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PREFACE

This monograph is devoted to the study of questions of solvability of main
boundary value problems for degenerate and nonuniformly elliptic and parabolic
equations of second order and to the investigation of differential and certain
qualitative properties of the solutions of such equations. The study of various
questions of variational calculus, differential geometry, and the mechanics of con-
tinuous media leads to quasilinear degenerate or nonuniformly elliptic and parabolic
equations. For example, some nonlinear problems of heat conduction, diffusion,
filtration, the theory of capillarity, elasticity theory, etc. lead to such equations. The
equations determining the mean curvature of a hypersurface in Euclidean and
Riemannian spaces, including the equation of minimal surfaces, belong to the class
of nonuniformly elliptic equations. The Euler equations for many variational prob-
lems are quasilinear, degenerate or nonuniformly elliptic equations.

With regard to the character of the methods applied, this monograph is organi-
cally bound with the monograph of 0. A. Ladyzhenskaya and N. N. Ural'tseva,
Linear and quasilinear equations of elliptic type, and with the monograph of 0. A.
Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and quasilinear
equations of parabolic type. In particular, a theory of solvability of the basic
boundary value problems for quasilinear, nondegenerate and uniformly elliptic and
parabolic equations was constructed in those monographs.

The monograph consists of four parts. In Part I the principal object of investi-
gation is the question of classical solvability of the first boundary value problem for
quasilinear, nonuniformly elliptic and parabolic equations of nondivergence form. A
priori estimates of the gradients of solutions in a closed domain are established for
large classes of such equations; these estimates lead to theorems on the existence of
solutions of the problem in question on the basis of the well-known results of
Ladyzhenskaya and Ural'tseva. In this same part qualified local estimates of the
gradients of solutions are also established, and they are used, in particular, to
establish two-sided and one-sided Liouville theorems. A characteristic feature of the
a priori estimates for gradients of solutions obtained in Part I is that these estimates
are independent of any minorant for the least eigenvalue of the matrix of coefficients
of the second derivatives on the solution in question of the equation. This circum-
stance predetermines the possibility of using these and similar estimates to study
quasilinear degenerate elliptic and parabolic equations.

Parts II and III are devoted to the construction of a theory of solvability of the
main boundary value problems for large classes of quasilinear equations with a
nonnegative characteristic form. In Part II the class of quasilinear, so-called (A, b)-
elliptic equations is introduced. Special cases of this class are the classical elliptic
and parabolic quasilinear equations, and also linear equations with an arbitrary
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2 PREFACE

nonnegative characteristic form. The general boundary value problem (in particular,
the first, second, and third boundary value problems) is formulated for (A. b)-elliptic
equations, and the question of existence and uniqueness of a generalized solution of
energy type to such a problem for the class of (A. b. m. m)-elliptic equations is
investigated. Theorems on the existence and uniqueness of regular generalized
solutions of the first boundary value problem for (A. b)-elliptic equations are also
established in this part.

In Part III questions of the solvability of the main boundary value problems are
studied in detail for important special cases of (A, b)-elliptic equations-(A,0)-
elliptic and so-called (A, 0)-parabolic equations, which are more immediate generali-
zations of classical elliptic and parabolic quasilinear equations. All the conditions
under which theorems on the existence and uniqueness of a generalized solution (of
energy type) of the general boundary value problem are established for (A, 0, m, m)-
elliptic and (A, 0, m, m)-parabolic equations are of easily verifiable character. Theo-
rems on the existence and uniqueness of so-called A-regular generalized solutions of
the first boundary value problem are also established for (A.0)-elliptic equations.
Examples are presented which show that for equations of this structure the investiga-
tion of A-regularity of their solutions (in place of ordinary regularity) is natural.
These results are applied to the study of a certain class of nonregular variational
problems.

Some of the results in Parts 11 and III are also new for the case of linear equations
with an arbitrary nonnegative characteristic form. For these equations a theory of
boundary value problems has been constructed in the works of G. Fichera. O. A.
Oleinik, J. J. Kohn and L. Nirenberg, M. I. Freidlin, and others.

Part IV is devoted to the study of properties of generalized solutions of quasilin-
ear, weakly degenerate parabolic equations. From the results obtained it is evident
how the properties of generalized solutions of the equation improve as the regularity
of the functions forming the equation improves. This improvement, however, is not
without limit as in the case of nongenerate parabolic equations, since the presence of
the weak degeneracy poses an obstacle to the improvement of the differential
properties of the functions forming the equation.

This monograph is not a survey of the theory of quasilinear elliptic and parabolic
equations, and for this reason many directions of this theory are not reflected here.
The same pertains to the bibliography.

The author expresses his gratitude to Ol'ga Aleksandrovna Ladyzhenskaya for a
useful discussion of the results presented here. The very idea of writing this
monograph is due to her.



BASIC NOTATION

We denote n-dimensional real space by R"; x = (x1,..., x") is a point of R", and
Z is a domain (an open, connected set) in R"; the boundary of SI is denoted by M.

All functions considered are assumed to be real.
Let G be a Lebesgue-measurable set R". Functions equivalent on G, i.e., having

equal values for almost all (a.a.) x e G are assumed to be indistinguishable (coinci-
dent).

L "(G), I < p < + oo, denotes the Banach space obtained by introducing the
norm

I/p
IIUIIp.G ° IIUIIL1(c) = (fGIuxIPdx)

on the set of all Lebesgue-measurable functions u on the set g with finite Lebesgue
integral fclu(x)lpdx.

L'O(G) is the Banach space obtained by introducing the norm

Ilullx.c ° IIuIILo (G) = esssuplu(x)I
xEG

on the set of all measurable and essentially bounded functions on G.
L I(G), I < p <, + oo, denotes the set of functions belonging to Lp(G') for any

subdomain G' strictly interior to G (i.e., G' such that G' c G).
Wr(G) is the familiar Sobolev space obtained by introducing (on the set of all

functions u which with all their partial derivatives through order I belong to the
space L P (Sl ), p > 1) the norm

IIuIIW;(s2) = IIDkulip.a,
k-0

where

k
Dku _ au

71 Ikl = k, + ... + k,,.axk,...axk, it

C"'(2) (C'(12)) denotes the class of all functions continuously differentiable m
times on 1 (all infinitely differentiable functions on 0), and Cm(9) (C°°(SE)), where
St is the closure of St, is the set of those functions in Cm(S2) (C'(0)) for which all
partial derivatives through order m (all partial derivatives) can be extended to
continuous functions on K2. The set of all continuous functions on a (on 31) is
denoted simply by C(Q) (C(SC)).

3
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The support of a function u E C(S2) is the set supu = {x E S2: u(x) 5t 0).
C,"'(0) (C.'(9)) denotes the set of all functions in C"'(2) (C°°(2)) having compact
support in U.

Let K be a compact set in R". A function u defined on K is said to belong to die
class Co( K ), where a E (0,1), if there exists a constant c such that

lu(x)-u(x')I<clx-x'Ia, Vx,x'eK,x#x'.
In this case it is also said that the function u is Holder continuous with exponent a
on the set K. The least constant c for which this inequality holds is called the Holder
constant of the function u on the set K and is denoted by (u)'". In particular, if
u E C'(3l), then

(u) (a)
= sup 1U(x) - u(x')I

st
A. Ix - X'I'

on the set Ca(R) we introduce the norm

Ilulln = suplu(x)I + (u)n
I.

then we obtain a Banach space which is also denoted by C"(12).
Functions u satisfying the condition

Iu(x) - u(x')I < clx - x'l, VX, X' E C2, x # x',

are called Lipschitz continuous on S2. Such functions form a Banach space Lip(S2)
with norm defined by

lulLiau, = suPlu(x)l + (40"'
n

where the Lipschitz constant (u)n' is defined in the same way as (u)st' but with
a = 1. Lip(S2) denotes the collection of functions continuous in 2 and belonging to
Lip(SZ') for all 11' C Q.

C"" "(Sd) denotes the Banach space with elements which are functions of the class
("'(3i,) having derivatives of mth order belonging to the class C"(C2); the norm is
given by

suplDAu(x)I + E (DAu(x))Q'.
JAI=0 aZ JAI-101

C"""(S2) denotes the set of functions belonging to C' for all S2' such that
S2' C 9.

We denote by CA(S2) the set of all functions of the class CA '(C2) such that all
their partial derivatives of order k are piecewise continuous in C2 (and are hence
bounded in S2). In particular, C'(v$) denotes the set of all continuous and piecewise
differentiable functions in 0.

Let I' be a fixed subset of M. We denote by C,; r(12) the set of all functions in the
class C,(SZ) which are equal to zero outside some (depending on the function)
n-dimensional neighborhood of F. In the case r = 852 we denote the corresponding
set by CU ( 2 )
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A domain 0 is called strongly Lipschitz if there exist constants R > 0 and L > 0
such that for any point x0 E all it is possible to construct a (orthogonal) Cartesian
coordinate system y,,...,y with center at x, such that the intersection of aS2 with
the cylinder CR , y E R": E;_,Iy,2 < R2, 2LR } is given by the equation

!;, = P(Y'), y' (yl,...,y"
where y(y') is a Lipschitz function on the domain (ly'l < R), with Lipschitz
constant not exceeding L, and

2 nCR.1 = {yER":Iy'I_< R,9,(y')_<

It is known that any convex domain is strongly Lipschitz.

A domain Q with boundary aft is called a domain of class C1', k >_ 1, if for any
point of a Q there is a neighborhood w such that aS2 n w can be represented in the
form

x/ = 1P,(X1,...,X1-l, x1+I,...,X,,) (*)

for some / E (1.....n ). and the function T, belongs to the class Ck(w,), where w, is
the projection of w n aS2 onto the plane x1 = 0.

We further introduce the classes Ck1, k ' 1, of domains with piecewise smooth
boundary (see the definition of the classes Btk1 in [102]). It is convenient to
introduce the class of such domains by induction on the dimension of the domain.
An interval is a one-dimensional domain of class Ctk1. A domain 9 a R" with
boundary aS2 belongs to the class CIk1 if its boundary coincides with the boundary
of the closure n and it can be decomposed into a finite number of pieces S-',
/ = I .... , N, homeomorphic to the (n - 1)-dimensional ball which possibly intersect
only at boundary points and are such that each piece Si can be represented in the
form (*) for some / E where the function Ti is defined in an (n - 1)-
dimensional closed domain a of class C(A1 on the plane x, = 0 and 9)/ E Ck(a).

I f S2 E C" 11. k > 1, then the formula for integration by parts can be applied to
2 V 82: it transforms an n-fold integral over S2 into an (n - 1)-fold integral over
aS2.

Let B, and B, be any Banach spaces. Following [96], we write BI -+ B2 to denote
the continuous imbedding of BI in B2. In other words, this notation means BI a B,
(each element of B, belongs to B,) and there exists a constant c > 0 such that

Ilulls, < cllulle,, Vu E BI.

Above we have presented only the notation and definitions which will be most
frequently encountered in the text. Some other commonly used notation and terms
will he used without special clarification. Much notation and many definitions will
be introduced during the course of the exposition.

In the monograph the familiar summation convention over twice repeated indices
is often used. For example, a"uL, means the sum etc.

Within each chapter formulas are numbered to reflect the number of the section
and the number of the formula in that section. For example, in the notation (2.8) the
first number indicates the number of the section in the given chapter, while the
second number indicates the number of the formula in that particular section. A
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three-component notation is used when it is necessary to refer to a formula of
another chapter. For example, in Chapter 7 the notation (5.1.2) is used to refer to
formula (1.2) of Chapter 5. Reference to numbers of theorems and sections is made
similarly. The formulas in the introductions to the first. second, and third parts of
the monograph are numbered in special fashion. Here the numbering reflects only
the number of the formula within the given introduction. There are no references to
these formulas outside the particular introduction.



PART I

QUASILINEAR, NONUNIFORMLY ELLIPTIC AND
PARABOLIC EQUATIONS OF NONDIVERGENCE TYPE

Boundary value problems for linear and quasilinear elliptic and parabolic equa-
tions have been the object of study of an enormous number of works. The work of
U. A. L,adyzhenskaya and N. N. Ural'tseva, the results of which are consolidated in
the monographs [83] and [80]. made a major contribution to this area. In these
monographs the genesis of previous work is illuminated, results of other mathemati-
cians are presented, and a detailed bibliography is given. In addition to this work we
note that contributions to the development of the theory of boundary value
problems for quasilinear elliptic and parabolic equations were made by S. N.
Bernstein, J. Schauder, J. Leray. S. L. Sobolev, L. Nirenberg, C. Morrey, O. A.
Oleinik, M. 1. Vishik. J. L. Lions. E. M. Landis, A. Friedman, A. I. Koshelev, V. A.
Solonnikov, F. Browder. E. DeGiorgi, J. Nash, J. Moser, D. Gilbarg, J. Serrin, I. V.
Skrypnik, S. N. Kruzhkov, Yu. A. Dubinskii, N. S. Trudinger, and many other
mathematicians.

The so-called uniformly elliptic and parabolic equations formed the main object
of study in the monographs [83] and [80]. Uniform ellipticity to the equation

a"(x, u,vu)ut. = a(x. u,vu)

in a domain Sl C R", n >, 2 (uniform parabolicity of the equation

/,

(1)

-u, + a"(x, t. u, vu)ut.,,. = a(x. t, u, vu) (2)
,.l=a

in the cylinder Q = Sl x (0, T) c R", 1, n >_ 1) means that for this equation not
only the condition of ellipticity a''(x. u, 0 for all e R", # 0 (the
condition of parabolicity a"(x, t, u. 0 for all 1; a R", * 0) is satisfied,
but also the following condition: for all (x, u, p) a Sl X (Iul < m) X R" ((x, t. u, p)
EQx(Jul <rn)xR")

A(x, u, p) 5 cA(x, u. p) (A(x, t, u, p) < cA(x, r, u. p)), (3).

where A and A are respectively the least and largest eigenvalues of the matrix of
coefficients of the leading derivatives, and c is a constant depending on the
parameter in. In view of the results of Ladyzhenskaya and Ural'tseva the problem of
solvability of a boundary value problem for a nonuniformly elliptic or parabolic
equation reduces to the question of constructing a priori estimates of the maximum
nioduli of the gradients of solutions for a suitable one-parameter family of similar
equations. Much of Part I of the present monograph is devoted to this question. The

7
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question of the validity of a priori estimates of the maximum moduli of the gradients
of solutions for quasilinear elliptic and parabolic equations is the key question, since
the basic restrictions on the structure of such equations arise precisely at this stage.

Nonuniformly elliptic equations of the form (1) are considered in Chapter 1. It is
known (see [83] and [163]) that to be able to ensure the existence of a classical
solution of the Dirichlet problem for an equation of the form (1) for any sufficiently
smooth boundary function it is necessary to coordinate the behavior as p o0 of
the right side a(x. u. p) of the equation with the behavior as p -+ 00 of a certain
characteristic of the equation determined by its leading terms a"(x, it. p). i..1 =
1....n. Serrin [163] proved that growth of a(x, u. p) as p -> oo faster than the
growth of each of the functions FI(x. u. p)4 (l pp and u. p) asp oo, where

W " ( f x dp =+x.
PA(P)

d;(x, u. p) = TrlIa''(x, u. p)II Ipl

leads to the nonexistence of a classical solution of the Dirichlet problem for a certain
choice of infinitely differentiable boundary functions. On the other hand, sufficient
conditions for classical solvability of the Dirichlet problem for any sufficiently
smooth boundary function obtained in [127]. [77]. [79]. [163]. [29). [81]. [31]. [34].
[35], [83) and [165] for various classes of uniformly and nonuniformly elliptic
equations afford the possibility of considering as right sides of (1) functions
a(x. it. p) growing as p - oo no faster than 6'1. Sufficient conditions for this
solvability of the Dirichlet problem obtained in [29]. [31]. [34] and [35) for rather
large classes of nonuniformly elliptic equations and in [165] for equations with
special structure make it possible to consider as right sides of (1) functions
a(x. u. p) growing asp - oc no faster than 6,.

Thus. the functions (or majorants, as we call them) 6, and 6_ control the
admissible growth of the right side of the equation. In connection with this, one of
the first questions of the general theory of boundary value problems for quasilinear
elliptic equations of the form (1) is the question of distinguishing classes of
equations for which the conditions for solvability of the Dirichlet problem provide
the possibility of natural growth of the right side a(x, u. p) asp -+ oo. i.e. growth
not exceeding the growth of at least one of the majorants 6, and e_ Just such classes
are distinguished in [127], [77]-[791.[1631.1291.[31].134],135]. [165] and [83].

The author's papers [29], [311, [34] and [35]. on which Chapter 1 of this mono-
graph is based. distinguish large classes of nonuniformly elliptic equations of this
sort. For them a characteristic circumstance is that the conditions imposed on the
leading coefficients of the equation are formulated in terms of the majorants 6, and
f, and refer not to the individual coefficients a" but rather to aggregates of the form
A' = a"(.r, u. p)T,T,. where r = is an arbitrary unit vector in R". It is
important that under these conditions the established a priori estimates of the
gradients of solutions do not depend on any minorant for the least eigenvalue A of
the matrix I1a"II. This circumstance predetermines the possibility of using the results
obtained here also in the study of boundary value problems for quasilinear degener-
ate elliptic equations, and this is done in Parts II and 111.
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As in the case of uniformly elliptic equations, the establishment of an a priori
estimate of maxnivul breaks down into two steps: 1) obtaining maxaalvul in terms
of maxsljul, and 2) obtaining an estimate of maxr 1vul in terms of maxanlvul and
maxalul. The estimates of maxaulvul are first established by means of the technique
of global barriers developed by Serrin (see [163]).

In particular, the modifications of Serrin's results obtained in this way are found
to be useful in studying quasilinear degenerate equations. We then establish local
estimates of the gradients of solutions of equations of the form (1) by combining the
use of certain methods characteristic of the technique of global barriers with
constructions applied by Ladyzhenskaya and Ural'tseva (see [83]). The results
obtained in this way constitute a certain strengthening (for the case of nonuniformly
elliptic equations) of the corresponding results of [771, [142] and [83] on local
estimates of I vul on the boundary of a domain.

Further on in Chapter 1 a priori estimates of maxulvul in terms of maxaszlvul
are established. The method of proof of such estimates is based on applying the
maximum principle for elliptic equations. This circumstance relates it to the classical
methods of estimating gradients of solutions that took shape in the work of S. N.
Bernstein (for n = 2) and Ladyzhenskaya (for n ? 2) and applied in [77J-[791, [163],
[127], [111 and elsewhere. Comparison of the results of [77]-[791, [163] and [127] with
those of [291, [31], [34] and [35] shows, however, that these methods have different
limits of applicability. The estimate of maxulvul is first established for a class of
equations with structure described in terms of the majorant dl (see (1.6.4)). This
class contains as a special case the class of quasilinear uniformly elliptic equations
considered in [83]. An estimate of maxnl vul is then obtained for a class of equations
with structure described in terms of the majorant 82 (see (1.7.1)). This class contains,
in particular, the equation with principal part which coincides with the principal part
of the equation of minimal surfaces (1.7.13). The latter is also contained in the third
class of equations for which an estimate of maxalvul is established. The structure of
this class has a more special character (see (1.8.1)). This class is distinguished as a
separate class in the interest of a detailed study of the equations of surfaces with a
given mean curvature. We note that the conditions on the right side of an equation
of the form (1.7.13) which follow from (1.8.1) do not coincide with conditions
following from (1.7.1). The class of equations determined by conditions (1.8.1)
contains as special cases some classes of equations of the type of equations of
surfaces with prescribed mean curvature which have been distinguished by various
authors (see 1163], 141 and [83]).

We note that the works [171], [103], [104], [54], [301 and 1551, in which the so-called
divergence method of estimating maxulvul developed by Ladyzhenskaya and
Ural'tseva for uniformly elliptic equations is used, are also devoted to estimating
maxnivul for solutions of nonuniformly elliptic equations of the form (1). In these
works the structure of equation (1) is not characterized in terms of the majorants d'
and 1X2.

With the help of a fundamental result of Ladyzhenskaya and Ural'tseva on
estimating the norm Ilullc, t°cal in terms of IlullcI(n> for solutions of arbitrary elliptic
equations of the form (1), at the end of Chapter 1 theorems on the existence of
classical solutions of the Dirichlet problem are derived from the a priori estimates
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obtained earlier. Analogous results on the solvability of the Dirichlet problem have
also been established by the author for certain classes of nonuniformly elliptic
systems [37]. Due to the limited length of this monograph, however, these results are
not presented.

The first boundary value problem for nonuniformly parabolic equations of the
form (2) is studied in Chapter 2. As in the case of elliptic equations of the form (1),
the leading coefficients of (2) determine the admissible growth of the right side
a(x, t, u, p) as p oo, since growth of a(x, 1, u, p) as p -> oo faster than the
growth of each of the functions cfl,'(I pl) and dZ asp - oo, where

dl = a''(x, t, u, P)P;P; and dZ = Trlla''(x, t, u, P)II IPI,

f
+'° dp = + oo,

'(P)P

leads to the nonexistence of a classical solution of the first boundary value problem
for certain infinitely differentiable boundary functions (see, for example, [136]).
Sufficient conditions for classical solvability of the first boundary value problem for
any sufficiently smooth boundary function obtained in [78], [83] and [98] for
uniformly parabolic equations, in [136] for a certain special class of nonuniformly
parabolic equations, and in [38] for a large class of nonuniformly parabolic equa-
tions of the form (2) make it possible to consider functions growing no faster than d',
as right sides of the equation. In [38], on the basis of which Chapter 2 of the
monograph is written, sufficient conditions are also obtained for classical solvability
of the first boundary value problem which admit right sides a(x. t, u, p) growing as
p - oo no faster than the function 'Z. (We remark that, as in the case of elliptic
equations, the meaning of the expression "growth of a function as p - oo" has
relative character.)

Thus, the majorants d1 and dZ control the admissible growth of the right side of
the equation also in the case of parabolic equations. However, the presence of the
term u, in (2) alters the picture somewhat. The situation is that among the sufficient
conditions ensuring the solvability of the first boundary value problem for any
sufficiently smooth boundary functions and under natural conditions on the behav-
ior of a(x, t, u, p) asp -, oo there is the condition

+d, -+ oo asp - oo. (4)

When condition (4) is violated we establish the existence of a classical solution of the
first boundary value problem under natural conditions on growth of a(x, t, u, p) in
the case of an arbitrary sufficiently smooth boundary function depending only on
the space variables. This assumption (the independence of the boundary function of
t when condition (4) is violated) is due, however, to an inherent feature of the
problem. We prove a nonexistence theorem (see Theorem 2.5.2) which asserts that if
conditions which are in a certain sense the negation of condition (4) are satisfied
there exist infinitely differentiable boundary functions depending in an essential way
on the variable t for which the first boundary value problem has no classical
solution.
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Returning to the discussion of sufficient conditions for solvability of the first
boundary value problem given in Chapter 2, we note that, as in the elliptic case, the
conditions on the leading coefficients a'j(x, t, u, p) of the equation pertain to the
summed quantities A' ° a'"(x, 1, u, p)TTj, T E R", ITI = 1, and are formulated in
terms of the majorants d1 and 82. Here it is also important to note that the structure
of these conditions and the character of the basic a priori estimates established for
solutions of (2) do not depend on the "parabolicity constant" of the equation. This
determines at the outset the possibility of using the results obtained to study in
addition boundary value problems for quasilinear degenerate parabolic equations. In
view of the results of Ladyzhenskaya and Ural'tseva (see [80]), the proof of classical
solvability of the first boundary value problem for equations of the form (2) can be
reduced to establishing an a priori estimate of maxQIvul, where Vu is the spatial
gradient, for solutions of a one-parameter family of equations (2) having the same
structure as the original equation (see §2.1).

To obtain such an estimate we first find an a priori estimate of vu on the
parabolic boundary IF of the cylinder Q on the basis of the technique of global
barriers. We then establish a priori estimates of maxQlVul in terms of maxr(Vul
and maxQlul. Sufficient conditions for the validity of this estimate are formulated in
terms of both the majorant 81 and the majorant d2. The first class of equations of
the form (2) for the solutions of which this estimate is established (see (2.3.2))
contains as a special case the class of quasilinear uniformly parabolic equations
considered in [83]. The second class of equations distinguished in this connection
and characterized by conditions formulated in terms of the majorant 82 contains, in
particular, the parabolic analogue of the equation of given mean curvature (see
(2.3.25)). Such equations find application in the mechanics of continuous media.
From our estimates the proof of existence of a classical solution of the first
boundary value problem is assembled with the help of a well-known result of
Ladyzhenskaya and Ural'tseva on estimating the norm IluIIc,-.(j) in terms of
IIuIIci(g) for solutions of arbitrary parabolic equations of the form (2).

Chapter 3, which concludes Part I, is devoted to obtaining local estimates of the
gradients of solutions of quasilinear elliptic equations of the form (1) and their
application to the proof of certain qualitative properties of solutions of these
equations. In the case of uniformly elliptic equations local estimates of the gradients
of solutions of equations of the form (1) have been established by Ladyzhenskaya
and Ural'tseva (see [83]). In [142], [166], [26] and [83] these estimates are extended to
certain classes of nonuniformly elliptic equations of the form (1). In these works the
modulus I Vu(xo) I of the gradient of a solution u at an arbitrary interior point x0 of
2 is estimated in terms of mazK,(xo) UI, where KP(xo) is a ball of radius p with center
at x0. The author's results [26] obtained in connection with this estimate find
reflection at the beginning of Chapter 3. The estimate in question is established here
under conditions formulated in terms of the majorant dl (see (3.1.1)-(3.1.6)). An
important feature of these conditions and of the estimate of Iv u(x0) is that they are
independent of the ellipticity constant of equation (1), i.e., of any minorant for the
least eigenvalue of the matrix Ila'1(x, u, Vu)II at the solution in question of this
equation. Therefore, the result is meaningful even for the case of uniformly elliptic
equations. Moreover, this affords the possibility of using the estimate to study
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quasilinear degenerate elliptic equations. We remark also that in place of a condition
on the degree of elliptic nonuniformity of the equation (see [831) conditions
(3.1.1)-(3.1.6) express a restriction on characteristics of elliptic nonuniformity which
are more general than this degree.

More special classes of equations of the form (1) for which can be
expressed in terms of maxK,(,

)
u or min,,(,,,) u alone or, generally, in terms of

structural characteristics alone of the equation are distinguished in the work of L. A.
Peletier and J. Serrin [157]. The author's paper [48] is devoted to analogous
questions. Estimates of I V u(x, )I of this sort are also presented in Chapter 3. The
local estimates of the gradients are used in this chapter to obtain theorems of
Liouville type and (in a special case) to prove a Harnack inequality. Theorems of
Liouville type for quasilinear elliptic equations of nondivergence form were the
subject of study in [166], [261, [1571 and (481. Two-sided Liouville theorems, consist-
ing in the assertion that any solution that is bounded in modulus or does not have
too rapid growth in modulus as p -i oo is identically constant, are established in
(1571 for the nonlinear Poisson equation Au = flu, Vu) and in [26] for quasilinear
elliptic equations of the form a'J(Vu)uT x = a(u, Vu) admitting particular elliptic
nonuniformity. In particular, the results of [26] give a limiting two-sided Liouville
theorem for the Euler equation of the variational problem on a minimum of the
integral fn(1 + I VU12)', 2 dx. m > 1, i.e, for the equation

[(1+1Vul2)S; +(m-2)u,.u,1u,,. =0. (5)

Namely, it follows from Theorem 3.1.1 that for any sufficiently smooth solution u in
R" of (5) for any x0 E R" there is the estimate IVu(xo)l S coscK,I,. , u p', where
the constant c depends only on n and in. This easily implies that any sufficiently
smooth solution of (5) in R" which grows as Jxl oo like o(jxl) is identically
constant. This result cannot be strengthened, since a linear function is a solution of
(5) in R".

For certain classes of uniformly elliptic equations, in [157] one-sided Liouville
theorems are proved in which the a priori condition on the solution has a one-sided
character: only bounded growth as p o0 of the quantity sup,,,,p u or info I.-P u is
assumed. In [481 one-sided Liouville theorems are established for other classes of
equations of the form (1). So-called weak Liouville theorems in which aside from a
priori boundedness of the growth of the function itself at infinity bounded growth of
the gradient is also required were proved in [166], [26], [157] and [48). The exposition
of theorems of Liouville type in Chapter 3 is based on the author's papers [26] and
[48]. In [39] and [44] two-sided theorems of Liouville type were established for
certain classes of elliptic systems of nondivergence form, but in the present mono-
graph Liouville theorems for elliptic systems are not discussed. We do not mention
here the large cycle of works on Liouville theorems for linear elliptic equations and
systems and for quasilinear elliptic equations of divergence form in which the results
are obtained by a different method.
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CHAPTER 1

THE DIRICHLET PROBLEM FOR QUASILINEAR,
NONUNIFORMLY ELLIPTIC EQUATIONS

§1. The basic characteristics of a quasilinear elliptic equation

In a bounded domain 2 c R', n > 2, we consider the quasilinear equation

9u=a''(x,u,Vu)uxXI -a(x,u,Vu)=0, (1.1)

where a'J = aj', i, j = 1, ... , n, which satisfies the ellipticity condition

a'!(x, u, 0 for all f E R", E # 0, and all (x, u, p) E O XR X R".

(1.2)

Regarding the functions a''(x, u, p), i, j = 1,...,n and a(x, u, p) in this chapter
it is always assumed that they are at least continuous in 0 X R X R n. In the
investigation of conditions for solvability of the Dirichlet problem for equation (1.1),
i.e., the problem

Yu=0 in S2, u=q on a12, (1.3)

where q' is a given function, the first question is naturally that of the admissible
structure of this equation, i.e., the question of under what conditions on the
functions a'j(x, u, p), i,j = 1,... , n, and a(x, u, p) a problem of the type (1.3) has a
classical solution in any (at least strictly convex) domain 1 with a sufficiently
smooth boundary 852 and for any sufficiently smooth boundary function p. Here a
classical solution of problem (1.3) is understood to be any function u E C2(Q) n
C(D) satisfying (1.1) in SZ and coinciding with T on 852. While the admissible
structure of linear elliptic equations is determined mainly by the condition of
sufficient smoothness of the coefficients, in the study of quasilinear elliptic equations
the foremost conditions are those of admissible growth of a(x, u, p) as p - oo,
depending on the behavior as p --+ 00 of certain characteristics of equation (1.1)
determined by the leading coefficients a''(x, u, p), i, j = 1,...,n. The first of these
characteristics, the function

(11 = -f1(x, u, p) = a'j(x, u, P)P4p1 = Ap p, (1.4)

where A = Ila'j(x, u, P)II, was known as far back as the early work of S. N.
Bernstein. The second such characteristic is the function

'2 cf2(x, u, p) = TrAlpi. (1.5)

The growth of the right side a(x, u, p) of the equation as p - oo cannot simulta-
neously exceed the growth of the functions I1 and '2 in the following sense.

THEOREM 1.1 (J. SERRIN). Let 0 be a bounded domain in R" whose boundary 852
contains at least one point x0 at which there is tangent a ball K from the exterior of the
domain (so that K n 0 = ( x0)). Suppose that

la(x,u,P)I %e1(x,u,P)4F(IPI) forxeC,lul%m,IPI %1, (1.6)

where m and I are positive constants and the function p (p), 0 < p < + oo, satisfies the
condition

f+QO
dp < + oo, (1.7)

POW
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and suppose that

+oo asp-ooun,!ormitvinxESl,uER. (1.8)
8,(x, u. P)

Then there exists an infinitely differentiable Junction q (x) in n for which the Dirichlet
problem (1.3) has no classical solution.

Theorem 1.1 is proved in [163] by means of the technique of global barriers that is
developed there.

For concrete elliptic equations of the form (1.1) a decisive role is usually played by
one of the functions 8, or d'2, namely, the one with greater growth as p - oc. Thus,
for uniformly elliptic equations characterized by the condition

A(x, u, p)A-'(x, u, p)<const, x E52.ueR,peR(1.9)
where A = A(x, u, p) and A = A(x, u. p) are respectively the greatest and least
eigenvalues of the matrix A(x, u. p), the function 6, always plays the decisive role,
since in this case d, - Al pI2 and 8, - A I p1 asp -' oo. For the (normalized) equation
of a surface of given mean curvature

u u I + yu 3/2(1 +IVU12a -
x =nir(x,u.vu) I 12) (1.10)

I1 Null Ivul2l .''' Ivu12

on the other hand, the decisive role is played by d',. since in this case if, = I and
if, > (n - 1)I pl. Pelow the functions 8, and of, are also called majorants.

The "positive role" of the majorant if,, consisting in the admissibility, for the
solvability of problem (1.3). of growth of a(x, u, p) as p - oo no faster than the
growth of if, asp - oo (when, of course, certain conditions of another type are also
satisfied), was originally justified in the case n = 2 by Bernstein [127] and in the case
n -> 2 by Ladyzhenskaya and Ural'tseva [77] within the confines of the class of
uniformly elliptic equations. These same authors presented examples showing that in
a particular sense growth of the right side of the equation as p oo considerably
more rapid than the growth of cf', as p - oo, generally speaking. is already not
admissible for the solvability of the Dirichlet problem even in the case of a strictly
convex domain Sl. This is the "negative role" of the majorant d',. The "positive role"
of 8, was then confirmed in [79), [163], [29], [81], [31], [34], [35) and [83] for various
classes of nonuniformly elliptic equations.

Serrin's Theorem 1.1, which was proved after the work of Ladyzhenskaya and
Ural'tseva on uniformly elliptic equations, makes precise the fact that within the
general framework of nonuniformly elliptic equations the limit of inadmissible
growth is already determined by the two functions 8, and 82 and shows that the
" negative role" of the majorant's if, and e2 has universal character. Apparently,
Serrin's paper [163) is the first in which the "negative role" of 8, is exposed. We
remark that in [163] the "positive role" of 82 was demonstrated only at the stage of
obtaining an estimate of maxanlvul, and this for equations of special structure. The
"positive role" of 82 was subsequently justified in the author's papers [29], [31], [34]
and [351 for fairly large classes of nonuniformly elliptic equations, and in [165] for
equations of special structure.
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§2. A conditional existence theorem

We first present two known fundamental results which play a basic role in the
reduction of the proof of classical solvability of problem (1.3) to the problem of
constructing an a priori estimate of maxa(Iul + I Vul) for solutions of a one-parame-
ter family of Dirichlet problems related to problem (1.3). We present these results
within a framework sufficient for our purposes in this monograph.

SCHAUDER s THEOREM. Suppose that the coefficients of the linear equation

a''(x)ux Y = a(x) (2.1)

belong to the class C' 2+a(S2), where I >_ 2 is an integer, a E (0,1) and 0 is a bounded
domain in R ", n > 2, and suppose that the following ellipticity condition is satisfied:

p1;2, p = const > 0,;; E R", x E 1 (2.2)

Then any solution u E C2(j2) of (2.1) belongs to the class C' (5l'), and

IlulIC'-(5') -< c (2.3)

where 0' C SZ" C 0 and the constant cl depends only on Ilullc( ),n, v, a, 1,

IIa"Ilc , _ ^(n) I I a I I , 2
^(n), and the distance of S2' from a S2. If the domain S2 belongs to

the class C''" and the boundary function p E C" *(D), then the Dirichlet problem

a"(x)ur,X =a(x) in S2, u=q) onaSZ (2.4)

has precisely one classical solution u with u E C'+°(0), and

IIUIIcI.^(a) < C2

where c2 depends only on n, v, a, 1, IIa"IIc'-2+°(5), IialICf-2__(5), II4'IIc'i'(5) and on the
C1 *-norms of the functions describing the boundary ail.

Schauder's theorem is a well-known classical result.

THEOREM OF LADYZHENSKAYA AND URAL'TSEVA [83). Suppose that a function
u E C2(3l) satisfying the condition

m lul<m, maxlvul<M, (2.5)

is a solution of (1.1) in a bounded domain 0 C R", n >, 2, and that equation (1.1) is
elliptic at this solution in the sense that

a''(X, u(X), Vu(X))jijj >, pj2, v = const > 0, j e R", x E (2.6)

Suppose that on the set ,9ra , , Al = 31 x { l ul < m) x { l p 1 < M) the functions
a'" (x, u, p), i, j = I,...,n, and a(x, u, p) satisfy the condition

aa'J aaij ajla'jl
+ I ax f + I au I

+ ap + l al < M. = const > 0 on AD,, m. (2.7)

Then there exists a number y E (0, 1), depending only on n, v, M and M1, such that for
any subdomain 0', n' C 0,

II VuIIcY(a,) < c1, (2.8)

where cl depends only on n, v, M, MI, and the distance from S2' to aSt. If the domain 12
belongs to the class C2 and u = .p(x) on aSl, where p r= C2(S2), then

IIVu!IC ) < c2, (2.9)
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where c, and y depend on the same quantities as the constants c, and y in (2.8) and also
on IITIIc'(a) and the C2-norms of the functions describing au.

The following conditional existence theorem for a classical solution of the Dirich-
let problem is established by means of the theorems of Schauder and Lady-
zhenskaya-Ural'tseva and the familiar topological principle of Leray-Schauder (in
Schaffer's form) for the existence of a fixed point of a compact operator in a Banach
space.

THEOREM 2.1. Suppose that the functions a'j(x, u, p), i, j = 1, ... , n, and a(x, u, p)
belong to the class C2(S2 xR x R"), where 2 is a bounded domain in R", n > 2, and
suppose that for anv (x, u, p) E b2 x R X R"

a"(x, U. p)4,ij > vl>:I2, v = const > 0. bj E R". (2.10)

Assume also that the domain 2 belongs to the class C' and the function q E C3( ).

Finally, suppose that for any solution v E C2(Sn) of the problem

y1v = a"(x, v, vv)v, Y - Ta(x, v, vv) = 0 in S2,
' (2.11)

V = Tq on asi, T E [0, 11

there is the estimate

m0ax(lvl + Ivvl) < c0, (2.12)

where co = const > 0 does not depend on either v or T. Then the Dirichlet problem (1.3)
has at least one classical solution. Moreover, this solution belongs to the class C2(0 ).

A proof of Theorem 2.1 is given, for example, in [163]. We remark that other,
more general one-parameter families of problems can be considered in place of the
family of problems (2.11) (see [831 and [1631). Theorem 2.2 determines the program
for investigating the solvabilty of the Dirichlet problem for a general elliptic
equation of the form (1.1). It reduces to the successive proof of the a priori estimates
of maxulul and maxnlvul. The estimate of maxnlvul is usually carried out in two
steps: 1) an estimate of maxanlvul in terms of maxulul, and 2) an estimate of
maxnlvul in terms of maxanlvul and maxulul. Many sufficient conditions for
obtaining an a priori estimate of maxulul are presently known (see [83], [821, [163]
and others). In connection with this, in our monograph the estimates of maxQlvl for
solutions of problems (2.11) which do not depend on T are usually postulated in
formulations of conditions for the solvability of problem (1.3). The subsequent
considerations in Part I are mainly devoted to constructing various methods of
estimating maxnlvul.

§3. Some facts about the barrier technique

LEMMA 3.1 (SERRirt). Suppose that in a bounded domain 2 c R", n > 2, a function
u E C2 (S2) n C'(0) satisfies (1.1), where it is assumed that condition (1.2) is satisfied
and that a"(x, u, p), i, j = 1,...,n, and a(x, u, p) are continuous functions of their
arguments in 0 x R X R ". Suppose that for any constant c > 0 the (barrier) function
w e C2(S2) n C'(D2) satisfies in 1 the inequality

£°(w+c)=a'J(x,w+c,vw)w -a(x,w+c,Vw)<0. (3.1)

If u < w on aft, then u < w throughout 3l.
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Lemma 3.1 is proved in [163]. The proof is based on applying the strong
maximum principle for linear elliptic equations.

Suppose that S2 belongs to the class C3. In a subdomain Do C 12 abutting 8S2 it is
possible to define a function d = d(x) as the distance from the point x E Do to 80
(i.e., d(x) = dist(x, all)). The domain D. is characterized by the condition

Do =(xES2:d(x)<80), (3.2)

and the number So > 0 is determined solely by the boundary 811. We shall hence-
forth always asume that So < K-1, where K is the supremum of the absolute values
of the normal curvatures on M. It is proved in [163] that if this condition is satisfied
the function d(x) belongs to the class C2(D0).

LEMMA 3.2 (SERRIN). Let S2 C R", n >- 2, be a bounded domain of class C3, and let

w(x) = q7(x) + h(d ), d = d(x) = dist(x, 80), (3.3)
XED= (xE12:d(x)<8),

where q) E C3(5), h (d) E C2((0,6)) n C([O, 81), 0 < 8 < 8o, S. is the number from
condition (3.2), and h'(d) > 0 on [0, 8]. In the domain D the expression

£°(w+c)=a'J(x,w+c,vw)wx.X - a(x, w + c, vw),

c = const > 0, can then be bounded above by the expression

F (h"/h'2) + KTrAh' + a, (3.4)

where-F= A(p - po) - (p - Po)' A s Ila'j(x, w(x) + c, vw(x))ll, p = vw(x), PO =
v93(x), p = po + vh', v is the unit inner normal to 8[2 at the point y = y(x) E 812
closest to x on 812, h' = h'(d(x)), K = sup;_1, ..,,_1,yEanik;(Y) the k;(y), i =
1, ... , n - 1, are the principal curvatures of the surface 812 at the point y, and a =
a(x, w(x) + c, Vw(x)). If the domain 12 is convex, then the expression £'(w + c),
c = const > 0, can also be bounded above in the domain D by the expression

F((h" + Kh')/hi2) - kTrAh' + a'Jq,x;X, - a, (3.5)

where

k = inf k, (y) and k >- 0.
1....." I., an

PROOF. The results of Lemma 3.2 follow in an obvious way from the formulas
obtained in [163] (see pp. 422, 423).

We now present a simple proposition related to the investigation of a single
ordinary differential equation.

LEMMA 3.3. Suppose a positive, continuous function 0(p), 0 < p < + oo, satisfies
the condition

fdP

P'.0(p)
= +oo,

and suppose the number So > 0 is fixed. Then for an q > 0 and a > 0 there exist a
number 8 E (0, 80) and a function h = h(d) E C2((0, 8)) n C([0, 8]) satisfying the
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conditions

h"/h'3+ID(h')=0 on(0,8),
h(0) = 0, h(8) = q, h'(d) a on (0, 8),

(3.6)

where 8 depends only on q, a, and t(p).

PROOF. Because of the first condition, there exists a number f such that

q
_ fB dp (3.7)

PZCP)
where a = max(a, q60 -1), so that ft > a >, a. Let

dp
8

_ fa
(3.8)

Obviously, 6 < q/a < 60. We now define h(d) on [0, 8] by the following parametric
equations:

h= fP dp d=f9 dp (3.9)
P P10(P) P P3CP)

It is easy to see by direct verification that h"/h'3 + l(h') = 0 on (0, 8). It is also
obvious that h' = p > a >, a on [0, 8], h(0) = 0, and h(8) = q. The lemma is
proved.

§4. Estimates of I V u I on the boundary a R
by means of global barriers

In this section estimates of the normal derivative of a solution of problem (4.3),
and thereby of the entire gradient of this solution on ail, are established by means of
the technique of global barriers developed by Serrin. The results presented here are a
modification of the corresponding results of [163]. Below Do denotes the subdomain
of S) defined by (3.2). We also assume that condition (1.2) is satisfied for equation
(1.1 )

THEOREM 4.1. Suppose that on the set 91,,, Do X (I ul < m) X (I p 1 > i } (m and
I are nonnegative constants) the functions a'j, aa'"/ap,., a and as/8p,, i, j, k =
1,... n, are continuous and satisfy the condition

Ia(x, u, P)I < 0 (IPI),fI(x, u, p) + 8(I PI)d',(x, u, p) (4.1)
where oft and dZ are defined by (1.4) and (1.5), ¢(p), 0 < p < + oo, is a positive,
monotone, continuous function such that limp... +. 0(p)/p = 0 and for all c = const

0 the function p4'(p ± c) is montonic and

f +x
dp = +oo, (4.2)

p>y(p±c)
and 8(p), 0 < p < + oo, is a nonnegative, nonincreasing function such that

lim 8(p) = 0. (4.3)
p-.x

Let u c- CZ(D0) I, C'(Do) be an arbitrary function satisfying (1.1) in the domain D,
which coincides on aft with a function s E C3(50) and is such that lu(x)I < m in D0.
Suppose also that the domain St is strictly convex and belongs to the class C 3. Then

1au(y)/av1 < Mo, Y E ast, (4.4)
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where 8u/8v is the derivative in the direction of the inner normal to 8S1 at the point
y E 8S2 and Mi) depends only on m, 1, the number 6o from condition (3.2), the functions
¢(p) and 6(p) from (4.1),119p)Ic:(Do), and also on k-t and K where

k = inf k,(y)
i-1.....n-I.yE8t2

and the k,(,y), i = 1,...,n - 1, are the principal curvatures of au at y E 852. If it is
additionally assumed that on the set

(IPD'fI(x, U, P) -> '02(x, u, P), (4.5)

then the estimate (4.4) holds without the assumption of strict convexity of Q. In this case
the constant Mo in (4.4) depends on the same quantities as previously with the exception

of

PROOF. We first assume that conditions (4.1) and (4.5) are satisfied for any u
(more precisely, on the set 92,,,., = Do X R x (lpj > 1)). This assumption will be
eliminated at the end of the proof. We first prove the first part of the theorem
assuming that there is no condition (4.5) Suppose that the function w is defined by
(3.3) where p(x) is the function in the hypotheses of the theorem; the choice of the
function h(d) E C2((0, 6)) n C([0, 6]), 0 < 6 < So, and, in particular, of the num-
ber 6 characterizing the domain of h(d) we specify below. Applying Lemma 3.2, we
obtain for any constant c the inequality

2'(w + c) <Jr((h" + Kh')/hi2) - kTrAh' + a').Tx,x, - a, x E D, (4.6)

where in correspondence with the notation adopted in Lemma 3.2 F= A(p - po)
(P - Po) A = Ija"(x, w(x) + c, Vw(x))Il, p = Vw(x), Po = v9p(x), p = Po + vh',
K = sup,-t,.._Ilk,(y)I and a = a(x, w(x) + c, p). We suppose that h'(d) 3 c, +
I + I on 10, 81, where

n /i

c9 = IIPllc(n) + II9x,llc(o) + II x,x lic(D)

Then j pj > 1. Applying (4.1), estimating Ia'Jpx,x,I < c,, TrA, and taking also into
account that h' - c, < jpl < h' + c, < 2h', we obtain the estimate

a"tpx,x - a < c,,TrA + ¢(h' ± cv)411 + 2h'S(h' - c,)TrA, x e D. (4.7)

We shall now prove that

tf1 < 2,''+ 4c'TrA on D. (4.8)

Indeed, noting that jAp Pol < IAPI IPol < c,jApl and lApl < (TrA)t/2(Ap . p)1/2,
we obtain the inequality

IAP Pol < c,(TrA)t/2(Ap p)1/2.

Then

,F=Ap

p - 2c,(TrA)II2(Ap p) 1/2 > 12 - 2c2TrA,

(1) The second part of Theorem 4.1 is a result of Serrin [163) (see pp. 432 and 433).
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whence we obtain (4.8). It follows from (4.6)-(4.8) that for the function w on the set
D we have

h"

h ,3

K 2,y(h'±c',))
Y(w+c)<-Fh' +-h'Z + h, /r

c 4c2>G (h' ± cT )
+h'{-k + h, + h, + 28(h' - c") jTrA, (4.9)

where c = const > 0.
Because of conditions (4.2) and (4.3),

CT
+ +26(p-c'.)-+0

P P

as p - + oc. Therefore, assuming that h' >- a0, where ao > 0 is a sufficiently large
number depending only on k, c,, i(p), and 6(p), we can relax inequality (4.9) by
dropping the nonpositive second pair of braces in it. Then

'(w+c)<,Fh'{h"/h'3+(b(h')), xE D, (4.10)

where

+ x
dPID(P)=K/p2+2+p(P±cm)/P and f

P
24,(p)

= +00.

We shall now specify the choice of the function h(d) and its domain. Let 6 be
defined by (3.8) for a = max(a, q8o'), q = c. + m, and a = max(ao, c,, + 1 + 1),
and suppose that on [0, 61 the function h(d) is defined by (3.9). From Lemma 3.3 it
then follows that 8 e (0, 60) and

P(w+c)<0, xED. (4.11)

Moreover, u < w on 8D. Indeed, since h(0) = 0, it follows that w = q) = u on N.
On the set (x e St: d(x) = 6), however, the inequalities u < m = (m + cd - c-V =
h(8) - c, < w hold. It then follows from Lemma 3.1 that u < w in D. In view of the
fact that u = w on 32, from the last inequality we obviously obtain

au/ap < haw/apI on an. (4.12)

Since the function a = -u is a solution of an equation having precisely the same
structure as the original equation, from what has been proved we also obtain

-au/8p < haw/apt on 80. (4.13)

The estimate (4.4) obviously follows from (4.12) and (4.13).
We now proceed to consider the second part of the theorem (i.e., we assume that

both conditions (4.1) and (4.5) are satisfied). This part of the theorem was proved by
Serrin [1631. For completeness we repeat Serrin's proof here. Because of condition
(4.5) and the fact that 1p14-'(Ipl) - cc, there exists a constant a,, depending only
on '(p), such that

(f, >- 8c,TrA on 92oc.ma(1.a ) . (4.14)

Let h' >- a = c., + I + a1 + 1. Then I p1 > 1, and hence from (4.8) and (4.14) we
obtain

.,F3
2

1 - 2c.TrA >- 14 (f, on D. (4.15)
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Estimating P(w + c) above by (3.4) and taking into account that under condition
(4.5) it is possible to set 6(p) ° 0 in (4.1) with no loss of generality, we obtain

(h- (K+c)TrA 0(jp 11 xED. (4.16)'-F
I

Recalling (4.5), (4.15) and also the inequalities h' - c, < Ipl < h' + c9,, from (4.16)
we deduce the inequality

£°(w + c) <.Fh'(h"/hi3 + 41(h')), x E D, (4.17)

where

4?(p)=4(cq,+K+1)(p(p±c,)/(p-cO).
It is obvious that f+°°(dp/p245(p))= + oo. Since (4.17) coincides in form with
(4.10), the remainder of the proof does not differ from the proof of the preceding
case. Thus, an estimate of the form (4.4) has also been established in this case.

We shall now eliminate the assumption that conditions (4.1) and (4.5) are satisfied
for all u. Suppose that these conditions are satisfied on the set where
m > maxo°IuI. We consider a new equation of the form (1.1) with a matrix of
leading coefficients defined by

A(x,-m, p) foru < -m,
A(x, u, p) = A(x, u, p) for -m < u < m, (4.18)

A(x, m, p) for u > m,

and with a similarly defined lower-order term d(x, u, p). It is obvious that in Do the
function u also satisfies the new equation d''uX X. - d = 0 for which conditions of
the form (4.1) and (4.5) are satisfied for all u E R. The validity of an estimate of the
form (4.4) then follows from what has been proved above. Theorem 4.1 is proved.

It is useful to record also the following version of Theorem 4.1.

THEOREM 4.1'. Suppose that the functions a'1, 8a'"/apk, a and as/apk, i, j, k =
1, ... , n, are continuous on the set and suppose that for all x s D,,all u c- [-m, ml
and any p > I = const > 0

la(x, u, pv)I < *p(p)d'1(x, u, pv) + 6(p)TrA(x, u, pv)p, (4.19)

where A = 11a'"11, v = v(y(x)) is the unit inner normal to ail at the point y(x) closest to
x E Do on 80, and the functions if,, ¢, and 8 are the same as in Theorem 4.1. Suppose
that a function u r= C2(D0) n C(D0) satisfies (1.1) in Do, is equal to 0 on au
(i.e., = 0), and I u (x) I < m in Do. Assume that the domain 12 is strictly convex and
belongs to the class C'. Then the estimate (4.4) holds, where the constant Mo depends
only on m, 1, 80, >y(p), 8(p), 0, and K. If it is additionally assumed that for all
xEDO,uE[-m,m)and p>1

0(p),f1(x, u, pv) > TrA(x, u, pv)p, (4.20)

then (4.4) holds without the assumption of strict convexity of U. In this case the constant
M. does not depend on k.

PROOF. This theorem follows directly from the proof of Theorem 4.1.
REMARK 4.1. In (163) certain classes of nonuniformly elliptic equations of the form

(4.1) are distinguished which are beyond the framework of condition (4.5) but for
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which an estimate of the form (4.4) can nevertheless be established not only for
convex domains. Here, however, conditions arise on the curvature of the boundary
surface which depend on the behavior of the right side of the equation. It is shown in
[163] that these conditions are inherent in the nature of the problem.

§5. Estimates of IV ul on the boundary by means of local barriers

In obtaining an estimate of IV uI at a fixed point yo E a5l it is not always
expedient to impose conditions on the entire boundary asl and the entire boundary
function q' as must be done in using the method of global barriers presented in §4. In
the present section the estimate of IDu(yo)I is based on the construction of local
barriers which cause constraints only on the part of the boundary near the point yo
and on the restriction of p to a neighborhood of yo. To construct local barriers we
use certain methods characteristic of Serrin's technique of global barriers, and also
constructions applied by Ladyzhenskaya and Ural'tseva [83]. The results obtained
here are a strengthening (for the case of nonuniformly elliptic equations) of the
corresponding results of [83] regarding local estimates of I vul on the boundary of
the domain.

Let Sl be a bounded domain in R °, n >, 2, with boundary M. We consider an
open part r of a52 containing the point yo E M. We assume that I belongs to the
class C3. Suppose there exists a number So > 0 such that for each point x in the
domain

Dr= {xESZ:x=y+rv(y), yE r,TE (5.1)

there is a unique point y = y(x) E F such that dist(x, t) = dist(x, aS2) =
dist(x, y(x)). It can be proved precisely as in the case r = au that the function
d = d(x) = dist(x, 1') defined on Do belongs to the class C2 if So is sufficiently
small (see (1631).

Let K,(yo) be a ball of radius r > 0 with center at yo. We set

0,=Kr(Yo)n9, S,=Kr(Yo)n1', (5.2)

where the number r > 0 is assumed to be so small that n I' = K,(yo) n aSt
and S2, c D. We also suppose that condition (1.2) is satisfied for equation (1.1).

THEOREM 5.1. Suppose that on the set 9t r.,,,,i = Dr x uI S m } x pI > I) the
functions a'j, aaVapk, a and as/apk, i, j, k = 1,...,n, are continuous and satisfy
inequality (4.1), where 4' ,'i2, 4,(p) and S(p) are the same as in Theorem 4.1. Suppose
that the function u satisfies the conditions

u E Cz(ar) n C'(3lr), IuI < m in U
Yu=a'j(x,u,Vu)uxx -a(x,u,vu)=0 in S2 (5.3)

u = /y on Sr, Ip E C3(1 ),

Suppose also that the following conditions are satisfied:

52, is contained in a ball KR(xo) of radius R > 0 with center at
the point x0 lying on the axis defined by the vector v of the inner
normal to aS1 at the point yo, where KR(xo) is tangent to aS2 at

Yo
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and

k = inf k,(y) > 0, (5.5)
i=I. -n-1, vet

where k t (y ), ... , k _ 1(y) are the principal curvatures of the surface ail at the point
y E I'.(2) Then

lau(yo)/avl < M0, (5.6)

where Mo depends only on m, 1, IIq)IIC2(Oa, K - supy.er.;_i,...n-I k,(y), k-', Rr-2, the
surface IF, and also on the functions ,p(p) and 8(p) from condition (4.1). If it is
additionally assumed that condition (4.5) is satisfied on the set 91 then the estimate
(5.6) remains valid if in place of (5.4) and (5.5) the following condition is satisfied:

there exists an open ball KR(x,) of radius R > 0 with center at
the point x which has no common points with S2r and contains (5.7)
the point yo on its boundary. (3 )

In this case the constant Mo in (5.6) depends only on m, 1, IIq jIc2(Q,), K, R, r-', t and
the function J (p).

PROOF. We assume with no loss of generality that (4.1) and (4.5) are valid on
91 r...i (i.e., for any values of the variable u; see the end of the proof of Theorem
4.1 ). We set Dr x E Dr: d(x) < S ), where 0 < S < 0 and S. is the number in
(5.1). On Dr we consider the function

w(x) = f(x) + h(d(x)), f(x) _ q(x) +.tp(x), p. = const > 0, (5.8)

where p(x) is defined on Dr by the formula p(x) = dist(x, Pyo) and Pyo denotes the
tangent plane to asz at yo; h(d) E C1((0, 8)) n C([0, 8]), and d(x) = dist(x, r). The
number 8 E (0, do ), the function h (d), d E [0, 8 ], and also the constant p. > 0 will be
chosen below. Since Lemma 3.2 has local character, its results can also be used in the
case of local barriers of the form (5.8) (in other words, the estimates of -21(w + c) in
terms of the expression (3.5) or (3.4) are valid under the conditions of Theorem 5.1
on the set Dr). We first prove the first part of the theorem assuming that there is no
condition (4.5). In view of Lemma 3.2, for any constant c >- 0 we have

So(w + c) <.F((h" + Kh')/hi2) - kTrAh' + a'1f,,x - a, x E Dr, (5.9)

where the notation adopted in Lemma 3.2 has been used. Because of the linearity of
the function p(x) on Dr we have a'Jpx,x, = 0, and hence (5.9) coincides in form with
(4.6) although the arguments of the functions a'1, a and Fin (5.9) and (4.6) are
different, sincef(x) = p(x) +,up(x).

Suppose the condition h'(d) > c, + µ + I + 1 is satisfied on [0, 81, where c,,
IITIIc2(Dr). From this condition we obtain the inequality h(d) 3 maxDrl of I + 1 + 1
on [0, 8], since I of I < I v4p I + µ < c, + µ on Dr in view of the fact that I vpl = 1.
Forp a lvw(x)l the condition Ipl > I is then satisfied. Applying precisely the same

(2) It is not hard to see that condition (5.4) follows from (5.5). However, for the proof of the theorem it
is convenient to write (5.4) separately.

(3) It is obvious that condition (5.7) is more general than (5.4) (i.e., (5.4) implies (5.7)).
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arguments as in the proof of Theorem 4.1 with c, replaced by c. + p, we establish
the inequality

Y(w+c)<3h'th"/h'3+(D (h')), xEDr, (5.10)

where

l(P)=K/p'+20(p±c,±µ)/p
(it is obvious that f +°°(dp/p2l (p)) = + oo).

We now specify the choice of h(d) and 8 E (0, So). Let S be defined by (3.8) with
a = max(a, q& j' ), q = cq, + m and a = max(ao, c1, + µ + I + 1), where a, depends
only on k, c,,, µ, and the functions 41(p) and S(p) and is such that the second pair of
braces in (4.9) is negative. Let h(d) be defined on [0, S] by (3.9) so that h(0) = 0,
h(S) = c, + m and a 5 h' < /3 on [0, S], where /3 is determined from (3.7) for the
values of a and q indicated above. From Lemma 3.3 it then follows that

.9(w+c)<0, xEDrnS2,, (5.11)

We shall prove that for a suitable choice of the constant µ > 0 the inequality
u < w holds on the boundary a(Dr n 2,). It is obvious that a(Dr n S2,) = S, U S,
US;', where S,' =S2,n{xEDr: d(x) = 8), S;'=a(DrnS2,)\(S,US,), and
the set S,' is that part of the boundary surface of the ball K, cut out by surfaces I'
and (x E Dr: d(x) = S). Indeed, taking into account the form of the function w
and the properties of h(d) and p(x), it is easy to see that u < w on S, U S,. To
prove the inequality on S;' we note that from geometric considerations we have

inf p(x) >, r2/2R, (5.12)
ate,\s,

where R is the number in condition (5.4), and we choose R = (cT + m X 2 R/r 2).
Then on Sr" we have

w(x) maxlpl +(c + m)

rR

SfP(x)

>- -c9, +(c, + m)
ZR inf p(x) >- m 3 u(x).
r an,\s,

Thus,

P(w+c)<0 inDrnS2,, u < w ona(DrnS2,). (5.13)

Applying Lemma 3.1, we deduce from (5.13) that u < w throughout 9, n Dr.
Taking into account that u(yo) = w(Yo) = 4p(Yo) we obtain

au(to)/av<taw(Yo)/avI</+cq,+µ.

An upper bound for -au(yo)/av is obtained in a similar way,so that tau(yo)/avl
+ C9 + tt, whence the first part of the theorem follows.
We now prove the second part of the theorem. In this case the proof of (5.6)

proceeds in two steps. At the first step we establish (5.6) by replacing condition (5.7)
by the stronger condition (5.4). At the second step the assumption regarding this
replacement of conditions is eliminated. Thus, we first assume that conditions (4.1),
(4.5), (5.3), and (5.4) are satisfied. In view of (4.5) we shall assume with no loss of
generality that in condition (4.1) S(p) = 0. On Dr we again consider the function
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w(x) defined by (5.8). Using the upper bound for 2'(w + c) in terms of an
expression of the form (3.4) on the basis of Lemma 3.2 and taking also into account
that a''p,,, = 0 on Dr, we obtain

2'(w + c) < KTr Ah' + a''q?,;, - a, x e Dr. (5.14)

Assuming that h' >- a = c , + p + 1 + al + 1, where al > 0 is determined by (4.14)
and depends only on the function gy(p) just as in the proof of the second part of
Theorem 4.1, we establish that

d (w + c) <.f7h'{h"/h'3 + 4'(h')), x E Dr, (5.15)

where

(D(p)=4(c.,
+p+K+1)0(P±c' fp)

P - cq, - P

satisfies the condition J+°°(dp/p24)(p)) = + oo.
We define the number 8 and the function h(d) by the same formulas as in the

proof of the first part of the theorem. The following conditions are then satisfied:
.`'(w + c) < 0 in Dr n St, and u < w on S, U S,. Choosing p in exactly the same
way as in the proof of the first part of the theorem and taking account of inequality
(5.12), we find that u < w on a(Dr n 12,). The estimate (5.6) is deduced from what
has been proved in the same way as above.

Finally, we show how to eliminate the assumption regarding the replacement of
condition (5.7) by (5.4). Suppose that conditions (4.1), (4.5), and (5.7) are satisfied.
We make a change of variables

z = k(x), (5.16)

which realizes the transformation of inversion relative to the sphere 8KR(x.) (see
(5.7)). Under this transformation the domain 12, goes over into a domain S2 and 1),
is contained in a ball KR(x$) of radius R with center at the point x lying on the
axis defined by the vector of the inner (relative to the new domain fl,) normal v to
a51 at the point P. = yo (it is obvious that yo is a fixed point of the transformation
(5.16)). Thus, a condition of the form (5.4) is satisfied for the new domain 0,.

It is obvious that the transformation (5.16) defined above realizes a diffeomor-
phism of class C°° between 0, and 0,. In particular, the function .9 = g(x), x E 11,
and the inverse function x = x(g), z E A are bounded together with their partial
derivatives of first and second orders by a constant depending only on R and the
diameter of St,. Equation (1.1) is thus transformed into an equation of the form

akl(.?C, u, iu)u.kr, - J(. f, u, vu) - 0, (5.17)

where

2-
dkl = ail 8gk 8XI' u - a - a'i a xk

ux' .axi axe axi axe k

Setting vu(x) = p and pu(g) = p, noting that

cIIPI < IPI < c21PI, c3TrA < TrA < c4TrA,

tI
(5.18)
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where c1, c2, c3, c4 are positive constants, A = II a'j(x, u, p)II and A = Ila'i(x, u, P)II,
and observing that

A = CAC', C = Ilaxk/ax,ll, (5.19)

from conditions (4.1) and (4.5) we deduce the inequalities

(IPI).?1 % c5TrAIPI, c5 = const > 0, (5.20)

and

Ia(x, u, p)I 1< c6'i'(IPI) '1, c6 = const > 0, (5.21)

where ¢(p) = c3¢(csp), c7, c8 = const > 0, obviously satisfies the condition
/+°°(dp/ply(p)) = +oo. Thus, for (5.17) and the domain SI, all the conditions are
satisfied under which (in the proof of the second part of the theorem) an estimate of
the form (5.6) was established, i.e.,

lau(Yo)/aPI S Mo. (5.22)

Returning to the old variables, from (5.22) we deduce (5.6). The proof of Theorem
5.1 is completed.

In the sequel we shall use the following version of the second part of Theorem 5.1.

THEOREM 5.1'. Suppose that the functions a'', 8a''/apk, a and as/apk, i, j, k =
1,... , n, are continuous on the set 9t r m 1, and suppose that for all x E Dr', all
u E [-m, m) and any numbers lc and t such that µ > 0 and i >- µ + 1, where I = const
> 0, the inequalities

la (x, u, µpp + tv) I S iP(Iliop + tvl)v°l(x, u, uVp + tv) (5.23)

and

P'(Iivp+tv)I,'1(x,u,µvp+tv)>, lµop+tvITrA(x,u,µpp+tv)(5.24)
hold, where A w IIa''II, p = p(x) = dist(x, P,.0), P,. is the tangent plane to all at the
point yo, v = v(y(x)) is the interior unit normal to 85Z at the point y(x) closest to
x E Do on t, and the functions 4' and 4' are the same as in Theorem 5.1. Suppose that
the function u satisfies condition (5.3) in the case p = 0. Suppose also that condition
(5.4) is satisfied. Then the estimate (5.6) holds, in which the constant Mo depends only
on m, 1, K, R, r-1, So and the function ¢.

PROOF. Theorem 5.1' follows directly from the proof of the second part of
Theorem 5.1. An analogous modification of the formulation could also be made for
the first part of the theorem. However, we shall omit this, since it is not used
anywhere in the sequel.

REMARK 5.1. If under the conditions of Theorem 5.1 (5.1') the function 9) is
identically 0 on 0, then the estimate (4.4) ((5.6)) has the form

Iau(Y)/aY1, 0 (Iau(Yo)/avI + µ), (5.25)

where $ is determined from (3.7) with

a = max(a, m8o'), a = max(ao, /,+ 1)

(a=max(a,m&,'), a=max(ao,µ+/+1), µ=m2R/r2)
and ao depends only on the functions 4'(p) and S(p), and on ail.



§6. ESTIMATES OF maxn(v uL. 1 27

§6. Estimates of maxul V ul for equations with structure described

in terms of the majorant 81

Suppose that the functions a'j(x, u, p), i, j = 1,...,n, and a(x, u, p) forming
equation (1.1) belong to the class C'(W29,m,L), where J'ta,m.L = 3E x(luI < m) x
(I pI > L ), m and L being positive constants. We suppose also that on Du m.L

a'J(x,u,p)jjjj>0, jER". (6.1)

Let T = (T1,... ,T") be an arbitrary fixed vector with ITI = 1. We set

AT ma`i(x,u,p)T,Tj=AT -T. (6.2)

We further introduce the following notation for an arbitrary function '1

1(x, u, P):

a = Pk a4D + IPI
a4

" a) (6.3)
k_1 iPi axk au P p = EIPkapk

THEOREM 6.1. Suppose that on the set sT1 p, m. L for any T, I T I = 1

lPAPI i1AT81w(iPDlpl-1, I8ATI < atA'8l1w(jPI)

Ia - Papl < N2''`, Sa a281IPlw-'(IPI), 81 > 0,

where µ, and 02 are arbitrary nonnegative constants, a1 and 02 are nonnegative
constants which are sufficiently small, depending on n, µ1, µ2 and m,(°) and w(p) > 0,
0 < p < + oo, is an arbitrary nondecreasing, continuous function. Then for any
solution u E C3(1) n C'(11) of (1.1) satisfying the condition

maxlul < m, (6.5)
11

the quantity maxaIVul can be estimated in terms of m, M1 = maxa0Ivul, n, L,µ1 and
112 alone.

PROOF. Applying to (1.1) the operator uxk(a/axk) and setting v = F.1"u', we
obtain the identity

r
Ia'JV,j = a'jukiukj + II app - a - aa'ju;j), x E I. (6.6)

Here and henceforth we use the abbreviated notation for derviatives: v, - v.,,,
u,, = ux,, , etc. We multiply both sides of (6.6) by f(v(x)), where f(v) >
f '(v) >, 0 and v > 0, and we introduce the function

0 and

w = f f(t) dt. (6.7)

Taking into account that w; = fv; and w,j = fv,j + f'v,vj, from (6.7) we deduce the
identity

la'Jw,l = Jf'a'Jv,vj + Ja'JUk,Ukj + Ilap, - apiuij} w, (6.8)
+fr (8a - aa'ju,j), x E Q.

Let z = z(u) be a twice differentiable, positive function defined on [-m, m]. We
consider the function w defined by

w = z(u)w. (6.9)

(°) This dependence will be specified in the proof of the theorem.
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Taking into account that w, = z'u,W +zw, and w,, = z"u,uw +z'u,jw +z'u,W +
z'u1W, + Zw,j, from (6.8) we deduce the identity

n

za'jwil + Y- bkwk = -Z"CfiW + Izz'2
1W2 + 2fa'J Uk ukj + Z'(Pap - a)Wf2

k=1

-Z'(a'1)P,U,U,jW+2fvv(5a - Sa'ju,,), (6.10)

where f, = a'j(x, u, Vu)ux,ux , and the form of the functions bk is irrelevant for
subsequent considerations. In deriving (6.10) it was also taken into account that
a'/u,j = a in Q. The identity (6.10) will subsequently be used only on the set
121.=(xES2:Ivul>L).

We consider the matrix Ilu;jII at a fixed point of 52,,. Let T -= 11t,,11 be the
orthogonal matrix reducing Ilu,jll to the diagonal matrix 11u,,11, where u,, = 0 for
i # j. Then

Iluijll = Tlluijl!T" (6.11)

We denote b A the matrixy

A = PAT. (6.12)

We shall prove the inequalities

_ Z,z
w z

I Z (a j)P,u,u11WI '<
2Ia,3Uk;Ukj

+ C0 I
U

e'w ,

12rr6a'1u;jl ffai'u,(/u , + 2alnk
w

11, (6.13)

where co = µ1n/2 and µl, a1 are the constants in (6.4). Indeed, we have

z'(a'j)p,u,u,jW = Z'(a"ii)p,ulaiiW = Z'(AT,)p,u,U,,W.
146 )( .

2f f&a'Ju,j = 2f f6a"u = 2f j6AT-u,,,

where p, = u,, T, is the ith column of the orthogonal matrix T (so that IT,I = 1), and
a" = t kak1 t = AT' . T' = A. If a" = 0 for some value of i E (1,...,n), condition
(6.4) implies that for this index i also

(a")pP=0, 84"=0. (6.15)

If a" * 0, then, applying the Cauchy inequality and taking account of (6.4), we can
estimate the corresponding terms in (6.14) as follows:

1 1 Z'z W

I z'(dii)P'uiui'WI <
fQUuif +

2 -Till a tl'lwz,
(6.16)

U12jf Sa"u,,I < 2Ia"u + 2o1f-
we,.

We note that there is no summation over the index i in (6.16). The inequalities (6.16)
have been established only for those indiced i for which a" # 0 at the point x E Sat
under consideration. However, in view of (6.15) the inequalities (6.16) are trivially
valid for indices i for which a" = 0. Therefore, summing (6.16) over all i = 1.....n
and taking into account that a"u = a'ju,kukj, we obtain (6.13).
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We shall assume that the function! has the form
ll

f(v)=exp2cofVwtt)dt
111111

1 111111

for v > 1. This function satisfies the conditions

f'/f = 2co(w/v), f (v) > I for v > 1. (6.17)

From (6.10), (6.13), and (6.17) we then obtain

>
(-z"

Zw
za'Jw;j + bkwk > + CO- -w 1w +Ja'Jukrukj

k-1 Z of

+z'( pap - a)w +2fb8a - 2na1 wvcfl, x e StL

(6.18)

Assuming, with no loss of generality, that co > 1 and w(p) > 1, 0 < p < + oo, we
see that

f < 8co(w/v)w for v > L2. (6.19)

Indeed, since w, which may be considered a function of v, is assumed to be
nondecreasing, it follows that

f(v)-I= f'f'(t)dt=2c0f (6.20)

where F(v) = v f i t -'f (t) dt. The function t -'f (t ), t > 1, increases, since in view of
(6.17)

(j(1)l' f'(t)t -f(t) _ f(t) f'(t)t -
` t 1 = t= t2 f(t)

f((2c0w(t)-1)>iz > 0

fort > 1. Therefore,

1

F(v) = f"F'(t)dt= f f(1)dt+ f'j(T)d,
1 I

(6.21)

f'f(1) dt + f°f t) f'dr < 2w. (6.22)

It is obvious that (6.19) follows from (6.20) and (6.22). Now taking condition (6.4)
into account in regard to pap - a and 8a, and also (6.19), we deduce from (6.18)
that

za'jw;j + bkwk > z" + Zz2 - µ2 z') - 16c0,(na1 + a2)zf ffw. (6.23)
k-1 c .I

We now choose some function z E C2([-m, m)) satisfying the conditions

-z" +(1/8)(z'2/z) - s21z'I - 16c0(na1 + a2)z > 0 on [-m, ml, (6.24)
z(u) > c1 = const > 0 on [-m, m].

To prove the existence of such a function it is necessary to require that the constants
al and 02 be sufficiently small in dependence on m, µ2, and co. We consider, for
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example, the function z(u) = 1 + e°` - e°". Taking into account that z' = -ae°"
and z" _ -ate°", we have

-z" - µ,1z'1 - 16co(na1 + a2)z > a(a - µ2)e°" - 16co(na1 + a2)(1 + e°m).

It is then obvious that condition (6.24) will certainly be satisfied for this choice of
the function z if it is assumed that a = µ2 + I and required that

(p.2 + 1)e-(µ2+1)m > 16co(no1 + a2)(1 + e(µ=+1jni). (6.25)

Condition (6.25) is the smallness condition for the quantities at and a2 in (6.4).
In view of (6.24) and the assumption of positivity of d' on In.m.L it follows from

(6.23) that w cannot achieve a maximum on S1L. Therefore,

max w < max{ max (w/z ), max (w/z )} . (6.26)
0 an n\0'.

Taking into account that w = fo f (t) dt, we deduce from (6.26) that

maxw <.
max z max{ f M'f(t) dt, f 112f(t) di), (6.27)

9 mini o

where M1 = maxanl V ul. Noting (6.7), the form of the function z, and the fact that f
is nondecreasing, from (6.27) we easily obtain

f MZf(t) dt < max{ ft"M,I f(t) dt (("r.)Tf(t) dt}, (6.28)
0 0

where we have used the notation M = maxaloul and a(l + eI'`z+ ljnr)'/2. Then

M < a1/2max( M1, L). (6.29)

Theorem 6.1 is proved.
REMARK 6.1. It is obvious that in condition (6.4) the constants a1 and a2 satisfying

(6.25) can be replaced by functions at(IPI) and a2(Ipl) assuming that a,(p),
a2(p) - 0 as p - + oo. Assuming that the parameter L is sufficiently large, we then
reduce this case to that considered in Theorem 6.1.

REMARK 6.2. We note that the conditions of Theorem 6.1 admit degeneracy of the
matrix A a Ila'1(x, u, p)II characterized by the condition d1(x, u, p) > 0 on the set
'tA.m,L We shall distinguish an especially important special case of Theorem 6.1
obtained by the assumption that w(p) - const > 1.

THEOREM 6.1'. Suppose that on the set T?a.m.

pA µ1ATi'1IPI-', ISATI a1ATd'1 , pa, - aI < µ2f1, (6.30)
Sa> -avellpI, f1>0,

where µl, µ2, al, a2 = const > 0, and that condition (6.25) is satisfied, where co =
µ1n/2. Then for any solution u e C3(Q) n C'(fl) satisfying (6.5) there is an estimate
of the form (6.29), where M1 = maxanl V ul and a = (1 + exp((µ2 + 1)m) 1/2.

Theorem 6.1' contains as a special case the well-known result of Ladyzhenskaya
and Ural'tseva on the estimate of maxalvuj in terms of maxalul and maxaalvul for
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solutions of quasilinear uniformly elliptic equations [83]. The conditions of the
corresponding theorem of Ladyzhenskaya and Ural'tseva can be written in the form

AA-I < c, I pav 15 AIA, Isa'jl 5 6IAIPI, i, j = 1,...,n,

I pap - PI 1< µ2AIPI2, 8a > -a2AIPl3 on VR.m.L.
(6.31)

where A and A are respectively the largest and least eigenvalues of the matrix A, µl
and i2 are arbitrary constants, and a1 and 6z are sufficiently small constants. It is
easy to see that the conditions (6.30) follow from (6.31), since for any T with ITI = 1
we have

c'/A, FN < cXI IPI-1, AIPI2 < cd'1, (6.32)

where the constant c in (6.32) does not depend on T. We note that very recently [84]
Ladyzhenskaya and Ural'tseva have strengthened their result by replacing the
sufficiently small constants a, and 02 in (6.31) by arbitrary constants. This is
accomplished using the proof of an a priori estimate of the Hdlder norm IIulIc^(u) for
solutions of uniformly elliptic equations.

V. The estimate of maxnl vul for equations with structure
described in terms of the majorant d2

Suppose that the functions a'j(x, u, p), i, j = 1,...,n, and a(x, u, p) belong to
the class C1( 1a.m.L), and suppose that condition (6.1) is satisfied on MR,m.L

THEOREM 7.1. Suppose that on the set TZQ,m,L for any T, I T I = 1, the conditions

API I PI µ1A'TrA , ISA'I < a1A'TrA ,

Iapl IPI < az-fz, 6a > -a3d'z, TrA > 0

are satisfied, where µl is an arbitrary nonnegative constant, and al, az, a3 are
nonnegative constants which are sufficiently small, depending on n, A,, and the diameter
of the domain 0. Then for any solution u E C3(St) rl c'(0) of (1.1) satisfying
condition (6.5) the quantity max5jVul can be estimated in terms of m, M1 s
maxanlvul, L, n, µl, and the diameter d of 12, alone. Under the additional condition
En-,, > e0 Tr A on TI G , L, where eo - const > 0, in (7.1) in place of a2 it is
possible to admit an arbitrary constant µ2 > 0.

PROOF. Applying to (1.1) the operator uk(a/axk) and setting v = El uk, we obtain
(6.6). This identity will be considered below only on the set 1 L = (x E S2:1 vuI > L).
Arguing exactly as in the derivation of (6.13) in the proof of Theorem 6.1, we shall
prove that at each point of 1 L

I(a'j)p uijVll a,,llk'ukj

µ1n Ivvlz2 v Tr A,

Itr8aJu,jl < 12ajukiukj + °l2 n TrAv.
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Indeed, using (6.11) and (6.12) at a fixed point x E S2, and taking into account
that a" = A% i = 1,...,n, where T; by means of the first two condi-
tions of (1.1) we obtain

z

lav,ui,v11 = lav,u%iv11
2aiiu2 + 2' TrA yv

,

' 12 diiU2 +
2a1

Tr Av,

where there is no summation on the index i and only those values of this index are
taken for which a" * 0. However, for those values of the index i E { 1, ... , n) for
which a" = 0 at the point xo E 1L in question the inequalities (7.3) are satisfied
trivially, since in (7.1) for T = T, it follows in this case that dP = 0 and Sail = 0.
Summing (7.3) over i = 1_.^ we obtain (7.2). From (6.6) and (7.2) we get

a" v;j >, a''ukiukj + aFv, + 2yoa -µ1nTrA
1ov

U

-o1nTrAv, x E 521. (7.4)

Let z = z(x) be a positive function in D belonging to C2(S2). We introduce the
function U defined by

U=ZU.

Taking into account that v, = z,U + zU, and v, = z,w + z,Uj + Z A + zv;,,
duce from (7.4) that

za''U,) + bkUk i -a''z,1U + a''Uk,ukj + aplz,i

2

(7.5)

we de-

+248a - µ1nTrAloz

1 v - a,nzTrA5, (7.6)
z

where the form of the bk is irrelevant for what follows. Taking account of conditions
(7.1) on Iapl and Sa, we deduce from (7.6) that

z
1l

zai'U; + bkvk > {_auuz,j -(,lnl v11 + ozIvzl +(no, + 2o3)z) TrAJU,

x E S2 (7.7)

We choose some function z = z(x) satisfying the conditions

z

+ozlpzl+(no1+2o3)z)TrA >0 on 52,,
(7.8)

z>_ c,=const>0 on R..

Suppose, for example, z(x) = a + d2 - 1x12, where a = const > 1, d is the diameter
of 0, and we assume with no loss of generality that the origin is contained in S2.
Taking into account that z, = -2x1 and z;j = -2S/, where S/ is the Kronecker
symbol, we easily see that conditions (7.8) are satisfied if we first choose the constant
a > I so that A,n(4d2/a) < 1/2 and then impose on al, 02 and 03 the condition

2a2d+(no, + 2a3)(a + d2) < 1/2. (7.9)
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This is the smallness condition on the quantities aI, a2 and a3 in (7.1). In view of
(7.8) and the condition of positivity of '2 on UL it follows from (7.7) that the
function v cannot achieve a maximum on RL. Therefore,

maxv < max{max(v/z), max (v/z)}.
an {wuI<L}

Taking the form of the function z into account, we then find that

(7.10)

maxv < ((a + d2)/d2)max(Mi, L2},
n

where Ml = maxanI vul, whence we obtain the desired estimate

(7.11)

m Ivul<(1+ti//d)max(M1,L}. (7.12)

We now suppose that on SD2Q m L we have E"i_1a'i >- eoTrA, to = const > 0. In
this case in place of the function z = a + d 2 - Ix12 we consider z = a + e'9"d -
e-6EPXA, where a and /3 are positive constants, d is the diameter of 0, and, as above,
we suppose that the origin is contained in Q. Taking account of the relations
z, = fle-fl£,"sA and z,, = -$2e'16E'x1, we see that (7.8) will be satisfied if we first
choose /3 > 0 such that Szeo - a2n$ = 1Ie,eo and then choose a > I so that
1/32e-,I"deo - Ulnp2e20"da t , 4,82eoe'j3"d and assume that aI and o2 are so small
that

(nal + 2a3)(a + elS"d) < 4fleoe-a"d

Then, arguing in exactly the same way, we obtain the estimate

maxIVul , (a + eO"d )/a max(M1, L),

and in deriving it no condition was imposed on a,. Theorem 7.1 is proved.
REMARK 7.1. Theorem 7.1 continues to hold if in (7.1) the constants al, a2 and a3

satisfying (7.9) are replaced by functions aj(IPD, az(IPD and 03(IPD, assuming that
a1(p), az(p), a3(p) - 0 as p - + oo.

REMARK 7.2. We note that the conditions of Theorem 7.1 admit degeneracy of the
matrix A = Ila'i(x, u, p)II characterized by the condition TrA > 0 on

As an example we consider an equation with principal part which coincides with
the principal part of the normalized equation of minimal surfaces, i.e,. an equation
of the form

1 + Iyulz uX ux'

l
a(xIvu12 S -

Ivu12
ux:, = , u, vu).

In this case

a;i = 1 - IPIz 8i - P;Pi
A,

1 + IPIz 8i _ P;Pi T.T.

IpI2 IPI2 IPIz 1 IPI2

eI=1, TrA=n-1+ n , 4f2=(n-1)IpI+
IPI,IPt,

aA' 2pk+27-kp.TIPI2-2(p-T)ZPk
EPk I p14

T E R", ITI = 1. Any vector T, ITI = 1, can be represented in the form r = a¢ + Sa,
when t a = 0, IjI = 1, a = p/Ipi and a2 + N, = 1. Then obviously A' _ a2 + Ipi-2
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and IaA'/aPkI I P I < 21pI-2 + 2a, where in deriving the last inequality it is noted
that I$I < I and Ifkl < 1. From what has been proved it is evident that

A'TrA >
n

2 1 (a + IPI-1), IAoI IPI < 2fn (a + IPI-1), (7.14)

whence we easily obtain the inequality IAoI IPI < 22n/(n - 1) A'TrA . In addi-
tion, taking into account that SA' = 0 and Tr A > n - 1, we conclude that the first
two and the last conditions in (7.1) are satisfied for (7.13) with µl = 8n/(n - 1) and
al = 0.

For the possibility of applying Theorem 7.1 to equation (7.13) it is necessary to
require that on tW2n,n,.L (for some known L >- 0) the conditions

laoI < a2, Sa >, -031P1 (7.15)

are satisfied, where a2 and a3 are sufficiently small, depending on n and d (see (7.9)).
We consider, in particular, the normalized equation of a surface of given mean
curvature of the form (1.10) for which

1 + 2 3/2

a(x, u, p) = o(x, u, p) (
IPI )

2

We suppose that

1PI

.3o(x, u, p) = Ho + H(x, u, p),

where Ho is an arbitrary constant. In this case (7.15) is satisfied if we require that

P 'I + IPI IH,I < a2, Sh1 , -a3 on `171n ,,, t (7.16)

for sufficiently smalll 02 and a3.

§8. The estimate of maxul vul for a special class of equations

In the preceding section, in particular, conditions were indicated on the right side
of equation (7.13) which ensure an estimate of maxnlvuI in terms of maxuIuI and
maxanl Vul. (Equation (7.13) is related to the study of various questions of geometry
and continuum mechanics.) In this section we distinguish a class of equations
containing (7.13), for which this estimate is constructed by another method that
imposes different restrictions on their structure. In particular, in the case of (7.13)
conditions are imposed on the right side a(x, u, p) which, generally speaking, are
not contained in conditions (7.15) and which do not contain them.

THEOREM 8.1. Suppose that on the set 112 n ,,,, t. for any T, I TI = 1, T p = 0, the
conditions

I PA,I < IPI t, ISA'I < 1A1A7YI , e1 > 0,

el - PVt)o > N'2'f1+ 18ell < l 3'tIPl, (8.1)

la - PaDI < µaelI Sa µSetlPl

are satisfied, where µ1,...,µ5 are arbitrary nonnegative constants, and the constant
al >- 0 is sufficiently small in dependence on µ2 > 0. Then for any solution u E C3(S2)
n CI(rl) of (1.1) satisfying condition (6.5) the quantity maxnlvuI can be estimated in
terms of only m, M1 = maxanloul, L, n andµl,...,µs.
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PROOF. We introduce the new unknown function U defined from the equality

u = K -'1n u, K = const. (8.2)

Taking into account ui = K-'u-'u, and uij = K-'u-'u,j - Ku,uj, we conclude that
a satisfies the equation

a'ja,j-a=0,
where

(8.3)

a'j = a'j(x, K'' In U, K-'u-'p),

a= Kaa(x, K -'In u, K-'u-'p`) +K 2uf1(x, K-' -'In U, K

, we obtainApplying to (8.3) the operator uk(a/azk) and setting v = El ak
ll
2diUij = ai)ukiuki + ap,a,j)U, + r(Oa - Sa'J i,j), (8.4)

where

+ a1API aXk u

If '=4(x,u,p)4(x,K"'In U,K-'u'p),then
" = Pk/IPI)Dxk + IpI41u - KIPI4ipp = 60 - KIPI p4 . (8.5)

If 0 = 0(a), then
$4i = KUpI0a. (8.6)

Using (8.5) and (8.6), and taking into account that v = 1p1' = Ei uk =
K-2a-2(Enak) = K-2a-2U, we obtain

rUSa = v[Ka + K2e, + Sa/IPI - Kpap + K(S8i/IPI) - K2P(g1)p],
(8.7)

,raa'jaij = V [8a'-'u,j - KIPI(a`J)ppUij]

It follows from (8.4) and (8.7) that if U assumes a maximum value at an interior
point x0 of ci, then at this point the following equality holds:

a"U,,-a''akiakj+U K2(t1 -p(4')p)+KIPI +K(a-pap)+IPI1
+V [8ai juij - KI

PI (8.8)

We estimate the terms contained in the last square brackets in (8.8). Let T = Ilt, jll
be the orthogonal matrix reducing the matrix Ila,jll at x0 to the diagonal matrix Ilurjll
with u, j - 0 for i # j, so that an equality of the form (6.11) holds. We set
A - 71A T. Noting then that 4" - AT, as ATi T i - 1,...,n, where T,
is the i th column of the matrix T with IT, I = 1, we obtain

KIPI P(a'')paij - KI pl p(a")pu = KI PI P(A'')pu,,,
Sa'ja,j = Sd"Uii = 8A''uii

The definition of the vector r, implies the vector equality IIU,jIIT, = u11T, for all
i = 1,. .. , n. Taking the inner product of both sides of this equality with the vector
V U, we obtain for any i = 1,... , n the equality

(IluijliT() - VU = va). (8.10)
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Writing the left side of (8.10) as a sum (over k, I = 1,...,n) ?U,1 and
noting that at x0 the derivatives U, = 0, 1 = I,. ..,n (the necessary condition for an
extreme), we obtain

vu) = 0, i = 1,....n. (8.11)

It follows from (8.11) that for any i = 1,...,n either u = 0 or T, p = 0, since
vu=p=KUp, and u#0,since ii =eKu

We now suppose that the point xo of the maximum in St of v belongs to the
domain 2L (i.e., xo E S2 and I V u(xo)l > L). We shall prove that then

IF KIpIp(a'1)purjl -< ;a'JUkiukj + #nK2o1tm,U,
(8.12)

ICda'3U,jl <- Za`jRk,u`kj + ;nµ181U.

Suppose that for some index i E (1,... , n ) at the point x0 E Il, in question the
conditions a" > 0 and u" # 0 hold. In this case T, p = 0, and therefore we can use
the corresponding conditions of (8.1) to estimate p(A'-)p and AT. Applying the
Cauchy inequality, we then obtain, for these values of i,

1a"az + }Kza181U,
(8.13)

IVU aa"a;;l < jalluz + Iµ1-f1v.

