minimum speed of
propagation defined by equation (2.9); see Q2.1, Q2.2. Furthermore, at

cpzlc,ﬁ 5.0
4.5
4.0
3.5

3.0

2.5 W, =0.01
2.0
1.5
1.0

0.5

0.0

T T T T T ; T T T T
00 05 1.0 15 20 25 30 35 40 45 50 MA,

Figure 2.1. The wave speed obtained from equation (2.9), expressed as (c, Jem)
against A/A,,, where A = 8k, for W, (or W)= 0.01; the subscript m denotes the
value at the minimum point (see Q2.1 and Q2.2).
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any given speed above this minimum, two waves — a gravity wave and a
capillary wave — can coexist at the same speed. This is sometimes
observed when capillary waves are seen ‘riding on’ gravity waves, both
moving at essentially the same speed. However, a more dramatic phe-
nomenon occurs if a disturbance is generated in a moving stream.
Provided that the stream is moving faster than the minimum propagation
speed, two sets of standing (stationary) waves can often be observed: one
of rather long waves (gravity waves) behind the disturbance, the other of
rather short waves (capillary waves) ahead of the disturbance; see Figure
2.2. (That some waves can propagate forward of the disturbance is, per-
haps, rather surprising; this will be explained in due course.) The inclu-
sion of a stream moving at a constant speed (for all x and z) is described
in Q2.11.

Corresponding calculations are also possible in cylindrical geometry
(and based, therefore, on equations (2.2)). One of the simplest cases arises
for long waves (8§ — 0) with b =0; see Q2.17. The surface wave is
then described by the classical wave equation, written in cylindrical
coordinates

1 1
N = (nn +on ;z-nee) =0. (2.19)

This equation can be solved by using the conventional method of separa-
tion of variables, perhaps coupled with the use of an integral transform;
see Q2.18 and Q2.19. Indeed, if we seek a solution for purely concentric
waves, 7(r, t), and make use of the Hankel transform

) = / ORERdr (o> 0),
0

Flow direction

Object

Capillary waves Gravity waves

Figure 2.2. Schematic representation of the generation of capillary waves and
gravity waves by a fixed object in the surface of a moving stream.
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then the Hankel transform of (r, ) (written as #7(z; p)) satisfies
ﬁ” + p2ﬁ — 0;

see Q2.18. (This result does require the introduction of appropriate
boundedness and decay conditions.) Then given, at ¢t = 0, that

n=f(¢) and 5,=0,

we obtain

n =f(p)cospt,

where f (p) is the transform of f(r); thus, using the inverse transform, we
obtain

e}

n(r, t) = / f (p) cos (1p) Jo(rp)dp.

0

This type of solution, suitably adjusted for deep water (see Q2.19), will
provide the basis for a brief description of the propagation of concentric
waves in Section 2.1.3. (We comment that some authors prefer to use the
symmetric version of the Hankel transform:

) = f O y() Toprydr)
0

2.1.1 Particle paths

An important consideration in any wave motion is to find what, if any-
thing, is actually moved (presumably in the direction of propagation) as
the wave progresses. This might involve, for example, mass or momen-
tum or energy. In water waves, a first calculation of this type is to find the
particle paths that describe the motion of the fluid particles on and below
the surface. Then, for example, any motion that occurs near the bottom
of the flow will provide the necessary source for the displacement of the
sediment (if the bed of the flow is so comprised).

In our simple linear calculation, we have so far determined the vertical
velocity component, from (2.8), and the horizontal velocity component
(in Q2.3); these are

inh 8
s1‘n kZE+c.c.; u=8wAE-o—s£18—kZE+cc.,
sinh 6k

w=—lod sinh ok :
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respectively, where E = expli(kx — wt)}. The particle paths are then
defined by

de ™ 77 de

and note the inclusion of the parameter ¢, required since the particle
paths are, in general,

dx

—=u and wu= ey, w) here.

T (u, w)
Thus equations (2.15) describe paths whose amplitude is O(g); it is
therefore convenient to introduce

= ew, (2.15)

XxX=Xxo+€eX, z=zy+¢Z,

where x, and z, are treated as fixed (and O(1)). The particle paths as
& — 0 — the approximation used throughout this work on linear waves —
are now described by

d_X cosh 8kz, By +cco dz ~_i sinh 6kz,
dr %" sinhek 0T

ar ~ T ek To e
where E, = exp{i(kxy — wt)}. These may be integrated directly to give

sinh 6kz,
sinh 6k

where the arbitrary constant is set to zero in each case (so that X = 0 and
Z = 0 when 4 = 0). This representation of the particle paths is usefully
recast as

X 2 VA 2 4|A|2
(8 cosh Skzo) +(sinh 8kzo) - (sinh 8k)2 , 0<zp<1, (2.16)

cosh 8kz,

X~ 8A-aok

Ey+cc, Z~A Ey+cc.,

to leading order as ¢ — 0.
The fluid particles, in the neighbourhood of the point (xy, z,), move on
ellipses for which

major axis

- — = §coth kzg,
minor axis

(and which collapse to a point when 4 =0, as one would expect). For
long waves, § — 0, the major and minor axes become, respectively,

414|/k and 4|4z,
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which describe different ellipses at different depths, and which approach
the (degenerate) horizontal path as zy — 0. On the other hand, for short
waves (8 — ©0), the corresponding results are

45| Ale~*1=%0) and  4)4|e~ (17,

whose ratio does not vary as z, varies. In this case the ellipses are all of
the same eccentricity, but of decreasing size as z; decreases. (Indeed, in
original physical variables, these trajectories become circles of decreasing
radius as z; decreases; see Q2.4.)

We have found, therefore, that (in this first approximation) as the
small-amplitude wave propagates on the surface, the fluid particles follow
closed paths. Consequently there is no net transfer of material particles
due to the passage of the wave (at least, at this order of approximation).
In particular, near the bottom of the flow there is, predominantly, a
horizontal oscillatory motion of the fluid as a long wave propagates over-
head. Clearly, there is (at this order) no net flow of matter, but what of
energy, for example?

2.1.2 Group velocity and the propagation of energy

We return to our first analysis in which we examined the solution
initiated by a pure harmonic wave of fixed amplitude. This time, how-
ever, we construct the solution to equations (2.3) with the initial surface
profile now given by

n = A(ex)e® +c.c.,

where A is a complex-valued function. For o — 0, this describes (with &
fixed) another pure harmonic wave, but here with a slowly varying ampli-
tude; this is obviously an improvement on our simplest case. (Another
generalisation is to allow for many — perhaps all — wave numbers, k; this
choice is discussed in Q2.22.) The purpose is to obtain the appropriate
solution of equations (2.3) which is uniformly valid as « — 0; see Section
1.4.2. The parameter, §, is held fixed and, for simplicity, we consider
only gravity waves (so the Weber number, W,, is set to zero); the
corresponding calculation for W, # 0 is described in Q2.26.
As before, it is convenient to introduce

E = expli(kx — wt)},
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and then we seek a solution which also depends on the slow scales
X=ax, T=at 2.17)

The inclusion of T is a reasonable manoeuvre, since the solution is to be a
wave that propagates in x and ¢, and the slow space scale (X = ax, given
in the initial datum) is therefore likely to have an associated slow time
scale; of course, we lose nothing by including it (see also Q1.54). We seek
a solution in the form

u=UcX,T;0)E, w=W(e, X, T;a)E, p=Pz, X,T;a)E,
with
n=AX,T;a)E,
plus the complex conjugate in each case. The equations (2.3) yield

iwU —aUy = ikP + aPy; & (ioW —aWy) = P,;

, (2.18)
1kU+aUX + Wz =0,

with
Wl,X,T;a) = —-iwA+adr; PL,X,T;a)=4; W(0O,X,T,a)=0.
(2.19)

If an appropriate solution of these equations exists (at least, as & — 0),
then uniform validity as [kx — wt|] — oo is guaranteed since the complete
solution has been constructed with only E' (but then E~' as well)
included: no higher harmonics and secular terms can be generated (cf.
equation (1.106) et seq.).

Directly from equations (2.18) we see that

. 3 . 4 of . 3\/. a
(m)-—aa—T)Uz = (1k+a§)Pz =4 (1k+a51,—) (lw—aﬁ) W,

and the relevant solution here satisfies

. a
U,= 82(lk+aa—X) W,

thus we obtain

2
W, +8 (ik + a%) W =0. (2.20)
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An asymptotic solution of the system (2.18) and (2.19) is sought in the
form

o~ ia"Qn, a— 0. (2.21)
n=0

where Q= U, W, P, or A (and correspondingly for Q,). Hence, with
(2.21) used in (2.20), we obtain the equations
Wos — 8K Wy =0; W, — 82 k2W, = —2iks* Wy, (2.22)

and so on. From our previous calculation (Section 2.1), we have
immediately that

. sinh 6kz
Wo = —la)AO (m), (223)
where cf, = (a)/k)2 = (tanh 8k)/(8k); see equations (2.8) and (2.13). Now,

for W;, we obtain

sinh 6kz
Wi — 8P W, = —2kwd* Agy (m) (2.24)

which has the solution, for arbitrary B(X, T),

zcosh 8kz

sinh sk ’
which satisfies W,(0, X, T) = 0. The other two boundary conditions at
this order (see (2.19)) are

W, =—iwdAd|+ Ay and P;=A;onz=1. (2.26)

W, = B, sinh 8kz — Swdoy (2.25)

The first of these yields
iwA; + Aoy = B, sinh 8k — dwAyy coth 5k, 2.27)
and the second uses (from equations (2.18))
ikP| + Pyy =iwU; — Upr and ikU;+ Uy + Wy, =0onz=1.
In Q2.3 we are led to the results

8’ . (coshékz cosh ékz
and so
. s’ » o
ikPy + & Aox coth 6k = —Sw(—k- Aoy + AOT) coth 6k — 7 Wi
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on z = 1. Hence from (2.25) and (2.26) we obtain
kA, + 8w(2%A0X + AOT) coth 8k = — 8wB, cosh 8k

o’
+— Aox(%k + coth 6k)  (2.28)

and upon the elimination of B, between equations (2.27) and (2.28) we
finally have

Aop + % {1 + 8k(coth 8k — tanh 8k)} 4y = O. (2.29)

We have derived the equation which describes the variation of the
leading-order approximation to the amplitude, A,; this equation does
not involve A;, because this is eliminated with B, when w(k) is used.
The general solution of (2.29) is

4o = F(X ~ ¢,T),
where F is determined by the initial datum (on 7 = 0) and

¢ = 21"]; {1 + 8k(coth 8k — tanh 8k)}.

It is left as an exercise to confirm that this speed of propagation is indeed
the group speed:

Cg = 3—: where o’ = %tanh 8k.
In another context, we provide curves of ¢, and ¢, (for gravity waves) as
functions of 8k; see Figure 4.1.

Thus, although the individual waves move forward at the phase speed
(¢, = w/k), the envelope or group moves at the group speed, c,. Indeed,
this general property of a wave is easily explained by a simple (but heur-
istic) argument involving two waves of the same amplitude but differing
slightly in wave number; see Q2.28. (The reason for our rather lengthier
approach, apart from presenting a more careful treatment, is to introduce
the techniques that we shall require later. A neater approach, which
avoids finding A, is described in Q2.30.) The inclusion of the surface
tension leads to the corresponding result, but with ¢, now the appropriate
group speed deduced from the dispersion relation (2.9); see Q2.26.

The connection between the propagation of the group and the propa-
gation of energy is now easily stated. It is a familiar result that the energy
in a wave motion is proportional to the square of the amplitude of the
wave; here, this implies that the energy is proportional to |4,|>. But we
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have just demonstrated that 4, is a function of (X — ¢,7T), and so the
energy propagates at the group speed. There are many ways of presenting
this argument in a more precise form, some of which are rehearsed in the
exercises; here we describe one such method that uses the general notion
of energy, as developed in Section 1.2.5. From equation (1.48), we have
that the total energy (per unit horizontal area) in the flow is

h
&= /(%pu-u+pgz)dz,
b

written in physical variables. This is re-expressed using our
nondimensional and scaled variables (described in Section 1.3) as

1+4en 1
&= / [EEZ(UJ_'“J_+82W2)+Z]dZ,
b

where & — pghd& describes the nondimensionalisation of &. For our
simple problem of one-dimensional wave propagation (with b = 0), this
becomes

I+en 1
&= / {E.SZ(u2 + 82w?) + z} dz,
0

where u and w are given by U, and W, respectively, to leading order as
a— 0.

Our primary concern here is with the energy carried by, let us say, one
period of the wave. Thus we first introduce

u~UyE+UgE™, w~ WyE+ WyE™,

where E = exp(ik€), £ = x — c,t and the overbar denotes the complex
conjugate, and then we define the energy carried by just one period of
the wave: this is

Consistent with the linearisation (¢ — 0) that we have so far adopted, we
therefore obtain
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2a/k 1
i - 1 -
~ / / [EeZ(UoE + UoE™'Y + Eszaz(WoE + WoE )Y + z} dzdg,
0 0
where we have retained both the kinetic and potential contributions to

the energy (although these are of different orders of magnitude as ¢ — 0).
It follows directly that we have

2 /k 1 5 . 2
)1 20 2, 2 / cosh 8kz sinh 8kz
/ s~ 7 Iz”‘“’ ol” [N sinaw ) T\ Simmee ) |
0 0
where the term (7/k) represents the potential energy of the undisturbed
fluid. (Because of our choice here of computing the energy in one period,

this potential energy depends on the wavelength through k; it is quite
usual, therefore, to define an average energy over one period:

% f &ds)
0

The second term is associated with the wave motion alone; because of our
scaling, it is proportional to & (as & — 0) — which is to be expected — and
it is also proportional to |4|?, the required result.

Finally, we briefly describe the particular form that c, takes for our
water-wave problem, and what this implies for the propagation of waves.
We already have (from equation (2.9)) the dispersion relation

W’ = (’3‘ + 8k3 We) tanh ok.

It is left as an exercise (Q2.26) to show that the group speed may be
written as

_do_1, 1+362k2We+ 25k
“Ta T 2%\ 1+oK2w, " smh2ok |’

where ¢, is the phase speed. Then for long waves (6k — 0) we see that
¢g ~ ¢p: the phase and group speeds are the same. On the other hand, for
short waves (8k — 00), we see immediately that c, ~ 3c,/2: the group
speed is greater than the phase speed. For the case of gravity waves only
(so that W, = 0) we have



Wave propagation for arbitrary depth and wavelength 75
1
=5 cp(1 + 28k cosech 28k),

and hence § < ¢;/c, < 1; on the other hand, for infinitely deep water with
surface tension (see Q2.27) we obtain

L] |1 +382k2We}.

TN\ T+ 0w, |

that is, 1 < ¢,/c, <3 (where equality occurs when W, = 0). These few
observations are sufficient to explain, for example, the phenomenon
represented earlier in Figure 2.2. Waves produced by a fixed disturbance
in a moving stream can be stationary (provided that the speed of the
stream is greater than the minimum speed of propagation of waves).
The energy in the gravity component (the left-hand branch in Figure
2.1) is always propagated at a speed less than c,, so these gravity waves
appear behind the disturbance. The capillary waves, however, always have
a group speed which is greater than c,, and consequently the forward
propagation of energy for this mode generates these waves ahead of the
disturbance. (It turns out that the attenuation of gravity waves is much
less than that for capillary waves — mainly because of their significantly
different wavelengths; see Chapter S — so gravity waves are seen to extend
much further behind the disturbance than capillary waves are seen ahead.)

2.1.3 Concentric waves on deep water

In Section 2.1 we mentioned some results that can be obtained for wave
propagation, which is governed by the classical wave equation written in
cylindrical coordinates. It is now our intention to describe the character
of purely concentric gravity waves (initiated by a central disturbance) as
they propagate over deep water. Of course, corresponding calculations
are possible for any depth and with surface tension included, but it is
sufficient, both to give a flavour of the results and also for our future
work, to examine this one example. We start with the representation of
the solution obtained from Q2.19:

100 = [ o) cos(1, 2 ), 2.30)
0
which satisfies n(r, 0) = f(r) (with transform f (»)) and n(r,0) =0. It is

immediately evident that any useful description of the wave profile, n,
based on the solution (2.30), requires some approach that will produce a
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simplification. To this end we choose to analyse the solution in the
regions where r2/r — 0o, a choice that will look reasonable when we
recast the problem so that we may invoke the method of stationary phase.
First, we express the Bessel function, Jo(pr), in the familiar integral
form
5 /2
Jo(pr) = - / cos(prcos0)do, (2.31)

0

and then write (2.30) as

= %7 f(p)[exp{ (\/;+prcos9)}
0
+ exp{i(t\/g — prcos 0) }]de dp, (2.32)

where # denotes the real part of the double integral. To proceed, we
introduce a new integration variable (g) and a parameter (o) defined by

o\i

or 7

2

=3P and o= 3 (2.33)
respectively. The expression for the surface wave given in equation (2.32)

may therefore be rewritten as

/2

2w T
) Pt
m32r4/ /
00

and we examine this by employing Kelvin's method of stationary phase to
give the asymptotic behaviour of 5(r, ) as ¢ — oo (that is, as £/8r — o0).
This very powerful and widely used result states (see Q2.16) that

q3f(6r2 ) [exp{io(g + 4* cos 0}

+ explio(g — ¢° cos8)}1dodg,  (2.34)

$(0) = f (@) explioaq))dg

~ 1@ [srrewnliva@ +ifsm @) @39
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as o — +o00, where the point of stationary phase is defined by
@'(Q)=0;
the primes here denote derivatives with respect to Q, and sgn is the
signum function (taking the values +1 or —1). Essentially the idea is
that, for large o, the integrand oscillates least rapidly near the point
(or, perhaps, points) where a'(q) = 0, and so this is where the dominant
contribution will arise; elsewhere, rapid oscillations approximately can-
cel, although we might obtain a contribution from the end-points of the
range since symmetry about these points is lost. The error in the beha-
viour given in (2.35) is O(c™"), in general, as ¢ — oo. This result is closely
related to the method of steepest descent, and some standard references to
these types of asymptotic evaluation are given in the section on Further
Reading at the end of this chapter. We now apply (2.35) to the double
integral (2.34), once in g and once in 6, and to both exponential terms.
First, in g, the points of stationary phase occur where

1+2gcos8=0; 1—2gcosf=0,

which correspond, respectively, to the two exponental terms. However,
since
0<g<oo and 0<6<m/2,

the dominant contribution will come only from the second term in the
integral; that is, at

_ 1
" 2cos6’

The second derivative of the exponent, with respect to g, is then —2 cos 6.
Thus we have

214 i 7
n(r, 9 ~9;fm [ (2cos 9)‘3f(——)

48r2 cos2 0
0

7 .
X /acos 6’exp{l(—-zr + o/ cos)/4}do

which itself possesses a point of stationary phase where

sind=0 or 6=0,

q

and so g = % Since 8 = 0 occurs at the end of the range of integration, the
method of stationary phase produces half the contribution represented in
(2.35) (which there uses equal contributions from either side of ¢ = Q).
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The second derivative of the exponent, evaluated at # = 0, takes the value

land so
4 2
£ oaf ¢ n (87
n(r, 0 ~ 9?—8n82r4f<—48r2>‘/;\/-—60 /4 (as o — 00)

£ 7 £
=275 f (Er—i) cos (Z;S_;)’ (2.36)

which is the asymptotic behaviour as #/8r — co. How can we make use
of this result?

Clearly, since the argument of the function f involves #/r%, and
2 /6r — o0, we require to know the behaviour of f in order to describe
n(r,t). We consider the simple — and idealised — choice of initial
disturbance given by

4, 0<r<a

w0 =10 ={ o V5"

where A is a constant; this describes a ‘top-hat’ profile which is used here
to generate the outward propagating concentric wave. The transform of
this function is

a pa
Foy=4 [ rlo(pr)dr = % f 7o)y
0

7 [VJl(y)]"“ = —Jl(pa)

where a standard identity between the J, and J; Bessel functions:
d
& IO} = yJ(),

has been employed. Thus equation (2.36) becomes

n(r, t) ~ x/_AaJl(%rz)cos(‘:;)

and we choose to interpret the limiting process 2/8r — 0o as t — 0o at
fixed r (and fixed §).
Then, upon the use of the asymptotic behaviour

Ji() ~ /%cos(y—%n) as y— 400,
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we find that

2

(r t)~4@\/§cos a’ 3rr cos L t—> o
ok t Vr \a? 4 aor)’ '

This describes, for example at fixed r, a wave whose amplitude decays like
1/t and for which the frequency increases; the general character of the
wave is evident in Figure 2.3. This figure clearly demonstrates what is
usually observed for cylindrical gravity waves: the wavelength decreases
at any fixed radius or, equivalently, the wavelength increases outwards
from the centre of the disturbance.

We have, thus far, presented only a rather brief introduction to the
many elementary calculations that are possible in simple water-wave
theory. As we mentioned earlier, other examples (such as waves on mov-
ing streams, standing waves and crossing waves) are explored in the
exercises at the end of this chapter. We also take the opportunity there
to expand on some of the results already discussed, and to describe
alternative approaches to some of the standard problems. We now devote
the rest of this section of the chapter to the study of a few slightly less
routine calculations, but ones that begin to demonstrate the breadth and
depth of what can be done even in the linear approximation.
Furthermore, much of this will provide an excellent preparation for
our work on the various nonlinear problems that we shall describe later.

Figure 2.3. A representation of an outward propagating cylindrical (or
concentric) gravity wave.
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2.2 Wave propagation over variable depth

It is a matter of everyday experience that most water waves do not
propagate over constant depth, whether they be in a man-made reservoir,
a river, or the ocean. Therefore a useful extension to our studies is to
examine the effects of incorporating variable depth. We start with the
most straightforward problem of this type: a plane wave propagating in
the x-direction, with a depth which also varies only in x (so that
b = b(x)). From equations (2.1) we therefore obtain

w=—py, 8w, =—-p, u+w,=0,
with
w=n, and p=n-—8Wn, onz=1,
and
w=ub'(x) on z=b(x).

In order to make the problem even more manageable, we simplify further
by considering only long waves, so § — 0, and then we are left with

u=-p,, p, =0, u,+w,=0, )
with
w=mn, and p=n onz=1, L 2.37)
and
w=ub'(x) on z=>5b(x).

These equations immediately yield
p=n b=<z=<l,
and so
u+n,=0 with w=(_1-2u,+n,

since u is not a function of z (in this approximation). Finally, evaluating
w on z = b, we obtain the pair of equations

u+n,=0; 1+ (du), =0, (2.38)

where d(x) =1 — b(x) is the local depth. These equations, (2.38), are
usually called the linearised shallow water equations and, upon the
elimination of u, they give

Ny — (dny)y =0, (2.39)
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the appropriate wave equation for the surface profile, n(x, 7). In some of
our later work we shall examine the full governing equations, but incor-
porating a slow variation of the depth; for constant depth d = 1, we note
that we recover the classical wave equation with propagation speeds +1
(cf. equation (2.10)). For our calculations with variable depth here we
choose the example of propagation over a bed of constant slope. Thus we
introduce

d(x) =alxg—x), a>0, x<bx (2.41)

where the shoreline is to the right, at x = x; (in the absence of any surface
disturbance); see Figure 2.4.

Before we proceed, however, we must add a word of caution: we
cannot expect the results obtained in this calculation to be valid (or
even meaningful) either as d — 0 or as d — oo. Our original equations
— the linearised shallow water equations, in particular — have been
obtained under the assumption that d (=1 — ) is O(1) (as € — 0 and
3 = 0), and hence d — oo is likely to be inadmissible, since this limit
corresponds to short waves. Also, in this chapter, we are restricting the
discussion to the linear approximation (¢ — 0), which is defined in terms
of the ratio of a typical wave amplitude to a typical depth. At the shore-
line, the depth decreases to zero, and so the (local) value of (amplitude/
depth) will become large; this suggests that nonlinear terms cannot be

Undisturbed
free surface
Shoreline
——

/ d(x)

Incoming wave

Xo X

Figure 2.4. Defining sketch for a bed of constant slope; the shoreline is at x = x,,
and d(x) is the depth below the undisturbed surface in x < x4. The incoming wave
from infinity moves from left to right.
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ignored as d — 0. With these provisos in mind, let us proceed with the
analysis.

The wave equation for #(x, ), (2.40), with d(x) given by (2.41),
becomes

N — &(Xo — X)Nxx +an, =0, (2.42)
and we seek a solution which is harmonic in #:
n=Ax)e " +c.c., (2.43)

where @ is a real constant (the frequency) and A(x) is an amplitude
function (which, in general, is complex). (As we have mentioned before,
this type of solution can be used as the basis for more general solutions
by introducing, for example, the Fourier transform.) Equation (2.42)
therefore yields the differential equation for 4(x),

a(xg — x)A" — @A’ + 0’4 =0,

which shows that we may take A4(x) to be real (but see below). It is
convenient to treat 4 as a function of xy — x = X, say, so that

aXA" +ad +o*4 =0,

for A(X), which we recognise is related to the Bessel equation. To confirm
this, we now regard A as a function of

x
20,/— =),
o

xA"+ A"+ x4 =0, (2.44)

where A = A(y) = AQw,/(xy — x)/a). We observe that the shoreline is at
X =0 (so x =0 there) and that the undisturbed water exists in X > 0.
Equation (2.44) is the Bessel equation of zero order, and we now require
the appropriate solution in x > 0.

The general solution for A(y) is

A(x) = CJp(x) + DYo(x),

where C and D are arbitrary (complex) constants. This solution contains
a contribution (Jy) which is regular at the shoreline (x = xp; that is,
x = 0) since Jy(x), as a power series, contains only even powers of x
(so only integer powers of (xy — x) appear). On the other hand, the
second part of the solution (Yj) gives rise to a logarithmic singularity
at x =0, so we might expect that we should assign D = 0; we shall,

and so we obtain
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however, retain this term for the present. The solution of our original
equation, (2.42), therefore becomes

n(x, 1) = {CJO (2(0 /x"; =) + DY, (240‘ /x"; x )}e‘i‘”’ +cc., (245

and a natural next move is to examine the detailed character of this
solution far away from the shore (x, — x — 00) and close to the shoreline
at x = xp. (We observe that, in equation (2.45), it is quite acceptable to
choose both C and D to be real, as we mentioned earlier.)

First, for large values of the argument y, we use the standard results

(Jy, Yo) ~ ‘/%cos(x — m/4), sin(x — %/4)) as x — +oo,

and thus equation (2.45) yields

1 a \V* Xo—Xx W
L) ~— 2 —_—
nx, ) JTw (xo - x) {CCOS( wV o 4)

as xo — x = +o0. This is usefully rewritten in the form

1/4 —
n(x, 1) ~2j% (xo"‘_ x) [(C+D)exp{i(2w PoX - g)}
+(C-D) exp[—i(Zw‘ /x°; ~ ot - g) H +c.c. (2.46)

which describes two wave components, one moving to the right and one
to the left. The first exponential term (with the coefficient C + D) is a
right-going wave; it is therefore the plane wave which is approaching the
shoreline (see Figure 2.4). The second exponential term represents the
left-going component, and this is therefore a wave which is reflected from
the shoreline. In both components we observe that the speed of propaga-
tion is not constant. The speed can be determined by considering the lines
of constant phase, defined by

Xp — X

2w + wt = constant.

Along these lines we have

% =+Va(xg — x) (=xy/d(x)), (247)
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which shows that the characteristics for this propagation (drawn in (x, ?)-
space) are not straight lines; see Q2.33. We note, in passing, that the
speed of propagation is the square root of the local depth (see equation
(2.47)), which Q2.33 demonstrates is a general result. Furthermore, the
wave decays as xy — x — o0; indeed, we see that the amplitude behaves
like (x¢ — x)‘l/ 4 or d~'* — a very famous result that we shall meet again
later. (This is usually called Green's law; see Q2.34.) Finally, if we write
the phase in the form

2w
Vea(xp — x)

we see that the wave number increases as x — X, so the waves shorten as
they approach the shore.
Near the shoreline (x — x,) we make use of the familiar results

(xp — x) L wt,

(Jo, Yo) ~ (1,%ln x) as x — 0%,

and then equation (2.45) gives

2D — :
n(x, ) ~ {C +—In <2w i d }e_“‘" +cc.
7 V « )

as xo—x — 0". As already mentioned, this exhibits the logarithmic
behaviour at the shoreline; this singularity is removable only if D =0
(and then the solution depends only on Jj). Apart from the presence of
the singularity, the solution describes a wave which oscillates in time () at
the shoreline (x = x;).

We may now collect together these various observations and hence
describe the general nature of the solution (2.45) and, in particular,
adumbrate its shortcomings. A reasonable problem in this context, we
might suppose, is to prescribe an incoming wave at infinity which then
moves towards the shoreline. To do this we must know the frequency of
the wave and its amplitude; the frequency is no problem (it is w), but at
infinity its amplitude is zero — not what we want. This difficulty is asso-
ciated with the inability of our shallow-water equations to describe accu-
rately the effects of deep water — which is no surprise in view of the usual
name for these equations! Furthermore, even if we are prepared to gloss
over this problem, a reflected wave will also exist for all xy — x unless we
set C = D (5 0); see equation (2.46). But now the coefficient of Y, is non-
zero, so we have a singularity at the shoreline. Of course, the presence of
this singularity is presumably indicative of the failure of the linear
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equations to cope with the increase in amplitude near the shoreline. We
would expect, based on everyday experience, that the incoming wave will
(almost always) break at the shoreline; a linear wave theory cannot
accommodate this phenomenon. If we do set D = 0 then the singularity
is removed, but both incoming and reflected waves exist everywhere in
x > 0; the shoreline has become a perfect reflector: no singularity is
necessary in this solution to account for the difference in energy between
the incoming and outgoing waves.

2.2.1 Linearised gravity waves of any wave number moving over a
constant slope

In the previous calculation we simplified the problem by considering only
long waves, so 8 — 0; this led us to a form of the so-called shallow water
equations. As we have seen, the solution in this case is not wholly satis-
factory. We now consider the problem of plane gravity waves (as above)
without invoking the long-wave assumption. Of course, we are still oper-
ating within the confines of the linear theory, so again we cannot expect
to be able to cope with the singularity at the shoreline (unless, perhaps,
we happen upon a special pure-reflecting solution, similar to that
described earlier).

We take equations (2.1), with W, =0, n = n(x, ) and b = b(x); these
are

Uy = —Px; ‘szwt =P Ut W, = 0,
with
w=mn, and p=n onz=1, ¢ (248)

and

w=ub'(x) on z=b(x). )

Again, for this particular calculation (with a constant slope), we require a
depth variation which is linear in x but, for convenience, we translate the
coordinates so that the shoreline is now along x = 1/, and so we write

dx)=1-b(x)=1—-ax, a>0, x=<l/a

that is, axy = 1 in (2.41). We seek solutions (cf. equations (2.4), (2.5)) in
the form

u=U(x,2)e”, p=P(x,2)e7, w=W(x z)e
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with
nGe, 1) = A(x)e™,

plus the complex conjugate in each case. Equations (2.48) then become

iwU=P,; iwsW=P,; U,+W,=0, (2.49)

with
W(x, 1) = —iwd; P(x,1)=A4, (2.50)

and
W (x, b(x)) = aU(x, b(x)) where b(x) = ax. 2.51)

We see immediately that
W,.+U,=0 and iwU, = P,, =iwd*W,,,
so W(x, z) satisfies Laplace’s equation
W, +8W,, =0; (2.52)

this corresponds directly to the alternative formulation of this problem in
terms of the velocity potential ¢ (which then satisfies the same Laplace
equation; see Q2.5).

On the basis of our previous experience (again see Q2.5), we seek a
solution by the method of separation of variables:

W(x,2) =) X(¥)Z,(2). (2.53)

Then, for each n, equation (2.52) is replaced by the pair of equations
Z) —3,8°Z,=0; X!+21,X,=0, (2.59)

where A, is a parameter (an eigenvalue) yet to be determined. Further,
also based on our earlier work (see, for example, Section 2.1), a
reasonable choice for A, is

hn =Kz (> 0)
and then the solution for Z, becomes
Z, = C,exp(8k,z) + D, exp(—dk,z),

where C, and D,, are arbitrary constants. However, the depth increases
indefinitely (as x - —oo where z — —00), so a bounded solution is pos-
sible only if D, = 0. The complete solution for the nth component of W,
W, say, is therefore
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Wo(x, z) = {4, exp(ik,x) + B, exp(—ik,x)} exp(sk,2),

where C, has been subsumed into the new arbitrary (complex) constants
A, and B,.

If, for a moment, we retain only one term in the expansion (2.53) then
we find (by integrating P, in equations (2.49) with respect to z) that

P(x,2) = 17?—8 {4, exp(ik,X) + By(—ik,x)H{exp(dk,z) — exp(8k,)} + A(x).

n

(2.55)
The two boundary conditions on W require
{4, exp(ik,x) + B, exp(—ik,x)} exp(3k,) = —iwA
and (2.56)

W(x,ax) = aU(x, ax) = — 1ng(x, ax),

where the partial derivative with respect to the first argument in P(x, z) is
implied, and P is given by (2.55). It should be clear that, upon eliminating
A(x) between the two equations in (2.56), we shall derive an identity
involving terms

exp(ik,x), exp(—ik,x) and exp(adk,x)

which cannot possibly be satisfied unless 4, = B, = 0; we have appar-
ently reached an impasse with this approach. However Hanson (1926),
and others after him, made use of an important observation which allows
some progress, at least for certain o.

At the heart of this discovery is the realisation that we might hope to
satisfy all the boundary conditions if there can be arranged some appro-
priate symmetry between the x and z dependencies. In particular we seek
a symmetry that will allow terms in x and z, when evaluated on the
bottom (z = b(x) = ax), to become essentially the same (but only for
certain ). To demonstrate this idea, let us consider the simplest example
of this type by using just two terms in the expansion (2.53). We write (cf.
(2.54)), for k > 0,

Z! —8%*Z,=0; X{+KkX, =0,
so that we obtain the solution

W1 = (Aleikx + Ble—ikx)eBkz’
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which is bounded as z — —oo. For the second component we write
Z) +8K*Z, =0, X5 —K’X,=0,
and now we obtain
W, = (A,6% 4 By i07)k>

which is bounded as x - —oo. (Remember that the solution we seek is to
be in x < 1/a.) The solution

W = Wl + W2
therefore incorporates oscillatory structures in both x and z, which both
decay (as z > —oo and x — —o0, respectively).
As before, we first determine P(x, z); this gives directly (as above, from
equations (2.49))
P(x,z) = l—ié(Aleikx + Bie *)(e¥ — ¢ty
+_]€_{A2(e18kz _ elsk) _ B2(e—15kz _ e—lsk)}ekx + A(x).
The boundary conditions on W yield (from equations (2.50))
—iwA(x) = (4% + Bie ¥)ef + (4,6 + B,e %)k, .57
and from equations (2.49) and (2.51):
W(x, ax) = aU(x, ax) = —%  (x, ax)
that is,
( Al eikx + Bl e—ikx)ea8kx + ( Azeiaékx + Bze—iaSkx)ekx
= ias(Aleikx _ Ble—ikx)(ea5kx _ 68k
_ iaa{Az(eiaka _ ei&k) _ Bz(e—iaskx _ e—icsk)}ekx _ %A,(x). (2.58)
Finally, 4'(x) is obtained from equation (2.57). However, it is already
clear that a consistent identity (for other than 4, = B = 4, = B, =0)is
possible only if equation (2.58) involves terms exp(+ikx) and exp(kx), at
most. This condition is satisfied if the slope of the bottom is such that

ad = 1. With this choice, then equation (2.58) (with A’ from (2.57))
becomes
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(41E 4+ BiE™' + AyE + ByE H)e™
= i(41E — BiE")(e® — %) — i{4,(E — &) — B,(E™! — e71%)jek>

ik k - ,
+ gla-?(AlE —BE Y)Y + W(Aze‘sk + Bye ¥yekx  (2.59)

where we have written E = exp(ikx).

In order that equation (2.59) is an identity for arbitrary x, we require
the following five equations to hold (each arising from the coefficient of
the term given to the left); these are

Ec*: Ay + 4, =i(4, — 4y);
E7le: B, + B, =i(B, — B));

(K 5k
E: A ——1 =0;

i 1(&02 )e 0
E™": iB, (iz — 1)e"k =0;

dw

ek (1 +) 426 = —(1 — )Bre ™,

for the five unknowns A4,, A4,, By, B,, and w(k). It is evident that the
solution of this system is

o’ =k/8 (2.60)
together with

A, =id4,, B,=—iB,, and B, =id;e®*,

where we recognise (2.60) as the dispersion relation for short gravity
waves (or deep water) (see equation (2.13) et seq.), giving the speeds of
propagation ¢, = +1/+/8k. The surface wave, from equation (2.57) with
the factor exp(—iwt) reintroduced, becomes

n(x’ t) — Ao{ei(kx—wt—sk) + e—-i(kx+wt—8k) + (1 + i)ek(x—ts)—ia)t} + c.c., (2.61)

where A, is an arbitrary (complex) constant, which plays the role of the
Ay used earlier. We see that this solution, (2.61), possesses a number of
important and special properties. First, the solution is everywhere regular
in x < 1/a (= § since ad = 1): there is no singularity at the shoreline, so
there is some sort of perfect reflection here (cf. solution (2.45) with
D = 0); indeed, at the shoreline (x = § = 1 /) we have

n=(3+i)Ade +c.c.
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The incoming and outgoing wave components travel at a fixed speed (for
given k), which is certainly at variance with our previous result (equation
(2.47)). Finally, the wave at infinity (x — —o00) exhibits a nonvanishing
amplitude in both components. Clearly the two ingredients in this solu-
tion which make it particularly distinctive are (a) that it contains a con-
tribution which does not represent a travelling wave (the term
exp{k(x — 8) — iwt}) and (b) that the amplitudes of the two waves at
infinity are nonzero (but proportional; cf. equation (2.46)).
Nevertheless, even though we have described a very special — and intri-
guing — solution of the governing (linear) equations, this does provide the
basis for constructing more general and useful solutions (which may be
investigated through the references in the Further Reading at the end of
this chapter).

As a final comment on this solution, we briefly return to the assump-
tion that made all this possible: the choice of slope with a8 =1. It is
reasonable to ask whether other choices of a lead to similar — or at
least analogous — results. In order to describe what can be done, it is
convenient first to write the bottom boundary condition

w=ub'(x) on z=b(x)=ax
in the form
wdcosB—usinf=0 on zécosB—xsinf=0

where a8 = tan 8. The case that we have presented then corresponds to
B = m/4. The generalisation is to angles 8 =mx/2n (n =2, 3,...) where,
for increasing n, there is a progressively increasing number of terms in
the series (2.53), which are required to ensure that all the boundary
conditions are satisfied; see Q2.36.

2.2.2 Edge waves over a constant slope

We now turn to a brief consideration of an altogether new phenomenon:
the edge wave. It turns out that the linear equations (with or without the
long-wave assumption) admit a solution which describes a wave which
propagates parallel to the shoreline. In our notation, these waves propa-
gate in the y-direction (sometimes called the longshore coordinate) and, as
we shall demonstrate, their amplitude decays exponentially away from
the shoreline (that is, as x — —o00); they are therefore usually called
trapped waves.
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We start with equation (2.1) but, as before, our interest is in gravity
waves only, and so we set W (that is, W,) = 0; then, with the long-wave

assumption § — 0 (used here for simplicity), we have

Uy = =Py V= —Dy; pz=0;_ ux+'”y+wz=0v

with
w=n and p=n on z=1,
and

w=ub'(x) on z=b(x).

L (2.62)

J

We choose the same depth variation as used in Section 2.2.1, so b(x) = ax
with x < 1/a, where the undisturbed shoreline is along x = 1/a. We seek
harmonic waves that are propagating in the y-direction, and thus we set

u=Ux2E, v=V(x,z2)E, w=W(x,2)E

with
p=P(x,2)E and n=AX)E,

(2.63)

where E = exp{i(ly — w?)}, plus the complex conjugate in each case.

Equations (2.62) therefore become

iwU=P; wV=IP, P,=0; U,+ilV+W,=0,

with

W=—-iwd and P=A on z=1,
and

W=aU on z=ax.

Consequently we have that

P(x,2)=A(x), 1>z>x, x<l/a
and hence

i

U=--4, V=£A;
w ®

thus
W= 5(12,4 —A"Y(1 - 2) — iwA.

The final boundary condition on W then yields
(1 —ax)(4”" —PA)—ad' + ?4 =0
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for A(x). It is clearly convenient to regard 4 = A(1 — ax) and then, with
X =1—ax, we have

2
XA" +4'+ (%— lZX)A =0
2

which can be put into a standard form if we now write

AX) =e X LQIX). (2.64)
The equation for L(Y), with ¥ = 21X, is therefore
YL" +(1 - Y)L' +yL =0, (2.65)

where

_fe
y=s3 o?l )

Now we recognise equation (2.65) as the equation that has as its solu-
tions the Laguerre polynomials, L,(Y), whenever y=n(n=20,1...).
These are the only solutions of (2.65) which lead to a bounded solution
for A(X)in x < 1/w; that is, for X > 0 (with / > 0). (In general, A(X)isa
linear combination of ¢ ¥ and ¢’ as X — oo; the Laguerre polynomials
are those solutions for which the term e is absent.) The dispersion
relation for these waves is

o =a2n+1),

and we write the solution L,(Y) in the usual form

dn
_ .Y
L(Y)=e Ve

The problem of finding the edge waves has therefore been reduced
to a familiar exercise in the theory of eigenmodes and orthogonal
polynomials. The first three modes (for @ > 0) are

n=0: w=avl, Ly=1;
n=1 w=av3l, L;=1-Y=1-=2IX;
n=2 w=ay5l, L,=2—4Y +Y?=2-8IX +4/X?,

(YY), n=0,1,2....

and these then lead to surface profiles such as

n(x, £) = Age 1Dl —avi) Lo, n=0),
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where A, is an arbitrary complex constant. By virtue of the general form
exhibited in equation (2.64), where L is a Laguerre polynomial, all these
modes decay exponentially as x — —oo.

To conclude, we make two observations. First, the dispersion relation
is quite different from the others that we have encountered so far for
gravity waves. We see that the frequency, w, increases as the wave num-
ber (/) increases and, crucially, it also depends on the slope of the bottom
(which, remember, is a slope in x — not y). Indeed, this dependence of «
on the slope () leads to the second point: if the bottom is flat, so that
a =0, then w = 0 and no edge wave exists at all.

These waves are often generated by wind stresses (due to the passage of
a storm, for example) if this disturbance moves parallel to the shoreline.
They are of some significance because their largest amplitude occurs at
the shoreline, and therefore they will contribute to the total run-up (the
highest point reached by a wave on a beach).

2.3 Ray theory for a slowly varying environment

Many of the more general properties of water waves, some of which we
have mentioned already, can be explored more fully if we examine pro-
pagation over a slowly varying depth or current. The restriction to a
slowly varying environment — depth or current or both — enables us to
exploit an asymptotic formulation without recourse to other assumptions
(other than under the present umbrella of linearisation). Not surprisingly,
water waves behave in a manner similar to light: the (slowly) varying
conditions give rise to changes in wave number and phase speed, and
so the waves, as they propagate, generally suffer refraction. It is possible
to describe these and other phenomena in some detail; the results are
usually collected together as ray theory (which is another name for the
familiar theory of geometrical optics). In our presentation here we shall
first describe the effects of a slowly varying depth, and then turn to a new
area of study: slowly varying currents.

In contrast to much of our earlier work, we shall develop the theory of
linear irrotational motion over a slowly varying depth from the point of
view of Laplace’s equation. We shall consider here only gravity waves (so
we set the Weber number, W, to zero); then from equations (2.1), Q1.38
and Q2.5 we obtain

& + 62(¢xx + ¢yy) =0, (2.66)
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with
¢,=8n, and ¢,+n=0 on z=1, (2.67)
and
¢. = 8(dsb, +#,b) on z=b(x,y). (2.68)

(Q2.5 is the most useful guide to these equations, requiring only the
addition of the second horizontal coordinate (y) and the variable
depth.) It is convenient, first, to reduce the two boundary conditions
on z =1 to a single condition. Since these are evaluated on z =1, we
may take derivatives (as appropriate) in x, y, or ¢; in particular we can
eliminate n altogether to give

¢, +8%¢,=0 on z=1. (2.69)
We then determine n at the end of the calculation as (—¢,) on z = 1.
Finally, the bottom topography is chosen to be
b(x, y) = B(ax, ay)
so that equation (2.68) now becomes
¢. = ad*(¢,Bx + $,By) on z=B(X,Y), (2.70)

where X = ax, ¥ = ay. The compact form of this problem (equations
(2.66), (2.69), and (2.70)), coupled with the asymptotic approach that we
introduce below, will confirm the usefulness of the Laplace formulation
here.

The analysis that we now present is driven by the choice of depth
variation for which o — 0. It is clear that we must use the variables

X=ax, Y=ay, T=uat, .71)
the scaled time (7T") being required as we have seen before; cf. Q1.54 and
equations (2.17). In addition, we shall need a suitable way of describing
the harmonic wave which propagates — albeit with slowly varying para-

meters — on the O(1) time and space scales. The neatest device in this type
of problem is to introduce a (real) phase function, 6, defined by

V6 =k(X, Y, T), thatis (6,,6,) = (k(X, Y, T), [(X, ¥, T)}
with (2.72)
9, = —w(X,Y,T),

which is precisely the approach adopted in Q1.54. We therefore obtain
the transformation
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(%,%)Ea(%,%>+(k,ha%; %Ea%—wa—%, 2.73)
and their use in equations (2.66), (2.69) and (2.70) yields
B2z + 8 (" + Yoo + 20(kox + Ioy)

+ ok + L)o + o (bxx + dyr)} =0,
with
¢, + 8' (b — 209y — awrgy + o prr) =0 on z =1,

and

¢: = a8’(kBx + IBy)bs + o’ (Byéx + Bydy) on z = B(X, Y),

where we now regard ¢ = ¢(0, X, Y, T, z; a).
The solution that we seek takes the form of a single harmonic wave

p=aX,Y, T, zae’+cc.,
and so the problem for the amplitude function, a, becomes
a,, + 8{~(K* + P)a + 2ia(kay + lay)
+ ia(kX + ly)a + az(aXX + ayy)} = 0,
with
a, + 8(—ota — 2iaway — iawra+ o*arr) =0 on z = 1,
and
a, = iad*(kBy + IBy)a + o*8*(Byay + Byay) on z = B(X, Y).
To proceed, we assume that a can be expressed as the asymptotic
expansion
o0
a~ Za”a,,(X, Y, T,z) asa—0,
n=0
and then the problem for g, is simply
g,z — 82(K + PYag = 0 (2.74)
with

ag, = 8w’ayonz=1;, ay,=0o0nz=B. 2.75)
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We write
oX,Y, T)=8Vk2 + 22 (> 0) (2.76)
and then the solution for g, is immediately
ay = Ay cosh{o(z — B)}, Q.77

where Ay(X, Y, T) is, at this stage, arbitrary, and the dispersion relation
is

o = gztanh{a(l _B)); (2.78)

cf. equations (2.9) and (2.13), when we set o = 8k (that is, / = 0) and
B = 0 (constant depth).

The problem for a; is obtained from the equations that arise at O(a);
these are

ayz: — 8 (K + P)ay = —is*{2kaoy + lagy) + (kx +Ip)agh,  (2.79)
with
ay, — 8*w’a; = —i8*Qwayr + wrag) on z = 1 (2.80)
and
ay, = i8%(kBy + IBy)ay on z = B(X, Y). (2.81)

Now, the main purpose in examining the solution for &, is in order to
determine the A4, (the amplitude function in equation (2.77)) which
ensures uniform validity of the asymptotic expansion. This could be
done by simply solving for a, directly and examining the nature of this
solution (cf. Section 2.1.2), but since we do not require a, itself, here we
develop the necessary condition on A4, by finding the condition that a
solution for a; exists; see Q2.30. To accomplish this we multiply equation
(2.79) by ay and then integate over z (for 1 > z > B), using the boundary
conditions on a, and a, as required. (That such a condition must exist is
related to an important idea in the theory of differential and integral
equations: the Fredholm alternative. The particular method that we
choose to use here can be interpreted as an application of Green’s for-
mula. However, knowledge of these two results is not a prerequisite to an
understanding of the presentation that we now give.)
Equation (2.79) is multiplied by g, to give

ayay,; — 0*aga; = —i6*(2ag(kagy + lagy) + (kx + Iy)ag}, (2.82)
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(where o is given by equation (2.76)), which is then integrated with
respect to z. The first term gives

1 1 1
1 1

[ ayay;,dz = [apa,.]p — [ ay,a1,dz = [agay, — ap,a11p + f ay,,a1dz,

B B B

so the left-hand side of equation (2.82) becomes

[ao{8* 0’ ay +i8°Quagr + wrag)} — 8w’ aya),
1
~ aiS*Bx + By)aok—p + [ (aor; ~ Pahyc,
B
where the boundary conditions (2.75), (2.80), and (2.81) have been used.
Since q is a solution of equation (2.74), equation (2.82) now reduces to

8”@y — (8 (kBy + By)adl._s

1
=—i62[ / a("2)d +1 f (@d)dz + (ky +1y) / a%,dz].
B

When we introduce the technique of differentiating under the integral
sign (Q1.30), we see that this equation is written far more compactly as

1
" / addz) + [—a%, (waﬁ)] =0, (2.83)
B

where

0 9
=(ﬁ’a_Y) and k=(k,])).

Finally, we write a, from equation (2.77) so that

1

1
f addz = 43 / cosh?{o(z — B)}dz
B B

1
1
= EA% / [1 + cosh{20(z — B)}]dz
B

1, 1.
= §A0[D +%Slnh(20D)}
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where D = 1 — Bis the local depth. But we find from (2.76) and (2.78) — it
is left as an exercise (cf. Q2.27) — that

(2.84)

do _ 8ko L 20D
ok 207 sinh2¢D )’

and correspondingly for dw/dl, so
1
k f aydz = (wAj cosh? sD)e,
B

where ¢, = (3w/dk, dw/dl), the group velocity; see. Q2.38. Now the ampli-
tude of the surface wave (obtained as (—¢,) evaluated on z = 1) is, to
leading order as & — 0, wAj coshaD; let us write

E= % %A% cosh? oD (2.85)
to denote the energy associated with the wave (cf. Q2.31). Then equation
(2.83) can be written as

3 (E E
9T (5) +V. (5 cg) =0 (2.86)

where the term in 8/37T follows directly from the expression for a, given
in (2.77).

It is not unusual, in the study of oscillators, to call the ratio of energy
to frequency the action; in the context of these wave-like problems, there-
fore, we call E/w the wave action. This quantity turns out to be more
fundamental than energy in that, as the wave properties slowly change, so
in general E (the energy) and @ both change, but (E/w) is conserved as it
is transported at the group velocity. Equation (2.86), for the wave action,
is the main result of our calculations and, as we shall see, it plays an
important réle in the development and interpretation of the properties of
wave propagation. However, there is at least one other important result
that we shall require in due course: an expression for the lines of constant
phase — the wavefronts (or wave crests) — which are defined by
6 = constant.

From equations (2.72) we see, first, that (provided the appropriate
derivatives exist)

0y = akr = —awy; 0, =aly = —awy
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ak Jd 9

which is the two-dimensional version of the consistency condition
described in Q2.29. The relevant equation for @ follows directly from

.=k and 6,=1

and so

for then
O +6) =K+ =k, (2.88)

which is called the eikonal equation (from the Greek sikov, meaning
image or form). This is more naturally expressed as

0% +0% = k= (%)2 (2.89)

where 0 = ©/a is one way to represent the fast phase variable as com-
pared with the slow evolution of the wave parameters. This equation,
(2.89), is an equation for ©, given o(X, Y, T); its solution is a fairly
standard exercise in the method of characteristics. We also have

Oxy = aky and ny = alx, that is kY = lx,

so that the vector k can be treated as ‘irrotational’.
Lines which everywhere have the group velocity vector, ¢,, as their
tangent are called rays; these lines are therefore defined by

dx

K e
Further, since ¢, and k are parallel (see above and Q2.32), and the waves
propagate in the k-direction, we see that rays are orthogonal to the wave-
Jfronts. (We shall find that this is no longer true if a current is present; see
Section 2.3.3.) Also, by virtue of equation (2.86), we see that the wave
action (E/w) is conserved along rays as it propagates at the group
velocity.

We now explore these ideas by examining a few specific examples
which, in particular, make use of equations (2.89) and (2.86). This will
enable us to describe how the surface waves refract as the depth varies
and, via the wave action, how the amplitude varies along rays. However,
before we present these particular calculations let us confirm that our
equations recover the usual results for steady propagation over constant
depth. In this case, equation (2.89) becomes
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@f‘, +0% = (%)2= constant,
and the relevant solution (at fixed T') takes the form
®=f(X+1Y), Ai=constant. (2.91)
Thus
(1 +2() = (o/8)"
and so

(0/9)
V14+2a2

where G(T) is arbitrary — the arbitrary ‘constant’ of integration; the lines
6 = constant are therefore

(0/9)
V1422

where g(#) = G(T)/a. But from equations (2.72)
8, =k <=:t (0/8) ) and 6, =1 (::I: (o/3n )

O=f=+ (X +AY) + G(T)

6=+ (x + Ay) + g(f) = constant,

V1422 V1422

with 8, = g'(f) = —w and hence, as expected,
6 = kx + ly — wt = constant

describes the wavefronts; cf. Q2.7. Finally, equation (2.86) for the wave
action gives E/w = constant with all the parameters (such as w) constant,
and so the amplitude of the wave also remains constant (again, as
expected).

2.3.1 Steady, oblique plane waves over variable depth

Let us consider the case of a depth variation which depends only on X:
1 — B = D(X). A steady, oblique plane wave is propagating on the sur-
face. (The restriction to steady motion is in order to simplify the calcula-
tion; this assumption implies that, over constant depth, the wave
parameters will remain constant.) For steady propagation,

ak

ar = %
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and then equation (2.87) shows us that

Vo =0;
that is, w = constant (since @ = (X, Y), at most, for steady motion),
and so, from equation (2.78),

o tanh(eD) = constant. (2.92)

Thus, with D = D(X), we have that o = o(X) and, further, as D decreases
so o increases, and vice versa. (We shall be more precise about
this relationship later; also see Q2.39.) The eikonal equation, (2.89), is
therefore

2
0% + 0% = (@) , (2.93)

which possesses the solution (cf. equation (2.91) et seq.)
O=f(X)+AY —wT, A =constant,
where
(') +42 = (0/8)".

The solution for the phase, ©, is therefore

X
®= % [MY + f,/GZ(X) - ;ﬁdx] - T, (2.94)

where we have written A = u/8; the wavefronts are then represented by
©® = constant. Correspondingly, the rays (which are orthogonal to the
wavefronts) are given (at fixed T) by

dy 1 1

dY = Tp fo? — 2

or

e
X
uY F [ d— = constant. 2.95)
Vor(X) — u?
As a first example, consider a plane wave which propagates from a
region of constant depth (D = Dy in X < X)) into a region which contains
a submerged ridge. Let the wave have a phase, where D = Dy, given by

®=koX+10Y—a)T,



102 2 Some classical problems in water-wave theory

so that /8 = I, (that is, = I, for VX) and ¢?(X) = k3 + u? (in X < Xj).
In this situation, equation (2.92) can be written

o tanh(o D) = o tanh(oyDy) (2.96)

where oy = 8,/k3 + I} (and then o’ = (0p/6%) tanh(ayDy)). The slope of
the wavefronts (at fixed 7)) is

d—Y = —l o'z(X) — /,Lz (= —ko/lo for X < Xo), (297)
dx Iy

and as the wave passes over the ridge, D(X) first decreases and then
increases; consequently o° — u? increases and then decreases (eventually
returning to its value of k3, we will suppose). Thus the slope, dY/dX,
decreases and then increases, resulting in the wavefront turning more in-
line with the ridge, and then away from it; see Figure 2.5, where a typical
set of wavefronts and rays is depicted.

An extension of this problem arises if the depth decreases to zero,
thereby producing a shoreline. In this case ¢ = 400 as D — 0%, so
dY/dX — —oo: the wavefronts turn so that, in the limit (at the shore-
line), they all become parallel to the shoreline. This explains the very
familiar observation that virtually all ocean waves arrive at a beach
parallel to one another and to the shoreline itself, see Figure 2.6.

Surface
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1

Figure 2.5. The rays and wavefronts for oblique plane waves passing over a
submerged ridge; the undisturbed depth is D = D,
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Figure 2.6. A representation of waves approaching a beach; (a) viewed from

above, (b) seen as a surface in 3-space.

Further, we can also examine how the amplitude varies as the shoreline is
approached. Along the rays we have, from equation (2.86),

0 5 0w 3 ([ 0w\
and so

2 dw
A constant ( 98)
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since there is no variation in Y. Near the shoreline we have D — 0 and
o — oo, but with oD — 0, as we see from equation (2.96), which then
gives

02D —> 0y tanh(aoDo) = 82(02
and

o &ko kD oD

— N —— N s NS . N D

*k o o dw VD
since k ~ 6 /8 as 0 — oo (from o = §,/k* + Z). Hence, using equation
(2.98), we see that

A=0D"*asD -0

which is Green’s law again (see equation (2.46), et seq., and Q2.34). Also,
since kK — oo as D — 0, the waves approaching the shoreline get shorter,
as we have already discussed in Section 2.2; this phenomenon is included
in Figure 2.6. (We should recall the warnings given in Section 2.2 con-
cerning the dubious validity of the linear equations as the depth decreases
to zero.)

Finally, we consider a wave which is propagating in a region
where the depth is D= D, for 0 < X < X, let us say. For X <0
and X > X, the depth increases (so that D = Dy, 0 < X < X, describes
a submerged ridge); as before, we then have w/8=1J and
X (X) = 8%k3 + u* = 82(k3 + I2), given that k = (ko, ) in 0 < X < X,.
As the depth increases so o decreases, and if it drops sufficiently so
that o® < u? = 822 then equation (2.97) shows that the wavefronts no
longer exist. Of course, exactly the same can be said of the rays. Indeed,
at the points where o = u? the slope of the rays becomes infinite and this
will happen for all rays; the lines along which o? = u? are called caustics
(and are, perhaps, familiar from the theory of geometrical optics). The
caustic is therefore the envelope of the rays. The continuation of a ray,
beyond the point where dY/dX on it becomes infinite, is possible by
switching to the other sign in the equation of the ray, (2.95), and produ-
cing it back into the region where the depth decreases. If this phenom-
enon occurs in both X < 0 and X > X, then the surface wave over depth
D = D, remains trapped in a region containing the ridge; it is called a
trapped wave, and this is depicted in Figure 2.7.

The caustic is where o> — u? = 8%k* — 0, and so dw/0k — 0; see equa-
tion (2.84) and remember that w is constant and that both o and D
approach finite (nonzero) values at the caustic. Hence equation (2.98)
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Figure 2.7. The rays and wavefronts for waves trapped between caustics (which
are represented by the dashed lines).

shows that the amplitude of the wave diverges at the caustic, so our
simple linear theory is no longer adequate. Some appropriate higher-
order effects must be invoked in the neighbourhood of the caustic in
order to produce a theory in which the wave amplitude remains finite.
This more detailed discussion is not pursued here, but some further
reading in this direction is mentioned at the end of the chapter.

2.3.2 Ray theory in cylindrical geometry

The equations and examples that we have presented so far have been
written in rectangular Cartesian coordinates. However, problems that
involve cylindrical surface waves or circular depth contours are clearly
best discussed in cylindrical polar coordinates. Rather than derive the
relevant equations from first principles, we follow the far simpler route of
merely transforming the equations that we already have, according to
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X =Rcosf, Y = Rsin#.

Here, R is the radial coordinate suitably scaled like both X and Y, that is,
R = ar; the angular variable, 8, obviously requires no scaling. The phase
function then satisfies

1
O = |k|cos(x — 6), ﬁ@)" = |k|sin(x — 6) (2.99)

since, in the constant state, ® takes the form

©® = |k|Rcos(x — 6) — oT
= (|k|cos xY)Rcos 8 + (|k| sin x)Rsin 6 — »T,

where x is a constant and the phase function is written as ®, and only this
form will be used here in order to avoid the obvious confusion with
the angular variable 6. The wave-number vector in cylindrical polars is
written using the same notation as earlier, so

k = (k, [) [= |k|{cos(x — 8), sin(x — 6)} from above].
Thus we obtain

1
0% + ng =k + P = k], (2.100)

which is obviously the polar form of equation (2.89). The corresponding
equation for the action is, from equation (2.86),

d (E 1 8 (E 1 a8 (E
2 (5) 5 mCren) +x 3 (Ecn) =0 aon

where the group velocity is written as ¢, = (cy, ¢;2) in cylindrical polars.

Similar to our discussion in Section 2.3.1, let us consider steady wave
propagation over a depth variation which depends only on R, so that
D = D(R). The dispersion relation is unchanged:

o = %tanh(aD) with o=8sVk: + P2,
since the derivation leading to these (given earlier as equations (2.78) and
(2.76)) does not involve derivatives with respect to the slow scales.
(Remember that we have used the same notation here for the wave-
number vector, and so |k|*> = k% + P is the relevant expression.) For
the analogue of a submerged ridge (which was discussed above), we
now have a shoal with cylindrical symmetry (with the origin of coordi-
nates chosen so that R = 0 is the centre of the shoal); the minimum depth
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occurs at the centre of the shoal. The wavefronts are described by
® = constant, where

R
@:%[ueij,/R%z(R)—uz %] - wT; (2.102)

cf. equation (2.94). Correspondingly, the equations for the rays (at fixed
T) become

R

w0 F / dR
R/R%*¢*(R) — u?
cf. equation (2.95), and remember that the orthogonality of two curves
(r =1(6), r = g(6)), written in polar coordinates, requires that

g = —r.

Let us suppose that Ro(R) is monotonic in R > 0 (which will certainly
describe a class of circular shoals). On the rays we have

%’g = +uRVR?? — 112 (2.104)

and a ray approaching the shoal must have either dR/d6 > 0 or
dR/d6 < 0; then R decreases as either € decreases or increases, respec-
tively. This obtains until the ray reaches a minimum distance from R = 0,
which occurs where

= constant; (2.103)

% =0 or R0 =u?
on the ray; thereafter R increases, which is accommodated by switching
to the other sign in equation (2.104). This type of solution, for two
different rays (one with dR/d# > 0 initially, that is, to the left, the
other with dR/d@ < 0) is shown in Figure 2.8. Two important observa-
tions can now be made: first, as the depth decreases, so the rays turn
towards the centre of the shoal until they reach a minimum distance from
R =0, and then they turn away. This general description is what we
should expect, based on the corresponding problems with D = D(X)
given in Section 2.3.1. Second, we see that a consequence of the bending
of the rays is that, in the lee of the shoal (that is, ‘behind’), the rays — and
wavefronts, of course — cross. Where these waves intersect there may be
either a constructive or a destructive interaction; a peak plus a peak (or
trough plus trough) is constructive, but a peak plus a trough will — at least



108 2 Some classical problems in water-wave theory
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Figure 2.8. Two typical rays and wavefronts for propagation over a circular
shoal.

in part — cancel. Obviously, which case arises will depend on the phases of
the individual waves.

Other calculations for different choices of D(R) are clearly possible.
Indeed, for example, corresponding to our discussion in Section 2.3.1 for
straight contours, we may construct a shoreline problem; this becomes a
circular island when D = D(R). Similarly, waves trapped on a straight
ridge translates into the problem of a circular ridge, for which it is then
possible to find conditions which ensure that the waves remain trapped
on the ridge. Simple examples of these types of problem, and others, will
be found in the exercises (Q2.47, Q2.48).

2.3.3 Steady plane waves on a current

Our second example of a slowly varying environment arises when the
surfaces waves propagate in the presence of a (slowly varying) current.
(Of course, the effect of both variable depth and a varying current could
be studied together, but we opt for the simplification which treats
these two problems separately.) A current is the movement, in horizontal
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directions, of a body of water (but, in order to maintain the condition of
mass conservation, some vertical motion may also be present); we shall
treat the current as a prescribed ambient state which is then perturbed by
the surface waves. These motions are, in general, rotational, and so we
must use the Euler equation (rather than Laplace’s equation). In
Cartesian geometry, we therefore start with the problem described by
the equations (1.57) and (1.63)<(1.65), namely

Du__ % Dv__ % oDv__ 2
Dt~ '’ Dt ¥’ Dt 3z’
du v 8w_0
ax oy az
with
w=H,+uH,+vH, and p=Honz=1+H;
and
w=0o0nz=0.

Here we have chosen to consider only gravity waves (so that the Weber
number, W, is set to zero) and the bottom is z = b = 0; we have written
en = H. It is seen that we have not quoted the corresponding scaled
equations ((1.67), (1.69), (1.70)) for these cannot accommodate the
imposed current; cf. Q2.11 and Q2.12.

The relevant form of the governing equations required here — that is,
linearised about the ambient state — is obtained (cf. Section 1.3.3) by
transforming

u > U, +ew,, wo> WHew

where (U,, W) represents the current; this state must satisfy the
equations with ¢ = 0, so we also require

p—>P+ep, H—> HHen
Thus, with u;, = (U, V), we have

DU 3 DV _aP ,DW 0P
Dt~ &’ Dt &y’ Dt = a2’
where
D d d 0 d
E=3_I+U$c+ V3_+ W8 s
. 2.105
with f( )
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_BE_‘_Q_Fﬂ—O
ax 'y
and

W=H+UH,+VH,, P=Honz=1+H,
W=0o0onz=0, )

for the current alone. Note that, in general, in the presence of a current,
the undisturbed surface is not a z = constant surface. We now restrict
consideration to a current which is steady but which slowly varies in the
horizontal directions; thus we regard U,, W, P, and H as functions of
(ax, ay), and z as appropriate, with « — 0 (which corresponds to the
choice made in Section 2.3.1). It is clear from the equation of mass
conservation (in (2.105)) that W = O(«); consequently any upwelling or
down-currents are weak (although necessarily present, in general).

The linearised equations for the surface wave are now obtained by
collecting the leading-order terms as ¢ — 0 (from the governing equa-
tions), but after we have satisfied equations (2.105) for the current. This
leads to the set of equations

Du p Dv %
u 'V [ e . V=__)
oy T@-VW=-2, - +@V) a
Dw 4
21~ . = -
a{Dt+(u V)W} 3z’
where
D 3 d d 9
D¢ at+U3 + 3y+ 3
with
wH+nW, =n,+ Unx + Vn, +ul, +vH, onz=1+H
p+nP,=n
and

w=0o0onz=0.

We seek a solution of this linearised problem in the form of asymptotic
expansions valid as & — 0, just as we did for the case of variable depth.
To this end (cf. equations (2.71)~(2.73)) we write

X=ax, Y=ay, T=at
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and
6x.6,)={kX,Y,T), (X,Y, T)}, 6,=-0X,Y,T)
which produces the set

aur — wug + Uauy + kug) + V(auy + lug)
+ Wu, + a(uUy + vUy) + wU, = —(apx + kpy);
avy — wug + Ulavy + kvg) + Viewy + lvy)
+ Wu, + a(uVy +vVy) + wV, = —(apy + Ipy);
Sz{awT — WWy + U(CVWX + ng) + V(awY + IWg)
+ Ww, + a(uWy +vWy) +wW;} = —p;;
kug + vy +w, + auy +vy) =0
with
w+nW, = any — wng + Ulany + kny)
+ Vieny +Ing) + a(uHy +vHy)  onz=1+H
p=n—nk;
and

w=0onz=0.

Further, in order to make the problem a little more manageable, we shall
assume that the horizontal components of the current depend only on
(X, Y), at least to O(c?), and therefore not z. Thus, from equations
(2.105), we obtain

W = —az(Uy + Vy) + O@@®)
so that H(X, Y; ) satisfies
{(1+ H)Uy +{(1 + H)V}y = O()
and then
P=H+0@)for0<z<1+H.

The expression for W describes the upwelling (or down current) asso-
ciated with the current; it is absent at this order only if the current
satisfies Uy + Vy = 0.

The solution that we seek comprises a single harmonic component, and
SO We write

0 ~ (Qo + aQy)e? +c.c. + O@@),
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where Q represents each of u, v, w, p, and 5. The leading-order problem
then becomes

—awuy + Ukug + Viuy = —kpy;

—avy + Ukvy + Vivg = —Ipy;

182 (—wwq + Ukwy + Viwg) = —poy;
i(kug + lvg) + wey, =0,

with
wo = —iwng + ikUno + ilV g } onz=14+H
Po =10
and
we=0o0nz=0.
Thus

(& + P)py = Qukuo + Ivg),
where we have written
Q=w0—-kU-IV (2.106)

and then

é(kz +PYpo +wo, = 0;  i8°Qwy = po,
so that

Wz, — 820> + P)wy = 0;
cf. equation (2.74). The boundary conditions for w, are
wo=—1Qnoonz=1+H; wy=0o0nz=0

which require

sinh(oz)

Wo = —18m0 o0 + )

where

oX,Y,T)=8Vk2 + 2,
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exactly as before (equations (2.76)). Finally, from
iQ Q%5m, cosh(az)

Po= 2 P T 54 B simhio(l + H)}

and the boundary condition on p,, we obtain the familiar dispersion
relation

Q= (w—kU—IV) = %tanh{a(l + H)}, (2.107)

where  replaces w; see equation (2.78) and Q2.12.

We now proceed to the next order, but we shall describe the calculation
in outline only. The technique follows precisely that presented for the
case of slowly varying depth (given in equations (2.79)—(2.81) et seq.).
Furthermore, the results are essentially identical to those obtained pre-
viously, the difference arising from the appearance of Q (for w), for
example. The equations at O(x) take the form

kpy=Qu + F;  Ipy=Qu +Fy;  p, =i8Qw; + Fy;
wy, + itkuy + ) = F,,
with
w =—-iQm+Fsand py=monz=1+H,
and
wi=00nz=0,

where the forcing terms, F; (i=1,...,5), depend on the leading-order
solution. These produce an equation for wy, of the form

Wi,y — 84k + P)w, =G,

where G depends on the F;. Rather than solve for wy, we multiply by wy
and integrate with respect to z, 0 < z < 1 + H; cf. equation (2.82) et seq.,
to see how this will produce the equation for 7y(X, Y, T) (which is the
first term in the asymptotic expansion of the (complex) amplitude of the
surface wave).

