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Preface

After the appearance of Baker’s fundamental papers ‘Linear forms in the
logarithms of algebraic numbers’ in Mathematika in 19668, Baker, Coates
and others obtained upper bounds for the magnitudes of integer solutions
of some polynomial diophantine equations in two unknowns and their p-
adic generalisations. The finiteness of the numbers of solutions of these
equations had been proved by Thue, Siegel, Mahler and others much
earlier. The publication of Baker’s papers ‘A sharpening of the bounds for
linear forms in logarithms’ in Acta Arithmetica in 1972-5, and van der
Poorten’s p-adic analogues of it, led to completely new results on
exponential diophantine equations such as the work on the Catalan
equation by Tijdeman and its p-adic analogue by van der Poorten. Since
the numerous publications on exponential diophantine equations are
scattered over journals and no thorough introduction is available, we have
decided to write a tract on these results.

We were together at the University of Leiden in 1982-3 for one year. A
first draft of the manuscript was written during this period. The subsequent
work of finalising the manuscript was carried out by correspondence spread
over a period of about two years. The stay of one of us (T.N.S.) at the
University of Leiden was supported in part by the Netherlands
Organisation for the Advancement of Pure Research (Z.W.O.).

We are very grateful to K. Gyory for his generous help in preparing the
manuscript. Lemma A.16, corollary A.7, theorem 1.4, coroilary 1.3, theorem
5.5, theorem 7.2, theorem 7.6 and corollary 7.4 were added or modified on
his advice, and he assisted in writing the proofs of these results as well as the
changes entailed in other proofs. He read the manuscript with care and
brought to our notice several inaccuracies. Without his help, an account of
associated literature in the notes of several chapters would have been less
complete. In particular the account of decomposable form equations in the
notes at the ends of chapters 5 and 7 is due to him.

We are grateful to A. Makowski, A. Pethd, A. Schinzel, C. L. Stewart

iX
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and B. M. M. de Weger for their remarks on the manuscript. We thank T.
Bakker, S. Wassenaar and D. B. Sawant for the excellent work of typing the
manuscript and Cambridge University Press for publishing it in Cambridge
Tracts in Mathematics.

T.N.S.
RT.



Introduction

Chapters 1-12 deal with applications of estimates of linear forms in
logarithms of algebraic numbers to prove the existence of effectively
computable upper bounds for the magnitudes of the solutions of
exponential diophantine equations. For the convenience of the readers, we
begin with chapters A (on algebraic number theory), B (on linear forms in
logarithms) and C (on recurrence sequences) which contain all the required
preliminaries.

The simplest exponential diophantine equations are those with fixed
bases and variable exponents, the so-called purely exponential equations.
Examples of questions leading to such equations are (i) which powers of 2
and powers of 3 differ by 1? and (ii) which powers of 2 are Fibonacci
numbers? The equation corresponding to (i) is

2" -3"= 41 in non-negative rational integers m,n (1
and (ii) gives, with a=4+13./5, B=4-13./5,

1 1
73 o™ —% p"=2" in non-negative rational integers m,n.  (2)

Such equations are studied in chapters 1, 3 and 4. Chapter 1 deals with
equations x+y=z in algebraic integers x,y,z from a fixed algebraic
number field such that the ideal [xyz] is composed of prime ideals from a
given finite set. This covers (1) and (2). In chapter 2, a remarkable
consequence of Baker (1972) is worked out, namely that, for given non-zero
integers A, B, C, D and under suitable conditions, the equation

Ax™+By"=C in rational integers m,x,y with |x|>1 3)
and, more generally, the equation
Ax™+ By"=Cx"+Dy" in rational integers m,n, x, y
with m>n, |x| >1 4
1



2 Introduction

implies that m is bounded by an effectively computable number which
depends only on 4, B, C and D. Note that (3) and (4) are no longer purely
exponential equations. Chapter 3 deals with non-degenerate binary
recurrence sequences. In chapter 4, recurrence sequences of higher order are
investigated. For example, it is proved that elements of a non-degenerate
recurrence sequence of order 2 or 3 are distinct after an effectively
computable stage. Further it is shown in an effective way that a non-
degenerate recurrence sequence of order at most 4 contains only finitely
many terms equal to zero.

Chapters 5-8 concern polynomial equations and their p-adic analogues.
A polynomial equation is an equation

f(x4,...,x,)=0 in algebraic integers x;,...,x,€K

where f is a given polynomial and K is a given algebraic number field. Let
f(X,Y) be a binary form (homogeneous polynomial) with rational integer
coefficients and with at least three pairwise non-proportional linear factors
in its factorisation over the field of complex numbers. For a given non-zero
integer k, Thue (1909) proved that the equation

f(x,y)=k in rational integers x, y (5)

(now known as Thue’s equation) has only finitely many solutions. This is an
immediate consequence of Thue’s fundamental inequality on the
approximations of algebraic numbers by rationals. His argument is non-
effective: it fails to provide an explicit bound for the magnitudes of the
solutions. Baker (1968b), by way of his fundamental researches on linear
forms in logarithms, gave an effective version of Thue’s theorem (see
chapter 5). Consequently it was possible to give effective versions of earlier
results on the solutions of superelliptic equations,

f(x)=y™ in rational integers x, y ©6)

where m>2 is a given rational integer and f is a given polynomial (see
chapter 6). By the natural p-adic analogue of Baker’s theory of linear forms
in logarithms, it was possible to show in an effective way that equations (5)
and (6) have only finitely many solutions in rational numbers with
denominators composed of primes from a given finite set (see chapters 7 and
8). By combining results from chapters 2, 5 and 7, we give the necessary
conditions under which equations (3) and (4) have only finitely many
solutions m, (n,)x, y (see chapters S and 7).

Equations (3) and (4) are examples of general exponential equations; the
equations with a term or factor x™ where m > 2 is a variable rational integer
and x is a variable (rational or algebraic) integer. Chapters 9—12 are devoted
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to such equations. In chapter 9, we again turn to recurrences to show thata
non-degenerate binary recurrence sequence has only finitely many perfect
powers. Thus there are only finitely many perfect powers in the Fibonacci
sequence. A characteristic result of chapter 10 is that if f(X) is a given
polynomial with rational integer coefficients and with at least two distinct
roots, the equation

f(x)=y™ in rational integers m>1,x,y>1 7

implies that m is bounded by an effectively computable constant. In
combination with the above-mentioned results on equation (6), we obtain
general conditions under which (7) has only finitely many solutions.
Chapter 11 deals with the Fermat equation

x"+y"'=z" inrational integers n>2, x>0, y>0, z>0.

Under various conditions, for example when y —x is composed of fixed
primes, it is shown that there are only finitely many solutions. Finally,
chapter 12 contains a proof that the Catalan equation

x"™—y*=1 inrational integers m>1, n>1, x>1, y>1

implies that m, n, x and y are bounded by an effectively computable
constant. There are various results on related equations such as

" "—1 -1
X 1=y" and X Vv

x-1 x—l=y—1

in rational integers m>2, n>2, x>1, y>1

In all cases we follow the same route as described for equation (7): we apply
estimates of linear forms in logarithms to a general exponential equation to
show that the exponents are bounded. Then we need to study only finitely
many polynomial equations.

The main theme of this tract is the study of exponential diophantine
equations. We have therefore dealt only with those polynomial equations
which are used in the studies of these exponential equations. Important
topics such as the effective results of Baker and Coates on integer points on
curves of genus 1, and the effective results of Gyo6ry and others on
decomposable form equations in several variables, are omitted. For the
same reason, Runge’s method and the applications of the Thue-Siegel-
Roth-Schmidt method to diophantine equations are not included.

Our style is rather leisurely. We have not rushed to give a proof of the
most general result in a chapter; we first deal with particular cases so that
the reader may take the strain of the proof gradually. However, in certain
cases we have proved a generalisation by a method different from the
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particular. In chapter 5 we follow the original method of Baker, but in
chapter 7 we apply results from chapter 1. The proofs in chapter 9 also differ
from the proofs of more general results in chapter 10. In most cases, we end
with the most far-reaching results available in the literature and, in several
instances, we go even further. In order to make the exposition less technical,
we have rarely worked out explicit bounds for the magnitudes of solutions
of the equations.

Each chapter is in three parts. The first part contains the statements of all
the results to be proved in the chapter. The second part, ‘Proofs’, contains
the proofs of these results. The third part, ‘Notes’, gives an account of the
developments related to the results of the chapter. Thus an account of the
results of important topics which we could not include in the text is
available in the Notes. Lengthy results stated in full in the Notes are often
put in italics to indicate where they begin and end.

An important feature of the results in the tract is that upper bounds for
(the heights of) the solutions can be effectively computed. We have to add
that, in the case of a general exponential equation, the bounds are usually so
large that in practice it is not possible to check all the remaining values on a
computer to determine all the solutions. In the cases of purely exponential
equations and polynomial equations, the situation is different (see Stroeker
and Tijdeman, 1982). We speak of ‘computable numbers’ in place of
‘effectively computable numbers’, a term which is frequently used in
literature. In numerous cases, computable numbers appear which depend
not only on integer parameters but also on algebraic numbers, polynomials,
number fields, regulators, sets or sequences. However, there are only finitely
many algebraic numbers and polynomials of given degree and height. There
are only finitely many algebraic number fields of given degree and
discriminant. The regulator of an algebraic number field is bounded by its
degree and its discriminant. The sets § and & in the theorems are
determined by a finite number of given (algebraic) numbers. The algebraic
recurrence sequences are determined by the algebraic recurrence
coefficients and the initial values, hence by a finite set of algebraic numbers.
Thus, in all cases, it is possible to make the computable numbers depend on
a finite set of positive rational integer parameters (degrees, heights,
discriminants). By computable number, we always mean a monotonic
positive-valued function of these parameters which, moreover, can be
calculated by following the proof (compare the remark after corollary A.5).
For other conventions, we refer the reader to the list of Notation which
follows. Finally we note that a reference with number (1986) which is to
appear may be published in 1986, 1987 or later.



Notation

Below we give a list of notation and terms which are often used in the text.
References in square brackets on the right-hand side are to the chapter and
paragraph where more information can be found.

A:=B
B=:4

computable constant

Sets and sequences

N
+ N

(=i =)

K*
algebraic number field
Ok

S

A is defined to be B.

A real and positive constant
which can be effectively computed
by following the given proof.

The (rational) integers.

The positive elements of Z.

The rational numbers.

The real numbers.

The complex numbers.

The non-zero elements of the field
K.

Finite field extension of Q in C.
[A,§1]

The algebraic integers of an.
algebraic number field K.

All integers composed of
P1,---»Ds, that is, all non-zero
rational integers which have no
prime divisors different from
P1s-.-» D Here py,...,p, are given
prime numbers, not necessarily
the first s primes. If s=0, then
S={-1,1}.



S
S, etc.

S-integers

& -units

recurrence sequence
Fibonacci sequence
Lucas sequence

Lehmer sequence
fundamental set of units
independent set of units
integral basis

for almost all n

Functions and mappings

Notation

The positive elements of S.

An analogue of S in algebraic
number fields. [1, Theorems]

[7, Notes]

[1, Theorems]

[C.81]

[C.§2]

[C.§2]

[C.§2]

[A, §4]

[A,§4]

[A,83]

For a sequence of positive integers
n such that the number of
elements of the sequence at most
x, divided by x, tends to 1 as

X —00.

(Let K and L be algebraic number fields,aand bin Z (orin Oy),ne Z,xeR,
aeK, « and ¢ ideals in 0, 4 a prime ideal in Oy)

empty sum
empty product
00

alb

alb
a|b
(a,))
a,b)

d(n)

0

1

0

There is a ¢ in Z (or in O) such
that b=ac.

It is not true that a|b.

a"|b,but a"*! yb.

Greatest common divisor of a and
b (of the principal ideals generated
by a and b). [A, §2]

Least common multiple of a

and b.

The number of integers a with
{a,n)=1and 1<a<n.

The number of distinct prime
divisors of n.

The greatest prime factor of n, but
PO)=P()=P(-1)=1.



Notation
o)
square free
m-free

7(x)

trivial (function)
non-trivial (function)
binary form

height (of polynomial)

deg(f)

non-proportional (functions)

minimal defining polynomial (of «)
degree (of o)

denominator (of )
height (of a)

deg(o)
H(a)

o
[L:K]
N L/K(a)

N(o), Ng(a)

7

The greatest square-free divisor of
n, Q0)=0()=0(-1=1

Not divisible by p? for any

prime p.

Not divisible by p™ for any

prime p.

The number of prime numbers
not exceeding x. (By a prime
number we shall always mean a
positive prime.) We have

) <X for x>2. (N.1)
log x

(cf. Rosser and Schoenfeld (1962),

formula (3.6)).

(Function) being identically zero.

{Function) not identically zero.

Homogeneous polynomial in two

variables.

Maximal absolute value of the

coefficients (of the polynomial).

Degree (of the polynomial f).

{Two functions) with non-constant

ratio.

[A,§1]

Degree of the minimal defining

polynomial of a.

Smallest positive integer n such

that no e 0.

Height of minimal defining

polynomial of a.

Degree of a.

Height of a.

Maximal absolute value of

conjugates of a. [A, §1]

The degree of the field extension

L/K.

The norm of « with respect to the

field extension L/K. [A, Notes]

Ng/q(@), the field norm of a with

respect to K. [A,§1]



[o]

ord ()

order (of recurrence sequence)
binary recurrence sequence
ternary recurrence sequence
z-multiplicity (of {u,,}2- o)

multiplicity (of {u,}2- o)

total multiplicity (of {u,,}m- o)

Theorems and techniques
unique factorisation theorem for
ideals
Fermat’s theorem for ideal theory
Liouville-type argument
transferring secondary factors
estimating linear forms in
logarithms
Thue-Siegel-Roth(—-Schmidt)
method

Notation

Degree of K.

Class number of K. [A, §3]
Discriminant of K. [A, §3]
Regulator of K. [A, §4]

There exists an ideal ¢ in O such
that /= ac.

a"| 4, but not &"*!|4.

Greatest common divisor of < and
4. [A, §2]

Norm of « (with respect to K/Q).
(A, §2]

The principal ideal in K generated
by a. (If € O then [a] =0.)
[A.§2]

[C.§1]

Recurrence sequence of order 2.
Recurrence sequence of order 3.
The number of indices m with
Up=12.

The supremum of the z-
multiplicities taken over all z.
[C,§3]

The number of pairs (m, n) with
m>n and u, =u,.

[A,§2]
[A,§2]
[A,§1]
[1, Proofs]

(B]

[Schmidt, 1971b]



A. Results from algebraic number
theory

§ 1. For thischapter we refer to Hecke (1923) and Pollard (1950). Let « be an
algebraic number. By this we shall always mean that « € C and « is algebraic
over Q. Then a is a zero of a unique non-zero polynomial of minimal degree
(the so-called minimal defining polynomial)

apx*+ayx* 4 tay

where ag, a4, ..., a;€Z satisfy ay>0 and (ag, a4, ..., a;)=1. Write
H(o)=max(|ao|, |a,|,- .., |ad)
and
deg(x)=4d.

We call H(«) the-height of o and deg(a) the degree of a. Notice that H(x)=
H(1/o), deg()=deg(1/e) if %0 and

H@)<m'H(ma) O<me?Z). (A.1)

Denote by v=1v(«) the least positive integer such that va is an algebraic
integer. The integer v is called the denominator of a. Observe that aqx is an
algebraic integer. Therefore the denominator of « exists and satisfies

o) <ag<H(a). (A2)

Denote by a=ua,,...,qa, all the conjugates of a. Put

|| = max |a].
I<i<d

For algebraic numbers « and f, we have

Rl <R+, Al<FI.




10 Preliminaries

If #0, observe that
|very - var| = 1. (A.3)
Further
[ver, -+ vorg] < vJorf a1 (A4)

Combining (A.4) and (A.3), we have
|a|>v‘d|;| BEARS (A.5)

This argument for obtaining (A.5) was used by Liouville (1844) to prove his
well-known inequality on the approximations of algebraic numbers by
rationals. We shall refer to this argument as ‘a Liouville-type argument’.
Further we have

Lemma A.l. Let o be an algebraic number. Then
o] < deg@H(@). (A.6)
Proof. Assume that |a|> 1. We have
ag+a0f 4 +a,=0.

Dividing both sides by !, we have
|| < |agt| = a, +‘;—2+~'+mf—i’1 <lay|+ - +|ag <dH().

This inequality is also valid when |«| < 1. Therefore |o| <dH(or). Similarly, we
can show that this estimate is valid for all the conjugates of «. O
Corollary A.l. Let a#0 be an algebraic number. Then
|o| > (deg(e)H(a) 1. (A7)
Proof. By lemma A.1, we have
oo™t < [ ™Y] < degle™ HH (2 ™) =deg(@)H ()
which implies (A.7). O

On the other hand, we have

Lemma A.2. Let 6#0 be an algebraic integer. Then
H©O)<(|o

)des(é)‘

Proof. Put deg(6) = u. Denote by 6=46,,9,,. . . , 4, all the conjugates of 6. Let
X*+b, X" "'+ +b,
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be the minimal polynomial of 4. Then b; with 1<j<pu is an elementary
symmetric function (up to the sign) of é,,. . ., , of order j. Therefore, since

|§| =1, we have

Ib,-|<<;‘>|5|f<(2|3|)ﬂ (1<j<p). O

Corollary A.2. Let v=20 and d= 1 be given. The algebraic integers § with
lgl <v and deg(d) <d belong to a computable finite set.

If B and y are algebraic numbers of fixed degrees, we shall need bounds for
H(B+y) and H(By) in terms of max(H(B), H(y)).

Lemma A.3. Let B and y be algebraic numbers of degrees at most d and
heights not exceeding H (=2). Then

log H(+7)
log H

1
@ <. b gP<c,

where C, and C, are computable numbers depending only on d.

Proof. We prove (a) first. Note that f+7 is an algebraic number of degree
u<d? Denote by v,;, v, and v; the denominators of B, y and S+7y,
respectively. Put

o=v3(B+y). (A.8)

Notice that § is an algebraic integer of degree u.
Observe that v, v,(+7) is an algebraic integer. Consequently, by (A.2),

Vi< v, <H2 (A.9)
Now it follows from (A.8), (A.1) and (A.9) that
H(B+y)<WH(O) <H'H().
Thus it suffices to show that

logH(5)<C
logH 3

(A.10)

for some computable number C; depending only on d.
By (A.8), (A.9) and (A.6), we have

18] <va([B] + [y <2aH>.
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Then it follows from lemma A.2 that
H(3) <(4dH% <(4dH**

which implies (A.10).
The proof of (b) is similar. O

If $#0 is an algebraic number, then H(+ \/ p) can be bounded similarly.

Lemma Ad4. Let  be an algebraic number such that deg(f) <d and H(f)<H,
where H>2. Let y € C satisfy y>=p. Then

log Hy)<C,logH
Jfor some computable number C, depending only on d.

Proof. Notice that y is an algebraic number of degree at most 2d. Denote by
v, and v5 the denominators of § and y, respectively. We have

(vay)*=v3B.
Therefore v,y is an algebraic integer. Consequently, by (A.2), we have
vs<V, <H. (A.11)
Now it follows from (A.1) and (A.11) that
H(y)<v3*H(vsy) SH*H(vsy).

Thus it suffices to show that

log H(vsy)

< .
tog H Cs (A.12)

for some computable number C depending only on d. By (A.11) and (A.6),

o =] <fA] 2 <asye
Then it follows from lemma A.2 that
H(vsy)<2*YdH%*
which implies (A.12). O

If B#0 is an algebraic integer, then |E| > 1. Further, an algebraic integer j
with |§| =1 is a root of unity. We strengthen this assertion as follows.
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Lemma A.S. Let f§ be a non-zero algebraic integer which is not a root of
unity. Let deg(B)<d. Then

[B]>1+C4 (A13)
Jfor some computable number Co >0 depending only on d.

Proof. Denote by N the number of algebraic integers y of degree less than or
equal to d such that Iﬂ <2. By corollary A.2, we have

N<C,
for some computable number C, depending only on d. Put
Cg=2""—1.
Then
(1+CgV<2.
Suppose
Bl<1+Cs.

Then, for k=0, 1, ..., N, we have

[FF]<(1+Cof<2.
Further,
deg(f)<d (0<k<N).

Therefore there exist distinct non-negative integers k, and k, not exceeding
N such that = p*. This implies that B is a root of unity, since §£0. [

Let K be a finite extension of Q of degree d. From now on we shall assume
that K is a subfield of C. All elements of K are algebraic. Such a field K is
called an algebraic number field. The field K has exactly d distinct
embeddings into C. For « € K, we define the field norm of a (with respect to
K) as

N()= NK/Q(“) = l_[ o(o)

where the product is taken over all the embeddings of K. The numbers a(a)
are called the field conjugates of a (with respect to K). If 4 denotes the degree
of a, then u|d and the field conjugates of « are the conjugates of a each
repeated d/u times. If d = u, then K= Q(«) and a is called a primitive element
of K over Q. If «,, ..., a, are all the distinct conjugates of a, then

NQ(a)/Q(a) = al ce a”.
Further,
N a(0) = (N gy (@)L
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Observe that

ING@)| < o]
and

N(aB)= N(2)N(p).
Further we have

|N@)|>1

whenever a # 0 is an algebraic integer. Moreover an algebraic integer « € K
satisfies

|N(@)|=1

if and only if « is a unit. Recall that « is called a unit if both « and 1/x are
algebraic integers.

§2. Let K be afinite extension of degree d over Q. Denote by @ the ring of
all the algebraic integers of K. The letter 4 denotes a primeideal £in 0. By
Il 4> we shall understand that the product is taken over all the prime ideals
#in Og. For a e K, we write [o] for the cyclic module generated by « over
Ok. For non-zero «, f € K, observe that [«] =[] if and only if a/f is a unit. If
o € Oy, then o] is called the principal ideal generated by o in O If @ and [«]
are ideals in O, we write « |o for | [o].

The unique factorisation theorem for ideals states that every non-zero
ideal #[1] in Ok can be written in one and only one way (except for order)
as a product of prime ideals in (.. Thus every non-zero ideal « in ¢k can be
written as

a=[] p% (A.19)
£

where 0<a, e Z such that a,=0 for all but finitely many 4. Let £ be a non-
zero ideal in 0. We may write

6=TT p* (A.15)
#

where 0<b, € Z such that b,=0 for all but finitely many 4. For all 4, put
c,=min(a,,b,).

Define the greatest common divisor of « and 4 as

(@, )=T] s+ (A.16)
#

If (2, £)=[1], then « and £ are called relatively prime. If 2, . . . , #; are non-
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zero ideals in (), then the greatest common divisor (a4, .., ;) of a4,. ..,
a, can be defined similarly.

Let 4 be a prime ideal in @. For a non-zero ideal < in 0, we see from
(A.14) that

a= f*ay
where 2, is a non-zero ideal in 0 such that («,, £)=[1]. Then we define

ord (2)=a,.
Observe that
ord (af)=ord ,(a) +ord ,(£) (A.17)

for all non-zero ideals «, £ in 0. Let 0# 0 e K. Let v be a positive rational
integer such that v'a is an algebraic integer. Then we define

ord ([a])=ord [([vVa]) —ord ,([v]). (A.18)

It follows from v=wa)|v and (A.17) that the right-hand side of (A.18) is

equal to

ord ([va]) —ord ,([v]).
Thus ord ([«]) is well defined. We write ord ,(«) for ord ,([«]). We have
ord ,(af)=ord ,(«) +ord ,(B) (A.19)
for every non-zero a, f€ K. To prove this, we write
ord, () =ord ,({x)»(Brp) — ord ,(v(@ )

and apply (A.17) to obtain (A.19).
Let0#aeK.If ais a unit, then ord ,(«) =0 for every prime ideal 4 in 0.
Conversely, suppose that ord ,(«) =0 for every prime ideal 4 in 0. Then

ord ,(va)=ord ,(v)

for every prime ideal 4 in 0. Now we apply the unique factorisation
theorem for ideals to conclude that [va]=[v]. Consequently « is a unit.

For simplicity, we write ¢ for €. Let 4 be a prime ideal in @. Then there
exists a unique positive rational prime p such that 4| p. Observe that Z/pZ
and 0O/ are fields. Further, the function

m+pZ >m+ 4 (A.20)

from Z/pZ into O/ 4 is an embedding, since £~ Z=pZ. Thus Z/pZ can be
considered as a subfield of ¢/ 4. Further, 0/ 4 is a finite extension of Z/pZ of
degree

f,<d. (A21)
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Thus ¢/ has p’s elements. We define the norm of 4 as
N(#)=Nal#)=p". (A22)

For every non-zero ideal «, given by (A.14), in ¢, we define

N(a)=Ngla)= l_[ (N(A)*
#

Then
N(af)=N(a)N(%) (A.23)

for all non-zero ideals «, £ in @. Further we have
N([0))=|N@)] O#ac0). (A29)

We have used the same letter N for the norm of an element and the norm of
an ideal, but it will be clear from the context what is meant. Since the
number of elements in the multiplicative group (¢/ £)* of non-zero elements
of @O/, has N(%)—1 elements, we have

a"A~'=1 (mod ), if pto. (A.25)

This is called Fermat’s theorem for ideal theory.
We shall apply (A.23), (A.24) and (A.25) to prove the following lemmas.

Lemma A.6. Let p be a positive rational prime. Then the number of prime
ideals in O which divide p does not exceed d.

Proof. Let 4y, ..., /4 be distinct prime ideals in ¢y dividing p. Then
/1" /u|p. Therefore, by (A.23),

N(fy ) | N([PD)-
By (A.24),

N([p])=N(p)=p".
By (A.23) and N(4;)=p for 1<i<k, we have
N(fy-- ) =N(1)* N(s) = p*.

Therefore p* < p? which implies k<d. O

Lemma A.7. Let 0 o € K such that H(a) < H,where H = 2. For a prime ideal
/0 in O, we have

lord, ()| <C, log H (A.26)

where Cq is a computable number depending only on d.
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Proof. Let v be the denominator of a. Recall that
ord (a)=ord ,(va) —ord ().
By (A.2) and lemma A.3, it suffices to prove lemma A.7 for 0« € Ox. Then
ord () >0. (A27)
Further, by (A.24) and (A.6), we have

N([o]) = [N(@)| < []* <(@H)". (A.28)
On the other hand, it follows from 4°**®|a, (A.23) and (A.27) that

N([o]) = (N(f)) oA = 2074, (A.29)
Now combine (A.29), (A.28) and (A.27) to obtain (A.26). ]

Lemma AS8. Let p be a positive rational prime and f a prime ideal in Oy
dividing p. Let o€ Oy. Suppose that m=2 is a rational integer satisfying
oa™# 1. Then

ord (@™~ 1)<Cologm (A.30)
Jor some computable number C,, depending only on d, p and a.

Proof. In view of lemma A.7, we may suppose that « is not a root of unity.
Further we may assume ord (¢ —1)>0. Then 4 fa. Let s be the least
positive integer such that

o’=1 (mod z).
Then we see from (A.25), (A.22) and (A.21) that
s<N(£)<p”.
Further we observe that
ord (¢™ — 1) <ord ,((«°)" — 1).

Thus we may suppose that

a=1 (mod z). (A31)
We write
m=p‘m1, (my,p)=1,
p=o"
and

W (BU=1\B-1\
o —1—< 51 )(a—l)w 1). (A.32)
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We see from (A.31) that f=1 (mod 4). Therefore

ﬁi=ﬁmn"+‘-~+15m1 (mod z).

f—1
ord 4-’%%):0, (A.33)

since (m,, p)= 1. Further, (A.31) implies that

Consequently

-1
ordﬁ<f—_l—><1 ord (p)+ord,(x+ 1) <dA+ord (x+ 1)

<2dlogm+ord (o +1). (A.34)

Finally, by lemma A.7,
ord (a+ 1)<Cy, (A.395)

for some computable number C,; depending only on d and a. Now
combine (A.32), (A.33), (A.34) and (A.35) to obtain (A.30). O

§3. Let K be a finite extension of degree d over Q. Denote by Ok the ring of
all algebraic integers of K. There exist w,, ..., w,€ 0k such that every
element of O can be uniquely written as a linear combination of wy,...,w,
with rational integer coefficients. The set {w,, ..., w,} is called an integral
basis for K. Put

2
oi(wy) 0 04wy
D=y=| — _

Giwy) o owy)

whereos,,. . .,0,areall the embeddings of K. Observe that & is independent
of the choice of the integral basis, since any two integral bases are connected
by a matrix of determinant + 1. Further notice that 0# @ e Z. We call & the
discriminant of K. For a € K, we define the field discriminant of a as

D)= Dx(@)= n (o{0)—0 j(“))2~

Igi<j<d

Hence 2(a) #0 if and only if « is a primitive element of K. Suppose « is an
algebraic integer. Then 2(x) e Z. Since 2(«) is equal to the determinant

lodad =) .. 4 We have D|D(a).
=1

Denote by I the set of all non-zero ideals in ¢x. We define a relation ~ in
I as follows: for non-zero ideals «, £ in Ok, « ~ ¢ if and only if there exist
o, pe Ok such that af#0 and «[a]=~£[F]. It is easy to see that ~ is an
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equivalence relation. This partitions the set I into equivalence classes. For
non-zero ideals «, @, and «, in @, we observe that

aay~aa,<ay~a,
and

a~[1]<a is principal.
Further, we have

Theorem A.1 (Minkowski). In every equivalence class there exists an ideal
in O such that

NaS\/lgl.
Proof. See Hecke (1923), §33.

By (A.23) and lemma A.6 there are only finitely many ideals in O of a given
norm. Consequently, by theorem A.l1, there are only finitely many
equivalence classes. The number of equivalence classes is called the class
number h of K. We have

Lemma A9, If « is an ideal in Oy and h is the class number of K, then a" is
principal.

Proof. If a=[0], then «"=[0]. Therefore we may assume that  is non-
zero. Choose a set of ideals «, ..., a,, one from each equivalence class.
Then aa,, ..., aa, fall into distinct equivalence classes. Consequently

aytray~aay”” ‘aah—‘:ahal"'ah.
This implies that 2" is principal. 0
Corollary A.3. If «, £ are non-zero ideals in Oy and h is the class number of
K, then

(a", 6"
is principal.

Proof. Let « and £ be given by (A.14) and (A.15), respectively. Then, by
(A.16), we have
(ah, gh)=l_[ ﬁhc,,
#
and the assertion follows from lemma A.9. O

If @4, ..., a; are non-zero ideals in @, then it follows similarly that

(@,...,a=[n] (A.36)
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for some non-zero n e @. If K is a quadratic field, we have more precise
information for the greatest common divisor of two principal ideals in O
than corollary A.3 states.

Lemma A.10. Let r and s be non-zero rational integers. Let a and f be roots
of x2 —rx —s. Then the greatest common divisor of the ideals [«*] and [$*] in
the ring of integers of Q(x) is a principal ideal generated by (12, s).

Proof. Put I=(r%,s). Then ((r* +2s)/l,(s/l)>) = 1. Further observe that a2/

and B?%/1 satisfy
, ri+2s (s )2
xX°— ] x4+ 7 .

Consequently the ideals [«?/I] and [$%/I] in the ring of integers of Q(a) are
relatively prime. O

We shall also need the following consequence of theorem A.1 and
lemma A.9.

Lemma A.11. Let « be a non-zero ideal in Oy. Then there exists a non-zero
ideal o' in Og such that N(a')<./|2| and aa' is principal.

Proof. By lemma A.9, 2" = 22" ! is principal. By theorem A.1, we can find
anideal o' in the equivalence class containing 2"~ * such that N(2') <./|%|.

Further observe that z«’ is principal. O

Let 4y, ..., # be a finite set of prime ideals in Ok. Put

p=max P(N(4,)). (A.37)
1gigi
By lemma A.9, we may write
=[] (1<i<) (A.38)

where n,, . .., m € Ox. Denote by & the set of all elements a of (g such that
[«] is exclusively composed of prime ideals f4,, ..., 4. Then we have

Lemma A.12. Let a€ ¥ There exist a peOx with |[N(B)|<p™ and a unit
g€ Oy such that

a=8ﬂn‘;l. . .n;’J
where a,, ..., a; are non-negative integers.

Proof. Let
(o= -
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For 1<i<l, write
b,~=a,~h+ci (O<C,<h).
Then, by (A.38),

[e)=[r ] [m]"=

where
a=ﬁ¢il. . .ﬁlﬁ_
We see from (A.39) that « is a principal ideal. We write
a=[f]

for some non-zero fe . By (A.24) and (A.23),
IN(B)| = N(a)=(N(p1))*- - (N ()"
which, together with (A.22) and (A.21), implies that
IN(B)| <p™.
Now the lemma follows from (A.39) and (A.40).

21

(A.39)

(A.40)

O

§4. Let K be a finite extension of degree d over Q. Denote by @ the ring of
all the algebraic integers of K. Let r; and 2r, be the number of conjugate
fields of K which are real and non-real, respectively. Further, we shall
signify the conjugates of any element x of K by o'¥),. . ., a® withaV),. . .,

real and o™ *Y, .. . o *"2 the complex conjugates of o'+ *72%Y

respectively. Put r=r; +r,— 1. We have

+2r
, a('n z),

Theorem A.2. (Dirichlet). There exist units n,, ..., 3, € Ok satisfying

(a) Every unit ne Oy can be written as
n=pni--ny

where a,, ..., a,€Z and p e Oy is a root of unity.

(b) Let pe Oy be a root of unity and by, ..., b,eZ. The equation

e nr=p
implies that
by=b,=---=b,=0.

Proof. See Hecke (1923, § 34), or Pollard (1950, Ch. XI).

Let r>0. A set of units 4, . . . , , € O satisfying (b) of theorem A.2 is called
an independent system of units for K.Ify,,...,n,is an independent system
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of units for K, then the determinant

det(log |7y, ..., (A4Y)

i=1,..., r

is non-zero (cf. Pollard, 1950, p. 137). A set of units #,,. . . , 7, € O satisfying
(a)and (b) of theorem A 2 iscalled a fundamental system of units for K. Thus
every fundamental system of units for K is also an independent system of
units for K. Therefore the determinant (A.41) corresponding to a
fundamental system of units for K is also non-zero. If n,, ..., 5, is a
fundamental system of units for K, we denote by R the absolute value of the
determinant (A.41). Observe that R is independent of the choice of the
fundamental system of units for K. We call R the regulator of K. Notice that
the absolute value of the determinant (A.41) corresponding to an
independent system of units for K is at least R.

If r=0, then we understand that every independent as well as
fundamental system of units for K is the empty set and we put R=1.
Observe that r=0if and only if either K is Q or K is an imaginary quadratic
field.

For non-zero a € O, put

J(@)=max [log |||

Igigr

Hence, for any unit n € Oy,

log [n| <dJ).

On applying Minkowski’s theorem on successive minima, we have

Lemma A.13. There exists an independent system v, ... ,n, of units for K
such that

Jn,) - Jm) <R (A42)
Proof. Wemay assumer>0.Lete,,...,¢ beafundamental system of units
for K. For x=(x,, ..., x,)eR’, put

I(x)= 3 x;log|ef| (1<i<n).
j=1

Denote by P the set of all xR’ satisfying
llx)|<1 (1<igo).

Denote by ,,. .., 4, the successive minima of P. By Minkowski’s theorem
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on successive minima (see Cassels, 1957, p. 154) we have
VA oA, <2
where V is the volume of P. Observe that
V=2'R~!
(see Cassels, 1957, p. 150). Therefore
Ay- A, <R (A.43)

For xeR’, define

F(x)=max |l,(x)|.
1gigr
There exist linearly independent points a4, ..., a,€Z" such that
Fa)=14 (1<i<r) (A.44)
(see Cassels, 1959, p. 204). For 1<i<r, write
ai=(a,~,1, ey ai,,)

and
M= g

Observe that 74, ..., n, is an independent system of units for K. Further,
notice that

J(n;)=F(a;).
Therefore, by (A.44) and (A.43), we have
Jny) - Jm)=4,"- 4, <R O

Combining (A.42) and (A.13), we obtain

Corollary Ad4. There exists an independent systemn,,. .., n, of units for K
such that

max J(n)<C,,R (A.45)
I<igr
where C,, is a computable number depending only on d.
Corollary A.4 and the inequalities log |;17| <dJ(n;) with 1 <i<r imply that
ni‘ is bounded by a computable number depending only on d

max, <,
and R.
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Proof. For 1<i<r, we have from (A.13) and N(y,)= + 1 that
Jin)=Cr3

where C, ; >0is a computable number depending only on d. Now we apply
(A.42) to conclude that

r 1

J(m)) <Ci3'R
Jj=1 /
J#i

for 1<i<r. O

Jm)=J(m,)- 'J(m)<

Let n,,...,n, be an independent system of units for K. Let «, f € ¢, such
that aff#0. Then B is called an associate of o (with respect to the
independent system #,, ..., n, of units for K) if

B=oniny
where a,, ..., a,€Z. Then we have

Lemma A.14. Letn,,. .. ,n, beanindependent system of units for K. Let 0#
a € Ok with |N(a)|=m. Then there exists B such that B is an associate of o and

[logm ™ “|pPD|< X 3. [log ] (A.46)
i=1 k=1
Jorj=1,...,d.

Proof. If r=0, then (A.46) holds with f=«. Thus we may assume r>0. Let
A be the lattice in R” with

(log [n{"),...,logn{?) (1<i<h),

as basis. The coordinates of every point x=(x,,..., x,} € R" can be written
as

x;= 3. ulogn?| (1<j<n),
i=1

with ;€ R. There exists A=(A,, ..., A,)€A such that

i=1
with b,e Z and

s+ A< 2 flognl] (1<j<n).
i=1

Take
x;=logm™ M) (1<j<h),
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and put
B=anit- -y
Then
flog(m~=|pID| < Y |log [n?]| (1<j<r). (A.47)
i=1
Because of complex conjugation, inequalities (A.47) hold for j=1,...,d

except, possibly, for j=r, +2r, (and j=r, +r,). Observe that

™M=

log(m ™'Y =0.
1

J
Hence we have

[log(m ™ |pP)| < 3 X [log|n{l] (1<j<a). O
i=1k=1
Combining lemma A.14 and corollary A.4 we obtain at once

Lemma A.15. Let #,, ..., n, be an independent system of units for K
satisfying (A.45). Let 0o €Ok -with |N(&)|=m. Then there exists fe Oy
such that B is an associate of a and

llog(m~ |89 <C1 R (1<j<d),
where C,, is a computable number depending only on d.

We record the following result which is an immediate consequence of
lemma A.15.

Corollary AS. Let 14, ..., n, be an independent system of units for K
satisfying (A.45). Then every unit ne Oy can be written as

n=nnyny

where by, ...,b,eZ and |ﬂ is bounded by a computable number depending
only on d and R.

Proof. Apply lemma A.15 with a=# and m= 1. O

Remark. By a computable number depending only on d and R, we mean a
function of both d and R. It follows from lemma A.15 that, in corollaries A.5
and A.6, this function is monotonic increasing in R.

Combining corollary A.4 and lemma A.15, we have

Corollary A.6. Let 0+#a € O such that [N(o)| <M. There exists a unit ¢ € O
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such that |§o7| is bounded by a computable number depending only on d, R
and M.

The remaining results of this chapter will only be applied in chapters 5-8.
Theorems A.3 and A.4 enable us to bound the class number and the
regulator in terms of the discriminant.

Theorem A.3 (Landau, 1918). There exists some computable number C, s
depending only on d such that

hR<C,5|9["%(log |2)7~. (A48)

Theorem A.4 (Zimmert, 1981). R>0.056.

For certain applications it is important to know that if K=Q(«,,...,q,)
then |9|, hence h and R, can be estimated in terms of d and the heights of «,,
vy Oy

Lemma A.16. There exists an algebraic integer o in K such that K = Q(«)

and |;| <|9|'. Further,if a,,. .., a, are elements of K with heights at most
H such that K=Q(ay, ..., o), then

max(h, R,|2))<Cy, (A.49)
where C¢4 is a computable number depending only on d and H.

Proof. As before, we assume that the field conjugates of any aeK are
ordered such that o'V, ..., "’ are real and o+ %Y, . .., a"1*"? are the complex
conjugates of a"t*7 2+ o+ respectively. Let {w,, ..., w,} be an
integral basis for K and, for x=(x,, ..., x;), put

L) =wPx, +- +wdx, (1<i<d).

By virtue of Minkowski’s theorem on linear forms (see e.g. Cassels, 1959,
p. 73) there exists an x, € Z%, x,#0, such that, when r, >0,

|2 Dx,)|<|2|M2 | LOAxg)| <1 2<i<d)
and, when r; =0,
| LD(x0) + L1 (x0)| < /2,
|2 (x0) — L1 xo)| /(2| 2)),
| LOxo)| <1 (i#1,147).

Put a=%"(x,). Then o is a non-zero algebraic integer in K with IEI <
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|2]*/2. Since IEI > 1, all the field conjugates of a are distinct. Hence « is a
primitive element of K which proves the first assertion.

Put ao=1. For any i we omit «;,, out of the generators if ;,, is an
element of the field K; = Q(ay, a4, . . ., &;). We may therefore assume that
n<d. We prove by induction on i that there is a primitive element 6, =a, +
a0 +a,a,+ - +ag; of K; such that a;e Z and |a,| <d*for j=0, 1,.. ., i.
This assertion is true for i =0 by taking a, = 1. Suppose that the assertion is
true for K. If two conjugates of §; +aw; , , 0+ aof! , and 67+ ax?] |, say,
are equal, then q is uniquely determined. Hence there are at most d? non-
zero integers a such that two field conjugates of 6, + aa; . ; with respect to
K; ., are equal. Hence we can choose g, ., € Z with |a; , | <d? such that all
the field conjugates of 6;,,=6;+a;,,0;+, (with respect to K;,,) are
distinct. This implies that 0;, ; is a primitive element of K, , , as required.
Thus 6, is a primitive element of K. By lemma A.3 we have H(0,)<C,,
where C,; as well as C, g and C, , are computable numbers depending only
on d and H. Let t be the denominator of 6,. Then ¢t <C,,. The number
0:=10, is an algebraic integer with K = Q(6) such that, by lemmas A.1 and
A3,

|6] <dH(6,) < C 5.

Hence 0<|@K(0)|<C19. Since 2 divides 2 (0), this together with (A.48)
implies (A.49). O

The following result is ready-made for our applications.

Corollary A.7. Let f € K[ X] be a polynomial of degreen. Let H be an upper
bound for the heights of the coefficients of f.Let B,,...,p, be zerosof f and
put L=K(B,,. .., B,). Denote by G the maximum of the heightsof B,,..., B,
and by d,;, h,, 2, and R, the degree, class number, discriminant and regulator
of L,respectively. Then there exists a computable number C,, depending only
ond, 9, n and H such that

max(dL9 th G’ |@L|’ RL) < C20'

Proof. By C,, ..., C,; we shall denote computable numbers depending
only on d, &, n and H. It is clear that d, <n". Let ¢t be the product of the
denominators of the coefficients of f. Let a, be the leading coefficient of
tf(X). Then we can write

a5 (X)=(@oX)" +a, (XY + - +a,

where aq, ay, . . ., a, are algebraic integers in K with max,;, ajl <Cyy It
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follows that

laoBi|" < CaslaoB" " (1<i<h.

Hence IZEI <C,, and, by lemma A.2, H(a,B)<C,;fori=1,...,1 Since
H(ag)=|ao| < C,,, we obtain G<C,s.

By the first assertion of lemma A.16 there is an algebraic integer « with
height at most C,¢ which is a primitive element of K. By applying the
second assertion of lemma A.16 to the field L= Q(«, §,, ..., B;) we obtain
max(h;, Rp,|2,)) < Cyy. il

Notes

In lemma A.5, a remarkably good value of Cg is due to
Dobrowolski (1979). He proved the following. Let ¢>0. There exists a
computable number C,4 depending only on ¢ such that, if « is an algebraic
integer of degree d> C,g, the inequality

2—¢ [loglogd\?
< —_—
<1+ < logd )

implies that « is a root of unity (cf. Cantor and Straus (1982), Louboutin
(1983)). This improves on earlier results of Schinzel and Zassenhaus (1965),
Blanksby (1969), Blanksby and Montgomery (1971) and Stewart (1978).
For a non-zero algebraic integer « which is not a root of unity, Schinzel and
Zassenhaus (1965) conjectured that

] = 1+ Caoldeg(@) !

where C,4>0 is an absolute constant.

Let K be a finite extension of Q. For « € K we defined the norm of o with
respect to the extension K/Q in § 1. If L is a finite extension of K and a € L,
then the norm N () of « with respect to the extension L/K is defined in a
similar way (cf. Hecke, 1923, § 38).

Siegel (1969) proved theorem A.3 with

Cys=4w2 "1~ be(d — 1)~ 1)~ 1

where r, and r, are as defined at the beginning of §4, b=(1+4logn+
(r,/n) log 2) ! and w is the number of roots of unity in K. (Hence w is even
and w=2 when r; >0)

For lemmas A.13-A.15 we refer to the original work of Baker (1968b),
Siegel (1969) and Stark (1973). For further effective aspects of algebraic
number theory we refer to the books of Borevich and Shafarevich (1964),
Zimmer (1972), Stolarsky (1974) and Narkiewicz (1974).



B. Estimates of linear forms in
logarithms

Supposea,,. . .,a,are non-zero algebraic numbersandletlog «,. . . ,log a,
be any fixed values of the logarithms. If log«, and loga, are linearly
independent over the rationals, then they are linearly independent over the
algebraic numbers. This was Hilbert’s seventh problem which was solved,
independently, by Gelfond (1934) and Schneider (1934). Further, Baker
(1966) proved that the linear independence of log «,, ..., log «, over the
rationals implies the linear independence of log«,, ..., loga, over the
algebraic numbers. Many important generalisations and improvements of
this theorem have been obtained. In particular, for rational integers b,,. . .,
b,, non-trivial lower bounds have been given for the absolute value of the
linear form

b,loga;+---+b,loga,

in logarithms. For a survey of the results in this direction, known as the
theory of linear forms in logarithms, we refer the reader to a paper of Baker
(1977). From this theory, we record the results that we shall use in this tract.
We shall refer to these results as estimating linear forms in logarithms. We -
recall our policy that all constants C,, C,, ... are real and positive.

Leta,,. .., a, benon-zero algebraic numbers of heights not exceeding 4, ,
..., Ay, respectively. We assume 4;2 3 for 1<j<n. Put

A'=max A;, A=A

Igj<n

ne

n—1

Q=[] log4;, Q=]] log4,
= =1

j=1 J
K=Q,,...,x,), [K:Q]=d.
29
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Then we have

Theorem B.1 (Baker, 1977). There exist computable absolute constants C,
and C, such that the inequalities

0<|byloga, + - +b,log a,| <exp(—(C nd)*"Qlog Q' log B)

have no solution in rational integers b,, ..., b, of absolute values not
exceeding B (=2). It is assumed that the logarithms have their principal
values.

We shall use the following formulation of theorem B.1.

Corollary B.1 (Baker, 1977). There exist computable absolute constants C,
and C, such that the inequalities

0<lof o — 1] <exp(—(C3nd)"Qlog Q' log B)

have no solution in rational integers b,, ..., b, of absolute values not
exceeding B (=2).

In order to derive corollary B.1 from theorem B.1, we refer the reader to a
paper of Shorey et al. (1977, p. 66). The transition is trivial if a, . . . , a, are
positive.

Theorem B.2 (Baker, 1973). There exists a computable number C 5 depending
only on n, d and A’ such that for any & with 0 <3 <4, the inequalities

O<laft - ole — 1| < (3/B)CsW84 e~

have no solution in rational integers by, ..., b,_, and b, (#0) satisfying

B>|b,|, B'>max |b}.
Igjgn
In fact Baker stated theorem B.2 for a linear form b, log o, +--- + b, log o,
where all the logarithms have their principal values, but the result for
aft -+ -l —1 follows as indicated above.

Generalisations in another direction lead to p-adic analogues of such lower
bounds. For this theory, which is called the p-adic theory of linear forms in
logarithms, the reader is referred to a paper of van der Poorten (1977a). We
state p-adic analogues of theorems B.1 and B.2 that we use in this tract.

Theorem B.3 (van der Poorten, 1977a). Let /. be a prime ideal of K lying above
a rational prime p. There exist computable absolute constants C4 and C, such
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that
d

ord (-l — 1) <(Cond)©™ 10% Q(log B)?

Jor all rational integers by, . . . , b, with absolute values at most B (= 2) such
that of---ab# 1.

Theorem B4. (van der Poorten, 1977a). Let 4 be a prime ideal of K lying
above a rational prime p. There exists a computable number Cg depending
only on n, d and A’ such that for any é with 0<d <1,

ord (ot ayr — 1) <max(Cg log(B'd~ ' p*)p® log A, 6B/B)

Jor all rational integers b, ..., b,_, and b, with b,%0(mod p) of absolute
values at most B and B, respectively, such that abi- ol # 1.

Putting b,= — 1, van der Poorten (1977a) derived the following result from
theorem B.4.