If for some index i E (1.....n} at the point x0 at least one of the numbers a" or u;,
is equal to 0, then the left sides in (8.13) are equal to 0, since for a,, = 0 this is
obvious, while for a" = 0 from the first two inequalities in (8.1) for r = r, it follows
that (P)pp = 0 and 8a" = 0. Thus, in this case inequalities (8.13) are trivially
satisfied. Summing (8.13) over all indices i = 1,...,n, we obtain (8.12). From (8.8)
and (8.12) it follows that, under our assumption, at x0 the following inequality
holds:

a'jUj >- {K2[81 - P(81)p - !21811

+KI
I

+a - pa, +
Ipl

!2181}v. (8.14)
P1 I

We suppose that a1 5 µ2/n and assume that the constant K is so large that
µzKz - (µ3 + µ4)K - (IR5 + nµ1/2) >- (µ2/4)K. From (8.14) it then follows that

;allo,j > 0 at x0, which contradicts our assumption that at the point x0 E Sat the
function v has its maximum value in F2. Hence,

maxU < max{maxo, maxU}. (8.15)
1 ata 0\0,

Recalling that v = K - z u- 20, we deduce from (8.15) that

maxv (maxuz/minuz)max{maxv, Lz}, (8.16)
11 3t a as

whence it easily follows that

mRxlvul 5 eK,max{maxlvul, L}. (8.17)

Theorem 8.1 is proved.
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REMARK 8.1. As the proof shows, the result of Theorem 8.1 remains valid if in
place of (8.1) we require that the following inequalities are satisfied on J72n m L for

2 2AT )
IPI

8i-P(81)p- 2
(P

AT '0 const>0,
(8.18)

881+8a _ a - pap _ n ISA'I2
< C1 = const > 0, dl > 0.

It

81 2 A

It is obvious that both (8.1) and (8.18) admit the particular degeneracy of ellipticity
of equation (1.1) characterized by the condition dl > 0 on 1n.m.L

As an example of Theorem 8.1 we consider equation (7.13). Since for this equation
for all T, ITI = 1, T p = 0, the relations A' = 1 + IPI-2, I PArl - 2IPI-2, dl - 1 and
A'dl /IPI IPI -' hold, for I pI > L the first condition in (8.1) is satisfied with

of = 4L-2, the second and fourth are satisfied with pl = p3 = 0, and the third with
P2 > 1. It is then obvious that the smallness condition for al expressed by the
inequality of < p2/n in the proof of Theorem 8.1 will be satisfied for (7.13)
provided that L > 2n. Thus, in order that it be possible to apply Theorem 8.1 to
(7.13) it is necessary that for some fixed L > 2n the condition

la - Papl < p4, Sa > -p51PI on'ILJ m,L (8.19)

be satisfied for any constants p4 and p5.
Comparing (8.19) and (7.15), we observe that the second condition on the growth

of the right side as p - oo in (8.19) is weaker than the corresponding condition in
(7.15), while the first condition in (8.19) is, generally speaking, stronger than the first
condition in (7.15), but it may be weaker in the case of special structure of the
function a(x, u, p). In particular, we consider an equation of the form (1.10) for
which

1 + 2 3/2
a(x, u, p) = V(x,u,P)( IPI )

1PI2

Taking into account

(1 + 1p12)3"2
- IPI + (POPI),

IPI

where m(IPD (3/2)IPI-' as IPI -* oo, we write

a - pap = -°([IPI+v'(IPI)l -PEIPI+c'(IPPIp} -P IIPI+-P(IPI)1

_ °( - pp,) - P. (IPI + v'(IPI)1, Sa = S.X°(IPI + p(IPI))

(8.20)

Since qv - pggp = O(IPI-1) and IPI + vp(IPI) = O(IPD as p - oo, (8.19) and (8.20)
imply the following conditions on the growth of the function .)°(x, u, p):

I °I < A0IPI, IP I < p'I/IPI, S.7L°>--113 co VQ,m,L, (8.21)

where po, pl and p3 are arbitrary constants.
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Comparing (8.21) and (7.16), we note that the condition on p.°a in (8.21) is,
generally speaking, a whole order stronger than the condition on IPI IHPI in (7.16).
However, if we consider the case -r(x, u, p) = h(x, u, p/I p1): then in view of the
homogeneity of degree zero of the function h in p we have ph, = 0, so that in this
special case to the conditions (8.21) there correspond the conditions

Ihl < µo, Sh 3 -µ3 on MR.-J, (8.22)

with arbitrary constants µo and jI3, while conditions (7.16) for H = h(x, u, p/Jp )
retain their form, i.e.,

Ihl + ipi Ih,,l -< az, 8h 3 -a3 on'D2a m_L (8.23)

with sufficiently small constants o2 and 03. It is clear that in the latter case
conditions (8.22) are somewhat weaker than (8.23).

REI.tnRx 8.2. The class of equations of the form (1.1) distinguished in Theorem 8.1
contains classes of equations such as the equation of a surface of given mean
curvature, which have been singled out by various authors (see [163], [4] and [83]). In
particular, in the monograph [83] a class of equations defined by the following
conditions on TIQ.m.L. was distinguished:

1/2

(a'J)2 < cop, v>;2 < a'ij,ij < CIVf 2 fore a R", p = 0,

v = v(x, u, p) > 0, I(a''),pl < a1 WIV IPi-1, Isa`'I < µ1 ii ,

81 -P(81), % µz81, I881i < µ3-GPI, la - Paoi < µ48I, 8a µ5811P1.

(8.24)

Since for = T, where I ri = I and T p = 0, (8.24) implies the inequality v < A', it
follows from the condition 1 p(a'j)Pl < a2 81v ipj-' that

IPAPI <a1 81A'IPI

and the condition JSa'j i < µ1 8,v implies that

18A'I<µ1 A'81

Thus, (8.24) implies (8.1). We remark also that the classes of equations of the form
(1.1) distinguished in this connection in [163) and [4] are defined by certain
assumptions which imply conditions (8.24).

§9. The existence theorem for a solution of the Dirichiet
problem in the case of an arbitrary domain Sl with

a sufficiently smooth boundary

In Theorem 2.1 the estimate (2.12) is postulated for solutions of problems of the
form (2.11) under the assumption that these solutions belong to the class C2(f)
while in Theorems 6.1, 7.1 and 8.1 the estimates of maxalvul are obtained for
solutions of the class C3(S1) n C'(3l). Because of this and also in connection with
the desire to relax somewhat the conditions of Theorem 2.1 on the boundary M and
the boundary function T, to be able to obtain existence theorems for the Dirichlet
problem (1.3) on the basis of the results obtained above it is necessary to carry out
certain supplementary arguments. These form the content of this and the next
section.
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THEOREM 9.1. Let 12 be a bounded domain in R", n >, 2, of class C2, and suppose
that the functions a'j(x, u, p), i, j = 1,...,n, and a(x, u, p) are continuous in
r2 X R X R" and have partial derivatives aa'i/apk, aaVau, aaVaxk, as/apk,
as/au and aa/axk which are bounded on any compact set in rl XR X R". Suppose
condition (1.2) is satisfied, and assume that for any solution v E C2(0) of problem
(2.11) for all r E [0,1] the estimate

maxJvJ<m (9.1)

holds. Suppose that on 91 Do X (IuI < m) X pI > I) (where Do is the domain
defined by condition (3.2), m is the constant in (9.1), and I is a nonnegative constant)
the inequalities (4.1) and (4.5) are satisfied, while on the set 972Q.m.L - a X (Jul < m)
x (J p > L), where m is the constant in (9.1) and L is a nonnegative constant,
conditions (6.4) and (6.25) hold. Suppose also that the function T E C2(31). Then
problem (1.3) has at least one classical solution u, and u E CI+r(fl) tl C2+12) for
some y E (0,1).

PROOF. We first suppose that 12 E C3, 4' E C3, and the functions a'J(x, u, p),
i, j = 1,...,n, and a(x, u, p) belong to the class C2(rl XR x R"). Suppose that a
function v E C2(31) is a solution of problem (2.11) for some T E [0, 1]. From the
hypothesis of the theorem it follows that (9.1) holds for v. Since the functions a = 'ra
and 0 _ -rp, r E [0, 11, satisfy exactly the same conditions as a and p, from Theorem
4.1 we obtain

ma IvvJ < M1, (9.2)

where M, does not depend on either v or T. In order to use Theorem 6.1 now, it is
first necessary to verify that actually v E C3(S2). Indeed, since the functions

x -- a'f(x, v(x), vv(x)), i, j = 1,...,n, x -+ a(x, v(x), vv(x))
belong to C'(7) while TV E C3(S2) and Q E C3, it follows from Schauder's theorem
that v(x) E CZ+°(SI), a E (0,1). Then the functions

x - a'' (x, v(x), Vv(x)), i, j = 1,...,n, x - a(x, v(x), vv(x))
belong to the class CI+a(0), a E (0,1). Again applying Schauder's theorem, we
conclude that v E C3+a(0). Since for (2.11) conditions (6.4) are satisfied with the
same constants as for the original equation (1.1), from Theorem 6.1 we obtain the
estimate

maxlvvp < MI, (9.3)

where MI does not depend either on v or r. In view of (9.1), (9.3) it follows from
Theorem 2.1 that (1.3) has at least one solution u E C2(31).

We shall now eliminate the superfluous assumptions of smoothness of S2, p, a'1,
and a. Let 0, p, a'i and a be as in the formulation of Theorem 9.1. We use the
standard method of approximating 0, q), a'j, and a by the respective objects
possessing the degree of smoothness used above, taking into account the compact-
ness of the family of solutions of problems of the form (1.3) so obtained (see, for
example, [163], p. 453). It may be assumed that the approximating domains 0
expand and are contained in 0. We note that the constants M, and Ml in (9.2) and
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(9.3) depend only on the C2-norms of 3S2 and c and on the known quantities in
those conditions on the structure of (1.1) stipulated in the formulation of Theorem
9.1. Therefore, for the solutions u of the approximating problems we obtain the
uniform estimate

max(lul + Ivul)' c.

Applying the theorem of Ladyzhenskaya and Ural'tseva, for these solutions we
establish the uniform estimate

llullc-(5) < cl (9.4)

for some fixed y E (0,1). From (9.4) and Schauder's theorem we obtain the uniform
estimates

Ilullc2 (n I -< C2(
01 (9.5)

for each fl', S2' C Sl. Applying now the classical Arzela-Ascoli theorem, we find a
sequence of solutions of the approximating problems which converges in C 10C' (fl) to
a function u E C2(12) f1 C(D). It is obvious that this function is a solution of (1.3).
From (9.4) it follows easily that this solution u belongs to CI+''(31). From Schauder's
theorem it then follows that u E C2+''(S2) fl CI+r(a). Theorem 9.1 is proved.

REMARK 9.1. If all the conditions of Theorem 9.1 are satisfied and it is addition-
ally required that S2 E C2+s and r E C2+x(37), $ E (0, 1), then problem (1.3) has a
solution u E C2+7(0), y C- (o, M.

§10. Existence theorem for a solution of the Dirichlet problem in
the case of a strictly convex domain 0

The following results are established in exactly the same way as Theorem 9.1.

THEOREM 10.1. Suppose that all the hypotheses of Theorem 9.1 are satisfied with the
exception of condition (4.5). Suppose, moreover, that the domain a is strictly convex.
Then problem (1.3) has at least one solution u r= CI+''(SZ) 0 C2+*f(S2) for some
y e (0,1). If, however, Sl E C2+18 and 9' E C2+fi(il), $ E (0,1), then u E C2+j(S2)
for some y E (0, $] .

THEOREM 10.2. Let 0 be a strictly convex bounded domain in R ", n >, 2, belonging to
the class C2, and suppose that the functions a'j(x, u, p), i, j = I,... ,n, and a(x, u, p)
are continuous in 3I X R X R" and have all their partial derivatives of first order
bounded on any compact set in 312 X R X 11", Let condition (1.2) be satisfied, and
assume that for any solution v f= C2(37) of problem (2.11) for any T E 10, 1) the
estimate (9.1) holds. Suppose that condition (4.1) is satisfied on the set 92m.i, while on
the set 9n 0,m, I. either conditions (7.1) and (7.9) or condition (8.1) is satisfied with
01 1< µ2/n. Suppose, finally, that p E C2(f7). Then problem (1.3) has at least one
solution u E CIfl C2+''(SZ) for some y E (0,1). If, however, a E C2+' and

E C2+0(S2), a (0,1), then u E C2+'(0) for some y c- (0, $].

Before formulating the next theorem, we prove a lemma in which an a priori
estimate of maxQlul is established for solutions of problem (1.3). This lemma is also
of independent interest.
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LEMMA 10.1. Let 0 be an arbitrary bounded domain in R", n > 2, and suppose that
the functions a'J(x, u, p), i, j = 1,...,n, anda(x, u, p) are continuous in n2 XR X R"
and satisfy condition (1.2). Assume that on the set n.mo.co = 0 x { Jul > mo) x (I pl

l0 }, where mo and 10 are some fixed positive numbers, the inequality

a(x, u, p) > -(811Pl + S2lul)TrA (10.1)

is satisfied; where 61 and S2 are nonnegative constants satisfying the condition 281 +
(1 + d 1) 82 < 2, where d is a geometric characteristic of the domain 0. Then for any
classical solution u of problem (1.3) maxalul can be bounded by a quantity depending
only on maxnlcpl and on the structure of equation (1.1). If additionally on the set
R m .io the condition

"

E a'j > -to Tr A, to = const > 0, (10.2)
i.j-1

is satisfied, then the estimate of maxolul indicated above is preserved when the constant
61 in condition (10.1) is replaced by an arbitrary constant µ > 0; here the constant 82
must be sufficiently small, depending on e0,µ and the size of 12.

PROOF. Let z = z(x) be a function of class C2(><;2) such that z > 0 and Ivzl > 0 in
S1. We introduce a new unknown function a by setting u - za. It is obvious that in 0
the function a satisfies the identity

za'Ja;j + bkak + a''z1fa - a, (10.3)

where the form of bk is irrelevant for subsequent arguments. We suppose that a
achieves a greatest value at a point x0 a 11. Using the necessary conditions for an
extremum, we then conclude that at this point

a - a'jz;ja < 0, (10.4)

where a = a(x0, z0a0,(vz)0a0), zo = z(xo), ao = a(xo) and (Vz)o = vz(xo).
We fix a number m1 satisfying the condition

maxa z
m = max m }l (10 5)1 o .o,

minnlVzl

We suppose that a0 > ml/z0. Then u0 > m1 > m0, and in view of (10.5)

.

I(vz)oaol - I(vz)oluo/zo > lams/ml = lo.

At x0 it is therefore possible to apply condition (10.1). It follows that at x0

a> -(61I( vz)oI + 62z0)aoTrA. (10.6)

Suppose that the function z satisfies the conditions

-a'Jz;j - (81I Vzl + 62 z) Tr A > 0 in 0,
(10.7)

z>0 in3E, Ivzl>0 in I.
If (10.2) is not satisfied, we set z = 1 + d2 - Ix12, where d = supalxl, and we may
assume with no loss of generality that inf§lxl > 1. Then, taking into account that on
U we have the relations z > 1, z < 1 + d2, z; _ -2x;, Ivzl > 2 and zj _ -28/, it is
easy to see that all the conditions (10.7) are satisfied if

281 +(1 + d2)82 < 2. (10.8)
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Now if (10.8) is satisfied it follows from (10.4), (10.6), and (10.7) that the assumption
made above that u achieves its greatest value at a point xo a S1 where uo > m,/zo is
impossible. Therefore,

maxu <- max{maxu, m,/zo}. (10.9)
!z an

We then have

m u < (maxz/ rain z)max{maxjyj, m1}. (10.10)
asp

Taking the form of the function z and (10.5) into account, we deduce from (10.10)
that

(10.11)maxu (1 + d2)max( maxfq)f, mo.0 + d')14.

Since u = -u is a solution of an equation having precisely the same structure as the
original equation, it follows that maxa(-u) can also be bounded by the right side of
(10.11). Thus,

maxfuf < (1 + d2)max{ma fg)f, mo,(1 + d2)lo}. (10.12)

We now suppose that (10.2) is also satisfied. Setting z = 1 + 04 - e-d£Pr4,
where Q = const > 0 and d = max¢f xf, and taking into account that on 2 the
relations z , 1, z I + efi"d, Z, = Be #£'s`, fVZf i Se-0£7', and z,1 _ -$2e-01'1'A
are then satisfied, we easily see that all the conditions (10.7) are satisfied if

top > 6 , 82(1 + efind ) < top - 6 . (10.13)

But if conditions (10.13) are satisfied, it follows from (10.4), (10.6), and (10.7) that
our assumption that maxa u is achieved at a point xo a 9 where uo >- m1/zo is
impossible. From this, as in the proof of the first part of the theorem, we deduce
(10.10). Now, taking the form of z and (10.5) into account, we obtain

m ful<(1+e,6"d)max{maaxfq)l,mo,(1+e$"d)lo}. (10.14)

Lemma 10.1 is proved.

THEOREM 10.3. Let Sl a R', n >- 2, be a bounded, strictly, convex domain of class
C 2, and suppose that the functions a'-(x, u, p), i, j = 1,... , n, and a (x, u, p) are
continuous in n x R X R" and have all their partial derivatives of first order bounded
on any compact set in f x R X R ". Suppose that condition (1.2) is satisfied, and that
on 9rQ mo fo either conditions (10.1) and (10.8) or conditions (10.1), (10.2) and (10.13)
for any constant to > 0 are satisfied. Suppose further that condition (4.1) is satisfied on
92m.,, and conditions (7.1) and (7.9) are satisfied on Then the result of
Theorem 10.2 holds.

PROOF. In view of Theorem 10.2, to prove Theorem 10.3 it suffices to establish an
a priori estimate of the form (9.1) for any solution v e C2(31) of problem (2.11) and
any T e [0, 1] (an estimate that is independent of both v and T). Now such an
estimate obviously follows from Lemma 10.1. Theorem 10.3 is proved.
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REMARK 10.1. In condition (10.1), which is part of the hypothesis of Theorem
10.3, the constant 82 which is subject to a smallness condition cannot be replaced by
an arbitrary constant µ 3 0 while preserving the result of Theorem 10.3, since it is
known that there exist values A E R for which the Dirichlet problem

Au+Au=0 in 0, u=p on8fl
has no classical solution for certain q. E C°°(3E) in the disk Q = (Ixl c 1).

CHAPTER 2

THE FIRST BOUNDARY VALUE PROBLEM FOR QUASILINEAR,

NONUNIFORMLY PARABOLIC EQUATIONS

§1. A conditional existence theorem

Let Q = 11 x (0, T], where 0 is a bounded domain in R ", n >- 1, and T > 0. In Q
we consider the quasilinear equation

Yu = -u, + a'"(X, 1, u, vu)ux,x1 - a(x, t, u, vu) = 0, (1.1)

where a'i = a1', x = (x1,. .. ,x) and Vu = (ux,,... ,u), which satisfies the para-
bolicity condition

a'J(x,1,u,p)¢;¢j >0 VJER",E#0,V(x,t,u,p)EQXR xR'. (1.2)

Regarding the functions a''(x, t, u, p), i, j = 1,...,n, and a(x, t, u, p), it is
henceforth always assumed that they are at least continuous in Q X R X R ".

We denote by r the parabolic boundary of the cylinder Q, I' = (8(1 x [0, T]) u
((2 x (1 = 0)), and by I" the part of r consisting of points not belonging to the set
8St x (t = 0), i.e.,

r'= (812x(0,T])u(lx(t=0)).
Let (C2.'(Q)) denote the set of all functions u(x, t) continuous in Q (Q)
together with u ux, and ux,V i, j = 1,...,n. Similarly, C2.1(Q u r') denotes the set
of all functions u(x, t) continuous together with u ux, and ux,x, in Q U Ill. Let Q'
be an arbitrary compact set contained in Q. We denote by Ca(Q') the set of all
functions u(x, t) satisfying the inequality

Ilulla.Q = maxlu(x, t)I + max
lu(x, t) - u(x', t')I

c K.
Q, (x,t).(x'.t')EQ' (IX - X'12 + It - t'I)

where K = const > 0 and a = const E (0,1).
Let CI +.(Q') (C2+a(Q')), a E (0,1), be the set of all functions u(x, t) for which u,

ux, E Ca(Q'), I = 1,...,n (u, ux,, ux,x, u, E Ca(Q,), I, j = 1,...,n). C2+a(Q U F')
denotes the set of all u(x, t) belonging to C2+a(Q') for any compact set Q' e Q U T.
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Finally, for a E (0, 1) let
n

Ilullt+a,Q' = Ilulla,Q' + IIU,,IIa,Q

I)

1-I

IIUII2+a.Q = IIuIII+a.Q' + Ilur,., IIa.Q + Ilurlla.Q'
i.l=I

In this chapter we study the question of classical solvability of the first boundary
value problem for equation (1.1), i.e., the problem

2u=0 in Q, u=p on (1.3)

where p = p(x, t) is a given function. Here a classical solution of (1.3) is understood
to be any function u E C2"t(Q) rl C(Q) satisfying (1.1) in Q and coinciding with q)
on the parabolic boundary F. We shall set forth the basic results which play the
crucial role in reducing the proof of classical solvability of problem (1.3) to the
problem of constructing an a priori estimate of maxQ(lul + Ivul) for solutions of a
suitable family of one-parameter boundary value problems related to (1.3).

THEOREM 1.1 (A. FRIEDMAN AND V. A. SOLONNIKOV). Let SZ E CZ+a, p E
C2 ,.(Q), A"(x, t) E Ca(Q) and f(x, t) c Ca(Q), where a E (0,1). Then the linear
problem

-W+A''(x,t)W, -f(x,t)=0 in Q, W=p on I, (1.4)

where A'i(x, t)¢;j, >, vl>:I2, v = const > 0 and (x, t) E Q, has a unique solution
W E C2+a(Q U F') n Ct+s(Q)forany0 E (0,1); and

IIW112+a.15' < cI (1.5)

and

IIWIlt+#,Q < C2, (1.6)

where Q' is any compact set contained in Q U F',

cl = cI(n, v, Ila"lla.a, I)IIIa,Q Ilalllz+a,Q d),
d is the distance from Q' to 852 x (t = 0), and

C2 = C2(n, P, Ila''IIa,Q Iiflla.Q IIPII2+a.Q fl).

If the boundary function p satisfies the compatibility condition on au x (t = 0)

-p, + A''(x, t)gx,x, -f(x, t) = 0, (1.7)

then the solution W E C2+a(Q).

PROOF. Theorem 1.1 is a combination of well-known results of Friedman [123]
and Solonnikov [116] (see also [80], Russian pp. 260-261 and 388-389, English pp.
223-224 and 341-342). In particular, the estimate (1.5) was obtained by Friedman,
and (1.6) by Solonnikov.

THEOREM 1.2 (LADYZHENSKAYA AND URAL'TSEVA). Suppose that a function u E
C2,'(Q U F') f1 C(Q) satisfies (1.1) in Q and coincides on r with a function 9)(x, t) ER

Suppose that at this solution
vlt[2 < a'i(x, t, u(x, t), vu(x, t))t,t1 < µ1j12, Ve E R"; v, µ = const > 0,
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and the coefficients a'1(x, t, u, p), i, j = 1,...,n, and a(x, t, u, p) are continuous
together with all their partial derivatives of first order in the region

((x,t)EQ) x( Iulsm) x{IpI <M},
where m = maxQlu(x, t)l, M = maxQyvu(x, t)l. Finally, suppose that all e C2.
Then there exists a e (0, 1) for which u E C1+a(Q), and

Ifulfl+a.Q < c3, (1.8)

where the constant c3 depends only on n, v, µ, m, M, the upper bounds in Q of the
moduli of the functions a'1, aa'1/apk, aa'"/au, as"/axk, aa'3/at, a, as/apk, as/au,
as/axk and as/at, i, j, k = 1,... ,n, computed at the solution in question, on (I-fIlcu(1 ),
and on the C2-norms of the functions describing the boundary MI. The exponent a is
determined by these same quantities.

A proof of Theorem 1.2 is contained, in particular, in the monograph [80] (see
Russian pp. 608-609 and 505, English pp. 532-533 and 446).

We now present a well-known theorem on a fixed point of a compact operator in
a Banach space which will be used below.

LERAY - SCHAUDER THEOREM (in Schaffer's form). Let T be a compact operator
taking the Banach space B into itself. If for any elements v E B satisfying the equation

V=TTv, re[0,11,
the inequality II vul e < c holds with a constant c not depending either on v or on
r E 10, 11, then the operator T has at least one fixed point in B, i.e., there exists v E B
for which v = Tv.

We now proceed to the proof of the main theorem of this section.

THEOREM 1.3. Suppose that the functions a''(x, t, u, p), i, j = 1,...,n, and
a(x, t, u, p) belong to the class C' on the set Q X ( lul < m) X j[pl ' M) and
satisfy the condition (1.2), and that ( a C2+r and q3 C C2+1,(Q), y r= (0, 1). If an
arbitrary solution v e C2.1(Q) of the problem

-v,+a'J(x,t, v,vv)vxx,-ra(x,t,v,Vv)=0 in Q, v=ry on r, (1.9)

where r e [0, 1], satisfies the inequalities

maxlvl <_ m, maxivv) < M, (1.10)
Q Q

where m and M do not depend either on v or r C 10, 1], and on a(E x {t = 0) the
conditions 9' = 0, Vq2 = 0, and

-4p, + a''(x, t, q, a(x, t, q), Vp) = 0 (1.11)

are satisfied, then problem (1.3) has at least one solution u r= C2+a(Q), of E (0, y].

PROOF. Let w e CI+a(Q), where the choice of the exponent a E (0, y) will be
specified below. We consider the linear problem

-W,+a`j(x,t,w,vw)WxXf-a(x,t,w,vw)=0 in Q,
(1.12)

W=p on r,
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i.e., a problem of the form (1.4) with A"(x, t) = a'j(x, 1, w, Vw), i, j = 1,... ,n, and
f(x, t) = a(x, t, w, vw). It is obvious that for problem (1.12) all the conditions of
Theorem 1.1 are satisfied. Therefore, (1.12) has a unique solution

WECZ+a(QuF')nCI+p(Q) forallQE(0,1)

which defines an operator T mapping the Banach space CIa(Q) into itself. It is
easy to see that this operator is compact. Indeed, by Solonnikov's estimate (1,6) any
bounded set in C,+a(Q) is mapped by T into a set bounded in C, #(Q), where
p > a. Since the imbedding of C,+p(Q) in C1 , (Q) is compact, this implies the
compactness of T.

We shall now prove that the set of all fixed points of the operators rT, T E [0, 1],
is bounded in C,+a(Q) for an appropriate choice of a (=- (0,1). Let V = TTv,
T E 10, 1), and v E CZ+a(Q U I") n C1+p(Q), for all /3 E (0,1). From the definition
of Tit then follows that such a function v is a solution of (1.9). In view of (1.11) and
Theorem 1.1, v E C2+a(Q) c According to Theorem 1.3, inequalities (1.10)
hold for this function. Applying Theorem 1.2, we conclude that (1.8) holds for v for
some particular value of a E (0, y]. We take this value of a as the selected value in
considering the space CIa(Q). Applying the Leray-Schauder theorem in Schaffer's
form, we conclude that problem (1.3) has at least one solution u E C2+a(Q)
Theorem 1.3 is proved.

§2. Estimates of i vul on 1'

LEMMA 2.1 (D. E. EDMUND AND L. A. PELETIER). Suppose that a function
U E n where is the set of all functions u(x, 1) which are
continuous in Q, together with the derivatives u.,,, i = 1, , , . , n, satisfies an equation of
the form (1.1) in the cylinder Q, where it is assumed that condition (1.2) is satisfied and
that a'j, aa'i/apk, a and as/apk, i, j, k = n, are continuous functions of their
arguments in a X R X R". Suppose that the (barrier) function w(x, t) E n
C(Q) for any constant c > 0 satisfies in S2 x (0, T] the inequality

-V(w+c)=-w,+a'J(x, t,w+c,vw)wrY -a(x,t,to +c,vw)<0. (2.1)

If u(x, t) < w(x, t) on the parabolic boundary r of Q, then u(x, t) < w(x, t) also
throughout Q.

A proof is given in [136]. It is based on applying the strict maximum principle for
linear parabolic equations.

THEOREM 2.1. Let ( E C3, and suppose that the functions a'', aa'j/apk, a and
as/apk, i, j, k = 1,...,n, are continuous and satisfy condition (1.2) in a X R X R".
Suppose that on the set (D0 x (0, T]) X (Jul < m) X (l pl > 1), where D0 is defined
by condition (1.3.2), m = const >- 0, l = const >, 0, the inequality

la(x, t, u, p)I P(IPI).f1 + 6(IPDI2 (2.2)

holds, where of, = a'i(x, t, u, p)p,pi, c112 = TrAlpl, A = Ila''(x, t, u, p)ll, 0(p), 0 <
p < + oo, is a positive, monotonic, continuous function satisfying condition (1.4.2), and
6(p), 0 < p < + oo, is a nonnegative nonincreasing function satisfying (1.4.3). Let
u E C2"(Q) n C10(Q) be an arbitrary solution in D° X (0, T) of (1.1) satisfying the
condition u = q) on r for p E where C'-'(!Y) is the set of functions u(x, 1)
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continuous in a together with their derivatives ux,, ux,X,, ux,x;xk, and u, and the
inequality Jul < m in Do X (0, T). Further, assume that the condition

.Fi4'(IPI) +.?2 - oo asp --> oo (uniformly in (x, t) E Q, u E[-m, m]) (2.3)

is satisfied. Then the following assertions are true:
1) If the domain ll is strictly convex, then

lau(y, t)/avl < Ml on aSl x (0, T), (2.4)

where au/av is the derivative in the direction of the inner normal to all X (0, T] at the
point (y, 1) E all x (0, T] and the constant Ml depends only on m, 1, ,)'(p), S(p),

k-' and K, where

k = inf k; (y), K= sup k; (y),I.....n-i i-i.....n-iyeah yeast

and the k .(y) are the principal curvatures of the surface au at the pointy.
2) If on the set (Do x (0, T]) X (Iul < m) X (I pI > 1) the inequality

d2 < 0(IPI)Oi (2.5)

holds, where gy(p), 0 < p < + oo, is the same function as in (2.2), then (2.4) holds with
a constant MI depending only on m, 1, 4(p), and

K = sup Iki(y)i.
r-I, .n-1

yeas:

PROOF. We start by proving the first part of the theorem. We shall assume that
condition (2.2) is satisfied for all u E R (see the proof of Theorem 1.4.1). In D0(0, T]
we consider the barrier function

w(x,t)=g)(x,t)+h(d), (2.6)

where h(d) a h(d(x)), d(x) = dist(x, a(l), x E Do, and h(d) E C2(0, 8) n
C([0, 8)), 0 < 8 < 80; we shall specify the choice of the function h(d) and the
number 8 below. Applying Lemma 1.3.2, for all c = const > 0 we obtain

Z(w+c)<,9rh"+Kh' -kTrAh'+(-V,
+a`jgvxxj-a), (2.7)

where

.fir- A (p - Po) (P - Po), A = Il a'' (x, t, w (x, t) + c, vw (x, 1)11,

p= Vw(x,t), po= Vq'(x,t), P=Po+vh',
a - a(x, t, w(x, t) + c,Vw(x, t)).

Here and everywhere in this chapter, v denotes the spatial gradient.
Inequality (2.7) differs from (1.4.6) only by the term -p, on the right side. Since

conditions (2.2) and (1.4.1) are completely analogous, just as in the proof of the right
side of Theorem 1.4.1, we obtain the estimate

2 h'
±

c)
.Z(w+c)<Iq),l+Fh'{h,3 +h2 + h,

z

+h'(-k + , + h,
± c,,)

+ 26(h' - c91)yTrA, (2.8)
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where

c, = max (ITI + JD2gl) ID2, I2 = ,X,

provided that h'(d) >- cT + 1 + 1 on [0, S]. Taking the properties of the functions
,y(p) and S(p) into account and assuming that h'(d) > a, where a = max{c9, + I +
1, ao, a1), ao is chosen so that

P
,

COP (P

P

fc,)+2S(p-c,,)<2
P

and a1 > 0 will be chosen below, we deduce from (2.8) that

j.'(w + c) < 19),j +,{h'(
h'

2

+ 4?(h')} - 2 TrAh' - 2. (2.9)

and (2.9) is valid for all (x, t) E D x (0, TI, where D = (x E Do: dist(x, a(2) < 8)
and 4i(P) = 2K(p 2 + 2i(p + cq,)P 1)

We now specify the choice of h(d) and S. Let S be defined by (1.3.8) with
d = max(a, q41), q = c9, + m, and suppose that h(d) is defined on [0, S] by (1.3.9).
From Lemma 1.3.3 it then follows that S E (0, So) and

°(w+c) <maxlp,l - J,Fh'I(h')-4TrAh' onD x(0,T). (2.10)
Q

Taking into account (1.4.8) and the fact that 41(p) may be assumed to be
decreasing, we write in place of (2.10)

.P(w+c)<maxlq),l--Lfjh'4?(h')- TrAh' onDX(0,T], (2.11)4 4

Q

provided that a1 is sufficiently large. Taking (2.3) and the relations h' > I pl - c.
jIpI into account, we can choose a1 so large that the right side of (2.11) is

certainly negative, i.e.,

.T(w+c)<0 onDX(0,T]. (2.12)

Here we have also used the fact that ;h'b(h') >, ¢(h' ± c,) >, ,y(I pp. It is obvious
that u < w on ail x (0, T] and on D x (t = 0). On the set (x E 2: d(x) = 8)
x (0, T], however, we have the inequalities u < m = (m + cm) - cP = h(S) - c,, <
w. Thus, u < w on the parabolic boundary of the cylinder D X (0, T]. Applying
Lemma 2.1, we conclude that u < w also in D x (0, 71. From this (see (1.4.12) and
(1.4.13)) we obtain (2.4).

The first part of Theorem 2.1 has thus been proved. We now prove the second
part assuming again that condition (2.2) is satisfied for all u e R. Because of
condition (2.5) it may be assumed that 8(p) = 0 in (2.2). Exactly as in the proof of
the second part of Theorem 1.4.1, we obtain

(h"
1

.F(w + c) < 14''l +.rh'(h'2 + 41(h')) - 1Z,1rh'p(h'),

where

(2.13)

ID(P)=8(c,+K+1)0(Ptc')p-c9
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provided that h' 3 cp + 1 + 1 + a, and a1 > 0 is chosen so that an inequality of the
form (1.4.14) is satisfied on { D x (0, T]) X R X { I pi > max(l, a1)).

We shall now specify the choice of the function h(d) and the number 8. Let 8 be
determined from (1.3.8) with a = max(a, g8o1), a = c, + 1 + 1 + a1 + a2, where
the choice of a, > 0 will be specified below, q = cp + m, and h(d) is defined on
[0, S] by (1.3.9). From Lemma 1.3.3 and relations (1.4.8) and (1.4.14) it then follows
that S E (0, 611) and

£°(w + c) < maxlgq,l - ,.Fh'D(h') < jf1h'10(h') + 4e1h'O(h')
Q Q

< maxlT,l - R81h'c(h'). (2.14)
Q

Taking (2.3) and the relations h' - c1, < IPI < h' + c., into account, we can choose
a, so large that the right side of (2.14) is negative, so that (2.12) holds. The
remainder of the proof of (2.4) is precisely the same as in the proof of the first part
of the theorem. Theorem 2.1 is proved.

We remark that the validity of the estimate (2.4) when in the second part of
Theorem 2.1 the conditions (2.2) and (2.5) are replaced by the stronger condition

IPI + TrA IPI + lal <

where >V(p ), 0 < p < + oc, is the same sort of function as in (2.2) and (2.5), was
established in [136]. This result of [136] is thus a special case of the second part of
Theorem 2.1.

THEOREM 2.2. Let S1 E C', and suppose that the functions a`j(x, t, u, p), i, j
1, ... , n, and a(x, t, u, p) are continuous and satisfy condition (1.2) in a X R X R R.
Assume that on the set { D° X (O, T]) X (I ul < m) X (I p1 > 1) the inequality

Ia(x, t, u, P)I < i(IPI)e, + 8(IPI)d2 (2.15)

holds, where the functions 8,, 82, ,y (p) and 8(p), 0 < p < +oo, are the same as in
Theorem 2.1. Let u E C2'(Q) (1 0-0(q) be an arbitrary solution of (1.1) in D° X
(0, T) which satisfies the conditions u = p on r, where 9) _ p(x) E C2(11), an Jul < m
in D,1 x (0, T] . Then the following assertions are true:

I) If the domain SZ is strictly convex, then the estimate (2.4) holds with a constant MI
depending only on m, 1, 4#(p), S(p), IIp1Icz(a), k-1, and K.

2) If on (D0 X (0, T]) X ( Jul < m) X (Ipl > 1) inequality (2.5) is satisfied, where
I(i(p) is the same function as in (2.13), then the estimate (2.4) holds with a constant MI
depending only on m, 1, 0(p), llq)ljc'(fi), and K.

PROOF. Theorem 2.2 is proved in exactly the same way as in Theorem 2.1, where
now condition (2.3) is not used, since p1 0 in (2.9) and (2.13). The remainder of
the proof of Theorem 2.1 is unchanged. Theorem 2.2 is proved.

§3. Estimates of maxQ,IVuI

In this section we assume that the functions &"(x, 1, u, p), i, j = 1,...,n, and
a(x, t, u, p) belong to the class CI(9EQ m.L), where x (lul < m) x
(I pl > L ), m, L = const 3 0. We suppose also that

ai'(x, t, u, p)&rji > 0, Vj E R", on (3.1)
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Let T = (T1,... be an arbitrary vector with ITI = 1. We set A' =
a'j(x, t, u. p)T,Tj = AT T and for an arbitrary function 4'(x, t, u, p) we introduce
the notation

PA 84i 84i a9
1 PI axA

+ I PI-5-U, PIPp = PA apk
A-I

THEOREM 3.1. Suppose that on the set 9R L for any T, I TI = 1, the inequalities

aiA'6
IPAoI < JUJ 'ddw(IPI)IPI ISA'I w(IPU (3.2)

Ia - PapI < µ2cfiI + µ2, 6a 02e1IPI[w(IPI)J t - 113IP1, d' > 0

are satisfied, where cat = (ft(x, t, u, p) = a'j(x, t. u, p)pi p_,, µt, µ2. A. and #3 are
arbitrary nonnegative constants, a, and a2 are nonnegative constants which are suffi-
ciently small in dependence on n, µt, µ2, T, µ3, m,(') and w(p), 0 < p < + oo, is an
arbitrary nondecreasing continuous function. Then for any solution u e C3-'.t(Q) n

of (1.1) such that maxQ-juI < m the estimate

maxlvuI < MI (3.3)
Q

holds, where M, depends only on n, m, M, = maxrIvu1, L, µt, µ2, µ2, and T.

PROOF. Applying the operator uk(8/8xk) to (1.1) and setting v = nU2, where
uk. = ux,, we obtain the identity in Q

l-v, + a'Jvij) = a'jukiukj + ;[ap, - ap u,j1 v, + I_(6a - Sa'Juij), (3.4)

where in (3.4) and below we use the abbreviated notation for partial derivatives
vi = vv , u,, = uc r , etc. Setting v = e"ii, x = consi > 0 in (3.4), we obtain the
identity

-U, + a"v,j = 2e-"'aijuk,uAj +[ap, - ar,u,,16,

+26 2 +
IPI

-
Sa'j

uij (3.5)

which we henceforth consider only on the set QL ((x, 1) a Q: Ipul > L). Taking
account of the condition on Sa in (3.2) and setting is = 2µ3, on QL we obtain

(iju,.l-U, + a'Jv,j >_ 2e-"ra'juk,ukj +[ap, - aU, + 2U ia _ Sa'i

IPI IPI
uij (3.6)

where ba = Sa + µ3I PI, so that by (3.2)

Sa 02ft(IPI/w)

We multiply both sides of (3.6) by f(U(x)), where f(U), f'(U) >_ 0 for v > 0, and
we set w = Jof(t) dt. Let z = z(u) be a positive, twice differentiable function on

(') This dependence will be specified in the proof of the theorem.
(z) denotes the set of functions u which are continuous in Q together with u,. u,,,. U,,.

and i. j, k - I... n.
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[--m, m]. We denote by w the function defined by w = z(u)w. Exactly as in the
proof of Theorem 1.6.1, we obtain (see the derivation of (1.6.18))

z'2 ww
Z(-w, + a'Jw,1) + bkwk > -Z" + Cp

Z of )ciw +e "Tfa'jukfukj

+z'(pap -a)w+2Jv P,-2atne"Twill, (X,t)EQL1 (3.7)

where co = (n/2)exp(KT). We shall assume that f(u) = exp{2co fj'w(t)t-1dt} for
u > 1. Now taking the conditions on pap - a and &a (see (3.2)) and (1.6.19) into
account, from (3.7) we derive

1_Z

1 z'2z(-w, + a'Jw;j) + bk" +
8 z

µiIz'l -(clal + c2a2)z Gmlw

-I z'Iµ2w, c1 = 16cone"T, c2 = 8co. (3.8)

Let z = 1 + earn - e". It is obvious that the expression in square brackets in (3.8)
exceeds the quantity

a(a - 142)e"4 -(c1a1 + C202)(1 + e"m).

Let a = A2 + 1, and suppose that a1 and a2 are so small that

(µ2 +
1)e-(µz+1)m >

(C1a1 + c2a2)[1 + e(µ2+1)m}. (3.9)

In addition, taking into account that jz'j < ae"m, in place of (3.8) we then write

z(-w, + a''wj) + bkwk > ae""'µ2w, (x, t) E QL. (3.10)

Setting w = e7''w, y = ae"92, from (3.10) (taking into account that z > 1) we
obtain

Z(-w, + a'Jw,j) + bkwk > 0, (X, t) E QL. (3.11)

In view of (3.11) it is obvious that w cannot have a maximum in QL. Therefore,

max w < max{ max w, max w} eYT,
Q r (v L)

maxmQ w< mini max(f"f(t)dt,fL'f(t)dt}eyT.
(3.12)

Taking into account the form of the function z and the fact that f is increasing, from
(3.12) it is easy to obtain

fM'f(t)dt<max(f("M,)l(t)dt, f(QL)f(t)dt},
0 0 0

(3.13)

where M1 = maxQlpu(, a = [(1 + e(µ2+1)m)e("+y)TJ '2 From (3.13) it is then obvi-
ous that

MI <amax(M1,L). (3.14)

Theorem 3.1 is proved.
We record separately an important special case of Theorem 3.1 obtained by

assuming that w(p) a 1k1 = const > 1.
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THEOREM 3.1'. Suppose that on the setQ,m.t., for any 7' E R", ITI = 1,

IPATI < Vµ1AT'l IPI ISATI '< yla I AW,
(3.15)

la - papj L2XI+µ,, 6a>. -a,8,1PI-fL31PI 41,>0,

where µ,, it,, µ µ3, a, and a, are nonnegative constants, and a condition of the form
(3.9) is satisfied. Then for any solution u E C3-"(Q) ( C,0(Q) of (1.1) such that
maxQlul < m and maxrl Vul < M, the estimate (3.14) holds.

Theorem 3.1' contains as a special case the known result of Ladyzhenskaya and
Ural'tseva regarding the estimate of maxQl vul for solutions of quasilinear uniformly
parabolic equations [80]. We note that very recently Ladyzhenskaya and Ural'tseva
have strengthened their result for uniformly parabolic equations by removing the
conditions that the argument u occur in the coefficients of the equation in a weak
manner [85].

Theorem 3.1 (and, in particular, Theorem 3.1') provides an estimate of max0j vul
for equations with structure described in terms of the majorant d',. The next theorem
gives such an estimate for equations with structure described in terms of X2.

THEOREM 3.2. Suppose that condition (3.1) is satisfied and that on the set T1 Q,,,,,1 for
any r, ITI = 1,

14711 p Ip,A'TrA , j&A'l t(aiA'TrA , TrA > 0,
(3.16)

{at,I I PI < a2-'2 + fi21Pl. Sa > -a3d', - A.11 P11

where µ,, µ2 and µ3 are arbitrary nonnegative constants, and a,, a2 and a3 are
nonnegative constants which are sufficiently small in dependence on n, T, µ,, and the
diameter of U. Then for any solution u E C3.1.1(Q) r, C1(Q) of (1.1) such that
maxQlul = in and maxrlvul = M, the estimate (3.3) holds, where M, depends only on
n, in, M1, L, µ,, T, and the diameter d of U. Under the additional condition

-,a'.

, a'J >, e0 Tr A on tD? Q m t , where e = const > 0, an arbitrary constant µ, > 0
can be admitted in conditions (3.16) in place of a2.

PROOF. We consider the identity (3.4) on the set Qt = ((x, t) E Q: Ivul > L).
Arguing exactly as in the derivation of (1.7.2), we obtain inequalities of the form
(1.7.2) at all points of Qt,. With these inequalities taken into account, we derive from
(3.4)

-v, + a')v11 > a'1uk,ukj + appt + 2 v8a
2

-µ,nlVv I TrA - alnvTrA,
V

(x, 1) E Qt.- (3.17)

Let z = z(x, t) be a positive function in Q of class C2(Q). We set v = zU. Taking
into account that v, = zU + z4,, v, = z,U + zU, and v,, = z,,U + z,U, + z1U, + zU",
from (3.17) we deduce that

z(-U, + a')U,,) + bkvk > (z, - a'Jz,,) v + 2 a''uk,uk/ + a,,z(v

2

+2IPIzv µlnlyzzl TrAO- alnzTrAU, (x, t) a Qt, (3.18)
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where the form of bk is irrelevant for our purposes. Taking condition (3.16) on jays
and 6a into account, from (3.18) we derive

z(-U, + a'ii,j) + b"Uk

II

>,(-a''z,1 - i
1n'Vz2

+ a2jczj -(no, + 2o3)z TrA +[z, - 12tvzl - 2µ3z] U,

(x, t) a QL. (3.19)

We set z=a+e"'-Ix12, a=(N+1)d2 and d=maxnlx!>0, where K>0
and N > 0 are constants. Taking into account that jvz! < 2dV , z, = ice"', t

Vzl2z-,

4nN-1, z < (1 + N)d2 + e", z;1 = -28/, where 8/ is the Kronecker symbol, and
z, = Ke", in place of (3.19) we write

1

z(-U, + a''U,1) + bkUk > (L2 - 4Nn - 2a2d -(no, + 2o3)((N + 1)d2 +
e"T )J

xTrA +[xe" -2µ2d-2µ3(l +N)d2-2µ3e"]}U.

(3.20)

We first choose N so that 2 - 4µ,"2N-' = 1, and then set K = 213 + K and
i = 1 + 2>rµ2d + 2µ3(l + N)d2. We shall now specify the conditions of small-
ness on the quantities a a2 and a3. We assume that or,, o2 and o3 are so small that

2a2d +(no, + 2a3)((N + 1)d2 + e"T) < 1/2. (3.21)

From (3.20) we now obtain

z(-U, + a''U;1) + bkUk > 0 on QL, (3.22)

which shows that U cannot achieve a maximum in QL. Therefore,

max v max z max{ max U, max U
i

max{ mrax v, L2 }
Q r (v L) min

(N+1)d2+e"T 2

Nd2
max{maxv, L (3.23)

whence we obtain an estimate of the form (3.3) with

M, _ ((N + 1)/N + e"T/Nd2)1/2max(M2, L).

We now suppose that the condition Ei ,,_1a'> > eoTrA, co = const > 0, is satis-
fied on the set RQ,m,L. In this case we suppose that in (3.19) for z there is the
function z - a + e" + efi"d - e-P1;fs*, where K, a - const > 0, P = const > 0 and
d = supQIxJ. Now taking into account that z < a + e" + eP"d, IVzI < lrfie-18Eixk,

I

pz1 2z-' < fl2e2P"da-' and z, = -N2e-fEixk, we first choose P > 0 so that e0,82 - a2
rft = 1/2eo$2. Then

-a'Jz,j - o2j Vz) > 1/2e0$2e-P"d.

We then choose a > 1 so that
1/2eos2e-I"d

- µ0nR2e2'oda-1 >
(e0/4)R2e-fi"d,
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and we assume that al and 03 are so small that

(not + 2a3)(a + e,T + e'n°) < '-Reo$ze-find , (3.24)

where x = 213 + i and K = 1 + A2Fn /3eR"d + 2µ3(a + en"d). From (3.19) we then
obtain (3.22), from which, exactly as in the preceding case, we derive the estimate

a + e'T + efi"d
maxv < max{maxv, L2

Q r
from which (3.3) follows with

_ a + exT +
e1/2

M1
= ( n ) max(M1, L).

a + efl

Theorem 3.2 is proved.
As an example of an equation to which Theorem 3.2 is applicable, we consider an

equation of the form

1 + Ivulz ux'ut,
-u, + S; - UXIA = a(x, t, u, vu). (3.25)

lzIvulz Ivu
I

The analysis of (1.7.13) carried out in §1.7 shows that all conditions of the first part
of Theorem 3.2 are satisfied for equation (3.25) if its right side a(x, t, u, p) satisfies
the condition

Iarl < A21 6a -, -µ3 on'DlQ.",.,_. (3.26)

As we shall see in §5, conditions (3.26) are best possible in a certain sense.
To conclude this section we note that an a priori estimate of maxQ! Vul in terms of

maxQlul and maxrlvul for equations of specific structure was obtained in [136],
where it was assumed that the leading coefficients of the equation have the special
form

a'j(x, t, u, P) = A(x, t, u, P)b'j( P/IPI) + A, (x, t, U. P)Pipj,
(327)

i, j = 1,...,n, n > 2, A > 0 on T?Q.m.L.

Conditions on the growth of the right side of an equation with the principal part
prescribed in (3.27) are given in [1361 in terms of the majorant 4' . We remark that
for Al < 0 in many cases it is more advantageous to impose conditions on the
growth of the right side in terms of 82 using Theorem 3.2 (see, in particular, (3.25)).

§4. Existence theorems for a classical solution of the first
boundary value problem

Theorems 1.3, 2.1, 2.2, 3.1, and 3.2 enable us to obtain the following existence
theorems.

THEOREM 4.1. Suppose that the functions a'](x, t, u, p), i, j = 1,...,n, and
a(x, t, u, p) are continuously differentiable and satisfy condition (1.2) in a x R x R ",
where Q = Sl x (0, T], and SZ is a bounded domain in R", n >, 1, of class C2+ r,
0 < y < 1. Assume that for any solution v E C2.'(Q) of problem (1.9) for any
T E [0, 1] the estimate maxQIvI < m holds, where m does not depend either on v or on
T E [0,1]. Suppose that on the set (Do X (0,T)) X (Jul < m) x ( I p I > 1 ), where Do
is defined by condition (1.3.2) and 1= const >- 0, inequalities (2.2) and (2.5) hold while
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condition (2.3) is also satisfied. Let condition (3.2) be satisfied on the set a X (Jul
m) X (I p I> L), where L = const > 0. Then for any q>(x, t) E C2+j,(Q), 0 < y < 1,
satisfying condition (1.11) there exists at least one solution u E C2+a(Q) (for some
a (=- (0, 1)) of problem (1.3).

PROOF. Suppose first that 0 E C3, 97 E C3"1(Q) t1 C2+.,(Q) and the functions
a'!(x, t, u, p), i, j = 1,... ,n, and a(x, t, u, p) belong to the class C2(Q X R X R").
From results of Friedman [123] pertaining to linear parabolic equations it then
follows that any solution u(x, t) e C2,1(Q) also belongs to the class C3,1.1(Q), so
that it is possible to use Theorems 2.1 and 3.1. From Theorems 2.1, 3.1, and 1.3 it
then follows that problem (1.3) has a solution u E C2+a(Q) for some a E (0, y].
Suppose now that 52 E C2+1', 0 < y < 1, a'', a e C' and T E C2+y(Q). We ap-
proximate the domain S2 by expanding domains C2 c 52 of class C3 which converge in
the limit to the original domain (2 in such a way that the C2+j'-norms of their
boundaries are uniformly bounded, and in the cylinders Q = S x (0, T] we consider
problems of the form

-u, + t, u, vu)uX X - a(x, t, u, vu) = 0 in Q,
(4.1)

u=q oni,
where the functions d''(x, t, u, p), i, j = 1,...,n, a(x, t, u, p), and 93(x, t) ap-
proximate the respective functions a'j(x, 1, u, p), i, j = 1,._.,n, a(x, t, u, p), and
p(x, t) in such a way that a'-', a e C2, q3 E C3'1(Q) tl C2+1,(Q), the conditions (2.2),
(2.5), (2.3) and (3.2) hold for a'j and a uniformly with respect to the approximation
parameters, and conditions (1.11) hold for 0 and P. This approximation of the
equation and its domain is standard (see, for example, [163], pp. 518 and 519). Since,
because of the uniform estimate maxQ(Itll + Ivul) < M1 and the theorem of
Ladyzhenskaya and Ural'tseva (see Theorem 1.2), the uniform estimate Hull,+a,Q < c1
holds for solutions of problems of the form (4.1), by the results of Friedman [123] we
obtain a uniform estimate of the norm, II0112+a.Q < c2. It is obvious that there exists
a sequence (u") converging to a function u in CO(Q). It is easy to see that the limit
function u E C2+a(Q), a E (0, y], satisfies (1.1) in Q and coincides with p on F.
Theorem 4.1 is proved.

The following theorems are proved in a similar way on the basis of the results of
the foregoing sections.

THEOREM 4.2. Suppose that the functions a'J(x, t, u, p), i, j = 1,... , n, and
a (x, t, u, p) are continuously differentiable and satisfy condition (1.2) in Q X R X R ",
where Q = S2 x (0, TI, (2 is a bounded strictly convex domain in R", n > 1, where
E2 E C2+j', 0 < y < 1, and T = const > 0. Assume that for any solution v 6 C2,1(Q)
of problem (1.9) for all T E [0, 11 the estimate maxQlvl < m holds, where m does not
depend either on v or on r E [0, 11. Suppose that on the set (Do X (0, T]) x (Jul < m)
x (I pl > 1), where Do is defined by (1.3.2) and l = const > 0, inequality (2.2) holds
and condition (2.3) is also satisfied. Suppose that either (3.2) or (3.16) is satisfied on the
set a X (l ul < m) x (i pl > L ), where L = const > 0. Then for any qp(x, t) e
C2+j,(Q) satisfying condition (1.11) there exists at least one solution u r= C2+a(Q) (for
some a E (0,1)) of problem (1.3).
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THEOREM 4.3. Suppose that the functions a'J(x, 1, u, P), i, j = 1, ..., n, and
a(x, t, u, p) are continuously differentiable and satisfy condition (1.2) in Q x R X R",
where Q = St x (0, TI, fl is a bounded domain in R", n >, 1, of class C20 < y < 1,
and T = const > 0. Suppose that for any solution v E of problem (1.9) for all
T E [0,1] the estimate max Q I vI < m holds, where m does not depend either on v or on
T E [0,1]. Suppose that on the set (D° X(0, T] } x { ]ul < m) X {]p J > 1), where D°
is defined by (1.3.2) and I = const > 0, the inequalities (2.15) and (2.5) hold, while on
the set Q X (ul < m) X ( I p l > L), where L = const > 0, condition (3.2) is satisfied.
Then for any q> = T (x) E C2+j.(U) satisfying condition (1.11) there exists at least one
solution u E C2+a(Q) (for some a E (0, 1)) of problem (1.3).

THEOREM 4.4. Suppose that the functions a'f(x, t, u, p). i, j = 1,...,n, and
a(x, t, u, p) are continuously differentiable and satisfy condition (1.2) on Q X R X R",
where Q = Sl X (0, T], it is a bounded strictly convex domain in R", n 3 1, and
t2 E C29 , 0 < y < 1. Suppose that for any solution v E C"-'(1y) of problem (1.9) for
all T E [0, 1] the estimate maxQJvf < m holds, where m does not depend either on v or
on T E [0,1 J. Suppose that on the set ( D° x (0, T] ) X { Jul < m) X { I pl > 1), where
D° is defined by (1.3.2) and l = const >, 0, inequality (2.15) holds, while on the set
a X ( Jul < m) x ( pl > L), where L = const >, 0, either condition (3.2) or condition
(3.16) is satisfied. Then for any rp = 9)(x) E C2+y(31) satisfying condition (1.1) there
exists at least one solution u r= C2+a(Q) (for some a E (0, 1)) of problem (1.3).

We remark that although in Theorems 4.1-4.4 the estimate maxQJvJ < m for
solutions of problem (1.9) is postulated, in essence these theorems represent uncon-
ditional results, since many sufficent conditions guaranteeing such an estimate are
known. Examples of such estimates can be found in [80] and [1361. In particular (see
(80]), the estimate maxQJvI < m is ensured by the following conditions: for any
(x, t)6Qand uER

a0 (x, t, u,0)jjjj 3 0, ua(x, t, u,0) >, -c,u2 - c (4.2)

where c,, c2 = const 3 0.
A theorem for the existence of a classical solution of (1.3) for equations with the

special structure (3.27) was obtained in [136).

§5. Nonexistence theorems

In this section results are established which show that the main structural
conditions under which existence theorems for a classical solution of problem (1.3)
were proved in §4 are caused by the essence of the matter. The proof uses the
following proposition which is based on applying the strict maximum principle for
parabolic equations.

LEMMA 5.1. Suppose that u E C2,'(Q) fl C' 0(Q) satisfies (1.1) in Q, and W E
C2"'(Q) fl C(Q) satisfies inequality (2.1) in Q for any constant c 3 0. Let S be an open
subset on 812, and let I's = S x (0, T1. Suppose that u < won I' \ Is and 8w/Slv = - oo
on I's, where v is the unit vector of the inner normal to I's. Then u < w in Q.

Lemma 5.1 is a variant of Lemma 2.1 and can be proved, for example, by means
of Lemma 2.1. Propositions of the type of Lemma 5.1 were used in [127], [5], [6],
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[163], [136], [38] and others. In particular, a proof of Lemma 5.1 can be found in
[136] (see p. 418).

We first present a result obtained in [136).

THEOREM 5.1. Let SI be a bounded domain in R", n > 1, and suppose that the
functions a'j(x, t, u, p), i, j = 1,...,n, and a(x, 1, u, p) satisfy the conditions

la(x, t, u, p)I > 81(x, t, u, p)4'(IPI) in Q x { lul > mo) x ( Ipl > 10),(5.1)

where gy(p) is a positive continuous function such that J+°°(dp/pi(p)) < +oo, mo
and to are nonnegative constants, and

a(x, t, u, p) -' + oo as p -+ oo
t2(x, t, u, p) (5.2)

(uniformly in (x, t) E Q, Jul > mo).

Then there exists a function p(x, t) E C°°(Q) with 8'p/8t % 0 in Q for which problem
(1.3) has no classical solution.

Theorems 4.1, 4.2, and 5.1 show that the majorants el and d2 (up to the factor
,y(Ipl) for the majorant 8, where f+°°(dp/pt(p))= +oo) are the bounds of
growth of the right side of (1.1), which growth is admissible in order that problem
(1.3) be solvable for any sufficiently smooth function p(x, t) provided that condi-
tion (2.3) is satisfied. We now ask whether the condtion (p(x, t) = p(x) is natural in
the general situation, i.e., when condition (2.3) is not imposed. The next theorem is
an answer to this question.

THEOREM 5.2. Let Sl be a bounded domain in R", n > 1, and suppose that the
functions a'j(x, t, u, p), i, j = 1,...,n, and a(x, t, u, p) satisfy the following condi-
tions:

8I < 1/S(IPl) for (x, t) E Q, Jul > m0, Ipl > lo, (5.3)

where S(T), 0 < T < +oo, is a positive, continuous, increasing function such that
J+OO(dT/TS(T)) + 00, m0, t0 = coast > 0; and

82(x, t, u, p) - 0 asp --+ o0
(5.4)

(uniformly in (x, t) a Q, Jul > mo ,

la(x, t, u, p)I < a(lpl)8i + f4'2 for (x, t) E Q, Jul > mo, IPI > lo, (5.5)

where a(T ), 0 < T < + oo, is a positive, continuous, increasing function such that
J+°°(dT/Ta(T)) = +oo, P = const > 0. Then there exists a function 9(x, t) E
C- (1y) with a-p/8t W 0 in Q for which problem (1.3) has no classical solution.

PROOF. Suppose the point yo E BU is such that there exists a sphere K2p(x0) of
radius 2p, p > 0, with center at the point x0 E SZ contained in SZ and tangent to 8S2
at yo. Let the diameter of SZ be equal to the number R > 0. We denote by r = r(x)
the distance from x to yo, i.e., r(x) = dist(x, yo), x E U. In the cylinder Q° = UP
x (0, T],where 12" _ (x E 12; r(x) > p), we consider the function

w(x, t) = 2t + th + h(r), r = r(x), h(r) > 0, (5.6)
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where it = max(mo, ml), m1 = maxr\Iplul, 2P = (x E 851: r < p) X (0, T), and
the decreasing function h(r) E C2((p, R)) n C([p, R]) will be defined below. It is
obvious that for all c = const > 0

°(w+c)-w,+a'j(x,1,w+c,Ow)wj -a(x,t,w+c,Vw)
_ -2 + h"a'Jr,ri + h'a'J

.

r,1 - a, (x, t) E Q', (5.7)

where r, = ar/ax, and r1, = a2r/ax, axe, i, j = 1,....n. Taking into account that

Vw=h'Vr, IVwI=Ih'I,
6°1(x, t, w + c. Vw) = a"r,rjh'2, a'jr,j _ (1/r)[TrA - a'ir,rl],

where A = Ila'1(x. t, w + c, Vw)II, we deduce from (5.7) that

2(w+c)=-2+d,h2 + L [TrA -a"r,r,] -a(x,i,w+c,Vw). (5.8)

We shall assume that h" > 0 and h'(r) -f, where I = max(10, 11) and the number
1, > 0 will be defined below. Taking into account that 0 < Tr A - a''r,ri and using
(5.5),we obtain

2(w+c)<-2+h"d°t/h,2+a(Ih'I)4'1+R&2, (x,1)EQP. (5.9)

It may be assumed with no loss of generality that a(T)/S(T) - 0 as T --> + 00, so
that a(T) < c8(T) for all sufficiently large T. Then, taking conditions (5.3) and (5.4)
into account, we deduce from (5.9) that

.,'(w + c) < -1 +(h"/h,2)(1/8(Ih'I)), (5.10)

if /I is taken to be a sufficiently large number. For h(r) it is possible to select a
function possessing the following properties:

h"(h')-2 < S(Ih'I) forr E [p, R], h'(p) = -oo, h(R) = 0. (5.11)
h"(r)>0, h'(r)<-l on[p,R].

Indeed, we set

K = max(1,(R - p)/f+xT,a(T)
)

and let the number a > 0 be defined by

dT =R - p, ifK=1, aifK=(R-p)/f+x dT

Jn TZS(T) TZS(T)

(5.12)

Obviously a >, 1. /W' We define h(r) on [p, R] by the parametric equations

h=Kf.

),
r=p+Kf+x72S(T)

a<T<+00. (5.13)

It is obvious that h' _ -T < -l, h'(p) = -oo, h(R) = 0, and h"/h'2 = S(lh'I)/K
S(Ih'I). From (5.10) and (5.11) it then follows that

2(w+c)<0, 'dc=const>, 0,(x,t)EQP. (5.14)
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We consider an arbitrary solution u(x, t) E Cz'1(Q) n C(Q) of (1.1). We shall
compare the functions u(x, t) and w(x, t) in the cylinder QP. We denote by aUP the
boundary of the domain SUP lying at the base of the cylinder QP. Let S° = as2P \ 812
and I's = SP X (0, T]. From the definition of the function w it follows that u < to on
rP \ F , where

rP=(as2Px(0,T])U(12Px(t=0)),
and that aw/av = -oo on Fs, where v is the unit vector of the inner normal to rso.
Therefore, by Lemma 5.1

u(x, t) -< maxw(x, 1) = m,, (x, t) E QP, (5.15)

where
QP

/'
m*=2T+ m +K

+ a,

J
dr <+00,

a Ta('r)
In the cylinder QE'P = (KP(yo) n K2,-,(x0)) x (0, T], 0 < e < p, we consider

the function

w(x,t)=3t+m,+h(F), ff=F(x)=dist(x,x0), (5.16)

where the function h(F) E C2((p, 2p - e)) n C([p, 2p - e]) satisfies the conditions

h"(h')-z '< 8 (Ih'I) for e e [p, 2P - e], 4(p) = 0,
h'(2p-e)= +oo, h"(F)>0, 4'(f)>1=const>0 on[p,2p-e],

(5.17)

= max(/., 12), and the constant 12 will be specified below. It is obvious that all the
conditions (5.17) are satisfied by the function h(P) defined on [p, 2p - e] by the
parametric equations

dh=sc TA ( T ) , a 7 +oo, (5.18)

where

x = max(1, (P - e)/f+
T28(T) I

and the number a > 0 is determined by
+a; dr =p - e, iU= 1,

T28(T)a

a = 1, if fc = (p -
e)+00

diTZ T)

(5.19)

Taking into account that for (Z the expression £°(w + c), c = const ? 0, is obtained
by replacing h by h and r by F on the right side of (5.7) and also noting that

h'a'rij = h'F'1[TrA - a'1PP] < h'p 1TrA = dzp"1,

A as IIa'j(x, t, Co + c, vw)II, I043I - h', f1 = a'ff>jh'z,
we obtain the inequality

h
Ifz(w+c)5-3+hzcf°1+ P -a(x,t,Co +c,va), (x, (5.20)
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Taking conditions (5.3)-(5.5) into account, we observe that for sufficiently large l2,
depending only on p, $ and the way the functions a(IP)/S(IP) and &2(x, t, u, p)
tend to 0 asp oo, the inequalities

d'2p1 <1, -a(x,t,w+c,vw)<1, (x, t)EQFP (5.21)

hold. With (5.3) taken into account, from (5.20) and (5.21) follows

2((3 + c) < -1 +(h"/h'2){1/S(h')), (x, t) E (5.22)

In addition, taking into account that S(h') (see (5.17)), we get

£f((Z + c) 5 0, Vc = const > 0, (x, t) E Q. (5.23)

We shall compare the solution u(x, t) E C2-'(Q) n C(Q) under consideration of
(1.1) with the function w(x, 1) in the cylinder On the lower case of this cylinder
u(x, t) < w(x, t), since from the very definition of Co it follows that w 3 m > A >
ml = maxr\F,lul >- maxax((-o}lul. The lateral surface of the cylinder is the
union of two surfaces the first of which is a part of the surface {(r = p) n 12) x (0, T]
and the second a part of the surface ((r- = 2p - e) n t2) x (0, T1. By what has been
proved above, on the first of these surfaces u(x, t) < m* < w(x, t) (see (5.15) and
(5.16)), while on the second

aw/av = -aw/ai: = 4(2p - E) _ -oo

(see (5.17)). Applying Lemma 5.1, we conclude that u(x, t) < w(x, t) < m*, where

m*=3T+m,+u x dTI TS(T)
(x, 1) E

By the continuity of u(x, t) in a this implies, in particular, the estimate

u(yo, T/2) < m'. (5.24)

The estimate (5.24) shows that under the conditions of Theorem 5.2 problem (1.3)
has no classical solution for some q'(x, t) E C°`(Q), aqp/at * 0 in Q. Indeed, taking
for q)(x, t) a function of the class C°`(Q) such that qp(x, t) = 0 outside Q n
{(lx - yol < p) x (T/4, 3T/4)) and p(yo, T/2) - m* + 1, we obtain a contradic-
tion to (5.24). Theorem 5.2 is proved.

CHAPTER 3
LOCAL ESTIMATES OF THE GRADIENTS OF SOLUTIONS

OF QUASILINEAR ELLIPTIC EQUATIONS
AND THEOREMS OF LIOUVILLE TYPE

§1. Estimates of vu(x0ln terms of

Let Sl be an arbitrary domain in R", n 3 2.

LEMMA 1.1. Let U E C3( fl) be a solution of (1.1.1) in the domain 2, where
a(x, u, p) = b(x, u, p) + b(x, u, p). On the set KP.L(xo) a (x E Kp(xo): I Vul >
L), where Kp(xo) is a ball of radius p > 0 with center at the point x0 E R" which
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T E R", ITI = 1,

together with its closure is contained in 9, and L = const >, 0, suppose that at this
solution the following conditions are satisfied:(')

where

IPbpI < µ41b1, 18-61 < µs161 IPI. 16,1 < (tl6/c)I61IA-2£',

sgnl6lTrAIP12 < µ7B1,

(sgnl6l)Ibl < µsdi,

a''(x, u, 0, E R", (1.1)

I PA ,I (µo/n)A7.911 pI ISATI

IA,I I PI (µ2/n2)ATWI
IP1T/2-1, IIAII < (µ3/n).f1IPIT-2,

pb,, - b >, -µ4a1, Sb 3 -µ5'11P1, lbpl 1<
(µ6/V)e1IP1-2e1,

g1 > 0,

d1 = a'"(x, u, P)P:PJ, AT = a''(x, u, P)Ti'rj,

s=IPIaxk+IPla ,

n 1/2

IIAII = I (a'')2)

fil

(1.2)

(1.3)

(1.4)

(1.5)

f k a6 + a6 a6 ab
oau,

IPIaxk IPI(au)_' (au)-=min(

a'j = a'j(x, u, p), b = b(x, u, p), 6 = 6(x, u, p),

a x)
, k = 1,...,n,x E KP(xo), u = u(x), p = vu(x), Pk = a

k

and the constants µ;, µ;, r, et, and it satisfy the conditions

0, i = 0,1,...,6; }2; > 0, i = 4,...,8;

0<r<2, et>0, it>0.
Then, for any positive nondecreasing function z(u) E C2(K), where K is the range of u
in KP(xo), and for any number 0 > 0, the following alternative holds: either at the point
x. E KP(xo) of the maximum in K.(xo) of the function a(x) defined by

a=w/z(u(x)), w=wa+1/(a+1), a=const>0,
n

w =
V_

E uk, uk = uXk(x), k
k-1 (1.7)

C2([0,1]), 00) = 0, M) > 0 fore > o, E(1) =1,

P = E(x) =

the inequality

1 - Ix - xol2p 2 in KP(xo),

0 (outside K.

a - T vo z'2 ( v3 v4 vs v6

-I P202e + P204e` + pole, + po2e1 )zZ" + a + 1 z
- Y1Z - P2Z

2+a4+1 a Zz<0
81TrAIpI

(1)As usual, definedto be -1 ifc<0,Oifc-0.and1ifc>0.
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is satisfied, where

Po=µo+µaµ7+µ7, P1 =µ4+µ4µx+ µR,

P2 = 4(a + 1)(µl + µ5 + µsµ7 + µ5µR),

P3 = 4(a + 1)a-2[3112 + µ3(Y-1 + 4)],

P4 = 4(a + 1)a 2µbµ7, p5=2(a+1)a lµ6,

P6 = 2(a + 1)a 1µ6µR, y > 0, a = mine/2, el, i,), (1.9)

or

Iou(xo)I < (zo/z*)112(a+')max(L, 9), (1.10)

where zo = z(u(xo)) and z. = z(u(x.)).

PROOF. Applying to (1.1.1) the operator uk(a/axk), for the function v = in

K,(xo) we obtain

1/2a'Jv, = a''ukiukj + 1/2(ap/ - a'pju,1)v, + VV (sa - (1.11)

For the function w = v (see (1.7)) we then have

t,a'Jw = +(ap - apu+3)(w, - w + 2Cv '(8a - Sa;'u;i)

+2a'jw, + l a'j y - 2a'J L' h w. (1.12)

Multiplying both sides of (1.12) by f (w) - w a> 0, and setting w = w'/(a + 1),
we derive from (1.12) the following identity on the set (x a Kp(xo): I Vu(x)I > 0):

a'jw;j = 12a'4o,w, + +(aoi

+2ff 0sa - 8arj

! Y
wr art)

j + 2a'"wi + (ahJy - 2a'J ' l) fw.

Setting w = z(u)a, we obtain in place of (1.13)

a 2 ;za`Ja;j + bkwk = -Z 814 + a a 1 z
f a Juk,ukjf

(1.13)

+(app - a)z'a -(a'J)ppujz'w - (ap- ap'Ju;f) jw (1.14)

+ 2 fyu (Sa - Sa'juij) + 2a'ju, z'a + (a') t'j - 2a'1 LI r) fw,



§1. ESTIMATES IN TERMS OF maxlul 63

where p a/ap ° Pk a/apk and the form of bk is irrelevant for what follows. We shall
henceforth consider and transform the identity (1.14) only on the set KP.L(xo).
Using conditions (1.2) exactly as in §1.6, we obtain the estimates

F zz
Iappz'u11 I < l-aiju,kuk + 110

Co1(J,
4 a+1 Z

I2fV 8a''uijI < 4-a''ukiukj + 4(a + 1)µlzd'iw,

Iauij fwI La''z'' 4ukiukj + 4(a + 1)!12 y2 p2U
D

I2aiju'j

z aI <
Y z,z 1w

+
4(a + 1)

µ3

l z
1a+1 z ` 7 p2va

laij rij fwI < 8(a + 1),u3it'll + pZ
411a,

2aij fwI < 8(a + 1)µ3
2

(1.15)

where e = 1 - r/2 > 0. We note that in deriving (1.15) we have used, in particular,
the inequalities Ivfl < 2k/p and 2n/p2, whereljD23'II = J_lri;)1/2

We now estimate the remaining terms (app - a)z'a, a p, fw and 2 fv 8a
in (1.14). Taking into account that a = b + b and applying (1.3)-(1.5) and (1.7), we
obtain

(pap-a)z'aa- (pbp-b)z'a+(pbp-b)za,
(pbp - b)z'a > -µ4z'g1a,

pbpz'a = P bz,a = Pbb (a"uij - b)z'a,

bz'a = (a'1u,j - b)z'a,

P I aiju,jz'a
#2 z'2

uk,ukj + a + 1 z
I1a'

Ip 6 bz'a a4llsz'ria,

_ _
L-3-a'' +7r7 ka'ju'i z'ml< 4a'luk'ukl+

z

+1
Ibz'WI < PBZV14Y;

ap fw = bp,- fw + bp, fw,

bp, fw < 2(a + 1)µ6 f Ue, dla,
(continued)
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bP, (r
LP' b )

3rbpcfw= bbfw= [(a

b T fa u'i z `!'z z
+ 4(a + 1)µ6µi Pzaz,,

bP, 3r 13'J 2 z

b
b fwl (a + 1)µ6µs

P o`' °Iw+

2 fv 6a 3 2f/8b + 2 frv '8_b,

2f/ ('8b >- 2fw
Slbb >- -2(a + 1)µsz(la,

2frv(8_b = 2frv bbb = 2ff

b
86 (a''u;, - b),

4(a + 1)A2A7Zeja,

I 2frvbbbj < 2(a +

We observe that relations (*) are considered only at those points of Kp.,.(xa) where
b(x, u(x), Du(x)) 0 0. At those points of K0,t,(x0) where b = 0 the corresponding
expressions estimated in are simply absent. Setting where a =
min(e/2, E,, e,), we observe that

1 3.,2 I 15111

+ 13" 2
= Q° 3.2 = Qz(.z° 023.2°

so that

3,2
1 ICI + 13'1 2 J'2

z Q2x t YVel)r 02;F r2U2r, a2w2r, ,

1 1

IV`' ow`' V' Ow;'

From (1.14)-(1.16) and using the inequalitya2
1/4f('a'1uk,ukJ

+ 1 a
>

4 '1 a Z49e

which follows from the estimate a''uk;ukf -' a2/Tr A and (1.7), we obtain

za'1W,j + bkak i I-z" +
a-y-P0 z'2

a+1 z

p3 p4

Pew`
+ p2w2.,

PIz'-P2z

y6 1

wf,1
a+1 a2

(1.16)

(1.17)

P 4 (TI IrAu

(1.18)

where the quantities v,, i = 0.....6, are defined by (1.9).
Suppose that x, is a point of a maximum of the function w in K,(x0). It is

obvious that x, F- K,,(xo), since a(x) = 0 on the boundary of the ball K,(xo). To
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abbreviate the notation we set F(w) = wa+1/(a + 1) and denote by 4P the function
inverse to F, so that (D(F(w)) = w. The following alternative holds: either the
inequalities

Iou(xs)I > L, t(z(xs)w(x.)) > 02 (1.19)

hold simultaneously or at least one of these inequalities fails to hold. In the first
case, taking into account that the inequality Ivu(x,)I > L makes it possible to
consider (1.18) at the point x, and observing that the second inequality in (1.19)
implies the estimate

w, = $(z,w,) > 82, (1.20)

where w, = w(x,), z, = z(x,), w, = a (x,), we conclude (taking the necessary
conditions for a maximum into account) that at x, inequality (1.8) holds. To
complete the proof of the lemma it suffices to establish that (1.10) holds if at least
one of the inequalities (1.19) is violated. Indeed, if Ivu(x,)I < L,, then v(x,) < L2,
and from (1.7) we obtain

F(vp) = F(WD) = wo = z0W0 < z0w, = -L0-(0* =
20

F(v,) <
Lo

F(L2 ),
z, z, z,

whence

(1.21)

vo<0(z0F(L2))-(z2.
lAa+1)L2.

(1.22)

If 82, then from (1.7) it follows that

F(vo) = F(wo) = wo = zowo < zow,r = - F(4 (zsws)) < 0 F(82),(1.23)Z' Z*

whence

vo < 4(i4F(02)) = ((1.24)
The estimate (1.10) obviously follows from (1.22), (1.24). Lemma 1.1 is proved.

The role of Lemma 1.1 is in that by imposing various conditions on the constants
in conditions (1.1)-(1.6) it is possible to choose the function z(u) and the number 0
(depending only on the structure of the equation) so that the first condition of the
alternative presented in the formulation of Lemma 1.1 is impossible. This provides
an a priori estimate of the form (1.10) for the gradient of the solution at the fixed
point x0.

THEOREM I.I. Let u e C3(S2) be a solution of (1.1.1) in SZ such that ml < u(x) < m2,
x e K9(x0), m1, m2 = const, where Kp(xo) c (1, p > 0, and suppose that at this
soluion on the set Kp,L(xo) ° (x E Kp(x0): Ioul > L) conditions (1.1)-(1.6) hold,
where

v2 < lYle trim, m a m2 - m1, PI > 0,

and Y1 and v2 are defined in (1.9) with a = 2(µo + Eiji7 + L7). Then

IVu(xo)I < 2max(L, 6),

(1.25)

(1.26)
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where

'r m I /2r 'v m 1/4r, 'r n, I /2r, , , , .2,;
Sv,e .

Syae2
. Syse2 , 11

B =max
1 p2vi / 1 P2vi Pv2 ( pvi

(1.27)

and P3, Y4, v5 and v, are defined in (1.9) with a = 2v,,, y = a/2 and v, > 0. If
of condition (1.25)

Pi < 1/2m, v, < 1/4m2, m = in, - m1, (1.28)

then (1.26) holds for 0 defined by

1/2

B = max
16v3m2 16v4m2 16vsm- 16vm-

I
11 11

p22 p- P P

(1.29)

PROOF. We start by proving the first part of the theorem. We set z(u) = 2et`"' -
et''-" UU), m = m2 - m1, /3 = const > 0, and we suppose that the number 8 is
defined by (1.27). We shall show that in the case of such z(u) and 8 the first part of
the alternative presented in the formulation of Lemma 1.1 cannot hold. Let y = a/2
and a = 2v0. Taking into account that z' = 0, z = $2et""''
et'"' -< z < 2ev"' and em'"'' "I >- 1, we then deduce from (1.8) that

/Nqq` QY,)-2Y2eKn1-2 P-1 +
Y4

+
Y5

+
eti <0.

1 - p202r P294E, p82r, p9..
(1.30)

We set /3 = 2v,. Then $22 - $v, = 2v?, and, using (1.25). we find that $2 - Qv, -
2v,e#"' > vi. On the other hand, from the definition of 0 it follows that

2
Y3 + V4 + P5 + P11

- e` < vj.p_8_r p, _846, p82r, p82r,

But then it follows from what has been said that the expression on the left of (1.30)
is positive, contrary to (1.30). This implies that for the present choice of z(u) and 0
inequality (1.30) is impossible. Hence, the second part of the alternative in the
formulation of Lemma 1.1 holds, i.e., inequality (1.10) for the -(u) and 0 selected.
Taking into account that 2, we obtain (1.26) with the 0 of (1.27).

Suppose now that condition (1.28) holds instead of (1.25). In this case we choose
for z(u) the function z(u) = 2m2 - (m, - u)2, m = m, - m,. assuming that m > 0
(otherwise u = const in Ko(x0)), and we suppose that 0 is defined by (1.29). Suppose
also that y - a/2, a = 2v,I and P. > 0. Taking into account that z' = 2(m, - u) >- 0,
-z" = 2 and m2 < z(u) < 2m2. we deduce from (1.8) that

2 - 2vlm - 2v2m2 - 2m2
v3

+
v4

+ PS +
v"

0. (1.31)p2B2r p204, PO 2,1 p02#,

Now from (1.28) and the definition of 0 by (1.29) it follows that inequality (1.31) is
impossible. Therefore, by Lemma 1.1 the estimate (1.10) with the 0 of (1.29) holds.
Theorem 1.1 is proved.
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REMARK 1.1. It is obvious that the conditions of Theorem I.I. admit arbitrary
degeneracy of (1.1) on the set (I pl < L) and degeneracy chacterized by the
condition cl! > 0 on the set (Ipl > L ).

§2. An estimate of Ivu(xo)I in terms of maxKotxalu (min k (XO)u).

Harnack's inequality

In this section we first distinguish a class of equations of the form (1.1.1) for
whose solutions Ivu(xo)I depends only on the structure of the equation and not on
any bounds on the solution itself. On the basis of this estimate a larger class of
equations of the form (1.1.1) is distinguished for whose solutions an estimate of
Ivu(xo)I depending on maxK,(x ) u (or mink (x0) u) can be established.

THEOREM 2.1. Let u E C2( 2) be a solution of (1.1.1), and suppose that a(x, u, p) _
b (x, u, p) + b (x, u, p). Assume that at this solution the following conditions are
satisfied on the set KP.t,(xo) = (x e K,(xo): I Vul > L):

el>0, ISATI < V n1 AWI , IATpI IPI <

IIAII < n38,IPlr-2,

Ib,I <

IS-bI < µs161 IPI Ibal < - Ibi IPI-2`', sgnlblTrAIPl2 < (2.3)

(sgn161)Ibi < µ.fi+ (2.4)

where et, AT, S and S_ are defined in the formulation of Lemma 1.1, and the constants
µt, µ2,... ,r, et, and it satisfy (1.6). Suppose that with some 48 E (0, 1] on the set
K,,.1(xo) the inequality

(I -
p)

a2 + Sb µ1 + µs!17 + µsµ. codiTrAIPl2 ?11P1 -(R R )

holds, where co = const > 0. Then

Ivu(xo)I < max(L, 0), (2.6)

where

1 4i

f
/ 1( 1 2(1 1/2\ 4cKt )I/2r

l 4co K2 1 4co K3) l 4co Ka)
(2.7)8 = max

p2 ' P2 ' P ' P ,

and KI = K(I,t.2 + µ3)+ K2
e=I-r/2.

K116µ71K3 - KIA6, K4 = Kµ6µ8, K = 2v-2max(1/t',12),

PROOF. Applying the operator Uk(a/axk) to equation (1.1.1) in the ball KP(xo),
we obtain (1.11). Using conditions (2.1)-(2.4) exactly as in the proof of Lemma 1.1,
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on the set K,,, (xo) we obtain

apu,J

I2 U Sa'
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2

,JI

J P2V, e,,,,iJUk,UAJ + 2Q2
,z

y

pp 2
2 `'a'JUkIuAJ + p1

4,
1W,

(2 ij LWI
93

8 KIIS1W,
P2

r22aij w '< 8µ3y w,
J Pv I

where E = I - r/2 > 0 and Q = const E (0,1] ;

k,aP w bP W b 1W

(2µe 2 2 + 2 8 W - 10

Pv , Qµeµ
y,2

2Pzvzi, µeµ8
PvF, , 2

UA,ukj;

(2.9)

2V 6b + 2J (Sb)_

2"2"iµ7 + 2µsµ, I &jw - Q
2

a'juk,ukj. (2.10)

In addition, taking into account that

z

2(1 - 2(1 - Q)TrA = 2(1 - )TrAIpI2d'1-1w, (2.11)

and choosing where a = min(E/2, E1, i1), we deduce from (1.11) and
(2.8)-(2.11) that

{[2(1a'Jj + bkWk - Q) TA 2+ - ( 2µµ7 + 2µsµ,)
Ipl ,

_ j µz + µ3 + µeµ7 + µe + µeµ, l
1)

P2W
W2;.

PwF, PW`' JJJJ t

xEKP,(xo), (2.12)

where the form of bk is irrelevant for what follows and K = 2a -2 max(I/fl, 12). Let
x, be the point of a maximum of the function w in K,(xo) (it is obvious that
x* E KP(xo)). The following alternative holds: either the inequalities Ivu(x*)I > L
and w(x*) >- 02 are satisfied simultaneously, or at least one of these inequalities fails
to hold. In the first case, taking the form of the number 0 into account (see (2.7)), we
conclude that x* E Ko 1(xo), and that at this point we have

fµ2 + µ3
+

µeµ µe
+

µeµ,
KI Pzw. Pzwzr, + PW' Pw:, co'
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From (2.12) and (2.5) it then follows that a'Jwj > 0 at x,,. However, this inequality
contradicts the fact that x, E is a maximum point for w. Hence, the first
assertion of the alternative cannot hold. From the second part of the alternative we
easily obtain (2.6). Theorem 2.1 is proved.

We note that several other classes of equations of the form (1.1.1) for whose
solutions u(x) an estimate of Ivu(xo)I depending only on the structure of the
equation (and not depending, in particular, on any bounds on the solution itself) can
be established were distinguished in 1157]. It is obvious that Theorem 2.1 admits
degeneration of ellipticity of the same sort as Theorem 1.1 does.

We now distinguish some classes of equations for which Ivu(xo)I can be esti-
mated in terms of u(x0) and SUPK,(x ) u (infK,(x ) u). To this end in (1.1.1) we make
the change of unknown function u = 9)(i7). Equation (1.1.1) then becomes

a`ju;j = a, (2.13)

where

a'j(x, u, = a''(x, p(a),

a(x, i, p) _ ,{u) a(x, 9)(a), t+
9),P)

t = a''(x, (a), (a)p)ptP _ 00-2

-

We note also that p= (u)p'and A'°a''(x,u,p)T;Tj =A',T(=- R",ITI=1.We
choose q)(u) so that -t = const. More precisely, let

u=IF(u)=m-6+e", m= inf u, 8=const>0. (2.14)
Ko(x0)

LEMMA 2.1. Suppose that on the set K9,t(xo) im (x E K1(xa): LVu(x)I > 1) at a
solution u E C3(1) of (1.1.1) satisfying the condition u(x) 3 m in KK(xo) the jollow-
ing conditions are satisfied:

ift > 0, IPA;I n°A`rt IPI-t, ISA'I nt A ef, IPI -t,

IA,I IPI <
n2
LAW, IPI- IIAII < µ3fddPI 2,

a = b + b, pb,, - b µa'ilPl-t, 8b >, -µsd't, IbPI <
fiipl-2,

(2.15)

a,ft % -µ'54t, I('')PI < ''IPI-'7a+< µ7TrAIP6 (2.16)
Fn

I Pbp - bl ,<Jlalbl, I8_bl < I15I I, Ib,l' Ibl IPI-t+

sgn Ib[TrAIP12 < µ7'ft, (sgnlbl)Ibl IPM'

(2.17)
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2
- P(&I),,

+
(1 - N)&I - 2101 - )

6I TrAIPI2 L
2(p,

+ L

_ µ4 + + µs _( +114 A7#-' L + 114)1 L + 1 } > co, (2.18)

where L = const >- 1/8,p = const E [0,1 ], I = const >- 0. and the constants µ,,, .-A,
are nonnegative. Then on the set K01( x(,), where 1= L, at the solution a(x) o[(2.13)
corresponding to the choice of the function q) by (2.14). all the conditions of Theorem 2.1
in the case r = 0. e, = 1/2, F, = 1 /2 are satisfied.

PROOF. Lemma 2.1 is proved by direct verification that the conditions of Theorem
2.1 are satisfied.