As before, this equation for n, is far more usefully written in terms of
the energy, E; cf. equation (2.85). We then find directly (although the
details are rather tiresome and are left as an exercise) that, corresponding
to equation (2.86), E satisfies

% (g) +v. ((UJ. +ey) g) —0. (2.108)
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Here, ¢, is the group velocity relative to the current, so
¢, = (3Q2/0k, 3Q2/3l). In other words, equation (2.108) does indeed corre-
spond precisely to equation (2.86), provided due account is taken of
motion relative to the current; thus w — Q and ¢, - U, + ¢,. The eiko-
nal equation for the phase function, 8 (or ® = af), is exactly as before
(equation (2.89)):

0% + 0% = k.

It is, perhaps, no surprise to learn that equation (2.108) for the wave
action (E/Q) also arises when both a variable depth and a varying current
occur together (defined on the same slow scales, of course). Indeed, the
conservation of wave action as it is transported at the group velocity
(relative to the current and then plus the current velocity here) is a
very general result. It appears in many (nondissipative) physical systems
that incorporate a slowly varying background on which small amplitude
waves are superimposed. (We have shown how this equation comes about
in a very direct manner, but a far more elegant approach is to use the
average-Lagrangian methods developed by Whitham; these ideas are
beyond the scope of this text, but additional reading in this direction is
indicated at the end of the chapter.)

Finally, we describe a few consequences for waves that propagate on a
slowly varying current. First a general result: the rays are now defined by

? =U 1+ Cg
and only ¢, is in the direction of the wave-number vector, k. Hence the
wavefronts, which are orthogonal to k, are no longer orthogonal to the
rays (in the presence of a general current); cf. variable depth only, as
discussed in Section 2.3. The eikonal equation for 8 (or ® = af) is
unchanged; see equations (2.88) and (2.89). Thus the methods for finding
the wave fronts, ® = constant, are the same no matter whether we have a
slowly varying depth or current (or, indeed, the two phenomena com-
bined). Now let us briefly examine two particular examples of waves on a
current.

First we consider one of the simplest problems of this type: a steady
wave propagating in the x-direction (so k = (k,0)), with a current
U, = (UX),0). (We note that W # 0 for this solution; see equations
(2.105).) As we saw in Section 2.3.1, for steady propagation we obtain

w = constant,
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and so
Q + kU = constant (= w) (2.109)

(since, here, V' =0 and / = 0), where Q is determined from
Q= (%_tanh(aD), o = ok,

and D (= 1+ H) is the local depth. Just to make the calculation a little
more transparent — but this does not alter the essential character of the
problem — let us suppose that we have short waves so that 6k — oo
(which, as we have seen in Section 2.1, is equivalent to having deep
water). In this case we may write Q ~ \/I%, and then the speed of the
wave relative to the current in Q/k ~ ,/1/8k. Hereafter, we therefore
choose to write

Q 1 1
=—=— k=— 2.110
“=x~JE 3 (2.110)
so equation (2.109) becomes
1 U

or
Bw)® —c—U=0,

a quadratic equation for the speed ¢, given the constant dw, and the
current U(X). It is convenient to introduce the phase speed, c,, of the
waves in the absence of any current; that is, ¢, = 1/3w, and then

1
=51 %,/1+4U/c); @2.111)

clearly only the positive sign is meaningful, for then ¢ = ¢, when U =0
(as we have just prescribed). The negative sign yields ¢ =0 when U =0,
which is plainly inconsistent.

This surprisingly simple solution, (2.111), yields important results, only
some of which might have been anticipated. For example, a current
moving in the same direction as the wave (that is, U > 0), produces a
(local) phase speed ¢ > ¢, with a decreased k (from equations (2.111)): the
waves travel faster in the presence of a current, but are longer. On the
other hand, if the current opposes the waves, so that U < 0, then ¢ < ¢,
and the waves are now shorter. However, the significant prediction from
equation (2.111) is that ¢ does not exist (as a meaningful wave speed) if
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U < —c,/4. What has happened? The explanation is readily obtained
from the equation for the wave action, (2.108).
For our problem, equation (2.108) reduces to

U+ x\ E = constant
k) Q@ ’

where E is proportional to the square of the wave amplitude, 4 say, and
¢y = 8Q/dk is the group speed relative to the current. For 8k — oo (or
deep water) we have that ¢, = ¢/2 (see Q2.27) and thus we obtain

(U +%c)cA2 = constant;
consequently, as U — —c,/4, we then have c¢—c,/2 and so
U+ ¢/2 — 0; that is, 4 — oo. This is exactly the phenomenon associated
with a caustic, as described in Section 2.3.1; our solution is inadmissible
close to any region where the current is such that U — —c¢,/4. As our
theory stands, the caustic constitutes a line across which the wave cannot
cross; the waves approaching the caustic line produce a build-up of
energy (and amplitude) there.

For our second example we describe another classical problem, namely
that of a steadily propagating oblique wave moving across the current
U, = (0, V(X)). In this case Uy + Vy = 0, so no up-welling is required to
maintain the ambient state (and, indeed, there then exists a solution
H = 0; see equation (2.105)). As above, for steady propagation, we have

w = constant
so
Q + IV = constant (= w)

where the wave number is k = (k, /). Further, since there is no variation
of k in Y, we have that Iy =0 (from the irrotationality of k), so
| = constant (= /,, say). Thus we obtain

1 — —slr2op
lOV+E,/ortanh(aD)_w, o=468/k*+ I,

which becomes the equation for k(X), given V(X); here, we may write
D=1 if H=0. The short-wave approximation (as used above) then
leads to the simplified equation

1

(l)=8—c+loV,
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where ¢ = Q/|k| and [k| =1 /8c2. This time we have a linear equation for
¢, where

1
- 8((0— loV)’

k| = /K2 + B = 80 — [ V)?, (2.112)
and (essentially as before) the conservation of wave action moving with

the group yields
9 (%2 E) _ 0 or ?E E = constant
X \ok Q) ok Q ’

4

with

where the group speed is
Q1 k
ok 2.3
Now from equation (2.112) we see that, as V(X) increases, so k(X)
decreases (since we take w > 0 and [ > 0). Eventually we shall reach
the condition k£ = 0; the wavefront has turned so that it is perpendicular

to the direction of the current. From the equation for the wave action we
have that

1 k
2 2\—-3/4 _ - ™

k E k

¢— — = —— F = constant,
ki Q |k

and as k - 0 so E — oo: again, the amplitude of the wave grows
without bound (in this theory) when the caustic associated with
k=0 is encountered. Typical of other results like this — some of
which we described earlier — we must expect that waves cannot cross
the caustic (but a reflection may occur). This situation is represented in
Figure 2.9.

2.4 The ship-wave pattern

One of the most intriguing, and often spectacular sights when viewed
from a distance, is the pattern produced by a moving object on the sur-
face of water. Surprisingly, this pattern is essentially the same no matter
whether it is a moorhen or an aircraft carrier that is the source of the
disturbance. (However, even from a photograph, the scale can often be
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Caustic

Wavefront

Ray

Figure 2.9. The reflection of rays and wavefronts at a caustic formed by the
presence of a current.

judged — in the absence of the source — if capillary waves are also present.)
A typical wave pattern is depicted in Figure 2.10.

It is our intention here to give an explanation and description of this
pattern, an explanation which was first presented by Lord Kelvin. In fact,
it was the solution of this problem (in 1887) which led him, first, to
develop his method of stationary phase; see Section 2.1.3 and Q2.16.
He realised that the salient features of the pattern can be extracted
from an otherwise intractable integral (which itself is based on an idea-
lised model of the phenomenon) provided that a suitable limit is taken.
Of course, the fine detail of the wave pattern, and particularly a precise
estimate of the energy lost in generating the waves, are very significant
problems in naval design. The sophisticated analysis required to accom-
plish this is far beyond the scope of the material presented here; we shall
concern ourselves only with the classical — and simple — problem posed by
the idealisation introduced by Kelvin.

This method of solution proposes that the disturbance caused by the
object (be it the moorhen or the ship) is replaced by a moving point
impulse at the surface. This impulse — an impulsive pressure, analogous
to the impulse in elementary mechanics — at the instant it is applied,
causes no displacement, but does impart a vertical velocity to the surface.
That is, the surface wave (n) satisfies

n=0 with »n #0
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Figure 2.10. A representation of the ship-wave pattern generated by an object
moving on the surface of water.

at t = 0, when the impulse is applied at time ¢ = 0 (cf. Q2.18). Of course,
our model here requires this process to occur continuously as the point
(the ship) moves and so continuously disturbs the surface; this is the
essence of Kelvin’s wonderfully perceptive view of the problem.
Further, the restriction to a point disturbance indicates that the results
we obtain are valid at, perhaps, moderate and, probably, large distances
from the centre of the disturbance. We must not expect to produce a
description of the waves which is accurate close to a specific object.
Indeed, the picture that we shall present corresponds closely to the typical
observer’s view: the waves are seen, and are well-defined, a reasonable
distance from the ship (or whatever) and extend to far distances. Kelvin’s
approximation to a moving point models the (finite) dimensions of the
initiating disturbance, when viewed on a scale that is large; that is, from
far away. It is for this reason, primarily, that Kelvin’s theory for the ship-
wave pattern is independent of the scale — bird or ship — of the moving
object.

We shall first present a development based on Kelvin’s approach (but
within the framework of our earlier discussions, and we shall also need to
recall some of the exercises). Then, second, we shall recover some of the
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main features of the wave pattern by a far simpler approach: we shall
invoke the ideas of ray theory.

2.4.1 Kelvin’s theory

Before we describe the details of the solution, which follows that obtained
by Kelvin, we first demonstrate that the region of the wave pattern is
easily characterised by the application of simple principles. Indeed, this
was one part of the important explanations given by Kelvin.

We consider, in order readily to familiarise ourselves with the idea, a
ship (or any object) moving at a constant speed, U, in a straight line on
stationary water. The only ingredient that we require which is especially
pertinent to this problem is the observation that the waves, when viewed
relative to the ship, are stationary; this we shall assume is a given prop-
erty here. Because of this, the natural way to present the wave field is also
relative to the ship; this requires the water to be regarded as moving at
speed U opposite to the ship. Let the ship be at P, with the water flowing
from left to right. We examine the contribution to the wave profile which
was generated at point P’ at a time ¢ earlier; see Figure 2.11(a). It is clear
that the distance P’'P is Ut. Now consider a wave front (at W) which
travels at a (constant) speed c, away from P’ in the direction @ (measured
with respect to P'P); let this wave have wave number k (so that
¢, = cp(k)).

Now, this is to be stationary in our frame of reference, and thus we
must have

¢, = Ucoso, (2.113)

which therefore describes how k must vary with 8 (for fixed U, and a
known dispersion relation yielding c, = w(k)/k). But equation (2.113)
implies that P'WP is a right-angled triangle, with the angle /2 at W.
Thus, for fixed P’ but different angles 6, all wavefronts emanating from
P’ must lic on a semicircle with diameter P’P; see Figure 2.11(b). In
Figure 2.11(c) we show the result of including some waves that have
been generated after the ship has passed P’. Presumably the complete
picture is now obtained by combining all such waves (which is, in essence,
what we shall do later), and then the envelope of these waves will describe
the region inside which the wave pattern is observed. This is, in principle,
correct, but an important property of these waves has so far been
omitted.
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@ w

Figure 2.11(a). The ship is at P, which was at P’ at a time ¢ earlier; the wavefront
has reached the point W.

W.
®) ’

Figure 2.11(b). Three different wavefronts (W,, W,, W) all emanating from P’.

Figure 2.11(c). Wavefronts generated when the ship was at P; and then at P;.

We know that the energy of water waves does not propagate at the
phase speed, c,, but at the group speed c,. Waves that are observed can
have an appreciable amplitude only near where the energy has reached
(see Section 2.1.2). For gravity waves we found that ¢;/c, <1 and in
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particular, for infinitely deep water, ¢, = ¢,/2; let us suppose that our
ship creates gravity waves and is moving in deep water (because this is the
simplest choice, and it will correspond to most — but, of course, not all -
wave patterns that are observed). The propagation of the relevant
(energy-carrying) fronts is now only half as far as that supposed earlier;
we now have Figure 2.12 where U = ¢, on 6 = 0. We see that the waves
are restricted to a wedge-shaped region, with the ship at the vertex. The
semi-angle of the wedge, ©, is then arcsin(1/3) (= n/9) (which some
readers may recognise as the Mach angle associated with a supersonic
flow at Mach number 3).

Of course, this simple analysis cannot supply any predictions for the
wave pattern itself; it tells us only where to expect to see the main dis-
turbance (and this is easily confirmed, by observation, to be essentially
correct). Also, we have described the case for deep water; as the depth
decreases, so ¢, approaches ¢, and the wedge angle increases (see Q2.49).
Now we turn to a far more detailed and careful analysis, following the
route laid down by Kelvin.

We consider stationary water of infinite depth, over which a point
moves on a prescribed path (which need not be a straight line). Since
(as for many of our calculations) we are concerned only with the genera-
tion of gravity waves, we set the Weber number to zero. (Of course, we
can always retain the effects of surface tension; indeed, capillary ship-
waves — no gravity at all — provide an amusing exercise; see Q2.54.
Generalisations to finite depth, as we mentioned earlier, are also
possible.)

Ya gt

Ut

Figure 2.12. The wedge-shaped region inside which the ship-wave pattern is
evident, for the case of deep water.
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The first stage in this calculation is to obtain the relevant concentric
surface wave, 7(r, ¢) which is produced by a point impulse. To this end,
we recall the analysis for concentric waves on deep water (Section 2.1.3);
here, however, we require the solution (written via the Hankel transform)
which satisfies

n(r,00=0 and n,r,0) #0.

However, it is not clear what form we should choose for 5,(r, 0). Of
course, the main idea here — Kelvin’s — is to impose a point impulse, so
that is what we use in order to make headway.

To see how the impulse is introduced, it is convenient to call upon the
pressure equation evaluated at the surface, where P = P, on z = h:

L
at+2“ u+ s + gh = f(9),

which is written here in physical (dimensional) variables; see Section
1.2.2. As before, let us suppose that somewhere 4 = A, (= constant)

and P; = P, (= constant atmospheric pressure) with no motion, then

P
SO =—"+ghy,
)
and hence

dp 1 1

—+-u-u+—(P,— P h—hy) =0.

81+2 +p( K a)+g( 0)

In the present context, we are analysing a certain class of linear waves, so
it is the linearised version of this equation that we require: we have,

approximately,

dp 1

§+;(Ps—Pa)+g7l=00nZ=ho,

where & — hy = n. The impulse is obtained by integrating this equation
over the time interval (0, T) and then letting 7 — 0. Performing this

integration yields

T T
1
¢(X_L,h0, T)+;/(Ps—Pa)dt+g/ndt=0
0 0
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where we have set ¢(x,, hy, 0) =0, as we may always do. Now, for a
finite-amplitude surface wave we must have

T
[ndt—>0 as T — 07,
0

but for an impulse we require

T
0/ (P, — P,)dt

to have a finite and nonzero limit as T — 0%; this is the impulsive pres-
sure. Hence the required initial condition (for the concentric wave) is that
&(x, , hy, 0) 1s to be specified. This condition is to be incorporated into the
determination of n(r, ) (where x, = (r, 8), and there is no dependence
here on 6).

It is clear that ¢(r, 1, ¢) satisfies the same wave equation as n(r, ),
equation (2.14), essentially by virtue of the boundary condition

¢+n=0 on z=1;

see equation (2.67) (and note that we have reverted to our non-
dimensional variables). Thus, immediately, we have the appropriate
solution for ¢ (cf. equation (2.30)) as

o0

o(r, 1,0 = / pf (p)cos (t\/g)Jo(rm dp
0

where

o0

#(r1,0) = / 2 @)Io(rp) dp = £,

0

say, and n(r,0) = —¢,(r,1,0) = 0. The impulse that we use (a point
impulse) is modelled by

I, 0<r<a
0, r>a

r0={
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with a — 0, so that

a

ﬂm=1/ﬂdmﬂr
0
1 1
—>I¢12/ydy=51a2 as a—0,
0

if Ia? is fixed. (We have written r =ay here and used the familiar result
Jo(x) = 1 as x —» 0.) Thus, with f(p) = %Ia2 = B, say, we obtain

n@r, ) = —¢r, 1,0 = % / p>%sin (t\/’;)Jo(rp)dp (2.114)
0

(from which we can determine the corresponding form taken by #,(r, 0);
cf. Q2.19)). It is this solution, (2.114), for concentric waves on deep water
generated by a point impulse, which we now examine.

This first stage of the calculation follows precisely that presented in
Section 2.1.3. We introduce the integral representation of J; (see equation
(2.31)) and then write 7 as the real part of the sum of two integrals (as in
equation (2.32). This is transformed according to

_ P ot
r=5s27 T
and then we use Kelvin’s method of stationary phase for & — oo to give
g 17 . (172)
n(r, t) 335 sin 15 ) (2.115)

cf. equation (2.36). This calculation, which parallels that described in
Section 2.1.3, is left as an exercise (Q2.50). Our task now is to incorporate
this result into a description of the waves generated when the point
impulse moves along a prescribed path.

The point impulse — a ship, perhaps — moves on the surface of the water
along a path I, described in Cartesian coordinates by

X = (X0, Y(0),

where ¢ is the time elapsed since the ship (let us call it that) was at the
point P’, namely at (X, Y); the ship is now at P, the origin of coordinates.
The path is assumed smooth (so that both X(¢) and Y(¢) are (at least)
once-differentiable functions) and then the X-axis is chosen to be tangent
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to ' at P; all this is summarised in Figure 2.13. The ship, as it passes
through P’, initiates a disturbance there that propagates outwards and, in
the direction defined by 4 and at distance r from P’, which has reached
W. (The angle 6 is measured relative to the (backwards) tangent to I' at
P’) The disturbance at W is a distance r from P’ (in the direction ), and
it has taken a time ¢ to reach there; we shall assume, for the purposes of
the following discussion, that the elevation of the wave at the time ¢, and
distance r from P’, where the impulse was applied at ¢ = 0, is given by

3
n(r, £) = A:—45in(— fr) 2.116)

where A is a constant; cf. equation (2.115). But the total disturbance at W
will have contributions from all points along the path, to a greater or
lesser extent (depending on the position of W). We therefore require the
sum of all contributions like (2.116) over all time; however, it is clear that
the integral of (2.116) in ¢ over [0, co0) does not exist. We circumvent this
difficulty by positing that the ship has been moving only for a finite time,
T, say. Thus the total effect of all impulses along the path produces the
amplitude

or

e 12
H(x,y)=A/r—48in(Z )dt 2.117)

0

Figure 2.13. The path of the ship is I'; the ship is now at P (the origin) and it was
at P’ at a time ¢ earlier.
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at W, where r* = (x—-X )7 + - Y(#)>. (It is clear that this integral
also does not exist for points on the ship’s path, where r = 0; however, the
method of stationary phase that led to (2.115) has already been inter-
preted only for points away from r = 0: we are seeking the wave pattern
as seen some distance from the ship.)

To proceed, we express (2.117) in the form

T3
H(x, y) =f[A / :—4exp(it2/48r)dt], (2.118)
0

and we have previously used o = 2/6r — o00; thus we may apply the
method of stationary phase yet once more! The point(s) of stationary

phase occur where
d (¢
. (7) =0 for r=r(),

dr _2r

T
(The fact that we are treating o = o(¢), and o — oo is required for the
method of stationary phase, is irrelevant in the application of the
method.) But from

at fixed x, y: thus

(2.119)

=(x - XO) + (- Y()
we have (at fixed (x, y))

dr dY

Ta T [( _X)_+(y dt}

dx dY

=—x-Xy-1- (dt dt)
= rU(f)cos¥,

where U(f) (= \/ (dX/d6)* + (dY/dP)?) is the speed of the ship, so (since
r #0)
d

r
—= . 2.12
T Ucosd (2.120)

Thus the condition of stationary phase, (2.119), becomes

r =%Utcos(9, (2.121)
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which represents (in plane polar coordinates) a circle of diameter %Ut,
with the end of a diameter tangent to " at P’ and the circle orientated
from P’ towards P; see Figure 2.14. (If the ship is moving on a straight-
line path — the x-axis — at constant speed, then this construction imme-
diately recovers Figure 2.12.) It is only points on this circle that corre-
spond to the points of stationary phase and therefore provide the
dominant contribution to the wave amplitude. All points P’ which con-
tribute, in this sense, to the disturbance at a given point W are usually
called the influence points of W. A question that we might pose at this
stage is: how many influence points are there, for a given W? For exam-
ple, for constant speed, straight-line motion, it is a simple exercise to
show that there are just two influence points (in general); see Q2.51
and Q2.52. This suggests that there are two families of curves that
contribute to the ship-wave pattern.

The wave pattern, whose determination is our main goal, is obtained
by constructing the lines of constant phase, consistent with the condition
of stationary phase. We shall describe this calculation for the simple case
of constant speed, straight-line motion; the corresponding problem for a
circular course is set as an exercise (see Q2.53). The phase (see (2.118)) is
proportional to ¢2/r; it is convenient to introduce

2
L _vE
2r

Diameter
WUt

=Y

P

Figure 2.14. The position of the points of stationary phase (points W on the
circle) for the disturbance initiated at P’ at a time ¢ earlier; the ship is now at P.
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where U is the constant speed of the ship, and then A = constant yields
the curves of constant phase. But the condition of stationary phase, from
(2.121), yields

rUt = % U* cos = Arcosf

s0
Ut = Acos®,
and then (2.122)

1 1
r= EUtcose = z)kcos2 6.

(In fact, the equations (2.122) are valid for any path and, indeed, in the
construction of these equations we may allow U = U(¢).) The path here is
simply

X=U: Y=0,
and then any point W is
x=Ut—rcos, y=—rsiné,

where r and 6 are shown in Figure 2.13. Thus, using equations (2.122), we
obtain directly

1 1 .
x = A(cosb — Ecos3 ), y=-— 5)» cos?6sin#, (2.123)

which are the parametric equations (parameter 6) for the dominant con-
tribution to the wave pattern, each wave crest/trough being associated
with a fixed value of L. The pattern of wave crests (or troughs) is shown in
Figure 2.15, which closely resembles the wave pattern produced in nature;
compare this figure with Figure 2.10. Note that in this figure we
have included points r =0 (which do exist on the curve (2.123)) for
completeness only.

Before we leave our discussion of this pattern, we comment that Figure
2.15 plainly shows two families of curves (exactly as we observe) which
meet on the boundary of the region. Where these two families meet is
quite significant; consider the derivatives obtained from equations
(2.123):

dx

. 3, . 1 PN
E_)»(—-s1n9+§cos 9s1n0)_§A(1 — 3sin” 8)sin 6
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0.3 1 .
Diverging system

0.2 1

Transverse system

0.11

T T T T T

0 0.2 0.4 0.6 0.8 1 x

Figure 2.15. The ship-wave pattern as obtained from equations (2.123), for var-
ious values of A (= 0.5, 1, 1.5, 2); the fine line denotes the boundary of the wedge
which contains the dominant contributions.

and

g—g = - %A(cos3 6 —2cos@sin’6) = — —;-A(l — 3sin? #)cos .

Tt is clear that dy/dx is singular at § = Q (which is where all curves meet at
P) and also where 3 sin? @ — 1 = 0; this defines the angle 6, that is attained
where the two influence points coincide (and we note that this is the same
for all waves, since it is independent of ). This and other relevant points
are included in Figure 2.15; in particular we see that the two families are
defined by 0 <8 < 6, and 6, < 6 < /2, respectively.

Finally, we make full use of Kelvin’s method of stationary phase in
order to provide an estimate for the wave amplitude along the lines of
constant phase where the dominant contributions occur. To this end, we
use the general result given in equation (2.35) and apply it to the integral

in (2.118). Thus we require
@ (7
a2 \r
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evaluated at the points of stationary phase; first we have

@A) _a(u a) 2 wa 2@y 2
de2\r) de\r P2dt) r P2 dt A\dy) P de
which, on lines dr/d¢ = 2r/t (equation (2.119), for stationary phase),

yields the expression

1 2 &%
- (2 - W) (2.124)
But on these lines we also have, (2.120),
dr
Fri Ucos®,
which gives
d’r de .
E=" U rr sin @

since U = constant; now we must find d6/dz.
For the straight-line course (along y = Y = 0), at constant speed U, we
see that (cf. Figure 2.13)

y
0 1. ( )=
+ arctan Ui — b 4

with X = Ut. Thus, at fixed (x, y), we obtain
w___

dt  (x—U +)*

and we also have sin(w — 6) = —y/r where r* = (x — Ur)* + %; hence

%——Hsine
dt™ r

and so
d2r U2 .2
F:—;—sm 0.

The expression (2.124) therefore becomes

1 2.2
—(2—U—2tsin26) =2(1 —2tan?6)
r r r

= %(1 — 3sin%6)/ cos? 6, (2.125)
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which we observe is zero at 8 = 6, (= +arcsin(1/+/3)) where the two
families of wave crests/troughs meet. Further, we must include two domi-
nant contributions to the wave amplitude — one from each family
(although, perhaps, we may find that one of these dominates the
other). Since the two families are generated (in y > 0) by 0 <6 <6,
and 6, < 6 < m/2, respectively, we see from (2.125) that

2
%(é)>0 for 0<0 <6,

and

d2

@(é) <0 for 6y <6 <m/2

For a given point, W, we let the contribution in the range 0 < 6 < 6, —
usually called the transverse wave system — be designated by the subscript
t, and for the other contribution, usually called the diverging system, we
shall write the subscript d; this terminology is used in Figure 2.15.

The two terms that provide the dominant asymptotic behaviour (as
£ /6r — o00), according to Kelvin’s result (2.35), therefore yield (after a
little manipulation)

. 2
H~sld  cos 6, exp{i(r/a; + m/4)}
! aly/1 — 3sin’ 6,
+a [Feos expli(r/dal — 7/4)})
r ay/3sin’ 6, — 1

Here, we have substituted for time ¢ from (2.121) and written

(2.126)

1
o, = iUcoseq (g=1t4d).

The solution expressed by (2.126) is the final result that we present in this
section. We see that both contributions are of the same order, that the
amplitude decays like r~'/? away from the ship’s path, but that the ampli-
tude is undefined where the two families meet (at 6, =6, =6,
= arcsin(1/+/3)). (The amplitude is also undefined where 6, = /2, but
this is at P, the origin, and is to be expected because of the nature of our
point impulse model.) An analysis can be performed, by taking Kelvin’s
method of stationary phase to the next order, for the case 6, = 6; = 6;;
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the wave amplitude can then be shown to be finite but now it behaves like
r~!/3 away from the ship’s path. This goes some way to explaining why
the waves near the edge of the wedge-shaped region are observed so
readily: they are larger than those nearby and on each of the families
separately. Finally, we note that the two systems of waves, transverse and
diverging, have a phase difference of n/2 even when «, ~ «;. Thus we
anticipate that near the edge of the wedge, where «, and «,; are nearly
equal, a phase difference will be evident; this is, indeed, seen in well-
defined ship waves (and just hinted at in our Figure 2.10). The effect of
the phase difference is to produce transverse and diverging systems that
do not meet with a common tangent at § = 6,; this phenomenon is shown
in Figure 2.16.

In summary, we have seen how the application of Kelvin’s method of
stationary phase — ultimately three times — enables us to provide a sur-
prisingly accurate description of the ship-wave pattern. This approach is
based on the point impulse model for the moving object (bird or ship)
and, importantly, on the limiting process 2/r — oo (provided r # 0). We
conclude by observing that this requires, first, that we are not at points on
the ship’s path. (Indeed, in practice, this region is the one that is signifi-
cantly disturbed by the propulsion system, be it a screw-propeller or
paddling feet.) Second, since r # 0, the limit must be interpreted as

0.3 1 .
Diverging system

0.2 1

Transverse system

0.1

Figure 2.16. A more accurate version of the ship-wave pattern, with the phase
difference between the transverse and diverging wave systems now evident
(particularly near the edge of the region).
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t — oo sufficiently rapidly; that is, we are seeing the pattern well after the
passing of the ship (and consequently well behind and far away from the
ship). Of course this means, as mentioned earlier, that the precise nature
of the object producing the waves will play no part in this theory.

2.4.2 Ray theory

In the previous section we described, with some care and in some detail,
the important predictions first developed by Lord Kelvin. We now
demonstrate how the salient features can be obtained directly from ray
theory (Section 2.3).

We invoke ray theory by treating the problem as a stationary object
(the ship), at the origin of the horizontal coordinate system, in the pre-
sence of a current. The current is, of course, just that required to bring the
ship to a halt (and, as before, we suppose that the ship is moving in
stationary water). Let the (steady) current be

U, =(UX,Y), V(X,T)),

at least to O(c?); cf. the discussion in Section 2.3.3. We seek waves that
are steady, so w = constant, where

Q+HEkU+IV =w
with

Q= —%\/atanh{a(l + H)}, o=48k|;

see equation (2.107). (We have chosen the sign of the square root to
correspond to waves behind the ship in X > 0.)

We restrict the calculation to the case of deep water (equivalently, that
is, for short waves), and so hereafter we write

Q = —/k|/s.

Further, since the ship waves are stationary — do not change with time —
in the frame of reference fixed relative to the ship, we have w = 0. Thus

VKIS =kU+1V,

which describes the relation between k and / (given U and V) for sta-
tionary waves to exist. Indeed, for U = constant and ¥ = 0, we obtain

1 k
cp—m—ﬂ(—lU—UCOSO (2127)
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exactly as in Section 2.4.1 (equation (2.113) and Figure 2.11(a)). The rays
are described by

dx
?—U"-Cg

= (U + 0Q/k, V + 3Q/dl)
1 k% | S
= (U—Ecpi-k—', V—ECP'IFI)
or

av _ V —3cl/Ik| .
dX U —1lck/Ikl’
see Figure 2.17. But from equation (2.127) we see that for U = constant

and ¥ = 0 we may write this in the form

1sinfcosé

_ 28nocosf 2128
1—1cos?6 ( )

tan ¢

which determines ¢ in terms of 8; conversely, this equation can be
rewritten as

2tan¢tan’ 6 — tan 6 + tan¢g = 0.

Figure 2.17. A wavefront, with wave number vector k, emanating from the point
P’; the ray measured from P is at a distance R from P, and at an angle ¢ to the X-
axis (measured in the negative sense, to be consistent with the direction in which 6
is measured).
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Thus the disturbance at any point on a given ray is contributed to by two
waves, in general, determined by two values of & — which, of course,
correspond to the two influence points that we introduced earlier.

The solution for tan 6 is immediately

tanf = %COtd)(l ++/1—8tan® ¢),

so two solutions exist for tan’¢ < 1 /8, but no (real) solutions exist for
tan’¢ > 1/8. The two wave systems (to use the terminology of the
previous analysis) coincide where

tan’¢=1/8 or sin’¢=1/9,

which recovers our result for the angle of the wedge inside which the
dominant disturbance occurs.

We now turn to the determination of the lines of constant phase,
© = constant. This requires us to find the appropriate solution of the
eikonal equation

0% + 0% = kP,

where |k|* = sec* 67/82U4 (from equation (2.127) with U = constant). It is
convenient to express this equation in polar coordinates defined at the
origin of (X, Y), which here we write as (R, ¢); see Figure 2.17. Thus we
have

cf. equation (2.100). The relevant wavefronts are obtained by mapping
the rays that correspond to the lines of constant phase, and the rays are
radial lines (¢ = constant) out from the origin. But, on the rays, 8 and ¢
are related by equation (2.128) and so we seek a solution

® = Rf(0);
thus
do\? sec*o
A+ (@) =S (2.129)
where
% _ 4 —3cos’0
d¢  3cos?6—2

(which follows directly from equation (2.128)).
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It is a fairly straightforward exercise to show that equation (2.129) has
a solution which is proportional to

-1
(cosev4 —3cos?8) ;

the verification of this result is left as an exercise (and you may wish to
find the constant of proportionality in this solution, but its precise form is
irrelevant here). Thus the lines ® = constant become

R 1
= comnstant = = A, say. (2.130)
cos6v/4 — 3cos? 0 2

We revert to Cartesian coordinates in order to present the lines of
constant phase, where we use

R = cos?6)
X=Rcosp=————= (>0
V4 —3cos?6
and
Rsinfcosé
Y=—-Rsing=————— (<0for0 < ¢ <m).
4 —3cos?0

(Again, these follow directly from equation (2.128), and we have chosen
the signs of the square roots to be consistent with our definitions.)
Inserting the expression for R from equation (2.130), we obtain

1 1
X = Acos6(l —Ecosze), Y = —Ekcoszesine

which is precisely the parametric form obtained in Section 2.4.1 (equation
(2.123)). It is clear, however, that ray theory does not contain sufficient
information to describe the phase difference along the edge of the wedge
(which Kelvin’s more complete wave theory produced). Finally, we com-
ment that the equation for the wave action can be used to show that the
amplitude of the dominant wave decays like r~'/? away from the ship’s
path (as previously given in equation (2.126)).

This concludes our presentations of various linear problems in the
theory of water waves. As we have mentioned earlier, the exercises may
be used to discover and investigate other interesting problems — but even
these do not claim to be exhaustive. Additional material can be found in
the books listed in the further reading at the end of this chapter.
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IT Nonlinear problems
A higher height, a deeper deep.
In Memoriam A.H . H. LXII

Our discussion thus far has been restricted to various problems in linear
theory. These have been chosen for their mathematical content, and to
give a flavour of the breadth of results that is available. We now turn to
the more demanding arena that is the study of nonlinear wave propaga-
tion. As before, we shall continue our philosophy of selecting problems
which contain interesting mathematical elements and which, for the most
part, lay the foundations for our later presentations.

Most — but by no means all — of our earlier analyses have considered
the case of gravity waves (which are, after all, the most relevant waves for
the engineer involved in the design of ships, offshore platforms, or sea
walls, to mention but three). Here, for all our work on nonlinear phe-
nomena, we shall limit ourselves to the description of gravity waves.
Thus, for the inviscid model with no surface tension (W = (), we have
(equations (1.67), (1.69) and (1.70))

Du_ % Dv_ & oDw_ 3
Dt ax’ Dt 9y’ Dt &z
where
D_3+8 u3+v3+w3
Dt ot ax a
and + (2.131)
u w dw
ox  dy 9z
with
w=mn,+¢&un,+vn) and p=n onz=1+en;

w=ub, +vb, onz=2b,

written in Cartesian coordinates. Correspondingly, for irrotational flow
(Q1.38), we have
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oz + 8 (Drx + $y,) =0
with
¢, = 8{n, + &(@x1x + y1)hi
¢+ +%s(6l2¢§ + 2+ ¢§) ~of "7 l1+en, [ (2.132)
and

¢, = 8%(¢b. + ¢yb,) on z = b. J

(In both these sets of equations we have taken the bed of the flow to be
steady; that is, z = b(x, y).)

For what we present here, we shall no longer consider the approximate
equations obtained by setting ¢ = 0: of course, the inclusion of nonlinearity
requires ¢ # 0. ‘Full’ nonlinearity occurs for ¢ fixed, that is, O(1), even if
8 — 0; indeed, in this case, we may just as well set ¢ = 1. (This is equivalent
to scaling the wave on the typical undisturbed depth of the water.) The
consequences of allowing the strongest possible contribution from the non-
linearity will be the basis for much of what we shall present here, but we
start with a simpler problem: ¢ — 0. This is the problem first discussed by
G. G. Stokes in 1847, and aims to produce higher approximations to the
(linear) oscillatory wave (given in Section 2.1). This approach, as we shall
see, is in the spirit of much that we shall present in later chapters.

2.5 The Stokes wave

The problem that we present here is that of determining the solution of
equations (2.132) (which describe irrotational flow) as an asymptotic
solution for ¢ — 0 (at fixed 8). This is to be compared with the analysis
given in Section 2.1 where only the first approximation was obtained (and
there we worked from Euler’s equation with the effects of surface tension
retained). Here, we shall seek a solution in the form

Q~ Y &0
n=0

where Q (and correspondingly Q,,) represents each of ¢ and n; these expan-
sions, or more precisely, those for the velocity components (¢,, ¢,), and for
n, are to be uniformly valid as t — oo and as |x| — 00. We shall restrict the
discussion to plane harmonic waves that travel in the x-direction. The
undisturbed water is stationary and the depth is constant (so we set b = 0).
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The procedure is, in principle, altogether straightforward, but compli-
cations do arise, not least because of the nature of the surface boundary
conditions. To be consistent with our assumed form of solution (in
powers of &) we must expand these boundary conditions about z = 1.
(Strictly, any requirement on the convergence of the series that we gen-
erate is unnecessary: our solution need only satisfy the conditions laid
down for asymptotic validity as ¢ — 0.) In addition, to describe the
harmonic wave we introduce the phase variable

0=kx— ot

where we shall regard the wave number, k, as prescribed. Equations
(2.132) now become

¢, + 82k2¢9€ =0,
with
1
G: + Ny + 5 €0 b = —8 0 + 5K N6(G + n:) + OLE);

1
n+oa— oy + engy, + 532’724’0”)

1 (1
+ 58{3—2 {62 +2eng.9..) + (0% + 28'7¢9¢9z)} = 0@

bothonz=1, and
¢.,=0 on z=0,

where we have incorporated the convenient shift ¢ — «t + ¢ (which we
shall discuss below; also cf. equation (1.23)). It will transpire that, in
order to find a uniform solution, we must expand the frequency in
terms of g; thus we write

[oo]
W~ E o,
ns
n=0

where the w, are constants, which may depend on k. This dependence of
 on &, essentially the amplitude, is a very significant result, as we shall
see.

The expansions for ¢, n, and the constant « (treated like w) are used in
the above equations; the leading-order problem is then

b0,z + 32k2¢000 =0
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with
bo: = —wpd'ngy and g+ ag — wypee =0 on z=1
and
¢, =0 on z=0.

This is the familiar and standard problem; see Section 2.1 and Q2.5. The
solution for a single harmonic wave is

no=AE+cc, oy=0,
iA cosh(dkz) (2.133)
%0 = = 5 Coshak) T

where E == exp(if), 4 is a complex constant and c.c. denotes the complex
conjugate. We see that this solution does not require a contribution from
a, but it exists only if

| X

wi = ~ tanh(8k); (2.134)

cf. equations (2.9) and (2.13).
At the next order we obtain the equations

Grzz + 8K P = 0

with
b1z + Nodozz = —8° (w1009 + Woip) + 82k Nogbos;

1/1 , 2.2 onz=1
M + o — (@199 + @oP19) — WoNoDos; +3 6_2¢Oz +k“¢pe ) =0

and
$1,=0 on z=0.

We could include a term in the solution of this problem which contributes
to the first harmonic (Eil), but we choose not to do so; the amplitude of
the first harmonic (to this order) is taken to be 4. However, the surface
boundary conditions do include terms E*!, but these are completely
eliminated if we choose w; = 0; thus we set w; = 0. Now we seek a
solution

n = AE* +cc., ¢, =B cosh(26kz)E2 +c.c.,
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and ¢, (a real constant) will be required here to remove the non-periodic
term E° (which is generated by the product E 'E7Y). The corresponding
terms in the first boundary condition exactly cancel.

Our solution for ¢, satisfies Laplace’s equation and the bottom
boundary condition; the other two boundary conditions (on z = 1) yield

5
wy
Ay — 2iwy B, cosh(28k) = Sk A tanh(k) — 8kAzcosech(28k),

kB, sinh(28k) + idwyd; = i— A%,
with
a; = —26k|A|*cosech(25k).

We see that the term ¢ is needed here; it can be associated with the
arbitrary function, f(¢), that appears in the pressure equation, (1.23). It
might be thought that such a term could not appear after we have intro-
duced appropriate conditions at infinity; see equation (1.29). However,
once we have fixed the undisturbed surface level at n = 0, the constant
pressure condition has to be maintained in this way if the nonlinearity is
also included. There is, nevertheless, an alternative which allows «; = 0:
this is to redefine the undisturbed water level as

n ~ —2e8k| A|*cosech(26k),

which hydraulic engineers usually call the set-down. In any event, we see
that the term «f does not contribute to the velocity components (¢,, ¢,).
To proceed, we solve for A; and B, and simplify, to give

Ay = A%k coth(&k){ 1+ %coscchz(cSk)}, B, = —iA? %520)0 cosech*(sk).
Thus we have, so far, the asymptotic solution
n~ AE + e A*E*sk coth(8k)[ 1+ %cosechz(ak)} +c.c. (2.135)
and
¢~ — iTA;)E sech (8k) cosh(8kz) — 2e8k|A|*t cosech(28k)
—ied? %82w0Ezcosech2(8k) cosh(28kz) +c.c., (2.136)

both as ¢ — 0. The non-uniformity implied by the contribution from at,
as t — 0o, appears only in the expansion of ¢; the relevant asymptotic
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expansions are for ¢, (that is, ¢,) and ¢,, which do not contain this term.
We now examine the next order, but only to demonstrate the role of w,
and how we determine its value.

The terms at O(s?) yield the equations

2., + 82k2¢299 =0,
with

1
2, + NoPrz; + MPoz + 3 13Q0sz2
= —8%(wome + a1100) + 8°K* (ogb10 + MePos + NoToePos:);

1
M + ay — w9 + Nodig; + M Pog; + 3 MoPoszz) — W26
1
+ 53 Bubrz + oBu:B0zz) + I Boodio + Modoode:) = 0

both on z =1, and
¢, =0 on z=0.

To find w, we must be more circumspect in our treatment of these equa-
tions than we were for w;. Here, the boundary conditions on z=1
include terms E*! which cannot be eliminated; thus our solution for ¢
and n must include these terms. But we know that the combinations
b, + 82wy and n, — wody, (evaluated on z = 1) are essentially identical
when evaluated from terms in EX! and the expression for e, is invoked.
(This was how we determined w, in the first place.) To be consistent, the
same property must obtain for all the terms in E*'; this is possible
only for one choice of w,. Let us now fill in some of the details in this
calculation.
If we write

ny = A,E +c.c., ¢, = B,cosh(8kz)E +c.c.

(which would constitute one part of the complete solution for 7, and ¢,),
then,onz =1,

b, + 82 won2p = 8k B, sinh(Sk)E + 14,8°wyE + c.c.
= i820(A,E — i % B2 sinh(Sh)E) + c.c.
8 Wy
= i8%wy(A,E — iwyB, cosh(3k)E) + c.c.

= i6%wo(n2 — woap)
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where we have used equation (2.134) for cu% Therefore we form i82w0
x (second boundary condition on z = 1) and subtract the first boundary
condition, but we retain only the terms in E' (which can arise here from
the products E2E~! and E'E®); these terms are to be absent from the
combined boundary conditions, thereby fixing w,. After some rather
tedious algebra, we find that the appropriate choice is

1
wy = Zazkzwomﬁ{s coth?(sk) + 9 cosech*(8k)},

so the dispersion function becomes

2
®~ @y + %82k2w0|A|2{8 coth?(8k) + 9 cosech*(5k)} (2.137)

where wy is obtained from equation (2.134).

The significant result embodied in equation (2.137), and first described
by Stokes, is that the frequency (and hence the phase speed) now depends
on the amplitude of the wave. This is a fundamental property of non-
linear waves, and has no counterpart in linear theory (but remember that,
in linear theory, water waves are dispersive, so their speed does still
depend on the wave number). In particular we see that

2
Cp~ Cpo l 1+ %63 k?| 41*[8 coth®(8k) + 9 cosech4(8k)]] ,

where ¢, = wy/k is the speed of linear waves; here, waves of larger
amplitude travel faster (although we are still restricted by the small-
amplitude assumption implied by & — 0).

Furthermore, the inclusion of higher-order terms in the representation
of the surface profile (equation (2.135)) distorts its shape away from the
(linear) sinusoidal curve. The effects of the nonlinearity are to make
peaks narrower (sharper) and the troughs flatter; this tendency is depicted
in Figure 2.18. The resulting profile more accurately portrays the gravity
waves that are observed in nature. Later (Section 2.9) we shall describe
more fully the characteristics of certain nonlinear waves for which the
Stokes expansion can give only a hint.

Before we leave the Stokes expansion, we make two observations.
First, we have presented the results for arbitrary wavelength (or depth);
clearly, we may approximate further for long waves (or shallow water)
and for short waves (or deep water). For example, from (2.137) and
(2.135), we obtain
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L

0.6

Figure 2.18. A nonlinear wave (: ) and a corresponding linear wave (——) for
comparison; the waves have been drawn with the same amplitude and the same
period.

1,,, 9844
w kl]—ga k2+ZW as 68— 0,

and

w~\/§{l+%EZ|A|82k2} as 8 — oo,

provided we also have (¢/8) — 0 in the former, and (¢8) — 0 in the latter.
(These simple derivations are left as an exercise.) Now, second, we may
use our more complete results to compute, for example, the correct aver-
age mass flux in the water as the wave propagates; see Q2.32. Previously
we calculated as far as O(e2), yet the solution to this order was unknown.
We have

2n l4en
97=i / udzdeé
2w
¢ 0

where

n~ AE + A E* + c.c.
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and

AE cosh(Skz)
“ wy cosh(8k)

see equations (2.133), (2.135) and (2.136). Thus we obtain

+ £2iB, E? cosh(26kz) + c.c.;

2
e /” { AE sinh[sk(1 + ¢AE)] ¢iB, E>

7 "% ) 15k cosh(k) ok
0

sinh(28k) + c.c.}de

from which it is clear that the term at O(¢) in the expression for u does not
contribute at O(e?) (because it is periodic in 6). The non-periodic term
arising from the expansion of sinh[ék(1 + c4E)], exactly as in Q2.32,
provides the O(¢?) term in %. The conclusion we reached in Q2.32, it
turns out, is correct: there is a mass flux of O(¢?) generated by the passage
of the O(¢) surface wave. (This is discussed further in Q4.4.)

2.6 Nonlinear long waves

We now undertake our first examination of a set of equations that
describe fully nonlinear wave propagation. To simplify matters, we
restrict the discussion to waves that are propagating in only one
(spatial) dimension and, most importantly, we shall invoke the condition
for long waves. From equations (2.131), for propagation in the x-direc-
tion and with the bed fixed at z = 0, we obtain

u + 8(uux + wuz) = —Px;
82{Wt + 6‘(uwx + WWZ)} = =Pz
u, +w, =0,

with
w=mn+eun, and p=n on z=1+¢ep
and
w=0 on z=0.

Then for long waves (or shallow water) we impose the condition § — 0,
$0

D: = 0(82)’
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and the first approximation for p requires that

p=n,
everywhere. The equations are now reduced to
u, + e(uu, +wuy) = —n,;  u,+w, =0, (2.138)
with
w=n+eun,onz=1+4+¢enp;, w=0o0nz=0,
to leading order as § — 0.
These equations admit a solution for which u = u(x, £) (which is the

only solution if, somewhere, u is independent of z, for then it will remain
s0); thus w, (= —u,) is independent of z, so

" (m + sunx)z,
1+en
where the boundary conditions have been used. The two equations in
(2.138) therefore become

u, +euu, +1n, =0;
(1 + en)uy + n, + eun, =0,

where we have made no assumption about the size of ¢. We wish to retain
‘full’ nonlinearity, so that ¢ = O(1) as § — 0; it is therefore convenient to
set ¢ =1 and to write the surface as

14+ n(x, 1) = h(x, 0).
Our pair of equations are then expressed as
u,+uu,+h,=0; h+(hu),=0; (2.139)

these are often called the shallow water equations (for obvious reasons).
The important simplifying assumption that leads to these equations is, of
course, § — 0; this, in turn, implies that p = 5 (to leading order), which
means that the pressure is everywhere dominated by the hydrostatic
pressure distribution (see Q1.11). The higher-order corrections to the
pressure, as the wave propagates, are ignored in this model.

An interesting observation about our equations (2.139) is made if we
write

h(u, + uu,) = —hh, = —(%1#) ,
X
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for then the shallow water equations take the form

WA == 2pe it (i), =0, p=3/, (2.140)
where p is written for 4. Equations (2.140) are the equations of one-
dimensional gas dynamics, for the adiabatic law P « p?, that is, p « o7,
y = 2; see equations (1.2) and (1.12). Of course, for a real gas, y =2
cannot be realised; nevertheless, our equations (2.139) are identical in
structure to the appropriate equations of gas dynamics (and, as such,
are the basis for demonstrating some steady gas-dynamic flow phenom-
ena on a water table). All this means that we may take over much of the
analysis and discussion pertinent to gas dynamics. This we shall now do,
at least in part, but we shall provide all the relevant information and
derivations.

2.6.1 The method of characteristics

We have already found (Section 2.1), for long waves, that the speed of
propagation of small amplitude waves is \/g_h(; (in dimensional variables;
see equation (2.11)). Here we are also working with long waves, so we
might hope that a similar result obtains. Of course, our equations (2.139)
are fully nonlinear, which could lead to some doubt about the validity of
this proposition. To see that there is a connection, we introduce the
definition

e(x, 1) = vh, (2.141)

which is the nondimensional equivalent of /gh, (and which also avoids
the restriction to small amplitude waves). We note that 4 is the total
depth, and so 4 > 0. Equations (2.139) then become

u, +uu, + 2cc, = 0;
2¢c, + u, + 2uce, =0 or 2c), + u(2¢), + cu, =0,
which are added to give
(u+2c),+u(u+2c), +2cc +cu, =0
and subtracted to give

(u—2¢), + u(u — 2¢), + 2¢cc, — cu,, = 0.



Nonlinear long waves 149

This pair of equations is rewritten in the form
a3 d
{E + U+ c)a}(u +2c)=0;
3 3
{5_’_ (u— c)a}(u —-20)=0,
which can be solved directly (cf. equation (1.84)) to give

u +2¢ = constant on lines C*: i_x =u+c;
! (2.142)

. _ dx
u — 2¢ = constant on lines C™: Frin u—-c,

by the method of characteristics.

The lines (C*, C™) are the two families of characteristic lines, and the
functions (u £ 2¢), which are constant on their respective lines, are
usually called the Riemann invariants. We see that these characteristic
lines describe propagation at a speed (dx/d¢) that is either upstream or
downstream (Fc) relative to the flow speed (x). The (implicit) solution
can be expressed in the form

u+2c=f(a), «a constant on lines gzc_ =u+c

dt

doc (2.143)
u—2c=g(B), B constant on lines T u—c,

where f and g are arbitrary functions. The problem is then completely
described if we are given, for example, the initial (¢ = 0) distribution (as a
function of x) of both u and ¢ (that is, A); this will prescribe both f(-) and g(-).

A particularly important and special class of solutions is obtained
when one of the Riemann invariants (f or g) is constant everywhere (or
at least constant where we seek a solution). These special types of solu-
tion are called simple waves. As an example, let us consider the propaga-
tion of a wave moving only rightwards into stationary water of constant
depth & = hy. All the C™ characteristics emanate from the undisturbed
region (see Figure 2.19), so

u—2c=g=-2c,

since u = 0 here and we have written ¢y = /hy. Now, u — 2c is constant
everywhere and u + 2¢ is constant on C* characteristics, so u and ¢ are
constant on these C* lines; hence

x—(u+ot=a andthen u+2c=f{x—(u+ocy.
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Figure 2.19. The characteristic lines, C* and C~, for a wave moving rightwards
into stationary water (u = 0) of constant depth (h = hj) in x > 0.

On ¢ = 0 we prescribe
h = H(x)
and so
F() =u+2c=dc—2¢c) = 4/H(x) - 2/h.
Thus we have
u+2c= 4\/m - 2\/h_ ,

and so

h(x, {) = H{x — (u + Vh)t}
where

u(x, 1) = 3(y/h(x, ) ~ v/ho)
which means that we can write, finally,

h(x, 1) = H{x — 3vh — 2/ho)1} (2.144)

the implicit solution for A(x, r), given H(x) and hq. If the initial profile,
H(x), incorporates any wave of elevation (that is, H(x) > 0 for some x),
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then the solution given by (2.144) will eventually ‘break’ (in the sense that
the characteristic lines then cross; cf. equation (1.85) et seq., and Figures
1.5 and 1.6).

A second example, which is very much a classical one, is the problem of
the ‘dam break’. Although much is lost in the use of our shallow water
equations in modelling this situation, these equations do capture the
essential features of the resulting flow. Furthermore, this does prove to
be an interesting — and surprisingly simple — application of equations
(2.142) (or (2.143)). At time ¢t = 0 the dam is broken, and therefore at
this instant we suppose that = 0 everywhere and that

ko, 0
M”={f =0

where hy (> 0) is constant. This represents (at ¢ = 0) a vertical wall of
water behind which the water is at rest at a constant depth. Our prob-
lem is therefore modelled by the instantaneous removal of the vertical
retaining wall: hence the dam break problem.

Now, on the C* characteristics which emanate from the region x < 0
(where the water is situated at ¢ = 0), we have that u =0 and ¢ = \/h
there, and so

u + 2¢ = 2/hy = constant

everywhere in the flow. Further, it is clear that an infinity of characteristic
lines, each of different slope, will emerge from the origin x=¢=20
because of the step in A(x) at ¢ = 0. (That is, at x = ¢ = 0, 4 must take
all values 0 < & < hy and each h determines the slope of a characteristic
line.) To accommodate this phenomenon we require a degenerate form of
the characteristic solution.

The C~ characteristics are

—_— =uUu—=

de
on which # — 2¢ = constant; but u + 2c¢ is the same constant (= 2,/hg)
everywhere (the simple wave condition), and so, corresponding to the
first example, on C~ lines u, ¢, and then u — ¢ are constant. Hence the
C~ characteristics are

x = (u— c)t + constant = (u — ¢)t
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since all these lines pass through (0, 0); this pattern of characteristic lines
is usually called an expansion fan (see Figure 2.20). Thus we have

u+2c=2/hy, u—c=x/t, (c=«/ﬁ),

which is the solution, for we now obtain

Jh= %(2\/h_0 _xjty u= ;ua +x/0). (2.145)

This solution is defined in the wedge (in (x, £)-space) from where h = h, to
where & = 0, namely

—vho < x/t < 2/ho,
since
x/t=u—~/ﬁ=2\/h——3~/7t.

This solution describes an evolving surface profile, which is represented
by the parabola

1
hox ) =5 VR =2, —vho <% <2V,

at any fixed ¢ > 0. In particular, at x/t = 2\/h— , we have i = 0: the wave
front moves forward at a speed 2\/%. Correspondingly at x/t = —\/h_ ,
where & = kg, the uppermost point of the collapsing wall of water moves

=Y

Figure 2.20. The characteristic lines, C* and C™, for the dam-break problem; at
t = 0 the water exists only in x < 0, where it is stationary (¥ = 0) and of constant
depth (b = hy).
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ha
Bl
I | x
x=-ct x=2c4t

Figure 2.21. The surface profile at a time ¢ after the dam has broken.

backwards at a speed \/h_o; the profile is shown in Figure 2.21. Finally, we
observe from solution (2.145) that, at x =0 (which marks the initial
position of the dam wall), the depth of the water remains at the constant
value 4hy/9 for t > 0; indeed, as t — oo, the depth approaches this same
constant value (444/9) everywhere.

These two examples that we have described are particularly straight-
forward because we have been able to incorporate the idea of a simple
wave; some other related problems will be found in Q2.55-2.57. Of
course, not all problems can be treated in this manner; certainly, if non-
trivial (that is, variable) information is carried by both sets of character-
istics then a more general approach must be adopted. This is what we
now describe.

2.6.2 The hodograph transformation

A technique that is sometimes employed in the solution of ordinary
differential equations is to interchange the réles of the dependent and
independent variables. So, for example, the equation

(I 0)+80N P =1,

which is, in general, nonlinear, nonseparable, and nonhomogeneous, can
be rewritten as

dx

- — X, B .

5~ Y0 =20

This equation is linear in x; thus standard methods can be employed to
find the solution x = x(y). This same idea — to interchange the dependent
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and independent variables — provides a powerful method in the solution
of certain types of partial differential equation. A particular example is
our pair of shallow water equations, (2.139).

The method was first developed for the corresponding problem in gas
dynamics, and it has retained its name used in this context: the hodograph
transformation. (The word ‘hodograph’ is based on the Greek 08og,
which means way or road, and is used to describe the (graphical) repre-
sentation of a motion which uses as coordinates the components of the
velocity vector rather than of the position vector.) As before, it is
convenient to introduce ¢ = +/A, so we obtain from equations (2.139)

u, + uu, + 2cc,, = 0;
(2.146)

1
¢, + uc, +§cux =0,

where the coefficients of the derivative terms depend only on u and ¢,
and otherwise all terms are first partial derivatives. We introduce the
hodograph transformation

x=x(u,c), t==tuc);
differentiating each of these with respect to x yields

l=xu,+x.c.; 0=rt,u,+1t.c,

and so
u, =t)J, c¢,=-t,/J 2.147)
where
_xn _
J = XL O Xyle — Xct, (2.148)

is the Jacobian of the transformation. Similarly, by differentiating with
respect to ¢, we obtain two equations for u, and ¢, which yield

u=-x./J, ¢ =x,/J, (2.149)

and clearly these transformations of the derivatives require J # 0.
We now substitute from equations (2.147) and (2.149) into equations
(2.146), to obtain

x, —ut, +2ct, =0;

1
X, — uty +-2-ctc =0,
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which are linear equations in x and ¢. Furthermore, the two equations
involve only either x, or x,; thus we may form X, from both and thereby
eliminate x. Thus we have

d 9 1
Eu—(utc - 2Ctu) = &(utu bt Ectc)

which simplifies to give
4ct,, — ct,. = 3t,, (2.150)

a linear second-order partial differential equation which can be solved by
standard methods. Indeed, the characteristic variables for this equation,
(2.150), are

E=u—2, n=u+2

(combinations that we recognise from equations (2.142)), and then we
obtain

200 — E)tgy = 3(t, — 1e)- (2.151)

The solution is then completely determined by imposing appropriate
boundary conditions, but these must (for equation (2.151)) describe ¢ in
the (£, n)—plane, a prescription that may not be straightforward. This is a
difficulty that is often encountered in the hodograph method: interchan-
ging the dependent and independent variables simplifies the governing
equation(s), but complicates the boundary/initial conditions. A further
inconvenience is that the simple-wave solutions cannot be accessed
through the hodograph method, since the transformation is singular in
this case. We can see this directly if we calculate

J = UyCp — ULCy;

a simple wave exists when u — 2¢ or u + 2c is constant, and then clearly
J~! = 0. The transformation from {u(x, ¢), c(x, £)} to {x(u, c), «(u, c)}, and
back again, requires J (and therefore J ~1 to be finite and nonzero every-
where. Nevertheless, because equation (2.151) is linear, its solution can be
approached by standard techniques (such as the separation of variables
or integral transforms). Indeed, a more useful result in this respect is
obtained from equation (2.150) by writing

10T
t=; T where T = T(u/2,c),

4
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for then (2.150) becomes
2 2 1 1
Tep — Tee +zch _?Tc = 3(;ch _?Tc)’

where v = u/2. This equation is clearly
(T — Tee)e —(Te/c). =0

and so
1
Tv'u= ch+;Tc+F('U)

which is the (inhomogeneous) cylindrical wave equation. If, finally, we
map T — T + G(v) where G” = F, we are left with

1
Tvv = ch +ETC9

for which the application of the method of separation of variables, for
example, is a familiar exercise; see Section 2.1, Q2.20 and Q2.21. The
problem of finding solutions of the equation for T is addressed in Q2.58
and Q2.59.

2.7 Hydraulic jump and bore

A familiar phenomenon, observed particularly below weirs or dams, is
the hydraulic jump. This is a relatively rapid increase in the depth of the
water (essentially across the whole width of the river). The depth increase
is often associated with a very turbulent mixing of the water, producing a
significant energy loss there. (A similar jump can be seen when water
from a tap hits a horizontal surface. In this case there is a (roughly)
circular region of fast-flowing water moving radially outwards in a thin
layer. This region is terminated by a sudden increase in depth: the circular
hydraulic jump, Q2.62.) The hydraulic jump is stationary with respect to
the riverbank; when this same phenomenon moves along a river it is
called a bore. The most famous bore in Britain is the one that appears
periodically on the River Severn, athough there are other rivers in other
parts of the world that can boast much larger bores with depth changes of
many feet.

For either the hydraulic jump or the bore, the change in depth can be a
few metres but this will occur in, typically, a distance of only a metre or
two. In other words, it might be reasonable to model this change as an
abrupt jump or discontinuity; this is what we shall now investigate. A
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sketch of a section through an hydraulic jump (or bore) is shown in
Figure 2.22. We have already mentioned the analogy between the
water-wave equations and the equations of gas dynamics; the corre-
sponding jump in gas dynamics is, of course, the shock wave associated
with supersonic flow. In this case the jump is far narrower, and
far more dramatic, and in consequence is more readily modelled as a
discontinuity.

The hydraulic jump is formed when a wave has fully broken, and as
such can also be observed at a shoreline after a wave has completely
broken and is in the final stage of its run-up. The jump is what replaces
the breaking of our nonlinear waves, which in that context corresponds
to the crossing of the characteristics. The mathematical device we then
adopt is to replace the region where the solution is multivalued by a line
which separates the two sets of characteristics and, therefore, across
which there will be a jump in value; see Section 1.4.1. This certainly
enables us to produce a solution that is meaningful after breaking has
occurred. (We recall that the accurate representation of a real breaking
wave — at a shoreline, for example - requires a far more sophisticated
theory than we are working with here.) However, as we mention in
Section 1.4.1, a discontinuity cannot be regarded as a solution of our
partial differential equations (for which continuity and some differentia-
bility is needed). Our main task now is to describe how to overcome this
mathematical difficulty, and then we shall be able to present some
properties of the hydraulic jump (or bore) as based on our model.

The differential equations (the Euler equation and mass conservation
equation) are not valid for discontinuous solutions, but the integral form
from which they have been obtained (Sections 1.1.1 and 1.1.2) do admit

Figure 2.22. Sketch of an hydraulic jump, where the flow is from left to right. (The
equivalent bore over stationary water moves to the left at the speed of the
oncoming flow.)
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such solutions. Indeed, it is the integral form of the governing equations
which should be regarded as the fundamental equations, and it is to these
that we must turn. Now, rather than quote the general equations from
Chapter 1, we choose to construct the appropriate forms from the equa-
tions (2.131). But to simplify the problem still further we shall incorpo-
rate, ab initio, the long-wave assumption, so that p and u (for one-
dimensional motion) are independent of z. Thus we start from equations
(2.139),

B+ (), = 0;  u, + uu, +hy, = 0. (2.152)

The first of these, the equation that describes the conservation of mass,
is already in the form that we obtain by integrating in z, namely

h
/ udz+[wh =0
0

so
h
/uxdz + h; + uh, =0,
0

which immediately gives the above equation (since ¥ = u(x, )). Thus the
integral form of the equation we require is recovered if we integrate in x,
between constants a and b, say; thus

b
% l f hdx} + [hul> = 0. (2.153)

Let 4 (and u) be discontinuous at x = X(#), so that we may accommodate
either the hydraulic jump or the bore, and such that a < X < b. Then we
may write (2.153) as

d X b
al/hdx+ fhdx]+[hu]z=o
a Xt

where the superscripts —/+ denote evaluation as x - X~ /x — X, in
the usual way. Upon differentiating under the integral signs (Q1.30), we
obtain
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dx
fh,dx+h———h+ t+[hu]f;=0,

where we have assumed that the path of the discontinuity, x = X(¢), is
differentiable. Finally, we find the jump condition that must be satisfied
across the discontinuity by taking the limit ¢ — b, which yields

=U[A] + h«] = O, (2.154)

where U(f) =dX/dt and [y] =yt —y~, the jump in value across
x = X(?). Equation (2.154) is the first jump condition, which, particularly
in the context of the gas-dynamic shock wave, is usually called a
Rankine—Hugoniot condition. We see that, if the discontinuity is station-
ary (the hydraulic jump), then U =0, and so hu is conserved across the
discontinuity. Indeed, we can write (2.154) as

[A(u - )] =0,

since U(?) is continuous, which states the otherwise obvious condition
that mass (volume per unit width here) is conserved relative to the jump:
what goes in from one side must come out the other.

The second equation in (2.152) is clearly the appropriate x-momentum
equation based on Euler’s equation, and hence this must be integrated in
both z and x. First we have

[(u, + uu, + h)dz=0

which yields immediately
hu, + huu, + hh, = 0;
we rewrite this as
hu, + uh, + (huu), + hh, =0

by incorporating equation (2.152a). This is integrated in x, from a to b as

above, to give
b
d 2, 1,
a[/h“d)&'] + [hu +§h :Ia—O
a
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and then
1 b
f (hu) dx + (hu)_ ——(h )+ [hu2 + 5;12] =0.
a

When we take a — b we obtain the second jump condition
—Ufhu] + [hd® + %hz]] =0, (2.155)

which describes the conservation of momentum across x = X(f). This is
obviously interpreted as: the total momentum change across the moving
front (— U[[hu]) is produced by the difference in momentum on either side
(|[hu2]]) plus the difference in the pressure forces (|[%h2]]).

In summary, we have the pair of jump (Rankine-Hugoniot) conditions

~U[h] +[hul =0; —Ufhull + [[hu2 + %hZ]] =0 (2.156)

which can be regarded as two equations for A~ and u™, say, given ht, u*
and U. That is, given the speed of the bore (which may be zero — the
hydraulic jump), and the conditions on one side, equations (2.156) deter-
mine the conditions on the other side. However, it is reasonable to ask
whether there is a third jump condition that has been overlooked, namely
an energy condition. This possibility we shall now investigate.

The appropriate energy integral (an integration in z) is equation (1.47),
which here becomes

%{j(%u2+z>dzl +%{thu(%u2+h)d2] =0 (@157

with P = P, + pg(h — z) and we have used our familiar nondimension-
alisation (with ¢ = 1). Thus, since u = u(x, ), we obtain

] 5 (1 5 2\ _
Bt(h + - h) ax(zh” +uh” ]| =0,

and integrating in x across the jump x = X(¢) we find that

_ul[t i+ L Lo +unt] =
UILhu +2h]]+[[2hu +uh? || =o0. (2.158)

(This can be written down directly if we observe that, to obtain equations
(2.156), we merely use the correspondence
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d 9
=@~ ol 5.8~ ~ULAD)

We now have, apparently, a third equation relating K, u*, and U, but
this is unreasonable, since we would expect to be able to determine the
conditions on one side given the conditions on the other (and given U) —
and two equations are sufficient for this. In order to investigate the
réle of equation (2.158), let us consider the simple case of U =0 (the
hydraulic jump); then we obtain

[I:%hzf + uhz]] =0.

But equations (2.156) imply, after a little manipulation, that

[B i + uh2]] = %ml[uz]] + mlh]

= %(u‘L + u)[=H*] + mA]
m

= W(N —h), (2.159)

where m = (uh)t = (uh)~. Clearly the expression in (2.159) will be zero
only if it = h™ (since m # 0): there is no jump. Consequently, if there is a
jump, then we cannot impose the energy conservation condition, (2.158).
Indeed, solving equations (2.156) for a jump, we may use the expressions
in equation (2.158) (that is, (2.159) if U = 0) to determine the appropriate
sense of the transition. The flow through the jump is taken to correspond
to energy loss, this loss normally occurring (as we mentioned at the out-
set) because of the turbulent nature of the conditions in the neighbour-
hood of the jump. When we impose this energy-loss condition we find
that, relative to the jump, the flow must enter from the faster and shal-
lower side (that is, - > u" and &~ < k"), and then the expression in
(2.159) is negative (energy loss). (The alternative (A~ > A™) requires an
energy input and no mechanism in nature exists for providing an energy
source.)

Finally, we briefly examine the consequences of using equations (2.156)
for the hydraulic jump (so again U = 0). Suppose that we are given the
conditions to the left, #~ and A7 ; then we write

%2 and %(h“ —h ) =hu?-htu?%
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thus
1 _ o h”
i(h“—h N=h"u 2(1—h—+).

It is convenient to introduce

ht u
H=— and F=——,
h~ Vh~
then we obtain
1
2 _ap2f1_ 1
H " —1=2F (1 H)’

which has a root H =1 (of no interest since this corresponds to no

change) and otherwise
1 / 2)
H= 3 (——1 ++1+ 8F%).

A physically meaningful solution is possible only for the positive sign,
and then H > 1 only if F > 1. The parameter F is called the Froude
number (which in dimensional variables is usually written u/,/ghy); this
parameter corresponds to the Mach number for the flow of a compressible
gas. There can be a jump in water depth only if the flow upstream is
supercritical (F > 1) (sometimes called shooting flow); if the flow is
subcritical or tranquil (F < 1) then no hydraulic jump is possible.

We have commented that the energy loss at the hydraulic jump or bore
is by virtue of the dissipation of this energy through the turbulent motion
in the neighbourhood of the jump; see Figure 2.22. However, if the
energy loss is not too great (typically, if 1 < F < 1.2) then the required
energy loss can be transported away by a train of waves on the down-
stream side of the jump. This gives rise to the so-called undular bore,
which is a form of the bore that sometimes occurs on the River
Severn. A more detailed discussion of this phenomenon, together with
descriptions of how it may be modelled, will be given in Chapter 5.

2.8 Nonlinear waves on a sloping beach

In Section 2.2 we presented the theory of linearised long waves moving
over a bed of constant slope, and in Section 2.5 we developed some of the
ideas involved in the theory of nonlinear long waves. We now turn to a
brief discussion of a mathematically interesting problem that combines
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these two phenomena, namely nonlinearity and variable depth. From
Section 2.5, and following that development, we consider long waves
(8 — 0) and ‘full’ nonlinearity (¢ = 1) so that the governing equations are

u +uu,+wu,=—-p,, p,=0, u+w,=0
with
w=mn+un, and p=n on z=1+7
and
w=ub'(x) on z=b(x).
Thus p = 7 for all z and, as before, we take u = u(x, f) so that

1, + un, — ub’

— — _ I4
u, +uu,+n,=0 and w_( T5n_b )(z b)+ub

and then u, + w, = 0 yields
Q+n—bu,+n,+un. —ub' =0.
It is convenient to introduce
d(x, ) =1+ n(x, £) — b(x),
the local depth of the water, to give
u+uu,+d,—b'(x)=0; d +(du), =0, (2.160)

which are to be compared with equations (2.139). The important differ-
ence is, of course, the appearance of the term in b’(x) in equations
(2.160); for general b(x) this makes the methods used earlier essentially
inapplicable. However, one special case can be successfully explored, as
Carrier and Greenspan (1958) first showed.