Corollary B.2. Let 4 be a prime ideal of K lying above a rational prime p.
Suppose that by, ..., b,_, and b,= —1 are rational integers of absolute
values at most B. There exists a computable number Cy depending only onn,d
and A’ such that, for every 0 with 0<d< 1, the inequality

ord (oft* +*ar—1)> 6B
implies that of---alr=1 or

B<Cy61plog(d~'p%) log A.

Notes

To find out all the solutions of certain diophantine equations, it is
necessary to give explicitly the constants occurring in the theorems of this
chapter. The first result in this direction is due to Baker (1968a). In fact,
Baker proved theorem B.1 and van der Poorten proved theorems B.3, B.4
and corollary B.2 with explicit constants. Other estimates were given by
van der Poorten and Loxton (1976), Stewart (1977b), Mignotte and
Waldschmidt (1978) and Waldschmidt (1980). Loxton (1986) proved a
generalisation of theorem B.1 for systems of ¢ linear forms in logarithms in
which the factor Q in the exponent of the upper bound is replaced by Q. In
this direction, the first result is due to Ramachandra (1969). For linear forms
with o;s close to 1, see Ramachandra and Shorey (1973), Ramachandra,
Shorey and Tijdeman (1975, 1976), Shorey (1974a,b, 1986a) and
Waldschmidt (1980). A trivial case of p-adic linear forms in logarithms is
already given in lemma A.8.
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§1. A homogeneous linear recurrence sequence with constant coefficients
(recurrence sequence for short) is a non-trivial sequence of complex numbers
{2, such that

Up sk =Vi—tUmrk—1 T Vi-2Umrk-2F "+ Vol (m=0,1,2,..) (C.1)

for certain complex numbers vy, vy, ..., v,_, With vy#0. A recurrence
sequence is therefore completely determined by the initial values u,, ...,
u_, and the recurrence coefficients v, vy, ..., v, _,. Note that juo| + |u, |+
*+o+|up_1|>0. A recurrence of order k is defined as a sequence of initial
values ug, u,,. .., u,_,,notall zero,and a sequence of recurrence coefficients
Vos Vis- -« » Vg1 With v #0. A recurrence generates a recurrence sequence by
the recurrence relation (C.1). A recurrence of order 2 is called binary; one of
order 3 ternary.

The companion polynomial to a recurrence with coefficients vy, v,, ...,
Vv, is given by

G(2)y=z2"—v, 271 —v,. (C2)
Let
G(2)=[] z—w))~, (C3)
ji=1
with distinct numbers w,, @, . . . , @, be the factorisation of G. We call w,,

@5, ..., w, the roots of the recurrence. If all roots of G are simple, then we
say that the recurrence is simple.

A recurrence sequence may satisfy different relations of the form (C.1).
Suppose {u, 2., satisfies two recurrences of order k,

k—1 k-1
Up +x = z j'jum+j-_- Z Hillyy 4 j (m=0, la)
j=0 j=0

32



C. Recurrence sequences 33

Let r=max{j| A;#u;}. Then

r—1 A _
T H
Uy = - Upe; (M=0,1,..)),
! j=ZO ;Lr—/'tr I

which implies that {u,}<_, satisfies a recurrence of order r<k. We
conclude that for every recurrence sequence there is a unique recurrence of
minimal order. If we speak of the order, the recurrence coefficients, the
companion polynomial or the roots of a recurrence sequence or say that a
recurrence sequence is simple, this is all meant with respect to this unique
recurrence of minimal order.

The following result is fundamental in the theory of recurrence
sequences.

Theorem C.1. (a) Let {u,,}x_, be a sequence satisfying relation (C.1) with
vo#0. Forj=1,2,...,slet w; and o; be determined by (C.2) and (C.3) where
the numbers w,, ®,,. . . , g are distinct. Then there exist uniquely determined
polynomials f;€ Qug, Uy, ..., Ug_1, V0, Vis- oo Vk—1, Oy, @2, ..., 0 )[Z] of
degree less than 0; (j=1, 2, ..., s) such that

i fimoT (m=0,1,...). (C4)

(b) Let 0y, @5, . . ., be distinct complex numbers and 6,0, . . . , 6, positive
integers with Y 5_, 6;=k. Define vy, vy,...,v,_, by(C.3)and (C2). Forj=1,
2, ..., s let f; be a polynomial of degree less than o;. Then the sequence
{unt2_, defined by (C.4) satisfies recurrence relation (C.1).

Proof. (a) Put

uz)=Y u,z",
m=0
k k s

A=Y a=1-3 v =[] (-0 (C5)
i=0 i=1 j=1

Then, by (C.1),
k-1

m @ k
WA= Y Y Ay 2"+ Y, D Aty 2"

m=0j=0 m=k j=0

m k
Z Upy — sz+ Z ( m+k_.z1 vk—jum+k—j>zm+k
j= j=

||[\/]I

=Zz'"2alu_
m=0 j=0
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Put h,=3"_oau,_; for m=0, 1, ..., k—1. By resolution into partial
fractions we obtain, from ) o;=k,
Zk 1 h zm s g
m=0
)= wZ”__ C6
u2)= [[=: (12 ; ; 1- a)z)‘ (C6)
for certain numbers f;;€ Q(ug, Uy, . . ., U1, Y0, Vise v v s Ve 1, D1, Wy v -, W)

which are uniquely determined. We have w,w, - w,#0 in view of v, #0.
For |z| <min;|w;| ™! we have

Note that the Taylor coefficients are uniquely determined. On comparing
coefficients we find (C.4) with f; defined by

(z+i—1)(z+i=2)(z+1)
(i—1)!

f,'(z)=.f2'1 By (i=12,...,9. (CT)

This proves part (a).

(b) Define u(z) and A(z) by (C.5) and complex numbers B;; by (C.7). It
follows that (C.6) holds for certain numbers hq, by, ..., h ;. Hence

wz)Az)= Z Z Ay ;2™ = Z h,,z"
m=0i=

x<k

which implies that the left-hand side is a polynomial of degree less than k.
Thus the coefficients of z"** vanish for m>0, that is, by (C.5),

Upy i ™ ka Umk-i=0 (m=0,1,...). O

It is now easy to characterise all recurrence relations by which a fixed
recurrence sequence {u,,} - , can be generated. Let G(z)= I—[j -1 (z—w))be
the éompanion polynomial to the minimal recurrence relation (C.1) of
{un}-o- Theorem C.1(a) yields a representation

5

Z fimo? (m=0,1,...).

Suppose that, moreover,

Umi 1 =M —1Upsp—1+ "+ Uolhy, (m=0,1,...).



C. Recurrence sequences 35

Let
1

9@=z'—p 27—
be the companion polynomial to this recurrence relation. Then theorem
C.1(a) yields a representation

t

Z fHmeT (m=0,1,...),

where we define f¥ =0 for those j for which g(w;)#0 and @, ,,. .., w, are
the roots of g which are not roots of G. We assert that f;=f%* for 1<j<s,
f¥=0for s<j<t and that g is divisible by G. To prove this, let

9(2)G(z)= n (Z—wj)pj=zk+l—/q-k+1—1zk+l_l"'_'lo-
i=1

By theorem C.1(b) the sequence {u,,}= . satisfies the recurrence relation

k+i—-1

Upirs1= 2. Ams; (m=0,1,..).

j=o0

By theorem C.1(a) applied to this recurrence relation, the polynomials f;are
unique, that is,

fi=f¥ forj=1,2,...,s, fr=0 forj=s+1,...,t

Because of the minimality of the first recurrence and theorem C.1(b), the
degree of f; is exactly 6;—1for j=1, 2, ..., s. Hence the zero w; of g is of
order at least o; for j=1,2, ..., s Thus G is a divisor of g.

§2. A recurrence is called algebraic (rational, integral) if all the initial values
and recurrence coefficients are algebraic (rational, integral, respectively). If
a recurrence is algebraic, then the resulting sequence is algebraic, etc. The
converse need not be true. For example, the non-integral recurrence u,, . , =
My 4 +(1 =7y, (m=0, 1, ..) with uy=u, =1 generates a recurrence
sequence of rational integers.

We shall show that, if the elements of a recurrence sequence {u,}u-o
belong to a field K, then the recurrence coefficients (of the minimal
recurrence relation) of the sequence also belong to K. Let the minimal
recurrence relation of {u,}2., be given by

U+ k= Vi1t sk —1F Ve 2Umek-2F " Vol (m=0,1,..). (C8)
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Consider the system of k linear equations in the k vartables xg, x,,...,X;_,

UpXog U Xy FU_ 1 Xy =,
u1XO+u2x1+”'+ukxk_1 =uk+1,
< UpXotUusXy+ a1 X1 o, (C9)

U1 Xo+ Xy Fly_2X_y =Up—g.

If the coefficient determinant vanishes, then there exist two distinct
solutions (v, vy, ..., V_q)and (4o, 145 - - » 4 — 1)- We show by induction on
m that

U s k=g~ 1Umrk—1 M- 2Umrk-2F " F oty (m=0,1,...).(C.10)

According to (C.9) this is true for m <k. Suppose it has been shown for
m<M. Then, by (C.8) and the induction hypothesis,

k-1
Upg = Z Vilpyg ;= Z Z Hilkng 4 j—ky+i

j=0
k-1

Z Hi Z vu(M+1 h+j= Z Hillpg 4.

This proves (C.10). By an argument given in §1 it follows from (C.8) and
(C.10) that the order of {u,}X_, is less than k, a contradiction. Thus the
coefficient determinant of (C.9) does not vanish. Then we can apply
Cramer’s rule to express the solution vg, vy,. . . , v, _; as quotients of sums of
products of terms of the recurrence sequence, hence as elements of K.

In particular, a recurrence sequence of algebraic numbers is an algebraic
recurrence sequence and a recurrence sequence of rational numbers is a
rational recurrence sequence. It follows from a theorem of Fatou that a
recurrence sequence of rational integers has a rational integer recurrence.
Fatou (1906) proved the following assertion (cf. Polya and Szego, 1925,
Problem VIII 156).

Let u(z) be a rational function whose Taylor series has rational integer
coefficients. Then u(z) can be written in the form f(2)/g(z), where f and g are
polynomials with rational integer coefficients and g(0)= 1.

Let {u,}2_, be a recurrence sequence of rational integers of order k with
minimal recurrence relation (C.1). Then, by (C.6) and (C.5) in the notation of
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§1,
) k—1 k
uz)= 3 umz'”=H(z)/A(z)=< hmz’”>/<l -y vk_,.zi>
=0 i=1

m=0 m

is a rational function whose Taylor coefficients are rational integers. We

know already that vy, v, ..., v,_; hence hy, hy, ..., h,_, are rational
numbers. Let T be the smallest positive integer such that Th, eZ and
T,eZ form=0,1,...,k—1. Since 4 is the reciprocal of the companion

polynomial to the minimal recurrence relation, H and A have no common
non-constant factor. Hence Fatou’s result implies that T A(0)| Th,, and
TA(O)| Ty, form=0,1,...,k— 1.Since A(0)= 1, this implies that vy, vy,. ..,
v, _, are all rational integers.

Some binary integer sequences are so important that they have special
names. The Fibonacci sequence is the sequence defined by uy=0, u; =1,

Upy2=Upsq +Uu, form=0,1,2,.... Asequence is called a Lucas sequence
(of the first or second kind, respectively) if
=P e m=o0,1,2,. .
a —_—
or

u,=a"+p" form=0,12,...,

where o +  and af are relatively prime non-zero rational integers and a/f is
not a root of unity. Note that the Fibonacci sequence is the Lucas sequence
of the first kind with a, B=%i%\/ 5, and that Lucas sequences are binary
rational integer recurrence sequences. Lucas sequences of the first kind
satisfy

nlm=u,|u,. (C.11)

For Lucas sequences of the second kind a similar relation holds. A sequence
is called a Lehmer sequence (of the first or second kind, respectively) if

o —fm o™ — Bm
Uy = B for modd, u, =2—ﬂ2 for 'm even,
a—p at—p
or
o+ g
=——— formodd, u,=o"+p" formeven,

where (x+ B)? and af are relatively prime non-zero rational integers and
/B is not a root of unity. Note that Lehmer sequences are Lucas sequences
if a+pf=+1. If a+p+#+1, Lehmer sequences are rational integer
recurrence sequences of order 4 with roots +a, + 5.
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§ 3. Several results in this monograph deal with the number of times that a
recurrence sequence attains a certain value. The a-multiplicity of a sequence
{un}2_ is defined as the number of indices m such that u,=a. The
multiplicity of a sequence is defined as the supremum of the a-multiplicities
taken over all a. The total multiplicity of {u,,}_ , is defined as the number of
pairs (m,n) with m>n such that u, =u,. The following theorem and its
corollary give properties of a recurrence sequence with infinite O-
multiplicity.

Theorem C.2 (Skolem-Mahler-Lech). If {u,}w_, is a recurrence sequence
with infinite O-multiplicity, then those m for which u,,=0 form a finite union
of arithmetic progressions after a certain stage.

Proof. Lech (1953).

Corollary C.1. If a recurrence with companion polynomial (C.3) generates a
sequence with infinite O-multiplicity, then w;/w; is a root of unity for some
indices i,j with i #j.

Proof. In § 1it was proved that the companion polynomial of a recurrence
is divisible by the companion polynomial of the corresponding recurrence
of minimal order. Hence we may assume that the recurrence in corollary
C.1 is of minimal order. Theorem C.2 implies the existence of positive
numbers b and ¢ such that u, , . =0form=0, 1,.... Hence, in terms of the
representation (C.4) of u,,,

0= i filb+mc)wh ™= i fi{b+me)ol(wfy™. (C.12)
i=1 j=1

Because of the minimality of the recurrence, the polynomial f(b + xc)wf inx
is non-trivial and of degree ¢;—1forj=1, 2,..., 5. Since the generalised
power sum at the right-hand side of (C.12) equals 0 for every m, it follows
from theorem C.1 that the numbers w, ©5%, ..., w¢ are not distinct. Thus
(w;/w;) = 1 for some indices i,j with i#. O

A recurrence sequence is called degenerate if its companion polynomial has
two distinct roots whose ratio is a root of unity and non-degenerate
otherwise. Every degenerate sequence {u,}w-, can be split into
subsequences {uy ; mc oo forb=0,1,...,c—1,such that each subsequence
is either trivial or a non-degenerate recurrence sequence. Here ¢ can be
taken as the least common multiple of the orders of those roots of unity
which occur as ratio of two distinct roots. It is therefore often sufficient to
study the multiplicities of non-degenerate recurrence sequences.
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Notes

We do not know a satisfactory introduction to the aspects of
recurrence sequences which are relevant for this tract. Some basic concepts
and techniques can be found in Lewis (1969). Pdlya (1921) wrote an
important paper on the prime factors of the numerators and denominators
of the terms of a rational recurrence sequence. Loxton and van der Poorten
(1977) stated a number of results and conjectures on the rate of growth of
the terms of a recurrence sequence and the size of the greatest prime factor
of the terms. Stewart (1986) wrote a survey of effective results on the
greatest prime factor of terms of recurrence sequences. Results on
multiplicities of such sequences can be found in the first part of Tijdeman
(1981). See, further, Cerlienco, Mignotte and Piras (1984), LeVeque (1974,
§§ B36, B40, B44), Montel (1957) and the notes of chapter 4.

We stress that it is relation (C.4) that makes it possible to apply the Thue-

Siegel-Roth—Schmidt method and the theory of linear forms in logarithms
to recurrence sequences.



CHAPTER 1—

Purely exponential equations

In this chapter, we investigate equations
X+y=z

in algebraic integers x, y, z from a fixed algebraic number field such that
[xyz] is composed of prime ideals from a given finite set.

Let P>3. Let py,. .., p, be given (rational) prime numbers with s> 1 and
0<p, < - <p,<P.Denoteby S the set of all rational integers composed of
Pys - .-, Ds. In particular —1€8, 0¢S, 1e€S. Denote by S, the set of all
positive integers of S and arrange them in the increasing order,

Ny <n,<ny<---

Then corollary B.1 can be applied to prove

Theorem 1.1 (Tijdeman, 1973). There exists a computable number C,
depending only on P such that

i
ni+l“ni>m fOV ni>3.
12

Theorem 1.1 admits the following consequence which Cassels (1960b)
derived from a result of Gelfond (1940) on p-adic linear forms in logarithms.
Corollary 1.1. For a fixed non-zero rational integer k and x,yeS ., the
equation

x—y=k
implies that
max(x, ) <C,

Jor a certain computable number C, depending only on P and k.

An ineffective version of corollary 1.1 is a consequence of a theorem of Thue
(1909). See Polya (1918). For integers a> 1, b> 1 and k0 it follows from

40



1. Purely exponential equations 41

corollary 1.1 that all non-negative integers m and n satisfying
a"—b"=k

are bounded by a computable number depending only on k and P(ab), the
greatest prime divisor of ab.
On applying theorem B.3 we obtain the following result.

Theorem 1.2. Let z be a non-zero rational integer. Suppose x,yeS with
(x,y,2)=1, |x|<|y| and |y|=3 satisfy

x=y (mod 2). (1)
Then there exists a computable absolute constant Cy such that
log |z| <(slog P)“*(log log | y)*P(2)(2).

Recall that P(z) denotes the greatest prime factor of z and w(z) is the number
of distinct prime factors of z. It involves no loss of generality to assume k>0
in corollary 1.1. Then corollary 1.1 follows from theorem 1.2 applied to k=
— y(mod x). Further, by combining theorems 1.2 and 1.1, we obtain the
following generalisation of corollary 1.1.

Corollary 1.2. Let x,yeS with (x,y)=1, |x|<|y| and |y|>3. Then

lo 12
P(x+y)> C“<—log lgo |gy :y|>

where C, >0 is a computable number depending only on P. In particular, the
equation

x+y=z 2)

>

in x, y, z€S and (x, y, 2)=1, implies that max(|x, z|) is bounded by a

computable number depending only on P.

Y

An ineffective version of the latter assertion follows from a result of Mahler
(19334) on the greatest prime factor of a binary form. An effective proof of it
is due to Coates (1969, 1970a) and Sprindzuk (1969).

Let K be a finite extension of degree d over Q. Denote by (/x the ring of
integers of K. Assume that n,, ..., m, € (/4 are non-zero non-units. Denote
by .’ the set of all the products of units of ¢k and of powers of =y, ..., @,
with non-negative exponents. Then the following analogue of the second
part of corollary 1.2 can be derived for algebraic number fields.
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Theorem 1.3. Let t20. Let x,,x,€Y5" satisfy
min(ord ,(x,), ord /(x,)) <t 3)

for every prime ideal 4 in O. Suppose

Xy=tny omg 4
where vy, ..., U, are non-negative integers. If
x1+x2+x3=0, (5)

then -
max([x,], [x,], [x3)) < Cs

for some computable number C5 depending only on 1, K and &'

Next we shall formulate a quantitative result which implies theorem 1.3 and
the second part of corollary 1.2 and which will be applied in chapter 7. We
need some further notation. Assume that 4,,. . ., £ aredistinct prime ideals
in Ok. Denote by % the set of all non-zero elements of ¢, which have no
prime ideal divisors different from 4,,. .., 4. Note that in case =0 the set
& is just the group of units of K. Further, if #,,. .., 4, areall the prime ideal
divisors of n,, ..., &, then ¥ >%". Suppose that the rational primes
divisibleby 4,,..., 4,_, or 4, donotexceed P (> 3). Let hand R be theclass
number and regulator of K, respectively. The following result was proved
by Gyodry (1979a) even without the factor (log log A)? in the exponent in (7).

Theorem 1.4. Let a,, o, and o5 be non-zero elements of Oy with |oc_,| <A(23)
fori=1,2,3.If

o Xy FoX,+azx; =0 for x,,x,,x;€, (6)

then x;=np,; for some ne ¥ and p,e & (i=1,2,3) such that

max [p;| <exp{(Cq(t+ 1) log P)"+ P log Aloglog 42} ()
3

i=1,2,

where Cq and C, are computable numbers such that Cq depends only on d, h
and R, and C, only on d.

A non-zero element a of K will be called an #-unit if ord ,(«) =0 for all
prime ideals 4 apartfrom f,,. .., 4. Note that an & -unit is the quotient of
two elements from % and conversely. Denote by U, the set of &-units of K.
It follows from (A.19) that U, is a multiplicative subgroup of K* which
contains the group of units of K* as a subgroup.

Let o, f and y be non-zero elements of Ox. Theorem 1.4 implies that the
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projective line ax+ fy=yz has only finitely many points (x, y, z) with
X, y,z€% An equivalent statement is that the equation

ax+fy=y inx,yelU, (8)

has only finitely many solutions. Equation (8) is called an (inhomogeneous)
S -unit equation (in two variables). If t =0, hence x and y are units of ¢,
equation (8) is called a unit equation. Ineffective versions of the above-
mentioned finiteness assertions concerning (6) and (8) can be deduced from
the results of Siegel (1921) (in case t=0) and Parry (1950) (in the general
case). The first effective variants are due to Baker (1968b) in case t=0 and
Coates (1969, 1970q) and SprindZzuk (1969) in the general case.

Let H (= 3) be an upper bound for the heights of «, # and y and denote by
H(x) and H(y) the heights of x and y, respectively. We shall derive the
following estimate for the solutions of (8).

Corollary 1.3. All solutions x,ye U, of (8) satisfy
max{H(x), H(y)} <exp{(Cg(t + 1) log P)*"*"P?log H(log log H)*} (9)

where Cg and Cqy are computable numbers such that Cg depends only on d, h
and R, and Cq only on d.

This result is due to Kotov and Trelina (1979). The corollary without the
factor (loglog H)? follows from the independently proved theorem of
Gyo6ry (1979a) mentioned above.

Proofs
Proof of theorem 1.1. Since n; >3, we may assume n;, ; <2n;. Write

— pd1. .. pl — pPe. . ph
m=py D’ Mg =Pt Ds

s

where g, and b, with 1<k <s are non-negative integers. Then

n_i+—1_1—pb|—“1..
—F1

n;

P — 1
Observe that
max |b, —a,| < max (b, a,) <2logn; ., <4logn,.

I<k<s I<k<s

Apply corollary B.1 withn=s,d=1,4,=A4,=---= A;=Pand B=4logn,
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to conclude that
Pivy _ 1>(logn,) ™
n

i

for some computable number ¢, depending only on P. O

Proof of theorem 1.2. We may assume |z|>3. Write
x=ip‘i]..~p:s, y= ipl;l-..pgs’

where g, and b, with 1<k<s are non-negative integers. For a prime p
dividing z, it follows from (1) and (x, y, z)=1 that

ord,(z) <ord (x — y)=ord (x/y) — 1). (10)
Notice that
Xly= 1= £pp e g .
Observe that

max |a, —b,| < max max (a;, b,) <2 log|y].

I<k<s 1<k<s
We apply theorem B3 withn<s+1,d=1,4,=A,=---=A,=Pand B=
2log |y to obtain
ord{(x/y) = 1) o (slog P<(loglog [»)* (1)

for some computable absolute constant ¢,. Now

log |z|=) ord,(z) log p. (12)
plz
Hence, by (12), (10), (11) and },|. p < P(2)o(2),
log |z| <(slog PY*(log log |y)*P(z)w(2). O
Proof of corollary 1.2. We denote by ¢, ..., ¢g computable numbers

depending only on P. We may assume that |y| > ¢, where ¢, is some large
constant. Put z=x + y. Then corollary 1.1 implies that |z| > 2, hence P(z) > 2.
By (N.1) we have w(z) < n(P(z)) <2P(z)/log P(z). Further s<P. By theorem
1.2 applied to the congruence x = — y(mod z) we have

log |x + y| <c,(log log |y))*(P(2))*/log P(2).
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On the other hand, we have, by theorem 1.1,
log |[x+y|=41log )|
when c; is chosen sufficiently large. Thus
loglyl _, (PG)
_-'—2\ C4—_—.
(loglog |y log P(z)

We want to get rid of the factor log P(z). To do this, we apply a standard
technique which we shall refer to as transferring secondary factors to the
other side. A rough estimation gives

(log |y <(P(2))
By taking the logarithm and multiplying on both sides we obtain

log}y|

1
————<2 P(2))%.

Hence

log |y| )”2

P(x+y)=cq <——log log 7]

which is the first assertion. The second statement is an immediate
consequence. O

Proof of theorem 1.4. By ¢, ..., ¢3¢ we shall denote computable positive
numbers depending only on d, h and R, and by e,, ..., eg computable
positive numbers depending only on d.

By lemma A.9 we may write /zj’=[1tj] where ;€ Oy for j=1, ..., 1.
Further, by corollary A.4 and lemma A.15, we may assume that

[|<Po (=1.....1). (13)
Hence, by lemma A.2,
H(r)<P* (j=1,...,1). (14)
In view of lemmas A.12 and A.15 we may write
x;=gymyt-omie (i=1,2,3) (15)

where the u;; are non-negative rational integers, the ¢; are units in 'y and
7; € O satisfies

] <P*) (i=1,2,3). (16)

Put g;=min; u;; and v;;=u;—aqa; for i=1,2,3 and j=1, ..., t. Put V=



46 Diophantine equations and recurrence sequences

max, ; v;. By permuting =,, ..., 7, and x,, x,, x5, we may secure V=v,,.
Then v,,v5, =0. Now by interchanging x, and x,, if necessary, we obtain
v3; =0. Let r; and 2r, be the number of conjugate fields of K which are real
and non-real, respectively. We shall signify the conjugates of any element o
of Kbyal,. .. ,aDwitha®,.. . a"’realand a”*Y,. .., a"1+"? the complex
conjugates of a1 72+ on*2) respectively. Put r=r; +r,— 1. Let ,,

.., 1, be an independent system of units for K satisfying (A.45). Then we
have, by lemma A.2,

In|<cio and Hm)<e,, (=1,...,n. (17)

Further, we may write, by corollary A.S5,

E1/E3=ENT Y, Epfez =Ny (18)
with wy,eZ (i=1,2;I=1,..., r) and &}, &, units in @ such that
max(|s’1 , 8’2|)<012. (19)

Put ¢5=1and y;=¢}y, for i= 1,2, 3. Then(16) and (19) together with lemma
A.2 imply
[yi|<Pes*) and HEG)<Po<+) (i=1,2,3). (20)
Consequently x;=#np; (i=1,2,3), where n=¢;n" - 7,
pi=yimit oy cm (i=1,2,3) (21)

and
Wi =" =wsy =0, (22)

by definition. It is clear that n€ & and p,, p,, p; € & We shall show that (7)
holds which will complete the proof.
By (6) we have

o o
i=-202_ 1Ml (23)
x3P3 %3pP3
Hence,
! o
I'= _y_lz ,7‘1"21. . .":/zrn'izn—"u. .o n;)ZI_UJR 2 _ . (24)
Y3 o3

We are going to derive an upper bound for H :=max(¥, W) where W=
max; ; Iwijl- Suppose that

H>ciit+1)log Plog A (25)

for some sufficiently large constant ¢, s> 1.
First suppose

V=(c,s(t+1)log P)"1H. (26)
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We have, by lemmas A.7 and A.2, ord, (x3)<c;¢ log A. Hence, by (23),
v =V, v3; =0, (26) and (25),

ord, (T)>V —c,qlog A>c;,(t+1)"*log P)"'H 27

where we may take ¢, ,=(2c,5) ! provided that c, 5 is sufficiently large. By
lemma A.3 and (20) we have for the heights of —y%,/y5 and o, /a4,

H(=yy/y)) <SP0, Hlpfog) < A7 (28)

By applying theorem B.3 to ord , (I') and using (24), (28), (17) and (14) we
obtain

ord, (N <(c;o(t+ 1) log Py***"P?log A(log H)>. 29)
We infer from (27) and (29) that

H t
(log H)? <(e0(t + 1) log PY*“* "P?log A.

Hence, by transferring secondary factors to the other side,
H <(c,,(t+ 1) log Py« *"P?log A(log log A)>. (30)
Now suppose, in place of (26),
V<(c,s(t+1)log P)"'H. (31)
Notice that V< H and so H= W, If r =0, we can take W=0. Thusr>1 and

therefore d> 1. In this case, instead of V'=v,,, we may assume that W=
max, ¢, |wy|. This, in view of (22), is possible by permuting p, and p,. We
have, by (21),

wyy log [n{?]+ -+ +wy, log|n

t
=log [p{’| —log [y{¥|— 3. vy;log | (32)
j=1

for k=1, ..., r. Assume that the right-hand side attains its maximum
absolute value when k=« (1 <k <r). Consider (32) as a system of r linear
equations in r unknowns wy,, ..., w,,. Its determinant E is non-zero.
Solving for w,,, it follows from (17) and |E|> R that

t
wscn{uog 1p]]+ fog b+ 3. vy flog |n<,->||}-
i=1

Hence, by (20), (13) and a Liouville-type argument,

[log |pP]| = c23W —ca4(t+ ) log P —c,5(t+ 1)V log P.
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On taking ¢, s large enough we infer from H = W, (25) and (31) that
llog [pP]| = c26H.
By (21), (20), (13) and (31) we have

log |[N(p,)|=log |[N(y})| + Z vy;log |N(m))|

=
<cyr(V+ D)t + 1) log P<2c,,H/cys.

By making ¢, s large enough, we secure that 2¢,,/c, 5 <c,¢/d. Hence, if
log |0}’|>0, we have

H d—1
Z log |p""|<c26g——log [P < _{ y )026H.
k#x
Consequently there is a A with 1 <A<d such that
H
log [p) < —¢26 T (33)
Using a Liouville-type argument we deduce
(/1)
log wpw <log A+dlog |a3p3|. (34
By (21), (20), (22) and (13) we find
log|ps| <caslt+ (VY + ) log P. (35)

From (23), (33), (34) and (35) we obtain
H
log |TYW| < —cy6 ) +cyg(log A+ (t+ 1)(V + 1) log P).

By taking c, s large enough we see from (23), (25) and (31) that
0<|T¥W| <exp{ —coH}. (36)

We are going to apply corollary B.1 to I'”, where we use representation (24)
for I'. On using the estimates (28}, (17) and (14) to estimate the heights of the
factors, we obtain

[T¥| = exp{ —(c30(t + 1) log P)*"*"1og Alog H}. (37)
Combining (36) and (37) we find

H
log <(c3,(t+ 1) log P)"*Vlog A.
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This yields, after transferring the secondary factor to the right,
H <(c3,(t+ 1)log Py<"*V]og Alog log A. (38)
Collecting (25), (30) and (38) we obtain unconditionally
H <(c;;(t + 1) log P)*""*"P?log A(log log A)>. (39
By (21), (20), (17) and (13) we have
log [p;] <csalt+ D(V+ Dlog P+cysW  (i=1,2,3).
By H=max(V, W) and (39) we may conclude

max log |—;:| <(ca6(t+ ) log Py + P log A(log log A)*. O

i=1,2,3

Proof of corollary 1.3. Let x, y€ U, be a solution of (8). By ¢34, ¢33,¢39 WE
shall denote computable positive numbers depending only on d, h and R
and by e, and e, , computable positive numbers depending only on d. By
lemma A.9 we have ﬁj?=[nj] with m;e O forj=1,...,t. If uy, ..., u are
sufficiently large rational integers and u=nj-- -, then

ord, (ux)=0, ord, (uy)=0 (i=1,...,1).

By (A.19) we have ord (ux)=ord (uy)=0 for all prime ideals /4 different
from 4y, ..., 4. Hence ux, uy, pe ¥ We have, by lemma A.1,

a7 p <A
Further, (8) implies

apx) + Buy) —yu=0.
By theorem 1.4 there exist y € & and p,, p,, p3 €% such that ux=np,, uy=
nps, p=1p3 and

log max |;| <(c34(t+ ) log Py +*VP41og H(log log H)%.
i=1,2,3
Since x=p,/p; and y=p,/p;, we obtain, by lemmas A.3 and A.2,
max(H(x), H()) Sexp{cas log max [p]}

<exp{(cso(t + 1) log Py *VP?log H(log log H)?*}. O

Proof of theorem 1.3. Suppose (5) holds for x,, x,, x5 as specified in theorem
1.3. By c40, C4ys - - - » €5, We shall denote computable positive constants
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depending onlyont,K and &#". Let 4,,. . ., 4 beall the prime ideal divisors
of [z, x,] in 0. Denote by & the set of all elements o of ¢ such that [a]
is (exclusively) composed of the prime ideals #,,. .., #,. Hence ¥ = &% We
have

t<cyh0, ax  N(g)<cy. (40)
i=1,..., t

Since x;, x,, x; are in & and satisfy (5), theorem 1.4 implies the existence of

nes and p,, p,, p3 € Ok such that x;=xp; and

lo:| <car (1=1,2,3). (41)
Hence
IN(Pi)l <eyy ((=1,2,3) (42)

By (3) we have ord,, (7)<t forj=1,. .., t. Hence |N(n)| <c44. This together
with (42) gives [N(x;)| Scg4s for i=1,2, 3. From (4) we obtain |N(r;)|” <cys,
hence v;<cy, forj=1,...,¢. Thus [gl <c,g- By a Liouville-type argument
it follows from (41) that |p¥|>c,, for all conjugates p§ of p;. Since
n=x5/ps, we infer Iﬂ <c¢s0. Thus, by (41),

[x:|<[n][e:] <esy fori=1,2,3. O

Notes
Before it was shown that the method of estimating linear forms in
logarithms yields theorem 1.1, some other methods were applied to find
lower bounds for n;,; —n;. Stermer (1898) proved that the number of
solutions of n;,; —n; <2 is finite and that all solutions can effectively be
found by solving a finite number of Pell equations (see also Lehmer (1964)).
Poélya (1918) noticed that it is a straightforward consequence of a theorem
of Thue (1909) on binary forms that n;,, —n;, — oc. Pédlya also remarked
that n; . /n;— 1 as i — oc. It follows from the results of Siegel (1921) and
Mabhler (19334) that for every ¢ with 0 < ¢ < 1 there is a number N, such that
n;+y—n;>n}~¢ for i>N,. This was observed by Erdés (1965). Tijdeman
(1973) proved theorem 1.1 with an explicit value of C,. This value of C, can
be improved by using theorem B.1. On the other hand, Tijdeman (1974)
showed that there exists a computable number C,, depending only on P
such that n;,, —n;<n;/(logn;) for i>3 and s>1. It is an unsolved
problem of Erdds whether C;, = C, ((P) can be made to increase to infinity
when P — 0.
Stermer’s result implies corollary 1.1 for [k| <2 (éee also Skolem (1945a)).
Skolem (1945b) used his method for solving the equation x—y=k in
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integers x, ye S, . Particular attention has been given to the special case
a*—b’=k in positive integers x, y 43)

where a, b, k are fixed integers with a> 1, b> 1, k#0. In this connection
there is an interesting conjecture of Skolem (1937, 1938) that if a*— ' =
k(mod m) is solvable for every positive integer m then a* — b’ =k is solvable
in integers x, y. Pillai (1931, 1936) showed that (43) has only finitely many
solutions and only one solution if k is sufficiently large with respect to a and
b. LeVeque (1952) proved that, if k=1, then there is at most one solution,
except when a=3, b=2. In the latter case there are exactly two solutions,
namely x=y=1and x=2, y=3. LeVeque indicated how to determine the
solution. Cassels (1953) gave a simpler proof of a slightly stronger theorem,
dealing with the congruences a¢*= I(mod B), b*= — l(mod A) where A4, B
are the products of the odd divisors of a, b respectively. See also Szymiczek
(1965).

Mahler (1933a) used his p-adic analogue of the method of Thue-Siegel to
prove that x + y=z in integers x, y, z€ S with (x, y, z) = 1 has only finitely
many solutions. His method is ineffective (see also Schneider (1967)). An
effective result for the equation a*+ b¥=c* was given by Gelfond (1940).
Rumsey and Posner (1964) generalised this result to x+y=c* in x€8S,,
yeS.,zeZ, where c> 1is some fixed integer. The full effective analogue of
Mabhler’s result was obtained by Coates (1969, 1970a) and Sprindzuk (1969).
In the latter paper more general equations than (2) were considered. For the
greatest square-free divisor of x + y, Shorey (1983¢) proved the following
result.

For every x,yeS with (x,y)=1, |x|<|y| and log|y|>¢",

log Q(x +y)= C,,(log log | y))*(log log log | y|) ~*

where C,, >0 is a computable number depending only on P.

Theorems B.1 and B.3 can be used for solving equations of types (1) and
(2) in practice. Another way of solving such equations is by using
congruences and, sometimes, simple algebraic arguments. As early as about
1200 Levi ben Gerson (alias Leo Hebraeus) solved the equations 3*+ 1=2"
in integers x,y and since that time numerous papers with solutions of
explicit equations have appeared: see, for example, Pillai (1945), Nagell
(1958), LeVeque (1974, § D60), Alex (1976), Brenner and Foster (1982) and
Alex and Foster (1983). The classical methods often fail for equations with
infinitely many solutions such as 2* —2¥= 3% — 3" in positive integers x, y, z,
w. Ellison (1971a, 1971b) indicated how Baker’s method can be used for
solving such equations and a detailed account can be found in Stroeker and
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Tijdeman (1982). In this paper only estimates in the complex case have been
used. An example of the use of p-adic estimates was given by Wagstaff Jr
(1979), who solved Nathanson’s exponential congruence 5*=2(mod 3¥) in
xeZ, (cf. theorem 1.2).

Several equations occurring in the above-mentioned papers are of the
form x; +x,+ - +x,=0 with x;eS fori=1, ..., n and n=4. For such
equations congruence methods usually require distinction of many cases.
Baker’s method is only applicable if n or s is very small. A general result can
be obtained by the p-adic analogue of the ineffective Thue-Siegel-Roth—
Schmidt method, however. Evertse (1984b) improved upon earlier results
of Dubois and Rhin (1976) and van der Poorten and Schlickewei (1982)
as follows. Let ¢,deR with ¢>0, 0<d< 1. Let neZ,. Then there are
only finitely many (x,, ..., x,)€Z" such that () x,+ - +x,=0,
(ii) x; + -+ +x,#0 for each proper non-empty subset {i,... i} of {1,...,n},
(i) (x4, ..., x,)=1,

n

(i) I <|xk| 0 |xklp><c max
pes Isks<n

k=1

ks

Many of the above-mentioned results on rational integers have been
generalised to results on algebraic integers from an arbitrary fixed algebraic
number field, and some of them even to the elements of an arbitrary finitely
generated integral domain over Z. Skolem (1944, 19454) gave an extension
of the result of Stermer to equations over algebraic number fields. The
general conjecture of Skolem (1937; 1938, p. 56) reads as follows. Let K be
an algebraic number field and a,;;, B,; non-zero elements of K. If the system
of congruences

[ k
Y B [l 4,=0 (modm) (i=1,2,...,1)
h=1 ji=1

in rational integers x,;, ..., X, is soluble for all moduli m then the
corresponding system of equations is soluble in rational integers (cf.
Schinzel, 1977). The ineffective analogues of theorem 1.4 and corollary 1.3
are implicitly contained in Siegel (1921) in case t=0 and can be deduced
from Parry (1950) in the general case. For an ineffective generalisation see
Mahler (1950).

Generalising (8), Lang (1960, 1983) considered the equation

ax+fy=y (44)

where a, f and y are fixed elements of an arbitrary field K of characteristic 0,
and the unknowns x,y belong to a finitely generated multiplicative
subgroup G of K*. Lang proved that (44) has only finitely many solutions.
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In case K is an algebraic number field and G is a group of ¥ -units, Gyory
(1979q), Evertse (1983b, Ch. 7; 1984a) and Silverman (1983b) derived
explicit upper bounds for the numbers of solutions of equations of the form
(44) which depend only on the degree of K over Q@ and the number ¢ of prime
ideals generating &, For generalisations to the case considered by Lang, see
Evertse and Gyory (1985).

Effective results on equations of types (6) and (8) are implicitly contained
in Baker (1968b) in case t =0 and in Coates (1969, 1970q) in the general case.
See also Sprindzuk (1969). Siegel, Mahler, Parry, Baker, Coates and
SprindZzuk were actually interested in the Thue and Thue—Mabhler equation,
which will be considered in chapters 5 and 7, respectively. Any Thue
equation can be reduced to a finite number of appropriate unit equations in
two variables. Conversely, any unit equation in two variables can be
reduced to a finite number of suitable Thue equations. A similar
equivalence holds for the Thue-Mahler equations. We refer to the notes of
chapters 5 and 7 for references of papers in which unit equations occur in
this context. Explicit bounds for the solutions of equations of types (6) and
(8) can be found in Gyory (1972, 1973, 1974, 1975, 1976, 1978a, 1979a,
1980a, b, e), Lang (1978, Ch. VI), Kotov and Trelina (1979) and Sprindzuk
(1980; 1982, Ch. VI §6). Gyory (19794) proved theorem 1.4 with (7) replaced
by

max |E| <exp{((C,,(t+ 1))°:Rhlog Py *°P?log A}
i=1,2,3

where R=max(R, 1) and C, ,, C,; are explicitly given numbers depending
only on d.

Let n>2 be an integer and let a4, ..., a,, , be elements of an algebraic
number field K such that a, - - -, #0. As a generalisation of (8), consider the
equation

A X+ X, =0, InXxg,...,x,€Ug. 43)

Equation (45} is called an & -unit equation (in n variables). Let r, and r,
denote the number of real conjugates and complex conjugate pairs of K,
respectively. Under the restriction r; +r, +t <3, Vojta (1983) gave effective
bounds for the solutions of £ -unit equations in three variables. Van der
Poorten and Schlickewei (1982) and Evertse (1984b) proved some general
ineffective finiteness results on &-unit equations in an arbitrary number of
variables. As a corollary we have the following result in the style of theorem
14,

Apart from multiplication by elements of ¥, the equation

X+ +x,=0 inxy,...,x, €S (46)
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has only finitely many solutions such that x; + -+ +x, #0 for each proper,
non-empty subset {i, ..., i} of {1,...,n}.

Van der Poorten and Schlickewei also obtained a similar finiteness result
for the solutions of (46) if x,,. . . , x, are unknowns in some finitely generated
multiplicative subgroup of K* where K is any field of characteristic 0. This
result implies Lang’s theorem. See also Laurent (1984).

There are several applications of the results given in this chapter.
Equations of type (2) occur in the theory of finite groups (see e.g. Brauer
(1968) and Alex (1973)). Furthermore, Perelli and Zannier (1982) used a
result like theorem 1.2 to give a complete characterisation of all integral-
valued arithmetical functions which are periodic modulo p for every large p
and take incongruent values modulo p in every period. Equations (5), (6)
and (8) play a fundamental role in the theory of diophantine equations.
Theorem 1.3 will be applied to prove theorems 9.3’ and 9.5. We shall deal
with the consequences of theorem 1.4 to the superelliptic and Thue—Mahler
equation in chapters 5, 6 and 7. In the notes of these chapters references can
be found to papers dealing with norm form equations, discriminant form
equations and index form equations. Equations (5), (6) and (8) also have
applications to algebraic number theory. Theorem 1.4 can be used to prove
that there are only finitely many algebraic integers (up to translation by
rational integers) of given discriminant. This was proved by Birch and
Merriman (1972) in an ineffective way and, independently, by Gy6ry (1973)
in an effective form. Various extensions of the effective version, for example
to algebraic integers with given degree and given relative discriminant over
an arbitrary algebraic number field, and applications to algebraic number
theory can be found in Gyory (1973, 1974, 1976, 19784, b, 1980f, 1981c,
19844) and Trelina (1977a). Generalisations to integral elements over an
arbitrary finitely generated integral domain over Z are given in Gyory
(1982¢, 1984q) and Evertse and Gyory (1986a). Theorems 1.3 and 1.4 can
also be used to obtain irreducibility theorems of Schur-type, see Gyory
(1972, 1980b, 1982b). Nagell (1969) calls a unit ¢ of an algebraic number field
exceptional if 1 —¢ is also a unit. Chowla (1961) and Nagell (1964) proved
that every number field has only finitely many exceptional units. This result
is an immediate consequence of both theorem 1.3 and theorem 1.4 and
corollary 1.3. The best-known bound for exceptional units is due to Gyory
(1980a). Lenstra Jr (1977) used information on exceptional units to find
Euclidean number fields of large degree. For further results, references and
applications, see Gyory (1975, 1980qa,b), Wasen (1977) and Sprindzuk
(1982).

Equations (8) and (45) have also been studied and applied in the case of
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function fields of characteristic 0 in place of number fields. Effective results
for the solutions of equation (8) in “-units over function fields were
obtained by Schmidt (1978), Mason (1981, 1983, 19844, b) and Gyéry (1983,
19844a). Moreover, Mason (1983, 1984a, 1986) gave an efficient algorithm
for determining all so-called non-trivial solutions of equations (8) and (45)
in &-units over function fields. Evertse (1986) derived a good explicit bound
for the number of non-trivial solutions of (8) in &-units of a function field.



CHAPTER 2——

Binary recurrence sequences with
rational roots

In this chapter we give lower bounds for the absolute value and the greatest
prime factor of Ax™+ By™ where A4, B, m, x, y are rational integers. As an
application we prove, under suitable conditions, that Ax™+ By"=Cx" +
Dy" implies that max(m, n) is bounded by a computable number depending
only on 4, B, C and D.

Corollary B.1 can be applied to prove:
Theorem 2.1. For every pair A, B of non-zero rational integers, there exist
computable numbers C, and C, such that

|4x™ + By™| = (max(|x[, | yy"~<=oe" (1)
for all rational integers m, x, y with m> C, and |x|#|y].
An immediate consequence of theorem 2.1 is the following result of
Tijdeman (1975).
Corollary 2.1. If A#0, B#0, k#0, m=0, x>1 and y=20 are rational
integers satisfying

Ax™+ By" =k, 2

then m is bounded by a computable number depending only on A, B and k.
Van der Poorten (1977b) applied theorem 2.1 and theorem B.3 to prove,
effectively, that

lim P(Ax™+ By™)= 3)

m-= o

uniformly in non-zero integers x, y with |x|+#|y|. Further, Stewart (1976,
1982) gave the following quantitative version of this result.

56
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Theorem 2.2. Suppose that A, B, x and y with |x|# |y| are non-zero rational
integers. Then

P(Ax™+ By™) > Cy(m/logm)'/> (m=C,),
where C3>0 and C, are computable numbers depending only on A and B.
Shorey (1982) applied theorem 2.1 to generalise corollary 2.1 as follows:
Theorem 2.3. Let A#0, B#0, C and D be rational integers. Suppose that x,
y, m, n with |x|#|y| and 0<n<m are rational integers. There exists a

computable number Cs depending only on A, B, C and D such that the
equation

Ax™+ By"=Cx"+Dy" 4
with
Ax™# Cx" (®))
implies that
m<Cs.

An immediate consequence of theorem 2.3 is the following result.

Corollary 2.2. Let A and B be non-zero rational integers. Suppose x, y, m, n
with x>y>=0, x> 1 and 0<n<m are rational integers. If

Ax™ + By" = Ax"+ By",
then m is bounded by a computable number depending only on A and B.

Theorems 2.2 and 2.3 are special cases of the following result.

Theorem 2.4. Suppose that the assumptions of theorem 2.3 are satisfied. Let A
and y be non-zero rational integers. There exist computable numbers C¢ and
C,>0 depending only on A, B, C and D such that, for every m=Cg, the
equation

AMAX™ + By™) = u(Cx" + Dy")
with
Ax"Dy" # By"Cx"

1/2
P(u)>C7< - ) :

logm

implies that

Proofs
The constants ¢, ¢,, . . . in the proofs of theorems 2.1 and 2.2 are
computable positive numbers depending only on 4 and B.
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Proof of theorem 2.1. Let A#0, B#0, x and y with |x|s|y| be rational
integers. We may assume that xy##0, otherwise (1) follows immediately.
Further, there is no loss of generality in assuming that x> y>0. Then we
can find a prime p such that

ord,,(x/y)>0. (6
If Ax™+ By™=0, then it follows from (6) that
m<m(ord (x) —ord (y)) = ord (B) —ord (4)=:¢;.

B m
Al\x

9|BI7 3)5 A2=x+l and

Therefore, for m>c¢,, we have

0| Ax™ + By"| = | Alx™

Apply corollary B.1 with n=2, d=1, A, =max(|4
B= m+1 to conclude that

-
A\x

|AX™ + By™| = x" 18" (m>c,). |

> x—c;log m

Hence

Proof of corollary 2.1. Let 4, B, k, m, x, y be as in corollary 2.1 and suppose
that equation (2) is satisfied. There is no loss of generality in assuming that
x>y>0. We may suppose that m>C,. Then, by combining (2) and (1),

|kl me—czlogm.

Since x > 2, we find that m is bounded by a computable constant depending
only on A, B and k. O

Proof of theorem 2.2. There is no loss of generality in assuming that x>y >0
and (x, y)=1. Put

W, =Ax"+By" (m=0,1,2,...).

We may assume that m> c, with c, sufficiently large. Then, by (1), W, #0
and

mlog x

log |W,|> 3

. )

Let p be a rational prime dividing W,,. Since (x, y)=1, either (p,x)=1 or
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(p, y)=1. For simplicity, assume that (p, x)=1. Then

ord (W) <cs +ord,,< —g <X> - 1),

X

We apply theorem B.3 with n=2, d=1, p=p, A,=max(|4], |B|, 3),
A,=x+1and B=m to obtain

B m
ordp< 3 (%) — 1) < cg(log m)*(log x) é.

