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Preface

After the appearance of Baker's fundamental papers 'Linear forms in the
logarithms of algebraic numbers' in Mathematika in 1966-8, Baker, Coates
and others obtained upper bounds for the magnitudes of integer solutions
of some polynomial diophantine equations in two unknowns and their p-
adic generalisations. The finiteness of the numbers of solutions of these
equations had been proved by Thue, Siegel, Mahler and others much
earlier. The publication of Baker's papers 'A sharpening of the bounds for
linear forms in logarithms' in Ada Arithmetica in 1972-5, and van der
Poorten's p-adic analogues of it, led to completely new results on
exponential diophantine equations such as the work on the Catalan
equation by Tijdeman and its /?-adic analogue by van der Poorten. Since
the numerous publications on exponential diophantine equations are
scattered over journals and no thorough introduction is available, we have
decided to write a tract on these results.

We were together at the University of Leiden in 1982-3 for one year. A
first draft of the manuscript was written during this period. The subsequent
work of finalising the manuscript was carried out by correspondence spread
over a period of about two years. The stay of one of us (T.N.S.) at the
University of Leiden was supported in part by the Netherlands
Organisation for the Advancement of Pure Research (Z.W.O.).

We are very grateful to K. Gyory for his generous help in preparing the
manuscript. Lemma A. 16, corollary A.7, theorem 1.4, corollary 1.3, theorem
5.5, theorem 7.2, theorem 7.6 and corollary 7.4 were added or modified on
his advice, and he assisted in writing the proofs of these results as well as the
changes entailed in other proofs. He read the manuscript with care and
brought to our notice several inaccuracies. Without his help, an account of
associated literature in the notes of several chapters would have been less
complete. In particular the account of decomposable form equations in the
notes at the ends of chapters 5 and 7 is due to him.

We are grateful to A. Makowski, A. Petho, A. Schinzel, C. L. Stewart

ix
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and B. M. M. de Weger for their remarks on the manuscript. We thank T.
Bakker, S. Wassenaar and D. B. Sawant for the excellent work of typing the
manuscript and Cambridge University Press for publishing it in Cambridge
Tracts in Mathematics.

T.N.S.
R.T.



Introduction

Chapters 1-12 deal with applications of estimates of linear forms in
logarithms of algebraic numbers to prove the existence of effectively
computable upper bounds for the magnitudes of the solutions of
exponential diophantine equations. For the convenience of the readers, we
begin with chapters A (on algebraic number theory), B (on linear forms in
logarithms) and C (on recurrence sequences) which contain all the required
preliminaries.

The simplest exponential diophantine equations are those with fixed
bases and variable exponents, the so-called purely exponential equations.
Examples of questions leading to such equations are (i) which powers of 2
and powers of 3 differ by 1? and (ii) which powers of 2 are Fibonacci
numbers? The equation corresponding to (i) is

2m — 3" = ± 1 in non-negative rational integers m, n (1)

and (ii) gives, with a=±+iv/5, 0 = M > A

—7- am — j - fim = V in non-negative rational integers m, n. (2)

Such equations are studied in chapters 1, 3 and 4. Chapter 1 deals with
equations x-\-y—z in algebraic integers x,y,z from a fixed algebraic
number field such that the ideal [xyz] is composed of prime ideals from a
given finite set. This covers (1) and (2). In chapter 2, a remarkable
consequence of Baker (1972) is worked out, namely that, for given non-zero
integers A, B, C, D and under suitable conditions, the equation

Axm + Bym = C in rational integers m, x, y with |x| > 1 (3)

and, more generally, the equation

Axm + By"1 = Cxn + Df in rational integers m, n, x, y

with m>n, | x |> l (4)

1



2 Introduction

implies that m is bounded by an effectively computable number which
depends only on A, B, C and D. Note that (3) and (4) are no longer purely
exponential equations. Chapter 3 deals with non-degenerate binary
recurrence sequences. In chapter 4, recurrence sequences of higher order are
investigated. For example, it is proved that elements of a non-degenerate
recurrence sequence of order 2 or 3 are distinct after an effectively
computable stage. Further it is shown in an effective way that a non-
degenerate recurrence sequence of order at most 4 contains only finitely
many terms equal to zero.

Chapters 5-8 concern polynomial equations and their p-adic analogues.
A polynomial equation is an equation

f(xx,..., xn) = 0 in algebraic integers xx,..., xn e K

where / is a given polynomial and K is a given algebraic number field. Let
f(X, Y) be a binary form (homogeneous polynomial) with rational integer
coefficients and with at least three pairwise non-proportional linear factors
in its factorisation over the field of complex numbers. For a given non-zero
integer /c, Thue (1909) proved that the equation

f(x, y) = k in rational integers x, y (5)

(now known as Thue's equation) has only finitely many solutions. This is an
immediate consequence of Thue's fundamental inequality on the
approximations of algebraic numbers by rationals. His argument is non-
effective: it fails to provide an explicit bound for the magnitudes of the
solutions. Baker (1968b), by way of his fundamental researches on linear
forms in logarithms, gave an effective version of Thue's theorem (see
chapter 5). Consequently it was possible to give effective versions of earlier
results on the solutions of superelliptic equations,

f(x) = ym in rational integers x, y (6)

where m ^ 2 is a given rational integer and / is a given polynomial (see
chapter 6). By the natural p-adic analogue of Baker's theory of linear forms
in logarithms, it was possible to show in an effective way that equations (5)
and (6) have only finitely many solutions in rational numbers with
denominators composed of primes from a given finite set (see chapters 7 and
8). By combining results from chapters 2, 5 and 7, we give the necessary
conditions under which equations (3) and (4) have only finitely many
solutions m, (n,)x, y (see chapters 5 and 7).

Equations (3) and (4) are examples of general exponential equations; the
equations with a term or factor xm where m ̂  2 is a variable rational integer
and x is a variable (rational or algebraic) integer. Chapters 9-12 are devoted



Introduction 3

to such equations. In chapter 9, we again turn to recurrences to show that a
non-degenerate binary recurrence sequence has only finitely many perfect
powers. Thus there are only finitely many perfect powers in the Fibonacci
sequence. A characteristic result of chapter 10 is that if f(X) is a given
polynomial with rational integer coefficients and with at least two distinct
roots, the equation

f(x)= ym in rational integers m > 1, x, y > 1 (7)

implies that m is bounded by an effectively computable constant. In
combination with the above-mentioned results on equation (6), we obtain
general conditions under which (7) has only finitely many solutions.
Chapter 11 deals with the Fermat equation

x" + / = zn in rational integers n > 2, x > 0, y > 0, z > 0.

Under various conditions, for example when y — x is composed of fixed
primes, it is shown that there are only finitely many solutions. Finally,
chapter 12 contains a proof that the Catalan equation

xm — yn = 1 in rational integers m>l, H > 1, x> 1, y>\

implies that m, n, x and y are bounded by an effectively computable
constant. There are various results on related equations such as

xm - 1 , xm - 1 y" - 1
- = / and - = y-—-

x-1 x-l y-\

in rational integers m>2, n>2, x > l , y>\.

In all cases we follow the same route as described for equation (7): we apply
estimates of linear forms in logarithms to a general exponential equation to
show that the exponents are bounded. Then we need to study only finitely
many polynomial equations.

The main theme of this tract is the study of exponential diophantine
equations. We have therefore dealt only with those polynomial equations
which are used in the studies of these exponential equations. Important
topics such as the effective results of Baker and Coates on integer points on
curves of genus 1, and the effective results of Gyory and others on
decomposable form equations in several variables, are omitted. For the
same reason, Runge's method and the applications of the Thue-Siegel-
Roth-Schmidt method to diophantine equations are not included.

Our style is rather leisurely. We have not rushed to give a proof of the
most general result in a chapter; we first deal with particular cases so that
the reader may take the strain of the proof gradually. However, in certain
cases we have proved a generalisation by a method different from the
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particular. In chapter 5 we follow the original method of Baker, but in
chapter 7 we apply results from chapter 1. The proofs in chapter 9 also differ
from the proofs of more general results in chapter 10. In most cases, we end
with the most far-reaching results available in the literature and, in several
instances, we go even further. In order to make the exposition less technical,
we have rarely worked out explicit bounds for the magnitudes of solutions
of the equations.

Each chapter is in three parts. The first part contains the statements of all
the results to be proved in the chapter. The second part, 'Proofs', contains
the proofs of these results. The third part, 'Notes', gives an account of the
developments related to the results of the chapter. Thus an account of the
results of important topics which we could not include in the text is
available in the Notes. Lengthy results stated in full in the Notes are often
put in italics to indicate where they begin and end.

An important feature of the results in the tract is that upper bounds for
(the heights of) the solutions can be effectively computed. We have to add
that, in the case of a general exponential equation, the bounds are usually so
large that in practice it is not possible to check all the remaining values on a
computer to determine all the solutions. In the cases of purely exponential
equations and polynomial equations, the situation is different (see Stroeker
and Tijdeman, 1982). We speak of 'computable numbers' in place of
'effectively computable numbers', a term which is frequently used in
literature. In numerous cases, computable numbers appear which depend
not only on integer parameters but also on algebraic numbers, polynomials,
number fields, regulators, sets or sequences. However, there are only finitely
many algebraic numbers and polynomials of given degree and height. There
are only finitely many algebraic number fields of given degree and
discriminant. The regulator of an algebraic number field is bounded by its
degree and its discriminant. The sets S and 5^ in the theorems are
determined by a finite number of given (algebraic) numbers. The algebraic
recurrence sequences are determined by the algebraic recurrence
coefficients and the initial values, hence by a finite set of algebraic numbers.
Thus, in all cases, it is possible to make the computable numbers depend on
a finite set of positive rational integer parameters (degrees, heights,
discriminants). By computable number, we always mean a monotonic
positive-valued function of these parameters which, moreover, can be
calculated by following the proof (compare the remark after corollary A.5).
For other conventions, we refer the reader to the list of Notation which
follows. Finally we note that a reference with number (1986) which is to
appear may be published in 1986, 1987 or later.



Notation

Below we give a list of notation and terms which are often used in the text.
References in square brackets on the right-hand side are to the chapter and
paragraph where more information can be found.

A: = B
B=:A

computable constant

Sets and sequences

C
K*

algebraic number field

A is defined to be B.

A real and positive constant
which can be effectively computed
by following the given proof.

The (rational) integers.
The positive elements of Z.
The rational numbers.
The real numbers.
The complex numbers.
The non-zero elements of the field
X.
Finite field extension of Q in C.
[A,§1]
The algebraic integers of an.
algebraic number field K.
All integers composed of
pl,..., ps, that is, all non-zero
rational integers which have no
prime divisors different from
pl9..., ps. Here pl9..., ps are given
prime numbers, not necessarily
the first s primes. If 5 = 0, then
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etc.

^-integers

recurrence sequence
Fibonacci sequence

Lucas sequence
Lehmer sequence

fundamental set of units
independent set of units

integral basis
for almost all n

The positive elements of S.
An analogue of S in algebraic
number fields. [1, Theorems]
[7, Notes]
[1, Theorems]

[C,§2]
[Q§2]
[C,§2]
[A, §4]
[A, §4]
[A, §3]
For a sequence of positive integers
n such that the number of
elements of the sequence at most
x, divided by x, tends to 1 as
x -+oo.

Functions and mappings
(Let K and L be algebraic number fields, a and b in Z (or in (9K), neZ,xeM,

C, a and 6 ideals in (9K, ft a prime ideal in GK)

empty sum 0
empty product 1

0° 0
a | b There is a c in Z (or in (9K) such

that b = ac.
a)(b It is not true that a \ b.
an || b an\b, but an + 1 )(b.
(a, b) Greatest common divisor of a and

b (of the principal ideals generated
by a and b). [A, §2]

<a, fe> Least common multiple of a
and b.

(j)(n) The number of integers a with
(a,n)— 1 and l ^ a ^ n .

a>(n) The number of distinct prime
divisors of n.

P(n) The greatest prime factor of n, but
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Q(n)

square free

m-free

n(x)

trivial (function)
non-trivial (function)

binary form

height (of polynomial)

deg(/)
non-proportional (functions)

minimal defining polynomial (of a)
degree (of a)

denominator (of a)

height (of a)

deg(a)

NL/K(oc)

The greatest square-free divisor of
n ,e(0)=G(i)=6(- i )=i .
Not divisible by p2 for any
prime p.
Not divisible by pm for any
prime p.
The number of prime numbers
not exceeding x. (By a prime
number we shall always mean a
positive prime.) We have

. . 2x
^logx

for (N.I)

(cf. Rosser and Schoenfeld (1962),
formula (3.6)).
(Function) being identically zero.
(Function) not identically zero.
Homogeneous polynomial in two
variables.
Maximal absolute value of the
coefficients (of the polynomial).
Degree (of the polynomial / ) .
(Two functions) with non-constant
ratio.
[A,§1]
Degree of the minimal defining
polynomial of a.
Smallest positive integer n such
that na€@K.

Height of minimal defining
polynomial of a.
Degree of a.
Height of a.
Maximal absolute value of
conjugates of a. [A, § 1]
The degree of the field extension
L/K.
The norm of a with respect to the
field extension L/K. [A, Notes]
NK/Q((x), the field norm of a with
respect to K. [A, § 1]
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dK Degree of K.
hK Class number of K. [A, § 3]

@K Discriminant of K. [A, § 3]
RK Regulator of K. [A, § 4]

a 16 There exists an ideal c in (9K such
that ^ = ^£.

•̂ z- $ ^ {}• o u t n o t •^ I ^.

(^, ^) Greatest common divisor of ^ and
A [A, §2]

N{a),NK(a) Norm of ^ (with respect to JK/Q).
[A, §2]

[a] The principal ideal in K generated
by a. (If (xe(PK then [a] c ^ . )

o r d > ) [A, §2]
order (of recurrence sequence) [C, § 1]

binary recurrence sequence Recurrence sequence of order 2.
ternary recurrence sequence Recurrence sequence of order 3.

z-multiplicity (of {um}™=0) The number of indices m with

multiplicity (of (wm}*=0) The supremum of the z-
multiplicities taken over all z.
[C,§3]

total multiplicity (of (wm}m = o) The number of pairs (m,n) with
m>n and um = un.