We choose b’(x) to be a constant, so the bed is of constant slope;
following equation (2.41) we write

b(x)=1—a(xg—x), a>0,
so that b'()é5 = . Our equations (2.160) therefore become
,+uu,+d,—a=0;, d +(du,=0. (2.161)

We saw in Section 2.5.1 that ¢ = +/k was a useful change of variable, and
the same applies here; we introduce ¢ = /d to give

U+ uu, +2cc, —a=0
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and
2¢, 4+ 2uc, + cu,, = 0.

Again, we combine these to produce the equations written in
characteristic form

w+2),+uu+20),+cu+2), —a=0
and
(u—2¢), +u(u—2c), — c(u—2c), —a=0,

which can be expressed as

9 d
{54. (u+ c)a}(u+ 2¢c —at) =0;
; ] (2.162)
{5_’_ (u— c)a](u ~2c—at) =0,

by interpreting « as d(«at)/3¢. Thus (cf. equations (2.142)) we have

] dx
u +2c —at = constant on lines C*:

a=u+c;

(2.163)
. _ dx

u—2c —at = constant on lines C™: Love
so the method of characteristics again results in a particularly simple
structure.

The important realisation described by Carrier and Greenspan was
that this problem, like that with « =0, can be linearised by an appro-
priate hodograph transformation. It is far from obvious that this is a
possibility, since the method described earlier certainly requires the can-
cellation of the Jacobian (J) throughout the equation, which apparently
cannot happen with o # 0. To proceed, we recall that the neatest form of
our earlier calculation involved &€ = u — 2¢ and 5 = u + 2¢, which led to
equation (2.151). Here, we define corresponding variables

E=u—2c—at, n=u+2c—at,
for use in the hodograph method, and transform
(x, ) > (& )
This gives, after differentiating with respect to x,

1= xp(u, — 2¢;) + X,(ux + 2¢5); 0= te(uy — 2¢) + 1, (0 + 2¢;)
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and so

1 1

U, = §(t" —t)/J, cx= —Z(tg +t,)/J
where, here, the Jacobian is
—t = Xty — Xl
Similarly, the derivatives with respect to ¢ yield
u=a+ %(xg ~x)/), o= %(x; + xy)/J.

Equations (2.162) therefore become

Xg — %(E+ 3n+4dat)t; = 0;

Xy — %(3& +n+4dat)t, =0,

which are nonlinear in t; this is bad news but exactly what we would have
expected. However, when we form xg,, and eliminate this term between
these two equations, we also eliminate the nonlinear term — this is the
crucial observation presented in Carrier and Greenspan (1958). Thus we
finally obtain

2(n - E)tén = 3(t17 - t&)’

the same linear equation for #§, n) that we found for the nonlinear prob-
lem with constant depth, equation (2.151). The reduction of this equation
to the cylindrical wave equation then follows (much as described in
Section 2.6.2). Simple solutions of this standard equation can now be
used to describe the behaviour of a nonlinear wave as it runs up a
beach, for example; cf. Section 2.2. This particular application is
addressed through the exercises (Q2.58 and Q2.59).

2.9 The solitary wave

At this stage in our investigations it would not be unreasonable to sup-
pose that the fully nonlinear (inviscid) equations of motion admit travel-
ling-wave solutions of permanent form: that is, waves that propagate at
constant speed without change of shape (see Q1.55). We have previously
(Section 2.4) obtained approximations to the periodic waves of this type —
the Stokes wave — where the wave profile is a distortion of the sine wave



166 2 Some classical problems in water-wave theory

and the speed is dependent on both the wave number and the amplitude.
The appearance of the amplitude here is indicative of the rdle of the
nonlinear terms, and also suggests that waves of larger amplitude
might be possible (even if we cannot express them in closed form).

It is a matter of observation that gravity waves of permanent form, and
of considerable amplitude, can propagate on the surface of water. Indeed,
this can occur whether the water is stationary or is moving with some
velocity distribution below the surface. In particular, it is sometimes
observed that single waves can be generated. These have a profile
which is a symmetrical hump of water which drops smoothly back to
the undisturbed surface level far ahead and far behind the wave; the wave
propagates at a constant speed. This wave was first observed and
described by J. Scott Russell, an engineer, naval architect and
Victorian man of affairs. In 1834 he was observing the motion of a
boat on the Edinburgh—Glasgow canal and the waves that it generated.
Russell’s description of what he saw is now much-quoted, but it still
evokes the era and the man; we make no apologies for reproducing it
here. In his ‘Report on Waves’ to the British Association meeting (at
York) in 1844, he writes:

I believe I shall best introduce the phaenomenon by describing the circumstances
of my own first acquaintance with it. I was observing the motion of a boat which
was rapidly drawn along a narrow channel by a pair of horses, when the boat
suddenly stopped — not so the mass of water in the channel which it had put in
motion; it accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the
windings of the channel.

After his initial observations, Russell performed a number of labora-
tory experiments to investigate the nature of what he called ‘the great
wave of translation’, but which soon came to be known as the solitary
wave. The most significant experiment involved the dropping of a weight
at one end of a water channel (see Figure 2.23). He found that the volume
of water displaced was the volume of water in the wave and, by careful
measurement, that the wave moved at a speed, ¢, where

¢ = g(ho +a),
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Figure 2.23. J. Scott Russell’s experiment in which a weight is dropped at one end
of the channel; the displaced water is propagated away as a solitary wave.

where A is the undisturbed depth of the water and a is the amplitude of
the wave. We see that we recover the wave speed of small-amplitude long
waves (¢ = £,/ghy, equation (2.11)). Furthemore, it is clear that higher
waves (that is, larger a) travel faster (cf. equation (2.137) et seq.). Here we
have described a wave of elevation; the corresponding wave of depression
does not exist, for it immediately collapses into a train of oscillatory
waves.

Early attempts were made by Boussinesq (1871) and Rayleigh (1876) to
find a mathematical description of the solitary wave. On the basis that the
wave is long (6 — 0 in our terminology), they were able to confirm
Russell’s formula for the speed of the wave, and also to show that the
profile is accurately represented by the sech® function (although this
requires the additional assumption of small amplitude). (In the early
days, the existence of this wave excited some controversy; in fact, both
Airy and Stokes were initially of the opinion that it could not exist.)
Much of the mathematical detail in this description will be developed
here and in the later chapters. Indeed, it is the mathematical investiga-
tions that were initiated by Russell’s observations that have eventually
led to the extensive and modern ideas in nonlinear wave propagation, and
in water-wave theory in particular, that we shall describe in the following
chapters.

We begin our study of the solitary wave by treating the flow as irrota-
tional, with the wave propagating (as a plane wave) in the x-direction.
Thus, from equations (2.132), we have
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b + 8¢ =0,
with
¢. = 82(n, + edum.); |
pentbe(beteat) o [ MITITO 1
and

¢,=0 on z=0,

where the bed is taken to be fixed and horizontal (b = 0). The general
solitary-wave solution is associated with arbitrary values of ¢ and §; they
are not assumed to be small. It is convenient (as we have done previously)
to set ¢ = 1, but retain the parameter 8 in our formulation. We are seeking
a travelling-wave solution, and so we treat ¢ = ¢(§, z) and n = n(§) where
& = x — ct, and c¢ is the (nondimensional) speed of the wave. Then from
equations (2.164) we obtain

¢+ 8¢ =0,
with
¢, = 8%(¢: — O

171 onz=1+4np (2.165)
—c¢$+n+§(§§¢§+¢§) =0,

and

¢,=0 on z=0.

We first see if these equations admit a solution that represents a profile
which decays exponentially as |&§] — co. Thus we write

7~ ae—a!&l’ ¢~ 1,//(2)6_“'5', |E| — oo,

where o (> 0) is the exponent; it is clear that both 5 and ¢ must have the
same exponential behaviour in order to satisfy the surface boundary
conditions. Laplace’s equation (in (2.165)) then requires that

wll + a252w —_— 0
so
¥ = Acos(adz),

when the boundary condition on z =0 is invoked; 4 is an arbitrary
constant. The leading-order balance from the boundary conditions on
z ~ 1 gives (for & > 0, say)
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—Aassin(ad) = cand®, cAacos(@s)+a=0
$O

» _ tan(ad)
)

. (2.166)

A solution with the required behaviour does therefore exist provided ¢
(the speed, which here is the same as the Froude number since the non-
dimensionalisation uses \/gT ; see Section 2.7) and « (the exponent) are
related by equation (2.166), a result first found by Stokes (1880). All
solitary waves exhibit exponential decay in their tails and all satisfy the
relation (2.166).

Another important and general question addressed by Stokes in 1880
concerned the notion of a highest wave; that is, to examine what might
limit the amplitude of the solitary wave and then what conditions obtain
when this occurs. We consider a wave of permanent form travelling at the
speed ¢ in the positive x-direction over water of constant depth which is
stationary at infinity. It is convenient to use a coordinate which is moving
at the speed ¢, so that in this frame the wave is stationary; see Figure 2.24.
We introduce ®(§, z)

®=¢—ct sothat Pg=¢;—c;

z
—/L

o T . 0

—
N x
@
z
/ 0
[iid 1¥
V «—— ¢

N &
(b)

Figure 2.24. (a) The physical frame of reference for the solitary wave moving at
speed ¢ to the right into stationary water. (b) The frame of reference moving at
speed ¢ to the right.
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thatis, V = u — ¢, since u = ¢, = ¢, where £ = x — ct. Equations (2.165)
then become
(Dzz + 82(1’55 = 0;
1
¢z=82(1>$175 and 217_c2+8—2c1>§+d)§ =0onz=1+mn; (2.167)
®,=00nz=0.

Stokes argued that the highest wave will be attained when the fluid-
particle speed at the peak of the wave is equal to the speed of the wave.
For waves of small amplitude, the particle speed is certainly less than the
wave speed; if the particle speed exceeds the wave speed then the wave
will be breaking and so cannot be steady; that is, not of permanent form.
Thus V' = @&, = 0 at the peak, where n = 1, say (so ¢ = 2n,); further, we
shift the origin of the (z, §)-coordinates to the peak of the wave, so that
the peak is now at z =0 = & (which is how we have presented Figure
2.24).

The most direct route is to invoke the approach based on analytic
functions of a complex variable; we therefore write

®+iV = F(Z), Z=¢+idz,

where W(E, z) is the stream function for the flow (see Q1.25). In the
neighbourhood of Z = 0 we seek a solution in the form

F(Z)~AZ", |Z|—0,
and at the surface

where this 7 is relative to the peak at n = ny; we expect n > 0 and m > 1
for physically reasonable behaviours near the peak. The kinematic
surface condition in equations (2.167) then yields

R{SAMZE ) ~ —8*nHE ' R{AMZT™}, Z, ~ £ —iSHE",

(for & > 0, say) which requires that » = 1. Thus the surface, in this limit-
ing case, has a peak which is not smooth: it has a sharp crest. The
dynamic (pressure) boundary condition now gives (again for & > 0)

—2HE ~ ;“'"-D(slz [ {i6Am(1 — i8H)'”“}]2+[9? {Am(Q1 — isH)'”"‘}]z)

which requires m = 3/2.
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1

4 _2 0 2 4 &

Figure 2.25. The highest wave of Stokes, based on the calculations described in
Q2.63; here we have approximated the wave by two exponentials.

Finally, the angle of the wedge that forms the sharp crest is determined
directly by this value of m. The solution near the crest is described by

®+iVv=F(Z)~ AZ*?, |Z| -0,

and this represents flow in a wedge of angle 8 = 25/3; that is, Z3/? is the
complex potential for a flow with boundaries § = 0, 6 = 27/3 (and also
6 = 47r/3). For our problem, the requirement for symmetry about £ = 0
leads to a choice of the complex constant 4 that, when combined with
732 implies a rotation of these boundaries. Thus, near Z = 0, the sharp
crest is represented by the lines 0 = 77/6, 6 = 117/6: the crest includes an
angle of 120°, the result first found by Stokes. We must emphasise that
neither large-amplitude solitary waves, nor the sharp-crested highest
wave, can be represented by a mathematical expression of closed form.
This wave, based on a numerical approximation for its shape, is shown in
Figure 2.25; see Q2.63. Nevertheless, the work initiated by Longuet-
Higgins has enabled very accurate numerical representations of these
waves and their properties to be obtained; see the section on Further
Reading at the end of this chapter (and also Section 2.9.2).

2.9.1 The seck’ solitary wave

In our discussion of the solitary wave thus far we have described various
exact results that provide some useful information about the nature of
this wave. What we cannot do is to present a complete solution of the
governing equations, for arbitrary amplitude, which would then give us a
mathematical representation of the solitary wave. Nevertheless, much
that we have described can be incorporated in very accurate numerical
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solutions of these equations (and employed with great success by
Longuet-Higgins and his co-workers). We therefore return to the
approach that was first developed by Boussinesq and Rayleigh, which
we mentioned earlier. We shall now see how we can proceed with an
appropriate approximation of the equations; this eventually leads to a
fundamental equation that provides the starting point for the work in the
next chapter.

The equations are those given in (2.164), and we examine these for the
case of long waves and small amplitude. The solitary wave extends from
—00 to 400, so its length scale is certainly much greater than any (finite)
depth of water. The assumption of long waves (§ — 0) should therefore
be appropriate for the solitary wave. The restriction to small amplitude
(¢ — 0) is necessary because we cannot otherwise make headway. In the
initial stages of the calculation we shall treat these two parameters as
independent.

Laplace’s equation, from equation (2.164), is

¢+ 82¢xx =0

which, for small 3, clearly has the asymptotic solution
o0
o(x, t, z; 8) ~ ZSZ"tpn(x, t,z), §—0,
n=0

where
éo = 6p(x, 1)

in order to satisfy the bottom boundary condition; 6, is an arbitrary
function. The higher-order terms are given by

¢n+lzz = _¢nxx’ n= 0, 1, 2, .

We therefore obtain

1
b = _52290xx +61(x’ t);

1 1
b = 2—42490xxxx - 52201)0: +65(x, 1),

and so on, where each 6, is an arbitrary function and each ¢, satisfies the
boundary condition

¢p,=0 on z=0.

The expansion for ¢ is used in the two surface boundary conditions
(2.164), which involve evaluation on z = 1 + en. The first of these gives
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1
= 0 e+ 8 (1 e s = 14 5001} .
1
~ o en e+ 8]0y = 30+ oo .| 2169
and the second becomes
2 1 2
Oy + & [—5(1 + 1) Opxxs +01t} +...+n7n
1
~ —5882{—(1 + N + ...}

1 1 2
_ Eg{eo,c +8 [elx —50+ sn)200xxx] +.. } . (2.169)

Now, for £ — 0 and § — 0, we see that the leading order terms yield
—Opxx ~ 1, and 6y ~ —n (2.170)
and so
Boxx ™~ Con-

Thus we seek a solution which depends on & = x — ¢ (for right-running
waves). This means that the wave will propagate, at this order of approx-
imation, at the (nondimensional) speed of unity, which is completely
consistent with our earlier work on long waves (see equations (2.10),
(2.137), et seq.). We therefore treat both 6 and n, in their dependence
on x and ¢, as functions of £ = x — ¢ and ¢; equations (2.170) then become

_9022 ~ NN and 6(lt - 90&' ~ =N
which imply
260t§ ~ Oous-

But when these terms are balanced against the others in the boundary
conditions (2.168) and (2.169) we see that derivatives in ¢ are small; cf.
equation (1.99) and Q1.47-Q1.54. Thus we proceed with

E=x—t and T=At, A->0,

and we shall choose A later.
Our two surface boundary conditions (2.168, 2.169) now become, upon
retaining only terms as small as O(g), 0(82) and O(A),

1
—(1 + 87])0055 + 32 <600§§§§ - 91&) ~ AT]., — Mg + 87]005
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and
2 1 1 2
Aaor — 005 +4 590555 - 91§ +n~ —58(905) .

The second of these is differentiated with respect to £ and subtracted from
the first, thereby eliminating the terms —6s + n;; this produces

1 1
2 2
— &nfogg + 8 (g Bossse — 91&5) — Ao — & (5 Bogse — 91;5)
~ An, + 81700; + 800590;5, (2171)

and we see that the terms in 6; cancel identically. Finally, from the second
equation in (2.170), we have that

n = 6o + O(A)

so (2.171) is rewritten as

82

Let us choose 8=0(62) and A =¢, and write §* = Ke, then the
leading-order equation for the surface profile is

K
21’], + 31711; + ? Netg = 0, (2172)

the Korteweg—de Vries (KdV) equation (Korteweg and de Vries, 1895);
cf. equation (1.102), Q1.47-Q1.49 and Q1.55. This equation describes a
balance between nonlinearity (nn;), which tends to steepen the wave
profile, and dispersion (by virtue of ng,) which works the other way.
The solitary wave is that wave of permanent form for which this balance
is precisely maintained. To see how this happens we seek the travelling-
wave solution of equation (2.172) by writing n = f(§ — ct), for some
constant ¢, then

—2¢f’ +3ff + %( £ =0; (2.173)

see Q1.55. The solution of this equation (see Q2.64) which satisfies
[ f" =0 as |[E—ct] > 00

f = 2c sech® [\/%(5 - cr)]

is
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or

&n ~ ea sech? [‘/j—;{x -1+ %ea)t}], (2.174)

where &7 is the surface wave and its amplitude is ea (= 2¢c). This is the
sech’ solitary wave, which is the small-amplitude version of the classical
solitary wave. We see that the speed of the wave (1 + %ea) increases as £a
increases; indeed, solution (2.174) is defined for all ea > 0 (but remember
that it is a solution of the governing equations only for small ¢, since we
have used & = O(6%) and § — 0). The wave speed agrees with the early
observations of Russell for, in nondimensional variables, the speed is

V14 ¢ea~ 1+%8a as &— 0.
Finally, we observe that the ‘width’ of this solitary wave (defined as the
distance between points of height %sa, say) is inversely proportional to
+/a. This means that taller waves not only travel faster but are also
narrower; see Figure 2.26. The behaviour of the exponential tails should
also satisfy the general result given by equation (2.166); sece Q2.64.

n
5 +
Speed 2.5

4 4 _—
3 4

Speed 1
2 4

———
1 “+

-1 0 1 2 3 4 5 6 &

Figure 2.26. Two sech? solitary waves, each drawn in the frame & = x — ¢z for
c=1and c=2.5.
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In conclusion, two comments: the first addresses a general observation
about a crucial assumption underlying the calculation that we have just
presented. It would appear that we can obtain the sech? solitary wave (via
the KdV equation) only if a special balance of parameter values arises,
namely & = O(8%). (The choice of the time-scale, A, is at our disposal; this
merely tells us when and where to look for the wave.) This requirement
for the balance would suggest that the solitary wave is a rare occurrence,
rather than a familiar object. Certainly single such waves may be rather
rare, but their counterparts in many-wave interactions, or perhaps as
periodic waves, are often observed. It will be shown in the next chapter
that a minor adjustment to our formulation enables us to show that the
results described here are more widely applicable.

The second point picks up the comment just made about periodic
solutions. The KdV equation for travelling waves, (2.173), admits peri-
odic solutions of permanent form. That such solutions exist is easily
demonstrated by integrating this equation twice, but without the use of
decay conditions at infinity; this gives

S =t 3+ AT+ B=F(),

where A and B are arbitrary constants. In the case where the cubic F(f)
has three distinct zeros, the solution can be expressed in terms of the
Jacobian elliptic function, cn, giving rise to the Korteweg and de Vries
cnoidal wave, which they first named. This description, and some related
properties of the Jacobian elliptic functions, are explored through Q2.65—
Q2.67.

2.9.2 Integral relations for the solitary wave

We conclude this chapter of classical results by briefly returning to the
general solitary wave (Section 2.8). In work that dates back to McCowan
(1891), and taken much further by Longuet-Higgins over the last twenty
years or so, some exact identities for the solitary wave have been
obtained. In recent times these have proved very powerful in the devel-
opment of numerical methods for describing large-amplitude solitary
waves (including the highest wave) and for laying the foundations for
calculations that allow a study of breaking waves; much of this work has
been pioneered by Longuet-Higgins and his co-workers. Here we shall
give a brief introduction to these ideas, and a few are taken further in the
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exercises. The interested reader may also explore this material through
the references given in the further reading at the end of this chapter.

We consider a wave of permanent form, moving at the speed ¢, which
decays for |§] — oo; this is described by the equations (2.165):

¢ + 82¢£§ =0
with

¢, = 8(¢: — O

1/1 onz=1+n
—C¢s+ﬂ+§(8—2¢§+¢§)=0

and
¢, =0 on z=0.

We define a number of properties of the wave and its motion. These are
the mass associated with the wave

M= / nde, (2.175)

the total momentum (or impulse) of the motion of the fluid

oo l4n

I= / f ¢; dz dg, (2.176)
0

—o0
the total kinetic energy of the motion

oo 147
1 i
T=§/ f(;si¢§+¢§)dzd§ 2.177)

and the potential energy of the wave

o0

14 =% / 2 de. (2.178)
—00
In addition we define a circulation for the motion,
o0

C= f u-ds = [¢]%,, (2.179)

—00
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where the integral is taken along any streamline. These forms of these
fundamental quantities are all defined here as the nondimensional

counterparts of their physical equivalents.
First, from the equation of mass conservation,

u§+wz=0,

and, in particular, since we are in the frame moving with the wave we

write
u—0c)y+w, =0,

and then we obtain

q 147
d—gl.!(u—c)dz}zO;

cf. equation (1.40). Thus

t+n

1
/ (u — ¢)dz = constant = [ (—c)dz = —¢
0 0

since both u = ¢ and 7 tend to zero as |§| — oo; hence

147 t4n
/ udz (: f ¢§dz) = c1,
0 0

and then
oo L4 00
/ /¢§dzdé=c / ndé
—00 0 —0o
or
I=cM.

This is an identity first obtained by Starr (1947).
Next we use Green’s theorem in the form

/ {(Vu) - (Vo) + uVZo} dV = / u(Vv) - dS,
14 S

(2.180)
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per unit length in the y-direction (so dV =1 x ds, dS =n(l x d/), and
choose

g 139
u=v=®=¢—ct and V=(a_§’§&)'

The resulting plane region for the integration is bounded by a curve (T")
which is taken to be

z=14+n and z=0 for —§ <&<§
and & = +&, & > 0; see Figure 2.27. We may think of &, as large for,

eventually, we shall impose &, — 00. Now, since

1
Vip = V2¢ = ¢§5 +(§¢zz =0,
we obtain Green’s theorem in the form

& l4n
/ [{812¢3+(¢5_C)2}dz d§=/<1>(md>§+gd>z)dl, 2.181)
r

-5 0

where n = (m, n) is the outward unit normal vector on I'. Note that,
because we are using the coordinates (&, z), the surface wave is stationary
in our frame; also, across & = +§;, there is (approximately) a uniform
stream of speed c¢ in the negative &-direction.

To proceed, we evaluate the various contributions in equation (2.181).
The left-hand side becomes

Surfacez=1+7 Boundi;g
curve
W z=0
&

—EO

N

U\

0

Figure 2.27. The region (whose boundary is designated by I') used in the applica-
tion of Green’s theorem to find one of the identities satisfied by the solitary wave.
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& 147 & 147
2f—2c/ f¢§dzd§+c2/ /dzd§=2f’—20f+202$0+02M
_SO 0 —Eo 0

where T — T, I — I and M — M as &y — oo; see equations (2.177),
(2.176) and (2.175). For the right-hand side we find that

onz=0 m=0,n=-1, P, =¢,=0;
on§=§0: m=1,n=0, (DE:_E’
on § = —§&; m=-1,n=0, &, = —G;

and on z = 1 + n, which is a streamline (or, rather, a stream surface), n is
here normal to V&; we have introduced ¢ where ¢ — ¢ as § — 00. Thus
equation (2.181) becomes

4 149
2T — 2¢f +2c%y + M = — / &, édz + / _édz (2.182)
0 0

where @, denotes ® evaluated on & = £&,. It is simplest, at this stage, to
allow & — oo (so that ¢ — ¢ and n — 0) and hence obtain for the right-
hand side of (2.182)

147 1+n
- / &, édz+ / &_cdz ~ —cP +c®_ ~ - + 20250.
0 0

Thus equation (2.182) produces, in the limit & — oo, the identity
2T — 2¢l + &M = —cC
or
2T =c(I - C) (2.183)

after we introduce equation (2.180). The relation (2.183) was first derived
by McCowan (1891).

A third useful identity introduces the potential energy, ¥, and takes the
form

3V =( - )M;

a derivation of this result can be found in Longuet-Higgins (1974). Other
identities (involving these quantities or for the surface profile itself)
have been obtained by Longuet-Higgins, and used very successfully in
numerical investigations of the large-amplitude solitary wave. These three
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integral identities are examined, for the approximate sech® profile, in
Q2.69.

Further reading

This chapter has introduced a number of classical problems in both linear
and nonlinear water-wave theory. Similar material will be found in many
of the classical texts and, in some cases, the presentation in these will
go beyond the topics developed here or use a different approach to
that adopted here. General texts that the reader may find useful are
Stoker (1957), Crapper (1984), Mei (1989) and the more recent pub-
lication Debnath (1994). In addition, some important aspects of water-
wave theory are developed in Whitham (1974). A more engineering-
oriented approach is to be found in Dean & Dalrymple (1984). All
these references are particularly relevant to the fundamental ideas
described in Sections 2.1-2.1.3.

2.13 The method of stationary phase, and of steepest descents, is
nicely described in Copson (1967). A far more thorough and
expansive treatment will be found in the excellent text by
Olver (1974).

22 A neat discussion of waves over variable depth, and in par-
ticular building on the work of Hanson (1926), will be found
in Whitham (1979). This monograph also includes some
work on edge waves, as does the text by Mei (1989).

2.3 A fairly complete description of ray theory, with some
applications to variable depth and to variable currents, is
given by Mei (1989). Ray theory is also mentioned in
Crapper (1984) and in Whitham (1974), and an introduc-
tion to Whitham’s averaged Lagrangian will also be found
in this latter text.

24 Stoker (1957) provides an extensive presentation of many
aspects of ship waves; the elements can also be found in
Crapper (1984). A text which incorporates more practical
aspects of ship waves and ship hydrodynamics is Timman,
Hermans & Hsiao (1985).

2.5 A description of the Stokes wave can be found in many texts
on fluid mechanics. In the context of books on water waves,
the reader is directed to Mei (1989), Dean & Dalrymple
(1984), Whitham (1974) and Crapper (1984).
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2.6 and 2.7 Excellent descriptions of the method of characteristics,

2.8

29

Riemann invariants, discontinuous solutions and the hodo-
graph transformation can be found in Stoker (1957) and
Courant & Friedrichs (1967). Presented from the viewpoint
of the theory of partial differential equations, there is no
better text than Garabedian (1964).

The work that was first described by Carrier & Greenspan
(1958) is given a careful treatment in Whitham (1979), and is
also mentioned in Mei (1989) and Debnath (1994).

The classical (small-amplitude) solitary wave is described in
Stoker (1957), as well as in numerous other texts on fluids or
nonlinear waves (especially those that touch on ‘soliton’ the-
ory, for example Drazin & Johnson (1993)). The more mod-
ern treatments on the large-amplitude solitary wave, and on
breaking waves, are best addressed through some of
Longuet-Higgins’ papers, which are listed in the references,
in particular Longuet-Higgins (1974, 1975), Longuet-
Higgins & Fenton (1974) and Longuet-Higgins & Cokelet
(1976).

Our text does not incorporate photographs of surface waves. Although
the quality of some of the pictures does vary considerably, the readers
who wish to add to their own observations are directed, for example, to
Stoker (1957) and Crapper (1984); a few useful pictures appear in
Lighthill (1978). A fine collection of early photographs, with extensive
descriptions, will be found in Cornish (1910).

Q2.1

Q2.2

Exercises

Minimum of c,. Write 6k = A in the expression for c,z, (equation
(2.9)), and show that ¢, has a single minimum (in 0 < A < 00).
Also describe the behaviour of c,(A) as A — oo.

Simplified form of c,. Show, for moderate values of A = &k, that
c; may be written (approximately) as a linear combination of A
and 1715 cf. Q2.27. Hence find the minimum of ¢, (=c,), at
A=2x, (0 <A, <o0), and find the expression for (cp/c,,,)2 in
terms of / = A/A,,.

[All these results are to be compared with those obtained in

Q2.1; it is clear that this simplified (approximate) form of c, is
much easier to work with, and it is often used because of this.]



Q2.3

Q2.4

Q2.5

Q2.6

Q2.7

Q2.8
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Plane harmonic wave. Extend the problem described in Section
2.1, to obtain the functions U(z) and P(z) that correspond to
W(z) (given by solution (2.8)).

Particle paths. Show, when written in original physical variables,
that the particle paths described by equation (2.16) are circles in
the short-wave limit.

Laplace’s equation and separation of variables. Recover the results
presented in Section 2.1, for the case of gravity waves only, by
first formulating the problem in terms of the velocity potential, ¢;
see Q1.38. To proceed, construct the solution of Laplace’s
equation (for ¢) by the method of separation of variables; in
particular show that ¢ takes the form

¢ = {A(t) cos kx + B(t) sin kx} cosh kz,

for any given value of k(# 0), where 4 and B are both general
solutions of
2

c:i—tf +0’F=0, o= %Ctanh sk.
Standing waves. Take, as a special case of the result obtained
from Q2.5, a choice of 4(¢) and B(r) which describes a solution
for n(x, ¢) which is a single separable function of x and ¢. In this
solution, at a given position (x), the surface oscillates vertically
between its maximum and minimum values; the maximum (or
minimum) value does not propagate. This is therefore a standing
wave. Use your solution to show how this wave can be
interpreted as two propagating waves.
Oblique plane waves. Follow the presentation given in Section
2.1, but for a surface wave described by

n= Aei(kx+1y—wt) +c.c

see equation (2.4). Find the dispersion relation, and show that
this is equation (2.9) with k? replaced by k% + /. Confirm that
the wave propagates in the direction of the wave-number vector
k=(k,1D).

Waves along a rectangular channel. A channel, —00 < x < o0
with 0 < y < [, contains water (0 < z < 1 when undisturbed) on
the surface of which a gravity wave propagates in the (positive)
x-direction. Show that there is a solution of the governing linear
equations (cf. Q2.5) for which
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Q2.9

Q2.10

Q2.11
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n = A cos(ay)cos(kx — wt).

Determine the constant « and the dispersion function w.
Sloshing in a rectangular container. A rectangular tank, 0 < x </
and 0 < y < L, contains a liquid (0 < z < 1 when undisturbed)
whose surface is described by the standing gravity wave

n = A cos(ax) cos(By) cos(wt),

for suitable constants o and B; A4 is the fixed amplitude of the
wave. Seck an appropriate solution of Laplace’s equation, (2.66),
which satisfies the surface (2.67) and bottom conditions (2.68)
(with b = 0), as well as the conditions on the side walls; that is,
¢.=00nx=0,/¢,=0o0ny=0,L. (Note that our formula-
tion here is in terms of nondimensional variables.) Find «, 8 and
the dispersion function .

[It is the standing wave which constitutes the sloshing mode in a
container.]
Short-crested waves. Follow the formulation described in Q2.5,
but retain the dependence on y; cf. Q2.7. Seek a solution for ¢, by
using an appropriate separation variables, that will allow the
surface wave to take the form

n(x, y, ) = Acos(mx + ny)cos(kx + ly — wt),

where A, m, n, k and [ are constants; o is the dispersion function.
Find  and the relation that must exist between the wave num-
bers m, n, k and [ for this type of solution to exist. Interpret this
condition geometrically. Describe your solution, and find the
speed and direction of propagation of the wave.

[These waves are called short-crested to differentiate them
from plane waves, which are non-oscillatory along their
wavefronts.]

Waves on a uniform stream. Consider the propagation of plane
harmonic waves in the x-direction, on the surface of a fluid (of
constant depth, » = 0) which moves at constant speed, u = u,,
also in the x-direction. (The relevant equations are obtained
from (1.57), (1.58), (1.63), (1.64) and (1.65), with su — uy + cu;
otherwise follow the method that leads to equations (2.1).) Show
that the dispersion relation corresponding to equation (2.9) is

-exactly (2.9), but with » replaced by @ — upk (where k is the

wave number).
[This result describes the familiar Doppler shift.]
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Oblique waves on a uniform stream. See Q2.11; repeat this calcu-
lation for the constant uniform flow u = (i, vy) and for a plane
wave with a wave-number vector k = (k,/). Show that,
now, @ is replaced by @ — upk — vyl = Q, and that the wave
crests move forward at the velocity (u, + Qk, vy + Qi), where
(13, i) = (k, I)/(k* + I*). Hence describe the condition for which
the waves are stationary in the physical frame of reference.
Gravity waves over a step. Stationary water of constant depth, 4_,
is in x < 0, and of constant depth, 4, in x > 0; there is a step at
x = 0. Small amplitude gravity waves (W, = 0), of wave number
k and amplitude A, approach the step from —oo. The step gen-
erates, in general, a transmitted wave which propagates towards
+o00 and a reflected wave which moves back to —oc. Follow the
development given in Section 2.1 and, at x = 0, impose the con-
ditions of (a) continuity of wave amplitude; (b) conservation of
mass flux across x = 0. Find the amplitudes of the transmitted
and reflected waves.
Kelvin—-Helmholtz instability. An incompressible fluid of density
A(< 1) exists in z > 0 and is moving at a constant speed, U, in
the (positive) x-direction. Another incompressible fluid of den-
sity 1, which is stationary in its undisturbed state, is in z < 0; at
z = 0 there exists an interface on which a small amplitude har-
monic wave propagates (also in the x-direction). (This problem is
presented in nondimensional variables, using the properties of
the lower fluid for the purposes of nondimensionalisation; thus
A = (density of upper fluid)/(density of lower fluid). Because the
fluids are of infinite depth, it is convenient to choose the vertical
scale to be the same as the horizintal; thus set § = 1.)
Formulate the problem in terms of Laplace’s equation for each
of the fluids with an interfacial wave

n=Ae® 4 cc.,

where A is a complex constant. Use the kinematic condition on
z=0 for both fluids, and impose the continuity of pressure
across z = 0 (and include the effects of surface tension). Show
that the dispersion function is

(1 +M)? = 20kUw — k(1 — A) + MEU? — W =0,

and hence deduce that harmonic waves are stable if
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Q2.15

Q2.16
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U? < (1 +M{(1 = N/k + kW)

for all k(> 0).

[This exercise describes the simplest model for wind blowing
over the surface of water. Notice that the expression on the right
in the inequality has a minimum in £ > 0; what is it?)
Rayleigh-Taylor instability. See Q2.14; now set U =0 (so that
both fluids are stationary in the undisturbed state) but consider
A > 1, so that the heavier fluid is above the lighter. Show that the
wave with number k is stable if

Bw>r—1.

[This demonstrates the property that surface tension tends to
stabilise the system: it is certainly unstable if W is small enough,
for any k£ #0.]

Method of stationary phase. Consider the integral

b
Io) = [ £,

for 0 — oo, where the path of integration is taken along the real

axis with a and b independent of the parameter o.

(a) Suppose that o’(x) does not vanish for any x € [a, b]; then
show by integration by parts that

f (a) 10'a(a) f (b) wa(b)
@° «'®)°

provided that f(a) and f(b) are not both zero.

(b) This time suppose that o’(a) =0, with a”(a) >0, and
a’(x) #0 for all x € (a,b]. Write the interval (g, b) as
(a,a+ ¢) plus (a+ ¢, b), where we can use the calculation
in (a) for the latter interval. In the former interval, write

u@——{ }+ow4x

ax) =a(@) +u’, x=a+ Zb,,u”, uel0,4)

n=1

where @ = /a(a+ ¢) — a(a); further, it is convenient to

introduce

(x)— ch =co+uF(u), ¢ =bf(a),
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where F(u) is regular for u € [0, &]. Hence show that

172

I(o) = {%”(a)] f(@)expliloa(a) + 7/41} + O(c™Y).
[More details of this calculation, and of related problems, can

be found in Copson (1967), Olver (1974).]

Chylindrical coordinates. Use equations (2.2) to obtain, for long

waves (8 — 0) and with b = 0, the equation (2.14) for the surface

waves written in cylindrical coordinates.

Concentric waves I. See Q2.17; now consider waves that are

purely concentric (so that n = n(r,¢) only). Use the Hankel

transform to obtain the solution which satisfies

7](7‘, 0) =f(r), '71("’ 0) =0,

for which 7(0,7) and 7,(0,7) are bounded and #n(r,f) > 0 as
r— oo for 0 < t < 0.

Concentric waves II. Repeat the calculations described in Q2.18,
but now for the linear water-wave problem which represents
propagation on infinitely deep water in the absence of surface-
tension effects. (This requires starting from equations (2.2), with
W=0, 9/0=0 and w—> 0 as z— —oo.) What is the
corresponding solution which satisfies the initial data

n(r,0) =0, n(r,0)=/@?

Sloshing in a cylindrical tank. A cylindrical tank, 0 < r < a, con-
tains a liquid (0 < z < 1 when undisturbed) which is in motion
due to the presence of a small-amplitude standing gravity wave.
Show that there is a solution which takes the form

n = AJ,(or) cos(nb) sin(w?)

for suitable o and w; n (= 0) is an integer and J, is the Bessel
function of the first kind, of order n. (See equations (2.66)(2.68),
Q1.38 and Q2.17.) What is special about the choice n = 0?
Wave propagation in a cylindrical tank. See Q2.20; now seek a
solution

n = AJ(or) sin(nd — wt),

which describes a wave propagating around the tank. Find o and
w, and compare all your results with those obtained in Q2.20
(and, in particular, check agreement for n = 0).



188
Q2.22

Q2.23

Q2.24

Q2.25

2 Some classical problems in water-wave theory

General initial-value problem. Use the Fourier transform to write
down the solution described in Section 2.1 which satisfies
n(x, 0) = f(x) and 7,(x,0) =0; to do this you must allow the
possibility that waves may propagate in both directions. In the
special case where f(x) = A8(x), where §(x) is the Dirac delta
function and A4 is a constant, find a wholly real expression
(that is, i = +/—1 appears nowhere) for n(x, 7).

Simple linear dispersion. Write down the dispersion relation for
gravity waves moving over water of arbitrary depth. Consider
waves propagating only to the right and approximate w(k) as
8k — 0, retaining terms as far as O(52%k?). Hence write down a
simple linear partial differential equation which has your approx-
imate dispersion relation as its (exact) dispersion relation; cf.
equation (1.78).

Behaviour near a wavefront. See Q2.22; consider the component
of n(x, f) (for a general initial profile) which is propagating to the
right, and examine the approximate form of this solution for
long gravity waves. (This is the relevant approximation near a
wavefront.) To accomplish this, retain terms as far as O(k3) in
w(k) (cf. Q2.23) and retain just the first term in the expansion (as
8k — 0) of the Fourier transform of n(x, 0). (You should assume
that f_°°°o f(x)dx is finite and nonzero.) Now express this solution
in terms of the Airy function, Ai, and hence describe the
behaviour of #(x, ¢) (a) ahead of the wavefront; (b) behind the
wavefront; (c) at the wavefront, as a function of .

Complex variable method. Consider the problem described by
equations (2.3) and Q2.5 (but include the Weber number,
labelled W, here, in this latter problem). Introduce the complex
potential

W(Z,0) = ¢+ivy,

in the usual notation, where Z = x + i8z. Let the bottom, z =0,
correspond to the streamline ¥ = 0 and hence deduce that

W=W(Z,=¢—iy,
where the overbar denotes the complex conjugate. Show that the
problem reduces to finding an appropriate solution of
2 P

3 Y _
8?(W+ W)+1<$C—_8 We@)(W_ W)—O
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on z = 1. Confirm that the dispersion relation (2.9) is recovered if
we seek a solution W = Acos(kZ — wt), where A, k, and » are
real constants.

Group speed for general water waves. Repeat the calculation
described in Section 2.1.2, but now retain the effects of surface
tension. Show that the amplitude of the wave, which is pre-
scribed as a function of X = ax at ¢t =0, propagates at the
group speed

Cpg= 3—‘; where o’ = (%C + 8k We) tanh 8k.

Further, show that ¢, may be written as

1 {1 +38%K2W, 26k

w
= — h =—.
% =3%) T+ o2kw, +sinh28k} where ¢,

k

Propagation over infinitely deep water. A plane wave propagates
in the x-direction over water of infinite depth. Follow the calcu-
lation described in Section 2.1, starting from equations (2.1) but
with w—> 0 as z— —oo, and hence obtain the dispersion
relation; cf. Q2.2. What is the group speed?

[Observe that this solution describes a disturbance which
decays exponentially with depth.]
Group speed: general argument I. A wave motion is described by
the sum of two components

n(x, 1) = Ay explitkx — o(k)t} + Ag expli(lx — o)D)} +c.c.,

based on two different wave numbers (k and /), but one disper-
sion relation, @ = w(k); both components have the same ampli-
tude, 45. Now suppose that / = k(1 + «) with @ — 0 (so that the
wave numbers differ by O(«)); for x and ¢ fixed, as a — 0, show
that

n ~ AX, T)explitkx — w(k)n)},

where ax = X, af = T. Further, confirm that A4 is a wave which
propagates at the speed o'(k) = ¢,.
Group speed: general argument I1. A wave motion depends on the
phase variable 6, such that
a0 00
& = k, 5 = —w.
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Confirm that 0 = kx — wt + constant if both & and w are con-
stants. We now suppose that the wave evolves so that both k and
o change; deduce that

ok 0w 0
o

and explain how this can be interpreted as a conservation of
waves. (It is usual to regard k and w as slowly evolving, in the
sense that they are functions of X = axand T = at as o — 0; see
Section 2.1.1 and Q2.28.) Given, further, that @ = w(k) and that
the energy is represented by E = E(k), deduce that E propagates
at the group speed, o'(k).

Group speed: orthogonality approach. Derive equation (2.29), for
Ay(X, T), directly from the equation for W}, (2.24). To accom-
plish this, multiply this equation by W, and then integrate it in z,
from z =0 to z = 1. Use integration by parts to form the term
W,,., and use the equation defining W, together with boundary
conditions for both W, and W,.

[Since the equation for W, is an inhomogeneous version of

W,, with corresponding boundary conditions, a solution for
W, exists only if an orthogonality condition is satisfied. This
condition is the equation for A4,.]
Energy and energy flux I. Consider the solution developed in
Q2.10, and choose the case of plane oblique waves (that is,
m =n=0). Use the details derived in this calculation to find
the energy, &, of the plane waves; see equation (1.48) and
Section 2.1.2. Write your expression for & with error O(¢®) as
& — 0. Now obtain the corresponding expression for the energy
flux, # (given by equation (1.49) with P measured relative to P,),
but written in nondimensional form.

As mentioned in Section 2.1.2, it is convenient to compute the
average values of & and & taken over one period; do this by
integrating in 6 from 0 to 2w (where 6 = kx + Iy — wt) and divid-
ing by 2n. Show that these average values (denoted by the
overbar) are

E=6&y+ %82A2 +O(),

where &, is the contribution to the potential energy in the
absence of the wave, and
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F=- 2A2(1 !kl)k+ 0O(s%)

where k = (k, ]). (You may also confirm that the contribution
from the wave to é’,%ezAz, is comprised of two equal parts:
the average kinetic and potential energies of the wave; this
equality always arises in linear problems.)

Energy and energy flux II. See Q2.31; now show that the first
term in &, 3 L (624%/w)k, arises from a contribution from the mass
flux fo pu, dz (written here in dimensional variables). We write
this contribution as &, and then set

E=68y+6y+0@E), F=F,+F,+0(),

where the subscript w denotes the contribution from the wave
motion. Hence deduce that

F = cBuk/IK,

and so the energy flux is in the direction of the wave-number
vector, and the energy moves at the speed c,.

[The term #, shows that there is a mass flux of 0(82), even for
particle paths that are closed at O(g); this is usually called the
Stokes mean drift, and it is explored further in Q4.4.]
Characteristics for variable depth. The equation for variable
depth, (2.40), is

Ny — (dnx)x = 0;

rewrite this equation in terms of the characteristic variables
£ = [y dx/~/d—tand ¢ = f; dx/+/d + t. Sketch the characteris-
tic lines for d(x) = a{xy — x), where a > 0 is a constant and x; is
fixed.

Green’s law. See Q2.33; now seek a solution in the form

n=d "*HE ),

and obtain the equation for H (which will include coefficients
that depend on d(x); these could be written in terms of £ and ¢,
but there is no need to do that here). Describe the special forms
that H takes in the two cases

(@) dx) = (@x + B**;  (b) d(x) = (ax + B,

where o and B are arbitrary constants.
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[The amplitude factor, d~'/4, is the property usually associated
with Green’s law, although a more precise statement of the law
usually includes the requirement that the horizontal velocity
component also be proportional to d—*/4)

Laplace’s equation and waves over a constant slope. State the
problem described by equations (2.48), with b(x) =ax, in
terms of Laplace’s equation; cf. Q2.5. For the choice aé =1,
recover Hanson’s solution given by equation (2.61). [Hint: see
also equations (2.66)(2.69).]

Waves over a constant slope with a8 = 1/+/3. Repeat the calcula-
tion of Q2.35, but now for the case ad = 1/+/3. Show that a
consistent solution is obtained, following the approach intro-
duced by Hanson, if three sets of terms are now introduced:
one oscillatory in x, with wave number k (> 0), and two
oscillatory in z with (complex) wave numbers %(«/5 +i)k.

[See Whitham (1979) for a further exploration of these ideas,
and Hanson (1926) for applications to a variety of wave
problems.]

Oblique-cum-edge waves. See Q2.35 and Q2.7; seek a solution of
these equations with b(x) = ax and a8 = 1, in the form

¢ = F(x, 2)e @) 4 c.c.,

which is bounded as x - —o00, z - —o00. Show that your solu-
tion represents an oblique wave at infinity (with both incoming
and outgoing components), as well as an edge-wave structure in a
neighbourhood of the shoreline.

Group velocity for slow depth change. From equations (2.76) and
(2.78), with D=1~ B, obtain an expression for the group
velocity ¢, = (dw/0k, dw/3l); see equation (2.84).

Dispersion relation for steady waves. Describe the variation of o
with D (for 0 < D < 00), as given by o tanh(oD) = constant; see
equation (2.92).

Eikonal equation. Use the method of characteristics to obtain the
solutions of

G)fY + 0% =4,
where ¢ > 0 is a constant, in the two cases
(@) ® =kes on the line X =5, ¥ =5 (where k£ +/2 is a

constant);
(b) ® =+2cson theline X =5, ¥ =s.



Q241

Q2.42

Q2.43

Q2.4

Q245

Q2.46

Exercises 193

Ray theory for propagation over a ridge. See equations (2.95)
and (2.97); obtain the equations, for both the rays and the
wavefronts, for a depth variation which gives oA (X) — u?
= of tanh? BX, where o, and B are positive constants.

Ray theory with a shoreline. See Q2.41; repeat this calculation for
a depth variation which gives rise to AX)—p* = —B/X for
X <0, where B> 0 is a constant. Also determine how the
amplitude, A(X), varies (cf. equation (2.98) et seq.).

Trapped waves. Obtain the equation for the rays in the case
where the depth variation is such that o’(X)—pu?
= BX(X, — X), where B and X, are positive constants.
Differential equation for the rays. Consider the eikonal equation
given in Q2.40, but now with ¢ = ¢(X, Y). Write down the equa-
tions that define the solution using the method of characteristics.
(These are equations for X, Y, ©, Oy, Oy in terms of a para-
meter.) Treat the ray as a curve ¥ = Y(X) and, by eliminating
Oy and Oy between your equations, show that Y (X) satisfies

cdz—Y+( 9—)—’—0 ) 1+(£)2 =0

a2 T x gy T ax) [T

Hence describe the rays for

(a) ¢ = constant; (b) ¢ = ¢(X) only.

Fermat’s principle. This states that light travels between any two
points along a path which minimises the time. If the path is
represented by Y = Y(X), and the speed of light at any point
is 1/¢(X, Y), show that the Euler-Lagrange equation for this
problem in the calculus of variations recovers the equation
given in Q2.44. (The speed is written in this form, rather than
simply ¢(X, Y), in order to correspond to the particular choice of
eikonal equation used in Q2.40.)

Snell’s Law. Suppose that ¢ = ¢(X); show that the equation for
the rays may be integrated once to yield

¢Y'/\/1+(Y")* = constant,

where Y' =dY/dX; see Q2.44(b). On the ray, let Y'(X)
= tan a(X) and deduce that

c(X)sina(X) = constant,

which is Snell’s law of refraction.
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A circular shoal. In cylindrical geometry, suppose that the depth
varies so that R202(R) = BR, where B is a positive constant; see
equation (2.104). Obtain the equation for the rays that approach
from infinity, and describe their behaviour.

A circular island. See Q2.47; the depth now varies so that
R202(R) —ut= ,BRZ/(R— Ry), where B and R, are positive
constants. Find the equation for the rays and describe their
behaviour as R — R, (which is the shoreline).

Ship waves: the wedge angle. Describe the behaviour of the angle
of the wedge inside which the dominant ship-wave pattern is
observed as the depth is decreased. (You should consider only
constant speed, straight-line motion.) What is the wedge angle if
Cg =3¢, /47

Ship waves: method of stationary phase. Use Kelvin’s method
of stationary phase to show that the dominant asymptotic

behaviour of
o0
[ p2sin (t\/g) Jo(ep)dp,

0

as tz/«Sr — 00, is

1 e f1e
85+/28 r* 4 ér)’

Influence points I. A simple geometrical construction enables us
to show that there are just two influence points. Consider the
motion of a point (ship) moving at constant speed in a straight
line; the ship is at P, and W is any point behind the ship and off
the ship’s path. Draw PW, the mid-point of PW at M and the
circle with diameter MW identify the points (where they exist)
where this circle intersects the path of the ship. Hence deduce
that, at most, only two influence points exist.

Influence points I1. Reconstruct the argument used in Q2.51 by an
algebraic method. (For example, show that there are, at most,
only two instants in time before ¢ =0 at which disturbances
could have been initiated and which contribute to any given
point ). Repeat this calculation for a ship moving on a circular
course at constant speed.
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Ship on a circular path. A ship is moving on a circular path, of
radius Ry, at a constant speed U. Find the parametric represen-
tation of the curves that describe the dominant wave pattern,
equivalent to equations (2.123). [You may also show how equa-
tions (2.123) are recovered from your equations derived here.]
Ship waves: capillary-wave limit. Repeat the analysis described in
Section 2.4.2, but now take the dispersion relation for €2 to be
that which describes capillary waves in the absence of gravity
waves (and approximated for long waves). Show that

2tan¢tan’6 — 3tan6 — tan¢ = 0,

and deduce that solutions exist for all ¢ (and so the dominant
waves are no longer confined to a wedge-shaped region).
Simple waves: wave-maker problem. Use the method of
characteristics (Section 2.6.1) to solve the problem of
flow in x > 0, over constant depth, given A(0,?) = H(¢) for
t > 0 with u(x,0) =0 and Ah(x, 0) = hy = constant. What is the
corresponding solution if u(0, ©) = U(¥), t > 0, is given?
Simple waves: piston problem. See Q2.55; repeat this calculation
but now in x > X(¢), t > 0; that is, the ‘end wall’ is moved
according to x = X(¢). The water in x > 0 is of constant depth
(hy), and it is stationary, at ¢t = 0.

[If X'(¢¥) < 0, then we generate an expansion fan.]
Simple waves with a shear structure. Use the governing equations
discussed in Section 2.8, but for constant depth b(x) =0, and
show that we may seek a solution in the form

N 0
n=HE., u=UE2, w=WE z)g,

for suitable functions H, U, and Vf/, where &§=x—ct
and ¢ =c(H). Further, simplify the problem by writing
U=U(H,z) and W = H'W(H, z), show that

1+H

/ (Udz ® =1 (the Burns condition)
—c

0

and that

Ly+ Ilzz = 2'Iz(Iz + CIV 'Izl)
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with I(H,1+ H) =1, I(H, 0) = 0, where

[ d
I(H,Z)Z/(U—_Zc—)z
0

(The complete formulation of this problem requires the ‘initial’
condition: I(H, z) given at some H; ¢(H) also must be known,
which is determined from the Burns condition, with either
U—-c>00rU—-—c<0)

Finally, rewrite this problem in terms of the similarity variable
Z = z/(1 + H), so that now I = I(H, Z). Confirm that the choice
I =kZ and ¢’+/1 + H = F3/2 recovers the simple-wave solution
(in the absence of shear) described in Section 2.6.1.

[More information about this problem can be found in
Freeman (1972) and Blythe, Kazakia & Varley (1972); the
Burns condition is described in Burns (1953) and in Thompson
(1949). We shall provide a discussion involving some properties
of the Burns condition in Chapter 3.]

Nonlinear wave run-up. See Section 2.8; reduce the equation for
t(§,n) to the cylindrical wave equation in T(§+n,n— &) (cf.
Section 2.6.2), and find expressions for u, ¢, f and x in terms of
T. Hence use the method of separation of variables to find a
solution for T' which is bounded at the shoreline. Use your
results to find: (a) the maximum run-up; (b) the behaviour of
the solution far from the shoreline (cf. Section 2.2).

Wave breaking. See Q2.58; the condition for the breaking of the
wave corresponds to where the Jacobian in the hodograph trans-
formation is first zero. Use the results obtained in Q2.58 to show
that breaking first occurs at the shoreline (as we would expect).

[This problem requires the introduction of some identities
involving the Bessel functions Jy, J; and J,; a description of
this problem is to be found in Whitham (1979) and Mei (1989).]
Hydraulic jump and bore. Extend the analysis of Section 2.7 for
the case of the hydraulic jump (U = 0), and find the speed of the
flow behind the jump (4*) and verify that «™ <u if F> 1. In
this case, show that the Froude number for the flow behind the
jump is less than unity.

Use the results obtained here, and in Section 2.7, to describe
the characteristics of the flow associated with a bore which
moves at a speed U into stationary water.
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Reflection of a bore from a wall. Stationary water of depth 2 = Ay
isin x < 0, and there is a vertical wall at x = 0. A bore moving at
a constant speed U approaches the wall from —oo and is reflected
by it and returns to —oo. Find expressions for the speed of the
returning bore and the depth of water behind it.

[The solution of this problem reduces to the solution of a cubic
equation, a problem which need not be pursued.]
Circular hydraulic jump. 1t is readily observed that water flowing
from a tap into a sink almost always spreads out in a thin, fast-
moving layer over the surface of the sink. Furthermore, this layer
is often approximately circular in shape being terminated by a
narrow region (a jump) where the depth and speed change dra-
matically; thereafter the water makes its way down the plughole.

Consider the problem of the circular hydraulic jump and, from
equations (2.2) without the effects of surface tension and without
any variation in 6, follow the methods of Section 2.7 to find the
jump conditions across the circular hydraulic jump.

[Incorporate the long-wave assumption, exactly as in Section
2.7; a discussion of this problem, with the inclusion of many
realistic physical properties, will be found in Watson (1964).]
Modelling the highest wave. Stokes’ highest wave can be modelled
by satisfying some appropriate conditions, but not all of them.
The simplest model is obtained by writing

n = ae¥

and then satisfying the conditions that prescribe 1(0) and n'(0),
together with equation (2.166). What is the value of ¢ in this
case?

An improvement is to write

n = ae™ ¥ 4 pe~ 2,

to impose the same conditions as above and, in addition, to
ensure that

3W=(-1M

is satisfied. What now is the value of ¢?

[The value of ¢ for the highest wave is, based on numerical
evidence, about 1.286; see Longuet-Higgins & Fenton (1974) for
more details, where it is shown that a wave exists for which
¢~ 1.294]]



198
Q2.64

Q2.65

Q2.66

2 Some classical problems in water-wave theory

The sech’ solitary wave. Verify, or by direct integration show,

that
2 3¢
f= 2csech-<,/—2 ()

is a solution of equation (2.173), where { = & — ct. Confirm that
the behaviour of this solution, as |{| — 00, satisfies the condition
(2.166). Explain the connection between the two expressions for
¢%: (2.13) and (2.166).

Jacobian elliptic functions. Define the integral

¢
/ de

U= | —,
o V1 —msin?o

where m (0 <m < 1) is a parameter (called the modulus). Then
we write

snu=sin¢g, cnu=-cosg,

the Jacobian elliptic functions; these are sometimes written as
sn(u|m), cn(u|m). Show that

(@) sn’u+cn’u=1;

(b) cnu=cosuif m=0; cnu=sechuif m=1,

(©) ad;(cn u) = —snudnu where dnu = /1 — msin® ¢, and find

the corresponding results for the derivatives of snu and dnu.
Complete elliptic integral. Define the integral
/2
K(m) =
0

do

. 2,0
1 —msin“ 6@

the complete elliptic integral of the first kind. Deduce that the
period of the elliptic functions sn and cn is 4K(m), 0 <m < 1.
Show that
(@ K(©0)=n/2;
T 11
geometric function;

(¢) K(m)~ ilog{l6/(1 —m)} asm — 17.

[Hint: in (¢) write d = (1 — /msin8 + /msin 6)de.]

1; m), where F(a,b;c;z) is the hyper-
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Cnoidal-wave solution. Verify that
f@©) = a+ben{a(¢ — &) m},

where { = & — ¢, is a solution of equation (2.173) for suitable
relations between the constants a, b, & and m; the phase shift, &,
is an arbitrary constant.

[For this solution to exist, the cubic, F(f), in Section 2.9.1 has
three real, distinct zeros; indeed, it is convenient to write

F() = =3~ =10~

where f;, i = 1, 2, 3, are the three roots.]
Circulation associated with a solitary wave. Show that

o0

C= /u-dl=[¢]i°°°

—00

by evaluating (a) along the bottom streamline; (b) along the
surface streamline (and Stokes’ theorem may be invoked).
Integral identities for the sech’ profile. Examine the three integral
identities, relating T, V, I, C and M (discussed in Section 2.9.2),
when the solitary wave is approximated by the sech? profile of
small amplitude; that is, n is written as en, € > 0 and n « sech?
(see Section 2.9.1).

Variational principle for water waves. Show that the equations for
gravity waves on stationary water over a rigid impermeable
surface (Q1.38) are obtained from the variational principle

L) f/dedt:O,
D

where the Lagrangian is
n(x.p.10)
L= / [6, + %(qu)z + Z]dz.
b(x.y)

The region D, assumed to contain fluid, is arbitrary; the variations
of ¢ and n are zero on the boundaries of D. (The nondimensional
parameters, £ and 8, are not included in this formulation.)

[These ideas are developed in Luke (1967) and Whitham (1965,
1974).]
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Weakly nonlinear dispersive waves

The old order changeth, yielding place to new
The Passing of Arthur

In Chapter 2 we presented some classical ideas in the theory of water
waves. One particular concept that we introduced was the phenomenon
of a balance between nonlinearity and dispersion, leading to the existence
of the solitary wave, for example. Further, under suitable assumptions,
this wave can be approximated by the sech? function, which is an exact
solution of the Korteweg—de Vries (KdV) equation; see Section 2.9.1. We
shall now use this result as the starting point for a discussion of the
equations, and of the properties of corresponding solutions, that arise
when we invoke the assumptions of small amplitude and long wave-
length. In the modern theories of nonlinear wave propagation — and
certainly not restricted only to water waves — this has proved to be an
exceptionally fruitful area of study.

The results that have been obtained, and the mathematical techniques
that have been developed, have led to altogether novel, important and
deep concepts in the theory of wave propagation. Starting from the gen-
eral method of solution for the initial value problem for the KdV equa-
tion, a vast arena of equations, solutions and mathematical ideas has
evolved. At the heart of this panoply is the soliton, which has caused
much excitement in the mathematical and physical communities over
the last 30 years or so. It is our intention to describe some of these results,
and their relevance to the theory of water waves, where, indeed, they first
arose.

3.1 Introduction

The existence of a steadily propagating nonlinear wave of permanent
shape, such as the solitary wave, probably seems altogether likely. On
the other hand, that somewhat similar objects could exist in pairs (or

200
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Figure 3.1. A sketch of J. Scott Russell’s compound wave which ‘represents the
genesis by a large low column of fluid of a compound or double wave . . . the
greater moving faster and altogether leaving the smaller’.

larger numbers) of different amplitude, interact nonlinearly and yet not
destroy each other — indeed, retain their identities — would seem rather
unlikely. However, precisely this phenomenon does occur for solutions of
the KdV equation, and for the many other so-called completely integrable
equations.

This very special type of interaction was first observed and described
by Russell (1844); the essentials of his plate XLVII are shown in Figure
3.1. An obvious interpretation of the development represented in this
figure is that an initial profile, which is not an exact solitary-wave solu-
tion, will evolve into two (or perhaps more) waves which move at differ-
ent speeds and tend to individual solitary waves as time increases.
Another observation, itself an extension of what Russell reported, is
shown in Figure 3.2. This time we have an initial profile comprising
two peaks, the taller to the left of the shorter, but both propagating to
the right. The taller is moving faster (since it is locally similar to a solitary
wave), and so catches up and then interacts with the shorter, and there-
after moves ahead of it. At first sight, the interaction appears to involve
no interaction at all, as would be the case if the two waves satisfied the
linear superposition principle; cf. equation (1.75) et seq. However, a non-
linear event does occur here, and that it is clearly not linear is confirmed
by the fact that the waves are phase-shifted (by the interaction) from the
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@

®)

©

Figure 3.2. An extension of the situation depicted in Figure 3.1, where the larger
wave is first to the left of the smaller; it catches up the smaller, interacts with it
and then moves off to the right.

positions they would have taken had both waves travelled at constant
speed througout. These, and many associated properties, will be briefly
described in Section 3.3; our primary objective here is to show how this
important class of completely integrable equations arise in water-wave
theory. We shall then extend the ideas to more general problems, which
usually do not give rise to completely integrable equations, but which do
provide models for more realistic applications.

The various problems that we shall describe are based on the equation
for an inviscid fluid, and for the propagation of gravity waves only (so
W, =0, but see Q3.3). Although much of our early work will be for
irrotational flow, some of the important applications presented later
will allow an underlying rotational state; we therefore choose to develop
all the work here from the Euler equations. (In contrast, a derivation of
the KdV equation directly from Laplace’s equation was given in Section
2.9.1.) The relevant governing equations will be found in Section 1.3.2,
and they are reproduced here.
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In rectangular Cartesian coordinates we have

Du dp Dv_ dp ,Dw _ 9p
Dt~ ax’ Dt 9y’ Dt~ oz

where -
D“a+eua+va+ 0
Dt ot a ay )
with
o
ax 9y 0oz
and

d d d
p=n and w=—q+£(u—g+v—n) on z=1+¢n

ot a ay
ab ab
w_ua+v$ on z=b(x,y).

Correspondingly, in cylindrical coordinates, we have

Du e & Dv, ew 1o oDv_ &

Dt r o’ Dt r r 89’ D: ™ &z

where

Dt ot ar r 30 )
with
19 1 dv ow
B A TRl
and
_ _ 0y ap v an _
p=n and w_at+ ( 8r+r30 on z=1+4e¢n
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(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

In these equations, and for the following calculations, we consider only

bottom topographies (z = b) which are independent of time.
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3.2 The Korteweg—de Vries family of equations

We first present a derivation of the classical Korteweg—de Vries equation,
from the Euler equations, being careful to describe the necessary (and
minimal) assumptions that are required. We then show how this
approach can be generalised to obtain corresponding equations valid in
both different and higher-dimensional coordinate systems.

3.2.1 Korteweg—de Vries (KdV) equation
We consider surface gravity waves propagating in the positive x-direction
over stationary water of constant depth (so b = 0). Thus, from equations
(3.1)(3.4), we have
ut + 8(““): + wuZ) = —px; 82{wt + E(uwx + WWZ)} = _pZ; )
ux + wz = 07
with

p=n and w=un,+eun, on z=1+4en [ 39

and

w=0 on z=0.

This problem, when previously discussed via Laplace’s equation in
Section 2.9.1, led us to invoke a special choice of the parameters, namely
8% = O(e) as ¢ — 0. If this were to be a necessary condition in order to
obtain the appropriate balance between nonlinearity and dispersion (and
so to produce the KdV equation and hence to model solitary waves, for
example), we might expect these waves to occur rather rarely in nature:
solitary waves would be infrequently observed, and this is not the case. It
is therefore no surprise that we can readily demonstrate that, for any & as
e — 0, there always exists a region of (x, r)-space where this balance
comes about. Thus, for as long as no other physical effects intervene,
we can expect to be able to generate KdV solitary waves (and solitons
etc.) somewhere, provided only that the amplitude is small (in the sense of

& — 0).
The region of interest is defined by a scaling of the independent
variables. First we transform
X —> t—

(3.10)

—=X —= 1,
ez e12
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for any ¢ and §; this transformation then implies, for consistency from the
equation of mass conservation, that we also transform

RV
w— _S_W; (3.11)
cf. Q1.34. The governing equations (3.9) then become

u; + e(uu, + wu,) = —py;  e{w, + e(uw, + ww,)} = —p,; (3.12)
u,+w, =0, (3.13)

with
p=n and w=mn,+eun, on z=1+¢n (3.14)

and
w=0 on z=0, (3.15)

so the net outcome of the transformation is to replace 82 by ¢ in equations
(3.9). (The presence of é in transformations (3.10) and (3.11) is merely
equivalent to using A, alone as the relevant length scale; see Section
1.3.1)

Now, for ¢ — 0, we see that a first approximation to equations (3.12)
and (3.14) is

px, t,z)=n(x,10), 0<z=<l1
with
w+n,=0. (3.16)
Then, from equation (3.13), we obtain
W= —zu,
which satisfies (3.15), and from condition (3.14) we require
Ny = —Uy;
this combined with equation (3.16) yields
e — Nex =0,

as we should expect (cf. equation (2.10)). We choose to follow right-going
waves (but see Q3.2), and so we introduce

E=x—1. (3.17)

However, an asymptotic expansion which is based on the classical wave
equation (with higher-order nonlinear and dispersive terms) necessarily
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leads to a non-uniformity as # (or x) — oo; this is discussed in equation
(1.95) et seq. Thus we define a suitable long-time variable

T=2¢l (3.18)

cf. equation (1.99). Consequently & = O(1), T = O(1), together describe
the far-field region for this problem, and therefore the region where we
expect a KdV-type of balance to occur. (We observe that these scaling
arguments have been generated by the existence of the surface wave
propagating in the x-direction, and no scalings are required to describe
different regions of the z-structure of the problem.)

With the choice of far-field variables, (3.17) and (3.18), the equations
(3.12)3.15) become

—ug + (uy + uug + wu,) = —pg; e{—wg + e(w, + uwe + ww,)} = —p,;

(3.19)
ug +w, =0, (3.20)
with
p=n and w=-n+en,+un) on z=1+e¢n
and
w=0 on z=0. (3.21)

We seek an asymptotic solution of this system of equations and boundary
conditions in the form

g& Tz~ ) q T2, G T~ Y dmED, (322
n=0 n=0

where ¢ (and correspondingly g,) represents each of u, w and p. The
leading-order then becomes

Uz = Pog;  Por =0; g +wo, =0
with
Po=mp and wy=-ng, on z=1
and
wy=0 on z=0.
These equations directly lead to

Po="my, Up=To, Wo=—2zng 0=<z=<1,
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where we have imposed the condition that the perturbation in u is caused
only by the passage of the wave; that is, uy = 0 whenever ny = 0. We see
that the surface (z = 1) boundary condition on wy is automatically satis-
fied; thus, at this order, ny(§, 7) is an arbitrary function. To proceed, and
hence to determine 7y, we must first treat the surface boundary conditions
with more care.

The two boundary conditions on z = 1 + &7 are rewritten as evalua-
tions on z = 1, by developing Taylor expansions of #, w and p about
z=1. (The usual convergence requirements need not be investigated
since, strictly, these expansions are to exist only in the asymptotic sense
as ¢ = 0; see also Section 2.5.) These boundary conditions are therefore
expressed in the form

Po -+ engPo; + &p1 = 1y + eny + O(e?) (3.23)
and onz=1
Wo + ngWo; + Wy = —1gs — ey + (o; + tonoe) + O(?))  (3.24)

which are to be used in conjunction with equations (3.19), (3.20) and
(3.21).

The leading order has already been found, and the equations that
define the next order are

—uyg + Ugr + UgUpg + Wollp; = —P1g; Prz = Wogs Ui +wy; =0,
with
p1+mopo; =m and  wy +nowo, = —mye + Mor +4ome; 0N z =1
and
wy=0 on z=0.

When we note that

u, =0, p,=0 and wy = —ne; (3.25)
then
1
n= 5(1 - Zz)ﬂogg + 11, (3.26)
and hence
Wi = —Uig = — D1g — Ugr — Uploe

1
=—Me— 5(1 - Zz)ﬂogsg — Nor — Moo



208 3 Weakly nonlinear dispersive waves

Thus

1 1
wy = —(n1g + No: + MoNog + 5 Nogee)Z + 623'70555 (3.27)

which satisfies the bottom boundary condition; finally the surface
boundary condition (now on z = 1) yields

1 1
Wilz=1 = —(mg + 1o + noMog + E'logsg) + g’?o;gg
= —11g + Nor + 2MoNog

resulting in

1
219, + 3momo; + 3 Mogee = 0; (3.28)

at this order, 7, is unknown. Equation (3.28) is the Korteweg—de Vries
equation which describes the leading-order contribution to the surface
wave; see also equation (1.102). This is the equation first derived (but not
in our form) by Korteweg and de Vries (1895), which they did by seeking
a solution of Laplace’s equation as a power series in z. Furthermore,
these authors also included the effects of surface tension, which here is
left as an exercise (Q3.3). The significance of the KdV equation, together
with some of its properties, will be discussed later.