Thus we obtain

14

d (W) <c4(l 2
or p( m) C7( Ogm) (ng)logp

if (p,x)=1. The above inequality follows similarly when (p,y)=1.
Consequently it follows from

log |W,,|= ), ord,(W,)logp

pIW,

that

log | W,| <c;(log mlog x) Y. p.

P W
Putting P = P(W,,), we observe
2p?
<P Y 1<,
pIZP:Vm P pg? log P

by formula (N.1). Here notice, by (7), that P>2. Hence

2

P
log |W,,| <2¢,(log m)*(log x) (8)

logP’

Now the theorem follows from (7) and (8) by transferring secondary factors.

O

Proof of theorem 2.3. Suppose that (4) and (5) are valid. Then xy#0.
Further, there is no loss of generality in assuming that x> y>0. The

constants vy, v,, .. . , Vg are computable positive numbers depending only
on A, B, C and D. Observe that
|Cx" + Dy"| <2 max(|C|, | D|)x". 9)

Now it follows from (4), (1) and (9) that
m—n<v, logm+1). (10)
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In view of (10), we may assume that n>=v, with v, sufficiently large. By (4)

and (5),
x n D_By"l—"
)=
(y> Ax""—-C vs

which implies that x/y <4/3, if v, is sufficiently large. Consequently

ri=(x,y)<x—y<x/3. (11)

From (4), we obtain

<E>H(Axm—n_c)=<%>n(D _Bym—-n).

r

Note that (x/r, y/r)= 1 implies that (x/r)" divides D — By™ ~". Further, by (4)
and (5), D — By™ "#0. Consequently, by (10),

(x/r)"<|D — By""| < xP+l8"
which implies that
x/r < xvalosmin, (12)
Combining (11) and (12),
log x> (v,(log m)/n)~ 1. (13)
By theorem 2.1,

x\™ y m X m-yvslogm X —vslogm
|Ax’”+By’”|=r'”‘A<—> +B<—> >r"‘<—> =x"'<—) ,
r r r r

which, together with (12), implies that

| Ax™ + By™| > xm - vellogm’n, (14)
Now it follows from (4), (14) and (9) that
xm—ve(log m)z/n < v7xn'

From m>n and (13), this implies that

2 2
(log m) +log U4 <v (log m) .

I<m—n<u, 3
n log x n

Consequently
n<vg(log m)?

which, together with (10), gives m<v,. O
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Proof of theorem 2.4. Let A4, B, x, y, m, n, A and p be as in theorem 2.4
satisfying

MAX™+ By™)=u(Cx"+ Dy") (15)
with
Ax"Dy"# By"Cx". (16)

Then xy#0. Further, there is no loss of generality in assuming that x>
y>0. By considering equation (15) with A(x, )" " in place of A, we may
assume that (x, y)= 1. Finally we may assume that (1, u)= 1.

Denote by v, 4, v, . . . computable positive numbers depending only on
A, B,C and D. We may suppose that m > v, , with v, , sufficiently large. Then
Ax™+ By™#0 by theorem 2.1. Let 0 <e< 1. We suppose that

m \1/2
P(,u)<s<log m) . (17)

We shall arrive at a contradiction for a suitable choice of ¢ depending only
on A, B, C and D.
For a prime p dividing g, it follows from (15) and (4, u})=1 that

ord (u) <ord(Ax™+ By™).

We apply theorem B.3 and (x, y)=1 to conclude that

ord (Ax™+ By™) <v, ,(log m)* log x fogp’

Hence
log |u| <v,,(log m)*log x Z|: p.
pla

From (N.1), (17) and e< 1,
(P()® __6em

p< P(u)n(P() <2 < (4> 1.
%‘ log P(n) ~ (log m)* 2
Consequently
log |u| < 6ev,mlog x (18)
which, together with (15), (1) and (9), gives
log |4| <6ev, ;mlog x + v, , log mlog x. (19)
Observe that
|A(Ax™+ By™)| = |Ax™ + By™|. (20)

By (15), (20), (1), (18) and (9), we derive

m—n<6ev, m+v,;logm. (21
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Rewrite (15) as
xMAAX™ " —uCy= —y"(ABy" " —uD). (22)

In view of (16), equation (15) implies that AAx™ " —uC and ABy" " —uD
are non-zero. Further, since (x,y)=1, we see from (22) that x" divides
ABy™ ™" —uD. Therefore

x"<|ABy™ ™" —uD|.
From (19), (21), (18) and y<x, we have

log |ABy™ " — uD| <(18ev; ym +v, 4 log m) log x.
Hence
n<18evyym+v,  logm. (23)

This is valid for every ¢ with 0 <e< 1. Let e=min((48v,,)~*,271). Then we
conclude from (21) and (23) that m<2(v,;+v;,)logm which implies
m<v,s. This is not possible if v,,>v,s. O

Notes

Theorems B.1 and B.3 are the best possible with respect to A,,. This
feature plays a crucial role in all the results of this chapter, and will appear
again in chapters 9-12. It also enabled Stewart (1982) to prove, for non-zero
rational integers A, B, x, y with |x|#|)],

m
Q(Ax"‘+BJ’"')>CsW (m=Cy),

where Cg>0and C, are computable numbers depending only on 4 and B.
For more results on the square-free divisor and for the results in the
direction of theorems 2.1 and 2.2, we refer to chapter 3 and its notes.

Under necessary restrictions, Shorey (1984a) showed that equation (4)
with C=A, D=B implies that m is bounded by a computable number
depending only on P(AB). The assertion of theorem 2.3 is also true if m=n.
Then (4) implies (4 — C)x™ + (B — D) y™ =0. Since 4 — C = 0 in view of (5), the
assertion of theorem 2.3 follows from theorem 2.1.



CHAPTER 3——

Binary recurrence sequences

The results of chapter 2 can be put in terms of recurrences. Let m
and n be non-negative integers. Consider the binary recurrence

Upyp=TlUpq+su, (m=0,1,2,..)

where r and s#0 are rational integers satisfying r?+4s#0 and ug,u, €Z
with |ug| + |u,| > 0. Put T=max(ju|, |u, |, 2). Denote by « and B the roots of
the companion polynomial z2 —rz—s. Note that « and § are distinct and
non-zero. We order « and § such that || >|B|. We have according to (C.4)

U,=aa™+bp™ (Mm=0,1,2,...).
Here

a=@ﬁ§:% and b=ﬂﬁ_—’2’3. (1)
The results of chapter 2 deal with recurrence sequences for which ug, u,, «, 8,
r, s are rational integers.

We suppose that a/f is not a root of unity and ab#0. Hence {u,,}X-, is
non-degenerate and |a| > 1. Theorems 3.1, 3.2, 3.3 and 3.6 are formulated in
the above notation, but for theorems 3.4 and 3.5 we need some more. Let a,,
a,, a, and a, be non-zero algebraic numbers of degrees at most d and
heights not exceeding H (>2). Assume that A#0 and B are algebraic
numbers of degrees at most d and heights at most H' (>2). Let 4 and u be
non-zero algebraic numbers. For m=0, 1, 2, ... put

xm=a1)”m+a2#m’ ym=a3)'m+a4auma (2)
and set o
r=max(|,1|, Iyl).

We shall use the above notation and conventions throughout the chapter
and without any further reference.

A straightforward application of corollary B.1 yields a good lower bound
for |u,|.

63
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Theorem 3.1 (Stewart, 1976, p. 33). There exist computable numbers C, and
C, depending only on a and b such that

|ttn] = || "~ €1 1™ (m=C). 3)

It follows from theorem 3.1 that u,,=u, implies that |m —n| is small. On
combining this with an elementary p-adic argument, we show that the
members of {u,}<_, are distinct after a certain stage.

Theorem 3.2 (Parnami and Shorey, 1982). There exists a computable number
C; depending only on the sequence {u,,}x- o such that

U, #Uu,

whenever m#n and max(m,n)= Cj.
Another application of corollary B.1 will enable us to derive a lower
bound for |u,, —u,| from theorem 3.2.

Theorem 3.3 (Shorey, 1984a). There exist computable numbers C, and Cs
depending only on the sequence {u,,}w_ o such that

'um '_ unl 2 Ialmax(m. n)(m + 2)—C4 log(n+2)
whenever m#n and max(m,n)= Cs.

In order to study the behaviour of the greatest prime factor of u,,/(u,,, u,), we
first investigate the difference Au,, — Bu,. Results on this difference are
stated in the corollaries of the next two general theorems that include
theorems 3.2 and 3.3.

Theorem 3.4 (Shorey, 1984a). Suppose A/u is not a root of unityandt > 1. The
equation

Xy =V 4
with
a, A"#azl" 5
implies that
max(m,n)<Cglog H

Jor some computable number Cg depending only on d, A and p.

The assumption 7> | is satisfied if A and p are algebraic integers and A/u is
not a root of unity.

Another application of corollary B.1 will enable us to derive a
quantitative version from theorem 3.4.
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Theorem 3.5 (Shorey, 1984a). Suppose |4| 2 |u|, |A| > 1 and A/u is not a root of
unity. There exist computable numbers C, and Cg depending only ond, A and
i such that, for all m,n withm=2n,m>C,log(HH') and Aa,A"+# Ba,A", we
have

|Ax,, — By,| = |A|" e,
where v=(log mlog H +log H’') log(n + 2).

Putting a, =a3=a,a,=a,=b, A=0a, u=4, x,,=u,, and y,=u, in theorem
3.5, we obtain

Corollary 3.1. There exist computable numbers Cq and C, ; depending only on
d, o and B such that, for all m,n withm=n,m>= Cqlog(TH’) and Ad™ # Ba",
we have

| Au,, — Bu,| = |a|™ e~ 1™,
where v, =(log mlog T +log H') log(n +2).

We observe that the equations A«™ = Ba" and A™ = Bf" with m# n cannot
hold simultaneously, since a/B is not a root of unity. Thus, if |«| = |§|, we can
interchange o and f, if necessary, to derive the following result from
corollary 3.1.

Corollary 3.2. Suppose |«|=|B|. Then
| Au,, — Bu,| = |a|™ e~ 1o
whenever m>n and m> Cq log(TH').

For given non-zero algebraic numbers A, B and a given sequence {u,,}-
whose companion polynomial has non-real roots, it follows from corollary
3.2 that |Au,, — Bu,| - co, whenever max(m,n) tends to infinity through
non-negative integers m and n with m# n. This need not be the case with a
sequence {u,}x_, whose companion polynomial has real roots. For
example, the Fibonacci sequence {u,,}=., satisfies

|thy =ttty | =B = ™ (m=1,2,..)),
hence |u,, —ou,,_,| >0 as m - oc.

By putting A=B=1 in corollary 3.2 and recalling that |oz| > 1, we have

Corollary 3.3. There exist computable numbers C,, and C, , depending only
on o and B such that for all pairs (m,n) withm=>nand m=C,, log T, we have

|ty — 14| = || " €722,
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where
v,=logmlog T log(n+2).

Corollary 3.3 includes theorem 3.3. Further, corollary 3.3 implies the
following refinement of theorem 3.2.

Corollary 3.4. The equation

U=, (m#n),
implies that
max(m,n)<C,,log T. 6)

A simple example shows that (6) is the best possible with respect to T. Let
a"=2"~1,b"=3"~1 and

U =g"3m —p""  (m=0,1,2,...).

Then 4’ =uy’ and 0<max(juy’|, [u{"]) <2.3" for any n.

Corollary 3.4 states that if u,/u,=1 and msn then max(m, n)/log T is
bounded. By combining theorem 3.4 and corollary B.2, we generalise it as
follows. Put

max(m, n) _ )
Am,u =max <W, 2>, dl - [@(a) . @]

Theorem 3.6 (Shorey, 1984a). Let m and n satisfy m>n=0 and u,u,#0.
There exist computable numbers C,3>0 and C, , depending only on « and
such that the inequality

u A 1dy +1)
P m < C m,n
(@ )<cnlies)

Am,n < C14~

implies that

Since a/f is not a root of unity, the equations u,, =0 and u,=0 with m#n
cannot hold simultaneously. Further, by corollary 3.1 with A=1and B=0,
the equation u,=0 implies that m<C,slog T for some computable
number C, s depending only on « and .

The first part of our next corollary is an immediate consequence of
theorem 3.6. For the second part we apply part (i) with the least integer n
such that u,#0 (n is either 0 or 1).

Corollary 3.5. There exist computable positive numbers C,¢4, C(5 and C,g
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depending only on the sequence {u,,}%_ such that

() Pt Nscp, ()
(um’ ull) g 1 log m

whenever m>n, m=C g, u,#0;

m \Mdi+D
(i) P(u,)>C, 7(1 o2 m) (7

whenever m=Cys.

Mabhler (1934b) proved, ineffectively, that P(u,,) = cc as m — oc. Schinzel
(1967) gave an effective and quantitative version of Mahler’s result. Stewart
(1982) proved (7), with constants C,, and C, g depending only on a and b.

By (C.11) there exist binary integer sequences such that every term
divides infinitely many others. The following consequence of corollary 3.5(i)
is a result in an opposite direction.

Corollary 3.6. If u,, |u, and m> n,then mis bounded by a computable number
depending only on the sequence {u,}w_,.

Corollary 3.6 includes theorem 3.2.
Finally we give a corresponding result for the greatest square-free factor
of a term of a binary sequence.

Theorem 3.7 (Shorey, 1983c). There exist computable positive numbers C,q
and C,, depending only on the sequence {u,,}x. o such that

log Q(u) = C,5(log m)*(log log m) ~*
whenever m= C,,,.

Stewart (1983) derived this inequality for the members of Lucas and Lehmer
sequences. For other binary sequences his lower bounds are of the order
log m (see Stewart, 1982).

Proofs
Observe that by (1) the heights of a and b do not exceed C,, T?
where C,, is a computable number depending only on « and f.

Proof of theorem 3.1. Denote by ¢;, ¢,, . . . ,cg computable positive numbers
depending only on g and b. First we show that

u, #0 (m>c,). ®)
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Suppose that u,,=0. Then
(/B = —b/a. )

If «/p is not a unit, there exists a prime ideal 4 in the ring of integers of Q(«)
such that ord ,(«/B) is non-zero and hence, by (9),

m<m|ord (a/B)| <|ord (a)| + |ord (b)| <c,.

Thus we may assume that a/f is a unit. Then, by lemma A.5, we can find a
computable absolute constant ¢ >0 such that

lo/B| = |a/B] = 1+¢, (10)
since a/f is not a root of unity. Combining (10) and (9), we get
b
1+ <|——|
a

which implies that m <c;. This completes the proof of (8).

For m>c,, we have
54
a\a

We apply corollary B.1 with n=3, d<2, 4,=3, A,=c,, A;=3|«|?* and
B=m to obtain

0% |u,,| =|ao™ + bp™| =|ao™|

m
_§<§> —1|>[a|“‘5'°3'” (m>c,).
Hence
|t| = Jarf" 58" (m>cy). O

Proof of theorem 3.2. Denote by ¢, cg, ¢y, ¢; o cOmputable positive numbers
depending only on the sequence {u,,} . If |«|>|B|, the assertion follows
trivially. Thus we may assume that |a|=|B|. Then observe that o/ and f/a
are conjugate quadratic algebraic numbers in Q(a) of absolute value 1.
Therefore, since a/f is not a root of unity, we see from lemma A.5 that «/f
and f/a are not algebraic integers. Thus there exists a prime ideal 4 in the
ring of integers of Q() such that ord ,(«/f)>0.
Let m,n with m>n and m>2 satisfy

Uy, =1U,. (11
Re-write (11) as
b Bm-—n_l

Eam—n_l'

(/B =
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Thus
n<nord (a/f)<ord (b/a)+ord (" " —1).

By lemma A.8, we have

ord (""" —1)<c,logm.
Consequently
n<cglogm. (12)
Now notice that
|u4,| <2 max(

b))|or|". (13)
Combining (11), (3) and (13), it follows that

al,
m—n<cqlogm. (14)

The inequalities (14) and (12) imply that m<c,,. If m<n, then we can
interchange m and »n and apply the result proved above. O

Proof of theorem 3.3. Denote by ¢4, ¢12, ..., €16 cOmputable positive
numbers depending only on the sequence {u,, }- o. For m,n with m>n and
mz=2, put

ll’ = Uy, — Uy,
If 2|u,| <|u,,|, then

U
1>l — >

and the assertion follows from (3). Thus we may assume that
ol <2l
which, together with (3) and (13), gives
m—n<c,, logm. (15)

We may assume that m> C; so that, by theorem 3.2,  is non-zero. Re-
writing i, we have

0%|y|=|ax (™" — 1)+ bp"(B"™ " —1).
Since a#0 and « is not a root of unity, we may write

0 |y =|ao"(@™ " — 1)|A

_b(BY -1
a\ae ) a™ "—1

where

A:
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and A is non-zero. We apply corollary B.1 with n=4, d<2, B=n+2,
log A, =log A,=log A3=c,, and, by lemmas A.3 and A2, logA4,<
¢, 3(m—n) which, together with (15), implies that log 4, <c¢, 3¢, log m. We
obtain

A>m~c’4103("+2).
Further, by |«|>1 and (15),

|ao(e™ =" — 1)| = |a)(|e| — Dor]" = o[ ™m =<1
Hence
|‘//| > |a|mm—clslog(n+2).

If m <n, then we can interchange m and n and apply the result proved above.

a

Now we shall prove theorem 3.4. Let A, y, a,, a,, a; and a, be non-zero
algebraic numbers. Suppose that a,, a,, a5 and a, have degrees at most d
and heights not exceeding H (> 2). Denote by L the field generated by A, u,
a,,a,,a; and a, over Q. Let x,, and y,, be given by (2). For 1<i<4, we see
from (A.6) and (A.7) that

max |o(a)| <dH (16)
and

min |o(a;)| > (dH) ™! (17)

where maximum and minimum are taken over all the embeddings ¢ of L.
Further, for every prime ideal 4 in the ring of integers of L, we observe from
lemma A.7 that

lord (a))|<k,log H (1<i<4) (18)

for some computable constant k, depending only on d. We denote by k,, k5,
... computable positive constants depending only on d, 1 and u. We apply

theorem B.2 to obtain the following estimate for |x,,|.

Lemma 3.1. Suppose A/u is not a root of unity. There exist k, and k4 such
that, for every & with 0<8<1, we have

|X| = (max(|A], |u))" exp(—k, log(1/5) log H — 36m) (19)

whenever m2k;log H.

Putting 6= 1/m, we obtain
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Corollary 3.7. Suppose A/u is not a root of unity. Then
|x,| = (max(|4], |u))y" exp(—k, log mlog H) (20)

whenever m>=k;log H.

Proof of lemma 3.1. We first prove that the equation x,,=0 implies that
m<kjlog H. Suppose x,,=0. Then

(A" = —as/a,. (21)

If A/u is not a unit, there exists a prime ideal 4 in the ring of integers of L
such that ord (4/u) is non-zero. Then, by (21),

m<mlord (A/p)| <|ord ,(a,)| +|ord ,(a,)|

and the assertion follows from (18). Thus we may assume that A/u is a unit.
Then, since A/u is not a root of unity, we can find an embedding ¢ of L such
that |o(4/u)|> 1. Further, by taking images under ¢ on both the sides in (21),
we have

(/" =lotaz)/o(a,)|

and the assertion follows from (16) and (17).
We assume that m >k, log H so that x,,#0. We apply theorem B.2 with
n=3,d=ks,log A =kg,log A=k, log H,B'=1and B"=mto conclude that

o] [T
i) a K/ a

exp(—kglog(1/0)log H —3om)

exceed

for every é with 0<d<4. Consequently, by (17), we obtain
A, [y exp(— ko log(1/6) log H — 35m)

|| = (max(
for every 6 with 0<d <4, 0

Further we shall prove:

Lemma 3.2. Suppose A/u is not a root of unity. Then (4) and (5) with m=n
imply that

n<k,o(m—n)+log H). (22)
Proof. Suppose that (4) and (5) with m>=n are valid. Re-write (4) as
AMa A" —az)= —plap” " —ay). (23)
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It follows from (5) and (23) that a, A" ™" —ay and a,u™ ™" —a, are non-zero. If
A/u is not a unit, we can find a prime ideal £ in the ring of integers of L such
that ord ,(4/u) is non-zero. Then, by (23),

n<nlord (4/p)] <|ord ,(a, A" 7" —as)| +|ord (au™ " —ay)|

and, by lemmas A.7 and A.3, inequality (22) follows from (18). Thus we may
suppose that 4/u is a unit. Then, since A/u is not a root of unity, we can find
an embedding ¢ of L such that |a(l/u)| > 1. Further, by taking images under
o on both sides of (23), we have

olau™ " —ay)
ola, A" " —as)

lotmp=

Now inequality (22) follows from (16) and a Liouville-type argument. [

Corollary 3.8. Put k,,=2(k,,+1). Suppose A/u is not a root of unity and
m=n. Assume that (4) and (5) are satisfied. Then

m—n<kim 24
implies that
m<2k,,logH.
Proof. By (22) and (24),
n<kiltkyom+kolog H

which, together with (24), implies that

mskl_ll(kl()"' 1)m+k10 10gH=2—1m+k10 lOg H.
Hence m <2k, log H. 0
Proof of theorem 3.4. Assume that (4) and (5) are satisfied. There is no loss of

generality in assuming that m > n. Further there exists an embedding ¢ of L

such that
t=max(|a(4)|,

o).

By considering the equation o(x,,) = a(y,) in place of (4), there is no loss of
generality in assuming that max(|4|, |u))> 1. Write

log max(|4], |u)) =k, ,. (25)

We may assume that m>k, ; log H with k| ; sufficiently large. Let k, ;>
max(ks, 2k, o) so that the assertion of lemma 3.1 is valid and, by corollary
38,

m—n>ki'm. (26)
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Further, by (16) and (25),

|ya| <2dH ek, 27)

Now it follows from (4), (19) with §=min(k, ,/6k,,,%), (25) and (27) that
m—n<(2k,y) " 'm+k ,logH. (28)

Combining (26) and (28), we obtain m <2k, k,,log H. O

Proof of theorem 3.5. Suppose that Aa,;A™# Ba;A" with m>=n. Put
% = Axm —Byn‘

We assume that m >k, s log(HH') with k, 5 sufficiently large. Let k, s> k5 so
that the assertion of corollary 3.7 is valid. We see from (A.6) and (A.7) that,
for B#0,

max(|A|,|B) <dH', min(4], |B|)>(dH)"". (29)
If |Ax,,|>2|By,|, then
Ax,,
[l 21| By, >

and the theorem follows from (29) and (20). Thus we may assume that
| Ax,| <2|By,|- (30)
Further, by lemma A.1,
|va| <2dH|A]" (31)
Now it follows from (30), (20), (31), (29) and max(|4|, |u)=|4|> 1 that
m—n<k,¢s(logmlog H+log H'). (32)

If k, 5 is sufficiently large, it follows from theorem 3.4 that i, is non-zero.
Further, re-writing ¥,, we obtain

0|y, =|A"(Aa A" " — Baz) + p'(Aap™ " — Ba,)|.
Since Aa,A™ " —Ba;#0, we may write
0#|y,|=|4"(Aa, A" " — Ba,)|A,

A - E "Aazllm_'l—Ba4—_l
! 1) Aa, /" "—Ba,

where

and A, is non-zero. We apply corollary B.l with n=3, d=k,,, B=n+2,
log A, =log A,=k,5 and log A; <k,q((m—n)+log(HH')) which, together
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with (32), implies that log A; <k,,(log mlog H +log H'). We obtain
A zehor,
Further, by (32), (16), (29) and a Liouville-type argument, we obtain
|A"(Aa, A™ =" — Ba,)| = | A" exp(—k,,(log mlog H +log H').
Hence

Va2 |4 et O

Proof of theorem 3.6. For an integer x in @Q(«), denote by [x] the ideal
generated by x in the ring of integers of Q). By lemma A.10, we have

(2?1, [ D =111
where [ is a positive rational integer. In fact, [=(r2,s). Put
ay=a’/l, By=p*L

Then a, and f§, are non-zero algebraic integers such that the ideals [«,] and
[B,] are relatively prime. Further, observe that |o, | > |B, |, «, /B, is not a root
of unity and «,, §, are roots of a quadratic monic polynomial with rational
integer coefficients. Consequently, we find that |o;|> 1. For m'=0, 1,2, ...
and § =0, 1, write

Ui 45 =" Vg1 5 (33)
where

Vg + 5 =a0" o] + b BT

Let m and n be non-negative integers such that m>n and u,u, # 0. Write
um/un = Bl/Al (34)
where A4, >0 and B, are relatively prime non-zero integers. Then

U

B,=+ .
! (um’ un)

Further, write m=2m; +6,,n=2n, + 6, where 6,, 6, €{0, 1}. Observe that
m, = n,, since m>n. By (34) and (33),

A MMy, =Bv,.

Cancelling the common factors of 4,I™ "™ and B,, we can find non-zero
rational integers A,, B, with (4,, B,)=1 and

P(B,)<P(B,) (35)
such that
A20m=Bzvn' (36)
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We apply theorem 3.4 with a, = A,a0’, a,= A,bf", ay=B,an”, a,=
BZbB‘SZ’ '1=a1’ #=B1’ Xm, =AZUm’ Vn, =BZUn and

log H <c¢,,(log |A,B,|+1og T)

where ¢;, and the subsequent symbols ¢,g, 19, ..., €25 are computable
positive constants depending only on « and f. We see that > 1, since
|oc1| > 1. If a,A™=a3A™, then, by (36), a,u™ =a,u™ and, consequently, we
find that («/8)" = («/B)", which is not possible since o,/ is not a root of unity
and m#n. Further, A/u is not a root of unity. Thus all the assumptions of
theorem 3.4 are satisfied. Hence, by theorem 3.4, we conclude that

m<2m; + 1<c,g(log |4,B,| +1og T) (37)

with ¢;g> 1.
We assume that m>c, 4 log T with ¢, sufficiently large. Let ¢, >2c¢, 4.
Then, by (37),

m<2c,glog|A4,B,|. (38)
By (36) and lemma 3.1 with 6=(12¢,5)"! and m>n,
log |4, <log |By|+ 20 log T +(4c,5) ~'m
which, together with (38), implies that
m<cy log|B,| (cy3>1), (39

if ¢, 4 1s sufficiently large. Write P = P(B,). By (39), wefind P> 2. For a prime
p dividing B,, it follows from (36) that

ord (B,) <ord (v,,),

since 4, and B, are relatively prime. Further,

log|B,|= ) ord(B,)logp<log P ) ord,v,). (40)

B2 p<P

Thus, by (39) and (40), we can find a prime p, <P such that
ord, (v,)>(c;7(P)log P)"'m

which, by (N.1), gives
ord, (v,)>(2c; P)"'m.

Let 4, be a prime ideal in the ring of integers of Q(«) dividing p,. Then
ord, (v,)>(2¢,;P)~'m. 1)

We see from ([«, ], [#,]) = [ 1] that 4, is prime to at least one of the ideals
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[«,] and [f,]. For simplicity, we assume that 4, and [«,] are relatively

prime. Put
= - _ﬁ " a _l_
A, ord/,o< (oc b 1).

Then, by lemma A.7,
ord, (v,,) <A, +cy,log T 42)
By (42) and (41), we find that
A,>Q2c,; P im—c,,log T.

We may assume that m>4c,,c,,Plog T; otherwise the theorem follows
from (35). Then

A,>(4cy P) " 'm.

Now we apply corollary B.2 with p=p,<P, n=3, d=d,, log A'=c,,,
log A=c,,log T, B=m and §=(4c,; P)~! to A,. We obtain

m<c,sP1*'log Plog T

which, together with (35), completes the proof of theorem 3.6. O

Proof of theorem 3.7. By lemma A.10, we have

([«?], [F*D)=11]

where | is a positive rational integer. By considering integral binary
recurrences {I ""u,, - and {I ™u,, 11 }5- o Separately, we may assume
that ([«], [])=[1]. Denote by ¢4, ¢, - . . computable positive numbers
depending only on the sequence {u,,}>_,. We may assume that m>c,¢ with
¢, sufficiently large. Then |u,|> 1. We may suppose that

log P(u,) <(logm)?;

otherwise the assertion follows immediately. Let p,,. . ., p, be all the prime
factors of u,, such that p,>m!/* for 1 <i<s. It suffices to show that

s>c,(log m)(loglog m) 1.
Let 0<e< 1. We assume that
s<e(log m)(loglogm) ™!

and we shall arrive at a contradiction for a suitable value of ¢ depending
only on the sequence {u,}x-o.
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Fora prime p,let 4 be a prime ideal in the ring of integers of Q(«) dividing
p. We apply theorem B.3 and ([«], [])=[1] to conclude that

dy
ord (u,,) <ord ,(u,) <c,s I:E (log m)?

where d, = [Q(a): Q]. Consequently
Y ordy(u,)log p<cygllogm)? Y. ph.

pmtlt p<miit

Further, since d, =1 or 2,

ph<m,

p<mb/*

Hence

Y. ord,(u,)log p<c,gm>*(log m)*.

PSMIM
Thus we may write
Uy=ao™ +bp"=U,p} " pS 43)
where a,, ..., a, are positive integers and 03 U,, € Z with
log |U,,| < c 5m>*(log m)>.
Further notice that, for some ¢,> 1,

a;<com  (1<iKs).
We put
A=a o "pp-- - psU, —1. (44)

Observe that A#0.
Suppose that |«|>|B|. Then it follows from (44) and (43) that
0<|A|<c3d" with c30> 1. (45)

We apply corollary B.1 with n=s+3<¢(log m)(loglogm)™ ! +3, d<2,
log A, =log A,=c3,, log Ay=""-=log A,_, =(logm)?, log 4,=
c,sm>'*(log m)? and B=c,om to conclude that

|A]| = exp(—m***<*(log m)°»). (46)

Let e=min(1/8c;,,%). Then it follows from (46) and (45) that m <c;, which
is not possible if ¢,¢> ¢,

Thus we may assume that |a| = ||. Then we employ an elementary p-adic
argument from the proof of theorem 3.2 to find out a prime ideal 4 in the
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ring of integers of Q(«) such that ord 4(B/x) > 0. Since ([o], [B]) = [1], we see
that 4|p and 4 to. Now it follows from (43) and (44) that

m<cys+ord (A). )

We apply theorem B.3, with the same parameters as used for corollary B.1
to derive (46), to conclude that

ord (A) S<m**+s*(log m)*, (48)

Put e=min(1/8¢;¢,4). Then, by combining (47) and (48), we see that m <c,4

which is not possible if ¢, > c35. O
Notes

In these notes {u,}X., will denote a non-degenerate binary
recurrence sequence of rational integers with distinct roots «, § unless it is
explicitly stated that we deal with a Lehmer sequence.

Mabhler (1934b) showed, by a p-adic generalisation of the Thue-Siegel
theorem, that |u,,| > oo asm — co. Lower bounds for |u,,| in the special cases
of Lucas or Lehmer sequences were given by Schinzel (1962a), Townes
(1962) and P. Chowla, S. Chowla, Dunton and Lewis (1963). The first
general effective lower bound was given by Schinzel (1967), who employed
his version of a p-adic theorem of Gelfond (see also Mahler (1966) and
P. Chowla (1969)). Stewart’s proof of theorem 3.1 can be found in Stewart
(1976, p. 33) and in Shorey and Stewart (1983). Kiss (1979) has given
completely explicit estimates for |u,|.

It is a trivial consequence of the fact |u,,| — 00 as m — oo that {u,}2_,
attains every value only finitely many times. Ward conjectured that the
multiplicity of {u,}2., is at most 5. Partial results in this direction were
obtained by P. Chowla, S. Chowla, Dunton and Lewis (1959), S. Chowla,
Dunton and Lewis (1961), Laxton (1967) and Alter and Kubota (1973). By
using Skolem’s method, Kubota (1977a) established Ward’s conjecture and
proved that the multiplicity of {u,, }_ , is in fact at most 4. Improved results
and simplified proofs were given by Beukers (1980). His results imply that
the multiplicity is at most 3 with essentially only one exception which has
multiplicity 4, namely the sequence defined by ug=1, u;=—1, u,,,=
—u, .+ —2u, for m=2. Multiplicities of Lucas sequences were studied by
Kubota (1977a) and Beukers (1980).

The first lower bounds for P(u,,) were obtained as by-products of results
on primitive divisors of Lucas and Lehmer sequences. Let A and B be non-
zero integers of an algebraic number field K. A prime ideal 4 of K iscalled a
primitive divisor of A" —B™ if 4|[A™ —B™] but 4y [A"—B"] for0<n<m.
Zsigmondy (1892) and Birkhoff and Vandiver (1904) showed that if v and w
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are coprime non-zero rational integers with v# +w, then v" —w™ has a
primitive divisor for m> 6. This result was improved by Schinzel (1962b).
Schinzel (1974) improved upon earlier work of Postnikova and Schinzel
(1968) by showing that if ([ 4, B])=[1] and A/B is not a root of unity, then
A™— B™ has a primitive divisor for all m> C,,, where C,, is a computable
number depending only on the degree d of A/B. The proof depends on
theorem B.1. Further, Stewart (1976, Ch. V; 1977b) showed that C,, can be
taken to be equal to max(2(2¢—1), €*32d%7). He used a refinement of
theorem B.1. By taking A=«, B=f in the definitions of Lucas and Lehmer
sequences as given in chapter C it follows that every Lucas number u,, with
m>e*22%7 and every Lehmer number u,, with m>e*24%7 has a prime
factor which does not divide u, for 0 <n<m. Stewart proved the stronger
result that there are only finitely many Lucas and Lehmer sequences whose
mthterm,m>6,m#8, 10 or 12, does not possess a primitive divisor and that
these sequences may be explicitly determined. This improves upon results
of Carmichael (1913), Ward (1955a), Durst (1959) and Schinzel (1968, 1974).
Since primitive factors of Lucas and Lehmer numbers have the property
that they are + 1(mod m), we see that P(u,)>m — 1 for m>e*32457 for all
Lucas and Lehmer sequences {u,,}x_,. Stewart (1976, p. 57) conjectured
that, for any Lucas or Lehmer sequence with a, f real, P(u,,) > C ,5(¢(m))? for
all m, where C,; is a computable positive number. However, the much
weaker assertion P(u,)/m — oo is still open. Stewart (1975) proved that
P(v™ +w™)/m tends to infinity as m — co and w(m)<xloglogmand O<x <
1/log 2. Stewart (1977a) and Shorey and Stewart (1981) generalised this
result to all Lucas and Lehmer sequences. In fact it follows from the results
of Stewart (1975, 1977a), Erd6s and Shorey (1976) and Shorey and Stewart
(1981) that P(t™ + w™) > C, mlog mfor m>=3 where C,, >0isa computable
number depending only on P(vw) and w(m), and that, in the case of a Lucas
or Lehmer sequence, P(u,)>C,smlogm for m>3 where C,5;>0 is a
computable number depending only on «, # and w(m), and, moreover,
P(u,,)>m(log m)*/(log log m)? for almost all m. Erdés and Shorey (1976)
applied estimates of linear forms in logarithms and Brun’s sieve to show that
P27 — 1)> p(log p)*/(log log p)* for almost all primes p. Gyory, Kiss and
Schinzel (1981) proved the following result. If u,, is the mth term of a Lucas
sequence (m>4) or Lehmer sequence (m>6), then |«|, |B| and |u,| are
bounded by computable numbers depending only on P(u,) and w(u,,).
Gyory (1982a) computed explicit bounds. As a consequence he showed that
there exists a computable absolute constant C, such that every Lucas and
Lehmer number u, with m>6 and |u,|>C,s satisfies P(u,)>
4log log |u,))/?. For more information on primitive divisors, we refer to
Schinzel (1974) and Stewart (1976, 19774, b, 1982).
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We consider again sequences {u,}x_, as described at the beginning
of these notes. Polya (1921) proved that there exist infinitely many primes
which divide some term u,,. Mahler (1934b) proved that P(u,,) — oo asm —
oc. The first general lower bound for P(u,,) was given by Schinzel (1967),
namely

P(u,)> C,,m

where C,,>0 is a computable constant depending only on the sequence,
and C,g is an absolute positive constant. Stewart (1976, Ch. 3) gave the first
proof of corollary 3.5(ii). As noted in the text, a proof of corollary 3.5(ii)
where C,, depends on a and b only is given in Stewart (1982). In both
publications he further proved that for almost all integers m

P(u,,)>emmlog m,

where g(m) is any real-valued function such that ¢(m) - 0 asm — oo, See also
Petho (1985) and papers of Petho and de Weger to appear in Math. Comp.
Shorey (1983a) applied theorem 3.2 to obtain estimates for the greatest
prime factor and the number of distinct prime factors of the product of
blocks of consecutive terms in binary recurrence sequences.
Stewart (1982) also showed that

m 1/d
Q) > C29<(Tc>—g—rrz)7> ,

where C,4>0 is a computable constant depending only on a and b. In
Stewart (1983) he proved that for Lucas and Lehmer numbers

Q(um) > mC 30ld(m) log m)/(g(m) log log m),

where d(m) denotes the divisor function, g(m)=2“" and C,,, is a positive

computable number depending only on the sequence. This result implies

the assertion of theorem 3.7 for Lucas and Lehmer numbers. Further,

Stewart (1983) proved that, for Lucas and Lehmer numbers, the inequality
1+log2—¢

Q(u,,) >m'em (e>0),

is valid for almost all m. Shorey (1983¢) proved the inequality of theorem 3.7
with Q(u,,) replaced by
[um’ un]
o —md
(um’ u”)
for all m>n with u,u,#0.
Lewis and Turk (1985) showed that the restriction 7> 1 in theorem 3.4
can be removed if a,, a, are fixed and a;=d'a,, a,=a'a, where d' is a fixed
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algebraic number. Thus they proved: if a’#0, then x,,=a'x, with m#n
implies that max(m, n) < C;, where Cj, is a computable number depending
only on {x,}2., and d'.

Ramanujan’s function 7(n) satisfies a binary recurrence

Wp" Y=oy (p") —ptie(pm Y (m=1,2,..).

Ram Murty, Kumar Murty and Shorey (1986) applied the theory of linear
forms in logarithms, via this relation, to show that, for an odd integer a, the
equation t(n)=a implies that log n<(2|a])*>* where C;, is a computable
absolute constant.



CHAPTER 4—

Recurrence sequences of order 2, 3
and 4

Let {u,}2., be a recurrence sequence of algebraic numbers. Let the
minimal recurrence relation of {u,,}2_, be given by
Un stk =Vi—tUmrk—1 t Ve 2Umeg—2F " +Volhy, (m=0,1,...). (1)

It follows from chapter C that v, v,,..., v._, are algebraic numbers with
vo#0. Put K=Q(uq, 4y, ..., Uy_1, Vg, V15 ---» Vx—)- Then u, €K for all m.
Write the companion polynomial of (1) as

G =2~y 21 —vo= [ (=, @

where w,, w,, ..., o, are distinct complex numbers and o,, 6,, ..., ¢
positive integers. Without loss of generality we may assume

1|2 > > [0f> @, =0. ®
Define r by
o} =loog|= -+ - =[] > |y 14| @

By theorem C.1 and the minimality of the recurrence there exist non-trivial
polynomials f; with coefficients in K(w,, ®,,. .., ;) and of degree ¢; — 1 for
j=1,2,..., s such that

i fimw} (m=0,1,2,...). (5

We shall use the above notation throughout the chapter without further
reference. Furthermore, m and n will denote non-negative integers.
We consider the equation

Upy = Uy (6)
82
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in integers m, n with m > n. If r=1, a direct application of theorem B.1 yields
the following result of Mignotte (1979).

Theorem 4.1. Assumer=1, |co1| > 1. Equation (6) with m> n implies that m is
bounded by a computable number depending only on the sequence {u,,}X- o.

In case r=2 a direct application of theorem 3.5 gives an analogous result:

Theorem 4.2. Assume r=2, |w,|> 1, w,/w, is not a root of unity. Equation
(6) with m> n implies that m is bounded by a computable number depending
only on the sequence {u,}2_ .

If s=2, wecan use theorem 3.5 to replace |w,|> 1 by |co1 > lintheorem 4.2.
The analogous result for r=3 requires a more complicated argument
involving corollary B.2 and an argument due to Beukers (see Beukers and
Tijdeman, 1984). Theorems 4.3-4.8 are contained in Mignotte, Shorey and
Tijdeman (1984).

Theorem 4.3. Assume r=3, |w,|> 1 and at least one of the numbers w,/w,,
w,/w4 and w3/w, is not a root of unity. Equation (6) with m> n implies that m
is bounded by a computable number depending only on the sequence {u, } 2. ,.

Theorem 4.3 is contained in the following result which is an extension of
theorem 3.3.

Theorem 4.4. Assume r=3, |w;|> 1 and at least one of the numbers w,/w,,
W,/W3, W3/w, is not a root of unity. There exist computable numbers C, and
C, depending only on the sequence {u,}%., such that

|thy — 1| = |0, ™ exp(— C1(log m)? log(n +2)) (N
whenever m2C, and m>n.

Theorem 4.4 will be deduced from the following result corresponding to the
case n=0.

Theorem 4.5. Assume r=3 and at least one of the numbers ©,/w,, ®,/®;,
W3/, is not a root of unity. Then there exist computable numbers C5 and C,
depending only on the sequence {u,}>_, such that

|th] = |04 " €xp(— C3(log m)?) (8)
whenever m=C,.

Theorem 4.5 and corollary 3.7 imply the following result on O-multiplicity.
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Corollary 4.1. Assume r<3 and w,/w, is not a root of unity. The equation
u,, =0 implies that m is bounded by a computable number depending only on
the sequence {u,} - .

We cannot prove an analogous result for r=4, but we have

Theorem 4.6. Assume s<4 and {u,}%_, is a non-degenerate recurrence
sequence of real algebraic numbers. The equation u, =0 implies that m is
bounded by a computable number depending only on the sequence {u,}%- .

The proofs of theorems 4.3, 4.4, 4.5 and 4.6 depend on the following two
results.

Theorem 4.7. Let A, A,, A3 be non-zero algebraic numbers of degrees at
most d and of heights at most H (=2). Let y,,7,,y3 be non-zero algebraic
numbers such that at least one of the numbers y,/v,,v2/73,V3/71 is not a root
of unity. Then the equation

AyT+ Ay +A5y5=0 9

implies that m< C;log H for some computable number C 5 depending only on
V157273 and d

Theorem 4.8. Let A, A,, A5 be as in theorem 4.7. Let y,,7v,, y5 be algebraic
numbers with [y,|=|y,| =|ys|. Let m>2. Then either Ay} + A5+ A5y53=0
or

| AT+ A5+ Asys| > IVllmm_cslogH

Jor some computable number Cg depending only on vy, y,, v5 and d.

Proofs
The proofs of the theorems depend on the following result.

Lemma 4.1. Let f(2) be a non-constant polynomial with algebraic coefficients
and w a non-zero algebraic number. The equation

fmao™=f(n)o" (m>n) (10)
implies that m is bounded by a computable number depending only on f and w.

Proof. Suppose that m and n with m> n satisfy (10). Denote by by, b,, ...
computable positive numbers depending only on f and w. We may assume
that m> b, with b, sufficiently large. Denote by L the field generated over Q
by w and the coefficients of f. Write v=deg f>1.
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Suppose o is a root of unity. Then w*=1 for some positive integer u.
Consequently, by (10),

g(m)=g(n) (11)
where

gx)=(f ()"

Observe that g(x) is a polynomial of degree p=puv> 1. By (11), we see that
p=2 and

mf —nf

-1 -2
m T <b,m’

m—n
which implies that m <b,.
Thus we may assume that @ is not a root of unity. We first prove that

m—n<b;logm. (12)

If w is not a unit, there exists a prime ideal 4 in the ring of integers of L such
that ord (w) is non-zero. Counting the power of the prime ideal # on both
sides in (10), we obtain (12) from lemma A.7. Suppose  is a unit. Then, since
w is not a root of unity, there exists an embedding ¢ of L such that |o(w)| > 1.
Further, by taking images under ¢ on both the sides in (10), we have

a(f(n)
a(f(m))

and inequality (12) follows from a Liouville-type argument.
Re-writing (10), we have

mon_ g SO =f(m) 3

f(m)

|o.(w)|m —-n_

Observe that
| f(n) —f(m)| < by(m —nym"~!

and, by taking b, large enough,
|f(m)| = bsm’.
Thus we obtain from (13) and (12), since  is not a root of unity,
0<|o™ "—1|<bgm™'logm.

Now apply corollary B.1 with n=1, d=b,, log A, =b, and, by (12), B=
m—n+1<2b,log m to conclude that

™ =" — 1| > (log m) ~*.

Consequently m < bg(log m)’»*' which implies that m<b,,. (|
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Corollary 4.2. Let f(2) be a non-trivial polynomial with algebraic coefficients
and w a non-zero algebraic number. Suppose that  is not a root of unity.
Then (10) implies that m is bounded by a computable number depending only
on f and .

Corollary 4.2 with
our purpose.

w|> I’ in place of ‘w not a root of unity’ is sufficient for

Proof. In view of lemma 4.1, we may assume that deg f=0. Then equation
(10) implies that w is a root of unity. O

The constants ¢, ¢,, . . . in the proofs of theorems 4.1-4.6 and corollary 4.1
are computable positive numbers depending only on the sequence {u,, } - o-

Proof of theorem 4.1. Suppose that equation (6) with m > n is valid. We may
assume that m>c, with ¢, sufficiently large. Then, by corollary 4.2 with
f=f and w=w,, we see that s>2 and f;(m)w]+#f,(Ww}. Further

0<|fimaT —fi(nw}| <m" max(1, |w,|™)
which, by taking ¢, large enough, implies that

n—m fl(n)
ALY

We apply corollary B.1 withn=2,d=c,,log A; =cs,log A, =c¢ log m and
B=m to conclude that

O<|w

- l'smc3 max(|o,| ™™, |o, /o, ™). (14)

_m 1) \
w0 ™ —1|>exp(—c,(log m)?). 15
1 ,(m) p s(log m)) (15)
It follows from (15), (14), |w,|> 1 and |w, /w,|> 1 that m < cg{log m)® which
implies that m<c,. O

Proof of theorem 4.2. Suppose that equation (6) with m > n is valid. We may
assume that m>c,, with ¢, sufficiently large. Then, by corollary 4.2 with
f=f; and w=w,, we obtain

SilmoT #fi(n)of. (16)

In the notation of corollary 3.7, put a,=f,(m), a,=f,(m), log H=

¢y, logm, A=w, u=w, and x,, =f; (M7 +f,(mw%. Observe that A/u is not

a root of unity. By taking c, , large enough, we see that a,a, #0. Hence, by
corollary 3.7,

Ixrnl = le lm exp(—c,(log m)?)
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which, together with r=2, implies that
] 2 |e01|" exp( e (log m)?). (17)

Further observe that
|| Smev|ooy | (18)

It follows from (6), (17), (18) and |w,|> 1 that
m—n<c, (logm)?.
Consequently, by taking ¢, large enough, we obtain
n=2"'m>2"1c,,.
In the notation of theorem 3.5, put a, =f{(m), a,=f,(m), a;=f,(n),
a,=frn),logH=c,;logm, A=B=1, H' =2, A=w,, u=w, and
Xn=fi(moT +fo(mw?,  y,=fi(mw] +/frn)w}.

Observe, by taking ¢, , sufficiently large, that a,a,a;a,#0. Further notice
that |A|=|u|>1, A/u is not a root of unity and, by (16), Aa,A™# Ba;A".
Hence, by theorem 3.5, we conclude that

[Xm = yal =04 " exp(— ¢y s(l0g m)°). (19)

In particular x,, # y, and consequently, by (6), we see that s> 2. Further, it
follows from (6) that
| X — Vo] Smfte max(l, jo,|™). (20)

Now it follows from (19), (20), |w,|> |w,| and |w,|> 1 that m<c, ,(log m)°.
Hence m<c,g. O

The constants e,, e,, ... in the proofs of theorems 4.7 and 4.8 are
computable positive numbers depending only on y,,7,,7; and d.

Proof of theorem 4.7. Suppose that (9) is valid. By interchanging the indices
of y,,7, and 75, there is no loss of generality in assuming that y, /y, is not a
root of unity. Further, we may assume that m> e, log H with e, sufficiently
large. Denote by L the field generated over Q by A4,, A5, A3, 7,, 7, and y,.
Observe that [L: Q] <e,.

Assume that y,/y, is not a unit. Then there exists a prime ideal £ in the
ring of integers of L such that ord (y,/y,) is non-zero. By permuting the
indices of y; and y,, we may assume that ord ,(y,/y,)>0. Then, by (9), we see
that 4,y7+ A3y5#0 and

m<ord ((y,/y,)") =ord (4,47 ') + ordﬁ< —(%)m ﬁ—z - 1). (21
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We apply corollary B2 withn=3,d=e;,6=4%, 4’ =¢,, A=H**and B=mto

conclude that
73Y" As )
ord,| —[=) —=—1)<m/2, (22)
ﬁ( (7’2) A,

if e, is sufficiently large. Consequently we see from (21),(22),lemma A.3 and
lemma A.7 that m <eglog H which is not possible if e; > ;.