THEOREM 2.2. Let U E C2(1) he a solution of (1.1.1) in the domain SZ such that
u(x) >- m, in K,(x ). Suppose that at this solution on the set K,,( x E K,, (x(,):
Ivul > /} conditions (2.15)-(2.17) are satisfied. and also that for some numbers
$ E 10,1] and L >, 16 where 6 is a fixed positive number, condition (2.18) is
satisfied. Then

max(L, nil + 8]. (2.19)

where

4c0I(K, + K, + K, + K4)
8

P

c is the constant in (2.18), K, = K(IA, + }A3), K, = K',,U7. K= = K(Ii,,/L + 1e,,). K4 =
Kµo and K = 20 2 max(2//3,4 + 2Vn ). If conditions (2.15)-(2.17) are satisfied on the
set with

µI =µ4=µ5 °µn=µs=117=1i11=µ5 =0 (2.20)

and if on the set KN.,,(x )

2 -
P(d',),,

+ (1 /3)&I _ 2µo co = const > 0, ph - h , 0, (2.21)&I
TrAIPI' Q

then the estimate

Ivu(x,,)I\CI
2.22)

P

holds, where c, = c-1(K, + K, + K; + K4)-

PROOF. Suppose first that the conditions of the first part of the theorem are
satisfied. In view of Lemma 2.1 the function u defined by (2.14) is a solution of
(2.13), and at this solution on the set (x E K,,(x(,): Ival > 1). where
1 = L , //S, all the conditions of Theorem 2.1 are satisfied. From Theorem 2.1 it

then follows that

Iva(xo)I5 sup( L,0).
Taking into account that and a"I`ii1 = u(x,,) - m, +
from this we deduce (2.19). We now prove the second part of the theorem. Under the
conditions of the second part of the theorem it is easy to see that for (2.13) a
condition of the form (2.5) is satisfied. Since all the remaining conditions of
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Theorem 2.1 are also satisfied in the case L = 0, for Ivi (x,))I we have the estimate

I v I < 9, from which (2.22) obviously follows. Theorem 2.2 is proved. An
estimate of Ivu(x(,)I in terms of u(x0) and SUPK,( ,,) u(x) can be established in a
similar way. It is obvious that Theorem 2.2 admits degeneration of ellipticity of the
same sort as Theorem 1.1 does.

A result analogous but not identical to Theorem 2.2 was established earlier in
[157]. We note, finally,that from an inequality of the form (2.21) it is possible to
derive the following Harnack inequality (see [157], p. 89).

THEOREM 2.3. Let u e C3(0) be a nonnegative solution of (1.1.1) in a domain
S2 E R ", n >_ 2. Suppose that at this solution on the set { x (=- 2: I vuI > 0) conditions
(2.15)-(2.17), (2.20) and (2.21) are satisfied. Then for any compact subregion a' of a
there exists a constant K > 1, depending only on the structure of the equation and
dist(a12, 52'), such that

max u < Kmin u. (2.23)
t2 Ill

PROOF. We set x-xO=EIx-xol=r>e, where xCKP(xo)CS2,p>0, and we
consider the function v = v(r) = u(x0 + rE) in [0, p]. It is obvious that v'(r) _ >e
vu(x). Taking into account that KP_r(x) C KP(x0), we deduce from (2.2) (with
m, 3 0) that

v'(r) < Iv'(r)I <c1
v(r) , 0<r<p. (2.24)p-r

Integrating (2.24) over [0, r], r e (0, p/2], we find that v(r) < v(0)(1 - r/p)-1' for
r e [0, p/21. This inequality can be rewritten in the form

U(X) < u(xo)(1 - I x px0I) , x E K,2(xo). (2.25)

It follows from (2.25) by standard arguments that there exists a constant K > 0 such
that for any pair of points x, y e S2' the inequality u(x) < Ku(y) holds, which is
equivalent to (2.23). Theorem 2.3 is proved.

Results analogous to Theorem 2.1-2.3 were obtained in [157] under different
conditions on the structure of (1.1.1).

§3. Two-sided Liouville theorems

If a function u e C3 (R") is a solution of (1.1.1) in the entire space R" then,
following [166], we shall call such a function an entire solution of (1.1.1). We set

m(P) = sup lu(x)I
IxI4P

THEOREM 3.1. Suppose that the functions a'j(x, u, p), i, j = 1,... ,n, anda(x, u, p)
in (1.1.1) satisfy conditions (1.1)-(1.6) on the sets T11 R" X R X { I pI >
constants s ,,, ... , el depending, in general, on 1, and suppose that

1) with

Al + µ5 + µsµ7 + µ5!1e = 0. (3.1)

Then any entire solution u of (1.1.1) satisfying the condition m(p) = o(In p), p -+ oo, is
a constant. If in addition to (3.1) the condition

µ4 + µ4µe + µe = 0 (3.2)
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is satisfied, then ant entire solution of (1.1.1) for which n, (p) = o(V p ), p oo, is a
constant. Finally, if in addition to (3.1) and (3.2) the condition

µF + µ6µ8 = 0 (3.3)

is satisfied. then any entire solution of (1.1.1) for which nt(p) = o(p) as p oo is a

constant.

PROOF. Let the number! > 0 and point x E R" he fixed. We set

M, (p) = min u(x), m,(p) = max u(x).
A,ix,) A l cut

m(p) = osc u(x) = m,(p) - m,(p).

We first suppose that condition (3.1) is satisfied. Then the quantity v, defined in
(1.9) is equal to zero. Therefore, assuming µ4 + µ4iu, + µ, > 0, we note that for the
function u(x) in the ball all the conditions of the first part of Theorem 1.1
are satisfied with m, = mt(p), m, = m,(p) and L = 1. (In particular, (1.25) is
trivially satisfied.) Then for JVu(xn)I there is an estimate of the form (1.26) with
L = / and 9 defined by (1.27) (with m replaced by ni(p)). From the condition
m(p) = o(In p). p oo. and the form of 9 it follows that 9 - 0 as p oo.

Therefore, choosing p so large that 6 < 1, we obtain the estimate I V u(x )I 21.

Since ! > 0 is arbitrary, this implies that V 0. Taking into account that x is
an arbitrary point in R", we conclude that u(x) = const in R". The second and third
parts of Theorem 3.1 are proved in an entirely similar way using the second part of
Theorem 1.1. Theorem 3.1 is proved. Theorem 3.1 is a generalization of the
two-sided Liouville theorems proved in [166] and [36).

COROLLARY 3.1. Suppose that for the functions a"(x, it, p). i. j = 1.....n, and
a(x. u. p) on the sets :tP R" X (I ul < m) X ( I pI > /) conditions (1.1)-(1.6) are
satisfied with constants depending on I and m. Suppose also that (for all
I > 0 and m > 0) condition (3.1) is satisfied. Then an;' entire solution of (1.1.1) which
is bounded in all of R " is a constant.

PROOF. We redefine a"(x, u, p). i, j = 1....,n, and a(.r, u, p) in an appropriate
way for Jul > m. and reduce the conditions of Corollary 3.1 to the conditions of the
first case of Theorem 3.1, from which the result of Corollary 3.1 then follows.

As examples we present some special cases of Theorem 3.1.
1. Suppose that (1.1.1) has the form

a"(Vu)u, ,. = h(u,Vu), h(u, p) = f(u)h(p), (3.4)

where conditions of the form (1.2) for the matrix A = Ila"(p)Jl and the conditions
If I < c1, aflaa > 0. I ph,, - pl < c2d'1, ih,,I < c3611pl

2`' el > 0 and h > 0, where
C1, c, = const > 0, are satisfied on the sets `.iIt,. Then any entire solution of (3.4)
such that m(p) = o(ln p), p oo, is a constant.

2. Suppose that (1.1.1) has the form

a"(Du)u,,,. = b(u,Vu), (3.5)

where conditions of the form (1.2) for the matrix A = ila"(p)ll and the conditions
ahlau > 0. I pb,,I < cllhl Ih,,I < c'2lhl

Ipl-2F, and e, > 0 are satisfied on the sets JV/,



§3. TWO-SIDED LIOUVILLE THEOREMS 73

(we note that for e, = 1/2 the last conditions are satisfied, for example, by any
function h = I(I pl) such that If'(t)I III < cl f(t)I, c = const > 0, 0 < t < +oo). Then
anv entire solution of (3.5) such that m(p) = o(p), p - oo, is a constnt.

The next result may be called a weak two-sided Liouville theorem.

THEOREM 3.2. Suppose that on the sets `I (t.L) = R" X R" X (/ < IpI < L), 1 > 0,
1. > 1, the functions a'"(x, u, p), i, j = 1,...,n, and a(x, u, p) satisfy conditions
( 1 . 1 ) - ( 1 . 5 ) f o r any r >, 0 and e1 = i1 = 1/2 with constants µo, µ1,...,1t8 depending on
/ and L. Let u be an entire solution of (1.1.1) such that SUPR' I V UI < + oo. Then the
following assertions are true:

1) If for all l > 0 and L > I condition (3.1) is satisfied and m(p) = o(In p), p - oo,
then u = const in R".

2) If for all l > 0 and L > ! conditions (3.1) and (3.2) are satisfied and m(p) _
o(Vp ), p - oo, then u = const in R".

3) If for all ! > 0 and L > l conditions (3.1)-(3.3) are satisfied and m(p) = o(p),
p - oo, then u = const in R".

PROOF. Let SUPR..I VUI = MI. Then for any xo E R" and p > 0 conditions
(l.1)-(1.6) (with constants depending on I and M) and the condition
m, < u(x) < mz with m, = minK,(x ) u and m2 = maxK,(xO) u are satisfied for the
function u(x) on the set KP.,(xo) ° {x a K(xo): Ivu(x)l > 1). Redefining the
functions a"(x, u, p), i, j = ,...,n, and a(x, u, p) in an appropriate way for
I PI % MI, we reduce the conditions of Theorem 3.2 to the conditions of Theorem 3.1,
from which all the results of Theorem 3.2 follow.

The next assertion follows from Corollary 3.1 in a similar way.

COROLLARY 3.1'. Suppose that on the sets W.J1.L) s R" x { lul < m) X {1 < I pI
< L) where m, 1, and L are any positive numbers, the functions a'j(x, u, p), i, j =
1,...,n, and a(x, u, p) satisfy conditions (1.1)-(1.5) for any r 0 and e1 = i1 = 1/2
with constants µ0, µ1,...,1i8 depending on m, 1, and L. Let u be an entire solution of
(1.1.1) such that supR.IuI + SUPR.I V U1 < + oo. Suppose that condition (3.1) is satis-
fiedfor all m > 0, 1 > 0 and L > 0. Then u = const in R".

REMARK 3.1. It is obvious that in Theorem 3.2 and Corollary 3.1' the degree of
elliptic nonuniformity plays no role.

Theorem 3.2 implies, in particular, the following known result (see [149] and
[166]): and entire solution of the equation of a surface of constant mean curvature
K, i.e., of an equation of the form (1.1.10) with .)E°(x, u, p) = K = const, which
satisfies the conditions m(p) = o(ln p) and Ivul < const in R", is identically
constant in R". Indeed, in this case conditions (1.1)-(1.5) are obviously satisfied on
the set ll2I.,y (we assume here that a = b + b, b = nK(1 + Ip12)3/2 and d = 0),
since the expressions on the right sides of (1.1)-(1.5) are bounded below by a
positive number c,(l, M1), while the moduli of the expressions on the left sides of
these inequalities do not exceed a constant c2(1, M1).

Below we shall present a result which asserts, under specific conditions, that any
entire solution of (1.1.1) whose oscillation in the entire space does not exceed a
certain quantity determined by the structure of the equation is identically constant.
It is obvious that results of this sort also belong to the class of Liouville theorems.
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THEOREM 3.3. Suppose that on the sets = R" X (Jul < m) x {Jpl > / } the
functions a"(x. u, p), i, j = 1.... ,n, anda(x, u, p) satisfy conditions (1.1)-(1.6) with
constants 11o.... , i, depending on m and /. Let u he an entire solution of
suppose that for any m E (0, OSCR" u) and I > 0 at least one of the conditions

and

P1(2v2) ' > 1, oscu < (ln(v1/2v,))(2v,)-' < c, = cons(. (3.6)

or

oscu < min((2v,)-',(2I) 1} < c, = const (3.7)
R"

is satisfied, where v1 and v2 are defined in (1.9) with a = 2(µl) + µ4µ7 + L7), and c,
and c2 do not depend on I and m. Then u = const in R ".

PROOF. We fix x E R" and p > 0. From the conditions of Theorem 3.3 it follows
that on the set Kp.,(x0) for the function u all the conditions of the first or second
part of Theorem 1.1 with m1 = infs. (,,)) u(x) and m, = sup,,(,. , u(x) are satisfied.
Then for u(x) we have JVu(x0)j < 2 max(/, 9), where 9 is defined either by (1.27) or
by (1.29). Suppose that for fixed x and 1 > 0 the radius p tends to oo. Taking into
account that Limp-x9 = 0 (since m = m,(p) - m,(p) is bounded), we obtain in
both cases the estimate Ivu(x(1)j < 2/, from which Theorem 3.3 easily follows since
x and I are arbitrary. Theorem 3.3 is proved.

We consider, for example, the equation

eX-"u, = 0. A, = const > 0, i = I....,n. (3.8)

It is easy to see that conditions (1.2) are satisfied on the sets '.Ui,, t in the case of this
equation with constants , = 0 = A2c°'n. A = max r = 0 and
143 = U3(A, m), and conditions (1.3)-(1.5) are satisifed with zero constants. In view
of (1.9) we then have v, = 0 and v, = 41AI. Applying Theorem 3.3 (with condition
(3.7)), we conclude that any entire solution of (3.8) with oseR.. u <
min (1,1/4v71e'-11) is constant.

§411. One-sided Liouville theorems

THEOREM 4.1. S u p p o s e that on the sets ` i fl , = R" X R X (I pj > 1), 1 = const > 0,
1hefunctionsa'1(x, u, p), i. j = I.....n,anda(x, u, p) satisfy conditions (2.15)-(2.17)
with constants µ,,,...,µR depending on i and satisfying conditions (2.20). Suppose also
that conditions (2.21) are satisfied with a constant c1, not depending on 1. Then any
entire solution of (1.1.1) satisfying the condition

sup u = o(p), p -, + 00 ( inf u = o(p), p -i +oo), (4.1)
I'Isp Icl6P

is identically constant in R ".

PROOF. We shall prove Theorem 4.1, for example, under the condition infl,.lsp u =
o(p), p -+ +oo. From (2.22) with m1 replaced by m,(p) = u it follows that
I vu(x0)l = 0 if in (2.22) we pass to the limit as p oo. Since the point x(, is
arbitrary, this implies that vu = 0 in R", i.e., u = constin R". Theorem 4.1 is
proved. A result similar to Theorem 4.1 was also established in [157].
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We shall now prove a one-sided Liouville theorem of less traditional character but
which pertains to a larger class of equations than that considered in Theorem 4.1.

THEOREM 4.2. Suppose that for any l > 0 the functions a`j(x, u, p), i, j = 1,...,n,
and a(x, u, p) satsify conditions (1.1)-(1.6) on the set .9r = R" X R x flpl' > 1),
with constants depending, in general, on 1, and constants r = 0, el = 1/2
and it = 1/2. Suppose also that

µ4+µ4µK+µ8 =O1 µl+µ5+µ547+115µ8 =01 µ6=0. (4.2)

Then there exists a number a > 1, depending only on the structure of equation (1.1.1),
such that any entire solution of (1.1.1) satisfying for some $ E [0, 1] the condition

inf u = o(p"), Ivul = O(pll-P)/a), p - +oo, (4.3)
I.xJsv

is a constant. In the case $ = 1 in (4.3) this result is preserved if conditions (1.1)-(1.6)
are satisfied on the sets'' (r.L) = R" X R X (l < jpj < L) with constants µo,...,µ7
depending on l and L.

PROOF. We fix a point xo a R". Because of Lemma 1.1, either at the point x, of
the maximum in Ko(xo) of the function a(x) defined by (1.7) inequality (1.8) holds,
or (1.10) holds with L replaced by 1. Suppose that the number a > 0 from (1.8)
satisfies the following condition: there exists a number K E (1/2, 1) such that

a-y-v0=Ka, (2K-1)a>1, (4.4)

where K is a fixed number in (0, 1) (it is obvious that (4.4) is satisfied if a >
2(K + v0) + 1). We set q = 2(2aK/(a + 1) - 1). It is obvious that q > 0. Setting in
(1.8)

z(u)=(u-m1+8)2, 8=const>1,m1=mt(p)= inf u,
K,(xo)

in view of (4.4) we then find that

a - y - v0 z,2-z'+ a+1 z 'q.
Therefore, in the alternative indicated above inequality (1.8) can be replaced by

q -((v3 + vl)/P202)z.

1< 0,

where v3 and v4 are defined in (1.9) for the values of a and y chosen above and where
z. = z(u(x*)); here we have also taken into account that the equalities v4 = 0 and
v6 = 0 follow from our assumptions. We set 0 = (4v3z,/gp2)I/2. With this choice of

0 the left side of (4.6) exceeds the positive number q/2, which contradicts (4.6).
Thus, for the chosen z(u) and 6 we have

f
z I,ta+I) z I,ta+I) l

vo = Ivu(xo)12 < max{l

z = z(u(xo)). Since x,, is the point of the maximum of a
11=

w/z, we have
wo/zo < w/z 4 from which it follows that

w,
z0

__ wv,+ I
i.+-,

a

Z
w0

w0a+1 Ua0+1 ZO
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Then

tz. /IAa+1)e

< 2(,,3 + ;,4 )Z1 I.crt41lZ11ta411 2(v1 + v4) h'#
(4.8)

qp
s o

qp
c-

`
,, Zo

where v, = IVu(x,)I2.
From (4.7) and (4.8) we obtain

Z Iota+1) 2(v, + v4) Z011*
max{

/
-°) Vol, (4.9)
z a 9 p

Suppose that some number 1 > 0 is fixed. Taking into account that

6'`zvv* )i(u9 + S)- + mi(P)

P#
-

p1 t+
$ E [0.1], (4.10)

P

because of (4.3) we can choose p so large that
"2(v1 + va z1,v, < IZaA l + I1n,"

q p-

(since z1, -> 1, and v,,l is a constant number for a fixed point x, a R"). Therefore,
taking further into account that z >- 1, we obtain

c'o+1 \ Z10 An 4 1)1,;l. (4.11)

Since l is arbitrary, it follows that v11 = 0. Taking into account that x is an arbitrary
point of R". we conclude thatVu = 0 in R", i.e., u = const in R". Theorem 4.2 is
proved.

A version of Theorem 4.2 corresponding to the condition

sup u = o(pv). Ivul = o(p'I p -+ 00
i+I-<p

(cf. (4.3)), can be established in a similar way. In [157] a somewhat different class of
equations of the form (1.1.1) was distinguished for which the result of Theorem 4.2 is
established in the case $ = I in condition (4.3). The following generalization of
Theorem 4.2 is valid.

THEOREM 4.2'. Suppose that all the conditions of Theorem 4.2 are satisfied with the
exception of the conditions r = 0 and F1 = 1/2. Suppose that in place of the latter
conditions the relations e = I - r/2 > 0 and i, = e/2 hold. Then there exists a
number a > 1 depending only on the structure of (1.1.1) such that any entire solution of
(1.1.1) satisfying for some $ e [0,11 the condition

inf u = o(pt') ( sup u = o(pt')l ,
I.'I4p lvl,p !

4 12(
sup Ivul = OW, "A' I..,),

p 00.
IVIsp

is a constant.

)

Theorem 4.2' is proved in the same way as Theorem 4.2.



PART II

QUASILINEAR (A, b)-ELLIPTIC EQUATIONS

Parts 11 and III of the monograph are devoted to the investigation of questions of
solvability of boundary value problems for quasilinear degenerate elliptic and
parabolic equations. A large number of books and papers (especially in the case of
linear equations) have been devoted to the study of these questions. Many have been
devoted to the study of linear elliptic and parabolic equations which degenerate on
the boundary. The theory of weighted function spaces arose in connection with the
study of such equations by methods of functional analysis. A bibliography of these
papers can be found, for example, in the monographs [102] and [113]. In particular,
these questions have been studied by M. V. Keldysh [60], S. G. Mikhlin [91], M. I.
Vishik [12], L. D. Kudryavcev [73], [74], S. M. Nikol'skii [95], [96], A. V. Bitsadze [9],
V. P. Glushko [17], V. A. Kondrat'ev [64], V. G. Maz'ya [89], and many other
mathematicians.

G. Fichera [137] formulated boundary value problems for a general linear equa-
tion of second order with a nonnegative characteristic form, and proved theorems on
the existence of certain generalized solutions of these problems. Existence and
uniqueness theorems for nonregular generalized solutions and existence theorems for
smooth solutions of the first boundary value problem under broad conditions on the
structure of the general linear equation with nonnegative characteristic form were
obtained by O. A. Oleinik [99], [102]. In the monograph [102] results of other
mathematicians in this area and also an extensive bibliography are presented. We
note, in particular. A. M. Il'in [56], M. I. Freidlin [120], [121], J. J. Kohn and L.
Nirenberg [141], R. S. Phillips and L. Sarason [158], E. V. Radkevich [107], and A. L.
Treskunov [117]. In these papers linear equations were considered under particular
smoothness conditions on their coefficients. In this case reduction of the boundary
condition on part of the boundary is characteristic. In the papers of S. N. Kruzhkov
[69], M. K. V. Murthy and G. Stampacchia [31], and N. S. Trudinger [55] so-called
weakly degenerate linear elliptic equations were studied, while the author [28], [43]
studied weakly degenerate linear parabolic equations for which the boundary value
problems in formulations traditional for nondegenerate equations are well posed.
We remark that the presence of weak degeneracy implies a particular nonregularity
of the equation.

A number of papers have been devoted to the study of boundary value problems
for certain quasilinear elliptic and parabolic equations admitting implicit degener-
acy. Equations arising in boundary-layer theory with gradual acceleration and also
in problems of nonstationary filtration have been studied by O. A. Olelnik, A. S.
Kalashnikov, Jou Yuh-lin, E. S. Sabinina, and others ([97], [100], [101], [59], [60],
[108], [109]). Yu. A. Dubinskii [18], [19] considered quasilinear elliptic and parabolic

77
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equations of order 2m depending linearly on the derivatives of order m such that
degeneration occurs at points where the derivatives of order in - 1 appearing in the
equation, raised to some power, vanish. In the case m = 2 Dubinskii's condition on
the linearity of the gradient in the equation was recently removed by a doctoral
student at the Leningrad Branch of the Steklov Institute of Mathematics. P. Z.
Mkrtchyan [93]. The solvability of nonlinear degenerate equations arising in the
theory of control processes of diffusion type has been studied by N. V. Krvlov [71],
[72]. Some one-dimensional quasilinear parabolic equations with implicit degeneracy
have been considered by P. A. Raviart [159). In the above mentic' .cd work (the
majority of which is related to very specific equations) the d' eneracy has an
implicit character exclusively, i.e., points of degeneration of ellipt,city or parabolicity
depend on the solution under consideration.

The solvability of boundary value problems for some classes of quasilinear elliptic
and parabolic equations of second order admitting fixed degeneracy (i.e., degeneracy
not depending on the solution under consideration) has been studied by M. 1.
Freidlin [122] and G. M. Fateeva [119]. They, however, assumed that the derivatives
of the solution occur in the equation linearly. Moreover, in [122] sufficient smallness
of the boundary function and its derivatives was assumed. In [44]-[47] and [49]-[53]
the author constructed a theory of boundary value problems for large classes of
quasilinear degenerate elliptic and parabolic equations of second order admitting. in
particular, fixed degeneration of ellipticity or parabolicity. In particular. the classes
of equations he considered include linear second-order equations with a nonnegative
characteristic form. Parts It and III of the present monograph are devoted to an
exposition of this theory.

In a bounded domain SZ c R ", n >, 2, we consider the quasilinear equation

Yu=- Vu)=f(x), (1)

where

d " all ar al'/'(x.u,VU)_ + u +
dx aff r'

We say that equation (1) has (A, b)-structure in Sl if there exist a matrix A = Ilu"(x )II
or order n, a vector b = (b'(x),....b"(x)), and functions l"(x, a, q), i
and 1 (x, u, q) such that

I(x, u, p) = A`I'(x, u, Ap). I }(x, u, p) = !,,(x, u, Ap) + b'(x)p, (2)

We call the functions /"(x. u, q), i = and l;,(x. u, q) the reduced coefficients
of this equation. The reduced coefficients of an equation having (A. b)-structure are
invariants of this equation (with respect to nondegenerate smooth transformations of
the independent variables). We call an equation of the form (1) having (A, b)-struc-
ture in a domain St (A, b)-elliptic (strictly (A, b)-elliptic) in (2 if

allx,u,q)
aq,

ginJ>0. E0.uER,q=Ap,pER" (3)

U, q) nn, >0. 1l=A0.ER"..xES2.uER.y=Ap,pER"
8q, I.

(3')
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We observe that the matrix A may admit arbitrary degeneracy on any subset of a. If
A degenerates in 1, then even a strictly (A,b)-elliptic equation of the form (1) is a
degenerate elliptic equation in Sl, since by (2)

al'(x, u, p) _ 81'k(x, u, Ap)
8p,1;

aq.,

where Akf = ak'z;,, k = 1,...,n, so that the form (aI'/8p,)f,fj degenerates at any
point x (=- Sl where A is degenerate.

The (A, b)-elliptic equations include a large class of quasilinear equations with
nonnegative characteristic form. In particular, they contain: 1) nondegenerate
elliptic equations (A = I, b = 0), 1 the identity matrix); 2) nondegenerate parabolic

equations (A = II ° ... i b = (1,0,...,0)); 3) nondegenerate ultraparabolic equa-

tions (A = I,
b

4) quasilinear equations of first order
(A = 0, b = (b`. ... . b")); and 5) linear equations with nonnegative characteristic
form

dx
(a"(x)u.r,) + f'(x)ux + c(x)u = f(x), (4)

where a'" = a"', i, j = 1,...,n, and ll = Ila'j(x)II is a nonnegative definite matrix in
SZ (A = ?t1/2 , b = Q = ((3`, ... , ^ )); nondivergence linear equations with nonnega-
tive characteristic form also reduce to equations of the form (4) provided that their
leading coefficients are sufficiently smooth functions.

(A, 0)-elliptic equations (b = 0) are an important special case of (A, b)-elliptic
equations. In particular, (A, 0)-elliptic equations include the Euler equations for
variational problems regarding a minimum of integrals of the form

fn[JF(x, u, AVu) -f(x)u] dx, UI(xeau:4,eO) = 0, (5)

where (aF(x, u, q)/aq,aqj)t,n, > 0, n = At, t e R; ADu = (A1pu,...,A"pu),
A,pu = a'"u,, i = I,...,n, and v = (v,,...,v^) is the unit vector of the inner
normal to M. We henceforth call the vector Avu the A-gradient of the function u,
and we call its components A1Vu,...,A"pu the A-derivatves of this function.
Indeed, the Euler equation just mentioned has the form

dx,
rak.,(x) a.q-(xau, Ayu)1 + 8.F(x,

u,
AVu) =I(x)

(6)
qk J

and it is easily seen to have the structure of an (A,0)-elliptic equation with the
reduced coefficients

1"(x, u, q) = a.W(a, u, q) i = 1,...,n, 10(x, u, q) = a.W(Ouu, q) . (7)9;

In the case

b = (1, b...... b")

we call the corresponding (A, b)-elliptic equation (A, b) parabolic. We usually con-
sider an (A, b)-parabolic equation in a cylinder Q = 0 X (T1, TZ ), where 0 C R ",
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n > 1. (A, 0)-parabolic equations are an important special case of (A, b)-parabolic
equations. The study of certain questions of the theory of heat conduction, diffusion,
etc. leads to such equations.

The (A, 0)-elliptic and (A, 0)-parabolic equations are the central objects of our
investigations. A detailed study of boundary value problems for such equations is
carried out in Part III of the monograph. In Part 11 we consider general (A, b)-
elliptic equations. A formulation of the general boundary value problem (in particu-
lar, of the first, second, and third problems) for an (A, b)-elliptic equation in a
bounded domain SZ c R", n > 2, is given in Chapter 5. For example, the first
boundary value problem for such an equation has the form

Yu = f(x) in 0, u = 0 on I' c aS2, (8)

where I' is the so-called (A, b)-elliptic boundary of the domain S2 defined with the
structure of the equation taken into account. It is obvious that the choice of I' should
ensure that problem (8) is well posed. If (1) is a strictly (A, b)-elliptic equation and
the matrix A is sufficiently smooth, then the (A, b)-elliptic boundary r can he
defined by

r =2V2'_, (9)

where 2 is the noncharacteristic part of aSt, 2' is the characteristic part of M.
:E'_=_ (x E 2': b(x) = -b'v, < 0). and (v...... v is the unit vector of the inner
normal to M. Below we also use the following notation: 2, _ (x E 2': h(.v) > 0),

{x E 2': b(x) = 0), and 2 2;, U 2'. It is obvious that in this case

Y_ 2'= {XEaS2:Av=0). (10)

The definition of r by formulas (9) and (10) also applies in a number of cases of
equations which are not strictly (A, b)-elliptic but under the condition that the
matrix A be sufficiently smooth. For less smooth matrices A the definition of the
( A, b)-elliptic boundary r by (9) applies, but then the sets `_; and `' must he defined
somewhat differently than in (10) (see §5.3).

We study questions of the existence and uniqueness of solutions of problem (8) in
the following classes of generalized solutions: a) generalized solutions of energy
type; b) A-regular generalized solutions; and c) regular generalized solutions. The
latter two classes of generalized solutions may have different degrees of regularity.
Actually, the general boundary value problem is studied in the first class of
generalized solutions, but for brevity we shall here discuss the formulation of only
the first boundary value problem.

To define generalized solutions of energy type we introduce the energy space
fl = H,`,;:m(A, S2) defined as the completion of the set C (St) in the norm

1lulln = llull,,,.sn + (11)

We define a generalized solution of energy type of problem (8) in the case of
so-called (A, b, m, m)-elliptic equations, where m = const > I and m = (ntl,... ,m ),
m, > 1, i = 1,... ,n. An (A, b)-elliptic equation of the form (1) is called
(A, b, m, m)-elliptic in Sl i f the reduced coefficients 1"(x, u, q). i = 1 _ _ n , and
l,,(x, u, q) satisfy growth conditions as u, q oc such that for any function
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E L'" (12),u E H,;;'m(A, S2) the following conditions are satisfied: l"(x, u, AVu)
11m, + 1/m, = 1, i = I,...,n; lo(x, u, Avu) E L'"(0), 1/m + 1/m' = 1, and the
expression Avu for a function u E H,°:y(A, S2) denotes the so-called generalized
A-gradient of this function (see §§4.1, 5.2 and 5.3). Functions in H,,','(A, S2) vanish
on `' c a g in a particular sense (see §4.2). A generalized solution (of energy type) of
problem (8) for an (A, b, m, m)-elliptic equation is any function u E HO,,,' (A, 2)
satisfying the identity

f2[1'(x, u, Avu) Av, + I' (x, u, AVu)-q - u a8, (bil)l dx

= fufndx, Vrl E (S2). (12)

By an A-regular generalized solution of problem (8) for an (A, b)-elliptic equation
in the domain 12 we mean any function u E L°°(S2) n H,,°,-z(A, St) for all m > 1
(where 2) = H,,),-(A, S2) with m = (m, ... , m )) having a bounded A-gradi-
ent in 0 (i.e., Avu E L°°(12)) and satisfying (12).

A regular generalized solution of problem (8) for an (A, b)-elliptic equation in a is
any function u E L°°(9) n H,°,,,'(A, 52) for all m > 1 having Vu E L°°(12) and such
that

f [I(x, u, vu) vrl + 10(x, u, vu)rl] dx - f fq dx Hrl E (S2). (13)

We also consider regular generalized solutions of problem (8) having bounded
second derivatives in fl.

In Part 11 we investigate questions of the existence and uniqueness of a gener-
alized solution of energy type of the general boundary value problem for
(A, b, m, m)-elliptic equations, and existence and uniqueness of regular and strongly
regular generalized solutions of the first boundary value problem for (A,b)-elliptic
equations. In describing results on the solvability of boundary value problems in the
class of generalized solutions of energy type, for simplicity we here consider the case
of the first boundary value problem (8). We investigate this generalized solvability of
problem (8) in the language of operator equations in suitable Banach spaces. This
reformulation of the problem requires the introduction of two more function spaces.
Let X be the completion of Co' z(S2) in the norm

IlullX = Ilulln + IIUIIL'(h.z,), (14)

and let Y be the completion of Co_z(S2) in the norm

n

(lull r = IlullX + E llux;ll,,2(Ih'I.0,,,),
'-t

where

ab'
x I)' s2f = (x E S2: ft > 0),IYl + a

Sth.= {xE0:b'*0}, i=1,...,n.

(15)
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It turns out that Y -+ X, Y --+ H and L'"(Sl) -- 11* - X* Y*. However, there

is no imbedding X H. We consider the operator .Y': C;; , (St) C X --+ Y* defined

by

' 5 V sad: C (f2) C X H* C Y*. Y: Cu. O) C X Y*.

f u(h'iidx + f hu77.(16)

U,71 E C A.
The operator (16) is bounded and continuous, and it may therefo- be considered
extended to the entire space X. Henceforth.,: X -+ Y* always d, gores this extended
operator. The problem of finding a generalized solution or (8) is equivalent to
solving the operator equation

..ill =.t, (17)

where JFE H* is defined by the formula (,F, 7,) = J, f7, dv, t E H. The operator
.,40: X -> Y* will therefore be called the operator corresponding to problem (8). In
investigating the solvability of the operator equation (17) we proceed from the
theory of equations in a Banach space with operators possessing properties of
coercivity and monotonicity (or semihounded-variation) type. This theory has been
constructed by F. E. Browder. G. Minty, J. L. Lions. Yu. A. Duhinskii, M. M.
Vainberg, and others. The special features of the equations we consider require the
construction of a new scheme of operator equations of this type using a triple of
Banach spaces H. X, Y such that Y - X. Y -' H and H* X* Y*, while the
operators" under study act from X to Y* and have the form P= -V+ -4. where j7/:
X -+ If* and : X Y* (see §4.7).

The principal difficulty in the study of equations (17) is due to the incompai hilih
of the operatorsdand , i caused by the circumstance that only A-derivatives of the
function it participate in the construction of d. while only ordinary derivatives of
this function participate in the construction of .f. This is manifest, in particular. in
that .tea! is not continuous in the norm of the basic energy space H = H(A, Q).
Therefore, in the formulations of results on the solvability of (17) there are
conditions effecting the compatibility of sl and . ! in addition to conditions of
coercivity and monotonicity (or semiboundedness of the variation) for the operator
Y. A collection of these conditions leads to the solvability of (17). Replacement of
the conditions of coercivity and monotonicity of 2 by the condition of strong
monotonicity of this operator (see §4.6) leads to unique solvability of (17) and
continuous dependence of the solution on its right side.

Simply verifiable algebraic criteria are given in Chapter 5 for the conditions of
coercivity, monotonicity, and strong monotonicity for the operator Ycorresponding
to problem (8) to be satisfied. These criteria are given in terms of the reduced
coefficients of (1) and the components of the vector b for an arbitrary (A. b, m, m)-
elliptic equation. However, verification of the conditions responsible for the compa-
tibility of Wand -4 requires specification of more concrete classes of (A, b, m, m)-
elliptic equations. In any case this verification is realized in Part III for the classes of
(A,O, m,m)-elliptic and (A,O, m.m)-parabolic equations; for the first of these
classes the verification is trivial. We emphasize that for (A, 0, m, m)-elliptic and
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(A, 0, m, m)-parabolic equations existence theorems are obtained for the general
boundary value problem (in particular, also problem (8)) all conditions in which are
accompanied by simply verifiable criteria for their validity.

In the case of linear equations with a nonnegative characteristic form of the form
(4) (and of a somewhat more general form), which are automatically (A, b,2,2)-
elliptic equations relative to the matrix A = W'/Z and b = f, there is no need for
conditions of compatibility of Wand 9 (see Theorem 4.6.2). Therefore, the results
obtained in Chapter 5 imply definitive results on the existence of generalized
solutions in the class HZZ (A, fl) of the general boundary value problem for linear
equations with a nonnegative characteristic form of both divergence and nondiver-
gence type. We remark that in [14], [99], [102], [107] and [120] only the "pure"
boundary value problems (the first, second, and third) were investigated with the
required completeness.

One of the central results of Part II is the theorem on solvability of problem (8)
for (A, b)-elliptic equations in the class of regular generalized solutions (see Theorem
6.2.3 and Remark 6.2.4). There are simple examples of (A, b)-elliptic and, in
particular, linear (A, 0)-elliptic equations possessing the required smoothness in a
sufficiently smooth domain 2 C R", n >_ 2, for which problem (8) has no regular
generalized solution, and for these equations it turns out that the following condition
is not satisfied:

Av # 0 on the entire boundary a g. (18)

An example of such an equation is presented in Chapter 6 (see (6.2.11)). The essence
of these examples is that such equations have bounded solutions in SZ with deriva-
tives which tend to cc on approaching those points of the boundary where Av = 0.
Therefore, in studying the question of existence of regular generalized solutions of
(8) it is natural to assume that condition (18) is satisfied. Under this condition
problem (8) assumes the form

-vu=f(x) in12, a=0 on M, (19)

and the integral identity (13) can be satisfied only for all 71 E Co(lb-
To prove this solvability we consider problems of the form (19) for regularized

equations obtained from the given equation by regularization both of the matrix A
and of the reduced coefficients 1", i = 1,...,n. A uniform estimate of the maximum
moduli of solutions and their gradients in 9 is established for solutions of the
regularized problems; this is the key feature in the proof of solvability of problem
(19). In connection with this estimate we go beyond the framework of divergence
(A, b)-elliptic equations and consider nondivergence (A, b)-elliptic equations of the
form

&''(x, u, 'u)uj; - &(x, u, '7u) - b'(x)ux, = 0, (20)

where u; and u,, are the A-derivatives of u of first and second orders respectively,
Vu = (u1, ... , u;, ), the u,,,, i = 1, . , . , n, are the ordinary derivatives of u, and u; is
defined as the derivative of u in the direction of the vector a' defined by the ith row
of the matrix A (if a' = 0 at x, then by definition u; = 0 at this point). We call an
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equation of the form (20) (A. b)-elliptic (strictly (A, b)-elliptic) in 2 if

a"(x,u,q)r(,r1,>_ 0.

r1=A0. CR",xC52.uCR,q=Ap,pCR"I .

(21 )

The divergence (A, b)-elliptic equations of the form (1) considered above are a
special case of nondivergence (A. b)-elliptic equations, since because of condition (2)
differentiation of the first term in (1) leads to equation (20) with a" and & defined
by (6.1.4). In finding the a priori estimate maxu(Iul + Ivul) < M with a constant M
not depending on the ellipticity constant of the equation for sufficiently smooth
solutions of a nondegenerate (A, b)-elliptic equation of the form (20). we thereby
obtain the uniform estimate indicated above for solutions of the regularized prob-
lems approximating (19). In connection with the basic a priori estimate of maxuul pub
for solutions of (20) we make essential use of the results and methods we applied in
studying the Dirichlet problem for nonuniformly elliptic equations in Chapter 1.
After an estimate of maxtt(Iul + IVul) for solutions of regularized equations of the
form (19) has been obtained, these equations can he considered uniformly elliptic
and boundedly nonlinear. Using known results of Ladyzhenskaya and Ural'tseva, we
then establish the existence of solutions of the regularized problems with uniformly
bounded maxn(jul + IVul). From the family of such solutions a sequence is selected
which converges to a regular generalized solution of the original problem (19).

One of the main conditions on the structure of (A, b}-elliptic equations in
Theorem 6.2.3 is condition (6.2.15). It should be mentioned that in the case of
linearity of the equation condition (6.2.15) goes over into one of the conditions (see
(6.2.19)) distinguished by Oleinik in studying the solvability of the first boundary
value problem for linear equations with nonnegative characteristic form. Examples
show (see (6.2.17) and (6.2.20)) that such conditions are due to the essence of the
matter. In Chapter 6 the result is applied to some nonregular variational problems.

A theorem on the existence and uniqueness of a regular generalized solution of
(19) possessing bounded second derivatives in S2 is also established in Chapter 6. In
this connection it is necessary to obtain an a priori estimate of the maximum moduli
of the second derivatives of solutions of (A. b)-elliptic equations of the form (20)
again using the results of Chapter 1 on nonuniformly elliptic equations. In particu-
lar. essential use is here made of local estimates of the gradients of solutions of
(1.1.1) on aS2. In establishing the a priori estimate of the second derivatives there
arise additional strong restrictions on the structure of the equation which make it
almost linear. However, examples show that these restrictions are caused by the
essence of the matter.

The results indicated above on the solvability of (19) in classes of regular
generalized solutions pertain to the case of a sufficiently smooth domain S2. How-
ever, by applying the results of Chapter 2, it is possible in an altogether analogous
way to obtain similar results for (A, b)-parabolic equations in a cylinder Q = S2 x
(TI,T,). Bacause of the limited size of this monograph, we shall not present an
exposition of such results.
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CHAPTER 4
SOME ANALYTIC TOOLS USED IN THE INVESTIGATION
OF SOLVABILITY OF BOUNDARY VALUE PROBLEMS

FOR (A, b)-ELLIPTIC EQUATIONS

§ 1. Generalized A-derivatives

Suppose that in a domain 2 C R", n > 2, there is given a square matrix A =
IIa"(x )Il of order n with elements satisfying the condition

a'' E L`,(S2), m; > 1, i, j = 1,...,n. (1.1)

The matrix A may degenerate on any subset of R. We denote by Ca(S2) the set of
all functions belonging to C'(Sl') (see the basic notation) for any 0' such that
S2' C Q. The mapping

u A,Vu = Y_ a''(x)ux , i = 1,...,n, (1.2)
jcl

can he considered as a linear operator acting from Cia(S2) C Lu(st) into L a(S2),
where m > 1 and L(2) = L"(2) x . X Lm^(I2). We call this operator the
operator of taking the A-gradient. Since in Lia(1) and L a(1) it is possible to
introduce natural topologies, the question of the existence of the weak closure of the
operator of taking the A-gradient is meaningful. We assume that the following
condition is satisfied:

the operator of taking the A-gradient admits weak closure. (1.3)

Condition (1.3) obviously means that if u - 0 weakly in Lia(S2) and AVu - v
weakly in L' (S2), where u Eel (S2), n = 1, 2,..., then v = 0 a. e. in 12.

DEFINITION 1.1. If condition (1.3) is satisfied, we say that a function u E Lu(st)
has a generalized A-gradient AVu E Lia(S2) in 11 if u belongs to the domain of the
weak closure of the operator of taking the A-gradient, and the vector Avu is the
value of that operator at the function u. We denote the components of the vector
AV a by A1V u, ... , u and call them the generalized A-derivatives of u in 0; here
obviously A,vu E Lia(S2), i = 1,...,n.

Thus, if condition (1.3) is satisfied a function u E Lia(2) has a generalized
A-gradient ADu E L .(1) if and only if there exist a sequence u E ja(SZ),

n = 1, 2,..., and a vector-valued function v e L a(f2) such that u,, -- u weakly in
L ' (0) and Avu - v weakly in L a(2); in this case ADu = v.

1CW

LEMMA 1.1. Suppose that condition (1.1) is satisfied, and

a", as"/axe E Li(S2), 1/m + 1/m' = 1, i,j = 1,...,n, (1.4)

where the aa''/axe are ordinary (Sobolev) generalized derivatives of the functions a'1
with respect to x,. Then for any m = (m1,. .. , where m; > 1, i = 1,... , n, the
operator of taking the A -gradient admits weak closure (i.e., condition (1.3) is satisfied).

PROOF. Let (u.), u,, E Cia(2), n = 1,2...., be a sequence such that u,, -> 0
weakly in Li (1) and AVu -+ v weakly in L a(1). Then for all n = 1, 2,...

stu A;prl + aaax''
71 dx = - V71 E Co(S2), (1.5)I I

J IZ
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where Ca(st) denotes the set of all functions in C'(Sl) having compact support in 0.
Passing to the limit as n oo in (1.5), we find that fJtt',ij dr = 0 for all rt E
i = 1....,n, whence it obviously follows that v, = 0 a. e. in 0. i.e.. v = 0
a. e. in Q. This proves Lemma 1.1.

Lemma 1.1 shows that fulfillment of condition (1.3) is ensured by imposing a
certain regularity condition (condition (1.4)) on the elements of the matrix A. It will
be shown below that fulfillment of (1.3) is also ensured by a condition of sufficiently
weak degeneracy of A.

LEMMA 1.2. Suppose that conditions (1.1) and (1.4) are satisr d, and that the
function u E Lf (Q) has a generalized A-gradient Avu E L"'x(9 ;. Then

A,vurldr, V7? E (1(0). i = 1,...,n, (1.6)u A,vr +
ax/

aarl A - - ,I-fn )

where A,Vu is the ith component of the generalized A-gradient of u in U.

PROOF. Let (u,,), u,, e e x(52), n = 1.2,..., be a sequence such that u - u
weakly in Li (1) and Avu -* AVu weakly in L' (2). Passing to the limit as
n - oo in the identities (1.5) written for terms of this sequence, we obtain (1.6).
Lemma 1.2 is proved.

The following converse of Lemma 1.2 holds under conditions on the matrix A
which are somewhat stronger than (1.1) and (1.4).

LEMMA 1.3. Suppose the elements of the matrix A satisfy the condition

a" E Lip(52). i,j = 1,...,n. (1.7)

and that for some functions u E L i,x (52) and v E L°;,(S2 ). nI > 1.

f ( aa'' fnu A,v + arI
rl dr = - b'q e i (1.8)

where the v, a L"' (2) are the components of the vector-valued function v. Then the
1CW

function u e L"' (2) has a generalized A-gradient Avu E L"'(U ). and A v u = v.

PROOF. Since it follows from (1.7) that conditions (1.1) and (1.4) are satisfied,
condition (1.3) is satisfied by Lemma 1.1. We shall prove that then there exists a
sequence { u ), u, E n = 1.2,... , for which the following conditions hold:

u -+ u weakly in L " ' (S0), Avu,, v weakly in (1.9)

We consider the averaging

uh(x) =4 wn(x - v)u(v) dv. h > 0,

xESlh- (sESl:dist(x,a52)>h

of the function u with the infinitely differentiable, normalized kernel

Wh(Z)
- Icnh

I
c"'(Ihl} w(t) = [A(t) fort e [0,1],

10 fort > 1,

(1.10)

(1.11)
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where K,, = a j1, X(r)t` 1 dt, o" is the surface area of the unit ball in R", and the
function A(t) defined on (0,1] satisfies the conditions

A E C°`([O,11), f IA(t)t- 'dt > 0, A(t) > 0,
0

AIA)(1) = 0, k = 0,1,.... (1.12)

It follows from (1.11) and (1.12) that wh(z) E CC(R"), wh(z) = 0 for jzj > h,
wh(z) >_ 0 for,zj < h, and fR° wh(z) dz = 1.

It is obvious that at any point x E Q,, for anyj = 1,...,n,

auh f awh(x -Y)
u(Y) d1' = f

awh(X Y)
u(Y) dy. (1.13)

aX, R axe a aXj

For fixed i E (1,. .. , n) at the point x e 0, we compute the expression

A,Vuh = fua'j(x)
awh

axj
Y)

u(Y) dY fRaij(X)
awh(ayl-Y)

u(Y) dY

S200(y)
awh(XY- Y)

u(Y) dY - f [a''(x) - a'j(Y))
awl,

8y
Y)

dy.
J

(1.14)

By (1.8) with 71 = wh, from (1.14) we obtain

A,VUh = v,(Y)wh(x -y) d3' +f
aa'(Y)

wh(X -Y)u(Y) dYf
R ci

aYj

'ja"(x) - a'j(Y)] awh(ay- Y)
u(Y) dY-f

i

U,h + Jh, (1.15)

where J. can also be written in the form

aa'' j ( 'j ) (1.16i = )
axj

We first prove that A,Duh - v, weakly in L a(9). In view of (1.15) and the
known fact of strong convergence of v,,, to v, in Lia(SZ), for this it suffices to prove
that J. 0 weakly in L"'(0). Suppose that some compact subregion W c (2) in
SE is fixed. We first prove that

lim f J,'1 dx = 0
h-.0 II'

for all r] E CJ((2'). Let h < dist(aU', a(2). Multiplying both sides of (1.16) by
n E and integrating over (2', we obtain

i ij

J,,r1 dx = ax[(_u)i - - +(a`'u)hXdx. (1.17)f fh f
Letting h tend to zero in (1.17) and using the properties of locally integrable
functions, we find that

lim f Jhrldx=0.
h-0 n'
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Since S2' is an arbitrary strictly interior subregion of Sl. to complete the proof of
weak convergence J,, 0 as h 0 in L"'(2) it suffices to verify that the norms
IIA,V u/rll^,.R. are bounded uniformly in h E R ,. Using (1.7), we write

,

2S fS "J.'
2

_WAX - .00.0 qV
fK,,l.,, ar,

,n

+ f dxI f
[a'l(x)-a"(VflaWh(.Y-V)u()')dV

I^r ` l
Illulhll^r.R' ( f dY f hl aWh (ax- )') Ilu(V)ldv

/-I R A,,1 ) /

(1.18)

where K,,(x) is the ball of radius h with center at the point x E S2' and K,, (x) c Q.
To be specific, we suppose that a(t) in (1.11) is chosen in the traditional manner,
i.e..

A(t) =
exp(t2(,2 - l)-1) fort E [0.1).

(1.19)

0 for t = 1.

In view of (1.11) and (1.19) we have

(1.20)

where

w(t) = a(t) fort E [0,1), X(t) = 2t er- A.' 21 (1.21)
(0 fort>1. -t-

It is obvious that the function 11(t) together with the function (1.19) satisfies all the
conditions (1.12). Setting

Wh(`)
t

K

(),

nW
R,

h

Ih I

by (1.11) and (1.19)-(1.21) we obtain

h

Krr _ 0"flx(t )t I dt. (1.22)
I1

From (1.18) and (1.23) we then obtain

IIJhIInr.R' 'IIIIRIhIIm.S2' +IIIRIhllm.32']

(1.23)

(1.24)

where IuL is the average of the function Jul with respect to the new kernel r`a,,. Since
u E and IIIulhll^,.R' ('llull^,.R' IIIUI2,II,,,.S2 c'lluh,,,.,,, from (1.24) we obtain
the estimate IIJhl1^r.R' < c with a constant c not depending on h E R . Thus, J,, 0
weakly in L"' (2), and hence A,Vuh o, weakly in Taking into account
that uh E CM (&2) and u,, u in Lix(St) as h - 0, we conclude that for any
sequence (uh }, where h,, = 0, the following conditions are satisfied: u, u
weakly in L"'(2). and AVuh -+ v weakly in from this it follows that
V E Ul (SZ) is the generalized A-gradient of the function u E Lkx.(S2). Lemma 1.3 is
proved.
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The next proposition follows from the proof of Lemma 1.3.

COROLLARY 1.1. Suppose that condition (1.7) is satisfied, and that the function
u E L"' (2) has a generalized A -gradient A v u E L' (Sl ). Let uh be the average of u
defined by (1.10)-(1.12) and (1.19). Then AVub, AVu weakly in LIa(Sl).

In the special case where the matrix A = Ila''ll is constant in S2 this result can be
strengthened by replacing weak convergence Avuh --' Avu in Li,,(S2) by strong
convergence in the assertion of Corollary 1.1. Indeed, if the matrix A is constant,
then Jh = 0 in 2. From (1.15) and the strong convergence of V,h to v; in Lia(S2),

1, ... , n, we obtain the assertion.
To conclude this section we observe that it is no trouble to define generalized

A-derivatives of any order k > I relative to a square matrix A of order nk defined in
a domain S1 C R".

§2. Generalized limit values of a function on the boundary of a domain

Let Sl be a hounded domain in R", n 3 2. We suppose that in 2 there is given a
square matrix A = lea"(x)II of order n satisfying conditions (1.1) and (1.3) for fixed
m >_ I and m = (mi,...,m"), m; >, 1, i = 1,...,n. Let r be an arbitrary part of the
boundary 4 (in particular, we admit the cases r = 8S2 or r = 0, the empty set).

We denote by H = H,` S2) the completion of the set Co r(S2) in the norm

llull,, =ilullm.a +IlAOullm,n, (2.1)

where IlAvullm.n = Ei IIA,vull,,,,.n. It is obvious that H is a Banach space. In the
case r = 85l the space H is denoted by H = H° m(A, S2), and in the case 1' - 0 by
H = H,,,.m(A, 2).

Let 11 c 812 be an arbitrary set. We assign to each function u E C'(Sl) its value
ul on 11, i.e., we consider the mapping

U - ulf,. (2.2)

The mapping (2.2) can be considered a linear operator with domain contained in
H",,m(A, 17) (with m, m, and A fixed above) and range in L,,(I1). We call this
operator the operator of taking the limit value on 11.

We suppose that for the set 11 the following condition is satisfied:

the operator of taking the limit value on H admits closure. (2.3)

Condition (2.3) obviously means that if u" - 0 in H and unln - p in Vj(II),
where u E 04 n = 1, 2, ... , then p = 0 a.e. on r I.

DEFINITION 2.1. If condition (2.3) is satisfied we say that the function u E
Hn,.m(A, 0) has a generalized limit value uIII on the set 11 if the function u belongs to
the domain of the closure of the operator of taking the limit value on the set 11, and
ul,f is the value of this operator at the function u.

Thus, if condition (2.3) is satisfied a function u c- Hm,m(A,1) has a generalized
limit value on the set H if and only if there exist a sequence u E C'(E!),
n = 1,2,..., and a function p E Ll (II) such that u -+ u in H and unln - p in
L',,x(II); in this case ulf, = T.

We henceforth say that a function u e H,,,.m(A, 0) has a generalized limit value
ul E L i (11) on 11 if there exist a sequence (u ), u,, E C'(D), n = 1, 2,... , and a
function p E LiM(H) such that u,, - u in H.m(A, S2) and uIn - 9) in Lra(H); in
this case ul,I - p.
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The next lemma illustrates the role which generalized limit values on I I c aQ can
play for functions possessing these values.

LEMMA 2.1. Let 0 he a bounded domain in R", n 3 2, of class C'. let a" E W,'(SZ
= 1, ... , n, and suppose that for some subset II e a0 condition (2.3) is satisfied it -till

nr = 2 and m = 2. Then for am' function u E H,.2(A. 9) having a generali:ed limit
value till, E L (Il) the identities

3'i".1
1

4 A'V'I + ax
dx = -f A vu,l c% - f A vuJI1'1 ds

dri E i = 1,...,n.

hold. where v is the unit rector of the inner normal to 4 and C ,tt\11(S2) denotes the
set (if all functions in C' (SZ) equal to 0 in some neighborhood of K2 \ I I (the
neighborhood depends on the function ,1).

PROOF. Let it be a function possessing the properties indicated in the formulation
of the lemma. Then there exists a sequence u,, E C1(SZ), n = 1,2...., such
that u it in H,.2(A. 1) and uJ1, - uJ11 in L1,,,.(0) as it - oo. In view of the
condition a" E i, j = I,...,n. and Sobolev's imbedding theorem we have
A, p = (Av), E L2(11). i = 1, ... , n, so that for each function u,,, it = 1, 2.... ,

41 u A, p + aa'
rt J dx = - ft A, V A - fl

1

A; cls'.
s

V 1 E Co an\I,(S2). i = 1,...,n.

Passing to the limit as n - oo in these identities, we obtain (2.4). Lemma 2.1 is

proved.
We now present sufficient conditions on a matrix A and a set 11 C M2 guarantee-

ing that (2.3) is satisfied.

LEMMA 2.2. Suppose that conditions (1.1) and (1.3) are satisfied, and suppose that for
the matrix A and set II C as2 the following condition holds:

for each point x E int 11 there exist surfaces P,. and P, of
class C2, x (=- P,. C P,. C H, and numbers d and do,
0 c d <do,, such that:

1) the set w, _ (x E R ": x =y + tv(y ), E P,.,. t E
[0, where v(y) is the unit vector of the inner normal to I1
at y, is contained in 0;

2) the elements of A are continuous, while the elements of
A*A, where A* is the adjoins matrix of A. are continuously
differentiable on the set w, ;

3) the vector 4*( y) A(y) v (y) does not lie in the tangent
plane to ass at the pointy for ally E P,
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4) the set xER":x=y+tA*(y)A(y)v(y),yE
P t E (0, do ]) is contained in Slx,);(') and

5) there exists a constant co > 0 such that for any y E

t e10, do] and E R", the inequality JA(y)¢I < (2.5)

to*(y)A(y)v(y))tj holds.
Then the operator of taking the limit value on the set n admits closure, i.e., condition

(2.3) is satisfied.

PROOF, Suppose that the function u E H",,W(A, SZ) and the sequence (u" ), u,, r=
042), n = 1. 2,..., satisfy the conditions u,, -+ u in H and u"It) q) in Lu(ll) as
n --a oo. This implies, in particular, that

U -+ u in H",*(A,S2), u"IH in (2.6)

where m* = min(m, and Hm*(A,S2) = Sl) with m = m# and
m = (rn *, ... , m , ). We note that condition (2.6) is invariant under orthogonal
transformations of the variables x...... x". To prove the lemma it suffices to
establish that (2.6) implies the equality q) = 0 a.e. on int fl. Let xo E int II. Taking
into account that conditions (2.5) and (2.6) are invariant under orthogonal transfor-
mations of the variables x1,...,x",(2) we shall assume that the coordinate system
Ox, ..... x,, is local with respect to the point xo, i.e., the axis Ox,, is directed along
the inner normal v to the surface Px C.Px C H, while the remaining axes are
situated in the plane tangent to P,. at xo. It may be assumed that the surface Pxo is
given in this coordinate system by the equation

Y _ 4(y'), Y' = (y1,...,Y"-t), IY'i < so = const > 0. (2.7)

It follows from (2.5) that 4 belongs to the class C2(Iy'I '< So ).
We consider the mapping defined by

(y', t) x = (xt,...,x"), Iy'I < So, t E [0, do
x, = y, + t[A*(y)A(y)v(y)J,, i = 1,...,n - 1, (2.8)

x,, _ ID(y') + t lA*(Y)A(y)v(Y)l ",

where do = const > 0, v(y) is the unit vector of the inner normal to P.,(, at the point
Y = (y', 4)(y')), and (A*(y)A(y)v(y)), is the ith component of the vector
A*(,v)A(y)v(y), i = 1,...,n. It is obvious that the Jacobian J of the transformation
(2.8) is not equal to 0 at the point (0,...,0), since for (y', t) = (0,0)

ax,/ay; = 8; , j = ],...,n;
(2.9)

ax,,/ay, = 0, j = I,...,n - 1,

(') Since A*Av = Av Av > 0, by condition 3) the vector A*Av always makes an acute angle with the
inner normal to i)t2.

(` ) We remark that by making an orthogonal transformation x = C(x - x,)t we obtain the validity of
conditions of the form (2.5) and (2.6) for the matrix A - AC' and the vector r = Cv, where in verifying
these conditions we in particular take account of the equalities A*Av - v - A*Av .y and AV,.u - Apru.
if E Ow).
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and [A*(0)A(0)v(0)J =JA(0)v(0)12 > 0. Taking into account that (2.5) implies the
continuity of all the first derivatives of the functions x,(v', t), i = 1,...,n, defining
the transformation (2.8), we may assume that the numbers S > 0 and d > 0 are so
small that J > 0 on (Iv'l < S(,) x (0 < t S The transformation (2.8) is then a
diffeomorphism between (f v'J < x (0 < t < and the set wr C (S2).

Let f r= and let _v be a fixed point on P, ° (y ° (y', p(v')): l.vi S
Taking into account that W"1,.([0, do)) - C([0, we have

If(y) + to*(y)A(')v(v)J",lf(y)l"'* < ma

c[fj,.!f (Y + T(A*Av)( v))l
0

+1d01(A*Av)(.v) vf(y + T(A*Av)(v))l»f'dT(2.10)

where c = 2"' max(1, do 1). Writing A*Av Vf in the form Av Avf and using
conditions 2) and 5) of (2.5), we have

if(v)I"'* c,jfd"Jf(y + TA*(y)A(y)v(.v))I"'-dT

+ TA*(v)A(v)v(y))Vf(v +
TA*(!')A(y)v(j'))I»,'dT

(2.11)

where c, depends on c, maxi Iu'ii and the constant c from condition 5) in (2.5).
Integrating (2.11) over P,,,. we obtain

ds , f f Ui1 + JAVJ( ds dT. (2.12)

Taking into account the smoothness of the surface P, and the positivity of the
Jacobian of the transformation (2.8), from (2.12) it is easy to derive the estimate

j Jn»,.ds,(,j
(in +JAVA")')dx. (2.13)

where c, depends on c,, max,,.,,,.A J v4>j and min,,,..1. ,xj,,., J. Setting j= u,,,
n = 1, 2,... , in (2.13), where is the sequence of (2.6). and passing to the limit
as n - oo, we find that qp E and

4
19)1 ds < c, lim f dx = 0. (2.14)

r,.. ',-'x 0,0

Thus, in view of (2.14) and the fact that the point x E int 11 is arbitrary, we
conclude that q) = 0 a.e. on int 11. i.e.. condition (2.5) is satisfied. Lemma 2.2 is
proved.

LEMMA 2.3. Suppose that conditions (1.1) and (1.3) are .satisfied, and suppose that
condition (2.5) holds for the matrix A and the set 11 C 852. Then anv junction
u E H",,m(A, 52) has on 11 a generalized limit value ul,, E L'"X.(11), where m
min(m, m 1, ... , m" ). Moreover, for each point x E i n t 11 there exists a neighborhood
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c II such that

ul ) dx, (2.15)f
lul,,jm,

ds < cf
(lulm.

+
tAVm,

where (x E R": x = y + IA*(y)A(y)v(y), y E Px , t E [0, do]} (see condition
4) in (2.5)) and the constant c does not depend on the function u E Hm.m(A,11). The
value ul is assumed by the function u E Hm m(A, St) in the following sense:

lira f
0

Ju(y +TA*(y)A(y)v(y)) - uln(y)Im*ds = 0. (2.16)
l-. pa.

PROOF. Let u e Hn,,m(A, Il). Then there exists a sequence (un}, u E el(SZ),

n = 1, 2, ... , such that u,, u in H. From the proof of Lemma 2.2 it follows that for
all x E int II we have (see (2.13) with f = un - um, n, m = 1, 2,...)

f l u , , - uml
m,

ds 1< C2 f (I un - uml
m,

+ I Av(un -
um)Im.

dx. (2.17)

Since the right side of (2.17) tends to 0 as n, m - oo, and the point xo E int H is
arbitrary, we conclude that there exists a function 4p E L'a(H) such that u - q' in
L;,x(II ). It then follows from Lemma 2.2 that on H the function u E H has the
generalized limit value uI = q) E Lma(II). Setting now in (2.13) (for any fixed point
x E int II) f = u,,, n = 1, 2, ... , and passing to the limit as n - oo, we obtain
(2.15). We now prove (2.16). Suppose the numbers So > 0 and do > 0 are so small
that (2.8) is a diffeomorphism between (ly'l < So) X (0 < t < do) and 6,,. C 12 (see
the proof of Lemma 2.2). It is obvious that for any f E C'('xo) and any y E Pxu
(y ° (y', 4 (y')): ly'l < 80) we have

If(y + to*(y)A(y)v(y)) -f(y)I < f`j dT
[f(y + TA*(y)A(y)v(y))JjdT-

= f'l A*(y)A(y)v(y) . of(y + TA*(y)A(y)v(y))I d r

= f 1IA(y)v(y) -A(y)vf(y + rA*(y)A(y)v(y))ldT

s c f `IA(y)vf(y + TA*(y)A(y)v(y))ldT, t E(0, do],

(2.18)

where the constant c depends only on maxp la'jl, i, j = 1,...,n. Raising (2.18) to
the power m * and integrating over Px", we obtain

fl lf(y + to*(y)A(y)v(y)) -f(y)Im,ds

c,f'f IA(y)vf(y + TA*(y)A(y)v(y))lm*dsdr, t r= [0, do].
o P, ,

(2.19)

Taking account of the smoothness of the surface Ps", the positivity of the Jacobian J
of the transformation (2.8), and condition 5) of (2.5), we deduce from (2.19) that

fp lf(y + tA*(y)A(y)v(y)) -f(y)Im'ds < c2 f IAVAm'dr, (2.20)
(..o1r
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where =(xER":x=v+TA*(v)A(v)v( v),yEk,,TE[0,11)CaV Cit,
t E (0, d ], and c2 depends on c1, max,,..,vII, min J. and the constant co of
condition 5) in (2.5).

Substituting f = u", n = 1, 2..... into (2.20), we obtain

fr,nIun(y + to*(y)A(y)v(y)) -

c2f AVunlm,

dY, n = 1.2..... (2.21)

From the condition u" - u in H it follows, in particular, that fe, some subsequence
(which we denote again by

lim f I(u" - u)(y + to*(v)A(r)v(v))I ds = 0 for a.e. I E [0, do].
PI 2C

(2.22)

lim f IADu,, - AVuj'"'dx = 0. (2.23)

Moreover, by what has been proved above

lim f - ul,, ds = 0. (2.24)

TheThe equality (2.16) obviously follows from (2.21)-(2.24). Lemma 2.3 is proved. The
following version of Lemmas 2.2 and 2.3 is proved in an entirely similar manner.

LEMMA 2.4. Suppose conditions (1.1) and (1.3) are satisfied, and suppose that for
some set H E a g and matrix A the following conditions hold:

1) the elements of A are continuous in the closure w C Sl of
some n-dimensional neighborhood w of the .set I I C Bd2, and the
elements of A*A are continuously differentiable there;

2) for some number dl, > 0 the set w 1 = (x E R ": x = y +
to*(y)A(y)v(y), y e 11, t o [0, is contained in w C SE;

3) the mapping x=y+tA*(y)A(y)v(y), yEI1, 1e
0, do], i s a homeomorphism between 11 X [0. d ] and w (2'25)

4) the set 11 admits a parametric prescription y - 0(s'),
s' ES C R"-I, where 0 E C2(S) and sup.Ip4' const;

5) the Jacobian J of the transformation (s'. t) -. x, s' E S.
t e [O, do ] defined by the formula x = 0(s') +

s' E S. I E [0, is positive,
and

6) there exists a constant 0 such that, for any y e H.
IE[0,do],and JER".

JA(y);;I < coJA(y + to*(y)A(y)v(y))J.
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Then the operator of taking the limit value on II admits closure, any function
u c- H,,,m(A, Sl) has on fI a generalized limit value uJ11 E L'*(H), where m
min(m, and, moreover,

f lullil",-ds
< cf (Jul"'' +JAVu!"') dx, (2.26)

I I m

where c does not depend on u, and

lim f lu(y + ,rA*(y)A(y)v(y)) - upn(y)Im'as = 0. (2.27)
T-0 II

§3. The regular and singular parts of the boundary a(2

Suppose that a matrix A = JJa"(x)JI satisfies conditions (1.1) and (1.3) in a
domain 52 c R", n >- 2, for some index m = (m1,...,m,), mi 3 1, i = 1,...,n. Let
m>- 1.

DEFINITION 3.1. A set II c asl is called a regular part of the boundary (relative to
the matrix A and the indices m and m) if the operator of taking the limit value on II
defined in §2 admits closure (i.e., condition (2.3) holds for II). A set 9c au is
called a singular part of the boundary 852 (relative to the matrix A and the indices m
and m) if for 9 the following condition is satisfied:

the set is dense in Hm.m(A, 2). (3.1)

If condition (2.3) is satisfied for a set n c: asl, i.e., if lI is a regular part of 852,
then any function in H,°0;m(A, 9) vanishes on 171 in the following generalized sense: if
u E II '(A, 2) and the sequence (u ), u" E C1(0), n = 1, 2,..., converges to u in
the norm (2.1) and, in addition, p in L',,,(II), then necessarily 9) = 0 a.e. on
II. In particular, if a sequence (up,), u" E Co 11(52), n = 1, 2,..., converges to a
function u E C'(S2) in the norm (2.1), then necessarily uJ11 = O.Thus, among smooth
functions in S2 which belong to 9) there are none which do not vanish
identically on H. As was shown above (see (2.5)), the regularity of a set H c 852 is
ensured by the assumption of sufficient smoothness of H and of the matrix A near fI
and the nondegeneracy on IT of the vector Av, where v is the unit vector of the inner
normal to II (i.e., Av # 0 on II). In this case any function u E Hm,m(A, 52) has on H
a generalized limit value u111 E Li(II). Other criteria for the regularity of 11 will be
given in what follows. It is obvious that the fulfillment of condition (2.3) for a set
11 c aS2 implies the validity of the negation of condition (3.1) for H (i.e., a regular
part of 852 is certainly not singular).

If condition (3.1) holds for a set 9c 852, then the negation of condition (2.3)
holds for 9. Indeed, suppose (3.1) is satisfied for 9, and let the sequence { u ),
u E Co.,,,(S2), n = 1, 2,..., converge in H to a function u E C'(0), u * 0, on 9(the
existence of such a sequence follows from (3.1)). Let be the stationary sequence
with u, = u, n = 1, 2,... We set v" = u - u", n = 1, 2,.... It is obvious that v 0
in H, but -uJy, does not tend to zero in LL(9). Thus, condition (2.3) does
not hold for 9. Sufficient conditions for condition (3.1) to hold for a set 9 e 812 are
presented below.
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LEMMA 3.1. Suppose that a set 9 e 8S2 satisfies the following condition:

9 is the union of a finite or countable set of surfaces 9A,
k = 1.2.... , of class C 22 such that 9A n .9, = 0 fork 1,

and there exists a number S > 0 such that for each surface 9A
the following conditions are satisfied:

1) for each S E (0, there exists a surface with boundary
9A s of class C2 containing 94, a tubular half neighborhood of
which wA,t= (xeR":x=y+dv(y).0<d<8,yE9A.5),
where v(y) is the unit vector of the normal to 9A 5 varying
continuous/v along 94.5 and coinciding on 9A with the unit
vector of the unit normal to 4, decomposes the domain Sl into
parts S2 n wA 5 and SZ \ wA.s such that i r) wA 5 n S2 \ WA .8 C

{ x E R": x=y + Sv(y). v (=- 94,5 };

2) there exists constants c1 > 0 and c, > 0 (not depending (3.2)
on k or S) such that w,,s is contained in a c16-neighborhood of
the set 94 in R" (i.e., for any x E w,.8, dist(x, 9A) <
and meas WA.S < c,S;

3) for any point x E w4 8 there exists a unique point
y = y(x)E 914,5 for which dist(x, 94 ) = dist(x,.v);

4)w45nwt5= 0 for anyk #/and all
5)inwA 5 n Slthefunctionsx A,(x)v(v(x)),i = 1,...,n,

satisfy the Holder conditions
j"

,iA,(x)v(y(x)) - A,(x')v(y(x'))J < (',Ix - x'

where a, > 1 /m,, 1 /m, + 1 /m, = 1. i = 1, ... it, and the
constants c3 and a, do not depend on k or 6;

6)A,(v)v(v)=0on 9A.i= 1.... ,n.
Then 9 is a singular part of M.

PROOF. To prove the density of C ,(Sl) in H,,,.m(A.Sl) (see (3.1)) it suffices to
show that for any u E CI(Sl) there is a sequence {u }, u,, E C ,,(Sl), n = 1,2,...,
converging to u in H, since CI(Sl) is dense in H. We shall first assume that k = I in
(3.2). In this case in place of 9, and 915 we use the notation 9 = 9, and 98 = 91.5
We also set w5= {xE52: x=.v+dv(y), ye.9. 0<d<8} and w5,,,,=
w8 \'08/2, 0 < S < 80. We put

0, X E W812

`;5(x) = 2[d(x) - 6/2]/8, x r= 5, (3.3)

1, x e Sl\w5,

where 8 E (0, and d(x) = dist(x, 95) is a function defined on w5. From (3.2)
and the equality Vd(x) = v(y(x)), x E w5, it follows that 5 E and

x E W5/2 U (a\ WS) I

x E W5/,.8
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where y(x) is the point on .8 closest to x. For the chosen function u E Cl(0) we set
u8(x) = It is obvious that u8 E Cp, .(S1). We compute

Ilu - u811,, = I1u(1 - J8)IIm,n + L
IIA1

[ Vu(1 - J8) - u0J81IIm,,a
i-1

of 11

IIuIIm..rt + E IIA,VUIIrnwd + L IIuA10J8IIm,.,e12.e,

where we have noted that (a = 1 outside wa. In view of (3.4), for each i E (1,...,n)
we have

ta/ f IAi(x)v(y(x))Imlu(x)Im'dx. (3.6)

Because of condition 2) in (3.2), for any x E w8/2.8 there is a point z E 911
that dist(x, z) 5 C,6. From conditions 2), 5), and 6) of (3.2) it then follows that

IA,(x)v(y(x))I < c3(c1S)a', i = 1,...,n. (3.7)

Taking further into account that meas,, W8/2.8 5 c28 (see condition 2) of (3.2)), we
obtain

2

s IAi(X)v(y(X))Imlu(.X)Im dx <CSm1(-L+a,+1/m,)=CSmiti, (3.8)
rt/z.rt

where r:, = a, - 1/m' > 0 and the constant c does not depend on 6. From (3.5)-(3.8)
it obviously follows that u8 u in H as S - 0. Choosing an arbitrary sequence
(S ), 8n (=- (0, Sn ), Sn - 0, we conclude that u8, - u in H, where u8. E C0l.9(1)
Thus, is dense in H. Suppose now that k in (3.2) is arbitrary. Taking
condition 4) in (3.2) into account and denoting by dk) the function defined by a
formula of the form (3.3) for the component 9k of 9, we set

fa(x) = f ak)(x). (3.9)
k - 1.2....

We observe that at each fixed point x E S2 only one of the factors in (3.9) can be
different from 1. It is obvious that D8 E and ('a = I in SZ \ U k-1.2....wk.8
where the sets wk.8 are defined in a manner analogous to the sets w8 (see (3.2)). For a
fixed function u E Co,(S2) we set

ua(x) = u(x)Wx). (3.10)

It is obvious that u8 E Arguing exactly as in the case k = 1, we establish
that

us - u in H, (3.11)

whence it follows that C .(S2) is dense in H. Lemma 3.1 is proved.

COROLLARY 3.1. If the conditions of Lemma 3.1 are satisfied, the spaces S2)

and 11,,.m(A, fl) coincide. In particular, the set 0(S2) is (densely) contained in
()..4Hm.m(A, 0).

PROOF. Assertions of Corollary 3.1 follow in an obvious way from the density of
C ,(S1) in H10 S2) and the definition of the spaces H..m(A, S2).
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§4. Some imbedding theorems

In this section we present anisotropic analogues of some imbedding theorems of
S. L. Sobolev and also some multiplicative inequalities first established by V. P. Win
[57). For convenience of the reader a brief presentation of the proofs of these results
is given; the results are established within a framework sufficient for our needs.

The following result, related to the question of equivalent norms in the Space
Wr1(92). is well known (see, for example. (81).

LEMMA 4.1. Let 0 be a bounded strongly Lipschitz domain in R ", n : 2. Then for
ant' p >- I and any function u E Wr' (S2 )

1jullrs1 < c'1( 11ur,11r,u + l uh,u , (4.1)

where c1 depends only on n, p, and Q. Suppose further that f' is a subset of positive
(n - 1)-dimensional measure on M. Then for any p ' I and any function u E Wt' (0)

11u!'r.st c,I I1u,,j11,.12 +,l.luldsl. (4.2)
r t t

where c, depends only on n, p. 0, and I'.

We denote by Wr,'q(52). p>- 1, q = q, -> 1. the Banach space of
functions u E Lr(1) having generalized derivatives u, E L"(S2). i = 1,...,n. with
the norm

i=1

(4.3)

For the same indices p and q as in (4.3) we denote by Hr, q(S2) the closure of ('(f )
in the norm (4.3) (see the basic notation). If the domain 2 is strongly Lipschitz. then
the spaces Hp.q(a) and Wt,1q(2) are known to coincide.

We denote by Hq(S2), q = (q1,...,q, ), q, 3 1. the closure of C'(Q) in
the norm

Ilull%talszl = Ilulll,u + Il Vullv.,t. (4.4)

From what has been said above it follows that for a strongly Lipschitz domain 2 the
space Hq(2) coincides with W,' q(0). From the imbedding theorems established
below it follows that 'q(1) coincides with W,'g(R) for all p c- 11, 11. where 1 is a
certain limit index defined as a function of q and n.

LEMMA 4.2. Suppose numbers q, >- I. i = I.....n. and s >- 1 are fixed, and that for
some a E (0,11 the index l satisfies the conditions

l a 1 -a
7=7+ -s'

n f o r -L> 1, n >,2,E,_1 1/q, - 1 ,3t q,

I'
IIE(2,+x) for =1,tt>- 2,

,=1 q,

% e (2, + oo] for - < 1, n > 2 and for n = 1. (4.5)
,_1 q,
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Then for any function u E (2), Sl C R", n > 1,

Ilulli.u < CIlouliq.nllulls.a

99

where II V uIIq,n = E,"-, II u.,, II ti,.a and the constant c in (4.6) depends only on n, q, s, and
a f o r E; l /q, > Land on n, 1, s, a and St for E; 1/qi < 1.

PROOF. For any function u e eo(S2)

llulli.n < llulli nllull.,.n°, a/! + (1 - a)/s. (4.7)

We now use the estimate

I/n

1141.0 < (

n

II hi) II V UIIq.n, (4.8)
i=I

where h, = I + I/q,, 1/q, + l/q, = 1, i = 1,... ,n. (4.8) follows, for example, from
the arguments of [87]. It is a consequence of the inequality

n
I/tn I)

n-I
"(f II lull dx) fR',-I i-I R

a ui

axi
dx), (4.9)

which is valid for any functions u, E Co(R"), i = 1,...,n (see [87], p. 25). Indeed, if,
for example, n 3 2 and E'I I/qi > 1, then, considering the function u to be extended
by zero to all of R", setting ui = I ul ti,, i = 1,... , n, and taking into account that
E; hi = l(n - 1), from (4.9) we deduce that

i f lul'dx)"`I < Uh'f
llq;

.R i-I N'

au
axi

dx. (4.10)

Applying the Hdlder inequality and then raising both sides of the inequality so
obtained to the power 1/!(n - 1), we obtain

n I/l(n-1)
llulll.n < (1i h.) Ilull! '1l1vull9oi(n-II. (4.11)

Taking into account that I - (E; 1/q,)/(n - 1) = n/1(n - 1), from (4.11) we de-
duce (4.8). In the case E; I/qi < 1, n 3 2, (4.8) is established in a similar way.
Substituting into (4.7) in place of Ilulll,u the right side of (4.8), we obtain (4.6) with a
constant c = (fI; hi)°/". This proves Lemma 4.2 for n >, 2. In the case n - 1
inequality (4.6) obviously follows from (4.7) and the estimate

mRxlul<fRldxldx, t/uEc0(R).

Thus, Lemma 4.2 may be considered proved.
REMARK 4.1. Under the conditions of Lemma 4.2,

/ It

i-I
x,llq n)llulls.a . (4.6')

Indeed, together with (4.8) we obviously also have
It

llulli.n < II hi/"ll ux,lly''n (4.8')
1-1

Then (4.6') follows from (4.7) and (4.8').
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REMARK 4.2. We denote by Hq(S2) the closure of C1;(S2) in the norm II '

From Lemma 4.2 it then follows easily that if condition (4.5) is satisfied any
function u E HH(SI) belongs to L'(I) and satisfies (4.6).

LEMMA 4.3. Suppose the bounded, strongly Lipschitz domain S2 C R". n ; 2,
satisfies the weak I /X-horn condition ([8], §8) for X _ (111..... A,,). A, = I -
L'_ 11/y+n/q,> 0. q, > 1,i= I.....n.Let

n Y > 1 , ! E (2, oo) f o r E
1

= 1,for
=I q; =I q;

! E (2, oo] f o r E
I

< 1.
,=1 q,

(4.12)

Then there is the imbedding Hq(S2) -+ L'(S2 ). In particular, for any function u E Hq(S2 )

I141.S2 , cllullitylt:I, (4.13)

lrhere the constant c depends only on n, 1, q, and Q. If the indices i and q satisfy
condition (4.5) for some a E (0.1) and s E [ 1, !) . then there is a compact imbedding
q(Hq(S2) in L'(1), and the inequality

IIuII,.u c1lalllta(d2111u11Vu E Hq(52). (4.14)

holds with the constant c depending only on n, q. a, s, and Q.

PROOF. Applying a familiar method (see [8], [57] and 1871). we extend the given
function u E k(Q) to a larger domain ft Z) 0 in such a way that the extended
function u belongs to Hq(f2) and satisfies the inequalities

llullit.lt) 5 c'IIIulli4inl. Ilull,.it < c,llull'.u (4.15)

with constants c1 and c, not depending on u. Using Remark 4.2 and the compactness
of the imbedding of HI(SZ) in L1(S2), it is easy to establish Lemma 4.3.

Let F be a fixed subset of positive (n-1)-dimensional surface measure on c3S2. We
denote by J-I '(S2) the closure of the set C11,r(S2) (see the basic notation) in the norm

Ilulltta: 111) =Iloullq.u. (4.16)

From Lemma 4.1 (see (4.2)) it follows that (4.16) actually defines a norm and that
this norm is equivalent to IluiIw.4..(fu). where q. = min(q......q,,). It is obvious
that Hq r(1) c Hq(S2). We_remark that in the case r = M the space
coincides with the space Hq(2) defined in Remark 4.2. We further denote by
Hr',

4

(52) the closure of C1,-(l) in the norm (4.3). It follows from the next lemma
that in the case of a strongly Lipschitz domain S2 the space H'`r(S2) is isomorphic to
ifr'q (2) for all p where ! is the same limit index as in Lemma 4.3.

LEMMA 4.4. Suppose S2 satisfies the same conditions as in Lemma 4.3, and let the
index ! he defined by (4.12). Then there is the imbedding W ,)-l-(2) L'(S2). In
particular. for any function u E

IluIIi.n , clloallq.I2. (4.17)

where the constant c depends on n, 1, q, and Q. If the indices I and q satisfy (4.5) for
some a r= (0,1) ands E [1, !) , then there is a compact imbedding of in L'(S2 ),
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and

llullt,n s

c depends on n, 1, q, s, and S2. In the case 1' E 8S2 the constants in
(4.17) and (4.18) do not depend on 2.

PROOF. Lemma 4.4 follows in an obvious way from Lemmas 4.3 and 4.1.
REMARK 4.3. Whenever imbeddings of I7r(S2) (in particular 11 (S1) _- Hq(Sl)) in

L'(S2) or L`(S2) are used in the sequel, it is implicitly assumed that the domain S2
satisfies the weak 1/A-horn condition ([8], §8), where

"
(A1.....A"), A, = 1 - E 1/qj + n/q1 > 0, q1 > 1, i = 1,...,n. (4.19)

i-1

LEMMA 4.5. Let 0 be a bounded, strongly Lipschitz domain in R", n >

Hq(2) -- L'(8S2),

2. Then

(4.20)

where the index r >- I is determined from the relations

(n - 1)/r = n/q. - 1, if q. = min(g1,...,q") < n,
(4.21)

r E [1, + oo) for q, > n.

PROOF. Lemma 4.5 follows from the imbedding Hq(S2) - W, '.(Q) and Sobolev's
imbedding theorem.

LEMMA 4.6. Let 12 c R", n >- 1, be a bounded, strongly Lipschitz domain, and let
y c 8S2 be a Lebesgue-measurable set on 8S2 with either meas"_ I y > 0 or y - 0. Let
the functions 0A (x), k = 1, 2,... , form an orthonormal basis in L2(SZ), and suppose
that the indices q1, ... , q", q; >, 1, i = 1,... , n, satisfy the condition

1 n+2< for n>2,
qj 2

ensuring compactness of the imbedding in L2(S2). Then for any e > 0 there
is a number N, such that for any function u c-

N, 1/2

11u112.o < (u,
Ok)2

+ ellullH (Q), (4.22)
A-1

where the number Nr does not depend on u.

PROOF. Condition (4.21) can be rewritten in the form

1 > 2 I- > I , n>,2, (4.23)
;_I q;

where 1 is defined as a function of q and n in (4.5). From Lemma 4.3 with s = 1,
a = 1/2(1 - I/!)-' E (0, 1) and / = 2 it then actually follows that the imbedding

L2(S2) is compact. The remainder of the proof of Lemma 4.6 is the same
as that of Lemma 6.1 of [80] (Chapter V, §6), where the case q = (q,...,q) is
considered.
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§5. Some imbedding theorems for functions
depending on time

In this section we consider functions depending on the independent variables x
and t. where x = (x,.....x,,) and t E R. The variables x1...... are called the
spatial variables, and the variable i is called the time. We denote by where
p> 1 and T1. 1"I C- R, the Banach space
of all measurable functions in Q with norm

I,

II fr' I f tlul dx ! dt (5.1)

In particular, for p = p the space L coincides with LI'(t ).

LEMMA 5.1. If a function u c- L`,q,,(Q) t, then u E L"",,(Q) and

II UHP.p..Q < (5.2)

provided that

1/p = K/q +(1 - K)/S, I/PII = K/qo +(I - K)/s,,, K E [0.11. (5.3)

PROOF. Lemma 5.1 is a well-known fact which is established by twofold applica-
tion of Holder's inequality.

We denote by Wrr where p > 1. p11 > 1. q = (q1..... q,, ). q1

(q,),,. ..,q,,,,). q, > 1 and q,,, > 1, i = I.....n. the Banach space with elements which
are functions u E having generalized spatial derivatives it, r=- Lq,.q..,(Q)
(in the sense of Sobolev), i and the norm of the form

I1 ullWP.l'oV.WiIQ1 IlullP n,.Q +IIoa))q.q,.Q. (5.4)

where

,-1

In particular. for p = p and q = q we denote the corresponding space by W; 4 (Q ).
If the base 9 of the cylinder Q is a bounded, strongly Lipschitz domain in R". then
W

p :aq,(Q) coincides with the closure of C'(Q) in the norm (5.4). We denote the
latter space by HP.p,,:q.q,,(Q)

Let r = y x (T, T,), y C 4, where we henceforth always assume that either
I y > 0 or y = 0. We denote by IIq.q,,(Q) the closure of the set C of all

functions in C'(Q) which are equal to 0 outside some n-dimensional neighborhood
of r in the norm

fla)Itta..,IQ, = Il u))z.x.Q + II (5.5)

where IIu112.x.Q = esssup,E(r,.r,j Hullz.. In the case y = M we denote this Banach
space by (Q), while in the case y = 0 we denote it by It is obvious
that Hgq (Q) coincides with H,.x:q,q.,(Q). From the imbedding theorems

presented below it will follow that H`gq (Q) is imbedded in H1, p,,.qg (Q) for
particular pairs of indices p, Pn

In the case q = q we denote H'g',q,(Q) by Analogous simplifications of
the notation for spaces connected with "double norms" of the type (5.1) will be used
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below without special mention. For example, for p = po the space Hp,po;q,gn(Q) is
denoted by Hp.q.q (Q), etc.

LEMMA 5.2. Suppose that numbers qi >, 1, qoi >, 1, i = 1,...,n, p E [1, +oo],
P E 11, + oc]. r E [1, + oo] and ro E [1, + oo] are fixed, and suppose that for any
a E [0, 1 J and $ E [0, 1] the indices l and to satisfy the conditions

1 - a + (1 - a)i6 + (1 - a)(1 - )
1 l p r

1 = a + (1-a)$+(1-a)(1-13)
to to Po ro

n
n for 1 >1,n>, 2,

E (2, + oo) for 1 = 1, n > 2, (5.6)
qi

1E(2,+o0] for F 1 <1,n>- 2 and 1o=n for n=l.
,_I q, q0;

Then for any function u E Gi.i)nx(T,,T,)(Q)
a (1-a)$ (I-a)(I-$)

{{u{{1.1,,.Q (5.7)

where c depends only on n, q, qo, a, and S for E; 1/q, > I and on n, 1, lo, a, i6, and Sl
for E; 1 /q; < 1.

PROOF. Let u E Cj,,)nx(TT,)(Q). In view of Remark 4.1, for all t E [TI, T2]
inequality (4.6) holds for some s >, 1. We raise both sides of this inequality to the
power to and integrate with respect to t from TI to T2. Applying also the inequality

{luI{.,.n 5 {luI{v.nllu{{r.nft, s= p+ 1 r, 13 E [0,1], (5.8)

we then obtain

T7 -a)in
u i,n dt c s,n dt

fT{I
{{/u < fT 1111u-,

l{gr(pn)11U11('

TI T, ri-II

C

fTT
I tl 1

ux,{Iq,na)IIuiIQ,na)QInIIullr.D

fi)FOdt. (5.9)

Applying the Holder inequality` to the integral on the right side of (5.9), we obtain an
upper bound for it in terms of

( r
Il l

(

fT
I{ux,y,nP,dt)V.

I T1 \ 1

(5.10)

for any µ;30,i=1,...^P>-0and a>, 0,Elµi+v+a=1. We choose µi, v,
and a so that alo/nµi = q01, i = 1,...,n, (1 - a)(310/v = po and (1 - a)(1 - #)/a
= ro. From this we find that s, = alo/ngoi, i = 1,...,n, v = (1 - a)$lo/po, and
a = (1 - a)(l - $)/ro. It is obvious that the values of µi, v, and a thus found are
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nonnegative, and from (5.6) it follows that E; µ, + v + a = 1. Thus, it was legitimate
to apply the Holder inequality. The estimate (5.7) obviously follows from (5.9) and
(5.10) with Young's inequality taken into account. Lemma 5.2 is proved.

COROLLARY 5.1. Let the numbers q, >, 1 and q,), 3 1, i = I,...,n, he fixed, and
suppose that for some a E [0.1] the indices l and lp satisfy the conditions

1/1 = a/1 +(I - a)/2, 1/l,) = a/1,), (5.11)

where 1 and to are defined in (5.6). Then for any function u E uX(T,

IIUII/./(.Q cII VUIIq,q,,.Q11Ull2.W Q < dull uloq,(Q), (5.12)

where c depends only on n, q, q0, and a in the case E,' 1/q, > I and on n, a. and
52 in the case E,' 1 /q, S I .