Provided that bounded solutions of equation (3.28) exist, at least for
&=0(1), t=0(1), and for all the higher-order terms, 7,, in the same
region of space, then the function ny(§, 7) gives the dominant behaviour
that we seek. Clearly we may ask, in addition, if the asymptotic expansion
for n (and hence for the other dependent variables) is uniformly valid as
|&] = oo and as T — oo. In the case of T — oo, this question is far from
straightforward to answer completely, mainly because the equations for
N, 1 > 1, are not readily solved. (The problem for 7, is included as Q3.4;
see also equation (1.100) et seq.) All the available evidence, some of which
is numerical, suggests that our asymptotic representation of » is indeed
uniformly valid as T — oo (at least for solutions that satisfy n — 0 as
|£] = o0). The validity as |§| — oo for T < oo does not normally raise any
particular difficulties. These aspects are not pursued here since, although
we believe that the theory just presented describes some important prop-
erties of real water waves, the relevance of t — oo is questionable.
Clearly, if the waves are allowed to propagate indefinitely, then other
physical effects cannot be ignored; the most prominent of these is likely
to be viscous damping (which we shall briefly discuss in Chapter 5).
Usually, in practice, the damping is sufficiently weak to allow the



The Korteweg—de Vries family of equations 209

nonlinear and dispersive effects to dominate before the waves eventually
decay completely.

3.2.2 Two-dimensional Korteweg—de Vries (2D KdV) equation

The Korteweg—de Vries equation, (3.28), describes nonlinear plane waves
that propagate in the x-direction. An obvious question to pose is:
how is the wave propagation modified when the waves move on a two-
dimensional surface (which, of course, is the physical situation)?
Although a plane wave can propagate in any direction (at least on
stationary water), and we may label this to be the x-direction, the
waves that we wish to describe may not be plane. An important example
arises when two (or more) waves, that are plane waves at infinity, cross;
for the nonlinear interaction of these crossing waves, the y-dependence
will not be trivial. We investigate the situation in which the wave
configuration is propagating predominantly in the x-direction, with the
appropriate balance of nonlinear and dispersive effects (also in the x-
direction). However, in addition, we include the relevant dependence
on the y-variable, this contribution appearing at the same order as the
nonlinearity and dispersion.

The simplest way to see what this implies is to consider, first, the linear
propagation of long waves on the surface; the leading-order problem is
described by the classical wave equation

Mt — (Mex 1) =0,

written here in nondimensional variables (cf. equation (2.14)). This
equation has a solution

7 oc @00 Ghere @ = k2 4 2,

see Q2.7. Now, for waves that propagate predominantly in the x-
direction, we require / to be small (since the wave propagates in the
direction of the wave number vector k = (k, [)) and then the dispersion
relation gives
o~k 1+1 i as />0
2 k2 )
This expression represents propagation at the (nondimensional) speed of

unity (cf. equation (3.17)), together with a correction provided by the
wave-number component in the y-direction. In order that this correction
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be the same size as the nonlinearity and dispersion, we require 2 = O(e)
or I = O(e'/%); equivalently, we may accommodate this by transforming
y — £'/2y (and then we require v — £'/2v so that we have consistency
with, for example, the representation in terms of a velocity potential,
u = V¢). Thus we introduce the variables

E=x—1t, 1=¢t, Y=€1/2y, v=2¢"?y (3.29)

and then equations (3.1)~(3.4), with 8 replaced by & (see Section 3.2.1)
and with b(x, y) = 0, become

—ug + &(uy + ung + eVuy + wi,) = —pg;

—Vi+e(Ve+uVe+eVVy +wV,) = —py;

e{—wg + (W, + uwg + eVwy + ww,)} = —p;;
ug+eVy +w, =0,

with
p=n and w=-—n+e(n, +un;+eVny) on z=1+en
and
w=0 on z=0;

cf. equations (3.19)~(3.21). We seeck an asymptotic solution, valid as
¢ — 0, in the same form as before (see (3.22)); the leading order problem
is then unchanged (except that the variables may now depend on Y), so
that

Do=MNo, Ug=rny, Wo=—znmg, 0=<z=1,

and with Vo, =ngy. At the next order, the only difference from the
derivation of the KdV equation (Section 3.2.1) arises in the equation of
mass conservation, which here reads

wyi, = —u — Voy.

The result of this change is to give

1 1
wi = —(Mig + Nor + NoMog + 5 Mogge + Voy)z + 323'70555:

cf. equation (3.27). Thus we obtain the equation for the leading-order
representation of the surface wave in the form

1
210, + 3ngnes + 3 Mogse +Voy =0
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where Vi = ngy; upon the elimination of ¥V this yields

(2770r + 3nomoz + %ergg)é‘*‘ﬂow =0, (3.30)
the two-dimensional Korteweg—de Vries (2D KdV) equation. (The small
amount of detail omitted from this derivation, which follows that leading
to equations (3.23)(3.28), is left as an exercise.) We note that this result
recovers the KdV equation, (3.28), when there is no dependence on Y;
that is, Vyy = 0.

Equation (3.30), which in the literature is often called the Kadomtsev—
Petviashvili (KP) equation (Kadomtsev & Petviashvili, 1970), turns out to
be another of those very special completely integrable equations. This
equation admits, as an exact analytical solution, any number of waves
that cross obliquely and interact nonlinearly; this in turn, for the case of
three such waves, leads to special solutions which correspond to a reso-
nance condition. We shall comment in more detail about the solution of
this equation later, and some of the exercises allow further exploration.

Before we leave this equation for the present, it is instructive to inter-
pret the scalings, (3.29), that have led to the 2D KdV equation. This
nonlinear dispersive wave appears at times T = O(1), so ¢ is large, and
where £ = O(1); that is, the measure of the ‘width’ of the wave remains
finite and non-zero as ¢ — 0. However, the wave also depends on
Y = ¢&'/?y, and this is most conveniently thought of as weak dependence
on the y-coordinate. That is, along any wavefront, dy/dé = O(s"/ 2) and
so, in physical coordinates, the waves deviate only a little (O(s'/?)) away
from plane waves (¢ = constant). Thus, for example, in the case of two
obliquely crossing waves — an exact solution of the 2D KdV equation —
the angle between them (in physical coordinates) is O(s'/?): they are
nearly parallel waves in this approximation. We shall discuss more
general aspects of obliquely crossing waves later (Section 3.4.5), as an
example of a non-uniform environment.

3.2.3 Concentric Korteweg—de Vries (cKdV) equation

The two equations derived above, the KdV and 2D KdV equations, are
the relevant weakly nonlinear dispersive wave equations that arise in
Cartesian geometry. It is now reasonable to ask if a corresponding pair
of equations exists in cylindrical geometry. In this section and the next we
shall demonstrate that this is, indeed, the case, although the change
of coordinates is not an altogether trivial exercise, since important



212 3 Weakly nonlinear dispersive waves

differences arise. To see what the essential changes are we first consider,
for purely concentric waves, the linearised problem for large radius.
The equation for linear concentric waves (in the long-wave

approximation) is
1
M =\ M+ 0y ) = 0;

see equation (2.14), with the dependence on the angular coordinate, 6,
absent. It is convenient to introduce the characteristic coordinate
& =r — t (for outward propagation) and R = ar (so that o — 0 will cor-
respond to large radius; that is, R = O(1), @ — 0, yields r — 00). The
equation therefore becomes

1 1
2neR +E775 + | nrr +E'7R =0,

and as ¢« — 0 we see that

*/ﬁﬂs ~ g(8),

where g(£) is an arbitrary function. Thus, for outwardly propagating
waves, the relevant solution takes the form

1
n~ ﬁf(é) as a—0, (3.31)

where f = [ gd& and we have chosen n = 0 when f = 0. This dominant
behaviour, (3.31), for large radius, describes the expected geometrical
decay of the wave: as the radius increases, so the length of the wavefront
increases and the amplitude must correspondingly decrease. This presents
a very different picture from that encountered in the derivation of the
KdV equation. In that case the amplitude remained uniformly O(¢); here
the amplitude decreases as the radius increases — and we expect the rele-
vant region of balance to occur for some suitably large radius, yet this
could imply that the amplitude is so small that the nonlinear terms play
no rdle at leading order. We shall now establish that a scaling does exist
which ensures that all the relevant conditions are met.

The equations that describe concentric gravity waves are (from (3.5

(3.8))
U, + s(uu, + wuz) = =D az{wt + €(uwr + WWZ)} = =Pz

1
u,+;u+wz=0,



The Korteweg—de Vries family of equations 213

with
p=n and w=n,+eun, on z=1+epy
and
w=0 on z=0,
where, as before, we have chosen b = 0. To proceed, we introduce
§= ;—z(r -1, R= z—jr, (3.32)
where a large radius variable is used here in preference to large time (but
see below), and we write
3 3 3 5

SH, p=%P, u=U w=3

= = =5 W (3.33)

TI:

in this transformation, large distance/time is measured by the scale §*/¢%,
s0 1/4/8%/€% = & /82, which is the scale of the wave amplitude, consistent
with the decay at large radius. The original amplitude parameter, ¢, is
now to be interpreted as based on the amplitude of the wave for r = O(1)
and 1 = O(1). The governing equations thus become

~Us + A(UUg + WU, + AUUR) = —(P; + APy)

A—W+ AUW; + WW, + AUWR)} = —P;
1
U, + WZ+A(UR+§U) =0,

with
P=H and W=-H;+ A(UH;+AUHg) on z=1+AH
and
W=0 on z=0,

where A = ¢*/8%. These equations are identical, in terms of their general
structure, to those discussed in Sections 3.2.1 and 3.2.2, with ¢ replaced
by A; here we therefore require only that A — 0. This condition is satis-
fied, for example, with § fixed and ¢ — 0, and the scalings (3.32) then
describe the region where the required balance occurs; the amplitude of
the wave in this region is O(A).
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We seek an asymptotic solution in the usual form
[e.¢]
Q~> A"Q, A—0,
n=0

where Q represents each of H, P, U and W. Directly, we see that the
leading order yields the familiar result

P0=H0, U0=H0, W0=—ZHO§, OSZS 1,

and then (similar to the derivation of the 2D KdV equation) we observe
that the new important ingredient comes from the equation of mass
conservation:

1
le = _UIE - (UOR +EUO)

We leave the few small details in this calculation to the reader; it should
be clear, however, that the equation for Hy(§, ) will be

2H0R + %Ho + 3HOH0§- + %HOEEE == 0, (334)
the concentric Korteweg—de Vries (cKdV) equation. (Equivalently, we
could work throughout using a large time variable, v = &%/§*, and
write R = 7+ A& ~ 1; this option is left as an exercise in Q3.7.)

This equation is, in a significant way, different from the first two KdV-
type equations that we have derived: equation (3.34) includes a term
(Hy/R) which involves a variable coefficient. Nevertheless, the cKdV
equation is also one of the set of completely integrable equations, as
we shall describe later.

3.2.4 Nearly concentric Korteweg—de Vries (ncKdV) equation

In Section 3.2.2 we described how the classical KdV equation can be
extended to include (weak) dependence on the y-coordinate; this addition
leads to the 2D KdV equation. We now explore how the concentric KdV
equation might have a counterpart which represents an appropriate
(weak) dependence on the angular variable, 6. Indeed, if we follow the
philosophy adopted for the 2D KdV equation (where the relevant scaling
in the y-direction was ¢'/?), then we might expect that the scaling on 6 is
A2, (Remember that the small parameter for the cKdV equation, after
rescaling all the variables, turned out to be A — which plays the role of ¢



The Korteweg—de Vries family of equations 215

in that derivation). Thus we use the variables introduced for the cKdV,
namely (3.32) and (3.33), and also define

2

o=@ = ‘%@ (3.35)
so that the angular distortion away from purely concentric is small. This
is precisely equivalent to the case of nearly plane waves which satisfy
dy/dg = O(e'/?), so that 6 = O(¢!/?) with dy/d& = tan6. Further, as we
found before (see (3.29)), a scaling is then implied for the §-component of
the velocity vector; here we write

85

v=gV (3.36)

in order to maintain consistency between the scalings on # = ¢, and on
v =gy/r.

The governing equations, which follow from equations (3.5)—(3.8) with
(3.32), (3.33), (3.35) and (3.36), become

R R

v 1
2y _ __p.
AR rFe

U + A{UU; + WU, + A(UUR +KU@)} & V:=—(P;+ APy);
—V§+A{UV§+ wv, +A(UVR+%VV@)} +
A[—WE+ A(UWs + WW, + AUWy +% VWQ)} =-P;
Us+ W, + A[UR +%(U+ V@)} =0,
with

P=H and W=—HE+A{UH§+A<UHR+%VH@)}
onz=1+AH
and
W=0 on z=0.

We have written A =¢*/6> and used the large radius variable,
R =¢%/8%, as we did in Section 3.2.3. The asymptotic solution follows
the familiar pattern, with

P():Ho, U0=H0, W0=—ZHO§, 0_<_Z§1,
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and Vo = Hye/R. At the next order the important difference again arises
from the equation of mass conservation, where

1
Wi, = =U — Upg _E(UO + Voe)
which leads to a fourth KdV-type equation

1 1 1
2H0R + ﬁHo + 3HOH0£ + gHosgg + ﬁ Vo@ == 0

where Vo = Hyg/R. When we eliminate Vy(£, R, ®), we obtain the single
equation

1 1 1
(QHog + 5 Ho + 3HoHog + 3 Hoggs); + 7 Hoee =0, (3.37)

the nearly concentric Korteweg—de Vries (ncKdV) equation (although a
few authors have named this Johnson’s equation since it appeared first in
Johnson (1980)). When there is no dependence on the angular coordinate,
©, we have Vg = 0 and the equation becomes the cKdV equation.

3.2.5 Boussinesq equation

The four equations derived in the previous sections all relate to propaga-
tion in one direction. We now consider the problem of describing waves
that propagate in both the positive and negative x-directions and which
are also weakly nonlinear and weakly dispersive. To start, we recall the
governing equations for one-dimensional propagation, incorporating the
scaling that replaces 82 by ¢; these are equation (3.12)~(3.15):

U+ eQuuy +wip) = —py; e{w, + s(uwy +ww,)} = —p;;
u,+w,=0,
with
p=n and w=n,+eun, on z=14e¢n
and
w=0 on z=0.

We seek an asymptotic solution, as ¢ — 0, in the usual form (that is, in
integer powers of ¢) and so obtain, at leading order,

Do =MNo, Upy = —Nox, Wo = —ZUpx, Ugx = —Nors 0<z<l, (338)
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and hence

Noer — Noxx = 0 (339)

exactly as in Section 3.2.1. Note that, in this development, we are seeking
a solution which is valid for x = O(1) and ¢t =O(1); cf. the far-field
scalings adopted in Sections 3.2.1-3.2.4.

At O(¢) we see that

1
= —5(1 _Zz)qut+771’

SO
La-2
Uy, + uglhpx = 5(1 — 2 oxxs — Mixs
then
Wi, = —Uix
gives
1 2
Wizg = —Upxr = Nixx — 5(1 -z )quxxt + (uOqu)x-
Thus

1 1,
Wi = (uOqu)x + Nxex — 5 Uoxxe {2+ 22 Upxxes
2 6

which satisfies w;, = 0 (equivalently w; =0) on z =0; the boundary
condition on z = 1 then yields, after differentiating with respect to ¢,

(w1 + mowy,), = (M1, + toNox)ss
and so
1
(toug)x + Mxx — 3 oxxwt — (motox); = Mz + (UoMox),-

This equation can be rewritten as

1 1
M — Mxx — (5 '7(2) + u(%) _gnoxxxx = O, (340)
xx

where we have used the equations (3.38), as necessary. Finally, we
combine equations (3.39) and (3.40) to obtain a single equation for

n = o + &m + O(?)
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which is correct at O(g); this is

2
P
1 £
m=ne— el + | [ ndx] b =Sne=06h 4D
—o0 xx
where we have written
x
Uy = — [ ﬂo:dx,
—00

with the assumption that uy — 0 as x - —oo. (We could equally have
chosen

o0

Up =/'70:dx,

X

so that uy — 0 as x = +oo0, if that was appropriate.)

Equation (3.41) (or, more precisely, equation (3.41) with zero on the
right-hand side) is one version of the Boussinesq equation (Boussinesq,
1871). This equation possesses solutions that describe propagation both
to the left and to the right; furthermore, the waves also interact weakly
and are weakly dispersive. Nevertheless, these O(¢) terms are exactly the
ones associated with the KdV equation and, indeed, equation (3.41)
recovers precisely the KdV equation of our earlier work; see Q3.9. So,
although these terms are O(¢e) here, they are the relevant and dominant
contributions in the characterisation of our nonlinear dispersive waves.

We have mentioned that the equations which describe unidirectional
propagation belong to the class of completely integrable equations. The
Boussinesq equation, suitably approximated (Q3.9), gives rise to the KdV
equation which is one of these remarkable equations. At first sight the
Boussinesq equation, (3.41), appears rather more complicated (for exam-
ple, second derivative in time) than our previous equations and is there-
fore, perhaps, not a member of this special class. However, if we set

H=n—sn2

and define

X
X=x+4e¢ [ n(x, t; €) dx

—00
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then the equation for H(X, t; ¢) becomes
3e €
H, — Hyy — 7(H2)XX - §HXXXX = 0(82); (3.42)

see Q3.10. Equation (3.42) is the more conventional version of the
Boussinesq equation; this equation, with zero on the right-hand side,
turns out to be completely integrable for any £ > 0. That is, the equation

Hy, — Hyx +3(H)xx — Hyxxx =0, (3.43)

written now in its most usual form, is completely integrable. (The
transformation from (3.42) to (3.43) is simply

H—>—zH, X—>\/§X, t—>\/Et,
£ 3 3

the confirmation of which is left to the reader.)

3.2.6 Transformations between these equations

We have already commented that, under suitable conditions, the
Boussinesq equation recovers the KdV equation, a demonstration that
has been left as an exercise (Q3.9). Here, we examine the nature of trans-
formations between the KdV, cKdV, 2D KdV and ncKdV equations;
that transformations should exist is easily established. These four
equations are written in either Cartesian or cylindrical coordinates, so

?=x +y2, tanf = y/x,

for the variables used in equations (3.1)+3.8). Thus for a nearly plane
wavefront, for which y/x — 0, we may write

1 2
r—t~x(l+§ yg)—t,

and because we are in the neighbourhood of the wavefront (that is,
£=0(1), 1 = O(c7"); see (3.29)) we obtain

1
r—t~x—t+§y2/t

= $+% Y?/1.
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Of course, this is only a rough-and-ready argument, but the suggestion is,
for example, that we should seek a solution of the 2D KdV equation,
(3.30), namely

1
(2n, + 3me + 3 Ngee)s + Nyy = 0,

in the form
n=H(, 1), =&+ % Y?/t. (3.44)

This yields
) Y2 1 1 Y?
5&(2Hr —?Z_HC + 3HH§ +§H;;;) +;H; +?H;; = 0

which gives, after one integration in ¢ (and upon assuming decay
conditions for { — oo, for example), the cKdV equation

1 1
2H, + —T—H +3HH, + EH‘“ =0. (3.45)
This is the form of equation (3.34), when we read R for 7 and £ for ¢, and
is even closer to the equation derived in Q3.7. In confirmation of our
earlier derivation, Section 3.2.3, we also note that equation (3.45) is
invariant under the scaling transformation
8 & &

—= ¢, —-»T, H—> S H
("83/25 t=>ont ey

which describes the choice of variables consistent with (3.10), (3.18) and
(3.32) (with t replacing R).

To take this idea further, we might now expect that a corresponding
transformation exists which involves the angular variable (®) in the

ncKdV equation, and which takes this equation into the KdV equation.
Following the same philosophy as above, we write (with x = rcos6)

x—tfvr—t—%rf)2 as 60
2 1.,
see (3.32) and (3.35). This suggests that we seek a solution of

1 1 1



The Korteweg—de Vries family of equations 221

in the form

1
H=n(R), (=§-5RO (347)

which yields

1
2ng + 3, + 3 M = 0 (3.48)

after one integration (as described above). This is the KdV equation, with
R replacing t; since R =7+ A ~ t as A — 0, we may interpret the R
derivative as a t derivative, to leading order, and hence recover equation
(3.28).

These two results show, for example, that for suitable initial data our
four KdV-type equations can be reduced to the solution of just two of
them (the KdV and cKdV equations). Of course, in general, the initial
profiles will not necessarily conform with the transformations (3.44) or
(3.47), and then we must seek solutions of the original 2D KdV and
ncKdV equations. We shall briefly describe the near-field problems,
and their role in providing initial data for our various KdV-type
equations, in the next section.

Finally, we remark that the transformations we have presented here are
capable of a small extension which then enables the 2D KdV and ncKdV
equations to be directly related; this is explored in Q3.12. (This idea turns
out to be useful in obtaining certain classes of solution of the ncKdV
equation; see Q3.13.)

3.2.7 Matching to the near-field

The equations that we have derived in this chapter, with the exception of
the Boussinesq equation, describe waves that are characterised by the
balance of nonlinear and dispersive effects in an appropriate far-field.
The complete prescription for the solution of these equations requires
boundary conditions (such as decay behaviour ahead and behind the
wavefront) and initial data provided by the near-field problem; cf. equa-
tion (1.94) et seq. (The Boussinesq equation is written in near-field vari-
ables, and its far-field is represented by a KdV equation, as described in
Q3.9.) We now briefly explore the relation between the near-field and
far-field problems.
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First, for the KdV equation for ny(§, 1),

1
2no: + 3nonos + 3 Mogge = 0,

(3.28), we require the initial profile ny(&, 0). From the derivation given in
Section 3.2.1, and using the near-field variables (x, t) (defined in (3.10)
with (3.11)), we showed that

Ny — Mxx = 0,

to leading order. Thus, for right running waves, we have

n=f(x—0=f&),

were f(-) is determined by the initial conditions provided (on ¢ = 0) for
the wave equation. The matching of the near-field and far-field solutions
is then stated as: the two functions

f©® ast— oo for £=0(1)
no€, 1) ast—>0 for&=0()

are to be identical. Hence, to leading order, we must have the initial
condition

no(§, 0) = f(8);

this shows that the solution of the KdV equation provides a uniformly
valid solution for t € [0, T, certainly for any 7 = O(1), to leading order
in .

The corresponding development for the 2D KdV equation is essentially
the same, after the additional variable Y (see (3.29)) is introduced. Then
the near-field yields

n=f¢Y),

to leading order, which provides the matching condition for the 2D KdV,
for the function ny(§, Y, 1), as the initial condition

né Y, 0) =f($’ Y).

Finally, we turn to the related problem for the concentric KdV equa-
tion, (3.34). In terms of the appropriate near-field variables, defined by
the transformation

82 82

&
r—= —r, t=— —l, - =1,
&2 & =
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we obtain, to leading order, the concentric wave equation

1
Nee — (nrr + ;nr) =0,

already mentioned in Section 3.2.3. For large r this yields
1
n~$f(r—t) as ro o0, r—t=&=0()

see equation (3.31). On the other hand, the cKdV equation has a solution
of the form

1
Hy(é, R) ~——=F as R—0, =01
o6, R) N/ (€3 £=0(1)
(obtained from the dominant balance 2Hyz ~ —Hy/R); the matching
condition therefore provides the initial condition (that is, as R — 0) for
the cKdV equation:

F(§) = /().

The function f(-) is available from the solution of the concentric wave
equation which is valid in the near-field.

This leaves the nearly concentric KdV equation for consideration.
Unhappily, this equation is not so easily analysed; either the dependence
on @ is absent from the leading-order near-field problem (in which case
the calculation reduces, essentially, to that for the cKdV equation) or the
terms involving © in the solution of the ncKdV equation are exponen-
tially small as R — 0. The structure of the near-field in this latter case is
then quite involved. This description is beyond the scope of our text, but
the ideas are touched on in Johnson (1980), where the problem of match-
ing to similarity solutions of the various KdV equations is also discussed
in some detail.

3.3 Completely integrable equations: some results from soliton theory
Wave after wave, each mightier than the last.
The Coming of Arthur

In the introduction to this chapter we mentioned the existence of special
equations together with solitary waves, solitons and complete integrabil-
ity. We have now met a number of these special equations, and our
purpose here is to write a little about these equations, their properties
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and methods of solution. It is not the rdle of this text to provide a
comprehensive discussion of these equations, nor to present a careful
development of inverse scattering transform theory (to use the more accu-
rate title for these studies). Certainly these ideas, usually grouped
together under the simpler title of soliton theory, are relevant to our
further exploration of water-wave theory, but only to the extent of having
available solutions and, perhaps, some methods of solution. There are
many good texts now available which provide the basis for further study;
some of these offer excellent introductions to the theory, whereas others
describe advanced and deep ideas. An extensive list of Further Reading is
provided at the end of this chapter.

The last 25 years or so have seen the rise of this exciting and powerful
approach to our understanding of wave propagation. In particular, the
existence of families of solutions of nonlinear wave equations that
describe nonlinear interactions without the expected destruction (and,
perhaps, resulting chaos), was a considerable surprise. Apart from the
diverse observations in nature of many of these phenomena, from our
wave interactions on water to the red spot on Jupiter, this work has also
led, for example, to the important and very practical application to signal
propagation along fibre-optic cables of great length. Furthermore, it
turns out that many fundamental concepts in various branches of phy-
sics, applied mathematics and pure mathematics also have an important
place in this work. Thus both Hamiltonian mechanics and the geometry
of surfaces — to mention but two — play a fundamental rdle in soliton
theory. In addition, quite new mathematical techniques have been devel-
oped and, even more, some longstanding mathematical problems have
been solved using soliton theory (for example, the solution of Painleve
equations).

Briefly, the story begins with the KdV equation and its numerical
solution, first in a related problem by Fermi, Pasta and Ulam in 1955,
and then by Zabusky and Kruskal in 1965. (It was Zabusky and Kruskal
who coined the word ‘soliton’ to describe these new nonlinear waves,
because they possess the properties of both solitary waves and particles
such as the electron and the photon.) The results were so surprising —
primarily the nonlinear interaction of waves that retain their identities —
that a group at Princeton University (Gardner, Greene, Kruskal and
Miura) set out to understand the processes involved. This led them to
develop (in 1967) a method of solution which treats a function that
satisfies the KdV equation — the required solution — as the (time-
dependent) potential of a one-dimensional linear scattering problem.
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The linear scattering problem, and the associated inverse scattering prob-
lem, coupled with the time evolution deduced by invoking the KdV equa-
tion, produce a solution method which ultimately transforms the
nonlinear partial differential equation into a Jinear integral equation.
Although this integral equation cannot be solved in closed form for
arbitrary initial data of the KdV equation, it does possess simple exact
solutions which correspond to the soliton solutions (and which enable
these solutions of the KdV equation to be written down in a fairly simple
and compact form).

From this small beginning — one equation and apparently a tailor-
made method of solution — has sprung a whole range of methods
which are applicable to many different equations; it has also led to
many alternative approaches to the construction of some of the special
solutions. We shall present the method of solution for the KdV equation
(but without its rather lengthy derivation), and likewise for a few other
equations that are important and relevant to water-wave theory. We shall
also describe one of the simple direct methods of solution (Hirota’s
bilinear transformation) and the réle of conservation laws both in the
theory of these equations and, of course, in their application to water
waves. In the space available, and in the context of water waves, we
cannot explore the many other equally important aspects of soliton
theory, such as the Bicklund transform, Hamiltonian systems and
prolongation structure.

3.3.1 Solution of the Korteweg—de Vries equation
The solution, u(x, ¢), of the KdV equation

U, — 6ttty + 1, =0 (3.49)

(which is obtained by a simple scaling transforming from equation (3.28);
see Q3.1) is related to a function K(x, z; f) by the transformation

u(x,t) = —2(—%K(x, x; 1) (3.50)

where K satisfies the integral equation

oC
K(x,z; )+ F(x,z, ) + / K(x,y; HF(y, z, )dy = 0, (3.51)
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usually called the Marchenko (or sometimes Gel'fand-Levitan) equation.
In this equation, F(x, z, {) satisfies both the equations

Fxx'"Fzz =0; Ft+4(Fxxx+Fzzz)=0a (352)

but since the final evaluation which leads to u is on z = x, the relevant
solution for F is a function only of (x + z); thus it is convenient to write
F = F(x + z, ) so that we now have

F,+8F=0 (E=x+2) (3.53)

and
K(x,z; )+ F(x+z,¢) + / K(x,y; OF(y + z, )dy = 0. (3.54)

The formulation of this method of solution, via the scattering and
inverse scattering problems, enables the initial-value (Cauchy) problem
for the KdV equation to be solved, at least provided that certain existence
conditions are satisfied, for example

/ |u(x, )|dx < o0, / (1 + [xD|u(x, )|dx < 00, VL.

In particular the initial profile, u(x, 0), must satisfy these conditions. (The
first of these says that ¥ must be absolutely integrable and the second —
the Faddeev condition — says that u must actually decay quite rapidly at
infinity.) The solitary wave and soliton solutions certainly do satisfy these
conditions (because they decay exponentially as |x| - oo for all ¥),
although periodic solutions clearly do not.

In order to gain some familiarity with these equations, and with the
method of solution, we shall show how the solitary-wave solution can be
recovered. We then extend the technique to obtain the two-soliton solu-
tion, and thereafter the generalisation to N-solitons is easily explained
(although the details of the calculation are rather lengthy and are not
reproduced here).

Example 1. solitary-wave solution
We start from the simplest exponential solution of equation (3.53), which
we choose to write as

F=eRtore e x4z (3.55)
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where k (> 0) is a constant, « is an arbitrary constant (equivalent to
writing F = Ae ") and w(k) is to be determined; this solution ensures
that F — 0 as x - +oc. Substitution of (3.55) into (3.53) yields directly
the dispersion relation for @ in terms of the wave number (k)

o = 8k,
and then the integral equation, (3.51), becomes

K(x, z; ) + exp{—k(x+ 2) + 8Kt + a}

o0
+/K(x,y; 1yexp{—k(y + z) + 8k*t + o} dy = 0.
X

It is immediately clear that the solution takes the (separable) form

K(x,z; ) = e X L(x; 1) (3.56)
so that

[o.¢]
L + exp(—kx + 8kt + a) + Lexp(8k°t + a) f e Xdy=0

and hence

1
L{ 1+ o exp(~2kx + 8Kk3t + a)} + exp(—kx + 8Kt + ) = 0,

which gives L(x; t). Thus

K(G,x; )= e_ka(x; f) = 1

— — 3 [—
2k+exp(2kx 8kt — @)

and then

—4k exp(2kx — 8Kt — a)

u(x, H) = —2(f—xK(x, x; )=

2
— — 8kt —
(2 T + exp(2kx — 8kt a))

—8k?

= , O0=kx—4Kt—a/2,
(V2ke® + 0/ /2k)} x of

or

u(x, 1) = —2k*sech®{k(x — x,) — 4k’ 1} (3.57)
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where we have written

V2ke™? = g*%0

so that x, now describes an arbitrary shift in x. Solution (3.57) is the
solitary-wave solution, of amplitude —2k%, of the KdV equation; cf.
equation (2.174) and Q1.55(a).

Example 2: two-soliton solution

The extension to two (and eventually N) solitons is surprisingly simple,
even though the solution that we obtain describes the nonlinear interac-
tion of two (or more) waves. Such a description cannot apply to the
solitary wave, since it propagates at constant speed with unchanging
form: it is merely an example of a travelling-wave solution. The method
hinges on the property that both the equations for F and K are linear,
and therefore we may choose to develop a more general solution by
taking a linear combination of functions. Thus we write, in place of
(3.55),

F =exp(6)) +exp(8y), 6; = —ki(x +2) + 8k}t + a,

where the dispersion relation (w; = 8k?) has been incorporated; we are
interested in solutions for which k| # k,, ¢y and «, are arbitrary con-
stants. The integral equation for K(x, z; {) now becomes

K(x, z; 1) + exp{—k;(x + 2) + 8k}t + oy } + exp{—ko(x + 2) + 8k3t + o}
+ / K(x, y; D{expl-ki(y +2) + 8k:i‘t + ay]

+ exp[—ky(y + 2) + 83t + o, ]}dy = 0
so that the solution must take the form
K(x, z; t) = exp(—k2) L (x; 1) + exp(—kyz) Ly(x; 8);

our problem is an example of a separable integral equation, leading to
this simple method of solution, which extends what we did in Example 1.

Since k; # k,, the integral equation separates into two (algebraic)
equations for L, and L,; these are
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L, +exp(—kix + 8kit + a))

+ exp(8ki + 0‘1)[L1 / exp(—2k;y)dy + L, f exp[—(k; + ky)yldy } =

X X

L, + exp(—kyx + 8k3t + o)

o0 [o.0]
+ exp(8k§ + ) { L, f exp[—(k; + ky)yldy + L, / exp(—2k2y)dy] =0.

X X
The integrations, like that in Example 1, are very easily accomplished,
yielding the pair of equations
Ly +exp(—kix + ¢1)

L,
%, Ktk exp{—(k; + k2)x + ¢} =

L, + exp(—kyx + ¢2)

L,
+ L exp(—2kyx + ¢1) +

+

L L
T ORIl +k)x + g} + 2 exp(=2ks + ¢) = 0

where
¢ =8k}t + a.
These equations are solved for L; and L,, and then we form
K(x, x; t) = exp(—kx)L(x; {) + exp(—k,x)Ly(x; t)

from which we then calculate
(x, 1) = —ZiK(x x; )
ux, - dx s Ny .

The manipulative details, which are altogether straightforward, are left as
an exercise; the resulting solution can be expressed in a number of ways,
one of which is

k2E1 +k3E, + 2(ky — ko)*E|E, + A(K3E; + K2E))E,E,
(14 E, + E, + AE, E,)

u(x,t) = —
(3.58)

where

E; = exp{2k,(x — xo;)) — 8k3t}, i=1,2,
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Figure 3.3. A perspective view of a two-soliton solution of the Korteweg—de Vries
equation (for k; = 1 and k, = +/2), drawn in the frame X = x — ¢. Note that —u is
plotted here.

and

A = (ky — ko) (e, + ko).

The two arbitrary phase shifts are xy;, i = 1, 2. Solution (3.58) is the most
general two-soliton solution of the KdV equation, an example of which is
shown in Figure 3.3. A special case of this solution, in which ky =1,
k2 = 2, Xo1 = X2 = 0, is

3 + 4 cosh(2x — 8¢) + cosh(4x — 64)
{3 cosh(x — 28¢) + cosh(3x — 36¢£))%

uCx, ) = — (3.59)

(after some further manipulation); this particular solution is the first that
was obtained (Gardner et al., 1967) and corresponds to the initial profile

u(x,0) = -6 sech’x.

The observed water wave (of positive amplitude) is recovered by trans-
forming u — —u (cf. equations (3.28), (3.49)), and this solution (3.59) is
depicted in Figure 3.4.
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Figure 3.4. The two-soliton solution of the Korteweg—de Vries equation with
u(x,0) = -6 sech®x, shown at times (a) ¢t = —0.55, —0.1, 0 and (b) =0, 0.1,
0.55. Note that —u is plotted against x.

The generalisation to N solitons is obtained in the obvious way by
writing

N
F=>"exp(6), 6i=—kix+2)+8kt+a; (3.60)
i=1

the 3-soliton solution is explored in Q3.17 and Q3.25. For N solitons, the

initial profile, which is simply a sech? function (which arises when the k;
are suitable integers), takes the form

u(x, 0) = —N(N + 1) sech®x.
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Both specific and general forms of the N-soliton solution are discussed in
the literature, and many interesting and useful properties have been
described. A particularly significant property of these nonlinear wave
interactions is evident in Figure 3.4, which represents solution (3.59).
The two waves, which are locally almost solitary waves for ¢ < 0, com-
bine to form a single wave (the —6sech’x profile) at the instant ¢ = 0.
Thereafter, the taller wave, which had caught up the shorter, moves
ahead and away from the shorter as ¢ increases. The two waves that
move into x > 0 are (asymptotically) identical to the pair that moved
in x < 0. It might seem, at first sight, that this process is purely linear:
the faster (taller) wave catches up and then overtakes the slower (shorter)
one, the full solution at any time being the sum of the two. However, a
more careful examination of the sequence shown in Figure 3.4 makes it
clear that the taller wave has moved forward, and the shorter one back-
ward, relative to the positions that they would have reached if the two
waves had moved at constant speeds throughout. The net result of the
nonlinear interaction, therefore, is to produce a phase shift of the waves;
this property is generally regarded as the hallmark of this type of non-
linear interaction; that is, of soliton solutions. The relevant calculation
for solution (3.59) is left as an exercise (Q3.14), and the phase shifts are
represented in Figure 3.5.

Figure 3.5. A representation of the paths of the two wave crests in a two-soliton
solution of the KdV equation. The circle indicates the region inside which the
dominant interaction occurs, and the dotted lines show the paths that would have
been taken by the waves if no interaction had occurred.
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3.3.2 Soliton theory for other equations

The development for the KdV equation is now extended to other equa-
tions that are relevant to water waves. We shall present the details for the
methods of solution for the 2D KdV and cKdV equations. (Another
important example, the Nonlinear Schrédinger (NLS) equation, will be
described in the next chapter.)

The solution of the two-dimensional Korteweg—de Vries equation

(4, — 6uny + uyyy), + 3u,, =0 (3.61)

follows that for the KdV equation very closely (Dryuma, 1974). The
transformation between u and K(x, x; ¢, y) is the same, namely

u(x, t,y) = —%K(x, x; t, ), (3.62)

where K satisfies
o0
K(x,z;t,y)+ F(x,z,t, y) + / Kx,Y; t, DF(Y,z,t,)dY =0
X

(and we have written the integration variable here as Y, to avoid the
obvious confusion). The function F satisfies the pair of equations

Fxx_Fzz_Fy=0v Fi+4(Frpx + Frz;) = 0; (3.63)

cf. equation (3.52). Then, for example, the solitary-wave solution is
obtained by choosing

F = exp{—(kx + I2) + (K — P)y + 4(K> + P)t + a};

see Q3.18 and Q3.19.
The concentric Korteweg—de Vries equation,

%+%—w%+%m=a (3.64)

is solved by a similar method, although the details are not so straight-
forward. As before, K(x, z; f) is a solution of the Marchenko equation

o0
K(x,z; )+ F(x,z,0) + [ K(x,y; OF(y,z, )dy =0
X
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where F is now a solution of the pair of equations

Fxx_Fzz =(x—Z)F;
(3.65)
3tF,— F + F,, + F,,, = xF, + zF,.
The solution of the cKdV equation is then obtained in the form
dK
u(x, f) = =201207" 3o K = K&, 8 ), (3.66)

where & = x/(12t)1/ 3. it is the requirement to use the similarity variable
that particularly complicates the procedure in this case. Another mild
irritant is that equations (3.65) do not admit exponential solutions, the
simplest solutions being based on the Airy functions. Further exploration
of this method is provided in Q3.22.

3.3.3 Hirota’s bilinear method
The solitary-wave solution of the KdV equation,

u(x, 1) = —2k*sech®{k(x — x,) — 4k>1},

as given in (3.57), can be written as

u(x, 1) = —2kaix tanh{k(x — xo) — 4k>1}
= —2%10g(co +e7%, 0=k(x—xp)— 4k,

= _2% {—k(x — xp) + 4kt + log(1 + €*)}

= —2ai);logf, f =1+ exp{2k(x — x,) — 8k’t}).  (3.67)

Indeed, the N-soliton solution can be written in precisely the same form:

U= —Ziz logf, (3.68)
ax

where f(x, ¢) turns out to be the determinant of an N x N matrix of
coefficients that arise in the solution of the Marchenko equation, when
F is a sum of N exponential terms (see (3.60)). Hirota’s idea, first pub-
lished in 1971, was to explore the possibility of solving the KdV equation
(at least for the soliton solutions) by constructing f(x, #) directly. At first
sight it might appear that the problem for f is more difficult than that for
u; however, Hirota showed that it eventually leads to a very neat method
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of solution. And the idea is not restricted to the KdV equation: all the
soliton-type equations can be tackled in a similar way (although the
transformation (3.68) is not always the relevant one). In the context of
solitary wave and soliton solutions, which we have already suggested are
of some interest in water-wave theory, this method often provides a
convenient method for their construction. We regard this technique as
a powerful addition to the more general method of solution that is based
on the Marchenko integral equation. There are yet other approaches
available, but we believe that Hirota’s method is sufficiently simple and
useful to warrant a place in this text.

We describe the elements of the method by developing the details for
the KdV equation

u, — 6uu, + u,,, =0,

with

&
u= -—Zwlogf,

where f, i, foxsSir .. —> 0 as x > 400 or x > —oo (see (3.67)). The
process is made a little simpler if, first, we write u = ¢, and then integrate
once in x to yield

b — 3¢:ch + Gpxx = 0, (369)

where the decay conditions on f imply corresponding conditions on
¢ (= —=2f,/f) and these have been used to give equation (3.69). (This
version of the KdV equation is often called the potential KdV equation.)
Now we introduce f so that

& = —2ffe —FSIY bx = —2ffrx — [DISf?

and

Grxx = _z(ffxxxx - 4fxfxxx - 3f)?x)/f2 - 24fxxf)?/f3 + 12f;/f4,

it is clear that when these are substituted into equation (3.69) we obtain
(after multiplication by f 2)

ffxt —fxli +.ffxxxx - 4fxfxxx + 3fxzx =0. (3.70)

This equation certainly appears more difficult to solve than the original
KdV equation, although we do note one significant improvement: every
term is now quadratic in f. So how do we tackle the solution of equation
(3.70)?
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The crucial step was provided by Hirota when he introduced the
bilinear operator, D{'D’(a - b), defined as

oy 8 _d\"(3_2aY
Dr'Dx(a-b) = (at Bt’) ax ox’

for non-negative integers m and n. As an example, let us consider the case
of m = n =1 for which

7] d d 7] 7]
(&'W)(&‘é’”)“(" Db, 1) = (az at)( b—aby)

=a.,b—ab, —ab, + ab,,.

(3.71)

X' =X
t'=1

This is evaluated on x' = x, t' = ¢, to give
D,D,(a-b)=a,b+ab,, — ab, — ab,
and if we choose the special case of a = b, for all x, ¢, then
D,D,(a - b) = 2(aa,, — a,a,). (3.72)

Another useful example is to find Di(a - b), so that now m = 0 and n = 4;
this yields

4
(i - i/) a(x, Db(x', t")

x Ox
= axxxxb - 4axxxbx’ + 6axxbx’x’ - 4axbx’x’x’ + abx’x’x’x’-
We evaluate on x’ = x, ¢’ = ¢, and again make the special choice a = b, to
give
Di(a : a) = 2(aaxxxx - 4axaxxx + 3a)2cx)- (3 73)

It is immediately clear, if we compare equations (3.72) and (3.73) with
(3.70), that our equation for f can be expressed as

(DD, +DH(f - /) =0, (3.74)

the bilinear form of the KdV equation.
Before we describe how the bilinear equation, (3.74), is solved, we offer
two comments. First, examination of the differential operator

d aN\"/d a\"
('5;4"87) <§+W> a(x, t)b(x t)

x

I=I
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which is left as an exercise, shows that this is precisely the familiar
derivative of a product:

g
atmox™

In other words, Hirota’s novel differential operator simply uses the dif-
ference — rather than the sum — of the derivatives in ¢z and ¢’, and in x and
x'. Second, and often used as a guide in the quick construction of a
bilinear form, is the interpretation of D, and D, as the conventional
derivatives 8/dx and 8/dt, respectively. If we use this interpretation of
D, + D2 then this operator becomes the linearised operator in the KdV
equation, obtained by letting u — 0. Thus the underlying structure of the
bilinear form is that of the corresponding linear differential equation, at
least here for KdV equation; we shall meet later some other equations
which possess this same property.

In order to solve the bilinear equation we require some properties of
the bilinear operator, and in particular the two results

(ab).

"t
D!D%(a-1) =D}DYl-a) = Pyl for m+ n even, (3.75)
and
D'Di{exp(6)) - exp(62)} = (w2 — )" (k1 — k)" exp(6; +6,),  (3.76)

where 6; = k;x — w;t + «;; these and other properties are explored in
Q3.24. Now for B any bilinear operator and

f=1+¢, 6=2kx—x,)— 8k, (3.77)
(see (3.74)), then

B(f-f)=B(1-1)+B(1 -¢) + B’ - 1) + B(e’ - ¢°).
Consequently, with (3.75) and (3.76), the bilinear form of our KdV
equation gives
(DD, + DH(f - ) = 2Q2k)(—8K>) + (2k)*}e’ = 0

which confirms that (3.77) is an exact solution (which, of course, gener-
ates the solitary-wave solution). The extension of this approach to the
construction of the N-soliton solution is now addressed.

The neatest way to set up this problem is to introduce an arbitrary
parameter e, with the assumption that f can be expanded in integral
powers of &. The aim is to show that the series that we obtain terminates
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after a finite number of terms; in this situation we may then arbitrarily
assign ¢&: for example, ¢ = 1. Thus we write

f=1+§js”fn(x, )]
n=1

and then the general bilinear form becomes

B /)= B(L- D+ eB(fi - L +1-£)+ 6B - L+fi - fi +1-£3)
+...+8’B(ifr_m.fm)+...=0
m=0

where fy = 1. We know that B(1 - 1) = 0, and we ask that each coefficient
ofe'(r=1,2,...) be zero, so

B(fi-1+1-f))=0, (3.78)
B(fy 1+fi-fi+1-£)=0, etc. (3.79)
Because B is a linear differential operator, we have
Ba-b+c-d)=B(a-b)+ B(c-d)

and then equation (3.78), for our KdV equation, becomes
afo @
22+ ) =
ox (81 + Z)x3)/1 0

a &
Dfi=0, D=—-+_—,
4 a  axd
where we have again used fi,, fi,, ... = 0 as x &> 400 or x = —o0. The
next two equations in this sequence are written as

or, after one integration,

(3.80)

3 9
2 (D) =B - 2-(OA)=-Bfi -i+f-f). (8D
where B = D, D, + D%. It is immediately clear that a solution of this set is
fi=e’, 6=kx—Kt+a; f,=0, Vn>2,

where we have written k here for 2k and o for —2kx,; see (3.67). Thus we
have a solution which terminates after » = 1, and so we may set ¢ = 1;
this recovers (3.67) for the solitary wave. (We note that the presence of ¢
is equivalent to a phase shift, but the term ¢ already provides an arbitrary
phase shift in the solution.)
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The equation for fi, (3.78), is linear and so we may construct more
general solutions by taking a linear combination of exponential terms; let
us choose

fi =exp(8) +exp(8y), 6 =kx—klt+a;

The equation for f, from (3.81), now becomes

2. (Dfy) =~ Blexp(®)) - exp(6)) ~ Blexp(®) - xp(6))
~ Blexp(6;) - exp(6))) — Blexp(@s) - exp(@)

and the terms involving either only 6; or only 8, are zero. Otherwise, we
see that

2%(sz) = —2{(ky — k)(k3 — k) + (ky — ka)*}exp(6) + 62)
and this equation clearly has a particular integral of the form
fr = Aexp(6; + 6,). (3.82)
This yields the equation
A{=Gk1 + k)] +K3) + (k1 + ko))
= (k1 — ko) (K} + ki + K3 — (ki — o)}

for the constant 4, which simplifies to give

h—by

A=|—-=). 3.83
(kl +k, 689
We use only the particular integral for f;; any additional contributions (as
part of a complementary function) could be moved from f, to f; — at least

when ¢ = 1 — and we have already made a choice for f;.
The equation for f; then becomes

)
2&(Df3) = —AB{exp(6,) - exp(6; + 6,)} — AB{exp(6; + 6,) - exp(6;)}
— AB{exp(6,) - exp(6; + 6,)} — AB{exp(6; + 6>) - exp(6,)}
= —2A{—k,(k3) + k3} exp(26; + 65)
— 24{~k(K}) + k}} exp(26, + 6,)
= 0,
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and so a solution for f3 is f3 = 0. The equation for fj is

d
2o Of)=-Bth -fi+fo- o +fs 1)
=0
since f3 = 0 and f, is a single exponential (from (3.82)); it is clear, there-

fore, that we may choose f, =0, Vn > 3. Thus we have another exact
solution which, for ¢ =1, is

ky — k,\?
= 1 +exp(;) + exp(@) + ( ‘ 2) K@ +8)  (3.84)
ki +k,

this generates the most general two-soliton solution of the KdV equation,
previously written down in (3.58).

This method of solution can be extended to produce an exact solution
which represents the N-soliton solution of the KdV equation. This is
accomplished simply by writing

N
fi=_exp(6)
i=1

and then it can be shown that the series for f terminates after the term fj.
The construction of this solution is routine but rather tedious and there-
fore will not be pursued here, although the case N = 3 is set as an exercise
in Q3.25, and a 3-soliton solution is depicted in Figure 3.6. The form that
[ takes, for example as given in (3.84) for N = 2, represents a nonlinear
superposition principle for the soliton solutions from which their explicit
construction follows directly.

Finally, the other nonlinear equations that we have introduced in
Section 3.2 can also be written in bilinear form. (The details are left for
the reader to explore in the exercises.) Thus we find that the 2D KdV
equation

(u — 6ur, + uyry)y + 3uyy =0
has the bilinear form
(DD, + D} + 3D)(f - /) =0,

and the cKdV equation

u
u,+z—6uux+uxxx =0
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Figure 3.6. A 3-soliton solution of the Korteweg—de Vries equation, for k; = 1,
ky =2, and k3 = 3, at times ¢t = 0.1(a), 0.35(b), 0.5(c), 1(d) and 2(e). Note that —u
is plotted here.
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Figure 3.7. A 2-soliton solution of the 2D Korteweg-de Vries equation, for
Iy =L =1and k; =1, k, = 2. Note that —u is plotted here.
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Figure 3.8. A resonant 2-soliton solution of the 2D KdV equation, for /; =0,
L, = -3, k; =2, and k, = 3. Note that —u is plotted here.
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becomes
4
(DD+D +2ta)(ff) 0
where
9 of
53;(/“1‘) _fa9

in both these equations the transformation is
&
= ——2—log f.

With this same transformation, the Boussinesq equation
U — Uy + 3(u2 )xx — Uxxxx = 0
has the bilinear form
(D7 - D3 = DY)(f -f) = 0.

As the exercises should demonstrate, the construction of solitary wave
and soliton solutions from the bilinear form is, in most cases, a fairly
straightforward and routine operation. A 2-soliton solution of the 2D
KdV equation is shown in Figure 3.7 (see Q3.30), and a resonant solution
is shown in Figure 3.8 (see Q3.32). A solution of the Boussinesq equation,

which describes both head-on and overtaking soliton collisions, is given
in Figure 3.9.

3.3.4 Conservation laws

We are already familiar with the equation of mass conservation (Section
1.1.1) and how this equation can be integrated in z (Section 1.2.4) to
produce the form

d,+Vl~ﬁJ_=0

(equation (1.38)). This is a general equation for water waves, where
d = h — b is the local depth and

ﬁl=/‘“LdZ.

b

Furthermore, in the case of one-dimensional propagation with decay
conditions at infinity, we found (equation (1.40)) that
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s
Q,II'A\ m,o,o.u‘mo

Figure 3.9. A solution of the Boussinesq equation depicting the head-on collision
of two solitons, each of amplitude 2.

f H(x, f)dx = constant,

where A(x,f) =hy+ H(x,?) and H — 0 as |x| — oo; this is a very
convenient and transparent version of the statement of mass conser-
vation in water waves. Of course, this result can be obtained — very
simply — directly from the equations for one-dimensional gravity-wave
propagation:

U, +w, =0,

with

\
p=n and w=n;+e€eun, on Z=1+817 (385)

and

w=0 on z=0; J
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see equations (3.9). Thus, employing the technique of differentiation
under the integral sign, we obtain

3 14+en
I (/ udz) — gun,

0

+ " =0,
1+en

1+en
n,+ix (f udz) =0 (3.86)

SO

from which we get
o0

/ n(x, t)dx = constant. (3.87)

-0

Similarly, for energy (see Section 1.2.5), we obtain directly

9 1 11+sn

“)y2.2 : 2. 2

a;[z” +2f(u2+aw)dz]
0

3 1+en 82
e S BT A -
+8x[ / (2u + oUW +up)dz} =0 (3.88)

0

from equations (3.85); cf. equation (1.47). (The derivation of this result is
left as an exercise (Q3.33), although all the essential details are described
in Section 1.2.5.) The resulting conserved energy in the motion is
therefore

00 I+en
/ [,f + / ® + 82w2)dz] dx = constant, (3.89)
0

—00

where decay conditions at infinity have again been invoked. Generally,
expressions of the form

oT  0X
o ax
where T'(x, ) (the density) and X(x, f) (the flux) do not normally contain

derivatives with respect to ¢, are called conservation laws. If both T and
X, are integrable over all x, so that

0, (3.90)
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X—-> X, as [x] > oo,

where X is a constant, we obtain

%( [ de) =0 or / T(x, f)dx = constant : (3.91)

—00 —00

the integral of T'(x, #) over all x is a conserved quantity (often called a
constant of the motion, especially when ¢ is interpreted as a time-like
variable). We have so far written down the conservation laws for mass
(3.86) and for energy (3.88), as they apply to our one-dimensional water-
wave problem. It is no surprise that there is a third conservation law,
namely the one that describes the conservation of momentum. There has
been no need to express this in the form (3.90) in our earlier work, but we
will now show how it can be obtained very simply from equations (3.85).
(Ideas that are closely related to all three conservation laws have been
developed in the discussion of the jump conditions in Section 2.7.)

Referring to equations (3.85), we see that the first added to eu times the
third yields

U, + 2euu, + e(uw), + p, =0,
and so
1+en
/ (u, + 2euu, + p,)dz + e[uw](1)+€'7 —0.
0
The boundary conditions that describe w then give

l+en
/ (ut + 2suu, +px) dz+ 6us(’"t + Eusnx) =0
0

where u, is u(x, t, z) evaluated on the surface, z = 1 + £7. Again, applica-
tion the method of differentiating under the integral sign produces
1+4en I+en

b

2 2 [l
% /udz +& /(eu +p)dz—§sn =0 (3.92)
0 0

where we have used the surface boundary condition for p (where p = n).
Equation (3.92) is the conservation law for momentum which, with an
undisturbed background state in place, gives
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%) 1+en
f f udz | dx = constant, (3.93)
-00 0

the conserved momentum in the motion. Thus, as we must expect, the
passage of the gravity wave (within the confines of our model), conserves
the three fundamental properties of motion: mass, momentum and
energy. The question that we now address is how these conservation
laws — and associated conserved quantities — manifest themselves in our
various KdV-type equations.

We begin this discussion with the KdV equation itself; the leading-
order contribution (779) to the representation of the surface wave satisfies
equation (3.28):

1
206, + 3nonos + 3 Mogge = 0

or
a (3, 1
o 2no) + 3_5 (5 Mo + 3 '703;) =0,
when written in the form of a conservation law. With the assumption that

the wave decays at infinity, so that 5y — 0 as |§| - oo (which is
equivalent to |x| — oo for any ¢), we have

o0
[ no d§ = constant; (3.94)
—00

this is the conservation of mass, equation (3.87). Another conserved
quantity is obtained by multiplying the KdV equation by 7y, to give

3 5 a5 1 1,
a(ﬂo)‘i'a—s[ﬂoﬁ'g(ﬂonosg—iﬂog =0,

SO
00

/ no d& = constant. (3.95)

—o0

It is clear that the two constants of the motion, (3.94) and (3.95), are
general properties of all solutions of the KdV equations which decay
rapidly enough at infinity. (This also means that, for example, periodic
solutions do not satisfy these particular integral constraints, although an



248 3 Weakly nonlinear dispersive waves

analogous set of results can be obtained if the integral is taken over just
one period.) The second result, (3.95), should — we must surmise — corre-
spond to the conservation of momentum, equation (3.93). Now from
Section 3.2.1 we find that

1 1, 1,
u~uy+eym+ 3737 | =g Ho=To

(where the KdV equation has been used to eliminate the term g, in u;),

SO
oo 14+en oo 1 1
/(/ udz) dx ~ /{uo+€(uo'lo+771+§'70$ —Znﬁ)]dtf
—00 0 —00

00 1
&
0

—00

[ o]
3¢
= /(770+8771+I’7%>d§,

—00

which is correct at O(g). The first two terms in this integral appear in the
conservation of mass, and consequently we must have

o0

/ n% d€ = constant,

—00

which recovers (3.95). (The confirmation that the integral of n; alone is
itself a constant follows directly from the equation for n; obtained in
Q3.4)

We have obtained two conserved densities for our KdV equation, 1,
and n(z), which correspond to the conservation of mass and momentum,
respectively. We can anticipate that the equation possesses a third
conserved density, which is associated with the energy of the motion.
To see that this is indeed the case, we construct 3173 x (KdV) minus
(2n0¢/3) x (8/38)(KdV) to give

1
313 (27701 + 3nomos + 3 '70;:55)

2 1
— 3 Mg (2n0gr + 3nomoe: + 3'7(2)5 + 3 Noggee) = 0
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which can be written as

a3 1, (9 4, > ) 2 1,
25 <770 —3 '70;) + % (Z 1o + MoMoes — 2NoMos — g MogMoges + g Mogs | = 0.
This is in the form of a conservation law, so we obtain a third conserved

quantity

o0
J (-t semoman, 9

-0

which is indeed directly related to the total energy given in (3.89) (see
Q3.34). (In the context of the KdV equation treated in isolation, it would
seem reasonable to regard (3.95) as a statement of energy conservation,
since the integrand is a square (that is, proportional to (amplitude)?).
However, as we have seen, when the appropriate physical interpretation
is adopted, it is (3.96) which corresponds to the conservation of energy.)

The existence of these three conservation laws is to be expected since
our underlying water-wave equations exhibit this same property (where
only conservative forces are involved). However, there is now a real
surprise: the KdV equation possesses an infinite number of conservation
laws. In the ecarly stages of the study of the KdV equation (Miura,
Gardner & Kruskal, 1968), eight further conservation laws were written
down explicitly (having been obtained by extraordinary perseverance);
for example, the next two conserved densities are

45
Tﬂg - 15'70'7%5 + '7(2)55

and

8
6317(55 - 210'7%'1%5 + 28'70'7%;5 ~9 ﬂ%gsg;

see Q3.35. The existence of an infinite set of conservation laws (which will
not be proved here) relates directly to the important idea that the KdV
equation, and other ‘soliton’ equations, each constitute a completely
integrable Hamiltonian system; equivalently, this is to say that the KdV
equation can be written as a Hamiltonian flow. This aspect of soliton
theory is quite beyond the scope of a text that is centred on water-
wave theory, but much has been written on these matters; see the section
on Further Reading at the end of this chapter.

Finally, we briefly indicate the form of some of the conservation laws
that are associated with the standard KdV-type equations. We shall use
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here the simplest — we might say normalised — versions of these equations
that were introduced in Section 3.3. First we consider the concentric KdV
equation, (3.64):

u
2t
It is clear that, for the first two terms, ¢'/2 is an integrating factor; thus we
multiply by r'/2 to give

Uy + = — 6un, + Uy, = 0.

0 0
&(tl/zu) + P {tl/z(uxx - 3u2)} =0,

so 1'%y is a conserved density. This describes the geometrical decay that is
required to maintain the conservation of mass (cf. equation (3.31)).
Similarly, if we multiply by 2¢u, then we obtain

0 2
&(tuz) +o {tQuu,, — % — 4?)} =0

so that another conserved density is #°; further conserved densities are
discussed in Q3.39.
The Boussinesq equation, (3.43), is
H, — Hyy + 3(H?) yx — Hyxxx =0
which, for our current purpose, is most conveniently written as the pair of
equations
H,=-Uy, U, +Hy—3(H")y+ Hyxxy =0;

cf. equation (3.38). The second equation here is obtained after one inte-
gration in X, coupled with the assumption of decay conditions as
|X| — oo. We now obtain directly

[ H,dX = —[U®,; f U,dX = —[H — 3H? + Hyy >,
o —o0
and so
0 o0
/ HdX =constant and / U,dX = constant. 3.97)
oo —oo

The first of these is the conservation of mass and the second is the con-
servation of momentum, an identification which becomes clearer if we
revert to the original x, where
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X
X=x+¢ [ ndx

—00

(see Section 3.2.5), so that
(e o}
f U(1 + en) dx = constant;

—00

cf. equation (3.93). A few other conserved densities are given in Q3.40.
Our third and final example is the two-dimensional KdV equation
which is written here as

Uy — 6un, +uyy +3v, =0, u, =v,

see equation (3.61) and Section 3.2.2. No longer do we have the classical
form of a (two-dimensional) conservation law: u is a function of three
variables here. This complication produces a development that is less
straightforward. When we integrate the second equation with respect to
x, and impose decay conditions at infinity, we obtain

a oo o0
5; [ udx}] =0 so [ udx = f(o).
—00 —o0

However, this is true for all y; let us evaluate the integral for any y that is
far-removed from any wave interaction in, say, the N-soliton solution.
(The N-soliton solution of the 2D KdV equation describes the interaction
of waves that asymptote to plane oblique solitary waves at infinity; see
Section 3.3.2 and Q3.19.) In this situation, the function f(¢) is a constant;
consequently we obtain

[e o}

[ udx = constant, (3.98)
—00
at least for this class of solutions. A similar argument yields the result
o0
/ vdy = constant; (3.99)
—00
these two conserved quantities are analogous to the pair (3.97) that we

derived for the Boussinesq equation. To proceed, the integral in x of the
first equation of this pair yields
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8 o 8 o0
e 2,2 3] v =
at(/‘udx)+[ 3u +uxx]_oo+3ay(/vdx) 0

—00 —00

and so, making use of (3.98) and the same argument as above, we also
have

o0
/ vdx = constant. (3.100)
—oQ

The obvious interpretation of equations (3.99) and (3.100) is that
momentum is conserved in both the y- and x- directions; other conser-
vation laws are even less straightforward to obtain and to interpret.

As an intriguing postscript, we mention the equations for shallow
water (obtained in Section 2.6). Following the choices we made there
(of setting £ = 1 and writing 1 + en(x, £) = h(x, t)), these equations are

U +uu,+wu, +h, =0; u,+w,=0,
with (3.101)
w=h+uh,onz=hand w=0o0nz=0.

We have seen that our water-wave equations, (3.85), admit just the three
physical conservation laws (of mass, momentum and energy). On the
other hand, all our KdV-type equations — that is, completely integrable
equations — possess an infinity of conservation laws. The question we
pose is: how many conservation laws does the set (3.101) possess? The
obvious answer, surely, is just three; let us investigate further.

First, the now very familiar procedure of forming

h h

3 3h
[uxdz+[w]g=a(/udz) +2 =0
0

0

yields the conservation of mass

o0
/ h(x, t) dx = constant, (3.102)

-00

provided decay conditions obtain. Next, the second equation in (3.101) is
multiplied by » and added to the first to give

u, + 2uu, + (uw), + h, =0,
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so (cf. equation (3.92)) we obtain

h h
] all, s _
8t(fudz) +&(§h +/u dz) =0,

0 0

from which we obtain the conservation of momentum

[ h
[ ( / udz) dx = constant. (3.103)

—o0 \0

Finally, multiply the first equation by u to produce

d (1 3 (1 ;5 d (1, 1, d _
3t(2u2)+6x(3u>+az(2uw) 2uwz+a—x(uh) hu, =0

and then substitute from the second equation for w, and for u,:

(1, d(1, 3 (1 , B
since h = h(x, t) only. Consequently the integration in z, coupled with
differentiation under the integral sign, yields

h h
ajlt., 11, ad 1, _
8tl2h +2/u dz]+&[[(§u +uh)dz]_0,
0 0

SO
00 h
/ (h2 + f u? dz) dx = constant, (3.104)
—00 0

the conserved energy. These three conserved quantities, (3.102), (3.103)
and (3.104), are to be compared with those derived earlier ((3.87), (3.93)
and (3.89)). No surprises here: we have derived the expected conservation
laws for mass, momentum and energy.

We now explore an extension of this process by multiplying the first
equation of (3.101) by u? (and follow the development described by
Benney (1974) and Miura (1974)), to give

a(l 4 a (1 4 2 21 _q
3t<3u)+ax(4u)+wuuz+uhx_0,
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this is rewritten as

A\ a1, 3 (1 4 1, 3
3t(3u)+8x(4u +u‘h +Bz FEW —3uwz—2huux_0, (3.105)

The same equation is multiplied by 4 to produce

(hw), — uh, + huu, + whu, + (% h2) =0
X

which is added to equation (3.105) to yield

at(§" +hu)+a(3u +u2h+2h)

3 /1 4
+ - (—3—u w) — huu, — uh, + hwu, = 0. (3.106)
Here we write
hwu, = (huw), — huw,

and then introduce
h h
Wit + ]ux dz=0; thatis, A +m, =0, m= /udz,
0 0

to give

hwu, — uh, — huu,, = (huw), — huw, + um, — huu,,
= (huw), + (um), — u,m = (huw), + (um), + (mw),.

Thus equation (3.106) becomes
2 (1u3 + hu) +i (1u4 + h? +%h2 + um)

ar\3 ax\3
+3 w lu3+hu+m =0
dz 3 -

which provides a fourth conservation law which, after an integration in z
over (0, h), yields

1 1 1 1
(§m3 + hml)t+(§m4 + hmz +§m% +§h3)x= 0,
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h
m, = /u”dz.
0

Indeed, as Benney and Miura demonstrate, the set of equations (3.101) —
like our special evolution equations — possesses an infinite set of conser-
vation laws; see Q3.42 and Q3.43 for more about these laws.

We have now introduced some of the important equations of soliton
theory that arise in the study of water waves, together with a description
of some of their properties. We now extend our studies to show how
other physically relevant properties can be introduced into our nonlinear
evolution equations (although the resulting equations that govern the
wave propagation are unlikely to be completely integrable).

where we have written

3.4 Waves in a2 non-uniform environment

The equations that we have derived so far — the KdV family of equations
— appear to arise in very special circumstances. In particular, we have
assumed that the water is stationary and that the bottom is both flat and
horizontal. It is clear that any application of these methods to situations
that model physical reality more closely must encompass variable depth
and an underlying (non-uniform) flow, at the very least. Certainly it
would be a disappointment to find that all the interesting phenomena
of nonlinear wave propagation (that we have described earlier) occur
only under ideal conditions that hardly ever obtain in the physical
world. One of our objectives in this section will be to demonstrate that
the derivation and existence of KdV equations (in water-wave theory) are
fairly robust to changes in the underlying physical properties.
Specifically, we shall see how the derivation of some of the family of
KdV equations is affected by the inclusion of (a) an underlying shear
flow and (b) variable depth. In addition we shall briefly look at some
properties of obliquely interacting waves.

3.4.1 Waves over a shear flow

The purpose here is to derive the classical Korteweg—de Vries equation,
for long gravity waves, propagating in the x-direction, over water which
is moving only in the x-direction, with a velocity profile which depends
only on z: u=U(z). This is the prescribed underlying shear flow,
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although the terminology that we adopt is not to imply that the profile is
generated by viscous stresses. This description is used in order to indicate
what type of profile could be chosen; in the undisturbed state — no waves
— the governing equations (for inviscid flow) admit a solution for arbi-
trary U(z), provided that the depth is constant; see Q1.13. Thus we set
b=0 for all x in the equations for one-dimensional flow; we use
equations (3.12)—(3.15), where the shear flow is introduced by writing

U(iz)+eu for eu (3.107)

since we want U = O(1) as ¢ — 0. Hence the equations that we shall now
examine are

u, + Un, + U'w + s(uu, + wu,) = —p,,
e{w, + Uwy + e(uwy + ww,)} = —p;;
u,+w, =0,
with v (3.108)
p=n and w=n,+Un.+eun, on z=1+¢ep

and

w=0 on z=0,

where U’ = dU/dz. (We note in passing that, indeed, these equations are
satisfied with u = w = p = n = 0 — no disturbances — for arbitrary U(z).)

The first task here is to determine the nature of the linear problem, that
is, the leading order problem in the asymptotic expansion for ¢ — 0. This
is described by the equations

u+Uu,+Uw=—=p; p,=0; u+w,=0, )
with
p=n and w=n+Un, on z=1 (3.109)

and

w=0 on z=0.

We are interested (at this order) in waves that propagate at constant
speed with unchanging form. Do any such solutions of equations
(3.109) exist? Let us suppose that they do, and so introduce a coordinate
that is moving with the waves at a constant speed c¢; we therefore
transform from (x, ¢, z) to (x — ¢t, z). Our equations (3.109) become

U=-Qus+Uw=—ps; us+w,=0; p=n (0<z<1), (3.110)
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with
w=U=-cn on z=1;, w=0 on z=0. (3.111)

Here we have obtained p(= n) in the familiar way, and have written
E=x—ct.
To proceed, we eliminate u; between the equations in (3.110) to give

’ _ 23 w _—
Uw—U-—-cw,=n or (U—c) az(U—c)—nE’

SO

0

which satisfies the bottom boundary condition (in (3.111)). The surface
boundary condition (on z = 1; see (3.111) again) requires that

/w—@ 1, (3.112)

and then n(§) is arbitrary: the waves propagate at a constant speed (c)
determined by equation (3.112), given U(z), and — at this order — they
move with an unchanging shape which is arbitrary. The equation for c,
(3.112), is very different from that which has appeared in any of our other
work that has led to an expression for the speed of propagation for
gravity waves. This is an important equation in water-wave theory
(and its counterparts appear in other problems which incorporate an
underlying flow); it is known as the Burns condition (Burns (1953),
although it seems to have appeared first in Thompson (1949)). But it
turns out that its real interest is evident in the cases where solutions of
(3.112) do not exist!

Solutions of (3.112) for ¢ exist only provided U(z) #cfor0 <z < 1. If
U(z,) = ¢ for some z, € (0,1) — and U(@0)=c or U(l) =c can never
happen — then the left-hand side of (3.112) is not defined; z = z, is called
a critical level or layer. We shall make a few comments about the nature
of the Burns condition later (Section 3.4.2), but it is sufficient for our
present purposes to assume that solutions of (3.112) do exist. For
example, the simple choice

U(z) = Uy + (U, — Up)z, (3.113)
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where U, and U, are constants, yields

1 1 N
(UI_UO) UI—C UO—-C -

and so

c=%|:U0+U1:I:\/4+(U1 - Uo)z]. (3.114)

This solution describes two possible speeds of propagation, one of which
satisfies ¢ > U; and the other ¢ < Uj. That is, for the linear shear (3.113),
the two speeds of propagation are: greater than the surface speed of the
flow and less than the bottom speed. We note that, for U(z) =0,
0<z<l, (that is, Uy=U; =0) we recover ¢ ==+l (see equation
(2.10)). (The case of a uniform stream corresponds to the choice
Uy = Uy; of. Q2.11)

We now proceed to the derivation of the KdV equation as relevant to
this problem, and to accomplish this we follow the method described in
Section 3.2.1. Thus we introduce a local characteristic variable (¢) and a
far-field variable (1) defined by

E=x—ct, tT=2¢t, (3.115)
where c¢ is a solution of the Burns condition. Equations (3.108) become
(U — ug + U'w + £(u, + uug + wu,) = —pg;

e{(U = o)wg + e(w, + uwe + ww,)} = —p,;

ug +w, =0,
with
r o (3.116)
p=n and w=(U—c)ng+ &(n; + un)
on z=1+¢n
and

w=0 on z=0. J

We seek a solution of this set, as usual, in the form of an asymptotic
expansion

00
q-~ Ze"q,,, e —> 0,
n=0
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where g represents each of u, w, p and 7. Thus, at leading order, we have
(U=cuge +U'wog = —pog;  Po: =0;  tigg + Wy, =0

with
po=mny and wy=(U—c)ny on z=1
and
wo=0 on z=0.