Thus we may suppose that y, /y, is a unit. Then, since y, /y, is not a root of
unity, there exists an embedding ¢ of L such that |o(y, /y 2)| > 1. Therefore
|o(y1)|>|o(y,)|. By taking images under ¢ on both sides of (9), we may
assume that [p,|>|y,|. By (9), 4,77 + 4575 #0. Further, we may write

-
v/ Ay

We apply theorem B.2 with n=3, =min(} log |y, /7,
log A=eglog H, B'=1 and B”"=m to conclude that

0+# 'Aly';' + A37’§| = |A1V'1”|

vihd=e;,log A'=eq,

l_<z’g>'"ﬁ_1 Sl e,
71/ Ay V2
Thus, by (A.7),
V1 i
| 4177+ Agy5[= || . H~™m (23)
2
Further, by lemma A.1,
|A27%| <dHly,|™ (24)
By (9), (23) and (24),
m/2
2.1. <H"|z
Y2
which, together with |y, /y,|> 1, implies that m<e,;log H. O

Proof of theorem 4.8. Without loss of generality we may assume |A4,|<
|[4;|<|A3| and A,yT + 4,7 + A3y #0. We may also assume that y,,7,,73
are distinct; otherwise the assertion follows from corollary B.1. Put

-4
U= — ) =22 (2) -1 m=1,2,..). (25
A3 )’3 A3 '))3

Then v,, is of the form

Vp=a 0] —ao3 —1, (26)
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Fig. 4.1

withay, a,, a,,a, algebraic,0 <|a,| <|a,| < 1, whereas a; and «, are distinct
and |o;|=|a,|= 1. Note that v, 0 and, by lemma A.3, the heights of a, and
a, do not exceed H®« Let n be any positive number with n<i. We
distinguish two cases:

Case (i). |ay| + |az| < 1+7 (see fig. 4.1). Put |a,of| =|a,|=r;. Let v, <}. We
have
Re(1+a,03)>r —n, r,—Re(a,oaf)<|v,|+7.

Hence

(Im(a,a7))* = r} — (Re(a;07))* < 2ry ([vn] +1).

It follows that
Iri—ay 0| < |ry— Re(a;of)| + |Im(a; )| < (O] + 1) + 21/ (0] +1) < 33/(0m] +1).
Thus

|0 = min@, §

ry—a,af|? —n). 27

Case (ii). |a,| + |a,| > 1+ (seefig. 4.2). Put r, =|a,|,r,=|a,|. Note that z, :=
a,a7ison thecircle |z|=r, and that z, :=a,0% + lison thecircle |z — 1| =r,.

These circles intersect in two points, z, and z,. We may assume that
(Im z,)(Im z,) = 0. Because of symmetry it is no restriction to assume that
Im z,>0. Put zo=x+iy. By x>+ y?=r}, (1—x)/2+y2=r§ and y<r,<ry,
we have

I=x+(1=0)=/0} -y +/3 =)

2 2 2 2
y y y y
=r,\/<l—¥>+r2\/(l—r—§>>r1<1—r—f>+r2<1—r—%>
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Z0
Z zZy
| |
(') 1-r, r Il
Zo
Fig. 4.2
We infer, by ry 2 14+n—r 21,
2 2 2 2 2 2
n<ritr—1<+L < < (28)

o rz I n
We shall derive a lower bound for |v,|=]|z, —z,|. Observe that
|z, —1>=r}+1-2Rez,

|23 —1)*=|zo—1|*=r{+1—2Re z,.
Hence

2|Re z; —Re zo|=||z; — 1> —|z, = 1| <|z; — 25| (24| +|72] +2)
which implies
|Re z; —Re zy| <3|z; — z,). (29)
From |z,|=|z,| and (29), we obtain
|(Im z,)? = (Im zo)?| =|(Re z;)* — (Re z0)*| < 6|z, — z,)- (30)
On the other hand, by Im z; >0 and Im z,=y>0,
|(Im z,)*> —(Im z4)?| > |Im z; —Im z|y. (31

On combining (31), (30) and (28), we see that
6./2
[Im z; ~Im z,| <% |21 =z, (32)
By (29) and (32),

9
|2y =z <<3 +E>|21 —z,,
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or, equivalently,

o] = zo—ayof. (33)

|
In+9

Subsequently we show that z, is an algebraic number of degree at most
e, sHs. By zozo=aja; and (1—zo)(1—2z9)=(1—a,)(1—a,) we have
ZO +—Z-0=a2 +b~2_aza—2—+ala. Thus

(z—zolz—2¢)=2*—(ay+a, —a,a, +a,a,)z+a,a,.

This proves that z, is algebraic indeed and that it can be expressed in terms
of a, and a, by using only sums, products and square roots.

On using lemmas A.3 and A.4 for the heights of sums, products and
square roots of algebraic numbers it becomes clear that we may assume
without loss of generality that the heights of the numbers 4., a,, a,, r =
(@,a0)'2, 1 —1,72/9,a,/ry, ay/(ry — 1), 29, 20— 1, a1 /2o and a,/(z, — 1) are at
most e, ,H**. By a Liouville-type argument these numbers are in absolute
values at least e;oH ~“'®. We use these estimates without reference.

Case (i). If a,af =r; =1, then v,, = —a,a% and hence
[om =laalloal™=|as| > ey gH 12> exp(—ez0 logmlog H).  (34)

Ifa,o}=r, <1,thenv,=r, — 1 —a,0%. On applying corollary B.1 we obtain

-1

|Um|=|"1—1| = e oH 15 exp(—e,, logmlog H)

m_92
%)

r, —

2exp(—e,, logmlog H). (35)

If a,a} #r,, then we find by applying corollary B.1,

| —a 2= >2 exp(—e,; log mlog H)

—1—1
1

where e,, is so large that the right-hand side is less than 1. Put n=
exp(—e,; log mlog H). Then y <4 and, by (27),

|[v| =1 = exp(— e, log mlog H). (36)

Case (ii). If a,o] =2z,, then v,,=2,—1—a,a%, hence, by corollary B.1,

[ow] =20 1]

oczz 1—1‘>exp( e,5log mlog H). 37)
0~
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If a,a7 # z,, then, by (33), <1 and corollary B.1,

1| = exp(—e,¢ log mlog H). (38)

By (34)-(38) and |y,|=|y;| we deduce
|AyyT + A5y5 + Asys| = A3 [va][y1]" > exp(—e;; log mlog H)|y,|™.

Proof of theorem 4.5. We may assume that m>c,, with ¢;, sufficiently
large. Put

A =fi{moT +f(mw? +fimws.

We apply theorem 4.7 with 4,=f(m), y,=w, for 1<i<3 and logH =
¢, log m to conclude that

A#0

if ¢, 4 is sufficiently large. Then, by theorem 4.8 with the same choice of the
parameters, we obtain

|A|2 |o,]™ exp(— ¢, (log m)?). (39)
Further observe that
|| > A -0 (40)

where 6=m":2|w,|™. Now estimate (8) follows from (40), (39) and |w,|> |w,]-

g

Proof of theorem 4.4. Let m>n. We may assume that m>c,; with ¢,
sufficiently large. Let ¢,5 > C,, so that estimate (8) is valid. We may assume
that

[t < 2|14, ; (41)

i |

otherwise

and (7) follows from (8). Further, observe that inequality (18) is valid. Now it
follows from (41), (8), (18) and |w,|> 1 that

—n<c, (logm)? 42)
Then n>2. For 1<i<3, put

B;=f{m)w " —fin)
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and

Al = Blw'i + Bzwg + B3(D'5.
By taking c,, sufficiently large, it follows from corollary 4.2 and min(|w,|,
||, jws])> 1that B, B,B; #0. We apply theorem 4.7 with 4, = B,,y;= w, for
1<i<3 and, by (42), log H <c,s(log m)? to conclude that

A #0

ifc,3islarge enough. Then, by theorem 4.8 withm=n, A,=B,,y,=w;fori=
1,2,3 and log H <c,s(log m)?, we obtain

|A1| = |, |" exp(—c,6(log m)? log n)
which, together with (42), implies that
|A| 2|, |™ exp(—c,,(log m)? log n). (43)

Observe that
Jtm — ta] 2 | Ay = 8, (44)

where 8, <m* max(1, |w,|"). Now inequality (7) follows from (44), (43) and
|y | > max(1, |o,)). a

Proof of corollary 4.1. If r=3, then it follows from theorem 4.5 that m< C,.
Suppose r<2.If s= 1, then u,, =f;(m)wT with f, non-trivial, w, #0, and the
assertion is obvious. Since we may replace u,, by v"u,, for any integer m, and
hence w; by vw; fori=1,2,...,s,it involves no loss of generality to assume
that @, .. ., @, are algebraic integers. Then, since w,/w, is not a root of
unity, we see from lemma A.5 that max(|a|, Iw—2|)> 1. Therefore we may
assume |w,|> 1. Apply corollary 3.7 with A=w,, p=w,, a; =f,(m), a,=
f2(m), H=c,4log m. Hence

|f1(m)w’1" +f2(m)w'5'| = |w1|m exp(—cjollog m)?)
for m>c5,. If s>2, then the contribution of the other terms is of smaller
order. Hence,
[t| = 04| exp(— ¢ 3(log m)’)

for m=c,3. Since u, =0, we have m<c;3;. O

Proof of theorem 4.6. By corollary 4.1 we may assume r=4. By § 2 of chapter
C the sequence {u,}=_, is induced by a recurrence of real algebraic
numbers. By considering the sequence {v™u,}X., where v is a positive
integer such that vo,,. . ., v, are algebraic integers, we see that there is no
loss of generality in assuming that the coefficients of the companion
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polynomial to {u,,}*_, are real algebraic integers. Consequently @,,. .., @,
are algebraic integers. Put L=Q(w,, ..., w,) and denote by A the class
number of L. For an integer m>0 let

Uy =0. (45)

Since the companion polynomial to {u,,}. -, has real coefficients and none
of the quotients w;/w; (1<i<j<4)is x 1,it follows that w,, w,, w3, w, are
non-real. Further, by permuting the indices of w,, w,, w3, w,, there isno loss
of generality in assuming that

w, =6;, w2=w_4' (46)

Suppose w, /w4 is a unit. Since w, /w is not a root of unity, there exists an
embedding ¢ of L such that |o(w,)|>|o(w;)|. Further, (45) implies that
o(u,,) =0. Now we apply corollary 4.1 to {a(u,,)}3-, to conclude that m is
bounded by a computable number depending only on the sequence

{um};to= 0
Thus we may assume that @, /@, is not a unit. Further, we see from (A.36)
that

([01], [0}], [@}], [w3])=[n]
where 7 is an algebraic integer in L. For 1<i<4, put
W=wlin"1. 47
Notice that W), W,, W;, W, are algebraic integers in L satisfying
(M1, [W.], (W3], [W,])=[1]. (48)
It follows from (47), (46) and |w|=|w,| that
W W =W, W,. (49)

Since w, /w; is not a unit, it follows from (47) that W, /W, is not a unit. We
know that W, and W; are algebraic integers. Hence W, W; is not a unit. Thus
there exists a prime ideal 4 in the ring of integers of L such that x| W, W;.
Consequently, by (49), | W, W,. By permuting the indices of W;, W, and
W,, W,, there is no loss of generality in assuming that

#Way fe| W (50)

Write m=nh+q with 0<g<h and p/(2)=f(z)w? for 1<i<4. We may
assume that n > ¢, with c,, sufficiently large; otherwise the assertion of the
theorem follows. Dividing both sides of (45) by =", we obtain

p1MW?T + pa(m)Ws= —ps(m)W35 — p(m)W3,
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By counting the power of prime ideal , on both sides, it follows from (50)
and lemma A.7 that

n<cyslogm+ord (A) (51)
where
A=p,(m)W] +p,(m)W3.

By (47) and w,/w, not a root of unity, we see that W;/W, is not a root of
unity. Further, by taking ¢, large enough, it follows from corollary 4.1 that
A#0.

In view of (48) and (50), we find that either 4t W, or 4t W,. For
simplicity, assume that 4 t W,. Then, by lemma A.7,

W n
ord (A)<c3logm +ord,< —<Wj~> ?:EZ; - 1).

(52)

We apply theorem B.3 with n=3, d=c;,, p=c3s, log A, =log A, =c3y,
log A;=c40logm and B=n<m to conclude that

W, )” p(m) ) 3
ord,| —{ — —1})<c,,(logm)°. (53)
*( (m pamy 1) Scullos
Combining (51), (52), (53) and n+ 1 > m/h, we obtain m <c,,(log m)® which
implies that m<c,;. g

Notes

In §3 of chapter C the theorem of Skolem-Mahler-Lech was
stated. The result was proved by Skolem (1935) for rational recurrence
sequences, by Mabhler (1935a) for algebraic sequences, by Lech (1953) for
sequences in a field of characteristic 0, and later once more for complex
sequences by Mahler (1956). Robba (1978) derived an upper bound for the
period length of the vanishing terms in an algebraic recurrence sequence
with infinite O-multiplicity (see also Mignotte (1978)).

Polya (1921) proved that if {u,}x_, is a non-degenerate rational
recurrence sequence of order at least 2, then there exist infinitely many
primes p with p | u,, for some m. This result was rediscovered by Ward (1954,
1955b) for integer sequences of order 2 or 3, and by Laxton (1974) for integer
sequences of arbitrary order (see van Leeuwen (1980)). It was proved by
Berstel and Mignotte (1976) that for a given integer recurrence sequence the
following two questions are decidable. (i) Is the O-multiplicity finite? (ii) Is
the set of prime numbers dividing at least one term of the sequence finite?

Mignotte (1974) and Loxton and van der Poorten (1977) explained how
p-adic methods can be used to compute an upper bound for the O-
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multiplicity of a given non-degenerate integer recurrence sequence, and in
certain cases to determine all vanishing terms. Loxton and van der Poorten
further proved some results on the growth order of |u,| and P(u,). Far
better, and in many respects the best possible, results can be obtained by the
p-adic analogue of the Thue-Siegel-Roth-Schmidt method. Applications
of these results of van der Poorten and Schlickewei (1982) and Evertse
(1984b) to exponential equations were already mentioned in the notes of
chapter 1. The fundamental result is the so-called Main Theorem on S-units
of which a special case reads as follows (cf. van der Poorten and Schlickewei
(1982), Evertse (1984b) and Laurent (1984)).

Let K be an algebraic number field. If G is a finitely generated subgroup of
K* then, for m fixed, the equation

X1+X2+"'+Xm=1

has only finitely many solutions (X |, X,, ..., X,,) € G™ such that no non-
empty proper subsum X; +--- + X, (1<i; <-** <i,<m) vanishes.

The following results can be derived for a non-degenerate recurrence
sequence of arbitrary order k.

(i) (see van der Poorten and Schlickewei (1982)). Let Q be the maximal
absolute value of the roots of the non-degenerate algebraic recurrence
sequence {u,}x_.. Then for every >0 there exists an mq, such that

] > Q712

for m>m,. Note that it is obvious that |u,| < Q™'+ for sufficiently large m.

(ii) (see Glass, Loxton and van der Poorten (1981, 1986)). The total
multiplicity of a non-degenerate recurrence sequence {u,}2. is finite, that
is, the number of solutions of the equation u,=u, with m>n is finite. It
follows directly that for any complex a the a-multiplicity of {,,} is finite.

(iti) (see van der Poorten and Schlickewei (1982), Evertse (1984b)). If
{Upn} 2. o is a non-degenerate recurrence sequence of rational integers with at
least two distinct roots, then P(u,, [(u,,, u,)) - oc if m — oc,m>n, u,# 0. This
implies both (ii) and P(u,) — oc as m — oc. The extensions to algebraic
recurrence sequences hold true too. The example {m*a™}>_, with ae Z,
a=2, where uy is a power of a for every positive integer I, shows that the
assertion does not hold if there is only one characteristic root.

Because of the ineffective nature of the Thue-Siegel-Roth-Schmidt
method, the arguments do not, in general, permit computation of my in (i),
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all solutions of u,,=u, in (ii) and a lower bound for P(u,,) in (iii) for a given
sequence {u,}e_,.

Effective results of type (i), (ii), (iti) have only been obtained under
restrictions on r and s. First we state some results for r bounded and s free,
then we consider the case when s is bounded. Suppose first that r= 1, hence
there is only one root of maximal absolute value. Stewart (1982) proved
that, if u,, #f;(m)owT and ¢>0 then

P(u,)>(1—¢)logm, O(u,)>m'"*

for m> C,, where C, is a computable number depending only on ¢ and the
sequence {u,,} - o. Weaker estimates for P(u,,) were obtained by Sparlinskij
(1980) and Kiss (1982). Mignotte (1979) investigated the equation u,,=uv,
where both {u,}2_, and {v,}x_, are integer recurrence sequences with
exactly one root of maximal absolute value. Kiss (1986) considered the
more general equation s, u,, = s,v, With s,, 5, €S and gave a lower bound for
|s 4 — $20,|- Mignotte (1974, 1975) was the first to investigate the case r=3.
He proved that if there are at most three roots of maximal absolute value
and all these roots are simple, then

|the] = Cgfey |"m ™

when fimoT+ - +f(mwr#0 and m=C,, Here C4,Cy,C,, are
computable positive numbers depending only on the sequence. The results
in Mignotte, Shorey and Tijdeman (1984), which are treated in this chapter,
were the first ones in which the condition on three roots of maximal
absolute value being simple was dropped. It was already noticed by
Mignotte (1974) that certain cases of four simple roots with o, =, , w3 =

, can be handled in the same way as three simple roots.

The arguments in the proof of theorem 4.6 can be used to prove the
following result. If r=s=5 and {u,}?., is a non-degenerate sequence of
rational integers, then the equation u,, =0 implies that m is bounded by a
computable number depending only on the sequence {u,,}*_,.

Now we turn to the study of multiplicity of recurrence sequences of order
2 and 3. Results on the multiplicity of integer recurrence sequences of order
2 have already been given in the notes of chapter 3. Suppose we have a non-
degenerate integer sequence of order 3. If the three roots are distinct, non-
zero and real, then the O-multiplicity is at most 3. This was shown by Smiley
(1956) and later also proved by Scott (1960) and Picon (1978). In general the
O-multiplicity of the sequence can be as large as 6 as is shown by the
following example due to Berstel (1974) (cf. Loxton and van der Poorten
(1977): ug=u; =0, uy=1, u, , 3=2u,,, , —4t,, ., +4u, for m=0, 1,2, ...
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which satisfies uq =u; =u, =ug =u, 3 =us,=0. This example contradicts a
conjecture of Ward. Kubota (1977b) claimed that he could prove that the 0-
multiplicity of a non-degenerate ternary integer recurrence sequence is at
most 6 but he has not substantiated his claim. Beukers (1982) proved that 7
is indeed an upper bound. Beukers and Tijdeman (1984) showed that the 0-
multiplicity of a non-degenerate ternary rational recurrence sequence is at
most 44.

A slightly more general problem is to find upper bounds for the
multiplicity of non-degenerate binary algebraic recurrence sequences.
Kubota (1977b) proved that if all terms of such a sequence belong to some
number field K, then its multiplicity is bounded from above by a number
depending only on the degree of K over Q. An explicit bound can be found
in Beukers and Tijdeman (1984). Presumably there is an absolute upper
bound, but this has not been established yet. Beukers and Tijdeman further
showed that if a binary complex recurrence sequence has multiplicity at
least 4, then it is equivalent to an algebraic recurrence sequence. They used
this result to prove that for any complex number z with |z| > 2 at most seven
powers 2" (n € Z) are on a given line not passing through the origin. They
applied the ineffective hypergeometric method. Tijdeman (1981) sketched
how the effective method on linear forms in logarithms can be used instead,
yielding the slightly worse bound of nine powers.

Lewis and Turk (1985) investigated the cardinality r(a) of the set of pairs
(m, n) with u,,=au, and m>n where a is a number and {u,}-, a non-
degenerate binary recurrence sequence in a field of characteristic 0. Thus
r(1) corresponds to total multiplicity. They call the sequence {u,}x_,
transcendental if it cannot be made algebraic by multiplying all the terms by
some fixed constant. Lewis and Turk proved that if r(a)=3 for a
transcendental sequence, then a=1 and r(1)=3. Further, they proved that,
given integers m>n> p>q, there are , up to multiplication by a constant,
only finitely many non-degenerate binary recurrence sequences (necessarily
algebraic) such that u,,=u,=u,=u,.



CHAPTER 5——

The Thue equation

Suppose that f(X, Y)isa binary form with rational integer coefficients and
with at least three pairwise non-proportional linear factors in its
factorisation over C. Let k be a non-zero rational integer. We consider the
solutions of

J(x, 9=k (1

in rational integers x and y. Equation (1) is known as a Thue equation. Thue
(1909) proved that equation (1) has only finitely many solutions in rational
integers x and y. Thue’s result was a direct consequence of his fundamental
result on the approximations of algebraic numbers by rationals. His
argument is ineffective, that is, it fails to provide a bound for the solutions
x, y of (1). Baker (1968b), having established his fundamental inequality on
linear forms in the logarithms of algebraic numbers, applied his work to
give a proof of Thue’s theorem which was effective. His estimates for the
solutions of (1) were improved by several authors. Feldman (1971a) and
Baker (1973), independently, proved the following theorem. (They made the
assumption that f is irreducible, but it was not necessary to do so.)

Theorem 5.1. If x and y are rational integers satisfying (1), then
max(|x|, | y)) < C, [k|
for some computable numbers C, and C, depending only on f.

The infinitely many solutions of the Pell equation x?> —dy?=1 show that
theorem 5.1 is not true if f has only two distinct linear factors. In case y is
composed of bounded primes, we have the following result.

Theorem 5.2. Let A, Ay, As, B, € Z such that B,(AZ—4A4, A;) #0. Put B,=
|By|+ 1. Let x,yeZ. The equation
A x*+ Ayxy+ A3y° =B,
99
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implies that
max(|x|, |y) < B,

where C is a computable number depending only on A,, A,, Ay and P(y).

Combining corollary 2.1 with theorem 5.1, Tijdeman (1975) derived the
following result.

Theorem 5.3. If A#0,B#0,k#0,n=3,x> 1and y>0arerational integers
satisfying
Ax"+By"=k,
then
max(x, y,n) <C,

where C, is a computable number depending only on A, B and k.

We state notation for a generalisation of theorem 5.1. Let d and n be
positive integers with n > 3. Let K be a finite extension of degree d over Q.
Denote by () the ring of integers of K. Let R be the regulator of K. Let «,,

..o, € O with H(a;) < G for 1 <i<n. Suppose that at least three of «,. . .,
a, are distinct. Let

9 X, Y)=(X-o,Y) (X —a,Y)

be a binary form. Let 0 u € O, such that |;I < M, where we assume M > 2.
Siegel (1921) proved that equation (2) has only finitely many solutions in
x, y € Ox. Baker (1969) (see also Baker and Coates (1970, p. 601)) gave an
effective upper bound for these solutions. The following improvement is
due to Gyory and Papp (1978).

Theorem 5.4. If x, ye Oy satisfy

glx, »=pu, )
then

max([x], [y <M
where Cs is a computable number depending only on d, R, n and G.

By combining theorem 5.4 with corollary A.7, we obtain the following
generalisation of theorem 5.1 due to Gyéry and Papp (1978). Denote by 2
the discriminant of K.

Theorem 5.5. Let f(X,Y) bea binary form with coefficients in Oy, and with at
least three pairwise non-proportional linear factors in its factorisation over
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C. If x,ye 0 satisfy
fx, »)=p,
then
max([x],[y) < M€

where Cg is a computable number depending only on d, & and f.

Proofs
Proof of theorem 5.2. Let

A x?+ Axy+ Asy*=B, for x,yeZ. 3)

We may assume that A4,A4;xy#0; otherwise the assertion follows
immediately. Further, there is no loss of generality in assuming that
(x,y)=1. Put & =max(|x|,|y). We may assume that |y|>2 and therefore
Z =2. Further, put P= P(y)>2. Multiplying both sides of (3) by 4, and
replacing x by 4, x, we may assume that 4, = 1. Let a; and «, be the roots of
X2+ A,X+ A, By A3—4A4,%#0, the numbers «, and «, are distinct
algebraic integers. For i= 1,2, put

Bi=x—o;y.
Then f, # B,. Put L= Q(a,) and denote by ¢, the ring of algebraic integers of
L. If L is a real quadratic field, let ¢, be the fundamental unit of L. Further,
put

_ & if L is a real quadratic field,
|1 otherwise.

Denote by ¢y, ¢5, . . . , ¢;; computable positive numbers depending only on
A,, A;, A; and P. It follows from (3) that

By=¢", 4)
and

Ba=e"%, (%

where ae Z such that a=0 if ¢e=1 and y,,y, € O satisfying

max(|y,|, [r2)) <c,B. (6)

Observe that || <|x|+|o||¥| <, & for i=1,2. Hence, by (4), (5), (6) and a
Liouville-type argument,

|a| <c; log(B,Z)
where ¢ > 1. Subtracting (5) from (4), we have

(o —ay)y=¢%, —&"%,. (7
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Forarational prime p < P,let 4 be a primeideal in ¢, dividing p. Then, by
(x,y)=1, we have

min(ord ,(8,), ord ,(B,)) <c,.
For simplicity, assume that ord ,(8,) <c,. Then, by (7),
ord,(y)<ord () <c4+ordﬁ(sz“ i 1).
N Y2
We apply theorem B.4 withn=2,d<2,p<P,log A=cslogB,,B'=1,B=
2c5log(B,&) and 6=(16Pc3)~! to conclude that
ord (y) <cqlog B,+(8P) "' log Z. ®)
Now it follows from (N.1) and (8) that

log|y|< Y, ord,(y)log p<2P(c¢ log B, +(8P) ™! log Z).
p<P
Thus
log|y|<c,log B, +log % 9

If & <y?, then it follows from (9) that

log |y|<2c, log B,,
hence, by (3),
log |x| <cg log B,.

Thus we may assume that 2> y?. Consequently |x|]=2"> y% Now it
follows from (7) that

os (#2 =)y

&

<Colx| 7112,

2a‘y_1__1‘=
Y2

We apply theorem B.2 with n=2,d<2, log A=cslog B,, B'=1, B"=
2¢; log(B,Z)=2c; log(B,|x|) and 6=(16c;)~! to conclude that

gall_ 1‘>Bz‘cl°|x|‘”4.
Y2

Therefore |x| < B%:, hence |y| <|x|<B%. O

We now turn to the proof of theorem 5.4. Assume that K has s real
conjugatefields and ¢ pairs of non-real conjugate fields so that d =5+ 2t. We
shall signify the conjugates of any element 6 of K by 8, . .., 8 with 6,
..., 09 real and 6¢*V, .., #°*" the complex conjugates of #¢**+V
6%*29 respectively. Set r=s+t — 1 and denote by #,,. . ., 7, an independent
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system of units for K satisfying (A.45). The constants v, v, v, and v, are
computable positive numbers depending only on d and R.
Let x,ye O, xy#0. Fori=1,2,..., n we write

Bi=x—o;y (10)
and
For every i with 1<i<n, it follows from lemma A.15 that there exists an
associate y; of f; (with respect to #,, ..., #,) such that
log(m;” “[yPP<v  (1<j<d). (12)
Fori=1,...,n, write
vi= By onp (13)

and

Hi = max |bi,kl'

I<ksr
Let I be the subscript for which
H,=max H,.

Igign
If =0, we may suppose H,=0. The proof of theorem 5.4 depends on the
following result.

Lemma S.1. There exist an integer ¢ with 1 <o <d and computable positive
constants v,,v, depending only on d and R such that

IOg(ml_”d|ﬁ(za)')< —vH; if Hzv,.

Proof. If r=0, then H;=0 and the assertion follows. Thus we may assume
r>0. Consequently d>2. By (13) with i=1[, we have

')’;k) ) k)

5 =by, log |n{|+ - +b,,log |y (1<k<r).

This system of r linear equations in b;; with 1<j<r has a non-zero
determinant E with |E| > R. On solving b, ; in this system of equations we
have

log

(J)

H,<vs]log % (14)
i
where
) (k)
4] i
log |=5||= max [log |>=]|].
g B(IJ) I<k<r g ﬁ}k)
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By (14) and (12), we have

J)
fogtm 181> o % | ~ogtn; 451
]
>vy1H,—v.
We may assume H,>2vv;. Then
llog(m,” /|| > (2v;) ' H,. (15)
Re-writing (11) with i=1/, we have
d
3 log(m; )= —log(m;” 1| §{"). (16)
1%
Now the lemma follows immediately from (16) and (15). O

Proof of theorem 5.4. Denote by ¢,,, ¢;3, ..., ¢;9 computable positive
numbers depending only on d, R, n and G.

Let x, y € Ok satisfy (2). We may assume xy#0; otherwise the theorem
follows immediately. By taking norms on both sides in (2), we see from (10)
and (11) that

Since at least three and so two of a4, . . ., &, are distinct, there exist indices A
and v between 1 and » inclusively such that «, # «,. Solving the equations
(10) with i=4 and i=v for x and y, we have

_ up,—a.pB; _ B,— B,
x= , y= .

o —a, o —a,

Thus we have

max(|;| R I;I) <¢y5 max(|E| R Iﬁl)

Consequently, in view of (13), (12) and (17), the proof of theorem 54 is
complete if we show that H,<c¢,;log M.

We assume that H;>c¢,, log M with ¢, , sufficiently large. Let ¢, be so
large that H,>v, and thus the assertion of lemma 5.1 is valid. Hence there
exists an integer ¢ with 1< o <d such that

] it
which, together with (17), implies that
B <M e,
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Consequently, if ¢, , is sufficiently large,
'mﬂ)lge—ﬁsﬂl (18)

where ¢, s=v,/2. Since p is a non-zero algebraic integer, |N(u)| > 1. Hence,
by a Liouville-type argument,

|B(1‘7)...ﬁ(’:’)|=lﬂ(a)|>M_d+l. (19)
By (18), we have
¥ 8>(T1 87| (20)
o .
Since at least three of a4, . . . , a,, are distinct, observe that the product on the

left-hand side of (20) is non-empty. Now it follows from (20) and (19) that
there exists an integer m with 1 <m<n such that §,# g, and

|Bo|=M 41, 3}

Consequently, by (18) and (21), we have
a)
EI{) <Md_1 e—c,SH, Se_“”H'/z, (22)

if ¢, 4 is sufficiently large. Since at least three of a4, . . . , &, are distinct, we can
find an integer p with 1<p<n such that g, 5, and B, are distinct. By
permuting 1,2, ..., n,there is no loss of generality in assuming that §,=§,,
ﬁm =Bz’ ﬁp=ﬁ3‘

The proof of theorem 5.4 depends on the following identity, which can be
verified by direct computation,

(5 — a7 + 05— ) + (o 5B =0,

For simplicity we omit the superscript (o). It follows from this identity and
(13) that

oy — &y A, —03

B
8,

ni oy ——
oy —0o3 Y2

]

w V3 l=

®y —&;3
where u, =b, , — b, for 1 <k<r. By (22), we obtain

%y —dy V3 _
—”liln:ry__ <e 16t

0<

oy —A3 2

By (12) and (17) the height of y;/y, does not exceed M“1”. We apply theorem
B.2 with n=r+2<d+2, §=min(}, ¢,¢/4n), A'=c,5, A=M"", B=1 and
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B"=2H,. We obtain

0y —0, 7’]‘;' .. n:’b -1 >M—c19 e—cwH,/Z.
oy — a3 Y2

Thus 27 ¢, ¢H,< ¢4 log M which is not possible if ¢, ,>2¢,oc1¢ - 0

Proof of theorem 5.5. Let n be the degree of f,and H an upper bound for the
heights of the coefficients of f. There is a rational integer a such that 0 <a <
nand f(1,a)#0. Thus g(X,Y):=f(X,aX +Y) is also a binary form with
coefficients in ¢y and with at least three pairwise non-proportional linear
factors. Further, a, :=¢(1,0)=1(1,a)# 0 and the heights of the coefficients
of g do not exceed c¢,, where c,,, and ¢,;, ¢,, below, are computable
numbers depending only on d, n and H. It suffices to derive a bound of the
form M€ for the solutions x, y in ) of the equation g(x, y)=pu. If ay# 1, then
we multiply both sides by af,~! and replace ayx by x and af~'u by u. We
may therefore assume that the coefficient of X" in g is 1, that the heights of

the coefficients of g do not exceed ¢,, and that |;| < M€z, Denote by
g(X’ Y)=(X_ﬁlY)' ' '(X_,BuY)

the factorisation of g over C. Put L=K(f,, ..., B,). Further, let G be the
maximum of the heights of §;, ..., ,. By theorem 5.4, there exists a
computable number ¢,; depending only on d,, R,, n, H and G such that

max(x]. [y) <M.

By corollary A.7 applied to g(X, 1) the number c,; can be bounded from
above by a computable number depending only on d, 2 and f (cf. the
remark after corollary A.5).

Proof of theorem 5.1. This theorem is a special case of theorem 5.5. [

Proof of theorem 5.3. By corollary 2.1, n is bounded from above. For each
possible n > 3 we can apply theorem 5.1, since the linear factors of the binary
form Ax"+ By" are all distinct. O

Notes

We present some explicit estimates for the magnitude of the
solutions of Thue’s equation (1). The first bounds, due to Baker (1968b),
were further improved by Feldman (197 1a), Sprindzuk (1970a, 197 1a, 1972),
Baker (1973), Stark (1973) and Gyoéry and Papp (1978, 1983). In fact, the
first two papers of Sprindzuk deal with Thue-Mahler equations and for
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such results we refer to the notes of chapter 7. Let f(X,Y) be an irreducible
binary form of degree n> 3 with rational integer coefficients whose absolute
values are bounded from above by 4(>2). Letabearootof f(X, 1)=0and
D and R (>2) upper bounds for the absolute value of the discriminant and
for the regulator, respectively, of Q(a). Let x, y and k £ 0 be rational integers
satisfying (1). Then there exist computable numbers C,, Cq and C,
depending only on » such that

log max(|x|, |y)) < C,R(log R)*(R+1og A +log |K|), (23)
log max(]x|, |y) < CsD*/*(log D)*(D*/* +10g A +log |k|), (24)
log max(|x|, |y]) < Co A"~ VV3(log A)2" (A"~ DV 4 ]og |k|). (25)

This was proved by Gyory and Papp (1983) with completely explicit
constants C,, Cg and Cy. Inequality (25) is an improvement on an estimate
of Baker (1968b), (23) is an improvement on Sprindzuk (1972) and (23)-(25)
give slight improvements on the estimates of Stark (1973). For further
history, see Sprindzuk (1982).

In some exceptional cases the hypergeometric method of Thue and Siegel
leads to better upper bounds for the solutions of (1). This has been worked
out for some cubic equations by Baker (1964a,b) and Faddeev (1966).
Related results have been obtained by Osgood (1970q, b, 1971), Bombieri
(1982), Bombieri and Mueller (1983, 1986), Mueller (1984) and Chudnovsky
(19834, b). It is possible to use similar, but ineffective, methods to obtain
general upper bounds for the numbers of solutions of Thue equations. In
special cases the bounds are quite good. See Lewis and Mahler (1960),
Hyyro (1964b), Mahler (1984), Evertse (19834, b, 1986), Silverman (1982a,
19834, b) and Evertse and Gy6ry (1985) obtained upper bounds which are
independent of the coefficients of f. A considerable improvement on results
of Mahler and Evertse has been given by Bombieri and Schmidt (1986).

Many results mentioned in the preceding paragraph are not formulated
in terms of diophantine equations, but in the equivalent way of irrationality
measures of algebraic numbers. Let o be an algebraic number of degree
d>=2. An immediate consequence of theorem 5.1 is the following result.

Let d>2. There exist computable numbers C,,>0 and x with 0<k<d
depending only on o such that for every rational number p/q with g >0, we
have

o« —p/g|>Cyoq 7. (26)

This is the best-known general effective improvement of Liouville’s
inequality. The first effective general improvement is due to Baker (1968b).
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For explicit values of the constants C, , and x and extensions of the result to
certain linear forms with algebraic coefficients in an arbitrary number of
variables, see Gyo6ry (1980h). His results cover those of Kotov and
Sprindzuk (1977) and Gyory and Papp (1983). If we disregard the effective
nature of inequality (26), the method of Thue-Siegel-Roth gives more. By
improving the results of Thue (1909), Siegel (1921), Dyson (1947) and
Gelfond (1952), Roth (1955) proved the following.

Given >0, there exists a constant C,, >0 depending only on a and ¢ such that
|« —p/a|>Cyrq7" 27
Jor every rational number p/q with q>0.

Inequality (27) is the best possible in the sense that —2 —¢ cannot be re-
placed by —2+¢ in general. It is conjectured (see Lang, 1965, p. 184) that
g~ 2% can be replaced by g~ %(log q)~'~¢ with ¢ > 2. For generalisations to
linear forms with algebraic coefficients see Schmidt (1970, 197 1a, b, 1980b).
If the constant C,, is allowed to depend on the greatest prime factor of pg,
the theory of linear forms in logarithms gives a considerable improvement
of inequality (27). As an immediate consequence of corollary B.1 we have

the following result of Feldman (19684, b).

Let P>2. There exists a computable number C, , depending only on « and P
such that for every rational number p/q with q=2 and P(pq) <P,

o — p/g|>(log g)~ = (28)

This represents a considerable improvement on an ineffective result of
Ridout (1957). For an analogue of (28) with p/q replaced by the quotient of
two elements of a non-degenerate binary recurrence, see theorem 3.5.
Further, theorem 5.2 implies:

Let a be an algebraic number of degree 2. Then
| —p/g|>C3q7*° 29

for every rational number p/q with q>0, where C,5 and S are computable
positive numbers depending only on a and P(q).

This inequality strengthens a result of Schinzel (1967).

Irrationality measures (26)—(29) yield upper bounds for the solutions of
equation (1) in terms of k. The best general effective bound (26) leads to
theorem 5.1. The better ineffective bound (27) enables us to replace k by a
polynomial in x and y of degree less than deg(f)—2, provided that f is
irreducible. See Davenport and Roth (1955). Davenport and Lewis
(unpublished) and later Schinzel (1969) proved that if feZ[X,Y] is an
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irreducible binary form of degree at least 3 and g e Z[ X, Y] has total degree
less than the degree of f, then

Sx, »)=g(x,y) (30)

has only finitely many solutions in rational integers x, y. The proof is
ineffective. In corollary 7.1 we shall give an effective proof of the result on
equation (30) for the case that g is also a binary form.

Let o ¢ @ be a real algebraic number. Denote by p, /g, the nth convergent
in the simple continued fraction expansion of «. Mahler (1936) proved that
P(p,q,) tends to infinity with n. Further, Ridout (1957) proved that both
P(p,) and P(q,) tend to infinity with n. However, these results are not
effective. We see from (28) an effective version of Mahler’s result. Further,
Shorey (1976b) proved that

P(pnqn) > Cl 4 log log 9 (n > 3)

where C;,>0 is a computable number depending only on «. For a
quadratic irrational «, inequality (29) implies that P(q,) — oo effectively
whenever n — oo. For further results in this direction, see Erdés and Mahler
(1939) and Shorey (1983b).

Let H (=2) be an upper bound for the heights of the coefficients of f, and
n the degree of f. Gyory (1981b) proved a general result which implies the
explicit estimate

log max([x|, [y]) <(5(d + 1))3°¢* PnS(hy R)” log(HM)

in theorem 5.5. Here hy Ry can be estimated by theorem A.3. See also Gyory
and Papp (1978, 1983).

There are many generalisations of results mentioned above. It follows
from a theorem of Lang (1960, 1983) that if u is a non-zero element of a
finitely generated (but not necessarily algebraic) extension K of @ and
f(X,Y)eK[X,Y] denotes a binary form having at least three distinct
linear factors (over the algebraic closure of K), then f(x,y)=u has only
finitely many solutions in any subring of K finitely generated over Z. An
effective version of this result was proved by Gyory (1983). For other
generalisations, see the notes of chapters 6-8, Lang (1960, 1978, 1983),
Schmidt (1971a, 1980a), Sprindzuk (1982) and Gydry (1984b).

Let K be a finite extension of Q. Let fe K[X,, ..., X,,] be a form of
degree n. We call f a decomposable form if there exist n linear forms £(X ,,

v X=X+ + o, X, (1<i<n) with algebraic coefficients such
that

n

fX g X)=T] LXyse s X

i=1
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Let 0% ueK. In this case the equation
S5 X)=p InXxq,..., %, in O (31

will be called a decomposable form equation over (k. Obviously all binary
forms are decomposable, but forms of more than two variables need not be.
Consequently, all Thue equations are decomposable form equations.
Further important examples of decomposable forms are norm forms,
discriminant forms and index forms. The corresponding equations of the
form (31) are said to be norm form equations, discriminant form equations
and index form equations over ()x. These equations play an important role
in algebraic number theory (see e.g. Gyory, 1980e).

We call f a norm form over K if there exists a linear form £(X,, ...,
X)=0,X,+ - +0a,X, with coefficients in a finite extension L of K such
that

f(Xl,...,X,,,)=.]_[1 FOX,,..., X,),
i=
where n=[L:K] and for i=1, ..., n, Z9X,, ..., X, )=oPX, + -+
a¥X,, and the o denote the images of « € L under the K-embeddings of L.
Then we write N, x (£(X,, ..., X,,)) for f. We note that all irreducible
binary forms over K are, up to a constant factor, norm forms over K.
Consider the solutions (x,, ..., x,,)€ 0% of the norm form equation

Nyg(&Lxys. . X)) =1, (32)

where u is a given non-zero element in K. We may assume without loss of
generality that o, = 1. If in particular m=2 and the degree of «, is at least 3
over K, then (32) is a Thue equation over @4 and, by theorem 54,
computable upper bounds for the heights of the solutions can be given.
Several authors obtained ineffective finiteness results for certain special
norm form equations of more than two variables. For references, see
Skolem (1938) and Schmidt (1971b, 1980b). In case K = @, Schmidt (19714,
1972) characterised all linear forms % for which (32) has only finitely many
solutions (x,. .., x,,) € Z™ for any u e Q, u#0. Schmidt (1972, 1973, 1980b)
also obtained finiteness results for equations of the form f(x,, ..., x,)=
g(xy, ... 5 x,) Over Z, where g is a polynomial whose degree is small with
respect to deg(f). For K=Q, Gybéry and Pethé (1977, 1980) gave
asymptotic estimates for the number of solutions of (32) with max; |x j| <z
in case (32) has infinitely many solutions.

When f(X,Y) is irreducible, equation (1) can be considered as a norm
form equation over Z in two variables. Sprindzuk (19744, 1982) extended
theorem 5.1 to the case of three variables in the norm form equation among
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which two are dominating. For certain special extensions L/K and certain
numbers a, . . ., &, of special types, Skolem (1937, 1938), Baker (1967) and
Feldman (1970, 19715, 1979) proved effective finiteness theorems on norm
form equations in more than two unknowns. Furthermore, Gyory and
Lovasz (1970) and Vojta (1983) gave effective versions of Schmidt’s (197 1a)
finiteness criterion mentioned above in case m=3, K =Q and L is special.
Gyory and Lovasz assumed L to be a totally imaginary quadratic extension
of a totally real algebraic number field. Vojta assumed L to be a normal and
complex extension of Q. Gydry, partly in collaboration with Papp,
extended Baker’s method described in this chapter to several classes of
decomposable form equations in an arbitrary number of variables. Gyory
(1976) obtained general effective finiteness theorems for discriminant form
equations and index form equations over Z which make it possible to solve
any such equation. These theorems have many applications in algebraic
number theory (see Gyory (1976, 1980¢)). Under the general hypothesis that
in (32) a;,, is of degree at least 3 over K(ay, ..., ;) fori=1,...,m—1,
Gyo6ry and Papp (1978) derived explicit bounds for the solutions of (32), too.
Similar results were proved by Kotov (1980q), Sprindzuk (1982) and Gyory
and Papp (1983). Recently Gyory (1981a,b) and Kotov (1981, 1983),
independently, obtained a further improvement. Gaal (1986) gave a
common generalisation of results of Sprindzuk (1974a) and Gyo6ry and
Papp (1983). We refer to the notes of chapter 7 for references of papers on
decomposable form equations of Mahler type (see chapter 7, (38)). General
effective results for decomposable form equations were given by Gyory and
Papp (1978) and Gyory (1981a, b). Both the main result of Gyory (1981a)
and that of Gyéry (1981b) cover theorems 5.1, 5.4 and 5.5 and the above-
mentioned general effective results on norm form, discriminant form and
index form equations. An extension to the case that the ground ring is a
finitely generated (but not necessarily algebraic) extension of Z is given in
Gyory (1983). For a good survey of these results, we refer to Gyory (1980e,
1984b).

In the notes of chapter 1 we mentioned some results on unit equations
over function fields. Corresponding theorems have been proved for Thue
equations over function fields. Schmidt (1978, 1980a) gave upper bounds for
the heights of both the integer and the so-called rational solutions of these
equations. Mason (1981; see also 1984a) derived a better bound for the
integer solutions and gave an algorithm to find all solutions. Mason (1986)
generalised his results to norm form equations and Gyory (1983)
generalised Schmidt’s result concerning integer solutions to decomposable
form equations over function fields. Recently, Evertse (1986) gave an
analogue to the function field case of the bound which he obtained in
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Evertse (1984a) for the numbers of integer solutions of Thue equations over
number fields. Further, Evertse and Gydry (1985) generalised the result of
Evertse (1984a) to a wide class of decomposable form equations in an
arbitrary number of variables over finitely generated (but not necessarily
algebraic) extension rings of Z. A general finiteness criterion for
decomposable form equations is given in Evertse and Gyory (1986b).



CHAPTER 6—

The superelliptic equation

In this chapter we prove that, under suitable conditions, the superelliptic
equation (1) has only finitely many integral solutions. The resulting
theorems 6.1 and 6.2 are applied to a system of two quadratic equations in
corollary 6.1.

Denote by K a finite extension of Q. Suppose thata,,. . . , &, are algebraic
numbers in K. Write

f(X)=(X_al) ' '(X-au)‘

For a rational integer m>2 and a non-zero algebraic number b in K, we
consider the superelliptic equation

J(x)=>by" (D

in algebraic integers x € K and ye K. We shall apply a method of Siegel
(1926) and theorem 5.5 to prove the following theorems of Baker (1969,
1975) on the integral solutions of (1).

Theorem 6.1. Let m= 3. Suppose that f(X) has at least two simple roots. If x
and y are algebraic integers in K satisfying (1), then

max([x|,[y<cC,

for some computable number C, depending only on b, m, f and K.

Theorem 6.2. Suppose that m=2 and f(X) has at least three simple roots.
Then all the solutions of (1) in algebraic integers xeK, ye K satisfy

max(l?l , M) <C,
where C, is a computable number depending only on b, f and K.

The ineffective versions of theorems 6.1 and 6.2 are consequences of a well-
known theorem of Siegel (1929) which implies that all irreducible algebraic
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curves over any algebraic number field K on which there are infinitely many
integer points in K must be of genus 0. Theorem 6.2 includes the elliptic
equation

y?=Ax*+Bx?+Cx+D in xeZ, yeZ

with 4, B, C, DeZ. For this equation, Baker (1968c) established the
assertion of theorem 6.2 from his variant of theorem 5.1 by a method, due to
Mordell (1922, 1923), involving the theory of reduction of binary quartic
forms. For the case K = Q, Baker (1969) proved theorems 6.1 and 6.2 with
explicit bounds for the solutions. Furthermore, Baker and Coates (1970)
established an effective version of Siegel’s theorem for curves of genus 1.

Theorem 6.2 has the following consequences for systems of two quadratic
equations.

Corollary 6.1. Let A,B,C,D,E, F,k,leZ with (B> —4AC)(E*—4DF)kl#0
be given. If the system

Ax*+Bxy+Cy*=k
@

Dx?+Exz+Fz?=]
in x, y, z€ Z has infinitely many solutions, then

Ck_B*—4AC
Fl  E*—4DF

and this ratio is the square of a rational number. If CFklis not a square, then
there exists a computable upper bound for max(|x|, |y, |2)).

The proofs of theorems 6.1 and 6.2 depend on the following lemma.

Lemma 6.1. Let m>=2. Suppose that b#0 and o, ..., a, are algebraic
integers and that f(X) has a simple root, say a. If x and y are algebraic
integers in K satisfying (1), then there exist algebraic integers { #0, ¢ #0 and
é in K such that
x —o=({/)o"
and
max(|C|, |¢|)<C3

where C; is a computable number depending only on b, m, f and K.

Proofs
The constants¢,,¢,,. . .in the proofs of lemma 6.1, theorem 6.1 and

theorem 6.2 will denote computable positive numbers depending only on b,
m, f and K.
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Proof of lemma 6.1. Let 1, . . ., 5, be an independent system of units for K
satisfying (A.45). By permuting the suffixes of «, . . ., a,, there is no loss of
generality in assuming that a=a, is a simple root of f. Put

A=[b] [ [e—a;].
j=2
Since « is a simple root of f, we find that A is a non-zero ideal of (.
Suppose that x and y are in O satisfying (1). We may assume that x #«;
otherwise the lemma follows with { =1, ¢ =1 and 6=0. By (1), we have the
following ideal equation in O:
[x—ay 1" [x—o,]=[by"].
From here, we obtain
[x—a]=at™ 3)
where < and £ are non-zero ideals in O and 2 divides A"~ ! in Ok. By

lemma A.11, there exist non-zero ideals «, and £, in Oy such that

max(N(a,), N(4y)) <c¢,
and the ideals

aay=[{,], ¢6,=[6,]
are principal. Multiplying both sides of (3) by «,£7, we see that 47 is
principal. Write

a 67 = [¢1]
Observe that
IN(¢1)I =Na,(Né " <epth.
Further
IN( )| =(Na)Na) S(NA)" ¢, =c,,

since « divides A™~! and A is a non-zero ideal. Hence, by corollary A.6, we
can find associates {, and ¢, of {; and ¢,, respectively, such that

max(Z,] [ <cs.