PROOF. Corollary 5.1 is a special case of Lemma 5.2 with ,8 = 0, r = 2 and
r = +oo.

COROLLARY 5.2. 1) Suppose that for fixed q, >_ 1 and q,), 3 1, i = 1,... n, for some
a E [0,1 ] and /3 E [0,1 ] the indices I and !o satisfy the conditions

1/l=a/l+(I -a)/2,
1 and to are the same as in (5.6). Then

a (l -*)# (I-a)O-p)
llUll/./u.Q < llall2..Q . VU E

Cp,.;)Ux(T,.T.1(0).
(5.14)

2) If

I/1 = a/I +(1 - a)/2, 1/l,) = a/l +(I - a))B/2,
a E [ 0 , 1 ] , $ E [0,1],

where 1 and 1. are the same as in (5.6), then

(5.15)

Ilull,./,,.Q <
clloully.q,,.QIIUiI2.Q°)allull2. Q1 K) VU E c;.ac:x(T,.T,>(Q) (5.16)

3) If

1/1 = a/l'+(1 - a)/2, 1/l = a/1() +(1 - a)/2, a r=- [0, 11. (5.17)

where 1 and are the same as in (5.6), then

IIVUII/./,,.Q < CIIVUIIgAn.QlJUll2.x.2. VU E CO.i)ax(T,.T.)(Q) (5.18)

For E' 1/q, > I the constants in (5.14), (5.16), and (5.18) depend on n, 1, 1,), a, and
/3, while for E. 1/q, < I they further depend on S1 as well.

PROOF. Corollary 5.2 distinguishes a number of special cases of Lemma 5.2: part 1)
corresponds to the case p = 2, po = 1, r = 2, r0 = + oo; part 3) corresponds to the
case/3= +oo.

LEMMA 5.3. Let Q = Sl X (Tl, T2) be a cylinder with a hounded, strongly Lipschitz
domain SZ as its base, and let t = y X (T1, T2), y e 4, where either meas,, , y > 0 or
y = 0. Let the numbers q, 3 1 and q01 3 1, i = l , ... , n, be fixed, and suppose that
the indices l and l0 satisfy conditions (5.11) for some a e [0, 1]. Suppose Sl satisfies the
strong I/A-horn condition ([8], §8) for X of the form (4.19). Then there is the imbedding
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Yq.q ,(Q) -> L1 ' (Q ), and for any function u E Irq,q (Q) inequalities of the form (5.12)
hold with a constant c depending on n, 1, 10, q, q0, and Q. If instead of the indices 1 and
I indices l and 1 are considered which satisfy conditions (5.13) for some a E (0,1) and

E (0, 1), then for any e > 0
CiE-5{{u{{2,1,Q. (5.19)

If instead of (5.13) conditions (5.15) hold for the indices l and 10 (for some a E (0,1)
and (3 E (0, 1)), then for any e > 0

{{u{{r.1 ,Q < E{{u{{14.(Q) +
C2E-'{{u{{2.Q

(5.20)

The constants c, and c2 in (5.19) and (5.20) depend only on n, 1, 10, a, tg and 0,(3) while
A > 0 depends only on a and P. In the case r = 8S2 X (T1, T2) and Ei1/q; > 1 the
constants c, and c2 in the above inequalities do not depend on Q.

PROOF. Let u e Co.r(S2). We extend this function to the set 1Z X (T1, T2),

D 0, in such a way that the extended function u belongs to Co.anx(T12T2)(Q) and
satisfies the inequalities

{{of,{{q.f1 < c0({{ou{{q.Q +{{u{{1.Q), {{u{{2,0 < Co{{u{{2,0, t E [T1, T2], (5.21)

where co depends only on SZ and q. This extension can be realized by using the
methods of [8], [57] and [87], for example. From Corollary 5.1 with (5.21) taken into
account we then obtain

{{u{{I.I,,.Q < c{{u{{n..,(Q), du E Co.r(Q). (5.22)

The first part of Lemma 5.3 follows easily from (5.22). If now 1 and 10 satisfy
conditions (5.13), then by case 1) of Corollary 5.2 for the function f4 we have

{{u{{a1 .Q < c{{
Ql-s>{{u{{Z.I.Q(5.23)

where a, f e (0, 1). Applying Young's inequality, we find that for any e > 0

{{u{{t.t,,.Q < E[{{ou{{gA0.Q +{{u{{2.oo.Q] + CE-a{{u{{2,1.Q, (5.24)

where A [1 - (B(1 - a)]/(1 - a)#. Using (5.21), we easily obtain (5.19). Assum-
ing that the indices 1 and 10 satisfy (5.15), the estimate (5.20) is established in a
similar way. Lemma 5.3 is proved.

REMARK 5.1. It is obvious that conditions (5.11) on the indices 1 and l0 are
obtained from (5.15) for P = 0. In order that the indices 1 and 10 in (5.15) (in
particular, the indices 1 and l0 in (5.11)) satisfy the inequalities 1 > 2 and 10 > 2
11 > 2 and 10 > 2] it is necessary and sufficient that the following conditions hold:

1 > 2 for E qr > 1, n >, 2, !0 + (1 2a)p < 2 , a, . [0,1]

I1>2 for
1

>1,n>2,
lL , _ I q;

a E [0,1]I.

The assertion follows in an obvious way from (5.15) and (5.11).

(5.25)

(') It is obvious that an inequality of the form (5.20) follows from (5.19). but in this case the constant c2
in (520) also depends on T2 - T1.
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REMARK 5.2. Lemma 5.3 implies, in particular, the following results.
1. There is the imbedding

(Q)-'L1(Q), (5.26)

where ! and ( are defined in (5.6). and

IIUIII.Q . c-(Ilu)2.x.Q +II VUIIq.q,,.(,). VU E H .,' (Q), (5.27)

where c = c(n, q, S2) for E; 1/q, > 1 and c = c(n, q, 1. %,,, 2) for E;'] q, 1. In

particular. for q = q the index l in (5.26) is determined by the formula ! _
(n + 2)/Ei 1/q.

2. For any index / that satisfies for some $ E (0. 1) the condition

1 (1/2 - $)(1/7 - 1/2) 1

/ 1/2 - 8 - 1/1 + 1/1 + 2 , (5.28)

and for every e > 0.

IIUII,,Q , EIIUIIa,.,,,(tn + c,e-" IIUII2.,.Q, VU E (5.29)

If, however, the index / satisfies the condition

1 _ (1 - $)(1/! - 1/2)
+ 1 . E (0, 1(5.30)

! 2

then for every e > 0

('2e AIIuII-.41, VU E / ggo(Q). (5.31)

The constants e, and c, in (5.29) and (5.31) depend only on it, 1. %,,, P. and Q. while
A > 0 depends only on S. In the case r = au x (T,. T2) and E'1/q, > I the
constants c, and c, do not depend on U. We note further that l >- 2 (1 >- 2) if and
only i f !>-2 for E1/q, > 1 . n>-2. and 1 > 2 ( 1 > 2) if and only if % > 2 for

1/q,>1.n>- 2.

LEMMA 5.4. Let Q = 0 x IT,, TT) be a cvc/finder with a hounded, strongly Lipschit_
domain SZ C R" as base of the cylinder Q. Then for am p. p and q. q,,, where p -> 1.

pu >- 1. q = q0 = (g01,....g0,,), q, % 1 and q,,, >- 1. i = 1.....n. there is
the imbedding

Hr,pj,:q.wjQ) -' VIM x(T1.7 )). (5.32)

PROOF. (5.32) is obtained from the known imbeddings

H,,.p.,:q.qjQ) - W1'0(Q) - L'(aIl x(T,,T,)).

REMARK 5.3. Whenever imbeddings of !i`y.4",(Q) in L'''--(Q) or are used in
the sequel, it is implicitly assumed that the domain 2 lying in the base of the
cylinder Q satisfies the strong 1/'A-horn condition for A of the form (4.19).

§6. General operator equations in a Banach space

In this section X and Y denote real, separable Banach spaces. We assume that Y
and X are reflexive and Y -, X, where this imbedding is not only continuous but
also dense. Let X* and Y* be the dual spaces of X and Y respectively. From the
preceding conditions it follows that X* Y*, and this imbedding is also not only
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continuous but dense. The inner product (duality) between X and X* and also
between Y and Y* we denote by ( , ).

We consider an operator 2: X -+ Y* (nonlinear, in general). We call this operator
locally coercive if there exists a number p > 0 such that (Yu, u) > 0 for all u E Y,

Ilullx = P.
We call an operator2: X Y* coercive if

lim ((2u, u)/Ilullx) = + 00. (6.1)
uEY.1Iuf1x- +00

We say that an operator 2: X -, Y* has semibounded variation if for each p > 0,
for any u, v E Y such that Ilullx < p and IIvjIx < P,

(2u - 2v, u - v) >_ -y(p,1ju - vlIX), (6.2)

where y(p, T) is a continuous, nonnegative function satisfying the condition

hm (Y(p, ET)/E) = 0, VP >_ 0, VT > 0, (6.3)
f -+ t i)

while the norm II ' IIx is compact relative to 11 ' Ilx, i.e., such that from a sequence
( uy) bounded in the norm II '

11x it is possible to select a subsequence which
converges to u in the norm II ' Il x

An operator2': X - Y* is called monotone (strictly monotone) if

(.8u-2u,u-v) 30, Vu,vE Y
(6 4).[(2u-2'v,u-u) >0, Vu,vE Y,u0v].

An operator 2: X Y* is called uniformly monotone (strongly monotone) if for
any u, v E Y

(.Sou - Pv, u - v) >' Y(llu - vllx)
(6.5)

(Yu-.'v,u-v)>' 8(Ilu-vllx)llu-vjjx1,
where -y(p) is a continuous, strictly increasing function on [0, + oo) which is equal
to 0 for p = 0, and 8(p) is a continuous, nondecreasing function equal to 0 only at
p = 0 and such that 8(p) + oo asp -, + oo.

It is obvious that for an operator .: X - Y* strong monotonicity implies
uniform monotonicity, uniform monotonicity implies strict monotonicity, and strict
monotonicity implies monotonicity; monotonicity implies that the operator has
semibounded variation. The definitions given above are well known in the special
case where X = Y. Below we study operator equations of the form Yu - F, where
.9z"E Y*, and, in particular.Pu = 0. We present first of all the well-known lemma on
the acute angle (see, for example [1451) which will be used in the proof of solvability
of equations2u = F.

Let 9,, be an n-dimensional vector space. In 9 we introduce a norm Ilvll and an
inner product v w, where v, w E 9,,. Let jvl denote the norm in 9 generated by this
inner product in 9,,. Then there exist positive constants cl and c2 such that c111v11

IvI < c211vII for all v r= 9,,. Let T be a continuous transformation in 9,,.

LEMMA 6.1 (on the acute angle). Suppose that there exists a number p > 0 such that
Tv v >, 0 for all v c- 9,,, 11vll - p. Then there exists at least one element v r= 9 such
that IIv11 P and Tv = 0.
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In order to formulate existence theorems for the equations indicated above, we
make some further assumptions. We suppose that in addition to the spaces X and Y
there is given a third real, separable, reflexive space H and that the following
condition is satisfied:

there exists a set N, which is contained and dense in each of

the spaces 1'. X. and H. such that < 1-1 llul1s 5 c,l1ul1, (6.6)
for all u C 91, where the constants c1 and c, do not depend on
u C- 91'.

Condition (6.6) implies the imbeddings H* X* -+ Y*. The duality between H
and Il* we denote in the same way as that between X and X*, i.e., by (- . ). We
further suppose that Y can be identified with some (algebraic) subspace in H. and
Y H. Suppose there are given operatorss/: X H* and .qf: X Y*. We assume

that the operator 2': X Y* satisfies the condition

-°_ .s71 + 9, where say: X - H* is bounded and demicontinu-
ous.(4) and9: X Y* is linear and continuous. (6.7)

We denote by V the following subspace of X:

V=(uEX:Mu(=- ll*). (6.8)

Suppose that the following condition is satisfied:

the restriction of R: X --> Y* to the set V n Y C X is a
bounded linear operator from (V n Y) c Y into X*. (6.9)

We suppose finally that the following conditions arc satisfied:

the set V n Y is dense in X. (6.10)

and

the function a - (Rv, v), v E V, is continuous in the norm II' 11. %.. (6.11)

THEOREM 6.1. Suppose that conditions (6.6). (6.7) and (6.9)-(6.11) are satisfied, and
that the operator P: X -, Y* is locally coercive and has sentihounded variation. Then
the equation 2'u = 0 has at least one solution u E V.

PROOF. It is obvious that there exists an expanding sequence of finite-dimensional
subspaces 9v of dimension N = 1, 2,.... contained in Y and such that U 9ti. is
dense in Y and U i (9, n V) is dense in Y n V in the norm II ' II,.. Then U
is dense in X and in H. In each 9N we introduce the norm lull = (lull r and an inner
product u u, where u, n E 9N. Let be the norm in 9, generated by this inner
product. In 9,v we consider the transformation 2's, defined by 2'vu = yul,,
u E 9v, where 2'ul,, is the restriction of Yu to 9s,.. It is obvious that 2',u v

= (Pu, v) for all u, v E 9N. It follows from (6.7) that the transformation P1, is
continuous. From the condition of local coerciveness of the operator P: X - Y*
and Lemma 6.1 it follows that for some p > 0 there exists at least one element

(4) We recall that an operator T: 81 - B, (where 8, and 8, are Banach spaces) is called hounded if any
set hounded in 8, is mapped by this operator into a set bounded in 8,. An operator T: 81 - 8, is called
derrucoarnruous if it is continuous from 8, with the strong topology to 8, with the weak topology.
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u% E oN c Y c X such that

Ilu,vIIx < P, N = 1,2,..., (6.12)

and

(PUN, 1) ° 0, Vt; e gN, N = 1, 2,.... (6.13)

We consider a sequence (UN ), UN E 9N c Y c X, N = 1, 2,..., satisfying (6.12)
and (6.13). Since X is reflexive, it is possible to extract from (UN) a subsequence
which converges weakly in X to an element u e X. Taking into account the
reflexivity of the space H*, the boundedness of the operator V: X H* and the
continuity of .: X -i Y*, we conclude that from this subsequence it is possible to
extract a new subsequence (for which we preserve the notation of the original
sequence) such that

sW us, f weakly in H*, .9u,, - Ru weakly in Y*, (6.14)

wheref is an element of H*. It obviously follows from (6.13) and (6.14) that

(f , ) + (,q u, i) = 0, Vt U gN. (6.15)
N-I

Since U x 9v, is dense in Y and in H, (6.15) makes it possible to identify .iu with
the element -f E H*. Therefore, u r= V and

(f.j)+(Bu,j) =0, VieH,VjeX. (6.16)

We now use the condition that the operator 4°: X - Y* has semibounded
variation. We fix an index N, and we suppose that l; E gN n V. Then (see (6.2))

(PuN - Pi, UN - ) % -Y(P, IfuN - f W 1 (6.17)

where p = sup N-1 , .IIUNIIX + IIjIfX. Subtracting from (6.17) the equality
( PUN, UN - ) _ 0, which follows from (6.13), we obtain

l-(Sli,U,N-S) (. tt,UN-S) %-Y(P,II1N-iNI Vie VngN.
(6.18)

Taking into account that by (6.9) R£ e- X* for all i e gN n V, and also taking
account of the weak convergence uN - u in X, the properties of the function y, and
the compactness of the norm II - II'x relative to II - II x, we deduce from (6.18) that for
alICE Ui V)

U - £) - (Ri, u - l:) 3 -Y(P, 1lu - (6.19)

Taking into account the density of U ' (gN It V) in (Y n V) c Y, the imbeddings
Y X and H* - X*, condition (6.9), and the properties of the function y, it is easy
to prove that (6.19) also holds for all j e Y n V. Adding (6.19) to an equality of the
form (6.16) with i replaced by u - t, where i e Y n V, we find that for all
ieYnV

(f- ,u - 0 +(-V(u-0,u- )3-Y(P,Hu-jjjV. (6.20)

Because of conditions (6.10) and (6.11) for the element u e V we have found and
a fixed element t e V there exists a sequence E Y It V, n = 1,2,..., such
that -+ in X and

(*u- ),u-f -' (R(u- ),U-).
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From this and (6.20), taking the properties of the operatorsar: X - H*, the function
y. and the norm II ' Il'x into account, it follows easily that (6.20) holds also for all

E V, while for p on the right side of (6.20) it is possible to take

p = sup IIu.NIL.V + sup UJI 'V,
1.2._. -I.2....

where { } converges to in X. Thus. (6.20) holds for all !a E V U Y. In (6.20) we
then set >; = u - erl, where e r= (0.1) and n E Y n V. It is obvious that the number
p in (6.20) does not depend on e. Dividing the inequality thus obtained h', e, we find

(f -.sz?(u - eq).71) + e(647I, r1) > -Y(P, elli ' )/'. (6.21)

Letting a tend to 0 in (6.21), with the demicontinuity ofsVand ;quality (6.3) taken
into account, we obtain (f - Vu.rl) > 0 for all l E Y n V. Replacing rl by -q, we
obtain the opposite inequality (f - Vu, rl) S 0 for all n t=_ Y n V. Thus, the
equality (f - sat u, 71) = 0 holds for all 11 E Y n V; since Y n V is dense in X. this
implies that slu = f. It then follows from (6.16) that £°u = 0. Theorem 6.1 is

proved.

COROLLARY 6.1. Suppose that in Theorem 6.1 the condition of fix-al coerciveness of
the operator P: X Y* is replaced by the condition of local coerciveness of the
operator Z : X - Y*. where Pfu = Yu - . ', H*, while all the other conditions
of Theorem 6.1 are satisfied. Then for the selected. E H* the equation 2u =.t has at
least one solution u (=- V.

PROOF. The equation Yu = ,f is equivalent to the equation £°, u = 0, where
Y ,w s l,,+ -4. .21-u = du ;* E H*. Since for the operator Y-- X -+ Y* all
the conditions of Theorem 6.1 are satisfied, the latter implies Corollary 6.1.

COROLLARY 6.2. Suppose that the condition of local coerciveness of the operator.:
X -i Y* is replaced by the condition of coerciveness of this operator while all the other
conditions of Theorem 6.1 are satisfied. Then for all 5'E H* the equationYu =.'Fhas
at least one solution.

PROOF. We fix an arbitrary element FE H*. In view of (6.1) for all it E Y with
sufficiently large norm Ilullx the inequality (.c9fu, u) (2u, u) u) , 0
holds, i.e., the operator2f: X - Y* is locally coercive. The result of Corollary 6.2
then follows from Corollary 6.1.

THEOREM 6.2. Let Y, X. and H he the same spaces as in Theorem 6.1. Suppose that
the operator 2: X - Y* satisfies the following conditions: 40= sd + -4, d: X - H*,
.1: X Y*, where sd: X -' H* is demicontinuous and weakly compact.(') and _V:
X - Y* is linear and continuous. Suppose also that the operator.: X - Y* is locally
coercive. Then the equation 2'u = .9rhas at least one solution.

PROOF. To prove Theorem 6.2 we use the same scheme as in the proof of Theorem
6.1. The existence of approximate solutions uN of the equation.Fu = 0 defined by
(6.13) can be established in exactly the same way as in Theorem 6.1, since only the
demicontinuity and local coerciveness of the operator 2: X -' Y* are used in this

(`) Weak compactness of the operator V: X - ll' means that weak convergence of I it,, 1 to it in X
implies the existence of a subsequence I u,,) such that arur -.Wtweakly in 11*.
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part of the theorem. The estimate (6.12) is thus established, which implies the
existence of a subsequence (u' ) which converges weakly to some element u E V.
By the weak compactness of the operator d: X H* it is possible to extract from
this sequence a subsequence { u°) for which

d u° -, d u weakly in H*, Ru' - - . u weakly in Y*. (6.22)

From (6.13) and (6.22) it then follows that for all ¢ E U r 91N for the limit
element u the equality (du, J) + (au, J) = 0 holds. Since U r 9N is dense in Y
and H. the last equality holds also for all c= H, i.e., .emu = 0. Theorem 6.2 is
proved.

REMARK 6.1. Regarding the solvability of the equation Yu = we remark that
Theorem 6.2 has corollaries altogether analogous to Corollaries 6.1 and 6.2.

THEOREM 6.3. Let Y, X, and H be the same spaces as in Theorem 6.1, and suppose
that (he operator2'= sF+ X -+ H* C Y*, -4: X -+ Y*, satisfies the condition

(2'u-.8v,u-v)>0 foranyu,ve V,u#v. (6.23)

Then for every J re H* the equation Yu =,Fhas no more than one solution in X.
Condition (6.23) is clearly satisfied if the following condition holds:

the operator sad: X -' (H* C X*) is strictly monotone, and the
operator V: X -+ Y* is linear and such that (.'v, v) > 0 for (6.24)
all v E V.

PROOF. We first observe that if u E X is a solution of the equation Yu = .For
some .9z'E H*, then .!u E H* (and hence Zu E H*), since in this case R u =,F-
du, where du E H*. Let u' and u2 be any solutions of the equation Pu =.For
fixed.9'E H* with u' # u2. It then follows from (6.23) that

(Zu' - 2'u2, u1 - u2) > 0.

However, this is impossible, since.'u' = 2u2 = f, and hence

(emu' -Yu2, u' - u2) = 0.

We note finally that the validity of (6.23) follows from (6.24) in an obvious way.
Theorem 6.3 is proved.

THEOREM 6.4. Let Y, X, and H be the same spaces as in Theorem 6.1. Suppose that
the operator.: X - Y* has the form 2= d+ 9, wheresd: X - H* is demicontinu-
ous, and 2: X - Y* is linear. Suppose also that conditions (6.10) and (6.11) are
satisfied. Suppose finally that the operator.: X Y* is uniformly monotone. Then for
all.*E H* the equation Yu = Was no more than one solution in X.

PROOF. From the uniform monotonicity of 2: X -> Y* and the linearity of
ail: X Y* it follows that for any u, v E Y

(du -dv, u - v) + (.I(u - v), u - v) >_ y(jIu - vjjX), (6.25)

where y(p) is the same sort of function as y(p) in (6.5). Let u and v be arbitrary
elements of the set V. Because of (6.10) there exist sequences { and { v ),
u,,, v E V n Y, n = 1,2,..., converging to u and v respectively in X. Taking (6.25)



112 PT, it. CH. 4: SOME ANALYTIC TOOLS

into account, we conclude that`` for any n = 1.2....

r l('211411 - -VI", u - i'n/ + ( (u,, - ), u,, - ) > Y(Iflu,, - (6.26)

Using the demicontinuity of the operator say: X -' H*. the imbedding H* X*.

condition (6.11), and the properties of the function y. on passing to the limit in
(6.25) we find that (6.25) also holds for any u, o E V. Since this condition implies
(6.23). Theorem 6.4 follows from Theorem 6.3. Theorem 6.4 is proved.

We now note that the following obvious assertion holds.

LEMMA 6.2. If the operator 2': X -' Y* is strongly monotone, then it is coercive.

THEOREM 6.5. Let Y, X, and H he the same spaces as in Theorem 6.1. Suppose that
conditions (6.6). (6.7) and (6.9)-(6.11) are satisfied, and assume that the operator':
X Y* is strongly monotone. Then the restriction P: (V c X) -+ H* of .' to the set
V is a hijection, and the inverse (H* C X*) (V C X) is continuous.

PROOF. Taking Lemma 6.2 into account, we conclude that the conditions of
Theorem 6.5 obviously imply that all the conditions of Corollary 6.2 and Theorem
6.4 are satisfied. Therefore, the mapping P: (V C X) H* is a hijection. We shall
prove that the operator P-1: (H* e X*) -. (V c X) is continuous. From the
conditions of strong monotonicity of the operator P: X Y*, the demicontinuity of
the operator sV: X H*, and (6.10) and (6.11) we get

(2°u- 'v,U-1') %6(llu-1'll)I,u-I'll u.i'E V. (6.27)

Indeed, for given elements u. I' E V in view of (6.10) there are sequences { it,, } and
(I,,, ), u,,, n E V n Y, converging to u and I' respectively in X. Because of (6.11) and
the linearity of the operator R: X - Y* we have

llm (_q(u" - v,,). U,, - 1'n/ = (-V(u - I'). u - 1). (6.28)n_x
Since the strong monotonicity of 2': X - Y* for anyn = 1, 2..... implies

(.'u,, -'1'1,. U,, - ) _ (.Wu,, -,Vv, u,, - li) + (-4(u,, - I',). U,, - I",

601u01 - I',,ll.r)llu,, - 1'111(v. (6.29)

on passing to the limit as n oo in (6.29) and taking account of the demicontinuity
of the operator ,say: X H*, the imbedding H* -> X*. equality (6.28). and the
properties of the function 6(p), we find that (6.27) holds. Taking into account that
H* X*, from (6.27) we easily obtain

6(jIu - vIIx) <II2'u u.1' E V.

from which the continuity of P 1: (H* (: X*) (V C X) obviously follows. Theo-
rem 6.5 is proved.

§7. A special space of functions of scalar argument with values

in a Banach space

Let 1 = [a, hJ be a compact interval of the real axis R. and let Z be a Banach
space with norm II - Ilz. The set of functions defined on / with values in Z we denote
by (I Z). Below we shall use the spaces C"'(1; Z), m = 0,1, ... , and L "(/; Z).
p > 1. understood in the usual sense (see, for example, [16]).
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Let u E (I -+ Z). We denote by Thu the function in (I - Z) defined by any of
the formulas

(i) Thu(t) = u(t + h),
(ii) Thu(t) =u(t + h),

(iii) Thu(t) =u(t + h),

where h E R, t E I, and the functions u, u and u are defined by

(')
u(t) = u(t),

t e R 1;

u(a+T), t=a-T,0<T<d=-(b-a),
I E [a, b],u(t) ,

(II) U(t) = u(b - T), r = b + T, 0 -< T < d,

0, IER\[a-d,b+d];
-u(a+r), ta-T,0<T<d,
u(t), t E [a, b],

(iii) u(t)= u(b-T), tb+r,0<T<d,
0, tER\[a-d,b+d].

LEMMA 7.1. If u E LP(I; Z), I < p < +oo, then Thu E LO(I; Z) and Thu -" u in
L"(1; Z).

We now consider the average Shu E (I - Z) of the function u r= Lt(I; Z)
defined by any of the formulas

(i) (Shu)(1) = fRwh(t - r)u(T) dT,

(ii) (Shu)(t) = IRwh(t - T)u(T) dr, (7.3)

(iii) (Shu)(1) = fRwh(t - T)u(T) dT,

where u, u and u are defined by (7.2) and wh(n) is an infinitely differentiable
normalized averaging kernel. Suppose to be specific that

I

hw( lhl) w(P) =
ep1 tp -u, p e 0, 1),
0, p 1,

flep=Ap2-1)dp. (7.4)
-I

It is obvious that Shu E C'°(I; Z) c LP(I; Z), p E [1, +oo]. The following known
results hold.

LEMMA 7.2. If u E L o(I; Z), I < p < + oo, then

lim llShu - ullr.°(/:Z) = 0.
h>O

LEMMA 7.3. If u E C(I; Z), then limb-ollShu - ullc(r. Z) = 0.
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We now recall some facts related to the concept of a distribution on / _ [a, h]
with values in a Banach space Z. This concept was introduced by L. Schwartz ([161];
see also [16]. Chapter IV. §1.4). We denote by 2*(/; Z) the space of all continuous
linear mappings of the space 9(1) (i.e., the set C,'(1) equipped with the Schwartz
topology) into the space Z considered with the weak topology. Elements f of the
space 9*(1; Z) are called distributions on I with values in Z. On the set .2*( t; Z)
we introduce a topology converting 9*(1; Z) into a locally convex space by means
of the family of seminorms

p,..,,,- (f)=I( f(T))I. (7.5)

where ) is the inner product of an element in Z and an element in Z*, which will
be called for brevity the inner product between Z and Z*. For convergence of a
sequence { f } to f in 9*(1; Z) it is then necessary and sufficient that

f,,(qp)) = (F. f(q,)) for all q) E 9(1) and all F C- Z*.
If a function u E (I - Z ) is locally Bochner integrable on I, then it can be

assigned a distribution f on I with values in Z by the rule u - f,,, where

fu(t)9p(t)dt, cE.2(1). (7.6)

and the integral in (7.6) is understood as the Bochner integral. We note that the
correspondence u -f. is one-to-one (with the usual convention that equivalent
locally Bochner integrable functions are identified). Therefore. Z) can he
identified with a subspace of 9*(1; Z).

We recall that for any distribution f e 2*(1. Z) the derivative f' E .2*( /: Z) is
defined by

f'(0 = -f (0. VT E 9(/ ). (7.7)

The mapping f - f' here is linear and continuous in 9*(I: Z). Recalling that
I = [a. b]. we denote by 1 the interval 1 = (a, h] where a = a - d and h = h + d,
d=h - a.

LEMMA 7.4. If a function u r= L1(I; Z) considered as an element of .2*(1, Z) has a
derivative u' a L'(I; Z). then the function a defined on 1 by formula (ii) of (7.2)
belongs to LI (1; Z), and its derivative (u )' when is is considered as an element of
9*(1; Z) belongs to L'(1; Z). Here (u)' coincides (in the sense of equality of elements
in 9*(1; Z)) with the extension a' to 1 of the derivative u' E L1(I: Z) defined by
formula (iii) in (7.2).

We note that the extensions (u)' and u' considered in Lemma 7.4 also coincide as
elements of L1(1; Z).

Let B. be a reflexive Banach space, and let the /R: G C B -i BA he linear
operators defined on an (algebraic) subspace G dense in B with values in the
reflexive Banach spaces B, k = I,...,N. We suppose that the operators to admit
closure. On G we define the norm

N.

llullB = E II/AUIIB,, (7.8)
A-o
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where u for all u E G. We denote the closure in the norm (7.8) by B.
Obviously B is a Banach space. From the conditions imposed on the operators 1k,
k = 1,...,N, it follows that B can be identified with a subspace of B0, since the
convergence u,, - u, U - u in B0 and Iku -> Vk, lku - Uk in Bk, k = 1,...,N,
where u,,, u E G, n = 1, 2,..., implies that Vk = Uk, k = I,-, N. The operators 'k,
k = 1,...,N, can be extended to all of B. The extended operators !k: B - Bk,
considered as operators acting from the Banach space B to the Banach spaces Bk,
are obviously continuous.

Let H be a Hilbert space. We suppose further that there exists a Banach space B

such that
I, ... , N, and that these imbeddings are not only continuous but dense. The inner

products between b and k and also between B0 and Bo, B and B*, and Bk and Bk,
k = 1, ... , N, we denote in the same way by It is easy to see that the space B is
reflexive and that each linear functional Fin B can be given by

N

(F,rl)=(F0,71)+ E (Fk,/k'q), d71 EB, (7.9)
k-1

where F E Bt; , Fk E Bk*, k = 1, ... , N, and F0 and Fk can be chosen so that

11F118. = SUP(IIF0IIB1, IIFIIIB;,...,IIFNIIB:t). (7.10)

On the other hand, for any F0 E Bo', ... , Fk E Bk the right side of (7.9) defines a
linear functional in B with norm not exceeding the quantity on the right side of
(7.10).(') Equality (7.9) is equivalent to the equality

N

F = F0 + E 1:Fk,
k-I

(7.11)

understood in the sense of equality of elements in B*, and the l Fk,k = 1,...,N, are
defined by

(IkFA, rl) (Fk, Ik'R), r1 E B, k = 1,...,N. . (7.12)

It is obvious that F0 E B* and IZFA E B*, k = 1,...,N, since Bo - B* and

sup I( FA, Ikn)I< 11FAR,111011B, <IIFkIIBr, k = 1,...,N.
1171118-1

We denote by U the set of all functions in (I -s B) having finite norm
N

IlullU = E IIIkUIILoku; B,),

k-0
(7.13)

where pi. E (1, +oo), k = 0,1,...,N. It is easy to verify the completeness of the
space U. The inequality

N

f IIullB dt = f E IllullB, dt < C E IIIUIILPk; B,) = CII uII u (7.14)k k

implies the imbedding U - L'(1; B) and hence also the imbedding U - L'(I; B*).
Considering the mapping ir: U -' Lo°(I; BO) x x LPN(I; BN) defined by the

formula 7r(u) = (10u, 11u,...,INU), u e U, and using the form of a linear functional

(") Analogous facts arc proved below in connection with the assertions of Lemma 5.2.1.
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in Lt'(1: Z), we establish that each linear functional .9;'in U can he represented in
the form

r :v

dt. nEU. (7.15)

where .f E L''"(I: B(*)), , E L''4 (I; BA), k = 1, ... , N. and .t and the .A can he
chosen so that

II lit = .NII0''(I:xt)). (7.16)

It is also obvious that for any.t E Bo*)...... v E B*,) the integral
on the right side of (7.15) is a linear functional in U with norm not exceeding the
quantity on the right side of (7.16). From what has been said above it follows that

can also be written in the form

n(1))dt. 71 E=- U. (7.17)

where. (t) =.1 (t)+E; (t), and. ;,(t) and (t), k = 1,...,N, belong to
B* for almost all t E I (see (7.11) and (7.12)). We denote by It = I-- N, the
linear functionals in U defined by

(iR'Fi J)= f(It,FA(t),n(t))dt= f('r4(t),(1an)(t))dt, n(=- U. (7.18)

We note that the inequality

I(IA' n)I<II k = I..... N, (7.19)

implies that (7.18) actually defines linear functionals in U. All.t E U* can then he
written in the form

IF.tA.

Because of the obvious estimate

(7.20)

U. (7.21)

we have the imbedding U* L'(I: B*).
Using Lemma 7.2 and the form of the norm in U and U*, we establish the

following proposition.

LEMMA 7.4. For any u E Ulhe average St,u (see (ii) in (7.3)) belongs to U and tends
to u in U as h 0. For any.57E U* the average ,,IF (see (iii) in (7.3)) belongs to U*
and tends to.in U* as h - 0.

We now distinguish an important subspace of U. We denote by the (algebraic)
subspace

71V= (u E U: u' E U*). (7.22)

where u' denotes the derivative of u in the sense of distributions on / with values in
the Banach space B* (in view of the imbedding U L'(I; B*) it is obvious that
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each element u E U can be identified with an element of.9*(I; B*)). It is easy to see
that with respect to the norm

IIuII IIuIIu + IIu'IIu. (7.23)

YI is a Banach space. In view of Lemma 7.4 the following assertion holds.

LEMMA 7.5. For any u E *'the average Shu (see (ii) in (7.3)) belongs to *'and tends
touin)Vas h-i0.

To simplify notation we henceforth write

uh = Shu. (7.24)

COROLLARY 7.1. The set C'(1; B) is dense in YY.

PROOF. Since uh E C°°(1; B), the density of C°°(I; B) in *follows from Lemma
7.5.

LEMMA 7.6. )V- C(I; H).

PROOF. We first prove that YY- C(I; B*). Let u E 7Y. Then u' E U* -
L'(1; B*). We set v = u'(T) dT. It is obvious that the function v belongs to
C(1; B*), and considered as an element of the space 2*(I; B*) it has derivative v'
equal to u'. It is known that u and v then differ on I by a constant quantity 4)0 E B*,
i.e.. u(t) = v(t) + 40 for almost all t e 1. Since v E C(I; B'), also u E C(I; B').
Therefore, w E C(I; B'). We shall prove that this imbedding is continuous. From
the estimate 11u'IIi)(t: and an inequality of the form (7.21) it follows
that

Ilvllc(i: clIu'Ilu (7.25)

Taking into account that 4 = u(t) - v(t), we write

dIIt(IIB = f 11-0011B. dt =f Ilu - vlle dt <f Ilulle dt + cII vlI cU; (7.26)

where d = b - a. From (7.25), (7.26), (7.21), (7.14) and the imbedding V-* C(I; H)
we then obtain

INN0II8. < c(IIuIIu cllull,-, (7.27)

while from (7.25) and (7.27) we obtain

IIulIc(I; cIIuII#-. (7.28)

Thus, the imbedding YV- C(I; B') is proved.
We now prove the imbedding * - C(I; H). We note first of all that for any

v, w E C'(I; B) and all t t2 E 1

(v, w)Ir-ri = f 'Z ((v', w) +(v, w')) dt. (7.29)
11

Let u E C'(I; B). Setting v = ((t - a)/d)u and w = ((b - t)/d)u, d = b - a,
writing (7.29) first for functions v and u with tI = a and t2 = t E (a, b], and then for
the functions w and u with tl = t E [a, b) and t2 = b, and subtracting the second
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equality from the first, we obtain

(u(t),u(t))= dfI'(u,u)dt+2
f,T u(u'.u)dr

It 0

-2f11b - T
(7.30)

From (7.30) we obtain

11U(t)112H < d-'jjujj((/: 8' )ll ull /.'(i: B) + t E 1. (7.31)

From (7.31) and (7.28) we then easily obtain

ttu(t )llc,, H) (7.32)

Let u,, and u,, be averages of an arbitrary function u E)V. Applying (7.32) to the
functions u,, - u,,., we obtain

Huh - I 1< c'Ilu, - (7.33)

In view of Lemma 7.5 and the completeness of C(1; H). from (7.33) it follows easily
that u e C( I; H) (as always, we identify equivalent functions) and also that (7.32)
holds for any u E s". Lemma 7.6 is proved.

In the proof of Lemma 7.6 we have also established the following fact.

COROLLARY 7.2. For any function u E *its averages u,, (see (7.24) and (7.3))
converge to it in C(I; H), i.e..

lim Iluh - ull((I. H) = 0.h-0

LEMMA 7.7. (7.29) is valid jor any v. w E YY. For an) u E *'

(7.34)

I,, ,,
'(U. u), _ "(u',u)dr, r,,r,E1. (7.35)

,

PROOF. The validity of (7.29) for any v. w E C'(I: B) was already noted in the
proof of Lemma 7.6. Let u, v e W. and let v,, and w,, he their averages. Passing to
the limit as h - 0 in (7.29) written for v,, and WI,, and taking Lemma 7.5 and
Corollary 7.2 into account, we find that (7.29) holds for v and w. Equality (7.35) is a
special case of (7.29) (v = w = u). Lemma 7.7 is proved.

CHAPTER 5
THE GENERAL BOUNDARY VALUE PROBLEM

FOR (A, b, m, m)-ELLIPTIC EQUATIONS

§1. The structure of the equations and the classical formulation
of the general boundary value problem

In considering differential equations of the form

-(d/dx,)l'(x, u, vu) + u, Vu) = 0, (].1)

where x = (x1....,x,,), n 3 2, vu = (u,,,...,u'), d/dx, is the symbol of the total
derivative with respect to the variable x,, i = 1--n, and l'(x, u, p) and u, p)
are given functions in SI x R x R", we shall usually be dealing with generalized
solutions of these equations; this makes it possible to consider functions l'(x, u. p)
and 1,,(x, u, p) under very weak assumptions regarding their differential properties
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with respect to the independent variables. We shall always assume that the functions
1'(x, u, p), i = 1,...,n, and 10(x, u, p) satisfy the Carathe odory condition S2 X R X
R" (i.e., these functions are measurable with respect to x in SZ for all u, p E R X R"
and are continuous with respect to u, p in R X R" for almost all x r= (2). Additional
regularity conditions will be imposed on the I'(x, u, p) and 10(x, u, p) when
necessary. As always in this monograph in (1.1) summation over twice repeated
indices is assumed.

DEFINITION 1.1. We say that an equation of the form (1.1) has (A, b)-structure in a
domain St c R", n >, 2, if there exist a square matrix A = Ila''(x)II of order n, a
vector b = (b'(x),...,b"(x)), and functions l"(x, u, p), i = 1,...,n, and lo(x, u, p)
such that for almost all x E St and any u E R and p E R"

I(x, u, p) = u, A(x)p),
(1 2).

1o(x u, p) = 10'(x, u, A(x)p) + b'(x)P
where A* is the matrix adjoint to A, and

I(x, u, P) _ (l'(x, u, p),...,1"(x, u, p)),

1'(x, u, q) _ (I"(x, u, q),...,1'"(x, u, q)).
We call I"(x, u, q), i = 1,...,n, and 1(')(x, u, q) the reduced coefficients of the
equation.

DEFINITION 1.2. We say that an equation of the form (1.1) has (A,b, m,m)-struc-
ture in a domain 2 if it has (A, b)-structure in this domain relative to a matrix A
satisfying conditions (4.1.1), (4.1.3) with mi > 1, i = 1,...,n, a vector b(x) such that
b` E C(O). ab'/ax; (E C(SI), i = 1,...,n, and reduced coefficients 1"(x, u, q), i =
1....,n. and 1',(x, u, q) satisfying the Caratheodory condition in It X R X R" and
such that for almost all x E 2 and any u E R and q E R"

u, q)J < lil Y_
IgklmA/m; +IuIm/m;

+ ,p,(x) 1,...,n,
k-1

Ilo(x, u, q)I 142

Igkl"'A/m

+I
uIm/m

+ T0(x)
k=I

where µ,,µ2 = const >_ 0, q), E L"';-((l), 1/m; + 1/m; = 1, i = 1,...,n, and p e
Lm((2),I/m+ 1/m'= 1,m> 1.

In the isotropic case (m, m" = m) inequalities (1.3) are equivalent to

4 +
Iulm/m + a,(x)),II'(x, u,q)I,

µl(Igl'/r

rn/m, /m, (1.4)
110(x, u, q)I < µ2(lgi

+IuIm

+,po(x)),

where µ,,µ2 = const >_ 0, ? E Lm'(SZ), 1/m + 1/m' = 1, m > 1, and 4po E Lm'(SE),
1/m+ 1/m'= 1.m> 1.

PROPOSITION 1.1. Suppose that for almost all x E SZ and any u E R and p e R"

I(A*). I(x, u, P)I < lA1 E IAkPI +IuI + 9),(x)
k-1

Il0(x, u, p) - b'(x)Pil < µ2{ E IAk.
PIr"/m +lulm/m

+
9,0(x)

1k-I

(1.5)
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where the matrix A is nondegenerate for almost all x E S2, (A*);'l = ((A*)-'I), is the
ith component of the vector (A*)-'I, while the vector b. the indices m and m =

and the functions p i..... p , p are the .came as in Definition 1.1. Then
equation (1.1) has (A. b, m, m)-structure in U.

PROOF. Indeed, for almost all x E 9 and any u E R and p E R"

I(x u, p) = A*(A*)-'l(x, u, A-'(Ap)),

lu(x, u. p) - b'(x)p, = 10(x. u. A-'(Ap)) - b(x)A-'(Ap).
Setting

1'(x, u, q) _ (A*)-'I(x, u. A`q).

11,(x. u. q) = lu(x, u. A-1q) - b(x)A_,q.

(1.6)

we then note that in view of (1.5) and (1.6) conditions (1.2) and (1.3) hold.
Proposition 1.1 is proved.

DEFINITION 1.3. We call an equation of the form (1.1) having (A, b)-structure in 2
(A, b)-elliptic (strictly (A, b)-elliptic) in S2 if for almost all x E 2 and any u E R,
q = Ap. 71 = Ar, p e R" and t; E R" the following condition of A-ellipticity (strict
A-ellipticity) is satisfied:

al"(x, u, q)
71, 0 I

al"(x, u, q)
11,TI,>0. bt1*0J. (1.7)

aq, aq,

We call an equation of the form (1.1) having (A. b. m, m)-structure in S2

(A, b, m, m)-elliptic in 2 if for almost all x E 2 and any u c- R. q = Ap, 71 = A.
p E R" and J E R" the following qualified condition of A-ellipticity is satisfied:

al"(x, u, q)
q,, P=const>0. (1.8)

aq, ,= I

If equation (1.1) is (A, b, m, m)-elliptic in S2, then taking into account that

all ,1 all,
=

all,
a pl u aq, a

16, 6, aqc (A,fl( AA ) =
_qc

rl,rlA

where ij = Ak, Aj _ (At;), = u" and AAr; = u",, we conclude that (1.1) admits
fixed degeneration of ellipticity at all those points x r= SZ where the matrix A(.x) is
degenerate. Moreover, it follows from (1.9) and (1.8) that (1.1) admits implicit
degeneration of ellipticity on the sets (A, p = 0, i = 1,...,j - 1, j + 1__n). i =
l.... , n. Thus, an (A, b, m, m)-elliptic equation, being, like any (A, b)-elliptic equa-
tion, an equation with nonnegative characteristic form (al'/ap;),¢,, is not, in
general, a strictly (A, b)-elliptic equation.

We shall present examples of (A, b, m, m)-elliptic equations.
1. A linear equation of the form

d
-dx (a''(x) ax) + #'(x) -

+ c(x)u - f(x) = 0 (1.10)
, ax,

with a nonnegative symmetric matrix 91 Ija"(x)!I in a domain SZ c R", n 2, such
that A = I('/2 satisfies conditions (4.1.1) and (4.1.3) with m = 2 and m = 2, when
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this equation is considered under the conditions ft' E Q2), a$'/ax; E C(S2), i =
1....,n, c E L °(12) and fE L2(S2), is (A,b,2,2)-elliptic with respect to the matrix
A = I[1/22 and the vector b =

2. An equation of the form (1.1) satisfying the conditions

22 v=const>0,
api

II'(x, U. P)I < µl Y_
IPkmAI/m; +Iuim/ + ox) 1,...,n,

II0(X, U, P)I - < i 2(
IPkImF/""

+lulm/m +'P0(x) , (1.11)
k=1

where qP, E L"'; (0), i = 1, ... , n, and q0 E L"(0), is obviously an (A, b, m, m)-
elliptic equation relative to the identity matrix A = I and the vector b = 0.

3. An equation of the form

au/at -(d/dx;)I'(t, x, u, vu) + !0(t, x, u, vu) = 0, (1.12)

where vu = considered in the cylinder Q = S2 X (T1, T2) c R"+',
n , 1, under the assumption that for almost all (t, x) E Q and any u E R, p e R
and E R" the conditions

a1'(t, X, U, P) it m,-2ijj v=const>0,
P, ;-I

/m;
11'(t.. X, u, P)I < µ, E

IPkim,/m, +IuIm

+ 4';(t, x) i = 1,...,n,
k-I

(1.13)

1/00, x, U, P)I < IL2 E IPklm`/m
+lulm/m

+ q'o(t,
x)k-1

are satisfied, where qv, E L"';;(Q), i = 1,...,n, and q0 E L"'(Q), is easily seen to be
an (A, b, m, ih)-elliptic equation in Q relative to the matrix A of the form

0 ... 0

0

of order n + 1, the (n + ])-dimensional vector b = (1,0,... , 0), and the indices m
and ih = (2, ml,..., m,,), where a condition of the form (1.2) is satisfied with

1(x, u, P) _ (0, I'(x, U, P),...,!"(x, U, p)),

1'(x, u, 9) _ (qo, !'(x, u, q),...,1"(x, u, q)),
A = A and b = (1, 0,...,0).

4. Consider an equation of the form

au - d
at

dx !'(t, x, u, Vu) + 10(t, x, u, Vu) = 0, (1.14)Z' ,
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where t=(11,...,t.), s>_ 1, n>_ I, s+n>_ 2, and Vu=
(u, .... , U,). taken in a domain D C R"' under the assumption that for almost all
(t, x) e D and any u c- R. p E R", E R" the inequality

r,u.P) >vE11

1

(1
+IP'1)"' -

3p, I

v=const>0.m,> 1,i=1....,n, (1.15)

holds as well as the second and third inequalities in (1.13) with t = 0,,._i,) and
q), e L"'%(D), i = 1....,n. 'p E L"'(D). It is easy to see tF,at (1.14) is an
(A, b. m, m)-elliptic equation in D relative to the matrix

A= 0 0

0 1

of order n + s, the (n + s)-dimensional vector b = (1,...,1,0.....0), and the in-
dices m and ih = (2....,2, m,,...,m,).

5. The equation of first order

10(.x, u) + J3'(x)u, = f(.x), (1.16)

considered in a domain S2 c R" under the conditions u)+ < µ4u1+ p(.v).
where u = const >_ 0, (p E L""(0), and f E L"' (S2) is a (0. b. m. 0)-elliptic equation
relative to the matrix 0 and the vector b

6. An equation of the form

1-(d/dx,)( a x ,Oiu.

J"
u x, , ) -f(x) = 0, m > 1, i (.17)

where a,(x) >_ 0 in a domain S2 a R", n 3 2, is (A. 0, m. m)-elliptic in S2 relative to
the diagonal matrix A with elements [a,(x))'" i = I.....n, on the main diagonal.
m = and any m > 1. provided only that the diagonal matrix A satisfies
conditions (4.1.1) and (4.1.3).

7. An equation of the form

d ,

u' - dx (a,(t,.x)luj
,

-f(t.x)=0, m,> 1.i= 1,....n. (1.18)

where a,(t, x) >_ 0 in the cylinder Q = 2 X (T,. T,) C R"' '. it >_ 1. is (A.b, m. m)-
elliptic in Q relative to the matrix A of order n + I of the form

0 0

a, 0

A =
0

0 a,,

a, _ .....' an = (].19)

the (n + 1)-dimensional vector b = (1,0....,0).m = (2, and anynt > 1.
In a bounded domain 0 C R". n >, 2, we consider an equation of the form (L I),

assuming now that the functions ('(x. u. p), i = 1,...,n. and u, p) belong to
the classes C'(S2 xR x R") and C(S2 XR x R") respectively, while the domain S2
belongs to the class C2. Suppose that (1.1) is strictly (A, b)-elliptic in Q. We denote
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by v = the unit vector of the inner normal to a(2. Under these assump-
tions we call the set

(xEall: al'(x,u,P)v;vj >0for all uER,pER"J
11111 api

the part of the boundary asl, and the set

2 = xeS2: ali(x u P) vvj =Ofor all uER,peR"
api

the characteristic part of the boundary 4. In view of the equality

(al'/ap )v;vj = (81'3/agk)(Akv)(A:v) (1.20)

and the condition of strict (A, b)-ellipticity of (1.1) we have

1= {xea12:Av*0}, 1'= (xeal2:Av=O). (1.21)

Suppose that the set I is decomposed in arbitrary fashion into parts 11,12, 13 such
that 1, U1,U13=I and E,n1;=0 fori*j,i,j=1,2,3.Onaltwecon-
sider the function

b = b(x) = -b'(x)v;(x), x E M. (1.22)

We denote by (2j), (1j),_ and (I,)- those parts of the set 1; (i = 1,2,3) on
which b = 0, h > 0 and b < 0 respectively. We decompose I' into parts 20', 2, and
1' in a similar way. Suppose that a piecewise continuous, bounded, positive function
A is defined on the set 13.

Under the above assumptions we consider the following general boundary value
problem: find a function u E C2(S2) n C'(12 U 12 U 13) n C(D) such that

-(d/dx,)l'(x, u, vu) + 10(x, u, Vuu) = 0 in 12,

u=qP on 1,U1', 1 v+cu=4' on 12, 1 v+(c-X)u+X on 7-31
(1.23)

where

C =
0 on (12.3)0.+

b(x) on (12.3)-, (12.3)0±= (12)0 U(12)+U(13)0 U(13)+,

(12.3)-- (12)-u(13)-,
and q,, 4G, and X are piecewise continuous functions defined on the sets 11 U 1'-, 22,
and 13 respectively. There are no boundary conditions on the part 10 U 1'+ of M.

We note that the conditions on 12 and 13 can be rewritten in the more compact
form

on 12.3a12U13, (1.24)

where g(x) is a piecewise continuous function defined on 12,3 and s(x) is a
piecewise continuous function defined on 12,3 such that

s(x) >, max(0,-b(x)) on 12,3.

It is more convenient, however, for us to use the previous form of writing the
boundary conditions on 12,3, even though it is more cumbersome.
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We consider the main special cases of Problem (1.2).
1. For the choice 11 = °., 1, = 2:3 =_O we obtain the first boundary value

problem: find a function u e C2(fl) n C(S2) such that

-(d/dr,)1'(x,u,Vu)+10(x,u,Vu)=0 in Q. u=ip onIU:,'. (1.25)

2. For the choice 1, = 0, Y., = E, 13 = 0 we obtain the second boundary value
problem: find a function u E C2(2) n C'(St U 2;) n c(fl) such that

in 0, u=q on I', on.:. (1.26)

where c=0onand c=b(x)onI_.
3. For the choice s, _ 2, = 0, 13 = Y- we obtain the third boundary value

problem: find a function u e C2(2) n C'(Sl u 1) n C(S2) such that

in 2. u=qo on 1'. on

(1.27)

where c = 0 on E, and c = b(x) on 7_,
In the case of linear dependence of 1(x. u, p) on u and p, i.e., in the case

1'(x. u, p) = a"(x)p, + a'(x)u + g'(x). i = 1....,n. the conditions on 2, and E,
take the respective forms

on
(1 28)

au/aN = a"u, P, is the derivative of u with respect to the conormal to i12.
Applying the standard procedure of suitable replacement of the unknown func-

tion, one can reduce the boundary conditions in (1.23) to homogeneous form. To
abbreviate subsequent formulations we shall henceforth, as a rule, consider the
general boundary value problem in the case of homogeneous boundary conditions,
i.e., we shall assume that problem (1.23) is already reduced to the form

in 2. u=0 on 2: UY,
1 v on Z,. (1.29)

Here we note that the equation -dl'/d, + 1 = 0 itself is not, generally speaking.
homogeneous due to the arbitrariness of the function u. p). It is natural to
consider the formulation of the general boundary value problem for equation (1.1)
presented above as classical.

It is easy to see that the formulation of the general boundary value problem of the
form (1.23) given above for an (,C b)-elliptic equation is invariant under smooth
nondegenerate transformations of the independent variables. Indeed, suppose there
is given a smooth coordinate transformation

r = i(x), det # O inn. (1.30)IMaking
the substitution (1.30) in an equation of the form (l.i), we obtain the new

equation

(1.31)
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defined in the corresponding domain l C R". We denote by A ° jIa'k(z)II and
b = b(1) the matrix and vector defined by the formulas

X x
a"(x)

aaxk
, bk(.k) = b'(x)

aazk
, i, k = 1,...,n. (1.32)

i i

Using condition (1.2), it is not hard to verify that (1.31) has (4,b)-structure in
relative to the matrix A and the vector b defined by (1.32). Here the roles of
functions i"(.Y, u, 4), i = 1,... ,n, and !o'(k, u, 4) from identities of the form

i(x. U. u, Ap), lo(x, u, P) = lo(x, u, AP) + bkPk (1.33)

are played by the functions

1"(z, u, 4) = !"(x(X), u, 4),

u, 4) = lo(x(z), u, 4) + akil,k 82xm
. (1.34)

aX;aXm

The equalities (1.34) make it possible to formulate the following assertion.

PROPOSITION 1.2. The reduced coefficients 1"(x, u, q), i = 1,...,n (,;(x, u, q)) of
an equation of the form (1.1) having (A, b)-structure in a domain SZ are invariant under
smooth (linear) transformations of the independent variables, i.e., for any smooth
(linear) transformation (1.30) an equation of the form (1.1) having (A,b)-structure in 2
goes over into an equation of the form (1.1) having (A, b)-structure in Cl, where Cl is the
image of 1 under the mapping (1.30), relative to the matrix A and the vector b defined
by formula (1.32), while the old and new equations have the same reduced coefficients
I' , i = 1,...,n (l(')) (see (1.34)).

It is further easy to verify that the vectors Av and .40 computed at corresponding
points of aS2 and aCl differ only by a nonzero scalar factor. From this it follows that
as a result of the transformation (1.30) the sets Y. and t as well as E' and t' defined
in accordance with (1.21) go over into one another. It is also easy to verify that the
functions b(x) and b(k) defined according to a formula of the form (1.22) are
related at the corresponding points x E aSl and z E an by the equality b(x) =
c(x)b(z) ), where c(x) > 0. This means that as a result of the transformation (1.30)
the sets (1 )+ and (±j), (1;)0: and (±j)0. Io and 10', Z' and ±, and E' and
go over into one another. Taking into account that the left sides of the boundary
conditions in (1.23) are invariant under the substitution (1.30), we conclude from
what has been said that the boundary conditions on the sets Er U IZ and E3 go
over into completely analogous conditions on the sets II U ±',£2, and ±3. In view
of the invariance of the reduced coefficients l"(x, u, q) the new equation (1.31) will
be (4,h)- (strictly (4,h)-) elliptic in A if the original equation was (A, b)- (strictly
(A, b)-) elliptic in St. The following assertion now follows from what has been
proved.

PROPOSITION 1.3. The formulation of the general boundary value problem for an
(A, b)-elliptic equation is invariant under any smooth nondegenerate transformation of
the independent variables.
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An important special case of (A, b)-elliptic equations are the so-called (A, b)-
parabolic equations considered in the cylinder Q = S2 x (T,, T,), where Sl C R",
it 3 1. T, < T,, T1. T, = cons(, and defined as (A, b)-elliptic equations in Q C R"
of the form - a l'(t,x,u,vu)+lo(t.x,u,vu)+u,=f(t,x) (1.l')

dx,

relative to the matrix

A =

0 0

A(t, x)

110 II

of order n + I and the (n + 1)-dimensional vector b = (0, h' (t, x)...., h"(t, X)). it
is somewhat more convenient, however, to give an independent definition of an
(A, b)-parabolic equation in the cylinder Q.

DEFINITION I.F. We say that an equation of the form (1.1) has spatial (A, b)-.struc-
ture in the cylinder Q = Sl x (T1, T,), SZ c R", n >, 1. if there exist a square matrix
A = Ila'j(t, x)lI of order n, an n-dimensional vector b = (h'(t, x),...,h"(t, x)). and
functions l"(t, x, u, q), i = 1,...,n, and x, u, q) such that for almost all
(t, x)EQand any aeRandpER"

l(t, x, u, p) = A`I'(t, x, u, Ap).

!,(t,x.u,p)=la(t,x.u,Ap)+h'(t.x)p,, (1.2')

where A* is the matrix adjont to A, I = and I' _ We call the
functions l"(t, x, u, q), i = 1....,n, and l,)(t, x, u, q) the reduced coefficients of the
equation. An equation of the form (1.1) having spatial (A, b)-structure in the
cylinder Q is called (A, b)-parabolic (strictly (A, b)-parabolic) in Q if the following
condition of A-parabolicity (strict A-parabolicity) is satisfied: for almost all (t, x) E
Qand any uER,q=Ap,rl=AJ,pER"and

al"(t, x, q) > al"(t, x, u, q) > 0. V17 * 0 .
aq 71, 71, 0 rl,rl, 71 (1.7')

i aq,

It is easy to see that an equation of the form (1.1) which has spatial (A. b)-struc-
ture in the cylinder Q [is (A, b)-parabolic (strictly (A. b)-parabolic) in Q] also has
(4,b)-structure) in Q [is (,4,b)-elliptic (strictly (4.b)-elliptic) in Q] relative to the
matrix

A =

0 0

A

110 11

the vector b = (1,0,...,0), and the reduced coefficients I'(z, u, 4) and !f1(i, u, q),
where .k = (1, x), 9 = (qo, q1,....q"), I' = (q1, l'"(x. t, u, q),.,,,l"'(x t, u, q)), l;) _
lo(x, t, u, q) and q = (q1. q,,). The next assertions thus follow from Propositions
1.2 and 1.3.

PROPOSITION 1.2'. The reduced coefficients l"(t, x, u, q), i = 1, .... n (1;,(t, x, u, q))
of an equation of the form (1.1') having spatial (A, b)-structure in a cylinder Q are
invariant under any smooth (linear) transformation of the spatial variables, i.e., under



§1. CLASSICAL FORMULATION 127

any smooth (linear) transformation of the spatial variables z = X(x), x E Sl, an
equation of the form (1.1) having spatial (A,b)-structure in the cylinder Q = Sl X
(T, T,) goes over into an equation of the form (1.1) having spatial (4, b)-structure in
the cylinder Q = C2 X (T T2), where 2 is the image of Sl under the mapping k = .z(x ),
A = AP , b = Pb, and P is the Jacobi matrix of the mapping in question, while the old
and new equations have the same reduced coefficients; more precisely

i"(t, x, u, 4) = l"(t, . (x), u, 4), i = 1,...,n
[1(t, x, u, 4) = lo(t, x(.z), u, q)].

(1.34')

PROPOSITION IS. For any smooth, nondegenerate change of the spatial variables an
(A, b)-parabolic (strictly (A, b)-parabolic) equation in the cylinder Q = 11 X (T1, T2)
goes over into an (4,b)-parabolic (strictly (4,h)-parabolic) equation in the cylinder
Q = SZ x (T, T2), while the form of the general boundary value problem is unchanged.

We now return to general (A, b)-elliptic equations. It will henceforth be more
convenient for us to deal with an equation written in the form

-(d/dx,)l'(x, u, Vu) + 10(x, u, Vu) = f(x), (1.35)

i.e., an equation with the term f(x), depending only on the independent variables,
explicitly distinguished. We say that an equation of the form (1.35) is (A, b, m, m)-el-
liptic (has (A, b, m, m)-structure) in a domain 2 if the equation

-(d/dx,)l'(x, u, vu) + 10(x, u, vu) = 0
has this property, where l0(x, u, p) = 10(x, u, p) - f(x).

A smooth solution of an equation of the form (1.35) is any function u E C2(1) rl
C'(Sl) for which 1'(x, u, vu) E 10(x, u, Vu) - f(x) E C(>il)
and at all points of Sl

-(d/dx,)l'(x, u, Vu) + 10(x, u, Vu) = f(x).

PROPOSITION 1.4. If the equation (1.35) has (A,b)-structure in a domain Sl and u is a
smooth solution of the equation in 0, then

fnI1'(x, u, AVu) Avr1 + 10' (x, u, Avu)q - u(b'91)x,I dx

+ f n[I'(x, u, Avu) Av + bu] qds

= ffrldx, dt7 E C' (S0),

where v is the unit vector of the inner normal to aSl.

(1.36)

PROOF. Multiplying an identity of the form (1.35) by an arbitrary function
n E t'(fl), integrating over Sl, and applying the formula for integration by parts
with condition (1.2) taken into account, we obtain (1.36). This proves Proposition
1.4.
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PROPOSITION 1.5. If equation (1.35) has (A, b)-structure in the domain SZ and u is a
smooth solution of this equation in 9 satisfying the same boundary conditions as in
(1.29). then

4,11'(x,

= f2fnds. do e Co.1,U_. (Si). (1.37)

u, Avu) AVn + l',(x, u, AVu)n - u(h'i),,] dx

+f Aunds+ f buds

PROOF. Taking into account that aSt = E, u 1, u 2:3 U 2:', we rewrite the
boundary integral in (1.36) as the sum of integrals

f f f
f f

+f bun ds + f Aun ds + f bun dr. (1.38)

Taking into account the fact that n = 0 on 1I U 2',', and h = 0 on 2:;,, and the
boundary conditions

I' Av + 0 on 0 on 2:', we conclude
that this sum of integrals is equal to the sum f Aun dr + bun dr, whence
(1.37) follows. This proves Proposition 1.5.

Below an identity of the form (1.37) will form the basis for the definition of a
generalized solution of the general boundary value problem of the form (1.29) with
considerably broader assumptions regarding the structure of the equation and the
domain Sl. First, however, we must consider some function spaces and operators
connected with this problem.

§2. The basic function spaces and the operators connected with the

general boundary value problem for an (A, b, m. m)-elliptic equation

In a bounded domain Sl C R", n >- 2. of class C 1 we consider an equation of the
form (1.35) having (A, b, m, m)-structure in R. We denote by as2 the set of all
interior points of the smooth pieces constituting aS2 assuming that

meas (aa fast) = o,
n. I

and we assume that

a12 = U 2:', where 7, is the regular and 2:' the singular part
of a12 (relative to the matrix A and the indices m. m) in the (2.1)
sense of Definition 4.3.1.

We decompose the regular part of I in an arbitrary manner into parts 2+,, 2:, and
23 such that 2:,U12UX3=2. and 2,n1,= 0 fori#j,i,j=1,2,3, and we
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assume that t(aZ,) = 0, i = 1,2, 3, where al; denotes the boundary of lion
M. Suppose that a piecewise continuous, bounded, positive function A is defined on
E,.

The completion of the set CO,j((2) in the norm

IIUII/ra = Il ull rr + llullr.'(A. F,) = IIUIIm,Q + IIA V uIIm.Q + llUjlL2(A, E,) (2.2)

we denote by Ha = Hm,m(A; 2; E3, A). In the case 13 = 0 the space Hx coincides
with the space H = H,°":m(A, S2) with I = El introduced in Chapter 4, §2.

LEMMA 2.1. The space HA is separable and reflexive. Any linear functional Fin Ha
can he defined by the equality

F, 71) = f (f071 + f AV17) dx + j2 A4 rl ds, it E Co.ES2), (2.3)

where f° E L`((2), 1/m + 1/m' = 1, f = (f f' E L"';(SD), 1/m; + 1/m';
= 1, i = 1, ...

,,

n , 4, E L2 (SZ ), and f0, f, and 0 can be chosen so that

II IInt = sup(IIfOllm'.QI

II F11 ,, is the norm of F. Conversely, any expression of the form (2.3) with f0, f,
and 0 satisfying the conditions indicated above defines a linear functional in H), with
norm not exceeding the quantity on the right side of (2.4).

PROOF. The separability of the space HA is obvious. To prove that HA is reflexive
we consider the mapping

17: CC.z1(SZ) C Hl, - Lm(Q) X Lm(g) X L2(A, Y-3),(I)

defined by

ir(u) = ( u, A1Vu,...,A"Vu, ulm,), u E Co.E,(SE).

Obviously the mapping IT is linear and isometric. We extend it to the entire space H.
The extended mapping ir: Ha -p Lm(1l) X L1(92) X L2(A, 13) is also linear and
isometric. Therefore, the image ar(H)j of HA is closed in Lm(Q) X Lm((2) X
L2(A, E3). Taking account of the fact that the latter space is reflexive, we conclude
that HA is also reflexive. We now prove that any linear functional F in Ht, can be
defined by (2.3). We note first of all that the prescription of the functional F on the
set Co.m (S2) determines it completely, since Co.x,(O) is dense in Ha. The condition
F E H,* implies that Fo ir-1 is a linear functional on the subspace 'rr(HA) of the
space L"'(0) X Lm((2) X L2(A, E). By the Hahn-Banach theorem this functional can
be extended with preservation of norm to the entire space L'(0) X L°((2) X
L2(A, 2:3). Now any linear functional 0 in the latter space can be represented in the
form

(v0,v. 0) = jQ ( f o vo + f v) d x + f X tp ds, (2.5)

(') The space L"'(tn) X Lm(tt) X L2(1t. B3) is equipped with the norm

l1(>'. v. q )II -II''o1I",.0 +IIVIIm.Q +11T111-20\-10-

where Ilvll.,,u - IiIIL-,t»' E tllt''ll",,.Q 0,(), v, q) a L"'(0) x Lm(n) X L2 (XI E3) and v - (ol....,v").



130 PT. 11. CH. 5: THE GENERAL BOUNDARY VALUE. PROBLEM

where f,,, f. and / are as in the formulation of the lemma. Therefore, for all
TI E C (St) the value (F, n) of the functional F at the function n is determined by
the formula

((F°'T-`),(n,

f ((,n + f Avn) dx + f A¢-qds, (2.6)
n =,

and the norm IIFII,It coincides with the norm of the functional 4' ;obtained in
extending the functional Fo 7r-', i.e., the norm of Fin Ha is given h, (2.4). The last
part of the lemma follows easily from the estimate

f (fin+f AVn)dx+ f a¢nds
I (2.7)

Sup(IIJ lm.a' IIf'lln:.0........I -..;,.a. Il llI-iA. 0)117111/1.

which is valid for any q E Cj ,(S2). The lemma is proved.

LEMMA 2.2. There is the dense imbedding H. -+ H. In the case m >_ 2, m, 3 2,
i = 1, ... , n. if condition (4.2.25) is satisfied for 23 the spaces Hs and H are isomorphic.

PROOF. Since any subset of the regular part of dS2 is also regular, it follows that 2,,
is a regular part of a g. Then, obviously, any sequence convergent in itself in HA can
be identified with some element of H. whence the first part of the lemma easily
follows. The second part of the lemma follows from (4.2.26) (with m = 2) and the
condition of boundedness of A on I,. Lemma 2.2 is proved.

Thus, elements of the space H,,,.m(A; SE; 13, X) are functions in L(S2) having a
generalized A-gradient Avu e L'(0) and generalized limit values ul_,on the set 2,,,
where uIz, e L2(X, E,).

LEMMA 2.3. Suppose that some set 9C I' satisfies condition (4.3.2). Then the set
y(fI) is dense in HA = H,,:-'(A; Sl; E,, A).

PROOF. Lemma 2.3 is proved in exactly the same way as Lemma 3.1 of Chapter I.
We note only that on the right side of (4.3.5) appears the additional term
( fE,,,,,. Au2 ds)`IZ. Because Z, n 9 = 0 and meas 1(d ) = 0, this term tends to
0 as 6 - 0. The remainder of the argument is a literal repetition of the proof of
Lemma 2.2. This proves Lemma 2.3.

We introduce two more function spaces. We denote by (1,) , and (2,)_
those parts of the set E, (i = 2.3) on which the function h defined by (1.22) is
respectively equal to 0, greater than 0, and less than 0. We decompose Z' into parts
X;,, E;, and I' in a similar way. We assume that

meas,, .,a(',)' = 0, i = 2,3;

meas,, , 8l', = meas,, , 8l' = 0. (2.8)

We set

f(x) = E (16'(x)1 ++- ax
St"_ (xE2:/3(x)>0),

SZ,,,= 0 }, i=I....,n.
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We introduce the following norms:

11412 0.0) _ r ll

1/2

J 1u2 dxl , IIull1,2(IbI (E2.,) tUE:) =
(E2.3) u E; Iblu2

ds
) 1/2

/ 1/2

I f Ib'Iu2dx , (2.9)

where (12.3) (12)1U(13)tand(1,)= (1,)+U(1i)-,i = 2,3.

The completion of the set C s (SZ) in the norms

IIuIlX = IIuII)I) + IIull12(>4. IIullL2(IhI4M2.,) iLZ'.)

and
n

IIullY =IIullX + E
l

(2.10)

(2.11)

we denote respectively by

X X°.m(A;t1;Sl;12;13,X) and Y= Y, (A;b;S?';F+2;13+X)

The following lemma is established in complete analogy to Lemma 2.1.

LEMMA 2.4. The space X (Y) is separable and reflexive. Any linear functional F in X
(Y) can be defined by

(F, ri) = f 2(f q + f A vrl) dx + ffigart dx

+ f I bI hti ds [+ E lb'lginx, dx'q E Co'.E,(fl), (2.12)
(12.3)1UI', J

where f) and f are the same functions as in (2.3),

go E L2($, Up), q E L2(X, 13), h r= L2(Ibl, (12.3)±U 1+),

gi E L2(lb'I, nh,), i = 1,...,n,

and f, f, go, q, h, and the g', i = 1, ... , n, can be chosen so that the norm II FII x.
(I I F I I is equal to the supremum of the norms

IIf0IIn2'.Q' IlfIIf^IIm',,.Q, IIg0IIL2($.8ph IIgIIL2(A,X,),

[llg'IIL2(Ih'I.Qh01

Conversely, any expression of the form (2.12) for which the above conditions for
f,,, f, go, q, h (and the g', i = 1, ... , n) are satisfied defines a linear functional F in X
(in Y) with norm not exceeding the indicated supremum.

We denote by J1 the completion of in the norm IIull1, + 1lullL2(p Q8). It is
obvious that H) - HA.

LEMMA 2.5. The space X can be identified with a subspace of HA X L2(b, 1+).

PROOF. The process of proving Lemma 2.4 (altogether analogous to the proof of
Lemma 2.1) shows that X can be identified with a subspace of

Lm(Z) X L°(U) X L2(fi, I1) X L2(h,13) X L2(Ibl, (12.3)±U 1+)
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by writing elements u of X in the form u = (u,v,u, q), iii), where u E L(St),
v E L'"(2), ( E L2(fl,Sty), E L2(A, 2:3) and E L2(Ihl,(12.3)±U E+). However,
taking into account that the components v, Ti, 4p, and the restriction of J to
are uniquely determined by the first component u of the element u E X, we can
identify X with a subspace of fix X L2(h, X,.) by writing elements u c- X as pairs
u = (u. q)), where u e Hx and tp e L2(b, E+). This proves Lemma 2.5.

REMARK 2.1. Let 0, and suppose that for the set E+ the following
condition is satisfied :(2 )

the set Co`.:, (St) is dense in HA. (2.13)

Then X cannot be identified with a subspace of fix.
Indeed, in view of (2.13) there exists a sequence (U,, }, U E U (St), n =

1.2,..., converging in HA to a given function u E C; (S2) which is not equal to 0
on 7-',. It is obvious that for the stationary sequence (4,, ), where u = u, n = 1, 2,... ,
there is also convergence to u in Hx. Hence, ajlij, = 0. It is obvious,
however, that

lim Jju,, - * 0,
of x

i.e.,11u 0 as n -+ oc.

LEMMA 2.6. The space Y can he identified both with a subspace of X and with a
subspace of H.

PROOF. The process of proving Lemma 2.3 (see the proof of Lemma 2.1) shows
that Y can be identified with a subspace of

'I

L`(St) X "''St) X L2(Q, Sty) X L`(Ibl, 0:23), U 7-'+) X fl L2(jh'I. St,,.),I
by writing an element u E Y in the form u = (u, v, u, p, ¢. z), where u E L"'(S1),
v E Lm(St), a E L2(f, Sty), ql E L2(A. E3). E L2(Ihl, (1,,3) , U E',) and z E
l1' L2(1h'l. Sth.). However, as we noted in the proof of Lemma 2.5. the components
v, u, p and the restriction of i' to the set (E,.3) , are uniquely determined by the first
component u of this element, and v = AVu, a = u. p = ulz, and tylt: ,t = Ulf!,,),.
We shall now prove that the components zi, i = 1....,n, of the element u E Y are
also uniquely determined by the first component u of this element. Suppose that the
sequence (uk ), uA.. E k = 1, 2,.... converges to u in Y. This implies, in
particular, that u,. u in L"'(St), uk. -+ u in L2(/3, S2N), and

b'j(uA..,. - z,)' dx = 0, i = 1,... ,n.lira f
im

f
^'

Passing to the limit as k oo in the identities

uAn
+ dx, q E Cn(SZ), i = 1--n,fub'uA rtdx = -fn az,

(2.14)

(2)Condition (4.3.2) for the set is a sufficient condition that (2.13) he satisfied: this assertion is
proved in exactly the same way as Lemma 2.3.
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we obtain

f b'urf,, dx = f 86
u + b'2; 71 dx V71 E Ca(S2), i = 1,...,n, (2.15)

to u 8x;

where we have defined 2, = z, on S2h, and 2, = 0 on 12 \ S2h" i = 1,... n.
Since h'2, E L'(2), i = 1,...,n, this implies that the functions b'u have gen-

eralized derivatives a(b'u)/ax;, i = 1,...,n, in 2, and

8(h'u)18x, = ab'u/ax, + b'2, for almost all x E S2, i = 1,...,n. (2.16)

From (2.16) we obtain

z, = h;'[ab'u/ax, - a(b'u)/ax,J for almost all x E S2h.,i = 1,...,n.(2.17)

Using known facts from the theory of generalized derivatives ([97], pp. 43-45), from
(2.16) we can also deduce that u has generalized derivatives au/ax; in the domains
2,, and au/ax, = z, ELI (52h,) f1 L2(Ib'j, f2h,), i = 1,...,n. By au/ax, we hence-
forth understand z, extended by zero by SZ \ 12h,, i = 1,... ,n. Then in place of (2.16)
we can write the equalities

8(h'u)/ax, = ab'u/ax; + b'(au/ax,) for almost all x c- 12, i = 1,...,n. (2.18)

In particular, it follows from (2.18) that b'au/ax, E L'(2), i = 1,...,n.
The assertions presented above not only prove that the component z = (z1,...

is uniquely determined by the component u, but also establish specific properties of
u. From what has been proved it follows that Y can be identified with a subspace of
X, and the elements u e Y can be written in the form u = (u, p), where u E H and
q, E L2(b, 1,), i.e., in the same way as elements u of X. We shall prove, however,
that for an element u = (u, p) E Y the second component q) is uniquely determined
by the first component u. Indeed, suppose that a sequence (u }, u E
n = 1, 2.... , converges to u = (u, p) in Y. Then, passing to the limit in the identity

n
b 'U" n dx = -f 8b

dx
n ax,

- f ds,

we find that

fnb'ux?] dx = -ful ab' url + b'utix dx
axi

- f b'v,4p*7 ds,

'q E C0141'.'),v1-' (0), (2.19)

71 E Co4E:.3)_v" (0), (2.20)

where we have used the fact that convergence of (u,,) to u in Y implies, in
particular, convergence of to in L2(b, +). It follows from (2.20) that the
component T of the element u E Y is uniquely determined by u, since, as is evident
from (2.20), the values of the integral

I
c

bv,prids, 71 E C01E:a)_vE' (S2)
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are completely determined by u; h'v, = -h # 0 on 1%, and the restrictions of
functions n E 1 i_, to 2'., are dense in L'-(h, 1',). We therefore agree
henceforth to denote the component T of an element u = (u, q)) E Y by rp _ Jul,,...
It follows from what has been proved that Y can be identified with a subspace of H,,
and its elements u can be written either in the form u = or simply in the
form of functions u = u E H,\. Lemma 2.6 is proved.

It is obvious that the following imbeddings ensue from Lemmas 2.1-2.4 and 2.6:

XxL2(b,2:+), Y- X, Y ->HA, L -+X*->Y*. (2.21)

Thanks to these imbeddings and the existence of a common dense set C _ (Sl) in H,,
X, and Y it is possible to use the same notation ( , ) for the duality between HA
and H,*, X and X*, and Y and Y*.

REMARK 2.2. In connection with the fact that elements of X are realized as pairs
u = (u, p), the same notation should be applied to elements of the original set

(2) whose closure in the norm (2.10) gives X. We agree, however, when
considering an element u E C, (Sl) as an element of X to write it in the usual way,

L'

T1 -
identifying a function -u E C (Sl) with the pair (u, ujM. ), where

u

the C X -+ Y* defined by

(.u, n) _ - f u(h'n),, dx + f bun ds. U. n E C .. (St). (2.22)

It is obvious that for any u, n E Cci. (Sl)

1(u, n) I (2.23)

Because of the linearity of . and (2.23), the operator. is bounded (and hence also
continuous). It can therefore be extended to the entire space X. Henceforth .:
X -+ Y* always denotes this extended operator.

We denote by V an (algebraic) subspace of X which is important for subsequent
considerations; it is defined by the condition

V=IuEX:.uEHA). (2.24)

LEMMA 2.7. Suppose that the following condition is satisfied:

the set l' L, y (Sl) is dense in HA. (2.25)

Then V can he identified with a subspace of Ha.

PROOF. We note first that the restriction of the operator.: X - Y* to V can he
completely defined by giving the values (.u. n), u E V. n E C . (Sl ), where

(Mu,n)- f u(h'n),,dx+f (2.26)

Indeed, passing to the limit as n --> oo in an equality of the form (2.22) written for
functions u E e(lx (S2), n = 1, 2,..., converging to a given element u = (u, ip) E V
in X, we obtain

f u(h'n)C,dx+ f huI(,.,).ndc

+ f hands, n E (2.27)
c
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'Faking account of the density of in Ha, we prove the above assertion
and, in particular, obtain (2.26). The definition of the subspace V implies the
existence of an element F E H,; such that

f u(h'q),,dx+ f f bpgds=(F,rl), rleCo.£,(O).
st 5:.3).

(2.28)

Let { rl E Co. (E2 n = 1, 2, ... , be a sequence converging to a fixed
function rl E Cj.(1) in H. We denote by ..(u, rl) the expression

u,'I) = - u
8

ax; '(b'n) dx + f bul(123).rlds. (2.29)
fQ

The expression (2.29) is meaningful for any u E Ha and it E Co.E (SZ). In view of
(2.28) and (2.29),

(F, TI = lim
it in //A

(2.30)

where u is the first component of the element (u, q)) E V under consideration. From
(2.28)-(2.30) we then obtain

f bgprl ds = lim h(u, rl - n) (2.31)
: p in Na

for any sequence in E Co o 1, (lE ), n = 1, 2, ... , converging to t in H,,.
Taking account of the fact that b * 0 on 1, and the arbitrariness of the restrictions
of functions rl to 2, we conclude in view of (2.31) that the component q, of the
element u = (u, qq) E V is completely determined by the first component u E H.
Lemma 2.7 is proved.

We agree to denote the component qv E LZ(b, 2+) of an element (u, 4p) E V by
(u)1.. Thus,

f lim. (u, (2.32)n n 11A

where rl and rln are the same as in (2.31). We henceforth write elements u = (u, (u)z. )
of V simply as functions u E H\. In particular, (2.26) can be rewritten in the form

( `.,rdu, rl) = - f u(b'rl),, dx + f buj(EZ,).rl ds, U E V, 71 E C0l.E11 1 (D)
U (E:.3),

(2.33)

REMARK 2.3. In view of Lemma 2.3, condition (2.25) is certainly satisfied if

condition (4.3.2) is satisfied for the set B+. (2.34)

If condition (2.25) is satisifed, V can be identified with a subspace of E. We now
pose the following question: under what condition is a function u E HA contained
in V?
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LEMMA 2.8. Suppose condition (2.25) is satisfied. A function u belonging to 1'J, is an
element of the subspace V if and only if the following conditions hold:

1) There exists a sequence (uA uA a Co',_ (SZ ), k = 1, 2.. . .

such that

A xurn 11u, - uhlna = 0, Jim I!u, - uJI r = 0. (2.35)

2) For any function r, E and anY sequence { ?lA

rtA E Co'.M k = 1,2...., converging in HA to rt,

lim ,4(u, TIA - 17) = 0.
x

PROOF. If U (=- V, then the validity of (2.35) follows from the definition of V and
Lemma 2.7. In particular, condition 2) of (2.35) follows from (2.32), since for all
q E C, (SZ) the left side of (2.32) is equal to 0. Suppose now that conditions
(2.35) are satisfied for some function u E HA. From condition 1) in (2.35) it then
follows that u is the first component of some element u = (u, y)) E X. Noting (see
(2.27) and (2.29)) that (9(u,p ) , q) _ -4(u, tj) for all r t E C U s . . ( [ ) . we deduce
from condition 2) of (2.35) that for the element u = (u, p) the linear mapping rl

(R(u,(p),71) is continuous on(SZ)inthenorm ofHt,.Since C,;
is dense in HA, this implies that V(u, q) E HA, i.e., (u. qp) E V. Thus, if (2.35) is
satisfied the function u is the first component of some element of V with which this
element can be identified. This proves Lemma 2.8.

We denote byad: C C X* c Y* the operator defined by

(.emu,,) = f [1'(x, u, AVu) Avrl + l,)(x, u. AVu)77] dx

+ fc Xul. n ds, U,77 (2.36)

where 1'(x, u, q) and 10'(x, u, q) are the functions in (1.2). It follows from Lemma 2.1
and (1.3) that for all u c= 1 formula (2.36) defines a linear functional
du a H1; in the space HA, since, using H$lder's inequality, we easily obtain

I(-Vu, 77)1 '< c(tr7II11a, u, rl E (2.37)

where the constant c depends on j(dUll,,.

LEMMA 2.9. The operatorsd: C,l,_,(SZ) C X -' H;` is hounded and continuous.

PROOF. We consider an operator ,A": L"(2) x LP(Q) Lq(Q ), where p >- 1,
p = (p1,... p; > 1, i = 1,... ,n, and q >- 1, defined by

,N'(z,z) = (P (x, z(x), z(x)), (z,z) E L"(SZ) x LP(SZ), (2.38)

where 4 (x, z,z) satisfies the Carath6odory condition in SZ x R X R" and the
condition 4)(x, z(x),z(x)) E L"(SZ) for any z E L"(2) and z E LP(SZ). It is well
known (see [661, pp. 31-41) that such an operator is bounded and continuous. Using
the conditions imposed on I(x, u, q) and l;,(x, u, q) in Definition 1.1 (see, in
particular, (1.3)), we can easily reduce the proof of Lemma 2.9 to an application of
the theorem of Krasnosel'skil indicated above. Lemma 2.9 is proved.
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COROLLARY 2.1. The operator d: Co.j,(S2) e X - H), admits extension to the
entire space X with preservation of boundedness and continuity.

PROOF. Corollary 2.1 follows from Lemma 2.9 in an obvious way. We shall write
out the explicit form of the values (-Wu, rl), u = (u, q)) E X, -q E H., where d
denotes the extended operator (2.36). Suppose that a sequence (uk ), uk E Co (S2),

k = 1, 2..... converges to u = (u, y)) E X in X. Then uk -+ u in Lm(i2), AV Uk
Avu in Lm(it), and ukIZ, -' uklE, in LZ(A, 13), where Avu is the generalized
A-gradient, and ul::, is the generalized limit value u on 13 of the function u E H.
Applying Krasnosel'skii's theorem, we establish that the functions I"(x, Uk, AVuk )
converge to 1"(x, u, AVu) in L"'%(S2), i = 1,...,n, and the functions lo(x, Uk, AVUk)
converge to I(',(x, u, AVu) in L"(2). From what has been proved it follows that

(S/U, ) = f [I'(x, u, Apu) AV71 + u, AVu)rl] dx + fm Aulz, 71x, ds,
It ,

(2.39)

where u = (u, cp) E X and 71 a H,,; here AVu and Av71 denote the generalized
A-gradients of u and rl, while uIZ, and 1711, denote their generalized limit values on
Y,. Corollary 2.1 is proved.

Henceforth,: X - HA* always denotes the extended operator, indicated above.
We denote by 2': X -i Y' the operator defined as follows:

£°= d + -', where W: X H C X' C Y' is defined by
(2.39) and 4: X Y' is defined by (2.22).

The next assertion follows from the properties of -Wand -4 established above.

LEMMA 2.10. The operator.': X Y' defined by (2.40) is bounded and continuous.

It is obvious that the operator ,': X - Y defined by (2.40) is uniquely de-
termined by its values (Yu, 71), u, 71 E Co.2,(Sl0) which have the form

(Yu, rl) = Av71 + 1orl - uax, (b'71)
1

dx

+ f bu7lds + f Au71ds, u,71 a Co.j,(it). (2.41)

Comparing (1.37) and (2.41), we conclude that a': X -> Y' can naturally be called
the operator corresponding to the general boundary value problem for equation
(1.35) having (A, b, m, m)-structure in the domain a.

§3. A generalized formulation of the general boundary value problem

for (A, b, m, m)-elliptic equations

In a bounded domain 2 C R", n 3 2, of class Ct') we consider an equation of the
form (1.35) having (A, b, m, m)-structure in this domain under the assumption that
condition (2.1) is satisfied and the regular part E c a52 has been decomposed into
sets E1, E,, 13, while E, and E' have been decomposed into subsets (1)0, (E)+ and
(s,) _, t = 1, 2, 3, and E', E+ and 2', as described at the beginning of §2. In
particular, it is assumed that condition (2.8) is satisfied. We suppose that on 23 there
is given a piecewise continuous, bounded, positive function A. We suppose also that
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(2.25) is satisfied. We assume the validity of the conditions listed above throughout
this section. Under such conditions, in §2 we introduced and studied the spaces H3.
X and Y (see (2.2), (2.10) and (2.11)), the subspace V (see (2.24) and (2.22)). and the
operator 2: X - Y* (see (2.40)) corresponding to a general boundary value prob-
lem of the form

-dl'/dx,+lt=f in 52, a=0 on 1,U2:',
(3.1)on,. on E3.

where c = 0 on c = b(x) on and b(.x) is defined by ".22).
By a generalized solution (of energy (vpe)(3) of problem (3.1) we r an any function

u e V satisfying the operator equation

Ytc = F, (3.2)

where P: X -* Y* is the operator corresponding to problem (3.1) (see (2.40)), and
the element F e H is defined by (F, rt) = fu f(x)1)(x) dx, i E (S2 ).

In view of condition (2.25) and Lemma 2.7 any element u E V is a function u(x)
belonging to the space Ha. Since V c X, from the definition of the space X and the
regularity of the part E e ast it follows that any function u E V has a generalized
limit value ule on the set i = it U (1,.3) , U 2:,, where the function u assumes its
limit value u!o in the following stronger sense (as compared with the general
definition of the generalized limit value of a function u E H,, (A.12) given in §4.2):
there exists a sequence (uj ), uA E Ct;. (S2 ), k = 1.2..... such that uA - u in H3
and uAf1 - ulr in LL,(t') n L2(jhI.(2:,,,) ,) n L2(A. 1,). Indeed, the convergence
of the sequence (u, ) in X implies. in particular, the convergence of { uA kg) in
L',,(!) to some element,/ E L,,(2), where

'PIm, = 0. L-(!bI L2(A, 1,):

this element i' is the generalized limit value of u on 2. Henceforth in this chapter we
agree to understand by the words "a function u E H3 has generalized limit value uj:-
on the set V" that this property is satisfied in the stronger sense indicated above.

Taking into account the properties of elements of V formulated above and also the
density of in Ha. which follows from (2.25) (see Remark 2.3). we can
say that a generalized solution of problem (3.1) is any function u E V c if,
satisfying the integral identity

rr

(Yu, rl) = u, Avu) AOr + 1(',(x. u. AVu)rl - u
a

a.r
(h'TI) dx

+f Aul ids + f bu)±rl ds

F,n) (fl). (3.3)

where AVu is the generalized A-gradient, and ule is the generalized limit value of u
on 2.