Theorems and techniques
unique factorisation theorem for

ideals [A, §2]
Fermat's theorem for ideal theory [A, §2]

Liouville-type argument [A, § 1]
transferring secondary factors [1, Proofs]

estimating linear forms in
logarithms [B]

Thue-Siegel-Roth(-Schmidt)
method [Schmidt, 1971b]



A. Results from algebraic number
theory

§ 1. For this chapter we refer to Hecke (1923) and Pollard (1950). Let a be an
algebraic number. By this we shall always mean that a e C and a is algebraic
over Q. Then a is a zero of a unique non-zero polynomial of minimal degree
(the so-called minimal defining polynomial)

where a0, ax,..., adeZ satisfy ao>0 and (a0, ax,..., ad)= 1. Write

and
deg(a) = d.

We call H(<x) the -height of a and deg(a) the degree of a. Notice that H{OL) =
//(I/a), deg(a) = deg(l/a) if a^O and

H(ot)^mdH(m<x) (0<meZ). (A.I)

Denote by v = v(a) the least positive integer such that va is an algebraic
integer. The integer v is called the denominator of a. Observe that ao(x is an
algebraic integer. Therefore the denominator of a exists and satisfies

. (A.2)

Denote by a = a1 ? . . . , ad all the conjugates of a. Put

| = max

For algebraic numbers a and /?, we have
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If a#0, observe that
\vccl" -vocd\^ 1. (A.3)

Further

|va1---vad|^vd|a| |a|d"x. (A.4)

Combining (A.4) and (A.3), we have

\x\>v-d\«\-d + 1. (A.5)

This argument for obtaining (A.5) was used by Liouville (1844) to prove his
well-known inequality on the approximations of algebraic numbers by
rationals. We shall refer to this argument as 'a Liouville-type argument'.
Further we have

Lemma A.l. Let a be an algebraic number. Then

ff(a). (A.6)

Proof. Assume that |a| > 1. We have

Dividing both sides by a d~\ we have

This inequality is also valid when |a| ̂  1. Therefore |a| ^dH(oc). Similarly, we
can show that this estimate is valid for all the conjugates of a. •

Corollary A.l. Let a # 0 be an algebraic number. Then

|a|>(deg(a)H(fl))-1. (A.7)

Proof. By lemma A.l, we have

|a " x | ^ I^T1] ^ deg(a " X)H (a "x) = deg(a)if(a)

which implies (A.7). •
On the other hand, we have

Lemma A.2. Let 3^0 be an algebraic integer. Then

H(d)^(2\d\)deg{S\

Proof Put deg(c))=\i. Denote by <5 = dl9S2,..., 5^ all the conjugates of S. Let
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be the minimal polynomial of 8. Then bj with l ^ j ^ / z is an elementary

symmetric function (up to the sign) of 8l9..., 8^ of order;. Therefore, since

1, we have

Corollary A.2. Let v^O and d^\ be given. The algebraic integers 5 with

I(51 ^ y and deg(<5)^d belong to a computable finite set.

If P and y are algebraic numbers of fixed degrees, we shall need bounds for
H(0 + y) and H(fiy) in terms of max(H(j8), H(y)).

Lemma A.3. Let p and y be algebraic numbers of degrees at most d and
heights not exceeding H (^ 2). Then

log Hlog H log H

where Cx anrf C2 are computable numbers depending only on d.

Proof We prove (a) first. Note that /? + y is an algebraic number of degree
fi^d2. Denote by vl5 v2 and v3 the denominators of /?, y and /? + y,
respectively. Put

S = v3(P + y). (A.8)

Notice that 3 is an algebraic integer of degree /z.
Observe that v1v2(j? + y) is an algebraic integer. Consequently, by (A.2),

(A.9)

Now it follows from (A.8), (A.I) and (A.9) that

Thus it suffices to show that

log H (8)

log//

for some computable number C3 depending only on d.
By (A.8), (A.9) and (A.6), we have

(A. 10)
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Then it follows from lemma A.2 that

which implies (A. 10).
The proof of (b) is similar. •

If jST̂ O is an algebraic number, then H(±yJp) can be bounded similarly.

Lemma A.4. Let /? be an algebraic number such that deg(j?) ^ d and H(/5) ^ H,
where H^2. Let yeC satisfy y2 = j8. Then

log //(yKQ log if

^or some computable number C4 depending only on d.

Proof. Notice that y is an algebraic number of degree at most Id. Denote by
v4 and v5 the denominators of /? and y, respectively. We have

(v4y)2 = v^.

Therefore v4y is an algebraic integer. Consequently, by (A.2), we have

v5^v4<H. (A.ll)

Now it follows from (A.I) and (A.ll) that

H(y)^v2
5
dH(v5y)^H2dH(v5y).

Thus it suffices to show that

logH(v5y)
log//

for some computable number C5 depending only on d. By (A.I 1) and (A.6),

Then it follows from lemma A.2 that

H(v5y)^22d(dH3)d

which implies (A. 12). •

If jS^O is an algebraic integer, then |j?| ^ 1. Further, an algebraic integer P
with \p\= 1 is a root of unity. We strengthen this assertion as follows.
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Lemma A.5. Let /} be a non-zero algebraic integer which is not a root of
unity. Let deg(j5)^d. Then

(A. 13)

for some computable number C6 > 0 depending only on d.

Proof Denote by N the number of algebraic integers y of degree less than or

equal to d such that |y] ̂ 2 . By corollary A.2, we have

N<C1

for some computable number C7 depending only on d. Put

C8 = 21 / C 7 - l .
Then

Suppose

Then, for /c = 0, 1 , . . . , AT, we have

| ^ ( 1
Further,

Therefore there exist distinct non-negative integers k1 and k2 not exceeding
N such that jf̂ 1 = /Jfc2. This implies that j8 is a root of unity, since /? /0 . •

Let K be a finite extension of Q of degree d. From now on we shall assume
that K is a subfield of C. All elements of K are algebraic. Such a field K is
called an algebraic number field. The field K has exactly d distinct
embeddings into C. For a eK, we define the field norm of a (with respect to

where the product is taken over all the embeddings of K. The numbers cr(a)
are called the field conjugates of a (with respect to K). If/x denotes the degree
of a, then \x \ d and the field conjugates of a are the conjugates of a each
repeated d/fi times. If d = /i, then X = Q(a) and a is called a primitive element
of X over Q. If al5 . . . , â  are all the distinct conjugates of a, then

A ^ « ) / Q ( a ) = a i • • '<*/«•
Further,
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Observe that
|iV(a)|

and
JV(a/0

Further we have

whenever a ̂  0 is an algebraic integer. Moreover an algebraic integer oceK
satisfies

if and only if a is a unit. Recall that a is called a unit if both a and I/a are
algebraic integers.

§ 2. Let K be a finite extension of degree d over Q. Denote by (9K the ring of
all the algebraic integers of K. The letter ft denotes a prime ideal /fe in $*. By
f]^ , we shall understand that the product is taken over all the prime ideals
ft in (9K. For aeK,we write [a] for the cyclic module generated by a over
(9K. For non-zero ot,fieK, observe that [a] = [_ff\ if and only if a//? is a unit. If
ae(9K, then [a] is called the principal ideal generated by a in G)K. If ^ and [a]
are ideals in 0X, we write a \ a for a \ [a].

The unique factorisation theorem for ideals states that every non-zero
ideal ^ [1] in (9K can be written in one and only one way (except for order)
as a product of prime ideals in (9K. Thus every non-zero ideal a in (9K can be
written as

a = \ \ ^ (A. 14)

where O^a^eZ such that ^ = 0 for all but finitely many / . Let 6- be a non-
zero ideal in #x. We may write

where 0 ^ b^ e Z such that b/t = 0 for all but finitely many ^. For all / , put

c> = min(a/fc,fc/t).

Define the greatest common divisor of ^ and 6- as

(*,4=ri/*c'- (Ai6)
If (^, ^) = [1], then ^ and ^ are called relatively prime. If ̂ l 9 . . . , ax are non-
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zero ideals in &Ki then the greatest common divisor (al9..., at) of au...,
ax can be defined similarly.

Let ft be a prime ideal in (9K. For a non-zero ideal ^ in OK, we see from
(A. 14) that

where ax is a non-zero ideal in (9K such that (^i, » = [1]. Then we define

Observe that
M) = ord^) + ord^) (A. 17)

for all non-zero ideals ^, 6 in (9K. Let 0 # a e £ Let v' be a positive rational
integer such that v'a is an algebraic integer. Then we define

It follows from v = v(a) | v' and (A. 17) that the right-hand side of (A.18) is
equal to

Thus ord^([a]) is well defined. We write ord^(a) for ord/i([a]). We have

ord^ajS) = ord^a) + ord^(j8) (A. 19)

for every non-zero OL^EK. TO prove this, we write

oid,(aj8) = ord^MaJvOSJa/O - ord,(v(a)v(/9)

and apply (A. 17) to obtain (A. 19).
Let 0 / a G K. If a is a unit, then ord^(a) = 0 for every prime ideal ft in 0K.

Conversely, suppose that ord/ft(a) = 0 for every prime ideal ft in 0K. Then

for every prime ideal ft in (9K. Now we apply the unique factorisation
theorem for ideals to conclude that [va] = [v]. Consequently a is a unit.

For simplicity, we write (9 for (9K. Let ft be a prime ideal in 0. Then there
exists a unique positive rational prime p such that ft \ p. Observe that Z/pZ
and $//& are fields. Further, the function

m + pZ-^m + ft (A.20)

from Z//?Z into 0//& is an embedding, since ftnZ = pZ. Thus Z/pZ can be
considered as a subfield of 0/^. Further, O/ft is a finite extension of Z/pZ of
degree

f^d. (A.21)
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Thus Gift has pfs elements. We define the norm of ft as

NK/Q(ft) = p f ' . (A.22)

For every non-zero ideal a, given by (A. 14), in 09 we define

Then

N(a6) = N(a)N($) (A.23)

for all non-zero ideals a, 6 in (9. Further we have

(A.24)

We have used the same letter JV for the norm of an element and the norm of
an ideal, but it will be clear from the context what is meant. Since the
number of elements in the multiplicative group (0/ ft)* of non-zero elements
of Gjft has N(ft) — 1 elements, we have

a ^ ) - i = l (mod/), if/fcja. (A.25)

This is called Fermafs theorem for ideal theory.
We shall apply (A.23), (A.24) and (A.25) to prove the following lemmas.

Lemma A.6. Let p be a positive rational prime. Then the number of prime
ideals in GK which divide p does not exceed d.

Proof. Let ftl9 . . . , ftk be distinct prime ideals in GK dividing p. Then
fti'" ftk\P- Therefore, by (A.23),

By (A.24),

By (A.23) and N{ftt)^p for 1 <Kfc, we have

Therefore pk^pd which implies k^d. •

Lemma A.7. LetO^oteK such that H(<x) ^ H, where H^2. For a prime ideal
ft in GK, we have

| o rd» |<C 9 logJf (A.26)

where C9 is a computable number depending only on d.



A. Results from algebraic number theory 17

Proof Let v be the denominator of a. Recall that

ord^(a) = ord^(va) — ord^(v).

By (A.2) and lemma A.3, it suffices to prove lemma A.7 for 0 # a e 0K. Then

ord,(a)^0. (A.27)

Further, by (A.24) and (A.6), we have

N([a]) = |N(a) |^ |^^(rfH)d . (A.28)

On the other hand, it follows from /ord>(a) | a , (A.23) and (A.27) that

N(M) > (N(»)ord'(a) $> 2or(Ma). (A.29)

Now combine (A.29), (A.28) and (A.27) to obtain (A.26). •

Lemma A.8. Let p be a positive rational prime and ft a prime ideal in (9K

dividing p. Let one(9K. Suppose that m ^ 2 is a rational integer satisfying
l. Then

o r d / ( a m - l ) ^ C 1 0 l o g m (A.30)

for some computable number C10 depending only on d, p and a.

Proof In view of lemma A.7, we may suppose that a is not a root of unity.
Further we may assume ord/4(a

m— l)>0. Then /IJ(OL. Let s be the least
positive integer such that

as = 1 (mod fi).

Then we see from (A.25), (A.22) and (A.21) that

Further we observe that

ord/(am - 1) ^ord^((aT - 1).

Thus we may suppose that

<x=l (mod/). (A.31)
We write

m = pxm1, (ml9p)=l,

and
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We see from (A.31) that jS= 1 (mod ft). Therefore

l l l l l = /pi-i + . . . + l = m i (mod/).

Consequently

since (ml,p)= 1. Further, (A.31) implies that

n 1

a—1

> . (A.34)

Finally, by lemma A.7,
ord,(a± l ) < C n (A.35)

for some computable number C n depending only on d and a. Now
combine (A.32), (A.33), (A.34) and (A.35) to obtain (A.30). Q

§ 3. Let K be a finite extension of degree d over Q>. Denote by (9K the ring of
all algebraic integers of K. There exist wl9 . . . , wde&K such that every
element of (9K can be uniquely written as a linear combination of w x , . . . , wd

with rational integer coefficients. The set {wl9..., wd} is called an integral
basis for X. Put

where ax,..., ad are all the embeddings of K. Observe that Q) is independent
of the choice of the integral basis, since any two integral bases are connected
by a matrix of determinant ± 1. Further notice that 0 # 2 e Z. We call 3) the
discriminant of K. For oteK, we define the field discriminant of a as

Hence ^(a)^0 if and only if a is a primitive element of X. Suppose a is an
algebraic integer. Then @(<x)eZ. Since ^(a) is equal to the determinant
M ^ " 1 ) ^ ! , . . * we have 9\9(a).

j=l d

Denote by / the set of all non-zero ideals in (9K. We define a relation ~ in
/ as follows: for non-zero ideals ^, 6- in 0K, a~6- if and only if there exist
0L,l3e(9K such that a/f^O and ^[a] = ^[j8]. It is easy to see that ~ is an
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equivalence relation. This partitions the set / into equivalence classes. For
non-zero ideals a, ax and a2 in (9K, we observe that

and
is principal.

Further, we have

Theorem A.1 (Minkowski). In every equivalence class there exists an ideal a
in (9K such that

Proof. See Hecke (1923), §33.

By (A.23) and lemma A.6 there are only finitely many ideals in (9K of a given
norm. Consequently, by theorem A.I, there are only finitely many
equivalence classes. The number of equivalence classes is called the class
number h of K. We have

Lemma A.9. / / a is an ideal in (9K and h is the class number of K, then ah is
principal.