From the ideal equation (3) we get

arx —a] =(aa \tby)"
Thus we obtain
X —o=¢g({,/P,)07

where ¢ is a unit in @0x. Now, by corollary A.5, we may write

_ m
e=¢,&5
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where ¢, and ¢, are units in O and |sl|<c4. Hence

x —a=<%€3>(8261)'”.

Set {=¢&,({,, ¢=¢, and d=¢,8,. Observe that
max(|f|, |$l) <cs. ad

Proof of theorem 6.1. Let x and y be in O satisfying (1). By multiplying both
sides of (1) by r" where r is the product of the denominators of b, a;,. . . , a,,
and replacing rx by x, we may assume without loss of generality that b, a,
...,o,are algebraic integers. By permuting the suffixes of a;,. . . , a,, we may
assume that «, and a, are distinct simple roots of f. Then, by lemma 6.1,
there exist elements &,, &,, ¥, ¥, and y;,7, in Uy such that & &, ¥,#0
and

x—oy =& /0T Q)
x ==& /Y07 &)

and -
maX(laHle,|¢1|,|i//z|)<cs~ (6)

Subtracting (5) from (4) and multiplying by ¥,y,, we obtain

Syt =&y =y — o W ¥,

We apply theorem 5.5 with f(X,Y)=¢ Y, X" &0, Y™ and u=
(ey—ay))y ¥, Since m=3, &, &0, #0 and a; #a,, all assumptions are
fulfilled. Hence, by (6),

max(fy ], i) <e-.

Now apply (5) and (6) to conclude that I?l < cg. Hence, by (1), |;| <co. O

Proof of theorem 6.2. By the same argument as in the proof of theorem 6.1,

we may assume that b, ay, .. ., a, are algebraic integers. By permuting the
suffixes of a, . . . , &, we may assume that «,, «, and « are distinct simple
roots of f.

Let x and y be in Oy satisfying (1) with m=2. It follows from lemma 6.1
that there exist elements £;#0, ;520 and y,; (1 <i<3) of () such that for
i=1,2,3, we have

X _“i=(éi/'//i)yi2 ()

and o
max(lfila I'//i|)<clo- ®)
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From equations (7) we obtain

o1yf —oyi=a,—ay,

Oyy3—03y3=a3—03,

o33 —oyi=a, —ay,
where 0,=(¢;/y;) fori=1,2, 3. Let 61/%, 64/* and ¢5/% be an arbitrary choice
of the square roots. Put

L=K(s!/?,6%%,6%?).

Observe thatd, <c¢,,.Let7),. .., n, beanindependent system of units for L
satisfying (A.45). Put

— .1/2 1/2
By=01"%y, —0/%y,,

1/2 1/2
ﬂ1=0'2/ Y2 —03%y3,

2=U§/2)’3 “‘7{/2
and A=y, ,¥5. By (8), IZI <3, and consequently |4] > ¢, ,. Hence, by (8)
and lemma A.2, A6!/? (i=1,2,3) is an algebraic integer of height at most
¢, 3- Since also d; <c¢,,,lemma A.16 gives |@L| €y 4. Observe that Af,, AB,
and Af, are non-zero algebraic integers in L, for a,, &, and a; are distinct.
Further,

71

max [Ny(AB)| <cys.
1<i<3
Consequently, by lemmas A.15 and A. 16, there exist associates 1, §, and §3

of AB,, AB, and AB,, respectively, such that max, ¢;; IE’,—I <¢,6- Hence we
can write

ABi=ve} (i=1,2,3) )

where ¢, €,, €5 are units in ¢ and v, v,, v5 are non-zero elements of ¢,
satisfying

max IV,-I <cyg. (10

1<ig3
Observe that
Aﬂl + Aﬁz + Aﬁ3=0.

3 3
2 €

vil— 1 +vol =) = —vs.
&3 &3

Thus, by (9),



118 Diophantine equations and recurrence sequences

We apply theorem 5.5 with f(X,Y)=v,X3>+v,Y*and u= —v;. By d, <
C11> D<€ g, V1V2v3#0 and (10), we obtain

62
€3

1

4
max| —

b

€3

)<cw. a1

It follows from (10) that |v,| > ¢, , fori= 1,2, 3. We may fix any choice of the
sign of 63/2. Then we can select the sign of 1/2 such that |85 <c,o. Now it
follows from (9) with i=3 that |e;|<c,,, since |4|<e}y and |v5|>cyo.
Further, by (11) and |e;|<c,,, we find |¢;| <c,,. We obtain from (9) with
i=1 that |B,|<c,,, since |4|>¢,, and |v,|<c; ;. The inequality |B,|<c,3
holds for either choice of the sign of 61/2. Consequently, by (8), we find that
max(Jy,|, |ys|) <c¢,4. Now, by (7) and (8), we conclude that |x| <¢,s. We argue

similarly from the equations conjugate to (1). We obtain |;| < ¢,6. Hence, by
(1), we obtain |y|<027. O

Proof of corollary 6.1. Suppose that the system (2) has infinitely many
solutions x, y, z € Z. Then each of the equations has an infinity of solutions.
Hence both B?>—4AC and E?—4DF are positive and non-square.
Consequently, CF #0. Furthermore,

(Bx+2Cy)*>—(B*>—4AC)x? =4Ck,
(Ex+2Fz)®> —(E* —4DF)x*=4F!l
and therefore
(B> —4AC)x* +4Ck)((E* —4DF)x* +4Fl)=((Bx +2Cy)(Ex +2Fz))%.
(12)

By theorem 6.2 the polynomial at the left-hand side has at most two simple
zeros. Since (B2 —4AC)(E? —4DF)(4Ck)(4F1)#0, we have

4Ck  4FI
B2—-44C E*-4DF’

Hence, by (12), CkFl and therefore Ck/Flis the square of a rational number.

If Ck/Fl is not a square, then we may apply theorem 6.2 to (12). Since
f(X)=((B*—4AC)X?*+4Ck)((E*—4DF)X*+4Fl) now has four simple
roots, the second assertion follows. O

Notes
Mordell (1914) established the connection between the equation
y*= Ax%+ Bx?+Cx + D (A, B, C, D € Z) and equations of the type f(x, y)=
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1, where f denotes an irreducible binary form with rational integer
coefficients of degree 3 or 4. By using the theorem of Thue, Mordell (1922,
1923) proved that the equation Ey? = Ax3+ Bx*+Cx+D(A,B,C,D,E€Z,
E #0) has only finitely many solutions if the polynomial Ax>+ Bx2+ Cx +
D has three distinct roots. In particular the equation y?=x3+k (k#0) has
only finitely many rational integer solutions x, y. In a letter to Mordell,
Siegel (1926) showed how Mordell’s result can be extended to the ineffective
analogues of theorems 6.1 and 6.2 by using a result of Siegel (1921).
Subsequently, Siegel (1929) classified all irreducible algebraic curves
defined over any algebraic number field K on which there are infinitely
many points in (k. In particular these curves must be of genus zero and
have at most two infinite valuations. Lang (1960) generalised Siegel’s result
by showing that one may take any finitely generated (but not necessarily
algebraic) extension of Q in place of K and any finitely generated subring of
this extension in place of 0. LeVeque (1964) proved that equation (1) has
only finitely many integer points in @ unless m divides the multiplicities of
all but one root of f or,if mis even, the multiplicities of all but two roots of f
are divisible by m and the remaining two by m/2. Faltings (1983) proved the
remarkable result that any irreducible algebraic curve defined over K which
is of genus greater than or equal to 2 contains at most finitely many points
in K2, This result was conjectured by Mordell. Hurwitz (1917) proved that
the assertion does not hold for all curves of genus 1. The proofs in the
above-mentioned papers are ineffective.

Baker (1968b) gave the first effective solution of the Mordell equation

yi=x3+k (13)

where k is a non-zero integer. Namely, if x and y are rational integer
solutions of (13), then

log max(|x|, | y[) < 101 ¢|k|* ©°°°, (14)
Stark (1973) applied his version of estimate (24) of chapter 5 to improve the
estimate (14) as follows: Given £>0, there is a computable number C,

depending only on ¢ such that, if x and y are rational integer solutions of
(13), then

X

log max(|x|, |y)) <C,[k|'*=.

Sprindzuk (1982, p. 149) replaced the right-hand side of (14) by C5|k| X
(log |k| + 1)5, where C; is a computable absolute constant. Baker (1968c¢)
gave an estimate similar to (14) for the integral solutions of the equation
y?=Ax3>+Bx2+Cx+D.

Let f(X) be a polynomial with rational integer coefficients. Denote by n,
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2 and H the degree, the discriminant and the height of f, respectively. Baker
(1969) gave upper bounds for max()x}, |y)), where x, y is a rational integer
solution of f(x)=y™, namely

exp exp{(5m)'°n1 " H""} (15)

if m>=3 and f has at least two simple zeros, and
exp exp exp{n'"’H"’} (16)

ifm=2and f has at least three simple zeros. These bounds were improved
by Sprindzuk (1973a, 1976, 1977, 1982). He proved that if m=2 and f is
monic with n > 3 simple zeros and 4+ 0 a rational integer, then the rational
integer solutions x, y of Ay?=f(x) satisfy

log max(|x|, |,V|) < C6|A,12+e|9l24(n+2)+e(10g H)1+e (17)

where ¢ >0 and Cg is a computable number depending only on » and ¢ (cf.
Sprindzuk, 1982, p. 164). The bounds in case m>3 can be found in
Sprindzuk (1977; 1982, p. 182). A more explicit version of (17) was given by
Turk (1986, theorem 2). We remark that we could have applied theorem 1.4
in place of theorem 5.5 in the proof of theorem 6.2. Further, we note that it
follows from the proofs that, in theorems 6.1 and 6.2 and lemma 6.1, the
dependence on K can be refined to dependence on the degree and the
discriminant of K only.

Brindza (1984a) gave an effective proof of LeVeque’s result (cf. theorem
8.3). Baker and Coates (1970) proved that if feZ[X,Y] is an absolutely
irreducible polynomial of degree n and height H such that the associated
curve f(X,Y)=0hasgenus 1, then all rational integer solutions of f(x, y)=
0 satisfy

max(x|, |y)) <exp exp exp{(2H)* oy

Baker and Coates observed that there is no difficulty in dealing in a similar
way with curves of genus 0 when there are at least three infinite valuations,
but an effective extension to curves of genus greater than 1 remains an
important quest.

The bounds (16) and (17) can be used to derive lower bounds for the
greatest square-free part Q*(x) of f(x) where fe Z[X] has at least three
simple zeros and x is a rational integer. Sprindzuk (1982, p. 164) derived
from (17) that

Q*(f()> Cflog x| -=be-

where n is the degree of f and C, >0 is a computable number depending
only on f and & Sprindzuk (1977; 1982, p. 193) and Turk (1982, 1986) gave
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similar bounds for the greatest m-free part of f(x) where m is any rational
integer with m> 3. Sprindzuk (1976, 1977) used these bounds to derive
lower bounds for the discriminants and class numbers of certain algebraic
number fields.

Turk (1984) gave an explicit upper bound for the solutions x, y of (2) in
the special case B=E=0 and under the assumption that CFkl is not a
square.

For certain special equations all solutions have been determined by using
estimates for linear forms in logarithms. Ellison et al. (1972) determined all
the rational integer solutions x, y of the equation y?=x3-—28. Boyd and
Kisilevsky (1972) solved the equation y*=x3—x+1. The first effective
result of determining all the solutions by linear forms in logarithms was
given by Baker and Davenport (1969) in relation to a problem of
Diophantos. They solved the system of equations

3x2—y2=2}

8x2—z2=7

(18)

(cf. corollary 6.1). The proof also depends on a useful lemma on
inhomogeneous diophantine approximation (cf. Grinstead, 1978).
Elementary solutions for (18) were derived by Kanagasabapathy and
Ponnudurai (1975) and by Sansone (1976). Similar systems of quadratic
equations were solved by Jones (1976, 1978), Veluppillai (1980) and
Mohanty and Ramasamy (1984). Theorem 6.2 has been applied to tight
designs by Bannai (1979). For a similar application of a diophantine
equation, see Bremner (1979).

Estimates like (14)—(17) can also be used to derive lower bounds for
|[y¥*—x* and, more generally, for |by”—f(x)|, provided that these
expressions are non-zero. For another type of lower bound for | y2— x3|, see
Nair (1978). For general information on the equation y* = x> + k we refer to
Hall Jr (1971), London and Finkelstein (1973) and Danilov (1982).

It follows from theorem 6.2 that equation

e+ Dx+2)=(y+Dy+2)(y+3) (19)

has only finitely many solutions in non-negative integers x, y. For this,
observe that equation (19) can be re-written as (2x +3)*=4(y + 1)(y +2) x
(y+3)+ 1. Mordell (1963) proved that the only solutions of (19) in non-
negative integers x, y are given by x=1, y=0 and x=13, y=4. Further,
MacLeod and Barrodale (1970) conjectured that the product of two
consecutive positive integers is never equal to the product of [>4
consecutive positive integers. They proved the conjecture for /=4 and I=8.
Boyd and Kisilevsky used their result on y?>=x*—x+ 1 to determine all
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solutions of the equation (x+ 1)(x +2)(x + 3)=(y+ I}y +2)(y + 3} (y +4) in
rational integers x, y. This equation has some relation with sporadic simple
groups.

For positive integers a, b, x, y and k with b>a and x —y>k, Shorey
(1984¢) proved that the equation

ax+ 1) (x+k)=by+1)--(y+k) 20)

implies that either k < Cg or k= [a + 1] where a = (log(b/a))(log(x/y)) "! and
C, is a computable number depending only on a and b. Further, he applied
corollary B.1to show that equation (20) implies that max(x, y, k) is bounded
by a computable number depending only on q, b and the greatest prime
factor of xy. For given a, b and k>3 such that a(X +1)--- (X +k)—
WY +1)---(Y + k) is irreducible over rationals, it follows from a theorem of
Schinzel (1969), stated below, that equation (20) has only finitely many
solutions in integers x, y. Cohn (1971) proved that equation (20) with a=1,
b=2, k=4, has only one solution, x=4, y=3, and Ponnudurai (1975)
showed that equation (20) with a= 1, b=3, k=4 has only two solutions in
positive integers, namely x=2, y=1 and x=6, y=4.

The first general result concerning the integer solutions of a diophantine
equation in two unknowns is due to Runge (1887).

Let F(X,Y)=Y"1-¢ 2 j=0a;X'Y/ be an irreducible polynomial with integer
coefficients. Suppose that the equation F(x, y)=0 has infinitely many rational
integer solutions. Then there exist integers m,n such that (i) a,,0 %0, a,, #0,
(ii) a;;=0 if ni+mj>mn, (i) Y ;s mjmn @;;X'Y7 is a constant multiple of a
power of an irreducible polynomial.

Runge’s method of proof is effective. Hilliker and Straus (1983) proved that
if f does not satisfy (i)iii), then each rational integer solution x,y of
F(x, y)=0 satisfies

max(jx|, |y) <@rHY™"

where H is the height of F. Hilliker (1982) showed how to find all solutions
of some diophantine equations of this kind in practice. An immediate
consequence of Runge’s theorem is that if F(x, y)=0 has infinitely many
solutions, then the highest homogeneous part of F is a constant multiple of
a power of an irreducible polynomial. By combining this assertion with the
theorem of Siegel (1929), Schinzel (1969) showed, ineffectively, that this
irreducible polynomial is either a linear form or an indefinite quadratic
form. In fact the result was proved in greater generality. It implies the result
of Davenport and Lewis on equation (30) of chapter 5. Skolem (1929)
deduced from Runge’s result that, if ayo =0, then F(x, y)=0 has only finitely
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many solutions x, y for which (x, y) is bounded. For more results in this
direction we refer to Skolem (1938).

Kleiman (1976) used theorem 6.2 to derive conditions on F such that
computable upper bounds can be given for all rational integer solutions x, y
of F(x, y)=0.

We shall consider the solutions of superelliptic equations in rational
numbers whose denominators are composed of primes from some fixed
finite set in chapter 8 and of the corresponding equations over function
fields in the notes of chapter 8.

Lang (1960) also proved the analogue of Siegel’s (1929) result for function
fields of characteristic 0. In particular his result applies to superelliptic
equations over function fields. Upper bounds for the solutions of such
equations were given by Schmidt (1978), Mason (1983, 19844) and Mason
and Brindza (1986). The papers of Mason and Brindza also provide efficient
algorithms for determining all solutions.



CHAPTER 7—

The Thue-Mahler equation

Let f(X,Y) be a binary form of degree n with rational integer coefficients
and with at least three pairwise non-proportional linear factors in its
factorisation over C. Mahler (1933a) generalised the theorem of Thue (1909)
by proving that P(f(x,y)) - co whenever max(|x|,|y)), with x,yeZ and
(x, y)=1, tends to infinity. Mahler proved this result by way of his p-adic
analogues of the methods of Thue (1909) and Siegel (1921) on the
approximations of algebraic numbers by rationals and by algebraic
numbers. Thus Mahler’s result is not effective. Coates (19704), having
established a p-adic analogue of an inequality of Baker on linear forms in
logarithms, proved an effective version of Mahler’s result. This result has
been improved as follows.

Theorem 7.1. For all rational integers x, y with (x, y)=1 and f(x,y)#0, we
have

P(f(x,y)=C, loglog & (1

where & = max(
on f.

For irreducible forms, Coates (1970a) proved (1) with the right-hand side
replaced by C,(loglog Z)'/* where C, is an explicitly given positive
constant depending only on f Sprindzuk (1971¢) proved (1) for all
irreducible forms of degree greater than or equal to 5 and for so-called non-
exceptional forms of degree 4. Shorey et al. (1977) proved theorem 7.1 in its
presented form. Note that the assertion of theorem 7.1 does not hold for
forms with at most two non-proportional linear factors in their
factorisations over C.

Theorem 7.1 implies a bound for the solutions of equation (2), the so-
called Thue—Mahler equation (over 7). Here we present an upper bound
which is the best known in terms of P and s.
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Theorem 7.2. Let k and s be rational integers with k #0 and s >0. Let p,,. . .,
p, be primes with p, <p,<--+ <p,=:P. All solutions of the equation

Z,

fx, n=kpt -p> inx,y,zy,...,2,€Z 2
with (x,y)=1and z, 20,..., 2,20, satisfy
max(|x|, |y, €™ %) <exp{((C ;s log Py*P)“+}

where C and C, are computable numbers such that C depends only on f and
k and C, only on n.

For the equation f(x, y)=k one may take s=1, p; =2, z, =0, but theorem
5.1 provides a more precise bound for this equation. Coates (1970a) proved
theorem 7.2 for irreducible forms with another explicit upper bound. The
presented upper bound is due to Gyory (1980c) who gave explicit values of
C;and C,.

Let P>3 and denote by S the set of all rational integers composed of
primes not exceeding P. Theorem 7.2 implies that the equation f(x, y)=zin
rational integers x,y,z with (x,y)=1 and ze€S has only finitely many
solutions. In the following result f may be multiplied by any non-zero
rational integer and z by a binary form in x and y.

Theorem 7.3. Let f(X,Y) and g(X,Y) be binary forms with rational integer
coefficients. Suppose f has at least three pairwise non-proportional linear
factors in its factorisation over € which do not divide g over C. Then all
solutions of the equation

wf(x, y)=zg(x,y) in rational integers w,x,y,z (3)

with wf(x, y)#0, z€S,(w, 2)=(x, y) = L satisfy max(|w|, |x|,|y|, |z} < C s where
Cs is a computable number depending only on P, f and g.

The supposition of theorem 7.3 certainly holds if f isirreducible of degree at
least 3 and the degree of g is less than the degree of f.

The restriction (x, y)=1 does not occur in the following application of
theorem 7.3.

Corollary 7.1. Under the conditions of theorem 1.3, suppose deg(f)> deg(g).
Then all solutions of the equation

S(x,y)=g(x,y) in rational integers x,y

with f(x, y)#0 are such thar max(|x|, , y,) is bounded by a computable number
depending only on f and g.

Combining theorem 2.4 with theorem 7.3, we obtain the following result.
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Theorem 74. Let A0, B#0, C and D be rational integers. Then the
equation

w(Ax™ + By™)=z(Cx" + Dy") “4)

has only finitely many solutions in integers w, x, y, z, m, n with w#0, ze8§,
w,2)=1, |xy|>1, (x,y)=1, 0<n<m, m>2, wAx"#z2Cx" and Ax"+
By™#0 provided that

m=4, n=2 is excluded if CX?+DY? divides AX*+ BY* over Q,
m=3, n=1is excluded if CX + DY divides AX3+ BY? over Q, and
m=3, n=2 is excluded if CX*>+DY? and AX®+BY?

have a common linear factor over Q.

Further, max(jw|, |x|, |¥], |z|, m, n) is bounded by a computable number
depending only on A, B, C, D and P.

The following result of Shorey (1982, 1984a) is a consequence of theorem
74.

Corollary 7.2, Let A#0, B#0, C and D be rational integers. Then the
equation

Ax™+ By™=Cx" + Dy" )

has only finitely many solutions in rational integers x, y, m, n with |x| #y,0 <
n<m, m>2, Ax"#Cx" and Ax™+ By"#0 provided that m=4, n=2 is
excluded if CX*+ DY ? divides AX*+ BY * over Q. Further, max(|x|, |y|, m,
n) is bounded by a computable number depending only on A, B, C and D.

The conditions are necessary. For example, the equation x* —4y*=x2+
2y? has infinitely many solutions x, y.

Another consequence of theorem 7.4 is the following result of van der
Poorten (1977h).

Corollary 7.3. For every pair A, B of non-zero rational integers,

P(Ax™+ By™) - cc, effectively,

as max(x, y,m) tends to infinity through positive integers x> 1,y,m with
(x,»)=1and m>2.

We state notation for another generalisation of theorem 7.1. Let K be a
finite extension of degree d over Q with discriminant 2. Denote by ()¢ the
ring of integers of K. For a, f € O, denote by [«] the ideal generated by o in
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O, by (a, f) the greatest common divisor of the ideals [«] and [#] and by
N((e, B)) the norm of the ideal («, B) with respect to the field K. Let f(X,Y)
be a binary form of degree n with coefficients from @,.. Suppose that f hasat
least three pairwise non-proportional linear factors in its factorisation over
C. Let N, be a positive integer.

Theorem 7.5. Suppose that x and y are in Oy such that f(x,y)#0 and

N((x, )< N,. (6)
Then
P(N(f(x,y))=Cqloglog & (7

where Z =max(|N(x)|,|N(y)|, 3) and C¢ >0 is a computable number depending

onlyon K, f and N,

)

An ineffective proof that P(N(f(x, y))) = c as & — oo is due to Parry (1950).
By generalising the method of Sprindzuk (1972), Kotov (1975) proved
theorem 7.5 for all irreducible forms fe Ox[X, Y] of degree > 5. Theorem
7.5 in its full generality is due to Gyory (1979b). Explicit lower bounds for
P(N(f(x, y))) were given by Coates (1970a) in case K = Q and f irreducible,
and by Gyory (1979b) in case 4" exceeds a certain bound.

The next result is a more explicit version of theorem 7.5. Let t > 1. Let { 4,
..., /,} be a finite set of prime ideals of (. Denote by & the set of all non-
zero elements o of O such that [«] has no prime ideal divisors other than
/15 -+ » /2. Let P be the maximal rational prime which is divisible by at least
one of these prime ideals. Observe that &% contains all the units of Oy.

Theorem 7.6. For every solution of
f(x’y)=z in x,ye(QK7 26.9’ (8)
with N((x, y)) <N, there exists a unit ¢ in Oy such that

max([ex|, [ey]) <exp{(C,tlog PYP)"} o)

where C, and Cg are computable numbers such that C, depends onlyond, 9,f
and N, and Cg only on d and n.

The following corollary of theorem 7.6 may be compared with theorems 5.5
and 7.2.
Corollary 74. Let pe Oy, u#0. Let {n,, ..., n,} be a set of non-zero non-

units in Oy where s 1. All solutions of

S, y)=pny- - ng (10)
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in non-negative rational integers z,, .. ., z, and x, y € Ox with N((x, y)) <N,
satisfy

max(|;|, I;l’ Zyy.52)KCy
where Cg is a computable number depending only on K f, u,7,,. .. ,myand N,

Equations (8) and (10) are called Thue-Mabhler equations (over Oy). Kotov
(1975) and Kotov and Sprindzuk (1977) proved results like theorem 7.6 and
corollary 7.4 for binary forms f of degree greater than or equal to 5 which
are irreducible over K. Theorem 7.6 and corollary 7.4 are due to Gyory
(1980c, 1981a) who provided explicit constants C, —C,.

Proofs
We first prove theorem 7.6 for a special class of binary forms.
Denote by h and R the class number and regulator of K, respectively.

Lemua 7.1. Let «y,. .. ,a, be elements of Oy such that at least three of them
are distinct. Let max; Ioc,.l < A. Put

gX,Y)=(X —o,Y) (X —0,Y).
For every solution of
glx,y)=z in x,yel, zeS (11
with N((x, y)) <N, there exists a unit ¢ in Oy such that
max([ex|, [ey[) <exp{((C, ot log PYP) 1} (12)

where C,, and Cy, are computable numbers such that C,, depends only ond,
h, R, Ng,n and A, and C,, only on d.

Proof. We shall denote by ¢y, ..., ¢¢ computable positive numbers
depending only on d, h, R, Ny, n and A, and by k, a computable positive
number depending only on d. Suppose x, y, z is a solution of (11) as specified
in the lemma. Put f;=x—a;y fori=1, ..., n. Then (11) implies §;€ ¥ for

i=1,...,n We may assume without loss of generality that o, a,, o5 are
distinct. We have
(o — o)y +(s —ay)Br + (g —a3)f3=0 (13)

and max(|oz2 —oz3|, Ioc3 —all, Iocl —a2|)<2A. By theorem 1.4 applied to (13),
there exist 6 €% and p,, p,, p3 €< such that f;=0p, (i=1,2,3) and

max |p;| <exp{((c,tlog PYPy}=:T.
i=1,2,3
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From the system of equations

x—oy=0p; (i=1,2),
we obtain
x=0¢/k, y=oy/x (14)

for suitable non-zero elements ¢, ¥, k in O satisfying
max([¢].[¥ ) <e. T, |x]<es. (15)

Since ¢ divides kx and ky in O, the ideal [¢] divides the ideal (xx,xy) =
[x](x, y). Consequently we obtain, by taking norms with respect to K,

[N(0)| <[N(G)|N((x, y)) <c4.
By corollary A.6, there exists a unit ¢ in K such that
fea] <cs. (16)

Since ex, ey e 0y, we have, by using (16), (14), (15) and a Liouville-type
argument for x,

max(ls—x—| , El) <cgT O

Proof of theorem 7.6. By ¢, ..., ¢, we shall denote computable positive
numbers depending only on d, &, f and N, and by k,, ..., k; computable
positive numbers depending only on d and n. Without loss of generality, we
may assume that f(1,0)0. Indeed, there is a rational integer a with 0 <
a<nsuchthat f(1,a)#0. Since theideals(x, y) and (x, ax + y) are equal, and
hence N((x, ax+ y)) <N, for x, y € O, it suffices to prove the assertion for
f(X,aX+Y)in place of f(X,Y).

Leta,...,a,bethezerosof (X, 1)in C and put L=K(a,,. . .,a,). Note
that the degree of L is at most k,. By corollary A.7, the heights of the
numbers a; as well as the class number and the regulator of L are less than
¢;. Put aq=1(1,0). Let x,y,z be a solution of (8) with the properties as
specified in the theorem. Then, putting x'=ayx, y =y, a;=aqu;fori=1,...,
nand 2=a%" 'z, we have a0, (i=1,...,n) and

=y y) (X = y) =2\ 17)

We are going to apply lemma 7.1 in the field L to this equation. Observe that
Ni((x',¥)<cg and [L:K]<k,, hence N, ((x',y))<co. Further, since
[L:K]<k,, the number of distinct prime ideal divisors in ¢, of z' is at most
k,t+c, and P(N(Z))<P+c,; where we choose ¢;,>1. Hence, by
applying lemma 7.1 with k,t+c¢,, in place of t and P+c,, in place of P,



130 Diophantine equations and recurrence sequences

there exists a unit ¢ in ¢, such that

max(e’x], [¢'y ) <exp{((c,,t log Py reP)s}.

Observe, by distinguishing cases ¢,,<t, t<c;o<log P/loglog P and
¢10>1, ¢10>log P/loglog P, that

(cy1tlog P¥re<(c, tlog P) +(cy1€10)"°P +(cq1€1 0.
Hence
max([e'x'], [¢'y']) <exp{((c, ot log PYP)} =:T;. (18)
This implies
max(|N ()], [N (y)) = max(|N(¢'x)|, [N (V) < T
Now, considering norms with respect to K over Q, we have
max(NCo)|, [N < T,
By corollary A.4 and lemma A.15, there exist units ¢, and ¢, in O such that
max(fe, x|, [e2y) <, s T, (19)

From (18) we obtain, by a Liouville-type argument,

|x/y| <|a51| : Is’x’/s’y’l e T
Hence

lea/es| <leay/ex|. |x/y| <e s TH. (20)
From (19) and (20), we deduce

ls_2x-| <|%7| . l32/31| <c6 T (21)

Combining (19) and (21), we complete the proof. O

Proof of corollary 7.4. By ¢, -, . . , ¢,; we shall denote computable numbers
dependingonlyon K, f, u,m,,...,n,and Ny. Letx, y, z,,. . . , z,be a solution
of (10) as specified in the corollary. Denote by £,,. . ., £, all the prime ideals
which divide [pn, - - - n.]. Since t <c,; and P(N(foy- - * ,)) <c, g, there exists
by theorem 7.6, a unit ¢ in ¢ such that

max{fex|, [ey|} <y (22)
From (10), we have

flex,ey)=¢"pny- - mg. (23)
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Since =y, . .., T, are non-zero non-units, this gives, by (23) and (22),

25 |N(m)[r < |N(flex, ey <cz0 (1K) <), 249

Hence, by (23) and (22), [¢| <[¢"| < ¢4 [ f(ex, ey)] <c,,. From (22), we obtain
max(|x], [y <e.s. (29)

The combination of (24) and (25) proves the corollary. O

Proof of theorem 7.2. By ¢, ,, ¢, s and kg we shall denote computable positive
numbers which depend on the same parameters as C;, C; and C,,
respectively. Let x, y, z,, . . . , z, be a solution as specified in the theorem. By
theorem 7.6 with K =0, we have

max(|x|, [y <exp{((c,.s log PFPY+}. (26)

Hence, by (2), for j=1,...,s5,
25<py<|f(x, y)| <exp{((c.ss log PyP)'s}. 27
The combination of (26) and (27) proves the theorem. O

Proof of theorem 7.5. We shall denote by ¢, ¢34, c,3 computable positive
numbers depending only on K, f and N,. Put f(x,y)=z. Let 4,,..., 4, be
all the prime ideal divisors of [z]. For t=0, put P=2 and, for t >0, let P be
the maximal rational prime divisible by at least one of these prime ideals.
Then P =max(P(N(f(x, »))), 2). By theorem 7.6, there exists a unit ¢ in (
such that

max([ex], [ey]) <exp{((c,4(t + 1) log P} * 1Py} =: T, (28)

Since there are at most d prime ideals which divide a given rational prime,
we have, by (N.1),

t<dn(P)<2dP/log P.
Hence, by (28),
Z <3 max((N(x)|, [N(y)|) <3T3 <exp{exp(c,sP)}. O
Proof of theorem 7.1. Immediate consequence of theorem 7.5. O

Proof of theorem 7.3. By c,q, . . . , ¢3, We shall denote computable positive
numbers depending only on P, f and g. There is a rational integer a with 0 <
a<deg(f)+deg(g) such that f(1,a)#0 and g(1,a)#0. We may therefore
assume that f(1,0)#0 and ¢(1,0)#0. Let f(X,Y)=aoX —a,Y)---
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(X:‘“mY),gCX,Y)==bd)("B1Y)'”(XT—Iﬂ)q and'1(==cuala--~s am,ﬂl’
..., B,). Wemay further assume that «,,, a, and o5 are distinct and that none

of these numbers is contained in the set {f,, ..., f,}.
Let wf(x, y)=zg(x, y) with w, X, y, zas specified in the theorem. Recall that
agr; €O fori=1,...,mand boB;e Oy forj=1,...,n. Let s beaprimeideal

in O, which divides

[aobox —agbot; Y1[aobox —agboas y1[aghox —agbons y1.

Then, by

wa, H (aghox —aghoo;y) = zay ~"bg ™" " ! H (aobox _aoboﬁjY)a
i=1 j=1

either z|[zagho] or 4 | [agbox —agbof;y] for some j. In the former case

N()<c,; in the latter case s |(aobox — aghot;y, aghox —agbop;y) for some

i,j with a;# B;, hence # | [aobo]le; — B;] in view of (x, y)= 1, and therefore

N(f)<c30. Thus

3

P<N< (agbox —aoboai,\’))> <max(c9, C30)-
i=1

By applying theorem 7.5 to the polynomial f(X,Y)=(X —agba,Y)x

(X —agboa,Y)(X —agboa;Y) we obtain max(|x|, |y|) <max(jaebex|, |y)) <

¥ <c3; which, together with equation (3), (w, z) = 1 and wf(x, y) #0, implies

that max(|w], |2z]) <c,. a

)

Proof of corollary 7.1. Let x, y be rational integers such that f(x, y)=
g(x, y)#0. Let m=deg(f), n=deg(g). Put (x, y)=d, x; =x/d, y, = y/d. Then
m>n and

d" 7 (x4, y1)=g(xy, y1)-

By theorem 7.3 applied with w=d™"", x=x,, y=y,, z= 1, we obtain that
max(d@™ ™", |x,|, |y,]) < Cs. Hence max(|x|, |y}) <d max(|x,|, |y,)<C: O

Proof of theorem 7.4. Suppose (4) holds for values of w, x, y, z, m, n as
specified in the theorem. By (x,y)=1 and |xy|>1 we have |x]#|y|. If
Ax™Dy"= By"Cx", then, by (4), wAx™=zCx" and this case is excluded. It
therefore follows from theorem 2.4 that m is bounded by a computable
number ¢, ; depending only on A4, B, C, D and P. Thus we may assume that
m and n are fixed.

Define binary forms f(X,Y)=AX"+BY™, g(X,Y)=CX"+DY". Since
the zeros of f(X, 1) are the mth roots of unity all multiplied by some fixed
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constant and, if C is non-zero, g(X, 1) has the corresponding property with
respect to nth roots of unity, the number of common linear factors of
f(X,Y)and g(X,Y) is at most (m, n). From the conditions of the theorem,
we see that f has at least three non-proportional linear factors in its
factorisation over C none of which is a divisor of g over C. It follows from
theorem 7.3 that, for all solutions as specified in theorem 7.4, max(|w/|, |x|, |y,
|z]) is bounded by a computable number depending only on 4, B, C, D, m
and n, hence only on A, B, C, D and P. |

s )

Proof of corollary 7.2. Suppose (5) holds for values of x, y, m, n as specified in
the corollary. Observe that x#0 and y#0. Put
X y

Moy ey

Then (x;, y;)=1 and equation (5) can be written as
(x, Y)" T"(AxT + ByT)=Cx} + Dy} (29)

Apply theorem 7.4 to equation (29) with w=(x, y)" " and z= 1. Since x,, y,,
m, n satisfy all the conditions of the theorem if m > 3, the only remaining case
is m=3, and AX3*+ BY 3 has a common linear factor over Q with either
CX +DY or CX2+DY2

Suppose m=3,n=1and AX>+ BY *isdivisible by CX + DY. Put AX3+
BY3=(CX +DY)(A,X?>+B,XY+C,Y? with 4,, B,, C, eQ. Observe
that both zeros of 4,X?+ B, XY + C,Y? are non-real. By (5) and Ax™ +
By™#0, we have Cx+Dy#0 and

A x*+Bxy+C,y*=1.

Since the discriminant of the quadratic form is negative, there exists a
computable upper bound for max(|x|,|y|) in this case.
Suppose m= 3, n=2. By a similar reasoning, we now obtain an equation

A,x%+ Byxy+C,y*=Asx + By
with 4,, B,, C,, A;, B;eQ and B2—44,C,<0. Hence there exists a

computable upper bound for max(|x|, |y in this case too. O
Proof of corollary 7.3. Apply theorem 7.4 withw=1,C=1,D=n=0. O

Notes
Let g(X) be a polynomial with rational integer coefficients. If g is



134 Diophantine equations and recurrence sequences

quadratic with distinct roots, then
P(g(x)) > oc as |x| > oc, xeZ (30)

This was proved by Polya (1918) who used Thue’s method. Siegel (1921)
improved Thue’s approximation theorem. From this, he derived (30) for all
polynomials g with at least two distinct roots.

The above results are ineffective. Now we describe effective results on the
greatest prime factor of a polynomial at integer points. Stermer (1897) used
his method on Pellian equations to prove that P(x(x — 1)) - oc as |x| — oc.
Chowla (1935), Mahler (1935b) and Nagell (1937, 1955) used similar ideas to
prove that P(g(x)) = log log |x| for certain special polynomials of the form
g(X)=aX?+b and g(X)=aX>*+b with a,beZ. Schinzel (1967) applied
Gelfond’s method on linear forms in logarithms of algebraic numbers to
prove that there exists a computable number C,, >0 depending only on g

such that
P(g(x))=Cy,loglog|x| (xeZ,|x|>3) (31)

for all quadratic polynomials g with distinct roots (cf. Langevin, 1976b).
Keates (1969) used an estimate of Baker (1968¢) to prove (31) for all
polynomials g of degree 3 with distinct roots. Kotov (1973a) proved (31) for
all irreducible polynomials g of degree at least 2. Theorem 7.1 applied to the
binary form f(X,Y)=Y"*1g(X/Y), where n is the degree of g, implies that
(31)is valid for all polynomials g with at least two distinct roots. Shorey and
Tijdeman (1976b) gave a simple proof of this result without using p-adic
methods. In fact they proved more, namely the following. Let 4>0.
Suppose g has at least two distinct roots. There exists a computable number
C,3>0 depending only on A4 and g such that if

P(g(x)) <exp(log, x)") (xe€Z, x>3)
then

a(g(x))=C,;log, x/logs x.

Inequality (31) follows by applying (N.1).

A particularly interesting polynomial is g(X)=(X + 1) - - - (X + k) in which
case P(g(x)) is the greatest prime factor of a block of consecutive integers.
The first non-trivial estimate in this direction is due to Sylvester (1892) who
proved that

P((x+ 1) (x+k)>k

for all pairs x,keZ with x>k>0. This theorem of Sylvester was
rediscovered by Schur (1929). It follows from Hanson’s (1973) inequality

H p<3" (cf. Rosser and Schoenfeld, 1962, p. 77) (32)

p'sn
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that P((x+1)---(x+k))= 1.5k—1 for x=k>0. The best results in this
direction obtained by elementary methods and the method of Stermer
(1897) can be found in Langevin (19764, 1978). Improvements of the results
of Erdés (1934), Ramachandra (1970, 1971) and Tijdeman (1972) by
Ramachandra and Shorey (1973), Jutila (1974) and Shorey (1974b) show
that

P((x+1)---(x+k)

lo logk)*/2
Cl4k ex <C15( gk) > lf k3/2<x<exp<( ng) >’
(33)

(log x)* log, k
log, k (log k)3/2>

=
if
log, k : x>exp< log,k

C,eklogk

where C, 4, C, 5, C, ¢ are computable positive absolute constants. The proof
of (33) depends on estimates for exponential sums and for linear forms in
logarithms of algebraic numbers. Langevin (19754, b) proved that, for any
e>0, '

P(x+1)-(x+k)=(1—e)klog, k if x>C,,

where C,, is a computable number depending only on k and &. See also
Erdés and Shorey (1976), Langevin (1975¢, 1976b) and Stewart (1984) in this
connection.
More generally, it is possible to derive lower bounds for P(g(x + 1)g(x +2)
-+ g(x +k)) where g € Z[ X]. For short intervals the method for estimating
linear forms in logarithms of algebraic numbers yields better results. Shorey
and Tijdeman (1976b) used their result mentioned above to prove the
following. Let B> 0. Suppose g € Z[X] has at least two distinct roots. Then
for any positive integers x(>3) and k with k<exp((log, x)?) there is a
computable number C, >0 depending only on B and g such that

<H glx +1i) >>C18ki

i=1

(log k+logs x). (34)

See also Langevin (1975b, theoréme 2; 1975¢, 1976b, 1981) and Turk (19805,
theorem 2). Lower bounds for P([ [, <, g(n)) have been obtained by different
methods. For an account of these results, see Hooley (1976, Ch. 1).

Let keZ, k> 3. It follows from (33) that, if n,, n,, ... is the increasing
sequence of all positive integers with P(n;) >k, then

n . —m;<C oklogy k/(log klog, k) for all i

where C, 4 is a computable absolute constant. Erdds (1955) has conjectured
that sup;(n;,, —n;)~(logk)?> as k — oco. Improving on the results of



136 Diophantine equations and recurrence sequences

Ramachandra (1973) and Shorey (19764), Ramachandra, Shorey and
Tijdeman (1976) proved that there is a computable absolute constant C,,
such that if x > exp(C o(log k)?) then the number of integers i with 1 <i<k
and P(x+i)<k is at most n(k). Hence there exists a computable absolute
constant C,, such that

ol(x+ 1) (x+k)=k

for k<exp(C,,(logx)!’?). Extensions of these results, also to the
corresponding case of polynomial values, were given by Turk (1978; 1979,
Ch. 4; 19804, b). A general theorem covering many of the above-mentioned
results was given by Langevin (1978, 1981). Since P((x+ 1) - - (x + k)) is the
greatest prime factor of the binomial coefficient

()

and w((x+ 1)---(x +k)) differs from

(%)

by at most n(k), the above results imply lower bounds for

AR) = ()

Various bounds can be found in Langevin (1979).

A related problem is the conjecture of Grimm (1969) that if pand p + k are
consecutive prime numbers, then there exist distinct prime numbers p,,. . .,
Di—1 With p; | p+i for i=1, ..., k—1. Grimm also made the weaker
conjecture w((p+ 1) - (p+k)) = k. Erdos and Selfridge (1971) pointed out
that the validity of these conjectures implies

m pn+11/:pn=0

n=* pll
where p, denotes the nth prime. Let G(x) be the largest integer such that
there exist distinct prime numbers p,, . .., pg With p;|x+ifori=1,...,
G(x). Improving upon earlier results of Grimm (1969), Erd6s and Selfridge
(1971), Ramachandra (1973) and Cijsouw and Tijdeman (1973),
Ramachandra, Shorey and Tijdeman (1975) showed that

G(x)>C,,(log x/log, x)*

where C,,>0 is a computable absolute constant. The corresponding
problem for arithmetical progressions has been treated by Langevin (1978).
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In the notes of chapter 6 we referred to bounds of Sprindzuk and Turk for
the m-free part of g(x) where g € Z[ X']. These lower bounds can be combined
with (32) to derive (31). Recall that the m-free part of an integer n is the
smallest positive integer a such that |n|=ay™ for some ye Z . Turk (1982)
proved that, if g € Z[ X] has at least two distinct roots and g,,(x) denotes the
m-free part of g(x), then

P(g,(x))>Cy3log, x  (m>2,|x|>3) (35)

where C,3;>0 is a computable number depending only on g, hence
independent of m. Obviously (35) implies (31).

The first bounds for the solutions of Thue~Mabhler equations over Z were
given by Coates (1969, 1970a), Sprindzuk (1968, 1969, 1970a, 1971b,c,
1973b) and Vinogradov and Sprindzuk (1968). One may consider Thue
equations in S-integers as well. A rational number is called an S-integer if it
is the quotient of a rational integer and an element of S. Every solution of
the equation

f(x,»=k in S-integers x, y (36)

induces a solution of (2). Hence theorem 7.2 implies an upper bound for the
solutions of (36). For the best-known explicit bound see Gyodry (1981b).
Conversely, equation (2) can be reduced to a finite number of equations of
type (36) in S-integers.

The method described in this chapter may be used to solve a given Thue-
Mahler equation in practice. An example of historical interest is the
equation x2 + 7 = 2" in rational integers n, x. Ramanujan (1913) conjectured
that the only solutions are (n, x)=(3, 1),(4, 3),(5, 5),(7, 11)and (15, 181). This
was confirmed by Nagell (1948, 196 1). Other papers in which this or related
equations are solved by arguments from elementary and algebraic number
theory are Skolem, Chowla and Lewis (1959), Browkin and Schinzel (1956,
1960). Chowla, Dunton and Lewis (1960), Lewis (1961), Mordell (1962),
Cohen (1978), Inkeri (1979), Bremner et al. (1983) and Tzanakis (1983, 1984).
For solving these equations, Mignotte (1984) developed a method using
recurrence sequences which turns out to be efficient in practice. See, further,
Apéry (1960a,b) and the survey paper by Hasse (1966). If the
hypergeometric method can be applied, it provides more general results; see
Beukers (1979, 1981) and Tzanakis and Wolfskill (1986). All equations
referred to up to now in this paragraph are of the form (2) with y constant.
Algebraic methods may not suffice to solve an equation (2) with both x and
y variable, but the method described in this chapter may be used. In this
way Agrawal et al. (1980) solved the equation x3 —x2y+ xy? + y*= + 11"in
rational integers x, y,n. Some of the above-mentioned results have been



138 Diophantine equations and recurrence sequences

applied to other fields: The results of Nagell and Bremner et al. have
applications in the theory of perfect codes. Agrawal et al. used their result to
determine all rational elliptic curves of conductor 11.

Theorem 7.3 can be extended in the following way. The upper bound C
can be made to depend only on P and the rational prime factors and non-
constant irreducible factors of f and g. A similar result can be proved for
equations (3) with wf'(x, y)#0,w, z€ S and (w, ) =(x, y)}= 1 provided that f
and g are relatively prime binary forms such that fg has at least three
pairwise non-proportional linear factors in its factorisation over C. It is also
possible to give quantitative bounds, thereby generalising theorems 7.1 and
7.2. For these results, see Evertse et al. (1986). The proofs of theorems 7.3
and 7.4 can be considered as an elaboration of the ideas mentioned in the
note added in proof in Shorey (1984a).

Skolem (1945b) dealt with some special Thue—Mahler equations over
algebraic number fields. The ineffective versions of theorems 7.5 and 7.6
were obtained by Parry (1950). Bounds for the numbers of solutions of
Thue—Mahler equations over Z were given by Mahler (1933b) and Lewis
and Mabhler (1960) and over (O by Evertse (19835, Ch. 6; 1984a), Silverman
(1983b) and Evertse and Gyory (1985). Kotov (1973b, 1975), Sprindzuk
(1973b, 1974b), Sprindzuk and Kotov (1973, 1976) and Kotov and
Sprindzuk (1977) gave effective proofs of results like theorems 7.5 and 7.6
but only valid for binary forms f which are divisible by an irreducible form
of degree greater than or equal to 5 or an irreducible non-exceptional
binary form of degree 4. See also Sprindzuk (1980, 1982). Gyory obtained
several versions of theorems 7.5, 7.6 and corollary 7.4 as consequences of
more general theorems concerning decomposable form equations, sce
Gyory (1979b, 1980c¢, d, g, 1981a, 1984b).

Theorem 7.6 and corollary 7.4 may also be formulated in terms of &-
integers. A number a € K is called an S-integer if ord ,(«) >0 for all prime
ideals z in Og with ¢ { ,,. .., £,}. Thus a isan S-integer if and only if it is
the quotient of an element of @, and an element of & Denote the set of &-
integers by O,. Every solution of the equation

fx,y)=1 inx,yel, (37)

induces a solution of (8). Hence theorem 7.6 implies an upper bound for the
solutions of (37). For explicit bounds for the solutions of (37) see Gyory
(19815, 1983, 1984b).

In the notes of chapter 5 the connection between bounds for the solutions
of Thue equations and inequalities on the approximations of algebraic
numbers by rationals was indicated. Similarly, bounds for the solutions of
Thue-Mahler equations can be transferred to inequalities on the. p-adic
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approximations of algebraic numbers. The first result in this direction is due
to Coates (1969). Sprindzuk (1970b, 19714, d), Sprindzuk and Kotov (1976)
and Kotov and Sprindzuk (1977) derived such inequalities for the
approximations of algebraic numbers of degree at least 5. Gyory (1980k)
extended these approximation results to the case of all algebraic numbers of
degree at least 3 as well as to a wide class of linear forms with algebraic
coefficients in an arbitrary number of variables.