(') Since throughout this chapter we shall not consider generalized solutions of other types for problem
(3.1). in this chapter we henceforth call the solutions of problem (3.1) defined here simply ,gcnerali_ed
solutions.
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PROPOSITION 3.1. Any function u E Hk having generalized limit value

ull E n L2(lbl, ('12.3)±) fl L2(A, .Z3)

and satisfying (3.3) belongs to the subspace V and is hence a generalized solution of
problem (3.1).

PROOF. We use Lemma 2.8. From the condition u E HA and the existence of a
generalized limit value for u it follows that there is a sequence (uk ), Uk e Co z,(i!),
k = 1, 2,... , for which

klim 11u,. - ulluA = 0 and k

li
xm lluk - usll x = 0.

On the other hand, for all 11 E C01.2 u F..(S2) and for all {'q,), 71k E Co,Ej,E, (SZ),
k = 1, 2, ... , converging to i in H), it follows from (3.3) that

lira -4(u, rlk - q) = 0.
x

Thus, both conditions of (2.35) are satisfied, and so u E V. This proves Proposition
3.1.

REMARK 3.1. Below in order to impart a closed character to further results on the
solvability of problem (3.1), it is convenient for us in (3.2) (and hence also in (3.3))
to understand by F an arbitrary element of H. We therefore agree to assume in
(3.1) that f = F E H. It should be born in mind, however, that replacement of the
function f E L"(2) in (3.1) by an arbitrary element F (=- H)*, actually distorts the
form of the problem. In view of Lemma 2.1 the problem (3.1) with f = F E Ha,
realized in the form (2.3), can be rewritten in the form

in2, u=0 on2,U1', on 12,

on 23, (3.1')

where c = 0 on (12.3)0+ and c = b(x) on (12,3)_.
REMARK 3.2. It follows from Proposition 1.5 that any solution of problem (3.1)

smooth in S2 is also a generalized solution of this problem. If u is a generalized
solution of (3.1), then its vanishing on 11 is ensured by its membership in the space
Ha = (A; 0; E3, A) and the condition of regularity of the set 21 c 2.

In distinguishing concrete conditions guaranteeing the regularity of 2, it becomes
clear in what sense the vanishing of a function u on 21 follows from the fact that it
belongs to H. We note that if, for example, condition (4.2.5) is satisfied for the set
2,, a function u E HA vanishes on 21 in the sense that for all interior points of El
equalities of the form (4.2.16) are satisfied with ul* replaced by 0. That a generalized
solution satisfies the remaining boundary conditions in (3.1) is determined by the
integral identity (3.3) itself. It is obvious that if a generalized solution of problem
(3.1) and the functions forming (1.35) are sufficiently smooth while 0 E C2, then
such a generalized solution is also a classical solution of this problem.

§4. Conditions for existence and uniqueness of a generalized solution
of the general boundary value problem

In a bounded domain fl c R", n >, 2, of class e(" we consider the general
boundary value problem of the form (3.1) for an equation (1.35) having
(A, b, m, m)-structure in S2 under the assumption that conditions (2.1), (2.8), and
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(2.34) are satisfied. Under such conditions a definition of a generalized solution (of
energy type) of problem (3.1) was given in §3. To prove the existence and uniqueness
of such a solution of problem (3.1) we use the results of §4.6. It follows from the
results of §2 that for the spaces H = HA, X and Y considered there, which arise in
connection with the generalized formulation of problem (3.1), all the conditions
imposed on H. X, and Y in §4.6 are satisfied. In particular, condition (4.6.6) holds,
where the role of the set 9 in (4.6.6) is played here by the set (SZ). Condition
(4.6.7) is obviously satisfied for the operator 2': X -+ Y* corresponding to problem
(3.1). We remark that in this section the operator P: X -+ Y* is always understood
to be the operator corresponding to problem (3.1) (sec (2.40)), and the operators d:
X' -+ H* and .Q: X Y* its components (see (2.39) and (2.22)), where H = Ha, X
and Y are the spaces defined in §2.

The following results on generalized solvability of problem (3.1) ensue directly
from the results of §4.6.

THEOREM 4.1. Assume that the following conditions hold:
1) For the equation (1.35) having (A. b, m. m)-structure in a bounded domain

2 c R ", n >_ 2. of class e" I conditions (2.1). (2.8). and (2.34) are satisfied.
2) Condition (4.6.9) is satisfied for the operator Yd: X -+ Y.
3) For the subspace V defined by (2.24) a condition of the form (4.6.10) is satisfied.

i.e.. V f Y is dense in X.
4) The function v -+ (.dv, n), v E V, is continuous in the norm II ' U.r
Suppose also that the operator .': X -+ Y* is locally coercive (coercive) and has

semibounded variation. Then problem (3.1) with F = 0 ( problem (3.1) for ever),
F E has at least one generalized solution.

Theorem 4.1 follows from Theorem 4.6.1 and Corollary 4.6.2. The following
results on uniqueness of a generalized solution of problem (3.1) ensue from Theo-
rems 4.6.3 and 4.6.4.

THEOREM 4.2. Suppose that condition 1) of Theorem 4.1 and a condition of the form
(4.6.23) are satisfied (in particular, condition (4.6.23) is satisfied if the operator d:
X -+ H* is strictly monotone and (64t', v) > 0 for all n E V). Then for every F (=- Ha
problem (3.1) has no more than one generalized solution.

THEOREM 4.3. Suppose that conditions 1). 3). and 4) of Theorem 4.1 are satisfied,
and that the operator 2': X -+ Y* is uniformly monotone. Then for every F E H1*
problem (3.1) has no more than one generalized solution.

The next theorem follows from Theorem 4.6.5.

THEOREM 4.4. Suppose that conditions 1)-4) of Theorem 4.1 are satisfied, and that
the operator P: X Y* is strongly monotone. Then for every F E HX* problem (3.1)
has exactly one generalized solution, and the restriction Y: (V c X) -' (H, C Y*) of
the operator 2': X Y* to the set V is a homeomorphism.

Finally, from Theorem 4.6.2 we obtain the following result.
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TIEEOREM 4.5. Suppose that condition 1) of Theorem 4.1 is satisfied, and that the
operator _W: X- H* is weakly compact, while F: X -+ Y* is local/v coercive
(coercive). Then problem (3.1) with F = 0 (problem (3.1) for every F E Hf) has at
least one generalized solution.

Below we shall present sufficient conditions for the validity of conditions 2) and 3)
of the above theorems, and also algebraic criteria for the conditions of local
coercivity, coercivity, monotonicity, and strong monotonicity for the operator P:
X -+ Y* to be satisfied.

LEMMA 4.1. Suppose that

lJull12(lhI.Fa Cllullr, VU E Coj,(S2), (4.1)

where the constant c does not depend on the function u e Co y (1). Then functions
u E Y have traces uIL2(Jb(, E'), and the restriction of the operator. : X Y* to
the set Y is defined by

(.1u, n) = f b'u-, ql dx + f lblu 1 ds, u E Y, 71 E 00',j, (0). (4.2)
sa

PROOF. It follows immediately from (4.1) that if { u (E Co El(Sl), n = 1, 2,... ,
converges to u E Y in Y, then the sequence converges in L2(Ibl, 2') to some
function (u)_E L2(jbI, 2') which is obviously the trace of the function u E Yon 1'.
Using (2.22) and integrating by parts, we find that

fnb'(un)X,tldx

+ n = 1,2,..., Vi) E CC.E,(Sl). (4.3)
(Ex.3I-UE=

Passing to the limit as n oo in (4.3), we obtain (4.2). The lemma is proved.

LEMMA 4.2. Suppose condition (4.1) is satisfied, and suppose for each of the sets 2'
and E+ condition (4.3.2) holds, while for the set (22,3)_ condition (4.2.25) is satisfied,
where m,* = min(m, m1,...,m2) 3 2. Then in order that a function u E Y belong to
the subspace V it is necessary and sufficient that u = 0 on V.

PROOF. Because of the validity of condition (4.3.2) for E+ and Lemma 2.8 a
function u (=- Y belongs to V if and only if condition 2) in (2.35) holds for it, i.e.,
limk _,, _4(u, % - 7)) = 0 for all r) (=- and any sequence (r)k ), Ttk E
C. r.,(0l ), k = 1, 2, ... , converging ton in HA. Applying the formula for integra-
tion by parts, we rewrite .(u, % - q) in the form

-4(u, nk - ii) =
fn

b'ux,('nk - n) dx + f Ibl u(rlk - n) dc, (4.4)

where r) and (r)k ) are as described above. In view of condition (4.2.25) for (12.3)-
the equality

lim .'(u, nk -'n) = 0
nx +n in HA
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for the indicated 71 and ( fix ) is equivalent to

lim f hu(174 - rl) ds = 0. (4.5)
nA ~ n in //A

Thus, a function it e Y belongs to V if and only if (4.5) holds for any 71 and (1jA }
possessing the properties indicated above. If u = 0 on E', then the validity of (4.5) is
obvious, so that in this case u E V. We shall now prove that (4.5) implies that u = 0
on . Let rl be any fixed function in Cn.m, ,: (St). In view of the fact that the set I'
satisfies condition (4.3.2) (see (2.1)) there exists a sequence (rl ), r!A E Cn.m,,, .(St),
k = 1.2.... , converging to the selected function -l in HA (see Lemma 2.3). Then

bui1ds = 0 for all ?I E r01.s,,In view of the arbitrariness of n and the
condition h * 0 on this implies that u = 0 on 2'. Lemma 4.2 is proved.

PROPOSITION 4.1. Suppose that condition (4.1) is satisfied, and that condition (4.3.2)
holds for each of the sets °' and Ei while for the set (2,.3)_ condition (4.2.25) is
satisfied with m* = min(m, m...... 2. Then condition 2) of Theorem 4.1 is

satisfied, i.e., condition (4.6.9) holds for the operator M: X Y*.

PROOF. In view of Lemma 4.2 and quality (4.2) the restriction of fit: X -* Y* to
the set V n Y is defined by

(Mu,rt)= fh'u,ndx+ f jbjurlds, uE V n Y,,, E

from which we easily obtain

0I'< 1141-IMIX u E V n Y, n E en s (St).

In view of the density of C (Sl) in X this implies that the restriction of .4: X - Y*
to V n Y is a bounded linear operator from (V n Y) c Y into X*. Proposition 4.1 is
proved.

LEMMA 4.3. Suppose that a condition of the form (4.3.2) is satisfied for the set Y.'.
Then the set C ,..(S2) is dense in X.

PROOF. It suffices to show that for any u E there exists a sequence (u },
u E n = 1.2...., converging to u in X. We consider the sequence
(us, ), where us is defined for a fixed function u e C (S2) by (4.3.10) with = 2:',
and S - 0 as n --* oo. Exactly as in the proof of Lemma 4.3.1, we establish that
us, -* u in HA. Taking into account that us = u outside an n-dimensional neighbor-
hood of 2;' which contracts to 2:' as 6 - 0 (see condition 2) in (4.3.2)), we see that
u8, - u in L2(f3, Sl#). Taking, finally, into account that (22.3) , U 1'. does not
intersect Z' and that 13l' = 0 (see (2.8)), we establish that us u in
LZ (Ibl, (12,3) f U 1j. From what has been proved it follows that us, -* u in X.
Lemma 4.3 is proved.

PROPOSITION 4.2. Suppose for each of the sets B', E;, and Z' condition (4.3.2) is
satisfied, while condition (4.2.25) holds for (7-2.3)_. Let m, = min(m, 3 2.
Then condition 3) of Theorem 4.1 is satisfied, i.e., V n Y is dense in X.

PROOF. It is obvious that Cn.E, C Y. In view of Lemma 4.2
C V n Y. By Lemma 4.3, Cn,11 is dense in X. Hence,

V n Y is dense in X. Proposition 4.2 is proved.
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PROPOSITION 4.3. Suppose that for almost all x E S2 and any u E R, q = Ap andpeR
l"(x, u, q)q, + 1;(x, u, q)u -(1/2)(86'(x)/8x,)u2 >- 0. (4.6)

Then the operator.: X - Y* is locally coercive.

PROOF. Suppose first that u E Integrating by parts, we obtain

(Yu, u) = ft 1'(x, u, Apu) . AVu + 1'(x, u, AVu)u - 8b' u`' - b'uuX dx

+f Au2ds+ f bu2ds

E'rlblu2ds.dx+ f£,Au2ds+2f
_,,3) . v

(4.7)

From (4.6) and (4.7) we obtain

(Yu, u) >, 0 Vu E Co (52). (4.8)

Taking into account that Co.£,(S2) is dense in Y, Y X, and also that P: X Y* is

continuous, we conclude that (4.8) is valid for all u E Y. Proposition 4.3 is proved.

PROPOSITION 4.4. Suppose that for almost all x E SZ and any u E R, q = Ap and

pERn

q)q q)
1 8b' 2

28x,
fin'`

QQvl E Igil
m

+ v2lUlm + v3N(x)U2 - q,(x), (4.9)
i-1

where VI, v2, v3 are positive constants, and qq c- L'(fl). Then the operator £9: X --> Y*
is coercive.

PROOF. Suppose first that u E Co.z,(D). For such a function (4.7) holds. Using
(4.9), we compute

I!

('u, u) , v1 E ll 1,VUIIm,.R + v2114m.n + v3IIUIl t.'($.Q,) + IIUII L_(),, 3)
i-1

+ 2 f IbIu2 ds - f 1p(x) dx.
(s ''2j) Ux'. n

It follows from (4.10) that for any function u E Co,,,(S2) with Ilullx > n + 3

(4.10)

(Pu, u) > cllullx - f 93(x) dx, (4.11)

where c = min(v1, v2, v3,1/2X n + m, = min(m1,... ,mn, m, 2) > 1. Taking
account of the continuity of the operator 9: X -> Y*, the density of Co £,(fl) in Y,
and the imbedding Y - X, we conclude that (4.11) holds also for any function
u E Y with II ull x % n + 3. Since m, > 1, from this the validity of a condition of the
form (4.5.1) follows easily. Proposition 4.4 is proved.
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PROPOSI rION 4.5. Suppose that for almost all x E Sl and any u e P. q = Ap.
p E lR R . 17 = A and S E (R "

ar' al" al;, al;, , I ah' ,

i3 y,
17, 17,

+ au aq rlu + au o - 2 ax % 0. (4.12)

Then the operator 2': X Y* is monotone (and hence also has semihounded variation).

PROOF. Suppose first that u. v E Co._ (Sl). We transform (..°u - Yv, u - v) as
follows:

(Yu--37r.u-r)

= fn{ii'x. u, AVu) - l'(x, v, AVu)] AV(u - v)

+[lo(x, u. AVu) - lr,(x, v, AVv)](u - v) - (u - v) as [h'(u - v)l) dr

+ f A(u--v)`ds+f b(u-v)`ds

=f ft l
[l"(x,v+T(u-v),Apv+TAV(u-v))]A,V(u-v)

Stll ldT

+
yT

[ l(',(X, v + T(u - v), Avv + TAV(u - U ))] (u - v) dT dx

rr r+f b'aa 12 u - v)' dA -.! 'b'(u - v)'' A
t st ,

+ b(u-v)2ds+f A(u-v)2ds
U E'.

'I al"(x,v+T(u - v).AVv+TAV(u - u))A,V(u - v)A,V(u - v)= f tf, aq,

+al"(x,u+T(u-t,),Apu+TAV(u-v))(u-v)A,V(u-r)
au

aq,

al,,(x, v + T(u - v), Ayv + TAV(u - v)) ,+
(u - v)

au

1 f db'(x)
(

2 ax
u - v)Z dx+fcA(u-v),

ds
St , .,

dTdx

+
1- f JbI(u - v)2 ds. (4 13).
2

In view of condition (4.12). from (4.13) we obtain

(YU- 2,v.u-v)30. (4.14)
w

Taking into account that 2': X Y* is continuous and also the density of e0l.z,(Sl)
in Y and the imbedding Y X, we conclude that the first condition in (4.6.4) holds
for any u, v E Y. Proposition 4.5 is proved.
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PROPOSITION 4.6. Suppose that for almost all x E 2 and any u E R, J0 a 9p,
R

dl"(x, u, q) al"(x, u, q) alo(x, u, q)
a 71,17, + a rl;l;o

9i 9j

alp(x, u, q) t2 - 1 ab'(x) 2

+ au S0 2 ax, 0

ni
a0L

1811

'_Zt?
+(lulm-2 + N(x)) 0 «0 = conSt > 0,

'-1
(4.15)

with

m, >, 2, i = 1,...,n; m 3 2. (4.16)

Then the operator 2': X - Y' is strongly monotone.

PROOF. Suppose first that u, v e Co,y ,(). In proving Proposition 4.5 it was
established that (4.13) holds for such functions. In view of (4.15), from (4.13) we
obtain

(2'u - 2'v, u - v) >' aof f 1[ IA,vv + TA,V(u - v)Im'-2IA,v(u - v)l2
0 0 i_1

+Iv + T(u -
v)Im- 2

(u - 02 + $(x)(u - v)2J dTdx

+ f13A(u - v)2 ds + 2 v)2ds, (4.17)

which is valid for any u, v e eo.2,(SI). Taking into account the elementary equality

f'Ia + T(b - a)IQ-2 dT > c1lb - aI9-2, (4.18)

where a and b are fixed vectors (of any finite dimension), q >- 2, and cl > 0 is a
constant depending only on q, we deduce from (4.17) that

(emu - 21v, u - v) aocl IIAiv(u - v)II.,.a +IIu - vlln.,0 +Iiu - VII L'(0,00)
i-1

+ f A(u-v)2ds
E3

+ 1 f IbK(u - v)2 ds, u, v e C1,E1(S2). (4.19)
2 (E2.3) ±U

It follows from (4.19) that for any u, v E Co.Z,(D) with flu - vll x < I

('FU - Zv, u - v) > C211U - v1Ix', (4.20)

where c2 = min(a0c1, Z) and m* = max(m1,...,m,,,2) > 2, and for any u, v e
with llu - vllx % n + 4

(Yu-.8v,u-v)>c3IIu-vIIX (4.21)
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where c, = c,(n + 4)-"' and m* = min(nt,,...,m,,, m,2) = 2. Finally, for any
u, ' with I < Ilu - it + 4 both (4.20) and (4.21) obviously follow
from (4.19) with constants e2 and c, respectively which depend only on
n, m, m,,...,m,,. Thus, for any u, v E C'., (I2),

(2u - 2'v, u - v) >_ 8(ff u - vIFx )Ilu - v(Lx, (422)

where 8(p) = cmin(p"'', p"'-)p' and c = min(c,, It is obvious at 8(p)
is continuous, increasing, equal to 0 only for p = 0. and limp- 8(r) = + oo. In
view of the density of Co'.Z.(O) in Y and the continuity of Z: X - . * and of 6(p)
the estimate (4.22) remains valid also for any u, v e Y. But this r ins precisely that
the condition of strong monotonicity of the operator 2': X is satisfied (see the
second inequality in (4.6.4)). Proposition 4.6 is proved.

Other criteria for coercivity and also criteria for the variation of the operator 2':
X Y to be semibounded will be given below for so-called weakly degenerate
(A, 0)-elliptic equations.

Thus, concrete sufficient conditions have been obtained for all the assumptions of
Theorems 4.1-4.4 with the exception of condition 4) of Theorem 4.1. As concerns
condition 4), its verification requires distinguishing more special classes of
(A, b, m, m)-elliptic equations. In any case in Chapters 7 and 8 this verification will
be carried out for the classes of (A, 0, m, m)-elliptic and (A, 0, m, m)-parabolic
equations which are of greatest interest from the applied point of view.

§5. Linear (A. b)-elliptic equations

In this section we assume that equation (1.35) is linear. i.e., that it has the form

-(d/dx,)(a"uY +a'u+g')+$'u,,+/3nu+go=f, (5.1)

where a'", a', g', 0', $o and g are measurable functions in 0. a'i£,£, >_ 0 in 2 for all
£ E R", and a'j = a", i, j = 1,...,n. We suppose that for almost all x e It and any
uERandp6R"

11p+au+g=A*(QAp+au+f),
0

where

1 1 mIIa'JII. at = (a'... .a"), g = (g', ...g"). P = ($', ..p").

A gIIa'"II, Q =llq''jj a = (a', .a"), f = (1'....,f"), y =
and a'1, a', f'. y', a,,, j, and b' are measurable functions in s2. Suppose that
conditions (2.1) are satisfied (wtih m = 2 and m = 2) as well as (2.8), and

a'i a L2(I2), aa" E Li (S2), b' E C(S2), ab'. E C(n), i, jax) ax;

'16 L"(I2), i, j = 1,...,n; a, y e L" (2),
(5 3)f E L2(1). a E Lx(I2), f e L-(I2),

The conditions (1.2) and (1.3) with m = 2 and m = 2 are obviously satisfied for the
functions l'(x, u, q) _- Qq + au + f and 1;,(x, u, q) = y q + f for almost all
xel0andanyu6Randg6R".
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In the present case the general boundary value problem takes the form

-(d/dx,)(a'1uz +a'u+g')+$'u,, +/30u+go=f in S2,

u=0 on21UY',

aN+a

on on (2:2.3)_, au/aN = ADu Av is the derivative
of u with respect to the conormal, and the integral identity (3.3) has the form

f [(QApu + au + f) Aprl +(y AVu + aou +

f Aultrl ds + f buI jtl ds = (F,,q) V?7 E Co.E,,,j (si), (5.5)

where uEH,=H22I(A;SZ;Z3,A)and(F,17)= fnf71dx,fEL2(Sl).
We henceforth consider the identity (5.5) for all F E JJ and call a function

u E HA satisfying this identity a solution of problem (5.4) with f ° F E H. It is
easy to see that in the present case the operator say: X H; (see (2.39)) is weakly
compact.

THEOREM 5.1. Suppose that for almost a1 lx E f and any E R"

Q(x)¢ ¢'> c,I I2 c, = const >- 0; (5.6)

ao(x) 2 ax; 2e1 Ia(x)I2 - 2e2Iy(x)I2 >1 c2(1 + O(x)), c2 = const > 0,

where e, > 01 e2 > 0 and 1/2(e1 + e2) < c1. Then for any

FE HA = (H2oiA; S1; E3, A))'

the general boundary value problem (5.4) for equation (5.1) has at least one generalized
solution.

PROOF. In view of the weak compactness of the operator V: X - HH and
Theorem 4.5, to prove Theorem 5.1 it suffices to prove coerciveness of the operator
.": X - Y. Applying the Cauchy inequality and taking (5.3) into account, we write

I
1

l"q;+lou-
2 2 8x; u2

(c1
e1 e2

e4 )l9122 2 2

18b' _ 1 2 1 2+ ao -
2 ax; 2e, IaI - 2e2 IYI -

e2
2 fo -2) u -

2e3 2e4

where e3, e4 > 0. An inequality of the form (4.9) with m = 2 and m = 2 follows
easily from (5.6) and (5.7). Indeed, suppose that in (5.7) values e1, e2 > 0 have been
chosen for which e,/2 + e2/2 < c1, while e3 and e4 have been chosen so that

e3/2 < c2/2, e4/2 < c1 - e1/2 - e2/2.
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Then (5.7) gives an inequality of the form (4.9) with

m=2, m=2, v1 =c1-e1/2-e,/2-14/2, v,=v3=c,/2,

q = fo /2ez + 1f12/214 ELI (12 ).

Theorem 5.1 is proved.
We note that in view of the boundedness of se(x) in S2 the second condition in

(5.6) will certainly be satisfied if for almost all x E 12

a°(x)
2

a

8(x) 2e la(x)lz
e

Y(x} const > 0 (5.8)
1 z

for the same e1 and e2 as in (5.6).
We consider a special case of an equation of the form (5.1) defined by the

following conditions: the matrix s11 = 11a"(x)11 is symmetric and nonnegative in 2,
a(x) = 0, and g(x) = 0 in Q. In this case equalities (5.2) are obviously satisfied with
A = `?(1j22 and Q = I, where I is the identity matrix, a = /3,,, j) = g and b'

1....,n. We assume that

aa" ap'
C(12). i, J = I....,n,all E

L2(S2),
ax.

E LIMO), fl' E C(0),
ax tt

fo E L2(12), go E L2(12), f c= L22(12), (5.9)

where the a" are the elements of A = 1/2. Theorem 5.1 then implies the following
assertion.

COROLLARY 5.1. Under conditions (5.9) and the condition

So(x) -(1/2)(a1B'(x)/ax;) >, c0 = const > 0 a.e. in 12 (5.10)

the general boundary value problem (5.4) has at least one generalized solution.

We now consider the nondivergence linear equation

a'1(X)u,,' + $'(x)uz + Q(x)u =f(x) (5.11)

with a matrix '?1 = 11a'"(x)(l which is nonnegative and symmetric in R. Let

aa' a2a'J

" ' ax E C(1)' ax.ax.
E

J l

(5.12)

$' E C(D), 8 E C(12), ; = 1,...,n; 18 E L'(2), f L2(12).

Conditions (5.12) make it possible to rewrite (5.11) in the divergence form

-(d/dx,)(a'Ju.t) + #'u.C, + #u = /, (5.13)

where aa"/ax; - s', i = 1,. , . , n, t6 = -S, / = -f, and for (5.13) conditions of
the form (5.9) are satisfied. For (5.11) we consider a general boundary value problem
of the form

a'JuXr +$'u,,+ fu=f in 12, u = 0 on M,UI',
(5.14)

au/aN+cu=0 on E2, au/aN+(c-A)u=0 on 2
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with c = 0 on (22.3)0.+ and c = b(x) = -b'v; on (7-2.3)_, where 4 is decomposed
into the parts (7-2)0.+. (7-3)o.+,- and 7-a,+: on the basis of the matrix
A = Wt`'2 and the vector b = (b...... b"), where b' = ft' - aa'i/ax;, i = 1,...,n,
a u/aN = AV uAv. In other words, we consider a general boundary value problem of
the form (5.4) for equation (5.13).

A generalized solution of (5.14) is defined to be any function u e HX =
HZ Z 1 (A; St; 7-3, A) having a generalized limit value

ul£ E L1,, (I) n L2(Ibl, (7-2,3)±) n L2(A, 7-3),
where si U (7-2.3) t U 7-3, and satisfying the integral identity

faiAVu.AVrl+u
tl

+l
L t axi

3

+f bull q ds = f frl dx, TI E (5.15)
(2:23)a

where A = %'/2 and AV u is the generalized A-gradient of u.
Since (5.15) is the integral identity corresponding to a general boundary value

problem for the divergence equation (5.13), Corollary 5.1 implies the following
result.

THEOREM 5.2. Suppose that for almost all x e SZ

1 at a 2a'i
ax ax.ax. - fi(x) 3 co = const > 0. (5.16)

r i
Then the general boundary value problem (5.14) for equation (5.11), considered under
conditions (5.12), has at least one generalized solution.

We observe that the result of Theorem 5.2 is obviously preserved if the function
f E L2(S2) in (4.10) is replaced by an arbitrary element F E Hx, where Ha a-
HZZ'(A;S2;7-3,A).

CHAPTER 6
EXISTENCE THEOREMS FOR REGULAR GENERALIZED SOLUTIONS

OF THE FIRST BOUNDARY VALUE PROBLEM
FOR (A, b)-ELLIPTIC EQUATIONS

§1. Nondivergence (A, b)-elliptic equations

In this chapter (A, b)-elliptic equations of the form (5.1.35) are considered under
conditions on the structure of the equation and the domain it such that the first
boundary value problem is well posed:

Yu = - dl'(x, u , Vu) + l0(x, u, vu) = f(x) in 0, u = 0 on ac2.(1.1)
dxi

The conditions enable us to establish the existence of a generalized solution of
problem (1.1) in the class of Lipschitz functions in S2 having a trace on the entire
boundary ag. In establishing existence theorems for solutions of problem (1.1) in
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Chapter 6 we go beyond the framework of divergence equations and consider
so-called (A, b)-elliptic equations of nondivergence form.

Let the function u be defined in a neighborhood of a point x E R", and let
A = Ila''(x)ll be a symmetric matrix of order n with elements a", i, j = I,...,n,
continuous in this neighborhood; the matrix A may admit degeneracy of any rank.
By definition, the ith A-derivative u, = au/ax, ° A,Vu of the function u at the point
x is the derivative of u in the direction of the vector a = (a",...,a'") defined by the
ith row of the matrix A. In particular, if a' = 0 at x, then u; = 0 at x. Thus, if u is
differentiable (in the usual sense) at x, then u; = E"_, a'"au/ax;, i = 1,...,n. The
A-derivatives of second and higher orders are defined similarly. For example,

(u;);, etc. Let f(x, u(x), v(x)) be a composite function of x. We denote by
df(x, u, v)/dx, the (total) ith A -derivative of this composite function. On the other
hand, a f (x, u, v)/ax, denotes the partial A-derivative of f with respect to the
argument x = (x1,... ,x") (with frozen values of u = u(x) and v = v(x)). If f(x, u,v)
is continuous, has continuous partial derivatives

au (x, U, V), 8 (x, U, V), j = 1,...,n,
J

and partial A-derivatives

f(x, u, v), 1,...,n,
axi

then it also has total A-derivatives

d f(x, u,v), , = 1,...,n,

and

a a af(x, U, V) af(x, U, V)j(x, u, v) = f (x, u, v) + u- + v;
dx, axi au aT,

where v,, = (v,); = v;/ax,.
We consider the quasilinear differential equation

a'j(x, u,'7u)u;; - a(x, u, pu) - b'(x)u.,, - 0, (1.2)

containing A-derivatives of first and second orders and ordinary derivatives of first
order (the latter occur in the equation in linear fashion) of the unknown function
u = u(x), where vu a (ui,...,uq).

We call an equation of the form (1.2) a nondivergence (A, b)-elliptic (strictly
(A, b)-elliptic) equation in SE if for any x e St, u r= R, q = Ap, and all p r= R"

a`'(x, u, q)tirtt; 3 0, ti = At VEER "

ai'(x,u,q)Tirtl;>0, Tt#0,tt=A# VJER"I.

The divergence (A, b)-elliptic equations of the form (5.1.35) considered above are a
special case of nondivergence (A, b)-elliptic equations, since by (2.1.2) differentiation



§1. NONDIVERGENCE EQUATIONS

of the first term of (5.1.35) leads to an equation of the form (1.2) with

&'J(x, u, q) _
al"(x, u, q)

aqi

q) ki al'k(x, u, q)
a(x, u, q) au

q.-a (X) ax
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- aaki(x)1'k(x,
u, q) -f(x) + 10(x, u, q), (1.4)axi

where 1"(x, u, q), i = 1,... ,n, and lo(x, u, q) are the reduced coefficients of (5.1.35).
An equation of the form (1.2) can also be written in terms of ordinary derivatives

alone, i.e., in the form

a'J(x, u, pu)u,j - a(x, u, Du) = 0, (1.5)

where Vu = (u1,...,u"), ui = au/ax;, u,j = a2U/aXiaXj, i, j = 1,...,n, and

a`'(x, u, p) - ak'(x)aks(x, u, A(x)P)as'(x),
a(x, u, p) = -ak`(x)&ks(x, u, A(x)P)(aas'(X)pi/ax,) (1.6)

+&(x, u, A(x)p) + b'(x)pi.

If (1.2) is generated by the divergence (A,b)-elliptic equation (1.1), then the
coefficients a'1 and a of the corresponding equation (1.5) can also be expressed by
the formulas

a'j(x, u, P) =
al'(x, u, p)

apl

a(X, u, P)
a1k(aU ,

p)
Pk al`(ax , P)

- f(x) + 10(x, u, P) -

From the invariance of the reduced coefficients 1" and 10' (see Proposition 5.1.2)
established in §5.1 it follows that for an equation (1.2) generated by (1.1) the
coefficients &'1(x, u, q), i, j = 1,...,n, and &(x, u, q) are invariant, i.e., as a result
of an arbitrary nondegenerate smooth transformation (5.1.30) an equation of the
form (5.1.31) is obtained to which there corresponds a nondivergence (4,b)-elliptic
equation of the form

a'j (z, u, pu) up - a(z, u, pu) - b'(z)uk = 0, (1.8)

where the differentiations in the first two terms correspond to the matrixA - AP*,
and where b = Pb, P is the Jacobi matrix of the transformation (5.1.30), and for all
xE0,UERandgER"

a`l(x, u, q) = &'J(x(X), u, q), i, j = 1,...,n;
a(z, u, q) = a(x(ac), u, q). (1.9)

This follows in an obvious way from (5.1.34) and (1.4). The following assertion has
thus been established.
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LEMMA 1.1. The functions a'j(x, u, q), i, j = 1,...,n, and &(x, u, q) defined by
(1.4) on the basis of the reduced coefficients of a divergence (A, b)-elliptic equation of
the form (1.1) are invariant (in the sense indicated above) under an arbitrary smooth,
nondegenerate coordinate transformation.

§2. Existence and uniqueness of regular generalized
solutions of the first boundary value problem

In this section in a bounded domain SI c R ", n 3 2, we first consider (A, b)-
elliptic equations of nondivergence form (1.2) (which can also be rewritten in the
form (1.5), (1.6)) under the assumption that the functions a''(x, u, q), i, j = 1_.^
and a(x, u, q) belong to the class CI(0 X R x R"), i.e., they are continuous in
12 X R X R" and all their partial derivatives of first order are bounded on any
compact set in S2 xR x R".(t) We also assume that the elements a'i(x), i, j =
1, ... , n, of the matrix A (x) and the components b'(x), i = 1, ... , n, of the vector
b(x) belong to the class C'(SI) (see the basic notation). It is obvious that the
functions a'1(x, u, p), i, j = 1,...,n, and a(x, u, p) defined by (1.6) then belong to
C'(SI xR x R").

LEMMA 2.1. Suppose that

&'J(x,u,q),q,n,>0 for all (x,u,q)ES2xR xR",qeR",71 0,
(2.1)a''(x)jj >0 forallxES2,jER",j*0,

and that there exists a constant mo >_ 0 such that for all x E 0 and any u with Jul 3 mo

&(x, u,0)u >_ 0. (2.2)

Let u be a classical solution of (1.2) (i.e., u E C2(1) fl C(SI)) with u = q) on 852,
where 9) E Q2). Then

m Jul < max(mc, max 1971).

PROOF. Lemma 2.1 follows from a well-known classical estimate for the maximum
modulus of solutions of quasilinear elliptic equations (see, for example, [831).

REMARK 2.1. We have chosen the simplest sufficient condition under which an
a priori estimate of the maximum modulus of the solution itself is valid. In place of
condition (2.2) it is possible to impose any other condition of this sort. This must
always be borne in mind below.

We further assume that 2 belongs at least to the class C2. We set

Da = (x e l: dist(x,aSt) < 6), 8 E (0, K-t), (2.3)

where K is the supremum of the absolute values of the normal curvatures on 852, and
the number 8 is so small that for each point x E D8 there exists a unique point
y E aSt such that dist(x, M) = dist(x, y).

LEMMA 2.2. Suppose that the functions a"(x, u, P), i, j = 1, ... , n, and a(x, u. p)
defined by (1.6) are bounded together with their partial derivatives aa''/ap,F and

(')This definition of the class C'(Sl X R X R") will henceforth be used in this chapter without
recalling its meaning.
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as/apk, i, j, k = 1,...,n, on any compact set in D8 X [-m, m] x Rn, where m =
const > 0, and Sl E C3. Suppose that condition (2.1) holds. Assume that, for all
x E D8, and u e [-m, m] and any p l = const > 0,

Ia(x, u, pv) I <, (p)I1(x, u, PAv), (2.4)

where c',(x, u, q) = ak'(x, u, q)gkgs, v is the unit vector of the inner normal to ag at
the point y = y(x), where y(x) is the point on asp nearest x E D8, Av = A(x) v(y(x)),
and gy(p) is a positive increasing function of p > 0 such that

f+°° dP
P+(P)+oo.

Suppose that in this notation the condition

(P)d1(x, u, PAv) > Sp W (x, u, pv) p (2.5)

is also satisfied, where 91(x, u, p) = A*(x)il(x, u, A(x)p)A(x), W s lla'jll and
Ila''ll Then for any solution u r= C2(D8) fl C(D8) of (1.5) satisfying the conditions
u = 0 on an and Iui < m on D8 the estimate

lau(y)/arl 4 Ml, y E an, (2.6)

holds, with a constant M1 depending only on m,1, (p), 8, and K.

PROOF. The hypotheses of Lemma 2.2 imply all the conditions of the second part
of Theorem 1.4.1'. Indeed, because of (1.6)

J", (x, u, PAv) = &k-,(X, u, pAv)pAkvpAv

= a'j(x, u, ,f1(x, u, PV), (2.7)

where d1(x, u, p) - a'j(x, u, p)p,pj. Therefore, condition (1.4.19) with 8(p) - 0
follows from (2.4), while (1.4.20) follows from (2.5). Hence, Lemma 2.2 follows from
Theorem 1.4.1'.

THEOREM 2.1. Suppose that the domain Il belongs to the class C3 and that condition
(2.1) is satisfied. Assume that on the set 'D8 x [-m, m] x (Iql > I), where m = const

0 and 1 = const > 0,

IqI max I«''(x, u, q)l +I&(x, u, q)I + Iqi < + (IgI)I1(x, u, q), (2.8)
,.j-1,.. ,n

where a1(x, u, q) _ &'j(x, u, q)q,gj and gy(p) is a positive, nondecreasing function
satisfying the condition f +00 (dp/po(p)) _ + co. Suppose that for ally a an

2y-1 iIA(y)v(y)I < ')y, (2.9)

where v(y) is the unit vector of the inner normal to an at the point y, and
y = const > 0. Assume, finally, that the function u e C2(D8) rl C'(D8) satisfies (1.2)
in De, u = 0 on an, and maxo,IuI 4C m. Then the estimate (2.6) holds for the function
u, where M1 depends only on m, 1, y, 0(p), and

K= sup Iki(y)I,
vEan

k1( y ), ... , k,,_ 1(y) being the normal curvatures of the surface an at the pointy.
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PROOF. Setting q = pA(x)v(y(x)) in (2.8), with p >_ I = %y > 0, and assuming the
boundary strip Dd to be so narrow that y-' < IA(x)v(y(x))J < y in it, we deduce
from (2.8) (with (1.6) taken into account) the validity for p 3 I of inequalities (2.4)
and (2.5) with,y(p) = c1q'(c2p), where c2 depends on y, and c, depends on n, y, and
the bounds of la`il, Iaa'i/axkl and (b'( in St, i, j, k = 1,...,n. Theorem 2.1 then
follows from Lemma 2.2.

REMARK 2.2. Condition (2.8) is satisfied, in particular, if for all (x, u, q) E (1
X [-m, ml X (Iql > 1)

a'JSfsl > PJgJ'11-2t2, t E Rn.

JqJ I&JI + Ial S jt '(IgJ)I9Im, i, j = 1,... ,n,

where v = const > 0, m > 1, µ = const 3 0, and ,'(p) is the same function as in
(2.8). We note further that although nondegeneracy of (1.5)-(1.6) (i.e., of (1.2)
rewritten in terms of ordinary derivatives) is assumed in Theorem 2.1, the constant
in the estimate (2.6) does not depend on the ellipticity constant of this equation.

We shall now show that condition (2.9) of Theorem 2.1 is essential. Suppose that
l C R2 is contained in the strip 0 < x1 < 3 and has an infinitely smooth boundary

consisting of a segment joining the points (0, -2) and (0, 2), a segment joining the
points (3, -2) and (3,2), and arcs yl and 72, where y, joins the points (0, -2) and
(3, -2) and is situated in the rectangle [0, 3) x [-3, -2], while y2 joins (0, 2) and (3,2)
and is situated in the rectangle [0, 3) X [2, 3]. Let ¢(1) be a function of class
C'([-3,31) which is equal to 1 for Jz < 1 and to 0 for Jtl >, 2. We consider the
function

uJX) = [(X, + 6) A -
e e e (0, 1). It is easy to see that u, satisfies the equation

al [(X, + e)2 axl, axe [(x, + e)2 ax, ] + X (X + 1) u - f (x ), (2.11)

where

f(x) = 2(X + 1)(x, + +(x1 +e)A+zj,,(Xl)
(X2)

-eA(XI + 2e'(x, + e)S'(x1)S(xz)
+[(XI + e)A+2 _ e.\ (XI + e)2]C(XI) tS"(x2)+A(A + i)eAtS(Xl)f(X2)-

(2.11) has the structure of a divergence (A, 0)-elliptic equation relative to the matrix
A - (x1 + e)I, where I is the identity matrix, while the correspondingn nondiver-
gence equation, written in terms of A-derivatives (see (1.2) and (1.4)), has the form

ull+u22-ul+A(A+1)u-f(x). (2.12)

In terms of ordinary derivatives the corresponding nondivergence equation has the
form (see (1.5) and (1.6))

(x1 + e)2ux, +(x, + e)2uxlx= - 2(x1 + e) ux, + A(A + 1)u = f(x). (2.13)

Thus, for this equation we have a'" = 8/ and a'" _ (x1 + e)8/, so that condition
(2.1) is satisfied because e > 0. For the solutions u, we have (u,I <, m in D for some
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absolute constant m > 0, uniformly with respect to e e (0, 1]. On the set Sl x { lul <
m) X (Iql > 1) condition (2.8) is satisfied uniformly with respect to e with 4'(Iq()
co, where co is an absolute constant (so that J4 dp/pi(p) = +oo), because in the
present case tit = Ig12 = qi + q2, while a = -X(A + 1)u + ((x) is bounded in
modulus on this set by a constant not depending on e. Thus, all the conditions of
Theorem 2.1 except for (2.9) are satisfied uniformly with respect to e E (0, 11.
However, condition (2.9) is not satisfied uniformly with respect to e E (0, 1], since
IAv( = e at the point (0,0) E M. The derivatives (auE/axl)(0,0) = Ae'`-' are also
not bounded uniformly with respect to q E (0,1]. Thus, condition (2.9) of Theorem
2.1 is essential (of course, only the left side of (2.9) is of basic significance).

We shall now establish an estimate of max0 Ivul in terms of maxau Ivul for any
equation of the form (1.5) with nonnegative characteristic form a'jE,jj without
requiring, generally speaking, that this equation have the structure of an (A, b)-
elliptic equation (i.e., that it be determined by an equation of the form (1.2) via
formula (1.6)).(2)

THEOREM 2.2. Suppose that the functions a'j(x, u, P), i, j = 1,... , n, and a(x, u, p)
are differentiable on Sl X R X R" and that on the set Sl x [-m, m] x (I pi > L), where
L = const >, 0 and m = const > 0, they satisfy the conditions

a''(x,u,p)t,jj>0, (2.14)

and

_ I 'Iz- n
sup i- > 0, (2.15)

1+i_t $[ 1PI

where W' - a'j(x, u, p)T,Tj, T E R", ITI = 1, and

8 =
PI axk +I' au

Then, for any function u E C3(51) t1 C'(0) satisfying (1.5) and with Jul < m in 51,

m Ivul < max(L, Mt), (2.16)

where MI m maxaa1vul.

PROOF. Applying the operator uk(a/axk) to (1.5) and setting
v(,

- Ei u', we obtain

fa'Jv1j = a'juk;ukj + ap, - v, + VV (8a - 8a'ju,j),

where v, n vx,, v,j . vx x,, etc. Exactly as in the derivation of (1.6.13), we obtain

/- zf 8a'ju,j <
a'jUkrtlkj

+ }(ISauI )v,

where i = T'WT, and T is the orthogonal matrix reducing the Hessian of u at the
point xESZtodiagonal form sothat a"_
§1.6). Then, by condition (2.15), at all points x e $1, where I v ul > 1, we have

tz
a'jv,j >, bkvk + pi - 4 Isup I8 ,l v > bkvk.

(2) In this case an equation of the form (1.5) may formally be considered to have the structure of an
(1, 0)-elliptic (but not strictly (1,0)-elliptic) equation, where I - II8/16
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From the last inequality it obviously follows that

max v S max(max v, L2 ),
tE ast

whence we obtain (2.16). Theorem 2.2 is proved.
Condition (2.15) is due to the essence of the matter. For example, we consider the

equation

- aa! I r2'U (rl VUl )m 21 + X--2(m -
2)(rlvul)2IUIni-3

axi

+(nA + A2)u(rl
Vul)",_2

= 0, (2.17)

where r = Vii + + x , A E (0, 1), and m is a sufficiently large positive number
(the latter assumption is to ensure sufficient smoothness of the coefficients of the
equation). It is easy to verify that in the ball (lxj < 1) such an equation has the
solution u = ra with unbounded first derivatives au/8x; at x = 0, although on the
boundary (lxi = 1) these derivatives are bounded. Equation (2.17) has the form
(1.5) with

a'l = rmiplm 2 S,!+(m-2) P' pl

IPI IPI

a = -2x,p,(ripl )n' 2 - mx,(rIPI)"' 2P,

,+(m - 2)A"-2(rIPI)21uI" ' +(nA + A 2)u(rIPI)"'-2

so that for this equation

12+(m-2)(Pz?rmlplm 21+(pT)
, a'A,=mPA xkrn'-1IPI"_

lPI2 IPI4IPI2
8aj _ _ [-2 + nA + A2](rIPl)" 2

Thus, for certain values of x, p, T and for u = 0 the left side of (2.15) does not
exceed the quantity (rl pl)m'2[nA + A2 - 2 - (1/4)nm2] which is negative for A E
(0, 1) and m >- 2. Thus, condition (2.15) is not satisfied for (2.17). Below we shall
present an example showing that a condition of the form (2.15) is essential when Vu
occurs in the equation linearly.

REMARK 2.3. In the case of a linear equation

a'j(x)ux = $'(x) c(x)u +1(x), (2.18)

where a'J(x)¢;f, >, 0 for any x E $Z and J E R', condition (2.15) becomes

-4 sup WT + min a + c(x) -
ITI-1 1-I...../t x,

as
ax,,

> 0, (2.19)

where 2I' = a'1(x)T,,r,. Indeed, it follows from (2.19) that for all x E SZ and any
p*0

n sup I6I TI2 + Pk (afl'/axk) P > 0.
4

1'I 1

217

IPl2
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Then for all (x, p) E l x ( IPI > L) with sufficiently large L > 0

n 189IT12 P An' P P ac(X) P af(x)k

157

- sup + k- ' +C(X)+ k - >0
4 WT IPI aXk IPI IPI aXk IPI aXk

which is equivalent to (2.15) in the case where (1.5) has the form (2.18). Condition
(2.19) is very close to one of the conditions of [99] which were imposed to obtain an
a priori estimate of I v ul for solutions of linear equations of the form (2.18).

As the next example shows, a condition of the form (2.19) is due to the essence of
the matter (see also [99]). In the ball (lxl < 1) we consider an equation of the form

-(a/ax,)(p2(au/ax;)) +(nA + A2(r2/p2))u = 0, (2.20)

where p = x1 + x + e2 , e, A E (0,1). The nondivergence form of this equa-
tion is

p20u + 2x;(au/ax,) -(nX + A2(r2/p2))u = 0.

For this equation it is easy to see that a condition of the form (2.19) is not satisfied
in the entire ball (I x I < 1) uniformly with respect to e E (0, 1), since here the left
side of (2.19) is equal to

-n(lX12/(1x12
+ e2)) - 2 + nX + A2(r2/p2),

so that for all x # 0 there is an e e (0,1) such that this expression is strictly less than
0. At the same time the function u - pa satisfies (2.20) at all points of the ball
(Ixl < 1) and is equal to (1 + e)X on its boundary (Ixl = 1), while Ivul -
Ap"-'[Ixl/(Ixl2 + e2)'/2] is not bounded in this ball uniformly with respect to
e E (0,1). Thus, for (2.20) it is not possible to obtain an estimate of maxjxjcllvu! in
terms of maxixi_1l Vu! which does not depend on e. We observe, however, that the
solution u = pA of (2.20) in the ball (Ixl < 1) has bounded A-derivatives (of all
orders) relative to the matrix A - IXII, where I = 118/11, which determines the
structure of an (A,0)-elliptic equations of the form (1.2) for equation (2.20). In
Chapter 7 we shall distinguish a class of (A,0)-elliptic equations of the form (1.2)
(which, in particular, contains (2.20)) for whose solutions estimates of the A-deriva-
tives will be established.

We shall now use the a priori estimates (2.6) and (2.16) established above for
(A, b)-elliptic equations of nondivergence form to prove the existence of a gen-
eralized solution of problem (1.1). To this end we regularize the equation (1.2)
generated by an (A, b)-elliptic equation of divergence form (5.1.35); namely, as a
regularized equation we consider the (B, b)-elliptic equation

-(d/dx;)1'(x, u, Vu) +l0(x, u,vu) = f(x),
where B = llb'j(x)II, b'1(x) - a'J(x) + e8/ (i.e., B = A + eI, where I is the identity
matrix), e > 0, and b = (b'(x),...,b"(x)) is the same vector that determines the
original (A,b)-elliptic equation of the form (5.1.35); we assume that the reduced
coefficients of the new equation have the form

1"(x,u,4)=e4;+1"(x,u, q), 1=1,...,n, 1o(x,u,q)=10(x, u, q),
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where l"(x, u, q), i = 1,...,n, and lo(x, u, q) are the reduced coefficients of the
original (A, b)-elliptic equation. The nondivergence form of such an equation has the
form

'j(x, u, pu)ui; - A(x, u, pu) - b'uX = 0, (2.21)

where f'"(x, u, q) = e8i + a'J(x, u, q), A (x, u, q) = a(x, u, q) - E(aak'/ax,)gk,
and the functions &''(x, u, q), i, j = 1,...,n, and a(x, u, q) are expressed in terms
of the reduced coefficients of the original equation (5.1.35) by formula (1.4) but with
the replacement of the elements of A in (1.4) by elements of the matrix B = A + el.
In (2.21) the derivatives u; and uj;, and the gradient pu correspond to the
regularized matrix B = A + el. (2.21) can also be rewritten as an equation expressed
only in terms of ordinary derivatives

/3''(x, u, Du)u,; - /3(x, u, Vu) = 0, (2.22)

where

,j al'(x, u, P)
api

(2 22').

81i
all.

Q(x,u,P)= a u Pi 8x. -f(x)+l0(x,u,p)

(cf. (1.7)). We note that the coefficients of (2.22) can also be written in the form

P 'j = bkAk,bsi, f = -bkiAks(ab'J/ax;)pj + A+ b'p1,

where Bks = ftk''(x, u, q), A =$(x, u, q), and q = B(x)p (cf. (1.6)).
For the regularized equations (2.22) we consider the auxiliary Dirichlet problems

ft'fu,j -$=0 in 0, u=0 onaSZ, (2.23)

that correspond to values e E (0, 1).

LEMIrtA 2.3. Let ( a R", n 3 2, be a bounded domain of class C3, and suppose that
for the (A, b)-elliptic equation of the form (1.2), where a'-' E C'(0), i, j = 1,... , n,
b'EC'(S0),i-1,...,n,a'1(x,u,q)EC'(12XRXR")and a(x,u,q)EC',con-
ditions (2.2), (2.8), (2.9), and (2.14) are satisfied, while for (2.22) condition (2.15) holds.
Then for any solution u 6 C3(Q) n CI(fl) of problem (2.23) of the regularized
(B, b)-elliptic equation (2.21), where B = A + el, i'-' = e6/ + &'J, i, j = I, ... , n and
A = a, the estimates

maxJul. m, maaxIvu14 M1, (2.24)

hold, where the constants m and Ml depend only on the structural conditions (2.2), (2.8),
(2.9), (2.14), and (2.15) for the original equation (1.2), and on the domain 0.

PROOF. It is obvious that a condition of the form (2.1) (with a't replaced by /'"
and a'j by b'j, i, j = 1,...,n) is satisfied for the regularized equation (2.21). The
validity of the structural conditions for the original equation (1.2) enumerated in the
lemma leads to the validity of the corresponding conditions for the regularized
equation (2.21), as is easily seen, and the latter are satisfied with constants not
depending on e 6 (0, 1). Applying successively Lemma 2.1 and Theorems 2.1 and
2.2, we then obtain (2.24), where the constants m and Ml do not depend on e.

Lemma 2.3 is proved.
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LEMMA 2.4. Let 2 E C2, and suppose that a'i E C'(SZ), b' E C'(S1), i, j = 1,... ,n,
&''(x, u, q) E C'(S1 XR x R"), i, j = 1,...,n, and &(x, u, q) E C1(SE xR x R"),
where the &'", i, j = 1,... , n, and & are the coefficients of (1.2) corresponding to the
original (A, b)-elliptic equation of the form (5.1.35) with A = Ija'"(x) 11 and b =
(b'(x),...,b"(x)) (see (1.4), in which 1"(x, u, q), i = 1,...,n, and 1,'(x, u, q) are the
reduced coefficients of (5.1.35)). Suppose that the conditions enumerated in Lemma 2.3
are satisfied for (1.2). Then for any e E (0, 1) problem (2.23) has a classical solution
uE E C2(S1), and for this solution inequalities (2.24) hold with constants m and M1 not
depending one E (0,1).

PROOF. It follows from the conditions of Lemma 2.4 that if the above equation
(1.2) is rewritten in the form (1.5), (1.6), then the functions a'1(x, u, p), i, j = 1,... ,n,
and a(x, u, p) belong to the class C'(nl XR X R"). Suppose first that 2 E C3 and
a'j(x, u, p), i, j = 1,...,n and a(x, u, p) belong to the class C2(5l XR X R"). By
means of Schauder's theorem it is then easy to prove that any solution of (2.23)
belonging to C2(3J) actually belongs to C3(0) also (see the proof of Theorem 1.9.1).
Hence, by Lemma 2.3 estimates of the form (2.24) hold for this solution, so that
equation (2.23) may be considered boundedly nonlinear and uniformly elliptic.
Applying known results of Ladyzhenskaya and Ural'tseva on solvability of boundary
value problems for quasilinear uniformly elliptic equations (see the theorem of
Ladyzhenskaya and Ural'tseva in §1.2), we establish the existence of a solution u, of
(2.23) belonging to C2(SZ). It is not hard to eliminate the superfluous assumptions of
smoothness of SE and of the functions a'1 and a by using the standard method of
approximating SE, a'', and a by the corresponding objects having the degree of
smoothness indicated at the beginning of the proof (see the proof of Theorem 1.9.1).
This proves Lemma 2.4.

THEOREM 2.3. Suppose that an equation of the form (5.1.35) has the structure of an
(A, b)-elliptic equation in a bounded domain $1 C R ", n > 2, of class C2, Where
A = Ila'J(x)lI is a symmetric nonnegative-definite matrix in 11, a'J E C'(0), i, j =
1,...,n, and b = (bt(x),...,b"(x)), b' E Cl(fl), i = 1,...,n. Assume that the func-
tions &'i(x, u, q), i, j = 1,...,n, and &(x, u, q) defined by (1.4), in which l"(x, u, q),
i = 1,...,n, and 10' (x, u, q) are the reduced coefficients of the above (5.1.35), belong to
the class C1(0 X R X R"). Suppose that the structural conditions (2.2), (2.8), (2.9), and
(2.15) are satisfied for the equations (1.2) and (2.22) generated by (5.1.35) by means of
equalities of the form (1.4) and (2.22'). Assume, finally, that for any x r= 0, Jul < 2m,
q = Bp, p r= R" and IqI < 2M1, where m and Ml are the constants determined by
conditions (2.2), (2.8), (2.9), and (2.15) (see Lemma 2.3), for the reduced coefficients of
(5.1.35) the inequality

al" al" a/o alo 2 - 1 8b' 2

aq1
Ji J + au foci + aqj 0 + au 0 2 ax; E0 , 0,

(2.25)

VJ0ER, E=Brl, VilER"
holds. Then the Dirichlet problem (1.1) for equation (5.1.35) has at least one regular
generalized solution u, i.e., there exists a function u E L°°(f) ( for all in > 1
such that Vu E L' (0) and

ff[l(x, u, Vu) Vii + 10(x, u,Vu)rl] dx - fpft dx Vttl E Co'(f1). (2.26)
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If in place of (2.25) there is the condition: for all x E 2 and any u E R and q E R"

aq "1 +

8u
aq, Ci o + alu

0

2

ax , Co > 0
(2.25')

for all (C, JO) # (0, 0), Co E R, C = R",

then problem (1.1) has precisely one regular generalized solution.

PROOF. Let u, be the solution of (2.23) for the regularized equation (2.21) (see also
(2.22)) corresponding to (1.2), with (1.4). For such solutions the estimate (2.24) holds
by Lemma 2.3. We rewrite the regularized equation (2.22) in divergence form

-(d/dx,)1'(x, uF,vu,) + %o(x, uF, VuF) = f(x), (2.27)

where

1(x, u, p) = eB*Bp + B*I'(x, u, Bp), 10(x, u, p) = u, Bp) + b(x)p,,
B=A+eI, a>0.

The corresponding integral identity for u, has the form

efuBvu, Bvri dx + f[I'(x, u,, Bvu,) BVri

+lo(x, u,, BVu,)rl - b'u,,,rl] dx

= f fridx, 71 E CC(Sl). (2.28)

In view of (2.24) it may be assumed that inequalities of the form (5.1.3) for some
indices m and m, m > 1, m = (m1,...,m"), m, > 1, i = 1,...,n, hold for the
functions 1'(x, u, q) and lo(x, u, q). It may further be assumed that the sequence
(u,) converges weakly in Lm(12) to a function u E L2(S2), while (Vu,) converges
weakly in Lm(2) to Vu E Lm(0). In view of (2.25),

e f Bv(u,-¢) BV(u,-¢)dx
n

+ ft [1'(x, u,. BVu,) - 1'(x, ¢, BV¢)]

XBV(u, - C) +[lo(x, u,, BVu,) - lo(x, C. BvC)](u, - C)

+b'(u, - C)s (u, - C)) dx >- 0,

Vj E C01(S2). (2.29)

Subtracting (2.28) with q = u, - C from (2.29), we find that

-Ef

BV(u, - C) +lo(x, t, BVC)(u, - C) + b'Ex,(u, - C) dx

- f f(u, - 4) dx, (2.30)
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where E C.'(0). Letting a tend to 0 in (2.30) and taking account of the fact that
BVuE -- AVu weakly in Lm(Sl) and Bvj - Avj uniformly in 0, we obtain

-,,[]'(x, , AVE) Av(u - ¢) + 1'(x,f, Avj)(u - J) + b'j (u - J)j dx

-ff(u - I) dx, E E CC(Sl). (2.31)

It is obvious that (2.31) also holds for all j E IH,".m(A, u) n J (12). Setting = u +
et) in (2.31), tl E Cl(S2), e > 0, dividing the inequality so obtained by e, and passing
to the limit as e +0, we find that

f [1'(x, u, AVu) AVn + 1'(x, u, AVu)tt + b'u,. i] dx

< f ft1 dx, t1 E Co'(l) (2.32)

Since tl is arbitrary in (2.32), we immediately obtain

fIIll'(x, u, AVu) AViI + 1o(x, u, Avu)t1 + b'uxtiJ dx

= ffiidx, tl a Co(st),

which can also be rewritten in the form (2.26). Thus, u is a generalized solution of
(1.1). It is obvious that Jul < m and Ivul < Ml in 52. The existence of a regular
generalized solution of (1.1) has thus been demonstrated. Suppose now that condi-
tion (2.25) is replaced by (2.25'). To prove uniqueness of a regular generalized
solution of problem (1.1) we use an equality of the form (5.4.13). Let u and v be two
regular generalized solutions of (1.1). It is easy to see that (cf. (5.4.13))

0(-rI'u-2'v,u-v)
=fofI al"(x,v+-r(u-v),Ayv+TAV(u-v))

a1"XA,V(u - v)A,V(u - v) +
au

(u - v)A,v(u - v)

+ I;AjV(u-v)(u-v)+a1u(u-v)2 2ax;(u-v)2 dTdx. (2.33)
apj

We suppose that u 0 v in Q. Then there exists a subset 12' c 0, meas 0' > 0, on
which u * v. In view of (2.25') the right side of (2.33) is then strictly positive, which
contradicts (2.33). Theorem 2.3 is proved.

REMARK 2.4. Theorem 2.3 remains valid if the conditions that &'"(x, u, q),
i, j = 1,...,n, and a(x, u, q) belong to the class e'(11 xR x R") are replaced by
the condition that these functions possess only the differential properties necessary
in order that the structural conditions (2.2), (2.8), (2.9), (2.15), and (2.25) be
meaningful. Indeed, averaging the coefficients l'(x, u, p), i = 1,...,n, 10(x, u, p),
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and f (x) with respect to the variables x, u and p, we consider a problem of the form
(1.1) for equations

-(d/dx;)1'(x, u, vu) + l0,(x, u, vu) = ft(x),
where 1,i, lot, and ft denote the averages of the functions 1', 1o, and f. Suppose the
structural conditions (2.2), (2.8), (2.9), (2.15), and (2.25) are satisfied uniformly with
respect to e for these approximating equations. Then the following estimates hold
uniformly with respect to e for solutions of these approximating problems (which
exist by Theorem 2.3):

m Iu,I < co, k IoutI c, (2.34)

In integral identities of the form

fn[i;(x, u, Avut) . Apt + /ot(x, u,, Avu,) q + bux,ryj dx

= l dx, ii E'CC (a ),

we can then pass to the limit as e 0, arguing just as in the proof of Theorem 2.3.
An added feature in these arguments is the consideration that the functions
IE'(x, ¢, Vi), i = 1,...,n, and 10',(x, >:, Vi), where ;; E C01(2), as e -+ 0 tend uni-
formly on each compact portion of St to l"(x, ¢, v¢), i = I....,n, and io(x, vJ)
respectively, where we assume that the reduced coefficients are continuous in St. The
limit function u satisfies an identity of the form (2.26) and possesses the property
u e L°°(SZ) n A .(Q) for all m > I (because of the uniformity of the estimates
(2.34)).

We now consider a nonregular variational problem concerning a minimum for an
integral of the form

f[.9r(x, u, Avu) - f(x)u[ dx, u = 0 on 3SZ, (2.35)

where S) is a bounded domain in R", n 3 2, of class C2, and.r(x, u, q) satisfies the
condition

u, q) >
aq,aq, n;n; xCE n,uER,q=Ap,pER,,q =AJ,JER".

(2.36)

The Euler equation for problem (2.35) has the form

,

Avu) l + a.9t(x, u, Avu) = f(x),
(2.37)_ dx, akr(x)

uaqA,
au

where a'J, i, j = 1_.^ are the elements of the matrix A. It is obvious that (2.37)
has the structure of an (A, 0)-elliptic equation in Sl relative to the matrix A involved
in (2.35), and the reduced coefficients of this equation have the form

I.; a3r(x, u, q)
aq;

!o = a.F(x, u, q)
au (2.38)

Taking Remark 2.4 into account, from Theorem 2.3 we thus obtain the following
result.
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THEOREM 2.4. Suppose that the integral (2.35) is considered under the assumptions
that the domain 2 is bounded in R", n >, 2, and belongs to the class C2, the matrix
A = Ila'1(x)II is symmetric and nonnegative-definite in 9 with a'j e C'(SZ), i, j =
1,...,n, and the function F(x, u, q) satisfies condition (2.36). Assume that the
functions I" and to defined by (2.38), the function f(x) in (2.35), and the functions
&'"(x, u, q), i, j = 1,...,n, and &(x, u, q) defined by (1.4) and (2.38) ensure the
validity of conditions (2.2), (2.8), (2.9), (2.15), and (2.25) ((2.25')). Then there exists at
least one ( precisely one) extremal of problem (2.35), i.e., there exists a (unique)
function u e L' (Q) tl Hm (SZ) for every m > 1 such that V u E L'(12) for which the
identity (2.26) holds (with I", i = 1, ... , n, and to defined by (2.38)).

It is easy to see that under the assumptions made in Theorem 2.4 regarding the
domain 9 and the matrix A (in particular, under condition (2.9)) all the other
conditions of this theorem are satisfied when.F(x, u, q) has the form

.F(x, u, q) = Iq 4 + Ku2lg12 + Klu2, K, Kl = const > 0, (2.39)

provided that f(x) E C'(0) and the constants K and KI are sufficiently large. In this
case (2.37) has the form

-div{A(4IAVul2 + 2KU2)Apu} + 2KIAvuI2u + 2Klu = f(x). (2.40)

A simpler example of an admissible functional (2.35) is the case of a quadratic
functional corresponding to the function.flx, u, q) = Ig12 + Ku2 with a sufficiently
large constant K > 0 and an arbitrary function f(x) E C1(3l). In this case (2.27) is
linear and has the form

-div(A2Vu) + 2KU = f(x). (2.41)

§3. The existence of regular generalized solutions of the first
boundary value problem which are bounded in fl together with

their partial derivatives of first order

In this section we establish the existence of generalized solutions of problem (1.1)
possessing the regularity indicated in the title. It will be shown that such solutions
satisfy (5.1.35) a.e. in 9. Smoothness of order one greater than that assumed in §2 is
required of the functions determining the structure of the (A, b)-elliptic equation
(1.1) (in particular, of the elements of the matrix A and the components of the vector
b). Moreover, to obtain the indicated result we needed to impose rather stringent
conditions on the structure of (5.1.35) which lead, in particular, to the condition of
linearity of this equation in the first derivatives. It appears to us that the results
obtained in this section have not previously been established even under such
stringent conditions on the nonlinearity of equation (5.1.35). Similar results were
obtained in [99] for the case of linear equations with a nonnegative characteristic
form.

THEOREM 3.1. Suppose that the functions a'j(x, u, p), i, j = 1,...,n, and a(x, u, p)
defined by (1.6) are twice differentiable with respect to x, u and p in 0 x R X R" and
on the set 0 x[-m, m] x (IPI < MI) X (ID2ul > L) (m, Ml and L are positive
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constants) satisfy (2.14) and the condition

where

& %T 2 ij
-n sup l + au -

as
uij +

ID
1 [8k/a -(skla'-')u,j] > 0, (3.1)

1=1...."
1

21T = a'/(x, U, p)T,Tj, T E R", ITI = 1,

sk ap Usk + auUk axk' k = 1,...,n,

a2 az a2 a2 a2
akI apap, U.skur1 + apsau UskUI + apsax, U.'k + auap, Uku,l +

au2 UkUI

a2 a2 a2 a2

+ auax, Uk + axkap U,l + axkau U, +aXkaX, ,

au a2u
ID2UI U,,

Uk - axk' u`j aX,aX,,

where in condition (3.1) x, u, pk, and u,1 (u,j = u,,, i, j = 1,...,n) are considered
independent variables. Then, for any function u E C4(S2) r) C2(S2) satisfying (1.5) and
the inequalities I uI < m and I v u I < M' in 12,

max IDzul < max{ m JD2UI, L}. (3.2)

PROOF. Applying the operator uk,a2/aXkaX, to (1.5) and setting v k/_ I uk,, we

obtain

1 ,j ,j 1 ( as - aa'j ) ( as _ aail )

2a vj = a UkliUk/j + 2 Il aps aps
u,j v, +l au au

u'1 v

-(s/a'/)UijkUk/'(6ka'j)Uillukl +[6kla -(841a'l )UijJUkl = 0, (3.3)

which is valid at any point x E Q. Taking into account that condition (3.1), in
particular, implies that I8,21TI2(21T)_1 is finite (for any T E R", ITI = 1), we find the
estimates (see the derivation of (1.6.13))

\ 1 'I n Sa'i2
(a/a'l) UijkUk/I < 2 L ak Ukii + 2 sup 1 rk

v,
k-l i. k./-1.....n ak

4)(3 .
1 n Sa12(akai j) Uj jIUk,I 2 C ` aIi uh + 2 sup k / I (),

k-1 i.k.I-1.....n aI

where ak = 2C T" = 21 r k Tik and rk is the i th column of the orthogonal matrix Tk
transforming the Hessian of the function Uk = au/axk to diagonal form at the point
x E 2. Since akukii = aijuk uk,j, the sum of the left sides of (3.4) can be bounded
above on the set S2L = (x E 12: ID2uI > L) in terms of

I6 I
TI2

el'UkliUklj + n sup V.

Taking (3.3), (3.4), and (3.1) into account, we conclude that at points x E Stt

l«'jv,j > 0,
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which shows that v cannot achieve a maximum at points x e 11L. Hence,
`

maxv < max{ max
ID2uIz,

L2 ,
n asp

whence we obtain (3.2). Theorem 3.1 is proved.
We note that in the case of a linear equation of the form (2.18) it is easy to see

that (3.1) goes over into the condition

c + min
abs - S

S-1.....n axs ,,S

a2

abs

ax,
+ max

8 2a'i

axkax,(k.l)*(r.J)

lat'/axII2- n sup ppyy, > 0, (3.5)

where V = a''(x)T,,r,, ITI = 1. Condition (3.5) is very close to one of the conditions
under which an a priori estimate of ID2ul was established in [99] in the case of a
linear equation of the form (2.17).

It will be shown below that condition (3.1) of Theorem 3.1 is essential. It is easy to
see that for the validity of (3.1) it is first of all necessary that on the set
3E X[-m, m) x {II < MI } x (ID2 u) > L } the following condition be satisfied:

- a2a`1 u,kuskuaUij
>' 0. (3.6)

apSap, ID2ul2

Condition (3.6) introduces very stringent conditions on the occurrence of the
argument p in a'". Indeed, in the disk 0 m {x2 + x2 < 1) C R 2 we consider the
equation

d (2 -2

A, xl
ax. l 1 +(x1UX,)2

d m-2

- z x2 axz ( 1 +(XIUx2)2) ) + 10(x, u, Du) = 0. (3.7)

Carrying out the differentiation in the first two terms, we obtain an equation of the
form (1.6) with n = 2 and coefficients a"(x, u, p) and a22(x, u, p) of the form

a"(x,u,P)=xI
1+(x1Pi)2)m-z

l+(m-2)x1P2+x2Pr

, i=1,2.
1 +(xlP,)2

(3.8)

From condition (3.6) applied to (3.7) we obtain, in particular, the inequalities
a2a"/apt < 0 and a2a22/ape < 0, which must be satisfied for all x e 0 and
I pI Mi. Twofold differentiation of (3.8) with respect to p, (i - 1, 2) at p - 0 then
leads to the inequality

2x2(m - 2)(x2 + xI) < 0.

Since x( may assume arbitrarily small values of any sign in the disk SE _ ( x2 + x?
< 1), from this it follows that for (3.7) condition (3.6) can hold only in the case
m = 2.
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We now consider the equation

dxl
(xi

azI

1
+(xluX

)z )m-z)

dx2
\xi

a 221
1 +(xlu.Y,)z )m

z

+ d-I (xiA(u - S(xz))( 1 +[A(u - (x2))}2)m-2\

=j(xI, x2 ), (3.9)

where

x d xz x 1 + xz x' +j( I,x:)- dz( I I )b( 2) ,( I

and E(x2) is an arbitrarily smooth function such that j(x,) - 1 for Ix21 < 1/2,
£(x2) - 0 for Ix21 3 3/4, and A - [2(k + 1) + f1/(2k + 1), 1- 1,...,2k - 1,
k - 1,2,.... It is easy to see that in the disk (xi + x1 5 1) the function u -
(xi + 1)(x2) satisfies (3.9). On the boundary (xi + x2 = 1) this function assumes
an infinitely differentiable boundary value. The functions forming the nondivergence
equation (1.6) corresponding to (3.9) satisfy all the conditions of Theorem 3.1 in
regard to smoothness. However, for A e (1, 2) this solution does not have a bounded
second derivative azu/ax, as xI - 0. This is related to the fact that a condition of
the form (3.1) is violated for this equation. Indeed, for m # 2 this was shown above,
while for m = 2 the fact that (3.1) does not hold can easily be verified directly. This
example shows that condition (3.1) and, in particular, the condition that a'j be
independent of p, i, j = 1,. .. ,n, are essential. To a certain extent the fact that the
latter condition is essential is corroborated by the well-known example of Yu. G.
Kolesov (see [21], Chapter 1, §3.2). In a bounded domain (2 c R", n >, 2, we
consider an equation of the form

-(a/ax;)(j vujm-2(au/ax,)) +A(vu) = j(x),

wherem 3 2,A = A(p1,...,p") a C°°(R"),A(0,...,0) = O,je C°°((2)andj(x)> 0
in 12 with the boundary condition u - 0 on att. This problem cannot have a solution
which is twice differentiable in 0 and continuous in 0, since there must exist at least
one extremal point in the interior of 12 at which the left side of the equation vanishes,
while the right sidef(x) is strictly greater than zero at this point.

Returning to condition (3.1), we note that because the term

aza okra:kud
80p, J D 2 u1

is odd in the variables u,J, (3.1) implies that p cannot occur nonlinearly in the lower
order term a(x, u, p) or, more precisely, it is necessary that a(x, u, p) have the form

II

a(x, u, p) _ ak(x)pk + aa(x, u).
k-1

Suppose this condition is also satisfied. Then the term (aa''/au)u,j cannot be
suppressed by any other terms of the left side of (3.1), which leads to the condition
that a'j be independent of u for all i, j = 1,. . . , n.
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Thus, if we intend to apply Theorem 3.1 to the (A, b)-elliptic equation (5.1.35),
then we must assume that the reduced coefficients of this equation have the form

rn

l"(x, u, q) F, l"l(x)q , 1 = 1,...,n,
j-1 (3.10)

n

lo(x, u, q) - E to (x)qk + lo(x, u).
k-1

When conditions (3.10) hold, an equation of the form (1.5) generated by the
corresponding equation (5.1.35) has the form (see (1.6), (1.4) and (3.10))

a'j(x)uxx -,''(x)ux, - c(x, u) - g(x) = 0, (3.11)

where

aij = aki/rksasj, i, j = 1,...,n, bs = a (akilrkjajs) + lokaks,
axi

c = io(x, u), g =f(x)
For an equation of the form (3.11) condition (3.1) takes the following form: for all
xES0andue[-m, m]

ac(x, u) aps aps a2a'I

au + _min
n ax, - ax, i, j

7."' axiaxj
t -03

2j- E I a
a - n sup IaWT/ax'I2 > 0, (3.5')

(k.I1f(i.;, axkax,

where WT $ a'J(x)TTi, ITI - 1.
An a priori estimate of maxauIDzul is established below for solutions of an

equation of the form (5.1.35) under the assumption that an estimate of the form

maxIDzul < max{ma JDzuj, L},

where L - const > 0, is already known. At this step larger classes of quasilinear
equations of the form (5.1.35) than in Theorem 3.1 are admissible.

THEOREM 3.2. Let SEE C3, and suppose that the reduced coefficients of the diver-
gence (A, b)-elliptic equation (5.1.35) in SE have the form

n

l"(x, u, q) l''(x, u)qj, i = 1,...,n; to - 10(x, u, q); (3.12)
j-1

the matrix A = IIa'j(x)II is symmetric and nonnegative-definite in SE, a'J a
i, j = 1,...,n, and b w (bt(x),...,bn(x)), b'(x) E Cz(fl), i = 1,...,n. Assume that
the coefficients of (1.2) generated by (5.1.35), i.e., the functions &0(x, u), i, j - 1,...,n,
and &'J(x, u, q) defined by (1.4) on the basis of the functions (3.12), belong to the class

C(2)(D8 x[-m, m] x ( IPI < Mt )),
where the domain Da is defined by (2.3), m = const > 0 and M1 - const > 0, i.e., they
have bounded partial derivatives of second order with respect to all their arguments in
Da x [-m, m] X (Ipj < M1). Suppose that for the junctions &'J and a'J, i, j = 1, ... n,
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condition (2.1) is satisfied (with 2 replaced by D8), and, moreover, for all x E D8,
u E [-m, m), and i = An, for all tl E R ",

ix'i(x, u)t; 1 > Polt,2' Po = const > 0. (3.13)

Suppose, further, that for all y E aS2 inequality (2.9) holds. Finally, suppose that the
function u E C3(D8) n C2(D8) satisfies (5.1.35) in D8 and that u = 0 on a o, and

max Jul < m, max I vuI < M1, max lD2uI < max{ max IDZUI, L
S1 tt 31 ate

where L = const >, 0. Then

maax ID2uI < M2, (3.14)
a

where I DZU12 = E"i_1 ui x , and M2 depends only on n, vo, the constant yin (2.9),
m, M1. L, the bounds of the moduli of the functions a'J, i, j = 1,...,n, a, and their
partial derivatives of first order on D6 X ( IuI < m) X { I pI < M1 }, and the C-'-norms
of the functions describing the boundary ag.

PROOF. Let u be the solution of (5.1.35) in D. indicated in the formulation of the
theorem. We fix a point x E aS1. In view of Lemma 1.1 it may be assumed that a
part F c aS2 containing x0 in its interior is flat. Indeed, condition (3.13) is again
satisfied for the new (A,b)-elliptic equation of the form (1.1) obtained by rectifying
4 in a neighborhood of x0 E aS2, since the functions a'i are invariant under
nondegenerate smooth transformations of the coordinates (see Lemma 1.1), while a
condition of the form (2.9) is also satisfied, since lAvJ = IAvI. Moreover, it may be
assume that the axes Ox1,... , Ox"_ 1 are situated in the plane containing r, while the
axis Ox,, is directed along the inner normal to r at x1,. It is obvious that there exists
a number r > 0 not depending on xo E aS2 such that the intersection Or = K,.(xo) n
S2 is contained in Do, while S, = K,(xo) n a( is contained in r. We differentiate the
equation written in the form (1.5) (which is defined by (1.6), (1.2), (1.4) and (3.12) or
by (1.7), (5.1.2) and (3.12)) with respect to any variable x,, T = 1,...,n - 1. In S2,
the function u' = au/ax, then satisfies an equaiton of the form

,i ;i
a'JU

au
u'u±i ax u, a

an
um

au
u'

ax
= 0. (3.15)

For the function u' E C2(S2,) n C1(Ot,) satisfying (3.15) in 0, and the condition
U'Is, = 0 the derivatives uX in the tangential directions x,., s = 1,...,n - 1, are
known, since uX = 0, T, s 1. To estimate ur we use Theorem 1.5.1'. It
is obvious that condition (1.5.7) of this theorem is satisfied at xo. We verify (1.5.23)
and (1.5.24). In view of the fact that S, is a part of a plane we have vp(x) = v(y(x)),
where y(x) is the projection of the point x E S2, onto S,. Therefore, µVp + tv =
(µ + t)v. We recall that u is a positive constant which in the present case is defined
by u = M1 + 2/r, and t is a positive parameter with i 3 I = const > 0. We hence-
forth assume with no loss of generality that l >_ tt. We consider (3.15) as an equation
of the form a'J(x)u = a(x, vu'), where

;i
aiJ, al x, au ux, + ax, uiJ + 5_"' P.

+ au ux. + ax,
a
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and

f' aa'j aa'j aa'j as as as
apm' au ", axT u'i' apm' 8u' ax,

are considered as functions of x. Therefore, in the present case (f1(x, u, µvp + tv)
does not depend on u and has the form 81 = (µ + t)21Iv v, where 91 s IIa`'II and v
is the unit vector of the inner normal to IF. Since 9Iv v = ItAv Av, where
A = IIa'"(x)II, by (3.13) and the inequality

Y-1 <IA(x)v(Y(x))l < y, x E l2r, (3.16)

which follows from (2.1) because r is sufficiently small (where the smallness depends
only on the modulus of continuity of the elements of A near aSZ), for all x E SE, and
t >, I >_ µ, where µ depends only on r and Ml, we have

e1 % v072t2. (3.17)

Recalling that in nr we have Jul < m, IVul < M1 and ID2ul < max(M2, L),
M2 = supa0ID2ul, and taking account of the form of the right side of (3.15), we
conclude that (1.5.23) is satisfied with a function (t) having the form fi(t) = c1r1
+ c2 M2 t - 2, where c1 and c2 depend only on known quantities, and we assume that
M2 >, 1. It is obvious that (1.5.24) is also satisfied with such a function ¢(t).
Applying Theorem 1.5.1', we obtain

lau'(xo)/avI < fi + c3, (3.18)

where c3 is a known constant, P is determined from (see (1.3.7))

I pdp = Mi, (3.19)a (K+cl)p+c2M2

and is a known quantity (see the proof of Theorem 1.5.1). It follows from (3.19)
that $ < c4 + c5/M, whence from (3.18) we obtain

a2u(xo)

ax,axn
c6(1 + M2 ), T = 1,...,n - 1, (3.20)

where c6 is determined only by known quantities. To complete the proof of the
theorem we note that la2u(xo)/aX2l can be estimated in terms of the remaining
derivatives of second order by (1.6) itself. Indeed, in view of (3.13)

It
ail" = akraknasn > v0 a"I2 ,_ i' E (ain)2,

i-Il

while in our coordinate system E 1(a")2 - IAvl2 > 1,'2 > 0. Therefore, the coeffi-
cient of is bounded away from 0 by a known quantity; this gives the assertion
made above regarding the estimate of Ja2u/ax'1I in terms of the remaining second
derivatives (which have already been estimated). Because the point x0 is arbitrary,
from (3.20) it then follows that

mA ID2ul < c,(1 + m, ID2ul ),

from which we obviously obtain (3.14). Theorem 3.2 is proved.
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THEOREM 3.3. Suppose that an equation of the form (5.1.35) has the structure of an
(A, b)-elliptic equation in a bounded domain 12 C R", n >- 2, of class C2, and A
lla''(x)ll is a symmetric nonnegative-definite matrix in S2, a'" E C2(12), i, j
and b = (b'(x),...,b"(x)), b' E 02(11). Assume that the functions a'1(x), i, j =
1,... ,n, and a(x, u, q) defined by (1.4) and (3.10) belong to (2(12) and e2(0 XR x
R") respectively. Suppose that conditions (2.2), (2.8), (2.9), (2.15), (3.5), and (3.13) are
satisfied uniformly in e for equations (2.21) and (2.22) generated by (5.1.35) by means of
the respective equalities (1.4) and (1.7), and suppose that condition (2.25) (with
condition (3.10) taken into account) holds for the reduced coefficients of (5.1.35). Then
problem (1.1) has at least one generalized solution u which is bounded in 11 together with
all its derivatives of first and second orders, i.e., there exists a function u E L°°((2) n
Hm(12) for all m > 1 with Vu E L°°((2) and D2U E L°`((2) for which an identity of
the form (2.26) holds, and u satisfies (5.1.35) a.e. in U.

PROOF. Since the conditions of Theorem 3.3 contain as a special case the
conditions of Theorem 2.3, by Theorem 2.3 there exists a function u E L°°(12) n
A (12) such that vu E L°°(1) and (2.26) holds. Since the conditions of Theorem 3.3
imply the validity for regularized problems of the form (2.23) of all the conditions of
Theorems 3.1 and 3.2, it may be assumed that for solutions of of (2.23) the estimate

m0ax ID2u1j c M2 (3.21)

holds with a constant M2 not depending on e. From this it obviously follows that for
the limit function u we have ID2uj 4 M2 a.e. in 12. Thus, the generalized solution of
(1.1) is a function having Lipschitz first derivatives in fl. It can now be proved in
standard fashion that u satisfies (5.1.35) a.e. in 12. Theorem 3.3 is proved.

As an example related to Theorem 3.3, in a bounded domain (2 c R", n > 2, we
consider a nondivergence equation of the form

a',(x)ux,x, - Pi(x)u.", - c(x, u) - g(x), (3.22)

where l - Ija'"(x)ll is a symmetric nonnegative-definite matrix in 0, and a'i, f', c,
and g are sufficiently smooth functions of their arguments. Equation (3.22) can be
rewritten in the form

-divA(Ac'u) + 10(x, u, Du) = f(x), (3.23)

where div4(Apu) div(A'AVu) a 8(a'tux,)/8x,, A - V,1 - c + b'p, and b' =
8ak'/iaxk + fi, i.e., in the form of a divergence (A, b)-elliptic equation relative to the
matrix A - yW, b - (b'(x),...,b"(x)), with reduced coefficients

r l,r(x, u, q) - q;, lo(x, u, q) = c(x, u), (3.24)

so that conditions (3.10) are satisfied for them. Therefore, under the conditions
stipulated by Theorem 3.3, the problem

a'"u,1-f'u,-c(x,u)-g in 0, u=0 onat2 (3.25)

has at least one generalized solution u which is bounded in 12 together with all its
derivatives through second order, and this solution satisfies the equation a.e. in (2
and vanishes on 812 as an element of the space H, (S2) for all p > 1.

We present conditions for the validity of this result in terms of the original
equation (3.22). It is easy to see that all the conditions of Theorem 3.3 for equation
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(3.23) generated by (3.22) are satisfied if 1) there exists mo = const > 0 such that
c(x, u)u - g(x)u >- 0 for all x e Sl and Jul < mo; 2) a'Jv;v' > 0 on ail, where
v = is the unit vector of the inner normal to aSl; 3) for all x e Sl and
Jul < mo

a
r .

a
t2c(x, u)

+ min
L

- E -
n

sup W- > 0, (3.26)
au i-1.....n axi f#kk-I__ n

axk 4 tI-1 f
where fT = a'J(x)T;TJ; 4) inequality (3.5') holds for all x e and Jul < mo; 5)
ac(x, u)/au 3 0 for all x E l and Jul < mo. The result presented above contains as
a special case the corresponding result of O. A. Olelnik for linear equations of the
form (3.22) (i.e., for the case c(x, u) = c(x)u) (see [99]). M. I. Freldlin [122] proved
the existence of an analogous generalized solution (i.e., a solution having Lipschitz
second derivatives in KI) of the problem

a'J(x, u)u, x + b'(x, u)ux - cu = 0 in St, u = p(x) on
a'J(x, u)fifJ 3 0 a'JvivJ > 0 on all, c = const > 0,

(3.27)

for a sufficiently large constant c > 0. However, in [122] it was assumed that q(x) is
sufficiently small together with its derivatives of first and second orders.

In conclusion we note that for equations having structure analogous to that
assumed in Theorem 3.3 the existence of a solution of problem (1.1) having Lipschitz
derivatives through order k for any k = 3,4,... can be established in a similar way.





PART III

(A, 0)-ELLIPTIC AND (A, 0)-PARABOLIC EQUATIONS

(A, 0)-elliptic and (A, 0)-parabolic equations of the form

9u = -(d/dx,)1'(x, u, vu) + 10(x, u, vu) = f(x) (1)

are more direct generalizations of classical elliptic and parabolic equations than
general (A, b)-elliptic and (A, b)-parabolic equations of the form (1) (see the intro-
duction to Part II). (A, 0)-elliptic equations are studied in Chapter 7. At the
beginning of this chapter we present results on the existence and uniqueness of a
generalized solution of energy class to the general boundary value problem for
(A, 0, m, m)-elliptic equations under the assumption of sufficient smoothness of the
matrix A. In particular, the first boundary value problem for such equations has the
form

.9u=f(x) in a, u = 0 on E, (2)

where E is the regular part of a0 (see §§4.3 and 7.1). In addition to the requirement
of a particular smoothness of the domain 0 and the matrix A, the conditions for the
existence and uniqueness of a generalized solution of problem (2) contain some
easily verifiable conditions on the reduced coefficients of equation (1) which have
the form of algebraic inequalities (see Theorems 7.1.1 and 7.1.2) that guarantee
coerciveness and monotonicity of the operator3corresponding to problem (2).

A corollary of these results applicable to the case of linear (A, 0)-elliptic equations
is presented (see Theorem 7.1.3). In Chapter 7 we also consider the case of
(A, 0)-elliptic equations with weak degeneracy, by which we mean (A, 0)-elliptic
equations corresponding to matrices A which are weakly degenerate in G. A matrix
A is called weakly degenerate in 0 if for this matrix there is a continuous imbedding
of the energy space 0) into the Sobolev space H.,,(0) (for all m > 1) with
some q = (q1,. .. , q ), q; > 1, 1 - 1,. .. , n, and hence also into some space L'(0).
For (A, 0, m, m)-elliptic, weakly degenerate equations the regular part E coincides
with the entire boundary a0, so that in this case the boundary condition is imposed
on the entire boundary. In the case of weakly degenerate (A, 0, m, m)-elliptic
equations we establish an existence theorem for a generalized solution of energy
class to the general boundary value problem under weaker conditions on the
structure of the equations than in the previous case (see Theorems 3.2 and 3.3).

The so-called (A, 0, m, m)-elliptic equations, which are a special subclass of
(A, 0, m, m)-elliptic equations with a weak degeneracy, are studied in detail. This
class contains, in particular (for m = 2), linear elliptic equations of the form

-(d/dx,)(a'Juxj + a'u) + i8'ux' + cu = f(x), (3)

where I m Ila''ll is a symmetric, nonnegative-definite matrix in 0 such that the
matrix A = 2(1/2 is weakly degenerate in 0, and the coefficients of (3) satisfy certain
summability conditions (see (7.2.32)). Fredholm solvability of the general boundary
value problem is proved for linear equations of the form (3). As an example we

173
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consider the Euler equation for the nonregular variational problem regarding a
minimum of the integral

[IAvur' + IuIm _f(x)u} dx, ulz=0, (4)

which has the form

-div{A'JAVuJ'a-2AVu) +Iulm-2u =1(x), (5)

where Il > 1, m > 1, f 6 L"(a) and 1/m + 1/m' = 1. Equation (5) has the
structure of an (A, 0, m, m)-elliptic equation in the domain 11 with m -
and reduced coefficients 1"(x, u, q) - IgI'a-2g;, i - 1,...,n, and 10'(x, u, q)
IU m-2u. From the results obtained in Chapter 7 it follows that under conditions of
sufficient smoothness of the matrix A or its weak degeneracy in 0 the general
boundary value problem for equation (5) has precisely one generalized solution of
energy type which depends continuously on the right side of the equation.