Proof. If ^ = [0], then ah = [0]. Therefore we may assume that a is non-
zero. Choose a set of ideals al9..., ah, one from each equivalence class.
Then aau . . . , a,a,h fall into distinct equivalence classes. Consequently

This implies that ah is principal. •

Corollary A.3. / / ^, 6- are non-zero ideals in (9K and h is the class number of
K, then

is principal.

Proof. Let a and 6 be given by (A. 14) and (A. 15), respectively. Then, by
(A. 16), we have

and the assertion follows from lemma A.9. •

If a,u ..., ^ are non-zero ideals in (9K, then it follows similarly that

(*;,...,*?) = !>] (A.36)
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for some non-zero ne(9K. If K is a quadratic field, we have more precise
information for the greatest common divisor of two principal ideals in (9K

than corollary A.3 states.

Lemma A.10. Let r and s be non-zero rational integers. Let oc and fi be roots
of x2 — rx — s. Then the greatest common divisor of the ideals [a2] and [/?2] in
the ring of integers of Q(a) is a principal ideal generated by (r2,5).

Proof Put / = (r2,s). Then ((r2 + 2s)//,(s//)2) = 1. Further observe that a2//
and j82// satisfy

Consequently the ideals [a2//] and [J?2//] in the ring of integers of Q(a) are
relatively prime. •

We shall also need the following consequence of theorem A.I and
lemma A.9.

Lemma A.11. Let a be a non-zero ideal in (9K. Then there exists a non-zero
ideal a in OK such that N(a) ^ yj\2f\ and aa is principal.

Proof. By lemma A.9, ah = aah ~l is principal. By theorem A. 1, we can find
an ideal a in the equivalence class containing ah ~x such that N(a!) ^yj\3>\.
Further observe that aa is principal. •

Let ^ l 5 . . . , fc{ be a finite set of prime ideals in (9K. Put

p = msLxP(N{^)). (A.37)

By lemma A.9, we may write

>? = M ( U K / ) (A.38)

where n1,...,nle(9K. Denote by Sf the set of all elements a of (9K such that
[a] is exclusively composed of prime ideals / 1 ? . . . , fa. Then we have

Lemma A.12. Let (xetf There exist a &e(9K with \N{P)\^pdM and a unit
ee(9K such that

where al9..., at are non-negative integers.

Proof Let
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For l ^ i ^ / , write
b—dih + Ci (0^Ci<h).

Then, by (A.38),

[a] = [7 r i r - - - [7 r z ] ^ (A.39)
where

We see from (A.39) that a is a principal ideal. We write

*=[fi] (A.40)

for some non-zero Pe(9K. By (A.24) and (A.23),

\N(P)\ = N(*) = (N(fiiWl''' WA))C'

which, together with (A.22) and (A.21), implies that

Now the lemma follows from (A.39) and (A.40). •

§4. Let K be a finite extension of degree d over Q. Denote by 0K the ring of
all the algebraic integers of K. Let rx and 2r2 be the number of conjugate
fields of K which are real and non-real, respectively. Further, we shall
signify the conjugates of any element a of K by a(1 ) , . . . , a(d) with a( 1 ) , . . . , a(ri)

real and a(ri + 1 ) , . . . , a(ri+r2) the complex conjugates of a(r i+r2+1),..., a(r'+2r2),
respectively. Put r=r1+r2 — l. We have

Theorem A.2. (Dirichlet). There exist units rjl9 ... 9rjre@K satisfying

(a) Every unit ne(9K can be written as

where al9 ..., ar eZ and pe(9K is a root of unity.

(b) Let pe(9K be a root of unity and bl9..., br eZ. The equation

ri'--nb; = p
implies that

b1=b2="'=br = 0.

Proof See Hecke (1923, §34), or Pollard (1950, Ch. XI).

Let r > 0. A set of units rj1,... ,rjre(PK satisfying (b) of theorem A.2 is called
an independent system of units for K.lfn1,..., nr is an independent system
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of units for K, then the determinant

is non-zero (cf. Pollard, 1950, p. 137). A set of units nu... ,nre(9K satisfying
(a) and (b) of theorem A.2 is called a fundamental system of units for K. Thus
every fundamental system of units for K is also an independent system of
units for K. Therefore the determinant (A.41) corresponding to a
fundamental system of units for K is also non-zero. If rjl9 . . . , rjr is a
fundamental system of units for K9 we denote by R the absolute value of the
determinant (A.41). Observe that R is independent of the choice of the
fundamental system of units for K. We call R the regulator ofK. Notice that
the absolute value of the determinant (A.41) corresponding to an
independent system of units for K is at least R.

If r = 0, then we understand that every independent as well as
fundamental system of units for K is the empty set and we put R= 1.
Observe that r=0 if and only if either K is Q or K is an imaginary quadratic
field.

For non-zero ae(9K, put

J(a) = max|log|a(0||.

Hence, for any unit ne(9K,

On applying Minkowski's theorem on successive minima, we have

Lemma A.13. There exists an independent system nl9... ,rjrof units for K
such that

JirjJ-'JirjJ^R. (A.42)

Proof We may assume r > 0. Let g x , . . . , er be a fundamental system of units
for K. For x = {xu . . . , xr)e(Rr, put

Denote by P the set of all xeW satisfying

\Ux)\<l ( U K

Denote by Xl9..., kr the successive minima of P. By Minkowski's theorem



A. Results from algebraic number theory 23

on successive minima (see Cassels, 1957, p. 154) we have

where V is the volume of P. Observe that

K=2 rR"1

(see Cassels, 1957, p. 150). Therefore

^"k^R. (A.43)

For x e W, define

) = max|/i(x)|.

There exist linearly independent points al9..., areZr such that

(A.44)

(see Cassels, 1959, p. 204). For 1 ^ K r , write

a, = (a i f!, . . . , aipr)
and

Observe that rju..., nr is an independent system of units for K. Further,
notice that

Therefore, by (A.44) and (A.43), we have

J(rJl)--J(nr) = l1--^R. •

Combining (A.42) and (A. 13), we obtain

Corollary A.4. There exists an independent system nx,... ,nrof units for K
such that

maxJ(ni)^C12R (A.45)

where C12 is a computable number depending only on d.

Corollary A.4 and the inequalities log |̂ ,.| ̂ dJ(rji) with 1 ^ i ^ r imply that

m a x U K r [tyf | is bounded by a computable number depending only on d
and R.
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Proof For 1 ^ i ^ r , we have from (A. 13) and N(rji)= ± 1 that

where Cx 3 > 0 is a computable number depending only on d. Now we apply
(A.42) to conclude that

= J(>h)' • 'J(tlr)( [ I Jirij
Jj*i

for K i < r . •

Let rjl9..., nr be an independent system of units for K. Let a,pe(9K such
that ajS/O. Then jS is called an associate of a (with respect to the
independent system n^,..., nr of units for X) if

where al9 . . . , areZ. Then we have

Lemma A.14. Let nl9... ,rjrbean independent system of units for K. Let 0 ^
oce(PK with \N(oc)\ = m. Then there exists j? such that /? is an associate of a and

r r

= Z Z N W I I (A.46)
i = 1 k = 1

Proof If r = 0, then (A.46) holds with /? = a. Thus we may assume r > 0. Let
A be the lattice in W with

as basis. The coordinates of every point x = (xx,..., xr) e W can be written
as

1 = 1

with H(eR, There exists A = (A l 5 . . . , Ar)eA such that

Aj=£fc,log|i;H>|

with bf G Z and

Take
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and put

Then

t \logWW (1 </<r). (A.47)

Because of complex conjugation, inequalities (A.47) hold for j= 1, . . . , d
except, possibly, for 7 = 7̂  +2r2 (and 7 = 7̂  + r2). Observe that

Hence we have

Combining lemma A. 14 and corollary A.4 we obtain at once

Lemma A.15. Let n^ . . . , nr be an independent system of units for K
satisfying (A.45). Let O^oce(9K with |AT(a)| = m. Then there exists P<=(9K

such that P is an associate of a and

where C14 is a computable number depending only on d.

We record the following result which is an immediate consequence of
lemma A.15.

Corollary A.5. Let rjl9 . . . , nr be an independent system of units for K
satisfying (A.45). Then every unit n e (9K can be written as

where bl9..., breZ and \rj'\ is bounded by a computable number depending
only on d and R.

Proof Apply lemma A.15 with a = n and m= 1. •

Remark. By a computable number depending only on d and R, we mean a
function of both d and R. It follows from lemma A. 15 that, in corollaries A.5
and A.6, this function is monotonic increasing in R.

Combining corollary A.4 and lemma A.15, we have

Corollary A.6. Let 0 #= a e (9K such that |JV(a)| < M. There exists a unit ee(9K
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such that \SOL | is bounded by a computable number depending only on d, R
and M.

The remaining results of this chapter will only be applied in chapters 5-8.
Theorems A.3 and A.4 enable us to bound the class number and the
regulator in terms of the discriminant.

Theorem A.3 (Landau, 1918). There exists some computable number C15

depending only on d such that

\ (A.48)

Theorem A.4 (Zimmert, 1981). R> 0.056.

For certain applications it is important to know that if K = Q(<xl9... ,an)
then |^| , hence h and R, can be estimated in terms of d and the heights of a1?

. . . , a,,.

Lemma A.16. There exists an algebraic integer a in K such that K = Q(a)

and |a| ̂  |^|1 /2 . Further, if ccl9..., a,, are elements of K with heights at most

H such that K = Q(ctl,..., a,,), then

(A.49)

where C16 is a computable number depending only on d and H.

Proof As before, we assume that the field conjugates of any oceK are
ordered such that a(1),..., a(ri) are real and <x(ri +1},..., <x(ri +Tl) are the complex
conjugates of a(ri+r2+1), . . . , a(ri+2r2), respectively. Let {w1? . . . , wd) be an
integral basis for K and, for x = (xl9 . . . , xd), put

By virtue of Minkowski's theorem on linear forms (see e.g. Cassels, 1959,
p. 73) there exists an :coeZd, x o # 0 , such that, when rx >0,

and, when r1=0,

Put a = if(1)(jc0). Then a is a non-zero algebraic integer in K with |a|
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|^|1 /2 . Since | a |^ 1, all the field conjugates of a are distinct. Hence a is a
primitive element of K which proves the first assertion.

Put a o = 1. For any i we omit aI + 1 out of the generators if al + 1 is an
element of the field Kt=Q(oiO9 a 1 ? . . . , a,). We may therefore assume that
n ̂ d. We prove by induction on i that there is a primitive element 9t = ao +
axax +a2OL2+ ''' + ai<xi of K{ such that 0,-eZ and \a^ ̂ d2 for7 = 0, 1 , . . . , i.
This assertion is true for i = 0 by taking a0 = 1. Suppose that the assertion is
true for Kt. If two conjugates of 9{ + a<xi + l9 9f] + aa\pl t and &f} + aocfl l, say,
are equal, then a is uniquely determined. Hence there are at most d2 non-
zero integers a such that two field conjugates of 9t + acct + x with respect to
Kt +1 are equal. Hence we can choose ai + 1eZ with \a{ + x| ̂ d2 such that all
the field conjugates of Oi + 1 = 9i + ai + loci + 1 (with respect to Ki + l) are
distinct. This implies that 9i + l is a primitive element of Ki + l as required.
Thus 9n is a primitive element of X. By lemma A.3 we have H(9n)^C17

where C17 as well as C18 and C19 are computable numbers depending only
on d and H. Let t be the denominator of 9n. Then t^C17. The number
0: = t9n is an algebraic integer with K = Q(0) such that, by lemmas A. 1 and
A.3,

Hence O<|^K(0) |^C1 9 . Since 2 divides @K(0)9 this together with (A.48)
implies (A.49). •

The following result is ready-made for our applications.

Corollary A.7. Let f eK[X~] be a polynomial of degree n. Let H be an upper
bound for the heights of the coefficients of f Let / ? x , . . . , f}t be zeros of f and
put L = K{PX,..., Pt). Denote by G the maximum of the heights of px,..., /?,
and by dL, hL, <3)L and RL the degree, class number, discriminant and regulator
of L, respectively. Then there exists a computable number C2o depending only
on d, % n and H such that

max(dL, hL, G, \@L\9 RL) ̂  C20.

Proof By C 2 1 , . . . , C 2 7 we shall denote computable numbers depending
only on d, 2, n and H. It is clear that dL^nn. Let t be the product of the
denominators of the coefficients of / Let a0 be the leading coefficient of
tf(X). Then we can write

(a0Xy + a1(a0X)n-1 + • *' +an

where a0, au . . . , an are algebraic integers in K with maxo^^n |oy| < C21. It
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follows that

Hence |aoft| ^^22 a n d , by lemma A.2, if(aoj3 l)^C23 for i= 1 , . . . , /. Since
H(ao) = \ao\^C2^ we obtain G^C25.

By the first assertion of lemma A. 16 there is an algebraic integer a with
height at most C26 which is a primitive element of K. By applying the
second assertion of lemma A. 16 to the field L = Q(a, j8 l 9 . . . , $ ) we obtain

. •

Notes
In lemma A.5, a remarkably good value of C6 is due to

Dobrowolski (1979). He proved the following. Let e>0. There exists a
computable number C28 depending only on e such that, if a is an algebraic
integer of degree d>C28, the inequality

n — • d y

implies that a is a root of unity (cf. Cantor and Straus (1982), Louboutin
(1983)). This improves on earlier results of Schinzel and Zassenhaus (1965),
Blanksby (1969), Blanksby and Montgomery (1971) and Stewart (1978).
For a non-zero algebraic integer a which is not a root of unity, Schinzel and
Zassenhaus (1965) conjectured that

,9(deg(a))"1

where C 2 9 >0 is an absolute constant.
Let K be a finite extension of Q. For a e K we defined the norm of a with

respect to the extension K/Q in § 1. If L is a finite extension of K and a eL,
then the norm NL/K(<x) of a with respect to the extension L/K is defined in a
similar way (cf. Hecke, 1923, §38).

Siegel (1969) proved theorem A.3 with

where r1 and r2 are as defined at the beginning of §4, b = (
(r2/n) log 2)" * and w is the number of roots of unity in K. (Hence w is even
and w = 2 when rx > 0.)