Let X be a finite extension of @ with ring of integers (’x. Let feOg[X,,
..., X,,] be a decomposable form and p e O, u#0. Let {n,, ..., n;} bea
finite set of non-zero non-units in ¢ and let N, > 1 be a rational integer. As
a generalisation of equation (31) of chapter 5, consider the decomposable
Jorm equation of Mabhler type:

S5, X)) =pmyt e (38)

in non-negative rational integers z;,...,z, and x,,..., X, €0k
with N((x4,..., %) <N,.

The Thue-Mabhler equations (2) and (10) are special cases of (38). Further
examples are the norm form equations, discriminant form equations and
index form equations of Mahler type. These equations play an important
role in algebraic number theory (see e.g. Gyory, 1980e, 1984b,c, and
Evertse and Gyory, 1985).

Let (X,,..., Xp)=0a, X, + " +a,X,, be alinear form with non-zero
algebraic integer coefficients in a finite extension L of K and consider the
norm form equation of Mahler type:

Nyg(L(X15. 0o X)) = pt - - 1 (39)

in non-negative rational integers z,,...,z, and x,,...,x,, € 0k
with N((xy,...,Xx,) <N,.

We may assume without loss of generality that «; = 1. If in particular m=2
and the degree of a, is at least three over K, then (39) is a Thue-Mahler
equation over () and, by corollary 7.4, there are only finitely many
solutions which can all be bounded by a computable number depending
onlyonK,L,a,,...,0,, 1S, 7,,...,%;and N,. In case K=Q, Schlickewei
(1977a) extended Schmidt’s (1971a, 1972) general ineffective finiteness
theorems on norm form equations to norm form equations of Mahler type.
For certain further ineffective extensions to the case of ground rings that
are finitely generated (but not necessarily algebraic) over Z, see Laurent
(1984) and Evertse and Gyory (1985, 1986b). Schlickewei (1977b, ¢) also
established finiteness results for equations of the form

Z,

Sqse s X)) =g(xy, ..., X)W T

s
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over Z where f is an appropriate decomposable form and g is a polynomial
whose degree is small relative to deg( f). For K = Q, Petho (1982b) extended
the results of Gyory and Pethd (1977, 1980) on the distribution of the
solutions of norm form equations to equations of the form (39).

Gyory and Papp (1977) extended Gyory’s (1976) general effective
finiteness results on discriminant form equations and index form equations
to such equations of Mahler type. Independently, Trelina (1977b) obtained
an extenston of Gyory’s (1976) result on index form equations to index form
equations of Mabhler type. For certain special extensions L/K and certain
numbers «,, . . ., o, of special types, Matveev (1979, 1980, 1981) obtained
effective finiteness theorems for (39). The first general effective finiteness
results for (39) were established by Gyory (1979b, 1980c). Later, Gyory
(1980d, g) and Kotov (1980b) independently derived explicit bounds for the
solutions of (39), under the general hypothesis thatin (39) «; , ; is of degree at
least 3 over K(«,,...,a) fori=1,..., m—1. Further, Gyory (1981a) and
Kotov (1981) independently established a further improvement. General
effective finiteness results for decomposable form equations of Mahler type
were given by Gyory (1979b, 1980c, 1981a). The main result of Gyéry
(1981a) implies theorems 7.2, 7.6 and corollary 7.4 and the above-
mentioned general effective results on norm form, discriminant form and
index form equations of Mahler type. In several of the above-mentioned
papers, the authors deduced effective lower bounds for the greatest prime
factors of the norms of decomposable forms at algebraic integer points.
Further, Gyory (198 1b) deduced explicit bounds for the S-integral solutions
of decomposable form equations, and, in particular, of norm form,
discriminant form and index form equations. Extensions of the results of
Gyory (198 1a) on decomposable form equations of Mahler type to the case
that the ground ring is a finitely generated (but not necessarily algebraic)
extension of Z are given in Gyoéry (1984b). For a survey of the effective
results mentioned above, we refer to Gyory (1980e, 1984b).

Generalising earlier results of Evertse (1983b, 1984a) on Thue—Mahler
equations, Evertse and Gyory (1985) derived explicit bounds for the
numbers of solutions of decomposable form equations of Mahler type in an
arbitrary number of variables over finitely generated (but not necessarily
algebraic) extension rings of Z. Their bounds are independent of the
coefficients of the decomposable forms involved, but their method is
ineffective. Warkentin (1984a, b) extended results of Schmidt (1972) and
Schlickewei (1977b) to norm form equations over a rational function field.



CHAPTER 8—

The generalised superelliptic
equation

Denote by K a finite extension of (2 and by Oy the ring of integers of K. Let
{f1,..., £} be afinite set of prime ideals of Ux. Denote by & the set of all
non-zero elements of O that are composed of 4,,..., 4. Leta,,... a,be
distinct elements of K. Write

X, Z)=(X -, 2)" - (X —a, Z)"

where ry, ..., r, are positive rational integers. For given rational integers
m=2,1 20 and for a given non-zero algebraic number b in K, we consider
the superelliptic equation

Sfx,z)=by" (1)
in xel, ze ¥ and y e O satisfying
max min(ord . (x), ord ,(2)) <. )]

Igigt

The above notation will be used throughout the chapter without further
reference.
We shall apply theorem 7.6 to generalise theorem 6.1 as follows.

Theorem 8.1. Let m= 3. Suppose that f(X, 1) has at least two distinct simple
roots. Let x € Oy, z€ & and y € Ok satisfy (2) and (1). There exist a unit &, € Ox
and a computable number C, depending only on b,m, 1, f, K and & such that

maX(|81X|,|812|)<C1~

For m=2, we shall apply theorems 7.6 and 6.2 to generalise theorem 6.2
as follows.

141
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Theorem 8.2. Suppose that f(X, 1) has at least three distinct simple roots. Let
x€0g,ze S and y € O satisfy (2) and (1) with m=2. There exist a unit ¢, in
O and a computable number C, depending only on b, 7, f, K and & such that

max(|32_x| , Isz_zl) <C,.

We shall apply theorems 8.1 and 8.2 to prove the following result which is
an effective version of a theorem of LeVeque (1964).

Theorem 8.3. Let m>=2 and n=2. Put

qi= (i=l,...,n).

(m’ ri)

Suppose that (q,,- - . ,q,) is not a permutation of either of the n-tuples(q, 1, 1,
oy Dand 2,2,1,1,...,1). Let xe O, z€ & and y € O satisfy (2) and (1).
There exists a unit g4 in Oy and a computable number C depending only on b,
m, 1, f, K and & such that

max(|s3—x], I@l) <C,.

Clearly theorem 8.3 includes theorems 8.1 and 8.2, Theorem 8.3 was
proved by Brindza (1984a); in fact, Brindza gave a quantitative version of
theorem 8.3. An immediate consequence of theorem 8.1 is the following
result which is an effective version of a theorem of Mahler (1953).

Corollary 8.1. Let A and B be non-zero rational integers. Let m>=2 and n =2
with mn=6 be rational integers. Then

P(Ax™+ By") - o0, effectively,

as max(|x|, |y|) tends to infinity through non-zero rational integers x, y with
(x,y=1

A quantitative version of corollary 8.1 follows from a result of Kotov (1976).
Proofs

The proofs of theorems 8.1, 8.2 and 8.3 depend on the following
lemma.

Lemma 8.1. Let m>2. Suppose that b#0and a,,. .. ,a,arein Ox. Leta bea
root of f(X,1) of order r. Put

q=m/(m,r).
Letxe@y,ye0gand ze€ & Then there exist { #0, ¢ #0 and J in Ok such that
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equation (1) implies that

x —az=({/})o*

where
max([¢],[¢)<C,
Jor some computable number C, depending only on b, m, f, K and &

Proof. By permuting the suffixes of «, . . . , «,, there is no loss of generality
in assuming that a=a, and r=r,. Put

t

A=[b] [] le—a1 [ fov-
j=2 v=1
Since a,, . .., a, are distinct, we find that A is a non-zero ideal in ¢.
Let xe0Oy, yeO and ze ¥ satisfy (1). We may assume that x#az;
otherwise the theorem follows with { =1, ¢ = 1 and 6 =0. By (1), we have the
ideal equation in Ok '

[x —oa, 2]+ - [x —a,z]"=[by"].
Hence
[x—az] =as™ 3)

for some ideals «, £ in O where « is composed exclusively of prime ideal
factors of A and (4, A)=[1].If 4 is a prime ideal in O and 4" is the highest
power of 4 which divides #™, then clearly m|u and, by (3), 7| u. This implies
that the least common multiple of m and r divides u. Hence gr|u.
Consequently, it follows from (3) that

[x—az]=a,4

where z, and ¢, areidealsin Oy and «, divides A?~ ! in Og. Now proceed as
in the proof of lemma 6.1 to complete the proof of lemma 8.1. O

Wedenote by ¢,, ¢,,. . . computable positive numbers depending only on b,
m, 1, f, K and &

Proof of theorem 8.1. As in the beginning of the proof of theorem 6.1, we
may assume without loss of generality that b, «,, ..., a, are algebraic
integers. By permuting the suffixes of a,,. . . ,a,, we may further assume that
o, and «, are simple roots of f(X, 1). Then, by lemma 8.1, there exist &,, &5,
V1, ¥, and y,, v, in O such that &, &,y ¥, #0 and

x—oyz=(& /0T, @
x—oyz=(E2/Y 27 (5)
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and

max ([, ], [&2], [va], [Wa) <y (6)

If 4 is a prime ideal in ¢ and £"(u>1) divides both [x —a,z] and
[x —a,z], then #*|[o, —o 1[x] and *| [, —a;][z]. Since z € ¥, it follows
that N 2 <c,. Further, by (2), u <c;. Consequently, by (4), (5) and (6), we find

that
N((yg,72) <cq. Y]

Subtracting (5) from (4) and multiplying by ¢,¢,, we obtain

ST — &Yy =0y — o W, Y5z,

We apply theorem 7.6 to the binary form &y, X™ — &4, Y™ and withy,, 7,
and (a,—o )Y ¥,z in place of x,y,z respectively. Observe that P=
P(N((0.; — oty W,¥,2)) <cs. Therefore the number ¢ of prime ideals in Ok
dividing (a, —a,){, ¥,z is bounded from above by some number ¢,4. Since
mz=3,&, &, ¥, #0,0, #a,, 2% 0and (7) holds, all assumptions are fulfilled
with No=c,. Hence, by theorem 7.6, there exists a unit ¢ in ¢ such that

max(|:sql, |@l) <c.

Now, by solving for x and y in the equations (4) and (5), we obtain that

max(le"'_x|, |aTz.|) is bounded by a computable number depending only on b,
m,t, [, K and & O

Proof of theorem 8.2. As in the proof of theorem 8.1, we may assume that b,
oy, ... ,q, are algebraic integers and that &, o, and a5 are simple roots of
f(X, ). It follows from lemma 8.1 that there exist &;#0, ;0 and y, in O
such that, for i=1,2,3, we have

X—0;z= (fi/‘/’i))’iz ®)

and
max([&]. [ <cs. ©)
From equations (8), we obtain
o17i —oy3=(a—ay)z,
0273 —0373=(23 )z,
o3y —oyi=(e, —a3)z

where g, =¢,/{; fori=1,2,3. Let 61/2, 61/? and ¢}/2 be arbitrary, but fixed,
choices of the square roots. Put

12 172 172
L=K(c1/?, 612, 6}/2).
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Observe that L is a finite extension of K of degree at most 8 and therefore
d; <cy. Let 7, ..., #; be an independent system of units for L satisfying
(A45). Put

— 172 1/2
ﬂ3_01/ 71 —‘72/ Y2

_ 1/ 12
ﬂl_UZ/ Vz_o's/ V35

1/2 1/2
ﬁ2=03/ Vs_all Y1

Put A=,,i5. Notice that A4 is a non-zero element of O satisfying IZI <
c3, hence |4 > ¢, . By (9) and lemma A.2, Ao}/? is an element of ¢, of height
atmost ¢, ;. Since d, < ¢, we infer from lemma A.16 that max(h,, R,,|2,|) <
¢, ;- Further observe that AB,, AB, and Af; are non-zero elements of ¢;.
Since ze.¥, we see that

P(N(AB)<cys (i=1,2,3).

Consequently we see from lemma A.12, corollary A.6 and corollary A.5 that

where f,, 12, f3, 91, 92, 93, | are non-zero elements of ¢, satisfying

max IEISCI“, (11

1<i<3

max P(N(g.))<c,;s (12)

1<ig3

and the ideals [g,], [¢.] and [g;] are relatively prime. Observe that

AB,+ AB,+ AB3=0.
By (10),
f193+193= — 1393 (13)

Since there are only finitely many possibilities for f;, f, and f; in view of
d; <cg and (11), we may assume that f},f; and f; are fixed. We are going to
apply theorem 7.6 to the binary form f; X3+£,Y3 with x=¢,, y=g, and
z= —f3g3. Recall that d; <c, and |2,|<c,,. Since [g,], [g,] and [g,] are
relatively prime, we have, by (13) and (11), N((g,, g,)) € ¢, 6- Furthermore, by
(11)and (12), P(N .(f393)) < ¢, 5, whence the number of prime ideal factors in
O, dividing f;g3 does not exceed c,5. We conclude, by theorem 7.6, that
there exists a unit ¢, in @, such that

max(l&tgl I’ Iﬁ4gz|)<019-
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This, together with (10) and (11), implies that

max( Bl =2 ><c20

l
where es=¢3. Thus e;4B, = 1,1 and £54B,=1,l for some A, A, @, with

max([2, |, [2:)) <cz0
Recall that, in the definitions of 8, f, and 8, we have taken an arbitrary
but fixed choice of square roots for 0,, 6, and ¢ 4. Similarly we canfind ', 4,

A4 €0, with max(P(N(1), [4s], [A4]) <c2, and a unit eg €, such that
es AP, =3l eeAPr=A4l'

3

where
Bl =—0}3/%y,— 05/23’3-
Consequently
—2A4052%y,= AP, + By)=¢5 Ayl + 65 1 A4l (14)
2A05/2?2—A(B1 _Bl)=85_l/lll—86_l'13ll (15
and
gehal=gsA,l. (16)

If 4 is a prime ideal in @k and £ divides both [x —a,z] and [x —a5z],
then z*|[o3—a,][x] and 4*|[a3—a,][z]. Hence, by (2), u<c,,. Since
d, <cg4, we obtain from (8) that

min(ord (y,), o1d ,(y3)) < ¢33
for every prime ideal £ in ¢,. Consequently, the equations (14) and (15)
imply that
min(ord ,(/), ord ,(!)) <34
for every prime ideal 4 in @,. Now it follows from (16) and P(N (IlI')) <c, s +
¢y, that max(|N(!), |N.(!)]) <c,s which implies that
D <css.

Since B, B, =(x3 —a,)z, we find that |[Nx(2)| <ce. By corollary A.6, there
exists a unit ¢, € @, such that |§| <c¢,4. Hence &,z can be assumed to be
fixed. Write N=r, +r,+ - +r, By corollaries A4 and A.5, we may
further write & = gg¢2 where |:°,;| < c,5. Multiplying both sides of (1) by &5,
we obtain

max(|N(8,)],

(87x —a1&72) 1+ (69X — 01,892)" = a7f(x, 7)= b38(89J’)

Now apply theorem 6.2 to conclude that |e7x| <Cy9. O
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Proof of theorem 8.3. Since (q,, . . . , q,) is not a permutation of either of the
n-tuples (g, 1, ..., ) and (2, 2, 1, ..., 1), we have the following two
possibilities.

(@) There exist distinct i,j with i,je{1,..., n} such that ¢;>3 and ¢ =2,
(b) Thereexistdistinct i, j, k withi,j,ke{l,...,n} suchthatg,=q;=q,=2.

Case (a). By permuting the suffixes of a4, . . . , a,, we may assume that q, >3
and g, >2. It follows from lemma 8.1 that there exist £, &,, ¥, ¥, and y,,y,
in O such that &,&,y,¢,#0 and

x—ay 2=, /Y i (17)
x—az=(S2/Y 1% (18)
max([¢,, &, [, [Ws) <o (19)
Subtracting (17) from (18) and multiplying by y,\,, we obtain
EW1v% — &t = (o — )Y Y22, (20)
Since z € ¥, we may write
z=2z,7% (21)

where z,,z,€ % and IZI <c3;. Hence, by (20),

E vy — (g —a Y, ¥z, 22 =& Yoyl (22)

We are going to apply theorem 8.1 to the binary form &,¥ X% —
(g —a W W,z Y2 and with b=¢&,y, and m=gq,. By (22), (21), (17),
(18), (19) and (2), we have

max min(ord ,(y,), ord ,(z,)) <c3,.

I1gige

Hence, by theorem 8.1, there exists a unit ¢, in ¢k such that

max(|sloy2 |, |31022 |) <Ci33.

This, together with (21) and (18), implies that |s‘{zoz[ £c¢34 and |s‘{20x| <cC3s-

Case (b). By permuting the indices of a;, . . ., a,, we may assume that g, =
q,=¢;=2. By lemma 8.1, the relations (8) and (9) are valid. Consequently

16265

2
R (y1y273)"

Now apply theorem 8.2 to conclude the assertion of theorem 8.3. O

(x =0y 2)(x —a2)(x —a32) =



148 Diophantine equations and recurrence sequences

Proof of corollary 8.1. There is no loss of generality in assuming that m>3
and n > 2. Suppose that x and y with (x, y)=1 are non-zero integers. Since
(x,y)=1, we have

Ax™+ By"#0

whenever max(|x|, |y|) = ¢ for some computable number ¢ depending only
on A and B. We assume that max(|x|,|y[)=c. Then write

Ax™+By'= pi- - p

where p, <p,<--* <p,=:P are rational prime numbers and a,, .. ., a; are
non-negative rational integers. We can write

-i—pall. . .p?s:wz"
where w and z are non-zero rational integers and |w|<P*". Thus
Ax™= —By" +wz".

Since (x, y)= 1, we have (, z) <|A|]. Now we apply theorem 8.1 to conclude
that |y|, |z| and hence |x| are bounded by a computable number depending
only on A, B, m, n and P. O

Notes

Denote by Z; the set of rational numbers with denominators in S,
the so-called S-integers. Mahler (19344) used his p-adic analogue of Thue’s
theorem to prove that iffor F € Z[ X, Y] the equation F(X, Y)=0 represents
an (irreducible) curve of genus 1, then there are only finitely many x, ye Zg
with F(x, y)=0. Mabhler’s result is ineffective. Kotov (1977, 1979) used the
(p-adic) method on linear forms in logarithms to derive an effective
analogue of Mahler’s result. For absolutely irreducible polynomials F of
degree at least 3, Kotov computed an upper bound for the absolute values
of the numerators of x, ye Z; with F(x, y)=0. Kotov and Trelina (1979)
improved upon this bound by showing that in this case

max(H(x), H(y)) <exp(exp(C4P))

where C, is an almost explicitly given function of the degree and the height
of F. In case the curve has complex multiplication, Bertrand (1978) derived
an essentially better upper bound exp(P3), but with an ineffective constant
Cs.

The full p-adic analogue of Siegel’s (1929) theorem was established by
Lang (1960), and independently by LeVeque (1961): Let K be a finite
extension of Q. (Lang assumed K to be any finitely generated (not
necessarily algebraic) extension of Q and considered the solutions in an
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arbitrary subring of K which is finitely generated over Z.) Let Fe K[X,Y]
be such that the equation F(X,Y)=0 represents an (irreducible) curve of
genus g 2 1. Denote the &-integers by @,.. Then there are only finitely many
x, y€ 0, with F(x, y)=0. As in chapter 6, the general effective analogue has
not been proved yet, but effective results are available for the special class of
superelliptic equations y™=G(x) where me Z,m>2 and G € Z[ X]. Trelina
(1978) generalised results of Sprindzuk on the integral solutions of
superelliptic equations to the &-integral solutions of these equations.
Brindza (1984a) gave also a p-adic extension of his effective proof of
LeVeque’s (1964) theorem. Essentially Brindza’s result is equivalent to
theorem 8.3, but he specified the bound too. He proved that, under the
conditions of theorem 8.3, the solutions x, ye @, of f(x, 1)=y™ satisfy

max{H(x), H(3)} <exp(exp(CsP(t +1)%)

where P=max, ., P(Nk(#;)) and C is a computable number depending
only on K, f and m. We could have applied theorem 1.4 instead of theorem
7.6 in the proof of theorem 8.2. We recall that in theorems 8.1-8.3 the
dependence on K can be refined to dependence on the degree and the
discriminant of K only.

It is a consequence of Mahler’s (1934a) paper that P(Ax®+ By?) — o as
max(|x|, |y)) tends to infinity through non-zero rational integers x, y with
(x, y)= 1. An effective proof of this result for 4 =1, B= — 1 was obtained by
Coates (1970b), who also computed an effective lower bound for P(x® — y?),
namely: if x, ye Z with (x, y)=1 and x3# y? then

P(x®~y?%) > 10~ 3(og log Z)!/*

where 2 =max(|x|,|y). Kotov (1979) and Kotov and Trelina (1979)
extended Coates’ result to arbitrary elliptic curves and improved on the
lower bound in such a way that, as a particular case, it follows that

P(x*—y)=C,loglog &

where C, >0 is a computable absolute constant. For an entirely algebraic
approach to results on P(Ax>+ By?), see Herzberg (1975).

The ineffective version of corollary 8.1 is due to Mahler (1953). The
effective corollary 8.1 can be derived from Coates’ (1970a) result on the
Thue-Mabhler equation. Kotov (1976) generalised corollary 8.1 to algebraic
number fields. He derived explicit bounds which, under the conditions of
corollary 8.1, yield

P(Ax™+ By") = Cq(log, X log, &)'/?

where Cg>0 is a computable constant depending only on A4, B, m and n.



CHAPTER 9——

Perfect powers in binary recurrence
sequences

In this chapter, we show that there are only finitely many perfect powers of
the form u, +u, where u, and u, are relatively prime rational integers
composed of a given finite set of primes. We consider the analogous
question in a number field. As applications, we prove that there are only
finitely many perfect powers in a non-degenerate binary recurrence of
algebraic numbers and that, under suitable restrictions on rational integers
A, A, As,
P(A;x*+ A,x'y+ A3y?) >

uniformly in positive integers t>1, x> 1 and y with (x', y)=1 whenever
max(t, x, y) tends to infinity.

Let P>3 and a> 1. Denote by S the set of all rational integers composed
of primes not exceeding P. Then we have

Theorem 9.1. Let u, u, and u, with (u,, u,) <a be members of S. Let g2 and
y with |y|> 1 be rational integers. If

Uy +u,=uyl, (1)
then P(q) is bounded by a computable number depending only on P and a.

Combining theorem 9.1 with theorem 7.2, we obtain

Theorem 9.2. Under the conditions of theorem 9.1, equation (1) implies that
max(lul’ |u1 |, lulla q) < Cl
Jor some computable number C, depending only on P and a.

Now we state notation for a generalisation which includes theorem 9.2.
Denote by K a finite extension of Q, by O the ring of integers of K and by R

150
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the regulator of K. Put [K: Q] =d. Letv>1and s>0. Let {x,,...,n,} bea
set of non-zero non-units of Ox . Denote by %, = % (ny,. . ., m,) the set of all
non-zero elements of ¢y of the form

v LRI v,
[171:11 g

where vy, . .., v,are non-negative rational integers and u € O with IEI <o If

5s=0, then %, is the set of all ye @ with u#0 and I;I <v. We consider the
equation

8171 + &7, =7)* 2

ing;,e,ve0x,V1,72 Y€ q€Z, With gy, ¢, units and y#0. We shall use
the above notation throughout the chapter without any further reference.

Theorem 9.1 is contained in the following result.

Theorem 9.3. Let y be a non-zero non-unit in Oy. Let 120. Suppose
min(ord (y,), ord (y,)) St )

Jor every prime ideal 4 in Ox. Then equation (2) implies that P(q) is bounded
by a computable number depending only on t, K and %,

It is impossible to prove the assertion of theorem 9.3 if y is a unit. However,
if (2) is satisfied with a unit ye @ and (3) is valid, then we may apply
theorem 1.3 to obtain

max(fy|, [r,], [ < C.

max([er 14|, [ez 1yA]. [T Pe2]) < C,

where C, is a computable number depending only on 1, K and %, (and not
on q).

For a given q>2, we apply theorem 7.6 to equation (2) to derive the
following result.

and

Theorem 9.4. Let g=>2. For 120, assume that (3) is valid. Then there exists a
computable number C 5 depending only on q,t, K and &, such that equation (2)
implies that

max([y|, [r]. [r2p <Cs @
and

max(|e; 1|, |es 14, [er T,y < Cs. ©)
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Thus, under the assumptions of theorem 9.4, it follows from (4) and (5) that

max(|e; 17y, [er ‘ervs |, [ Teav2)) < Cs 6)

b

The assertion of theorem 9.2 may be obtained by combining theorems 9.3
and 94.
We apply theorems 9.3, 9.4 and 1.3 to prove the following result.

Theorem 9.5. LetO0<me Z. Let a, p be non-zero elements of Oy such that a/f
is not a root of unity and (o, f)=[1]. Let t, 0. Suppose
min(ord (y;0™), ord ,(y,87)) <7,
Jor every prime ideal s in Ox. Assume
710" + 75" =ep)f (7

with 0 ye Ok, a unit e€ Oy and 2<q€eZ. Then

max([y|, [y, [y2] m < C, 8)
Jor some computable number C, depending only on t,, a, B, K and %,

An immediate consequence of theorem 9.5 is the following result.

Corollary 9.1. Suppose that the assumptions of theorem 9.5 are satisfied.
Further, assume that e=1 and y is not a root of unity. Then

max(l)’l, IV_;I, Iyll’ I,V|’q, m) <CS
where Cs is a computable number depending only on 1, a, 8, K and %,.
Further, we apply theorem 9.5 to prove the following result on perfect

powers in a non-degenerate binary recurrence.

Theorem 9.6. Let {u,,}=_, be a simple non-degenerate algebraic recurrence
of order 2 and let ¢=2. If
U =7 )

with 0# ye K, then m is bounded by a computable number depending only on
K’ % and {um}rc:=0'

Theorem 9.6 admits the following consequence.

Corollary 9.2. Let {u,,}x ., be a simple non-degenerate algebraic recurrence
of order 2. Let 0#5€K and ¢=22. If

U, =06y (10)
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where 0#£ ye K is not a root of unity, then
max([y,q,m)<Cs

for some computable number Cg depending only on 8, K and the sequence
{um}:to=0'

Some special cases of this corollary can be found in the literature. Shorey
and Tijdeman (1976a) proved that there are only finitely many perfect
powers in the Lucas sequence given by 1,=0, u; =1 and

Uy 2 =(x+ Dy, —xu,, (mM=0,1,...)

where x > 1 is a fixed integer. Here u,, = (x™ — 1)/(x — 1). Thus there are only
finitely many perfect powers among the integers whose digits in the x-adic
expansion are all equal to 1. We shall return to this problem in chapter 12.
For a non-degenerate recurrence sequence {u,, } - o of order 2 induced by a
(rational) integral recurrence, it has been proved, independently, by Petho
(19824) and Shorey and Stewart (1983) that equation (10) with 0# e Z,
y€Z, |y|>1 and ¢q>2 implies that max(|y|,q,m) is bounded by a
computable number depending only on 8 and the sequence {u,,} 2_ o; in fact,
Pethd proved that max(|y|,q,m) is bounded by a computable number
depending only on P(8) and {u,}x., provided that the companion
polynomial to {u,}2_, has relatively prime integral coefficients.

Shorey and Stewart (1983) applied their result to prove the following.

Theorem 9.7. Let A, A,, Ay, Be Z with A, A,B#0and A3 ~4A4,A;+#0. Let
X, y,t with ]x|> 1 and t> 1 be rational integers satisfying

A x*+ Ayx'y+ Ayy*=B. (11)
Then

max(|x|,|y], ) <C,
where C, is a computable number depending only on A,, A,, A5 and B.

Let A, A,, A5, Be Z with B#0and A3 —4A, A, positive and not a square.
It is well known that if the equation
A x*+ Ayxy+ A3y°=B (12

has one solution in integers x and y, then it has infinitely many solutions in
integers x and y. Theorem 9.7 states that among these solutions there are
only finitely many in which x is a perfect power. Theorem 9.7 is contained in
the following result.

Theorem 9.8. Let a, > 1. For P>3, denote by S the set of all integers
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composed of primes not exceeding P. Let A;, A, AyeZ with A;A;#0 and
A3—4A4,A4,#0. Suppose x,y,t with |x|>1, y#0 and t>1 are rational
integers satisfying (x',y)<a, and

A xH+ A,x'y+ AsyeS. (13)
There exists a computable number Cg depending only on a,, A, A,, A5 and
the set S such that

max(|x|, |y, ) < Cs.

Proofs
Proof of theorem 9.1. Suppose that equation (1) holds. Denoteby k,,. .. , k¢
computable positive numbers depending only on P and a. There isno loss of
generality in assuming that g is prime. Further, we may assume that ¢ >k,
with k, sufficiently large. Put

U =max(|u, |, |u,}, ).
Write

where a,, b, and c, are non-negative integers. Observe that

max max(b,,c,)<2log U.
p<P

It follows from (1) that
max a, <2 loglu| <2 1og(2U).
p<P

Let p, be a prime dividing u, such that pJ®»“’>g. Then equation (1)
implies that

ord,, (u;)=ord, (uy? —u,) <ord, (uu; 'y — 1) +k,,

since (4, 4,) <a. In theorem B.4, set n=n(P)+2,d=1,p=p, <P, 6=1/2,
A'=P, A=3|)|, B=2log(2U) and B'=b,=gq. Let k, > P. Then, since p, <
P <k, <qgand qis prime, we have g #£0(mod p,). Now we apply theorem B.4
to conclude that

U
ord, (uuz 'y" — 1)<k, <logqloglyl+ i )
Thus

U
ord, (u1)<k4<logqlog|y|+ i )
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Consequently

log U
log fu;|= 3. ordp(ul)logp<k5<log qlog|y| +_i_>

plus

Similarly
log U
log |u,| <k5<log qlog |yl +T>

Let k, > 2ks. Then, since ksq ™! <kgk; ' <271, the above inequalities imply
that

log U <2kslog qlog|y|. (14)
Further, it follows from (1) that

qlog |y <log(2V)

which, together with (14), implies that g <k,. O
Proof of theorem 9.2. Suppose that equation (1) is valid. There is no loss of

generality in assuming that g is prime. By theorem 9.1, we see that g is
bounded by a computable number depending only on P and a. Write

u=uud and u,=usul

where
max(|us|,

u5|) L pla—nHp)
Then, by multiplying both sides of (1) by ufus, we obtain
usttg((sue)! —uul™ Uy y)) = —u ulug.

Note that —u,udug €S. Since (u,, u,) <a, equation (1) implies (u,, yu)<a
which gives b:=(usuq, #4y)<a. Divide both sides by b?. Now apply
theorem 7.2 with

Usllg Uy

b T

F(X,Y)=bX(X?—uaul~'Y%), x= ;

to complete the proof of theorem 9.2. O

Now we turn to the proof of theorem 9.3. Suppose that (2) is fulfilled for
some non-zero non-unit y in O. First we make some simplifications. We
may assume g > 1. Further, since every power of y is a non-zero non-unit in
Oy, there is no loss of generality in assuming that g is prime.

Let n,,...,n, be an independent system of units for K satisfying (A.45).
By corollary A.5, we may write

gy=pyit oy and  e;=ponicc ey (15)
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where a4, ..., qa,, by,..., b,€Z and p,, p, € O with p,p,#0 and

max([p,, o2y <c (16)

for some computable number ¢ depending only on K. For 1<i<r, write

b;=qb;; +b;,, 0<b,,<q
and

by

— b b,
83_’71l'l n. 2

—nb1,2. .. b
o Eg=Nt o,

Thus ¢, = p,¢,¢%. On dividing both the sides of (2) by ¢4 and observing that
ye; ! is a non-zero non-unit in O, we may assume that

0<b,<q (I<i<r). (17)

Let o, be an embedding of K such that | o(y)| = m By taking images under
g, on both sides of (2), we may assume | y| = m Finally, by corollary A.2,
observe that there are only finitely many p,, p, € Ok satisfying (16). By
lemma A.2, their heights are bounded and we may therefore assume that p,
and p, are fixed.

Thus, for the proof of theorem 9.3, it suffices to prove the following resulit.

Theorem 9.3, Let ¢ be a computable number depending only on K. Let 05
p1 €0k, 0% p, € Oy satisfy(16). Let ¢, and ¢, be given by (15). Assume that 0 <
b,<q for 1<i<r. Suppose that y is a non-zero non-unit in O satisfying |y|=
|;| Assume that equation (2) is satisfied. For 1 =0, suppose that inequality (3)
is valid. Then q is bounded by a computable number depending only on t, K
and ¥,

Put
W, =max(|ay|,...,|a). b;,...,b,).

We may write

yi=map-onf o and  yy=poncnd (18)
where f,....,f.,91,- - . ,gs are non-negative rational integers and y,, u, € Oy
with p,u,#0 and

max((p, |, [us]) <. (19)
Set
W/2=max(f1" .- 9f;’g15 A
and

W=max(W,, W,,e).

Finally we write

_ LI
Y=Hpay'c g
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where hy, ..., hy are non-negative rational integers and 0+ ;€ O with

|y_3| <v. Denote by ¢y, ¢,,. . . , ¢, coOmputable positive numbers depending
only on 1, K and &;. We assume that ¢, is sufficiently large.

We split the proof of theorem 9.3’ into four lemmas. We apply theorem B.3
to obtain the following estimate for integers A, ..., h,.

Lemma 9.1. Suppose that the assumptions of theorem 9.3’ are satisfied. Then
hi<cyllog W) (1<i<s). (20)

Proof. Let 1 <i<sand h;>0. Since 7; is not a unit, there exists a prime ideal
/ in O dividing m;. In view of (3), either ord,(y,) <t or ord,(y;)<7. If
ord ,(y,) <7, then equation (2) implies that

h;<ord (y)<ord (e;7, +&57;) <ord (—e; teyyy 'y, — )+
We apply theorem B.3 withn=r+5+3,p<c;,4,=4,=--=A,=c,and
B=W to conclude that

Ord/,(—ﬁl_lsz)’l_l)’z— ) <cs(log w)2.
Thus
h; <cg(log W)?

whenever ord (y,) <t. This inequality follows similarly when ord ,(y,) <t.

d

Further, we apply theorem B.4 and lemma 9.1 to obtain

Lemma 9.2. Suppose that the assumptions of theorem 9.3 are satisfied and
q>cy. Then

W, <c,(log qlog |y|+ Wy ). 1)

Proof. Let 1<i<sand g;> 0. Since 7; is not a unit, we can find a prime ideal
/ in Ok dividing 7;. Let p be the rational prime divisible by 4. Then p <cs.
Let ¢, >cg. Hence g #0 (mod p), since ¢ is prime. By (2) and (3),

gigordﬁ(ﬁzh):()rdﬁ()’yq_31)’1)gordﬁ(sl—l)’lﬂ)’f—1),
if ord (y,)<t. We apply theorem B4 with n=r+s5+3, p<cq, 6=1/g,
A'=cqy, A=cyo|y|, b,=¢, B =g and,bylemma 9.1, B=max(W,h,,.. ., h) <
¢y, W to conclude that

gi<c;,(logqlog |Y| + Wq—z)-

By (3), this inequality is also valid if ord ,(y;)>t. Here we have used the
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inequality |y|=[y|> 1 +¢,; which holds by (A.13). It follows that

gi<ciqlogglog|y|+Wg™?) (1<i<s).
and, similarly,

fi<c,logglog|y|+Wg~2) (1<i<s).
Hence (21) follows. 0
Now we apply lemma 9.1 and lemma 9.2 to obtain
Lemma 9.3. Suppose that the assumptions of theorem 9.3 are satisfied and
q>cy. Then

W<e,sqlog|yl. (22)

Proof. Let r, and 2r, be the number of conjugate fields of K which are real
and non-real, respectively. For a € K, we signify by a'¥), ..., /" the real
conjugates of « and by a’1*, ..., a1*2 the conjugates of « satisfying a¥ =
ai*d for ry + 1<j<ry +1,.

If W=W,, then (22) follows from (21). Thus we may assume that W=
max(W,, e). Since max(b,, ..., b,, €)<q, we may assume that

W=max(a,|,...,|a,))

If =0, we may put W=0. Thus we may assume r>0. Re-writing equation
(2), we have

ey =y1 ') —&272).
Thus, for j=1,...,d,

llog |e¥"|| <[log |y{"|| + [log |(yy* —&2v)?|- (23)
By (15), (16) and (17),
llog e¥|<c160  (1j<d). (24)
By lemma 9.1,
log [y <c, +(log W)* (25)

and, by lemma 9.2,

max(|log [y¢

|, llog [y¥|) < ¢, 5(log g log |y|+ Wg~2) (26)

forj=1,...,d. Henceit follows from (15),(23),(24),(25),(26) and a Liouville-
type argument that

|ay log |7+ -+ +a,log [nY|| <c, (g log |y| + (log W)+ Wg~?)
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for j=1,..., r. This is a system of linear inequalities with a non-zero
determinant E with |E|> R. Consequently
W=max(a,|..... Ja) <colqlog|y| +(log W)* + Wg~?)

which implies (22) if g>c¢, with ¢, sufficiently large. O
Lemma 9.4. Suppose that the assumptions of theorem 9.3 are satisfied and
q>cy. Then

<. @7)
Proof. By (2),

le2ya|=yy" —esve|=yAl|eyiy v e 1)

We apply theorem B.2 with n=r+s+3,5=1/q, A'=c,,, A=c13|y|, B =4q
and, by (20) and (22), B" <c,,qlog|y| to obtain

ey 'y~ 9= 1| = exp(—c,s log g log |y)).
Thus ‘
le2y2| = [yy4| exp(—c5 log g log |y))

which, together with (25) and (22), gives
|32V2| = |Yq| exp( —c,¢(log ‘1)2 log |.V|)
On the other hand, it follows from (24), (26) and (22) that

le2y2| <explc,(g +1og g log | y)).
Hence

qlog |Y| <€79 +(C26 +¢27)(l0g ‘1)2 log IY|
which implies that
qlog|y|<2c;7q
if ¢, is sufficiently large. Hence log |y| <2c,,. O
Proof of theorem 9.3'. We may assume that g > ¢, with ¢, sufficiently large

so that (27) is valid. Then, since yis not a unit, we apply (27) and theorem 1.3
to equation (2) to obtain

lm e
Consequently, since y is not a unit, we have
2 <IN <IN <cds

which implies ¢ <c,q. (]
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Proof of theorem 9.4. Suppose that equation (2) with ¢>2 is satisfied.
Denote by ¢, - - - , ¢33 computable positive numbers depending only on g,
7, K and %,. We may write

V=103 y1=030% & =esl (28)
where ¢,, ¢,, ¢, @, are elements of S, and &5, e¢ € Ok are units such that
max([¢, |, [63], [es] <ez0- (29)

Multiplying both sides of (2) by (es¢3)? "1, we have

(ese6P3P4)" — &1 1¢1¢3_ 1(¢2)’ 1= —g,e1" 1¢'§_ 172-
Set
SX,Y)=X(X"—e4" ¢, 047 YY)

Note that, by (29), the function f belongs to a finite and computable set of
polynomials. Observe that there is a constant c¢5, such that

P(N(f(esec®30a, §2¥)) = P(N(e,63™ 147 1p,)) <c3y
and that, by (28) and (3),

N((eseg@304, P2V) SN((y1, YY) < Nl(e171,€272)) SC3y.

We apply theorem 7.6 to conclude that there exists a unit ¢ in @, such that

max(|essesdsdals b2y ]) <css

which, together with (28) and (29), implies that

max(ls’slyl |, |W|)<033 (30)

with ¢ =¢4. Now equation (2) and (30) imply that

|8,82)’2| SCaq- (31

Since y,7,, 7, € %, it follows from (30) and (31) that

,|E|»IE|)<035

which, together with (30) and (31), implies that

max( |;

max(le’y"l, |1~:'.sl |, |s’82|) < C36.

Hence, by a Liouville-type argument,

max(fe; '), [ '], |er tea)) < s O

Now we turn to the proof of theorem 9.5. It depends on the following
application of theorem 1.3 to equation (7).

’
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Lemma 9.5. Suppose that the assumptions of theorem 9.5 are satisfied.
Further, assume that y is a unit. Then

max(l;l, |E EI, m)<cag

where c44 is a computable number depending only on t,, a, B, K and %,

Proof. Lety, and y, be given by (18) where u,, u, satisfy (19). Observe that,
by lemma A.2, the pair p,, u, belongs to a computable finite set. Thus it
suffices to prove lemma 9.5 with ¢34 depending only on 1y, a, §, K, %, u, and
i,. Put

1 if y, is a non-unit,
3=y, if p, is a unit.

Thus u; € Ok is a unit. Denote by ¢, . . . , ¢46 cOmputable positive numbers
depending only on 7, , §, K, %, u; and u,. We split the proof of lemma 9.5
into two cases.

Case 1: At least one of o and B is a non-unit. By permuting o and f, it involves
no loss of generality to assume that a« is a non-unit. Note that
P(N(xfyy 7.) <c3o. After dividing both sides of (7) by u,, we apply
theorem 1.3 with &, =u3 ey, 6,= —u3'y,f™ and 53= —puj'y,a™ to
conclude that

> |$I’ |g|) < Cq0-

Therefore, since y,y,,7,€% and u3!, ¢, a, B, y are non-zero algebraic
integers, we obtain

max(lz

max(y], ||, [r2) <ca- (32)
Consequently

|oz|"' <Cy45.
Since a is a non-unit, we see, by (A.13), that m<cy;.

Case 2: Both o and B are units. After dividing both sides of (7) by ua™, we
apply theorem 1.3 with

-m 1B -
51=I»‘3l°‘ ey, 52="‘H31<; V2, 53=_#31V1

to conclude that max(lal, IZL |a|) < ¢44- Therefore, since y,y,,y, € % and
u3t, e, a7, B/a, y are non-zero algebraic integers, we obtain (32) and

Iﬁ/oz "”<c45. Then, since S/ is not a root of unity, we see m < c . ]
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We apply theorem 9.3 to equation (7) to prove:

Lemma 9.6. Suppose that the assumptions of theorem 9.5 are satisfied.
Further, assume that y is not a unit. Then

P(@)<css (33)
Jor some computable number c,, depending only on t,, a, B, K and %,
Proof. Dividing both sides of (7) by &, we have
yi=¢ ta™y, +e7 My, (34

If both « and B are units, then we apply theorem 9.3 with ¢, =&~ !¢™ and
¢, =¢"1f™to equation (34) to obtain (33). If both « and § are non-units, then
we apply theorem 9.3 with 4, := % (ny,. .., T, a f),y; and y, replaced by
y,a™ and y,f™, respectively, and ¢; =¢,=¢~! to equation (34) to conclude
that P(q) is bounded by a computable number depending only ont,,a, 5, K,
S whence (33) follows.

Thus we may assume that exactly one of « and f is non-unit. It involves
no loss of generality in assuming that « is the non-unit and g the unit. Now
we apply theorem 9.3 with &, := S (7y,. . ., 7, a),y, replaced by y,a™, &, =
¢~ 1 and ¢, =¢" ! " to equation (34) to conclude that P(q) is bounded by a
computable number depending only on 7,, a, §, K, %, whence (33) follows.

a

Proof of theorem 9.5. In view of lemma 9.5, we may assume that y is a non-
unit. Further, there is no loss of generality in assuming that q is prime. Then,
by lemma 9.6, we see that g <c,,. Therefore it suffices to prove theorem 9.5
with C, depending only on g, 74, , f, K and %,. Denote by c,qg, ..., Cs;
computable positive numbers depending only on ¢, 7,, o, §, K and %,

We apply theorem 9.4 to equation (34). It follows from (6) that there exists
a unit & € O (in fact, ¢ =¢ or ¢ =¢a~™) such that

max(|e’yy|, [ee ™ la™y |, [ee T By, [ <cus

which, since y, y,,y,€ % and ¢, e ", a, B, y are non-zero algebraic integers,
implies that

max(l;l’ IEI, 'EI) <C49.
Consequently, by a Liouville-type argument,

|;/_ﬂ_|m<050-

Since a/f is not a root of unity, we find that m<cs;,. O
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Proof of corollary 9.1. Denote by ¢, and ¢53 computable positive numbers
depending only on t,,a, §, K and %,. In view of theorem 9.5, inequality (8) is
valid. By equation (7) with e=1 and (8), we see that

l<lylr<es,

which, since y is not a root of unity, implies that g <cs;. O

Proof of theorem 9.6. Suppose that equation (9) is valid. By § 2 of chapter C,
the sequence {u,,}2-, is induced by a recurrence relation with algebraic
coefficients vy, v,. Let o, and f8; be the roots of the companion polynomial
t0 {U,}eo_o. Since {u,}2- o is non-degenerate, o, /B, is not a root of unity.
Put L= K(ugy, uy, vo, vy, %y, B1)- Let ¢ be the ring of integers of L, and h the
class number of L. For m=0, 1, 2, ... we have

U, =aay +b,p7
where
=“oﬁ1 —U Uy —Updy
! By —oay By—ay
Put 4=, ,(ny, ..., ©y). It suffices to prove that m is bounded by a
computable number depending only on L, % and {u,,}:- o. Denote by cs.,
.., Cg3 computable positive numbers depending only on L,%; and
{“m}:=0'
Denote by d, the least positive integer such that d,a,, d,b,, d,a,,
d, B, €0,. Put

a,=da,, b,=d;b, a,=dyo,, B,=d,p;. (35)

and b, =

Multiplying both sides of equation (9) by d7*!, we have

a0 +byf7=y3) (36)
where
yy=d7 1y (37

Observe that y,€ 0.

Let d, be the least positive integer such that y, :=d,ye ;. Then, since
the left-hand side of (36) and y; are algebraic integers, we see from (36) and
(37) that

P(dj) <csq. (38)
Multiplying both sides of (36) by d4, we have
dia o7 +dib,f7 =73 /1. (39)
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By corollary A.3, notice that
([e3, [B5D) =[]
where either =1 or 7 is a non-unit in ¢;. Put
ay=n"'ah and By=n"1p". (40)

Then a3, f;5 € O, satisfy ([«5], [B3])=[1]. Further, since «, /f, is not a root of
unity, we see from (40) and (35) that «3/f; is not a root of unity. Putting

m=mh+m, O<m,<h) 41
and
as=a3a;, by=p3b,, 42)
we re-write (39) as
az03' + b33 =dy In My A 43)

Observe that a3, b; €@, and, by (42) and (35),

max(fas], [bs) <ess. (44)
We may write
Y1=DY2)s
where y,, yy € (), satisfy
(Lys), [rd,])=[1] (45)

and, by (38) and lemma A.12,
2=y Yy (46)

where v,, ..., v, are non-negative rational integers and, for 1<j<l, y;€0,
are non-units with [N(;)| < cs6. Therefore, by corollary A.6, we may choose
non-units ¥, ..., Y, €€, with

max |¢_,| <Cs9. 47)
1gj<l

Put
Pa=d3 M My3)4.

Then y, € 0, since the left-hand side of (43) is an algebraic integer and, by
(45), the ideals [y,] and [nd,] are relatively prime. Further, it follows from
(37), (46) and (47) that

P(N(y4)) S¢ss. (48)

Therefore, by lemma A.12 and corollary A.6, there exist non-units ¥, . ..,
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Y¥e O, such that

t ]
max l 3 |<cs9

1<

and
Ya=¢&7Ys
where ;€@ is a unit and yse & (YF, ..., ¥F). We re-write (43) as
a3z +b3f3 =¢7y5 /4. (49)

Putv, =max(v,css)and =, , (ny,. .., 7, Y%, .., ¥F). Observe that aj,
bs,ys€ %, Weapply theorem 9.5with K =L, %= %, m=m,,a=03, f=f3,
Y1=4a3,72=b3,7=7s,y=y3,6=¢, and, by (44) and (a3, B3) =[1],7, =ceo tO
equation (49) to conclude that m, is bounded by a computable number
depending only on L, ¥, and {u,,}X. . Therefore m, <cg,, whence, by (41),
m<(cgy + Dh. O

Proof of corollary 9.2. Let d, be the least positive integer such that d;0 € O.
Multiplying both sides of (10) by d;, there is no loss of generality in
assuming that 6 € Ox. Denote by ¢, . . . , €45 computable positive numbers
depending only on 4, K and {u,,}2_,.

We apply theorem 9.6 with & =% 5(J) and y=4 to conclude that
m< g, Consequently, by (10), |W] < c¢g3 Which implies that

|Y|q<064 (c6a>1). (50)
Therefore m < g4 Further, since y is not a root of unity, we see from (50)
that g <cgs. O

Proof of theorem 9.8. There is no loss of generality in assuming that ¢ is
prime. Denote by ¢, - . . computable positive numbers depending only on
a,, 4,, A,, A; and S. Write

OX,Y)=A, X>+ A, XY + A,Y 2
Denote by «, and a, the roots of Q(X, 1). Then
A 0", ) =(A;x" — Ay WA X' — Ay y).