We note that in the special case A - al, where I is the identity matrix, the
question of the existence of a generalized solution of the first boundary value
problem for sufficiently smooth a(x) was considered in [62]. The first boundary
value problem for weakly degenerate (A,0, m, m)-elliptic equations was studied in
[47]. Theorems on the existence of generalized solutions of the first boundary value
problem for weakly degenerate elliptic equations of higher order were established in
[92]. Fredholm solvability of the first, second, and third boundary value problems
for linear, weakly degenerate elliptic equations is proved in [69], [154] and [178]. The
exposition in Chapter 7 reflects the author's results in [44J-[471, [49], [511 and [52].

In Chapter 7 results are also established on the solvability of problem (2) for
(A,0)-elliptic equations in the class of A-regular generalized solutions (see the
introduction to Part II). Analysis of the conditions of Theorems 7.3.2, 7.3.2', 7.3.3,
and 7.3.4 in which such results are formulated shows that the conditions imposed on
the behavior of the reduced coefficients are of natural character, but essential
restrictions arise on the character of degeneration of the matrix A (see conditions
(7.3.3) and (7.3.4)). So-called uniformly degenerate matrices A characterized by the
condition

AA < Const A4 in ( (6)

are certainly admissible; here A4 and A4 are the greatest and least eigenvalues of A.
The basis for obtaining these results is the possibility of establishing for solutions of
nondegenerate, nondivergence (A, 0)-elliptic equations of the form

81j(x,u,Vu)u;j-d(x,u,'au)-0 (7)

(see the introduction to Part II) the a priori estimate

mQ (Jul + Ioul) < f, (8)

where pu - Avu, with a constant k not depending on the ellipticity constant of
(7). To establish the estimate we develop those methods by means of which estimates
of the gradients of nonuniformly elliptic equations of the form (1.1.1) were estab-
lished in Chapter 1. The validity of an estimate of the form (8) makes it possible to
prove the existence of solutions of the Dirichlet problems for the regularized
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equations (see (6.2.21)) and to pass to the limit in the integral identities correspond-
ing to such problems. The results of Theorems 7.3.2 and 7.3.2' are connected with
the use of the condition Av * 0 on ail. Elimination of this condition leads to the
more stringent condition (7.3.4) in place of (7.3.3). In the case the results obtained
are given in Theorems 7.3.3 and 7.3.4. It should be noted that at one stage of the
proof of the last theorems a useful role is played by a special cut-off function
analogous to the one used in the paper [117], which is devoted to the proof of
solvability of the first boundary value problem for a linear, degenerate, elliptic
equation in the weight space WD (a, SE), where a(x) > 0 in f and 1 < p < + oo.

In particular, it follows from Theorem 7.3.4 that with sufficients smoothness of
the domain SZ and the function a(x) > 0 equation (5) with A - a(x)I, considered
under the condition u = 0 on {x E all: a(x) > 0), has exactly one A-regular
generalized solution. By a similar method it is possible to establish the existence of
A-regular generalized solutions of problem (2) possessing bounded A-derivatives of
second and higher orders. In connection with these results we consider as an
example the simplest equation

-(a/ax,)(jxj2(au/ax,)) +(nA + A2)u = 0, (9)

where A - coast E (0,1) and x E fZ - (IxI < 1). Equation (9), which has the struc-
ture of an (A, 0)-elliptic equation in Sl relative to the matrix A - JxII, possesses a
solution u = 1x1" which is bounded in 11 and equal to 1 on as but does not have a
bounded gradient vu in tI (here the condition Av * 0 on all is satisfied for equation
(9)). At the same time this solution has bounded A-derivatives of all orders in Sl.
This example shows that for equations of this structure it is natural to pass from
investigation of smoothness to the investigation of A-smoothness of their solutions.

In Chapter 8, which completes Part III, we study (A, 0)-parabolic equations in a
cylinder Q = 0 x (TI, T2). At the beginning of this chapter we study parabolic
analogues of the basic function spaces connected with the study of the general
boundary value problem for (A, b, m, m)-elliptic equations and the parabolic ana-
logue of the operator .Z corresponding to this problem. Here also, easily verifiable
conditions are established which ensure the compatibility of the operators.Vand S'
which are the components of 21 (see the introduction to Part II). One such condition
is the condition that the matrix A be independent of t (although the reduced
coefficients /"(t, x, u, q), i - 1,...,n, and 10'(t, x, u, q) may depend on all their
arguments). Assuming that such conditions are satisfied, we establish existence and
uniqueness theorems for generalized solutions of energy type of the general boundary
value problem for (A, 0, m, m)-parabolic equations. As in the case of (A, 0, m, m)-
elliptic equations, the conditions of these theorems are expressed in the requirement
of sufficient smoothness of the domain 0 and the matrix A(x) and certain algebraic
inequalities for the reduced coefficients of these equations (see Theorems 8.2.1-8.2.5).
We note that in the case of (A, 0)-parabolic equations the integral identity defining a
generalized solution of energy type acquires a special feature related to the fact that
such a solution has a derivative with respect to t (understood in the sense of
generalized functions) which belongs to the space A* (see (8.2.8)). We note also that
the conditions for uniquenss of a generalized solution are here relaxed somewhat as
compared with the general case (see Lemma 8.2.2). In the case m = 2 the algebraic
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conditions on the reduced coefficients indicated above acquire a freer character (see
Theorems 8.2.3-8.2.5).

The major part of Chapter 8 is devoted to the study of (A, 0, in, m)-parabolic
equations with a weak degeneracy, i.e., to (A, 0, m. m)-parabolic equations corre-
sponding to matrices A which are weakly degenerate in the cylinder Q. A matrix A is
called weakly degenerate in a cylinder Q if for it there is a continuous imbedding of
the energy spacesVm,m(A, Q) in the space u.q(Q) for some q = (ql,...,q,,), q; 3 1,
i = 1,...,n, for all m > I (see the beginning of §8.3, where a definition of weak
degeneracy of a matrix A is given in a somewhat more general situation connected
with the use of the "double" norms which are traditional for the parabolic case). It is
clear that such an imbedding implies also a continuous imbedding of the space
121,,..(A, Q) into a space LIIo(Q). We note that in the case of a matrix A weakly
denegerate in a cylinder Q the carrier part of the boundary of this cylinder (i.e., the
set where it is necessary to prescribe the value of the desired solution) is the
traditional parabolic boundary I' of the cylinder Q, i.e.,

T=(8SZx(TI,T2))U(Slx(t=TI)).
For weakly degenerate (A, 0, m, m)-parabolic equations in a cylinder Q, results are
established on the existence and uniqueness of generalized solutions of energy type
analogous to those established for (A, 0, m, m)-parabolic equations under conditions
of sufficient smoothness of the matrix A (see Theorem 8.3.1).

We further consider weakly degenerate (A,0)-parabolic equations of special type.
The class of such equations is called the class of (A, 0,2,m)--parabolic equations
(see conditions (8.3.20) and (8.3.21)). This class is not formally a subclass of the
(A, 0, 2, m)-parabolic equations, in connection with the fact that it involves consider-
ing "double" norms. However, it retains the basic features of (A, 0, m, m)-parabolic
equations with weak degeneracy and is a nonlinear analogue of the class of linear
parabolic equations with summable coefficients. For this class we establish existence
and uniqueness theorems for generalized solutions of energy type to the general
boundary value problem under less stringent conditions on the structure of the
equations than in the previous cases (see Theorems 8.3.3 and 8.3.4). To prove these
results we apply the method of elliptic regularization. In the case of nondegenerate
parabolic equations a similar method is applied, in particular, in [20]. The results
established in Theorems 8.3.3 and 8.3.4 make it possible to obtain an existence and
uniqueness theorem for a generalized solution of the general boundary value
problem for linear degenerate parabolic equations with summable coefficients. The
case of the first boundary value problem for the latter equations was studied
previously by another method in the author's papers [28] and [43]. The results of
Chapter 8 enumerated above reflect the author's investigations [44]-[46], [50] and
[51]. We illustrate some of the results obtained in Chapter 8 with the example of the
simple equation

u, - div(A*JADuj'""ZAvu) +IuIm-ZU = f(x, t), (10)

where const > 1, m = const > I and A - A(x). If the matrix A(x) is suffi-
ciently smooth in r2 or weakly degenerate in it and f E L'"(Q), then the general
boundary value problem for (10) has precisely one generalized solution (of energy
type) which depends continuously on the right side.
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Finally, we note that, in the case where A = A(x), results on the existence and
uniqueness of A-regular generalized solutions of the first boundary value problem
can be established for (A,0)-parabolic equations in the cylinder Q exactly as in the
case of (A. 0)-elliptic equations. However, these results are not presented in this
monograph.

CHAPTER 7

(A, 0)-ELLIPTIC EQUATIONS

§1. The general boundary value problem for (A, 0, m, m)-elliptic equations

In a bounded domain (2 c R", n > 2, we consider an equation of the form
(5.1.35) assuming that it has (A, 0, m, m)-structure in (2, i.e., the conditions enu-
merated in Definition 5.1.2 are satisfied in the case b - 0 in Q. We suppose also that
the validity of condition (4.1.3) is ensured by conditions (4.1.1) and (4.1.4) for
m; > 1, i = 1_.^ and m > 1. Let 812 = I U I' and suppose that condition
(4.2.5) holds for I while (4.3.2) holds for I'. Then E is the regular and I' the
singular part of 812. As usual, we partition I into parts I1, 12 and E3, and let A be a
function on 13 which possesses the same properties as in the general case. Taking
into account that b - 0 in (2, we have here

(2) = (1;)-= 0, i - 1,2,3; I,.= E'--= 0. (1.1)

In view of (1.1) the remaining conditions we used in the general case in formulating
the general boundary value problem (see §5.3) are automatically satisfied. The
general boundary value problem for equation (5.1.35) now takes the following form

-dl'/dxi + to - F in (2; u-0 on E1;

onl2; onI3; (1.2)

while the integral identity (5.3.3) takes the form

f[I'(x, u, AVu) Aprl + lo(x, u, Avu)-q] dx

+ f Auli'gds=(F,71),
3

,q E Ha, (1.3)

where 2 = E1 U B3 and Ha = Hm._(A; (2; 7.,,X). In the present case we see that
X = Y HA, 21 _- Wand 9 - 0, where 0 is the zero operator. A generalized solution
of problem (1.2) can be defined here as any function u E HA satisfying (1.3). The
results in the general case (see Theorems 5.4.1-5.4.4 and Propositions 5.4.3-5.4.6)
imply, in particular, the following results.

THEOREM I.I. Suppose that for almost all x e (2 and any u E R, q = Ap, p e R",
J'oER,,q=AjandEER"

1"(x, u, q)q1 + l0(x, u, q)u i v1 L.i Iq,Im' + 1'2luIm + T(X), (1.4)
i-1
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where PI, °2 = const > 0, T r= L'(2), and

al'i(xx, u, q)
nil? +

al"( x, u, q)
fouraqj

810'(x, u, q) al0'(x, u, q) 2+ 84j njfo + au fo % 0. (l.s)

Then for any F E Ha problem (1.2) has at least one generalized solution. If the
operator. ': H - Hr; corresponding to (1.2) (defined by the left side of (1.3)) is strictly
monotone, then for all F E Ha problem (1.2) has at most one generalized solution.

Theorem 1.1 follows directly from Theorems 5.4.1, 5.4.2 and Propositions 5.4.4
and 5.4.5.

THEOREM 1.2. Suppose that for almost all x e 0 and any u E R, q = Ap, p r= R ",
foER,n=Afand f R"
al"(x, u, q) al"(x, u, q) al0'(x, u, q) 810'(x, u, q)

28q1. au four + aqj njfo + au fo

n

> ao E IgiIm,-2n2 + Iulm-2f0 ao = const > 0, (1.6)

and let m; > 2, i = 1,... , n, and m > 2. Then for any F E Ha problem (1.2) has
exactly one generalized solution. Moreover, the operator 40: Ha - H,* corresponding to
problem (1.2) is a homeomorphism.

Theorem 1.2 follows directly from Theorem 5.4.4. We note that all the conditions
in Theorems 1.1 and 1.2 have easily verifiable character. We omit formulations of
other theorems following from the results of the general case.

We consider, in particular, a linear equation of the form (5.5.1) under conditions
(5.5.2) (in the case b - 0 in 0) and (5.5.3) and under the assumption that conditions
(4.1.4) with m - 2 and m - 2 are valid for the matrix A in (5.5.2). As shown in §5 of
Chapter 5, this equation has (A, 0, 2,2)-structure in 12.

THEOREM 1.3. Suppose that for almost all x E 0 and any f E R"

Q(x)f f > cIIEI2, cl - const > 0,

ao(x) - Ia(x)12/2EI - 17(x)12/2E2 > c2, c2 = const > 0, (1.7)

where eI, e2 > 0 and (el + e2)/2 < cl. Then for any F E Ha the general boundary
value problem of the form (5.5.4) (with b s 0) has precisely one generalized solution
u e HA, and this solutions depends continuously in HA on F in Ha .

PROOF. Since in this case the left side of (1.6) (with m - 2 and m - 2) has the
form

q''nrnj + a'fonr + yjrljfo + aofo,

by (1.7) we obtain an inequality of the form (1.6) with a constant

ao - min(cI - eI/2 - e2/2, C2)'

Theorem 1.3 then follows from Theorem 1.2.
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As the simplest example connected with the results established above, in a
bounded domain St c R", n > 2, of class &'I we consider the equation

-div{A`IAVuIni-2AVu) +Iulm-2u = f(x),

which is the Euler equation for the variational problem of a minimum for the
integral

fQ(m-'IAVuja + m-'lulm -f(x)u) dx,

assuming that for some m > 1 and m = m), iff > 1, the matrix A = Ila'j(x)ll
satisfies conditions (4.1.1) and (4.1.4) and that the boundary 80 is partitioned into
parts Z and I' with condition (4.2.5) holding for B and (4.3.2) for -X' relative to
m = ( i n ,( i i i , . . . , , m ). This equation has the structure of an (A, 0, m, M)-elliptic equation
in SZ with reduced coefficients of the form l" - Igl'a-2q;, i = 1, .,n, to = lulm-2u,
and they satisfy condition (1.6) with ao = 1 and m; = n1, i = 1,... , n. It then follows
from Theorem 1.2 that for all f E L"(0) the general boundary value problem of the
form (1.2) for this equation has precisely one generalized solution, and this solution
depends continuously on the right side f(x).

§2. (A ,0)-elliptic equations with weak degeneracy

1. (A, 0, m, m)-elliptic equations with weak degeneracy. Let 0 c R", n > 2, be a
bounded strongly Lipschitz domain, and let A - Ila'j(x)II be a square matrix of
order n with

a'" E Lm,(S2), m; > 1, i, j = 1,...,n. (2.1)

DEFINITION 2.1. We call a matrix A weakly degenerate in Sl if det A # 0 for almost
all x E 0 and there exists an index q = (q1,. .. , qn ), q, > 1, i = 1,... , n, such that

IIVullq,6 4 cIIAVullm,6, Vu E e(11), (2.2)

where 0 is an arbitrary measurable subset of Sl, m = (m1,...,m,,), and the constant
c depends only on n, m, q, and 0.

LEMMA 2.1. Suppose that the matrix A (satisfying condition (2.1)) for almost all
x E iZ has a bounded inverse matrix A-' B = IIb'"(x)II with

b'f E Lr,(i2), rte > 1, i, f = 1,...,n;

max (1/mk + 1/rk) < 1, i = 1,...,n. (2.3)
k -I, .,n

Then A is weakly degenerate in 0, and inequality (2.2) holds with an index q =
(g1,...,gn)such that

1/q; = Max (1/mk + 1/rk), 1 (2.4)
k-l,...,n

and the constant c in (2.2) depends only on n, mk, rk, w, and Ilb'klirt, S2, i, k = 1,...,n.

PROOF. We estimate the norm for some i (-= {1,...,n). Taking into
account that ux = (BA),Vu = B;AVu = B(Avu) e, = AVu - where e. =
(0,... , 0, 1, 0_.,O), and applying the Holder inequality, for any subdomain 0 e 0



180 PT. III. CH. 7: (A,0)-ELLIPTIC EQUATIONS

we estimate

I/q, u

llu,,ilq,.a = IAVu - B*e,lq,dx) c E IIAkVuIInA.?lIBie,ll,,,.s , (2.5)(f
k=1

where we have used the fact that q, < mA and q,mk/(mA - q,) < r,,, i, k = 1,..,,n
(see (2.4)). It is obvious that the constant c in (2.5) depends only on q,, mA, and
measS2. Taking account of the fact that Bke, = b'k, we conclude that Lemma 2.1
follows from (2.5).

Lemma 2.1 thus gives sufficient conditions for weak degeneracy of A.

LEMMA 2.2. If the matrix A is weakly degenerate in Sl, then condition (4.1.3) holds
for it.

PROOF. If u --> 0 weakly in Lm(ST) and AVu,, v weakly in Lm(Sl'), where
u,, E C110C(S2), n = 1, 2,..., and 2' is a fixed, strictly interior subdomain of 2, then,
applying the Banach-Saks theorem, it is easy to prove the existence of a sequence

whose elements are the arithmetic means of elements of a subsequence
extracted from the original sequence { u - 0 in L`(S2') and AVu - v
in Lm(12') (strongly). But then AVu - v a.e. in S2', and hence Vii - A-'v a.e. in
2'. On the other hand, using (2.2) we conclude that V(u - um) - 0 in LL(Sf') as n,
m - oo. Then vli -+ w in Lq(S1'), where w E LQ(2'), and it is obvious that
w = A-'v a.e. in 2'. Recalling that u - 0 in Lm(Sl'), we conclude that w = 0 a.e. in
S2, and hence v = 0 a.e. in 0. Lemma 2.2 is proved.

The next assertion is proved similarly.

LEMMA 2.3. Suppose that the matrix A is weakly degenerate in 2. If a function
u E (9) (u E Lm(S2)) has a generalized A-gradient AVu E L"'(0) (AVu E
L'(9)), then it also has an (ordinary) generalized gradient Vu E LL (S2) (Vu E
L a (S2 )), and the generalized A-gradient AVu is equal to the vector obtained by the
action of the matrix on the vector vu.

Taking account of S. L. Sobolev's familiar theorem on the continuous imbedding
of Hq(S2) in L'(8S2), we establish the following result.

LEMMA 2.4. Suppose that the matrix A is weakly degenerate in G. Then the entire
boundary 8S2 is regular relative to the matrix A and the indices m and m (see Definition
4.3.1). Any function u E H,,,.m(A, 0) has a generalized limit value on 852 which
coincides with the trace on 852 of this function considered as an element of H,,,.q(S2) with

q = by(2.4).

We consider equation (5.1.35) in 0 assuming that it has (A, 0, m, m)-structure in S2
relative to a weakly degenerate matrix A. In view of Lemma 2.4 the general
boundary value problem for this equation has the form

Yu=f in Q; u=0 on.1;
onI2; on E3, (2.6)

where 11UX U13=8 S2 and 2,nIj= 0 for i# j, i, j=1,2,3.
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A generalized solution of problem (2.6) for all f = F E H* can be defined here
either by means of an identity of the form (1.3) or (taking Lemma 2.3 into account)
as any function u E H°,:m,(A, Sl) rl H,°",q'(Sl) satisfying the identity

ft[I(x, u, Vu) pTI + 10(x, u, vu),q[ dx = (F,,1), 1l E eo.E,(Sl), (2.7)

since in the present case (2.7) is also meaningful. From the results of the general case
(see Theorems 5.4.1-5.4.4 and Propositions 5.4.3-5.4.6), with (1.1) and the fact that
2 = 0 taken into account, we obtain, in particular, the following theorem.

THEOREM 2.1. Suppose that the reduced coefficients of an equation of the form
(5.1.35) having (A, 0, m, m)-structure in a bounded strongly Lipschitz domain St a R",
n >- 2, relative to a weakly degenerate matrix A and some indices m > 1 and
m = (m 1.... , m"), m; > 1, i = 1_.^ satisfy conditions (1.4) and (1.5). Then for
every F E H* problem (2.6) has at least one generalized solution. If in place of (1.4)
and (1.5) condition (1.6) holds for the reduced coefficients, then for every F E H*
problem (2.6) has precisely one generalized solution, and the operator 2': H - H*
corresponding to this problem is a homeomorphism.

In the case of weakly degenerate (A, 0)-elliptic equations it is possible to obtain a
number of supplementary results, to which we now proceed. We introduce some new
function spaces. We denote by if m H,,;"(A, 9) the completion of the set -06'01)
in the norm Ilulln = 8(2I)IIuIII,a, where

- 0, if1.* 0,i=1,2,3,
1, if B; = 0,

where in considering a partition of aSl into parts 21, M2, 23, we always assume that

meas"_ 1 E1 > 0 if Z; * 0. We denote by Ht, = H°ma'(A; Sl; E3, A) the completion of
the set Co,x.(S2) in the norm

IIuIIHa = IIAVUIIm.n + 41I)413)IIu111.a +[1 - 8(13)J IUIIL'U.E,), (2.8)

where A is a given positive function on 13 and A E L(E3). We note that by (2.2)
and Lemma 4.4.1 the expressions II - 11;, and 11 - Ilya are actually norms, so that H and
H,\ are Banach spaces. If A E L`(E3), where

K > r/(r - 2) >, 1, (n - 1)/r = n/q* - 1 for q* = min(g1,...,q") < r,

r c=- [2, + oo) for q* > n, (2.9)

and the indices q1,...,q" are related to m by condition (2.2), then we need not
require positivity of the function A, since by means of Sobolev's familiar imbedding
theorem and condition (2.2) for all u E C06,(S2) it is easy to establish the estimate

1/2

(f Au2 ds) , ellulls + c(e)I1u111.0, Ve > 0,

in view of which the sign of A plays no role. In this case the last term in the
definition of the norm (2.8) is to be omitted.
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LEMMA 2.5. Suppose that the matrix A is weakly degenerate in S2, and that the index

! > I satisfies the conditions

1 ) for .1 > 1, 1 E (2, + oc) for - 1, (2.10)
! n e1 4 ,1 q; ;m1 9;

where q = (q1, ... , is the index in the condition of weak degeneracy of the matrix A

(see (2.2)). Then (see Remark 4.4.3) there are the imbeddings H,, -+ H -+ 1
LI(Q). In particular, for any function u E H

Ilulli.n c collulli,, (2.11)

where the constant co depends only on n, q, S2 and the constant c in (2.2). If

1

for T 1 > 1 , for. 1 <l, (2.12)
n 1 q, 1 9; ;_1 q1

then the imbedding H - L'(Q) is compact. Here for any function u E tI and any e > 0

Ilullt.a el!AVuIIm. d + c1e Bllulll.sz (2.13)

where c1 depends only on n, 1, q, S2, and the constant c in (2.2), while 0 > 0 depends
only on n. 1, and q. In the case 2:1 = 8U the constants co and c1 in (2.12) and (2.13) do
not depend on 0.

PROOF. From (2.2), (2.10), and Lemma 4.4.1 we obtain

HUIIi,rs < c111uHti,lul 1< c2HUHit (A,a), Vu E C01.z (So), (2.14)

where c1 = c1(n, in, q, 0), c2 = c2(n, m, q, Q, c), and c is the constant in (2.2). From
this it follows easily that R = 12) can be identified with a subspace of
H '(S2), and can be identified with a subspace of L'(0), where the
inequalities (2.14) are preserved for all u r= H. In the case of conditions (2.12) the
compactness of the imbedding R - L'(Sl) follows from the compactness of the
imbedding Hq x'(S2) - Lt(0) (see Lemma 4.4.1), while (2.12) follows from (4.4.6)
with s = I and (2.2). Lemma 2.5 is proved.

Thus, under condition (2.10) the spaces
o.:, o;M,

H1:m(A, 0) and Hm(A, Sl)

o,F, 0.11 }

H. (A;12;13,A) and H(A;S2;13,A)
.

are isomorphic.
2. (A, 0, 1, m)-elliptic equations with weak degeneracy. Below we consider a prob-

lem of the form (2.6) for equations having (A, 0, 1, m)-structure in 0, where the index
I satisfies (2.10); we assume that the function A is defined on E3, is positive, and
belongs to L1(S2). If A E L`(E3) with an index K satisfying (2.9), then the condition
of positivity of A is removed. Progress in investigating the solvability of problem
(2.6) for such equations is connected with the possibility of giving for these
equations new algebraic criteria for coercivity and strong monotonicity and also
semibounded variation of the operator -I° corresponding to the problem. We note
that the operator can therefore be written in the form 2': where fl,

Sl; 23, A) is isomorphic to the space H ;."(A; 0; 13, A).
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PROPOSITION 2.1. Suppose that for almost all x r= SZ and any u E R, q = Ap and
E R"

l"(x, u, q)q1 + lo(x, u, q)u

i vll Li I qil m, + 8(1l)6(13)luIK - v21u1"' - T(X), (2.15)

p

where v1, v2 = const > 0, K > 1, q E L'(0), m > 1, and

m < m. = min(m1,...,m"), 8(11)8(13)m < K,
[1 - 8(13)]m < 2, m < 1, (2.16)

or

m < ms, 6(11)6(13)m < K, [1 - 8(13)]m < 2, m < 1,

P,A-m* > COIv21(meas il)(1-m)/!
vlA-K > 8(11)c

(measS2)(1-m)/1

{i0-2 > [1 - 8(13)] Co Iv21(meas 12)(/-m)//,

A ° n + 8(11)8(13) + 1 - 8(13),

Y1 - min(1, v) min(1, (meas 1/K + 1/K' = 1.

Then the operator. °: Ha -> H,, is coercive.

(2.17)

PROOF. Suppose first that conditions (2.15) and (2.16) hold. In view of (2.15), for
all u E Ha we have

2u,u >v rr

n

Avu +8(1 8 1 u + u
1 II i IIm;.O 1) ( 3)II IIK,O II IIL (L.E,)

i-1

-Iv21 IluLIm.O - f q' dx.

Taking into account that Ilulli,II < Ilull,",o(meas S2)K/K and using (2.11), from this we
obtain

n

(2'u, u) , vll E 8(11)8(1'3)llulll.a + IIUIlL2(x.E3)
r 1

-Iv2lco
(meas52)(/-m)//llullyx - fQp(x) dz.

Suppose that Bulin, = p 3 A = n + 8(11)8(13) + 1 - 8(13). From the last in-
equality we then obtain

(y U, u) > v1pQA-° - Iv21co (mess s2)(1
m)%p' - f T(x) dx, (2.18)

0

where q is one of the numbers of the collection (m1,...,m,, 8(11)8(13)x,
2(1 - 8(13))) and q > m > 1 by (2.16). Now a condition of the form (4.5.1) (in the
case X = Ha) follows easily from (2.18), i.e., the operator £°: I - H3, is coercive.
In the case of conditions (2.15) and (2.17) we again obtain (2.18) but now with
q m. Taking (2.17) into account, we deduce from (2.18) that

(Sfu,u)3cpm- fQp(x)dx, Vu E1 , Ilulli,=p>A, (2.19)
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where c = c(co, v2, meas Sl, m, 1). Since m > 1, coerciveness of the operator 2':
H), -, Hx* follows immediately from (2.19). Proposition 2.1 is proved.

PROPOSITION 2.2. Suppose that the following conditions are satisfied:
1) The reduced coefficients of equation (5.1.35) have the form

/"(x, u, q) + 1"(x, u), i

%o(x, u, q) + 1'0(x, u, q).

2) The operator. O.- H,\- defined by

(2.20)

( 'u,31)= u,gEHA, (2.21)

satisfies a condition of strong monotonicity of the form

I
voL IIA o(u - v)Iln;;.a +S(E1)6(23)Ilu - vll:,n + Ilu - vlli.=(a,.,),: (2.22)

3) For almost all x E St and any u E R and g E R n

I<µllul'/"'- 1 +
au

alo \µ2 IgkIMA('/n,;-1//)+IuI//"I;-I + )
aq, k-1 '

ar' n l

au 1< µ3 Igkl"'4(1 2/1) + lull 2 + Or0

k=I
(2.23)

I//) ,where µ; = const >- 0, i = 1, 2, 3, Ti, , E L(1/",;- 1/m; + l/m,(Sl), =1,i=
1,...,n, o E L"/(I-2)(0),1 >, 2, and max(m'1,...,rn',,) < l < 1.

Then the operator 2': H), - H); has sernibounded variation.

PROOF. We denote by': Ha -+ Ha the operator defined by

fa(1' Apq + 7'071) dx, u, ,q E H.

Using conditions 1) and 2) of the proposition and arguing as in the proof of
Proposition 5.4.5, we obtain

(Yu-2'v,u-v)=(emu-.Pv,u-v)+(2'u-.=v,u-v)

vol IIA,v(u - v)Ilm;.n + s(Y-1)a123)Ilu - vIIR.nI + II + 12 + 13, (2.24)
1
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where v = min(v, 1) and

It =
4

ri 8111"(x, v +uT(u - v)) (u - v)AiV(u - v) d-rdx,
o

12
(n (I a/110 (x, v + T(u - v), AVv + rAV(u - v)) (u - v)2 d rdx,
n au

13

r fotalll0(.
8q;

..)AjV(u-v)(u-v)dTdx.
n

Let p and IlvllyA < p. Taking account of condition 3) of the proposition
and applying the HSlder inequality and Lemma 2.5, we obtain

tl n

1111 <eEIIA,V(u-v)Ilm;,a- ER,llu-vllie+So11u-vlir`,a,

11211< $(Ilu-vllIa+IIu-vlli.a),
n n

(2.25)

11315eEIIA,.V(u-v)IIm;,a+ E7illu-vllmi +YOU -vlli.a,

where e>0,Si=13,(e,P)>0,$o=$o(e,P)>0,$=Q(e,P)>0,Yi=Yi(e,P)>0,
y = y(e, p) > 0, and these functions depend continuously on e > 0 and p > 0. From
(2.24) and (2.25) we obtain, in an obvious manner,

(Yu-Zv,u-v)

{iiv(u-v +6 8 u-v + u-vv° )11m'.a ( i) ( 3)11 IIR.a II IIL (A,E
2 i-1

-Y(P, IIu - vllr.a), (2.26)

where y(p, T) has the form y(p, T) = E; d;(p)Tm, + do(p)T`, and di(p), i - 1,...,n,
and do(p) are continuous nonnegative functions of p > 0. Since m; > 1, i = 1,...,n
and l > 1, from this it follows that y(p, T)T-i - 0 as r -+ +0. In view of Lemma
2.5 the norm II . IJ,,a is compact relative to the norm II - J. From (2.26) it then
follows that the operator.°: AN -+ Ifa has semibounded variation. Proposition 2.2 is
proved.

PROPOSITION 2.3. Suppose that for almost all x E tt and any u E R, q E R n,
to ERand gER"

al"(x, u, q) al'i(x, u, q) t al (x, u, q) alo(x, u, q) 2
aq1 rlirlJ + au 71iso + aq, rl,;fo + au o

i C{ Iqilm, -2.qi + a(7'i)8(F'3)IUIK-2#0J, (2.27)

where c = const > 0, and the indices K and mi,...,m satisfy the condition K > 2,
m; >, 2, i = 1, ... , n. Then the operator2': H,, -+ fix* is strongly monotone.
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PROOF. Proposition 2.3 is established in exactly the same way as Proposition 5.4.6
with the additional fact that the norms of the spaces

jTl 0.M1

Ha= H. (A; 9-, 1., X) and HI.M (A; &1; 1:3- A)

are equivalent taken into account.
The next results on the solvability of the general boundary value problem of the

form (2.6) for weakly degenerate (A. 0, 1, m)-elliptic equations follow directly from
Theorems 5.4.1-5.4.4 and Propositions 5.4.4-5.4.6.

THEOREM 2.2. Suppose that conditions (2.15), (2.16) or (2.15), (2.17) and conditions
1)- 3) of Proposition 2.2 are satisfied. Then for all F E Ha problem (2.6) has at least
one generalized solution.

THEOREM 2.3. Suppose condition (2.27) is satisfied. Then for any F E HH problem
(2.6) has precisely one generalized solution. Here the operator P: corre-
sponding to problem (2.6) is a homeomorphism.

3. (A,O, m, iff )- -elliptic equations with weak degeneracy. We suppose that condi-
tions (5.1.2) relative to a weakly degenerate matrix A and the vector b = 0 in 1 are
satisfied for an equation of the form (5.1.35). Let m = (m, ... , M), where m > 1, and
let q = be the index connected with this m by condition (2.2) (the
existence of such q follows from Lemma 2.1); suppose that the index 1 is determined
on the basis of q by condition (2.10). We assume that m < I. Suppose that for the
functions 1' and l in (5.1.2) we have

Il"(x,
u, q)I < i~11g1f ' + a1(x)lul"'-1 + 4r(x), i = 1,...,n,

llo(x, u, q)I < a2(x)Iq("'-1 + a3(x)lulni-1 + ¢o(x), (2.28)

where fµ1 = const 3 0, ai(x) > 0, a', a2 e LS(1), a3 E L'(S2), 1/.f + m/1 = 1,
Oi E L'(9), 1/m + 1/m' = 1, and 00 E L"(0), 1/1 + 1/1' = 1. With the help of
Young's inequality it is easy to see that conditions (2.28) imply (5.1.3) with
m1 = = m = m and m = 1, which expresses the fact that the equation in
question has isotropic (A, 0, 1,m)-structure with m = Equations of the
form (5.1.35) possessing the properties just enumerated will be called equations
having (A, 0, i , m )'-structure in the domain SE. The following assertions hold for
equations having this structure.

PROPOSITION 2.4. Suppose that the conditions indicated above are satisfied, and that
for almost all x r= St and any u E R and q E R"

"'. ; + lou > [[,I' + a(11)a(I3)lul`] - a4(x)Iu1"' - 4(x), (2.29)

where v = const > 0, K > 1, a4 E L'(0), 73'// + 1/s = 1, 0 E L1(SZ), and

S(Z1)S(13)m < K, [1 - S(M3)Jiti < 2, v0-"' - co II(a4)+IIs,a > 0,

'E n + 8(E1)6(E3) + 1 - 6(23), 6 = min(1, v) min(1, (measS2)-`" '), (2.30)

where co is the constant in (2.11), and f+ denotes the positive part of the function f, i.e.,
f+(x) - max(O, f(x)). Then the operator 2': ffa - H,, corresponding to problem (2.6)
is coercive.
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PROOF. Obviously, for all u E HA we have (see the proof of Proposition 2.1)

(2'u, u) >, v[IIAVuII'f.a + 47'007-011U114 + I1u1110

f(a4)+I ul?dx - f i (x) dx.

Applying Holder's inequality and using an estimate of the form (2.11) and condition
(2.29), we obtain for all u E fix such that IIuIIna = p > n + 8(11)&(23) + 1 -
6(E3) = 0 the inequality

(Yu, u) > [v0-'" - c' II(a4)+IIJ.n]p5' - If 0(x) dxl

from which coerciveness of the operator .P: Ha - H); obviously follows by (2.30).
Proposition 2.4 is proved.

PROPOSITION 2.5. Suppose that for an equation (5.1.35) having (A, 0, ii, in)--
structure in it the following conditions are satisfied:

1) The reduced coefficients P. i = 1,. .. , n, and to have the form (2.20).
2) The operator .rte. Ha fi defined by (2.21) satisfies a condition of the form

(2.22) with m1 = = Mn = 'H-
3) For almost all x E 7 and any u E R and q E R"

a11,/aul , a5lul'"-2 +0j;

IF< a6IgI, -2 + a7IuIR-2 + i',, i = 1,...,n;

lalo/aul <
a81g1"F-2 + a9lul"'-2 +'J'o, (2.31)

where ai-a.(x)>0,i=5,...,9,'i='r(/x) > 0, 4j =
=00(x)i 0, a5f, ab, af, ag/2, a9EL'(IZ), 1/s+m/1=1, 2=. Hi<l <1,'i+

E
L(I/4r'-I/rr'(SZ) and 4'0 E L'1(1- 2)(g).

Then the operator 2': RA - Ha corresponding to problem (2.6) has semibounded
variation.

PROOF. Proposition 2.5 is a special case of Proposition 2.2, since from (2.31) by
means of Young's inequality it is easy to derive conditions of the form (2.23) with

.''II

m =m m, q1+a ,

0i - Y'i +
abler-/-M)/(/-m) + % WO + a8(r-2)/2(!-1If) +

where the functions c,, f), and Po satisfy the conditions required in Proposition 2.2.
This proves Proposition 2.5.

The next assertion obviously follows from Theorem 5.4.1 and Propositions 2.4 and
2.5.

THEOREM 2.4. Suppose that conditions (2.28)-(2.30) and conditions 1)-3) of Pro-
position 2.5 are satisfied. Then for any F e Ha problem (2.6) has at least one
generalized solution.

4. Linear elliptic equations with weak degeneracy. In a bounded, strongly Lipschitz
domain 0 e R ", n 3 2, we consider a linear equation of the form (5.5.1) where the
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(in general, nonsymmetric) matrix `1I = IIa'j(X)II is positive definite for almost all
x E U. We henceforth always assume that there exists a constant ko > 0 such that
for almost all x E 2 and any , n E R"

Ia'1(x)j,n,I _<

(It is obvious that this condition is satisfied for ko = 1 in the case of a symmetric
matrix W1.) We set A = Ia'j(x)II = [I(L + %*)]'''-. It is obvious that a'Jji6j = IAj1z.
We suppose that the matrix A is weakly degenerate in 0 (see Definition 2.1).
Suppose that the index /satisfies condition (2.10), where q = (q1 , ... , is the index
connected with m = 2 = (2,...,2) by condition (2.2); we assume here that 1 > 2. It
is easy to see that under these conditions and the conditions

a'i E L2(S1), i, j = 1,...,n; A-'a A-10 E Vil(i-2)(12);

A-'g e Lz(l); fgo E L/(i-2) ( 2), go E L' (2), 1/1 + 1/1' = 1, (2.32)

equation (5.5.1) has (A, 0, 2,2)--structure in S2. Indeed, equalities of the form (5.1.2)
hold for the functions I = l1 p + au + g and 10 = Q p + flu + go with I' = Qq +
au+f and to=Y q+aou+f0 forA=((RI+11*)/2)'/z, QA-'ZIA-', a=
A-'a, f = A-'g, y = A-' P, b = 0, ao = flo and fo = go (where we have taken into
account that the matrix A is symmetric). For such functions l", i = 1, ... , n, and l;
inequalities of the form (2.28) hold with m = 2, al = IA-'*j, Ji = IA-'gj. i = L. .,n,
az = IA -' PI, a3 = IRoi and 0o = Igol with a constant µ1 depending on ko, since it is
easy to see that IIA-'WA-'II < const in [. The validity of the last inequality follows
from the estimate

IA-'12[A-'phi = IWq nI < k0IAgI IAni = kolpl II:I,

where p = Aq, = An and q, n - R and from the fact that R" coincides with the
set (p = A(x)q, q e R") for almost all x E U. Thus, equation (5.5.1) indeed has
(A, 0, 2, 2)'-structure in S2.

THEOREM 2.5. Suppose conditions (2.32) are satisfied, and suppose there exist
positive numbers e1, ez, e3, e4, (el + e1 + e3)/2 < 1, and 0 such that

8(E1)S(M3)Of0(x) >- c1 = const > 0

for almost all x E S2, and

PA-z - ca
2e oijl

111L(6 - 1)f0 + lA
lz + i

2
BIZ + If

1 3 +

i CZ
i.0

= const > 0, s + = 1, (2.33)

where v = min(1, v) (min(l,meas-'(2))), v = min(1 - (el + ez + e3)/2, c1), A = n
+ 5(21)x(13) + 1 - 8(E3), and co is the constant in (2.11). Then for all f = F e N

HoZ(A; 2; E3, X) the general boundary value problem of the form (5.5.4) (in the
case E = BSZ, M' = 0) has precisely one generalized solution, and the operator f8:
HA -3 H corresponding to this problem is a homeomorphism.
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PRool:. Applying the Cauchy and Young inequalities, we find that for almost all
t ES2an,Jan.\ rERand gER"

!"q,+ !;,u

(1 - e1 + +
e3)1g12 + 8(j1)8(X3)9aou2

+co[(1 - 8)ao -
26 1212 2e 1712 -

2

Ifol«-2)/u-I) ju2
1 3

JJ

1 If 12 - 1 Ifol'/(I2 262 64

In view of (2.33) this implies that the conditions of Proposition 2.4 are satisfied with

m = 2, K = 2, 4' = -(1/2E2)If 12 -(1/264)IfO1'/('-1).

It follows from the proof of Proposition 2.4 that in the case where ¢ = 0 in S2 in
(2.29) we have (Yu, u) > c211ulIHa for all u E ft x. In view of the linearity of the
operator So; RA N,*, this immediately implies its strong monotonicity, since in
bounding the expression (2'(u - v), u - v) from below we may assume that
I f I = IfoI = 0 in 2; therefore, condition (2.29) is satisfied with 0 _- 0 in 0. Theorem
2.5 then follows from Theorem 5.4.4.

REMARK 2.1. Condition (2033) is certainly satisfied if for almost all x e 0

6(108(13)YO(x) > el = const > 0; 00(x) > IA-1a12 + IA-1#12.

(2.34)

Indeed, setting el = e2 = 1/2(1 - 8), 8 = 1/4 and e3 = 1/3 and taking into
account that (a + b)+< a++ b, we see that condition (2.33) is satisfied if we
choose a+> 0 so small that

v/2 > co(e4/2)II Igol«-2>/(7-1)llf,n,

where co is the constant in (2.11).
We now suppose that in (2.32) the limit index 1 is replaced by any index

I E [ 2, !) , and by Y: RA - Ha we henceforth mean the operator defined by

(.Pu, Q) = f [(W vu + ua) vrl vu + 8ou)rl] dx + f curl ds,
a E,

Let 2,.hu = 2'u + rRhu, r E R, where h
and Rh: Ha - R is defined by

u,71Efix .

q
(2.35)

= IA-10112 + lA-1p l2 + 1RoI + 411)413),

Rhu = f hun dx, u, 'q E Ha.
fn

We observe that Rh actually does act from Hh into Ht; this follows from the
inequality

f0 hun dxl < Ilhlls,allullr,ollrIlr,u,
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where u, n E H and 1/s + 2/1= 1, and the imbeddings H,, - L'(f1) - L2(Q) -
H,* following from Lemma 2.5. Moreover, from what has been said it follows that
the operator Rh is compact, since in the case of a nonlimit index 1 the imbedding
H L'(f1) is compact. By Theorem 2.5 and Remark 2.1 the operator PI.,,:
Ha - Ha is a homeomorphism. We consider the one-parameter family of equations

.Lo,.huo.Vu+rRhu-F, FEHa. (2.36)

Equation (2.36) is equivalent to

u +(r - 1)2'1.hRhu -21.hF, (2.37)

which has the form of an equation u + (T - 1)Tu = $ with a compact operator
T E Yl.n a R. acting in the Hilbert space fl, _ z'(A; St; E3, 4). We denote by
Y,',,: FIB, - Ha the operator formally adjoin[ tom,41-r.h. The operators 2' .h and
thus defined by

f [giVu V-q+a V'1tu+14 purl+(Y0+ rh)u'q]dx

+ f Aunt ds (2.38)

and

fn[21 'Vu V77 +,6 V'qu+a Vu,l+($0+Th)u,l] dx

+ f aura ds, (2.39)

where u, n E Ha. Applying well-known results of the Riesz-Schauder theory, we
obtain the following assertion.

THEOREM 2.6. Suppose that condition (2.32) is satisfied with 1 replaced by I e [ 2, 1).
Then there exists a countable isolated set T? C R such that for all r 0 911 the operator
Y, h: Ha Ha is a bijection. For all r r= 9 the kernels of.9,.h and 2", h have positive,
finite dimension. The range of 2,,h in Ha is the orthogonal complement of the kernel of

In the case E2 = 0 or in the case of any set Y.2 under the additional condition
that the function R0 is bounded above in 91 we also consider the traditional
one-parameter family 2' ,u - Yu + TRu, whereto,: H,\ - R is defined by

(2 u, 11) - (Yu,11) + T(Ru. -q);

here (-Vu, ,1) has the form (2.35), and (Ru, n) = fu uiq dx. It is easy to see that.P,
acts from H,, into H' and is compact. It is also obvious that there exists a number
TO E R + for which the quantity

II[-TO+ $o +,A -lag + IA-' p12] +

is sufficiently small; and, furthermore, in the case where the function S0 is bounded
above in SZ we have the inequality

8(11)8(-T3)(TO - P0x) i C1 = const > 0
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a.e. in S2. We further assume that either 0 or P. is bounded above in
2. It then follows from Theorem 2.5 that the operatorY,: Ha - lia is a homeomor-
phism, and the operator £,a' o R: HA -- Ha is compact. We consider the family of
equations TRu = F, F E HA*, which can also be rewritten in the form u +
(T - To )Y,-'R u =.F -'F. The following analogue of Theorem 2.6 then holds.

THEOREM 2.7. Under the conditions indicated above there exists a countable isolated
set 0 C R such that for each T 44 9Y the operator.,: i - Ha is a bijection. For all
T E 5171 the kernels of £,: Hk -+ R and the operator Z: Hk --> Hx* formally adjoint to
it, defined by (2.38) and (2.39) in the case h = I in Sl, have positive finite dimension.
The range of g, in Ha is the orthogonal complement of the kernel of PT.

§3. Existence and uniqueness of A-regular generalized solutions

of the first boundary value problem for (A, 0)-elliptic equations

In a bounded domain 0 C R", n > 2, we first consider an arbitrary (A,0)-elliptic
equation of nondivergence form

a'j(x, u, pu)u; - a(x, U" a u) = 0, (3.1)

where u; and it are respectively the derivatives of first and second orders (see §6.1)
relative to the matrix A a IIa'j(x)Il, which is symmetric and nonnegative-definite in
it, and pu = (ui,...,uR).

THEOREM 3.1. Let a'j E C'(0), i, j = 1,...,n, and suppose that the functions
a'J(x, u, q), i, j = 1,...,n, and a(x, u, q) are continuous, differentiable with respect to
the variables u and q, and have partial A-derivatives 5 a'j/8xk and as/8xk, i, j, k -
1 , . . . , n , in xR x R" (see § 6.1). S u p p o s e that on the set KI x[-m, m] x (lqI > L},
where m, L = const 3 0, the inequalities

c',>0, A o-O-A , max Ia'jl<poA,i.j-l.. .n
n 2 1/2 " 1/2

(qaq) < PlhT1191-', (Sa'j)2 < a1)1a1,
i.j-1

la - gagl < µ2m1, 86 a2 f1Igl (3.2)

hold, where

J'I - d1j(x, u, q)grgj, 8 - lgl(a/au) +(q"/Igl)(a/8xk),

and h - i (x, u, q) and A - A (x, u, q) are respectively the least and greatest elgenval-
ues of the matrix I(* + *'), i m Ild'J(x, u, q)II, Po, All P2 - const ' 0, and 00, a,
and a2 are nonnegative constants which are sufficiently small, depending on n, Pt, P2+
and m. Suppose that for the matrix A the following condition is satisfied: for all x E SI,
GCCR"andnER"

Irks MkI + laJ'(rlk),fr'qkl +Irjk(aaj'/8xr)sr'lkl < P3IAEI ITII, i, j = 1,...,n, (3.3)

where

I;rj - (aa'r/ax,)aJQ - a'J(aa'r/ax,), 113 - coast > 0.
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Then, for any solution u E C3(S2) r1 C(U) of (3.1) such that Iul < min S2,

maxlpul < M,,

where M, depends only on m, M, = maxsnlVul, L, n, µo, ,u,, µ2 and 1A3.

REMARK 3.1. Condition (3.3) is satisfied, in particular, if the matrix A satisfies the
condition a'J E E2(3j), i, j = I,...,n, and

AA < N AA' (3.4)

where A 4 = A4(x) and AA = AA(x) are respectively the least and greatest eigenval-
ues of A. and µ4 = const > 1.

Indeed, taking into account that la'jl < cAA < cµ4AA, c = const > 1, we obtain
the inequalities cµAAiEi < c.tjAjl, Q, k = 1,...,n. Taking into account the
boundedness in S2 of the functions a'j, aa'j/axk and a2a'j/axkax,, i, j, k, I = 1.... ,n,
and the form of the left sides of (3.3), we then easily establish (3.3). If condition (3.4)
is satisfied we say that A is uniformly degenerate in 0. We further note that (3.3)
contains the condition of differentiability of rk, i, k, r = 1,...,n.

PROOF OF THEOREM 3.1. Applying the operator u; a/axk. (see §6.1) to equation
(3.1), we obtain

cr'ju;; uF = ((aa/a9t) - Viv (bd - Aa'ju,), (3.5)

where u = E' uk. We first transform the left side of (3.5). Since

u,^; = ajraisur, + aJ'(aa'r/ax,.)u,,

it follows that

U, - UT = f,,jUr, r;,. = (aa'r/ax,.)a" - a"(aaJr/ax,).

Taking account of (3.6) and the equality

uir = uri+(aa"/ax,)u,, (3.7)

we find that
Ujtk ` U,Fji + Yjik ,

Yik = rjkUir + rrkUjr +[a"( r%k ),Ur - rjk(aa"/axr)u,J.

Taking further into account that (uk )J, = 2u;iuk; + 2uAU;;;, and hence
n`

Ukjfuk = 1 L ui - Uk;Ukj = 1 UkiUk^,
2 k1 ii 2

we find that

aii).,/2 + d'ju; uk; + c"r'JYj,kuk.

From (3.5) we then obtain

&'Ju /2 = d'"uk;i q; - d'JYJ,kuk

+}(aa/aq,-(aa"/aq,)u;)O + U(l;a -.d'ju;,), (3.9)

in deriving which we have also taken into account that ui,iuk =Gi. Let z = z(u) be
a positive function which is twice differentiable on the interval (-m, ml. We
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introduce the function w defined by 0 = z(u)w. Taking into account that 0, = z'u;'w
+ z+,; and z"u;uw + z'uj;w + z'uj^w; + z'u;wjr + z%j , from (3.9) we derive

za"h f M wk = 2a'jukiukj - 2a''Yikuk

+z'(q,aq, - a)w + 2(&a/IgI)0 - z'a q,uj;w - 2I8a'juj;, (3.10)

where Ig12 = 0, q, = u1, I = 1,... ,n, and the form of the functions bk is irrelevant for
subsequent considerations. We henceforth consider and transform (3.10) only on the
set SZ _ (x E SZ: 1 vul > L), which enables us to use condition (3.2). Taking the
conditions on qdQ and Sa'j in (3.2) into account, we obtain

1 z'2

I9aQZ'uj;wl < A
u+

z 14ia1w,i.1-1

1 "A E u? + (3.11)
i,j-1

Taking the conditions on max; j_1 ." a'j and A in (3.2) and condition (3.3) into
account, we obtain (assuming that L > 1)

n 1/2

12a`'Yikukl 2µ0A 2nµ3 E u?; 01/2 + 2n2µ30
1j-1

"

2
A u + 8n2µoµ3z '1w + a0 L-12n2143zi1w, (3.12)

i.j-I
where we have also take account of the fact that A < -k1Ig1-2 on OL.

In view of (3.10)-(3.12) and the conditions on a - qdq and ha in (3.2) we have

za'jw; + bkwk i [-z" -(141/2)(z'2/z)

- µ21z') - vz] e1w, x E a`L, (3.13)

where v = 8n214o143a0 + 4µ0n2 ao L-lµ3 + 2(a1 + a2). Suppose that for z(u) we take
the function z(u) - (y + 1)e"' - e"°, where'y = coast and K = const > 0. Taking
into account that z' _ -Ke1t4, z" = -x2e"" and Z'2/Z < K2e""/Y, we observe that the
square bracket in (3.13) is bounded below by

s = (K2 - µ1K2/2Y -
142)C)e-"m - v(Y + 1)e"".

Choosing first Y = 14i, then K = 4142 and requiring further that the constants a0, a1
and a2 ensure for v the inequality v(y + 1)e"' < 1/4K2e'", we observe that with
this choice s > 0. Then in place of (3.13) we bkw; > 0 on 3L, from
which it obviously follows that w does not assume its maximum in J on A. Hence,

maaxw < max{ma (0/z), L2/z},

and so, obviously,

max0 < (max z/min z) max{max0, L2} < ((Y + 1)/Y){max6, L2}.
an an

Hence

m I' ul < ((Y + 1)/Y)1/2max(M1, L); M1 = ma lvul. (3.14)
12 an

Theorem 3.1 is proved.



194 PT. III. CH. 7: (A,0)-ELLIPTIC EQUATIONS

It is easy to see that if, for example, on Sl X { Iul < in } x (IqI > L) the conditions

ylgl d"(x, u, 9)s,t, < fllgl"'-22 i. µ = const > 0, m > 1;

Igay I < µ1141m
z, I66111 < dllgl"` ` Id - gdQl < µ2191 S&

d21gI"'

hold, where µl and µ2 are arbitrary while di and d2 are sufficiently small constants,
then conditions (3.2) are satisfied.

As an example in connection with Theorem 3.1 we now consider equation (6.2.17).
As was shown in §6.2, this equation has the solution u = rs, A E (0, 1), which does
not have a bounded gradient in the region (Ixj < 1). It is easy to see that (6.2.17)
has the structure of an (A, 0)-elliptic equation relative to the matrix A = rl, where I
is the identity matrix. In terms of A-derivatives the nondivergence form of this
equation has the form

/ x
IVUIm-2f AU + I U, -(m - 2)A'" 3IUIm

l r

-(n,k + A2)UIQUIm-2 = 0, AU = uir. (3.15)

It is obvious that the solution u = r', A E (0, 1), of this equation has a bounded
A-gradient AVu relative to the matrix A = rl, which is in agreement with Theorem
3.1.

We distinguish a special case of Theorem 3.1 pertaining to a linear (A, 0)-elliptic
equation.

THEOREM 3.1'. Suppose that the coefficients of the linear (A, 0)-elliptic equation

d''(x)u;-' - hx)u; - c(x)u - f(x) = 0 (3.16)

are continuous in il and have bounded A-derivatives ad"/axA, aA'/axA, ac/axA, and
of/axA,i, j,k=1,...,n,inst.Lety<X(x)<A(x)<µ,whereh(x)andA(x)are
respectively the least and greatest eigenvalues of the matrix # ('l + 21 `), i = I I a"(x) I I,
and v, µ = const > 0. Suppose that for the matrix A = IIa'i(x)II relative to which
differentiation is performed in (3.16) condition (3.3) is satisfied. Then for any solution
u E C3(f1) n C'(fl) of (3.16) such that Jul < m in 51 the estimate maxa1vul < M,
holds with a constant tlft depending only on n, m, Mt 'M maxalpul, v, µ, µ3, and the
upper bounds in 0 for the absolute values of the coefficients of (3.16) and their
A -derivatives of first order.

PROOF. It is easy to see that under the conditions of Theorem 3.1' the conditions
(3.2) of Theorem 3.1 are satisfied on D X (lul < m) X (Iql > L) with a sufficiently
large L > 0 depending only on v, µ, and the bounds in f for the absolute values of
the coefficients of (3.16) and their A-derivatives of first order. Therefore, Theorem
3.1' follows from Theorem 3.1.

We consider, for example, equation (6.2.20), which can also be rewritten in the
form

£u+ Pu7-(na+a2lXZZ)u=0, Au= .u;,,AE(0,1), (3.17)
1 P i-I
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where p = 1/z1i- -2+ + x, + e2 , e e (0,1), and the derivatives in (3.17) correspond
to the matrix A = pl. It was noted in §6.2 that the solutions u = pk of (3.17) do not
possess an estimate of I Vul in the region (Ixl < 1) which is uniform with respect to
e e (0, 1). It is easy to see that these solutions have a bound for the A -gradient A V u
(relative to the matrix A = pI) which is uniform with respect to e e (0,1); this is in
complete agreement with Theorem 3.1, all conditions of which are satisfied for (3.17)
and its solution u - pA,

We shall now establish an existence theorem for a solution of problem (6.1.1) for
(A, 0)-elliptic equations of the form (5.1.35) on the basis of Theorems 6.2.1 and 3.1,
which will be applied to regularized equations of the form (6.2.21). This existence
theorem is proved in analogy to the proof of Theorem 6.2.3. Indeed, we consider
auxiliary divergence (B, 0)-elliptic equations of the form (6.2.27), where B = A + eI,
r E (0, 1), and I is the identity matrix, which have reduced coefficients of the form

l"(x, u, q) = eq, + 1"(x, u, q), 70(x, u, q) = l0(x, u, q) + e(al"/ax,). (3.18)

The nondivergence form of (6.2.27) has the form (6.2.21), where

hij - ed, + a'', d'-' - al"/aqj, A : d - e(aak'/aX,)gk+

a = -(ark/au)gk -a ki(a1aX,)l,k _(aak`/ax;)l,k_ f + lo. (3.19)

Equations (6.2.27) can also be written in the form (6.2.22), where

A" = al'(x, u, p)/ap;, fi = -(al'/au)p, - al'/ax, - f(x) + lo(x, u, p).

For equations of the form (6.2.22) we consider the Dirichlet problems (6.2.23)
corresponding to values e e (0, 1).

LEMMA 3.1. Let a E C2, and suppose that a'j E CI(11), it j - 1,...,n, and
a'j(x, u, q), d(x, u, q) a Ctu(31 XR X R"), it j - 1,...,n, where the a'-', it j =
1,... ,n, and a are the coefficients of an equation of the form (3.1) corresponding to the
original (A, 0)-elliptic equation of the form (5.1.35) relative to the matrix A . IIa'1(x)II
(see (6.1.4)). Assume that for equation (3.1) conditions (6.2.2), (6.2.8), (6.2.9), (3.2),
and (3.3) are satisfied. Then for any e e (0, 1) problem (6.2.23) has a classical solution
u, a C2(f), and for this solution the inequalities

maxIuel c m, m IAVu1I 4 MI, (3.20)

hold, where the constants m and MI do not depend on e e (0, 1).

PROOF. Lemma 3.1 is proved in exactly the same way as Lemmas 6.2.3 and 6.2.4.
We first suppose that Sl a C3 and the coefficients of (3.1) are so smooth that any
solution of (6.2.22) belonging to the class C2(0) automatically belongs also to
C3(9). Since from conditions (6.2.2), (6.2.8), (6.2.9), (3.2), and (3.3) the validity of
analogous conditions for the regularized equations follows easily (and these condi-
tions are satisfied uniformly with respect to e (=- (0,1)), uniform a priori estimates of
the form (3.20) hold for solutions u, E C2(D) of (6.2.23). Taking the structure of
equations (6.2.22) into account, we may then assume that these equations are
uniformly elliptic and boundedly nonlinear. Applying the theorem of Ladyz-
henskaya and Ural'tseva of §1.2, we establish the existence of the required solutions
of (6.2.22) for all e e (0,1). Lemma 3.1 is proved.
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THEOREM 3.2. Suppose that an equation of the form (5.1.35) has the structure of an
(A, 0)-elliptic equation in a bounded domain SI e R ", n >, 2, of class C2, where
A = Ila"(x)II is a symmetric nonnegative-definite matrix in St with elements a" E

i, j = 1,...,n. Assume that the reduced coefficients 1"(x, u, q), i = I,...,n,
(x, u, q) and the right side f(x) of (5.1.35) are continuous in r2 xR x R", and the

functions a'i(x, u, q), i, j = 1,...,n, and d(x, u, q) defined by (6.1.4) ensure the
validity of conditions (6.2.2), (6.2.8), (6.2.9), (3.2), (3.3), and (6.2.25) ((6.2.25')). Then
the Dirichlet problem of the form (6.1.1) for equation (5.1.35) has at least one (precisely
one) A-regular generalized solution u, i.e., there exists a (unique) function u E L°°($2)
n SI) for every m > 1 having A-gradient AVu E L'(SI) and satisfying the
identity

f[l'(x, u, AVu) Apn + lo(x, u, AVu)n] dx = fufndx, do E CC(SI). (3.21)

PROOF. Theorem 3.2 is proved in exactly the same way as Theorem 6.2.3, with
Remark 6.2.2 taken into account.

We distinguish specially the case of linear nondivergence (A, 0)-elliptic equations
reducing to an equation of the form (5.1.35) under conditions of sufficient smooth-
ness of the matrix of leading coefficients. We shall consider the general linear
equation of the form (6.2.18) with nonnegative characteristic form in SI,
assuming that a'1 = a"', i, j = 1,...,n, and a'i E 21(nt). It is obvious that this
equation automatically has the structure of a nondivergence (A, b)-elliptic equation
relative to 11a''11 A = 211/2 and b = (b',...,b"), where b' = aa'i/axi + ft', i =
1, ... , n, and in the present case d'i = 6/ and a = -(aa'k/ax; )qk + cu + f. In terms
of A -derivatives this equation has the form

Du+(aa"/ax1)u;-cu-f-b'ux = 0, (3.22)

where Au = E; u;;. (3.22) can be rewritten in the form of a divergence (A, b)-elliptic
equation

-div(A*AVu) + cu + f + b'u.,, = 0. (3.23)

In order that (3.22), and hence also (6.2.18), be an (A,0)-elliptic (relative to
A = 211/2) equation of the form (3.1) it is obviously necessary and sufficient that the
vector b defined above (i.e., b = (b'..... V), b' = aa'i/ax, + 0', i = 1,... , n) be an
A-vector, i.e., that there exist a vector y = y(x) such that b = Ay = A'y in SI. This
condition can be written in the form: there exists a vector y = (y'(x),...,y"(x))
such that

f' + ax'i/axi = a'kyk, i = 1,...,n, (3.24)

where 11a"11 =- 21 and fja''II = A = W1/2 We note that (3.24) is trivially satisfied in
the case of a linear equation of the form

-(a/ax,)(a'i(au/axi)) + cu + f = 0; a'i = ai', i, j = 1,...,n, (3.25)

where a'1>a;¢i 3 0 in Q. If condition (3.24) is satisfied, then (3.23) assumes the form

-div(A'AVu) + yADu + cu + f = 0. (3.26)
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The nondivergence form of (3.26) is

Au+S'u;-cu-f=0, (3.27)

where + aa'k/axk, i = 1,...,n. If condition (3.24) is satisfied we call the
original linear equation of the form (6.2.18) (A, 0)-elliptic (relative to A = %'/2). The
next result follows from Theorem 3.2 with Theorems 3.1 and 6.2.1 taken into
account.

THEOREM 3.2'. Suppose the linear equation of the form (6.2.18) is (A, 0)-elliptic (in
the sense indicated above) relative to the matrix A = W1/22, where Sit = jja'j(x)j is

symmetric and nonnegative-definite in 0 and a'j E C1(St ), i, j = 1, ... , n. Suppose the
condition c(x) >, co in S2, where co = const > 0, and also condition (6.2.9) for the
matrix A = 911/2 and 3U, are satisfied. Assume that the coefficients of equations (3.26)
and (3.27) generated by (6.2.18) are continuous in 0 and have bounded A-derivatives
a%3'/axk, ac/axk and of/axk, i, j, k = 1,...,n, in Q. Suppose that condition (3.3) is
satisfied for the matrix A. Then the Dirichlet problem of the form (6.1.1) for equation
(6.2.18) has at least one A-regular generalized solution, i.e., there exists a function
u E L°°(Q) n Hm(A, S2) for every m > I such that Avu (Z L°°(S2) and

fn[Avu Aprl +(y AVu + cu + f )ri] dx = 0, V E Co(12). (3.28)

If for all x E 0, n = A j, E R n and fo E R, 71) * (0, 0),
n n

r!?+ Yjrii o+c¢0>0 (3.29)
i-I i.j-1

then problem (6.1.1) for equation (6.2.18) has precisely one A-regular generalized
solution.

PROOF. Theorem 3.2' is proved in exactly the same way as Theorem 3.2 with the
facts taken into account that conditions of the form (6.2.8) are certainly satisfied for
equation (3.27) and that it is not necessary to assume a monotonicity condition of
the form (6.2.25) to pass to the limits in the integral identities (6.2.29)-(6.2.31), in
view of the linearity of the equation. Theorem 3.2' is proved.

We consider the variational problem of a minimum for an integral of the form
(6.2.35) under the condition (6.2.36). The Euler equation for this problem, which has
the form (6.2.37), is an (A, 0)-elliptic equation in 17 (see also (6.2.38)). The next result
obviously follows from Theorem 3.2.

THEOREM 3.2". Suppose that the integral (6.2.35) is considered under the assump-
tions that the domain 0 is bounded in R ", n > 2, and belongs to the class C2, the
matrix A = JIa'j(x)jI is symmetric and nonnegative-definite in a with a'j E C'(0),
i, j = 1,...,n, and the function F(x, u, q) satisfies condition (6.2.36). Assume that the
functions I", i = 1,...,n, and to defined by (6.2.38), the function f(x) in (6.2.35) and
the functions a'-', i, j = 1_.^ and a defined by (6.1.4) and (6.2.38) ensure the
validity of conditions (6.2.2), (6.2.8), (6.2.9), (3.2), (3.3), and (6.2.25) ((6.2.25')). Then
there exists at least one (precisely one) extremal of problem (6.2.35), i.e., there exists a
(unique) function u E L'(0 fl Hm(A, 0)) for every in > 1 such that AVu E L'°(0)
for which the identity (3.21) is satisfied (with l", i = 1,...,n, and to defined by
(6.2.38)).
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Examples of more concrete functionals of the form (6.2.35) for which the result of
Theorem 3.2 holds will be presented below.

In establishing the existence of an A-regular generalized solution of the first
boundary value problem for (A, 0)-elliptic equations it is possible to relinquish
condition (6.2.9). Elimination of this condition leads to consideration of a first
boundary value problem of the form

2'u=f(x) intl, u=0 on IV xEa1:AY 00). (3.30)

In considering a problem of the form (3.30), we assume that (5.1.35) has the
structure of an (A, 0)-elliptic equation relative to a matrix A satisfying condition
(3.4). Condition (3.4) enables us to reduce consideration of problem (3.30) to the
case of (5.1.35), which has the structure of an (a1,0)-elliptic equation in (2, where
a = a(x) = (1/n)TrA. Indeed, any equation of the form (5.1.35) having the struc-
ture of an (A,0)-elliptic equation with reduced coefficients I" (x, u, q), i = I,...,n,
and lo(x, u, q) also has the structure of an (aI,0)-elliptic equation with reduced
coefficients

I'( x, u,q) = (A*/a)1'(x, u, A4/a), lo(x, u, q) = lo(x, u, A4/a), (3.31)

In view of (3.4) the conditions on the reduced coefficients 1'(x, u, 4) and %0'(x, u, 4)
which are imposed below to ensure the solvability of problem (3.30) in the class of
(aI)-regular generalized solutions can easily be rewritten in terms of the original
reduced coefficients i'(a, u, q) and lo(x, u, q), and the resulting solution of problem
(3.30) can be interpreted as an A-regular generalized solution relative to the original
matrix A. In view of what has been said we shall henceforth simply assume that
A = a(x)I, where a(x) 3 0 in St, in order to shorten the exposition. We note that
condition (3.3) is trivially satisfied for the matrix A = a(x)I, since in this case
A,t = AA = a(x) in (2.

THEOREM 3.3. Suppose (5.1.35) has the structure of an (aI, 0)-elliptic equation, where
a E C'(n) n Lip(R") and infR. a(x) > 0. Suppose that the functions d'"(x, u, q),
i, j = 1,... , n, and d(x, u, q) defined by (6.1.4) belong to the class Ct"(11 X R X R").
Suppose for equation (3.1) generated by the above equation (5.1.35) by means of
equalities (6.1.4) conditions (3.2) are satisfied as well as the following condition: on the
set D8 X (Jul < m) x R" (see (6.2.3)) the inequalities

Id"I < µ5h(eolgl + 1), i, j = 1,...,n; Idj < 116A(e Igl2 + 1), (3.32)

hold, where A = A(x, u, q) > 0 is the least eigenvalue of the matrix }(l +
2f r IId'"(x, u, q)ll, 115, 116 = const >, 0, and eo is a sufficiently small constant.(')
Then, for any function u E C2(Da) n C'(Da) such that u = 0 on I and I u I < m in D8,

maxlApul < MI (3.33)

with a constant Aft depending only on n and m = maxQ luI, on the known quantities
determined by conditions (3.2) and (3.32), and on the CZ-norms of the functions
describing the boundary of 7.

(2) The nature of the smallness of e,, will be specified in the proof.
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PROOF. The function u satisfies (3.1) and (6.1.5), whose coefficients in the present
case are connected by the relations

aij(x, u, p) = a2(x)d'j(x, u, q), i, j = 1,...,n,

a(x, u, p) = d(x, u, q) - d`J(x, u, q)(aa(x)/axr)gj, q - a(x)p. (3.34)

We remark that it follows from (3.32), in particular, that the matrix ff(x, u, q) is
nondegenerate on Ds x (Jul < m) X R". Let x0 a all be a point at which the
maximum of al8u/8p1 on 8(2 is realized, where v is the unit vector of the inner
normal to 8(2. We set ao = a(xo). We introduce the following sets:

F, {x E R": a0/2'+' < a(x) < 2'+'a0), i = 0,1,2. (3.35)

We denote by (x) the average with a fixed smooth kernel of the characteristic
function of the set F1, assuming that the radius h of averaging is

h = min(dist(F0,R"\F1),dist(F1,R"\F2)). (3.36)

It is easy to see (see also [117]) that

h-' < cKao', (3.37)

where K is the Lipschitz constant of the function a(x) in R" and c > 0 is an
absolute constant. Indeed, let x1 E F. and x2 E R"\ F1. Then

a0/4 < la(x2) - a(xi)I < KIx2 - x11,
whence

dist(F0,R"\F1) = min 1x2 - xil (K)ao.

In a completely analogous way we find that

dist(F1,R"\F2) >- (1/8K)ao.

Inequality (3.37) with c = 8 follows from what has been proved. In view of (3.36)
and (3.37) we have (x) = 1 on the set F0, (x) = 0 on R" \ F2. and there exists a
constant co depending only on K such that

Ivfl < coao', ID2SI < coao2. (3.38)

We set v - ut. Taking into account that u satisfies an equation of the form (6.1.5),
we find for v the identity

a'jv;j - 2a'ju,tj - at - 0, x e (2. (3.39)

Making the change of variables.9 = ao'x and taking (3.34) into account, we reduce
(3.39) to

d'jv;j - 2d'j(a0/a)(au,)(a0tj) - d'ju(aoi~ij) -(a0/a)2at = 0, z E 0, (3.40)

where 0 is the image of (2 under this coordinate transformation. We note that (3.40)
is nontrivial only on the set F2 w (.9 (=- R": 1/8 < a(x)/ao < 8) n C. Taking the
conditions of Theorem 3.3, the estimates (3.38), and Theorem 3.1 into account, we
conclude that for the function v and (3.40), considered as an equation of the form
A'(z)v'fr, - A(z) = 0, where

9 E 0, A'J(X) = a'J(x(X), u, Avu), 1, j

A(X) - 2d'f(a0/a)A1vu(a0$j) + d"u(aol;ij) +(a0/a)2at,
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all the conditions of Theorem 1.4.1 are satisfied; in particular, the inequality of the
form (1.4.1) is satisfied with 1 = 0, S(t) = 0, and fi(t) = c,(1 + r0M )t-2, where c,
depends only on m and the known quantities determined by (3.1), (3.32), and (3.14)
with Ml = maxan al vul. From Theorem 1.4.1 (with Remark 1.5.1 taken into account)
we then obtain the estimate (av(zo)/av9 < P, or

Iao(av(xo)/8v)I< P, (3.41)

where /3 is determined from (1.3.7) with

1(1) = K/12 + 2,y(r)/t

and a number a depending only on known quantities. Taking into account that
(xo) = 1, from (3.41) and (3.32) we obtain

Ia0(au(x0)/8v)I < /3 + c2m.

Since the derivatives in tangential directions are equal to 0 at the point x0 E au. this
implies that

M, = maxIavul < 0 + c2m. (3.42)
aat

From (1.3.7) and the form of 0(t) we easily deduce the inequality ft < c

where the constants c3 and c4 depend only on known quantities. Let eo be chosen so
that I - c3y o = 1/2. The estimate (3.33) then follows from (3.42). Theorem 3.3 is
proved.

In formulating below the theorem on the solvability of problem (3.30) for an
(A, 0)-elliptic equation of the form (5.1.35) under the condition (3.4) of uniform
degeneracy of the matrix A, we take into account the possibility of qualifying such
an equation also as an (a1, 0)-elliptic equation relative to a = (1/n)TrA (see (3.31)).

THEOREM 3.4. Suppose that an equation of the form (5.1.35) has the structure of an
(A, 0)-elliptic equation in a bounded domain Sl C R ", n ? 2, of class C 2 relative to a
matrix A = a(x)l, a(x) 0 in R", a E C'(0) n Lip(R"). Suppose that the reduced
coefficients 1"(x, u, q), i = 1,...,n, and lo(x, u, q) and the right side f(x) of (5.1.35)
are continuous in 0 x R x R" and the functions a'J(x, u, q). i, j = l , ... , n, and
d(x, u, q) defined by (6.1.4) ensure the validity of conditions (6.2.2), (3.2), (3.32), and
(6.2.25) ((6.2.25')). Then the problem of the form (3.30) has at least one (precisely one)
A-regular generalized solution, i.e., there exists a function u E L°`($.) n 52),

Vm > 1, such that Apu E L°°(11) and

u, AVu) AV71 + lo(x, u, AVu)rt] dx = f frtdx,

bn a Co (11). (3.43)

PROOF. Theorem 3.4 is proved by means of Theorems 3.2 and 3.3 in exactly the
same way as Theorem 6.2.3 was proved by means of Theorems 6.2.1 and 6.2.2 (see
also Remark 6.2.2).

As an example related to Theorems 3.2 and 3.4, we consider an equation of the
form (1.7) with m >, 2 and m > 2. The next assertion, in particular, follows from
Theorems 3.2 and 3.4.
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THI:oRFM 3.5. Suppose that the matrix A = IIa'j(x)II is symmetric and nonnegative-
definite in o bounded domain Sl C R", n >, 2, of class C2, where a'" E Or),
i, j = 1.....n, and suppose that f(x) is bounded and has bounded A-derivatives
a f (x)/Jxk, k = 1,... ,n, in 2. If conditions (3.3) and (6.2.9) are satisfied, then the
problem of the form (6.1.1) for equation (1.7) has precisely one A-regular generalized
solution, i.e., there exists a unique function u E L°°(12) n ifm(A, Sl) for every m > 1
such that A V u r= L' (9) and

f[IAvuI ' 2AVu AVij + Iulm_2uj1] dx = f fndx, v ,1 E Co(Sl). (3.44)

If the condition A= a(x)I, a(x) E C'(St) n Lip(R"), a(x) > 0 in R", holds and also
under the same assumptions regarding the right side f(x) as in the first part of the
theorem, the problem of the form (3.30) has precisely one A-regular generalized
solution, i.e., there exists a unique function u E L°°(12) n /fm(A, 2) for every m > 1
such that AVu E L°°(2) and (3.44) holds for all 71 E where 7. _ (x E a'l:
Av * 0).

PROOF. Since (6.2.25') is satisfied, Theorem 3.5 follows directly from Theorems 3.2
and 3.4 and the fact that the results of Theorems 3.2 and 3.4 are obviously preserved
if the right side f(x) is bounded in 2 together with its A-derivatives Af(x)/axk,
k=1, ,n.

The existence of A-regular generalized solutions of problem (3.30) possessing
bounded A-derivatives of second order in 0 can be established in an analogous way.
For brevity we assume forthwith that A - a(x)I, where a(x) 3 0 in (1, since the
more general case determined by condition (3.4) can easily be reduced to this.
Moreover, it should be noted that at the stage of obtaining an a priori estimate of
maxiilD2ul in terms of maxa0ID2u) we admit a larger class of matrices (here there
are conditions of approximately the same character as condition (3.3) on the matrix
A).

THEOREM 3.6. Suppose that (5.1.35) has the structure of an (A, 0)-elliptic equation in
a bounded domain St C R", n >, 2, of class C2 relative to the matrix A - a(x)I, where

a(x) E C2(0) n Lip(R"), Rfa(x) 3 0. (3.45)

Suppose that the reduced coefficients l"(x, u, q), i - 1,...,n, and 10'(x, u, q) and the
right side f (x) of (5.1.35) are continuous in R X R X R" and the functions 4'f(x, u, q),
i, j = 1,... ,n, and d(x, u, q) defined by (6.1.4) ensure that conditions (6.2.2), (.2),
(3.32) and the following condition are satisfied: on the set 0 XI-m, m] X { I qI < MI ),
where the constants m and MI are determined respectively by conditions (6.2.2) and
(3.2), (3.32), the inequalities

a''( x, u, q)'n;n, > vIr1I2, R

aa'' x,u,q)I a2a`j(x,u,q)I
aqs aI, i, 1, s, t = 1,...,n, (3.46)

hold, where aI is a nonnegative constant which is sufficiently small, d pending on MI
and P. Assume also that for all x E 3l, u E [-2m, m], q E R", IqI < 2MI, g E R" and
Jo E R, where m and SNI are the same constants as above, inequality (6.2.25) ((6.2.25'))
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holds. Then problem (3.30) has at least one (precisely one) A-regular generalized
solution possessing bounded A-derivatives of second order in S2. This solution satisfies
the corresponding equation (3.1) a.e. in Q.

PROOF. We first estimate maxQjD2uI in terms of maxauID2ul. Applying to
equation (3.1) corresponding to the (A, 0)-elliptic equation (5.1.35) under considera-
tion the operator

52
H

a a

axkax, - k I I uicl3XI (axk

introducing the notation v = Ek,I-1 uk;, and arguing as in the proof of Theorems
6.3.1 and 3.3, we establish the estimate

Zd'jvT> Zjb3uj2 - c101(v2 + rVIpvI) - c2(v3i2 + 1vuJ), x E StL, (3.47)

where S2L = {X E I : (b2UI > L) and cl and c2 are constants depending only on
knownguantities. Making the substitution v = zw = (1 + Aft - E; uk)w in (3.47),
where if, = maxQIpuj, we find that w cannot assume its maximum in 0 in 2,,
whence we easily obtain

m jb2uI < (1 + jb2uI, L (3.48)

where L = L(n, M1, v, c1, c2). Having obtained the qualified estimate (3.48), we
proceed to estimate maxauIb2ul. This estimate is obtained by means of the same
arguments as in the proof of Theorems 6.3.2 and 3.3. We thus establish the a priori
estimate maxblD2uJ c with a constant c depending only on known quantities. The
remainder of the proof of Theorem 3.6 is altogether analogous to the proof of
Theorems 3.2 and 6.3.3.

We illustrate Theorems 3.4 and 3.6 with the example of a linear equation of the
form (6.2.18) having a nonegative characteristic form a'"(x)¢,E, in SD. Suppose that
(6.2.18) is (A,0)-elliptic in SI relative to the matrix A - Wl/2, i.e., condition (3.24)
holds for this equation. We assume that A is uniformly degenerate in 12, i.e.,
condition (3.4) holds.. Equation (6.2.18) can then be qualified as an (al)-elliptic
equation in S3 relative to a - (Tr A)/n, while its factorization can be realized in a
somewhat different way than in the general situation described above (see (3.26) and
(3.27)). It is obvious that under these assumptions (6.2.18) can always be written in
the form

a2c4'"(x)u11 - a7'(x)u, - c(x)u - f(x) - 0, (3.49)

where

a'1'f
a

alk7k aij(aa/ax;) ,

2
a a

a=TnA>0 in 12,
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and the coefficients y'`, k = 1,...,n, are determined by (3.24). It is obvious that
coj2 for all E R" and the constant co > 0 depends only on n and the

constant µ4 in the condition for uniform degeneracy of A. In terms of (aI)-deriva-
tives (6.2.18) has the form

d''u;-/3'u;-cu -f=0, (3.50)

where -d''(aa/ax") + y', i = 1,...,n, and its divergence form is

-div{(al)if (aVu)) + d'u, + cu + f = 0, (3.51)

where d' + a(ad'i/axe), i = 1,...,n. Taking the linearity of equation (3.51)
into account, from Theorems 3.4 and 3.6 we obviously obtain the following result.

THEOREM 3.7. Let 2 be a bounded domain in R", n > 2, of class C2, and suppose
that condition (3.45) is satisfied. Assume that the functions 6''(x), A(x), c(x), and
f(x) are continuous in 11 and have bounded (aI)-derivatives of first (and second) order
in SZ. Suppose, for all x E 3E, i = (a1)C and J E R", that vn2 < d'i(x)q;rli < /in2,

where v, s = const > 0, and that c(x) > co = const > 0 in SE. Then the problem

d'juj;;-.'u;-cu-f=0 in 0,

u = 0 on I m (x r= OSE: a(x) > 0), (3.52)

where u; and u, are the A -derivatives relative to the matrix A = a(x)I, has at least one
(al )-regular generalized solution u (possessing bounded (al )-derivatives of second
order in f2), i.e., there exists a function u E L°°(f) n Hm(aI, 0) for every m > I such
that avu E L°°(J) (a292u E L°°(Sl)) and

fn[fIpu (3.53)

where 2Y IId'j(x)II and a - (a',...,a") (and the function u satisfies (3.50) a.e. in SE).
Under the additional condition

rlrrii + dJTlijo + CJ2 > 0,

ri=(aI)f, jER", foER, (to,n)*(0,0), (3.54)

problem (3.52) has precisely one (al )-regular generalized solution.

We note that the solvability of the first boundary value problem for a linear
degenerate equation of the form (3.49) in the weighted space Wp (a(x), 0), where
a(x) > 0 in SZ and 1 < p < + oo, was established in [117]. This result does not
follow from our Theorem 3.7, nor does Theorem 3.7 follow from the results of [117].

CHAPTER 8

(A, 0)-PARABOLIC EQUATIONS

§1. The basic function spaces connected with the general boundary value

problem for (A, 0, m, m)-parabolic equations

In this chapter the domain in which the boundary value problems are considered
is always the cylinder Q m 0 X (T,, T2 ), where 11 is a bounded domain in R", n > 1,
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and T1 and T2 are fixed numbers. In the case Tl = 0, T2 = T the corresponding
cylinder is denoted. by QT = SE x (0, T), The variables x1,... , x" are called space
variables, and i is called the time.

Let A = lla'"(l, x)II be a square matrix of order n satisfying the condition

a'' E Lm .m°'(Q), i, j = 1,...,n, m; % 1, m0, % 1, i = 1,...,n. (1.1)

To each function u E Cia(Q) c Lid o(Q) we assign the vector Apu
(A1Vu,...,A"vu), where AjVu = a'" (t, x)au/axe, i = 1,...,n, considered as an
element of L « o(Q). This mapping we call the operator of taking the spatial
A-gradient in Q. We assume that the following condition is satisfied:

the operator of taking the spatial A-gradient admits weak closure. (1.2)

If condition (1.2) is satisfied we say that the function u E Lea o(Q) has a gener-
alized spatial A-gradient Avu E L° (Q) in Q if u belongs to the domain of the
weak closure of the operator of taking the spatial A-gradient; the vector-valued
function Avu is the value of this operator at the function u. The components
A1v u,. . . , A"V u of A v u we call the generalized spatial A-derivatives of u in Q; here
A,Vu E Lm"mo (Q), t = 1,...,n.

Since the generalized spatial A-derivatives of a function u are generalized A-
derivatives of this function in the domain = Q C Rn+1 relative to the matrix A of
order n + 1 having the form

A=
0

A

0

the facts presented below are established in exactly the same way as the correspond-
ing propositions in §4.1.

LEMMA 1.1. Under conditions (1.1) and the conditions

a"
as;J

E L «:m0(Q), 1 + 1 = 1, 1 + 1, = 1, (1.3)
axe m m' m0 m0

the operator of taking the spatial A-gradient admits weak closure (i.e. condition (1.2) is
satisfied).

It will be shown below that condition (1.3) is ensured also by a condition of
sufficiently weak degeneracy of the matrix A in Q.

LEMMA 1.2. Under conditions (1.1) and (1.3), for any function u E L a 0(Q) having
generalized spatial A-gradient Apu E L°la 0(Q) the following identities hold:

fQ,o,, + aaa'jxe ,1 dtdx = - f dx,fu A
V71 E i = 1,...,n. (1.4)

LEMMA 1.3. Suppose that conditions (1.1) and (1.3) are satisfied and that for any
compact subregion SE' in St

l a''(t, x) - a''(t, y)l < Klx -- yl, x, y E 12', t E [T1, T2]' I, j = 1,...,n, (1.5)
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where h depends only on St'. Assume that for functions u E Li mO(Q) and v e L °(Q)

1A;p + aa'jf flu ax! 71 dt dx = f fQv rl dt dx,

17 E Coast x (T,.T2)(Q), i, J = 1,...,n.

Then the function u E Lid "'°(Q) has generalized spatial A -gradient Apu E L a °(Q),
anrd Apu = v.

Suppose that conditions (1.1) and (1.2) are satisfied, and let r be an arbitrary part
of the boundary aQ of the cylinder Q. We denote by A= = t°'mo;m.mo(A, Q) the
completion of the set CC.r(Q) in the norm

1juII.?r- IIuIIm.m°.Q + IIApuIIm.m,,.Q, (1.7)

where

/
IIAVullm.mo.Q = IIAiVUIIm,,mo,,Q

ial

In the case r = 0 we omit the upper indices in the notation for this space.
To each function u E C'(Q) we assign its value uIn on the set II c Q. We

consider this mapping as a linear operator acting from C'(Q) C ,7°, m0;m.mo(A, Q)
into L'a(H), and call it the operator of taking the limit value on H.

We suppose that for some set II c aQ the following condition is satisfied:

the operator of taking the limit value on the set H admits closure. (1.8)

If condition (1.8) is satisfied we say that a function u E d°= `m.ma;m mo(A, Q) has
generalized limit value uIn on the set H if u belongs to the domain of the closure of
the operator of taking the limit value on H and uIn is the value of this operator at
the given function u.

Sufficient conditions that condition (1.8) be satisfied, which involve the assump-
tion of sufficient regularity of the surface II, smoothness of the elements of the
matrix A in a neighborhood of II, and nontangency of the vector A*Av to II, are
determined by the proofs of Lemmas 4.2.1-4.2.3. In particular, the next assertions
follow from these propositions and the form of the norm (1.7) in an obvious way.

LEMMA 1.4. Let H = it x (T1, T2), where it c aft, and suppose that A - A(x) (i.e.,
the elements of the matrix A do not depend on t). Assume that conditions (4.1.1),
(4.1.3), and (4.2.5) are satisfied for the set it and the matrix A. Then for any m > 1,
mo > 1, in = (m1,...,mn) and mo = (m01,...,m0n), m, > 1, m0i > 1, i - 1,...,n,
the operator of taking the limit value on the set II admits closure. Any function u r =.r
has a generalized limit value uI11 on II, and uIn a L(II), where m* =
min(m, mo, m1, -Mn, m01,. ,mon). For any x0 E int it there exists a neighbor-
hood fix,) C it such that

lim f T2 f Iu((t, y) + hA*(y)A(y)v(t, y)) - uIn(t, y)}m dtds = 0, (1.9)
h-.0 T1 p,0
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where v(t, v) is the unit vector of the inner normal to II at the point (t, y) E pT X
(T1. T, ). and ds is the area element on P,,,. Moreover,

f
T,

f Jul`-drds < c f T2 f (Jul-'- + dt dx, (1.10)
T1 w,,,

where ca is a part of 12 abutting P,,,, and the constant c does not depend on u.

LEMMA 1.5. Suppose that condition (4.2.25) is satisfied for some set II = 17 X (TI, T, )
and a matrix A = A(x). Then the operator of taking the limit value on the set II admits
closure. Any function u e ,K has a generalized limit value ul I1 E L" -(fI ), where

m* = min(m, m0, m1, m01'...,m,,, m)"),and

him f llu((t, y) + hA'(y)A(y)v(t, y)) - uln(t, y)I dtds = 0 (1.11)

and

f
,f

(Jul"'* + dtdx,
f,
f Jul`- dtds S c

T

t T, II

where c does not depend on u.

(1.12)

Sufficient conditions for the validity of (1.8) for the entire lateral surface of the
cylinder Q involving assumptions of another kind (weak degeneracy of the matrix
A(t, x) in Q) will be given in §3. We note that condition (1.8) is certainly not
satisfied for the upper and lower bases of Q (as we shall see below).

For the rest of this section we always assume that conditions (1.1) and (1.2) are
satisfied. In analogy to Definition 4.3.1 we introduce the concepts of regular and
singular parts of the boundary 8Q relative to the matrix A (of order n) and the
indices m, m0, m and m0. We call a set II c aQ regular if the operator of taking the
limit value on n admits closure (i.e., condition (1.8) holds for I1). We call a set
9 c aQ a singular part of aQ if

the set Co,9(Q) is dense im n,", ;m.m (A, Q). (1.13)

Sufficient conditions for regularity of sets of the form H = it x (T1. T,), it c aSt, are
given above. We shall present conditions guaranteeing singularity of sets 9 c Q.
The facts stated below follow easily from the proof of the general Lemma 4.3.1.

LEMMA 1.6. The sets eo a (Q), e0.or2(Q), and Co,nr, vor,(Q) are dense in.)f', so that
the lower base SZT. and the upper base SZT, are singular parts of the boundary aQ (for
any indices m, m0, m and m0).