For lemmas A.13-A.15 we refer to the original work of Baker (19686),
Siegel (1969) and Stark (1973). For further effective aspects of algebraic
number theory we refer to the books of Borevich and Shafarevich (1964),
Zimmer (1972), Stolarsky (1974) and Narkiewicz (1974).



B. Estimates of linear forms in
logarithms

Suppose OL19 . . . , a,, are non-zero algebraic numbers and let log a 1 ? . . . , log a,,
be any fixed values of the logarithms. If log oc1 and log a2 are linearly
independent over the rationals, then they are linearly independent over the
algebraic numbers. This was Hilbert's seventh problem which was solved,
independently, by Gelfond (1934) and Schneider (1934). Further, Baker
(1966) proved that the linear independence of log a1? . . . , log a,, over the
rationals implies the linear independence of logal9 . . . , loga,, over the
algebraic numbers. Many important generalisations and improvements of
this theorem have been obtained. In particular, for rational integers bl9...,
bn, non-trivial lower bounds have been given for the absolute value of the
linear form

bl logai + •••+&„ loga,,

in logarithms. For a survey of the results in this direction, known as the
theory of linear forms in logarithms, we refer the reader to a paper of Baker
(1977). From this theory, we record the results that we shall use in this tract.
We shall refer to these results as estimating linear forms in logarithms. We
recall our policy that all constants Cl s C2, . . . are real and positive.

Le ta l 5 . . . , a,, be non-zero algebraic numbers of heights not exceeding Al9

...,An9 respectively. We assume A^Z for 1 ^j^n. Put

A' = max Aj, A = An,

n=f\ log Ap a =i\ log Aj,

= Q(ai,...,an), lK:Q]=d.

29
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Then we have

Theorem B.I (Baker, 1977). There exist computable absolute constants Cx

and C2 such that the inequalities

0 < \bx log at + • • • + bn log a,,| <exp( -(CxndfinCi log Q' log B)

have no solution in rational integers bi9 . . . , bn of absolute values not
exceeding B (^ 2). It is assumed that the logarithms have their principal
values.

We shall use the following formulation of theorem B.I.

Corollary B.I (Baker, 1977). There exist computable absolute constants C3

and C4 such that the inequalities

0 < |ai* • • • aj- - 11 < exp( - (C3nd)c*Q log Q' log B)

have no solution in rational integers bl9 . . . , bn of absolute values not

exceeding B ( ^2 ) .

In order to derive corollary B.I from theorem B.I, we refer the reader to a
paper of Shorey et al. (1977, p. 66). The transition is trivial if a l 9 . . . , a,, are
positive.

Theorem B.2 (Baker, 1973). There exists a computable number C5 depending
only on n, d and A such that for any S with 0<S<^, the inequalities

0 < |aiJ • • • aj- - 1| < (S/B'f**** e"*5"5"

have no solution in rational integers bli..., bn_1 and bn (^0) satisfying

In fact Baker stated theorem B.2 for a linear form bx log OLX + * • • + bn log aB

where all the logarithms have their principal values, but the result for
ai*' " an" ~ 1 follows as indicated above.

Generalisations in another direction lead to p-adic analogues of such lower
bounds. For this theory, which is called the p-adic theory of linear forms in
logarithms, the reader is referred to a paper of van der Poorten (1977a). We
state p-adic analogues of theorems B.I and B.2 that we use in this tract.

Theorem B.3 {van der Poorten, 1977a). Let fibea prime ideal ofK lying above
a rational prime p. There exist computable absolute constants C6 and C7 such
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that
d

ord^ofy • • • oft - 1) < {C6ndfin p — Q(log £)2

/̂br a// rational integers bl9..., bn with absolute values at most B (^2)

Theorem B.4. (van der Poorten, 1911a). Let ft be a prime ideal of K lying
above a rational prime p. There exists a computable number C8 depending
only on n, d and A' such that for any S with Q<d< 1,

^ofy - • - oft - 1) < max(C8 log(B'S ~ xpd)pd log A, SB/B')

for all rational integers bl9..., bn_x and bn with b,,^0(modp) of absolute
values at most B and B\ respectively, such that a*1- • * a t # 1.

Putting bn = — 1, van der Poorten (1977a) derived the following result from
theorem B.4.

Corollary B.2. Let fcbe a prime ideal of K lying above a rational prime p.
Suppose that bu . . . , bn^1 and bn= — 1 are rational integers of absolute
values at most B. There exists a computable number C9 depending only on n, d
and A' such that, for every 5 with 0<d< 1, the inequality

implies that a^1 • • • oib
n

n= 1 or

£ *c C9<T V log((T V ) log A

Notes
To find out all the solutions of certain diophantine equations, it is

necessary to give explicitly the constants occurring in the theorems of this
chapter. The first result in this direction is due to Baker (1968a). In fact,
Baker proved theorem B.I and van der Poorten proved theorems B.3, B.4
and corollary B.2 with explicit constants. Other estimates were given by
van der Poorten and Loxton (1976), Stewart {1911 b), Mignotte and
Waldschmidt (1978) and Waldschmidt (1980). Loxton (1986) proved a
generalisation of theorem B. 1 for systems of t linear forms in logarithms in
which the factor Q in the exponent of the upper bound is replaced by Q1/r. In
this direction, the first result is due to Ramachandra (1969). For linear forms
with ats close to 1, see Ramachandra and Shorey (1973), Ramachandra,
Shorey and Tijdeman (1975, 1976), Shorey (1974a, b, 1986a) and
Waldschmidt (1980). A trivial case of p-adic linear forms in logarithms is
already given in lemma A.8.
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§1. A homogeneous linear recurrence sequence with constant coefficients
(recurrence sequence for short) is a non-trivial sequence of complex numbers
K,}m = o such that

"m+k==vfc-i"m+k-i + vk_2wmfk_2+---+v0wm (m = 0,1,2,...) (C.I)

for certain complex numbers v0, v1? . . . , vfc_x with v o / 0 . A recurrence
sequence is therefore completely determined by the initial values w0, . . . ,
uk_l and the recurrence coefficients v0, v l 9 . . . , vfc_x. Note that |wo| + |wx| +
• • • + \uk_ J >0. A recurrence of order k is defined as a sequence of initial
values uo,u1,... ,wfc_1? not all zero, and a sequence of recurrence coefficients
v0, vx,..., vk _ x with v0 7̂  0. A recurrence generates a recurrence sequence by
the recurrence relation (C.I). A recurrence of order 2 is called binary; one of
order 3 ternary.

The companion polynomial to a recurrence with coefficients v0, v l 5 . . . ,
vk_l is given by

G(z) = zk-vk_lz
k-1'"~v0. (C.2)

Let

G(z)=fl(z-a>/', (c-3)

with distinct numbers col9 co2,..., cos, be the factorisation of G. We call co1?

a>2>..., cos the roots of the recurrence. If all roots of G are simple, then we
say that the recurrence is simple.

A recurrence sequence may satisfy different relations of the form (C. 1).
Suppose {wm}^=0 satisfies two recurrences of order /c,

j=0 j=0

32
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Let r = ma,x{j\Xj^fij}. Then

which implies that {um}^=0 satisfies a recurrence of order r<k. We
conclude that for every recurrence sequence there is a unique recurrence of
minimal order. If we speak of the order, the recurrence coefficients, the
companion polynomial or the roots of a recurrence sequence or say that a
recurrence sequence is simple, this is all meant with respect to this unique
recurrence of minimal order.

The following result is fundamental in the theory of recurrence
sequences.

Theorem C.I. (a) Let {um}%=0 be a sequence satisfying relation (C.I) with

v0 7^0. Forj= 1 ,2 , . . . , s let cOj and <jj be determined by (C.2) and (C.3) where

the numbers co1? a>2, • • • ^ s are distinct. Then there exist uniquely determined

polynomials fjeQ(u0, ul9..., Mk_l9 v0, v 1 ? . . . , vk_ l 9 OJ^ CD2, . . . , &>s)[z] of

degree less than Gj ( /= 1, 2, . . . , 5) such that

um=t / M " (m = 0,l,...). (C.4)

(fc) Le£ C0l5 co2, - -. ,(osbe distinct complex numbers and ax, o2,..., <rs positive

integers with YJ = I 0j = k. Define vo,vl9... ,vk_l by (C.3) and (C.2). For j= 1,

2, ..., s let fj be a polynomial of degree less than Gj. Then the sequence

(wm}m = o defined by (C.4) satisfies recurrence relation (C.I).

Proo/ (a) Put

n(z)= 5 î z",
m = 0

^(z) = I fl.z' = 1 - I vk_,z* = fl (1 -<OjZp. (C5)
i = 0 i = l j=l

Then, by (C.I),
fc — 1 m GO k

u(z)A(z)= X E aJum_Jz
m+ X Z «;«,,,-;z"

m=0j=O m-kj=0

k-1 m °° / fc \

m = 0 j = 0 m = 0 \ j = l /

k - 1 m

= Z^"Z^m-.-
m = 0 j = 0
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Put hm = Yj = oajum-j for m = 0, 1, . . . , k— 1. By resolution into partial
fractions we obtain, from Ztfy = k,

for certain numbers pijeQ(u0,u1,... ,Mfc-l9 v o ,v l 5 . . . , vk_1,co1,a)2,... ,cos)
which are uniquely determined. We have col(o2' • *cos#0 in view of vo #0.
For \z\< min,- \a>j\ ~1 we have

Note that the Taylor coefficients are uniquely determined. On comparing
coefficients we find (C.4) with fj defined by

^ « " ' - 2 * ( C 7»

This proves part (a).

(b) Define w(z) and l̂(z) by (C.5) and complex numbers ptj by (C.7). It
follows that (C.6) holds for certain numbers /i0, /zl9 . . . , hk.l. Hence

u(z)A{z)= t twm-iz
m=klLKzm

m = 0 i = 0 m = 0

which implies that the left-hand side is a polynomial of degree less than k.
Thus the coefficients of zm+fc vanish for m^O, that is, by (C.5),

k

"m + k - Z Vk-»Mm+fc-i = ° ("1 = 0, 1,. . .) . •

It is now easy to characterise all recurrence relations by which a fixed
recurrence sequence {wm}^= 0 can be generated. Let G(z) = Y\Sj = i(z~ (DjTi ̂ e

the companion polynomial to the minimal recurrence relation (C.I) of
{wm}m = o- Theorem CA(a) yields a representation

Suppose that, moreover,
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Let

be the companion polynomial to this recurrence relation. Then theorem
CA{a) yields a representation

where we define ff = 0 for those; for which g(o)j) / 0 and cos + 1,...,cot are
the roots of g which are not roots of G. We assert that fj=ff for 1 < / ^ s ,
/ * = 0 for s<j^t and that g is divisible by G. To prove this, let

By theorem CA(b) the sequence {wm}*=0 satisfies the recurrence relation

k + l-l

"m+fc + / = Z Vw+J ("1 = 0, 1,...).

By theorem C. \{a) applied to this recurrence relation, the polynomials fj are
unique, that is,

fj=ff forj=l,29...,s, ff = O forj = s+l,...,t.

Because of the minimality of the first recurrence and theorem C.l(b), the
degree of /)• is exactly o-3— 1 for j= 1, 2 , . . . , s. Hence the zero cOj of g is of
order at least Gj for j= 1, 2 , . . . , s. Thus G is a divisor of g.

§2. A recurrence is called algebraic (rational, integral) if all the initial values
and recurrence coefficients are algebraic (rational, integral, respectively). If
a recurrence is algebraic, then the resulting sequence is algebraic, etc. The
converse need not be true. For example, the non-integral recurrence um + 2 =
7lum + i + (1 ~n)um (w = 0, 1, . . .) with uo = u1 = l generates a recurrence
sequence of rational integers.

We shall show that, if the elements of a recurrence sequence {um}^=0

belong to a field K, then the recurrence coefficients (of the minimal
recurrence relation) of the sequence also belong to K. Let the minimal
recurrence relation of {um}%=0 be given by

(m = 0,1,...). (C.8)
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Consider the system of k linear equations in the k variables x0, x x , . . . , xk _ x,

1 =uk,

=Uk+l9

1 = M k + 2, (C9)

- " + W2fc-2*k-l = " 2 k - l -

If the coefficient determinant vanishes, then there exist two distinct
solutions (v0, v1 ? . . . ,vk_l)sind{fi0,fi1,... ,iuk_1). We show by induction on
m that

According to (C.9) this is true for m<k. Suppose it has been shown for
m<M. Then, by (C.8) and the induction hypothesis,

fc-1 fc-1 k - l

UM + k= Z VJUM+j= Z Vj Z ViU{M+j-k) + i
7=0 j = 0 i = 0

fc-l k - l k - l

= Z Pi Z VjU(M + i-k)+j= Z A*i«M + /.
; = o j = o i = o

This proves (CIO). By an argument given in §1 it follows from (C.8) and
(CIO) that the order of {um}™=0 is less than k, a contradiction. Thus the
coefficient determinant of (C.9) does not vanish. Then we can apply
Cramer's rule to express the solution v0, v x , . . . , vfc _ x as quotients of sums of
products of terms of the recurrence sequence, hence as elements of K.

In particular, a recurrence sequence of algebraic numbers is an algebraic
recurrence sequence and a recurrence sequence of rational numbers is a
rational recurrence sequence. It follows from a theorem of Fatou that a
recurrence sequence of rational integers has a rational integer recurrence.
Fatou (1906) proved the following assertion (cf. Polya and Szego, 1925,
Problem VIII 156).

Let u(z) be a rational function whose Taylor series has rational integer
coefficients. Then u(z) can be written in the form f(z)/g(z), where f and g are
polynomials with rational integer coefficients and g(0)= 1.

Let {wm}^=0 be a recurrence sequence of rational integers of order k with
minimal recurrence relation (C. 1). Then, by (C.6) and (C.5) in the notation of
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§ 1 ,

u(z)= J «mzm = if

is a rational function whose Taylor coefficients are rational integers. We
know already that v0, vl5 . . . , vk_x hence /z0, hl9 . . . , /ik_x are rational
numbers. Let T be the smallest positive integer such that ThmeZ and
7vmeZ for m = 0, 1 , . . . , k— 1. Since /I is the reciprocal of the companion
polynomial to the minimal recurrence relation, H and A have no common
non-constant factor. Hence Fatou's result implies that TA(0) | Thm and
TA(0) | Tvm for m = 0 , 1 , . . . , k - 1. Since 4(0) = 1, this implies that v0, v l 5 . . . ,
vk _ 1 are all rational integers.