This is, as expected, the linear problem that we have just described: see
equations (3.109)~(3.111). Thus c is a solution of

f(U_c) 1, (3.117)

the Burns condition, and
( dz
wg=(U-=-c —
0= )no;f(U_c)2

-

where we have assumed that uy =0 wherever 7y =0. The solution
(3.118), with (3.117), is valid for arbitrary ny(§, ), at this order; to find
no we must construct the problem at O(e).

The O(e) terms from equations (3.116) give rise to the set of equations

(3.118)

(U — C)ulg + U'w1 + Uy, + Uglo + woly, = =Pis; (31 19)
U —cwee =—p1;; g +w, =0 (3.120)
with
P1+1nopo; =m onz—1l (3.121)
w1 + nowo, = (U — e)nig + U'nonog + nor + uonog (3.122)

and

wi=0 on z=0. (3.123)
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At this stage it is convenient to introduce a compact notation to cope
with the integrals that arise, namely

[ dz
L(2) = / T—o (3.125)
0

then, for example, the Burns condition (3.117) becomes simply

L) (=hL) =1 (3.126)

Similarly, equations (3.118) are written as

wo = (U — hne; u=—{(U—0)"'+U'L}ng; po=mn (3.127)

and then from equations (3.120) and (3.121) we obtain

1
P1 = 0y + Noge /(U — o/’ Ldz.
z

Now we eliminate ;s between equations (3.119) and (3.120) to give

w

W=} W=7+ U'hnee = (U = ™ + UL momae

1
+ (U = QU Bngnos = g + s f(U - o)’ Lz,
z

and then the solution which satisfies the bottom boundary condition,
(3.123), can be written as

I [ Ul U'lL
wp=(U-o¢) 2 2L g+ | L+ 4 23d2— 2 NoNog
U-c¢ U-o0 U-c
0

z 1
+ Dnge + Nogee /(U -0 I:f(U — c)2lzdz] dz].
0 z
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Finally, the surface boundary condition for wy, (3.121), requires that

1
(Uy = o)mig + Uingnog + o — 2[m + Uil }'707705

I
=(U; - C){<U12l i 2131)'70:

UL Ul
) U =¢)? U—-c

+ (141 +4 )'70'705 + Lyne + -71'70555}

where the additional subscript ‘1’ denotes evaluation on z = 1, and

1121

_ [U(Zl) — c]2
J[ = ///[U(Z) _ C]Z[U(Zz) — C]Z deledZ.

0z 0

After we use I,y =1 (see (3.126)) and simplify, the equation for g,
becomes

—2I3110; + 31a1m070z + J170g2s = O, (3.128)

since 7, cancels identically from the problem at this order.

Equation (3.128) is an altogether satisfying result: it is a (classical)
Korteweg—de Vries equation, since it has constant coefficients (and so
may be transformed into any suitable variant of the KdV equation; see
Q3.1). The presence of an ambient arbitrary velocity profile (and hence
an arbitrary vorticity distribution in the flow) is evident only through the
three constants I3, I;; and J,. Thus a problem that, we might have
supposed, is significantly more involved than for the case of propagation
on a stationary flow, reduces essentially to the same result. Hence non-
linear dispersive waves (for example the solitary wave) can exist on arbi-
trary flows. It is now a simple exercise, first, to check that we recover our
previous KdV equation for stationary flow and, second, to obtain the
form of the KdV equation for any given flow (at least in the absence of a
critical level); see Q3.44 & Q3.45. (More details of this derivation will be
found in Freeman & Johnson (1970); the corresponding calculation for
the sech? solitary wave is described by Benjamin (1962).)

3.4.2 The Burns condition

The derivation of the Korteweg—de Vries equation for flow over an arbi-
trary shear, as we have presented it, is valid only if a critical level does not
arise. If U(z) and ¢ are such that U(z,) = ¢ for some z, (0 < z, < 1), it is
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clear that we must examine the nature of the problem in the neighbour-
hood of z = z, (since, for example, the integrals over z no longer exist). It
turns out that, in the context of inviscid fluid dynamics, a region exists in
the neighbourhood of z = z, (in fact, where z — z, = O(&'/?)) where non-
linear effects are important. The inclusion of the appropriate contribu-
tion from the nonlinearity enables the singularity at z = z, to be removed.
This calculation is, however, altogether beyond the scope of this text;
those interested in this aspect of the problem should consult some of
the references given in the Further Reading at the end of this chapter.
Suffice it to record here that the Burns condition and, indeed, the KdV
equation, are both recovered even when a critical level is present. The
only change from the results that we have described is that all the inte-
grals are now defined by their finite parts, that is, their Cauchy principal
values.
One way to define the finite part of our integrals is as the

Z,~€ 1

finite part as ¢ —> 0+I / f(@»dz+ / f( dz], (3.129)
0

z.te

from which it is clear that the finite part recovers the classical value of any
integral which is defined for all z € [0, 1]. The usual shorthand for the
finite part is to write f for [, or % for I; in this notation, the Burns
condition (3.117) becomes

1
dz
{21 =0f m = 1. (3.130)

It can be shown (Burns, 1953) that, for a monotonic profile which
satisfies U(0) < U(z) < U(1), there are always at least two solutions of
equation (3.130):

c¢>U(l) and c¢ < U(0),

exactly as we mentioned earlier. Depending on the form of the function
U(z) there may, or may not, be one or more critical-layer solutions for
which ¢ = U(z,), 0 < z, < 1. We conclude by noting that both the linear-
shear profile given in (3.113) and the parabolic (Poiseuille) profile

U(z) = U;(2z —2%), U, = constant,
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do not admit any critical-layer solutions; see Q3.46. Two ‘model’ profiles
that do give rise to critical-layer solutions — one each — are discussed in
Q3.47, Q3.48.

3.4.3 Ring waves over a shear flow

In the two preceding sections we have presented some linear and non-
linear aspects of the problem of unidirectional propagation over an arbi-
trary shear flow. We now address the corresponding problem of a ring
wave moving over a (unidirectional) shear flow. We refer to this wave as a
ring wave, rather than a concentric wave (cf. Sections 2.1.3 and 3.2.3)
because it turns out that the wave is concentric only in the case of uni-
form flow (U = constant everywhere). The presentation here will include
some details of the linear problem, and we will mention only briefly the
related nonlinear problem.

The underlying shear flow, exactly as in Section 3.4.1, is written as
u = U(z), and this is given; the wave, however, propagates outwards
from some initial central disturbance. This coordinate mix — rectangular
Cartesian for the shear flow and plane polar for the wave — leads to a
rather involved formulation of this problem. First we recall the governing
equations expressed in rectangular Cartesian coordinates, suitably writ-
ten with our choice of parameters. Thus we use equations (3.1)—(3.4), but
with 8% replaced by ¢; see equations (3.12)~(3.15) et seq. In addition we
introduce our standard representation for a horizontal flat bottom
(b =0), and then replace eu by U(z) + su; see equation (3.107). These
manoeuvres yield the set of equations

u, + (U + ewu, + svu, + U'w + ewu, = —p,;
v+ (U + ew)u, + svv, + ewv, = —p,;
e{w, + (U + ew)w, + gvwy, + eww,} = —p,;
Uy +v,+w, =0,
with (3.31)
p=n and w=un+(U +eun, +evn,

on z=1+4e¢n

and

w=0 on z=0.
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Now we introduce a plane polar coordinate system which is moving at
a constant speed c in the x-direction; we shall make a suitable choice of ¢
later. Thus we transform (x, y, {) — (r, 6, t), where

x=ct+rcosf, y=rsinb (3.132)

and, correspondingly, we define the velocity perturbation in the (x, y)-
plane by the transformation

u—> ucosf —vsing, v— usinf+ vcoso, (3.133)

so that (,v) now represents the perturbation velocity vector for the
horizontal components of the motion, written in the polar coordinate
frame. Further, we choose to describe a wave whose wavefront has
reached an appropriate far-field (so that we may, eventually, construct
the relevant KdV equation); thus we define

E=rk(®)—t, R=cerk(d), (3.134)

where the wavefront is represented by & = constant and k(6) is to be
determined. (A concentric wave corresponds to the case k(6) = constant,
for all 6.) This choice of far-field variables, (3.134), is to be compared
with those used in Sections 3.2.1 and 3.2.3; in particular, in this latter
case, we see that (3.134) is equivalent to setting § = ¢ there and then
writing ¢ for &°.

The set of equations (3.131), under the transformations (3.132)-

(3.134), becomes

k.
(D1 + €Dy + D3 + €2D)u+ e(U — c)EvsmO + U'wcos8

ko?
—& R = ks +epr);

k. .
(D) + €D, + D3 + 82 Dg)v — &(U — c)ﬁusme — U'usin®
2 kuv

k
Te& 5= —k'(p; + epr) — € RPe

e{(Dy + eD; + €Dy + 2 Dw} = —p,

3.135
kug + k've +w, + elkug +%+k’v1¢ +%'Ug)=0, [ ¢ )

with

onz=1+e¢en

p=n and w=(D;+eD,+e*Dn+ e(ku+ k'v)n, }
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and
w=0 on z=0.

The differential operators (D,,) are defined by

D, ={-1+4[U(z) — cl(kcos b — k’sin())}a—z;

R i

L8 kv 9
D4E(ku+k’v)ﬁ+iv%.

D, =[U(z) — c]{(kcos9 - k'sin@)% - Esineil;
_ NN
Dy =(ku+k v)a§+waz,
where k' = dk/df and, as before, U’ = dU/dz. (The routine but rather

tedious calculation that leads to equations (3.135) is left as an exercise.)
We seek an asymptotic solution of the set (3.135) in the usual fashion:

o
q~ Zs"qn, & — 0,
n=0
where g represents each of u, v, w,p and n. The leading-order, linear

problem is therefore

—tige + (U — c)(k cos 6 — k' sin O)ugs + U'wgycos @ = —k'py;;
—vge + (U — c)(kcos @ — k' sin O)vgs — U'wy sin@ = —k'pos;
Po: =05 kugg + k'vgg + wo, =0,

with
Po = no and wy = —ngs + (U — c)(kcos — k' sinf)ng: on z =1
and
wo=0 on z=0.

In common with our previous calculation of this type, we see that py = 7,
for z € [0, 1], and then adding the first equation x k to k' x the second
and eliminating (kugs + k'vgg) with the equation of mass conservation
yields

—-FW()Z -+ FZW() = —(k2 + k/z)T]():g-
where we have written

F(z,0) = —1 4+ {U(2) — c}(kcos8 — k' sin6).
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Thus

z

Wy = (k2 -+ kIZ)FT]oe [
0

dz
F?
satisfies the bottom boundary condition, and then the surface boundary

condition for wy requires that

dz

1
”2 —
(& +k )0/[1 —{U(2) — c}(kcos & — k'sinO)F . (3.136)

for arbitrary n,.

Equation (3.136) is a generalised Burns condition, which reduces to our
previous Burns condition, (3.117), when we introduce the choice for one-
dimensional plane waves: k(6) = 1, 8 = 0 and write ¢ for 1 + ¢ (since the
characteristic, €, contributes a wave speed of 1). In this case, equation
(3.136) is used to determine ¢ for a given U(z). However, in the context of
a ring wave, this equation is used to define £(6) given both U(z) and the
speed (c) of the frame of reference. (We note that, in this frame, the speed
of the outward propagating wave is 1/k(6) at any 6, provided k() > 0.)
The derivation that has been described assumes that a critical level, z = z,
(z. € (0, 1)), is not present; if a critical level does occur, so that
F(z.,0) =0, then the generalised Burns condition is still (3.136) but
now interpreted as the finite part of the integral.

A simple example of the use of the generalised Burns condition is
afforded by the choice (see Q3.47)

U, d<zxl

Uz = { Uyz/d, 0<z<d, (3.137)

where U; and d € [0, 1] are constants; this model shear flow was used in
Johnson (1990), where more properties of the ring wave are described.
The generalised Burns condition (3.136), with (3.137), becomes

72 1—-d
(& +k )[ [1 — (U, — c)(kcos6 — k’ sin 0)

+[ d/{U,(k cos6 — k' sin 6)} ]" o
{1 — (Uyz/d — ¢)(kcosf — k' sin6)} 0} -

and we now make a choice for ¢ (the speed of the polar coordinate
frame). The form of this expression for k(6) suggests that we set
¢ = U;, an obvious selection on physical grounds since this ensures
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that the frame is moving at the surface speed of the shear flow. Our
equation for k(6) then reduces to
(P + k[ —d+d/{1 + Uj(kcosd — k' sinp)}] = 1, (3.138)

a nonlinear first-order ordinary differential equation for k(6). This
equation possesses, quite clearly, the general solution

k(6) = acos 8 + b(a)sin b
where (3.139)
@+ —d+d/(1+aU)} =1,

an approach that can also be adopted for general U(z); see Q3.49.
Unfortunately, solutions of the form (3.139) for any a > 0 (provided
that b is real) do not admit £(6) > 0 for all 6: at some 8 € (0, ) (and
also again for 8 € (0, —n)), k(6) = 0 and thereafter k(6) < 0. Thus at two
(symmetric) points the wavefront has moved to infinity (that is,
r = {t + constant}/k(6) — oo) and, where k(0) < 0, it is moving inwards.
But we are seeking an outward propagating wave and this, it turns out, is
represented by the singular solution of equation (3.138). This solution (see
Q3.52) can be written in the form

k(6) = acos 8 + b(a)sind
with
tanf = —1/b'(a) : (3.140)

where

@+ -d+d/1+aU)}=1.

Three examples (d =0.5; U; =0.5,1,2) are presented in Figure 3.10,
which shows clearly how the shear flow distorts the wavefront from the
circular; these results have been obtained directly from equations (3.140)
that define the singular solution.

Finally, we briefly state what happens when we construct the problem
that arises at O(¢). As we know, at this order, we shall find that », is
arbitrary, but we expect to obtain a KdV-type equation that describes the
evolution of ny. The calculation follows the lines of that already presented
in Section 3.4.1, although it involves more complicated integrals that
define the coefficients of the equation for 7. This equation takes the form

B C
Anor + ﬁno + }7709 + D’Ioﬂog + E"OE;; =0, (3.141)
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Figure 3.10. The shape of the wavefronts for the ring wave over a shear
flow (equation (3.137)) for 0 <9 <, with d =0.5 and U; =0.5, 1, 2. The
corresponding circular ring wave (U; = 0) is included for comparison.

where A—E are the coefficients (which here depend on 6); more details can
be found in Johnson (1990). This equation is clearly of KdV-type but, for
arbitrary U(z) (and therefore general coefficients), it is not one of the
family of completely integrable equations. It does, however, recover the
concentric KdV (cKdV) equation when U(z) = constant (and we set
k@) =1) for then F(z,6)=-1 and A=2, B=1, C=0, D=3,
E = 1/3. Equation (3.141) can be discussed, in the general case, only
via a numerical approach (which we do not pursue here).

3.4.4 The Korteweg—de Vries equation for variable depth

Another problem of some practical interest is the propagation of non-
linear dispersive waves (such as a solitary wave) over variable depth. We
now address this situation in the case of one-dimensional propagation.
Here, as we shall see, the important decision that we must make concerns
the scale on which the depth variation occurs. In order to explain what is
involved, we consider the classical situation that gives rise to the KdV
equation (described in Section 3.2.1). We have shown that the relevant
scales are

E=x—t, Tt1=c¢t,

for right-going waves; thus x — ¢t = O(1) and ¢t = O(¢7"). This is equiva-
lent to the choice x — £ = O(1) and x = O(¢~!) (cf. Figure 1.7), which is
the convenient interpretation to adopt here, for, if the depth varies on a
scale which is either faster or slower than O(s~!), we shall obtain appro-
priately simplified KdV problems. In the former case, we have a situation
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where, to leading order as ¢ — 0, the depth changes rapidly relative to
any changes due to the natural evolution of the nonlinear wave. On the
other hand, in the latter case, the wave will evolve at essentially the (local)
constant depth. Of course, both these problems are of considerable inter-
est in their own right and they have received some attention — particularly
the latter choice; more details can found from the Further Reading at the
end of this chapter. However, for the development that we present here,
the most interesting case arises when the scale of the depth variation is the
same as the scale on which the wave will naturally evolve even over
constant depth. In the context of the KdV derivations that we have
presented so far, this can be thought of as the ‘worst case’ scenario. Of
course, we may then use this case to gain some insight into the problems
for faster and for slower depth variations; we shall touch on these two
extremes later.

The governing equations for one-dimensional propagation (cf.
equations (3.12)—(3.15) with (3.4)) are

U, + e(uuy + wuy) = —py;
6\{Wt + E(MWX + WWZ)} = =Pz
u, +w, =0,
with (3142
p=nandw=rn,+ecun,onz=1+¢n

and

w=0 on z=0.

The important choice, described above, is to set
b(x) = B(ex),
and we shall usually define B(ex) =0 in x < 0, so that the wave propa-
gates (rightwards) from a region of constant depth. The appropriate
variables to use for the far-field (cf. § = x — ¢, T = ¢f) must accommodate
the variation of wave speed with depth (see equation (2.47) and Q2.33),
and the slow spatial scale (sx). Thus we introduce

1
£ =

—;X(X)—' t, X =ex,

where x(X) is to be determined, so we transform according to
d , 0 a d d

w fETS wmT %
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This makes clear why the factor ¢! is required in the definition of &:
x' = O(1) plays the role of the speed of propagation, ¢ = O(1) (actually
x' is equivalent to 1/c). Further, we anticipate that, for constant depth
(B =0), we shall have x(X) = X = ex and then & recovers our former
expression (x — ¢). The set of governing equations, (3.142), therefore
becomes

—ug + e{u(x'us + suy) + wu,} = —(x'pe + €px);

el—wg + e{u(x'we + ewy) + ww,}] = —p,;
X'ug + euy +w, =0,

with
L (3.143)
p=n and w=—ng+eu(x'ng + eny)
on z=1+4e¢p
and
w=euB'(X) on z=B(X). ’

We adopt the standard form of solution:
00
q~ Zs"q,,, &= 0,
n=0

where g represents each of u, w, p and »; the leading-order problem from
(3.143) is then described by the equations

ugs = X'Pos;  Po: =0;  X'ttgs + wo, =0,
with
Po="no and wy=-—ny on z=1
and
wy=0 on z=BX).

These equations are in a form that we recognise as typical of these
problems; the solution is immediately

po=m 0<z<l; wuy=yx'ng wo=B—-2)x"ne,  (3.144)

where we have chosen u; = 0 wherever 7y = 0. The function wy satisfies
the bottom boundary condition (on z = B), and in order to satisfy the
corresponding surface condition we require
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n__1
=5 (3.145)

where D(X) = 1 — B(X) (> 0) is the local depth. Thus we write

X
x(X) = / X (3.146)
0

VDX

for right-going waves, which agrees precisely with the form given in
equation (2.47). Here, for convenience, we have chosen x(0) =0. At
this order ny(§, X) is arbitrary, so we move to the O(¢) terms, which
will provide the equation for 7.

From equations (3.143) we see that

—u1e + X ugigg + wolp, = —(X'P1e + Pox);
Woe = D15 X'the + oy +wi; =0,
with
P+ 1opo: = m and wy + nowo, =~y + X ugnog [ (3.147)
onz=1

and

wy, = uoB/(X) on z= B(X)

(We note in passing that, at least in this problem, there is no need to
expand yx as

oo
X~ D& xu(X),
n=0

although in other problems this might be necessary in order to obtain a
uniformly valid representation.) Thus we obtain (with x’' = 14/D)

1
4 =%{B(Z— 1) +§(1 - Zz)]ﬂoge + M,

since py, = 0 and we have used (3.144). From the first and third equations
in (3.147), upon the elimination of u;¢, we obtain

1 1
Ugx + Wiz + —uouog + —=Woldy,

D vD

11 L, 1
= —5[‘5 {B(Z— D450~z )]'10;55""715] ~ 75
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which yields

1 1 1 1
wm=B-2{|l—= +— +— + =
1=( )[(@ﬂo)x 2 Moo ﬁﬂox Dmg}
1 1 1 2\ 1 1 B’
_I)_Z_{B(EZZ_Z) +§(Z—?> —533 +B2—§B|n0€§$ +Tﬁn0,

where the bottom boundary condition (on z = B) is satisfied. Finally, the
surface boundary condition requires

2 1 1 1 1
—Ne+—= =—D{|— +— +— + =
Mg Dﬂoﬂog {(@"°)X Dz'loﬂog \/l—)ﬂox D’h;}
1 D’
—-D -
3 770§§'§ J—Bﬂo

in which, as expected, 7, cancels identically, leaving

3 1
2“/_'704\’ + \/—770 += '70’70& + §D770§§§ =0, (3.148)

where D = D(X). This is a variable-coefficient KdV equation, which
clearly reduces to our classical KdV equation, (3.28), when we introduce
the constant depth, D=1:

1
2nox + 3nomgs + 3 Mogge = 0,

although we must now interpret X as t (which is legitimate at this order).

Our new KdV-type equation, (3.148), is not one of the special com-
pletely integrable equations (for arbitrary D(X)), but special reductions
are possible (as for D = 1; see also Q3.53). However, the general equation
can be usefully written by first multiplying by D™/, to give

3 1
2D *no)x + D57 Moo + §D3/4'70§§g =0,

where the first term embodies Green’s law (as described in equation (2.47)
et seq. and in Q2.34). Indeed, it is convenient to introduce

Hy(& X) = D"*n,

so that we obtain

1
— g HoHoe + 3
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Although this equation can be solved in any complete sense only numeri-
cally, we can make some important observations about the nature of its
solutions.

For a wave profile that tends to zero both ahead of and behind the
wavefront, we see that the integral in § of equation (3.149) yields

a 7 3 1 i
—7/4 172 1/2
2d—/H0d$+[§D /H0+§D/H0§§:| =0,
—00

-0

sO
/ Hy(&, X)d& = constant,

which is equivalent to the conservation of mass. However, this does not
describe the correct mass conservation for the water-wave problem. To
see this, consider

/ Hydg = DV4(x) / no(&, X) d§ = constant;

let us suppose that a wave is moving in a region of constant depth (D = 1)
and is carrying a total mass of my; then
(o ¢]
D% [ no(€, X)dg = my.

—00
But the mass carried by the wave is always

o0

[ menas

—00

and this is clearly not conserved as D varies, since

oo}

[m@ﬂ@=%”“@)

—00

The difficulty has arisen because the mass conservation applies to the
complete water-wave problem, and not necessarily to a single element
of the solution taken in isolation — here the solution of our KdV equa-
tion. Indeed, it is this inconsistency which has led to much detailed study
of this problem (particularly in the cases of faster and slower depth
variations, where considerable headway can be made). The important
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observation (see Miles, 1979; Knickerbocker and Newell 1980, 1985) is
that other wave components of smaller amplitude, but which carry O(1)
mass, are required to complete the description. In particular it has been
found that a left-going wave (that is, a reflected wave) is necessary, and
that this supplies the major correction to the overall mass conservation.
(Other conservation laws for equation (3.149) are discussed in Q3.54.)

In conclusion, we briefly describe some properties of the wave compo-
nent that is represented by the solution of the KdV equation, in the two
extreme cases where

D(X):ﬁ(aX), c—>0 or o— .

Of course, a more complete discussion of these problems — and indeed for
the case of o = O(1) — requires a study of the other wave components, as
we have just outlined, but this is beyond the scope of the presentation
here. Nevertheless, the resulting wave evolution does give the correct
picture to leading order in amplitude (even though the mass carried by
the waves is incorrect to leading order).

First, in the case of ¢ — 0, where the depth variation occurs on a scale
that is slower than the evolution scale (X) of the wave, the variable
coefficients in equation (3.149) are treated as independent of X. (This
approach can be formalised by introducing an appropriate multiple-scale
representation:

Hy=Hy£ X, X), X=0X, 0—0)

For example, the solitary-wave solution of this equation can be
expressed, for 7y, as

A 34 1
Ny = D‘1/4H0 = 30860112{ Z"D—g(é' — ED_S/ZA()X) ], (3.150)

where A, is the amplitude of the wave on the constant depth D = 1. We
have chosen to write the solution in this form in order to ensure that the
conservation law in H2, for equation (3.149), is satisfied; see Q3.54 and
Q3.55. An example of the evolution of the solitary wave, according to
(3.150), is shown in Figure 3.11.

The second case that we describe is where the depth variation is fast
(0 = o0) compared with the evolution of the wave. In this situation, the
depth varies rapidly — instantaneously in the limit 0 — 0o — so a wave
moving on one depth must instantaneously begin to evolve as it adjusts to
a new depth. As before, let us consider the example of a solitary wave, of
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n
ﬂ
L5 1
—_— 1 <4
05 1 ) k

-05 1
/ oo

Figure 3.11. A representation of the distortion of a solitary wave (of amplitude 1)
as it moves over a slow depth variation, from depth 1 to depth 0.5.

amplitude 4,, which is propagating in a region of constant depth, D = 1.
Then, directly from equation (3.150), we have that

Hy = Aosechz{%,/uo(g - %AOX)}. (3.151)

Now suppose that the depth changes suddenly from D=1 (in X <0,
say) to D = D (in X > 0); the profile (3.151) will move into X > 0 but
cannot immediately adjust to the new depth. Thus this profile becomes an
initial condition for the KdV equation, (3.149), evaluated for D = Dy:

_ 1
2Hoy + 3D;""* HoHe + 31)(‘,/21{%.&5 =0.

We compare this version of the (constant coefficient) KdV equation with
the standard form (see (3.49)):

U, — 6ut, + Uy, = 0,
which possesses an N-soliton solution if

u(x, 0) = —N(N + sech’x;
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Figure 3.12. A representation of the distortion of a solitary wave (of amplitude 1)
as it moves over a fast depth variation, from depth 1 to 0.451 (which corresponds
to N =3, the 3-soliton solution).

see equation (3.60) et seq. Thus we transform according to

N 11—\ N 2
E =§ 3A0$, X=6D6/2(§ 3A0> X, HO = _ZO D09/4Ho
which gives

HOX’ — 6H0H0£ + H0§§§ =0

an N-soliton solution is possible if
Hy(£,0) = —N(N + 1)sech’t.
But
A 2 o . .
Ho(£.0) = =D, " Hy (€, 0) = —2D7*sech’s,
and so the solitary wave on D = 1 will evolve into N solitons on D = D,

if

1 —4/9
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a result obtained and described in Tappert & Zabusky (1971) and
Johnson (1973). We see immediately that solitons can appear only if
the depth decreases, because N =2,3,... for two or more solitons. (If
the depth increases, then the wave collapses into a nonlinear oscillatory
wave; see Johnson (1973).) An example of 3-soliton production
(N =3, Dy~ 0.451) is shown in Figure 3.12, where n, = D™V*H, is
reproduced.

3.4.5 Oblique interaction of waves

We have already met the two-dimensional KAV equation (Section 3.2.2),
which admits solutions that represent obliquely crossing waves. In that
analysis we were guided by the requirement to find the scaling that led to
a KdV-type equation. Here, we address the problem of obliquely crossing
waves (of small amplitude) directly from the governing equations, with-
out the restriction to producing a KdV-type of balance. This approach
will provide deeper insight into how such waves interact and, indeed, also
provide a different interpretation of the role of the 2D KdV equation.

We shall consider the propagation of a plane wave — perhaps a solitary
wave — moving in an arbitrary direction across the surface of stationary
water of constant depth. However, the surface contains another plane
wave which is also propagating in an arbitrary direction. Thus, as far as
the first wave is concerned, the environment is no longer uniform. (This
section will therefore complete a discussion of various non-uniform
environments, namely: (a) an underlying shear flow; (b) variable depth;
(c) a disturbed surface.)

The discussion of this problem that we shall present will follow closely
the seminal work of Miles (1977a), although we shall cast it in a form that
is consistent with much of our earlier work. This, it turns out, is an
occasion when the most convenient approach is to take full advantage
of the irrotationality of the flow, and so we shall formulate the problem in
terms of Laplace’s equation and the pressure equation; see Q1.38 and
equations (2.132). We replace 8? by ¢ (as before) and set b = 0, so we have

¢ + 8(¢xx + ¢yy) =0 (3152)

o, =¢{n + e(dxnx + ¢yny)}

1 1 onz=1+en (3.153)
N+ ¢+ 58: 58+ ) =0
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and
¢,=0 on z=0. (3.154)

(The way in which ¢, appears in these equations, and particularly the
term ¢2, need cause no alarm since we shall find that, although ¢ = O(1),
¢, = O(e).)

The Laplace equation, (3.152), can be solved in the form of an asymp-
totic expansion in ¢ which satisfies the bottom boundary condition,
(3.154). To see how this proceeds, let us first write

o0
o~ "¢,
n=0
and then
Go02: =0, P12 = —(Poxx + ¢0yy)9 etc,,
and so

1
b0 =1o( 3,0 &1 = =37 (owx H o) +ilx 3, 0),  ete,

each satisfying ¢,, = 0 on z = 0; the structure of this expansion is also
evident from our work in Section 2.9.1. However, in this analysis we do
not wish to be specific, at this early stage, about how f (that is, fy, f1, . ..)
is related to ¢ (and so how 7 relates to &). It is clear that we may write
the solution of Laplace’s equation, and satisfy the bottom boundary
condition, by writing

2n

o0 e
0~ Y o (VS Vi=omt o
n=0 x

ay?’

2n)!

where f = f(x, y, t; ) is arbitrary. Of course, the complete asymptotic
structure of ¢, for ¢ — 0, will be determined once we have settled on
the form of f. The two equations that are required in order to define f
and n are obtained by substituting for ¢ into the two surface boundary
conditions, (3.153), with

00 2n—1

z 7
#:~ 2 G VDT (=0@)

since the first term in ¢ is absent in ¢,. We must evaluate on z =1 + &g
and so, for example, ¢, becomes
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2n—1

Z(l +8n) ey

we shall retain terms in both boundary conditions that will allow us to
find both the leading order and O(g) contributions. Thus equations
(3.153) yield

~(+emViSf +5 VES ~ n, + e(fne +ymy)
and
n+fi— VJ.ft +5 (fx +/;) =0 (3.155)
from which a single equation for f may be obtained:

~(1 = fWVLS +2VAS +fu =5 Vi S+ 26US+SySyn) = O(E).
(3.156)

Equation (3.156) enables f(x, y, ¢; €) to be determined, and then equation
(3.155) gives n(x, y, t; ) directly. It is left as an exercise (Q3.56) to show
that a single plane wave of the form

f=FE, t.8), n=HE t,8), E=kx+1ly—t, t=¢t, (3.157)

where k* + I* = 1 is the dispersion relation, recovers the KdV equation
(cf. (3.28))

to leading order. This wave propagates in the direction of the wave-
number vector (k, /); indeed, it is convenient to write

k=cos8, [ =sinb, (3.159)

2H, + 3HH, +

and then the wavefront moves in the direction that makes an angle § with
the positive x-axis.

The problem that we wish to address is the situation where a
(nonlinear) plane wave, a solution of the KdV equation (3.158), moves
on a surface (in an arbitrary direction) which contains another plane
wave. Our first approach is to seek a solution which comprises two
waves, each satisfying a KdV equation, together with an interaction
between them that is weak (that is, O(¢)); see Q1.49. To this end we
introduce

C=px+qy—t;, p=cosy, q=siny, (3.160)
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and then write

f=FE 1 +G(, )+ el ¢, 1) + OED), (3.161)

where I represents the interaction of the two waves. Direct substitution
into equation (3.156) then yields

— {1 + &(F; + GO Fee + Gy + el + Iy) + 2elkp + gy}
+ %(Féssé + Gyre) + Fig + Gy — 26(Fy + Gpe)
+ ey + 2y + 1) ~ g(Fssse + Gey)
— 26{(kF; + pG,)(kFy + pGy) + (IF; + 4G )IFg + qGy)} = O(?),

where we have used k*> + /> =1 and p2 + q2 = 1. But F; and G, satisfy
appropriate KdV equations (see Q3.56); that is

1 1
2Fg + 3FeFy + 3 Fygyg = 07 2G5 +3G,Gp + 3Gy = 0,

SO we obtain
2{1 —kp+ lq)}I;; - {1 + 2(kp + lq)}(FEG“ + FG,) = O(e) (3.162)

which is the equation for I, at this order of approximation.
The coefficients of equation (3.162) are conveniently written in terms of

kp + lqg = cos@cosy + sinfsin
=cos(8 — ¥) = 1 — 2sin*{(6 — ¥)/2}

and we set A = sin?{(6 — ¥)/2} so that

Further, on noting that F, = G; = 0, we see that equation (3.162) reduces
to

4l — (3 —41) (a_as + a%)F;G; = O(e) (3.163)

which may be integrated directly and so, to leading order, we obtain

I= Grl - 1)(FEG + FG,) (3.164)
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where we assume that I = 0 if either F = 0 or G = 0. The solution for f is
therefore

f=FED+GE 1)+ s(%r‘ — 1)(F§G + FG,) + O(%)

which can be written in the more compact form
f = F(&+suG, 1) + G + suF, t) + O(?), (3.165)

where u = (3/41 — 1); cf. Q1.53.
The surface wave, 7, is obtained from equation (3.155) as

1, 1 1, 1
" =Fs+8(st —nges) +G¢+€(ZG; —gG;;;)

+ s(% -3+ ZA)FsG; +0(?), (3.166)
where F; and G, have been eliminated by using the KdV equations for F
and G, (and by invoking decay conditions at +oc); the derivation of
(3.166) is left as an exercise (Q3.57). An example of the surface profile
described by (3.166), for two solitary waves, is shown in Figure 3.13
(where we have taken & = 0.2 to make clear the nature of the interaction).
This figure also includes, for comparison, the solution for the same pair
of plane waves when the interaction is absent; that is, £ = 0.

The solution that we have described so far assumes that the interaction
between the waves is weak as ¢ — 0 or, equivalently, I = O(1). However,
it is clear from equation (3.163), or from the solution (3.164), that 7
grows without bound as A — 0 (that is, as 8 — ), so that the two
waves approach the parallel orientation. This important observation
was made by Miles (1977a), who proceeded to examine what happens
as A decreases; we shall follow a similar path here. Now, since the inter-
action term is e, and I = O(A_l) as A — O, our weak interaction theory
is not uniformly valid when A = O(g); this has become a strong
interaction. Let us write ¥ = 0 + «, with a — 0; then

A = sin{(6 — ¥)/2} = sin*(a/2) = O(?),
so the wave number (p, g) becomes
(v, q) = (cos ¢, sin ) = (cos b, sin8) + a(—sin 6, cos 6) + O(az)
= (k, D) + a(—1, k) + O(c?).

Thus, as we must expect, the wave number (p, ¢) is nearly parallel to the
wave number (k, [); consequently we must use coordinates based on the
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Figure 3.13. The oblique interaction of two solitary waves, for the case of a weak

interaction, for amplitudes 1 and 1.5, with

(b) £ = 0, no interaction.
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wave number (k, /), and on (—/, k) — this latter suitably scaled. Indeed,
since A = O(?) and the non-uniformity arises for A = O(¢), the relevant
scaling is \/e; further, since (—/, k) is perpendicular to (k, /), the config-
uration that we are led to is equivalent to that employed in the derivation
of the 2D KdV equation (Section 3.2.2).

We introduce

E=kx+1ly—t, =+e(-lk+ky), t=-¢t

cf. equations (3.157) and (3.160), where ¢ is now a (scaled) coordinate
perpendicular to the characteristic coordinate, &. The equation for
f =f(,¢, 1;¢), obtained from (3.156), is therefore

(U efi)fhs + i) + e o — 26l — e — 260 = O,

which simplifies to give

1
Hee + Hefys + 3 S + S5 = O

And so, finally, with n ~ —f, ~ f; (see equation (3.155)), we obtain for the
surface wave

1
(2n; + 3nme + 3 Neee)s + Nge = 0,

to leading order: the 2D Korteweg—de Vries equation (Section 3.2.2,
equation (3.30)). All that we have written about this equation is now
applicable here.

In our earlier discussion of the 2D KdV equation (Section 3.2.2), we
were guided by the requirement to obtain a KdV-type equation which
incorporated some (weak) dependence on a transverse coordinate. This
was a purely ‘theoretical’ exercise, whose success rested on a very special
and precise choice for the way in which y (here, ¢) appears in the equa-
tion. What we have now demonstrated is that the 2D KdV equation
arises quite naturally as the appropriate equation for the strong inter-
action of obliquely crossing waves. The interaction becomes more pro-
nounced (eventually leading to a strongly nonlinear interaction) as the
wave configuration is more nearly that of parallel waves. We can inter-
pret this situation as one in which the waves interact over a much larger
distance, thereby producing a greater effect — distortion — one upon the
other.

This concludes all that we shall present in relation to the Korteweg—de
Vries equation and other members of the family. We have demonstrated
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how the equations can arise in many different situations and, in particu-
lar, how they are relevant in configurations that model physical phenom-
ena more closely (such as variable depth and shear flows). There is much
that we have not included, not least the extensive breadth and depth of
ideas that now constitute soliton theory. The exercises to some extent,
and the Further reading more so, enable the interested reader to take
many of these ideas much further.

Further reading

There are many texts now available that describe either general or very

specific aspects of soliton theory; some of these texts are listed below. The

derivation and properties of the various members of the KdV family of
equations that arise in water-wave theory are described mainly in
research papers; we provide a small selection for the interested reader.

3.2 Two texts that cover some of the ground that we have described here
are Infeld & Rowlands (1990) and Debnath (1994). Various deriva-
tions and discussions of these equations will be found in Korteweg &
de Vries (1895), Kadomtsev & Petviashvili (1970), Miles (1978, 1981)
and Johnson (1980).

3.3 A few of the texts that provide most of the essential features of
soliton theory are Lamb (1980), Ablowitz & Segur (1981), Dodd et
al. (1982), Drazin & Johnson (1994) and Ablowitz & Clarkson
(1991). The texts by Lamb and Drazin & Johnson, in particular,
present an elementary introduction to many of the ideas. More
advanced texts, generally touching on deeper issues, are Calogero
& Degasperis (1982) and Newell (1985). An excellent introduction
to the ideas, coupled with a description of some simple experiments,
is provided by Remoissenet (1994). In addition there are publications
that describe specific topics in soliton theory: Rogers & Shadwick
(1982) for Bicklund transformations; Matsuno (1984) for the
bilinear transform; and Schuur (1986) for the asymptotic structure
of soliton solutions. Finally, the broader and deeper concepts that
relate soliton theory to Hamiltonian methods are described by
Faddeev & Takhtajan (1987) and Dickey (1991).

3.4 Nonlinear waves propagating over shear flows are described by
Benjamin (1962) and Freeman & Johnson (1970); the Burns condi-
tion is discussed by Thompson (1949), Burns (1953), Velthuizen &
van Wijngaarden (1969), Yih (1972), Brotherton-Ratcliffe & Smith
(1989) and Johnson (1991). The nature of the critical layer, and
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particularly the réle of nonlinearity, is described in Benney &
Bergeron (1969), Davis (1969), Haberman (1972) and Varley &
Blythe (1983); and the connection between nonlinear wave propaga-
tion and the critical layer is examined by Redekopp (1977), Maslowe
& Redekopp (1980) and Johnson (1986). A theory for linear and
nonlinear ring waves over a shear flow is presented in Johnson
(1990).

The problems of waves moving over a variable depth have a long
history, starting with Green (1837) and Boussinesq (1871). Some of
the more recent papers, with the emphasis on nonlinear wave propa-
gation, are Peregrine (1967), Grimshaw (1970, 1971), Kakutani
(1971), Tappert & Zabusky (1971), Johnson (1973, 1994),
Leibovich & Randall (1973), Miles (1979) and, most importantly,
Knickerbocker & Newell (1980, 1985). The oblique interaction of
nonlinear plane waves is described in Miles (1977a,b); the case of a
large solitary wave interacting obliquely with a sech’? wave is
discussed in Johnson (1982); see also Tanaka (1993).

Exercises

Q3.1  Standard KdV equation. Show that a scaling transformation,

u— au, x — px, t - yt, for non-zero real constants «, B, y,
enables the general KdV equation

Au, + Buu, + Cuy,,, =0
(for real, non-zero, constants 4, B, C) to be transformed into

u, — 6uu, +u,,,, = 0.

Q3.2 KdV for left-going waves. Repeat the calculation given in Section

3.2.1, leading to the KdV equation (3.28), for waves that
propagate to the left (cf. Q1.47 and Q1.48).

Q3.3 KdV with surface tension. Repeat the calculation given in Section

3.2.1, but retain the surface tension contribution (characterised
by the parameter W (or W,); see equation (1.64)) and derive the
corresponding KdV equation. Show that the inclusion of surface
tension alters only the coefficient of the third derivative term,
that is, the dispersive contribution.

Q3.4  Higher-order correction to the KdV equation. Continue the calcu-

lation described in Section 3.2.1 to find the equation that defines
n (&, 7). In the case of the travelling-wave solution, where both 7,



286

Q3.5

Q3.6

Q3.7

Q3.8
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and 7, are functions only of & — ct (cf. Q1.55), obtain an expres-
sion for 7, in terms of 7, by seeking a solution n, = noF (£ — c1)
(where the prime denotes the derivative with respect to § — c7).
KdV similarity solution. Show that the KdV equation

U, — 6u, + e, =0

possesses a similarity solution of  the form
u(x, ) = —(30)"F(n), n = x(31)", for suitable values of the con-
stants m and n. (The inclusion of the factor 3, and the use of
the negative sign, are merely for convenience.) Hence obtain the
equation for F:

F" +(6F —q)F' —2F =0

and, by writing F = AV’ — V? with V = V(n) and where A is a
constant to be determined, show that

V' — gV =2V3=0

after two integrations, provided that V decays sufficiently rapidly
as either n - +o00 or n - —oo.

[The equation for V() is a Painlevé equation of the second
kind; see Ince (1927). The use of soliton methods enables the
Painlevé equations to be solved; see Ablowitz & Clarkson
(1991), Drazin & Johnson (1993) and Airault (1979) as an intro-
duction to these ideas.]

KdV rational solution. Show that

u(x, 1) = 6x(x> — 246)/(x* + 120)°

is a solution of the KdV equation given in Q3.5.

[This solution is not particularly useful since it is singular on
x° + 12t = 0, although some other soliton equations do have
rational solutions that exist everywhere.]

A cKdV equation. Follow the calculation described in Section
3.2.3 for the concentric KdV equation, but now use a large
time variable 7 = £%/5%; cf. equation (3.32). Hence obtain the
appropriate cKdV equation.

Solitary-wave solution of the Boussinesq equation. Obtain the
solitary-wave solution of the Boussinesq equation

2
U — Uy + 3(“ )xx = Uxxxx = 0
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in the form u(x, f) = asechz{b(x — cf) + &} for suitable relations
between the constants aq, b, ¢ and «. Show that the wave may
propagate in either direction.
Boussinesq — KdV. By means of a suitable choice of far-field
variables, recover the KdV equation for right-going waves from
the Boussinesq equation, (3.41). Repeat this calculation for left-
going waves; cf. equation (3.28) and Q3.2.
Boussinesq — standard Boussinesq. Use the transformation
x
H=n—en’, X=x+¢ f n(x’, t; e)dx’
-
and thereby obtain equation (3.42) from equation (3.41).
[This transformation is equivalent to writing the equation in a
Lagrangian rather than an Eulerian frame.]

Solitary-wave solution of the 2D KdV equation I. Show that the
2D KdV equation

(v — 6utt, + uyry), + 3uyy =0

has the solitary-wave solution u(x, f) = asech?(kx + ly — ot + @)
for suitable relations between the constants a, k, [, w and «.
Transformations between ncKdV and 2D KdV equations. Show
that the nearly concentric KdV equation, (3.46), transforms
into the 2D KdV equation if we write

H='l(§, Ra Y)’ ng_‘;‘R®2, Y = RO.
Conversely, show that the choice
7]=H(§,T,®), {=$+'21'Y2/T, ®= Y/‘L'

transforms the 2D KdV equation, (3.20), into the ncKdV
equation.

Solution of the ncKdV equation. Given that v(x, ¢, y) is a solution
of the 2D KdV equation

(v — 6VU; + Vyex)x + 3'Uyy =0,
show that wu(x,t,y) = v(x — V)12, 1, yt) is a soluton of the
ncKdV equation

u 3
(u, + T 6uu, + uxxx)x+t—2uyy =0.



288

Q3.14

Q3.15

Q3.16

Q3.17
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[This enables solutions for u, which decay sufficiently rapidly
as (x* + y*)~! = 0, to be obtained from the solutions for v which
satisfy this same condition. However, solutions for u which have
a different behaviour at infinity cannot be obtained via this
transformation; see Dryuma (1983), Matveev & Salle (1991).]
Phase shifts for a 2-soliton KdV solution. The phase shifts exhib-
ited by the soliton behaviour in solution (3.59) can be examined
in this fashion: we consider the asymptotic form of the solitary
waves that appear as ¢t — +o0. First, for § = x — 16¢ = O(1) as
t — +o00, show that

u ~ —8sech?(2¢ F %log 3),
and then for n = x — 4t = O(1) as t - +o00, show that
u ~ —2sech’(n + %log 3);

all signs are vertically ordered. Hence deduce that the taller wave
moves forward by an amount x = 1log 3, and the shorter back by
x = log3, relative to where they would have been if moving
throughout at constant speed.

Phase-shifts: general. Recast the calculation of Q3.14 in order to
find the phase shifts for the general 2-soliton solution, (3.58).
Character of the 2-soliton KdV solution. Show that a special case
of the 2-soliton solution, (3.58), takes the form of a sech? pulse at
t = 0. Further, show that the pulse at t = 0 may have either one
or two local maxima.

[In this calculation you should first define x so that a sym-
metric profile occurs at ¢ = 0; for further details see Lax (1968).]
Three-soliton solution of the KdV equation I. Extend the calcula-
tion in Section 3.3.1 (Example 2) to obtain the general 3-soliton
solution of the KdV equation. Show that this can be written in
the form u(x, 1) = —2(9*/3x*) log A, where

with E; = exp(2ki(x — xo) — 8k}8}, Ay = (k; — k;)*/ (ki + k;)’,
and < > denotes that j is to be chosen cyclically with respect
to i.



Q3.18

Q3.19

Q3.20

Q3.21

Exercises 289

Solitary-wave solution of the 2D KdV equation II. Use the choice
F=exp{—(kx + o)+ (K — Py + 4> + P)t + a}

in the Marchenko equation, and hence recover the solitary-wave
solution obtained in Q3.11; see Section 3.3.2. (Direct correspon-
dence with Q3.11 requires here that k + ! — -2k, B—-PF -2
B+P=—-w2)

Two-soliton solution of the 2D KdV equation I. See Q3.18; now
write F as the sum of two appropriate exponentials and hence
derive the two-soliton solution in the form

&
u(x, t) = —2W10g(1 + E1 + E2 + AElEz)

where E; = exp{—(k; + [)x + (k} — )y + 4(k} + I})t + a;} and

_ (ki —k)(h — D)

A=l T k) D)

[This solution describes various configurations of two plane

waves that intersect obliquely and suffer a nonlinear interaction;
an excellent discussion of these solutions is to be found in
Freeman (1980).]
A 2D Boussinesq equation. Follow the derivation of the
Boussinesq equation (Section 3.2.5), but include the weak y-
dependence as required for the two-dimensional KdV equation
(Section 3.2.2). Hence show that, correct at O(e), the surface
wave satisfies the equation

x 2
1 &
Ny — Nxx — 5{5’72 + ( [ ﬂtdx) ] —§ﬂxxxx +eVy, = 0(82),
xx

—00

where V, = —ny. Finally, transform and rescale (exactly as in
Section 3.2.5) to obtain the 2D Boussinesq equation

H,—-Hyy + 3(H2)XX — Hyyxxy — Hyy = 0.

Solitary-wave solution of the 2D Boussinesq equation. Seek a solu-
tion of the equation for H(X, ¢, Y) given in Q3.20 in the form
H = asechz{kX + 1Y — wt + «} for suitable relations between
the constants a, k, /, w and «. Confirm that your solution is an
oblique wave that may propagate in one of two directions.
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Q3.23

Q3.24

Q3.25
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[This 2D Boussinesq equation is not a completely integrable
equation, although it still provides a description of the head-on
collision of obligue waves (cf. Q3.19) and it does possess some
interesting properties; see Johnson (1996).]

Solitary-wave solution of the cKdV equation. Show that a solution
for F of the pair of equations (3.65) is

F(x,z; 1) = / S(s£'®)Ai(x + 5)Ai(s + z)ds,

where f is an arbitrary function and A is the Airy function. The
solitary-wave solution is usually regarded as that solution
obtained from the choice f(-) = k8(-), where § is the Dirac delta
function and k is a positive constant; construct the solitary-wave
solution of the cKdV equation, (3.64).

A similarity solution of the cKdV equation. Show that

2

> g%——sechz{)t(x +820)/12), 1> 0,

ux=—13

is a solution of the concentric KdV equation, (3.64), for any real
constant A.
[This solution is undefined on ¢ = 0, is not real for ¢t < 0 and
grows without bound as |x| — oo at any fixed ¢.]
Bilinear operator. Prove these identities, where D}'D%(a - b) is the
bilinear operator defined in equation (3.71):
(a) Di'Dj(a- b) = DiD}'(a- b);
(b) Di(a-b) = (—1)"Dy(b - a) and hence that D}(a-a) =0 for n
odd;
(c) D'D(a-1) =D"D%(1 - a) = 8*"a/9x"3¢" for m + n even;
(d) D'D{exp(81) - €xp(82)} = (w2 — w1)" (k1 — ky)" exp(6; + 6,)
where 8, = kixx —wit + oy, i =1,2.
Three-soliton solution of the KdV equation II. Use Hirota’s
bilinear method to find the expression for f(x, ¢) which generates
the 3-soliton solution of the KdV equation.
Two-dimensional KdV equation. Show that the bilinear form of
the equation

(1 — 6uuy + uyyy), + 31, =0
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is
(D,D, + D} +3D3)(f - /) =0,

where u(x, 1) = —2(8*/3x%) log f.
Boussinesq equation. Show that the bilinear form of the equation

Uy — Uy T+ 3(u2)xx — Uxxxx = 0
is
(D} - D% ~D)( ) =0,
where u(x, 1) = —2(8°/3x%) logf.
Concentric KdV equation. Show that the bilinear form of the
equation

u
u,+§—t—6uux+uxxx=0

is

(D2 4D+ 2o =0,

where u(x, f) = —2(8%/3x*) logf and (3/3x)(f - f) = [
Solitary-wave solutions. Obtain the solitary-wave solutions of the
equations given in Q3.26—Q3.28 by seeking appropriate simple
solutions of the corresponding bilinear forms.

[Check your answers with those obtained in Q3.11, Q3.18,
Q3.8 and Q3.22, and compare the various methods employed.]
Two-soliton solution of the 2D KdV equation II. See Q3.26 and
Q3.29; obtain the expression for f(x, ¢, y) from which the two-
soliton solution of the 2D KdV can be constructed (cf. Q3.19).
Two-soliton solution of the Boussinesq equation. See Q3.27 and
Q3.29; obtain the expression for f(x, ) from which the two-
soliton solution of the Boussinesq equation can be constructed.
Show that your solution admits solitons which travel in either the
same or opposite directions.

A resonant solution of the 2D KdV equation. The solutions
obtained in Q3.30 can be written as

f= 1 +E1 +E2+AE1E2
where E;=exp(6), 6, =kx+1lLy—wit+ea with o= k?

+3/k;; A is a function of the k; and /;(i = 1,2). Show that
this f is a solution even if 4 =0, and describe this solution by
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Q3.33

Q3.34

Q3.35

Q3.36

Q3.37
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examining 6; - —oc with 6, fixed; 6, - —oc with 6, fixed;
91 — 400 Wlth 03 = 91 - 92 fixed.
Introduce a parameterisation of the dispersion relation
w; = k2 + 317 /k; in the form

ki=mi+n, L=m—nl w=4m+n), i=1,2,
(cf. Q3.19). Hence show that 4 = 0 if, for example, m; = m,.
Write 0; = ksx + Ly — w3t + o3 and show that, if my =my,
ny = n, and m; = —ny, then w; = k3 + 35 /k;.

[These definitions of ws, k3 and /5 (that is, w; = w; — w,, etc.,
and w;, k;, [;, i = 1, 2, 3, satisfying the dispersion relation) are the
conditions for a resonant wave interaction or phase-locked waves;
see Miles (1977b), Freeman (1980).]

Energy conservation law for water waves. See equations (3.85);
multiply the first by u, use the third twice (once for w, and
once for u,) and then the second (for p,), and hence derive equa-
tion (3.88). Also confirm that & (given in Section 2.1.2) can be
used to obtain (3.89).

Energy conservation for the KdV equation. Show that the third
conserved quantity for the KdV equation, (3.96), can be deduced
from the statement of energy conservation for water waves,
(3.89).

KdV conserved density. Show that

45
vy - 15uu,zc + uix

is a conserved density of the KdV equation

1
2u, + 3uu, + 3 thoex = 0.

KAV equation: another conserved density. Show that xu + 31/’ is a
conserved density for the KdV equation

Uy — 6uty, + Uy = 0.

KdV equation: a ‘centre of mass’ property. Show that

[o 0]
; ( [ )
— xudx] = constant,
dr

—00

where u satisfies the KdV equation in Q3.36 (provided ¥ — 0
sufficiently rapidly as |x| - o00). Interpret this result as the
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conservation of linear momentum of a linear mass distribution
with density u(x, f). Further, confirm that this result is consistent
with the phase shifts associated with the two-soliton solution
(discussed in Q3.14 and Q3.15).

N-soliton solution and the conserved quantities. Given that u(x, t)
evolves, according to the KdV equation (Q3.36), into an N-
soliton solution from a given initial profile u(x, 0), consider the
profile at =0 and the solution as ¢ — oo; describe how the
conserved quantities can be used to determine the amplitudes
of the resulting solitons. Use the first two conservation laws,
and then the first three, to verify your method for the 2-soliton
and 3-soliton solutions, respectively.

[This idea is developed in Berezin & Karpman (1967).]

cKdV: conserved densities. Show that

xt'u+ 662774
and
2+ 12x85%0% + 486520 + 24t5/2u§
are conserved densities of the concentric KdV equation
u
U, +Z —6uu, +u,,, =0.

[An interesting observation is that this cKdV equation is,
approximately, the KdV equation (Q3.36) for large ¢ with u,
dominating u/¢. You may wish to confirm that the coefficients
of the dominant terms in the first three conserved densities for
the cKdV equation are the conserved densities of the KdV
equation.]

Boussinesq equation: conserved quantities. Show that

00 00
/ HUdX, / Uds

and
o
f (H* + U* —4H® + 2HHyy — H%)dt
—00

are conserved quantities for the Boussinesq equation written in
the form
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Q3.41

Q3.42

Q3.43

Q3.44

Q3.45

Q3.46
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U +Hy—3H)y +Hyxxy =0; H,=-Uy.

[See Hirota (1973).]
Conserved quantities and the N-soliton solution. Use the results
obtained in Q3.40, and described in Section 3.3.4, to show in
principle how the amplitudes of the solitons of the Boussinesq
equation can be determined from given initial data; see Q3.38.
Give an example of the method for the 2-soliton solution. (The
solitary-wave solution of the Boussinesq equation is discussed in

Q3.8)

Shallow water equations: conservation laws I. Show that

1 1
(Zu4 + i + um; + Ehz)

t

1
~+ (‘—tu5 + b + Pmy + um, +%h2u +hm1)

X

1 3
+ vt + il +umy my+ K |wt =0
4 2 ,
is a conservation law for the shallow water equations, (3.101).
Hence obtain the corresponding conserved quantity.
Shallow water equations: conservation laws II. See Q3.42; show
that

(tu), + (G + h) — xu}, + {(tu — x)w), = 0
and

{t® + h) — xu}, + {¢G8 + 2h + my,) — X2 + h)},
+ {[t0? + 2h) — xulw}, =0

are also conservation laws.

Reduction to the classical KdV equations. Show that the KdV
equation for shear flow, (3.128), together with the Burns condi-
tion, (3.117), lead to the classical KdV equations ((3.28), Q3.2)
for right- and left-going waves, respectively, when U(z) = 0.
KdV equation for linear shear. Obtain the form of the KdV
equation, (3.128), when the shear flow is

Ua)=Uy+WU;-Up)z, 0=<z=<];
see (3.113).

Burns condition. For the two shear profiles
@ U)= U+ Uy — Up)z;
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b) U@=U@2z-7), 0=<zx],
show that no critical level exists.

[Hint: assume that a critical level does exist, use the definition
(3.129) and then show that the only solutions are not critical.]
Burns condition with critical level I. Show that, for 0 < d < 1, the
Burns condition for the model profile

_1U, d<zx<1
U(Z)_{Ulz/d, O0<z<d

where U, is a constant, gives rise to three solutions for ¢, one of
which corresponds to a critical level.

Burns condition with critical level II. Show that the conditions
described in Q3.47 obtain also for the model profile

d<z<l1

_ 10U,
w”—{maﬂ—fyf,05z<¢

Generalised Burns condition. Show that the generalised Burns
condition, (3.136), has a solution

k(6) = acosf + b(a)sin b,

where a is a parameter, and b(a) is to be determined.
Generalised Burns condition for oblique waves. Determine the gen-
eralised Burns condition, (3.136), for plane oblique waves; that
is, k(@)=1 and 6 =6, =constant. In the case U =U,
= constant, find the speed of the wave.

Generalised Burns condition for linear shear. Determine k(6),
using the method of Q3.49, for the case of a linear shear

U(Z)=U0+(U1—U0)Z, 0<z<l.

[Note: You are advised to make a convenient choice for c; see
how we obtained (3.138).]

Singular solution. Derive the solution (3.140) from the general
solution (3.139), using standard methods.

[Note: These ideas are described in any good text on (ordinary)
differential equations, for example Forsyth (1921) or Piaggio
(1933).]

Variable coefficients — cKdV. Show that the variable coefficient
KdV equation, (3.148), transforms to the concentric KdV
equation, (3.34), for H, where
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Q3.54

Q3.55

Q3.56

Q3.57

3 Weakly nonlinear dispersive waves
m = D*H([ VDax.e)

provided that a special choice of D(X) is made. What is this
D(X)?

Conservation laws. Show that the variable coefficient KdV
equation, with D = D(X),

_ 1
2Hyy + 3D "*HyHy: + EDI/ZHOEEE =0

has a conserved density Hg. Also investigate the form of the next
equation in this sequence (which involves (Hg)X; cf. equation
(3.96)).

Variable depth solitary wave. Obtain the most general solitary-
wave solution of the equation given in Q3.54, where D is treated
as a variable parameter. Now impose the conservation law asso-
ciated with H3 (also in Q3.54) and hence obtain the form of
no = D™V*H,; see equation (3.150).

Obligue plane wave. Obtain, at leading order as ¢ — 0, the KdV
equation, (3.158), from equations (3.155) and (3.156), by seeking
a solution which is a function of § = kx+ Iy —t, T =¢t.
Oblique waves: weak interaction. Obtain the expression for the
surface wave, (3.166), correct at O(g), from the solution for f,
(3.165).
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Slow modulation of dispersive waves

‘But let me tell thee now another tale’
The Coming of Arthur

In ever climbing up the climbing wave
The Lotos-Eaters: Choric song IV

The Korteweg—de Vries equation, members of its family and the applica-
tions to more realistic situations, cover only one general area of interest
in the modern theory of nonlinear water waves. In particular, all our
discussions in Chapter 3 have been based on the requirement that the
waves are long; this was accomplished by the condition § — 0 or, rather,
by the rescaling

é 8
X —=> =X, t—)—lt,
o] &2

with ¢ — 0; see equation (3.10). In this discussion we shall now allow the
wave to be of any wavelength, so that the wave number (k) plays the réle
of a parameter in our calculations. The amplitude parameter, &, is then
used to describe the slow evolution of an harmonic wave of wave number
k; the wave is thus slowly modulated as described by ¢ — 0. The
approach that we adopt is to be found in Section 1.4.2 (equation
(1.103) et seq.) where the appropriate multiple-scale technique is used
there to obtain the asymptotic solution of a partial differential equation.

We shall follow a similar route to that developed in Chapter 3, namely,
a presentation of the derivation of the basic evolution equation together
with the application of these ideas to more realistic situations. It turns out
that the fundamental equation (the Nonlinear Schridinger equation) — and
some of its relations — are again special equations of the completely
integrable (soliton) type. We shall describe a few properties of these
equations, and how solutions can be readily obtained. Not surprisingly,
the long-wave limit of these various problems that we present here
recovers the essential features of the KdV description; we shall show
how this comes about.

297
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4.1 The evolution of wave packets

We shall present two derivations that lead to a description of the evolu-
tion of wave packets (for gravity waves) on the surface of water of finite
depth. First we examine the problem of the propagation of a plane wave
and then, just as in Chapter 3, we construct a two-dimensional version of
this problem that incorporates a suitable (weak) dependence on the coor-
dinate that is transverse to the predominant direction of propagation; cf.
the 2D KdV equation. This two-dimensional surface wave is described by
a pair of equations: the Davey—Stewartson (DS) equations.

4.1.1 Nonlinear Schrodinger (NLS) equation
In keeping with much that has gone before, we shall start with an exam-
ination of gravity waves (moving in one direction) on stationary water of
constant depth (b =0). The most direct approach is to formulate the
problem in terms of the equations for irrotational flow (although we
shall not always be able to follow this route). Thus, from equations
(2.132) with 8/dy = 0, we have

..+ 82¢xx =0;

¢, = 8X(n, + ¢ > @4.1)

1 /1 onz=1+4+e¢n
¢,+n+§s(8—2¢§+¢§) =0

and
¢$,=0 on z=0.

In these equations we have retained the shallowness parameter, §, and we
shall consider ¢ — 0 for 8 fixed. The solution that we seek is a harmonic
wave with wave number k — a solution of the linear equations (¢ = 0) —
which is allowed to evolve slowly on scales determined by £. We have
already seen (equation (1.103) ef seq.) that the relevant scales would seem
to be associated with both & and &°. Here, therefore, we introduce

E=x- cpt, . =¢(x— cgt), T= 821, “4.2)

where c,(k) and c,(k) are to be determined (but the notation should be
suggestive!). The justification for this choice is, ultimately, that it pro-
duces a consistent solution of the equations; a simple argument based on
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the Fourier integral representation of a general plane wave also confirms
this choice (Q4.1).
The governing equations, (4.1), under the transformation (4.2), become

@z + 8 (Bge + 2605 + £2¢y) = 0;
¢. = 8 {e’n. — scgn; — cmg
+&(¢g + e¢) (ng + ene))}
&' — scgy — o + 1 onz=I+en @3)
1 (1
+'2—8{8—2¢§ + (¢§ + 8¢;)2} =0
and
¢,=0 on z=0.
We seek an asymptotic solution of these equations in the form
o0 o0
¢~y Gl T2 n~ Y 65T as &0,
n=0 n=0
which is to be periodic in & The leading-order problem is clearly
Boz: + 8oz = 0 @4
with
¢o: = —8cme and  —c P +Mp=0 on z=1 4.5)
and

¢, =0 on z=0. 4.6)
The solution of interest to us takes the form
ng = AgE +cc; ¢g=fo+ FE+cec., 4.7

where E = exp(ik§), Ay = Ay(¢, 1), Fy = Fy(z, ¢, ©), fo =fo(¢, T) and c.c.
denotes the complex conjugate of the terms in E. The real term f,(¢, t) is
required in order to accommodate the mean drift component; see Section
2.5. This solution describes a single harmonic wave, of wave number &,
which is propagating at speed ¢,. We see that Laplace’s equation, (4.4),
with (4.7), becomes

Fy,, — 8K*Fy = 0,

so the solution which satisfies the bottom boundary condition, (4.6), is
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Fy = Gy(¢, T) cosh(dkz),

where Gy(¢, 1) is yet to be determined. The two surface boundary
conditions, (4.5), yield

8kGysinh 8k = —i6’kc, 4y and ikc,G,cosh 8k = 4,,

from which we obtain

» _ tanhék _ 4y )
b=k and Gy = ke, sech dk; 4.8)
thus we may write
. cosh ékz
Fy = —idepdo G *9)

all of which is familiar; see equation (2.4) et seq., equation (2.13) and
Q2.5. At this order, the amplitude function 4y(¢, ) is unknown; we now
proceed to the problem given by the O(¢) terms.

Equations (4.3), upon collecting the terms of O(¢) and expanding about
z = 1 in the surface boundary conditions, yield

b1z + 8 Pree + 26 P, = 0; 4.10)
with
&1, + ooz = 52(—0g'70; — ¢pMig + PogNos) 4.11)
onz=1
—Cgthor — Cp(15 + Motbog) +m + % (slz 6: + ¢%§> =0 4.12)
and
é.=0 and z=0. 4.13)

It is clear that these equations will produce terms E*, E~2 and E° (from
E'E7Y) by virtue of the nonlinearity of the surface boundary conditions.
The contributions E? (with E~2, the complex conjugate) are the first of
the higher harmonics that are generated by the nonlinear interaction; the
fundamental is E' (with E7!), introduced in (4.7). Since we are secking a
solution which is periodic in &, we choose to build in this requirement at
this stage. We do this by imposing a periodic structure on the form of
solution that we seek hereafter. An alternative approach is to solve at
each O(¢") and determine the various functions that are available, in such
a fashion as to remove all those terms that contribute to the non-periodic
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(or secular) terms; this is how we tackled the problem in Section 1.4.2
(equations (1.103) et seq.). The two methods produce, eventually, exactly
the same result, but the former presents us with a more straightforward
calculation, as we shall now demonstrate.

In order to implement this idea, we write

n+l ntl
$n=) FumE"+cC; =) AmE"+cc. 4.19)
m=0 m=0

forn=1,2,..., where F,,(z, , ) and A4,,,(Z, T) are to be determined; the

complex conjugate relates only to terms in E™, m = 1, 2, .... We note that

terms m = 0, although not harmonic (oscillatory) functions, do not

destroy the periodicity in &. The solution described by (4.14) incorporates

the phenomenon that, at each higher order in ¢, higher harmonics pro-

gressively appear, so E? appears first at O(g), E? first at 0(6‘2), and so on.
Laplace’s equation for ¢, (4.10), therefore gives

FlOzz =0; FlZzz — 482k2F12 =0
and
Fiy,, — 32k2F11 + 2i82kF0; =0,

which have solutions (see Q4.2) satisfying the bottom boundary
condition, (4.13),

Fio = Gyo(¢,7);  Fip = Ga(¢, 7) cosh(28kz)
and 4.15)
Fi1 = G11(&, ©) cosh(8kz) — 186G,z sinh(8kz),

where the Gy,,(¢, T) are arbitrary functions at this stage. These results are
then used in the two surface boundary conditions, (4.11) and (4.12), to
give six equations (arising from the coefficients of E°, E' and E? in each).
Equation (4.11) yields (with the asterisk denoting the complex conjugate)

E% (49Gh + A5Gy)8*k? cosh 8k = 8°k*(AyGy + A3Gy) cosh 8k;  (4.16)
E': 8kG, sinh 8k — 18Go,(sinh 8k + 8k cosh 6k)
= —8(codo; + ke, A1) 4.17)
E%: 26kG, sinh 28k + §°k> Ay G, cosh 8k
= —6%(2ikc, 4,3 + k* 49Gy cosh 5k), (4.18)
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and, correspondingly, equation (4.12) gives

E® — cofor + 18k c,(49Gh + A5 Go) sinh 8k + Ajg
+ k2 GyG§(sinh? 8k + cosh? 8k) = 0; (4.19)
E': - cgGoy cosh 8k — ikcy(Gyy cosh 8k — 18Gy, sinh 6k) + 4} = 0; (4.20)

E*: —ikc,(2G), cosh 28k + 8k Ay G, sinh k) + 415 — %kzcg =0. (@421

We see that equation (4.16) is identically satisfied, and that with equation
(4.8) (for Gy) used in (4.19) we obtain

25k

0= -‘onAo + Cgf();. (422)

Equation (4.20) gives us directly that
Ay = ¢,Go, cosh 8k + ikc,(Gyy cosh 8k — i8G, sinh &k),

and when this is used in equation (4.17) we find, first, that G,; cancels
identically when we invoke the expression for c; (in (4.8)); then, with G,
from (4.8), we see that 4y, (# 0) also cancels, leaving

Cg = %cp(l + 268k cosech 28k), (4.23)

which is the group speed for gravity waves; see equation (2.29) et seq.,
and Q2.26. Finally, equations (4.18) and (4.21) are solved for G, and 4,
(using (4.8) as necessary) to give

3i 8k, Ay 8k cosh 8k

- P70, = ——— " (2cosh® 8k + 1) 43, 4.24
7 sanfok’ 0T Tsmiiak My, (424

G =
and Agy(¢, 1) is still undetermined. (It is clear that the solution of this
problem requires some fairly extensive manipulation — and it is consider-
ably worse at the next order — the details of which are left to the suffi-
ciently enthusiastic reader.) We now examine the next order, O(¢?), where
we expect the equation for A, to emerge.