PROOF. Since for the set 9 = SZT, or 91 = SIT, the function d(t, x), constructed in
analogy with (4.3.4) is independent of x, the analogue of the third term on the right
side of (4.3.6) is equal to 0, whence the assertion of Lemma 1.6 follows.

LEMMA 1.7. Let 9= p x (T1, T2), where p e K2, and let A = A(x). Assume that
for the set p and the matrix A condition (4.3.2) is satisfied. Then 9 is a singular part of
the boundary 8Q.
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PROOF. Let us = where the cut-off function 6 is constructed according to a
formula of the form (4.3.3), so that u8 a Co,_.(Q). Then (cf. (4.3.5))

Ilu - U6II,r< NO - a)Ilm,mo,Q + E IIA,vu(1 - 8)Ilm,.mo,.Q
i-1

n

y
+

-I
(1.14)

where 9,,I2., = W812.8 X (T1, T, ), and the set W812.8 is defined as in (4.3.3). Since

T I/mo,

(1 ZII,. v.allm-,/ ,
dt) , (1.15)

T)

from formulas of the form (4.3.6), (4.3.7) we obtain

C8 It, i = 1,...,n, (1.16)

where the constant c does not depend on 6, and e, = a; - 1/m; > 0, i = 1,... , n. It
follows easily from (1.14) and (1.16) that lima-.0Ihu - uall.W= 0. Lemma 1.7 is
proved.

For the rest of this chapter we always assume that the following condition is
satisfied:

8Q=I UZ',E=a X(T1,T2),I'=(a' X(Tt,T2))UaT, U0T,,
where 2 is the regular and 7.' the singular part of 8Q relative to the given
matrix A and indices m, mo,m and mo, m, ma, mi, m0i > 1, i = 1,...,n.

(1.17)

We recall that conditions (1.1) and (1.2) are satisfied for the matrix A, and the sets
QT, and f2T, are certainly singular parts of aQ. Suppose that the set is partitioned
into parts 11 = a1 X (T1, T2), 12 E 02 X (T1, T2) and 13 as a3 X (T1, T2), so that
21 U'2 U 13 = E and Y, n Mj = 0 for i # j, i, j - 1, 2, 3, where we assume that
measn 8li - 0, i - 1, 2, 3. Suppose that on 13 there is given a piecewise continuous,
bounded, positive function A.

The completion of the set Co,j.(Q) in the norm

IIUII.r, m- IIUIIm.mo,Q + IIAVUIIm,ma,Q + IIUIIL2(a.E3), (1.18)

where
n

liAVullm.mo.Q a E A,Vu a aijuxi,
i-1

is denoted by

'oX _oma;m.mo(A; Q; B3, A).

In the case 23 = 0 the space..* coincides with the space

°m Q)

introduced above.
The next assertions are proved in exactly the same way as Lemmas 5.2.1-5.2.3.
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LEMMA 1.8. The space,YeA is separable and reflexive. Any linear functional, in -V',

can he defined by

(-,F, 0 = f fQ(fon + f Avr1) dt dx + ff3X ds, n E Co.Z (Q), (1.19)

where f E L"' u(Q), 1/m + 1/m' = 1, 1/mo + 1/m' = 1, f = (f 1, ..,f"), f' E
L 1/m, + 1/m; = 1, 1/mo, + 1/mo, = 1, i = 1,...,n, L2(A, 23). and.
J. f, and i can be chosen so that

Sup(Ilfollm'.m Q.IIf111.,11riIm;,...... Q,11t 11 j.(1.20)
Any expression of the form (1.19), considered under the conditions on fo, f, and P
indicated above, defines a linear functional in,XE°a with norm IIFII.,r, not exceeding
the quantity on the right side of (1.20).

LEMMA 1.9. There is the dense imbedding, "- XL'. If A = A(x), m >, 2, mo > 2,
m i > 2, mo, >, 2, i = 1, ... , n, and condition (4.2.25) is satisfied for the set a3 and the
matrix A, then the spaces.X6°a and,XL°are isomorphic.

LEMMA 1.10. The sets C01.1 UOT UnT(Q), Co: nT(Q), and Co.E,,a,=(Q) are dense
in ,,Y\.

We now introduce analogues of the spaces X and Y (see (5.2.10) and (5.2,11)),
Taking into account that the equations considered below will have (A, b)-structure in
the cylinder Q relative to the matrix

0

A

0

and vector b = (1, 0,... ,0), we consider the following spaces X and lJ.
The completion of the set CC.E,(Q) in the norm

Hull, = IIull,1ra + IIu1I2.Q + 11U112 ,Q,, (1.21)

we denote by

0
1'

A).

The completion of the set CC.j,(Q) in the norm

IIuIIf+ IIu,1I2.Q

we denote by

(1.22)

o.11.

The following results are proved in exactly the same way as Lemmas 5.2.4-5.2.6.

LEMMA 1.11. The space f is separable and reflexive. Any linear functional. in ,'
can be defined by

(.F,rl)= f f f grldx
Q a

+ f X it ds, n E (1.23)
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where f0, f, and are the same functions as in (1.19), go E L2(Q), q E L2((l), and
these functions can be chosen so that

IIF II = sup( Ilfollm'.mo.Q> Jlgll2.OT2

(1.24)

Any expression of the form (1.24), considered under the conditions indicated above on
jo, f, 0, go, and q, defines a linear functional F in X with norm IIFIlx not exceeding
the quantity on the right side of (1.24).

LEMMA 1.12. The space '' is separable and reflexive. Any linear functional F in 'Y
can be defined by

(-F' rl) = ffQ(fort + f A771 + go, + horb,) dt dx + faT2q,j dx

+ f A0,1 ds,
1a

rt E CO.E,(Q), (1.25)

where fo, f, go, q and 4' are the same functions as in (1.23), ho E L2(Q), and these
functions can be chosen so that

IIFIIq = sup( I]foil m'.m,.Q, ,Ilf"Ilm'.mo,,.Q,

IIgOII2.Q, llholl2,Q, llgli2.OT2, Il4IIL2( A,E,)) (1.26)

Any expression of the form (1.25), considered under the conditions on jo, f, ¢, go, q, and
ho indicated above, defines a linear functional, in 1Y with norm II.FIIY not exceeding
the quantity on the right side of (1.26).

We denote by *), the completion of Co E,(Q) in the norm Ilull1r, + IIu112,Q It is
obvious that.*A - ,1r°,\.

LEMMA 1.13. scan be identified with a subspace of.l6°a X L2(&1 ).

REMAIUC 1.2. X cannot be identified with a subspace of .Jl°a (see the proof of
Remark 5.2.1).

LEMMA 1.14. '3/can be identified both with a subspace of.°\ and with a subspace of
2".

In view of Lemma 1.13 elements u e 3' can be written as pairs u - (u, pp), where
u E Ar\ and 9) E L2(fl). In view of Lemma 1.14 elements u e 'can also be written
as pairs u = (u, q)), u E kx, q' E L2(1), but in this case the second component p is
uniquely determined by the first component u by the formula

f prt dx f f (u,tt + url,) dt dx,
OT2 Q

rt E CO.RT,(Q), (1.27)

which is derived in the same was as (5.2.20). Therefore, we henceforth agree to write
the component p of an element u = (u, p) a "/ as [u]QT= Then elements u E "/ can
be written either in the form u = (u, [u],

T2
) or simply as a function u E Jl°a.
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Lemmas 1.8, 1.11, and 1.12 obviously imply the following imbeddings:

X- *A X L2(2T,), T- 'W, J,.k' (1.28)

and

,X°r -+ °..l"* QJ*. (1.29)

In view of (1.29) and the existence of a common dense set C (Q) in A, T, and '
it is possible to use the same notation ( , ) for the dualities between ,t°A and XA*,
2" and f*, and and V.

A remark analogous to Remark 5.2.2 is valid, but we omit the explicit formula-
tion.

Finally, we formulate the following obvious assertion.

LEMMA 1.15. Any function u e AJbelongs to the space C([ T,, T2 J; L2(0)), and

IIuIICqr,,r,l:1.2lnn S c(Ilull,.Q + I1u,112.0), (1.30)

where the constant c does not depend on u E T; for all u e 3( the formula for
integration by parts

ffu,rldtdxJfu7),dtdx+ f ut)dx - f VrlEC1(Q),
Q p or, 'r,

holds, so that for every u E'the value of Iu]str, defined by (1.27) coincides with the
value of u(x, T2) e L2(St).

We consider the linear operator l: C FA(Q) c .f- W* defined by

(.u,,.7)_- f f url,dtdx+ f ugdx, (1.31)
Q nr,

We establish the following propositions in analogy with the results of the general
case (see §2.2).

LEMMA 1.16. For any u, n E Co (Q)

I(-Vu, rl)I < IluIIcIlrtlli, (1.32)

so that the operator.: Col.. (Q) C .1- Y* can be extended by continuity to the entire
space T. The restriction of the extended operator 9:.%'--+'* to I& is a bounded linear
operator acting from 3f to X

In the proof of Lemma 1.16 the fact that the set Co.-uur{Q) is dense in is taken
into account, and this assertion is proved in exactly the same way as Lemma 1.10
(see also the proof of Lemma 5.2.3). The next assertion is proved with Lemma 1.10
taken into account.

LEMMA 1.17. The subspace V = (u E 1': Ru E .°*) can he identified with a
subspace of ..*' .

In the proof of Lemma 1.17 (which proceeds in complete analogy to the proof of
Lemma 5.2.7) it is established that the second component 9' a L2(1l) of an element



§1. THE BASIC FUNCTION SPACES 211

u = (u, q)) E Y'' is uniquely determined by its first component u E ..i' by the
formula

fn (p n dx h= m f f u('qn dt dx, (1.33)
T2 Q

where 17 is an arbitrary function in Co,E,(Q), and { 71n } is any sequence formed from
functions >1 E Co.F1 U aT2(Q), n = 1, 2,..., which converges to q in .?°k. The value of
q) for elements (u, q)) E YIdefined by (1.33) we agree to denote by (u)T2. Lemma
1.17 establishes the identification of the notation (u, (u)T2) with u for elements of Y'.
In the proof of Lemma 1,17 it is also established that the restriction of the operator
-4:T -. g/ to the set Y' is completely determined by the formula

(Ru, n) _ - f f, url, dt dx, u r= Y'', tl E Co,E,,,aj2(Q). (1.34)
Q

The following lemmas are analogues of Lemmas 5.2.8 and 5.4.2.

LEMMA 1.18. A function u E ,k belongs to the subspace Y'' if and only if the
following conditions are satisfied:

1) There exists a sequence { uk } , uk E Z Z,j, (Q ), k = 1, 2, ... , such that

lim lick - U11,rx = 0, I'm Iluk - u,II.r= 0.koo k,8-oo

2) For any 31 E Co.E, vnT2(Q) and any sequence { rlk }, 1k E Co0E, 0AT2(Q)'

k = 1, 2, ... , converging to q in ,at°A the following equality holds:

lim f f u(rlk-ri),dtdx=0. (1.35)
k -. oc Q

LEMMA 1.19. In order that a function u E Co.z,(Q) belong to the subspace Y'it is
necessary and sufficient that u = 0 on 0T,.

Taking Lemma 1.15 into account, we establish the following generalization of
Lemma 1.19 in an analogous way.

LEMMA 1.20. In order that a function u E c3/ belong to the subspace Y''it is necessary
and sufficient that u = 0 on 1'T .

For the rest of this section we assume that the following condition is satisfied:

the matrix A does not depend on t, and condition (4.1.3) holds for the
matrix A = A(x) in the domain Sl; m > 2, m0 > 2, m, > 2, m01 > 2,
i = 1,...,n; the spaces.7f°x and.7L°are isomorphic. (1.36)

We observe that the last condition in (1.36) regarding the isomorphism of ..*' and
J" is certainly satisfied if for the set a3 c 8S2 (we recall that E3 = a3 X (T1, T2 )) the
matrix A, and the indices m and in condition (4.2.25) is satisfied. We consider the
realization of the space U defined in §7 of Chapter 4 which is obtained with the
following choice of the spaces B0, (N = n), set G, operators lk: G c B. -
Bk, k = 1,...,n, and indicespo, PI , . . . ,Pk: B0 = Lm(I), Bk = Lmk(Sl), k = 1,...,n,
G = Co.,,(Sl) c Lm(1l), the operators lk: C 01(() c Lm(fl) - Lmk(53), k = 1,...,n,
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are defined by the formula 1,.u = AkVu, u E Co"I(S2), po = mo, p1 = m1,...,p1 _
m,,; by (1.36) the operators lk, k = 1,...,n, admit closure. We denote by B (see
Chapter 4, §7) the closure of Coo in the norm Hulls = hull,, + E -lllull",,,u
where H = H,',' ;(A, l). It is easy to see that all conditions needed for the construc-
tion of the space U are satisfied. Thus, in the present case U is the Banach space of
functions in ([T1, T2] - H) equipped with the norm

IIuIIU = Ilullm.m,.Q + llAVullm.m,,.Q-

LEMMA 1.21. U =-A°.

PROOF. The set e01,2: ,(U) is dense in )°. We shall prove that CC.s,(Q) is also dense
in U. It follows from Corollary 4.7.1 that the set Cx([T1, T2], H), where H
H°,m (A, SI ), is dense in U. Now it is easy to see that any function u e C°°([T1, T, ), H)
can be approximated by polynomials of the form UN = EM:o vN ktk, where VN,A E
C in the norm of U. Since uN E Co.V (Q), it follows from what has been
proved that C01,1: ,(U) is dense in U. Thus, the spaces,Jt' and U coincide, since they
have the same norms and a common dense set. Lemma 1.21 is proved.

Thus, U = .)f° and U* = A*. In view of Lemma 1.8 (in the case ,1f°k = .. *°) any
element,I-E)1* is determined by a function

of

F(t) = Fo(t) + Y_ D*Fk(t)
k-1

where

and

Fo(t) (=- Lm"([T1,TZ]; L'"(c)) -- L",;,([T1 T,]; H*)

FA(t) (-= L"'"(9)),

DkFk(t)E Vbl([T1 T2]; H*), k = 1,...,n,

T
f T=(F(t),Tl(t))dt, r1 E)r,

,

'I

(f(t), p) = (Fo(t), 0) + E (DAFk(1), p),
kml

(F.(t), ¢) = f F0 (t, x)0(x) dx,

(D,FFk(t),0) = f Fk(t,x)Akv4,dx, k = I.....n,4i E H.

(1.37)

We denote (in correspondence with (4.7.22)) by the following subspace of A :

= ( ueJt:u'E.7(°*), (1.38)

where u' denotes the derivative of u in the sense of distributions on [T1, T2] with
values in the Banach space H*, where H = H, p; (A,11), i.e., the mapping q(t) -+

-fT,u(t)q,'(t)dt,q, C- -9([Tll T21)'

LEMMA 1.22. Y1 c

PROOF. Let u E Y''. Taking account of Lemma 1.17, we conclude that u e r. The
function u may then be considered as an element of the space 9*([T1, T2 J; H*). Let
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u' be the derivative of this element. To prove the lemma it suffices to establish the
existence of a function F(t) E ([T1, T2] - H*) of the form (1.37) such that

r'u(t)q)'(t) dt = f l2F(t)q,(t) dt, E.9([T1, T2]), (1.39)
T, T,

where the integrals are understood as Bochner integrals of functions on [T1, T2] with
values in H. The identity (1.39) is equivalent to

f T2(u(t ), )4G) dt = f
r2(F(t),

q,(t)4) dt,

E 9([T1, T2]), 4 E Col'., (0), (1.40)

since eo,,,(Q) is dense in H. Now from the definition of the subspace Y' and Lemma
1.17 it follows that there exist fo r= L"` and f c= Lm'*'O(Q) such that for any
11 = q,(t)4,(x), 0 E Co.,,(0) and q, r= 9([T1, T2]) (see (1.37))

- f f urn, dt dx = f fQ( fon + f AV q) dt dx, (1.41)

i.e., (1.40) is satisfied with F(t) = fo(t) + Dk fk(t). This proves Lemma 1.22.
The next assertion follows from the properties of elements of the space @1

enumerated above.

LEMMA 1.23. Y c V.

The next assertion follows from Lemmas 1.22 and 1.23 and (4.7.29).

COROLLARY 1.1. For any u, v E Y''U

(u, V )I' = f r2[(u', v) +(u, v')] dt, t1, t2 E (Ti, T2(1.42)
where ( , ) denotes the duality between H and H* and the inner product in L2(I), and
u' and v' are the derivatives (in the sense of distributions on [T1, T2] with values in H*)
of u and v.

LEMMA 1.24. For any function u c= r

u(x, T2) _ (u)r,(x), u(x, T1) = 0 a.e. in 0, (1.43)

where the function q7 = (u) .2 is defined by (1.33).

PROOF. It follows from (1.33) that

r JfaT2(u)r2iidx = - lim ffQu(f - i)rdtdx, 71'F= eo,,,(Q), (1.44)

where (17n), 1tn a .E,1aT3(Q)1 n - 1, 2,..., is a sequence converging to ri in A.
Using Lemma 1.22 and (1.42), we rewrite (1.44) in the form

((u)r,, of Tz)) = urn
L

f T2(u', tt. - n) dt -(u(T2), (n -17n)(Tz))
'In -'', L T,

-(u(T1), (Tl -'hn)(T1))}. (1.45)

Taking into account that fT2(u', n) di = (u', n), where u' e..*n* and
% - ij in.t°, and also that 0, n = 1, 2,... , we deduce from (1.45) that

((u)r2, n(T2)) = (u(T2), q(T2)) - lim (u(T,), (rl - 71,,)(T1)) (1.46)
in J!°
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Since Il and are arbitrary, it follows from (1.46) that (u)r2 = u(T2, x) for
almost all x e 9. From (1.46) it then follows that

lim (u(TI), (,l - 0. (1.47)
0 n in JP'

Using again the fact that the choice of n and { rl } is arbitrary, from (1.47) we
deduce that u(x, TI) = 0 a.e. in 0. Lemma 1.24 is proved.

LEMMA 1.25. For any junctions u E Y' and it E Y, 'U °d/

(RU"")
° - f r2

r2(u1,
r!) dt, (1.48)r(u, -q') dt +uT2),'(Ti)) =f

r
where u' a jr* is the derivative of u considered as an element of the space 3*([T1, T2];
H').

PROOF. Let u e $/'and rl e '',j,(Q). From the definition of the operator -4:
T-+ Y' and Lemma 1.24 it follows easily that

(.u,71)=- f f url,dtdx+ f (u)r2ildx
r,

_ -f '(u, ?l') di +(u(Ti), 71(T2)) (1.49)

In view of Lemma 1.23 formula (1.49) also holds for all u e &'with u(TI) = 0. Using
(1.42) with u = v, tI = TI and t2 = T2, and taking (1.43) into account, we see that
the right side in (1.43) can be rewritten in the form JT2(u', il) dr. Thus, equalities
(1.48) have been established for any u e *and q e Co1E1(Q). Suppose now that
u E r and n e Y'U W. Since $ U '9' c ,7[°, there exists a sequence (rl ), rln e

n - 1, 2,..., converging to q in.*'. Passing to the limit in the equalities

r .., (1.50)n=1,2,.

and taking into account that -4 u E ,Jr* and u' E j *, we then obtain

(. u, rl) ° f r2(u', rl) dt. (1.51)
T,

Applying (1.42) and taking account of (1.43), we can rewrite the right side of (1.51)
also in the form

r- fr2(u, n') dt +(u(T2),'7(T2))

This proves Lemma 1.25.

LEMMA 1.26. For any function u e r

(au, u) - 2 fuu2(x, T2) dx.

PROOF. Let u E r. It follows from Lemma 1.25 that

(emu, u) = f
T2

(u', u) dt,
r,

(1.52)

(1.53)
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and from (1.42) and (1.43) we obtain

f"(u', u) dt = 2 (u(T2), u(T2)). (1.54)

(1.52) follows from (1.53) and (1.54). Lemma 1.26 is proved.

COROLLARY 1.2. For the operator R:.%"-> 1Y' a condition of the form (4.6.11) holds,
i.e., the function v - (RV, v), v E Y, is continuous relative to the norm of the space
X.

PROOF. We note first of all that for a function v E Y,'

JjvjjR-= IIUIIm,mo,Q + IIAVvIIm,mo.Q + Ilv(x, T2)I12.0 (1.55)

Indeed, let v E Yom' and let (vn }, v E C01,2,(Q), n = 1, 2,..., be a sequence which is
in T and converges to v in.W. Then

IIvII!r= IIAVv(Im.mo.Q + II(t)riIlz,u (1.56)

Now by (1.43) (v)T1 = v(x, T2) a.e. in 0, whence we obtain (1.55). The validity of a
condition of the form (1.6.22) follows immediately from (1.52) and (1.55). The
corollary is proved.

In the sequel we shall also use the following proposition.

LEMMA 1.27. The average uh of an arbitrary function u e #' defined by
00

Uh(t, X) - J wh(t - T)Q(T, x) dT, (1.57)

where the kernel wh(rl) is defined by (4.7.4) and a(t, x) by

u(T,+T,x) fort= T1-T,0<T<T,x(=-SZ,
x E SIu(t x) for t (=- [T T ] ,, 1, 2 ,

a(t x)=, , u(T2-T,x) fort= T2+r,0<T<T,xEU,
0 fort [T1-T,T2+T],

(1.58)

with T = T2 - Ti , belongs to the space 3'C *'and converges to u in *and in
CQT1, T21; L2(14)), i.e.,

lint Iluh - UIIA.= lim Il ui, - u'll.x.. - lim Iluh - UIICCIr,,r:1;L=(o)) = 0. (1.59)h-0 h-0 h-0
PROOF, In view of Lemma 4.7.5 and Corollary 4.7.2 it suffices to verify that

uh r 1Y. To prove this we consider a sequence (us), U. E Ca E,(Q), n = 1,2,...,
converging to u in T, and we show that the sequence { unh ), where unh obviously
belongs to Co E,(Q), converges as n -+ oo to uh in (for any fixed h E (0, T)).
Taking into account that the matrix A does not depend on t, we obtain

IIAiV(unh - Uh)II;,.Q < c sup f f IAIV(an(t - T', x) - a(t - T', x))I dt dx,
r'EI-h,hl Q
i-1. n

(1.60)

where c is a constant not depending on n. Because of the convergence of u,, to u in
..°, it follows from (1.60) that

lint IIAIV(unh - -0.
n +00
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I'M IlUnh - 14hllm.m,,.Q = 0
11-+00

is proved in a completely analogous way. We now prove that

lim llunht - 14h,112.Q = 0. (1.61)
rt - x

We have /llunht
- 14htlli,Q = f f dt dx+ J

h
Wh(T')[ah(I '- T', X) - II(t - T', x)] dT'

2

Q I h

fhdT'J
J/' (' [ Uh (t - T', x) - ll(t - T', x)] 2 dt dx

h Q

c(h) sup f f T', x) - u(t - T', x)]2 dt dx. (1.62)
r'et-h,h) Q

Equality (1.61) follows from (1.62) because of the convergence of u" to u in L2(Q),
which follows from the convergence of u" to u in T. Finally, we prove that

lim IlUnh - Uh112.n,, = 0 (1.63)
n x

This follows easily from the estimate

II14nh - 14hIIC((T,.TI) CO14nh - UhII2.Q + Ilunhr - 14h,II2.Q), (1.64)

where c does not depend on un,, or Uh, and the facts proved above (in particular, we
note that m > 2 and mo > 2). From this it obviously follows that uh E '& for any
h E (0, T). Lemma 1.27 is proved.

COROLLARY 1.3. The set Cp F,(Q) is dense in ')V.

PROOF. It follows from Lemma 1.27 that 1t is dense in 0. From the definition of
w' it follows that Cp,.(Q) is dense in q c 7l'. A fortiori C1(Q) is dense in 6t in
the norm of V. Therefore, Co,E,(Q) is also dense in Yl''. Corollary 1.3 is proved.

The next assertion, in particular, obviously follows from Corollary 1.3.

COROLLARY 1.4. The set Co j,(Q) is dense in the set *' D r relative to the norm

111411 = II1411C(tT,,T2):L2(o)) + Ilull.,r

§2. The general boundary value problem for (A, 0, m, m)-parabolic equations

In the cylinder Q = Sl x (T1, T2), where Sa is a bounded domain of class e", in
R ", n > 1, we consider the equation

u; -(d/dx;)l'(t, x, u, Vu) + /o(t, x, u, vu) = f(t, x). (2.1)

We say that an equation of the form (2.1) has spatial (A, 0, m, m)-structure in Q if
there exist a square matrix A = IIa'"(x, t)II of order n satisfying conditions (1.1) and
(1.2) for m > 1, m0 = m, m = mo = (m1....,m"), m; > 1, i = 1,...,n, and func-
tions I" (t, x, u, q), i = 1,...,a, and lo(I, x, u, q) satisfying in Q X R X R" the
Caratheodory condition that for almost all (t, x) E Q and any u E R and p e R"

10(t,x,up p)=lo(t,x,up Ap), (2.2)
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where A* is the matrix adjoint to A, I = (11,...,1) and ,1'"), and the
inequalities

In
x, u, q)I A, Igklm'/m. +

lulm/m,

+ T1(t, X) 1 = 1,...,n,
k-1 J

IIo(i, x, u, q)I 1< 112(
Igklm`/m + lulm/m + (po(t, x)(2.3)

k=1

where A,,A2=const30,9),(-= Lm;(Q),1/m,+l/m;=1,iand 9)oe
L(Q), 1/m + 1/m' = 1.

We call an equation of the form (2.1) having spatial (A, 0, m, m)-structure in Q
(A, 0, m, m)-parabolic in Q if for almost all (t, x) E Q and any u e R, q - Ap and
PER"

al"(t, x, u, q) " m;-2 2 v=const>0, (2.4)
aql i-1

where the indices m1, ... , m" in (2.3) and (2.4) coincide.
It is obvious that any equation of the form (2.1) which in the cylinder Q c R+

has spatial (A, 0, m, m)-structure (is (A, 0, m, m)-parabolic in Q) also has
(A, b, m, fin)-structure in the domain 0 C R"+ 1 (is also (A, b, m, ii)-elliptic in
bl - Q c R"+') relative to the matrix

0 ... 0

A

0

of order n + 1, the (n + 1)-dimensional vector b = (1,0,... , 0), the indices m - m,
ih = (m0, m1,...,m"), m0 = 2, and the reduced coefficients l"(, u, 4), i = 1,...,n
+ 1, and 110'(x, u, 4), where . _ (t, x), 4 = (q0, q1,. ,q"), pi = q0,
l'(i-11(t,x,u,q),i=2,...,n+1,and lot =1,(I,x,u,q).
For an equation (2.1) having spatial (A, 0, m, m)-structure in Q we consider the

general boundary value problem of the form (5.3.1), which here takes the following
form:

u, -(d/dxi)l'(t,x, u, Vu)+Io(t,x, u, vu)=.W in Q,
u=0 on1Uu Tl, onl2, I'-Av-Au=O onl3, (2.5)

where 1 = 11 U 7-2 U 13, I, n Ij = 0 for i # j, is the regular part of 8Q (see
(1.17) with m = m0 and m; = moi, i = 1,...,n). There are no boundary conditions
on the part E0'_ _ (a' x (T1, T2)) U [2 . We henceforth understand ,%°), ', and Y
to be the spaces (see §1) constructed on the basis of the matrix A, the indices m, m0,
m and m0 (with m0 = m and m0 = m) characterizing the structure of equation (2.5),
the sets E, and E3, and also the function X defined on E3. It is assumed that A is
piecewise continuous, bounded, and positive on 2i. We further recall that the sets 1,
have the form E, = a, X (T1, T2 ), i = 1, 2, 3. According to the general case (see §5.2)
the operator .2:. °--> Y* corresponding to problem (2.5) has the form
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£°= d+R, ,Qf: 2' -> ,Vj* C ly*,

(emu,,,) = ff [1'(t, x, u, AVu) - Avrl
Q

+l0(t, x, u, AVu)>1] dtdx + f Auilds,

(.u, n)=- ffu,,dtdx+ f uildx, (2.6)
Q Rr,

where u E C06,(Q) and rl E CC,.,(Q) (it is obvious that the operator ': T- 1Y* is
completely determined by the values of (Yu, rl) for such u and rl). For the rest of
this section we always assume that condition (1.36) in the case mo = m, mo = m is
satisfied. In this case the operator ': X- 1Y-* can be defined in the form (see
Lemmas 1.17 and 1.25)

(.Pu, ) = fT'(u', n) dt + f f (1'(t, x, u, AVu) A
T, Q

+l0(1,x,u,AVu)rl)didx+ fTAurids, uEV,nEe0l.jjQ), (2.7)

where is the duality pairing between H = S2) and H*, and u' is the
derivative of u as an element of .9*(]T1, T2]; H*).

A generalized solution of problem (2.5) can then be defined (see §5.3 and, in
particular, Proposition (5.3.1)) as any function u E 7VO, where 7f'0 = (u E Jr:
u' E A*, u(T1) = 0), satisfying the identity

fT'(u', rl) dt + f fQ(1' AV 17 + l0n) dtdx + ds = (.F,,1),

V7l E ''.E,(Q), (2.8)

where _ 21 U E3 and FE jY*. We note that because of the imbedding 7Yc A°
and the fact that .X°and ..*' are isomorphic, functions u E W' automatically have
generalized limit values on the set E = 21 U 13 (see §5.3), and uji r= n
L2(A, 13). We note that the definition of a generalized solution of problem (2.5)
given above is equivalent to the definition which follows from the general definition
given in Chapter 5, §3, since we have the following assertion.

PROPOSITION 2.1. *') - Y''.

PROOF. Because of Lemmas 1.22 and 1.24, we have Y"c *'0. We prove the reverse
inclusion YYa C Y''. Let u r= 7Y'0 C A. In view of Corollary 1.3 there exists a
sequence (u }, u,, r= Co j,(Q), n = 1, 2,..., which converges to u in *'and hence
also in X. On the other hand, in view of an equality of the form (4.7.29) for elements
of YY for any 3l t-= CIi.E,uar=(Q) and Co,E,var2(Q). k = 1,2,..., such
that rlk t in.X°, we have

lim f f u(rlk - 71), dt dx = lim f T'(u',11k - 0 dt - 0.
k-oo Q k-oo T,

It then follows from Lemma 1.18 that u E f. Proposition 2.1 is proved.
In place of uji in the integral over E3 we henceforth write simply u.
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LEMMA 2.1. Let u E YY0 be a generalized solution of problem (2.5). Then for any

T1, T2 E [T1, T2]

fr2(u',q)dt+ ff' f f Au17ds
Tj 7, Q o3X(TI.T2)

= fT2(F(t),71)dt,
T1

V71 E J°d'(A, Q),

(2.9)

where F(t) _ FE JY*.

PROOF. Let u E Y'' be a solution of (2.5) with .FE dF*. An identity of the form
(2.9) holds for this function with T, = Tl and T2 = T2. In (2.9) we set n = f (t, x%(t ),
where ob(t, x) E C0.0 X (T,.T2)(Q)' k r= C0(T1, T2), k = 1, 2,..., and the sequence

converges on [T1, T2] to a function fi(t) = ,1,2(t) continuous on [Ti, T2],
equal to 1 in (r1 + e/2, T2 - e/2), linear in (Tl - e/2, Tl + e/2) and (T2 - e/2, T2
+ e/2), and equal to 0 in (T,, Tl - e/2) and (T2 + e/2, T2 ), where T, < Tl - e/2 <
Ti + e/2 < T2 - e/2 < T2 < T2 + e/2 < T2, e > 0. We further assume that
tends to 8r'/8t in L"([T1, T2]). (For the tk it is possible to take, for example,
averages of the function t with increment h - c/k, c - const.) From (2.9) we then
obtain

ff (l,
-
Av4D + lat ) k dt dx + f Au' ds - f f (u4 + u4sq at dx

Q 03X(T,.T2) Q

_ (Jr,'Kk), k = 1,2,....
(2.10)

Letting k tend to 0o and applying the Lebesque theorem, we obtain

Qff(1' . AV4D + l00)t dtdx + f ku4tds - f f(u4 + At') di

= f T2(F, OS) dt, 0 e Co.Et(Q)
T,

(2.11)

Letting a tend to 0 in this identity, again using the Lebesgue theorem, and taking
into account that by the continuity of u in L2(O) on [TI, T2]

r-T

fu dxl , T e Ti1 T211r-ea
we find that (2.9) holds for all ri a Co xl(Q). Taking the density of 4.2,(Q) in Jr
and the linearity of the expression (2.9) in ri into account, from this we deduce the
validity of (2.9) for al" a Jr also. Lemma 2.1 is proved.

The results on solvability of the general boundary value problem of the form (2.5)
are determined by Theorems 5.4.1-5.4.5 for the general case, by Lemma 1.20 and
Corollary 1.2 leading to the validity of conditions of the form (4.6.10) and (4.6.11),
by Lemmas 1.10 and 1.25 guaranteeing the validity of conditions (5.2.25) and (5.4.1),
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and also by the algebraic criteria for coercivity and monotonicity of the operator 2':
,l`-i -* which follow from Propositions 5.4.3 and 5.4.6. In addition we shall use the
following assertion.

LEMMA 2.2. Suppose that for all t E [T1, T2] the operator A,: H -> H*, where
H = H,,°-'; (A; 0, Y-31 A), defined by

A,u. i) = f X. u, ADu) AV'q + l'(t, x, u, AVu)r)] dx
It

+ f Aur, ds, rl E H, (2.12)
",

is monotone. Then for every -FE A* problem (2.5) has at most one generalized
solution.

PROOF. Let ul. u, E *- be any two generalized solutions of (2.5). For each of the
functions u, and u2 there is an identity of the form (2.9) with r, = Tl and r2 = t,
t E (T,, T2 ]. Setting rl = u, (i = 1, 2) in the identity for u,, subtracting from the
equality obtained for ul the analogous equality obtained for u2, and taking into
account Lemmas 2.1 and 1.25, we obtain

f `(A,u, - A,u,, ul - u,)dr + I]ul - u2111.z(a.(L,),] + Z I[ul - u2112,0, = 0, (2.13)

where (E3), = a, x (T,, t). Because of the monotonicity of the operators A. T E
[T,, T,], it follows from (2.13) that llut - u2112.0, = 0, t E [T1, T,], i.e., u, = u, a.e. in
Q. Lemma 2.2 is proved. In particular, this enables us to formulate the following
results.

THEOREM 2.1. Let conditions (1.1), (1.2), (1.17), and (1.36) be satisfied, and suppose
that for almost all(t,x)E Qand any uER,to ER,q=Ap,pER", r)=A¢and
EER"

l"(t, x, u, q)qi + lo(t, X, u, q)u 1 q , 1 " ' , + v,lulm - T(t, x), (2.14)
i-l

where p1, v, = const > 0, 9) E L'(Q), and

al"(t, x, u, q) 81"(t, x, u, q) tt
a9 rl,rlj + au Solli

,

+alo(t,x,u,q) +alo(t,x,u,q) 2>_
0. (2.15)a9; l;l;o au l:0

Then for every ,FE Xs problem (2.5) has precisely one generalized solution.

PROOF. Since, as already noted, in the present case conditions of the form (4.6.9),
(4.6.10), and (4.6.11) are satisfied, the result of Theorem 2.1 follows from Theorem
5.4.1 and Lemma 2.2, on taking into account that (2.15) implies the monotonicity of
operators of the form (2.12) (see Proposition 5.4.5), while (2.14) implies the coerciv-
ity of the operator: X- @/* (see Proposition 5.4.4). Theorem 2.1 is proved.
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THEOREM 2.2. Suppose that conditions (1.1), (1.2), (1.17), and (1.36) are satisfied,
and suppose that for almost all (t, x) E Q and any u E R, 71 = Aj, j E R^, q = Ap,
pER"and 0ER
al"(t, x, u, q) al"(t, x, u, q) alo(t, x, u, q) alo(t, x, u, q) 2

aqJ ri,7l; + au foui1 + aqJ au o

rr

n
/ t

2+1)50 , ao=const>0. (2.16)
r-l

Then for every,9r E )t" problem (2.5) has precisely one generalized solution. Moreover,
the restriction Jr?: Y' e f -. )°' e IY' of the operator .:.%" -'3' to the set r'' is a
homeomorphism.

PROOF. This follows directly from Theorem 5.4.4 and the analogue of Proposition
5.4.6.

THEOREM 2.3. For m - 2 the result of Theorem 2.1 is preserved if the positive
constant v2 in (2.14) is replaced by any negative constant.

THEOREM 2.4. For m = 2 the result of Theorem 2.2 is preserved if (2.16) is replaced
by the inequality

al', ar' al" al
#o % ao 2fl, - fo o, (2.17)rl;n; + a Tl;fo + a au uq; q; i-1

where ao and fio are positive constants.

Theorems 2.3 and 2.4 follow from Theorems 2.1 and 2.2 in view of the fact that
the conditions of Theorems 2.3 and 2.4 reduce to those of Theorems 2.1 and 2.2 by
introducing a new unknown function according to the formula u = e'"i, ' = const
> 0.

Admissibility of the matrix A, regularity of the part I - a X (TI, T2), and
singularity of the part I' = a' x (T1, T2) were postulated in Theorems 2.1-2.4.
Sufficient conditions for these assumptions to be satisfied were presented in §1.
Taking these conditions into account, for the readers' convenience we here present
the following version of Theorems 2.1-2.4.

THEOREM 2.5. Suppose that equation (2.1) has spatial (A, 0, m, m)-structure in the
cylinder Q and the matrix A = A(x) satisfies the conditions

0)a'JEL'"(St), 1,J =1,...,n; a'J,
;ax.

Lm((), ' +m,=1. (2.1p
J

Assume also that condition (1.36) is satisfied. Let 80 = a U a', where condition (4.2.5)
holds for the set a and condition (4.3.2) holds for a' (relative to the matrix A - A(x),
m, and m). Suppose, finally, that conditions (2.14) and (2.15) hold. Then for every

problem (2.5) (with E = a X (T1, T2) and B' _ (a' X (Ti, T2)) U QT, U QT,)
has precisely one generalized solution. If inequality (2.16) is satisfied in place of (2.14)
and (2.15), then this solution depends continuously in *"c on J FE=- c Y'. For
m = 2 in condition (2.14) it may be assumed that v2 is any constant and (2.16) may be
replaced by the less stringent condition (2.17).
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§3. (A, 0)-parabolic equations with weak degeneracy

1. (A. 0, m, m)-parabolic equations with weak degeneracy. Suppose a square matrix
A = Ila'](t, x)ll of order n is defined in the cylinder Q = S2 X (TI, T,), where SZ is a
bounded. strongly Lipschitz domain in R', n > 1, and

aft E Lm,,n4,,(Q), m; > 1, m0, > 1, i. j = I,...,n. (3.1)

We call the matrix A weakly degenerate in the cylinder Q if det A # 0 in Q and
there exist indices q = (q1,..., q") and q0 = q; > 1 q0, > 1, i =
1,...,n, such that

IIVulI99n Q 1< ClIAVullm.mo.6, Vu E c (Q), (3.2)

where Q = S1 X (T,, T2), Sl c SZ, and the constant c in (3.2) depends only on n, m,
mo, q, q0. and Q.

LEMMA 3.1. Suppose the matrix A (satisfying condition (3.l ))for almost all (t, x) E Q
has an inverse matrix A-I = B = llb'-l1, where

0b'J L., .. (Q) r > 1, r° > 1, i, j = 1,...,n:

1 1 ( 1 1
max + 1, max + 0 1 < 1, (3.3)

k-l......
I(mk

rk k-1.....n MOk k

Then the matrix A is weakly degenerate in the cylinder Q, and inequality (3.2) is
satisfied with indices q = (q,,... , q") and qo = (q01.. q, , ), where

1/q, = Max (1/mk + 1/rd ),
k-1.....n

1/q0, = Max (1/mok + 1/r°k), (3.4)
k-I.....n

PROOF. Lemma 3.1 is proved in exactly the same way as Lemma 7.2.1.
In the case where the matrix A depends only on x it will certainly be weakly

degenerate in the cylinder Q if it is weakly degenerate in S2 in the sense of Definition
7.2.1.

LEMMA 3.2. Suppose the matrix A = lla'j(t, x)ll is weakly degenerate in the cylinder
Q. Then condition (1.2) holds for this matrix. If a function u E Lid"'"(Q) (u E

m, m 0 > 1, has a generalized spatial A-gradient Apu E Lkx ^(Q) (Avu
E in, mo > 1, then it also has an ordinary (Sobolev) generalized spatial
gradient Vu E Lea"(Q) (Du E Lfo(Q)) (see (3.2)), and the vector AVu is equal to
the vector obtained by the action of the matrix A on the vector v u.

PROOF. Lemma 3.2 is proved in exactly the same way as Lemmas 7.2.2 and 7.2.3.

LEMMA 3.3. Suppose the matrix A = ll a'J(t, x)ll is weakly degenerate in the cylinder
Q. Then there is a compact imbedding

Q) - L'(aIl x(TI, T2))

such that the entire lateral surface is the regular part of aQ relative to the matrix A and
the indices m, mo, in and mo (see §1). Any function u E ,)rm.", m., (A, Q) has a
generalized limit value ulau x (T,.T,) which coincides with the trace on 85t X (Ti, T2) of
this function considered as an element of the space ;a9"(Q)
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PROOF. Lemma 3.3 follows in an obvious way from the definition of the space
m.m,,(A, Q), condition (3.2), and the familiar imbedding theorem of S. L.

Sobolev.(')
In the cylinder Q we consider an equation of the form (2.1). We suppose first that

this equation has spatial (A, 0, m, m)-structure in Q relative to a matrix A and
indices m > 1 and m > 1. Suppose that A is weakly degenerate in Q, and that
condition (3.1) holds for it with mo = in, while (3.2) holds with mo = m and some q
and %). We consider the general boundary value problem of the form (2.5). Under
the assumptions of the present section 11 U 12 U E3 = 8f x (Ti, T,), since the
entire lateral surface of Q is the regular part of Q. Suppose that a condition of the
form (1.36) is satisfied in the case mo = m, mo = m. As in §2, a generalized solution
of problem (2.5) is, by definition, any function u e YYo satisfying (2.8) with
E = 8fl x (TI, T2 ). It is obvious that the results on solvability of problem (2.5)
obtained in §2 (see Theorems 2.1-2.4) are also applicable to the case of the
equations considered in this section; namely, we have the following assertion.

THEOREM 3.1. Suppose that equation (2.1) has spatial (A, 0, m, m)-structure in the
cylinder Q, and conditions (3.1), (3.26) and (1.36) with mo = m and mo = m, and also
conditions (2.14) and (2.15), are satisfied. Then for every ..E *'* problem (2.5) (where

= l l x (TI, T2) and E' = 12r, U a r.) has precisely one generalized solution. If
condition (2.16) is satisfied in place of (2.14) and (2.15), then this solution depends
continuously in y''C X on .FE .3f'* c For m = 2 in condition (2.14) it may be
assumed that v2 is any constant, and (2.16) may be replaced by the less stringent
condition (2,17).

PROOF. Theorem 3.1 follows directly from Theorems 2.1-2.4, since the weak
degeneracy of A in Q implies condition (1.2) and also the regularity of 8(2 x (T1, T2).

2. The space 1'. Below we shall establish solvability theorems for a problem of the
form (2.5) for several other classes of (A, 0)-parabolic equations with weak degener-
acy in Q. In connection with this we first consider some questions of function
theory. Let r = y x (TI, T2), y C BSZ, where we assume that I y > 0 if
y # 0. Suppose that A is weakly degenerate in Q in the general sense indicated at
the beginning of this section. We denote by k= dej (A, Q) the completion ofM.MC

C 1'(Q) in the norm

IIuII.>r'S IIUIIz...Q + IIAVUDIm.mo.Q

In the case m = mo we denote this space by .*'E .7ltr(A, Q). If y = 0 we omit the
upper indices in the notation for this space.

LEMMA 3.4.

o.r o.r
.,Ym.mo(A, Q) - Yq.q.(Q) - L'A(Q),

where the indices q and qo are related to the indices m and mo by condition (3.2),
,''qv (Q) is the space defined in Chapter 4, §5, and the indices l and 10 are defined by

(1) It is actually possible to prove an imbedding jr- L'(812 X (Tl, T2)) for some r depending on the
indices q and qo in (3.2). However, the imbedding Jr- Ll(8U X (Ti. T2)) suffices forour purposes.
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(4.5.11) and (4.5.6) relative to the indices q and q0 in condition (3.2) (see Remark
4.5.3). In particular, for any u e <.,(A, Q)

Ilullfi".Q < collull. .

where the constant c0 depends only on n, q, q0, a, (2, and the constant in condition (3.2).
If for some a E (0, 1) and S e (0, 1) the indices 1 and l0 satisfy conditions (4.5.13), then
for any e > 0

11U111,1,,.4 < e11u11;r+ c1e'"IIu112.1.Q (3.8)

If, however, for some a c- (0, 1) and f e (0, 1) the indices I and 10 satisfy conditions
(4.5.15) instead of (4.5.13), then

IIUII,.,,,.Q < ellull.,r+c,e-"IIuI12.Q (3.9)

The constants c1 and c2 in (3.8) and (3.9) depend only on n, q, q0, a, 8, and (2, while
A > 0 depends only on a and f6. In the case r = 812 x (T1, T2) and E; 1/q; > I the
constants c0, cl and c2 in (3.7)-(3.9) do not depend on Q.

PROOF. Lemma 3.4 follows directly from Lemma 4.5.3 and condition (3.2).
REMARK 3.1. From Lemma 3.4 we obtain, in particular, the following results:
1) There is the imbedding ,e o(A, Q) - L'(Q), where != 2 + 10 - 210/! and 1

and 110 are defined in L4.5.6) on the basis of the indices q and q0 in (3.2); in
particular, for all u E,Omma(A, Q)

Ilulli.Q < collull x.. (3.10)

2) For any I satisfying (for some f E (0, 1)) condition (4.5.28), and any e > 0,

IIUII,.Q < ellull.ii, +cle-1IIu111.0, Vu E,7E°. (3.11)

3) For any I satisfying (for some f E (0, 1)) condition (4.5.30), and any e > 0,

IIUII,.Q < ellull,r+c2E-I'll u1I2.0, vu r= *. (3.12)

Henceforth in this section the space ej (A, Q) is considered with r = E1,
where 2I is the portion of 812 x (T1, T2) on which the first (homogeneous) boundary
condition is prescribed. We further introduce the space

-Y.'." (A. Q, 23, A)

as the completion of Co.:1(Q) in the norm

Hull.x-a '- IluII. (3.13)

where A E L'().3) is a positive function on Z3. Since*, -;r, the results of Lemma
3.4 also pertain directly to the space*\. We consider the space

where.X°=oi' (A, Q).

V,M (u(=- .*°:u'E,Y*}, (3.14)

PROPOSITION 3.1. If condition (1.36) is satisfied, then YYe Jr.

PROOF. By Corollary 1.4 the set CC. j,(Q) is dense in V relative to the norm

hull - IlullcqT,.721:c=(o)) + IIu11i.i0.Q + IIA Vull4,,,,,,Q,
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whence, with Corollary 1.3 taken into account, we obtain the imbedding *''c ,J(°.

LEMMA 3.5. Suppose that

= a+ 1
2

a

1o

= ta

o

+ (1 2a)16 a S E (0,1); l> 2, (3.15)
l

where l and l0 are defined as functions of q and q0 in (3.2) by (4.5.6). Then there is the
compact imbedding YYo

PROOF. In view of Proposition 3.1 and Lemma 3.4 (see (3.9)) it suffices to prove
compactness of the imbedding YYo - L2(Q). We shall first prove the compactness of
the imbedding 'o For this we use Lemma 4.4.6. Let { u } be a sequence
converging weakly to u in 0, where u,,, u E 7Y0, n = 1,2,.... It may then be
assumed that { u,, ) converges weakly to u in land L2(Q), while { u;, } converges
weakly to u' in A*. We shall prove that a subsequence (u, ) converges stron y to u
in L2.'(Q). Let (IIk(x)) be an orthonormal basis in L2(1), where>Lk E S2),

k = 1,2,.... In view of Proposition 3.2 and condition (3.2) the functions u and u
for almost all t e [T1, T2] belong to Ho-"(R), where q and q0 are related to in and
mo = in by condition (3.2). Taking the condition l > 2 (see (3.15)), we conclude that
for the values of t indicated above inequalities of the form (4.4.22) are satisfied for
the differences u - u, n = 1, 2.... Integrating such inequalities with respect to t
from TI to T2, we obtain

Ilu - UI11.Q < cIIun - u112,1,Q

N

c(T2 - T1) E Max On - u, 'Pk)I + ce, (3.16)
k_1 IE[T1,T2]

since JT,=IIun - u11r(a)dt can obviously be estimated in terms of IIun - ullx,a,0Q
while in view of condition (3.2) 11un - ull. IQI can be estimated in terms of
On - ull,r.(A. Q) and the latter norms are uniformly bounded by virtue of the weak
convergence of { un) in Jr'.

It follows from (3.16) that to prove strong convergence of (un ) to u in L2"1(Q) it
suffices to show that the sequence {(un - u, ,J'k)} tends to 0 uniformly in t e [T1, T21
for all k = 1, 2,.... We observe that because of the imbedding *- C([T1, T2]);
L2(1)) the functions ln.k(t) = (un - u, 'k) are continuous in I on [T1, T2]. Because
of the weak convergence of (un) to u in L2(Q) the functions /,,,k(t) tend to 0 as
n - oo for almost all t e [T1, T2] (for each fixed k = 1,2,...). It is thus obvious that
to prove uniform convergence of a subsequence of the sequence {ln.k(t)} to 0 on
[T1, T2] it suffices to show that the functions ln,k(t) are equicontinuous with respect
ton = 1, 2.... on [ Ti, T2 ] and are uniformly bounded with respect ton = 1, 2.... on
[ T1, T2 ] (for any k = 1, 2, ... ).

Applying (1.42), we find that for any t, t + At E [T1, T2

1ln.k(t + Ot - l nk()tI = J
I rt+At

(un
,

- u', Ok) dtI, k = 1,2,.... (3.17)
t

We take into account that the difference u' - u' a aY* is a function in ([T1, T2] -+
H*) of the form F(t) = Fo(t) + E; DkFk(t), whose action on elements of H is
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realized for almost all t e [Tl, T2] by formulas of the form (1.37) in which Fo E
and F, E Lm .mo'(Q), i = 1,...,n, so that for almost all t e [T1, T2] we have

F0(t) E L'(9) and F(t) E Lm'(>2,), i = 1,...,n. We recall that the functions F0 and
It, i = 1, ... , n, can be chosen so that

Ilun - u'll -= Sup( IIFOIIi,%,.Q'

Applying Holder's inequality, we then have

f,+A'

,
Fo(t, x)4Ik + E F(t, x)A$VI A

dt dx
r n ,-1

/,

Il un - u'II V (meash'TR jAtl'/1"II klli.a +
measl/m,

k = 1,2,..

The equicontinuity on [TI, T2] of the functions for all k = 1, 2,... follows
from this and from (3.17) in view of the boundedness of Ilu - Taking into
account that 0 (since un(T,) = u(T,) = 0), in a similar way we obtain the
estimate

11n.k(1)1 < Ilu;, - (meashhl( t -

1/mn.+ meas St(t - TI)
s-I

from which it follows that the functions are uniformly bounded with respect
ton = 1,2,... on [TI, T2].

The compactness of the imbedding *o - has thus been proved. Because
of (3.8) there is the compact imbedding #' - for any I and 10 satisfying
conditions (4.5.13) for some a, fi a (0,1). We choose a, $ > 0 so small that the
indices I and to in (4.5.13) satisfy the inequalities I > 2 and l0 > 2 (this is possible in
view of the condition 1 > 2). The imbedding * - L2(Q) is then also compact.
Using (3.9) and taking account of the compactness of the imbedding 7Y-i L2(Q),
we finally establish Lemma 3.5.

3. (A, 0, 2, »l)`-parabolic equations with weak degeneracy. In this subsection we
consider equation (2.1) in a cylinder Q, assuming that identities (2.2) relative to a
matrix A = A(x) satisfying conditions (7.2.1) and (7.2.2) with in - m 3
2, are valid. For the matrix A condition (3.2) then also holds with q and m =
(rrZ,...,m) from (7.2.2) and qo - mo - (fit,...,m). We recall that (7.2.2) is satisfied,
in particular, if (see Lemma 7.2.1) for the elements b'" of the matrix B = A-' inverse
to A the following conditions hold:

b'j E L',(2), r; > 1, i = 1,...,n; 1/m + 1/r, < 1, i = 1,...,n.

In this case condition (3.2) is satisfied with indices q, qo defined by

1/4r = 1/>3F + 1/r;, 1/q0, - 1/»f, i= l,...,n. (3.18)
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Throughout this subsection we always assume that condition (1.36) is satisfied
with m = 1, mo = 10 (see (3.21)) and in = mo = Under the assumptions
made above this condition is certainly satisfied if

(ff3A2fr)
1/2

Ti
clullg(4 Q), du a

with a constant c not depending on u r= c "(Q). We denote by.7 °-JE'o (A, Q) the
space .xi0 (A, Q) with m - (fir,... , fir). The estimate above is certainly valid if we
suppose, for example, that

[f(fixrtis)

0/k 1/KQ

E L1143) (l.e.dt < +00),

where the indices K and K0 are defined by

K a r M n-1 n-
r-2I

K
o qs

forge - min(g1,...,gn) < n,
r E [2, + oo) for qs > n, (3.19)

and it is assumed that qs > 2n/(n + 1) (so that r > 2) and that the indices
q1, , qn in (3.19) are defined by (3.18). Indeed, applying the Holder inequality and
the familiar Sobolev imbedding theorem, for any function u E C1(Q) we obtain

}1/2

(f:ixu2) c111XIIo.3llulirl(A.Q),
n, J

where c1 does not depend on u E C1(Q).
We further suppose that for the functions l"(x, u, q), f - 1,...,n, and lo(x, u, q)

in (2.2), for almost all (t, x) E Q and any u e R and q e R"
I1"(t,x,u,q)Icµ119l'/mI'+a1(t,x)lul2/'+1y(t,x),

Ilo(t, x, u, q)I < a2(t, x)IglM 2 + a3(t, x)luI + i'0(t, x), (3.20)

where fir>2,1/IT1+1/fir'-1,1i1,µ2-const> 0, a1, a2,a3>0,0,0030tal;
aZ, a3 E L.r..ro(Q), 1/! +2/1- 1, 1/.f0 + 2/10 - 1, 0 E Lw(Q), 4'0 E L'.10(Q),
and the indices I and 10 are defined by

1 a+(1-a) 1 a 17-72 ,lo-?o<2;

n >2 for 1/qi > 1, n > 2;
E"- I1 /qi - 1 1-1

1E(2,+oo) for E 1/q,=1,n>2; (3.21)
i-1

1 E (2, + oo)] for E 1/q; < 1, n > 2 and for n - 1;
i-1

n

10 = n (F, 1/qoi)
r-1
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where q and q0 are the indices in condition (3.2) (see Remark 4.5.3). We observe that
the inequalities J > 2 and to > 2 follow from (3.21). Equations of the form (2.1)
possessing the properties enumerated above are called equations having (A, 0, 2, m )-
-structure in the cylinder Q.

For an equation (2.1) having (A,0, 2, m)--structure in Q we consider a problem of
the form (2.5) in the case E = 80 x (T1, T2), E' = 2T U S2T2. Suppose that on the
part E3 c Z there is given a positive function A E L'(-V3)- (If A E where
K > r/(r - 2) and Ko = m/(m - 2) with the same r as in (3.19), then it is easy to
see that the condition that A be positive on 23 can be dropped, and in this case the
term IIUIILZ(A.E,) is to be dropped in the definition of the norm of k), (see (3.13).) We
denote by

°=i0'm(A,Q)
respectively the spaces

4 o'm.mo(A,Q) and Q; F+3, A)

with m = (m,..., m) and mo = in.
In correspondence with the definition given in the general situation, by a gener-

alized solution of problem (2.5) we mean any function u c= *ro, where YYo = (u e )r:
u' e.*E°i, u(T1) = 0), satisfying an identity of the form (2.8). We note that by
Proposition 3.1 7Yo c YYc k, so that the estimates (3.7)-(3.9) hold for functions in
-o

The left side of (2.8) defines an operator.: 7Yo .A°t. Indeed, we write 2' as the
sum V+ .Q, where the operator rah: AL°-. Af (we recall that the spaces.*' and .lf°°
are isomorphic) is defined by

(du, > = f f [l'(t, x, u, AVu) Avq + !;,(t, x, u, AVu)rl] dt dx
Q

+ f Au,t ds, u, q G .r, (3.22)

while the linear operator R: YYo -+ ,;'f° is defined by

(.Vu, 17) = T2(u', -q) at, u E *'0, n e.3f°, (3.23)4where
(,) is the duality between H = HID; '(A, SZ) and H*, and ( , ) is that

between..E°and ,,Y*. Taking into account the inequalities

u, < Aou+ a u
21m' +II Ili % Q

+(11a2112s.21,,.Q11AOu11m Q + IIa311.s..;,,,Q11ulli.i,,.Q + II4'0hIi'.i;,.Q)

u, q E .*', (3.24)

I( -qu, n)1 < 11u11-11nII,r-, u E r>i, n eJf , (3.25)

we conclude that in fact Pu a .XO3. It also follows from (3.24) and (3.25) that .':
YYo - Ys is bounded. We shall prove that this operator is demicontinuous. Since .4
is linear and bounded, it suffices to prove that the operatordis demicontinuous.
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Suppose that the sequence (u.), u E *,, n = 1,2_., converges in .* to a
function u E .7t°. To prove the demicontinuity of Wit then suffices to prove that
{ (d u,, , 17)) converges to (d u, n) for all n E A. The convergence of the linear
term J.,Au,,n ds to fE,Aun ds is obvious. Because of (3.24), it is also obvious that for
some subsequence ( u,) of (u,, ) there is also convergence %(t, x) - 9>(t, x) a.e. in
Q, where

ql = 1'(t, x, u, Avuy) AVn + lo(t, x, u, AVu,,)n,

4v = I'(t, x, u, Avu) AVn + 10'(t, x, u, AVu)n,

and ,q is a fixed function in A. It is easy to see that the sequence {%) has absolutely
continuous Lebesgue integrals in Q which are equicontinuous with respect to P. For
this we need to use the inequality obtained from (3.24) by dropping the integrals
over 13 and replacing Q by an arbitrary Lebesgue-measurable subset of Q, and we
also need to take into account the fact that the parentheses in (3.24) are uniformly
bounded with respect to v. From the theory of the Lebesgue integral it then follows
that

ffrp,(t,x)dtdx- f f"F(t,x)dtdx.

From this it follows easily that this convergence actually holds for the entire
sequence (q3"). Thus, (du", n) - (du, n). We write out the property of the
operator.V just proved as the following proposition.

LEMMA 3.6. The operator d:dE°- A*, and hence also the operator.: %t'o - ,)104,
is demicontinuous.

LEMMA 3.7. Suppose conditions (3.20) are satisfied as well as the following condition:
for almost all (t, x) E Q and any u E R and q E R"

l"(t, x, u, q)qr + lo(t, x, u, q)u -> vlglm - da(t, x)u2 - +.(t, x), (3.26)

where v = const > 0, d4 E L3'°(Q), 1/s + 2/1 = 1, 1/so + 2/l0 = 1, i E L'(Q),
and the indices l and 10 are defined by

a+(1-a) 1 a(1-a)#1
/ ! 2 10 j0 2 < 2'

a E (0, 1),,8 E (0,1), (3.27)

in which ! and J0 are determined relative to the indices q and q0 from (3.2) as in (3.21).
Then for all t e [ TI, T2) and all e > 0, for any function u r= .*',

Qf f EI'(t, x, u, AVu) Avu + 101(t, x, u, Avu)u] d-rdx

(p - e1)IIAVuII'r.Q, - elIIuIILO.Q, - cleiX1IU1I2.Q, - c2, (3.28)

where el > 0, cI depends on n, q, q0, a, P, f and IIa4II.: so.Q, A is the number in (3.9),
c2 = IIJIIII,Q, and Q, = 0 X (T,, t).
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PROOF. Lemma 3.7 follows in an obvious way from (3.26) and (3.9).
We now proceed to the direct proof of solvability of the problem of the form (2.5).

We consider the regularized operator 2,: go - qo , where T;, is the subspace of '
consisting of all u E aj for which u(T1) = 0, defined by

(.F
fu. n) = e f T'(u', n') dt + (-'?U, n E 'Y(,, (3.29)

T,

where 'is the restriction of the operator. °: YY0 ->.V* c 3(() (it is obvious that 13(()
is dense in,)Y') to the set QJ' C 7!,.

,)t°*LEMMA 3.8. Suppose conditions (3.20) and (3.26) are satisfied. Thcu for any FE
and e > 0 for any function u E IJo with

(9u,n) =ofT,(u'.n')dt+ f'(u,,n)dt+(du,71) _ (F, n),
, T,

n E IY(, (3.30)

the following inequality holds:

EIIu'I12.Q + IIUII2.,.,Q + IIAVuIIm,Q + IIuII/.'-(A.E,i c, (3.31)

where the constant c does not depend either on a or on u E Y0. For any Fe r* and
any function u E) satisfying (3.30) with e = 0 an inequality of the form (3.31) holds
with e=0.

PROOF. We first consider the case e = 0. In view of Lemma 2.1, for any
t E (T), T, [

f'(u',n)dt+ f f f hunds= f'(F,n)di,
T, Q, o,X(T,,r) T)

n E Yf), (3.32)

In (3.32) we set n = u E *'o and use (3.28) with e = min(1/8, v/2). Then for any
tE[T,,T).T1<T-< t-< T2,

2(u(t),u(t))+ i EIIA,Vull ,Q,+ f Xu2ds
X T

g llulli..,Q, + 11396- flull.,r+ c)4`IIull'.Q, + c2.

From (3.33) we easily obtain

n

IIUIl2,a,Q, + E IlAivuil>R.(1, + Au2 ds
t-l

4 c4IIUIIi,Q, + c5, TI < T 4 T2,

(3.34)

where c3 = 2 max(4, 2p_'), c4 = 2 max(4, 2p'')4Ac, and cs = 2c2 max(4, 2p-'),
Applying Gronwall's lemma, we deduce from (3.34) that

Ilulli,..Q + IlAVuII ,Q + Ilulli=(E3) (c611. ci)e`''1T1-T,)

-1 a, (,,!) (3.33)

(3.35)
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,111,:1e c,, n" 4 , and c, W F1 Taking into account that

IIAVuIIm.Q >, IIAVUIIn.Q -- cg,

where c, = (,(in ), and applying an estimate of the form (3.7), we deduce from (3.35)
that

III/IIY + I AV111Int.Q +
11U1122(""', < CRIB` IL. + C9, (3.36)

where c, = c,;c,;, cy = 2c,e`°(T' -'' + c,, and cc, is the constant in (3.7). In the case
r = 0 the estimate of the form (3.31) has thus been proved. The proof of (3.31) in the
case e > 0 is completely analogous. Lemma 3.8 is proved.

REMARK 3.2. Suppose that the conditions of Lemma 3.8 are satisfied in the case
nl = 2 with = 0 in (3.26). It follows easily from the proof of Lemma 3.8 that the
constant c in (3.31) then has the form c = where c, depends only on n, v,
q, q,,, a, /3, S2, and IIa411.,.,,.Q. Hence, in this case there can exist only one function
u E x.11 (u E YV,,) satisfying (3.29) with e > 0 ((3.29) with e = 0).

LEMMA 3.9. Suppose that conditions (3.20) and (3.26) are satisfied. Assume also that
the restriction of the operator d:.,r * (see (3.22)) to the set 60 satisfies the
condition of semibounded variation

(wit -dv,u-v)> -Y(P,llu - vll), U,V
(3.37)

Ilull,. P, Iivllq,< P,

where the function Y(p, T) satisfies condition (4.6.2), and the norm II - II' is compact
relative to II

-
Il,v- Then for any F. > 0 and any.irE ,)£O* there exists at least one function

u, E I.W, such that

(Yrur, r)) = ( rl), V71 E g0.

Here uF E Q[ TI, T21; H*), ur(T2) = 0, and

II uEll,,r < K,

(3.38)

(3.39)

where K does not depend on e.

PROOF. We fix an e > 0. Because of (3.28) the operator Pr: °d/o -> qo may be
assumed coercive. Indeed, setting r) = u c= go in (3.30), taking (1.42) and (3.28) with
a suitable e, > 0 into account, and applying Cauchy's inequality, we obtain

(-rru, u) > llU'IIi.Q + 2IAVull ,Q + Zllulli.a, - c1(2)'lIulli.Q - C2-

(3.40)

Since the change of unknown function u = e'''u, y = const > 0, reduces (2.1) to the
equation

u, -(d/dx,)!'(t,x,u,vu)+!0(t,x,u,vu)=Jr, (3.41)

where

'(t, x, u, Vu) = l'(t, x, e'''u, e"'vu), i =
10(t, x, u, vu) = 10(i, x, ue", vue"') + yE,

for which conditions of the form (3.20), (3.26) and (3.28) are also satisfied and for
(3.41) the coefficient of lliill ,Q, in (3.28) is equal to Y - clef', it follows that by
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assuming y sufficiently large we obtain for (3.41) an inequality of the form (3.40)
without the term containing IIUII2.Q Since the solvability of the general boundary
value problem for (3.41) is equivalent to the solvability of this problem for the
original equation (2.1), it may simply be assumed that

(2'u, u) % (e/2)Ilu'IIi.Q +(1/2)IIuII2.slr, (3.42)

from which coerciveness of the operator P,: I/o --> aJo obviously follows. In view of
(3.37) it then follows from Theorem 4.6.1 (the case H = X = Y = °Y, ,, .P= V+
-4, say= g,, ,4 = 0) that there exists a function u, E q0 satisfying (3.38) even for all
'Fe WJo and not just for all d°t c Yo*. Moreover, from the proof of Theorem
4.6.1 we obtain

IIUFll,r< IIU C, (3.43)

where c does not depend on e; we shall prove that u', E C([T1, T2]; H*).
Setting t = 4,q in (3.29) with 4, E C4.,,(Sl) and T e -9([TI, T2]), we obtain

4e
T2-

(u"(1), 4,)p'(t) dt + f T2(u;(t), 4')q>(t) dt = f T'(FF(t) 4')p(t) dt,
, T, T,

0 E CC.a,(g), T e 2([T1, T21). (3.44)

where F,(t) E ([T1, T2] -> H*) is determined by the element .F* - du, E ,*'* and,
according to (1.37), has the form

F,(t) = F,,,) (t) + Y_ I*F,.k(1)
k-I

with F,,o E F,.k E Lfi"(Q), k = 1,... ,n, and

fT
T12

'(1/F,.k 17)dt=(Fkt),Avn)dt.
T1 I,

From (3.43) and the boundedness of..V: ,)E°--> Jr* it follows that the norms

III-du,Il,r* =

are bounded uniformly with respect toe E(0,1]. In view of the density of CIA, (St)
in H and L2(Sii), from (3.44) we obtain

e f T'uegi dt + f T=utq, dt = f T=F,(t)q dt, by E
a([ T"

T2]), (3.45)
T, T, T,

where the integrals are understood as Bochner integrals of functions in ([T,, T,]
H*).

The identity (3.45) can be written as

-eut + u, = F,(t), (3.46)

where u,' and u, are the first and second derivatives of the function u, considered as
an element of .9*([T1, T2]; H*). From the form of F,(t) and the condition u; e
L2(Q) c L2([T,, T2]; H*) it follows that u" E L"'*([TI, T2]; H*), m* = min(%o, m'),
so that in any case uF E L'([TI, T2]; H*). Thus, u,' E YYI ,, where

YYia = {v (=- L'([TI, T2]; H*): v' E L'([ TI, T2]; H*)),
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and the norm

I l c I = 1 1 U ' 1 1

is introduced in Exactly as in the proof of the imbedding yf''- C(1, B*) (see
the proof of Lemma 4.7.6), we establish the imbedding )V,,, -> C([TI, T2]; H*), so
that

1< cll ull W (3.47)

In particular, it follows from (3.47) that uE E C([T,, T2]; H*). Using Lemma 4.7.2
and (3.47), it is easy to show that C°°([TI, T2]; H*) is dense in YYI I Therefore, for
any u E YY, I, u' e YYI , there exists a sequence { u }, u E C°°([T1, T2]; H*), n = 1,
2,..., such that u - u in L'([T,, T2]; H*) and u,', -+ u' in L'([T,, T2]; H*).

We now prove that u'(T2) = 0. Passing to the limit in the identity

dt = - f Vp E C'([T1, T2}), T(TO) = 0, (3.48)
T, T,

where u E C°°([T,, T2]; H*), n = 1, 2,..., u,, - of in L'([TI, T2]; H*) and u -> uF
in L'([TI, T2]; H*), and taking (3.47) into account, we obtain

fT2uEq,dt = -f T2u',q,'dt + uE(T2)T(T2), p e C'([T1, T2)), T(TO) = 0.
T, T,

(3.49)

From (3.46) and (3.49) we then obtain

4T2u"4pdt+EU (T2)9'(T2)+ f T'uE92dt= fT'Ff(t)dt,
, T, T,

VT e C'([T1, T2]), gp(T1) = 0. (3.50)

Multiplying (3.46) by p E C'([T,, T2]), p(TI) = 0, integrating over IT,, T2], and
subtracting the equality so obtained from (3.50), since rp(T2) is arbitrary, we obtain
uf(T2) = 0 as an element of H*. Thus, the function uf(t) may be considered a
solution of the problem

-eu'f' + U,' = Ff in [Ti, T2]; ue(T2) = 0, (3.51)

where all terms are functions in ([T T2] - H*). But the unique solution of (3.51) is
the function

uf(t) f T2

(Ff(T2 - .l)e-(T2-t-a)/fdn. (3.52)
0

This shows that an element of E ,,°t acts on an element rl E.7L° by the formula

iIEA °, (3.53)
T

where, for F e ([TI, T2] --+ H*), (F) denotes the function

aer fT2-
(F)

tF(T2 - T)e-(T2-2-a)1f dn. (3.54)
0
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Taking the form of F, into account, we obtain
!1Y_ lA{F,A(3.55)

A-I

and it is easy to see that { F,.()) E L' (Q) and ( F, R) L"' (Q ), k = ]__n.
Indeed, using the well-known estimate for the convolution Ilf*g11,,.Q < IIfII,,.QIIgIII,Q
and the equality (1/e) e-'',`drl = 1, we obtain

II{ F()}Ilr.r;,.Q 1IFFsiIlf.C Q If F,., }IInr.Q < IIF.AIL-r.Q k

(3.56)

whence the assertion follows. Since, as noted above, the norms on the right sides of
(3.56) are bounded uniformly with respect toe E (0, 1], from (3.55) and (3.56) we
obtain (3.39) with a constant K not depending on e. Lemma 3.9 is proved.

THEOREM 3.2. Suppose that conditions (3.20) and (3.26) are satisfied, and that the
restriction of the operator-V: ,Jf'' Jf°* (see (3.22)) to the set rI' satisfies the condition

(du-dv.u-v)>_ U. t,EYY,,,

IIulI,,-,< P,

II ' II II ' 11, and Y(p, T) satisfies condition
(4.6.2). Then for any,FE Jf'-* problem (2.5) has at least one generalized solution.

PROOF. In view of Lemmas 3.8 and 3.9, for all e > 0 there exists a function
it, E 9 C YY satisfying (3.38), (3.31) and (3.39). It follows easily that there exists a
sequence of values a tending to 0 for which

u, u weakly in e, u, -+ u' weakly in f°*, (3.58)

where u is a function in YY. In view of the estimate

c11u111 Vu E 7Y', (3.59)

it follows from (3.58) that u(T,) = 0, so that u c- )Y,,. We shall prove that u is the
desired generalized solution of (2.5). Since it follows from (3.39) that

e
f r_

r cde1171'II,.Q 0 as r --> 0, (3.60)

passing to the limit in (3.38), we find that for all r1 E q,

fI
T,

(3.61)

where f is the weak limit of sl u, in Jd° as e 0. Since &(,) is dense in Y. (3.61) also
holds for all 71 E eand, in particular for all r) E YY,.

To complete the proof of the theorem it suffices to establish that f = du. For this
we use condition (3.57). It follows from (3.57) that for all E 13(,

e f t 2(u; - ', u - l;') dt + f r( u; - ', u, - f) dt + (d u, - d . u, - )
t,

Y(p IIUFII' ). (3.62)
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with p = supFlluFllr,-+ Il6llrv, where in deriving (3.62) we have used Lemmas 1.25
and 1.26 and also the nonnegativity of the first term in (3.62). Subtracting (3.29)
with u replaced by u, and rt by u, - J from (3.62), we obtain

efTT1( ',u"dr- fTTZ( ',uE-e)dt-(dV 'U'
(3.63)

- ( - F , u,- )-Y(p,llu"- 0,W), C- '3(0-

Letting a tend to 0 in (3.63) and taking into account (3.58), the properties of the
function and the compactness of the norm II relative to we

deduce from (3.63) that

fTZ(

u - )-Y(p, Ilu - JII'w), V E 60.

Adding (3.64) and (3.61) with 71 = u - ¢ E ?e, we find that

-Y(p,llu-JII,v), VjG IYO

(3.65)

Since 9. is dense in 7Y0, inequality (3.65) is also valid for all ¢ E YYo. Setting
E = u - 871, 8 > 0, n E Co,s, vaT(Q) C *'o, in (3.65), we obtain

T2
(n', 71) dt + 8(f - sa?(u - 871), ?1) % -y(p, 1l8nll'), Vn E *'o.

(3.66)

Dividing both sides of (3.66) by 8, letting 8 tend to 0, and taking into account the
properties of y and the continuity of the operator sd:T fe*, we obtain

(f-sVu,n)0, VrlECo.1 UQT,(Q). (3.67)

= f.Since C(Q) is dense in)", it immediately follows from (3.67) that Vu
Theorem 3.2 is proved.

In view of Lemma 3.5 the next assertion follows directly from Theorem 3.2.

THEOREM 3.3. Suppose that conditions (3.20) and (3.26) are satisfied, and that the
restriction of the operatord:.lf°- Y3 to the set *'0 satisfies the condition

(.rdu-dv,u-v)>' -Y(p,Ilu-Vllr.r,.Q), u,vE 'o,

IlullW p, ilvll< p, (3.68)

where the indices 1 and la satisfy (3.15). Then for any .{E ,Y* problem (2.5) has at
least one generalized solution.

We now consider the question of uniqueness of a generalized solution of problem
(2.5). It is obvious that Lemmas 2.1 and 2.2 are also preserved for equations having
(A, 0, 2, m) -structure in Q. Therefore, the following assertion holds.
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LEMMA 3.10. Suppose that conditions (3.20) are satisfied, and that the operators A,:
H - H*, where H ° H&" (A; 2; al, it), defined by (2.12) for t e [TI, T,], are
monotone. In particular, these operators are monotone if for almost all (t, x) E Q and
any u, l:°ERand q,jER"

8" al" 810 a1' 2

aq, + au aqj j°
+ au 0 0. (3.69)

Then for every .16O* problem (2.5) has at most one generalized solution.

From Remark 3.2 we obtain the following uniqueness theorem pertaining to the
case i = 2.

LEMMA 3.11. Suppose that conditions (3.26) are satisfied with in = 2 and ¢ = 0 in Q.
Then for any.9FE ,Y* problem (2.5) has at most one generalized solution.

To conclude this section we present a simple criterion for condition (3.68) to hold.

LEMMA 3.12. Suppose that (3.20) and the following conditions are satisfied:
1) The functions l"(t, x, u, q), i = 1,...,n, and lo(t, x, u, q) have the form

1"(t,x,u,q)=1'i(t,x,u,q)+1'i(t,x,u),

1;(t, x, u, q) = P0 (1, x, u, q) + ! (t, x, u, q). (3.70)

2) The operatord:.A°- Y 1 defined by

(.rWu, n) = f f (1' Apt) + 10) dt dx + f Aun ds, u, n E .160, (3.71)
Q E,

satisfies the condition

(du - dv, u - v) >, a°jI AV ull m.Q, u, v E ,16°, a0 = const > 0. (3.72)

3) For almost all (t, x) E Q and any u E R and q e R"

lal"/aul < a5IuI2l'w-I + ,' lai /aq,I < a6lgjm/2-I +

1a10,/8u1 <>p0, 1,...,n, (3.73)

where a3 ', a6, 1 4.90(Q), 'YO E I s.s0(Q), 1/q = 1/m' - 1/1, 1/q0 = 1/m+

- 1//0, 2 < m, 2 < I < 1, 2 < 10 < 10, and 1 and 10 are the same indices as in (3.21).
Then condition (3.68) holds.

PROOF. We denote by, : ,Y- 16i the operator defined by

(.rvu, n) = f f [l'(t, x, u) AVn + PO (t, x, u, AVu)n] dt dx,f,

u, n e A. (3.74)
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Taking 1) and 2) into account, for any u, v e )° we estimate

(sV

ao11AV(u - v)116; .Q

+ f fQx, u) - P(t, x, v)] A1V(u - v)

+[lo(t, x, u, AVu) - lo(t, x, v, AVv),(u - v)} dtdx

+ f A(u - v)2 ds
F,

a0IIAV(u - v)IIm,Q

+fff
o

alo(t,x,v+T(u-v),AVv+TAV(u-v))
au

+alo(t,x,v+T(u-v),Ayv+TAV(u-v))
aq;

(u- v)2

237

(3.75)

x AjV(u - v)(u - v) dTdtdx

aollAV(u-v)IIm,Q+11+12+ 13.

Taking 3) into account and applying the Holder inequality, we obtain

Illl < (ao/4)IIAVuIIm,Q + clllasllms63so,Qllu - Vlli ro,Q,

1131 < (ao/4)IIAVulI',Q

+c2(IIa6lI2saso.Qllu - vlli.to.Q + IIlPIIggo,Qll u - Q), (3.76)

1121 < II4o1ls,so,Q11u - v111 tp,Q,

where c1 = cl(an) and c2 = c2(ao). It follows from (3.75) and (3.76) that for any u,
v E V., Ilull -< P, IlVII, < P,

(So u - 2'v, u - v) >, (a0/2)IIAv(u - v)IIm.Q

-C3(llu - v1li ta,Q + Ilu - vjj'ff1.1 o,Q). (3.77)

It is obvious that (3.68) follows from (3.77) and Lemma 3.5. Lemma 3.12 is proved.
From Theorem 3.3 and Lemmas 3.12 and 3.11 we obtain, in particular, the

following assertion.

THEOREM 3.4. Suppose conditions (3.20), (3.26) and (3.70)-(3.73) are satisfied. Then
for every problem (2.5) has at least one generalized solution. In the case
m = 2 and 4= 0 in (3.26) problem (2.5) has precisely one generalized solution.

I{a!"(t,x,v+T(u-v)) (u-v)A;V(u-v)
a uQ
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§4. Linear A-parabolic equations with weak degeneracy

In the cylinder Q = 2 X (T1, T2), where SZ is a bounded, strongly Lipschitz
domain in R", n > 1, we consider the linear equation

au/at -(a/ax,)(aijuY + a'u + g') + f3iu, + Sou + go = j, (4.1)

where the, generally speaking, nonsymmetric matrix `21 = 1Iaij(t, x)II is positive
definite for almost all (1, x) E Q, and the functions a"(t, x), a'(t, x), g'(t, x),
/3i(t, x), fo(t, x) and go(t, x), i, j = are defined and measurable in Q.
Suppose there exists a constant ko > 0 such that for almost all (t, x) E Q and any 4,
,t1 E R "

Ja"(t, x)>:iiljJ < ko a'(t, X) i j a'"(t. X)71i71j , (4.2)

and constants k1, k2 > 0 such that for almosttr all (t, x) E Q and any C E R

kla''(x)tjjj < a'j(t, x)S,Sj < kzd"(X)S,Ej, (4.3)

where

1I T'a'j(t, x) dt, i, j = 1,...,n.aij(x) = (Tz - TO
T,

We set

A(x) = ((21 + ?f`)/2)1/2

where I = *(x) ° Ijaij(x)II. It is obvious that

IX J - 3 k 12Q

and

2[j C = IA¢I2. (4.5)

We assume that the matrix A = A(x) is weakly degenerate in SZ relative to m = 2
(see Lemma 7.2.1 with in = 2) and suppose that the spaces

_r?, (A; Q; 2:31 X) and drmAc' (A Q)

(see (3.21)) are isomorphic; here 21 = al X (T1, T2), 1, = a, X (T1, T,), 13 = a3 x
(T1, T2), al U 02 U az = aSi and a, rl aj = 0 for i # j, i, j = 1, 2, 3. The last
assumptions imply the validity of a condition of the form (1.36).

Setting

I(t,x,u,q)=9(p+au+g, 10(t, x, u, p) p+/3ou+go

and taking into account that

I(t.x,u,p)=A*(SAp+au+f),
where S = A-19AA-1, a = A-'a, f = A-'g, y = A-'P, ao = /io and jo = go (here
A' = A), we observe that condition (2.2) is satisfied for l'(t, x, u, q) = Sq + au + f
and 1 (t, x, u, q) = y q + aou + jo. Suppose that the conditions

A-'a E L2s,zs0(Q), A"'/3 E Qo E

A-'g E L2(Q) go E L"(Q) (4.6)
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are satisfied, where 1/s + 2/1 = 1, 1/so + 2/10 = 1, and the indices I and l0 satisfy
conditions (3.27) in which l and l0 are defined as in (3.21) relative to the indices q
and q0 for which inequality (3.2) holds in the case m = m0 = 2 (see Remark 4.5.3).
Suppose, for example, that the matrix B - Ilb'-'(x)II, where B - A-', satisfies the
conditions

b'jEL',(SZ), i,j=1,...,n; 1/2+1/n<1, i=1,...,n, (4.7)

and suppose that the numbers r0, satisfy 1/2 + 1/r0, < 1, i = 1,...,n. Then the
indices q and q0, with which (3.2) holds by Lemma 3.1, have the form

1/q; = 1/2 + 1/r;, 1/q0 - 1/2 + 1/r0 , i = 1,...,n. (4.8)

Finding the values of 1 and 10 on the basis of such q = (q1,...,q") and q0 =
(qol, . , q0") and finding the indices I and l0 on the basis of these values of land 10
(see (3.27)), it is possible to find the values of s and so required in (4.6).

We shall show that under the above assumptions equation (4.1) has (A, 0,2,2f-
structure in the cylinder Q. We note first of all that IISII = IIA-'%A-'!I = µ = const
for almost all (t, x) E Q. Indeed, suppose that p = Aq, i; = A31, q E R" and J E R".
Taking (4.2), (4.3), and (4.5) into account, we find that

IA-'CIA-'p-JI=I2q. 711

< kok2("q .
q)1/2(t

rl
.71)1/2

= kok2lAgI IA111 = kok2lpl
(4.9)

Taking into account the nondegeneracy of the matrix A for almost all x E 12, we
conclude that (4.9) implies IISII < k0k2 for almost all (t, x) E Q. This and (4.6)
obviously imply the validity of conditions (3.20) with m = 2,µl = k0k2, a1 = IA-lal,

= IA-'gl, a2 = IA 0l, a3 = I& I and 'G0 = Igol, while the functions enumerated are
summable over Q with indices somewhat greater than required in (3.20). Thus, (4.1)
has (A, 0, 2,2f-structure in Q. It is also easy to see that in the present case condition
(3.26) is also satisfied (with m = 2). Indeed, taking into account that here

1"q;+10u=Sq q + a qu + f q + y qu+aou2+f0u, (4.10)

where Sq q = S21(A-'q) A-'q >, k11A(A-'q))2 = k1IgI2 (see (4.4) and (4.5)) and
estimating

In . qu1 < 611912 +
23k

IaI2u2, IY qlu < 611412 + 33 IY12u2,
1 I

II' 91 < 611912 + ?kI If 12, Ifoul < Z Ifol2 + lfoIKu2,
(4.11)

laou2l < laolu2,

with K = min(I'/s, to/s0) E (0, 1), we conclude that (3.26) is valid with m = 2,
v = k1/2, a = 3/2k1(I a12 + IYI2) + laol + 1/21foI` E and b _
(3/2k1)If I2 + (1/2)1f012 -x E L'(Q); here we take into account that

11lfol`Ils.s0,Q = IIf0IIis.k.,°.Q <

and

II Ifol2 `II1.Q = l1f01lz=:.Q = cllfolli,io Q

Thus, a condition of the form (3.26) is satisfied.
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For equation (4.1) we consider the general boundary value problem (2.5), which
here assumes the form

u, - (a/ax;)(a'1ux + a'u + g') + $'u, + flou + go = f in Q,

u=0 on (0, X(T,,T2))UOr,,

on a2 x(TI,T2), (4.12)

on a3 X (T, T2),

where A is a function defined on a3 X (T,, T2), au/aN = a')u,. v; = AVu Av,
a, Ua2U03=80,anda;rlaj = 0 for i#j,i,j=1,2,3.Ageneralized solution
of problem (4.12) can be defined as any function u E YYo [where

*-0 =- (u'E °° "z(A,Q):u'E.7r*,u(T,)=0);

here land to are defined by (3.21) for q and qo from (3.2) with m = mo = 21 satisfy-
ing the identity

f fQ[$t Vu +au +Iou+go)gdtdx

+ fTZ(u', ri) dt + fAurl ds = f f f tl dt dx, brl E Co.E,(Q).
Q

(4.13)

In place off in (4.12) it is possible to choose an arbitrary element FE - *. The right
side of (4.13) then contains (.w, TI) instead of the integral f fQ f n dt dx; here ( , )
denotes the duality between 'andAi.

THEOREM 4.1. Under the conditions enumerated in this section (in particular, under
conditions (4.2), (4.3) and (4.6)) problem (4.12) for every f = ,FE . *, where X°=

a`z(A, Q), has precisely one generalized solution.

PROOF. In view of Theorem 3.4 and the validity of conditions of the form (3.20)
and (3.26) (with m = 2) established above, to prove the existence of a generalized
solution of problem (4.12) it suffices to verify that conditions of the form (3.70)-(3.73)
(with m = 2) hold. We set

1'(t, x, u, q) = Sq = A-'91A-1q, lo(t, x, u, q) = 0,
(4.14)

l'(t,x,u,q)au+f, 1 (t, x, u, q)=y-q+aou+fo.10

It is obvious that for such I', lo, I' and to condition (3.70) holds, and for the operator
A- ,,Y* defined by (3.71) an inequality of the form (3.72) with m = 2 and

o = k1 holds. Taking into account that al"/au = a', al;/age = yJ and alo'/au = ao,
i, j = 1,. .. , n, we conclude in view of (4.6) that conditions (3.73) are satisfied with

in = 2, ¢I = IaI = IA-IaI, 02 = Iii = IA-'PI and 03 = Iaol = 1,001. Thus, the existence
of a generalized solution of problem (4.12) is established.

We shall now prove the uniqueness of this solution. It is obvious that the
difference u = ut - u2 of two generalized solutions of (4.12) is a generalized solution
of the corresponding homogeneous problem characterized by the conditions g = 0,
go = 0 and f = 0 in (4.1). In this case an inequality of the form (3.36) is satisfied
with 0 = 0 (and m = 2). The uniqueness of the generalized solution of (4.12) then
follows from the same Theorem 3.4 (or Lemma 3.11). Theorem 4.1 is proved.
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REIviARK 4.1. An analogous result can also be proved if in (4.6) the indices 1 and 1
are replaced by the limit indices % and !o (the same as in (3.21) with m = 2 and
m0 = 2) by combining generalized solutions of problems of the form (4.12) corre-
sponding to the partial intervals [TI, TI ], [TI, T2 ], ... , [T,,__ I, T2 ] with lengths not
exceeding a sufficiently small (fixed) number b > 0. However, this case requires
alteration of the scheme of proof used above. We therefore limit ourselves here to a
reference to our paper [43], in which a method is presented for proving an existence
and uniqueness theorem in the case of the first boundary value problem with the
indicated limit conditions on the indices of the space A.





PART IV
ON REGULARITY OF GENERALIZED SOLUTIONS

OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS

A theory of the dependence of differential properties of generalized solutions of
quasilinear, nondegenerate elliptic and parabolic equations of divergence form on
the properties of the functions forming these equations is expounded in the mono-
graphs of O. A. Ladyzhenskaya and N. N. Ural'tseva [80) and [83]. In this part we
study questions of regularity and some qualitative questions for generalized solutions
of quasilinear (A,0)-parabolic equations with a weak spatial degeneracy which
contain nondegenerate parabolic equations as a special case. Here we consider
questions of regularity both for generalized solutions of the general boundary value
problem of the form (8.2.5) and for just generalized solutions of (A,0)-parabolic
equations of the form

u, -(d/dx,)1'(t, x, u, Vu) + 10(t, x, u, vu) = 0, (1)

having (A, 0, 2,2i-structure relative to a weakly degenerate matrix A = Ila"(x)II in a
cylinder Q = Sl X (T1, T2) (see §8.3). From the results it is evident how the proper-
ties of generalized solutions improve with improvement in the regularity of the
functions forming the equation. This improvement is not without bound as in the
case of nondegenerate parabolic equations, however, since the presence of a weak
degeneracy poses an obstacle to the improvement of the differential properties of the
functions determining the structure of the equations.