Some binary integer sequences are so important that they have special
names. The Fibonacci sequence is the sequence defined by uo = 0, ul = 1,
um + 2 = wm +1 + wm for m = 0, 1,2, A sequence is called a Lucas sequence
(of the first or second kind, respectively) if

(Xm_om

um = J - form = 0 , l , 2 , . . .
OL — p

or
um = am + pm for m = 0 ,1 ,2 , . . . ,

where a + P and a/? are relatively prime non-zero rational integers and a/jS is
not a root of unity. Note that the Fibonacci sequence is the Lucas sequence
of the first kind with a, P = ^±^yJ$, and that Lucas sequences are binary
rational integer recurrence sequences. Lucas sequences of the first kind
satisfy

n\m=>un\um. (C.ll)

For Lucas sequences of the second kind a similar relation holds. A sequence
is called a Lehmer sequence [of the first or second kind, respectively) if

um = — form odd, um = —^—-y for m even,
GC — p <X — p

or

um — — form odd, um = txm + pm for m even,

where (a + /?)2 and ccP are relatively prime non-zero rational integers and
oc/P is not a root of unity. Note that Lehmer sequences are Lucas sequences
if a + / ? = ± l . If a + / ? # ± l , Lehmer sequences are rational integer
recurrence sequences of order 4 with roots ±a , +/?.
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§ 3. Several results in this monograph deal with the number of times that a
recurrence sequence attains a certain value. The a-multiplicity of a sequence
{um}m = o is defined as the number of indices m such that um = a. The
multiplicity of a sequence is defined as the supremum of the a-multiplicities
taken over all a. The total multiplicity of {um}£= 0 is defined as the number of
pairs (m,n) with m>n such that um = un. The following theorem and its
corollary give properties of a recurrence sequence with infinite 0-
multiplicity.

Theorem C.2 (Skolem-Mahler-Lech). / / {um}™=0 is a recurrence sequence
with infinite O-multiplicity, then those m for which um = 0 form a finite union
of arithmetic progressions after a certain stage.

Proof Lech (1953).

Corollary C.I. / / a recurrence with companion polynomial (C.3) generates a
sequence with infinite O-multiplicity, then OJJOJ^ is a root of unity for some
indices ij with

Proof In § 1 it was proved that the companion polynomial of a recurrence
is divisible by the companion polynomial of the corresponding recurrence
of minimal order. Hence we may assume that the recurrence in corollary
C.I is of minimal order. Theorem C.2 implies the existence of positive
numbers b and c such that ub+mc = 0 for m = 0,1, Hence, in terms of the
representation (C.4) of um,

0= t fj(b + mc)cobj+mc= £ f/b + mcyo%coyn. (C.12)

Because of the minimality of the recurrence, the polynomial fjib + xc)cobj in x
is non-trivial and of degree ff,-— 1 for7= 1, 2 , . . . , s. Since the generalised
power sum at the right-hand side of (C.12) equals 0 for every m, it follows
from theorem C.I that the numbers OJ\, coc

2,..., ofs are not distinct. Thus
(coi/(Dj)

c= 1 for some indices ij with i^j. •

A recurrence sequence is called degenerate if its companion polynomial has
two distinct roots whose ratio is a root of unity and non-degenerate
otherwise. Every degenerate sequence {um}^=0 can be split into
subsequences {ub+mc}™=0 for b = 0,1,... ,c — 1, such that each subsequence
is either trivial or a non-degenerate recurrence sequence. Here c can be
taken as the least common multiple of the orders of those roots of unity
which occur as ratio of two distinct roots. It is therefore often sufficient to
study the multiplicities of non-degenerate recurrence sequences.



C. Recurrence sequences 39

Notes
We do not know a satisfactory introduction to the aspects of

recurrence sequences which are relevant for this tract. Some basic concepts
and techniques can be found in Lewis (1969). Polya (1921) wrote an
important paper on the prime factors of the numerators and denominators
of the terms of a rational recurrence sequence. Loxton and van der Poorten
(1977) stated a number of results and conjectures on the rate of growth of
the terms of a recurrence sequence and the size of the greatest prime factor
of the terms. Stewart (1986) wrote a survey of effective results on the
greatest prime factor of terms of recurrence sequences. Results on
multiplicities of such sequences can be found in the first part of Tijdeman
(1981). See, further, Cerlienco, Mignotte and Piras (1984), LeVeque (1974,
§§B36, B40, B44), Montel (1957) and the notes of chapter 4.

We stress that it is relation (C.4) that makes it possible to apply the Thue-
Siegel-Roth-Schmidt method and the theory of linear forms in logarithms
to recurrence sequences.



CHAPTER 1-

Purely exponential equations

In this chapter, we investigate equations

in algebraic integers x, y, z from a fixed algebraic number field such that
\_xyz~] is composed of prime ideals from a given finite set.

Let P ^ 3. Let pl,..., ps be given (rational) prime numbers with s ̂  1 and
0 < px < - • • < ps ̂  P. Denote by 5 the set of all rational integers composed of
pl9 . . . , ps. In particular - 1 eS, 0<£S, 1 eS. Denote by 5+ the set of all
positive integers of S and arrange them in the increasing order,

nl <n2<n3<- • •.
Then corollary B.I can be applied to prove

Theorem 1.1 (Tijdeman, 1973). There exists a computable number Cx

depending only on P such that

Theorem 1.1 admits the following consequence which Cassels (1960b)
derived from a result of Gelfond (1940) on p-adic linear forms in logarithms.

Corollary 1.1. For a fixed non-zero rational integer k and x,yeS + , the
equation

x — y = k
implies that

max(x, y) ̂  C2

for a certain computable number C2 depending only on P and k.

An ineffective version of corollary 1.1 is a consequence of a theorem of Thue
(1909). See Polya (1918). For integers a> 1, b> 1 and /c^O it follows from

40
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corollary 1.1 that all non-negative integers m and n satisfying

am-bn = k

are bounded by a computable number depending only on k and P(ab), the
greatest prime divisor of ah.

On applying theorem B.3 we obtain the following result.

Theorem 1.2. Let z be a non-zero rational integer. Suppose x,yeS with
(x,j>,z)=l, |x|<|j; | and \y\^3 satisfy

x = y (modz). (1)

Then there exists a computable absolute constant C3 such that

log \z\ ^{s log Pp( log log \y\)2P(z)(o(z).

Recall that P(z) denotes the greatest prime factor of z and co(z) is the number
of distinct prime factors of z. It involves no loss of generality to assume k> 0
in corollary 1.1. Then corollary 1.1 follows from theorem 1.2 applied to k =
— y(modx). Further, by combining theorems 1.2 and 1.1, we obtain the
following generalisation of corollary 1.1.

Corollary 1.2. Let x,yeS with (x,y) = 1, |x |<|^ | and \y\>3. Then

where C 4 > 0 is a computable number depending only on P. In particular, the
equation

x + y = z (2)

in x, y, zeS and (x, y, z)= 1, implies that max(|x|, |y|, |z|) is bounded by a
computable number depending only on P.

An ineffective version of the latter assertion follows from a result of Mahler
(1933a) on the greatest prime factor of a binary form. An effective proof of it
is due to Coates (1969, 1970a) and Sprindzuk (1969).

Let K be a finite extension of degree d over Q. Denote by (9K the ring of
integers of K. Assume that nl,..., nse(9K are non-zero non-units. Denote
by &" the set of all the products of units of (9K and of powers of nx,..., ns

with non-negative exponents. Then the following analogue of the second
part of corollary 1.2 can be derived for algebraic number fields.
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Theorem 1.3. Let T ^ O . Let xl,x1e9>l satisfy

minfard^Xi), ord^(x2)) ^ T (3)

for every prime ideal ft in (9K. Suppose

x3=±i%'~K- (4)

where vl9 . . . , vs are non-negative integers. If

x1+x2 + x3 = 0, (5)
then

for some computable number C5 depending only on T, K and £f'.

Next we shall formulate a quantitative result which implies theorem 1.3 and
the second part of corollary 1.2 and which will be applied in chapter 7. We
need some further notation. Assume that ftx,..., fa are distinct prime ideals
in (9K. Denote by Sf the set of all non-zero elements of (9K which have no
prime ideal divisors different from ft1,..., fa. Note that in case t = 0 the set
£f is just the group of units of K. Further, if ftl9..., ftt are all the prime ideal
divisors of nl9 . . . , ns, then ^ZD^'. Suppose that the rational primes
divisible by ftx,..., ftt _ x or ftt do not exceed P (^ 3). Let h and R be the class
number and regulator of K, respectively. The following result was proved
by Gyory (1979a) even without the factor (log log A)2 in the exponent in (7).

Theorem 1.4. Let ax, a2 and a3 be non-zero elements of (9K with |oc£| < A (^ 3)
for i= 1,2,3. If

oc1x1 +a2X2 + a3X3 = 0 for xl,x2,x3e&?, (6)

then x^rjpt for some Y\eSf and p , e ^ (i= 1,2,3) such that

max | ^ | ^ exp{(C6(; + 1) log Pf*+ l)Pd log A(\og log A)2} (7)
» = 1,2,3

where C6 and C7 are computable numbers such that C6 depends only on d, h
and R, and C7 only on d.

A non-zero element a of K will be called an y-unit if ord/(a) = 0 for all
prime ideals ft apart from ftl,..., ftt. Note that an ^-unit is the quotient of
two elements from 5^ and conversely. Denote by U& the set of 5^-units of K.
It follows from (A. 19) that U#> is a multiplicative subgroup of K* which
contains the group of units of K* as a subgroup.

Let a, P and y be non-zero elements of (9K. Theorem 1.4 implies that the
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projective line ax + py = yz has only finitely many points (x,y,z) with
x, y, z e £f. An equivalent statement is that the equation

ax + /ty = y in x, yeU^ (8)

has only finitely many solutions. Equation (8) is called an (inhomogeneous)
£f-unit equation (in two variables). If £ = 0, hence x and y are units of CK,
equation (8) is called a unit equation. Ineffective versions of the above-
mentioned finiteness assertions concerning (6) and (8) can be deduced from
the results of Siegel (1921) (in case t = 0) and Parry (1950) (in the general
case). The first effective variants are due to Baker (1968b) in case t = 0 and
Coates (1969, 1970a) and Sprindzuk (1969) in the general case.

Let H (^ 3) be an upper bound for the heights of a, /? and y and denote by
H(x) and H(y) the heights of x and y, respectively. We shall derive the
following estimate for the solutions of (8).

Corollary 1.3. All solutions x,yeU<? of (8) satisfy

max{H(x), H(y)} ^ exp{(C8(f + 1) log Pf>(t+ l)Pd log //(log log H)2} (9)

where C8 and C9 are computable numbers such that C8 depends only on d, h
and R, and C9 only on d.

This result is due to Kotov and Trelina (1979). The corollary without the
factor (loglog//)2 follows from the independently proved theorem of
Gyory (1979a) mentioned above.

Proofs
Proof of theorem 1.1. Since nt^3, we may assume nf + 1<2nf . Write

where ak and bk with 1 ^ / c ^ s are non-negative integers. Then

Observe that

max \bk—

Apply corollary B.I with n = s,d= \,Al = A2= " ' = As — P and 5 = 4 log ni
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to conclude that

for some computable number cx depending only on P. •

Proof of theorem 1.2. We may assume \z\ ^ 3. Write

where ak and fofc with 1^/c^s are non-negative integers. For a prime p
dividing z, it follows from (1) and (x, y,z)=l that

^ ^ ^ - 1 ) . (10)

Notice that

Observe that

max \ak — bk\^max max (ak,bk) ^ 2 log |y|.

We apply theorem B.3 with n^s+ \,d= 1, A1 =A2= - - = An = P and B =
2 log \y\ to obtain

ordp((x/y) - 1) ^ ^ (5 log P)^(log log |y|)2 (11)

for some computable absolute constant c2. Now

log \z\ = X ordp(z) log p. (12)

Hence, by (12), (10), (11) and £ p |

log \z\ ^{slog P)c^(log log \y\)2P(z)co(z). Q

Proof of corollary 1.2. We denote by c3, . . . , c6 computable numbers
depending only on P. We may assume that \y\ ^ c 3 , where c3 is some large
constant. Put z = x + y. Then corollary 1.1 implies that \z\ ^ 2, hence P(z) ̂  2.
By (N.I) we have co(z)^n{P{z))^2P(z)/log P(z). Further s ^ P . By theorem
1.2 applied to the congruence x= — y(mod z) we have

log \x + y\ ^c4(log log |>;|)2(P(z))2/log P(z\
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On the other hand, we have, by theorem 1.1,

when c3 is chosen sufficiently large. Thus

log b | ^ (P(z))2

^ C| | 4 logP(z)'

We want to get rid of the factor log P(z). To do this, we apply a standard
technique which we shall refer to as transferring secondary factors to the
other side. A rough estimation gives

By taking the logarithm and multiplying on both sides we obtain

2 log log |
Hence

which is the first assertion. The second statement is an immediate
consequence. •

Proof of theorem 1.4. By c 7 , . . . , c36 we shall denote computable positive
numbers depending only on d, h and R, and by el9 . . . , e8 computable
positive numbers depending only on d.