From equations (4.3), with the usual expansion of the surface
boundary conditions about z = 1, we obtain the problem at 0(82) as

2., + 32¢2§§ + 252¢1g; + 32¢0g§ =0; 4.25)
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with

1
@2, + NP1z + 3 MoPozzz + M1 Poz
= 8*{no, — gty — o + boe(me + o) + Moe(Modoe: + b1 + dor) }; (4.26)

1
Doc — CgMoPor: — CpPie — Cp(Pog + NoPre; + MPog + 3 n3¢ogzz)

1
+n+ E¢Oz(n0¢022 + &12) + og(oPog; + b1z + Por) = 0, (4.27)

both on z =1, and

¢, =0 on z=0. (4.28)

The periodic solution described in equations (4.14) is now used forn =2
(so the higher harmonic E* now appears for the first time); equation
(4.25) then gives

Fy,, + ‘Szﬁ)(;' =0; Fy,,— 82k2F21 + 2ik32F11; + SZFO{{ =0,

and so on. It soon becomes evident that the equation for 4, appears from
the terms that arise at E' (because this is equivalent to the removal of
secular terms at E'; cf. equation (1.108) et seq.), so we examine only this
problem in any detail. The solution for F (z, ¢, t) which satisfies the
bottom boundary condition, (4.28), becomes

F21 = G2] cosh 8kz — (i(SG“; + 28—k GO{{)Z sinh 8kz

+ %aZGO“ (%z sinh 8kz — z* cosh 8kz>; 4.29)

see Q4.2. The boundary condition (4.26) gives, for terms E',

1
Fle + AEFIZZZ + E(A(z)ngzz + 2A0A8FOZZZ) + AIOFOZz + A12ngz
= (SZ{A.O.r - CgA“;- - ikaAzl + 2](21412}:8<
—k? A(AGFo, — AoFT) + K A5(AoFo. + 2F1))  (4.30)
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on z = 1. The second boundary condition on z = 1, (4.27), similarly gives
FOr - CgF“;- - ikaF21 - 2ikaA3Fl2z - ika(AloFoz - Alegz)

1.
— 5ikey(2A0 AT For; — ATFE.) + A

1 N . .
+t3 {(40F,, + A5Fo.)Fo, + (AoFo,; + Fio)Fe}
— KX (A5 Fy, — AoF3)Fy + K> (AgFy, + 2F)F§ = 0. (4.31)

The procedure that we follow is easy to describe, but rather tiresome to
perform: eliminate 4,; between equations (4.30) and (4.31), introduce the
functions obtained at earlier stages (including F;; from (4.29)) and sim-
plify. We find that G5, cancels identically by virtue of the definition of c12,,
and that 4;; (or G;) also cancels when the expression for c,, (4.23), is
used. This leaves an equation for A4y(¢, ), incorporating the terms Ay,
Aoy, and AglAol*:

—2ike, Ao, + Aoy + BAglAol* =0, 4.32)

which is one form of the Nonlinear Schrodinger (NLS) equation, where
here

@ = ¢2 — (1 — 8k tanh 8k)sech’sk (4.33)
and
k2 1 2 2 4
B=— 5(1 + 9 coth” 8k — 13sech”“8k — 2 tanh” k)
7

— (2¢, + cgsech?8k)*(1 — ¢2) ™! } (4.34)

although a more instructive form for ¢ is

2w
a= —kCPW’ (k) = kcp;
cf. Q4.1 and see Q4.3. (The NLS equation is sometimes called the cubic
Schrodinger equation.) It is a straightforward calculation — which is left as
an exercise — to show that & > 0 for all §k, but that g changes in sign from
positive to negative as 8k decreases, across 8k ~ 1.363; see Section 4.3.1
and Figure 4.6 (on p. 336). We comment here that the condition ¢ > 0
turns out to be significant for the existence of certain important solutions
of the NLS equation; see Section 4.2. The consideration of terms that

arise at 2E? is left as an exercise; see Q4.4.
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Some relevant properties of the NLS equation, and the interpretation
of its solutions in the understanding of water-wave phenomena, will be
presented later.

4.1.2 Davey—-Stewartson (DS) equations

The classical NLS equation applies to the situation where the wave prop-
erties only in one direction, and for which the profile evolves only in this
same direction. Such a wave would be generated by an initial profile
which takes the form

A(ex)e® +cc;

we now consider (following Davey & Stewartson, 1974) the development
of a wave which, at ¢ = 0, is described by

ikx

A(ex, ey)e™ +c.c.

We see that the slow (or weak) dependence occurs equally in both the x-
and y-directions, but that the fast oscillation is only in the x-direction: the
wave packet will propagate in the x-direction with a slowly evolving
structure in both x- and y-directions. The group speed is, of course,
still associated with the propagation in the x-direction. The appropriate
form of solution will be sought from the governing equations (see
equations (2.132)); these are

bz + 8 (Pux + 0y) = O;
with
¢ = &[0, + e + Byy)}
¢t+n+%e(8lz¢§+¢g+¢§)=0 onz=1+en 4.35)
and
¢,=0 on z=0.

We introduce the variables (cf. equation (4.2))

E=x—cyt, t=e(x—cgt), Y=gy, T =&t
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and so equations (4.35) become (cf. equations (4.3))
..+ 52(¢§§ + 2e¢ + 824’;; +&pyy) = 0;
¢, = 62{827’1 = ECgNy — Cplle
+e(Pe + ed)(n: + eng) + 83¢Y'7Y}
82¢, —ECePr — Cpp: + 1
1 (1
+§s{8—2¢§ + (@ + e¢p)* + a¢§,} =0

onz=1+4e¢p

and
¢, =0 on z=0.

It is immediately clear that, if we proceed no further than O(¢?), the only
contribution from the dependence in Y will arise from the term ¢yy in
Laplace’s equation. The other terms involving derivatives in ¥ produce
new nonlinear interactions that appear first at O(¢®). The calculation
therefore follows very closely that already presented for the NLS
equation, so we shall not give the details here.

We seek a solution in the form

00 n+1
¢ Nfo({, Y’ T) + Z sn{ Z an(Z, {, Y» T)Em + C.C.};

n=0 m=90

o ol (4.36)
n~ Z g Z A, Y, DE™ + c.c.};

n=0 m=0

where E = exp(ik&) and Ay = 0 (so that the first approximation to the
surface wave is purely harmonic). The results mirror those already
obtained, for all the terms at O(1) and O(g); the differences first appear
at 0(82). It turns out that the problem at &’ E° gives

1
(1 — Dfore + fory = -5 Qe+ cgsech?sk)(| 4ol 4.37)
P

the equation for f;, given 4, (= Ag;); the surface boundary conditions for
the terms 2E' produce

— 2ikc,Ag; + adggr — cpcgAoyy

2
+ 2’%(1 + 9coth? 8k — 13sech?sk — 2 tanh® 8k)4g|4ol* ¢ (4.38)
C
P

+ k*(2c, + cgsech?8k) Ay for = 0.
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These two equations, (4.37) and (4.38), are the Davey—Stewartson (DS)
equations for the modulation of harmonic waves. It is clear that for no
dependence on Y, so that (4.37) gives

1
(1 — o, =— Q¢+ cgsech?sk)| 4o (4.39)
i4

(on the assumption that fy, =0 where 4, =0), equation (4.38) then
recovers the NLS equation

—2ikc, Ao, + oy + BAolAol* =0

as given in (4.32); also see Q4.24. Equation (4.39) provides the leading
contribution to the mean drift generated by the nonlinear interaction of
the wave; see Q4.4 and Q2.32.

The DS equations are more compactly written in the form

(1 — cWfoze + fory = —c—);(lelz);; (4.40)
?
V'K 2
—2ikepAor + Aoy — cpcgAoyy + 1B+ 21 -c) Agldol* + Ky Ao for =0,
4
4.41)

where a and B were given earlier ((4.33), (4.34)) and

¥ = 2¢, + c;sech?ék; (4.42)

we observe that y > 0 and note that c,c, > 0. These equations (and, of
course, the NLS equation) may be further approximated for long or short
waves (§ — 0, § — oo, respectively), although their validity must remain
in doubt: that is, for sufficiently small/large 8, other terms will presum-
ably become important. However, as model equations for the evolution
of wave packets in these two limits, they do provide useful insights; these
limiting cases are considered in Q4.6. Furthermore, as a mathematical
exercise to confirm the overall consistency of our equations, the result of
letting § — 0 (so that we have long waves) is important. We know, for the
one-dimensional propagation of long waves, that the relevant equation is
the Korteweg—de Vries equation. The existence of a close relationship
between the NLS and KdV equations is now explored.
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4.1.3 Matching between the NLS and KdV equations

The two fundamental equations for weakly nonlinear waves that we have
introduced are the KdV and NLS equations. The former equation
describes long waves, which can be obtained by letting § > 0 and
¢ — 0 with 8% = O(g); see Section 2.9.1. Alternatively, and more gener-
ally, we use a suitable rescaling of the variables which allows us to obtain
the KdV equation for arbitrary 8. However, this transformation results in
the replacement of &° by ¢ in the governing equations (see equations
(3.10)(3.15)) with ¢ — 0; thus the transformation, coupled with ¢ — 0,
is equivalent to § — 0: long waves. On the other hand, the NLS equation
uses scaled variables which are defined with respect to ¢ only, with
8 (=0()) retained as a parameter throughout. Thus, at least for a
class of waves, we have two representations:

n(x, t; &, 8) with e = 0, § > 0 — KdV;
n(x, t; €, 8) with ¢ » 0, § fixed — NLS.

We might, therefore, suppose that the two descriptions satisfy some
appropriate matching condition in 8. That is, the KdV representation
with § — 0o might match with the NLS representation with § — 0. So
we take the short-wave limit of the KdV equation (but, as we shall see,
written in an appropriate form) and the long-wave limit of the NLS
equation.

Let us first construct the limiting form of the NLS equation as § — 0;
this requires that we determine the dominant behaviours of the coeffi-
cients of the equation

—2ike,Ag; + Aoy + BAol4ol* =0,

where « and 8 are given in equations (4.33) and (4.34). (The details of this
calculation, for the DS equations and then for the NLS equation, are
rehearsed in Q4.6 but we shall record the salient features here.) From
Q4.5 we have that

1 1
cp~1—682k2; cg~1—§82k2 as §—0 (4.43)

(cf. equation (2.137) et seq.; the behaviours of c, and c,, as functions of
8k, are also shown in Figure 4.1), and so

—ike, ~ —2ik
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Figure 4.1. Plots of ¢, and ¢, as functions of 8k (> 0).
and
1 1
a~(l— 532k2)2 -1 =-8H1 - 53218)2
~ 8%k*

both as § — 0. Similarly we obtain

2] 1, 8k\’ 15,00 4
B~k {5[1+9(3_k+?) ~13(1 - 58 k?) —2(6k)]

1o 1o 1220
_[2(1_68 k2)+(1—§8 k2)(1—§sk)]

1 7!

212

x|:1 (1 28k)] }
9 9 9

NE(W_W)_—W’

and hence our NLS equation, approximated for long waves, becomes

. 9
_2lkA0T + 82k2A0§{ — %EA0|A0|2 = 0,

in the light of what we describe below, it is convenient to multiply by 8 to
give

~2ik8> Ao, + 8K Aoy — ng|,40|2 =0. (4.44)
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Now we turn to the examination of the KdV equation, for § — oo, which
proves to be rather less straightforward.
Our KdV equation is

1
2n0; + 3n0n0: + 3 Mogge = 0 (4.45)

(equation (3.28)), where

£l &2

§=T(x_t)’ t:Tt’

and x, ¢ are the original nondimensional variables. In order to produce
the explicit dependence on § in the equation, we write

RV g2 . )
$=TS, T=—1 (soE=x—-t,T=¢l)
to give
210z + 3n0m,z + A Nozge = 0, (4.46)
3

where A =48%/¢ (and we see here the relevance of the special choice
82 = O(e) alluded to above, and used in Section 2.9.1). In this form,
the limiting process that allows us to describe short waves is A — oo.
However, we also require a solution which produces a direct correspon-
dence with the form of solution used in the derivation of the NLS equa-
tion. Thus we seek a modulated harmonic wave solution of equation
(4.45) with A — o0; to this end we introduce

X =f+c,at [=x — (1 = &%)

[: %{x -(1- 62cgl)t}:|;

Z=2""E+ e 0D 4.47)

2
£
T=x"'% _5_2ti|’

where the notation ¢, , ¢, indicates the correction — to be found - to
the phase and group speeds, respectively. The KdV equation, (4.46),
therefore becomes

2(Acp, Mox + g, Moz + A" or) + 3no(noy + A" noz)

A _ _ _
+ g(ﬂoxxx + 30 ozxx + 32 2 nozzy + A 0zz2) =0
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and we write the solution (cf. equation (4.36)) as

o0 n+1
o~y ;:"{ > A2, TE™ + c.c.}, (4.48)
n=0 m=0

where E = exp(ikX), c.c. denotes the complex conjugate of the terms
m > 1 and Ay = 0. The wave number of the fundamental is k, and this
is a fixed parameter in the solution. We collect the various terms from the
equation, and these are listed to the left; we obtain

AEY: ¢, =K/6; (4.49)
E: cg, = k*/2 (provided Ay z # 0); (4.50)
E*: Ap =3 Afy;

ATUE A= l4al’;

)\._IEIZ _ZikAOIT + k2AOIZZ - %AOI |A01|2 = 0 (451)
where each earlier result is used, as necessary, to produce later results. We
note that the corrections (to ¢, and c,) given in (4.49) and (4.50) agree
precisely with the approximations used in the NLS equation; see equa-
tions (4.43). Equation (4.51) is the required NLS equation which

describes the evolution of the amplitude of the fundamental; this is to
be compared with the NLS equation valid for long waves, (4.44):

—2ik8> Ay, + 8* K> Ao — §A0|A0|2 =0. 4.52)

When we introduce the variables (4.47) into (4.52), that is
1
T=e=8T, r=¢fx—(- §s2k2)t} =82z,
we obtain
. 9 2
—2ikAor + k> Agzz — §A0|Ao| =0,

which is precisely equation (4.51) (since Ay = A4y;): the short-wave limit
of the KdV equation (for harmonic waves) matches the long-wave limit
of the NLS equation. The same match also occurs between the Davey—

Stewartson equations, (4.37) and (4.38), and the 2D KdV equation,
(3.30); this is discussed in Q4.7 and by Freeman & Davey (1975).
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4.2 NLS and DS equations: some results from soliton theory

The Nonlinear Schrédinger (NLS) equation, which in one version is often
written in the simple (normalised) form as

it + e +ulul* =0 (4.53)

(see Q4.8 and below), is one of the completely integrable equations; we
will call (4.53) the NLS + equation (see below). The method of solution
involves an important extension of that used for the solution of the KdV
equation (described in Section 3.3.1). The central idea is to replace the
scalar functions F and K (as used, for example, in equations (3.51) and
(3.52)) by 2 x 2 matrix functions, in an approach developed first by
Zakharov & Shabat (1972); see also Shabat (1973), Zakharov & Shabat
(1974). On this basis we shall present the general method of solution for
the NLS equation, written both in the form (4.53) and also in the
(normalised) form (called NLS-)

i, + uy, — ulu)® = 0. (4.54)

It turns out that the relative sign of the terms u,, and ulu|* is important in
determining the essential character of the solution of the NLS equation
(hence: NLS+, NLS-); for some simple solutions see Q4.9-Q4.12. To
change the sign of the term i, is simply equivalent to taking the complex
conjugate of the equation. We shall later mention the Davey—Stewartson
equations, and how the bilinear method (see Section 3.3.3) and conserva-
tion laws (Section 3.3.4) are relevant to this NLS family of equations.

4.2.1 Solution of the Nonlinear Schriodinger equation

We follow the notation used in Section 3.3.1; but here, F(x,z,f)isa2 x 2
matrix function which satisfies the pair of (matrix) equations

I 0 I 0 .
(0 m)Fx+Fz(0 m):o, F., —F,, —iaF, =0, (4.55)

where /, m and « are arbitrary real constants. The 2 x 2 function
K(x, z; t) is then a solution of the matrix Marchenko equation

K(x,z;)+ F(x,z, ) + / K(x,y;, OF(y, z, )ydy = 0. (4.56)
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We write this solution as

K= (‘; Z) then u(x, ) = b(x, x; 1) (4.57)

is a solution of the general NLS+ equation
il — myu, + (I + mu, %(1 —m)? = mP)ulul? = 0; (4.58)

see Q4.17. The choice of signs in equation (4.58) is governed by the two
possibilities for c(x, x; £), namely +u* (where the asterisk denotes the
complex conjugate). Armed with this information, we will describe how
the equations are solved in order to generate the solitary-wave solution of
the NLS+ equation; we shall then indicate how this approach is extended
to embrace the N-soliton solution.

Example: solitary-wave solution

The required solutions are obtained when we set

()

then the first of equations (4.55) yields
f=fmx—1Iz,{) g=g(x—mz1),

but / and g are otherwise arbitrary functions. The second of equations
(4.55) is now satisfied by the choice of the (single) exponential solutions

f = foexp{A(mx — Iz) + A2 (P — mP)t/a); }

4.59
g = goexp{u(lx — mz) + iu*(m* — P)tja), @-59)

where f,, g0, » and u are arbitrary constants. This introduction of an
exponential solution is to be compared with equation (3.55), for the KdV
equation.

The matrix Marchenko equation, (4.56), with K given by the
expression in (4.57), becomes

(o ¢]
a b 0 f 0 f _ (0 0O
(£2)+G O+ DG )o=(c) eo
where we have suppressed the arguments of the functions; the functions f

and g are given by (4.59). Thus, from equation (4.60), we obtain four
scalar equations:
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a(x, z; ) + / b(x, y; Dgo expiu(ly — mz) +ip(m* — P)tja}dy = 0; (4.61)

b(x, z; 1) + fy exp{A(mx — Iz) + X 2(* — mP)t/a)

o0

+ [ a(x, y; Ofp exp{h(my — Iz) + iA2(P — mP)t/a}dy = 0, (4.62)

X

and two similar equations for ¢(x, z; ¢) and d(x, z; ) (whose identification
is left as an exercise in Q4.18). The integral equations, (4.61) and (4.62),
clearly possess solutions

a(x,z; ) =e P M(x; 1), b(x,z 1) =eLx; 1),

respectively, and so (4.61) and (4.62) yield

00

M+ gL / expll( — My + ipd(nr® — Pt/ajdy = 0;

X

L + fy exp{Amx + ir2(F — m)t/a}

+ foM / exp{m(h — w)y + ix>(? — mHt/a)dy = 0.

These two equations exist only if
Z{(u—2)} <0 and R{m( —u)} <0, (4.63)

for otherwise the integrals would not be finite. These two conditions
imply that / and m must be of opposite sign; let us, for ease of further
calculation, choose

I=2, m=-1 and a=-:1;. (4.64)

Equation (4.58), with these choices, then becomes
i, + g F U =0 (4.65)

(and consequently equations (4.53) and (4.54) are recovered if we trans-
form u — u/3). The solution for L(x;f), with #(u — 1) <0, is now
obtained directly as

foexp(—Ax + 9ir%r)
1fogo( — )2 exp{3(i — A)lx — 3i(A + p)fl} — 1

L(x; 1) =
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and a convenient choice affording further simplification is

1 -
g — w7 = —1; (4.66)
the solution that we seek is therefore
u(x, 1) = b(x, x; ) = e M L(x; 1)
_ —fo exp{—3r(x — 3irr)}
T 1 +exp{3(n — A)[x = i + w1}
Finally, we introduce real parameters k and p such that
A=k+ip, pu=—-k+ip (k>0

and then fogy = —8k>.

The corresponding calculation for d(x, z; f) and c(x, z; £) can be fol-
lowed through (see Q4.18, Q4.19); when we impose the condition
c(x,x;f)= —u*, we find that go=—f¢ and hence f, =422k
(choosing a real fy). The solution (4.67) now becomes

u(x, f) = £/2k exp{—3ipx + 9i(k> — p*)t}sech(3kx + 18kpt)

(4.67)

and if we identify
a=3v2k, ¢=—6p and n= %(a2 +%c2)
we obtain the solitary-wave solution
u(x, ) = +a exp{i[% c(x — ct) + nt]}sech{a(x — ct)/ «/5} (4.68)

of the NLS+ equation
i, + Uy + ulu* =0,

which in the form (4.68) is discussed in Q4.9. The NLS solitary wave is an
oscillatory wave packet which propagates at a speed ¢, the underlying
oscillation being governed by the frequency n (which is a function of the
wave amplitude and speed). An example of this wave is given in Figure
4.2 (for the choice a =1, ¢ = 10 and at two different times) where we
have elected to show only the real part of u. The imaginary part is, of
course, very similar, and the modulus of u is simply

|u| = asech{a(x — ct)/«/i},

a sech profile. Other simple solutions of the NLS+ equation are possible;
see Q4.11 and Q4.12. Examples of these two solutions (the Ma and
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Figure 4.2. Real part of the solitary-wave solution, (4.68), of the NLS+ equation,
for a =1 and ¢ = 10, at times ¢ = 0(a), 0.2(b).

rational-cum-oscillatory waves) are depicted in Figure 4.3. As the figures
clearly demonstrate, these solutions take the form of standing waves; not
surprisingly, the solutions of most interest to use are those that represent
the propagation — and interaction — of the nonlinear waves. Finally, we
comment that the N-soliton solution of the NLS equation is obtained in
the obvious way. That is, for the function f, for example (see equation
(4.59)), we write
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R(w)
2+

Figure 4.3. (a) Real part of the Ma solitary wave, given in Q4.11, fora=m =1,
at times =0, 0.25, 0.35, 0.5. (b) Real part of the rational-cum-oscillatory
solution, given in Q4.12, at times ¢ =0, 0.5, 0.75, 1.

N
f(x,z;0) = Z £, explr,(mx — I2) + iA2(P — m)t/a}, (4.69)
n=1

where f,, and A, are arbitrary constants. We shall write more about these
solutions, and their interpretation in the context of water-wave theory,
later. Here, we comment that the N-soliton solution is more readily
obtained by direct methods, such as Hirota’s bilinear method, which
we now present.
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4.2.2 Bilinear method for the NLS equation

In Section 3.3.3 we introduced Hirota’s bilinear method for the KdV
equation, which led to the bilinear form of that equation:

(DD, + D) -f) =0.

This equation and its solution will be found in (3.74) er seq. Of some
importance for us was that this approach provided a rather direct route
to the construction of N-soliton solutions. Furthermore, we also gave the
bilinear form of a number of other equations that belong to the KdV
family of completely integrable equations.

Now, the NLS equation is a completely integrable equation (as we
mentioned in Section 4.2.1), so it is no surprise to learn that this equation
can be expressed in a bilinear form. It can be shown (see Q4.20) that the
NLS equation

i, +up, +eulu* =0 (e ==+1) (4.70)

with u = g/f, where f is a real function, can be written as a pair of
bilinear equations:

(D, +DX(g-f)=0; Dif-f)=¢elgl @.71)

We observe, just as we found with the KdV family, that the linearised
operator which appears in the NLS equation (that is, i9/3¢ + 8*/0x?) has
a direct counterpart in equations (4.71), namely (iD, + D?). As an exam-
ple of the method of solution here, we seek the solitary-wave solution of
(4.70) via (4.71).

From equations (4.67) or (4.68), we see that an obvious way to proceed
is, first, to introduce

0 =kx+ ot +a, 4.72)
where k, w and a are complex constants, and then to write
g=¢, f=1+Aexp(6+6) 4.73)

where A4 is a real constant (and the asterisk denotes the complex conju-
gate). On recalling the properties of the bilinear operator (described in
Section 3.3.3 and in Q3.24), we find that the second equation in (4.71)
gives (the non-zero contributions)

D2(1 - Aexp(8 + 6*) + A exp(6 + 6%) - 1} = eexp(d + 6%),
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SO
A= ~;-g(k +k%72 (4.74)
The first equation of (4.71) becomes
(D, +D){e’- 1+’ dexp(6+ 6"} =0
which yields
(io+ ke’ + Afi(w — 0 — 0*) + (k — k — k*)*] exp(20 + 6%) = 0,
which requires
iw+k*=0 and —iow*+k%=0.
These are clearly consistent with
w = ik?; 4.75)

thus we have a solution

u=g/f =¢ / [1 + %s(k + k)2 exp(6 + o*)] (4.76)
with
0 = kx + ikt +a,

where k and « are arbitrary (complex) parameters. It is clear that (4.76)
provides a bounded solution only in the case ¢ = +1; that is, for the
NLS+ equation; cf. Q4.9 and Q4.10. Then, for this case, solution
(4.76) can be recast precisely in the form of (4.68) if we make the
identification

a [

k=—+i= 4.77
and choose o to be real, and such that
VA =1. (4.78)

(The réle of « is simply to provide a constant phase-shift in the solution.)
The use of (4.77) and (4.78) in (4.76) gives, after a little manipulation,

u= :haexp{il:% c(x—ct) + nt] }sech{a(x — ct)/«/i},
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with n = 1(a* +1¢?), all exactly as in (4.68). In summary, therefore, the
solitary-wave solution of the NLS+ equation can be expressed as

g=¢, f=1+Adexp(0+6*), 6=kx+ik*t+a.

The method that we have described can be extended to obtain the N-
soliton solution, although the calculation — even for the case N =2 —is
considerably more involved than for the KdV family of equations. We
shall present the results that produce the 2-soliton solution, but the
details are left as an exercise (Q4.30). First, we write

g=E(1 + b,E,E}) + Ex(1 + b E\EY) 4.79
with
E,, = explknx +ikit + o), m=1,2,
where b,, are constants. Correspondingly, we have
f=1+AFEE +fEE; +cEE;+ ¢ E{E, + dE\EYE,E;,  (4.80)

where f,,, ¢ and d are constants. These two expressions are substituted
into

(iD,+DX)(e-N=0, DUf-f)=lgl
we find that the given f and g satisfy both equations provided

_1 *\—2, _1 *y—2, _ k1+k; 2 *
I gl + )5 e=gr ki d=(EE) bt

with
_ k-k)
2k + k)2 (et + ken)®

The solution, (4.79) with (4.80), represents the interaction of two solitons
which asymptotically take the form

(n=1,2;n# m).

m

U, = a, exp{i[% X = ) + nmt] ]sech{a,,,(x — cmt)/«/i] (4.81)

where

Ay . Cm . 1 1
ky, = 7 +igr with o, = 5(a:f,, + ch,,), (4.82)
for m =1, 2. An example of this solution is depicted in Figure 4.4 (where
we have chosen a; = /2, a, =2+/2, ¢, = =2 and ¢, =2 and we have
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Figure 4.4. Two-soliton solution of the NLS+ equation (based on equations
(4.79) and (4.80)); |u| is plotted here for the case a; = +/2, @, =2v2, ¢; = =2,
Cy = 2.

plotted |u|); the interaction, together with one of the resulting phase
shifts, are clearly shown in this figure.

Finally, before we leave this 2-soliton example altogether, we make an
important observation that distinguishes this type of interaction from the
KdV-type. In the case of KdV solitons (and others of this family), each
separate soliton must have its own distinct speed at infinity. (The general
2-soliton solution of the KdV equation, (3.58), with k; = k, merely
recovers the solitary-wave solution with parameter k,.) However, the 2-
soliton solution here, (4.79) and (4.80), contains essentially the four real
parameters a,,, ¢, (m = 1, 2) given by (4.82) (since the «,, simply provide
arbitrary phase shifts at a prescribed instant in time). The speed of the
NLS+ soliton — the envelope function is the relevant part — is given by c,,;
see (4.81). If we set ¢; = ¢, and retain a; # a,, the two solitons remain
distinct but do not move apart: they stay bound together and forever
interact. The object so produced is itself a new type of solitary wave
(with three parameters: a;, a, and ¢; = ¢,); it is called a bound soliton
or bi-soliton, and it can interact with other similar or different solitons.
These different solitons might be the classical ones for the NSL+
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equation (such as given in (4.81)) or higher-order bound solitons formed
by producing the N-soliton solution (following (4.79) and (4.80)) and
then choosing ¢,, = ¢, form=1,2, ..., N. A description of the bi-soliton
solution that is obtained from (4.79) and (4.80) is left as an exercise
(Q4.31); an example of a bi-soliton solution is given in Figure 4.5
(where we have used a4, = +/2, a =242, ¢; = ¢; = —2). The bound,
but varying, nature of this solution is quite evident from the figure.

It is clear from our examination of some of the solutions of the NLS+
equation that it possesses a very rich set of solutions — far more than for
the KdV equation and other members of that family. Of course, which
solution is the relevant one in a given situation is controlled by the precise
details of the initial profile. As a significant addition to this brief descrip-
tion of the solutions of the NLS+ equation, we shall later present an
important application of the equation (to study the stability of the Stokes
wave; Section 4.3.1).
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Figure 4.5. Bi-soliton (or bound soliton) of the NLS+ equation (given in Q4.31);
|uj is plotted here for the case a; = v/2, a, = 2/2, ¢; = ¢; = =2.
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4.2.3 Bilinear form of the DS equations for long waves

The long wave (8 — 0) approximation of the Davey—Stewartson equa-
tions (see Section 4.1.2), which is discussed in Q4.6, can be written as

) 9
—2ik Ao, + 8K Aoye — Aoyy + 2—82A0|A0|2 + 3K Aofy, = 0 (4.83)

with
8K fore + fory = =301 4o, (4.84)

and these equations possess a compact bilinear representation. However,
it is necessary first to change the variables (both dependent and indepen-
dent) by introducing a more convenient set; we follow the ideas described
by Anker & Freeman (1978) and Freeman (1984).

First we define

for = dyy + Al A

where ¢ = ¢(¢, Y, 7) and A is a (complex) constant to be determined; then
we see that equation (4.84) can be written, after one differentiation with
respect to ¢, as

8K fogee + forve = =301 401 )y

SO
S @ yy + MAol)y + (Sry + MAoD)yy = —3(143]),,-
We choose §2k*A = -3 (so A turns out to be real), to leave
3
82k2¢YY;( + dyyyy — Foy%) |4ol5y =0

or

8°K? 3 14,2 4.85

¢;;+¢yy—w| ol (4.85)

when we integrate and then invoke decay conditions at infinity. In
equation (4.83) we substitute for f;, to give

3
842
and then upon substituting for |4y|? from (4.85) this yields

. 3
—2ik Ay, + 82K Aoy, — Aoyy + §k2 Ay(2pyy — |4ol*) =0

. 3
—2ik Ag, + 82k> Aoy, — Aoyy + §k2A0(¢YY —8Kpy)=0.  (4.86)
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At this stage we define

_5_ _4
- Y y=g+7 (4.87)

and hence equations (4.85) and (4.86) become

X

2Apux + 8y)) = % | 4o/
—ik Ao, + 2Agy, + 3K Aoy, = 0.
Let us write
b=t ¢=—v

(where u and v are real which, with the definition of A from above, implies
then f; is real), then we obtain the pair of equations

267k (uy, — vy) = 3| 4o*;
—ikAg, + 2Agy, + 3K* Agu, = 0.

Finally, we define the complex function

Z=u+1iv
so that
1 .
u=§(Z+Z*) and wu, —v,=Z,+iZ,
(since u, = —wv,); our pair of equations therefore becomes

) 3
Z,+izZ, = W'AO'Z;

k 3K’
_1514.0.r + ony + TAO(Z + Z*)y =0

which, with the scaling transformations

2t 8 4
t——)—?, Z_)WZ’ A0—>§A0
yields
iAo, + Aoy +240Z + Z*), = 0;  Z, +iZ, = | 4o} (4.88)

this is essentially the form of the equations discussed by Anker &
Freeman (1978) and Freeman (1984). (Our scaling transformation also
involves a change in sign of t; this is avoided if the second equation is
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expressed in terms of the conjugate, 4g.) It can be shown (Q4.27) that
equations (4.88) possess a simple bilinear representation:

(D, +D,D))g-/)=0; (Di+D)( -f)=2lgl (4.89)

where

g 1/9 .90
== =—{——i—]}I 1);
Ay 7 Z 2(8x lay) nf (f real);
cf. equations (4.71) for the NLS equation.

A simple solution of equations (4.89) is obtained by following the
development that has been described for the NLS equation; see equations
(4.73) et seq. Thus, if we set

g=eos f=1 +”’exp(9+0*)’

where 8 = kx + Iy + wt + a and u is a real constant, we find (Q4.28) that,
for example,

Ay =E/{1+ [+ K + 1+ )T " exp(@ + 67} (4.90)
with
0 =kx+ly+ikit + «,

where k, [ and « are arbitrary (complex) constants. Solution (4.90) is the
solitary wave solution of the long-wave Davey-Stewartson equations
(although we should remember that x and y are not the physical coordi-
nates used to describe the horizontal plane in which the wave propagates;
see (4.87)). This solution, (4.90), should be compared (see Q4.29) with
that discussed in Q4.26; the generalisation to N solitons follows the
method adopted for the NLS equation, and presented in equations
(4.79) and (4.80).

4.2.4 Conservation laws for the NLS and DS equations

All completely integrable equations possess an infinite number of con-
servation laws, the first few of which — certainly the first three — have
simple and direct physical interpretations. These ideas were introduced
and explored in the context of the KdV equation (and its associated
family of equations) in Section 3.3.4. We now describe how the
corresponding picture is developed for the NLS equation

i, + uy +eulu> =0 (e = =x1). 4.91)
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The construction of the conservation laws for this equation is fairly
straightforward, although the procedure becomes progressively more
tedious for the ‘higher’ laws.

First, we write down the equation which is satisfied by u«*, the
conjugate of », namely

—iu} 4 uly + eutlu)* =0, 4.92)
and then we form u* x (4.91) — u x (4.92) to give
i, + ) + vy, — wdl, = 0.

This equation is immediately
.0 3
IE(W*) + 5(”*“)‘ —uuy) =0,

which we now integrate over all x; provided that ambient conditions exist
at infinity (so that conditions at +oco are identical), we obtain

d o0

; 24y —

1dt/|u|dx-_0,
-0

SO

>
f |uf*dx = constant. 4.93)

-—00

Equation (4.93) is the first conservation law (for both versions of the NLS
equation). Based on our experience with the KdV equation (see Section
3.3.4), we would expect this law to be associated with the conservation of
mass; we shall confirm this interpretation shortly.

A second conservation law is derived by forming
uy x (4.91) + u, x (4.92), to produce

(i, — wul) + Wity + uls + e(utu + uu®)|u)® = 0. 4.94)
Further, we also construct «* x (4.91), + u x (4.92), to give
1wy — wll) + uuy,, + ul, + s{u*(ululz)x + u(u*lulz)x} =0 (495
and then we form (4.94) — (4.95):

.0 d
15 (uu; - u*ux) + a(uxu;) - (u*uxxx + uu;xx)

+ elul(uu), — ef () lul’ + 2w (jul),} = 0.
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This equation is re-expressed as

.0 3 ad

IE(W; —uu)+ a(uxu;) - a(u*uxx + uuly)

a
o i) — 2elul’ (), = 0

which is

. 2 * ok i * ook * Y _ 4 _

i (uuy — u'u,) + e {Zuxux WP uyy + uui,) — eluj } =0.

Hence, with ambient conditions existing at infinity (as invoked above),
this yields

d o0
15 /(uux—u u)dx =0,
80

[o o]
/ (u}, — u*u,) dx = constant (4.96)

—00

is the second conservation law.
A third conservation law, whose derivation is left as an exercise (see
Q4.32), is

00
[ [luxl2 - %elul“] dx = constant; 4.97)

this is the simplest law that includes & (= £1) and therefore takes different
forms for the two NLS equations (NLS+, NLS-). We have produced the
first three conservation laws; that an infinity exists is proved by Zakharov
& Shabat (1972), and a little further exploration is provided in Q4.32 and
Q4.33. The relation between these conservation laws, and the conserved
quantities that arise directly from the governing equations, will now be
briefly investigated.
The conservation of mass, equation (3.86), is

3 14en
N+ ( / udz) =0; (4.98)

ox
0
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this must be written in terms of the variables used in the derivation of the
NLS equation (see (4.2)). Equation (4.98) therefore becomes

1+en

d G
&n, — ECoM; — Cplg + (a—g + 83_() [ / (¢ + £¢;)dz| =0 (4.99)
0

where we have introduced u = ¢, = ¢; + ¢¢,. The conservation law we
require is expressed in terms of (7, £); see our NLS equation for water
waves, (4.32). First, therefore, equation (4.99) is integrated in & over one
period (for example, from 0 to 2w /k) to give

l+en
_ _ d
€My — Coll; + BE { / (¢ +2¢;) dz] =0 (4.100)
0

where the overbar denotes the integral in &, and we have used the prop-
erty that our solution is strictly periodic in &, at fixed 7, ¢. Now we
integrate equation (4.100) over all ¢, and again use ambient conditions
as ¢ — 00, to obtain

e}

/ fd¢ = constant, (4.101)

—00

which is the appropriate form of the conservation of mass that we need
here. However, from equation (4.14) (see also equations (4.36)), we have

00 n+1
n~ Ze"{ Z Am(&, DE™ +c.c.], e— 0,
=

=0 m=0
with Aoo = O, thus

2n/k
_ 2,
7= f nd§~—l—c—Ze Ay (4.102)
n=1
0

The dominant behaviour (as ¢ — 0) with (4.102) used in (4.101) then
yields

oo
/ Ao d¢ = constant,

—00
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and from equation (4.22) we have

28k

— 2
10 =~ nhak ol + o

(where A, is written for A4,;), and so
0
/ |A0|2d{ = constant
oo

which is therefore the conservation of mass for our NLS equation, (4.32),
for A4(¢, 1); this recovers our first conservation law (4.93), where for u
read Ay.

The equivalent calculation for the conservation of momentum, starting
from equation (3.92):

9 14en 9 14+en 1
9 9 2 o2l
o (/ udz) + o / (su” + p)dz 287’] 0,

0 0

and leading to a conservation law of the type given in (4.96), is left as an
exercise (Q4.34). The correspondence between the conservation of energy
for the wave motion, and the third conservation law (4.97), is obtained in
a similar way (although in this case the connection is less easily
confirmed).

Before we leave the discussion of the conservation laws altogether, we
briefly mention the situation with regard to the Davey—Stewartson equa-
tions. These are by no means straightforward to analyse, and this is
because the waves depend on two variables (¢ and Y) in the horizontal
plane. (Similar difficulties were encountered with the 2D KdV equation;
see Section 3.3.4, equation (3.98) et seq.) However, we provide the first
stage in the discussion of these equations; let us write them in the form
(cf. equations (4.37), (4.38))

Jory + Moz = u(14ol%),
—iado, + BAoy; — vAoyy + 8AglAol® + Ao for =0

where A, u, «, 8, ¥ and 8 are real constants. We take f; to be a real func-
tion (as we found for the solutions described in Section 4.2.3), so the
conjugate of the second equation becomes

Ay + BAy — yAbyy + 8431 Ao + A} for = 0.
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The procedure adopted for the NLS equation (see equation (4.92) et seq.)
then gives

10! (Avo) + ﬂ (Avog AgAo) + Y37 (Avoy AyAgy) =0,

which is in conservation form. Thus we obtain

o T
1a£(/ |A0|2d§) +V—(/(A0A0Y—A0A0Y)df)

and
af T af T
iag;(/ |[4o? dY +ﬁ5§ ./(AOA&—AﬁAO;)dY =0,
-0 -0

provided decay conditions exist as || — o0, at fixed Y, and as | Y} — oo,
at fixed ¢. This requires that the waves at infinity are not parallel to either
the ¢ or the Y coordinates; it is this type of additional assumption or
restriction that complicates the issue. Furthermore, if decay conditions
exist as Y — +oo, and as {— +oo, that is, the solution vanishes
(sufficiently rapidly) as Y? + % - oo, we see that

oo 00

[ / |4o|? d¢dY = constant,

-0 —0

a conserved quantity that applies only for a limited class of solutions.
Nevertheless, albeit with some important restrictions, we have derived a
rather conventional type of conservation law — clearly the conservation of
mass.

Finally, the other equation in the DS pair is already in conservation
form, namely

a
57 o) + 3o — o) =0

and so, for example, we obtain

a [o.¢
E: (~/ (Mo — M!Ao|2)dY) + [for]%% = 0;
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if conditions are the same as £ — +o00, then

a [o.¢] [o¢]
M [deY - f 14,2 dY = g(o),
—00 —00

where g(t) is an arbitrary function. If, for some ¢, the left-hand side of
this equation is zero (because, for example, the solution decays in this
region), we must have g(t) = 0 for all . Hence

[0} 00 o]
A / fHdY=pun f f |4012dY d¢ = constant
—00 -0 —00

if we follow our previous discussion; thus
oo
f JfodY = constant
—00

is another conservation law. A further small exploration of some special
conservation laws of the DS equations will be found in Q4.35; other
conservation laws are to be found in Q4.36.

4.3 Applications of the NLS and DS equations

We have presented a theory which describes how modulated harmonic
waves arise in the study of water waves. So far, for both the one-
dimensional and two-dimensional problems, we have restricted the
scenario to the simplest possible: constant depth and stationary water,
in the undisturbed state. As we explained for the various KdV problems
(Section 3.4), an important question to pose is whether the simple ideas
and constructions carry over to more realistic situations. Thus we shall
now — without spelling-out all the details, because of the complexity of
much of the work — show how the effects of an underlying shear, and of
variable depth, manifest themselves in the modulation problems. In
addition, and as our first application, we shall use the NLS and DS
equations (precisely as already derived) to examine the stability of wave
trains; these procedures can also be employed, with appropriate adjust-
ments, when a shear or variable depth is included. Other ingredients,
such as the inclusion of surface tension, will not be entertained here
(since our interest, in this introductory text, still remains principally the
study of gravity waves). However, these and other aspects are left to the
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interested reader, who may follow the various avenues through the
references that appear later.

4.3.1 Stability of the Stokes wave

Our first and most direct application of the results obtained in Sections
4.1 and 4.2 is to the Stokes wave, which we introduced in Section 2.5. In
order to see the relevance of the Nonlinear Schrédinger equation (and,
indeed, the DS equations), we make use of a very special and simple
solution of the NLS equation; for another, see Q4.40. From equation
(4.32), our NLS equation is written as

—2ike, Ao + Ay + BAolAgl* =0, (4.103)

where o and B are given in (4.33) and (4.34). The nonlinear plane wave
solution, with constant amplitude, of this equation is

Ay = Aexpli(K¢ - Qr)}, (4.104)

where A is a complex constant and X is a real constant; (4.104) is then a
solution of (4.103) provided that Q satisfies the dispersion relation

2k, = BlAI* — aK>. (4.105)

Here, o, # and c, are all functions of k (> 0), the wave number of the
carrier wave (as described in equations (4.7)); K (> 0) is the wave number
of the modulation. The primary wave (from (4.7)) therefore becomes

no = Aexpli(kx + K¢ — wt — Q1)) + c.c.,

and if we choose the wave number of this solution to be precisely &, then
we set K = 0 to yield

no = Aexplilkx — (0 + £ @)} +c.c., (4.106)

with 7 = %t and Q given by (4.105) with K = 0.

Solution (4.106) is the Stokes wave (cf. equation (2.133)) of amplitude
A and wave number k, with the frequency (dispersion function) taken as
far as terms of O(¢?) (cf. equation (2.137)). However, we note that our
description via the NLS equation also incorporates an additional com-
ponent to the set-down, which is associated with the mean drift (see
Section 2.5 and Q4.4), although this is not needed here. Further details
of this connection will be found in Q4.42. Now, with this identification as
the Stokes-wave solution, we can use the NLS equation to provide an
estimate for the stability of the Stokes wave.
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The NLS equation describes the modulation of the amplitude of the
harmonic wave, represented by E (+c.c.), for initial data which depends
on x (and the parameter ¢) in a way consistent with the NLS equation.
The Stokes wave is recovered by introducing the plane wave solution of
constant amplitude; thus we seek a solution which takes, as its initial
form, a small perturbation about the nonlinear plane wave solution,
(4.106). Thus we set

Ay = A(1 + Aa)exp{i(—Qt + AB)} 4.107)

where a = a(¢, 1), 8 = 6(¢, ) (both taken to be real functions) and we
have chosen K = 0 (as used above), so

2ke,2 = BlAI%; (4.108)

A is a parameter that we shall regard as small in what follows. Direct
substitution of (4.107) into (4.103) yields

= 2ikc,{Aa, +i(1 + Aa) (A6, — Q)} A&
+a{Aay +2iA%a8, + A(l + Ad)(i6,, — AG})}AS
+ B(1 + AaY’A|APPE =0

where & is the exponential term in (4.107). The leading terms (that is, the
O(1) terms as A — 0) cancel by virtue of (4.108), and then the leading
perturbation terms (of O(A)) give

—2ike,(a, + 8, — iQ) + alay +18;) + 3|4Pa = 0.

Since a and @ are real functions, and again invoking (4.108) to eliminate
2, we obtain

2ke,B, + aay + 2BlA[*a = 0;
—2kcpa, + by, = 0.

This pair of equations is linear, with constant coefficients, so we have a
solution

(5) = (& ot 91+

where ay, 8, k (> 0) and A are constants; this solution exists provided (see
Q4.43)

ke, ) ) = o2k (* — 281 A1 /), (4.109)

the dispersion relation for A.
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Thus, from equation (4.109), it is immediately evident that for 8/« < 0
(or we could write ¢f < 0), A is real for all values of «; the Stokes wave is
stable or, more precisely, it is neutrally stable, since the wave perturbation
persists but does not grow. However, if /o > 0, then A will be imaginary
for some «, namely for

0 <k < 2iA|/B/a; (4.110)

in this case a solution exists which grows exponentially as T — +o00: the
Stokes wave is now unstable. We have already seen, in Section 4.2, that
the sign of B/« is critical to the existence of certain types of solution of the
NLS equations. In particular, for 8/a > 0 which corresponds to the
NLS+ equation, we have a modulation which approaches zero at infinity
(see equation (4.68)); no such solution exists for 8/a < 0. We might
surmise that, for the unstable wave, there is a growth which continues
until a balance is reached between the nonlinear and dispersive effects
represented in the NLS+ equation. Once this has occurred, the amplitude
modulation will evolve in line with the structure of a soliton solution: the
solution will therefore not grow indefinitely. There is some observational
and numerical evidence to support this sequence of events.

It is clear that, in order to see the relevance of the condition that
heralds instability (that is, B/« > 0 with equation (4.110)) — which we
shall interpret more fully shortly — we need to know more about the
coefficients of the NLS equation, (4.103). The expressions for the coeffi-
cients o and B are given in equations (4.33) and (4.34); these are rather
complicated functions of k. So that we can readily see their character,
they are presented in Figure 4.6 where o and 528 are plotted against
8k > 0. (It is usual practice to treat the given wave number, k, as posi-
tive.) The behaviours of « and 8 should be compared with the results
obtained for 8k — 0 and 8k — oo in Q4.6. We see that the coefficient « is
positive for all 8k (> 0), but that 8 changes sign from positive to negative
as 8k decreases across 8k = 8ky ~ 1.363. Thus the Stokes wave, based on
the analysis above, is stable to small disturbances if 6k < &k, (that is, for
sufficiently long Stokes waves); on the other hand, if §k > 8k, so that
B/a > 0, there exists a range of wave numbers « for which the Stokes
wave is unstable. (The problem in which &k is close to 8k, must be treated
separately; see Johnson (1977).) How should we interpret these «?

The most straightforward approach is to construct the leading order
term (the fundamental), ny; further, its initial ( =0) form is quite
sufficient for our purposes, so we have
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Figure 4.6. Plots of « (in (a)) and 828 (in (b)) as functions of 8k, as required for the
analysis of the stability of the Stokes wave.

ny = ApE +c.c. = A(1 + Aa)6FE +c.c.
~ Aexpli(kx + AO)} + Adagexp{i(k + ex)x + 1A} + c.c.

for A — 0 (at fixed x and ¢). Here we have used ¢ = e(x — ¢;#), with
t =0, and retained the term A6 in the exponent (although it plays no
rOle in this interpretation). The perturbation to the fundamental, the term
in Agy, has a wave number & + ¢x; that is, close to k. Hence a perturba-
tion which has a wave number close to that of the fundamental, will
generate an instability whenever B/« > 0. Since, both in nature and in
the laboratory, it is impossible to produce waves with a precisely fixed
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wave number, waves with a small deviation in k will occur and give rise to
this phenomenon. This is often observed: what starts out as a set of plane
waves gradually breaks down (along the wavefronts) into a number of
wave groups. This type of stability, because it is associated with a small
change in the fundamental wave number, is called a side-band instability;
it was first described in a seminal paper, in 1967, by Benjamin and Feir
(and it is therefore often referred to as Benjamin—Feir instability).

We conclude this discussion of the role of the NLS equation, in the
study of the Stokes wave, by extending the analysis to encompass the DS
equations. In Q4.24, solutions of the DS equations which depend only on
7 and X = [f + mY were obtained; with this choice of variables, coupled
with appropriate decay conditions, this pair of equations then recovers
the NLS equation in the form

— 2ike, A, + (@l — cpegm®) Aoxx

212 2
ykm 2
+38+ AglApl°=0. (4.111

{’3 cz(l—cﬁ)[m2+(1—c§)ﬂ]] ool =0 1D

Here, « and 8 are exactly as used above (and given in (4.33) and (4.34)),
and y is given in (4.42). The solution of this NLS equation, (4.111),
describes a modulation that is oblique to the carrier wave, which itself
propagates with its wavefronts normal to the x-direction. If we now use
equation (4.111) as the basis for investigating the stability of the Stokes
wave, then we are considering the perturbation to be at any angle relative
to the carrier wave; this is clearly a more general perturbation. What
effect does this have on the stability of the Stokes wave?

Following the analysis that we gave for the NLS equation, (4.103),
which produced the stability condition B/a >0, we see that the
corresponding condition for equation (4.111) is

2 2 y2k2m2
I — 0. 4.112

e R Ler g o g v (4.112)
(Here we have chosen, for convenience, to express the condition as the
product rather than the ratio of the coefficients; for the case m =0
this yields af < 0, which is equivalent to B/ < 0.) A slightly more
transparent version of (4.112) is

(@l — c,e,mH{(B+ KHm* + Bl — DI} <0 (4.113)



Applications of the NLS and DS equations 337

where
P =Y/l - )
and we note that o > 0, c,c, > 0, csz, < 1 (cf. Figure 4.6), but that we can
have 8 < 0. It is clear that it is always possible to find a pair (/, m) which
leads to a violation of (4.113), except in one special case (and we consider
only 8k > 0). This case arises when the value of 8k is such that
B+ K7 _ Sl

Bl-) @
for then (4.113) becomes
—(al? - cpcgmz)2 <0

which is always true. (The very special case for which /? /m2 = ¢,cg/atis of
no practical interest.) The value of 6k where this occurs is 6k ~ 0.38; thus
for all other values of 8k, the Stokes wave is always unstable to some
oblique perturbation. Our conclusion, therefore, is that we cannot expect
the Stokes wave to propagate without, eventually, suffering significant
distortion.

4.3.2 Modulation of waves over a shear flow

The problem of nonlinear wave propagation, described by some type of
KdV equation, in the presence of an underlying arbitrary shear has been
described (Section 3.4.1). Where we might expect a quite dramatic dis-
ruption of the propagation process, we found that the effect of the shear
was only to change the (constant) coefficients of the classical KdV equa-
tion. We now investigate how a shear flow manifests itself in the problem
of the modulation of a wave. (We remember that there is no suggestion
that the term ‘shear flow’ is to imply that our model accommodates any
viscous contribution.) Again, if the presence of an arbitrary shear flow
merely adjusts the constant coefficients of the NLS equation, then we
should have much greater confidence in the predictions offered by that
equation.

The starting point for this description is, in all essentials, the same as
that adopted for the derivation of the KdV equation with shear.
However, here we retain the parameter 82 because the waves are of arbi-
trary wavelength (and, therefore, we do not use the transformation which
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takes 8% — ¢, with & — 0, in the equations). Thus from equations (3.108)
(but see also (3.9)) we have

u, + Uuy, + U'w + e(uu, + wu,) = —p,;

Bz{wt + Uw, + e(uw, + WWZ)} =Pz
u,+w, =0,
with
p=n and w=n,+Un,+eun, on z=14e¢n
and
w=0 on z=0.

The underlying shear flow is represented by U(z) and U’ = dU/dz. The
solution that describes a modulated harmonic wave requires the choice of
variables (see (4.2))

E=x—cpt, {=e(x—cl), T=¢

and then we write, for ¢ —> 0

00 n+l
n~ Z s”{ Z Ay, DE™ + c.c.]

=0 m=0

with AOO =0, and

125 n+1
qa~ Z sn{ Z Qnm(f’ T, Z)Em + C.C.]

n=0 m=0

where ¢ (and Q,,,) stands for each of u, w and p; cf. equations (4.14) and
(4.36).

The construction of the solution follows closely that described for both
the NLS and DS equations (Section 4.1), but here the details are even
more intricate. Thus we choose to present only the main features and
results of the calculation, which, with the inclusion of a little more detail,
can be found in Johnson (1976).

The terms e’E, with Py = P(z)Ay,, yield the equation for P(z):

272
4 %d—’)}—a—kﬂeo, 4.114)
dz |(U—-¢,)* dz} (U—c¢p)
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which corresponds to the earlier equation for Fy; see equation (4.7) et seq.
The boundary conditions for P(z) are

P1)=1; P'(0)=0, (4.115)

together with a third condition which leads to the determination of c,,
namely

P'(1) = (8k)* W,
where we have written
W) =U@) —c, Wi=W(Q);
this gives

P(2)
S (W)

dz=1. (4.116)

It is evident that equation (4.116) is a generalisation of the Burns condi-
tion given previously in (3.112); here it defines the phase speed, c,(k), for
the given shear. A simple check on this result is afforded by the choice
U = 0 (or, indeed, U = constant), leading to the solution of (4.114) and
then the determination of ¢, from (4.116); see Q4.44. We now proceed on
the assumption that there is no critical layer for the given U(z), so that
W) #0,ze[0,1].

The terms that arise at ¢E generate an expression for the group speed,
¢y, in the form

1
fwr'y*dz -1
Cg=cp— 1 ——— (4.117)
Wil [IT'W'dz
0

where we have written

[ PG
I(z2) = 0/ ———{ W(z)}2 dz

(so the Burns condition, (4.116), now becomes I, = I(1) = 1). It is far
from clear that the group speed given by (4.117) satisfies the classical
relation (see, for example, Q2.26)

do

=gz

w
where ¢, = E;
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that this is indeed the case is left as an exercise (Q4.45).
Finally, terms e2E produce the Nonlinear Schrédinger equation for
AOI:

1
2%kW, (1 + W, / II’W’dz) Aoz + GAorp + BAgi | AP =0 (4.118)
0

where the coefficients & and B are extremely complicated functions of k
and U(z). The expressions for & and B are given in Johnson (1976). The
important observation is that, for arbitrary U(z) and given wave number
k, all the coefficients of the NLS equation, (4.118), are constant. Thus the
description of a modulated wave, its various properties via solutions of
the NLS equation and, for example, its relevance to the stability of the
Stokes wave, all follow the various analyses already given. The only
requirement is, for a given U(z), to compute the coefficients (as functions
of k) and then to use this information in the desired solutions. This
computation, however, is very lengthy except for the very simplest
choices of U(z).

We complete this section by applying our new NLS equation, (4.118),
to the problem of the stability of Stokes waves that are moving over an
arbitrary shear; stability is governed by the condition

o?ﬁ < 0;

cf. equation (4.112). The details of where this condition is violated, for a
given U(z), require (as just mentioned) a lengthy computation that is
quite beyond the scope of this text. Suffice it here to describe the situation
that obtains for long waves; that is, 8k — 0. (We already know that the
Stokes wave on stationary water is stable for 8k < 8ky ~ 1.363.) For
8k — 0, but allowing U(z) to be arbitrary, the NLS equation reduces
(after much tiresome calculation) to

3 (141)

2ik8? Iy Aoy + 3284 T, g1y — = Agr| Ao |* = 0; 4.119)

cf. equation (4.44). Here we have used the notation that was employed for
the problem of the KdV equation associated with arbitrary shear (given
in Section 3.4.1), namely

1 1z

_ U@ -
/ (U—c,,)”’ N= / / / UG — P lUGy) —gf 2414

0 z 0
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The condition for stability of the Stokes wave, from equation (4.119)
(and cf. (4.118)) is

&B = —%k282(141)2 < 0,

which is clearly satisfied for all shear flows. Thus, for sufficiently long
waves, the Stokes wave is stable no matter the form of the underlying
shear (at least, in the absence of a critical layer). This result has important
implications for Stokes waves that are observed in nature (or in the
laboratory): for long waves, the underlying flow is essentially irrelevant.
Of course, the value of 6k at which the Stokes wave becomes unstable for
a given shear — a far more significant result — cannot be obtained in any
direct manner. Indeed, to be practically useful, an observed shear profile
would have to be the basis for the choice of U(z), followed by a
computation of the coefficients for each ék.

A final mathematical comment: the NLS equation for long waves,
(4.119), matches directly with the KdV equation for arbitrary shear,
(3.128). This calculation is easily reproduced by following the method
described in Section 4.1.3; indeed, merely noting the appropriate changes
to the coefficients in the two pairs of equations confirms the matching. (A
small additional calculation relevant to the derivation of equation (4.119)
is discussed in Q4.46.)

4.3.3 Modulation of waves over variable depth

We have seen (Section 3.4.4) that the propagation of long waves, as they
move over variable depth, produces a distortion of the waves; it is there-
fore no surprise to find that the same occurs for modulated harmonic
waves. Since the derivation of the standard NLS equation (Section 4.1.1)
is itself rather lengthy, we shall present here only briefest outline of the
corresponding calculation for variable depth. Far more details, with a
much fuller discussion, can be found in Djordjevic & Redekopp (1978),
and in Turpin, Benmoussa & Mei (1983). This latter paper describes the
result of combining both a slowly varying depth and a slowly varying
current.

The problem is formulated in the same vein as we approached the
derivation of the variable coefficient KdV equation (Section 3.4.4); that
is, we first seek the appropriate scale on which the depth should vary. (Of
course, other scales are possible — faster or slower — but these will gen-
erate simpler fundamental equations, in some sense.) The original



342 4 Slow modulation of dispersive waves

Nonlinear Schrédinger equation was obtained by introducing the
variables

E=x—cpt, ¢=z¢e(x—cyl), T=¢t

see equations (4.2). On the basis of this, we anticipate that the most
general NLS equation will arise when the depth varies on the scale &2
cf. the argument used for the KdV equation with variable depth, given in
Section 3.4.4. This assumption then requires some adjustments to our
choice of variables here.

Let us write X = &2x, so that the bottom is now defined by

z = b(x; €) = B(X),

and we shall use X rather than t = &2 to represent the longest scale in the
problem. The variable that is associated with the propagation of the

group is written as
: X
= e(?/yg(X’)dX'— t),

0

where it is consistent to write yg(X) = ¢, L(x) with ¢g(X) the (local) group
speed. The most convenient representation of the variable that provides
the harmonic component is obtained by writing

i . ¢ o
E=¢% with 3, =k and === —ke,(X).
The derivation follows precisely the route described in Section 4.1.1, and

results in the Nonlinear Schrédinger equation with variable coefficients:

. 222} 9 (€ a A 412 — o
~2ikc,cgdy — ik c,,[ﬁ (E)1a+ gAct Al =0 @120)
cf. equation (4.32). The coefficients depend on X, through the local depth
D =1— B(X), with

2 tanh 6kD
P Sk

and @, B are precisely «, 8 (see equations (4.33) and (4.34)) with & replaced
by 4D. In equation (4.120) we have the new term that arises by virtue of
the dependence on X a term proportional to 4 (which corresponds to the
term in 7, that appeared in the variable-depth KdV equation, (3.148)). It
is clear that equation (4.120) recovers the standard NLS equation when
we have constant coefficients, for then we set D=1 and transform

1
, Cg= §C"(1 + 28kD cosech 28kD), = kcy,



Applications of the NLS and DS equations 343

cg¢ = ¢, X — ¢, T (which is the appropriate leading-order equivalence
for the propagation of the group); obviously & - « and g8 — B.
The first two terms in equation (4.120) can be written as

22l Lo | _ 22 [Gf %
2ik cp{wAX+2A(w)X}_ 21kch\/;( wA)X

from which we see that we can write the equation as

~2ike,c By + = By + “c’—ﬂ}zzum2 =0, (4.121)
G 4

where B = A,/c,/w; see Q4.47. This equation, (4.121), can now be dis-
cussed in much the same way that we adopted for the variable coefficient
KdV equation (in Section 3.4.4). That is, we may use the equation to give
some insight into the development of, for example, a solitary wave as it
enters a region of very rapid or very slow depth change; that is, on a scale
shorter than £ 2, or longer than g2, respectively. Of course, as we men-
tioned in the case of the KdV equation, a complete study of these pro-
blems requires an analysis of the full equations, with the inclusion of the
appropriate depth scales. The particular case of very slow depth change,
which results in a distortion of the solitary wave only (in this representa-
tion), is left as an exercise (Q4.48); we shall, however, briefly describe the
case of a rapid depth change.

Equation (4.121), with constant coefficients, has a solitary-wave
solution (of amplitude b) if

|B| = bsech (b;‘

on X = 0 (cf. equation (4.68) and Q4.9); we choose, in order to make the
results more transparent, to work with the envelope |B| rather than B
itself. Equivalently, when we write b = a,/c,/w, we have

_ B
|| = asech (acgg' %
as the corresponding initial (X = 0) profile for equation (4.120).
Similarly, it turns out that if the initial profile is
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2a |’

acgt | B
Al = h| =22
|4] = asec N

then N solitons will eventually appear as the solution evolves in X; see,
for example, Satsuma & Yajima (1974). Thus, if there is a rapid change in
depth so that

A

Cg —2%=u1 onD=1

changes to
Ho = ¢4 £:=M1/N on D= D,,
24

an initial profile which is a solitary wave on D =1 will evolve into N
solitons on D = Dy; cf. the result for the KdV equation, given in equation
(3.151) et seq. Figure 4.7 shows the result of plotting wu,/u, for various
8k; we see that two solitons appear for the cases 5k = 20, 30, but not for
8k = 10. (Note that we are interested only in the solution for which D
decreases monotonically to its final value of Dy, and therefore at the point
on these curves where this is first attained.) When u;/u, is not precisely

0.5 0.6 D,

Figure 4.7. Plots of u,/pg against Dy, for &, = 10, 20, and 30, as vsed in the
discussion of the solutions of the NLS equation with a rapid depth change.
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an integer (thatis, u; /o = N + A, 0 < A < 1), then the solution evolves
into N solitons plus an oscillatory (dispersive) tail. These results mirror
precisely those for the KAV equation, although here the relation between
depth change and the number of solitons is considerably more involved.

Further reading

All the references to various aspects of soliton theory that were given at
the end of the preceding chapter are relevant here (and will not be
repeated). These texts describe the applications to both the NLS equa-
tions and the KdV family of equations. Below, we add a few further
references that may prove of some interest to the reader who wishes to
explore more deeply.

4.1 The initial work was done by Hasimoto & Ono (1972), Davey &
Stewartson (1974) and Freeman & Davey (1975). Many other aspects
of this work, which includes some mention of applications in other
flow problems, can be found in Mei (1989), Infeld & Rowlands
(1990) and Debnath (1994). An excellent text which touches on
many more ideas in wave propagation, and which goes well beyond
surface waves, is Craik (1988). All these texts and papers contain
numerous references for still further reading.

4.3 A discussion of how these results apply to the stability of the Stokes
wave is expanded in some of the references given above, and also in
Whitham (1974). The particular applications that incorporate a
shear or variable depth are mentioned in the texts by Mei and by
Debnath. More information can be obtained from the papers by
Johnson (1976), Djordjevic & Redekopp (1978) and Turpin et al.
(1983).

Exercises
Q4.1  Modulated wave from a Fourier representation. Suppose that a
wave is described by
00
Hx, ) = f F(k)e®*=9dk
—00
for some given F(k), and a given dispersion function w = w(k).

Consider the situation where the profile obtains its main contri-
bution near the wave number k = ky; define k = ky + ek, and
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Q4.2

Q4.3

Q4.4

Q4.5

Q4.6

4 Slow modulation of dispersive waves

assume that w(k) may be expanded in a Taylor series about
k =ky (as far as the term in &?). Write F(ko + ek) = f(k; €)/¢
and hence show that

&(x, ) ~ AL, ©) expfilkgx — wyt)} as e — 0,

where wy = w(ky), ¢ = e{x — »'(ko)t} and T = £’¢, for some func-
tion A(¢, t) which should be determined.

Inhomogeneous differential equations. Obtain the general
solutions of the ordinary differential equations

5 2
@) ((11_12'7 — WF = cosh(wz); (b) :11—127 —w*F=z sinh(wz),
Z z

where @ (> 0) is a constant.
Second derivative of w(k). Given that

» _ tanhdk _d _1
=5k and ¢, = % (kep) = 3 ¢p(1 + 28k cosech 28k)
show that
dz(D 2 2
kcpm = —{c; — (1 — 8k tanh 8k)sech”sk},

where o = kc,,.

[Observe how w”(ky) appears in the solution to Q4.1.]
Modulated wave: mean drift component. Use the terms that arise
at £2E? in the derivation of the NLS equation (and see equation
(4.7)) to show that

for = —¢;2(1 — c2) 1 (2¢, + ¢,sech?8k)| Ay *.

Hence show how this term is relevant to the particle velocity in
the direction of propagation.

[This, you will find, provides the leading term to the non-
periodic part of the velocity; it is a mean drift generated by the
nonlinear interaction of the wave motion, usually called the
Stokes drift.]

Phase and group speeds for long waves. Find the first two terms in
the asymptotic expansions of ¢, and c,, as § — 0; see equations
(4.8) and (4.23).

NLS and DS equations: long and short wave limits. Obtain the
long (8 — 0) and short (6§ - oo) wave limits of the Davey-
Stewartson equations, retaining only the dominant contributions



Q4.7

Q4.8

Q4.9
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to each coefficient of the equations. Write down the correspond-
ing Nonlinear Schrodinger equations that arise when there is no
dependence on Y.
[The coefficients a and B are shown in Figure 4.6.]

Matching of the DS and 2D KdV equations. Follow the technique
used in Section 4.1.3 to show that the DS equations in the long-
wave limit (§ — 0; see Q4.6) match with the 2D KdV equation,
(3.30),

1
(Znoe + 3nomes + 5’]055&); +noyy =0

in the short-wave limit (§ — o00). Construct the solution to this
2D KdV equation exactly as before, but now seek a solution
which also depends on Y (the variable used in the 2D KdV
equation). You will find that the correspondence requires that
Ao = fo, (and you will need terms A2EY).

Transformation of NLS equations. Use scale transformations of
u, x and ¢ (as necessary) to transform

iou, + Bu,, £ yquI2 =0,
where «, B and y are positive real constants, into
i, +u, + ulul® = 0.
NLS+ equation: solitary wave. Consider the NLS+ equation
i, + tyy + uluf* =0,
and seek a travelling-wave solution in the form
u=re®" = r(x—ct), 0=6(x—ct),

where r, 0, ¢ and »n are real (c, n being constants). Show that there
is a solution for which

. ne 1l 500 4
0_2c, 2(r'y =2(n 4c)r ¥

and hence obtain the solitary-wave solution
|1
u(x, ) = aexp{ 1[5 ce(x —cH)+ nt] }sech{a(x —ct)/V2)
for all & = 2(n —1c%) > 0.

[This solution represents an oscillatory wavepacket for which
the amplitude approaches zero as |x — ct| — o0].
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Q4.10

Q4.11

Q4.12

Q4.13

Q4.14

Q4.15
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NLS- equation: solitary wave. Follow the procedure described in
Q4.9, but now for the NLS— equation

i, +u,, — uluI2 =0.

Show that there exists a solution for which
2
P = —n — 2d’sech’(af), 6= — arctan{?a tanh(aé)],

where §=x—ct, for all ¢ and a=1v-2n- 2, provided
n< —%cz. What is the behaviour of this solution as |§| - o0?
[This solution is sometimes called a dark solitary wave because
it describes a depression in a non-zero background state; it is not
relevant in water-wave problems when there is no disturbance at
infinity.]
NLS+ equation: the Ma solitary wave. Show that the NLS+
equation in Q4.9 has a solution

. 2m(mcos 6 + insin 6) ) }
2

u(x, t) = aexp(ia“H{1 + ,

0 ) Pl ){ (n cosh(ma~/2x) + cos 6

for all real a and m, where n* = 1 +m? and 8 = 2mna’t. What is
the behaviour of this solution as |x| — oo?

[Note that this solution does not represent a travelling wave;
see Ma(1979), Peregrine (1983) and Figure 4.3.]
A rational-cum-oscillatory solution. Show that the NLS+
equation in Q4.9 has the solution

u(x, 1) = {1 — 4(1 + 2i0)/(1 + 2x* + 4%)}.

[This solution contains no free parameters, but see Q4.14 and
Q4.15; this is not a travelling wave, as Figure 4.3 makes clear.]
Behaviour of the Ma solitary wave. Obtain the asymptotic beha-
viour of the Ma solitary wave (Q4.11) as m — oo at fixed a.
Retain terms of O(1) and O(m), and regard mx = O(1).

A normalised Ma solution. Show that the solution in Q4.11 can be
‘normalised’ by the removal of the amplitude a, under the trans-
formation x - x/a, t > t/a2, u — au. Further, confirm that the
NLS equation is invariant under this same transformation; see
Q4.16.

Ma — rational-cum-oscillatory. For the solution given in Q4.11,
set a=1 and choose n= —+/1+m?. Now let m — 0 (for x
and ¢ fixed) and hence recover the solution in Q4.12. Repeat
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the calculation for arbitrary a, and compare your result with the
general property described in Q4.14.
Similarity solution of the NLS equation. Show that the equation

i, + tyy + eulu> =0, &==l,

is invariant under each of the group transformation
@ t=>t+r x>x, u—>u (b) t—>t, x> x+Ai u—>u
(©) t > A%, x > Ax, u—> A 'u(r #0). Now use the property
in (c) to obtain a similarity solution in the form
u(x, 1) = "f(xt"), for suitable m and n, and write down the
equation for f.

Normalised NLS+ equations. Use the results of Q4.8 to write
equation (4.58):

il — mu, + (I + mu,, + %(l —m)(P — mPulul* =0,

in normalised form.

Solution of the matrix Marchenko equation I. Obtain the equa-
tions for ¢ and d from equation (4.60), corresponding to equa-
tions (4.61) and (4.62) for a and b. Follow the same route as for a
and b, and hence find the solutions for ¢ and d.