Under the original assumptions regarding the structure of the equations we
establish integral Hdlder continuity of generalized solutions in the variable t with
exponent 1/2, and also an energy inequality for generalized solutions of the
boundary value problem (8.2.5). Further improvement of the properties of gener-
alized solutions depends on the degree of degeneracy of the matrix A. Progress in
this direction is possible only after developing a special technique establishing the
possibility of making substitutions of the form n = f(u(t, x)), (t, x), wheref(u) has
a uniformly Lipschitz derivative f'(u) on R and 1'(t, x) is a smooth function, in the
integral identity determining the generalized solution of problem (8.2.5) or in the
integral identity

fr-2(u',rl)dt+
r,

71ECo(Q), (2)

defining a generalized solution

u E 7Y= {u e °24/ 0)(A, Q): u' E (_-C241' i0)(A, Q))*}

243
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(see §8.3) of equation (1) in the cylinder Q. In resolving this question we make
essential use of the fact (proved in §8.1) of strong convergence of averages in the
variable t of a function in *'to this same function in the norm of Yf'. Substituting
truncations of powers of generalized solutions as the test function 71 in the integral
identities indicated above, using the imbedding 7f'- L"o(Q) with suitable I and l0,
and taking limits, we establish estimates of generalized solutions in the norms of

and L°° and simultaneously prove that these solutions belong to the spaces
LP.Po and L. Exponential summability of generalized solutions and a correspond-
ing estimate of the integrals JJexp(clu(t, x)I} dtdx are an intermediate case of the
properties indicated above. Thus, in proving the results enumerated the author
proceeded along the path of developing the known iterative technique of Moser (see
[149] and [1501). Within the framework of nondegenerate elliptic and parabolic
equations he originally established similar results using the approach of Ladyz-
henskaya and Ural'tseva to estimates of the maximum modulus of generalized
solutions (see [80], [77] and [221-[241). However, in this monograph we shall not use
this method.

In investigating the question of boundedness of generalized solutions we establish
a qualified estimate of the form

m-clkk<u(t,x)1< M+c2k2, (3)

where k1 and k2 depend on the structure of the equation, m and M are in a
particular sense the lower and upper bounds of the solution u(t, x) on the parabolic
boundary of the cylinder Q, c1 and c2 are constants, and the inequality itself holds
for almost all (t, x) E Q. It follows from (3), in particular, that under more stringent
conditions on the structure of the equation (k1 = k2 = 0) the generalized solution
u(t, x) must assume its essential infimum and supremum in Q on the parabolic
boundary of the cylinder Q. Special cases of the results regarding membership of
generalized solutions of equations of the form (1) in the spaces and their
exponential summability have been obtained in the works [22]-[24] and [139] (linear
nondegenerate equations), [25] (quasilinear nondegenerate equations), [32] and [33]
(linear weakly degenerate equations), and [43] (quasilinear weakly degenerate equa-
tions).

Special cases of the results on local and global boundedness of generalized
solutions of equations of the form (1) are established in [80], [98), [150], [139], [67],
[68] and [22]-[24] (linear nondegenerate equations) [25], [77], [125] and [126]
(quasilinear nondegenerate equations), [33]) (linear weakly degenerate equations),
[70] (quasilinear (A, 0)-parabolic weakly degenerate equations in the case of a
diagonal matrix A under an additional assumption about the existence of a gener-
alized derivative u, f= L2(Q) for the generalized solution), and others. Results on the
boundedness of generalized solutions of quasilinear (A, 0)-parabolic weakly degener-
ate equations in the case of a nondiagonal matrix A are established in the author's
paper [43].

We remark that the condition that the matrix A be independent of t, which is
imposed throughout Chapter 9, is occasioned by the desire to work with a natural
class of generalized solutions. The additional assumption of the existence of a
derivative u, E L2(Q) for a generalized solution automatically leads to preservation
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of all results proved here if A = IIa'J(x)II is replaced by A = 11a''(1, x)II (without any
changes whatsoever in the remaining conditions guaranteeing these results). We
note, however, that in the case of matrices A = IIa''(t, x)II there are no results on the
existence of generalized solutions of the boundary value problems.

The restricted size of this monograph has not permitted the inclusion of the
author's results connected with Harnack's inequality for generalized solutions of
equations of the form (1) (see [151], [25], [125] and [171]) which is the source of many
applications of qualitative and quantitative character. In particular, the estimate of
the Holder constant for generalized solutions of (1) is an important consequence of
Harnacks's inequality (see [155], [80], [98], [67], [24], [78], [125], [70], and others).

CHAPTER 9

INVESTIGATION OF THE PROPERTIES OF GENERALIZED SOLUTIONS
§1. The structure of the equations and their generalized solutions

In the cylinder Q = [I X (Ti, TZ ), where ft is a bounded, strongly Lipschitz
domain in R", n >, 1, we consider an equation of the form

u, - (d/dx;)l'(t, x, u, vu) + 10(t, x, u, Vu) = 0, (1.1)

assuming that it has (A, 0, 2,2i-structure (see §8.3). Below we write out in explicit
form conditions expressing this assumption regarding the structure of equation (1.1)
(admitting here conditions somewhat more concrete than in §8.3). Suppose that for
almost all (t, x)EQandanyuERandpER"

I(t, x, u, p) = A*l'(t, x, u, Ap), lo(t, x, u, p) - lo(t, x, u, Ap), (1.2)

where the functions l"(t, x, u, p), i = 1_.^ and 10'(t, x, u, p) satisfy the
Carath6odory condition in Q x R x R", and for the matrix A = IIa'J(x)II the
following conditions are satisfied:

1) det A # 0 for almost all x E Q.
'j a

3) For elements of the matrix A-' = B = IIb'"(x)II inverse (1.3)
toA wehaveb'" E L`,(fZ),r; > 2,i = 1,...,n,andYn"1/r; < 1.

From Lemma 8.3.4 we obtain, in particular, the following assertion.

LEMMA I.I. Suppose condition (1.3) is satisfied, and suppose the numbers r01,
i = 1, ... , n, satisfy the condition

ro,>, 2, i=1,...,n. (1.4)

Then the imbeddings

_e'r(A, Q) -' ; o(Q) - L".to(Q),

hold where (cf. Remark 4.5.3), where F is any set of the form IF = y x (T1, T2),
y c aft (in particular, y may be empty), q = (ql,...,q"), qo = (qol+ ,qon)

q/q; = 1/2 + 1/r;, 1/q0, = 1/2 + 1/ro;, i = 1,...,n, (1.6)
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and the indices l and In are determined in terms of q and q0 by the conditions

1/i = a/l + 1 2 Z, 1/l0 = a/lo, a E (0, 10/2),

1/1= nq; - I for 1/q, > 1, n >- 2, (1.7)
i-I

!e(2,+oo) for I/qi=1,n=2,
i-I

n
IE(2,+oo] for n=1, l0=F-7-11/qoi

In particular, for any function u E 7i" df7(A, Q)

IIuIIt,10,Q < cobIIuII.x'- cob(IHufl2..,Q +IJAVu112.Q), (1.8)

where co depends only on n, ri, r01, a, 0, T2 - T1, and

b = b(Q) - sup
i.j-1....n

If in place of l and 10 indices satisfying the conditions

1// = a/! + 1 2 a ; 1/l0 = a/lo +
(1 2a)P < 1/2, a E (0, 1), E (0,1);

1/l=En'11/qi-1

n
for 1/q1>1,n>- 2;

i-t

le(2,+oo) for 1/q1=1,n=2; 1E(2,+o0] forn = 1; (1.9)
,=t

n
10 =

E°_11/qo,
; q and q0, satisfy conditions (1.6),

are considered, then for any E > 0

1Iu1I,.ro.Q '< cIe"s((uf I2.Q, (1.10)

where c1 depends on the same quantities as co and also on l6, while A > 0 depends only
on a and #.

In particular, it follows from (1.3), (1.6) and (1.7) that 1 > 2 and l0 > 2, while
from (1.3), (1.6) and (1.9) it follows that 1 > 2 and l0 > 2.

Suppose that for almost all (t, x) E Q and any u E R and p E R

h(t,x,u,p)'P%PIPl2-a4(t,x)u2-h(t,x),

jlo(t, x, u, p)j S a2(t, x) E lp,I + a3(t, x)l ul + g(t, x),
i=1

(1.11)

nlh(t
x, u,

P)l

< µ F, +P,I + a,(t, x)Iul x), (1.12)
i-1
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where µ = const >- 0, p = const > 0, a,(t, x) > 0, i = 1, 2, 3, 4, f(t, x) > 0, g(t, x)
0,h(t,x)> 0, and

ai a22 , a3, a4 E L',"' (Q), 1/s +2/1 = 1, 1/s0 + 2/10 = 1,

f2 , h E L'(Q), g E L"4 (Q), 1/1 + 1/1' = 1, 1/10 + 1/10' = 1, (1.13)

1, 10 are the same as in (1.7).

In particular, it follows from (1.12) that s E (1, + oo) and g0 E (1, + oo).
REMARK I.I. It is obvious that conditions (1.11) and (1.12) are satisfied if the

functions 1,(t, x, u, p), i = 1,...,n, and l0(t, x, u, p) forming (1.1) satisfy the
Caratheodory condition in Q X R X R" as well as the following condition: for
almost all (t, x) E Q and any u E R and p E R"

I(t, x, u, P) 'P > pIAp12 - a4(t, x)u2 - h(i, x),
h (1.11')

Ilo(t, x, u, P)I < a2(t, x) JA;PI + a3(t, x)I uI + g(t, x),
i-1

n
I(A*)_1l(t,

x, u, P)) < µ E IA,PI + al(t, x)lul +f(t, x), (1.12')
i-1

where the square matrix A = A(t, x) of order n satisfies the following condition:
there exist constants k1, k2 > 0 such that for almost all x E S2, almost all t E [T1, T2],
and all f E=- R"

k1IAJl < IAEI < k2I AEI , (1.14)

where the matrix A = IIa'j(x)lI is defined by

a'j(x) = (T2 - T1)-1 Za'j(t, x) dt, i, j = 1,...,n, (1.15)4and
it is assumed that condition (1.3) is satisfied for A, while conditions of the form

(1.12) are satisfied for the functions a1, a2, a3, a4, f, g, and h (relative to the matrix
(1.15)). In particular, if the matrix A = II a'j(t, x)II in (1.13) is diagonal, i.e.,

11X1(t, x) 0 II

A=

II 0 an(t, x)11

then (1.11') and (1.12') can be replaced by the equivalent conditions
n

1"(t, x, u, P)I < µXi E Xjlpjl + a1(t, x)Iul +f(t, x)),
j=1

(1.16)

n

Ilo(t, x, u, P)I < a2(t, x) E Xjlpjl + a3(t, x)I ul + g(t, x), (1.17)
j=1

n

I(t,x,u.P)'P%vExjp2 -a4(t,x)u2-h(1,x),
j=I

where it is assumed, of course, that conditions following from (1.14) and (1.15) for
the matrix (1.16) are satisfied for the functions while the remaining
functions in (1.17) satisfy conditions corresponding to (1.13).
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In cases concerning properties of generalized solutions of a boundary value
problem for equation (1.1) we shall always assume that the spaces

o.I(A; Q; E3, A) and p,.'roI(A, Q)

are isomorphic, which is equivalent to the validity of the inequality

IIUIIL2(A.E,) < ,(A, Q), Vu E c s (Q). (1.18)

Together with the previous assumptions condition (1.18) guarantees the validity of
condition (8.1.8).

In studying local properties of generalized solutions of (1.1) (a precise definition
of a generalized solution of (1.1) will be given below) we shall always assume that
the following condition is satisfied:

a'1 E L2s,2so(Q),
2
= 1,

so
+

2
= 1,i,j = I,...,n, s +

10

l and i0 are as in (1.7). (1.19)

We recall (see §8.2) that a generalized solution of problem (8.2.5) is defined as any
function u belonging to the space

*'00, E, {u E E°z°)E1 (A, Q)* u(0) = 0}

and satisfying an identity of the form

fTz(u',>1)dt+f(I'
T E,

(1.20)

dT) E

where u' is the derivative of u considered as an element of the space

.9*([7 , T2]; (H20f1(A, I))`)
In view of assumption (8.3.1) a generalized solution u of problem (8.2.5) belongs to
the space

-r'(A, Q) C C([ T,, T2); L2( 1)).

In what follows it is expedient to consider the genreal boundary value problem for
equation (1.1) with an inhomogeneous initial condition. On the contrary, because of
Lemma 8.1.8, in considering problem (8.2.5) it may always be assumed that ."V= 0
by suitably modifying the functions 1'(t, x, u, p), i = 1,...,n, and /0(t, x, u, p).
Therefore, we henceforth consider a boundary value problem of the form

(d/dx;)1'(1, x, u, vu) + 1a(t, x, u, Vu) = 0 in Q,

u=0 on E1, on Z2, on13, (1.21)

u = uo on SZT ,

where u E L2(2). A generalized solution of problems (1.21) is by definition any
function

O'Eju E {u E ' x.c'IEial(A,Q): u' E ( - Y2 Q)}"1
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equal to uo for t = T1 and satisfying the identity

r,
f 2(u',rl)dt+ ff(I'.AVil+loil)dtdx+( Xulx,71 ds=0,

249

Ti Q 3 (1.22)

V71 e co.£,Q)-

Exactly as in the proof of Lemma 8.2.1, it can be established that (1.22) implies that
for all Tl, T2 E [T1, T2)

fT2(u',71 ) dt + /1(1'. AV'q+ln)dtdx+ Xu,rds=0,
43 (1.23)

V 'Q E '241£'10) (A, Q)

We now introduce the concept of a generalized solution of (1.1) in a cylinder Q.
Such a solution is by definition any function u E *' , where

* (u e-Vztl.lo)(A, Q): u' a (--Y24, ,0)(A, Q))*),

satisfying the identity

fT2(u',ii)dt+ VrlEc . (1.24)
T,

Because of Lemma 8.1.6, the identity (1.24) is also valid for any function rl E
Co,aax(r,,r2)(Q), and hence, since Co,aaX(T2,,2)(Q) is dense in.,°2,t, to)(A, Q), also for
any function

1 EAo(0) =- oo211,,1aa0) Q).

Further, taking Lemma 8.2.1 into account, we conclude that (1.24) is equivalent to
the fact that for any r1, T2 E [T1, T2)

fT2(u',rl)dt+ ff
(1.25)¢,;.,2

drl E Apo.aax(r,,r2).

Before introducing the concept of a local generalized solution of (1.1) in a cylinder
Q, we prove the following lemma.

LEMMA 1.2. For any u E IVand J e Co,acX(T1,T2)(Q) the function of belongs to
#,(0)

PROOF. Let u e IV. In view of Corollary 8.1.3 there exists a sequence (un),
Un E C'(Q), n = 1,2,..., converging to u in''. We shall first prove that the
sequence (uj), u,, E C(.aaX(T r2)(Q)' n = 1, 2,..., converges to uj in the norm of
Ae. Indeed, taking condition (1.19) into account, we find that

IIUns - Umjll< II(un - Um4I1,1p.Q

+IIJAV(un - Um)II2,Q +IIAVi(un - Um)II2,Q

cllun - umlll,lo.Q + cIIAV(Un - Um)II2,Q

+ IIA Vill2J,21o,Qllun - UmI11,1p,Q' (1.26)
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It follows from (1.26) that the sequence (u } is Cauchy in At. It is obvious that
converges to uj in L1' (Q). From what has been proved it now follows that

( u, ) converges to u also in f, whence u E A"". To complete the proof of
Lemma 1.2 it suffices now to establish that (ui)' E Taking into account
that u' E j 0*, by (8.1.19) and (1.18) we have

(u',n)=JJ (fort+fkAkvr))dtdx, b'r1E(1.27)
Q

where fo E and fk c- L2(Q), k = 1,...,n. Setting 77 _n in (1.27) for all
r) E C'(Q), we obtain

(u', rl) = f f (goil + gkAkvn) dt dx, Vf1 E, °, (1.28)

where go =fot + gAkvt, gk =fkS, k = 1,...,n, and gk E L2(Q), k = I,...,n,
go E since by (1.19)

11gkAkv QI-.IO,Q 511gkJj2.QIjAkV02.r2s,,.Q S const, k = 1,...,n.

From (1.28) we obtain, in particular,

T 412
fT1(u', )rodt. TE.9([T1IT2))

T"

i E fjo.af

(1.29)

where (, ) is the duality between H and H*. We denote by u't the element of .dt°*
defined by (1.28), i.e., by the formula

aer(u',
iii), b'ri E r(o) (1.30)

From (1.29) and (1.30) we then obtain

(u>a )' = UV + u'E, (1.31)

where u>a, E ,lEO(o) C (7E°(0))*; this proves that (ui)' E ()r(o))*. Lemma 1.2 is
proved.

We set

{u E L 10C' (Q): t;u E *'(0), V G Co.d X(T,.T,) (Q)}. (1.32)

It follows from Lemma 1.2 that '#'C
A local generalized solution of equation (1.1) in the cylinder Q is by definition any

function u E *'j. which is a generalized solution of (1.1) in each cylinder Q = S2 X
(T1, T2), ,'2 c S2, TI < Tr < T2 < T2. It is obvious that (1.25) holds for a local
generalized solution of (1.1) in Q for any TI, T2 E (Ti, T ).

From Lemma 1.2 we obviously obtain the following assertion.

COROLLARY I.I. Each generalized solution of (1.1) in the cylinder Q is also a local
generalized solution of this equation in Q.

§2. On regularity of generalized solutions in the variable t

Here we shall prove that under the conditions indicated in the preceding section
generalized solutions of (1.1) satisfy an integral Holder condition with exponent 1/2.
An analogous result is also established for generalized solutions of problem (1.21).
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THEOREM 2.1. Let u be a generalized solution in the cylinder Q of equation (1.1)
considered under conditions (1.2)-(1.4), (1.11) - (1.13) and (1.19). Then for any
cylinder Q' = 2' X (TI, T2),12' C 0,

lim
11u(t, x) - u(t - h, x)112,Q'

= 0, (2.1)
h-0 h

where the function u is assumed to be extended outside the segment [T1, T2] according to
formula (ii) in (4.7.2).

PROOF. In (1.25) (with 1 = T1 and T2 - T2) we set

f 2(x) f t h[u(x, q + h) - u(x, q)] drl, (2.2)

where f(x) is a smooth, nonnegative function equal to 1 in S2' and to 0 outside a
subdomain 2" with if c 0" and S2" c 2. Exactly as it was proved in Lemma 8.1.27
that uh E J, we find that the function (2.2) belongs to the space

o 9 j(TI'T2)(A,Q)

We set

Just as in the proof of Lemma 1.2, we establish that u E YY(0) From (1.25) we then
obviously obtain

fTZ(u,,
1 f r [u(rl - h, x) - 14(11, x)] drt) dt = (Lu, f2vh), (2.4)

where

and

T, h -h

vh= h fr[u(,,+h, x)-u(ri,x)]dq

Lu, f2vh) = - f t [I' A V + 1 ; j 2 dtdx. 2.5)

It is easy to see that f 2Vh -+ 0 in .*'(in particular, essential use is here made of the
condition A = A(x)). Then

/lim ( Lu, f 2vh) = 0. (2.6)

Transforming (with (8.1.42) taken into account) the left side of (2.4), we obtain

fT(u',H-I (,',H-If' [u(1l+h, x)-u(11,x)]dll)dt= fiwhdx
T, 1-h SZ

TZ

T,

1 u(t)[u(t + h u t-
h f { ) - -( )] - u(t)[u(t) - u(t - h)]} dtdx,

(2.7)
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where Vh = h -If;h [u(rl + h, x) - u(rl, x)]drl. We have

h f f ii (t) -u(t - h)] dtdx = h ffu(t - h)[u(t) - u(t - h)] dt A

+h ff [u(t)-u(t-h)]2dtdx. (2.8)
Q

From (2.8), (2.5) and (2.4) it follows that

h
f uvhdx
n

T,

T,

+ h { fu(t)[u(t + h) - u(t)] dtdx

- fJu(t-h)[u(t)-u(t-h)] dtdx).

Obviously the expression in braces in (2.9) is equal to

!/

fT. f u(t+h)-u(t)dtdx- f° f a(t)[u(t+h)+ i(t)] dtdx. (2.10)
T2 -h f 2 h 2

Taking into account that u e C([TI - T, T2 + T]; L2(S2)), where T = T2 - TI, it is
easy to see that (2.10) tends to 0 as h 0. For this same reason

lim f UVh
dxjTT1

= 0.
h-0 Q

From (2.9), (2.6) and (2.11) we obtain

(2.11)

lim 1 fJ[u(t)-u(t-h)]2dtdx=0,
h-o h

(2.12)

from which (2.1) follows. Theorem 2.1 is proved.

THEOREM 2.2. Suppose that conditions (1.2)-(1.4), (1.11), (1.13) and (1.18) are
satisfied, and let u be a generalized solution of problem (1.21). Then

ni o

Ilu(t, x) - ut - h, x)112 Q
= 0, (2.13))

where the function u is assumed to be extended outside the segment [TI, T2] according to
formula (ii) in (4.7.2).

PROOF. In (1.23) (with TI = TI, T2 = T2) we set

rrl=Vh= h f h[u(rl+h, x)-u(rl,x)]drl. (2.14)

It is obvious that the function thus defined belongs to the space
of

It is obvious also that Vh 0 in A°24 10I(A, Q) = 21°, and hence, since .3f°o and
0.1

X° _ .)L°211, Q; 23, X) are isomorphic, vh - 0 in the proof of
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Theorem 2.1, we establish the equality

h
ff[u(t)-u(t-h)]2dtdx= (Lu,vh) - fnuvhdxJT2- f au1z3vhI1ds

3

+ f f u ( i ) u(t + h) - u(t)] dt dx

- ff u(t - h)[u(t) - u(t - h)] dtdx), (2.15)

where (Lu, Vh) is defined by (2.5) with = 1 in S2. Passing to the limit ash - 0 in
(2.15) and arguing as in the proof of Theorem 2.1, we obtain (2.13). This proves
Theorem 2.2.

§3. The energy inequality

From (8.3.33) (in the case m = 2) and the proof of Lemma 8.3.8 it follows that for
any generalized solution of problem (1.21) considered under conditions (8.3.26) and
(8.3.27) we have the estimate

IIUII,*, IIUII2.ct.Q +IIAVUII2.Q +IIuoIIL2(A,E,) c(II.IIc.2rAr +II'GII1,Q), (3.1)

where c = c(vo, IIaII,,,.,Q), and it is not hard to see that the constant c depends on
the norm IIaII,.,o,Q in exponential fashion. We note that in conditions (8.3.27), which
were used in an essential way in the derivation of (3.1), the indices s and so are not
limit indices.

We consider a problem of the form (1.21) under conditions (1.2)-(1.4), (1.11),
(1.13) and (1.18). The following assertion holds.

PROPOSITION 3.1. For any function u E .) '2,(/0) (A, Q), for any e > 0, and for
t1, t2 E [T1, T21

A
P

IAVuI2

dtdx - e(e, Q'''2)
,1. ,2

+IIAVuIIz.Q,,.,2) - E(E, Q,I,12), (3.2)

where

e(e, Q,,.12) = c2(Q)b2(Q)

X ( IIa2II23,2S0,Q,,,,, + IIa3II23.2J0.Qr,.r2 + IIa4112j.2sO,Q,1.f2 + 2

E(E, Q1, 12) = ie
IIgIIto.1o.Q,,.,2

+IIhII1.Q,,.,2,

dtdx

co(Q) is the constant in inequality (1.8) (for the entire cylinder Q), and

b(Q) = sup Ilb''II,.,.i,Q.
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PROOF. Inequality (3.2) is obtaiined by means of a Holder inequality with
conditions (1.11) and the fact that b(Q) increases with increasing height of the
cylinder Q taken into account.

THEOREM 3.1. Suppose that conditions (1.2)-(1.4), (1.11), (1.13) and (1.18) are
satisfied. Then, for any generalized solution of problem (1.21),

c(IIuoDI2,0 + (3.4)

where c depends only on n, v, Ia2112s,2S,Q, IIa311s,S,,,Q, IIa411S,SO.Q, lo, the constant c0(Q)
from (1.8), and b(Q).

PROOF. Setting rl = u in (1.23) and taking (8.1.42) into account, we obtain

2f u2 dxl,; + f (I' Apu + lou) dtdx + f A( uPE3)2 ds = 0. (3.5)
03X(11.1,)

Applying (3.2) to the middle integral in (3.5), we obtain

v fn u2 dxI', + (f IAvul2 dt dx + f
x(r -12)A(

uIF,)2 ds < e((u))Q 1 , + E,
3

F = min(v,1),

where e,,,12 = e(e, Q11 ,,) and E,112 = E(E, Q,,.,,) are defined by (3.3), and ((u))Q
denotes the expression

((u)) Q,,., IIuII2..'Q11.,, +IIAVuiI.Q,,.,2
x(13.r,)Au13ds.

We decompose the interval [T1, T2) into parts by points TI = Tq < TI < <

Tk-1 < Tk < Tk+1 < .' < Tv = T2, and we set Qk = SZ X (Tk-1, Tk). In (3.6) we set
t 1 = TA:,- 1 and t 2 = Tk _ I + 8, k = 1,. , . , N, where 9 E [0, Tk - Tk _ J. Then for any
k = 1,...,N

f u2(x,Tk
1

+9)dx+f",-
+aJ lAvul2dtdx+f l,ur3 ds

R ri1_1 S? otX('r6 L. 71 _1+B)

< flek((u))QA + El Tk-1) dx, (3.8)

where ek = e(e, Qk) and E = E(e, Q). From (3.8) we easily obtain

((u))Q, < 4ek((u))Q, + v E + 2 f u2(x, Tk-1) dx, k = 1,...,N. (3.9)
n

Suppose that the lengths of the intervals [ T4. -1, Tk.) and the number a are so small
that

4ek/i < 2, k = 1,2,...,N. (3.10)
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To satisfy (3.10) it suffices to set e = v/8c0'b2, where co and b are the constants in
(1.8) for the entire cylinder Q, and to require that(')

IIa2II23.2. ,.Q, 2 2' Ia3IIs.sa.Qk < 2 2' Ila4IIs.sp,Qk < 2b2, (3.11)
48cob 48cob 48co

k = 1,...,N.
It is not hard to see that under condition (3.11) the number N of points of
subdivision of the segment [T1, T2] can be taken no larger than

z

(
Ila2II2s.2sp.Q + 48c2 2 IIa3IIs.1o.Q + 48cob2

IIa4II301o.Q + 1

(see [24]). From (3.9) and (3.10) we obtain

Zk < 4zk_1 + 8E/v, k = 1,...,N, (3.12)

where zk = ((u))Q,, k = 1,...,n, and zo = Ilu(T1, X)112,0 = IIuollza From (3.10)
we easily obtain

zk < 4k(zo + 8E/v), k = 1,...,N. (3.13)

Taking into account that EI zk = ((u) )Q, we obtain

((u))Q < 4N+'IIuoll2.n + 32vzb24N+1(IIglll.lo,Q +IIhlll,Q) (3.14)

Replacing N by the above expression, we complete the proof of Theorem 3.1.

§4. Functions of generalized solutions

In this section we consider functions f(u(t, x)), where u(t, x) is a generalized
solution of (1.1) or of (1.21), and we establish some properties of such functions and
also of functions of the form f(u(t, x))rl(t, x). It is henceforth always assumed that
conditions (1.3) and (1.4) are satisfied for the matrix A = A(x).

LEMMA 4.1. Suppose that a function u(xo, x), x = (xl,...,x") is defined on a set
Q c R"+', belongs to L'(Q), and has a generalized derivative ux E L'(Q), i E
(0,1,... ,n ). Suppose the function w(u) is uniformly Lipschitz on R and continuously
differentiable everywhere on R with the exception of points u1,...,u,, which are corner
points of w. Then the composite function w o u has a generalized derivative 8(w o u)/8x,
E L'(Q), and

8x.
("0u)

w'(u)uX,,

(x0, x) E Q, u(xo, x) tt (u1.... ,uk
(4.1)

0, (xo, x) E Q, u(xo, x) E (U...... uk }.

For a proof, see, for example, [125] or [148].

COROLLARY 4.1. Suppose a function u E L'(Q) has a generalized derivative uX;,
i E (0,1-_n), and ux E L'(Q). Then for any c E R such that

meas (u (xo, x) = c) > 0
n+1

the function uX, is equivalent to 0 on (u(xo, x) = c).

(') We have used, in particular, the fact that the constants co and b in (1.8) increase as the time interval
increases.
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PROOF. Suppose c = 0 and measi+1((xo, x): u(xo, x) = 0) > 0. Let w,(u) =
max(0, u) and w,(u) = min(0, u). It is obvious that w1(u) and w2(u) satisfy the
conditions of Lemma 4.1 on the function w, and the only corner point of w1 and w2
is the point u = 0. Corollary 4.1 then follows from (4.1) and the equality u = w1(u)
+ w2(u).

LEMMA 4.2. Suppose that the function w(u) is uniformly Lipschitz on R and has at
most finitely many corner points on R. Then for any function u E f°2,(1 lo) (A, Q) the
composite function w o u also belongs to-:l°2t1,01(A, Q). If w(0) = 0, then

w(u) A, Q) for any u E,JI°Z0rtl(A,Q),

where r y x [0, Ti, y C BSI.

PROOF. Suppose first that w c= C'(R) n Lip(R). We consider a sequence
u E C'(Q), n = 1, 2,..., such that u,, - u in,,f°. It is obvious that

1l1/2

IIW(un)II"=Ilw(u,)III,1.Q+('I (4.2)

Taking into account that Iw(u,,) - w(u)I < Klu, - ul, where K =
oo, we easily establish that

lim w(u)II1.io.Q = 0. (4.3)
h-00

Moreover,

Ilw(u,,)I[* K1, (4.4)

where K1 depends on K and on In view of the weak compactness
of.)f°we extract from the sequence {w(u,,)} a subsequence (w(u,)) which converges
to some function v weakly in )f°and in It is obvious that this same
subsequence converges to w(u) strongly in Therefore, w(u) = v, so that
w(u) E X°2,(1 1,)(A, Q). If w(0) = 0, u E. 20} 1,)(A, Q), we find similarly that w(u)
E .X°2.0c r1o)(A, Q). We shall now eliminate the assumption w (=- C'(R). Let
{ ul, ... , uk) be the set of all corner points of the function w. We approximate w by
functions wa, where S E (0, 8), 8 _ min, j_ 1,....k dist(u;, u!), such that

1) w8 E C'(R) n Lip(R);
k

2) wa(u) = w(u) in R \ U 08(u,), where 88(u,) = (u E R: Iu - uj < 8 );
1

3) max Iw8(u)I s c = const > 0;
0<8<8

4) lira w8(u,) = w(us), s = 1,...,k.
By what has been proved above, w8(u) E.°211.) )(A, Q) (wa(u) E Q),

if w(0) = 0), and it follows from Lemma 4.1 that awa/ax; = w8(u)u,,at those points
of Q where u 0- {u1,...,uk ), and aw8/ax; = 0 on the set Us_1 ((t, X) e Q: u(t, x)
= us). Then for an arbitrary sequence (8m }, 8, - 0 as m - oo, 8, > 0, m =
1, 2, ... , we have

U(J8m - (j8 j = llws-
- 08.111.1o.Q + JI AV (wa, - w8m )112.Q

2cjHuIII.,,, ,.. + iIA V U112,q, ,,,1 (4.5)
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where qn,n = {(t, x) E Q: 0 <lu - u,l < max(Sn, 8.), s E (1,...,k)). Since the
right side of (4.5) tends to 0 as n, m - oc, the sequence { wsm) tends to a function w
in J Y. But then some subsequence of this sequence converges to w a.e. in Q. Since it
follows from the construction of wa that

lim w8(u(t, x)) = w(u(t, x))
8-0

at any point (t, x) E Q where u is defined (i.e., for almost all (t, x) E Q), we obtain
the equality w = w(u) a.e. in Q. This implies that

w(u)E °241.1a)(A,Q) (w(u)e.ll°2')r,a)(A,Q)).

Lemma 4.2 is proved.

LEMMA 4.3. Suppose that the function w(u) has a derivative w'(u) satisfying a
Lipschitz condition uniformly on R, while its second derivative w"(u) is continuous
everywhere on R with the possible exception of finitely many points at which w"(u) has
a discontinuity of first kind. Assume that condition (1.19) is satisfied. Then for any
u E YY= (u E °2p, 1.)(A, Q): u' E ( °24I i)(A, Q))*) and any 'n E Co.asax(r,.T2)(Q)
the function w'(u) iq belongs to the space .,°(0), the function w (u) belongs to C([TI, T2 ];
L2(12)), and for any TI, T2 E [TI, T2)

f T2(u', w'(u) n) dt = f w(u)'q dx - f T2- f 72(w(u), rl') dt. (4.6)
72 Q 72 72

PROOF. We note first of all that, by Lemma 4.2, w'(u) G°z. (1, (,)(A, Q). By
Lemma 1.2 it then follows that w'(u)rl E X°t0>. Further, taking into account that
u E C([TI, T2]; L2(S2)) and using the inequality

/Iw(u(t)) - w(u(t'))l < KIIu(t) - u(t')I(Iu(t)I +Iu(t')I + K2), (4.7)

following from the conditions imposed on w, we conclude that w(u(t, x)) E
c([TI, T2]; L2(SE)). We now prove (4.6). Since u E YY, by Corollary 4.7.2 there exists
a sequence (un ), un E CI(Q), n = 1, 2, ... , such that

un - u in A, u,, - u' in.,t°* as n - oo. (4.8)

It is obvious that for any n E CI(Q) and any TI, T2 E [TI, T2]

Jf w(un)i,dt dx = jf w'(un)u.,,gdt dx - f w(un),gdx(71, (4.9)
{{{333

2

where Q7,,T2 = w x (Tt, 72). We rewrite (4.9) in the form

f72(un,w'(un)71)dt
=

faw(un)'Qdx17,
-J'(w(un),il')dt. (4.10)

,

From the estimate

Iw(un) - w(u)I< Kliun - ul(Iunl +lul + K2), (4.11)

which is proved in the same way as (4.7), since un -+ u in 7Y, it follows that
w(un) - w(u) in C([T1, T2]; LI(0)) and a fortiori w(un) - w(u) in LI(Q). In
particular, from this it follows that as n - oo the right side of (4.10) tends to the
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right side of (4.6). We shall prove that the left side of (4.10) tends to the left side of
(4.6). Because of the convergence u,, - u' in .a£°*, for this it suffices to show that

w'(u)'r) weakly in A. It follows from the proof of Lemma 4.2 that
w'(u,,) - w'(u) weakly in .-£°. Then the first term on the right side of the equality

(Av[w'(un)-w'(u)]) 71

+(A (4.12)

tends to 0 weakly in L2(Q) as n oo. Since the convergence w'(u)rl w'(u)rl in
to the of of to

in that the side of tends to 0
in L2(Q). Taking (1.19) into account, we have

jjAV [to'(u) - w'(n)]711I2,Q <IIAV1III2 .23o.Qjjw'(un) - w'(u)IIi1o.Q. (4.13)

Taking into account that w'(u,,) - w'(u) in L'i°(Q), we conclude that the left side
of (4.13) tends to 0 as n -+ oo. Lemma 4.3 is proved.

LEMMA 4.4. Suppose that the function w(u) is the same as in Lemma 4.3, and,
moreover, that w'(0) = 0. Then for any function

u E *-°Z' = (u E,X°: u' E.*' ), where.Y=-d°2°IEjot(A,Q),

the function w'(u) belongs to.X°2,0?'t,,)(A, Q) f1 C([TI, T2]; L'(1)), and for any T, -r2 E

[Ti, T2]

f'2( u', (,)'(u)) dt = f w(u) dxI,V. (4.14)
Ti

a

PROOF. Lemma 4.4 is proved in the same way as Lemma 4.3, and the proof is even
simpler since here n = 1.

LEMMA 4.5. Suppose that the function w(u) is the same as in Lemma 4.3, and
suppose that f o r the function u E Y Y = ( u E J Y: u' E A"), where.JE°= ' °2(1. 1 ) ( A , Q),

there exists a sequence (u ), u, E C'(Q), n = 1, 2,..., converging to u in #'such that
o'(u) = 0 in a neighborhood of the lateral surface 4 x (TI, T2). Then w'(u) E . '(0j,

w(u) E C([TI, T2]; L'(SZ)), and for all TI, T2 E [TI, T2] equality (4.14) holds.

PROOF. Lemma 4.5 is proved in exactly the same way as Lemma 4.4.

LEMMA 4.6. Suppose that the function w(u) is the same as in Lemma 4.3, and
suppose that for the function u E I/'=- (u E dr: u' E ,Y*), where.JL'= ,lL°2c1, 1,,)(A, Q),
there exists a sequence ( u ), u,, E CI(Q), n = 1, 2, ... , converging to u in *'such that
w'(u) = 0 in an (n + 1)-dimensional neighborhood of the set S C 80 x (TI, 71)). Let
rl E Co{anx(r,, r2))\s(Q) Then w'(u)rl E J Y(0), w(u) E C({TI, T2]; L'(0)), andfor any
TI, T2 E [TI, T2] the equality (4.6) holds.

PROOF. Lemma 4.6 is proved in exactly the same way as Lemma 4.3.
The next assertions follow in an obvious way from Lemmas 4.3-4.6.
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LEMMA 4.7. Suppose that conditions (1.2)-(1.4), (1.11)-(1.13) and (1.19) are satis-
fied, and that the function w(u) is the same as in Lemma 4.3. Then for any generalized
solution (local generalized solution) of (1.21) in the cylinder Q for any T1, T2 E [T1, T2]

(any T1, T2 E (T1, T2))
T

f w(u)rIdxIT, - f 2(w(u), n') dt + J1 [1'(t, x, u, AVu)
T,

3

+I(t, x, u, Apu) Apriw'(u) + l'(1, x, u, AVu)w'(u),q] dtdx = 0,

V71 E Co,aaX(r,,r,>(Q) (4.15)

LEMMA 4.8. Suppose that conditions (1.2)-(1.4), (1.11), (1.13), and (1.18) are
satisfied, and that the function w(u) is the same as in Lemma 4.4. Then for any
generalized solution u of problem (1.21), for any T1, T2 E [T1, T2],

fu w(u) dxI,; + ¢f [I AVuw"(u) + low'(u)] dtdx +f ul,k ds = 0,

(4.16)

where w'( uI E,) = w'(u)IX,.

LEMMA 4.9. Suppose that conditions (1.2)-(1.4), (1.11), and (1.13) are satisfied, and
let u be a generalized solution of (1.1) in the cylinder Q. Assume that for the functions
u(t, x) and w(u) all the conditions of Lemma 4.5 are satisfied. Then for all T1, T2 E

[T,, T2]

f w(u) dxlT, + f [I' AVuw"(u) + lo'w'(u)] dt dx = 0. (4.17)
tz r=

LEMMA 4.10. Suppose that conditions (1.2)-(1.4), (1.11)-(1.13), and (1.19) are
satisfied, and let u(t, x) be a generalized solution of (1.1) in the cylinder Q. Assume
that for the functions u(t, x), w(u), and ij(t, x) all the conditions of Lemma 4.6 hold.
Then for all T1, T2 E [T1, T2] the equality (4.15) is satisfied.

REMARK 4.1. The function w"(u) appearing in identities (4.15)-(4.17) is obviously
not defined on the set Uk_1{(t, x): u(t, x) = uk}, where the Uk, k = 1,...,N, are
the corner points of the function w'(u). From the proofs presented above (see
Lemmas 4.1-4.6), however, it follows that in these identities k=
1,...,N, are understood to be zero (since 8w'(u(t, x))/ax; = 0 on the sets {(t, x):
u(t, x) = uk ), k = 1, ... , N). This is to be kept in mind below.

We now introduce the standard cut-off functions used below. Let the numbers
h, h', 8 and 8' be such that 0 < h' < h < 1 and 0 < 8' < 0 < 1. Suppose that
xo E R', to c- R and numbers p > 0 and r > 0 are fixed. We set

=i(Ix-xol,h',h,

1 for Ix - xol < ph',

ph -lx - xoj
ph-ph, forph'<Ix-xol<ph,

0 forlx - xol>_ ph, (4.18!
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1

9' 6
(rO)z -(to

- t)
)r1 - r1(t, to, , r -

(r9)2 -(rO')2

0

for to - (rO')2 < t,

for to -(r6)2 < t < to -(r9')2,

fort < to -(rd )2;

(4.19)

I fort < to + (re)2,
z

_ 0t, to, 0', 0, r) _
(4) +(to - t)

for to +(rO')2 < t < to +(rO)2,
(re)2 -(re')z

0 for t >, to +(r9)2.

(4.20)

It is obvious that J E CI(R"), O(R), and 0 1 in R", E = 0 outside the
ball Jx-xo1 <rh,0 <,q<1 inR,71 =0fort<to-(rO)2,0<<1,inR, and

=0forI> to+(rd)2.
Thus, if Q(p,1) ° Ko(xo) x [to - r2, to] together with its closure is contained in Q,

then the function 40 = Stzq belongs to the class
C0I4aaX(r,.

'2))VOr,(Q)-

Similarly, if Q(p,) = KK(xo) x (to, to + r2] together with its closure is contained in
Q, then

Zn a Co4auX(r,.r2))vaT,(Q)

It is obvious also that for the functions (4.18)-(4.20) we have

VC < P(h1 h')' 1711
< r2(021 e,2)' In! < r2(021 #,2)(4.21)

Because of the use of the letter 71 to denote cut-off functions, below in identities of
the form (4.15) and (4.16) we shall use the letter 0 to denote a test function. If the
conditions of Lemma 4.7 are satisfied, then for any generalized solution of (1.1) we
have by Lemma 4.7

f fT2(to
SI Ti

+
¢ f

[I' AVuw"(u)4) + I' Ap4)w'(u) + dtdx = 0,

) E CO.atOX(T,.rz)(Q), TI, T2 E [Ti, T2}.

Setting 0 = j2? or 4 = 4 = i2, i in (4.22), we obtain

w(u)j2rl dxjr, - f
T2f

JK,,h(xo) Ti K,k(xo)

(4.22)

+
T2f

2jijw'+!0,w'j21Jdtdx=0, (4.23)fT,
K (xo)
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where TI, T2 e [to - r2, to], and

f w(u) 2iidxI, - f
T zf w(u)t;2'q,dtdx

Kph( vo) TI Koh(x11)

+f,f
[I' Apuw"t2n + I' Api;2 Nw' + l0w'i;2q] dtdx = 0, (4.24)

TI Koh( 'o)

where TI, T2 E [to, to + r2]. For what follows it is convenient to redefine the function
1J for t > to and the function for t < to, taking these functions equal to 0 for such
values of t. Denoting by 1l either of the functions rl and , we can write each of these
equalities in the unified form

w(u) 2it,dtdx
fKoh(-tio) TI Koh(xo)

+ f 'f [1' Apuw" f,2t + I' A V 2i;itw' + 1, W,f 2it] dt dx = 0, (4.25)
Tt K ,(X1)

where Tl1 T2 E [to - r2, to + r2]. It is obvious that in the case it = 71 equality (4.25)
gives (4.23), while in the case it = t it gives (4.24). It is also obvious that (4.25) also
holds for ij = I in [to - r2, to + r2].

LEMMA 4.11. Suppose that (4.22) holds for a function

u E *(A, Q) ° {u E=- -Y241, ,,)(A, Q): u' E-= (Ye241,10) (A, Q))

Then for any a > 0 the transformation

x = (x - xo)/a, t = (t - to)/a2 (4.26)

takes u(t, x) into the function u(t, x) = u(to + alt, xo + ax) which belongs to the
space YY(A, Q), where A = A(x) = A(xo + ax) and Q is the image of Q under the
mapping (4.26); the function u satisfies the identity

f w(u)4d1jTT - ft2f w(u)-dtdz
1

i
*:

+
f f [I' Apw"(u) +i' A '4 w'(u) + to w'(u)] dt dx = 0,

TI

E Co.aax(fi,.T,)(Q), (4.27)

where 0 is the image of SZ under the mapping (4.26),

T I = T1a2 + to, T2 = T2a2 + to,

u, p) = al'(to + alt, xo + at, i, a-,P),

lo(t, z, u, p) = a2lo(to + alt, xo + a. , u, a-lp),
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and the junctions l' and ! satisfy the conditions

n

x, u, P )j '< A Y- l p'! + at (i, z )I uI + /(t, X )
I-]

llo(t+ X+ F4. P)l '< a2(t, x) E IP,I + a3(z, x)IuI + g(t, x),
n

r-1

IpI2-aq(t,x)u2-h(t,x),

where

(4.28)

µ=µ, v=v, 11(t,z)=aat(to+a2t,xo+az),
f (t, X) = a f (to + a2t, x0 + a.), a2 (1, X) = aa, (to + a2l, x0 + ak ),

l3(t, X) = a2a3(tp + a2t, t) + ag), g(t, .C) = a2g(t0 + alt, X0 + ag),

dq(t,z)=a2a4(to+alt,xo+az), h(t,z)=a2h(to+a21,xo+a.x).

For any p>, 1, po 3 I and D C Q

11,i1 2,
a22 a3, aq, f 2, g, a2 n/p2/pu Ilal'a2, a3, aq, 2+ g' hl

IIa'jli2s.2su,b - a (n/2s+2/s,)II a" II2i.2s,,.D

Ilb''II,,.,,.o = a Ilb'IIIr;.i .D' (4.29)

where b is the image of D under the mapping (4.26), a'1(.) = a"(xo + a.), b'"(.) _
b''(.xo + err), IJa'il = A, and Ilb"ll = B =- A-'.

PROOF. The results of Lemma 4.11 are established in an obvious way by changing
variables according to formula (4.26) in the integrals appearing in (4.22) and the
norms of the right sides of (4.29).

§5. Local estimates in L P -P,'

Suppose conditions (1.2)-(1.4), (1.11) and (1.12) are satisfied. In Theorem 5.1 we
establish conditions on the coefficients in inequalities (1.11) and (1.12) and on the
elements of the matrix A ensuring that generalized solutions of (1.1) belong to the
space L1p« °(Q).

THEOREM 5.1. Suppose that(2)

a 2 , 1/s +2/! = 1, 1/so + 2/10 = 1,

f22,It EL °°(Q), (2-2a)/1 +1/d=1, (2-2a)/lo+1/do=1, (5.1)

gEL^,,",,,(Q) (2-a)/!+1/m=1, (2-a)/1o+1/mo=1,

(2 ) We note that the pairs of indices I. 1 can he different for the different relations in (5.1); it is only
important that each such pair satisfy conditions of the form (1.7). However, for brevity we shall assume
that the pair 1. 1 in (5.1) is the same for all the relations indicated.
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where a E (0, 1], and 1 and l0 are the same as in (1.7). Suppose also that(3)

K
i 101,min(2'

2a ))'

+ 1,=1, o+
1

S 1K

K0

where 1, lo, 1, lo, a are as in (5.1).

(5.2)

Then any local generalized solution u of (1.1) in the cylinder Q belongs to the space
where Q' is any subdomain of Q such that Q' e 9 x (TI, T2). For any

cylinder

Q(,,,) - Q(P,P=) = KP(xO) X t0 _ P2, 10]

which together with its closure is contained in Q

p-(n°/i+2a/lo)JI
u111/°3o/a,Q(P/2) 5 c( P (n/t+2/(D)1iuII(,(o,Q(P) + 1), (5.3)

where I = 1/K, 10 = 10/K, 1 and 0 satisfy condition (1.7), and the constant c depends
only on the structure of the equation and on p.

PROOF. Let u be a local generalized solution of (4.1) in Q. Let Q(P, C Q. Taking
Lemma 4.11 into account, we first assume that p = 1, to = 0 and x0 = 0. As w in
(4.22) (with p = 1, to = 0 and x0 = 0) we choose the function

w(u) = 2
[T(u)]2,

u 9,

'P(u) =
qNq-tu -(q - 1)NQ
u = (u2 + E2)1/2 - e,

where e > 0. It is obvious that

du u d2u e

du u2 + e2 ' du2 (u2 + e2)3/2 ,

and also that

0<u<N,
u>, N,N>1,q>, 1,

d z

IduI< 1'
0<du2<u,

du-
dU-w,_ w iqq )2+9)gp,d21u

(5.5)
du2

.

Taking into account that the functions u u(u), u -> 4p(4) and (u) - T'(ii) are
continuously differentiable and uniformly Lipschitz and that u -"(u) is continu-
ous everywhere except at the point u = N where it has a discontinuity of first kind,
we conclude that for the function w(u) defined by (5.4) all the conditions imposed
on w in Lemma 4.3 are satisfied. Therefore, the choice of w indicated above in (4.22)

( ` ) I t follows from (5.2) that the indices s and so satisfy the conditions

1/s + 2/! = 1, 1/s, + 2/1, = 1,
while for ! = //K and !0 = 10/K all the conditions of (1.9) hold with

( K - I ). p
-

2 a[K -(I +(K - 1)/(1 - 1/2))]a=a 1t I-//2 !o I-all+(K-1)/(1-1/2))
In particular, for these values of a and 0 the following conditions are satisfied: a, ft e (0,1) and
a/Ia + (1 - a)$/2 < Z.
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is legitimate. We then have the equality

!-T Tz

2 dtdx
2JK,dxjr-T,

.

2 fr Kn

T

+ f 'f. (I'- AVuw"(u)1;2n + I' 1'(u)2) dt dx = 0,
r1 h

r,, r2 G [-h2, 0], (5.6)

where a and n are defined by (4.18) and (4.19), and Kh = Kh(O).
It is obvious that w" > 0 and

_ f ((2q - 1)/q)T,2 for u < N, (5.7)

for u N. (5.8)

Using (1.11), (5.7), (5.8), and the inequalities

Idu/dul < 1, Id2u/duzl < 1/u,

setting v = qp(u), and taking into account that

v.Y, _ p'(u)(du/du)u.Y,,

we

f
from (5.6) that

2 1
v2 2 1 dxl;2 + Vf r 2'f 'A VvIf 2n dt dx

K,, Tl Kh

r
_ f 2 f v2
2 Ti Kh

+f
T,f

[(2q - 1)ga4v2 2 + 2qq 1 h9z'2t2n + 2trµjAVvj JAVflvkn
T, Kh

+2qa,v1jAVjjj7j + tra2IAVvJvE2n

+ga3vTn + 9V9":2tlJ dt dx. (5.9)

It is not hard to see that
,V'(u) < qv'-I/9 (5.10)

Then, taking (5.10) into account and applying the Cauchy inequality, we deduce
from (5.9) that

2 f dx+T, + 2 f f JA VvI2j2n dt dx
K, Tj Kh

2

< 2 ff V2f 2jq'jdt dx + 2 n + 1) f v f v2JAVl;j2n dt dx
Q(hi 1 I Kh

+ (n + 1)q 2
f

rz f
(a2 + a2 + a3 + a,)v2J2ndtdx

T, rI Kh

+2q2 f f (f2 + h)v2-2/gjzndtdx + q f f gv2-1/gzndtdx, (5.11)
Q(k) Q(e;

S

where v = min(v,1) and rt, r2 E (-h2, 01.
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We decompose the segment [-1,0] into parts by points to = -1 < t1 < <

tk < th < < 0, and we set Qk = Kh(O) X (Tk_1, Tk). In (5.11) we set
T, = tk ., and T2 = tk _ , + 0, where O e [0, tk - tk _ 1 ]. Then for any k = 1.....m

f v2T 2i dxI +f" f IAv(v )I dtdx
K,, z,., Kh

f (v
V/,7-)2dxIr"rA-1

+
2-(n + 1)q2 2ffa(vWr dtdx +J, (5.12)

Kh V QA

where a = a, + aZ + a3 + a4, and J is defined by

[2(!!-P-!J = v ff

v

dx

ff (r2 + h)v2-2/gt271 dtdx +
zg

11gv2-IIq 27l dt dx. (5.13)
Qrh) Q(h)

Applying the Holder inequality and (1.8), we estimate
2

2
2

ff av2 dt dx < jjajj3..,o.QkIIv4,/III ,1o.Qk < cob2IIaIJ,,sn.QkIIvtY rt II.v.,(Qk), (5.14)
QA

where co is the constant in (1.8) for Q = Qk, and it depends only on n, r,, r01,1,10;

b = b(Q) = sup JJb'311r,,ro;.Q

while _,t°(Qk) = Y°2(A, Qk) (so that IIv VII2,.,QA +
CIA v(v¢/)IIZ.QA ). From (5.12)-(5.14) we now easily obtain

2f (vWr)2 dxI
r-r'

+ v (n + 1)g2jjajjA,aQAIIvjV67 IIQA + 2J, k = 1,...,m. (5.15)

Suppose the lengths of the intervals [tk-1, tk] are so small that (for fixed q)

(4/v)(n + 1)g2jJaJJ ,s,,Qk < (1/2), k = 1,...,m. (5.16)

For (5.16) to be satisfied it suffices to require that

(8(n + 1)q2 YO.

It is easy to see that under this condition the number m of points of subdivision of
[ 1, 0] can be taken to be no more than

1 + 8(n +

From (5.15)and (5.16) we then obtain

zk < 4zk_1 + 4J, k = 1,...,m, (5.17)

where we have used the notation Zk = II v rII.2 (Qk) Taking into account that
0 for t = -1, we obtain

2

cQh) < 4"'+IJ, (5.18)III V'I II
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m 1 +
8(n + 1)q2 1

dull
,

,,.4n,.
I, J

We now estimate the integrals appearing in J. Applying the Holder inequality and
taking condition (5.2) into account, we have

IJ C,2IA
dt

d._(
IIA DSIIzas.C>(h)IIU I,i. r,,. Q,n,

Q,h,

. .. lhl. - 11

2 IIVII r.r,Q,,,(h-h')
/ 2112, Q 2II

t
1x dx , - h,,

1lullz1.

Q(h)

(5.19)

where A = (E )2)1/2, 1= 1/K, 10 = 1o/K, and 1, 10 and rc are the indices in
condition (5.2). We note that 2 < 1 < 1 and 2 < 10 < 10 (see the footnote to (5.2)).

Applying the Holder inequality, the Cauchy inequality, and (1.8), and assuming
that

f2
, h E L(1/(2-2/g)) '[i0/(2-2/g)l'(Q) g E L(I1(2-I/q))'.(i(,/(2-I/g))'(Q)

(5.20)

where, as always, p* denotes the index conjugate to p, i.e., 1/p + 1/p* = 1, we
obtain

4q2 ff (r2 + h)v2-2/ge2q dt dx

Q(h,

4q- // 2-2/q

Y
IIU hill//(2..2/q)1'4lu/(2`2/q))*.Q(h,

I

(Q(n,) + cllf 2 +
hll(qr/(2--2/q))'/lu/(2-2/q))'.Qih,,

4 IIUSY'+

II2

2
d2 1/gt27 dt dx < q

II0SV'
ll2-I/q

Ilgll(//(2 - I/gn'1iu/(2- 1/gn'.Q(h,SS v

(5.21)

2 2q (5.22Il(Qin,l + Cllgll(r/(2 I/g)l'l/n/(2 )/q))'.Q(hi )

where the constant c in (5.21) depends on n, v, q, r,, r0i, 1, 10 and b(Q). From (5.18),
(5.13), (5.19), (5.21), and (5.22) we obtain

+ c2, (5.23)II°SY't Ilx''(Q(e,) < L1 ,
11V112

where c1 depends on n, v and llAllz,.z5 .Q h while c, depends on n, v, q, r,, rir, 1(Q),
and the norms 1112 + hll and Ilgll. Again taking the inequality (1.8) into account, we
obtain

llvlll lo.Q(h, -- h `3 h' 11VII1.1-,Q,h, + c4, (5.24)
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where c3 = y c( cob, c4 = y c2 cob, co depends on n, n, ro,, 1, l0 and 1, 10 is any pair of
indices satisfying (1.7) (with 1 replaced by 1 and to by 10). Since li.mN_,°gp(u)-uq for
almost all (t, x) E Q(i), by the Lebesgue theorem we have

lim IIVIIf.r°.Qrh, =
II-ugll1.1°.Q" (5.25)

provided that

uq E L1,UO(Q(h)) (5.26)

In this case from (5.24) we find by Fatou's lemma that i E and

1/q} _,
419+Il lI

27)(5, (

h
Ca1.g1°.Q(h)uh' )

.

Let M be the least integer such that

aI/M < K, (5.28)

where a and K are the numbers in conditions (5.1) and (5.2). In (5.24) we set

h = hk = 1/2 + 1/2k, h' = hk = hk+l, k = 1,...,M, (5.29)

where M is the number in (5.28). It is obvious that hl = 1 and h'ti, > 1/2. We shall
prove successively that for the values

q=qk=a-k/M, k=1,...,M, (5.30)

conditions (5.20) and (5.26) with h = hk and the corresponding indices k = 1,...,M
are satisfied. Indeed, since a E (0,1), it follows that ak/M >,a, k = 1,...,M. From
this it follows easily that the indices conjugate to l/(2 - 2/qk) and 1o/(2 - 21qk),
k = 1,...,M (it is obvious that 2/qk = 2ak/M) do not exceed the indices conjugate
to l/(2 - 2a) and l0(2 - 2a) respectively, i.e., the indices (!/(2-- 2a))* and
(l0/(2 - 2a ))* in (5.1), while the indices conjugate to 1(2 - 1/qk) and l0/(2 - 1/qk)
do not exceed (1/2 - a)* and (l0/(2 - a))*, i.e., the indices m and m0 in (5.1).
Thus, for any k = 1,... , M conditions (5.20) are satisfied.

Further, in view of (1.8) the function 01 = ul/0`'' belongs to since

1/a'/'' < K and R E L1'°(Q1) for any I and 10 satisfying a condition of the form
(1.7), and, in particular, for l = 1 = lK and 10 = to = 10K, so that u" E L' °(Qh ).
Thus, for k = I conditions (5.20) and (5.26) are satisfied for q = q1 = 1701,'M. From
what has been proved it follows that 01 E i.e., uVq' E Taking

(5.28) into account we conclude that uq2 =
U1/02/i4'

1/02/N E L"°(Qh2). Repeating these
arguments, we successively establish that uu1/°'/M E PAM),... I ul/° E
Repeating this argument once again (with k = M), we conclude that u1/° E
Li.i°(QhM. ), and, in particular, ul/O E L'1°.1010(QI12), since hM+l = hM > 1/2.
Iterating the estimate (5.27) for q = qk, h = hk and h' = hk, k = 1,...,M, we obtain

Ilulli/n.i°/°.Q.12 , c(Ilull"'°,Q, + 1). (5.31)

Suppose now that p > 0 and (to, x0) E Q are arbitrary but such that QP(t0, xo)
c Q. Applying Lemma 1.1, on the basis of what has been proved we find that
u E and

P (n°/it 2c/i°) 1l ull/°.I°/°.Qo z < C(p (n/(+2//°)IIufIL(o.Qo + 1). (5.32)
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Letting e -b 0 in (5.32), we obtain (5.3). It is obvious that the constant c
in (5.32) depends only on n, P, a, so, p, IIA1125.2so.Q,' IIaIIS,S,,,Q,. b(Q,)
sup,.,-1, and the constant co in inequality (1.8) for the cylinders Q(h),
h E [1/2, 11. Theorem 5.1 is proved.

In Theorem 5.1 the parameter a is subject to the condition a E (0, 11. We now
consider the case a = 0. For this case it is obvious that Theorem 5.1 implies the
following result.

THEOREM 5.2. Suppose that the conditions of Theorem 5.1 are satisfied in the case
a = 0. Then any local generalized solution u of (1.1) in the cylinder Q belongs to

for any ! and !o satisfying condition (1.7), a > 0, and Q' C Q. For any
cylinder Q,, Qo C Q,

p-(n°/1+2a/10)11
Hi/a,1a/a.Q,,'_ < c(p

(n/1+2//a)llull,.,o.Q. + 1), (5.33)

where 1= 10 = to/x, and the constant c depends only on the structure of the
equation 1, !o, a, and p.

§6. Global estimates in LP-P"

Suppose that conditions (1.2)-(1.4) and (1.11) are satisfied; below conditions
stronger than (1.13) will be imposed on the coefficients in (1.11). We suppose also
that the following condition (which is stronger than (1.18)) is satisfied:

for any u E All-ld( '2(A, Q) and e > 0

f Au2ds <e
fT2

f IAvul2dtdx + cfT2 f u2dtdx, (6.1)
03 X (T, . T2) T, S? t2

where T) , T2 E [ T1, T2 ], and c, is a constant not depending on u.

Applying the familiar Sobolev imbedding theorems, we can easily prove that
condition (6.1) is certainly satisfied if A E x (T), T2)), where K > r/(r - 2)
and r is defined by (7.2.9). We assume further that the initial function uo in (1.21)
belongs to L21°((l).

THEOREM 6.1 Suppose that the conditions indicated above and also condition (6.1)
are satisfied. Then for any l' andp) satisfying condition (1.7) any generalized solution u of
problem (1.21) belongs to L110, 016(Q), and the norm IIUII7/a,1a/a,Q is bounded by a
quantity depending only on the structure of the equation and the data of problem (1.21).

PROOF. In view of Lemma 4.8 equality (4.16) holds for any function w satisfying
the conditions presented in Lemma 4.4, and for any r1, T2 E [T1, T.J. We choose as w
in (4.16) the function defined by (5.4). It was established in the proof of Theorem 5.1
that this function satisfies all the conditions required of w in Lemma 4.3. But then it
also satisfies all the conditions of Lemma 4.4, since the condition w'(0) = 0 is
obviously satisfied. Therefore,

2 f Jf (I' Apuw"(u) + 1ow'(u)) dtdx + f Auq,q'ds = 0, (6.2)

where Q,,,,2 =a x (t1, t2). Using (1.11), (5.7), (5.8), (5.10), the inequalities

Idu`/dul < I, 0 < d2u/due < u-1,
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and condition (6.1), and setting v = q(u), we deduce from (6.2) that

2 f v2 dxl f', + v jf
lAvvl2

dt dx
1. 2

269

+vn a2IAVv4v + ga3v2 + ggv2-'/q) dt dx

+ejf IAVv[2 dt dx + ct f v2 dt dx. (6.3)
2 2

Applying the Cauchy inequality and choosing a suitable e, we obtain

2 f v2dxI,; + 2 rf JAvvl2dtdx
n f

11.82

c, jf av2 dt dx + 2g2Jf hv2-21gdt dx + gv2-11gdt dx, (6.4)
'I ', 1,.1 f,. 22

< f [q(2q - 1)a4v2 + q(2q - 1)hv2-2/q

.22

where a=az+a3+a4+ cr.
Decomposing the segment [T1, T2] into sufficiently small parts and arguing exactly

as in the derivation of inequality (5.18) in the proof of Theorem 5.1, we obtain

II41I"°(Q) < a°'J +IJUIII2.0,

where

'°(Q) = . °.''(A, Q), m < c(n, q v)(IIaIIj°so.Q + 1),

J = c(q)(f hv2-2/gdtdx + fJgv2-1/gdtdx).

Using estimates of the form (5.21) and (5.22) (with Q(h) replaced by Q), and (1.8),
we obtain

IIUII1.io.Q <

.n, (6.6)+ Ilslli i2
I14o4122

where c depends on n, q, v, Ilall3 0'°,Q, b supi.j_,....,. and the constants
in (1.8), and I and 1o satisfy condition (1.7). Of course, in deriving (6.6) it was
assumed that the norms of h, g, and u$ on the right side of (6.6) are meaningful. In
view of (5.1) this is certainly the case if q = 1/a. Passing to the limit as N - oo in
(6.6), we then conclude that u'/° E L1.1°(Q), i.e., u E and

114111/°.1°/°.Q < C(Ilhll e°.Q + 11gl1..mo,Q) + 1140112/a.LI. (6.7)

Letting a tend to 0 in (6.7), we obtain Theorem 6.1.
The next result obviously follows as a corollary from Theorem 6.1.

THEOREM 6.2. Suppose that the conditions of Theorem 6.1 are satisfied with a = 0.
Then any generalized solution of problem (1.21) belongs to the space for
any 7 and 0 satisfying condition (1.7) and any a > 0.
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REMARK 6.1. Results analogous to Theorems 6.1 and 6.2 can also be proved for
generalized solutions of (1.1) (rather than of problem (1.21) as in Theorems 6.1 and
6.2), assuming in addition to the conditions of these theorems that such solutions are
bounded on (8Sl x (TI, T, )) U IZT. In §9 we give a proof of an estimate for
ess supQlul for generalized solutions of (1.1) which are bounded on asl x (TI, T, ).
This proof as well as the proof of Theorems 6.1 and 6.2 can be modified without
difficulty to obtain estimates of the solutions indicated above in the norms of
L P.P°(Q) as well. We leave this to the reader.

§7. Exponential summability of generalized solutions

THEOREM 7.1. Suppose that conditions (1.2)-(1.4), (1.11) and (1.12) are satisfied as

well as the condition

(a'i)2, a?, a2, a3, a4 E 1/s + 2K/l = 1. 1/s0 + 2K/I0 = 1,

K E 1, min !
'
`° );( (

f 2, g, h E L"''(Q), 1/s + 2/! = 1, 1/s° + 2/lit = 1,
!2 2a

where !, !0, 1, lot, a are as in (1.7). (7.1)

Let u be a local generalized solution of (1.1) in the cylinder Q. Then for any cylinder

Q,= K,,(x0)X[t0 p2,t0],QpC Q,

jfexP(y (7.2)

where ! = l/K and 1° = !°/K, for some y, ct and c, depending only on the structure of
the equation and on p.

PROOF. Suppose first that p = 1. to = 0 and x0 = 0. We denote by v the same
function as in the proof of Theorem 5.1, i.e., v = p(u), where

(u)= f0 .0<u<N,N>1,q>1,uu=(u2+E)I12-e,E>0, (7.3)
gN"'u -(q - 1)Nw,Ti > N.

It was shown in §5 that (5.11) holds for the function v. The integral f,- fh. a2 -fl dt dr
we here estimate simply by the Holder inequality:

f,

J av2C2.i) dt dx < jJajJ.,,,.QhJJvIl t.to.Qh. (7.4),

Estimating the remaining terms on the right side of (5.11) in exactly the same way as
in the proof of Theorem 5.1 and applying (1.8) and (1.21), we obtain

+ i

IIvW II hh )2 Ilvlli.1n.Q,Hi + c,q' (7.5)Clg

where the constants cl and c2 depend on the same quantities as the analogous
constants in (5.23) with the exception of the index q; the dependence on this index is
indicated explicitly in (7.5). We note that by (7.1) a condition of the form (5.20),
which is used in deriving (7.5), is satisfied for all q > 1. Using (1.8). we deduce from
(7.5) that

1141-1.-Q, < h
c3h'

IwIIi.t,.Q, + c4q". (7.6)
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Applying the Lebesgue theorem and taking into account that by Theorem 5.2
condition (5.26) is satisfied for any q >, 1, by letting N tend to 0o in (7.6) we obtain

II u1I
(h c3

hq

'

)I/9
coq. (7.7)

In (7.7) we set

q=q5=K', h=h5=2+2h'=h'=h5+1, s=0,1,..., (7.8)

and we letp(,) = 1K' and pas) = 10 K2, s = 0,1,.... From (7.7) it then follows that

C4K5, S = 0,1,....
(7.9)

Iterating (7.9), we obtain

where

We set

S

CSIIUII1,lo,Q, + C6 F, Kk, S - 0,1,..., (7.10)
k-0

C= 4c --"-'(2K ErkK_4, C C Cc5 ( 3) ) 6
e 4 S

P2 - min( p(s),po(s)) = KSIn1n(1,10). (7.11)

From (7.11) we then obtain

II uIID,.,Qh,., < CBIIUIII.I,.Q, + C9P5+11 (7.12)

where c7 = c7(l, 1O), cg = csc7 and c9 = c6c7/(K - 1)min(1, 1O). For any p
min(/, 1O) there is an index s such that

P5 = min(/, 1O)K2 p < min(/, IO)K$+1 = P,+1-

From (7.12) it then follows easily that for anyp 3 min(l, 10)

4 C8IIUIII.1o.Q, + CIO p, (7.13)

where CIO = c9K.

Letting a tend to 0 in (7.13), we obtain

4 c8IIu1I!.lo.Q, + clop,p > min(/, 1O). (7.14)

From (7.14) it follows easily that for sufficiently small y > 0 the series

E (YIuml)mdtdx (7.15)
m-0iz m?

converges. Indeed, applying (7.14), we find that

YmIIuII"' QVZ <
L.+

Cll(IIlIII./o.Q. + m)F "Ym (7.16)
n1-0 m'1 m-0

MI

where c11 depends on c8 and CIO. From (7.16) by means of Stirling's formula we
easily obtain

00
11U11

(2c11YIIuflI.10.Q1).,' +
(2c e)m. (7.17)

I 1 uY )
M-0 m.

111-0
m. m-0
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setting y = we obtain an estimate of the right side in (7.17) in terms of
exp(2e)-'IIufl,,r,,.Q, + 2. Thus, from (7.16) and (7.17) we have

x
ff exp(ytui) dt dx = f f yml dt dx < exp(2e) 'iIuJJt./,,.Q, + 2. (7.18)
Q1 2 n1=0 2,/2

Consequently, (7.2) has been established for p = 1, to = 0 and xo = 0. The general
case easily follows from this by Lemma 4.11. Theorem 7.1 is proved.

THEOREM 7.2. Suppose that conditions (1.2)-(1.4), (1.11), (7.1) and (6.1) are
satisfied, and let u, e L'(2). Then for any generalized solution u of problem (1.21)

f f exp(ylu(t, x) I) dtdx < c, (7.19)
Q

where y and c depend only on the structure of equation (1.1) and the data of problem
(1.21).

PROOF. Theorem 7.2 is proved just as Theorem 7.1 on the basis of inequality (6.3)
with estimates of the form (6.5) and (6.6), which are valid for all q 3 1 taken into
account.

REMARK 7.1. An estimate of the form (7.19) can be established under condition
(7.1) also for generalized solutions of (1.1) in a cylinder Q which are bounded on
(8l x (T,, T, )) U UT (see the proof of Theorem 9.1).

§8. Local boundedness of generalized solutions

THEOREM 8.1. Suppose that conditions (I.2)-(1.4), (1.11), and (1.12) are satisfied as
well as the condition

(a")2,af,a;,a3,a4,f2,g,h E V`6 (Q), s + 1K = 1, s, + K = 1, (8.1)
v

where K, 1, and l are the same indices as in (5.1).

Then any local generalized solution of (1.1) in the cylinder Q belongs to the space
L°`(Q') (i.e., has finite where Q' is any subdomain of Q such that

C Q. For any cylinder Q, = Ko(xo) x [to - p2, to], QP C Q.

ess sup Jul < c( p ("/1+2/111) 11 uII r.I,,.Q, + kv ), (8.2)
Qo/2

where

k,, = p2-n/s-2/s,,llf 2 + hllss,,.Q, + p2 -n/s (8.3)

and the constant c depends only on the structure of (8.1) and on p.

PROOF. Let u be a local generalized solution of (1.1) in Q. Let Q. be a cylinder
such that QP C Q. We suppose first that p = 1, to = 0 and xo = 0. We consider the
function

a>0, (8.4)

where k, = 11f2 + hll :2Q, + Ilgils.s,,.Q, It is obvious that

du u d2u (k, + E)2 du-I<
<

d2u I-10-<-
du u2 +(k, + E)2 ' dug atu2 +(k, + E)2]

1 du dug U
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From (8.1) we easily obtain

II'(t, X, U, P)I < µY- IP,I + a1(t, x)a,

Ilo(t, x, u. P)I < a,(t, x) E IP,I + a3(t, x)u,
i=1

1'(t, x, u, P) -P >-
vIPI2

- a4(t, x)u2,

273

where v, µ and a, are the same as in (1.11), a, = al + k;'f, a3 = a3 + ki'g,
a4 = a4 + k1 2h, and a1, a3, a4 E since

11ki
2 fZII_,..S,,.Q, S 1, Ilk 'glls.s,,.Q, < 1, Ilki 2hlls.su.Q, < 1.

It is obvious that the function

1 uQ,0<u<N,
= 2 92(u) = qNQ'' (q - 1)NQ u > Nt

N > 1, q >- 1,

(8.6)

where u is defined by (8.4), satisfies all the conditions of Lemma 4.3 regarding the
function w. This is proved in the same way as in the proof of Theorem 5.1 it was
proved that the choice of w according to (5.4) was legitimate. In analogy to the
derivation of (5.9) we then establish the inequality

2 JK
dxl + P f 1 fK IA VvIZ dt dx 5 2 f szfK v2f2lrlrldt dx

h h h

+ f
-h'

fh (2trµlA Vvl IA V>;Ivfn + 2gaiv2JA V>;Il;r! - Ia21IA Vvju 2 q

2g2a4v2t2,q) didx, T E(-1,0], (8.7)

where v = q>(u). Applying the Cauchy

inequality

and (4.21), we derive from (8.7)
that

f (vW
)2dzl,

s+ p f* ( IAVvI2
2

J2ndtdx
Kh 2 -h2JKh

2 n l1 o 4nµ
1 'J 2 2

(h - h')2
f

fhz Kh l v
+ ) : (a ) + 1J

r.i-
v dtdx

+n
v

I
q2 f0 f Uv2dtdx,hZKh

where T E (-1,0), v = min(1, v) and a = a1 + a2 + a3 + a4. Applying the Holder
inequality to the integrals on the right side of (8.8), we obtain

(vc.)2 dxl
r-,

+ 2 f f IA VvI2>a2rl dt dx
2 jr,, 2 h2 Kh

c(n,v,)A ) q2 2(IIA112s.2sa,Q,+IIaIIt.to,Q,)IIvhIf,to.Qh, (8.9)
(h-h,)
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where

A = ( (a'")2) , 1/I = K/I,

From (8.9) it follows easily that

c(n, v,µ)(IIAIIZ.,.2,,,.Q, +IIaIL,..,,,.Q,)

, (8.10)x
(h

qz
h )`-'

Applying (1.8), we deduce from (8.10) that

IIVIIi.r,,.Qh M, h
g

h' IIuIIr.r,,.QR, (8.11)

where 1. 1 is any pair of indices satisfying (1.7), and

1/2
Jf 1 = +llalls..Q,) sup Ilh' llr:,r,,.Q , (8.12)

j- 1.

where the constant c depends only on n, P. µ, r;, r0;, 1. and 111. Since it follows from
Theorem 5.2 that Ue E for any q, letting N tend to oo in (8.11), we obtain

q lie

(h - h' ) IjUlle1.g1 .Q,, (8.13)

We set

q=q., =K`, PI.,1=IK`, p00..1=

1h = h =
2

+ 2-(s+'), h' = h; = h,s = 0,1,.... (8.14)

From (8.13) it then follows that

lluOIP,,.u.pq,.,,.Q,,,., ( Ks2s+?)`/ (8.15)

Iterating (8.15), we obtain

llullp,.I)'P (4 )E`° K `(2K)ZF-" llullr.r:,.Q, (8.16)

Passing to the limit ass -* oo in (8.16), we conclude that ess supQ u < + oc, and

esssupu -< (4.i )E,_°. 4(2K)zA LK Allullr.r,,.Q,. (8.17)
QV,

Recalling that U = (u 2 + (k) + t)2)1/2, we easily deduce from (8.17) that

p pess sup Iul < ff " ' (2K)Y-°'R' ' (ilullr./,,.Q, + k1 ). (8.18)

Suppose now that p, t, and x0 are arbitrary but such that Qp(t,1, x(1) C Q. In view
of Lemma 4.11. from (8.18) we obtain

ess sup lul < (4.)fP
K

A (2K )t' K 2

1

\ 1/2
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where kP is defined by (8.3), and 7 P has the form
1/2

AP'
AII2,.2so,Qp

+c(n, V, tl, rl, r0 , 1, lo) IIpn/2s+1/so 1-n/2s-1/so

X l sup n/r,+2/r0, ' (8.20)

and it follows from (8.1) that 2 - n/s - 2/sp > 0, so that kP --> 0 as p - 0.
Theorem 8.1 is proved.

§9. Boundedness of generalized solutions of the boundary value problem

THEOREM 9.1. Suppose conditions (1.2)-(1.4), (1.11), (8.1), and (1.6) are satisfied, as
well as the condition

aZ, a3, a4, g, h E (Q), 1/s + 2K/1= 1, 1/se + 2K10 = 1, (9.1)

where K,1 and 10 are the same as in condition (5.1).

Then any generalized solution u of problem (1.21) has finite esssupQ(uj, and
ess sup QIuI < c, where c depends only on the structure of problem (1.21).

PROOF. Let u be a generalized solution of problem (1.21). In view of Lemma 4.8,
for any function w satisfying the conditions presented in Lemma 4.4 and any
T,, T2 E [T,, T2] the equality (1.16) holds. As the function w(u) in (4.16) we choose
the function defined by

w(u) = (1/2)[q,(u)]2, ii = (u2 +(k +
e)2)1/2 - k -

u
fpq, k+e<u<N,

q'( ) = qNq-tu -(q - 1)Nq, u >, N,
N > (k + e), (9.2)

where q >- I and

k = IIhhI s
112,Q

+ IIsIls.so.Q +
Iluoll..:l,

e > 0. (9.3)

Taking into account that

w'(u) =

w"(u) = q,(u)T'(u)(d2w/due) + ([p'(u)]2 + r(u)J 9°"(u)(d`u/du)2, (9.4)

exactly as in the proof of Theorem 5.1 we establish that w(u) satisfies all the
conditions of Lemma 4.3. But then all the conditions of Lemma 4.4 are satisfied for
this function, because of the obvious equality w'(0) = 0. Therefore,

2f [(-)]2d1 +ff [i' AVuw"+low']dtdx+ f (9.5)
f T, o

Taking into account inequalities of the form (8.5), formulas (5.7), (5.8), (5.10), the
inequalities

Idu/dul < 1, 0 < d2u/due < u-1,
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and condition (6.1) and setting v = p(u), we deduce from (9.5) that

vz dxI,-, -F v f f lAvvlz dt dx
2 Ju

T

ftT ft(2gza4v'- + VazlAVvly + ga3v2 ) dtdx + el fr ftIAVvIzdtdx

+c, fTfvzdtdx+Z(k+e)zgmeasS2, (9.6)
r, u

where e, > 0, and in deriving (9.6) we have taken into account that v2 < (k + e)2q
for t = 771 (see (9.3)). Applying the Cauchy inequality and choosing a suitable
e, > 0, we deduce from (9.6) that

T

2 fu
f)2 dxl`

T +
2

fr fnlA Vvlz dt dx

z 1

fr ny' + qa3 + c'/4 I vz dt dx + (k + e)24 meas St. (9.7)
1 I

From (9.7) we easily obtain
z

llvllz.oo.Q +ljAVvlli,Q < 2(n
v 1)q

llajIs.sa,Qllvllr,r..Q +(k + e)zgmeasSl, (9.8)

where v = min(v,1) and a = a4 + a3 + a? + c,,/4.
Applying (1.8) and taking into account that

2y (k +k S2 = 1 f 2gd d( + e) meas J t xe)
T, TT2 1

z/r gl-z/rj2 z< (uzyd d1 - TT
llu llt meas ,)xT, f JTz .)( z

(9.9)

we deduce from (9.8) that

2(n 1)
2bz +9 l

' -2112(co t.t,,.Qllall=,S,,.Qllvl
)meas

-z/rx(Tz - Ti) "lluQlji.r,,.Q+ , (9.10)

where 1, !o is any pair of indices satisfying (1.7), and co and b are the constants in
(1.8). We note that in view of Theorem 6.2 the integral jJQ uz9 di dx exists for any
q > 1. Hence, in (9.10) we may pass to the limits as N - oo. Applying the Lebesgue
theorem and Fatou's lemma, we deduce from (9.10) that

l ju9ll i,ro,Q < Kgll uQllr.y,.Q, (9.11)

where
r

K = K(n, v, µ, meas 12, T2 - Ti, r;, ror, 7, lo)I sup IIb'jiIr,.r,,,.Q)llalj.r..s,,.Q
r.j=1....,n

It is obvious that (9.11) implies

11 uljKg1..g1..Q < K1/gq'/9IIullr.r.,Q, (9.12)
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where K > I is the number in (9.1). Setting q = q, = K v = 0,1,... , in (9.12) and
letting p11.1 = K'l and p,(,) = K"lo, v = 0, 1,..., we obtain

v = 0,1,... (9.13)

Iterating (9.13) as m -> oo, we find that

IIiiJJPf ,.,,.v,wm, ,.Q < K£°K K£°°` (9.14)

Letting m tend to 0o in (9.14), we conclude that ess supQ u < + oo, and we obtain

ess sup ul cK L.. ` 'K£"°` (IIuIl1.1,,.Q + Ilhlis $,.Q + 1IgII3.$o.Q + IIuoiL,n ). (9.15)
Q

Letting e tend to 0 in (9.15) and taking (6.7) with a = 1 into account, we obtain

ess supIul < c(IIhiis +IIgii3.3o.Q +IIuoii.,a), (9.16)
Q

where c depends on the constant in (9.15) and (6.7) and also on meas 2 and T. - TI.
Theorem 9.1 is proved.

§10. The maximum principle

In this section it is assumed that all the conditions of §1 related to consideration
of global properties of generalized solutions of equation (1.1) are satisfied.

DEFINITION 10.1. We say that a function u E *Y= (u E aV: u' E ,,°'} does not
exceed a number M on (82 x (TI, T2)) U Str, if for each s > 0 there exist an
(n + 1)-dimensional neighborhood 923 of (a g x (TI, T2)) U S2TI and a sequence
(u, }, us E &(Q), s = converging to u in *such that u3 < M - 1/s,
s = 1, 2,..., for almost all (t, x) E 9113.

It obviously follows from Definition 10.1 that the condition u < M on

(8S2 x (T1, T2)) U '2T,

for the function u r.7t° implies that u < M + e on (8S2 x (TI, T2)) U S2T, for all
e>0.

THEOREM 10.1. Suppose that the conditions indicated above are satisfied as well
as condition (9.1). Let u be a generalized solution of (1.1) such that u < M on
(82 x (TI, T2)) U S2T-. Then for almost all (t, x) E Q

u(t, x) < M + ck, (10.1)

where c depends only on the structure of the equation, T2 - T1, and meas SZ, while the
number k is defined by

k = (IIa3II3.s,,.Q + IIa4IIs.3n.Q)IMI + IIhJJ' ",Q + IISII3,3o.Q. (10.2)

PROOF. We suppose first that M = 0. We consider the function

w(u) _ (1/2)[-p(u) - k9]2,

u2 k < u < N,
4P0) = gNq-lu _(q - 1) NQ, Ti >_ N,

N> k, q>, 1, u=max(0,u)+k,

(10.3)
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where k = IIhllS,;,Q + 11811,,.,,,,Q + e, E > 0. It is obvious that the functions a --> T(u)
and et -+ qq'(u) are continuously differentiable and uniformly Lipschitz, while u
)"(u) is continuous everywhere except at the point u - N where it has a discontinu-

ity of first kind. It is also obvious that

{0. u < 0.
w(u) (q(u)-k")p'(u)

(10.4)a>0:

w'(u)
0. U < 0,={(.p -k1)g2"+p'2, u>0,u*N.

where w'(u) is continuous everywhere and w"(u) is continuous everywhere except at
u = 0 and u = N - k. Morover, w"(u) is bounded on R. From what has been said it
then follows that w satisfies all the conditions of Lemma 4.3 (with W '(u) having two
corner points u = 0 and u = N - k). Let u be the generalized solution of (1.1)
considered in Theorem 10.1, so that u < 0 on (812 x (TI, T,)) U 12TH. From Defini-
tion 10.1 and the form of w'(u) it then follows that there exists a sequence (u,, ),
u E C'(Q), n = 1, 2,..., converging to u in 7Y such that w'(u,,) = 0 in some
neighborhood of (8S2 x (Ti. T,)) U OT. From what has been proved it then follows,
in particular, that for the functions u(t, x) and w(u) all the conditions of Lemma 4.5
are satisfied. Therefore, by Lemma 4.9, for all T E (T,, T, )

fnw(u)dxl, _+fT fn(I' AV u,"+low')dtdx=0,TE(T,,T,], (10.5)

where w(u) is defined by (10.3), and in deriving (10.5) from (4.17) we have also
taken into account that, because u < 0 on OT 1. (10.3) implies the equality w(u) = 0
for t = T1.

We now observe that conditions (1.11) imply that on ((t. x) E Q: u > 0)

11

I/u(t, x, u, P)l < a,(t. x) E IP,I + a3(t. x) Ts,
(10.6)

I'(t,x.U.P)'P3vIPIa4(t.X)112-

where v and a2 are the same as in (1.11), and where a3 = a3 + k -'g, a4 = a4 + k `'h,
and a3, a4 E Ilk-'gll'.,,,.Q < I and Ilk_2hl1.,.,,,.Q < 1. Taking (10.6), (5.7)
and (5.8) into account and setting v - Ip(u). we deduce from (10.5) that

1fn(v-k')2dxl' '+
vfr, fulAVvldidx

< T f (2g2a4v- + T a2IAVvIv + ga3v-') dt dx. T E (T1. T, )-,
, n

(10.7)

From (10.7), exactly as in the proof of Theorem 9.1 (the part following (9.6)), we
obtain

IIuIl
<,jrE"'.- K""0'_'jIulj,.r,,.Q, m = 1,2,.... (10.8)
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whcreJr has the same form as in (9.11) and u = max(0, u) + k. Letting m tend to 00
in (10.8), we conclude that ess sup u < 00 and

ess sup U c(II u+ II Q + IIh1/2IIS.so.Q + IISIIS.:o.Q), (10.9)
Q

where u+= max(0, u) and c
We estimate the norm IIu+IIr.10,Q Since it is now already known that u(t, x) has

finite ess sup uQ (so that in (10.3) as q)(a) it is possible to take q7(R) - uQ for u 3 k
and q = 1), from (10.7) we obtain

! u+dxl''+vf*iJAVu+l2dtdx
n T,n

fTf (2a4(u++ k)2 + Fna2lAVu+IIu++ ki+ a3(u++ k)2) dtdx,
T, n

z E(T1, TZ]. (10.10)

From (10.10) we easily obtain

IIu+II2..,Q, +J' f IAvu+I2dtdx < c,(ISEIk2 +IIaII=.so.Qllu++ kII ,,0.4,), (10.11)
r, n

where Q, = S2 x (Tl, t), and cl depends on n and P. Applying (1.10) with a suitable
f > 0, we deduce from (10.11) that

IIu+(t)IIZ.n +f' f0IAVu+I2dtdx cll k2 + f' fnu+ dtdxl (10.12)

where c, = c1 Meas 2, and c2 depends on c1, IlaIIS.SQ.Q and other quantities de-
termined by the constants co and b in (1.8). Applying Gronwall's inequality, we now
obtain

2

IIu+II2 .x.Q +IIAVu+II2.Q < clk2e`2(T=-TI). (10.13)

From (1.8) we now find that

k 10 14,IIuII1,i,.Q < c )( .

where c depends on c1, c2, T2 - TI, meas 12, and the indices I and 10. From (10.9) and
(10.14) we obtain

u(t, x) < c(IIh111 /0.4 +IIgIIS.so.Q) (10.15)

Thus, Theorem 10.1 has been established in the case M = 0. We now eliminate the
assumption M = 0. Let u = u - M, M = const * 0. It is obvious that u < 0 on
(8 I x (TI, T, )) u SZT . It is easy to see that a is a generalized solution of the equation

u, -(d/dx;)P(t, x, 4, vu) + 10(t, x, u, vu) = 0, (10.16)

where

(t,x,u,p)=1(t,x,i+M,p),10(t,x,4,p)=10(t,x,I+M,p),
and, (10.16) has the same structure as (1.1); in particular, the conditions

I(t, x, u, p) x, Ap), (10.17)
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are satisfied, where

1'(t, x, u, P) = I'(t, x, u + M, P), l;,(t, x, u, P) = la(t, x, u + M,P),

as well as the inequalities

-2a442-

Ilo(t x, u, P)I c a2 IPd + a,Iil + R, (10.18)
I=1

where h = 2a4 M 2 + h and j = a,I MI + g. From what has been proved we obtain

fi(t, x) 5 c'k', (10.19)

where c' _ V c and

k' = (lla3N,.,,,.Q + 11a4II,.,,,.Q)IMI + Ilhll.',2 Q + IIgII.,..,,,.Q.

Returning to the old variable in (10.19), we obtain (10.1). Theorem 10.1 is proved.

COROLLARY 10.1. Suppose that all the conditions of Theorem 10.1 are satisfied, and
let u be a generalized solution of (1.1) such that m < u < M on (all x (T1. T2)) U S2To
Then for almost all (t, x) E Q

m - clk1 < u(t, x) S M + c,k,, (10.20)

where c1 and c2 depend only on the structure of equation (1.1). T2 - T1, and meas SZ,
while the numbers k1 and k2 are determined by

kl = (lla3ll,.,,,.Q +IIa4II,.,,,.Q)lml +IlhIl ;,.Q +lIglI,_..,,,.Q,

(10.21)
k2 = (I1a3ll+lla4ll)IMI +IIhil1/- +Ilgll.

PROOF. Since the function u = -u, where u is a generalized solution of (1.1). is a
generalized solution of a completely analogous equation for which exactly the same
conditions are satisfied as for (1.1), together with the estimate u(t. x) < M + c1k1
proved in Theorem 10.1 we also have the estimate -u(t, x) < -m + c,k,. Inequali-
ties (10.20) obviously follow from these estimates. This proves Corollary 10.1.
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