By lemma A.9 we may write fth. = \nj\ where n^(9K for j= 1, . . . , t.
Further, by corollary A.4 and lemma A. 15, we may assume that

| ^ | (j=l...j). (13)

Hence, by lemma A.2,

In view of lemmas A. 12 and A. 15 we may write

-n^ ( i= 1,2,3) (15)

where the utj are non-negative rational integers, the ef are units in (9K and
yt e (9K satisfies

j | ( , + ,) ( f = l j 2 , 3 ) . (16)

Put a} — min£ utj and vij = uij — aj for 1= 1,2,3 and 7 = 1 , . . . , t. Put V=
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maxitjVy. By permuting nu ... ,nt and xl9x2,x3, we may secure V=v11.
Then v21v3l =0. Now by interchanging x2 and x3, if necessary, we obtain
v31 = 0. Let ^ and 2r2 be the number of conjugate fields of K which are real
and non-real, respectively. We shall signify the conjugates of any element a
ofK by a (1 ) , . . . , a(d) with a (1 ) , . . . , a(ri) real and a(r'+ 1}, . • • , a(r'+r2) the complex
conjugates of a(ri+"2+1),..., a("1+2r2), respectively. Put r = rx + r2 — 1. Let f/l5
. . . , rjr be an independent system of units for K satisfying (A.45). Then we
have, by lemma A.2,

\Vi\^c10 and Hirj^c,, ( /= l , . . . , r ) . (17)

Further, we may write, by corollary A.5,

with wf /eZ (/= 1,2; /= 1, . . . , r) and a'^e^ units in (9K such that

| ^ | | ^ | ) ^ c 1 2 . (19)

Put £3= 1 and y'i = £'iyi for 1= 1,2,3. Then(16) and (19) together with lemma
A.2 imply

| ] and H(yf
t)^Pc^t+l) (1= 1,2,3). (20)

Consequently x{ = rjpt (i= 1,2,3), where Y\ = s^n^1 • • • na
t\

'-fiytfr-n? (i=l,2,3) (21)
and

w31 = -..=vv3r = 0, (22)

by definition. It is clear that rj e £f and px, p2 , p 3 e 5^ We shall show that (7)
holds which will complete the proof.

By (6) we have

o. (23)
a3Pa a3p3

Hence,
T=-~ >7t21 • • • ^7r2r î21 ~"31" • • <2r""3r — — 1. (24)

?3 a3

We are going to derive an upper bound for H : = max(K W) where W=
max, 7 \wij\. Suppose that

H>c2
15(t+l)\ogP\ogA (25)

for some sufficiently large constant c 1 5 > 1.
First suppose

(26)
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We have, by lemmas A.7 and A.2, ord/,i(a3)^c16 log A Hence, by (23),
vn = V9v31 =0,(26) and (25),

o r d ^ ^ n ^ K - c ^ l o g ^ ^ c ^ ^ + ^ - H l o g P ) - ^ (27)

where we may take cil = (2c15)~
1 provided that cl5 is sufficiently large. By

lemma A.3 and (20) we have for the heights of —72/73 and a2/a3,

H(-y'2/y'3)^Pc>°{t+l\ H(OL2/OL3)^A\ (28)

By applying theorem B.3 to o rd^r ) and using (24), (28), (17) and (14) we
obtain

ordM(T) ^(c19(t + 1) log F)**+ x)Pd log A(\og H)2. (29)

We infer from (27) and (29) that

£ ^ (c20(t + 1) log PY*+ "Pd log A.

Hence, by transferring secondary factors to the other side,

H ^{c21{t + 1) log P)e*(t+ l)Pd log A(\og log A)2. (30)

Now suppose, in place of (26),

H. (31)

Notice that V< H and so H = W. If r = 0, we can take W= 0. Thus r ̂  1 and
therefore d> 1. In this case, instead of K=fn, we may assume that W—
maxu / < r \wu\. This, in view of (22), is possible by permuting p1 and p2. We
have, by (21),

= log |pf>| - l o g |yf)| - t i;wlog |TC*> I (32)

for k= 1, . . . , r. Assume that the right-hand side attains its maximum
absolute value when k = K (l^K^r). Consider (32) as a system of r linear
equations in r unknowns w n , . . . , wlr. Its determinant E is non-zero.
Solving for wlh it follows from (17) and |£|^K that

J = l

Hence, by (20), (13) and a Liouville-type argument,

|log|p<f)||>c23W-c24(t+l)logP-c25((+l)T'logP.
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On taking cl5 large enough we infer from H=W, (25) and (31) that

By (21), (20), (13) and (31) we have

i)|+ Z i?i
7 = 1

By making c15 large enough, we secure that 2c27/c15<c26/d. Hence, if
log |p(iK)| >0, we have

£ log K|<c26 f -log \tf\ < - ^ c 2 6 H .
a a

Consequently there is a k with X^X^d such that

< - c 2 6 | . (33)

(34)

Using a Liouville-type argument we deduce

ilog xf

By (21), (20), (22) and (13) we find

log |^<c 2 7 ( t+ l ) (K+l) logP. (35)

From (23), (33), (34) and (35) we obtain

By taking c15 large enough we see from (23), (25) and (31) that

0<|r(A)|<exp{-c29if}. (36)

We are going to apply corollary B. 1 to FU), where we use representation (24)
for F. On using the estimates (28), (17) and (14) to estimate the heights of the
factors, we obtain

|r(A)>exp{-(c30(r+ 1)logPY*(t+l)log AlogH}. (37)

Combining (36) and (37) we find

H

tog#
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This yields, after transferring the secondary factor to the right,

H < (c32(r + 1) log P)e'(t+1) log A log log A. (38)

Collecting (25), (30) and (38) we obtain unconditionally

H <(c33(f + 1) log P)e*+ l)Pd log A(\og log A)2. (39)

By (21), (20), (17) and (13) we have

By if = max(K, W) and (39) we may conclude

max log L I < (c36(t + 1) log P)e»(t+ x)Pd log A{\og log A)2. •
i = l , 2 , 3

Proof of corollary 1.3. Let x, ye U^ be a solution of (8). By c3 7 ,c3 8 ,c3 9 we
shall denote computable positive numbers depending only on d, h and R
and by e9 and e10 computable positive numbers depending only on d. By
lemma A.9 we have foh. = [nj\ with n^e(9K forj= 1 , . . . , t. If ul9..., ut are
sufficiently large rational integers and fx = n\l • • • 7r"f, then

ord^x)S*0, o r d ^ y ) ^ 0 (/= 1 0-

By (A. 19) we have ord^(/ix) = ord>(/iy) = 0 for all prime ideals ft different
from ^1? . . . , fcv Hence fix, /ay, ixe£f. We have, by lemma A.I,

Further, (8) implies

By theorem 1.4 there exist rj e £f and pl,p1,pze9? such that fix = ripl9fiy =
rjp2,H = rjp3 and

log max |^k(c3 7(r+l) logP)^o ( t + 1 )Pd log//( loglogH)2.
i = l , 2 , 3

Since x = p1/p3 and y = p2lp& w e obtain, by lemmas A.3 and A.2,

max(//(x),//()OKexp{c38log max LI}
i = l , 2 , 3

^exp{(c39(t+ lJlogP^^+^logHOoglogH)2}. D

Proof of theorem 1.3. Suppose (5) holds for xx, x2, x3 as specified in theorem
1.3. By c40, c41, . . . , c51 we shall denote computable positive constants
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depending only on T, K and £P. Let fcx,..., / t be all the prime ideal divisors
of ln1-" nj in (9K. Denote by £f the set of all elements a of (9K such that [a]
is (exclusively) composed of the prime ideals / l 9 . . . , fet. Hence Sf' ^Sf. We
have

, max JV(>;Kc41. (40)
. 7 = 1 , . . . , r

Since x1? x2, x3 are in ̂  and satisfy (5), theorem 1.4 implies the existence of
and p l 5 p2 , P3E@K

 s u c r i that xi = Y\pi and

| ^ c 4 2 ( i=l ,2,3). (41)
Hence

43 O '=U,3) . (42)

By (3) we have ord^.(f/) ^ T for) = 1 , . . . , t. Hence |JV(iy)| ^ c 4 4 . This together
with (42) gives \N(xt)\ ^ c 4 5 for i= 1,2,3. From (4) we obtain \N(7ij)\v^c46,

hence ^ ^ c 4 7 for7= 1, . . . , t. Thus |x3 | ^ c 4 8 . By a Liouville-type argument
it follows from (41) that |p (

3
0 |^c49 for all conjugates p^ of p3 . Since

rj = x3/p3, we infer |^y|^c50. Thus, by (41),

c5i for i = l , 2 , 3 . D

Notes
Before it was shown that the method of estimating linear forms in

logarithms yields theorem 1.1, some other methods were applied to find
lower bounds for ni + 1-nt. Stormer (1898) proved that the number of
solutions of nt + x — n,-^2 is finite and that all solutions can effectively be
found by solving a finite number of Pell equations (see also Lehmer (1964)).
Polya (1918) noticed that it is a straightforward consequence of a theorem
of Thue (1909) on binary forms that ni + l—ni-*cc. Polya also remarked
that ni + 1/ni-+ 1 as i -• oo. It follows from the results of Siegel (1921) and
Mahler (1933a) that for every e with 0 < s < 1 there is a number Ne such that
ni + 1 —«,->«• "e for i>Ne. This was observed by Erdos (1965). Tijdeman
(1973) proved theorem 1.1 with an explicit value of C1. This value of C1 can
be improved by using theorem B.I. On the other hand, Tijdeman (1974)
showed that there exists a computable number C10 depending only on P
such that ni + l—ni^ni/(\ogni)

Cl° for f^3 and s > l . It is an unsolved
problem of Erdos whether C10 = C10(P) can be made to increase to infinity
when P-»oo.

Stormer's result implies corollary 1.1 for \k\ ^ 2 (see also Skolem (1945a)).
Skolem (19456) used his method for solving the equation x-y = k in
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integers x ,yeS + . Particular attention has been given to the special case

ax — by = k in positive integers x, y (43)

where a, b, k are fixed integers with a> 1, b> 1, /c^O. In this connection
there is an interesting conjecture of Skolem (1937, 1938) that if ax — by =
k(mod m) is solvable for every positive integer m then ax — by = k is solvable
in integers x, y. Pillai (1931, 1936) showed that (43) has only finitely many
solutions and only one solution if k is sufficiently large with respect to a and
b. LeVeque (1952) proved that, if k= 1, then there is at most one solution,
except when a = 3, b = 2. In the latter case there are exactly two solutions,
namely x = y = 1 and x = 2, y= 3. LeVeque indicated how to determine the
solution. Cassels (1953) gave a simpler proof of a slightly stronger theorem,
dealing with the congruences ax= l(mod £), by= — l(mod A) where A, B
are the products of the odd divisors of a, b respectively. See also Szymiczek
(1965).

Mahler (1933a) used his p-adic analogue of the method of Thue-Siegel to
prove that x + y = z in integers x,y, zeS with (x,y,z)= 1 has only finitely
many solutions. His method is ineffective (see also Schneider (1967)). An
effective result for the equation ax + by = cz was given by Gelfond (1940).
Rumsey and Posner (1964) generalised this result to x + y = cz in x e S + ,
yeS + ,zeZ + where c> 1 is some fixed integer. The full effective analogue of
Mahler's result was obtained by Coates (1969,1970a) and Sprindzuk (1969).
In the latter paper more general equations than (2) were considered. For the
greatest square-free divisor of x + y, Shorey (1983c) proved the following
result.

For every x,yeS with (x, y)= 1, |x|<|y| and log |y|^ee,

where C11>0 is a computable number depending only on P.

Theorems B.I and B.3 can be used for solving equations of types (1) and
(2) in practice. Another way of solving such equations is by using
congruences and, sometimes, simple algebraic arguments. As early as about
1200 Levi ben Gerson (alias Leo Hebraeus) solved the equations 3* ± 1 = 2y

in integers x9y and since that time numerous papers with solutions of
explicit equations have appeared: see, for example, Pillai (1945), Nagell
(1958), LeVeque (1974, §D60), Alex (1976), Brenner and Foster (1982) and
Alex and Foster (1983). The classical methods often fail for equations with
infinitely many solutions such as 2X — 2y = 3Z — 3W in positive integers x, y, z,
w. Ellison (1971a, 1971b) indicated how Baker's method can be used for
solving such equations and a detailed account can be found in Stroeker and
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Tijdeman (1982). In this paper only estimates in the complex case have been
used. An example of the use of p-adic estimates was given by Wagstaff Jr
(1979), who solved Nathanson's exponential congruence 5* = 2(mod 3X) in
xeZ+ (cf. theorem 1.2).

Several equations occurring in the above-mentioned papers are of the
form Xj + x 2 + - *• +xn = 0 with xteS for i= 1, . . . , n and n^4. For such
equations congruence methods usually require distinction of many cases.
Baker's method is only applicable if n or s is very small. A general result can
be obtained by the p-adic analogue of the ineffective Thue-Siegel-Roth-
Schmidt method, however. Evertse (1984ft) improved upon earlier results
of Dubois and Rhin (1976) and van der Poorten and Schlickewei (1982)
as follows. Let c,deU with c>0 , 0^d< 1. Let n e Z + . Then there are
only finitely many (xx, . . . , xn)e Zn such that (i) xx + • • • + xn = 0,
(ii) xti + * * * + xit 7* 0 for each proper non-empty subset {ix,..., it} of {1,..., n},
( i i i ) ( x 1 , . . . , x j = l ,

IY I FI IY I \<r max IY \d
\xk\ 11 \xk\p J^c m a x \xk\ •

peS / U/c^n

Many of the above-mentioned results on rational integers have been
generalised to results on algebraic integers from an arbitrary fixed algebraic
number field, and some of them even to the elements of an arbitrary finitely
generated integral domain over Z. Skolem (1944, 1945a) gave an extension
of the result of Stormer to equations over algebraic number fields. The
general conjecture of Skolem (1937; 1938, p. 56) reads as follows. Let K be
an algebraic number field and ahij, phi non-zero elements of K. If the system
of congruences

t Phi l W o . = 0 (modm) (i= 1,2,...,/)
h = 1 7 = 1

in rational integers x1? . . . , xk is soluble for all moduli m then the
corresponding system of equations is soluble in rational integers (cf.
Schinzel, 1977). The ineffective analogues of theorem 1.4 and corollary 1.3
are implicitly contained in Siegel (1921) in case t = 0 and can be deduced
from Parry (1950) in the general case. For an ineffective generalisation see
Mahler (1950).

Generalising (8), Lang (1960, 1983) considered the equation

ax + /ty = y (44)

where a, ft and y are fix^d elements of an arbitrary field K of characteristic 0,
and the unknowns x, y belong to a finitely generated multiplicative
subgroup G of K*. Lang proved that (44) has only finitely many solutions.
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In case K is an algebraic number field and G is a group of ^-units, Gyory
(1979a), Evertse (19836, Ch. 7; 1984a) and Silverman (1983ft) derived
explicit upper bounds for the numbers of solutions of equations of the form
(44) which depend only on the degree of K over Q and the number t of prime
ideals generating 5^ For generalisations to the case considered by Lang, see
Evertse and Gyory (1985).