Solution of the matrix Marchenko equation II. See Q4.18; impose
the condition ¢ = —u* and hence deduce that g, = —f; (for real
/o). Show, for the choice ¢ = »* (which corresponds to the NLS—
equation), that a solution of the form used in Q4.18 does not
exist.

NLS equation: bilinear form. Show that the NLS equation

iy + g + sulul® =0 (¢ real constant)
can be written in the bilinear form
(D, + DY) f)=0; Di(f-f)=elg

where u = g/f and f is a real function.
Generalised NLS equation. Show that the equation

iut + Buy, + iyuxxx + 3i8|u|2ux + £u|u|2 =0,

where B, y, 8 and ¢ are real constants such that g8 = ye, can be
written in the bilinear form

(iD, + BD2 +iyDi)(g - /) =0; yDif-f) =élgl
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Q4.22

Q4.23

Q4.24

Q4.25

Q4.26

Q4.27
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where u = g/f and f is a real function. Show how the equations
used in Q4.20 can be recovered from these equations.
Solitary-wave solution. Obtain the solitary-wave solution of the
generalised NLS equation (Q4.21) by seeking an appropriate
solution of the bilinear form. (Follow the method described in
Section 4.2.2.)

NLS+ equation: a bi-soliton solution. Seek a solution of the
bilinear equations given in Q4.20 (for ¢ = +1), in the form of
power series in the parameter 8, with

oo 00
f=14> "% g=) g,
n=1 n=1

which terminate (cf. Section 3.3.3). In particular obtain the
solution

g1 = 4ﬁ(eit+x + 3e9it+3x)

and hence determine corresponding expressions for g3, />, and fj;
show that this solution terminates, so that fg = fz =... =0 and
gs = g7 = ... = 0. Finally, set § = 1 and write down a solution of
the NLS+ equation.

[The confirmation that this is a bi-soliton solution is obtained
by comparing it with the result of Q4.31, which provides a more
general solution; this special bi-soliton solution is a standing
wave.]

DS equations — NLS equation I. Seek a solution of the Davey—
Stewartson equations, (4.40) and (4.41), which depend on ¢ and
Y only through the combination (/¢ +mY), for arbitrary con-
stants / and m. Show that the resulting plane oblique waves
satisfy a Nonlinear Schrodinger equation.

DS equations — NLS equation II. Repeat the calculation of
Q4.24 (or start with the results of that calculation) to give the
corresponding results for long waves; see Q4.6 and equations
(4.83), (4.84).

DS equations: solitary wave. Use the results of Q4.25 and Q4.9
to find the solitary-wave solution of the Davey—Stewartson
equations for long waves.

Long-wave DS equations: bilinear form. Show that the equations

id,+ Ay +24(Z+2%),=0; Z,+iZ, =4
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(see (4.88)) can be written in the bilinear form
(D, +D,D)g ) =0; (D +D)( /) ="2lg
where A = g/f and

for f real; see equations (4.89).

DS bilinear form: solution. Obtain the solitary-wave solution of
the pair of bilinear equations given in Q4.27; see equation (4.90).
Long-wave DS equations: solitary wave. Show that your solutions
obtained in Q4.28 and Q4.26 are equivalent.

NLS+ equation: 2-soliton solution. Use the bilinear form of the
NLS+ equation (given in Q4.20) to obtain the 2-soliton solution
of that equation; see equations (4.79), (4.80), et seq.

NLS+ equation: bi-soliton solution. From the 2-soliton solution
obtained in Q4.30, construct the bi-soliton (or bound soliton)
solution by choosing the two speeds to be equal (that is,
¢ = ¢3); see equation (4.81) et seq., and Figure 4.5.

NLS equation: two conservation laws. Show that the NLS
equation

i, 4+ uy +eulul? =0 (e = +1),

possesses conserved quantities
2 4 2
[ G = Jetuttyax, [ i+ iy .
-0 -0

NLS equation: a special conservation law. Show that the NLS
equation in Q4.32 has the conservation law

o
/ {ixlul* — #(u*u, — )} dx = constant.

—00

NLS equation: conservation of momentum. Show that the
conservation law

oo
/ (uu — u*u,) dx = constant

—0
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Q4.36
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corresponds to the leading term in the expression for the con-
servation of momentum in the wave motion; see equations (4.96)
and (3.92).
DS equations: special conservation laws. Given the DS equation
written as

fyy + A'fxx = ;,L(|A|2)x;
~iad, + BAx — vA,, + SA|AP® + Af, =0,

where A, u, «, B, v and § are real constants, and given that

o0 o0
/|A|2dx and f|A|2dy
—0 -

are constant, consider the following:
(a) What are the forms of

o [o.¢]
/ (4*4, — A4)dx and f (A* 4, — AA4%)dy?
—00 —00

(b) Are there conditions under which the two expressions in (a)
are constants?

(¢) What is the form of [ fdy?

(d) Are there conditions under which the expression in (c) is
constant? If so, what is this constant?

DS equations: conservation laws. Show, provided solutions of the

equations given in Q4.35 decay sufficiently rapidly as

x? + y2 — o0, that two constants of the motion are

o0 o o0 o0
f f (AA% — A*A,)dxdy; / / (A4 — A" 4,)dxdy.

—00 —00 —00 —00
A 2D NLS equation. A two-dimensional NLS+ equation is
iy + Uy +uyy + u|u|2 =0,

obtain the plane solitary-wave solution of this equation; see
Q4.9.

[This equation is a natural two-dimensional variant of the
NLS equation; for more details in this direction, see Hui &
Hamilton (1979) and Yuen & Lake (1982).]



Q4.38

Q4.39

Q4.40

Q4.41

Exercises 353

2D NLS equation: conservation laws. Show that, with suitable
decay conditions at infinity, solutions of the two-dimensional
NLS+ equation given in Q4.37 possess the following conserved
quantities:

o0 oo oo [o.0) 1
[ [wtaran [ [ {4 - Jutfara

NLS equation: moment of inertia. For the NLS equation given in
Q4.32, define the moment of inertia

[o.¢]
I= /leulzdx
—00

and hence show that

s oo[| 2= ul]d
a? el T e
-0

which is not a constant of the motion (see Q4.32).
Another solution of the NLS equation. Obtain a solution of the
equation

i, + 1y +sulu> =0 (s = %1)
in the form
u(x, 1) = A(x) exp(iwt),

where w is a real constant. Write down the equation for 4(x) and
hence obtain, under suitable conditions that should be stated, the
solution for which
(a) A is a sech function if ¢ = +1;
(b) A is a tanh function if ¢ = —1.

[See, for example, Hasimoto & Ono (1972).]
Another representation of the NLS equation. Seek a solution of
the NLS equation given in Q4.40 in the form

u(x, 1) = A(x, ) exp(i / k(x', 9 dx"),

where both 4 and & are real functions. Obtain the two (real)
equations that together describe 4 and k, and show that each
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Q4.43

Q4.44

Q4.45
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can be written in conservation form. Explain how one of these
equations gives a result consistent with the first conservation law,
equation (4.93).

Set-down and mean drift. Show that the harmonic-wave solution,

n~ny+eny,

of Section 4.1.1, generates a non-oscillatory component in 7;.
Find this component, and confirm that one contribution corre-
sponds to the set-down of the Stokes wave (given in Section 2.5)
and the other to the mean drift (given in Q4.4).

Derivation of a dispersion relation. Find the solution of the pair of
equations

2Kc,0; + aa, + 2B|APa=0; —2Kc,a, + aby, =0,

where K, ¢,, o, p and |4)? are real constants, for which both 6
and g are proportional to

exp{itkx — wt)} (+c.c.).

Show that this solution exists provided « and k satisfy a certain
dispersion relation; what is it?
Phase speed in the absence of shear. For the choice U(z) =0,
obtain P(z) from equations (4.114, 4.115), and hence determine
¢, from the generalised Burns condition, (4.116). Confirm that
your expression for ¢, is the anticipated result.
Classical result for c,. Show that the group speed, c,, and the
phase speed, c,, are related by the classical identity

5 = - (key),
where ¢, and c, are the expressions given for the NLS equation
with shear; see equations (4.116, 4.117).

[Hint: formulate the problem for dP/dk, on the assumption
that P(z; k) may be differentiated with respect to k, where P
satisfies equation (4.114).]

Modulated waves over a shear: long wave limit. Obtain the solu-
tion for P(z) (defined by equations (4.114), 4.115)) as § — 0,
retaining terms as far as 0(82). Hence show that

Ly ~1+@k)*, 8- 0;

see equation (4.119) et seq. for the notation adopted here.
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Q4.47 NLS equation for variable depth. Obtain equation (4.121) from

Q4.48

equation (4.120), where B = 4,/c,/w.

NLS equation for slow depth variation. Seek a solution of equa-
tion (4.121) for which B=B(;,X,0X), as o — 0, where
D = D(cX); cf. equation (3.150) et seq. for the corresponding
KdV problem. Write down the solitary-wave solution of the
leading order NLS equation obtained as o — 0.
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Epilogue

Is this the end? Is this the end?
In Memoriam A.H H. XII

So many worlds, so much to do,
So little done, such things to be.

In Memoriam A.H.H. LXXIII

In the earlier chapters we have described the mathematical background —
and the mathematical details — of many classical linear and nonlinear
water-wave phenomena. In addition, in the later chapters, we have pre-
sented many of the important and modern ideas that connect various
aspects of soliton theory with the mathematical theory of water waves.
However, much that is significant in the practical application of theories
to real water waves — turbulence, random depth variations, wind shear,
and much else — has been omitted. There are two reasons for this: first,
most of these features are quite beyond the scope of an introductory text,
and, second, the modelling of these types of phenomena follows a less
systematic and well-understood path. Of course, that is not meant to
imply that these approaches are unimportant; such studies have received
much attention, and with good reason since they are essential in the
design of man-made structures and in our endeavours to control nature.

What we have attempted here, in a manner that we hope makes the
mathematical ideas transparent, is a description of some of the current
approaches to the theory of water waves. To this end we have moved
from the simplest models of wave propagation over stationary water of
constant depth (sometimes including the effects of surface tension), to
more involved problems (for example, with ‘shear’ or variable depth), but
then only for gravity waves. It is our intention, in this short concluding
chapter, to give an indication of how the effects of viscosity — the friction
inherent in any flow of water — manifest themselves in our mathematical
description. The approach that we adopt is based on following a rather
systematic and precise route, rather than invoking any ad hoc modelling
of the phenomena. Nevertheless, careful and wise modelling can often
provide quick, neat and accurate results, even if this is possible only by a
skilled practitioner. Here, we shall restrict our discussion to that of

356
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gravity waves (although, in the case of the linear theory, the application
to short waves will also provide an estimate for the damping of capillary
waves). We shall first examine linear harmonic waves, and obtain a mea-
sure of their damping due to the viscosity of the water. Then we shall
discuss the attenuation of the solitary wave and, finally, provide two
descriptions of the undular bore (which requires some viscous contribu-
tion for its existence). In all but one of these calculations we shall con-
sider only one-dimensional (plane) surface waves moving over stationary
water of constant depth.

5.1 The governing equations with viscosity

We consider plane waves that propagate in the x-direction, so our gov-
erning equations (written in original physical variables) are, from
Appendix A (equations (A.2)),

1
U+ utty + wu, = _;Px + v(uxx + uzz);

1
wy + uw, +ww, = _; . — &+ V(Wi +W,,);
u, +w, =0.

These equations describe an incompressible fluid with a kinematic visc-
osity, v. The boundary conditions (given in Appendix B) are chosen to be
those relevant to a gravity wave (so I' = 0, but see Q5.4) in the absence of
any wind shear. Thus equation (B.1), the normal stress condition, gives

P —2u{Ru, — hy(u, +w,) +w,} /(1 + ) = P,,

where P, is the (constant) pressure in the atmosphere and p is the coeffi-
cient of Newtonian viscosity; equation (B.3), one of the two tangential
stress conditions, likewise gives

20y, — w,) + (B — 1)(u, +wy) = 0.

These conditions apply on the free surface z = h(x, f) (and we note that
equation (B.2) is redundant for plane waves moving only in the
x-direction). On the bottom (taken as z=0) we use the boundary
conditions

u=w=0 on z=0,
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and, finally, we have the familiar kinematic condition
w=h,+uh, on z=~h

Our first task is to obtain the nondimensional version of these equa-
tions; to this end we use the scheme introduced in Section 1.3.1 (and see
Q1.35), namely

X—>AX, z—>hyz, t—> (A/\/%)t,
u— Jghou, w— (ho\/gh_o/)u)w
with
h=hy+an and P = P,+ pglhy — z)+ pghyp.

The equations of motion then become

1
Uy + u, + wu, = —p, + ﬁ(uzz + 82uxx);

]
82(wt + uw, + WWZ) =-p;,+ ﬁ(wzz + azwxx);
u,+w, =0,
with

28
p—n-— —R- {Wz - 6""Jc(uz + Szwx)

+ &2 n2u,} /(1 + 26%n2) = O; onz=1+ep
(1- 8262n§)(u2 + Szwx) + 2882(wz —u)n, =0;
w = &(n, + uny)
and
u=w=0 on z=0.

We have introduced our familiar parameters, ¢ = a/hy and 8 = hy/A, and
the Reynolds numbers is R = ho\/% /v (which uses only the scale length
hy in its definition); for many problems in fluid mechanics we are
interested in the case of R — o0.

The small-amplitude limit of these equations, described by ¢ — 0, is
obtained by employing the further transformation

(u, w, p) = e(u, w, p).
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This gives the set of equations and boundary conditions

ot + W) = P+ s+ P (5D)
82{w, + e(uwy + ww,)} = —p, + %(wzz + 8wy 5.2)
uy+w, =0 (5.3)
with
P =022 [ = en, i + 8w (54)
+ 2802} /(1 + 282 12) =0; L onz=1+4e¢n
(A — €28 2)(u, + 8*wy) + 2e8*(w, — u)n, = 0; (5.5
w =1, + eun, (5.6)
and
u=w=0 on z=0. 5.7

These equations, or a simple variant of them, will be discussed in the
following sections, where we shall describe the construction of appropri-
ate asymptotic solutions. (It is easily seen that these equations recover
our earlier versions for one-dimensional motion when we take R — oo,
with equation (5.5) now redundant and (5.7) becoming simply w = 0 on
z=0)

5.2 Applications to the propagation of gravity waves

All the problems that we have examined in this text can, in principle at
least, be re-examined with the appropriate contribution from the viscous
effects included. Many of these problems rapidly become very involved
indeed, so we choose to look at a few of the simpler ones (although even
these, as we shall see, are considerably more complicated than their
inviscid counterparts). In addition we shall also describe, via two differ-
ent models, a phenomenon that requires some viscous contribution in the
equations in order for an appropriate solution to exist. This is the
undular bore, a special — and rather weak — version of the bore that
was described using a discontinuity in Section 2.7. It turns out to be fairly
straightforward to write down a model equation which contains the essen-
tial characteristics of the undular bore, but it is far from a routine
calculation to derive such an equation.
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5.2.1 Small amplitude harmonic waves

The first problem that we tackle is that of harmonic gravity waves mov-
ing on the surface of a stationary viscous fluid; the inviscid problem has
been described in Section 2.1. From Section 5.1 we obtain the governing
equations, after imposing the small-amplitude limit ¢ — 0, in the form

1 8
U = —px + ﬁ(uzz + 82uxx); 82W, =-p.+ 'R’(sz + 82wxx); (58)
U, +w,=0 5.9
with

28
p—n——

sz=0; u,+8w,=0;, w=n on z=1 (5.10)

and
u=w=0 on z=0. (5.11)

We consider here the most general /inear problem, in that we treat the
parameters 8 and R as fixed (as ¢ — 0). The solution that we seek (cf.
Section 2.1) is to take the form

n=E, u=U@ZE, w=W(EE, p=P_2E (5.12)
with
E = exp{i(kx — wt},

where k is the (real) wave number; we anticipate that the presence of the
terms associated with R will produce an imaginary contribution to the
frequency w. The real part of w will — as before — give the phase speed of
the gravity waves. The solution described in (5.12) has been written, for
convenience, with the amplitude of  as 4 = 1 (which could be reinstated
as A by writing AE for E throughout); the four expressions in (5.12) must
be combined with their complex conjugates in order to produce a real
solution-set.

The choice described by equations (5.12) is substituted into equations
(5.8) and (5.9) to give

—iwU = —ikP + %(U” — 84Uy, —iws*W = —P' + %(W” — 84w,
(5.13)
kU+ W' =0. (5.14)
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The boundary conditions, (5.10), yield
P-1 —%W'=o; U +iké’W =0; W=—iw on z=1 (5.15)

and from (5.11) we obtain
U=W=0 on z=0. (5.16)

The simplest manoeuvre that leads to a suitable single equation (for
W(z)), is to substitute for U from (5.14) into the first equation of
(5.13), and to differentiate this equation once with respect to z. Then
P’ can be eliminated between the pair of equations resulting from
(5.13), to give

o(W" — IPW) = W‘V 28K W + 8K w). (5.17)

The boundary conditions (5.15), after using (5.14) to eliminate U and the
first of (5.13) to eliminate P, give

1
K —ioW' ——(W" =38%*W') =0,
il —3g( ) onz=1, (5.18)
W'+ 8KEW =0, W =—-io
and from (5.16) we have simply
W=W =0 on z=0. (5.19)

Equation (5.17), which is a linear equation for W(z) with constant
coefficients, has solutions of the form W = exp(Az), where

(A2 — 82K%) = i(ﬁ — 282207 + 8'K%)
12 2,90
= — (2 — 8K
3R )
Thus
A=%6k or A’ =8k —iwsR,
so the general solution can be written as

W(z) = Asinh 8kz + Bcosh 8kz + Csinh uz + D cosh uz

for arbitrary constants 4, B, C and D, with

u? = 8°k* — iwsR. (5.20)
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The boundary conditions on z = 0, (5.19), require that D = —B and that
C = —Ak/u, so

W = A(sinh 6kz — %sinh nz) + B(cosh 8kz — cosh u2).

This expression for W is used in the boundary conditions on z =1,
(5.18); the second of these gives

A {282k2 sinh 6k — %(azk2 + u?)sinh ,u]
= —B|28°k* cosh 8k — (8°K* + u*) cosh u},
and the third yields simply

A(sinh 6k — %sinh 1) + B(cosh 8k — cosh u) = —iw.

These two equations are solved for 4 and B, and then, finally, the com-
plete expression for W is used in the first boundary condition in (5.18).
After iw is eliminated by using (5.20), we obtain the dispersion relation
between 8k, u and R:

8k(8k cosh 8k sinh u — p sinh 6k cosh w)
1 . .
+ 2 {4;1,62k2(p,2 + 8%k?) + 4u8°k> (u sinh 8k sinh p — 8k cosh 8k cosh )
+ (u? + 8% k*)*(5k sinh 8k sinh . — p cosh 8k cosh 1)} = 0; (5.21)

the details of this straightforward but rather lengthy calculation are left
to the reader. (Expression (5.21), written using a slightly different nota-
tion, can be found in Kakutani & Matsuuchi (1975).) The interpretation
of equation (5.21) is that it determines the complex frequency, o (via
(5.20)), for given (real) values of 8k and R.

The involved nature of the dispersion relation is quite evident; indeed,
even a numerical study of it is far from routine. We shall quote a few
relevant observations about the (asymptotic) solutions for w, the details
of which are to be found in the exercises (QS5.1-Q5.3); the essential char-
acter of the complex frequency is presented in Figure 5.1. Here we pro-
duce a representation of both the real and imaginary parts of (w/k), for
various R, where these curves are based on the asymptotic behaviours of
the solution of the dispersion relation. Figure 5.1 is intended to give only
an idea of the variation of (w/k) with 8k, rather than accurate numerical
estimates. What we see is that the real part of (w/k), which is the speed of
the harmonic wave, is very nearly unity for all 6k not too small and R
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Figure 5.1. Plots of (a) the real part of w/k and (b) the imaginary part of w/k, for
the values of Reynolds number R=0.5, 1, 10, based on the asymptotic
behaviours of the dispersion relation, (5.21).

increasing — and even for moderate R; see also equation (5.22). On the
other hand, the damping of the wave (and it is always damped, since
FIm(w) < 0 V8k # 0) varies quite significantly with 8k, although this var-
iation is restricted to a narrow band as R increases. For large R and 3k
not too small (actually the critical size is 6k = O(1/R); see Q5.2), the
damping is very small indeed, which again is evident in equation (5.22)
below.
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For conventional gravity waves, the Reynolds number (R) is typically
quite large: anywhere from about 10° upwards, and for deep water this
could be much larger. Thus the approximation of interest to us is
described by R — oo; under this limiting process we find (Q5.1) that

ftanh sk (1 +1) (k)14
~k — , 5.22
@ { ok 24/2R cosh®* sk sinh™/* sk (522)

where we have chosen the waves to be right-running (and hence the
positive square root is taken). The leading term is our very familiar result
for the propagation speed of (inviscid) gravity waves, first given in equa-
tion (2.13). The viscous contribution in (5.22), which is provided by the
term in 1/4/R, possesses both real and imaginary parts and therefore
affects the speed of the wave as well as its attenuation. The decay of
the harmonic wave, in this approximation, is controlled by the negative
exponent proportional to

(8k)**sech®*sk cosech®*sk; (5.23)

this function is plotted in Figure 5.2. It is clear that long waves, described
by 8k — 0, are very weakly damped, but that shorter waves (8k increas-
ing) have much higher damping rates. (The exponential decay of the
expression in (5.23), as 8k increases indefinitely, is not to be relied

0.6
0.5
0.4
03
0.2

0.1

0 1 2 3 4 ok

Figure 5.2. The function, (5.23), which provides the dominant contribution, for
large Reynolds number, to the damping of harmonic waves.
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upon, since the argument underpinning (5.22) was R — oo at 8k fixed; a
different asymptotic structure appears for k — oo and, indeed, probably
we should then include the surface tension contribution; see Q5.4.) The
damping rate of shorter, as compared with longer, waves provides the
explanation for the limited distances over which capillary waves are seen
to survive, as compared with gravity waves (as we commented in Section
2.1.2). Other approximations and interpretations of the dispersion
relation, (5.21), can be found in the exercises at the end of this chapter.

5.2.2 Attenuation of the solitary wave

In Section 2.9 we quoted Russell’s description of his chase, on horseback,
of a solitary wave; his evidence, and much that has been collected since
his time, indicates that the solitary wave is only very weakly affected by
viscosity. We shall study the way in which the viscous effects, as described
by the Navier—Stokes equations, provide a slow evolution of the solitary
wave. This we shall do using the method of multiple scales, the scales being
associated with the propagation of the wave, the nonlinear evolution of
the wave, and the evolution on a viscous scale.

We start with the equations given in Section 5.1, (5.1)(5.7), but intro-
duce the transformation which describes the scales on which a KdV-type
balance occurs, as ¢ — 0 for arbitrary 8, these are (cf. equations (3.10),
(3.11))

12

W —> —Ww.

x— — 1,
g2 F;

Y x, t—>

The equations are therefore
1
Uy + e(uu, + Wuz) =-—px+ R—’ﬁ(uzz + Euxx);

JE
E{Wt + S(uwx + sz)} =-p;+ T(sz + wax);
U, +w, =0,

with
&
p= =2 (o = onalus  ow) + St/ + oD =0 |
(1 - 83’])26)(1'{2 + €Wx) + 282(wz - ux)rlx =0; z=1+ &n
w =1, + un,,
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and
u=w=0 on z=0.
Now, in the derivation of the KdV equation, we introduced the variables
E=x—-1t, tT=e¢t

see equations (3.17) and (3.18). Here we follow essentially the same route,
but include evolution on a suitable (slow) viscous scale and also allow the
nonlinear contribution to the speed of the wave to vary on this same
scale. (We have already seen that the speed of harmonic waves is altered
by the presence of a viscous ingredient; see equation (5.22).) Thus, antici-
pating a KdV-type of equation with independent variables T and £ in the

absence of viscosity, we introduce a slow evolution of this system in the
form

T
1
t=¢t, T=At=¢At, E=x—1t— Z]C(T’)dT/, (5.24)
0

where we shall treat &, T and T as independent variables (the method of
multiple scales), and where A is yet to be chosen. Different problems
require different choices of A, in terms of

e(=0) and r=1/RJ/e (= 0),

which we treat as independent parameters. Under this transformation our
governing equations become

sy + eAur — (1 + ec)ug + s(uug + wu,) = —pg + r(u,, + eug);  (5.25)
elew, + eAwr — (1 + ec)wg + e(uwg + ww,)} = —p, + er(w,, + ewg);
(5.26)
us +w, =0, (5.27)
with
p—n—2er{w, — eng(u, + ewge) + s3n§u5}/(1 + 83n§) =0;
a- 83n§)(uz +ewg) + 262(w, — ugn: = 0; onz=1+en
w = &n, + eAny — (1 + ec)ng + eung,
(5.28)
and
u=w=0 on z=0. (5.29)
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We seek an asymptotic solution of these equations in the form
o] o0
g~ Y qE T T, A, n~) &nE T, T; A7),
n=0 n=0

for ¢ — 0, where ¢ (and correspondingly ¢,) represents u, w and p. Each
function ¢, and n, (n =0, 1,2,...) is, in turn, regarded as possessing an
appropriate asymptotic representation as r — 0, A — 0; this is equiva-
lent to seeking a multiple asymptotic expansion in terms of, for example,
the asymptotic sequence {£""},n =0, 1, 2, .., for a suitable set of values
of m and some chosen A(g, r). Further, special problems can always be
posed for any choice A = A(e) and r = r(¢); that is, R = R(¢). On phy-
sical grounds, such a procedure could be criticised since ¢ and R are
clearly independent parameters; however, some of the mathematical prob-
lems that are generated in this way enable us to obtain some insight into
the structure of these equations and their solutions. We shall comment on
this again later, but we note here that an ab initio choice of R = R(¢)
reduces the problem to an expansion in one parameter — say € — only. To
proceed, the method of solution that we follow here is, in its general
outline, that employed for the derivation of the Korteweg—de Vries
equation (as described in Section 3.2.1).

The leading-order equations, as ¢ — 0, obtained from equations
(5.25)(5.27), are

—Ugs = —Ppog + rboz;;  Po: =05 uge + wo, =0. (5.30)
The boundary conditions, from (5.28) and (5.29), yield
Po=To U,=0; wo=—mg on z=1 (5.31)
and
Uy=wy=0 on z=0. (5.32)

It is clear that equations (5.30), for r — 0, possess a solution which
admits a boundary layer, presumably near z = 0 in the light of the no-
slip boundary condition on z = 0; see Q5.5 and Q5.6. (We might expect a
boundary layer to be required also near z = 1, in order to accommodate
the shear stress condition there. However, as we shall see, the problem of
no wind shear does not give rise to a surface boundary layer at the order
of approximation to which we shall be working.) We therefore seek, in
the first instance, a solution of equations (5.30)—(5.32), in the limit r — 0
but valid away from the boundary layer near z = 0. This first approx-
imation in r is denoted by an additional zero suffix, so we obtain
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Ugos = Poos;  Pooz =05 ugog + woo, =0,
with
Poo =1Noo; Uoo: =0; woo=—ngoz on z=1

This set produces the familiar solution (see Section 3.2.1)

Poo = Too;  Upo = TMgo;  Woo = —Zngee, 0 <z =<1, (5.33)

which satisfies the shear stress condition (ug,, = 0) on z = 1, but which
cannot satisfy the bottom boundary condition (ugy =0 on z=0).
Solution (5.33), when previously derived for the KdV equation, was
valid for 0 < z < 1; here it is not valid near z = 0, although both pg,
and wy (at this order) would appear to be uniformly valid on [0,1]. In
fact solution (5.33) satisfies the full equations valid away from the
boundary layer; see Q5.7.

The equations that define the O(e) problem, from equations (5.25)-
(5.29), are

o + Augr — Uy — Cugg + uglio + Wolly, = —P1g + (U, + tgge);
—~Wog = —P1z +Woz5 U +wi; =0,

with

P1+noPo; — M — 2rwy, = 0; u12+w0§=0 on 7= 1
wi + NoWo, = Mo, + Angr — N1z — Mo + N
and
uy=w; =0 on z=0.

This time we start by retaining the terms in r and A (cf. Q5.7), but we use
the solution previously found, which is valid outside the boundary layer;
in particular, we note that

Uy, = 0; Poz = 0; Woz = —Nog»

since (ug, Po, Mo) ~ (4go» Poo» Noo) to all (algebraic) orders in r, as we
mentioned above. Thus we obtain the equations

Nor + Angr — uig — cngg + Nog + NoNog = —P1g + 11z, + noge)s  (5.34)
D1z = —Zngg; U +wy; =0 (5.35)
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with

p1=m —2rne; Uy —noge = 0;

onz=1, (5.36)
Wy — NoNog = Mo + Aoz — Mg — CNoe + NoNoe

for the problem outside the boundary layer. We obtain directly from
equations (5.35) and (5.36) (cf. equation (3.26))

1
n= 5(1 - Zz)'?ogs +m — 2rng
and then from equation (5.34)
Nor + Anor — o + NoNog + Wiz

1
= —ng + 2rngg — 5(1 - 22)170555 + (w1, + Noge)

so that
1
wp = (Cﬂog — Nor — Angr — nong + 3”70;; - 5'70;:55 - '715)2
1
+ - noeee + 1, + o6, T, T3 A7) (5.37)

6

where f;, is an arbitrary function of integration. Finally, the kinematic
condition on z = 1, in (5.36), yields

1
CNog — Nor — Anor — NoMog + 4Moge — 5 Nogee — Mg +Jo — NoMog
3

= nNo; + Angr — N1 — CNog + NoNoe

or

1
2(no; + Aor — cnog) + 3ngmog + 3 Moges + 4rnog: = fo, (5.38)

which is to be compared with our conventional KdV equation (3.28):

1
219y + 3n9M0e + 3 Mosge = 0.

It is left as a simple exercise to confirm that the surface shear stress
condition (in (5.36)) is automatically satisfied since, away from z =0,
Uy, + Noge = 0 (to within exponentially small terms as r — 0); see Q5.8.

The final stage of this calculation involves the construction of the
solution in the boundary layer and hence, via matching, the determina-
tion of the function fy(&, 7, T; A, r). Once this is done we may return to
our KdV-type equation, (5.38), and consider the size and role of the
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various new terms that have appeared. The boundary layer, as is evident
from equations (5.30), is in the region defined by z = O('/?), r — 0, and
then wy = O(r'/?) (from the equation of mass conservation in (5.30)).
Thus we introduce new variables

z=r"2Z, wy=r"*Wy&, 1, T,Z; 1) (5.39)
and, correspondingly,
Uy = UO(S’ T, T9 Z; r)’ Do =P0(§y 7, T,Z, r);

of course, 7, is unchanged since it is not a function of z. Equations (5.30)
and (5.32) therefore become

—Upe = —Pog + Upzz; Poz=0; Up+ Woz=0 (5.40)
with
Uy=Wy=0 on Z=0.
We see immediately that
Po=mn, Z2=0,

in order to match to the solution py = ny (which merely restates the uni-
form validity that we have previously noted). The equation for U, then
becomes

Uozz + Upe = 1oz
with (5.41)
Uy=0onZ=0; Uy— ngas Z— oo,

this latter condition ensuring that U and u, (= ) match.
The problem posed in (5.41) is conveniently reformulated by writing

Uy=mn+% and {=-§

to give
Uozz = %0;
with
Uy=—-nonZ=0; ¥Uy— 0asZ — oc.
When we set

770(5» T, T) = '70(—4', T, T) = —HO(;’ T, -T)»
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the solution (following Duhamel’s method, Q5.9) can be written as

- f iz m Do) b, (542
SO
2 7 72 .
Up =10 ——= [ no¢+ .7 T)exp(—y)dy. (5:43)
ﬁb/ 4y

So that we can match, we require the solution for W, which, from
equations (5.40) and (5.43) becomes

Z{f oo
2 z?
Wo =z +— [ I [ e+ 5w Dexpyay 4z, (s
0 0

satisfying Wy =0 on Z =0. The matching is then between (5.44) as
Z — o0, and

w~ wy+ ew 5.45)
0 1 (

as z — 0; in particular, written in boundary-layer variables, z = r'/2Z
and w = r'/2W, (5.45) becomes (from (5.33) and (5.37))

£
W ~ —Znos +mﬁ)

so matching to (5.44), as Z — oo, requires
€ 2
— = — —=, 1, —y9)dydZ. 5.46
r1/2f° ﬁb/o/.no;(€+4y2 1, T)exp(—y*) dy (5.46)

(Notice that the first term, —Z7n, automatically matches, confirming the
uniform validity of the solution wy.) The appearance of ¢ in the definition
of fy, through (5.46), is not consistent with our formulation (since we
have already expanded in terms of £”). This is simply telling us that a
precise balance of terms will require a choice r = r(¢), and then the cal-
culation repeated with this choice in place; we shall write more of this
shortly. It is left as an exercise (Q5.10) to demonstrate that, from
equation (5.46), we may write

1T dg’
=7 [ e e 40
4
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Thus, finally, we have a KdV-type equation which incorporates the
dominant effects of (laminar) viscosity, provided r — 0 (that is, if the
Reynolds number is large enough); our equation is, from (5.38),

o0
1 1 [r dg’
2(nor + Angr — cngg) + 3ngneg + 3 Mogge = g\/;/ Nog’ ﬁ (5.48)
&

Here, we have retained only the dominant terms associated with A (— 0)
and r (— 0); clearly the term 4rng (in equation (5.38)) is much smaller,
as r — 0, than that associated with /r/¢ (although the term 7o, will
figure in a later calculation). A number of different and important choices
can be made that describe diverse problems, each leading to an appro-
priate balance of terms; we shall return to equation (5.48) in the next
section, but let us here examine the problem we first posed: the slow
modulation of the solitary wave.

The solitary wave, in the absence of any modulation, is a steady solu-
tion of the Korteweg—de Vries equation (that is, ny = n9(§) only), so

1
—2cnog + 3ngnes + 3 Moggs = 0,

1o = 2csech? <E\/%)

However, we now incorporate a slow modulation of this solution, on the
scale T, by virtue of the weak viscous contribution. Thus we choose
A = /r/e, and hence obtain

with the solution

[o.0]
1 1 dg’
—2cnog + 3ngnes + 3 Mg = A —2nor + J_E! Noe’ ﬁ , (549

with A — 0 and where

1o ~ 2¢sech? (;/3;") ¢=c(T). (5.50)

The model that we have in mind here is represented in Figure 5.3. The
solitary wave is moving into stationary water and as it does so a (thin)
boundary layer is initiated near the front of the wave. This boundary
layer then grows behind the solitary wave; in the frame at rest relative to
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—_—»
Solitary wave

Boundary layer

N

Figure 5.3. Sketch of a solitary wave moving into stationary water with a viscous
boundary layer (on the bottom) growing back from the front of the wave.

the wave, the flow is from right to left and the boundary layer is
stationary in this frame, and growing to the left.

The most direct way to obtain the details of the modulation is to
invoke the condition

np—>0 as |§ > o0

and to form the integral over all & of equation (5.49), to give

3 1
[—2¢ny + 3 o + 3 Noge] 00

d ] 1 o 00 dg’
N _z_/ d+—ff L S
dT_oo nodé ﬁ_w J nosm §
and then
d oo [« <IN <]
dT [ nodé = W /f Mg’ 7 —¢
—00 -0 ¢

This identity provides an equation for ¢(T), which can be obtained by
introducing (5.50) to give

ddT [2c 7 sech’ (g )dg]

-0

B T T , e\ de’
= —4c 7 f /sech( [)tanh(& /;) mdf.
-0 &
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which can be rewritten as

o0
d /2 2
ar c §/sechydy
—00

e (2\"*T T dy’
= _—(—) / fsechzy’tanhy’ dy. (5.51)
A

77 \3e =y

The precise values of the constants that appear here are not particularly
significant; the form of equation (5.51) is simply

K- d iy
WO =—2uc or g D=

where u (> 0) is a constant (whose value turns out to be approximately
0.08), and hence

c—‘;z A +pc*n)™*, T>0, (5.52)
where ¢ = ¢y at T = 0. Equation (5.52) is our main result here (first
obtained by Keulegan (1948)); it describes the attenuation of the ampli-
tude of the solitary wave, and there is some experimental evidence to
suggest that its general form is not too wide of the mark. Certainly we
must not expect close agreement, mainly because our simple theory does
not even attempt to represent a (probably) turbulent flow moving over a
rough bed. Further discussion of results of this type can be found in some
of the references at the end of this chapter.

We shall return to the KdV equation, with its viscous contribution as
represented in (5.48), in the next section, but first we must describe
another phenomenon in water waves: the undular bore.

5.2.3 Undular bore — model 1

In Section 2.7 we introduced and discussed the hydraulic jump, as well as
its counterpart, which moves relative to the physical frame: the bore.
These phenomena were modelled as a discontinuity, although in reality
there is usually a fairly narrow region over which the flow properties
change markedly. This transition is observed to occur through a region
of highly turbulent motion, which takes the form of a continually break-
ing wave. However, a river flow can sometimes support a change of flow
properties that is far more gradual, without — or almost without — any
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sign of extensive turbulence. This happens if the change in levels is not
too great; then it is often observed that behind the smooth transition there
is a train of waves. This phenomenon is called the undular bore; see Figure
5.4. The interpretation of what is seen is that, rather than a considerable
dissipation of energy at the front (as in the bore), the undular bore
structure allows all (or most) of the energy loss to occur by transporting
the energy away in the wave motion. We can expect this to occur when
the amount of energy to be lost is quite small — so we have a ‘weak’ bore;
a model for the energy loss can then be provided by a fairly small amount
of (laminar) viscous dissipation. This is the essential idea behind the
model for the undular bore that we describe here and, under slightly
different assumptions, in the next section. Furthermore, we anticipate
that the surface wave itself is a nonlinear object, so the oscillatory part
of the profile is also likely to be nonlinear: for example, a cnoidal wave
(discussed in Q2.67). Thus we look for a KdV-type of equation, which
incorporates some appropriate viscous contribution — but this is precisely
what we did in the previous section.

The calculation that produces our governing equation is not repeated
here. It is precisely that described in Section 5.2.2, except that now we do
not require the modulational ingredient (which was required in order to
discuss the evolution of the solitary wave). Thus we dispense with the
scale T and with ¢(T), which were introduced in equations (5.24): we use
only £ and t. Further, because our aim here is not to develop a slow
modulation, the most convenient approach is to make the special choice
r = O(£?) (so that the Reynolds number is such that R™! = O(¢%?)). The
problem now involves the single parameter ¢, for ¢ — 0, and it is then a
simple exercise to confirm that our previous calculation goes through,
resulting in the equation for the surface wave:

1 17 de’
2n0¢ + 3nom0e + > =—~—~[ (&) . 5.53
o Moflog + 3 Mosge ms nog' (', T) JF—t (5.53)

Figure 5.4. A sketch of the undular bore.
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We have written r = .92/92 (that is, R = e724), and otherwise we have
quoted from equation (5.48). Equation (5.53), or variants of it, have been
obtained by Ott & Sudan (1970), Byatt-Smith (1971) and Kakutani &
Matsuuchi (1975); the work of Byatt-Smith, in particular, is directed
towards a description of the undular bore.

The equation for ny(&, 7) represents the action of a thin viscous bound-
ary layer — remember that R!'= 0(35/ 2) as ¢ - 0 — which grows from
near the wavefront; this is the mechanism which provides the dissipation
of energy. Now, provided we restrict attention to regions not too far
behind the front, we may seek steady solutions of equation (5.53).
Clearly, far enough behind the front, the boundary layer will have
grown sufficiently large that it can no longer be treated as thin: the
boundary layer will then interact with, and disrupt, the surface wave.
When this happens we shall not be able to sustain a steady solution.
With this caveat in mind, Byatt-Smith (1971) discusses the nature of
the steady solution given by

1 1//4 d !
—20770+3770770+ Mo _f—/ no(¢' — %

where 7y = 19(§ — ct) and the prime on 7y denotes the derivative with
respect to (§ — c7). It is convenient to rewrite the integral with

g =£+1¢
and then to set £ — ¢t = ¢; this yields

1 "
—2cn0+3170770+ Mo «/_—/ 0(§+C)«/—

which is integrated once with respect to ¢, with the condition
n—>0 as ¢ — +oo.

Thus we obtain a nonlinear, ordinary integro-differential equation

3 1
~2em + 318+ 378 = / e+ 65

which describes steady solutions ny(¢), for various £ and ¢. Equation
(5.54) was integrated numerically by Byatt-Smith, for quite large values
of # (= 10°/7 and 10%/7) and two values of ¢. (Our equation (5.54),
although not identical to that derived by Byatt-Smith, is precisely
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equivalent to it.) An example of the form of solution (5.54) is shown in
Figure 5.5, which makes clear that the essential character of the undular
bore is recovered. A detailed numerical integration of this equation shows
that: (a) the amplitude of the waves increases as ¢ increases (completely
consistent with the nonlinear character of solutions of the KdV
equation); (b) the period of the oscillation increases as # increases.
There can be no doubt that equation (5.53), and then equation (5.54)
for steady solutions, embody a mechanism which would appear to pro-
vide a perfectly reasonable model of the undular bore. However, there are
some features of this approach to the problem which, although not of
great significance taken individually, add up to a slightly unsatisfactory
description. This model uses a well-structured and continually evolving
boundary layer on z = 0, but a more realistic river flow is likely to have
such a boundary layer completely disrupted (by an uneven bottom, for
example). Indeed, we might expect that some dissipation — perhaps the
major contribution — occurs near the front and that any further energy
loss in the flow behind is insignificant; the excess is still propagated away.
The boundary layer, as we have already commented, necessarily produces
an unsteady profile (which, certainly, is not an important consideration
for large ). Nevertheless, a model that admits a completely
steady solution (on the scales employed) would be a slight improve-
ment. Finally, the equation itself, (5.53) or (5.54), is a nonlinear

Mo
-0.3

-0.25
-0.2
-0.15
0.1

-0.05

Figure 5.5. A numerical solution of equation (5.54), for R = 10*/7 and ¢ = 0.1.
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integro-differential equation which is therefore not readily analysed; a
simpler equation (which still embodies the relevant physics) would be
an advantage. Thus, if we can find a model that addresses most of
these points, we will have produced a useful alternative description of
the undular bore. Of course, in the context of the theory of water waves,
this might also prove to be an instructive mathematical exercise.

5.2.4 Undular bore — model II

It is surprisingly simple to write down an equation that should contain the
essential features seen in the undular bore. This equation is to admit
solutions that describe a smooth transition from one depth to another
(like the Burgers equation), together with an oscillatory (dispersive) wave;
see Q1.55 and Q2.67. Such an equation might take the form

U+ Ul + U = Uy, (5.55)

where we have set all coefficients to unity. But, no matter how attractive
this appears, it must be treated as useful only if it can be shown to arise
(from the relevant governing equations) under some consistent limiting
process. This is what we shall now demonstrate, and then we present a
brief discussion of the solutions of the resulting equation (which is
essentially (5.55)).

The governing equations that we start from here are those given in
Section 5.1 (and then as transformed in Section 5.2.2 to remove the
parameter §) but with an important addition. The undisturbed flow is
no longer stationary; it is a fully developed Poiseuille channel flow mov-
ing under gravity, and so we introduce gravity components
(gsina, —gcosa) and replace eu by U(z) +eu; see Figure 5.6. The
resulting equations then become

I 1 ¥4
u,+ (U +ewu, +(U' + eu)w = —p, + B+ ——=(U" + eu, + e*u,,);

Re /e
(5.56)
N
e{w, + (U + ew)w, + eww,} = —p, + —IT(WZZ + ew,,); (5.57)

Uy +w, =0, (5.58)
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Wave

Figure 5.6. A sketch of the fully developed (Poiseuille) velocity profile for the flow
moving under gravity, and the surface wave.

with

p—n— w; — nx(U/ +&u; + £2wx)

NG

& |
+Enfu /(1 +En3) =0;

(1= E2)U’ + eu, + £2w,) + 26> (w, — u)n, = 0;

w=mn;+ (U + eu)ny, (5:59)

onz=1+ep

and
U+eu=0, w=0 on z=0. (5.60)
The constant 8 is defined as
tan o
ﬂ - m y

and this expresses the required component of gravity down the channel
which is needed in order to maintain the flow U(z). In the absence of any
surface wave, the equations (5.56)—(5.60) become simply

U//
P+ Refe —

(5.61)

0; U'1H=0; UWO)=0,

so we have
U(z) = Uy(2z — 2%, (5.62)
the Poiseuille profile, where
2U, = RPe+/e = Rtana,

and we treat U, (which is essentially a Froude number for this flow) as
O(1). This choice of U, obviously gives U(z) = O(1), and provides the
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balance between R and a which is required to produce the fully developed
flow at leading order.

For sufficiently large Reynolds number, R, the equations (5.56)—(5.60)
admit solutions which represent waves that move at speeds determined by
the Burns condition, when U(z) is given by (5.62), and also nonlinear
waves that move over this shear flow; see Sections 3.4.1 and 3.4.2.
However, our governing equations here contain a viscous contribution,
and this enables another type of wave to exist. To see how this arises, let
us initially transform

X=Ax, T=At1, w=AW, (5.63)

and take the limiting process A — 0, at fixed ¢ and R, with U(z) given by
(5.62). (The wave that we are about to describe exists even for A = O(1),
but it is easier to see the appropriate balance with A — 0.) The leading
equations, as A — 0, are then

uzz=0; Pz—_-o; uy 4+ WZ=09 3
with
p=n u+Un=0; W=nr+Uny on z=1 (5.64)

and

u=W=0 on z=0,

where we have written U'(1 + en) = U'(1) + enU”(1). . .. The solution of
the set (5.64) is immediately

p=n u=2Umz, W=-Umys
with
nr+2Upny =0; thatis, n=n(X —2U,T).

Thus there exists a surface wave which moves to the right at a speed 2U,,
which is twice the surface speed (U,) of the underlying Poiseuille flow.

In consequence, the linear equations for the surface wave allow three
possible waves: two waves whose speed is determined by the Burns con-
dition (see Q3.45(b)), one of which satisfies ¢; > 0 and the other gives

¢, <0, and one which moves at a speed 2U, (> 0). It can be shown
(following on from Q3.46(b)) that

¢ <20y < ¢4

and, further, that these three waves form a wave hierarchy of the type
discussed in Q1.51 and Q1.52. In particular, it follows that the waves
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which move at the Burns speeds (¢, ¢;) decay — they are called dynamic
waves — leaving the main disturbance to move at the speed 2U, (which is
called the kinematic wave). A discussion of kinematic and dynamic waves
can be found in Lighthill & Whitham (1955), Whitham (1959, 1974); the
application of these ideas in the current context, and to the undular bore,
is given in Johnson (1972). It is sufficient for our purposes here to inves-
tigate more fully the nature of the propagation at the speed 2Uj, on the
assumption that the dynamic waves decay and therefore, eventually, play
no réle.

The model that we are employing represents a flowing river — so it is
more realistic — with a surface wave that propagates forwards (‘downhill’)
at a speed greater than the surface speed of the undisturbed flow. The
wave moves into undisturbed conditions ahead, and we wish to determine
how this wave evolves and whether a change in depth (with undulations)
is possible. The approach that we adopt is the familiar one of following
the wave (which moves at the speed 2Uj), constructing its evolution on a
suitable long time scale and, here, also making an appropriate choice of
the Reynolds number.

To this end we introduce

E=x-2Uy, tT=¢t (5.65)

and choose

R = /24, (5.66)

although other scales exist, involving appropriate combinations of &, §
and R. The choice made here is the simplest that produces the required
balance of terms. The equations and boundary conditions, (5.56)—(5.60),
then become

su, + (U — 2Uy + ewyug + (U’ + eu)w

=—p§+(ﬂ+

"

1
ﬁ) + E@(uzz +eug);  (5.67)

1
elew, + (U — 2Uy + su)w; + sww, } = —p, + @(sz +ewg);  (5.68)

ug +w, =0, (5.69)
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with

2
p—n—gé{wz—ng(U’+£uz+82w§)

+83n§u5}/(1 + 83172) =0;

onz=1+4¢en
(1 = EnDU’ + eu, + *wy) + 26> (w, — ug)n: = 0;
w =en, + (U — 2U, + eu)n, (5.70)
and
U+eu=0, w=0 on z=0, (5.7)

where U(z) is to satisfy (5.62). We seek an asymptotic solution of these
equations in the form

(= <] [e]
g~ 4612, 1~ ) &nEn, £-0,
n=0 n=0

where ¢ (and correspondingly g,) represent u, w and p; the new Reynolds
number, £, is then held fixed as ¢ — 0. The leading order problem from
equations (5.67)(5.71) is directly
1
up; =0;  po, = §w022; g + wo, = 0,
with

2
Po=ﬂo+@W0z§ up, +noU" =0; wo=(U—2Up)mes on z=1,

and
uy=we=0 on z=0,

which are essentially equations (5.64). The only difference arises in the
way in which p, is determined here, but since p, is found after uy, wy and
no are fixed, this is not critical. Indeed, we see that

20,
uy=2Upmoz,  wo=—Ustiosz’s po=1o—— (L+ 2, (5.72)

where 7y(%, T) is an arbitrary function (at this order).
At the next order we obtain, from equation (5.67),

, 1
(U = 2Up)uge + U'wy = —pog + _g'f(ulzz + toez);
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from (5.69) we get simply
Upg +w,, = 0.

The boundary conditions yield

mU" + uy, + woe = 0;
, onz=1
wy + nowo, = Nor + (MU " + up)nes + (U — 2Up)ny¢

and
u1=w1=0 on Z=0,

where we have omitted the boundary condition on the pressure at the
surface, and equation (5.68), at this order; these enable p; to be deter-
mined, but this is not required in order to find the equation for 7¢(§, 7).
(This has happened because p essentially uncouples from the other func-
tions, as we alluded to above; the construction of p, is left as an exercise
in Q5.14.) It is altogether straightforward to show that

@Uo Z

R
Uy = =2 (2" — 42 + —Tlog — Y (3z2 +22%) e + Az, (5.73)

where A(§, r) is an arbitrary function of integration; similarly

Q?U 2 5
0 (Z - SZ )ﬂog; - EZ T]ogg + —(22 +z )770;5& - 'EAE (5 74)

The surface boundary conditions yield, first,

W =—

4
A =2Un + 92(3 U2 - 1)7705 + 5Uqnoge,
and then

o + 4Tt + 20 =5 (1- 308w (579)
the required Korteweg—de Vries—Burgers (KV B) equation.

This is the equation that we seek, but its construction is very different
from the corresponding equation based on boundary-layer arguments.
That equation, (5.53), recovers the classical KdV equation as the
Reynolds number is increased indefinitely — a comforting property; our
new equation, (5.75), is dominated by the effects of viscosity. We require
viscous stresses to balance gravity and so provide the ambient flow, and
also a special limiting process (¢ = 0, £ fixed) in order to generate the
appropriate internal viscous dissipation (represented by the term 7).
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The removal of the viscous contribution involves Uy — 0 and # — oo,
which clearly destroys the character of our KVB equation: we cannot
recover the KdV equation in the way we might have expected (but it does
arise if we let Z — 0). Nevertheless, we have succeeded in our intention
to find a limiting process that balances KdV nonlinearity and dispersion
against Burgers nonlinearity and dissipation.

The KVB equation, (5.75), possesses a number of interesting features.
First, it and our model admit a steady solution; second, the damping (or

dissipative) term
R 8 »
‘3_ (1 - ‘5' UO)UO&;.

has a negative coefficient if

5
g .
This condition implies an energy input and, presumably, we must antici-
pate that our model is no longer valid. In fact the speed of the surface
wave is, to leading order as ¢ — 0, 2U,, and all speeds have been non-
dimensionalised with respect to ./gohy, go = gcosa; thus 2U, is the
Froude number of the wave. Thus, when we write F = 2U,, condition
(5.76) becomes

v > (5.76)

F? >§ or Fz=1.58.

Now it is commonly observed that bores with F larger than about 1.2
have turbulent, breaking fronts; on the other hand, if F is less than this
(but, of course, F > 1; see Section 2.7), we typically observe the undular
bore. This suggests that our model has captured an important phenom-
enon (even though the values do not quite correspond); indeed, Dressler
(1949) has shown that the condition F? > 5/2 heralds the formation of
roll waves, which, locally, have the appearance of turbulent bores.

This brief discussion of the role of laminar viscosity in water-wave
theory is brought to a close as we present a few observations on the
steady solutions of the KVB equation, (5.75). We seek a solution in the
form ny(& — c7), to give

R 8
—cng +4Ugneng + 2Ugng’ = 3(1 ~3 Upng

which, after one integration in ¢ = £ — ¢t and imposing the condition
ng = 0 as £ —» +o00, yields
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R 8
Zaa=2
3 ( 5
This equation is conveniently normalised by introducing the
transformation

—cng + 2Ugng + 2Ugng = Ugng.

to give
Mo — 1o + 16 = Ang, (5.77)

where

A= %@(1 - % U3/ 2Uqe.

In the form (5.77), we then have
np—>1 as ¢— —oo,

if solutions exist for which this is possible, which certainly requires A > 0
i.e. Ug < 5/8. It is an elementary exercise (see Q5.15) to seek the
asymptotic behaviours

o ~ aexp(—af), ¢ — +oo
and
no ~1—bexp(y), ¢—> —oo,
and to find that

a=%{ﬁ—x}, ﬂ=%[u:\/x2—4].

The choice of the sign in « ensures that ny — 0 as ¢ > 4o00; in B, either
sign is possible (and it is clear here that we must have A > 0), but the
profile as { — —oo may be either monotonic (A > 2) or oscillatory
(0 < A < 2). Thus equation (5.77) will allow either a monotonic transition
through the jump (a non-turbulent classical jump) or an oscillation about
np = 1 (the undular bore). The interpretation is quite simply that larger A
means larger dissipation (mainly in the neighbourhood of ¢ = 0), so no
wave is required to transport the excess energy away. For smaller A, the
wave is needed to carry the surplus energy away from the front.

A number of interesting properties of the steady KVB equation can be
explored and exploited; see Q5.16-Q5.19. We conclude by presenting two
solutions of the KVB equation, (5.77), in Figure 5.7; these are based on
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o

14+

Figure 5.7. Two solutions of the steady state Korteweg—de Vries—Burgers (KVB)
equation, (5.77), for A = 0.1, 2.1.

numerical solutions of the equation. One is oscillatory (A = 0.1), and is
therefore a representation of the undular bore, and the other is a mono-
tonic profile (A = 2.1). The undular bore displays a front that is reminis-
cent of the solitary wave, and the oscillations can be described by an
evolving cnoidal wave; both these properties can be formalised by exam-
ining the limit A — 0 (as considered in Johnson (1970)). The monotonic
profile, on the other hand, takes the form of a distorted tanh curve, where
the distortion is progressively less pronounced as A — 00; see Q5.18.

Further reading

The réle of viscosity in fluid mechanics in general, and in the theory of
water waves in particular, is a very large and important subject. The
fundamental effects that are encountered in the study of fluids are best
addressed through standard texts on fluid mechanics (given, for example,
at the end of Chapter 1). However, in addition to the references already
given (including those relevant references contained therein), the reader is
directed to Lighthill (1978), Craik (1988) and Mei (1989) for some useful
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and fairly up-to-date material on viscous dissipation in wave propaga-
tion. The text by Debnath (1994) also touches on some of these ideas.

Q5.1

Q5.2

Q5.3

Q5.4

Q5.5

Exercises

Dispersion relation: large R. Consider the dispersion relation,
(5.21), in the limit R — oo at fixed 8k, and hence obtain result

(5.22):
ok ftanh sk (1+1i) (8k)*
8k 24/2R cosh®* sk sinh®* sk |’

Dispersion relation: 8k = O(1/R). Show that the result obtained
in Q5.1 is not uniformly valid, as 8k — 0, where 3kR = O(1).
Hence obtain the equations that describe the leading approxima-
tion to the dispersion relation, (5.21), in the limit R — oo at kR
fixed.

[Note: these equations cannot be solved in closed form.]
Dispersion relation: small §k. Consider the dispersion relation,
(5.21), in the limit 8k — 0 at fixed R, and hence show that

w ~ —i8k’R/3

(where the real part of w turns out to be exponentially small).

[This case, which is essentially a high-viscosity limit, shows
that (at this order) there is no propagation, only decay. As an
additional exercise, you may show that the expression obtained
in Q5.2 agrees, for 8k — oo, with that given in Q5.1 as 8k — 0,
and that there is agreement between Q5.2 and Q5.3 for 8k — 0.]
Dispersion relation with surface tension. Repeat the calculation
presented in Section 5.2.1, but with the surface pressure condi-
tion adjusted to accommodate the effects of surface tension,
namely

28
P—'I—sz = _32Wenxx on z=1;

cf. Section 2.1. Hence obtain the dispersion relation, with surface
tension, which corresponds to that given in equation (5.21).

A model boundary layer problem. Obtain the solution of the
ordinary differential equation

ey +(1+ey' +y=0, 0=<x<l,
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Q5.6

Q5.7

Q5.8

5 Epilogue
that satisfies
y0;8)=0, y(1;8)=1,

where ¢ > 0 is a constant. Describe the character of this solution,
for ¢ — 0, in the two cases
(a) x away from x = 0; b) x=¢X, X=0().

[The region near the boundary, measured by x = O(¢) is where
the boundary layer exists; in this narrow region the solution
adjusts from the value e (approximately, as ¢ - 0) to 0 (on
x =0).]

Asymptotic approach to a boundary layer problem. Solve the pro-
blem given in Q5.5 by seeking two asymptotic solutions, in the
form oo

@ y~ Y &y (x), €0,
n=0

valid for x away from x = 0, and satisfying the condition on
x=1
(b) set x = ¢X and write

e}
y~ Zs”Y,,(X), £ 0,
n=0

satisfying the condition on x = 0 (that is, on X = 0).

Now match the solutions obtained in (a) and (b), thereby
uniquely determining the solution in (b).

[You need find only the first terms in each expansion, but a
second could be found as well, if you are so minded.]
Inviscid solution of the viscous equations. Confirm that the solu-
tion given in equations (5.33) satisfies all the equations and
boundary conditions in (5.30)+(5.32), with the exception of the
no-slip condition on z = 0.
Surface shear-stress condition. Show that, away from the bound-
ary layer (formed as r— 0), a solution exists in which
Uiz +noge =0 (a term in equation (5.34)). Hence obtain an
expression for u;;, and use this to confirm that the surface
shear-stress condition,

ulz—'ﬂog:o on z=1,

is satisfied.
[This is the counterpart, at O(g), of the solution discussed in

Q5.7]
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Heat/diffusion equation: Duhamel’s method. The calculation of
the relevant solution of the equation

U=ty t=>0, x>0,

is constructed in two stages.
(a) Obtain the solution for u(x, f) which satisfies

wx,00=0, x>0, u@,)=1, t>0, (*)
in the form
x/2./t
u=Ux1n=1 —% / exp(—y*) dy.
0

(b) The effect of raising the ‘temperature’ on x = 0 to 1 at a time
t =t' (> 0), and then reducing it to zero at t = t' + h(h > 0),
is represented by the solution

u=U(x,t—t)—=U(x,t—t —h).

Over a very short time interval this is, approximately,
h(dU /0t) evaluated at time ¢ —¢'. If, during this interval,
the temperature is actually f(¢'), the resulting temperature
over all times is then

t

- [

fthadt';

t—t’

this is Duhamel’s result. Obtain an expression for 3U /3¢, and
hence write down #; confirm that ¥ = # is, indeed, a solution
of equation ().

Hence rewrite this solution so that it takes the form quoted
in equation (5.42).

[In (2) introduce the similarity variable, x/2+/t. The solution
obtained in (b) gives the temperature (in x > 0, ¢ > 0) when the
end, x =0, is set at the variable temperature f(¢). Here we have
used the interpretation of u as temperature, so () is called the
heat conduction equation in this context; it is also often called
the diffusion equation — here the diffusion of heat.]
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Q5.13
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An integral identity. Show that

o 00 2 , 00 / e’
2!0ff<x+ﬁ>e><p(—y)dyd2=xff(x)m,

and evaluate this integral for the choice f(x) = exp(—ax), where
a (> 0) is a real constant.
Modulation of the solitary wave. Follow the procedure described
in equation (5.49) et seq., but start by multiplying this equation
by n. Hence obtain the corresponding expression for ¢(T).
[This derivation uses the ‘conserved’ density 52, rather than Mo
as given in the text. You might wish to obtain numerical esti-
mates for the integrals that appear in these two formulae; the two
expressions for ¢(T) should, of course, be identical.]
Propagation of the modulated solitary wave. The
(nondimensional) speed of the solitary wave, in the characteristic
frame, is

o) =co(1+aT)™, T=>0,

where o (> 0) is a constant. Obtain an expression for the char-
acteristic variable (£§) associated with the modulated solitary
wave; see equations (5.24).

Asymptotic behaviour of the bore. Obtain an asymptotic solution
of the equation

o]
3 ) 1 " _ ’ dx/
2cn+2n +3n —Afn(x+x)ﬁ

0

(see equation (5.54)), in the form
n~ae + b, x> +oo.

Determine the relations between ¢, A, a, b and «, and compare
this behaviour with equation (2.165) et seq. and Q2.63.

[The special case considered in Q5.10 will prove useful here.
Note that a and « could be related if the front of the wave were
to be like a solitary wave.]

Undular bore: perturbation pressure at O(g). Obtain the pressure
term p; from equations (5.67)—(5.71), making use of the results
given in equations (5.72)5.74).
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Asymptotic behaviours of the KV B equation. Seek solutions of the
steady KVB equation

nz —n+n" =iy’ (A >0, constant)

in the forms

@ n~aexp(—ag), ¢— +00;

(®) n~1—bexp(y),{ > —o0,

and hence determine « and 8.

Steady state KVB equation: phase plane I. Discuss the equation
given in QS5.15 in the phase plane; that is, in the (n, p) plane
where p = n’. Show that there are two singular points, one at
(0, 0) and the other at (1, 0); determine their natures for various
A. In particular, include the cases: A =0; 0 < A < 2.

Steady state KV B equation: phase plane I1. Repeat the calculation
of QS5.16, but this time write p = P/A and include the cases
1I/A=0; A >2.

KVB equation: near-Taylor profile. Introduce the transformation
{=2AX into the equation in QS5.15, and hence obtain an
asymptotic solution in the form

1~ no(X) + A2 m(X), A — oo.

[Asymptotic solutions can also be obtained for A — 0%; see
Johnson (1970).]
KVB equation: special solution. Show that the steady state KVB
equation in Q5.15 has the exact solution

n= % {1 - tanh(§/2~/5)} + ‘l—tsech2(§/2~/6),

when A = 5//6.
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The equations for a viscous fluid

The representation of a viscous fluid requires a change only to the form of the
local (short-range) force; the equation of mass conservation is unaltered. The
local force is now described through the (Cartesian) stress tensor,

oy (i,j = 1,2, 3), which represents the i-component of the stress (force/unit
area) on the surface whose outward normal is in the j-direction. If i =j then oy
is a normal stress, and for i # j it is a tangential or shearing stress. In order
that the local forces give rise only to finite accelerations of a fluid particle, it is
necessary that o;; be symmetric; that is, o; = 0. Now, symmetric tensors
possess the property that, in a certain coordinate system (the principal
coordinates or axes), they may be written with diagonal elements only. (Indeed,
as the coordinates are transformed under rotations, the sum of the diagonal
elements is unchanged.) All this leads to the choice of stress tensor for a fluid
as

where P is the pressure in the fluid and §; is the Kronecker delta; dj; is called
the deviatoric stress tensor and it is absent for a stationary fluid. It is this
contribution which is ignored in the derivation of Euler’s equation, (1.12).

It is well established empirically (and supported by arguments based on
molecular transport) that, for most common fluids, dj is proportional to the
velocity gradients at a point in the fluid. Thus we write

duy
dz] = Aykl ax; ’
where A, is a rank four Cartesian tensor, and the summation convention is
employed; the position vector is written as x = (xy, x,, x3) and the
corresponding velocity vector is u = (u, u,, u3). We require dj; to be symmetric
(because oy; is) and, further, we assume that the fluid is isotropic; that is, the
properties are the same in all directions. These considerations lead to

1
dij = zﬂ(eij - §5y'ekk)

oL (o
"—2 3xj 3x,~

393

where
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is the rate of strain tensor, and p is the coefficient of (Newtonian) viscosity. The
term ey, = 9uy,/9x; is called the dilatation, and it is zero for an incompressible
fluid (that is, V - u = 0); we note that d; = 0 (since J; = 3).

The application of Newton’s second law to the fluid now yields

Du,~ Bory _
[ =55 - orJoe=e
| 4

where F = (F, F,, F3), and so
1 3o

Du,- i
Dt p ox; +o

cf. equation (1.12). For an incompressible fluid with constant viscosity, this
becomes

Du; 1 oP no9 (du Oy
= —+4F4+—- —(=+-
Dt p 0x; p Ox; \dx;  Ox;
with
Buy
Bx,- -
Written in a vector notation, these equations are expressed as
E=—1VP+F+vV2u; V.u=0, (A.1)
Dt P

where v = p/p is the kinematic viscosity and V? = V - V is the Laplace operator.
The first of these equations is the Navier—Stokes equation for a (classical)
viscous fluid; this equation clearly reduces to Euler’s equation, (1.12), for an
inviscid fluid: & = 0 (so v=10).

Finally, we write these equations in rectangular Cartesian coordinates,
x = (x, y, ), with u = (&, v, w) and F = (0, 0, —g), to give

Du 1 P 2 D’U 1 3P 2
~ = " V ] ~N - T A V ’
Dt p3x+v " Dt p3y+v Y
Dw 1 9P >
D= pa STV
where
D_o, 8. 3. %
Dt ot ax ay a { (A2)
and
SN
ax? y? a2’
with
ax dy oz
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These same equations, written in cylindrical coordinates, x = (r, 6, z) and

u = (u, v, w), are

Du_@_ 10, (0o u 20\ )
Dt r~ por r P
Do w_ 113 (g, 2% v
Dt r pr 2 )
Dw 1 3P 2
- - _ \v;
Dt p 0z g+vviw,
where
D_3, 8,03, 2 G
D: ot " or %] 3
and
vw=l2(2 +li+i
Trar\ o) P
with
i 18v ow
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The boundary conditions for a viscous fluid

The inclusion of viscosity in the modelling of the fluid requires that, at the free
surface, the stresses there must be known (given) and, at the bottom, that there
is no slip between the fluid and the bottom boundary. The surface stresses are
resolved to produce the normal stress and any two (independent) tangential
stresses. The normal stress is prescribed, predominantly, by the ambient
pressure above the surface, but it may also contain a contribution from the
surface tension (see Section 1.2.2). The tangential stresses describe the shearing
action of the air at the surface, and therefore may be significant in the analysis
of the motion of the surface which interacts with a surface wind. The bottom
condition is the far simpler (and familiar) one which states that, for a viscous
fluid, the fluid in contact with a solid boundary must move with that
boundary.

The appropriate stress conditions are derived by considering the equilibrium
of an element of the surface under the action of the forces generated by the
stresses. The normal and shear stresses in the fluid (see Appendix A) produce
forces that are resolved normal and tangential to the free surface, although the
details of this calculation will not be reproduced here. It is sufficient for our
purposes (and for general reference) to quote the results — in both rectangular
Cartesian and cylindrical coordinates — for the three surface stresses.

First, in rectangular Cartesian coordinates, x = (x, y, z) and u = (y, v, w),
with the free surface given by z = h(x, y, ), we obtain the normal stress
condition:

P- 2”{h)2cux + hjzzvy - hx(uz + Wx) - hy(vz + Wy)
+hohy(uy +0) +w.}/(L+ B, + ) = P, —~T/R  (B.1)
on z =k (and I = 0 in the absence of surface tension; 1/R is defined in

equation (1.32)). The two tangential stress conditions (both taken to be zero;
that is, no wind) are written as

B, + wy) = hy(u, + wy) + 2k by (u, — v)) — (B2 — BD)(u, +v,) =0;  (B.2)

2K (uy — w,) + 2K (v, — w,) + 2k h(u, + vy)
+ (h)zc + hﬁ - 1){hx(uz +wy) + hy(vz + Wy)} =0, (B.3)

397
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both evaluated on z = h. The corresponding surface conditions, written now in
cylindrical coordinates, x = (r, 6, z) and u = (i, v, w), are

P 2ufu + 3 (o0 + ) = s 4 ) — 1o 0+ 1w

1 1 9 (v 2 1 2\ _
+;hgh,[;uo+r5 (;):I +Wz}/(1 +h, +?hg) = Pa - F/R (B4)

on z = h(r, 8, t), and the expression for 1/R is given in equation (1.34);

1 1 2 d u) 1
hr(’l}z +;‘W9) —;hg(u, +w,)+;h9h,{r5(; —;’Ug}
Y FEINR AT LI
(h, SH ) Sttt Br(r) =0, (B.5)

2.,(1 u 2, [1 3 v
20 el 27 et - - - a\z
O (N B8 e O}

+ (hf +rl2h§ - 1) [h,(u, +w,) +%h9('v, +%w9)} =0, (B.6)

both on z=h.

The bottom boundary condition is far more easily expressed. Let the bottom
boundary, z = b(x,, #), translate with the velocity w;, = U, = (U, V), then the
viscous boundary condition is

w=b,+ UL V)b
with onz=nh. 8.7
u =U,

Of course, if this boundary is stationary then U; =0, and then if 5, = 0 we
recover the most elementary bottom condition:

u=v=w=0 on z=h (B.8)

Finally, it is clear that all the above boundary conditions reduce to those for
an inviscid fluid described in Section 1.2. For u = 0, equations (B.1) and (B.4)
both become equation (1.31); equations (B.2, B.3, B.5, B.6) are redundant, and
equations (B.7) are just equation (1.35) (after setting U, =u, where u, is
evaluated in the fluid on z = b).
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Historical notes

We provide brief historical notes on some of the prominent mathematicians,
scientists and engineers who have made significant contributions to the ideas
that are described in this text. In some cases this contribution is a general
mathematical technique, and in others it is a development in fluid mechanics or
a specific idea in the theory of water waves. The selection that has been made
is, of course, altogether the responsibility of the author, and it includes only
those researchers who died at least 20 years ago.

Airy, Sir George Biddell (1801-92) British mathematician and physicist,
who was Astronomer Royal for 46 years; he made contributions to
theories of light and, of course, to astronomy, but also to gravitation,
magnetism and sound, as well as to wave propagation in general and
to the theory of tides in particular.