Put L= Q(x,) and denote by ¢, the ring of integers of L. In view of (13),
lemma A.12 and corollary A.6, we may choose a set of non-zero non-units
¥, ..., Y€, such that

k<cgs, max |l//_;l g (51)

1<j<k

and
t — t — !
Ay x'— A y=egy1, Aix'—Ajay=2¢97,
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where gg, &9 € (0, are units and y},y, are products of powers of ¥}, ..., ¥,
with non-negative exponents. Further, since (x', y) <a,, we have

min(ordﬁ(y'l ), Ordﬁ(ylz)) <‘:67

for every prime ideal 4 in . It follows from the above equations that

Ay, —ay)y=egy; —&975 (52)
and

A%(“z—“l)xt=88A1°‘2V/1 —&g A 075 (53)
Observe that «, #a,, since A3 —4A4,A4;#0. Put

5 o
v,=Aj max(lotz _“1|, |°‘1 ’, |°‘2|)

e9;5 = yL.v:(‘ﬁII’ L] w;‘)

In view of (51) and corollary A.2, we see that ¥ belongs to a computable
finite collection of sets. We apply theorem 9.3 with y, =4 a5y}, y,=
—A,0,75, y=A¥a, —a,) and ¥ = to equation (53) to conclude that
t<cqg. Let t (=2) be fixed. By applying theorem 9.4 to equation (53), it
follows that

and

max(lKL |E|) PN (54
and

7 x| <eq0 (1=8,9). (55)

Observe that Isi“x‘|= Is,"l |x!| for i=8,9. Therefore, by (55) and the fact
that ¢3!, e5 ! are algebraic integers, we see that

X' <eq0 (56)
and

max([e5 [, [e5 ) < co-

Consequently, max(lg;], |E;|) <c4, which, together with (52) and (54),
implies that | y| <c,,. Further, by (56) and |x|> 1, we find that max(t, |x|) <
Cq3- O

Proof of theorem 9.7. We may assume that y is non-zero; otherwise the
assertion follows from (11) and |x|> 1. Further, observe that equation (11)
implies that (x*, y)< B. Now apply theorem 9.8 to complete the proof of
theorem 9.7. O

Notes
Shorey and Tijdeman (1976a) applied theorems B.2 and 5.1 to
show that there exist computable positive numbers Cq, C,, and C,,
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depending only on P such that if
beS, a=by'+leS
with [, q, ye Z, 1#0, ¢=3, y> 1, then

1> Colby)° (57)
where
0=max<1 ——C—lo—:lo—g—g, C, 1>.

If g=2, inequality (57) can be derived from theorem B.4 (see Turk, 1986,
§4.1.2). Weaker versions of inequality (57) were given by Schinzel (1967) for
g=2 and ¢=3 and by Langevin for general gq.

For the Fibonacci sequence {u,}x_,, Cohn (1964) and Wyler (1964),
independently, proved that u,, is a square only when m=0, 1, 2 and 13.
Cohn (1965) and Steiner (1980) solved the equations u,, =2y* and u,, = 3y
Cohn (1965) applied these results and the corresponding ones for Lucas
sequences to determine all integer solutions of certain diophantine
equations. London and Finkelstein (1969) determined all the cubes in the
Fibonacci sequence. Lagarias and Weisser (1981) gave another proof.
Steiner (1978) derived some partial results for higher powers. See also
Robbins (1978, 1983). The proofs of these results do not depend on
estimates for linear forms in logarithms. Pethd (1983, 1984) utilised the
theory of linear forms in logarithms and computer calculations to
determine all the cubes and the fifth powers in the Fibonacci sequence. As
mentioned in the text of this chapter, Petho (1982a) and Shorey and Stewart
(1983) proved that there are only finitely many perfect powers in a simple
non-degenerate binary recurrence sequence {v,}=_, of rational integers.
Pethé extended this result to the equation v,, = by? with b€ S, provided that
the companion polynomial has relatively prime integral coefficients.
Shorey and Stewart (1983, 1986) and Kiss (1986) proved the assertion for
certain recurrence sequences of order >2. Shorey and Stewart (1983)
applied their result to show that, under suitable conditions, there are only
finitely many integers x, y, z, ¢ with ¢>1 and |z| > 1 satisfying

a;x2+b;xy+c,y*=d,
and
a x> +b,xy+c,y*=d,2A.

For a generalisation of this result, see Shorey and Stewart (1986) which also
contains an inhomogeneous analogue of theorem 9.7. For ¢=2, see
Mordell (1969, Ch. 8).
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Finkelstein (1973), Williams (1975) and Steiner (1980) gave proofs for the
fact that 1, 2 and 5 are the only Fibonacci numbers which are of the form
y?+ 1. Finkelstein (1975) proved a similar resuit for Lucas numbers.
Robbins (1981) claims to have determined all Fibonacci numbers of the
form y>—1 and y*+ 1. Stewart (1981) and Shorey and Stewart (1986)
investigated the more general equation v, =y?+k where {v,}2_, is a
simple non-degenerate binary recurrence sequence of rational integers and
k a given rational integer. Nemes and Petho (1984, 1986) studied the
equation

V= by +f(y) (58)

in rational integers m, q, y where be Z and f e Z[ X] are fixed. Kiss (1986)
and Shorey and Stewart (1986) dealt with equation (58) for recurrence
sequences {v,,}2. o of any order, under certain conditions on {v,,}Z_, and

deg(f).



CHAPTER 10—

Perfect powers at integral
values of a polynomial

We consider the superelliptic equations of chapters 6 and 8, but now with m
as a variable. Tijdeman (1976a) proved the following result.

Theorem 10.1. Let f(X) be a polynomial with rational integer coefficients
and with at least two simple rational zeros. Suppose b#£0,m=0, x and y with
| y|>1 are rational integers. Then the equation

Sx)=by" (1
implies that m is bounded by a computable number depending only on b and f.

Schinzel and Tijdeman (1976) extended theorem 10.1 as follows.

Theorem 10.2. Let f(X) be a polynomial with rational integer coefficients and
with at least two distinct roots. Suppose b#0,m>0, x and y with |y|> 1 are
rational integers satisfying (1). Then m is bounded by a computable number
depending only on b and f.

Let K be a finite extension of Q and denote by (’ the ring of integers of K.
For given non-zero non-units 7, . . ., 7, of ¢, denote by & the set of all the
products of non-negative powers of w,, ..., n,. Let oy, . .., a, be distinct
elements of Oy. Write

X, Z)y=(X -, Z)"- - (X =0, Z)"

where r, ..., r, are positive integers. Then theorems 10.2 and 9.3 are
contained in the following result that generalises a theorem of Shorey, van
der Poorten, Tijdeman and Schinzel (1977).

Theorem 10.3. Suppose f(X, 1) has at least two distinct roots. Let e€ € be a
169
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unit and ye & Suppose 120, x € Oy and ze€ & satisfy
min(ord (x), ord ,(z)) <7 2

Jor every prime ideal s in Ok. Assume 0#y e O is not a unit and m20is a
rational integer. Then the equation

f(x, z)=¢eyy™ 3

implies that m is bounded by a computable number depending only on K, %, f
and .

If y is a unit in ¢, we can apply theorem 1.3 to obtain the following result
on equation (3).

Theorem 10.4. Let f,¢,7,7,x, zand m be as in theorem 10.3. Suppose y € Oy isa
unit. Then equation (3) implies that

max(fey". [y, ], [-) <€,
Jor some computable number C, depending only on K, &, f and .

Combining theorems 10.3 and 10.4, we obtain the following result.

Theorem 10.5. Let f, 7,71, x, z and m be as in theorem 10.3. Suppose 0# y € O
is not a root of unity. Then equation

fx,2)=yy" Q)

implies that m is bounded by a computable number depending only on K, &, f
and 1.

Theorem 8.1 can now be applied to find bounds for x, y, z.

Theorem 10.6. Suppose f(X, 1) has at least two simple roots. Let 120, x € (O
and z€ & satisfy (2) for every prime ideal 4 in Ox. Supposey € #,0+# ye Oy is
not a root of unity and m23 is a rational integer. Then equation (4) implies
that

max(y]. [v], ]x], [z, m <
where C, is a computable number depending only on K, &, f and .

If m=2, then we apply theorem 8.2 in place of theorem 8.1.

Theorem 10.7. Suppose f(X, 1) has at least three simple roots and m>=2 isa
rational integer. Let 1, x, z,y and y be as in theorem 10.6. Then equation (4)
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implies that
max(y]. [y]. [x]. [z,m <,
Jor some computable number C; depending only on K, &, f and .

An immediate consequence of theorem 10.7 is the following extension of
corollary 8.1.

Corollary 10.1. Let A#0, B#0 and n=2 be given rational integers. Then
P(Ax™+ By") - o effectively,

as max(|x|, |y|, m) tends to infinity through rational integers x#0, y#0 and
m=0 satisfying |x|> 1, (x, y)=1 and mn=6.

Corollary 10.1 is due to Shorey, van der Poorten, Tijdeman and Schinzel
(1977).

Proofs
The constants ¢, . . ., ¢,3 in the proofs of theorems 10.1 and 10.2
are computable positive numbers depending only on b and f.

Proof of theorem 10.1. Suppose that equation (1) is satisfied. We may then
assume m 2. Let «, and a, be simple rational zeros of f. Denote by a, the
leading coefficient of f and by N the degree of f. Multiplying both sides of (1)
by aj ~', we have

glagx)=bag~'y"
where g(X) is given by
glaoX)=ag " f(X).

Observe that g(X) is a monic polynomial with rational integer coefficients
and has at least two simple rational zeros. Thus there is no loss of generality
in assuming that f is monic. Consequently a, and «, are rational integers.
Write

HX)=f (XX — o )X —ay).
Then f,(X)e Z[X]. Put
D =blo; —a,) filag) fi(er)-

Observe that 0# D e Z, since a,, %, € Z are simple zeros of f and b#0.
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Equation (1) implies that

x—oy=pu7 [ o™ x—o,=p3 ][] p"
p|D p|D

where a,>0, b,>0, u, #0, 1, 7#0 are rational integers and the product is
taken over the rational primes dividing D. For p] D, we write

a,=A,modm), b,=B,(modm)
where 0<A,<m and 0<B,<m. Then
x—oy =3[ p* x—o,=pZ[] " ©)]
D plD

for some non-zero rational integers yu, 4. By interchanging the suffixes of
a, and a,, if necessary, we may assume that |u;| > |u,|- We split the proof of
theorem 10.1 in two cases.

Case 1.
ol =1. ©
Then |u,|= 1. Hence, by (5),

o —ay=x[] p ][] p™
p|D p|D
We apply corollary 1.1 to the above equation to conclude that
max(4,, B,)<c,.
p|D

Consequently, by (5) and (6), |x| <c, which, together with |y|>1 and (1),
implies that

2"<|ym<es.
Hence m<c,.

Case 2.
s> L. (7
Observe that
|x‘°‘1|>|#3|m (8)
and, by a, #a, and (5),
1 B “2—1‘= I p""‘Aﬂ(&)m— 1‘.
X —0y X — 0y p|D H3

We apply corollary B.1 with n=w(D)+ 1,d=1, A, =A,="--"=A,.,=c¢s,
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A,=|us|+1 and B=m to conclude that

o, —o
1 2 > |u3|—c6|ogm. (9)
x—oy
Now combine (9), (8) and (7) to obtain m<c;. O

Proof of theorem 10.2. As in the proof of theorem 10.1, there is no loss of
generality in assuming that f is monic. Write

JX)=(X —ay)r (X —a,)"

where n>2, «,, ..., «, are distinct algebraic integers and r{, ..., r, are
positive rational integers. Put L= Q(a,,. . . ,,) and denote by ¢, the ring of
integers of L. Let #,, ..., 7, be an independent system of units for L satisfying
(A.45), and h the class number of L. Put

Igi<j<sn
Observe that A is a non-zero ideal in @;. Denote by f£,,. .., 4 all the prime
ideals in O, dividing A. Observe that 4! is principal and N(£}) <cg for 1<
i<t. Consequently, by lemma A.9 and corollary A.6, 4! is generated by
some ¥, € O, satisfying

i<, (1<i<). (10)
Equation (1) gives
[/(x)]=[by"].

Hence there exist non-zero ideals «; and «, in ¢, with (2, @,, A)=[1] such
that
(=)= iy~ firia]  (j=1,2) (11)
where a; ; withi=1,2,...,tand j= 1,2 are non-negative rational integers.
If 4isa primeideal in ¢, such that 4" | «7 and 4" | «%,thenm|l,,m|l,and,
by (11), r, |1, and r,|,. This implies
m |l

4 (j=1,2).
(m,r)) |r; G )

Putting {r,,r,) for the least common multiple of , and r, and

- m
_(m,<r1,r2>)’

we see that M | (I;/r;) for j=1,2. Now it follows from this observation and

(12)
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(11) that
Dx—a)= flsee il (j=1,2)

for some non-zero ideals £, and 4, in ¢, and non-negative integers b; ; with
i=1,...,tand j=1,2. We may write

HA=0&1 #H=[¢]
for some non-zero &,,&,€0,. Then, for j=1,2, we have
(o= pyis el gt (13)

where p,, p, € €, satisfy, by corollary A.S, max(lzl, IEI) <cjoand u, ;€7
forg=1,...,randj=1,2. By incorporating every Mth power in ¢;, we may
assume that

O<u, ;<M, 0<b, ;<M (14)

for 1<g<r, I1<i<tand j=1,2.
By interchanging the suffixes of «; and a,, if necessary, we may assume
that

AR
Put

A=max(¢,],3).
Let o, be an embedding of L such that

|°'0(51)| = |Z|

Further, set

Bio=00(x —a)=x—~0o(ay), B2,0=00(x—a)=x—0¢(x;)

By (12),
m/{r,r> <M <m. (15)

We may assume that M >c,, with ¢,; sufficiently large; otherwise the
assertion follows from (15). Consequently, by |y|> 1 and (1),

log |x|= ¢, m= ey 504, (16)
By taking c,, sufficiently large, it follows from (16) that
|B% ol =27 "|x|". (17)
Also, by (13), (14) and (10),

|83 .0l = (c15 A (18)
with ¢;3> 1.
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Suppose that (x —a,)*=(x —a,)". Then, since «, #a,, we see that h>1
and there exists an integer | with 0 </<#h such that
x —oy =eXiM(x —q,).
This implies that
|x| < cosec(r/h)(|ey |+ o))

which, together with (16), implies m<c, ,.
Thus we may assume (x—o,)"s(x—a,)". Then B4 7 p% o Further
observe that

0<|B’1,o‘ﬁ'5,o|<¢15lxlh_l (19

G-

We apply (13) and corollary B.1 with n=r+t+2,d=[L:Q], 4,=A4,=
cr=A,.1=¢6, A,=A%" and B=M to conclude that

and

|B’i,0‘ '5,0|=|B’i,o|

h
(h) —1‘>A"'8‘°8M. 1)

1,0
Combining (20), (17), (21) and (19), we obtain
x| S AcrotosM (22)
Further, it follows from (20), (18), (21), (19) and (22) that
AM-eisl e M| B o — B olets S Aol Ml

By taking c¢,, sufficiently large, these inequalities imply that A <c,,.
Consequently, by (22) and (15),

log x| ¢, logm
which, together with (16), gives m<c,;. O

The constants c,4, ¢35, ... in the proofs of theorems 10.3-10.7 are
computable positive numbers depending only on K, & f and .

Proof of theorem 10.3. Suppose that equation (3)is valid. Let 7,,...,n,bean
independent system of units for K satisfying (A.45). Put

A=[7T1"'7Ts I1 (ai—ocj):l.

1<i<j<n

Denoteby 4,,.. ., 4 all the prime ideals in U dividing A. Asin the proof of
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theorem 10.2, we can find y,,. . ., ¥, € O such that 4!=[y,] and |n/7,| <€y
for 1<i<t. Put
m

M=——+—,
(m, {ry,r3))
Observe that

<M<m. 23
{risry) )

Therefore we may assume that M > ¢, 5 with ¢, 5 sufficiently large; otherwise
the assertion follows from (23).
Equation (3) gives

Lf(x,2]=[yy"]
which, as in the proof of theorem 10.2, implies that
(x—azf = pjapirs - il Yol (j=1,2) (24)

where p,, p, € Ok satisfy max(lp_1|,|p_2|)<c26 and 0<b; €7, u, ;€7 for
1<i<t, 1<q<rand j=1,2. By incorporating every Mth power in ¢;, we
may assume that

O<u, <M, 0<b, ;<M 25)

for 1<g<r 1<i<tandj=1,2. By interchanging the suffixes of «; and a,, if
necessary, we may assume |a| =|&,]. Set

A=max(|¢,],3).
Further, put
Bi=x—oz, B,=x—ua,z.

Let 6, and o, be embeddings of K satisfying

ool =], |os0o|=][x]-
For j=1,2 and 6=0, 1, denote
Bj.& = U&(ﬂj)‘
By (24) and (25),
|8} ol = c37*A™ (26)
and
BLalz27 ] it [x]>2fe][2]- @7
Suppose that
=85 (28)

Then
(2] | Aoty —aQ[x]"
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Therefore, by (2) and ze ¥ we see that
2] <cas. (29)

Putting o,(x)=x', 0,(¢;)=0}, o,(a)=0a} and a¢,(z)=2, equation (28)
implies that

(' =y Y =(x' — a2\,
Then, since o} # o, it follows that 4 > 1 and there exists an integer  with 0 <
I <h such that
x' —ayz =e*M(x' —a,7).
This implies that

[¥] = || <coseelm/my(o | + 27|

which, together with (29), gives I;I <¢,o. Therefore, by taking norms on
both sides of (3), we obtain

PAES |N()’)|m £C30,

since y is not a unit. Hence m<cs;.
Thus we may assume that g” s 8% which implies % ;# p4 ,for =0, 1. We
may write

2= n‘rl o n:'s
where w,,. .., w,are non-negative integers. By interchanging the suffixes of
7y, ..., N, if necessary, we may assume that w; 2w, > --->w,. Recall that
7, is not a unit. Let % be a prime ideal in ¢ dividing ©;. Observe that

w, <ord (z)<ord (8% — Bb).

If 4| [B1] and 2| [B4], then h|v,, h|v, and z"|[B,], #"*"|[B,]. Put
vy=min(v/h, v,/h). Hence 4" divides both [$,] and [f,]. Consequently,
4" divides both [o;, —a,][x] and [a;—a,][z]. Now we apply (2) to
conclude that v; <c;,. For simplicity, assume that vy=v,/h. Then

ﬂh
Wl <h032+0rd/,<—;— >
B2
Now we apply (24) and theorem B.3 with n=r+t+42,d=[K:Q], p<cs3,
Ay=A,="=A,_;=C34, A,=A® and B=M to conclude that

h
Ord/'<%:_ - 1><C36(108 M)%log A.
2
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Consequently
w, <c3,(log M)?log A
whence

[z < Acstos . (30)
Therefore, for =0, 1, we obtain
0<|Bis— Bas| <[x|r 1 Acsotioam”.

We may write

|B’1’,5 - ﬂg¢s| = |ﬁ'1'5|

ﬁZé h ‘
=) -1 6=0,1).
</3> (©=0.1

We apply (24) and corollary B.1 with n=r+t+2,d={K:Q], 4,=A,=
cor=A,_1=C40, A,=A° and B=M to conclude that

h
(@> —1‘>A“42'°8“ (6=0,1).

1,6

Thus
|ﬂ’1'5| < |;|h — L A legz+esg)iog M) (6=0,1). 31)

By (27), (31) with 6=1 and (30),
I;I K Acsallos My (32)
Further, it follows from (26), (31) with 6=0 and (32) that
AM <C¥7Ac44(log M)?

which, by taking c, s sufficiently large, implies that A <c,s. Consequently,
by (32), (30) and (23), we obtain

max(l;l , IEI) K esstiogm)’
Now we take the norm on both sides of (3) to conclude
omg I N( y)|m g ecarllos m)z’
since y is not a unit. Hence m <c . O

Proof of theorem 10.4. Suppose that equation (3) is valid. Then we apply
theorem 1.3 to

(ay—ay)z=(x —0;2) —(x —;2)

to conclude that

max(lx—oc,zl, |x —azzl, |;|)<c49
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whence

max(l?l, |Z|) <Cs0-
Therefore, by (3),

BRI (33)
ING) =|N(ey™) <cs,

which, since y € &, implies that Iﬂ <53 and therefore, by (33), |ﬁ| <Csyq-
(I

Consequently

Proof of theorem 10.5. Suppose that equation (4) is valid. In view of theorem
10.3, we may assume that y is a unit. Then, by theorem 10.4, it follows that

"] <ess. (34)

Further, since y is not a root of unity, we see from (A.13) that
[V]=1+cse. (35)

Now combine (35) and (34) to conclude that m<cs-. O

Proof of theorem 10.6. By theorem 10.5, equation (4) implies that m<css.
Therefore it suffices to prove theorem 10.6 with C, depending only on K, %,
fitand m. We allow the constants csg, . . . , €64 in the proof of the theorem to
depend on m too. We may write

Y=71Y2 V1:72€5, |E|<csg. (36)
Re-write (4) as
Sx, 2)=y,0r20)". (37)

Observe that there are only finitely many possibilities for y, and they can be
determined explicitly. Further, recall that m>3. We apply theorem 8.1 to
equation (37) to conclude that there exists a unit g, € ¢4 such that

max(fe, x|, o, 2]) <ceo- (38)

Since ze ¥, it follows from (38) that |z] <c,. Therefore, by (38), [e;| <cs
and consequently, again by (38), |x| < cg3. Now we infer from (37), (36) and
ye.< that |y|<c64 and |y|<c64. 0O

Proof of theorem 10.7. By theorem 10.5, equation (4) implies that m <cgs.
Now apply theorem 8.2 and argue as in the proof of theorem 10.6 to obtain
the assertion of theorem 10.7. O
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Proof of corollary 10.1. Suppose that x#0, y#0 and m>0 are rational
integers satisfying |x|> 1, (x, y)= 1 and mn > 6. We assume that max(|x|, |y,
m) exceeds a sufficiently large computable number depending only on A4, B
and n. Then, since |x|> 1 and (x, y)=1, we see that Ax™+ By" is non-zero.
Write

AX"+ By = kp} e pl

where a,, ..., a, are positive integers and p,, ..., p, are primes not
exceeding P,. We may write

ptil. . 'p:’=wz”, 0<W<P(1"_l)s.
Then
—By"+wz"=Ax™ (39)

Suppose n=2. Then we see from mn=6 that m>3. We apply theorem
10.6 to equation (39) to conclude that max(|x|, |y|, m) is bounded by a
computable number depending only on A, B and P,.

Thus we may assume n > 2. Then we apply theorem 10.7 to equation (39)
to derive that max(|x|, |y, m) is bounded by a computable number
depending only on 4, B, n and P,. O

Notes

The equations considered in this chapter are more general than the
ones considered in chapter 9, but the approach in chapter 9 is different from
the one followed in this chapter. In chapter 10, the proofs depend heavily on
a factorisation that the equation under consideration provides, whereas
this information is not utilised in chapter 9. For explicit estimates on the
magnitude of the solutions, the approach followed in chapter 9 gives better
bounds than are obtainable by the method of the present chapter.

The original proofs of Schinzel and Tijdeman (1976) of theorem 10.2 and
its generalisation due to Shorey et al. (1977) depend on theorem 7.1. Shorey
(1980) gave proofs of these theorems which do not depend on theorem 7.1;
in fact he gave a quantitative version which implies the following.

Let n>1 and A, B be non-zero integers. For integers m>3, x and y with
|x|>1, (x, y)=1 and Ax™+ By"#0, we have

P(Ax™ + By") = C [((log m)(log log m))!/?
and
|Ax™ 4+ By"| = exp(C ,(log m) (log log m))*/?)

where C,>0 is a computable number depending only on A, B and n (cf.
corollary 10.1).
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Explicit upper bounds for m in theorem 10.2 have been derived by
Sprindzuk (1982, Ch. 7,§2) and Turk (1982, 198x). For example, in the latter
paper he proved that, under the conditions of theorem 10.2,

CsN>(log 3H)?

m< exp{ log(N log 3H)

}(log 3|b|)(log log 3|b|)*

where C is some computable absolute constant and N and H are the degree
and height of f, respectively. Turk used such an estimate to deduce lower
bounds for the greatest prime factor of the power-free part of f(x). Here the
power-free part Z(n) of an integer n is the smallest integer b such that |n| can
be written as by™ for some m>1, y> 1. Let fe Z[X] with at least three
simple zeros. One of the results of Turk (1982) is that

Z(f(x))>H(log log(| £ (x)| +3))%

where Cq>0 is a constant depending only on f.
Let py,...,p,beaset of distinct primes. Put = H7=1 log p;. Let Sbe the

set of rational integers composed of p,, ..., p,. Brindza, Gydry and
Tijdeman (1985) extended theorem 10.2 to the equation
af (x)="bwy"

in rational integers a, b, m, w, x and y with ab#0, we S and |y|> 1. They
proved that this equation implies that

m<(CH(s+ 1 1P s(log A)(log log A)?

where A=max( a|, b,3) and C, and Cg are computable constants
depending only on N and H. The special case a = b =1 was already obtained
by Turk (1982).

An immediate consequence of theorem 10.6 is that generalised
Ramanujan—Nagell equations like

x*+7=y™ inintegers m>2, x,y>1
and
7x2+1=y™ in integers m>2, x,y>1

have only finitely many solutions. For a discussion of such equations and
their relations with algebraic number fields generated by roots of
cyclotomic integers, see Ennola (1978).

Another choice of the polynomial f in equation (1) which has received
special attention is

fX)=142%4- -+ Xx*

where k is a fixed positive integer. Schéffer (1956) proved that for fixed k >0
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and m> 1, the equation
1¥+2%+---+xk¥=y" in integers x,y>1

has an infinite number of solutions only if (k,m)=(1, 2), (3, 2),(3,4) or (5, 2).
He conjectured that all other solutions have x=y =1 apart from k=m=2,
x=24, y="70. Gyory, Tijdeman and Voorhoeve (1980) extended Schéffer’s
result by proving that for fixed b, k, r € Z with b#0, k>2 and k ¢ {3, 5}, the
equation

1k 42k 44 xk+r=by™ in integers m>1, x>0, y>1  (40)

has only finitely many solutions and that all the solutions can be effectively
determined. In Voorhoeve, Gyory and Tijdeman (1979) they gave an
ineffective proof that, in (40), r can be replaced by R(x) where Re Z[X] isa
fixed polynomial. Brindza (1984b) gave an effective proof of this result and
extended it to a certain class of equations

F(x, 142+ - +x*)=by™ in integers m>1, x>0, y>1

where F € Z[ X, Y] is a fixed polynomial. Dilcher (1986) showed that under
general conditions the equation

AT+ ()25 - + x(@x)(px)F = by™

in integers m>1, x>0, y>1,

where yx is a primitive quadratic residue class character with conductor ¢
and b is a non-zero integer, has only finitely many solutions. In particular,
he showed that for any integers b#0 and k>3, k¢{4,5} there exist
computable upper bounds for the solutions of the equation

1k -3k 4 5k —- o 4 (dx —3) — (4x— 1)t =by™

in integers m> 1, x>0 and y>1.
Erdos (1951) showed that the equation

<x:n>=ym in integers m>1, n>1, x=1, y>1 41

has no solutions provided that n > 4. On the other hand, it is clear that there
are infinitely many solutions when m=n=2. The only other known
solution of (41)ism=2,n=3,x=47, y= 140 and it is conjectured that there
are no more. It is a direct consequence of theorems 10.6 and 10.7 that there

are computable bounds for the solutions of (41) withm>3,n=2and m>2,
n=3 (cf. Tijdeman, 1976a).
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Erdds and Selfridge (1975) proved that the related equation
(1) (x+m) =" @)
in integers m>1, n>1, x=1, y>1

has no solution at all. That is, the product of two or more consecutive
positive integers is never a perfect power. For earlier results in this
direction, see Erd6s and Selfridge (1975). Further, Shorey (1986a) applied
linear forms in logarithms to give a different proof of the assertion that
equation (42) implies that n is bounded by a computable absolute constant.
The proof does not depend on the fact that g;a; (see Erdds and Selfridge
(1975) for the definition of the a;s) are distinct for distinct pairs i,j and this
fact is crucial in the proof of Erdds and Selfridge.

Estimates for linear forms in logarithms have also been used to prove
results like this: the product of two or more neighbouring positive integers
cannot be a perfect power. Here a set of integers is called neighbouring if
they all belong to some small interval. Turk (1983b) and Erdds and Turk
(1984) proved this assertion for integers in an interval of the form

(N,N+Cglogloglog N)

where N>16 and Cy,>0 is some computable absolute constant.
Furthermore, Shorey (1986a) proved that for ¢ >0 and integers m, n, x with
m>3, x>n™ and n exceeding a computable number depending only on ¢,
any product of (3(m — 1)/(m —2) + ¢)n distinct integers from x+1,...,x+n
is never an mth power. If m=3 and x>n**, the assertion is valid for any
product of C, ¢n distinct integers from x+ 1,...,x+nwhere0<C;,< lisa
computable number depending only on &.

In a similar way as the deduction of theorem 7.6 from lemma 7.1, it is
possible to extend theorem 10.3 to the situation that the coefficients of
J(X,Y)belong to K, but the roots of f(X, 1) are not necessarily in K. In case
K =Q, Shorey et al. (1977) proved such an assertion.

By using theorem 8.3 in place of theorems 8.1 and 8.2, we can easily derive
a common generalisation of theorems 10.6 and 10.7. We recall that in
theorems 10.3-10.7 the dependence on K can be refined to dependence on
the degree and the discriminant of K only.



CHAPTER 11—

The Fermat equation

Fermat’s Last Theorem states that the equation
xn +.yll =Z" (1)

in positive integers n, x, y, z with n>2 has no solution, but no proof of this
assertion is available. We call (1) the Fermat equation. We refer to
Ribenboim (1979) for the history and a general treatment of the Fermat
equation. Without loss of generality we may assume x < y<zand (x, y, z)=
1in (1) and we shall do so throughout the chapter without further mention.
Hence (x, y)=(y, 2)=(z,x)=1.

The celebrated result of Faltings (1983) quoted in chapter 6 implies that
for every n> 2 there are only finitely many triples of positive integers x, y, z
such that (1) holds. Heath-Brown (1985) and Granville (1985),
independently, used this result to prove that Fermat’s Last Theorem is true
for almost all exponents n. Faltings’ proof is ineffective. In theorems 114,
11.6 and 11.7 we present some conditions under which effective proofs can
be given.

The method of estimating linear forms in logarithms enables us to prove
that, under suitable conditions, equation (1) implies that n is bounded. Such
a result is given by theorem 11.3. On combining such results with those for
fixed n, we obtain assertions that, under suitable conditions, equation (1)
has only finitely many solutions n, x, y, z (see theorems 11.2 and 11.5).

Abel’s conjecture says that (1) has no solution in positive integers n>2,
x, y, z such that at least one among x, y, z is a prime power. Even this special
case of Fermat’s Last Theorem is still open. In order to confirm Abel’s
conjecture it suffices to show that there are no solutions with z—y=1. In
theorem 11.1 lower bounds for z—y, y—x and |(z—y) —(y —x)| are given,
but the case z—y=1is excluded. The bound for z—y is proved by using
ideas of Barlow and Abel. Bounds for y —x were given by Stewart (1977¢)
and Inkeri and van der Poorten (1980). The former derived a slightly

184
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weaker lower bound; the Ilatter authors restricted themselves
(unnecessarily) to prime exponents.

Theorem 11.1. Let n>2, x, y, z be positive integers satisfying (1).
(@) Suppose z—y>1if nis odd. Then
z—y=2"n.
(b) There is a computable absolute constant C, such that
y—x> Z1=Caliogn)’in )
(c) There is a computable absolute constant C, such that
[z ) —(y—x)| > 2!~ Calorn. 3)

The next theorem and its corollary deal with the situation that x, y and z
assume polynomial values. They are due to Brindza, Gyory and Tijdeman
(1985).

Theorem 11.2. Let E,F,GeZ[X,Y] be pairwise non-proportional binary
Jorms of the same degree m. Then all solutions of the equation

(E(t, w)" +(F(t, w)"=(G(t, w)" 4
in rational integers n,t,u

with n>2, (t,u)=1 and E(t,w)F(t,u)G(t,u)#0 satisfy max(n, |t|, |u})<C;

where C; is a computable number depending only on E, F and G.

By taking u=1 we obtain the following result for polynomials in one
variable.

Corollary 11.1. Let E,F,GeZ[X] be pairwise non-proportional poly-
nomials. Then all solutions of the equation

(E@)"+(F@))'=(G())" in rational integers n,t (5)

with n>2 and E(@QF()G(t)#0 satisfy max(n,|t)<C, where C, is a
computable number depending only on E, F and G.

The remaining results deal with solutions of (1) such that values of certain
polynomial expressionsin x, y and z are composed of fixed primes. Let P> 3
be a fixed number. Denote by S the set of all rational integers composed of
primes not exceeding P.

We shall apply corollary B.1 and theorem B.3 to prove
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Theorem 11.3. Let n, x, y, z be positive integers satisfying (1). Assume that at
least one of the following conditions holds:

(a) xe8S, (b) yeS, (c) zeS,

d) y—xeS, (¢) y+zeS and nodd,

(f) x+z€eS and nodd
Then n is bounded by a computable number depending only on P.

Inkeri and van der Poorten (1980) gave quantitative results in case y — x has
a large factor belonging to S.

For fixed n we shall apply theorem 8.1 to derive the following
generalisation of a theorem of Inkeri (1976).

Theorem 11.4. Let x,y,z and n>2 be positive integers satisfying (1). For
A,BeZ put ¥(X,Y)=: AX + BY. Assume that at least one of the following
conditions holds:

(a) ZLx,y)es, (b) Z(y.20€S, (¢) Llz,x)eS.

Then there exists a computable number C 5 depending only on n, & and P such
that

max(x, y,2) <Cs.

The combination of theorems 11.3 and 11.4 yields the following result.

Theorem 11.5. Let x, y, z and n>2 be positive integers satisfying (1). Assume
that at least one of the following conditions holds:

(a) xe8, (b) yeS, (c) zeS, (d) y—xe€S,
(¢) y+zeS and nodd,
(f) x+zeS and nodd.
Then there exists a computable number Cg depending only on P such that
max(n, X, y, 2) < C.

We shall apply theorems 11.5 and 9.6 to prove that the assertion of
theorem 11.5 remains valid if the linear form is replaced by a quadratic
form.

Theorem 11.6. Let x, y, z and n>2 be positive integers such that (1) holds.
For A,B,CeZ put Q(X,Y)=AX*+ BXY + CY 2. Assume that at least one
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of the following conditions holds:
@ Q(x,y)€S, (b) Qy,2)eS, (c) Qz,x)eS.

Then there exists a computable number C, depending only on n, P and Q such
that

max(x, y,z) < C,.

Theorems 11.4, 11.6 and 7.1 imply the following result.

Theorem 11.7. Let x,y,z and n>2 be positive integers satisfying (1). Let
FeZ[X,Y] be a non-constant binary form. Assume that at least one of the
Jollowing conditions holds:

@ F(x,y)eS, (b) F(y,2)€S, (c) F(z,x)€S.

Then there exists a computable number Cg4 depending only on n, F and P such
that

max(x, y, z) < Cg.

Proofs
The proofs of the theorems depend on the following result,
essentially due to Abel (1823), on factorisations in (1).

Lemma 11.1. Suppose n, x, y, z are positive integers satisfying (1). Then

(a) there exist 6,,0, € {0, 1} and positive integers ay, a,, d,, d, with d,|n and
d,|n such that

z—x=2%d;'a} (6)
and
z—y=2%d;'a’. )]

(b) Suppose n is odd. Then (6) and (7) hold with 5, = 6,=0. Further,
x+y=d;'al. ®)

for some positive integers as, dy with ds|n.

Proof. We may assume n> 1. It follows from (1) that

(z—x)V=y" )
where
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Let 0 <re Zand p prime. Suppose p’|(z—x) and p"| V. Then p"| nz"~*. Since
(p, z)= 1, this implies that p"| n. Thus (z—x, V)| n. For any odd prime p with
p|n and p|(z—x) we have

ord,(V)=ord ,(n).
Further, if 2|n and 4|(z—x), then
ord,(V)=ord,(n).

Formula (6) follows from (9). Clearly 4, =0 if n is odd. Formulas (7) and (8)
are proved similarly.

Lemma 11.2. Suppose x,y,z and n>2 are positive integers satisfying (1).
Then n> 100.

This result was already known in 1926. See Ribenboim (1979, p. 200). The
best lower bound for n known today, 125 000, is due to Wagstaff (1978). We
shall use lemma 11.2 in two ways. Firstly it implies that (1) has no solutions
such that » is a multiple of 4, a result already proved by Fermat. Secondly it
is used for convenience in certain estimates.

Lemma 11.3. Suppose x, y,z and n>?2 are positive integers satisfying (1).
Then

@ y*22"n, (b) y/n*>20.

Proof. If nis odd, then, by lemma 11.1(b), there exist positive integers a,, d;
with d; <n such that x + y=d3 'a’. Hence a;>1 and

x+y 2"
>—"2_—. 10
y>—==5 (10)
If nis even, then, by lemma 11.2, n=2v with v odd. By lemma 11.1(b) there
exist positive integers a, d with d <v such that x>+ y?*=d~'q’. Hence a> 1
and y2>a’/2v>2"/(2v)=2"2/n. This estimate, together with (10), proves (a).
Since n> 100 by lemma 11.2, assertion (b) is an immediate consequence
of (a). ]

Theorem 11.1(a) is a direct consequence of lemma 11.1 if we know that
a,> 1. Thisisobviousunless z— y=1orz— y=2and neven. For the cases n
even, z—ye{1,2} we need a separate argument.

Lemma 11.4. Let x, y,z and v> 1 be positive integers satisfying

x4y =2z (11)
Then z—y>2.
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Proof. By lemma 11.2, we may assume that v is odd and v> 50.

Case 1. Assume z—y=2. Then x is even and y is odd. By writing
(x")?+(y")* =(2")?, we see that there exist positive integers r, s with r > 5> 0,
(r,s)=1 and rs even such that

x'=2rs, y=r>—s? z'=r?4s% (12)

Since (r,s)=1 and r?—s? is odd, there exist positive integers y,, y, such
that

r—s=yj, r+s=yj. (13)

We have, by lemma 11.3,

—1 — —
282=Zv_yv=(y+2)v_yv=2vyv—l 1+V .g+(v 1)(V 2)'12_{_.”
2y 2.3 y

v v?
Szvyv—l 1+;+;2-+.. <4vyv—1.

This implies s<2v!/2y¢~ 12 Further, by (13) and (12), y,>r!*> y!/2,
Hence, by (13),

va _yti =2S <4V1/2y(v_ 1)/2 <4V1/2y;_1.

On the other hand, y,> y, and therefore, by lemma 11.3,

v 2%
Vs—=yiZyy— (= 1 =vyy! —<2>y3‘2+<3>y3‘3- X

sy (1- () Vs
2 2y, 2y, e

1/2

On combining these inequalities we obtain v <4v'/2, which is impossible.

Case 2. Assume z—y=1. We now have x odd, y even. Hence there exist
positive integers r, s with r>s>0, (r,s)=1, rs even such that

xX'=r?—s?, y'=2rs, z’=r*+s2

Since r? +s?=z"=(y+ 1)", we have, by lemma 11.3,
v v—1 2 2 v v v—1 v v—2
V4w <ri+si=y +<1>y +<2>y +-+1

2
<y“+vy”"<1+2—vy+<%}> +"'><y"+2vy"“. (14)
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Furthermore, by lemma 11.3,
(2 =52 =x¥=(y+ 1)2v_yzv=<21">yzv—1 +<22V>yzv-z+ ..

v v?
<2vy2”'1<1 +=+—=+-- '><3vy2"".
yy
Hence
Sy <t —s2< 3y IR (15)
On combining (14) and (15) we obtain, by lemma 11.3,
y”<2r2<y”+2\/v y' 12
and
Yy =2/vy <28t <y
This implies

71§yv/2<r<71§y.”’2+\/vy"/2‘”2. (16)

and, by lemma 11.3,
1 1
vi2 _ v2—1/2 v/2. 17
7 NAD KT <737 (17)

Observe that (r+s, r —s)=1, (r +s)(r —s)=x" imply that r +s=x] for some
positive integer x,. Furthermore, either r is even, s is odd or r is odd, s is
even. In the former instance (2r, s) = 1, 2rs=y*, hence 2r = y} for some y, €Z;
in the latter (r, 2s)= 1, 2rs=y", hence 25 =y, for some y; € Z. We have, by
(16) and (17),

Jr+s=2s)=r—s<2,/vy? 2. (18)

|x} — y3|=max(r+s—2r
On the other hand, by (17),
min(x}, y3)=2s> \/2 yP —2\/v yrR-1z2,
Hence, by lemma 11.3,
min(x}, y3) =y + (/2= Dy/y—2/y" 12>y,
Thus min(x,, y;) > \/ y. Since x; # y,, this implies
X1 == v+ 1 = (/> vy
Since v>4, this yields a contradiction to (18). O

We shall use lemmas 11.1 and 11.4 to prove that (1) has no solution with
z—y=y—x=1.
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Lemma 11.5. If n>2 and y are positive integers, then

(y=1"+y"#(+1)"

Proof. Supposen>2and ysatisfy (y—1)"+y"=(y+ 1)". Bylemma 11.4,nis
odd. Hence, by (6) with 6, =0, there are positive integers a, and d, withd, |n
such that 2d, =af. This is impossible, since d, is odd and n> 1. O

Proof of theorem 11.1. (a) By lemma 11.1 we have z—y <da’ if n is odd and
z—y<2a%ifniseven.Since z—y>lifnisodd and,bylemma 114,z —y>2
if n is even, we have a, > 1. Thus, by (7),

z—y=2d;12">2"n.

(b) Let ¢y, ¢,, c3 denote computable absolute positive constants. By lemma
11.1, we have

z—x=2d g%, z—y=2%d;'a} (19)
where d,, 3, €{0, 1} and d,, d,, a,, a, are positive integers with d;|n and
d,|n. Hence

— - d n
(A, y—1’= 252-51—‘<"—2> —1‘. (20)
Z—X {z—X 2 \ay

From (19) we deduce that max(a,, a,) <(nz)'/". By lemma 11.1, we have z>
z—x>2"/n>2"3. On applying corollary B.1 we obtain

252—51 il_ <a_2)n -1
d, \a,

Since x < y < z, we see from (1) that 2x" < 2" hence z—x>(1—2"1")z> z/2n.
We therefore obtain, by (20) and (21),

> exp( —c, (log n)*(log z!/")). 1

y—x >i Zl=crliogn’/n.
2n

Hence

i > 2 —dlogn > Z—cz(log n)a/n‘
2n

Thus y— x> z!~calosn/n,

(c) In lemma 11.6 we shall prove slightly more than we need, namely that if
(z—y)/(y —x) is almost equal to some rational number r*, then it equals r*.

Lemma 11.6. Let x, y, z and n>2 be positive integers satisfying (1). Let r be
some rational integer. Then there exists a computable number Cy depending



192 Diophantine equations and recurrence sequences

only on r such that if
[z =)= (y=x)| <z Cternr, (22)
then y—x=r(z—y).

Proof. Puts=r+ 1. Assume that {z—y)# y—x. Then s(z— y)# z —x. Asin
the proof of theorem 11.1(h) we have (19), hence

d n
5200 d~‘<gi> _ 1‘ 23)
2 1

where 8,,6,€ {0, 1} and d,,d,,a,,a, are positive integers with d, |nand d, |n
and max(a;, a,)<(nz)'" with z!/">2!3, Suppose s(z—y)#z—x. On
applying corollary B.1 we obtain that the right-hand side of (23) exceeds

Z_
sZ=2 1
z—X

exp(—c4(log n)*(log 2! ™)

where ¢, is a computable constant depending only on r. Thus, using z — x>
z/2n and arguing as before, we find

|I’(Z—-y) _(y_x)l = |S(Z -y) —(z—-x)l > Zl—cs(logn)%

where ¢ is a computable number depending only on r. O

Proof of theorem 11.1(c) (continued). In view of lemma 11.6 with r=1, we
may assume that z—y=y—x. It was proved by Goldziher (1913) and
rediscovered by Mihaljinec (1952) and Rameswar Rao (1969) that (1) has no
solutions with x, y, z in arithmetical progression. We give a proof which is
an immediate consequence of lemma 11.5. Put A=z—y. Hence, by (1),

(y=4Ay'+y"=(y+4)" 24)

Itis clear from equation (24) that every prime divisor of A is a prime divisor
of y. By (y,2)=1, we must have (y,A)= 1. Thus A=1 in contradiction to
lemma 11.5.

Proof of theorem 11.3. We have n>6 by lemma 11.2. If (), (b) or (c) holds,
then the assertion follows from theorem 2.2. Thus we may assume that (d),
(e) or (f) holds. Denote by cq, ¢4, . .., ¢,3 computable positive numbers
depending only on P.

(d) Suppose y—x €S. By lemma 11.1 there exist J,, 5, € {0, 1} and positive
integers a,, a,, d,, d, with d; | n, d, | n such that (6) and (7) hold. By lemma
11.5, we have z—x > 2. By a deduction similar to that of (20) and (21), we
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obtain, by corollary B.1,

—X

=

> g ~%loe n? (25)

[N]

—X

where a=max(a,,a;)>1. We have y—x=(z—x)—(z—y). By (1) and
{(x,y,z)=1, it follows that z—x and z—y are relatively prime. Let p be a
prime dividing y—x. Then p<P, since y—xeS. Further, either
ord (z—x)=0orord,(z—y)=0. Assume, for simplicity, that ord ,(z — x)=0.
Now we apply (19) and theorem B.3 withn=3,d=1,p<P, 4, =3, A,=n,
Asz=a+1 and B=n to conclude that

ord,(y—x) =0rdp(l —j—_ﬁ) <c, log a(log n)3.
The above inequality is also valid when ord (z —y)=0. Consequently,

log(y—x)= Y ord,(y—x)log p<cgloga(log n)*. (26)

p<P
Combining (25) and (26), we obtain
log(z —x) < cg log a(log n)>. 27
On the other hand, it follows from (6), (7) and x <y <z that
log(z—x)=nloga—Ilogn. (28)
Now (28), (27) and a> 1 imply that n<c¢,,.

(e) Suppose y+z€eS§ and n is odd. By lemma 11.1, there exist positive
integers ay, as, d,, d3 with d, | n, d5|n such that (6) with §, =0 and (8) are
valid. Observe that a;> 1. Put b=max(a,, a3). By (6) and (8),

yrz_ ox=z_ [ _d\(aY
x+y = x+y diN\as)’

Apply corollary B.1 withn=2,d=1, A, =n, A,=b+ 1 and B=n to obtain

y+z
x+y

—¢y (0 3
>b ¢y (logn) R

As in the proof of (d), it follows from y+z€S and theorem B.3 that
log(y +2) <c,, log b(log n)>. (29

By x <z this implies log(x + y)<c,, log b(log n)*>. On the other hand, it
follows from (8) that log(x + y) > n log a; —log n. Therefore we may assume
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that b=gq,. Then, by (6) and (29),
nlog b—log n<log(z —x) <log(y +z) <c, , log b(log n)*
which implies that n<c¢, ;.

(f) The proof is similar to that of (e). O

Proof of theorem 11.4. Since 0 ¢ S, we may assume that at least one of 4 and
B is non-zero. By theorem 7.1 we may suppose that none of x, yand zisa
member of S. Consequently we may assume that AB# 0. Denote by ¢, 4, ¢, 5,
¢, 6 computable positive numbers depending only on n, ¥ and P.

(@) Suppose Z(x,y)=Ax+ByeS. Put

Ax+By=k. (30)
Observe that (x, k) | B, since (x, y)= 1. Further, by (1) and (30),
B*z"=B"(x"+ y")=(Bx)" +(k — Ax)". (31
Set
U=B"+(—4)"
and
(BX)'+(Y —AX)" if U#0,

(32)

JX, Y)={{(BX)"+(Y—AX)"}/Y if U=0.

Observe that feZ[X,Y] is a binary form of degree N>2n—1>=2 with
f(1,0)#0. By (32) and (31),

o SO K)if U0,
Bz —{kf(x,k) if U=0.

If U=0, then B"z"/k € Z and we may write B"z"/k = B, z} for some integers
B, z, with |B;|<c;,. Thus

fx,k)=B,z3 (33)
where z,=2z, or Bz and B,=B, or 1. Notice that |B,|<c,, Put
FX)=f(X,1).

Notice that F € Z[ X ] has degree greater than or equal to n — 1> 2. Further,
observe that

nAF(X)+(1— AX)F(X)=nB"X""1

which, together with F(0)#0, implies that all the roots of F are simple.
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Apply theorem 8.1 to (33) to conclude that
max(x, |k|) <c¢; s

which, together with (30) and (1), implies that max(y, z) <c;¢.
The proofs for (b) and (c) are similar. O

Proof of theorem 11.5. Apply first theorem 11.3 then theorem 11.4. []

Proof of theorem 11.6. We may assume that at least one of 4, B, C is non-
zero. In view of theorem 11.4 we may further assume that Q(X,Y) is
irreducible over the rationals. Put A=B2—4A4C and denote by a, B the
roots of Q(X, 1). Thus

Q(X,Y)=AX —aY)(X —BY).