Effective results on equations of types (6) and (8) are implicitly contained
in Baker (1968b) in case t = 0 and in Coates (1969,1970a) in the general case.
See also Sprindzuk (1969). Siegel, Mahler, Parry, Baker, Coates and
Sprindzuk were actually interested in the Thue and Thue-Mahler equation,
which will be considered in chapters 5 and 7, respectively. Any Thue
equation can be reduced to a finite number of appropriate unit equations in
two variables. Conversely, any unit equation in two variables can be
reduced to a finite number of suitable Thue equations. A similar
equivalence holds for the Thue-Mahler equations. We refer to the notes of
chapters 5 and 7 for references of papers in which unit equations occur in
this context. Explicit bounds for the solutions of equations of types (6) and
(8) can be found in Gyory (1972, 1973, 1974, 1975, 1976, 1978a, 1979a,
1980a, b, e\ Lang (1978, Ch. VI), Kotov and Trelina (1979) and Sprindzuk
(1980; 1982, Ch. VI §6). Gyory (1979a) proved theorem 1.4 with (7) replaced
by _

max L I ^ expjaCi 2(t + l))c>>Rh log Pf + 6Pd log A}
i= l , 2 ,3

where R = ma,x(R, 1) and C12, C1 3 are explicitly given numbers depending
only on d.

Let n ^ 2 be an integer and let a l 9 . . . , an + 1 be elements of an algebraic
number field K such that <x1 • • • ccn ^ 0. As a generalisation of (8), consider the
equation

oc1x1 + • • • +otnxn = ccn +! in xl9..., xn e Uy. (45)

Equation (45) is called an tf-unit equation {in n variables). Let rx and r2

denote the number of real conjugates and complex conjugate pairs of K,
respectively. Under the restriction rx + r2 +1 < 3, Vojta (1983) gave effective
bounds for the solutions of 5^-unit equations in three variables. Van der
Poorten and Schlickewei (1982) and Evertse (19846) proved some general
ineffective finiteness results on ^-unit equations in an arbitrary number of
variables. As a corollary we have the following result in the style of theorem
1.4.

Apart from multiplication by elements of Sf^ the equation

x1+'-\-xn = 0 inxl9...9xne£f (46)
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has only finitely many solutions such that xti + • • • +x i f c #0 for each proper,

non-empty subset {il9..., ik} of {1, . . . , n}.

Van der Poorten and Schlickewei also obtained a similar finiteness result
for the solutions of (46) if xx , . . . , xn are unknowns in some finitely generated
multiplicative subgroup of K* where K is any field of characteristic 0. This
result implies Lang's theorem. See also Laurent (1984).

There are several applications of the results given in this chapter.
Equations of type (2) occur in the theory of finite groups (see e.g. Brauer
(1968) and Alex (1973)). Furthermore, Perelli and Zannier (1982) used a
result like theorem 1.2 to give a complete characterisation of all integral-
valued arithmetical functions which are periodic modulo p for every large p
and take incongruent values modulo p in every period. Equations (5), (6)
and (8) play a fundamental role in the theory of diophantine equations.
Theorem 1.3 will be applied to prove theorems 9.3' and 9.5. We shall deal
with the consequences of theorem 1.4 to the superelliptic and Thue-Mahler
equation in chapters 5,6 and 7. In the notes of these chapters references can
be found to papers dealing with norm form equations, discriminant form
equations and index form equations. Equations (5), (6) and (8) also have
applications to algebraic number theory. Theorem 1.4 can be used to prove
that there are only finitely many algebraic integers (up to translation by
rational integers) of given discriminant. This was proved by Birch and
Merriman (1972) in an ineffective way and, independently, by Gyory (1973)
in an effective form. Various extensions of the effective version, for example
to algebraic integers with given degree and given relative discriminant over
an arbitrary algebraic number field, and applications to algebraic number
theory can be found in Gyory (1973, 1974, 1976, 1978a, b, 1980/, 1981c,
1984a) and Trelina (1977a). Generalisations to integral elements over an
arbitrary finitely generated integral domain over Z are given in Gyory
(1982c, 1984a) and Evertse and Gyory (1986a). Theorems 1.3 and 1.4 can
also be used to obtain irreducibility theorems of Schur-type, see Gyory
(1972,1980b, 1982b). Nagell (1969) calls a unit s of an algebraic number field
exceptional if 1 - e is also a unit. Chowla (1961) and Nagell (1964) proved
that every number field has only finitely many exceptional units. This result
is an immediate consequence of both theorem 1.3 and theorem 1.4 and
corollary 1.3. The best-known bound for exceptional units is due to Gyory
(1980a). Lenstra Jr (1977) used information on exceptional units to find
Euclidean number fields of large degree. For further results, references and
applications, see Gyory (1975, 1980a, b), Wasen (1977) and Sprindzuk
(1982).

Equations (8) and (45) have also been studied and applied in the case of
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function fields of characteristic 0 in place of number fields. Effective results
for the solutions of equation (8) in ^-units over function fields were
obtained by Schmidt (1978), Mason (1981,1983,1984a, b) and Gyory (1983,
1984a). Moreover, Mason (1983, 1984a, 1986) gave an efficient algorithm
for determining all so-called non-trivial solutions of equations (8) and (45)
in ̂ -units over function fields. Evertse (1986) derived a good explicit bound
for the number of non-trivial solutions of (8) in ^-units of a function field.



CHAPTER 2-

Binary recurrence sequences with
rational roots

In this chapter we give lower bounds for the absolute value and the greatest
prime factor of Axm + By"1 where A, B, m, x, y are rational integers. As an
application we prove, under suitable conditions, that Axm + 2tym = Cx" +
Dy" implies that max(m, n) is bounded by a computable number depending
only on A, B, C and D.

Corollary B.I can be applied to prove:

Theorem 2.1. For every pair A, B of non-zero rational integers, there exist
computable numbers Cx and C2 such that

\ \ \ \ \ \ C 2 l o g m (1)

for all rational integers m, x, y with m^Cx and |x|#|y|.

An immediate consequence of theorem 2.1 is the following result of
Tijdeman(1975).

Corollary 2.1. / / ,4^0, £ ^ 0 , fc#0, m^O, x > l and y^O are rational
integers satisfying

k, (2)

then m is bounded by a computable number depending only on A, B and k.

Van der Poorten (1911b) applied theorem 2.1 and theorem B.3 to prove,
effectively, that

lim P(Axm + Bym)=oc (3)

uniformly in non-zero integers x,y with |x|^|y|. Further, Stewart (1976,
1982) gave the following quantitative version of this result.

56
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Theorem 2.2. Suppose that A, B, x and y with \x\ ^ \y\ are non-zero rational
integers. Then

P(Axm + Bf1) ^ C3(m/log m)1/2 (m ̂  C4),

where C 3 > 0 am/ C4 are computable numbers depending only on A and B.

Shorey (1982) applied theorem 2.1 to generalise corollary 2.1 as follows:

Theorem 2.3. Let A^Q,B^0,C and D be rational integers. Suppose that x,
y, m, n with \x\^\y\ and 0^n<m are rational integers. There exists a
computable number C5 depending only on A, B, C and D such that the
equation

Axm + Bf = Cxn + Df (4)
with

Axm¥=Cxn (5)
implies that

An immediate consequence of theorem 2.3 is the following result.

Corollary 2.2. Let A and B be non-zero rational integers. Suppose x, y, m, n
with x>y^0, x>l and O^n<m are rational integers. If

Axm + Bym = Axn + By'\

then m is bounded by a computable number depending only on A and B.

Theorems 2.2 and 2.3 are special cases of the following result.

Theorem 2.4. Suppose that the assumptions of theorem 2.3 are satisfied. Let k
and \i be non-zero rational integers. There exist computable numbers C6 and
C 7 > 0 depending only on A, B, C and D such that, for every m^C6, the
equation

X(Axm + Bf1) = n(Cxlt 4- Dyn)
with

AxmDyn^BymCxn

implies that

( m \ 1 / 2

\log mj

Proofs
The constants c l5 c 2 , . . . in the proofs of theorems 2.1 and 2.2 are

computable positive numbers depending only on A and B.
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Proof of theorem 2.1. Let A^O, £ # 0 , x and y with |x|#|j>| be rational
integers. We may assume that xy#0 , otherwise (1) follows immediately.
Further, there is no loss of generality in assuming that x>y>0. Then we
can find a prime p such that

ordp(x/y)>0.

If Axm + £ / " = (), then it follows from (6) that

m ̂  m(ordp(x) - ordp{y)) = ordp(J5) - ord/,4) = :cv

Therefore, for m>cl9 we have

(6)

Apply corollary B.I with n = 2,d=l, A1=m3x(\A\9\B\93)9 A2 = x+1 and

B= m + 1 to conclude that

-c2logm

Hence

Proof of corollary 2.1. Let A, B, fe, m, x, y be as in corollary 2.1 and suppose
that equation (2) is satisfied. There is no loss of generality in assuming that
x>y>0. We may suppose that m^C^. Then, by combining (2) and (1),

Since x ̂  2, we find that m is bounded by a computable constant depending
only on A, B and k. Q

Proof of theorem 2.2. There is no loss of generality in assuming that x > y > 0
and (x,3;)=l. Put

We may assume that m^c^ with c4 sufficiently large. Then, by (1),
and

(7)

Let p be a rational prime dividing Wm. Since (x,y)= 1, either (p,x)= 1 or
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(p,y) = 1. For simplicity, assume that (/?,x)= 1. Then

We apply theorem B.3 with w = 2, d = l , p = p, Aj=max(|/4|, |B|, 3),
y42 = x + l and B = w to obtain

ordJ--(^) -

Thus we obtain

logp

if (/?,*)= 1. The above inequality follows similarly when (p,y)=l.
Consequently it follows from

log|^m|=Z
p\wm

that

P\Wm

Putting P = P(Wm), we observe

IP2

i

by formula (N.I). Here notice, by (7), that P ^ 2 . Hence

log | Wm\ ^2c7(log m)2(log x)^y. (8)

Now the theorem follows from (7) and (8) by transferring secondary factors.

•
Proof of theorem 2.3. Suppose that (4) and (5) are valid. Then
Further, there is no loss of generality in assuming that x>y>0. The
constants vl9v2,..-,v9 are computable positive numbers depending only
on A, B, C and D. Observe that

2 max(|C|, \D\)x'\ (9)

Now it follows from (4), (1) and (9) that

m-n^v1 log(m +1). (10)
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In view of (10), we may assume that n^v2 with v2 sufficiently large. By (4)
and (5),

xV D-Bf1-'1

Axm~n-C J

which implies that x/y <4/3, if v2 is sufficiently large. Consequently

r : = (x, y)^x — y^x/3. (11)

From (4), we obtain

xV /vV
- I (Xxm"" - C) = I - I (D -ByT"").

Note that (x/r, y/r) = 1 implies that (x/r)n divides D -B / 1 " ' 1 . Further, by (4)
and (5 ) ,D-B/" -V0 . Consequently, by (10),

which implies that

x/r^xv*(logm)/n. (12)

Combining (11) and (12),

logxXv^ogmyny1. (13)

By theorem 2.1,

m / , , \ mY\" ' / v\'n / Y \*n-v5logm / \-v5logm

A[-\ + B ( -
vr / \ r

which, together with (12), implies that

| Axm + By"1] ^ x
w-l'6(log'")2/«. (14)

Now it follows from (4), (14) and (9) that

m - i;6(log m)2/n < n

From m>n and (13), this implies that

(log m)2 log y7 (log m)2

n log x

Consequently

which, together with (10), gives m^v9. •
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Proof of theorem 2.4. Let A, B, x, y, ra, n, X and JJL be as in theorem 2.4
satisfying

X(Axm + By"1) = fi(Cx11 + D / ) (15)
with

(16)

Then xy^O. Further, there is no loss of generality in assuming that x>
y>0. By considering equation (15) with 2(x, y)m~n in place of A, we may
assume that (x, y)= 1. Finally we may assume that (J.,/i)= 1.

Denote by v10, vn,... computable positive numbers depending only on
A, B, C and D. We may suppose that m^v10 with t^0 sufficiently large. Then
Axm + Bym^0 by theorem 2.1. Let 0 < e < 1. We suppose that

m \ 1 / 2

log
(17)

We shall arrive at a contradiction for a suitable choice of e depending only
on A, B, C and D.

For a prime p dividing /x, it follows from (15) and (A,/i)= 1 that

ordp(jii) ^ ordp(^xm + Bym).

We apply theorem B.3 and (x, y)= 1 to conclude that

Pordp(^lxm + Bf1) ^ vx x(log m)2 log x -
log/?

Hence

From (N.I), (17) and e < l ,

Consequently

log |/i| ^ 6 8 ^ ! ^ log x (18)

which, together with (15), (1) and (9), gives

log |/l| ^6ev l l m logx + vl2 log mlogx. (19)

Observe that

|/l(Xxm + B/")| ̂  \Axm + Bym|. (20)

By (15), (20), (1), (18) and (9), we derive

m — n^6ev11rn-\-v13 logm. (21)
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Rewrite (15) as

x\XAxm ~" - /iC) = - y'UBf1 ~" - iiD). (22)

In view of (16), equation (15) implies that XAxm~n-fiC and
are non-zero. Further, since (x,y)=l, we see from (22) that x" divides

n-iiD .Therefore

From (19), (21), (18) and y<x, we have

log \XB}T~n-fJiD\ ^(18et;11m + v14r log m) log x.
Hence

n^ 188fnm + t;14logm. (23)

This is valid for every e with 0 < e < 1. Let 6 = min((48i;11)"1,2"1). Then we
conclude from (21) and (23) that m^2(v13 + v14)logm which implies
m^vx5. This is not possible if vlo>v15. •

Notes
Theorems B. 1 and B.3 are the best possible with respect to An. This

feature plays a crucial role in all the results of this chapter, and will appear
again in chapters 9-12. It also enabled Stewart (1982) to prove, for non-zero
rational integers A, B, x, y with |x | / |y | ,

(log m)

where C8 >0 and C9 are computable numbers depending only on A and B.
For more results on the square-free divisor and for the results in the
direction of theorems 2.1 and 2.2, we refer to chapter 3 and its notes.

Under necessary restrictions, Shorey (1984a) showed that equation (4)
with C = A, D = B implies that m is bounded by a computable number
depending only on P(AB). The assertion of theorem 2.3 is also true if m — n.
Then (4) implies (A - C)xm -f (B - D)yr = 0. Since A - C * 0 in view of (5), the
assertion of theorem 2.3 follows from theorem 2.1.