Bernoulli, Daniel (1700-82) Dutch-born member of the famous Swiss
family of about 10 mathematicians (fathers, sons, uncles, nephews),
best known for his work on fluid flow and the kinetic theory of gases;
his equation for fluid flow first appeared in 1738; he also worked in
astronomy and magnetism, and was the first to solve the Riccati
equation.

Bessel, Friedrich Wilhelm (1784-1846) German mathematician who
was, for many years, the director of the astronomical observatory in
Konigsberg; he was the first to study the equation that bears his name
(which arose in some work on the motion of planets); he carried out a
lengthy correspondence with Gauss on many mathematical topics.

Boussinesq, Joseph (1842-1942) French mathematician and scientist
who wrote an analytical treatment of various aspects of water (and
fluid) flows.

Cauchy, Baron Augustin Louis (1789-1857) French mathematician who
did important work in astronomy and mechanics, but is remembered
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mainly as one of the founders of the modern theory of functions of a
complex variable; he developed the first comprehensive theory of com-
plex numbers and introduced a number of fundamental theorems in
complex analysis which have proved very significant in both pure and
applied mathematics.

D’Alembert, Jean le Rond (1717-83) French mathematician and physi-
cist who discovered many fundamental theorems in general dynamics,
and also in celestial mechanics; in addition, he made important
contributions to the theory of partial differential equations.

Descartes, René du Perron (1596-1650) French philosopher and math-
ematician whose aim was to reduce all the physical sciences to purely
mathematical principles, and in particular in terms of geometric inter-
pretations; he is credited with the invention of analytical geometry.
(His followers called themselves ‘Cartesians’.)

Euler, Leonhard (1707-83) Quite outstanding Swiss mathematician who
made very significant and fundamental contributions to all branches of
mathematics and its applications: differential equations, infinite series,
complex analysis, mechanics and hydrodynamics, and the calculus
of variations; he was very influential in promoting the use and
understanding of analysis.

Fermat, Pierre de (1601-75) French mathematician who regarded
mathematics as a hobby (he was a lawyer by training); he made very
important contributions to analytical geometry, the calculus, probabil-
ity theory and, of course, to the theory of numbers (his famous Last
Theorem); he investigated optics mathematically and, among other
successes, formulated his Principle.

Fredholm, Erik Ivar (1866-1927) Swedish mathematician who founded
the modern theory of integral equations, which was developed from
his interests in differential equations and mechanics.

Froude, William (1810-79) English engineer and naval architect who
founded the modern science of predicting forces on ships from experi-
ments on small-scale models; he built the first ship-model tank at his
home in Torquay.

Gauss, Karl Friedrich (1777-1855) German mathematician — one of the
foremost of all mathematicians (often rated as the equal of the other
two pre-eminent mathematicians and scientists: Archimedes and
Newton); he had already made a number of important discoveries
by the age of 17; his interests ranged over algebra, real and complex
analysis, differential equations and differential geometry, as well as
number theory (which remained an enduring interest throughout his
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life); he used his mathematical skills in the study of astronomy,
electromagnetism, and theoretical mechanics.

Green, George (1793-1841) English mathematician who was self-taught
(which often meant that he used unconventional methods); he made
significant advances in mathematical physics (and is generally credited
with laying the foundations for these studies at Cambridge
University); he introduced the potential function — in particular in
applications to electricity and magnetism — and his famous theorem
relating single/double integrals to double/triple integrals; he also made
contributions to the theory of waves, to elasticity and to theories of
light.

Hamilton, Sir William Rowan (1805-65) Irish mathematician who intro-
duced the quaternion to the mathematical community, and showed
how commutativity had to be set aside in some branches of mathe-
matics; he tackled many problems in physics and mechanics — indeed,
he coined the word ‘vector’; his work on mechanics that led to his
‘Hamiltonian function’ was started in his doctoral thesis.

Hankel, Hermann (1839-73) German mathematician who made contri-
butions to complex and hypercomplex numbers, to the theory of qua-
ternions and to the theory of functions; he was the first to suggest the
concept of ‘measure’.

Heaviside, Oliver (1850-1925) English electrical engineer who devel-
oped the operational calculus, which he applied to the equations
that arise in engineering problems.

Helmholtz, Herman Ludwig Ferdinand von (1821-94) German math-
ematician who was the first to study the equation that is most closely
associated with his name (which he encountered in a problem on the
oscillation of air in a tube with an open end); he also made contribu-
tions to the classification of geometries and to the axioms of
arithmetic.

Hugoniot, Pierre Henri (1851-87) French scientist whose main interests
were centred on ballistics; he solved various problems in gas dynamics
and found the conditions that must exist across a shock wave.

Jacobi, Karl Gustav Jacob (1804-51) German mathematician and math-
ematical physicist who did important work on elliptic functions
(where, to some extent, he was competing with Abel), analysis, number
theory, geometry and mechanics; he introduced a functional deter-
minant (the Jacobian) and developed links between elliptic functions
and number theory, methods of integration, and differential equations.
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Kelvin, Lord (Sir William Thomson) (1824-1907) Irish physicist who
discovered the Second Law of Thermodynamics; the study of thermo-
dynamics was his most important work, but he also made significant
contributions to the theory of telegraphy (and almost every other
branch of science).

Kronecker, Leopold (1823-91) German mathematician who, though
gifted, never excelled in any one specific area; he worked on number
theory, algebra and elliptic functions; in linear algebra he introduced
his delta symbol.

Lagrange, Joseph Louis (Comte) (1736-1813) Italian-born French
mathematician who revolutionised the study of mechanics; he was
recognised as having outstanding ability by the age of 16, and held a
professorial chair by 19; he gave the first general solution of a problem
at the heart of the calculus of variations and introduced analytical
principles in the study of mechanics and fluid mechanics.

Laguerre, Edmond (1834-86) French mathematician who did significant
work on both projective and Euclidean geometries; he made contribu-
tions to analysis, including integration theory and the summation of
series.

Lamb, Sir Horace (1849-1934) British mathematician, generally
regarded as the outstanding applied mathematician of his time; he
made important contributions to the theories of hydrodynamics and
sound, as well as to elasticity and mechanics (and produced one of the
seminal papers in the early days of the science of seismology); he is
remembered as an exceptional teacher and a first-rate author of text
books, most notably his treatise on fluid mechanics: Hydrodynamics.

Laplace, Marquis Pierre Simon de (1749-1827) French mathematical
physicist who made contributions to the study of celestial mechanics
and, in particular, explained the orbits of Jupiter and Saturn; he devel-
oped ideas in the use of the potential function and orthogonal func-
tions, and introduced his integral transform; he was also an important
player in the development of the theory of probability.

Mach, Ernst (1838-1916) Austrian physicist and philosopher who had a
considerable influence on 20th century scientific thought; he was a
positivist who provided the basis for the Logical Positivist movement.

Navier, Claude Louis Marie Henri (1785-1836) French mathematician
who did much work on mechanics; in particular he was the first to
derive the equations that describe a viscous fluid (which appeared in
1821), although others later and independently obtained the same
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results; this work was based on experimental evidence coupled with
Newton’s ideas on friction.

Newton, Sir Isaac (1642-1727) English natural philosopher and math-
ematician, who was the pre-eminent scientist of the Age of Reason; he
developed many fundamental ideas in mathematics — not least his
version of the calculus — and in optics and, above all, in his discovery
of the Law of Gravitation; in his Principia Mathematica, although he
described all the concepts in primarily geometrical terms, he laid the
foundations for our modern mathematical approach to all branches of
mechanics.

Poincaré, Jules Henri (1854-1912) French mathematician and math-
ematical physicist who worked mainly in the area of celestial
mechanics, but who also made contributions to the theory of dynamics
more generally and to the theory of automorphic functions; he devel-
oped techniques now familiar in the use of asymptotic expansions and
in probability theory; he also made important discoveries on the
dynamics of the electron, and even produced results that pre-dated
Einstein’s Theory of Relativity.

Rankine, William John Macquorn (1820-72) Scottish engineer and
physicist who trained originally as a civil engineer; he is regarded as
one of the founders of the science of thermodynamics: the Rankine
cycle is familiar to the student of heat engines; his work also included a
physical and mathematical theory of shock waves.

Rayleigh, Lord (John William Strutt) (1842-1919) English physicist who
received the Nobel prize for physics in 1904; he made contributions to
virtually every branch of physics and mathematical physics, including
the theory of sound, optics, electrodynamics, hydrodynamics
(especially capillarity and viscosity) and elasticity.

Reynolds, Osborne (1842-1912) British engineer and physicist best
known for his work on hydraulics and hydrodynamics; he formulated
the theory of lubrication and did some classical work on the resistance
of flow through parallel channels; he also investigated the transition
from laminar to turbulent flow.

Riemann, Georg Friedrich Bernhard (1826-66) German mathematician
who did fundamental and innovative work on geometry; his ideas in
non-Euclidean geometry and topology led to significant advances in
pure mathematics, and he also made important contributions to com-
plex algebraic function theory; he extended Cauchy’s work on complex
functions, basing new developments on geometrical ideas, leading to
the concept of Riemann surfaces; many aspects of his work found
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applications, after his death, in physics — especially in relativity;
Riemann’s life was short and, in terms of publications, he was
not prolific, but he had a profound effect on many branches of
mathematics and mathematical physics.

Russell, John Scott (1808-82) Scottish engineer, scientist and naval
architect who was commissioned in 1834 to investigate the possibility
of rapid steamboat travel on canals; this led to his extensive interest in
and study of water waves, and to the design of fast ships; he founded
the Institute of Naval Architects and played an important role in the
design of the Great Eastern (with Brunel) and of HMS Warrior.

Schrodinger, Erwin (1887-1961) Austrian theoretical physicist who,
with Dirac, was awarded the 1933 Nobel prize for physics for the
outstanding work on wave mechanics and its applications to atomic
strucuture.

Stokes, Sir George Gabriel (1819-1903) Irish mathematician and
physicist whose most important work was concerned with wave pro-
pagation — in fluids, elastic solids and of light and sound; he also made
important contributions to the theory of polarised light and to X-rays.

Taylor, Sir Geoffrey Ingram (1886-1975) English mathematician,
physicist and engineer who made significant contributions to fluid
mechanics (particularly theories of the atmosphere), material science
and to chemical and nuclear physics (mainly in the area of explosives);
he was gifted at seeing general physical principles in all manner of
everyday happenings, and in devising ingenious experiments.

Weber, Wilhelm Eduard (1804-91) German physicist who made signifi-
cant contributions to the theory of absolute electrical measurement
and units; he wrote a treatise on waves with his brother Ernst
Heinrich Weber (1795-1878), who was himself an outstanding anato-
mist and physiologist (who also made some contributions to concepts
in psychology).
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Answers and hints

The answer, where one is given, is designated by the prefix A; for exam-
ple, the answer to Q1.1 is Al.1. In some cases a hint to the method of
solution is included.

Al.2

Al3
Al4

AlS
Al.6

Al.8
Al9

Chapter 1

Use a subscript notation, and so consider
a d ou
@ e@ns © spg@ur © e (o)
ad
(Y] Eijk 3 (8k1mulvm)

In (c) and (d) use &jxim = EkEimk = 8itbjm — Simdjt-

In fVV-adv=fSa-ndswritea=¢c; a=uAc, wherein each ¢
is an arbitrary constant vector.

Consider f; 4m-nds = f(4m) - nds for each i.

Write

du;
dr

{ut(xl(t) x2(8), x3(8), t)} _xj%+%

ot
Find dF/3t + u - VF directly; note that, for both, V.-u=0.
(a) Find u = dx/d¢ and introduce x = (x, y, z).

(b) Find du/dr = (4x + 1682, =2y + 4%y, =2z + 41%2).

(¢) Find du/dt = (4x, -2y, —22).

(d) Follows directly.

u=(ax,py,yz); V-u=a++y=0.
V-u=3f+rf"sof(r)=A/r (4 is an arbitrary constant).

405
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Al1.10 From
Du 1
D= _;VP+F, VP =p(—x — xt*, —y — yf*,2z — 4z — g)

1
50 P=—5p(x” + )1+ £) + pz*(1 = 26%) = pgz + Po(1)
Al.11 From (1/p)VP = (0,0, —g), then P = P, + pg(hy — 2);
P(O) =P, + Pgho.
A1.12 Stokes’ Theorem gives
%u-dﬁ=/‘(V/\u)-nds%((o-n)na2 soQ-n:%m-n;
C S

. - — 1
but n is arbitrary so Q = ; ®.

27
NB f{m-dz=&U-dt%i(nm)-de=Q-§mde=n-n/a2d9.
C C C C 0

ALI3 @=(0,U'(),©); ®=©0,0,-U'()).
Al.14 Useur®@ =31V -u)— (. V)uand

o -s( 4

ﬁu-—-u/x(sz):—V lu-|l+/i]j+§2 ;
ot 2 P

to give

curl:%—?—VA(u/\m):O

and use Ql.1 (d) with V.u=0, V-o=0. In 2D, o is
orthogonal to V so ® - V = 0; then Do/Dt = 0.
Al.15 As for Al.14, but with

VA (/1) vp) - %v A(YP) + V(o™ A (VP),
and multiply by p~!. For P = P(p), then V(p™}) A (VP) = 0.
Al.16 o= (u/r, —6u’, u").

AlLlT o=]000), 0=r<a
‘ B 0 3 r>a
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1
P Po/p+§w2(r2—2¢12), 0<r<a
Po/p—gw R r>a.

Must have

Py > ngaz.

13P_1dP3p__3 /dP
pdx; pdpox; ax\J p)
Al19 (a) x = (xe”, yoe™, z), xy = constant;

(b) x = (xg exp(t?), yo exp(—#>), zo), xy = constant;
© x=(1+1t+(xg— e, yoe™*, z5), y(x — t) = constant

Al1.18 Consider

(at fixed f);
— X0 Yo _ 201 2
@ x= (72 2wl - o - o),

y=x+Axy
with (1 — Ax)? = Bzx* where A, B are arbitrary constants.
Al20 (@) ¥y=cxy; (b)) ¥=2xy;, (© ¥v=(x-0ny

dy v d o
Al.21 b —¥ /¥y 80 a{w(x, y(x))} = 0; ¥ =constant.
Al1.22 Write

1 .
u =71//9, v=—Y,; ¥y=rUsinéb.

Al23 (@) u= %1//2, w= —%1//,; (b) v=riy,, w = —1,.

Al1.24 (a) Write u, = bya;x; + axb;x; and form g0u; /3x;.
Then u;, = 3¢/dx; yields
¢ = (a- x)(b - x) (+ constant).
yz

(b) o= 215 (+ constant).
Al25 V-.u=0 yields u=19,, v=—y,; VAu=0 so u= Vg, then

U=¢y, v= ¢y: & = V’y’ ¢y = —¥. Thus ¢ +iy = w(z); then

0 3 iu_)

aw =é;(¢+ iy) gives o= u—iv.
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Here w = Ue"® = u — iv, a uniform flow of speed U(?) at —a to

the x-axis.
dx _ (dx, dz\ _
Al1.27 Useu= i (?’ E) = (uy, w).

A1.28 With P,— P, =Th” = (1 + ¥*)*/* where P = P, on z = h(x) and
P, = Py, — pgh (P = Py(x) on z =0).
For equilibrium, P, =constant. Thus

Th" = (P, — P, — pgh)(1 + H?)*%, —xq < x < xq.
A1.29 Similar to A1.28:

hll h/
Py—P,—pgh=T + ,
bT a0 {(1+h’2)3/2 r(1+h'2)1/2}

and then for ¢ — 0:
H"+H'/[R=B—aH, B=riP,— P,)/Th.
Hence H = B/a + AJy(J/aR) so
A+Bla=1; Bla+(1-B/e)Joy(va)=0;
H'(1) = (Vo — B/Ne)Jg(Vo).

This solution requires 0 < 8/« < 1 with Jo(/a) <0, Jo(/@) <0
which gives oy < o < «y.

Al131 (a) I'(x) = x 'Bexp(x®) — 2exp(x?)}; (b) n=4.

A1.32 Euler’s equation leads to

a1
E(Epu-u) + pu-{(u-Viu} = —u- V(P + pQ)
with

pu- (@@ Vu1 = V- -,
u-V(P+ pQ) = V- {(P+ pQu}
since V.-u=0.
A1.33 (a) Write T =1/, pu- Vgdv =1, V- (ppu)dv since V-u=0.
(b) Since the conditions on S are given, either ® =0 or U=0o0n
S. Thus

/|U|2dv =0=U=0inV; thatis, u; =u,.
v



Al.34

Al.35

Al.36

Al.37

A1.38

Al.39

Al.40
Al.41

Al.42

Al.43
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2
1//—>ch1/f;¢—>c}~¢;w—>i—hw; w=¢z—>w=(%) &é,.

The Reynolds number is pA/gho/ 1.
p—en=—2es W[[(l + &85 /71y + (1 + 28 07X, + ngo) /7
1
~2¢"8° (ﬂro - 779) nena/r*Y/(1 + £%8%n; + ezszné/rz)”z]
and then p — gp with ¢ — 0 yields
) 1 1
p—n=-8W Mer 270+ 5 66 |-

¢+ n+1e( + 07 +8w) =0.

G +8Vip=0; ¢, =8n+e@ -V ) onz=1+en

1 1
¢;+n+§£{(Vl¢)2 +35¢3} =0onz=1+en;
¢, =68, -Vbonz=5b.NBu, =V, ¢.

For ¢ > 0:¢, +8Vigp=0; ¢, =68, and ¢, +n=0 (or
p=nonz=1;¢, =8, -V)bonz=>b. With surface tension;
p—n= —32WV117 onz=1.
u=f(x—ct)+gx+ct),;

1 x+ct
u= %{p(x —ct)+ p(x+c)} + % / q(y)dy.

CJx—ct
The right- and left-going waves no longer overlap.
Dispersion relation is o=k — k> —ik?, which is dispersive
(#(w/k) = 1 — k) and dissipative (decaying as exp(—k>1)).
First equation gives = k — k°; second gives w = k/(1 + k%) so
w=k—k>+O(’) as k— 0 (long waves) but w~ 1/k as
k — o0; note that w > 0 for Yk > 0 in the second case, but not
in the first.

a(x — /(1 + 1), 0<(x—-0/1+ar) <1,
u(x, 1) = { a2—x+0)/(1—at), 1<(x—1t-20a)/(1-at)<2,
0 otherwise.
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Al.44

Al.45

Al.46

Al.47
Al148
Al.49

Appendix D

u u
t=0 VI

| ] | ] | [ !
0 1 2 x 0 1 2 3 4 x
u

T T T T
0 1 2 3 4 x

Figure A.1.

u = cos{m(x — ut)} for u(x, 1),
u, = —msin{n(x — ut)}/[1 — wt sin{rn(x — ut)}].
The solution becomes multi-valued for ¢ > n~\.

@ x=0(): f ~ 1 +e(x" —x)

1 —1
x=eX: f~ (I—H_—X'l-e_x) ;

x=yx/ef~1+x7"
The first and second match: 1+ 1/x; the first and third
match: 1 — x.
(b) x=0(1): f ~1—Lex+ ¢ x* —1x*;
x=e"X: f~ 113X + X*);
X =Yy f~ (14 )12 _%81/2)((1 2,
The first and second match: 1 —%82/ 3(X + Xx*); the second
and third match: 1 —4§ x* —1'/%y.
(@ f~1-tex—Le™*
b)) x=eX:f ~(1—e ) -1x(1 - )17
© x=yx/et f~1—x)"~Lex’ 1= x)""2. The first and
second match: 1 —1e?X —1e™*; the first and third match:
1—1x. From (c), x < xo(¢) where xo ~ 1 (since f =0 at
X = Xo); try xo ~ 1 + e then a = —1; that is, xy ~ g1
2uX + 2uu§ -+ uses = 0
2u, — 2uuy — ugy = 0.
o+ Ufy +fie =0 280 — 288, — 85y = 0;
bse = ~fi8; — 3 (2o + &fe).
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Al.51

Al.52

Al1.53

Al.54

Al.55
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Then

=4 ()] conrevmseo

cf, =1-k% cg = 1/cp; 0=k -1

$0 ¢, = dw/dk = k/w = 1/cp;

AIO = —4k2|A01|2 and A12 =0.

Introduce & = x — ¢;t, T = &*t; then u ~ uy(§, ) satisfies

Uye + Uglgs = —Auy, A =(c—c1)/(c; —c1), ug —~ 0 as § > +oo.

Thus uy = e *"f(€ + uy/1); exponential decay requires A > 0.
Similarly, with ¢ = x — ¢, T = £’¢:

Ugr + Ugtipy = —ply, | = (c3 — ¢)/(c2 — ¢1).

Thus A >0, u>0if ¢; <c¢ <oy

_lr_
A=(02“’)("‘—01)>0;<1>=%{1—tanh('X_“ZZ]A‘—‘XQ)]

where X, is an arbitrary constant.

2G., + G2 +2GG,, — Gy = 0;

f=1/6Gn, v)dn, g =~} [ F(& 1)dk.
w2U099+k2U099+k4U09999+U0=0; then a)2=k4—k2+1.
U, is periodic if

Awp + 2wAy + 4> Ay + 6k*ky A — ky A — 2kAy — 3i4|A* =0,
and use k7 + kyw’(k) = 0. Finally

’ 3
(OIZ)T + (a)la2)X =0; Br+o'fy= 55(12'

(a) u=—1icsech®[L/e(x — ct — xp)};
() u=1up{1 — tanh[Lug(x —lugt — x0)]} so that ¢ =1luy (see
A1.52); in both, x; is an arbitrary constant.

Chapter 2
For example, find dcf,/d)» and then sketch y= W(t+ Ars%),
y = (t — As?)/A? (where ¢ =tanhA, s = sech). Show that one

point of intersection exists for A € (0, o0) provided W < % As
A= 00, ¢~ /AW,
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A22

A23
A24

A25

A26

A2.7

A28

A29

A2.10

A2.11

Appendix D

From A2.1, obtain

¢, \? t | S ) W .
(@) = (@) +o+iza -0

for moderate A, (and A), then t/t,, ~ 1, A, /s,, < 1, so

2
GAPPS
(Cm) 2(1 + ).
The minimum is, of course, at / =1, where A = A, = 1//W.

U(z) = Abwcosh 8kz/ sinh 8k; P(z) = ASw” cosh 8kz/(k sinh 6k).
In physical coords, X, Z:

A 2 A 2
X + z = constant
cosh 8kz sinhékzy | ’

Hence approaches a circular path as 8k — oo (short waves).
The problem is ¢, + 82¢xx =0; ¢, =0 on z=0 with ¢, = 8217,
and ¢, + n = 0 both on z = 1. Write ¢ = X(x, )Z(z).

From example, A(¢) = 0, B(t) = By sin wt; then

n o sinwt sinkx (= %cos(kx — wf) — %cos(kx + a)t)).

It follows that W’ — 8* (k> + P)W =0, so k* is replaced by
¥+ 12; wavefront is kx + [y = const. or n - X =constant, where
n o« k.

Use Laplace’s equation: ¢,, + 82(¢xx + ¢y,) = 0 with boundary
conditions as in A2.5 plus ¢, =0 on y =0, /. Then a =nn/l
and o’ = (0/8%) tanh o, where o® = 8*(k* + o).

Cf. A2.8; a=nn/l, B=mn/L, o = (s/8*)tanho,

o= 82((12 + ,32)

o = (0/8%)tanho, o* = 8* (kK> + I + m* +n®) with mk +nl = 0;
80 (m, n) - (k, [) = 0: the wave-number vectors are perpendicular.
Wave propagates in the direction (k, /) at a speed /|k}; that is,
VK + 2+ m? +n?/k* + 2, which is faster than in the
absence of waves along the crests (for which m = n = 0).
Equations are

U, + uglty = —Py; Sz(wt + uon) =—D;; Utw,= 0
with

w=0 on z=0



A2.12

A2.13

A2.14

A2.16

A2.18
A2.19
A2.20
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and
W= 1), + UMy, p=n-—82anx on z=1.

Then (w — upk)® = (1 + 8°k* W)(tanh 6k)/8k = o*; speed of the
waves is uy + o/k.

Cf. A2.11, but with u, + uyu, + vou, = —p,, etc.; then

Q% = (w0 — upk — vl)* = (1 + o*W)(tanh o) /o, o* = 8 (k> + IP).
Also

kx+ly—owt=k-x— {U+%} -kt, U = (4, vp),
so velocity as required. Stationary implies independent of time
(0, so U = —QKk/|k|>
To be wvalid for all ¢ the solution takes the form
n = Aexp{i(kx — wf)} + Rexp{—i(k_x + wt)} +c.c. in x < 0 and
n = T expli(k, x — wt)} +c.c. in x > 0, where o’ = (k/8) tanh(ék)
for (k,8_), (k_,8_), (ky,8,) with 8, = hy/A; that is, k_ =k.
Continuity of n gives 4+ R = T; continuity of mass flux is
u.h_=wu,h,, where y  n,, so kh_(4—Ry=k,h,T.
Thus R = A(kh_ — k h)/(kh_ +k h})
and T =24kh_/ (kh_ + k. hy). ‘
Stable only if @ is real, from which condition follows. The
minimum is at k = /(1 — A)/W (for k > 0).

ate u

(b) I(o) ~ / f(x)e®@dx = ¢o*@ / i f(x)zll_;c du

0
a

— eiaa(a) [eiouz{CO + uF(u)}du — eiaa(a)(ll + IZ)

Then 0

II = lC’O\/Eei”/4 + O(O'_l); 12 = O(O—l),
2 o
with ¢y = b, f(a) and %b%a”(a) = 1; required result follows.
n(r, ) = J5° pf p) cos(tp)o(rp)dp;  f(r) = [5° Bf (P)o(rp)dp.

n(r, ) = f3° pf (p) cos(t/p8)Jo(rp)dp. NB: w = 7,e%ED.

®* = (o tanho)/8%; J)(oa) =0.
If n = 0, then solution is independent of 6.



414 Appendix D

A2.22 n(x, )+ f F(k){explik(x — c,)] + explik(x + c,0)]}dk

—0Q
where

F(x) = % / f(x)e " dx.
For f(x) = A3(x) then
A o0
n(x, 1) = P / coskxcoswtdk (where c,(k) = w(k)/k).
0

A223 o~ k(1 —18KP): up 4+ up + 8%, = 0.
4 T 1
A2.24 n(x, ) ~ E: f explilk(x — 1) + gszk%]}dk,

—00

1 7 4
Fo)~ - / mo(x)dx = 52,

—00

Then

where

Ai(y) = Z [(ly+ )]dl

exponential decay ahead of x = ¢, oscillatory behind; amplitude
decays like 1~ Satx=1

A2.25 Since ¢ =0 on z =0, then W(., 1) is real;
that is, W(Z, 1) = W(Z, 1).

A227 o = k(1 + 8*K*W,)/8;

o (1438w,
E2\1+ 8w, )

A228 A(X,T) = Ay{l +expliX(X — o' T)]}.
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A2.29 Waves in (0, x):

/ kdx, so — / kdx = wy — v = net waves/unit time
entering (0, x).

E(k), k = k(x, 1), yields E, + o'(k)E, = 0.

1
A2.30 (WoWy, — Wo, Wi 1b + / W(Wo,, — 82 k> Wy)dz

sinh 8kz

1
— 2
= 2k A°X[ "o nhok
0

and

. . i
Wo() = —iwdo,  Wi(1) = —iods + Aor, Wos(1) = — Ao,

k. k k
Wi.(1) = —a{lkAl + Aoy +5A0T} _EAOX’

i
/‘ sinh 8kz s —iwAdy [sinh28k 1
Osinhdk ~ 2sinh?ek | 28k
Finally:
Aor + % {1 + 8k(coth 8k — tanh 8k)} Aoy = 0.
1+sn 1 1 1
A2.31 &= / {E«ez(u2 + 7+ 8w +2)dz; &~ 3+3 e 4%

0
14+&n

P,
F=¢ ! (u,v){?ho+l—s¢,]dz

and ¢ _le (1 +i’—) o’ = 82 (kK + P).

2 k| sinh 20/’
1 1624°
A2R2 So=} &, =384, Fy=3""k &, =38 A
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4

d
A233 8ng+ (ﬁ)(ﬂg +n) =0;
\/i&{ﬁ_—- SXo—xtEt (x < xp).

A2.34 16Hy —d"*(d'/d"*)H = 0;
(@) Hy =0; (b) 16Hy —o’H =0.
A235 ¢, +8¢y=0; ¢, + 8¢, =0o0n z=1; ¢, = ad’p, on z=ax
(and n = —¢, on z = 1). Set ¢ = F(x, z)e ' with
= ( A, eikx + B, e—ikx)eakz +( A2ei8kz + Bze—inZ)ekx
and k = 80, a8 =1.
A2.36 Asin A2.35, but with

F = (A * + B e—lkx) 8kz + (Azeiﬁlz + Bze_islz)elx
+ (A3ei‘s'”z + B3e_i"’”z)e"”‘
where [, m = %(ﬁ +i)k.

A2.37 Write F = Ae*Hmz | pemx+idkz | ¢ ¢
where m = Vk? + B, 8o = m; cf. A2.35.

8w 20D
A2.38 cg = £y (1 + sinh 2o D>(k D;

o = %tanh(aD), o=V + L.

A2.39 o ~c/+/DasD — 0;0— cas D— oo (c=constant).
A240 (a) ® = ¢(X cosh+ Ysinf) where cosf +sinf = k.
(b) Singular solution, but still of the form

c
=—X+7)
ﬁ( Y)
A241 Wavefront: Y + ;—gln(cosh BX) — oT = constant.
1
Ray: £Y F——1In|sinh 8X| = constant.
Boo
2
A242 Wavefront: )Y :l:g —BX — T = constant.
Ray: uY ¥ 3J_( —X)*? = constant.

Amplitude: form 4 z—(;c—) = constant,

where o’ = (o tanh(cD))/8* and o = 8,/k? + (u/8)°.



A243
A2.44

A2.45

A2.46
A2.47

A2.48

A2.49

A2.51

Answers and hints 417

Rays: X =1 Xy{l — sin(constant & u./BY}; periodic, trapped.
Start from

o ., 5 dx _ dy _
ds—Z(p +9), ds—2p, ds—2q,
dp q
55—2ch, a—chY

where p = @y, g = Oy (so p* +¢* = ). Then

dy »p , c ' C2 "2
Hzt_l and so Y’=I7(CY—YCX)and I?=1+(Y).

(a) Straight path;

(b) Becomes (cY’/‘ll + (Y)Y =0: cY o {/1+(Y')

Time = [7 (X, Y){/1+ (Y)dX = [* F(X, Y)dX;

Euler—Lagrange is
d (OF\_OF_
dx\3y’) a8y~

which is the required equation.
Immediately, ¥’ / V14 (Y')? =sina, so the result follows.

R s~R—“—2 1 + tan? L 20— 60y)
ays: R="g FTEsp o

where R — 0o as § — 6;; closest approach to R =0is R = u?/B
where 0 = 6, F 7/u’.

1 R
Rays: ——arctan{ /——1 ) -/ R— Ry = :I:u\/EO-l- constant;
vRy Ro

rays cease to exist at R = Ry, at which point dR/d# is infinite; the
ray is perpendicular to the circle R = Ry,

Let ¢, = Acp; then sin® = 1/(2/A — 1) which increases as A
increases from } to 1 (depth decreasing): the wedge angle
increases; A = 3/4 yields ® = arcsin(3/5).

Let circle intersect course at Q; (i = 1, 2); limiting case is when
circle touches. Join WQ;; draw the perpendicular to WQ; at W to
intersect course at P;. Then, by similar triangles, |PQ;| = §|PP]],
so circle through W, diameter Q;P;: two (i =1,2) influence
points for a given W.
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A2.52

A2.53

A2.54

A2.55
A2.56

A2.57

A2.58

A2.59

A2.60

Appendix D

Let W be at (a,b), then W lies on the circle (a —3 Ut + b*
= 1U*#*: quadratic in ¢, given a, b, U.

Circular path: circle of radius R, centre at (0, R), ship at origin.
Write P’ as (X,Y)= R(sina, 1—cosa), o = Ut/R, then W
is (x,y)={X —rcos(e¢+80), Y ~—rsin(e+6}; cf. Figure 2.13.
Condition of stationary phase is r =12 cos’ @ (equation 2.122)
which gives (x, y). Often written as

. 1
x/R = sin(u cos 6) — FH cos? @ cos(d + p cos6)
1
y/R=1—cos(ucosb) — M cos? 6sin(6 + p cos6)

where pu=A/R, o= pcosf (equation 2.122). Straight-line
course is R — 0o, Ry = A (fixed).

Use Q = —8/W|k]> and follow Section 2.4.2; roots for tan@
always real.

h = H{t — x/(3vh — 2¢0)}; u = Uft — x/(3u/2 + co)} (co = v/ho)-
u = constant on lines dx/d¢ = 3u/2+ ¢ (co = /ho); consider
characteristic through ¢ = a, x = X(a), then u = X'(«) on lines

x — (X' (@)/2+ o)t — @) = X(@);  also & = (X'(e)/2 + cp)°.

I =kZ, with ¢'T+ H = F3, gives —k = 2k(k — 3,/k/2), which
has the solution k& = 1; this is the no-shear case.

Set

X=¢t+n=2u—af), Y =n—§E=4c, t=(—%X+Ty/Y)/a:

1
TXX—TYY+'?TY

(after one integration + decay conditions). Then ¢ = Y/4,
u=Ty/Y, and x=(XTy/Y +%(7A"Y/Y)2 -1 Ty)/2a where
T=1T- %X Y% T = AJy(0Y) cos(wX), say, since shoreline is at
Y = 0. Maximum run-up is where # = 0; which determines X
and hence x. Far from the shoreline is ¥ — oo.

First show that J = 0 can be written as & — t4 = 0, then that
ty £ty = Ao’ {(Jr(0Y) cos(@X) £ Jy (@) sin(@X)}/ ¥ F 1.

So J =0, provided Aw’ > 1, first on Y = 0.

utjum =2/(V1+8F2=1)<1 for F>1; form u™/h* =
a/(vT+a—1)°, where a = 8F? (> 8) where o < (vT+a — 1)°
(from, for example, 4 + a > 44/1 + @, @ > 8). For the bore, move



A2.61

A2.62
A2.63

A2.64

A2.65

A2.66

A2.67

A2.68
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in the frame which brings the flow ahead of the hydraulic jump
(u™) to rest; then the speed of the boreis U =u".
Behind approaching bore, let the depth be A; speed u;; thus
uy = U(l — hy/hy). After reflection, let the bore move away at
speed ¥, depth A, behind; that is, in contact with the wall.
Hence V = U(hl - ho)/(hz - hl) and hz/hl = (V 1+ 8F2 — 1)/2,
where F = (V+u1)/\/l71—; thus (H? — 1(H — 1) = 2HF?}, where
H = hy/hy and F? = U*(1 — hy/hy) /h,.
R [A] = [uh]; R [uh] = [hd + LA
Requires ¢® = 2a, ' = —1/(3+/3) (Stokes’ highest wave) = —
¢? = tan(wd)/a8; this yields ¢? ~ 1.347. Now
¢ =2(a+ b) = tan(ad)/as, a+2b=1/(5/3),
3da* +2ab+16%) = (& — 1)(2a + b);
s0 ¢? =~ 1.665.
Remember, speed of solitary wave here is 1 + ec; speed from
general result is /fanad/ad with § —» 0 and K = §%/e, which
agrees at O(g). Simply write iw for a.
(b) m =1 by direct integration, u = arcsech(cos ¢).
(c) Use d/du = (d¢/du)d/d¢; d(snuw)/du = cnudnu; d(dnu)/du
= —msnucnu.
Period of sin¢, cos¢ is 2z, hence period of Jacobian elliptic
functions is

/2

2
il ey
5 l—msm 1 —msin

= 4K(m).

(b) Compare the terms in the series expansion in powers of m on
each side of the equation.
(c) Or use properties of F from (b).

3b = 8Ka*m, 6a+ (5 - ;;—)b = 4c.

(@) On z =0, u = (¢, 0) and d2 = (u/|u|)d§, so C = (7o $dE.

(b) Use construction given in Figure 2.27; then by Stokes’ theo-
rem the integral all around the path is zero (since V A u = 0).
But u on & = +£; approaches zero as & — 00, so the integral
(from r to I) on the surface = integral in (a).

With 5 = esech’((+/3e£), then M ~I~C~4,/3 and

V &~ T ~ 4/(3e/3¢).
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A2.70 Variation, with integration by parts in z, yields

A3l

A32
A33

A34

A3S
A3.6

A3.7

A3.8
A39

//{[¢,+ (Vo) +Z] . 8n+— 8¢dz+ /¢x8¢dz

[ 6,50z — f [0 + 8,y + 6,,]00d2
b
- [(nt + ¢xr’x + ¢yny - ¢z)8¢]z__."

+[(¢x77x + ¢yny + ¢z)8¢]z=b]dXdl,

from which all the equations follow.

Chapter 3
Requires

vy _E__6

A C aB’

210, — 3770’70; - %’70;;; =0.
21gc + 310m0s + (4 — W )nogee = 0, after writing 8% = ¢.

1 21 31
2n1¢ + 3(mom e+ 3Mess = o '7(2)7705 + 17 MosTogs

7 1
+ g MoMoses + 3¢ Moseses»

where the KdV equation for 7, has been used; set r.h.s.
= G'(§ — c1), then (n2F’)'= 314G, etc.

m=— g,n_ § A2=1.
Try setting u=6¢2f(xt"'7) and observing that

f=—1(ogF)" where F =1’ + 12 (n = xt™'?).

1 1
2H0‘r + ;Ho + 3H0H0§ + EHOEES = 0

a=—2b% c* =1+4b (and so ¢ > 0 or ¢ < 0).
Leading order becomes (£27, —3(n%); — 1) =0, where
E=xtt t=0¢t

A3.11 a= =2k% w =4k’ +3P/k.
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u ~ —2kssech’{k,&, F x,] as t— too where &, =x— 4kit
(n=1,2) and

kl + k2 kl - k2
Let k; <k, then sech? at t=0 only if k; =1, k, =2; two

maxima if v/3 > k,/k; > 1; one maximum if k,/k, > /3.
a= 2% & =k +k* + 1 (s0o w> 0 or w < 0).

exp(2x,) = ,mwm=l (k1 # ko).

oo
u= —2(12t)-2/33£€210g 1+ k13 f AX(s)ds |, &=x/020)"3.
&

See Q3.17.
Q326 f=1+¢ O=kx+ly—owt+a, w=k +3l/k;
Q327: f=1+¢, 6=kx-wt+a, o=k +k*

o0

Q3.28: f=1+k'? / AX(s)ds, &=x/(120)"3, k constant.

&

Set f=1+E, +E,+ AEE,, E; = expk;x — g,w;t), &; = *1;
then

_ (o — o)~k — k)~ — k)’

(@1 + @)’ —(ky + ko)’ —(ky + k)*

f~1+¢% (a 6, solitary wave at infinity); f ~1+¢* (a 6
solitary wave at infinity); f ~ 1 +¢®~% (a 9, — 6, solitary wave
at infinity). NB

— (m; —my)(ny — ny)
(my +my)(ny +ny)”

For &, remember that [ ndx = constant.
First, from energy conservation

o0
f {277(2) + 8(4170171 - %ng) + 0(82)}dx = const.;

second, use the equation for n; (A3.4) and the KdV equation 7,
to find

o0}

1
/ (2'70’71 - Emz)g)d’;' = const.,

-0

when the required result follows.
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A3.37

A3.38

A3.40

A3.44

Appendix D
Form
(xu + 3tu2), = (12tu2 — 6tuu,, + 3tu§ + 3ou? — Xty + ux)x.

Use Q3.36; the centre of mass has the x-coordinate
(%, xudx)/ (2, udx). Consider two solitons (u;, up) far apart,
and then write u = u; + u,.

Write
N
un~— Z kisech®{k,(x — 4k2t — x,,)} as t > +oo,
n=1
then
_ . 2. 4 3
[ ax =23k / Fx=33 R

—00 —00
For the third law, add H x (first equation) to U x (second
equation).
c=xL; ) =F, 1y =1;J, =3

1 U +Uy—2¢
c=~ U+U:I:\/4+U—U2}; LIy = ! :
2{ o+ U (U; — Up) N U = U —

A3.45

A3.46

A347

A3.48

U1 + U1U0 + Uo +3C(U0 + U1)+3C
3 ~ &' (Uy — )’

Iy = , etc.

(a) With critical level, ¢ given in A3.45 is recovered for which
¢ > U, or ¢ < Uy no critical level.

(b) With critical level, then « = ¢/U satisfies (for a < 1)

@ |1+¢1—a 5
1— = 2Uja(a — 1),
WIsa |1—vica| @D
which has one solution only, namely in a < 0: no critical

level.
e(c — Uy)* = ¢ — dU;: three real roots (for 0 < d < 1) with one
satisfying 0 < ¢ < Uj: critical level exists.
o = ¢/ U, satisfies (cf. A3.46)

@ |1+¢1—a Zzﬁqa—u+?“1—@,
2¢1—a h— -« d d(l — @)
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and one solution satisfies 0 <« < 1: critical level exists.
NB Interesting exercise: examine this equation ford — 1;d — 0.
See equation (3.139).
1+ ccosby=Uy£1.
Choose ¢ = U;; k =acosfd+ b(a)sind
where b* = 1 + a(U; — Up) — &°.
Set
h(p) = a(p) cos p + b(p)sinp

h'(p) = —a(p) sin p + b(p) cos p,

then dh/dp = h'(p) requires a’cosp + b'sinp =0 (and a, b are
related by equation (3.139b)). Required solution is described by
the set: a’ = —b’tanp, h = acosp + bsinp, equation (3.139), p
derivative of equation (3.139).

= (aX + b)’*, a, b constants.
Takes the form (Hg),— 1 D%*(H5e) ,+Q; = 0, for some Q.
(2F +2F§ +3F§E§)E 0(8) and H ~ FE

and

Chapter 4
A, D~ [ fli; 0)exp{k¢ — 11w (ko)T)dk.
(2) F = A cosh(wz) + Bsinh(wz) + i sinh(wz);
(b) F = Acosh(wz)+ B sinh(a)z)

+7 w2 {wz* cosh(wz) — z sinh(wz)}.
u= ¢, = ¢ + ¢, = &f,+ periodic terms.
See equations (4.43).
For § — 0:

~2ik8% Ao, + 8* K Aoy, — 82 Agyy + %A0|A0|2 + 3852 Ay for = O,
8K ory + foyy = —3(|Ao|2)¢;
for § — oo: with ¢, ~ 1/+/8k then
-21\/’;,40, —— Aoy — ! — Agyy + 4k>8 49| Ag* + 2k\[ Aofor =0,
45k 28k

Jorz +fory = —2v8k(14o1%),-
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A4.7

A48
A4.10
A4.11

A4.12

A4.13
Ad.16

A4.18

A4.19

A4.20

Appendix D
For 6§ — 0:

9
—217((32140r + 84k2A0“ - §A0|A0|2 = 0,

for § — oo:

[k 1 \ ,
—21\/% AOt + m AO{C + 4k 8A0|A0| =0.

cpl = k2/6, cgl = k2/2, A12 = 3A(2)1/2k2, then
. 9
—2ik Ay + K’ Agizz — A yy + 22 Ao |01 1> + 3401f0z =0,
2¢,1 fozz +Jory + 3(|A01|2)Z= 0.
t— At, x —> B).c, u— Cu: AC? =afy, BC* = B/y.
Oscillates like €™, with amplitude /—7.
Try u(x, {) = aexp(ia* )1 + f + ig) where f(x, 1) and g(x, #) are
both real. Oscillates like exp(ia’f), with amplitude a.
Use same approach as adopted for Q4.11.
u ~ 2am sech (am~/2x) exp{ia®(1 + 2m>)t}; cf. Q4.9.
u(x, ) = 72 (), [ = 3i@f) +eff P =0, n = x~'2.

¢ + goexp{ullx — mz) + ip’(m® - P)tja}

o0
+ f dgo exp{ully — mz) +ip*(m* — Pt/a}dy = 0;

d+ / cfo exp{A(my — Iz) + N (P — mP)t/a}dy = 0.

X

For example,
c=—g e3ulx=3iut) / {1 + e3(p,—l)x+9i()»2—u2)t}.

For ¢ = u* then gy = f3; but fogo = —8k?, so |fp|*> = —8k?, which
is impossible.
Show that

{(iD, + D)(g -N}/f* +glelgl* = Dif - N}/ =0.
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Show that

{(iD, + BD% +iyD3) (g - N} /f
+3i{8lgl” — DI - N}z — g/
+g{elel” — BDIS N}/ =0;
y=0,8=08=1.
g=¢ f=1+/2y)k + k*) % exp(6 + 6%),
60 = kx + (ipk* — yk*)t + a.
g =4 ﬁ(eit+7x + 3e9it+5x) .
= 4(ezx + e6x) + 3e4"(e8“ + e—su);
fa = €% and rest are zero.
Set X = I+ mY, then
- ZikaAor + (alz — mchcg)AOXX
G
(1 = A)3{m? + (1 — )P

+ {ﬂ+ }]A0|A0|2 =0.

—2ik8* Ao, + 8K P Agxy +3 Aol Aol* =0 (retaining only the
dominant contribution to each coefficient, but see Section 4.2.3).

dy=Pexplil £ (X )
0= P2k \T T 2) T
a (X ct
sl (1+5)/41
where @ =2(n—1c%) > 0.
Structure is evident if we write 6 = ¢ + iy (¢, ¥ real); then
equation (4.90) gives
(e“"/«/)_»)/{ﬁe"’ +e’¢/«/X}
= [ei"’/(2~/)t)}sech(¢ + ¢) where e® = /A,

2
m=14 ,zn; =1 2; b =——(al_a2) ;
S =1/Mam);  c=1/(a1 +ay) "= 4@+ o)

_ (a1 — 02)4
16a2d3(a; + a,)*
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For the first, form w,u} +uuf,; for the second form
* *

Uglxxx + Ullyexxt-

Form

dt

-0

d 0 o0
i— / xlul?dx — / Wu, —uul)dx = 0.
—00

Integrate over one period to give

00 1+en
/ ( f udz)d{:const.;

—00 0

then with u = ¢, + e¢,, the oscillatory part of ¢, yields
[o.¢)
/ (A5 Ag; — AgAG;)dL = const.

(a) Each a function of ¢ only.

(b) If somewhere independent of ¢.

(¢) {A+g(®}¢ where both 4 (= const.) and g are arbitrary.

(d) If, as { > 400 or —oo, the integral in (c) approaches a
constant, then g(f) = —A4 and the integral is zero.

Write u = f(kx + Iy, 1) to give if, + (& + P)fye+ fIfI* = 0; then

set £ = X+ k% + I2 and follow Q4.9.

For the first, form i(u*u, + uu}); for the second form

% <uxu; +uuy, — %uz *2).
First form i(x’uu*) +x"(u*u, — uu}),, = 0 and also obtain
i uy — wiy), = {4uuy — Wu, + uu;)x—£|u|4}x.
(@) 4> 0as |x] —> 00; w = a’/2 > 0; A = asech(ax/~/2).

(b) A —> +a as x - F00; ® = —a’ < 0; A = atanh(ax/v2).

o0 [o,¢]
(4%, + 2(k4%), =0 so / A%dx (: / |u|2dx) = const.;

—00 -0
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use this first equation in the second to give
1, 1 1 [
IEAi + §k2A2 + ZeA“ — (ko A* +2kAA4,) [ kdx]

X

- (AAx f kdx)t=

Set-down i 1s | 4o|?; mean drift is g for

—28k
inh 26k

(2Kwc,) = akz(akz —2B814).
= (cosh 8kz)/ cosh 8k; ¢ = (tanh 8k)/5k.
Use

2 (W) ~ K/ WPP

=28k WP + 28%kc,W P — 2c, — p (W“3P ),
integrate in z, with the boundary conditions for P, and write
Pu(0;k)=0; Pu(l;k)=0; Pu(l;k) =262%kWi —268°K2c, .

~1 -89 f} W[ wdz)dz.
Coefﬁments of NLS equation now functions of X= oX; NLS
then gives B(¢, X; X ). Use Q4.8, Q4.9.

Chapter 5

See QS5.1; terms are the same size when 8kR = 0O(1). Set
1/R = bk, then 8k — O for « fixed, yields
2 5 . 2 1 /@

pu—tanhu+a°u’ =0 with u” = _&(E)'
See equation (5.21); first term (not involving R) is multiplied by
(1+ 8KE2w,).
y= (e—x _ e—x/e)/(e—l _ 6_1/8);
@ y~e™ () y~e(l—e™)
To within exponentially small terms:
@yo=¢e"" y, =0, n>1; (b) ¥o=e(l —e %), ¥ = —Xe.
Uz = —ZNog-
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A59

AS.10

AS.11

AS5.12

AS5.13
AS5.14

AS5.15
AS5.16

AS5.17
A5.18

Appendix D

&) i=5= f FXE = 1) exp[—x2 /(1 — 1)},

Change the order of the integration and introduce
x + 22 /4* = x'; integral = e™ /7.

o0 oo

ir [ e ge [ o[
—00 §

—00
Ny = 2¢ sech® (E\/%?) .

£;'=x—t+3—z:k{(l+8Aat)_3—1} (~x—t—egcyt as eA — 0).

1/(1 3 1
c=§(§a2—k Jr/a); 3 ?=—a2—k(1—7§)\/n/a.

1
P1z = QUy — U)wg: + @(lez + Wozz)
with
2 ’
D1+ MoPo; — M — @{le + nowo, — Nogttp; — MU'} =0onz=1
and U = Up(2z — zz); u, and w; as given.
a=1(Vi7+4-2) > 0; p=1(r2v37-3).

Saddle at (0, 0); stable node at (1, 0) for A > 2; stable spiral point
for 0 < A < 2; a focus at (1,0) for A =0.

Stable node at (1,0) for 0 < 1/A <1.

no = 1{1 + tanh(-X/2)},

n = —ksech®(—X/2) In{sech’(—X/2)}.
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see concentric KAV equation
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completely integrable equations
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complex potential, 52
complex velocity, 52
concentric (c)KdV equation, 211
bilinear form, 243, 291
conservation laws, 250, 293
conserved densities, 293
general solution, 233
solitary-wave solution, 290
concentric wave, 66, 187
deep water, 75, 187
conservation laws
an infinity of, 249
energy, 20, 245, 292
for 2D KdV equation, 251
for Boussinesq equation, 250, 293
for cKdV equation, 250, 293
for DS equations, 329, 352
for KdV equation, 247, 292, 293
for NLS equation, 325, 351
for shallow water equations, 252, 294
Hamiltonian system, 249
in soliton theory, 243
mass, 3, 4, 19, 244, 327

momentum, 7, 246
two-dimensional NLS equation, 352
variable-depth KdV equation, 296
conservative force field, 10
conserved density/quantity, 245, 246
for Boussinesq equation, 293
for cKdV equation, 293
for KdV equation, 292
constant of the motion, 246
continuity equation, 4
continuum hypothesis, 3
convective derivative, 5
coordinates
cylindrical, 8, 13
rectangular Cartesian, 3, 8, 13
critical level (layer), 257, 295
crossing waves
see oblique waves
cubic Schrédinger equation
see Nonlinear Schrodinger equation
curl of a vector field, 9
cylindrical coordinates, 8, 13
cylindrical KdV equation
see concentric (c)KdV
cylindrical tank
waves in, 187
cylindrical wave
see concentric wave, 66

D’Alembert, J., 400

D’Alembert’s solution (wave equation), 32,

56
dam-break problem, 151
damping
of gravity waves, 360

Davey—Stewartson (DS) equations, 305, 307

and stability of Stokes wave, 336
bilinear form for long waves, 325, 350
conservation laws, 329, 352
for long waves, 323
into NLS equation, 350
long/short wave limits, 346
matching to 2D KdV equation, 347
solitary-wave solution, 350

del operator, 4

density
conserved, 245
fluid, 3

derivative
convective, 5
material, 5

Descartes, R., 400

differentiation under the integral, 4, 53, 54

dispersion, 33
dispersion relation, 33, 56
gravity waves with viscosity, 362, 387



Subject index

dispersion relation (cont.)

plane waves, constant depth, 64

with viscosity and surface tension, 387
dissipation (damping), 34, 363, 364
divergence of a vector field, 4
divergence theorem, 4
diverging wave system (ship waves), 130,

132

DS equations

see Davey—Stewartson equations
DS equations (long waves), 323

bilinear form, 325, 350

solitary-wave solution, 325, 351
Duhamel’s method, 371, 389
dynamic boundary condition, 14, 15, 55
dynamic wave, 381

edge waves, 90
with oblique waves, 192
eigenvalue, 86
eikonal equation, 99, 192
elliptic functions, 198
elliptic integrals, 198
energy, 23, 190, 191
conservation law, 20, 245, 292
propagation, 73
solitary wave, 177
speed of propagation, 73
energy equation, 20, 54, 98, 113, 160
energy flux, 23, 190, 191
energy loss
bore/hydraulic jump, 161
envelope (caustic), 104, 116
equation
Bernoulli, 11
Bessel, 82
Boussinesq, 216, 219
Bretherton’s, 59
Burgers, 60
classical wave, 31, 56
completely integrable, 201
concentric KdV, 211, 214
continuity, 4
eikonal, 99, 192
energy, 20, 54, 98, 113, 160
Euler, 5, 8, 49
Gel'fand-Levitan, 225, 226
Helmholtz’s, 50
Johnson’s see ncKdV
Korteweg—de Vries, 42, 58, 174, 204, 208
KP see two-dimensional KdV
Laplace, 12, 13
linearised, 30
linearised shallow water, 80
long wave, 30
Marchenko, 225, 226
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mass conservation, 3, 4
mass conservation integral, 19
Navier-Stokes, 5, 393
nearly-concentric (nc)KdV, 214, 216
Newton’s second law, 7
Nonlinear Schrédinger, 45, 58, 298, 304
Painlevé, 224, 286
pressure (unsteady Bernoulli), 12
ray, 193
shallow water, 147
two-dimensional KdV, 209, 211
Euler, L., 400
Euler’s equation, 5, 8, 49
Eulerian description, 48
expansion fan, 152

Faddeev condition, 226
far-field/near-field, 41, 57, 58, 206
Fermat, P. de, 400
Fermat’s principle, 193
flow
incompressible, 5, 48, 49
inviscid, 5
irrotational, 9, 52, 56
steady, 11
viscous, 5, 393
fluid
barotropic, 51
inviscid, 5
particle acceleration, 47
viscous, 5, 393
flux
conservation law, 245
force
body, 5
conservative, 10
gravity, 6
local (short-range), 5
normal, 6
pressure, 6
Fourier representation
modulated wave, 345
Fredholm alternative, 96
Fredhoim, E. L., 400
Froude number, 162, 379, 384
bore/hydaulic jump, 196
Froude, W., 400
fully developed flow, 378

Gauss, K. F., 400
Gauss’ theorem, 4
Gaussian curvature, 17
Gel’fand-Levitan equation
also see Marchenko equation, 225, 226
generalised Burns condition, 266, 295, 339
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generalised NLS equation, 349
geometrical optics, theory of, 93
gradient vector, 11
gravity, 10
gravity wave
group speed/velocity, 64, 65
linearised on constant slope, 85
nonlinear on constant slope, 162
speed (phase), 64, 65
with viscosity, 360
Green, G., 401
Green’s formula, 96
Green’s law, 84, 104, 191, 272
group speed velocity, 33, 44, 189
capillary wave, 75
for shear flow, 339, 354
gravity wave, 74, 75
harmonic wave, 69, 72
in NLS equation, 302
group velocity vector, 98, 192

Hamilton, W. R., 401
Hamiltonian flow, 249
Hamiltonian mechanics, 224
Hamiltonian system, 249
Hankel, H., 401
Hankel transform, 67
harmonic solution, 33
plane waves, constant depth, 62
harmonic terms, 44
harmonic wave, 33
group speed velocity, 69, 72
particle path, 67
phase speed, 64
Heaviside, O., 401
Helmholtz, H. von, 401
Helmholtz’s equation, 50
higher harmonics, 301
highest wave
Stokes, 169, 197
Hirota’s bilinear method
see under bilinear, 234
historical notes, 399
hodograph transformation, 153, 182
Jacobian, 154
Hugoniot, P. H., 401
hydraulic jump, 156
circular, 197
energy loss, 161
Froude number, 162, 196
jump condition, 157, 159, 160

Rankine-Hugoniot condition, 159, 160

shooting flow, 162
subcritical flow, 162
supercritical flow, 162
tranquil flow, 162
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hydrostatic pressure, 49

implicit solution
nonlinear waves, 56
impulse, 118, 123
impulsive pressure, 124
incompressible flow, 5, 48, 49
influence points, 128, 194
instability
Benjamin-Feir (Stokes wave), 336
integral equation
see Marchenko equation
invariant
Riemann, 149
inverse scattering transform theory
see soliton theory
inviscid flow, 5
irrotational flow, 9, 52, 56

Jacobi, K. G. J., 401
Jacobian, 154
Jacobian elliptic functions, 198
Johnson’s equation

see nearly concentric (nc)KdV
jump condition

bore/hydraulic jump, 157, 159, 160

Kadomtsev—Petviashvili (KP) equation
see two-dimensional KdV
Kelvin, Lord, 402

Kelvin’s method of stationary phase, 186

Kelvin—Helmholtz instability, 185
kinematic boundary condition, 14
kinematic condition, 52
kinematic wave, 381
Korteweg—de Vries (KdV) equation
bilinear form, 236
bilinear method, 235
centre of mass property, 292
cnoidal wave, 176
concentric, 211, 214
conservation laws, 247
conserved densities, 292
derivation, 204
derivation/far-field, 206
for shear flow, 255, 261
for variable depth, 268, 272
for variable depth, fast, 274
for variable depth, slow, 274
for water waves, 208
general solution, 225
introduction, 42, 57, 58
matching to NLS equation, 308
N-soliton solution, 231
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Korteweg—de Vries (KdV) equation (cont.)
nearly-concentric, 214, 216
rational solution, 286
scaling transformation, 285
sech? solution, 174
similarity solution, 286
solitary-wave solution, 226
three-soliton solution, 241, 288
two-dimensional, 209, 211
two-soliton solution, 228, 230, 231
water-wave introduction, 172, 174
with boundary-layer term, 372, 390
with surface tension, 285
Korteweg—de Vries family of equations
matching to near-field, 221
transformations between, 219
Korteweg—de Vries—Burgers equation, 383
steady solution, 384, 391
Kronecker, L., 402

Lagrange, J. L., 402
Lagrangian
averaged, 114, 181
Lagrangian description, 48
Lagrangian function, 199
Laguerre, E., 402
Laguerre polynomials, 92
Lamb, H., 402
Laplace, P. S., 402
Laplace’s equation, 12, 13, 183, 192
Laplace’s formula (surface tension), 17
linear integral equation, 225
linear momentum, 5, 7
linear scattering problem, 224
linearised equation, 30
linearised shallow water equations, 80
local (short-range) force, 5
long wave equation, 30
long wavelength parameter, 26

Ma solitary wave
into rational-cum-oscillatory solution,
348
of NLS equation, 315, 317, 348
Mach angle, 122
Mach, E., 402
Mach number, 162
Marchenko equation, 225, 226
separable, 228
mass
solitary wave, 177
mass conservation equation, 3, 4, 19, 244,
327
integral form, 19
mass flux

Stokes wave, 146, 191
matching
between DS and 2D KdV equations, 347
between NLS and KdV equations, 308
to near-field, 221
matching principle, 38, 57
material derivative, 5, 47, 48
mean drift, 191, 332, 346, 354
method of characteristics, 34, 56
method of steepest descent, 77
modulated wave
Fourier representation, 345
momentum, 5, 7
multiple scales, 43
ray theory (varying current), 108
ray theory (varying depth), 94

N-soliton solution
of KdV equation, 231
of KdV equation, bilinear form, 240
of NLS equation, 317
Navier, C. L. M. H,, 402
Navier-Stokes equation, 5, 393
ncKdV equation
see nearly-concentric KdV equation
near-field
matching for KdV equations, 221
near-field/far-field, 41, 57, 58
nearly-concentric (nc)KdV equation, 214,
216
Newton, I., 403
Newton’s second law, 5, 7
NLS equation
see Nonlinear Schrodinger equation
NLS+/- equations, 312
NLS— equation
solitary-wave solution, 348
nondimensionalisation, 24, 55
Nonlinear Schrodinger (NLS) equation, 45,
58, 298, 304
bi- (bound) soliton solution, 321, 322,
350, 351
bilinear form, 318, 349
bilinear method, 318
conservation laws, 325, 351
derivation for water waves, 298
for shear flow, 337
for variable depth, 341, 355
for variable depth, fast, 343
for variable depth, slow, 355
general solution, 312, 349
generalised, 349
introduction, 58
long/short wave limits, 346
Ma solitary wave, 315, 317, 348
matching to KdV equation, 308
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Nonlinear Schrodinger (NLS) equation
(cont.)

moment of inertia, 353

N-soliton solution, 317

rational-cum-oscillatory solution, 316,

317, 348

similarity solution, 349

solitary-wave solution, 313, 316, 347

stability of Stokes wave, 332

two-soliton solution, 320, 321, 351
nonlinear superposition principle, 240
nonlinear wave equation, 34, 56, 59
normal force, 6

oblique waves, 183, 185, 211
nonlinear interaction, 277
strong interaction, 281
two-dimensional KdV equation, 211, 242,
283
variable depth, 100
weak interaction, 277, 279, 282
with edge waves, 192

Painlevé equation, 224, 286
parameter
amplitude, 27
Froude number, 162, 196, 379, 384
long wavelength, 26
Reynolds number, 55, 358
shallowness, 26
Weber number, 27
particle path, 10, 51
harmonic wave, 67, 183
periodic terms, 44
phase shift
for KdV soliton solution, 232
phase speed, 33
capillary waves, 64
deep water, 64
gravity waves, 64, 65
long waves, 64
plane waves, constant depth, 64
ripples, 64
shallow water, 64
short waves, 64
plane waves, constant depth, 62
dispersion relation, 64
phase speed, 64
Poincaré, J. H., 403
Poiseuille channel flow, 378
position vector, 2
potential
complex, 52
vector, 52
potential function, 10
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velocity, 11
pressure, 2, 6
hydrostatic, 49
impulsive, 124
pressure equation (unsteady Bernoulli), 12

Rankine, W. J. M., 403
Rankine’s vortex, 51
Rankine-Hugoniot conditions
bore/hydraulic jump, 159, 160
rational solution
of KdV equation, 286
rational-cum-oscillatory solution
of NLS equation, 316, 317, 348
ray equation, 193
ray theory, 93, 181
caustic, 104, 116
cylindrical geometry, 105
ship waves, 134
slowly varying current, 108
slowly varying depth, 94, 193, 194
Rayleigh, Lord, 403
Rayleigh—Taylor instability, 186
rectangular Cartesian coordinates, 8, 13
rectangular channel, waves in, 183
reflected wave, 83, 274
reflection at wall
by bore, 197
resonant waves, 211, 242, 291
resonant-wave solution
of 2D KdV equation, 291
Reynolds number, 55, 358
Reynolds, O., 403
Riemann, G. F. B., 403
Riemann invariants, 149, 182
shallow water equations, 149
ring waves
with shear flow, 263
ripples
see capillary waves
roll waves, 384
run-up, 93, 196
Russell, J. S., 404
observations, 201

scaling, 24, 28

Schrodinger, E., 404

secular terms, 44

set-down
Stokes wave, 142, 332, 354

shallow water equations, 147, 252
bore/hydraulic jump, 156
characteristics, 149
conservation laws, 252, 294
dam-break problem, 151
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shallow water equations (cont.)
hodograph transformation, 153
linearised, 80
Riemann invariants, 149
shallowness parameter, 26
shear flow
group speed/velocity, 339, 354
KdV equation, 255, 261
NLS equation, 337
ring waves, 263
stability of Stokes wave, 341
ship waves, 117, 181
capillary, 195
circular path, 195
decreasing depth, 194
deep water, 117
diverging system, 130, 132
influence points, 128, 194
point impulse, 118, 123
ray theory, 134
transverse system, 130, 132
wedge angle, 122, 194
shooting flow
hydraulic jump, 162
short-crested waves, 184
short-range force, §
side-band instability
of Stokes wave, 336
similarity solution
of KdV equation, 286
of NLS equation, 349
simple waves, 149, 195
with shear, 195
singular solution
of ordinary differential equation, 267, 295
sloshing waves, 184, 187
slowly varying current
ray theory, 108
upwelling/down current, 110
slowly varying depth
KdV equation, 274
NLS equation, 355
ray theory, 94
Snell’s law, 193
solenoidal vector, S
solitary wave, 165
attenuation due to viscosity, 365, 374
circulation, 177, 199
for variable depth, 274, 296
impulse (momentum), 177
integral relations, 176, 199
introduction, 60
kinetic energy, 177
mass, 177
momentum (impulse), 177
of 2D KdV equation, 287, 289
of Boussinesq equation, 286
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of cKdV equation, 290
of DS equations, 350
of DS equations for long waves, 325, 351
of KdV equation, 226
of KdV equation, bilinear form, 237
of NLS equation, 313, 316, 347
of NLS— equation, 348
potential energy, 177
sech?, 171, 182, 198
speed, 166
with viscous boundary layer, 367, 370,
373
soliton
the word, 224
soliton theory
conservation laws, 243
for 2D KdV equation, 233
for cKdV equation, 233
for DS equations, 323
for KdV equation, 225
for NLS equation, 312, 349
general, 223
speed
capillary wave, 64
group, 33, 44
phase, 33
standing waves, 183
stationary phase, method of, 181, 186
application, 76
steady flow
definition, 11
steepest descent, method of, 77, 181
step
waves over, 185
Stokes mean drift, 191, 332, 346, 354
Stokes wave, 139, 181
Benjamin—Feir instability, 336
mass flux, 146, 191
mean drift, 191, 332, 346, 354
set-down, 142, 332
side-band instability, 336
stability, 332, 337
stability over shear flow, 341
Stokes, G. G., 404
Stokes” highest wave, 169, 197
stream function, 51, 52
streamline, 9, 51
stress tensor, 351
strong interaction
oblique waves, 281
subcritical flow
hydraulic jump, 162
supercritical flow
hydraulic jump, 162
surface shear stress, 367, 368, 388, 397
surface tension
boundary condition, 16
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surface tension (cont.) variable depth
Gaussian curvature, 17 characteristics, 191
in KdV equation, 285 conservation law, 296
Laplace’s formula, 17 fast, for KdV equation, 274

fast, for NLS equation, 343
KdV equation, 268, 272
NLS equation, 341, 355

Taylor, G. L., 404 oblique waves, 100

Taylor shock profile, 60 slow, for KdV equation, 274
tensor, 352 slow, for NLS equation, 355
stress, 2, 393 solitary wave, 296
tensor calculus, 352 wave propagation’ 80
three-soliton solution variational principle, 199
of KdV equation, 241, 288 vector
tranquil flow position, 2
hydraulic jump, 162 potential, 52
transformation solenoidal, 5
2D KdV — cKdV, 220 velocity, 2
between KdV equations, 219 vorticity, 9, 11
Boussinesq — KdV, 287 vector calculus, 2
ncKdV — 2D KdV, 287 vector field
ncKdV — KdV, 220 curl, 9
transverse wave system (ship waves), 130, del operator, 4
132 differential identities, 47
trapped waves, 90, 104 divergence, 4
travelling wave, 60 divergence theorem, 4
solitary, 60 gradient vector, 11
Taylor profile, 60 integral identities, 47
two-dimensional (2D) KdV equation, 209, velocity
211 complex, 52
bilinear form, 240 group, 98, 192
conservation laws, 251 in fluid, 2
general solution, 233 potential, 11, 52
matching to DS equations, 347 viscous boundary layer
resonant-wave solution, 291 and KdV equation, 372
solitary-wave solution, 287, 289 under solitary wave, 367, 370, 373
two-soliton solution, 289, 291 viscous flow, 5, 357, 393
two-dimensional Boussinesq equation, 289 vortex, 9
solitary-wave solution, 289 Rankine’s, 51
two-dimensional NLS equation, 352 vorticity, 49, 50
conservation laws, 352 vorticity vector, 9, 11

two-soliton solution
from bilinear form: KdV equation, 239
of 2D KdV equation, 289, 291 wave action. 98
g? g(élﬁs;g?;ig%uzggn,zgg 1231 wave breaking, 35, 85, 157, 170, 196
phase shift for KdV solution, 232 wave, dynap‘uc, 381
wave equation, 31, 56
Cauchy problem, 32, 39, 56
d’Alembert’s solution, 32, 56

undular bore, 162, 374, 378 hierarchies, 58, 59
energy loss, 375, 376, 384 nonlinear, 34, 56, 59
Froude number, 384 wave hierarchies, 58, 59, 380
steady model for, 376, 384 wave, kinematic, 381
uniform stream wave number, 33
waves on, 184, 185 wave, reflected, 83
uniqueness theorem, 54 waves, linear

upwelling/down current, 110 capillary, 64



waves, linear (cont.)
cylindrical tank, 187
cylindrical/concentric, 66
dynamic, 381
edge waves on constant slope, 90
gravity, 64, 65
harmonic, 33, 63, 67
in rectangular channel, 183
oblique, 183, 185
oblique, variable depth, 100
on constant slope, 85, 192
on uniform stream, 184, 185
over step, 185
plane, constant depth, 62
ripples, 64
run-up, 93
ship, 117
short-crested, 184
sloshing, 184
standing, 183
trapped, 90, 104
travelling, 60
variable depth, 80

waves, nonlinear
bore, 156
cnoidal, 176
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dam-break problem, 151
expansion fan, 152
harmonic, 141
hodograph transformation, 153
hydraulic jump, 156
implicit solution, 56
long, 146
mass flux, 146, 191
oblique, 209
resonant, 211, 242, 291
run-up, 196
Russell’s solitary wave, 166
sech? solitary wave, 171
set-down, 142
simple, 149
sloping beach, 162
Stokes, 139
Stokes’ highest, 169
two-dimensional, 209
weak interaction
oblique waves, 277, 279, 282
Weber number, 27
Weber, W. E., 404
wedge angle
ship waves, 122, 194