Set L=Q(a). Observe that [L: Q] =2. Let ¢, be the ring of integers of L.
Define

_ fundamental unit in L if A>0,
=1 if A<0.

Denotebyc, 4,. . . ,c,5 computable positive numbers depending only on A4,
B, C,nand P. It follows from lemma A.12 and corollary A.6 that there exists
ac,, such that for every pair x,, y, of rational integers with Q(x,, y,) € S, we
have

Alxo —ayo)=pmy- - -mieM (34)

where p € 0, is a root of unity, M, 1, 20,...,l,>0 are rational integers and

7y, . . -, Tig are all non-units of ¢, satisfying In_v <c¢y7for 1< v<s. Denote by
& the set of all the products of non-negative powers of n,, ..., .

(b) Assume that Q(y,z)€S. By lemma 11.1, there exist a 6,€{0,1} and
positive integers a,,d, with d,|n such that

z—y=2%d;'a}. (35
By (34) with x,=y and y,=z,
Ay—az)=p,¢,&" (36)

wheremeZ, ¢, €% and p, isa root of unity in ¢;. Let o be an embedding of
L such that o(f) = «. Observe that o(¢) = + &~ 1. We prove the theorem when
o(e)=¢ . If o(e)= —e ™!, the proofis similar. Put a(p,) = p, and a(¢,) = ¢,.
Notice that ¢, € & By taking images under ¢ on both sides in (36), we obtain

A(y—B2)=parpe™™ (37)
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Solving for y and z in equations (36) and (37), we obtain

AB—a)y=pBd.E" —pracpe™™ (38)
and

AB-o)z=p $" —pyp,e™" (39)
Consequently

AB—o)(z—y)=p,(1—P)p1e" —p(1—0)pe™™
which, together with (35), implies that

AP —a)as = 3" — e~ (40)
where

G3=p1d(1=P)d1, da=p,d;(1-0)o,. 41)

Notice that a(¢p;) = ¢,. Since f# 1, we have ¢3#0 and consequently ¢, #0.
Further, it follows from (38), (39) and (y, z)=1 that

min(ord/;((ﬁl)a Ord/z(d)z)) < C18>
and consequently, by (41),

min(ord ,(¢3), ord (¢4)) <cyo

for every prime ideal 4 in ¢;. Now we apply theorem 9.4 to equation (40). It
follows from (6) of chapter 9 that there exists a unit ¢, € ¢, such that

max(|81¢38"'|, |31¢43_m l) <20

Since o(¢;™)=d,£ ™™ and ¢, is an algebraic integer, we obtain ]Z] <y
and

max(|¢37|, |¢48_"' |) <cya

By (41) this implies max(|¢1e"' |, |¢zs_"‘|)<cz3. Now it follows from (38),
(39) and a# f that max(y, z) <c,,. Hence, by (1), x <c,s.

(c) The proof is similar to that of (b).

(a) Assume Q(x, y)eS.Ifnis odd, proceed in a similar way to (b) to conclude
that max(x, y, ) <c,¢. Thus we may assume that n is even. Further, we may
suppose that n=2v with v odd and v>2. Re-write (1) as

)+ (D) =(z%"
In view of theorem 11.4, we may assume that Q(X,Y)# A(X*+Y?).

Further, by lemma 11.1, there exist positive integers as,ds with ds | v such
that

x2+y?=d;a.
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Thus
(x +iy)(x —iy)=ds 'aj.

Therefore, since (x, y)= 1, we obtain

x+iy=dg'a;
where ag, dg € Z[i] with |Z| <c¢,,. Now proceed as in (b) to conclude that
max(x, y, 2) < C,g. O

Proof of theorem 11.7

(a) If F contains a linear factor % in its factorisation over Q, then #(x, y) €S
and we apply theorem 114. If F contains a quadratic factor in its
factorisation over Q, then we apply theorem 11.6. Otherwise F has at least
three simple roots and, by theorem 7.1, it follows already from the fact that
F(x, y)€S, that max(x, y, z) 1s bounded. The proofs of (b) and (c) are
similar. O

Now we turn to the proof of theorem 11.2. The proof of theorem 11.2
depends on the following lemma.

Lemma 11.7. Let MeR. If x,y,z and n>2 satisfy (1) and y<M", then
n<Ciq where C, is a computable number depending only on M.

Proof. Since there are no solutions of (1) with 4| n, it suffices to prove the
theorem when n is odd. By c,4, ¢34, ¢3; We shall denote positive computable
numbers depending only on M. By (1), we have z" < 2y", hence z<2M". By

lemma 11.1, we can write
z—x=d;'a}, z—y=d;'a}, x+y=di'd} 42)

where a; and d; are positive integers satisfying d;|n for i=1,2,3. We
deduce a} <4nM", hence

a;<3M, d;<n (i=1,2,3).
We may therefore assume that g; is fixed for i=1,2, 3. By (42)
2x=—d;'a} +d; a+d;'d’
2y=d;'al —d;'as+d3tay ). (43)
2z=d{'a} +d;'a%+d5

Let n>c,4 with ¢,, sufficiently large. Then, by x<y and d, <n, we have
d;'a%<d;'d} and a,<a,. Further, since x>0 and d, <n, it follows that
a, <as;.
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Case 1.ay>a,;. Observe that (X — A)"+ (X + A)*>2X" for all real 4, X with
X > A>0. Using this inequality, (1) and (43) we obtain

2(d3 '@y <@2x)'+(2y)"=(22)"<(d5 ‘a3 +(d] ' +d3 )ay)"
Hence
(@31 +d7Ya) >d3 a2 - 1)
which implies n<c;,.
Case2.a3=a,. By (42) we have d,(z—x)=d;(x + ). By (1) and (z, x) = 1, we

see that (x+y, z—x)=1. Thus y<x+y<d, <n, which, together with
lemma 11.3(a), implies that n<c;;. O

In the proof of theorem 11.2 we shall also apply the following lemma. This
lemma is well known and can be found, for example, in the introduction of
Shafarevich (1977).

Lemma 11.8. Let o(X), f(X), g(X) be relatively prime non-trivial polynomials
in C[X1], not all constant. Let n>2 be a rational integer. Then

(X)) £ (f (X)) #(g(X))"

Proof. Suppose (e(X))"+(f(X))"=(g(X))". Without loss of generality we
may assume that deg(g) > max(deg(e), deg(f)) and that e, f and g are pairwise
relatively prime. We have

AX)N' (9N
<f(X)> * 1_<f(X)> |

Hence, by differentiation,

X)) HeX) f(X) - eX) f'(X)=(g(X)" 1 (g'(X) f(X) —g(X) f(X)).

Since e and g are relatively prime, we obtain

@) (X f(X) — e(X) f'(X)).

Hence

(n—1) deg(g) <deg(e) + deg(f) — 1 <2 deg(g)— 1.
Consequently n<2, a contradiction. O
Proof of theorem 11.2. By c,, . . ., c3;, we shall denote computable positive

numbers depending only on E, F and G. Suppose n, t, u is a solution of (4) as
specified in the theorem. There exists a rational integer b with |b| < 3m such
that the coefficients of X™ in E(X,bX +Y), F(X,bX +Y)and G(X,bX +7Y)
are non-zero (cf. the proof of theorem 5.5). Hence we may assume without
loss of generality that the coefficients of X™ in E, F and G are non-zero. By
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applying a similar argument to E(X +aY,Y), F(X +aY,Y)and G(X +4Y,Y)
with an appropriate rational integer a with |a| <3m, we may further assume
that the coefficients of Y™ in E, F and G are also non-zero. Let

EX,Y)=eX"+e, X" 'Y+ - +¢,¥™
FX,Y)=fo X"+ X" 'Y +---+f, Y™ | (44)
GX,Y)=goX"+g, X" 'Y+ +g,Y"

Then ege,, fo fugogm #0.
First we shall prove that n is bounded. If €} + f 5 =g or e, + =g, then

n<cs; by corollary 1.2. If
(e0+/6—go)em+fm—9gm)#0,
then, by (4) and (44),
ul(eh+fo—go)t™ and t|(ep+fm—gnu™,
hence, by (t,u)=1,

Ot m—gn) <cha.

max(|t], |u]) <max(ley +15 ~ g3,
Thus

max(|E(t, u)|, |F(¢,u)|, |G(t, w))) < c%s.

By (4) and lemma 11.7 with M =¢,, we obtain n<c;.

In the sequel we may assume that n is fixed. Observe that E"+ F* —G"isa
binary form of degree mn or vanishes. In the former case, (E(X,Y))"+
(F(X,Y))"—(G(X, Y))" can be decomposed into linear factors a;X + ;Y over
C and we find ot + Bu=0 for some i. Since the coefficients «;, f; are
constants and (f,u)=1, we obtain max(|t|, |u))<cs, in this case. Now
suppose E"+F"=G". We may divide by any common factor. By the
conditions of the theorem it follows that it is no restriction to assume that E,
F and G are relatively prime non-trivial binary forms in Z{ X, Y], not all
constant. Applying lemma 11.8 with ¢X)=E(X, 1), f(X)=F(X, 1) and
g9(X)=G(X, 1) we derive a contradiction. O

Notes
In these notes we restrict ourselves to publications which are of
special interest in connection with the results proved in this chapter. For
other results on the Fermat equation, see Ribenboim (1979). Other books
on Fermat’s Last Theorem are Bachmann (1919) and Edwards (1977).
Inkeri (1953) derived lower bounds for the solutions of

xP+yP=z" with (x,y,2)=1, 0<x<y and p>2, 45)
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in terms of prime p. He proved that if p 4 xyz then x> ((2p* + p)/log(3p))?
and if p| xyz then x> p*”~*and y>1p3?~! (see Rotkiewicz, 1960). Brindza,
Gyory and Tijdeman (1985) proved a similar bound for general exponents n
(cf.lemma 11.7). They showed that (1) implies x > n">. Turk (1983a) showed
that every solution of (1) implies n < 2 and z" < exp(exp(C, ; #>)) where 2=
min(P(x), P(y), P(z)) and C,, is a computable absolute constant.

Inkeri (1946) proved that, for given p, there are only finitely many
solutions (x, y, z) of (45) for which y —x or z— y is less than a given number
M (cf. Everett, 1973; Inkeri, 1976). Stewart (1977¢) proved that there is some
computable upper bound C, , for all solutions n, x, y, z of (1) with y —x < M.
Inkeri and van der Poorten (1980) refined Inkeri’s result as follows: Let p,,

.. D be distinct primes less than p such that p}*|y—x for i=1,...,m.
Then (45) implies that

m
(y—x)/’l—[ PEV">(z—x)‘_C13(‘°8P)3/(p—l)
i=1

where C, ; equals 1+ p, + - - + p,, multiplied by some computable absolute
constant. Furthermore, they proved that (45) implies z —x > p?”.

Lemma 11.4 is the main result of Tijdeman (1986). It is remarkable that
Fermat’s Last Theorem has not even been established for even exponents.
Terjanian (1977) proved that for an odd prime p the equation x?? + y?? = z2?
in positive integers x, y, z implies 2p|x or 2p|y.

Consider the equation (cf. (5))

(E())'+(F(t))'=2" in rational integers n,t,z (46)

where E, F € Z[ X] are non-constant relatively prime polynomials. Brindza
(1984c¢) improved on a result of Inkeri (1976) by showing that, for given
n>2, all solutions ¢,z of (46) with E(:)F(f)z#0 satisfy max(|t},|z))<C,,
where C, , is a computable number depending only on n, E and F. Brindza,
Gyo6ry and Tijdeman (1985) generalised another result of Brindza (1984c)
by proving that all solutions #, t, z of (46) with n > 2 and E(t)F(t)z 0 satisfy
max(n, ||, |z]) < C, s where C, 5 is a computable number depending only on
E and F, provided that at least one of the following conditions holds:

(@) E+F has at least two distinct zeros,
(b) the degrees of E and F are different,
(c) the leading coefficients of E and F are equal.

For Fermat’s equation over function fields, see lemma 11.8, Shanks
(1962, pp. 144-7), Gross (19664, b), Greenleaf (1969) and Albis Gonzales
(1975).



CHAPTER 12—

The Catalan equation
and related equations

Catalan (1844) conjectured that 8 and 9 are the only two consecutive
positive integers which are both perfect powers. Here and elsewhere in this
chapter we use integers for rational integers unless stated otherwise.
Catalan’s conjecture says that the equation

x"—y'=1 in mn,x,yeZ (1)
with m>1,n>1,x>1,y>1

has only one solution, m= y=2, n=x=3. Pillai (1945) conjectured that for
given non-zero integers a, b and k, the more general equation

ax™—by'=k in myn,x,yeZ (2)

with m>1,n>1,x>1, y>1

and mn > 4 has only finitely many solutions. Both conjectures are still open.
By the results in this tract we can show that equation (2) has only finitely
many solutions if m, n, x or y is fixed and mn>4. This is a straightforward
consequence of theorems 12.1 and 12.2.

Let P>2 and denote by S the set of all integers which are composed of
primes less than or equal to P. The first theorem is an extension of Shorey
and Tijdeman (1976a, theorem 4(i1i)).

Theorem 12.1. Let 1 >0. There exists a computable number C, depending
only on P and t such that the equation

ax™—by'=k (3)

n aesS, beS, keS, xeS, yeZ, meZ, neZ
201
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withm>1,n>1, x> 1, y>1 and (ax™, k) <t implies that
max(jal, ||, |k, m,n, x, y) < C;.

The second theorem is an extension of Shorey et al. (1977, theorem 3).

Theorem 12.2. Let 1>0,me Z, m> 1. There exists a computable number C,
depending only on m, P and t© such that the equation

ax™—by'=k 4)
in aeS, beS, keSS, neZ,xeZ, yeZ

with n>1,

x|>1, |y|> 1, mn>4 and (ax™, k) <t implies that
max(|a|, |b|, ||, n, x, ») < C,.

The only values of a, b and k for which Pillai’s conjecture has been proved
are a=b=k=1, the case of Catalan’s equation (1).

Theorem 12.3 (Tijdeman, 1976b). There exists a computable absolute
constant Cy such that (1) implies that max(m,n, x, y) < Cj.

Van der Poorten (1977b) generalised this result to the equation x™ — )" =
Z™" in positive integersm> 1,n>1,x> 1, y> 1, ze S where (m, n> denotes
the least common multiple of m and n. We shall give a further extension.

Theorem 12.4. There exists a computable constant C, depending only on P

such that the equation
v w

in positive integers m>1, n>1, v,w,x,y

with (x,v)=(y,w)=1, mn>4 and at least one of v,w,x,y in S implies that
max(m, n, v, w, X, ) < Cy.

We conjecture that (5) with (x,2)=(y,w)=1 and mn>4 has only finitely
many solutions. For a historical survey on consecutive powers, see
Ribenboim (1984).

An equation which is closely related to (1) and has been studied by several
authors is

x"—1

1 =y" inintegers m>2,n>1,x>1, y>1. (6)
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Known solutions are (m, n, x, y)=(4,2,7,20),(5,2,3, 11)and (3, 3, 18,7). We
conjecture that (6) has only finitely many solutions, but we can only prove
the following weaker result (cf. Shorey and Tijdeman, 1976a).

Theorem 12.5. The equation (6) has only finitely many solutions if at least
one of the following conditions is satisfied:

(i) xis fixed,
(i) m has a fixed prime divisor,
(i) y has a fixed prime divisor.

Bounds for the solutions can be computed in each of the three instances.

The number-theoretical interpretation of (6) is which perfect powers in the
x-adic number system are written as a repetition of digits 1. A more general
question is which perfect powers in the x-adic number system are written by
repeating the same digit a again and again. Oblath (1956) proved that the
latter question has no solution for x=10, l<a<x. Inkeri (1972)
determined all solutions for I<a<x<10. The following result is a
generalisation of one from Shorey and Tijdeman (1976a). It shows that for
given x there are only finitely many perfect powers of the form baa---a in
the x-adic system.

Theorem 12.6. Let ¢ and x be integers with x> 1. There exists a computable
constant C depending only on ¢ and x such that

x"—1
x—1

a =y"+c inintegers az1l,m>2,n>1,y>1 )

subject to a<x and a# —c(x — 1) implies that max(m,n, y) < Cs.

Note that if | <a<x and a= —c(x—1), then a=x—1, c= — 1. Hence (7)
becomes x™ = y". This equation has infinitely many solutions m, n, y.

Goormaghtigh posed the question which numbers have identical digits
in two different number systems. The only known solutions of x™ 14
X244 1=y"" 14y 24 - 4 linintegers m>n>2, y>x> 1 are (m,
n,x, »=(5,3,2,5)and (13, 3,2, 90). The following result is a straightforward
application of theorem 1.2.

Theorem 12.7. Let x and y be integers with y>x>1. There exists a
computable constant Cg depending only on x and y such that the equation
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m__ 1 n__
ax —by 1

x—1 ~y—1 ®)

in integers 1<a<x, 1<b<y, m>1, n>1
with a(y — 1)#b(x — 1) implies that max(m, n) < C.
Balasubramanian and Shorey (1980) generalised theorem 12.7 as follows.
Theorem 12.8. There exists a computable constant C, depending only on P
such that the equation

X1 -1
e T

©

inintegers a2, b=z1, m>1,n>1,x>1 y>1

with a, b, x, yin S,(a, b)=1 and a(y — 1)~ b(x — 1) implies that max(a, b,m, n,
x, V)<Cs.

Proofs
Proof of theorem 12.1. The constants c,, c,, ¢; occurring in the proof are
computable and depend only on P and 7. Assume that (3) holds with m > 1,
n>1,x>1,y> 1 and (ax™, k) < 1. Without loss of generality we may assume
that d:=(ax™, k) is fixed. Since d € S, there exist integers a,, b,, k;, x; in S
and y, >0 such that a,x7 =ax™/d, b, y{ =by"/d, k, =k/d, (a;x7,k,)=1 and

a,x7 —b i =k,. (10)

If y, =1, then we can apply corollary 1.2. If y, > 1, then we apply theorem
9.2 with u; =a,xJ,u,= —k,,u=b,,qg=n, y=y,.Inecither case|a,|, |b, |, |k,|,
|x7| and | y;| are bounded by some constant c. Since d < ¢, this implies that
a, b, k, m, n, x and y are bounded by some constant c,. O

Proof of theorem 12.2. Without loss of generality we may assume that (4)
holds with n>1, x>1, y>1, mn>4 and (ax™ k)<z. If yeS, then the
assertion follows from theorem 12.1. We consider the case y¢S. Hence,
following the argument of the previous proof, we see that we may assume
without loss of generality that (ax™, by")=(ax™, k)=1 and y> 1. We may
further assume that a is m-free. Write k =k, k% where k, is m-free and k, €S.
Since there are only finitely many possibilities for @ and k,, we may assume
that they are fixed. We apply theorem 10.6 if n> 2 and theorem 10.7 if n=2,
with t=1 and f(X,Z)=aX™—k,Z™, to the equation

ax™ —k, k%= —by".
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We obtain that |b|, y, x, |k,| and # are bounded by a computable constant
depending only on m, P and t. This implies the statement of the theorem.

O

Proof of theorem 12.3. In the proof ¢, ¢s, ..., ¢;; denote computable
absolute constants. We shall deal with the equivalent equation

xP—)i=¢ inintegers p=qg>1,x>1,y>1,¢ee{—-11}. (11)

Without loss of generality we may assume that p and g are distinct primes.
Moreover, by theorem 12.1 applied with x fixed and by theorem 12.2
applied with p fixed, it is no restriction to assume that x>c,, y>c4, p>Cy,
q>c, where ¢, is some suitable large constant, and that p and g are odd. By
(11) and p>gq we have

(x,y)=1 x<y (12)
and
xP=Y+4e=(y+e)()f ' —eyf T I+e2y 3 417,

Letd=(y+e,y? ' —ey? 2+ +&77 ). Then y= —¢(mod d), hence d | q. If
q|(y+e), then (¥ +¢)/(y +¢) contains exactly one factor g. Thus there are
integers e {—1,0} and s>0 such that

y+e=q’sP. (13)
In a similar way we derive from
Y=xP—e=(x—g)(xP " +exP 2+ - 4P 7Y,
that there exist integers y e { — 1,0} and r>0 such that
x—e=pri. (14

Note that r>1,s>1,if y= — 1 then p|r, if = —1 then g|s. Hence p'r >
2971 and ¢°sP>2P"'. On substituting (13) and (14) into (11) we obtain

(PP +e)P —(g°s" —e)fi=e. (15)

The crucial point for the proof is that » and s are nearly equal. We shall use
the following estimates. From (14), (11} and (13) we infer that
SPq
20PP > (P4 1P+ 12 xP+ 12 Y12 (g°s? — 1)‘1>W.
These inequalities are also valid when p and ¢, r and s, x and y are
interchanged. Hence, by p>g>c,,

s<(Eg)Vr<2r, r<(4p)s. (16)



206 Diophantine equations and recurrence sequences

We shall first prove that a constant cs exists such that
q<cs(log p)*. (17)
It follows from (13), (14) and

max{(x — 1)?,(y — 1)) <x?=yi+e<min((x+ 1)*,(y + 1)9) (18)
that
PP — qsP = (x —g)? — (y + &)1 #£0. (19)

In order to prove (17) we may assume that p'r1>22"1> 12p® We have, by
(14), (11) and (13) respectively,

1
=

1

=;’

X
pr

yq

xP

y 1
'—6—;—1 =—5;.
qs qs

Recalling that if |¢| <4 then |log(1+a)| <2|«|, we obtain, by —1<y<0,
—1<6<0, p>q, (14) and (16),

|plog(p’r®)—plog x| <2p'"r 1< 2p?r 7Y,

|plog x —glog y| <2x77<2pr79, (20
lglog y —qlog(g’s?)| <2q'~°s ™7 <2g%s~1<8pr 4. (1)

Hence,
A, :=|plog(p'r) —qlog(q’s?)| < 12p°r~2 22)

By (19),A, = | py log p—qd log g + pq log(r/s)|#0. On applying theorem B.1
to A, with d=1,n=3, A, =A,=p, A;=2r, B=p? we obtain, by (16),

A, > exp(—ceg(log p)*log ). (23)
Comparing (23) with (22) we see that

<12 p3r°°(l°g Pt < pertiozp)®

which implies the assertion (17).
By another application of theorem B.1 we shall show that p is bounded. It
follows from (14), (13) and (18) that

(P +6)P —q*9sP = xP —(y +¢&)T #0. (24
We have, by (20) and (21),
|plog x —qlog(g’s?)| <2x "7 +2¢%s™*.
Further, by (11) and (13), x> )2 —1>2%%y>2qy>s”. Hence

rya
P48 ag2sr, 25)

A,:=|—qgdlogq+plog
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Weapply theorem B.1to A, withn=2,4, =p, A,=5ps?, B=p.Since A, #0
in view of (24), we obtain, by (16),

A, > exp(—cg(log p)° log(5ps?)). (26)
Comparing (26) and (25) we find, by (17),
P <4q3(SpsT)ytos P goallogn)”,

Hence p < cy(log p)’. This implies that p and g are bounded by a computable
number ¢, .

We may now assume that p and q are fixed. It is a direct consequence of
theorem 6.1 that there is a constant ¢, such that x<¢,,, y<¢,, for every
solution of (11). Thus the total number of solutions of (1) is finite and there is
a computable constant C, such that max(m, n, x, y)<C,. ]

Proof of theorem 12.4. In this proof c¢,,, ¢;3, . . . , ;5 denote computable
constants which depend only on P. Suppose that (5) holds with (x,v)=
(y,w)=1, mn>4 and at least one of v, w, x, y in S. Then

XMW" — Y= W, 27)

By (x,v)=(y, w)=1, we have v" | w" and w"|v™, hence v =w". Choose z>0
such that z™™ =y™=w". Then, on dividing by v"=w" in (27),

XM — Y= g, (28)

By theorem 12.3 we may assume z> 1.If p is a prime such that p| x and p| y,
then p|z, hence p|v. But (x,v)=1. Thus (x, y)= 1. Further, at least one of
x, ¥, z belongs to §.

If x €8S, then (28) can be written as

Y+w'eS.

It follows from theorem 2.2 with A=B=1 that n<c,,. Then we apply
theorem 12.2 to the equation y" + z<™® = x™ to conclude that max(m, v, w, x,
Y <c,3. If yeS§, then we can apply a similar argument.

The only remaining case is ze€S, which is in fact van der Poorten’s
theorem. If m is even and n>2, then the claim follows from theorem 12.2
applied to (x™?)? — y*=z™"_1If n is even and m>2, then the claim follows
from theorem 12.2 applied to (y”?)* —x™= —z™" Thus we may assume,
without loss of generality, that m and n are odd. It follows that m has an odd
prime factor p and » has an odd prime factor q. If p=g4, then (28) implies

X +y=4

with x; =y", y,=z™"4 z =x"4 y eS and the result follows from
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theorem 11.3(b) and theorem 7.1. Without loss of generality we may
consider in the sequel

xP—)A=zM inintegers p>q>2, x>1, y>1, zeS 29)

with (x, y)=1, p and g prime. It will suffice to show that max(p, ¢, x, y, |z]) <
¢4 for some constant ¢ ,.

We have
yi+zH
y"+z”“=(y+z")( e )

Let d be the greatest common divisor of the two factors on the right-hand
side. Then y= —z” (mod d), hence, by (y,2)=1, d|q. If q|(y+2°), then
(y2+ zP)/(y + zF) contains at most one factor q. Thus there are integers
d€{—1,0} and s#0 such that

y+zP=¢’s". (30)
Similarly, we derive the existence of integers y € { — 1,0} and r#0 such that
x—A=p'H, 31)

Note, by distinguishing z>0 and z<0, that |p’q’s?| > 2, whence |rs|>2.
Furthermore, ¢~°|s and p™"|r. On substituting (30) and (31) into (29) we

obtain
(P’ + 29)P — (g°s? — zP)1 = z™, (32)

Our first object is to show by p-adic methods that |z| is relatively small.
Suppose p} | z, I>0, p, prime. Plainly, by (32),

2| (p'Pr —q"sPY), (33)
hence,
ord, (p'°rP?—q*sP) > lq. (39

It follows from (29) and
max((x —|z|?)7, (y —|z]P)) < x? = 1 + 2 <min((x +|29?, (y +|2[P)9)  (35)

that
pvprm_qéqsm.__(x_ZG)P—(y+z”)“;éO. (36)

We apply theorem B.3 to A;:=pPq~%(r/s)*?*—1 with n=3, 4, =A,=p,
A;=2|rs|, B=p?. Since A,#0 in view of (36), we obtain that

ord, (A;)<c, s(log p)* log(|rs]).
Comparing this with (34) we see that

lg <c, s(log p)*log(|rs|).
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Let |z|=]]; pj. Then
|28 =T P < (rs]yretos?”. 37
j

Next we intend to show that
q<cy4(log p)* (38)
for some computable constant ¢,,. Thus we may assume that
g>cygllogp)* and p>cyy, (39)

where c,4>6c;¢ and ¢, are suitable large constants. In order to derive
inequalities like (16) we use (39) repeatedly without further reference.
Assume |r|<|s|. Then |s|>1 and, by (37) and (39),

|ZI < 'slh‘xe(losp)‘/q < |s|1/3. (40)
Hence, by (30) and s> 1,
y=2q°sP —|z|P > ¢°s” — P13 > 4g°sP.
By (31) and (29) it follows that
(P4 2)P = xP = 7 + 270> (b’ — 5 > ('),

Hence
PrA>4g°s1 — >4’ — 593 > 4g°s.

In particular,
s<(4q)tar<2r 41)

and r> 1. By a similar reasoning we find that if |s| <|r|, then r>1and r<
(4p)!/4s. Combining this with (41) we see that in both cases

r>1, s>1, |z®<max(r,s),
42)
(@p)~Yar<s<(dg)tar<2r.

We have, by (31) and (42),

Vir"_ 1‘= p—i:; <4pqrilPr-agapir~ 23,
p
by (29), (42) and (31),
v g
F_ ll = F \—;W—z(4q)pr pq/3,
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and by (30), (40) and (42),

y 1‘=

- /a,.— 2p/3
qésp <Q(4p)pqr e,

zp
oP

Recalling that if |«| <4 then [log(1 +a)| <2|«|, we obtain
|plog(p'r?) —plog x| <8p3r~ 243,

qu
|plog x —glog y] <2%<(8pr-q/3)p’

4
|qlog y —qlog(g’s?)| <2 % <(8p3r— 23y,
Hence, |
Aq:=|yplog p—dqlog g+ pqlog(r/s)| <24p°r =7, 43)

By (36),A4#0. On applying theorem B.1to A, withn=3,4; =A,=p, A=
2r, B=p? we obtain, by (41),

A4 =exp(—c,o(log p)* log ). 44)
Comparing (44) with (43) we find
I3 < 24p3pFaolos o < peanlon p)4,

which implies the assertion (38).

Our third object is to improve upon estimate (37). Suppose p} || z,/>0. By
(32), we have
2P| (PP + 2 — g*sP).
Put As=(p'r" +29Pq %s P —1. We have, by (x,2)=1,
ord, (As)>Ip. (45)

Suppose As=0. Then, by (32), (¢°s” — z°)*=(¢’s*)? — 2. Since ¢’s? —z*=
y>0, this is impossible. Thus As;7#0. We apply theorem B.3 to A=
g~ %((p'r + 29)/s%)? — 1 with n=2, A, =p, A, = x|s|%, B=p. By (31) we obtain

ord, (As) <c,5(log p)° log(x|s|?). (46)
Comparing (46) with (45) we see that
p’ll’ < (xISI‘I)‘zz(lol »® log py .

On taking the product of these inequalities for all prime divisors of z, we
obtain that

Ile < (xISIG)Cn(lOS P)a. (47)
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We now want to show that p is bounded. Suppose |s|? < x. Then, by (29)
and (30),
xP=A+ 2P =(g’sP — zP)1 + 2" <(|s|”+ Izlp)q.

Here we use that g is odd and therefore the terms —z™ and z™ cancel.
Hence, by (47) and (38).

xPla |S|p < Izlp  x¥aalos n? <ixpha,

Here and in the sequel we suppose that p is sufficiently large. It follows that
xP1 < 2|s}?, which implies that x <2|s|% Thus unconditionally

x<2|sfe. (48)
Hence, by (47) and (38),
| zlp < (2' SI)Zczsq(log » < (2' sl)cu(los » (49)

By |z|> 1, we have |s| > 1. Since y>0 and p is odd, we infer from (30) that
s> 1. We have, by (29), (49) and (30),

xP 79| (25)2edt8 »’
=
I B T e
(25)°2eto8 »'\q _
g(yT <7
and, by (30),
y |Zp| 7 1 _
— =L "<«q(2 c24008P) ¢=P o ¢~ PI2
Hence,
|plog x —qlog y| <4s ™72,
and
|lglog y—qlog(g’s?)| <3s ™72
So we obtain
Ag:=|—dqlog g+ plog(x/s?)| <5~ P2 (50)

We apply theorem B.1 to Ag withn=2, 4, =p, 4,=2s% B=p. By (32) we
have A4 #0. It follows, by (48), that

Ag=exp(—c,s(log p)°q log s). (51
Comparing (51) with (50) we see that, by (38),

§PI12  °2s9008)°  e26l08 ),

Thus p<2c,4(log p)’, which implies that p<c,,. Hence g <c,7.
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We have reduced (29) to finitely many cases with p, g fixed. On applying
theorem 7.1 we find that for each pair p,q there are only finitely many
integer solutions x, y of (29). Thus max(p, g, x, ¥, |z)) <c¢3s. O

Proof of theorem 12.5. Assume that (6) holds.

(i) Suppose x is fixed. Apply theorem 9.2 withu; =x™, u, = —Lu=x— 11t
follows that m, n and therefore y are bounded.

(i) Let d> 1 be a fixed divisor of m. Put

m_ | m/d_l
== B== . (52)

Txm_ 1’ x—1

Then AB=y" and (A4, B)|d. Hence there exist positive integers r, s, y;, y,
with (r,5)= 1, rs<d such that

A=y, B=iy. (53)
S r

Without loss of generality we may assume that r and s are fixed. Put z=x™/".

Then
22—1

z—1

s =51+ 24+ D=1yl (54)

We distinguish three cases.

Case 1.d>4. On applying theorem 10.7 with f(X,Z)=s(X? "1+ X?"2Z +
o429 Y y=r,m=n,X=2zY=y,, Z=1, we obtain that there are only
finitely many solutions n, y, > 1, z=x™" of (54). Obviously there are only
finitely many solutions with y, =1. Thus there are only finitely many
solutions of (6).

Case 2.d=2.If misdivisible by 4, then the assertion follows from case 1 with
d=4. So we may assume that m is an odd muitiple of 2. If (4, B)=1, then
r/s=1 and A=x™2+1=y}. Theorem 12.3 implies that there are only
finitely many solutions of this equation. If (4, B)> 1, then (4, B)=2 and x is
odd. By (52) we have 4| B(x — 1)=x™2—1, hence x=1 (mod 4). We have

: x+ =y~

x2—

Since x+1=2 (mod 4) and n> 1, the quotient (x™—1)/(x2—1) is even.
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However,

x"—1

=14+x24 - +x"" 2=
x?—1

(mod 2)

3

is odd.

Case 3.d=3. On applying theorem 10.6 we obtain that (54) has only finitely
many solutions n>2, y, > 1 and z=x™"“, Obviously there are only finitely
many solutions with y, = 1. We may therefore restrict our attention to the
case n=2. Since case 2 can be applied if m is even, we may also assume that
m is odd. Since case 1 can be applied if 9 | m, we may further assume that m/3
is not divisible by 3.1f (4, B)= 1, thenr=s=1and A= 1+ z+2z%=y?. Since
22 <z2+z+ 1<(z+ 1)?, this is impossible. If (4, B)> 1, then (4, B)=3 and

r=3, s=1. Hence
xm/3__1 V2 n
B= =3 =Z2),
x—1 (3>

If x=1 (mod 3), then 3|(m/3) because of 3| B, a contradiction. If x=2
(mod 3), then 2|(m/3), again a contradiction. Since 3|x is plainly
impossible, there are no solutions at all if d=3,n=2,2}tm, 9 fm.

(i) Suppose that y has a fixed prime factor p. If p|(x — 1), then

x"—1

x—1

=x""1yxm24...41=m (modp)

Since p|(x™— 1)/(x — 1), we see that m has a fixed prime factor and we can
apply (ii). If p 4 (x — 1), then let p|(x' — 1) with ¢> 1 minimal. Since t|m and
t|(p—1), t is a bounded divisor of m. As t> 1, we can apply (ii) again.

Proof of theorem 12.6. By c,,, ¢30, c3; We shall denote computable positive
constants depending only on ¢ and x. Suppose (7) holds subject to a < x and
a# —c(x—1). We may assume that a is fixed. By (7),

ax™ ~(cx+a—c)=(x—1)y".

We apply theorem 9.2 with u; =ax™, u, = —(cx+a—c),u=x—1and g=n.
Note that (ax™, cx +a —c) < c,q, since cx +a —c is fixed and non-zero. We
infer max(m, n) < ¢,,. Since the left-hand side of (7) is bounded, we obtain
y<cay. (]

Proof of theorem 12.7. Assume that (8) holds with a(y — 1) b(x —1). We
may assume that ¢ and b are fixed. We have

a(y — Dx™ —blx — 1)y" —(a(y — ) - b(x — 1)) =0.
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The common factor of the three terms is bounded, since the third term is
bounded and non-zero. On dividing by the common factor and applying
corollary 1.2 we obtain that m and n are bounded. O

Proof of theorem 12.8. Assume that (9) holds with a, b, x, yin S, (a, b)= 1 and
a(y— 1) b(x —1). Write
x=pit B, y=picepl
2
a=pi--pp, b=pipe
Here p,, ..., p, are primes less than or equal to P and the exponents of p,,
.., s in the factorisations of x, y, a, b are non-negative integers not

exceeding 2 log x, 2log y, 2log(a + 1), 2log(b + 1), respectively. It involves
no loss of generality to assume that m> n. Further, (9) implies

axm;1<nby"‘1, by ' <max™"1. (55)

By ¢33, €33, ..., C4s We shall denote computable positive constants
depending only on P.

Lemma 12.1. max(log a, log b) < c,(log(m log x))>.

Proof. We prove theinequality for log b. Suppose p | b. Then, by (9), we have

x"—1

1 )SOrdp(x"' — 1)=0rdp(p’i"‘1. . prsnx,_ 1)

ord (b) sord,,<a

On applying theorem B.3 with n=s<P, A,=A4,='-=A4,=P and B=
2mlog x to the right-hand side of the above inequality, we obtain

ord,(b) <c;5(log(m log x))?,

hence
log b= ord,(b) log p <c;4(log(m log x))*.
Similarly "
log a<c;5(log(n log y)>.
In view of (55) the lemma follows immediately. O

Lemma 12.2. min(log x, log y) <cs¢ log m.

Proof. We prove the lemma for x < y. The proof for the case x > y is similar.
Let J be the smallest positive integer such that ax™~°# by"~°. Observe that
0<2, since a(y—1)# b(x — 1) and (a, b)= 1. Now it follows from (9) that

ax" "’ +ax" " o a=by" " +by'*=' 4. +b,
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hence, by (55),
0<|ax"~?—by'~?| <max™~°"'+nby*°~' < 2m%ax" ",
Thus we have
O<|pi---ple—1|<2m3x "1, (56)
where w;=b,—a;+(n—98y,—(m—2)x; fori=1,...,s. By lemma 12.1 and
(55), we find that the integers |u;| do not exceed c;,mlog x. Now apply

theorem B.1 with n=s<P, A;=A,=---=A4,=P and B=c;,mlogx to
obtain

|pit - pls— 1| > (mlog x) 2. 57

Comparing (57) with (56) we obtain lemma 12.2 by transferring secondary
factors. O

Lemma 12.3. max(log x, log y) < c34(log m)>.

Proof. We prove the lemma for x < y. The proof for the case x > y is similar.
From (9), lemma 12.1 and (55) we have

ax

0< —by"‘ ——+b(y' +o0 4 1)
<a+nby"~2<y" "% explcyollog(n log ¥))?).
Thus

0#(py-- - pelx—1)™1 = 1)<y~ expleyollognlog y))?) (58)

where v,=a;—b;+mx;—(n— 1)y, fori=1,...,s. Fromlemma 12.1 and (55)
we observe that the absolute values of v; with i=1, ..., s do not exceed
c4ymlog x which, by lemma 12.2, is less than c,,mlogm. Now apply
theorem B.1 with n=s+1<P+1, 4,=--'=A4,_,=P, A,=x<m" and
B=¢4,mlogm to conclude that

it py(x—1) 71 — 1> exp(—c,3(log m)). (59)
Now lemma 12.3 follows immediately from (59), (58), (55) and lemma 12.1.
a

From (9) and lemma 12.1 we have

[ax"' by"|_| a |

O?élx-—l y— 1| |x—1 II

< explc,q(log(mlog x))?).
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Thus, by lemma 12.3,

w. %
0< p‘i’l...ps:y_

<x 7" expleqs(log m)). (60)

-1
1

where w;=b; —a;+ny, —mx;. Observe that |w;| <c,emllogm)* fori=1,...,
s. Now apply theorem B.1 withn=s+1<P+1, A, =--=A4,_,=P, A,=
max(x — 1, y— 1)< exp(csq(log m)?) and B=c,em(log m)>. We obtain

x—1
Py ps =1 —1|>exp(—cy5(log m)°). (61)
Combining (61) and (60) we find that m <c,. This completes the proof of
theorem 12.8 in view of lemma 12.3 and lemma 12.1. O
Notes

Theorem 12.1 implies that (1) has only finitely many solutions if x
or yis fixed. Hyyr6 (1964q) improved upon a result of Rotkiewicz (1961) by
showing that for all solutions of (1) apart from

(m,n,x,y=2,3,3,2) (62)

we have min(x, y)> 10'!. The theory of linear forms in logarithms can be
applied to show that if m>1,n>1, x> 1, y>= 1 are positive integers with
x™# y", then

Ixm _ynl > (xm)l —Cgllog m)/m
and
|x'” —y"| > Co(x™) 1o

where Cg, Cy and C, , are certain computable positive numbers depending
only on x. See Shorey and Tijdeman (19764, theorems 1,2) and Turk (1986).

It follows from a result of LeVeque (1952) that (1) has no solutions with
|x— y| = 1 apart from (62). Schinzel (1956) gave a simpler proof of this fact.
Rotkiewicz (1956) generalised this result to the equation x™ — y* = a" subject
to |x — y|=a. By estimating linear forms in logarithms it can be proved that,
for given non-zero integers a, b, k, equation (2) has only finitely many
solutions for which |x—y| is bounded. If m=n, then the result follows
(unconditionally) from theorem 2.1. If m # n, then a simple estimation yields
that x/m and y/n are bounded from above. By estimating |ax™/by" — 1| from
below by corollary B.1 and from above in a trivial way and comparing both
estimates it follows that m and x, hence n and y, are bounded. Theorem
12.2 implies that (1) has only finitely many solutions if m or n is fixed.
Lebesgue (1850) proved that (1) has no solutions when n=2. Chao Ko
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(1965) proved that (1) has no solutions apart from (62) when m=2. Nagell
(1921) showed that (62) is the only solution of (1) if m=3 or n= 3. Hence
there is no solution with min(m, n) < S other than (62). Inkeri (1964) proved
that (1) is unsolvable for a large number of pairs m,n. Evertse (1983b)
improved upon an estimate of Hyyrd (1964a) by showing that for fixed m
and n the number of solutions of (1) is at most (mn)™" ™", Turk (1986)
applied linear forms in logarithms to prove that there exists a computable
absolute constant C,, >0 such that, for all integers m>1,n>1,x>1,y>1
with x™# ",

1 C
|x™ —y"|> . exp(ﬁ (log mlog log(m + 1))”2>.

For lower estimates of [ax™ — by"|, see the notes of chapter 10. Shorey and
Tijdeman (1976a) proved that for given non-zero integers a, b, k equation (2)
has only finitely many solutions if m|n and mn>4. Ribenboim (198x)
proved that, for any k #0, the density of pairs (m, n) such that x™ — y" =k has
a non-trivial solution x, y is zero. For integers a>0, b>0, k#0, x> 1 and
y> 1, Shorey (1986¢) proved that there are at most nine distinct pairs (m, n)
in positive integers satisfying (2) and max(ax™, by")>953 k®. If x>4 and
y=4, Shorey (1986¢) derived from the above result that there are at most
nine distinct pairs (m, n) in integers m > 3 and n > 3 satisfying (2) with k= 1.

Langevin (1976b) elaborated the proof of theorem 12.3 to show that if (1)
holds, then

x™<exp expexp exp(730) and P(mn)<exp(241).

Cassels (1960a) proved that if (1) holds for x, y and primes m, n then m| y and
n | x. This result was used by Makowski (1962) and Hyyr6 (1963) to prove
that no three consecutive positive integers can be all perfect powers. Turk
(1980a) used estimates of linear forms in logarithms to derive an upper
bound for the number of perfect powers in the interval [n,n + \/ n]. Loxton
(198x) used his simultaneous version of theorem B.1 to improve on this
bound by showing that there are at most exp(40(log, nlog n)!/?) perfect
powers in the interval [n,n+\/ n] for n=20. For comparable results on
numbers ax™ with |a| small, see Turk (1984) and Loxton (1986).

In theorem 12.4 the condition that x and y are positive is superfluous (see
Tijdeman, 1985). In this paper it is also shown that if (5) holds and t=
max(m, n), then

1+C sllog */t!/? 1+Cy yllog et 2
|x|<CIZU 1allog 0%/ , |y|<C12w 13llog 0

where C,, and C,; are certain (ineffective) absolute constants.
Oblath (1956) showed that a.x™ ! +a.x™ "2+ -+ +a is never a perfect
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power y"if m>2, x=10 and 1 <a< 10. If there is some solution witha=1,
then2 ¥m,2 tn,3 ym,3 ) n Shorey and Tijdeman (1976a) proved that in
this case n>23. Inkeri (1972) determined all solutions for 1 <a<x < 10and
many other pairs (a, x). All solutions of (6) have been determined if 4| m by
Nagell (1920) and if 2|n or 3| m by Ljunggren (1943). Further, Ljunggren
(1943) determined all the solutions of (6) if n=3 and m= S (mod 6). Shorey
(19864, 1986b) proved that (6) has only finitely many solutions if n is prime
and w(m)>n—2. This, together with theorem 12.5(ii), implies that (6) has
only finitely many solutions if n=3 and m# 5 (mod 6) whenever w(m)=1.
Richter (1982) considered equation (6) with m=n. For fixed integers a and b
with (g, b)=1 and a n-free, Shorey and Tijdeman (1976a) gave a number of
conditions under which the equation

x"—1
x-1

a =by" inintegers m>2, n>1, x>1, y>1

has only finitely many solutions. One would like to show that (6) has only
finitely many solutions. For this, it suffices to restrict the variable m to prime
powers (see Shorey, 1986a). For integers X, A with 1< A< X and a prime
p=5, Shorey (1986b) showed that the number of pth powers whose all the
digits are equal to A4 in the X-adic number system is at most p+ C, , where
C, 4 is a computable absolute constant. If A= 1, the restriction p> 5 is not
necessary.
Gyory, Kiss and Schinzel (1981) and Gyory (1982a) considered the
equation
x"—y"
x—y
with (x, y)=1 (cf. chapter 3, notes). Gydry (1982a) proved that m< P and

max(x y Z) < exp{s.\'P(P+30)/2(20P2).\'P(P+6)+ 14{P+2)}
b b

=z inintegers m>3, x>y=1, z>0

where P = P(z) and s=w(z). Loxton (1986) proved that for any ¢ >0 and any
positive integer z the equation (x™ — 1)/(x — 1)= z has at most C, s(log z)'"**
solutions in integers m, x with m>2 and x> 1 where C, 5 is a computable
number depending only on &.

Davenport, Lewis and Schinzel (1961) proved that equation (9) has only
finitely many solutions ifa=b= 1and mand n are fixed. If in (9) ¢, b, n and x
are fixed, then it follows from theorem 10.4 that there is only a finite number
of solutions. Shorey (1984b) proved, effectively, that equation (9) has only
finitely many solutionsinintegersx> l,y> I, m=2n>1,m>2,1<a<x, 1<
b<y with (a,b)=1, a(y— 1)# b(x — 1) and |x — y| bounded. Further, if a=
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b= 1, equation (9) has only finitely many solutions in integers m>1,n> 1,
x> land y> 1 with x # yand P(x(y — x)) bounded. It follows from a result of
Shorey (1984¢) that equation (9) with m=n, a<b and x>y implies that
eitherm < C,¢ orm=[a + 1] where C, ¢ is a computable number depending
only on a and b and a=log(b/a)/log(x/y). For given integers a>1, b= 1
and /, the arguments in the proof of theorem 12.8 allow us to show that
equation

x"-1 y'—1
=b
o1 y-1

+1 inintegers m>1, n>1, x> 1, y>1

with x,yeS and a(x—1)"! —b(y— 1)~ ! #1 implies that max(m, n, x, y) is
bounded by a computable number depending only on «, b, [ and P.

Let x>1 and y>1 be fixed distinct integers. Senge and Straus (1973)
proved that the number of integers, the sum of whose digits in each of the
bases x and y lies below a fixed bound, is finite if and only if (log x)/log v is
irrational. Their proof depends on a p-adic version of the ineffective Thue-
Siegel-Roth method. Stewart (1980) used estimates of linear forms in
logarithms to exhibit an explicit lower bound for the sum of the digits of n in
base x plus the sum of the digits of n in base y, which tends to infinity as n
tends to infinity provided that (log x)/log y is irrational. For integers X and
A with 1 £ A< X, denote by S,(A) the set of integers whose digits are all
equal to A in their X-adic expansions. For integers X, Y, 4 and B with 1<
A<X,1<B<Y and A(Y —1)# B(X — 1), Shorey (1986¢) showed that the
number of elements in S, (A4) N Sy (B)and S, (1) n Sy (1)isat most 24 and 17,
respectively.

Brindza, Gy6éry and Tijdeman (1986) obtained the following
generalisation of theorem 12.3 to algebraic number fields. Let K be an
algebraic number field with ring of integers (.. There exists a computable
number C 5 depending only on K such that all solutions of the equation

x"~y"=1 in x,yely, mneZ,

with x, y not roots of unity and m> 1, n> 1, mn>4 satisfv
max(lx|, |y|.m, n<C,.

The assumptions made on x, y, m and n are necessary.

Catalan’s equation has also been considered over function fields. Let K
be any field. Let m and n be integers greater than 1 and not divisible by the
characteristic of K. Nathanson (1974) and Albis Gonzalez (1975) proved.
independently, that the equation x™ — y* =1 has no non-constant solution
x, yin the polynomial ring K[¢]. Nathanson further proved that if m > 2 and
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n>2,then x™ — y" = 1 has no non-constant solution in the rational function
field K(z) either. Silverman (1982b) studied the Pillai equation ax™ + by*=¢
over function fields of projective varieties.
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