CHAPTER 3-

Binary recurrence sequences

The results of chapter 2 can be put in terms of recurrences. Let m
and n be non-negative integers. Consider the binary recurrence

(m = 0,1,2,...)

where r and s^O are rational integers satisfying r2 + 4 s ^ 0 and u0, wx eZ
with |wo| + \ux\ >0. Put T=max(|wo|, \ux\9 2). Denote by a and /? the roots of
the companion polynomial z2 — rz — s. Note that a and j? are distinct and
non-zero. We order a and /? such that |a| ̂  |/?|. We have according to (C.4)

(m = 0,1,2,.. .).
Here

a = ^ i and b=±p*. (1)

The results of chapter 2 deal with recurrence sequences for which w0, u1, a, jS,
r, 5 are rational integers.

We suppose that a//? is not a root of unity and ab^O. Hence {um}™=0 is
non-degenerate and |a| > 1. Theorems 3.1, 3.2,3.3 and 3.6 are formulated in
the above notation, but for theorems 3.4 and 3.5 we need some more. Let al9

a2, a3 and a4 be non-zero algebraic numbers of degrees at most d and
heights not exceeding H (^2). Assume that A^O and B are algebraic
numbers of degrees at most d and heights at most H' (^2). Let X and /J, be
non-zero algebraic numbers. For m = 0, 1, 2, . . . put

xm = axl
m + a2ix

m, ym = a3l
m + a4fi

m, (2)
and set

We shall use the above notation and conventions throughout the chapter
and without any further reference.

A straightforward application of corollary B. 1 yields a good lower bound
for \um\.

63
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Theorem 3.1 (Stewart, 1976, p. 33). There exist computable numbers Cx and
C2 depending only on a and b such that

M>Mm~C l l 0 8 m im>c2). (3)
It follows from theorem 3.1 that um = un implies that \m — n\ is small. On
combining this with an elementary p-adic argument, we show that the
members of {um}™=0

 a r e distinct after a certain stage.

Theorem 3.2 (Parnami and Shorey, 1982). There exists a computable number
C3 depending only on the sequence {um}^=0 such that

whenever m^n and max(m,n)
Another application of corollary B.I will enable us to derive a lower

bound for \um — un\ from theorem 3.2.

Theorem 3.3 (Shorey, 1984a). There exist computable numbers C4 and C5

depending only on the sequence {um}™=0 such that

\um-un\^\a\maxM(m

whenever m^n and max(m,

In order to study the behaviour of the greatest prime factor of um/(um, un), we
first investigate the difference Aum — Bun. Results on this difference are
stated in the corollaries of the next two general theorems that include
theorems 3.2 and 3.3.

Theorem 3.4 (Shorey, 1984a). Suppose Xj\i is not a root of unity and x > 1. The
equation

xm = yn (4)
with

a^^aj? (5)
implies that

max(m, n) ^ C6 log H

for some computable number C6 depending only on d, X and \x.

The assumption x > 1 is satisfied if X and \i are algebraic integers and X/fi is
not a root of unity.

Another application of corollary B.I will enable us to derive a
quantitative version from theorem 3.4.
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Theorem 3.5 (Shorey, 1984a). Suppose \k\ ^ |/x|, \k\ > 1 and kj\i is not a root of
unity. There exist computable numbers C7 and C8 depending only on d, k and
[i such that, for all m,n with m^n,m^C7 \og(HH') and Aa^^Ba^k", we
have

where v = (log m log H + log Hf) log(n + 2).

Putting ax = a3 = a, a2 = a4 = b, k = a, \i = fi,xm = um and yn = un in theorem
3.5, we obtain

Corollary 3.1. There exist computable numbers C9 and C10 depending only on
d, a and ft such that, for all m, n with m^n,m^C9 log(TH') and Aam#Ba'\
we have

where v1 = (log m log T + log H') log(n + 2).

We observe that the equations Aocm = Bat!1 and Af$m = Bf$n with m # n cannot
hold simultaneously, since a/j5 is not a root of unity. Thus, if |a| = |/?|, we can
interchange a and /?, if necessary, to derive the following result from
corollary 3.1.

Corollary 3.2. Suppose |a| = |/?|. Then

\Aum-Bun\^\a\m Q~C^

whenever m>n and m^C9 \og(THr).

For given non-zero algebraic numbers A, B and a given sequence {um}™=0

whose companion polynomial has non-real roots, it follows from corollary
3.2 that \Aum — Bun\ -»oo, whenever max(m, n) tends to infinity through
non-negative integers m and n with m^n. This need not be the case with a
sequence {um}™=0 whose companion polynomial has real roots. For
example, the Fibonacci sequence {um}^=0 satisfies

k - ™ m - l H £ | m ~ 1 = lal~m + 1 ("1=1,2 , . . . ) ,

hence \um — aum_1\ - > 0 a s m - ^ x .
By putting A = B=1 in corollary 3.2 and recalling that |a|> 1, we have

Corollary 3.3. There exist computable numbers C n and Cl2 depending only
on OL and f$ such that for all pairs (m, n) with m>n and m^Clx log T, we have
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where
v2 = log m log T \og(n + 2).

Corollary 3.3 includes theorem 3.3. Further, corollary 3.3 implies the
following refinement of theorem 3.2.

Corollary 3.4. The equation

um = un (m^n),
implies that

max(m, n) ^ C! 1 log T (6)

A simple example shows that (6) is the best possible with respect to T Let
a(n) = 2 " - l , b('I) = 3 " - l and

u£> = ain)3m-b{n)2m (m = 0 ,1 ,2 , . . . ) .

Then u™ = M(
O
B) and 0<max(|w((;i)|, K | ) ^ 2 . 3 " for any n.

Corollary 3.4 states that if ujun= 1 and m^n then max(m,n)/log T is
bounded. By combining theorem 3.4 and corollary B.2, we generalise it as
follows. Put

Theorem 3.6 (Shorey, 1984a). Let m and n satisfy m>n^0 and umun^0.
There exist computable numbers Cl 3 > 0 and C14 depending only on a and fl
such that the inequality

implies that

Since a/j8 is not a root of unity, the equations um = 0 and wn = 0 with m # n
cannot hold simultaneously. Further, by corollary 3.1 with A = 1 and J5==0,
the equation um = 0 implies that m ^ C 1 5 l o g T for some computable
number C15 depending only on a and /?.

The first part of our next corollary is an immediate consequence of
theorem 3.6. For the second part we apply part (i) with the least integer n
such that W,,T^0 (n is either 0 or 1).

Corollary 3.5. There exist computable positive numbers C16, C17 and C18
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depending only on the sequence {um}™=0 such that

u \ f m

whenever m>n,

(ii) PK)>CJ (7)
\log m)

whenever m^C18.

Mahler (19346) proved, ineffectively, that P(um) -> oo asm-^oo. Schinzel
(1967) gave an effective and quantitative version of Mahler's result. Stewart
(1982) proved (7), with constants C17 and C18 depending only on a and b.

By (C.ll) there exist binary integer sequences such that every term
divides infinitely many others. The following consequence of corollary 3.5(i)
is a result in an opposite direction.

Corollary 3.6. / / um \ un and m>n, then m is bounded by a computable number
depending only on the sequence {um}%=0.

Corollary 3.6 includes theorem 3.2.
Finally we give a corresponding result for the greatest square-free factor

of a term of a binary sequence.

Theorem 3.7 (Shorey, 1983c). There exist computable positive numbers C19

and C20 depending only on the sequence {um}™=o such that

log Q(um) > Cl9(\og m)2(log log m)" l

whenever

Stewart (1983) derived this inequality for the members of Lucas and Lehmer
sequences. For other binary sequences his lower bounds are of the order
log m (see Stewart, 1982).

Proofs
Observe that by (1) the heights of a and b do not exceed C21T

2

where C2 i is a computable number depending only on a and /?.

Proof of theorem 3.1. Denote by cl9 c 2 , . . . , c6 computable positive numbers
depending only on a and b. First we show that

(8)
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Suppose that um = 0. Then

(*/PT=-b/a. (9)

If CL/P is not a unit, there exists a prime ideal ft in the ring of integers of Q(a)
such that ord^(a//J) is non-zero and hence, by (9),

m ^ m\oxd^ixlP)\ ^ |ord^(a)| + |ord^(fo)| ̂  c2.

Thus we may assume that a/jS is a unit. Then, by lemma A.5, we can find a
computable absolute constant c>0 such that

l+c , (10)

since a//? is not a root of unity. Combining (10) and (9), we get

which implies that m<c3 . This completes the proof of (8).
For m>cl, we have

We apply corollary B.I with n = 3, d^2 , Al = 3, A2 = c4, A3 = 3\a\2 and
B = m to obtain

Hence

Proof of theorem 3.2. Denote by c7, c8, c9, Cj 0 computable positive numbers
depending only on the sequence {um}™=0. If |a|>|/?|, the assertion follows
trivially. Thus we may assume that |a| = |j8|. Then observe that a//? and P/oc
are conjugate quadratic algebraic numbers in Q(a) of absolute value 1.
Therefore, since a//? is not a root of unity, we see from lemma A.5 that a/P
and P/a are not algebraic integers. Thus there exists a prime ideal ft in the
ring of integers of Q(a) such that ord/(a/jS) > 0.

Let m, n with m > n and m ̂  2 satisfy

um = un. (11)
Re-write (11) as
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Thus
n^n ord^a/jS) ^ ordfo/a) + ord^(j8m "" - 1).

By lemma A.8, we have

Consequently
n^c8 logm. (12)

Now notice that
|uli|<2max(|fl|,|6|)|a|B. (13)

Combining (11), (3) and (13), it follows that

m — n^c9 log m. (14)

The inequalities (14) and (12) imply that m^c10. If m<n, then we can
interchange m and n and apply the result proved above. •

Proof of theorem 3.3. Denote by c n , c12, • • •, c16 computable positive
numbers depending only on the sequence {um}™= 0. For m, n with m> n and

2, put

If 2|w/J|^|wm|, then

and the assertion follows from (3). Thus we may assume that

which, together with (3) and (13), gives

m — n^cll\ogm. (15)

We may assume that m^C3 so that, by theorem 3.2, \j/ is non-zero. Re-
writing \j/, we have

Since a ̂  0 and a is not a root of unity, we may write

where

A =
a \ a

- 1
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and A is non-zero. We apply corollary B.I with rc = 4, d ^ 2 , B — n + 2,
\ogAt =log A2 = \og A3 = c12 and, by lemmas A.3 and A.2, l o g A 4 ^
cl3(m — n) which, together with (15), implies that log A4^:c13cll log m. We
obtain

Further, by |a|> 1 and (15),

\a(xn(ocm-n- 1)|^ |a|(|a| - l)|a|B> |a|mm"Cl5.
Hence

|iA|^|a|mm"Cl6log(/J+2).

If m < n, then we can interchange m and n and apply the result proved above.

•
Now we shall prove theorem 3.4. Let k, \x, a1, a2, a3 and a4 be non-zero
algebraic numbers. Suppose that al9 a2, a3 and a4 have degrees at most d
and heights not exceeding H (^ 2). Denote by L the field generated by A, /x,
al9 a2, a3 and a4 over Q. Let xm and ym be given by (2). For 1 ^ i ^ 4 , we see
from (A.6) and (A.7) that

max 1(7(̂ )1 ^d / J (16)
a

and

min \G{at)\>{dH)~l (17)

where maximum and minimum are taken over all the embeddings a of L.
Further, for every prime ideal ft in the ring of integers of L, we observe from
lemma A.7 that

lord^l^/Cilog/f ( U K 4 ) (18)

for some computable constant k1 depending only on d. We denote by k2, fc3,
. . . computable positive constants depending only on d, k and \i. We apply
theorem B.2 to obtain the following estimate for IxJ.

Lemma 3.1. Suppose k/ja is not a root of unity. There exist k2 and k3 such
that, for every S with 0<S<^, we have

\xm\ ^ (max(|4 \fi\W exp( - k2 log(l/<5) log H - 3dm) (19)

whenever m^k3 logH.

Putting d = 1/m, we obtain
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Corollary 3.7. Suppose kj\x is not a root of unity. Then

\xm\ ^ (max(|4 H))m exp( - /c4 log m log H) (20)

whenever m^k3 logH.

Proof of lemma 3.1. We first prove that the equation xm = 0 implies that
m<fc3 log if. Suppose xm = 0. Then

Wrim=-a2/a1. (21)

If Xj[i is not a unit, there exists a prime ideal / in the ring of integers of L
such that ord^X/fi) is non-zero. Then, by (21),

m <m|oid,(J.//i)| ^ \oTd^ai)\ + |ord,(a2)|

and the assertion follows from (18). Thus we may assume that X/JX is a unit.
Then, since X/JX is not a root of unity, we can find an embedding a of L such
that |<r(A///)| > 1. Further, by taking images under o on both the sides in (21),
we have

and the assertion follows from (16) and (17).
We assume that m ̂  /c3 log H so that xm # 0. We apply theorem B.2 with

n = 3,d = k5, log A' = /c6, log A = k1 log if, B' = 1 and J5" = m to conclude that

and
W ai

exceed

exp(-fc8log(l/<5) log H -33m)

for every 3 with 0<3<%. Consequently, by (17), we obtain

|xm| > (max(| A|, |/x|))m exp( - k9 log( 1/3) log H - 33m)

for every 3 with 0 < 3 < j . •

Further we shall prove:

Lemma 3.2. Suppose Xj\x is not a root of unity. Then (4) and (5) with m^n
imply that

w<fclo((m-n) + log H). (22)

Proof Suppose that (4) and (5) with m^n are valid. Re-write (4) as

-»-a4). (23)
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It follows from (5) and (23) that a1X
m~n-a3 and a2fi

m~n-a4 are non-zero. If
XIn is not a unit, we can find a prime ideal ft in the ring of integers of L such
that ord^A///) is non-zero. Then, by (23),

n ̂  n|ord,(A//i)| ̂  l o r d , ^ A1""" - * 3 ) | + l o r d , ^ " " " -a4)\

and, by lemmas A.7 and A.3, inequality (22) follows from (18). Thus we may
suppose that Xj\i is a unit. Then, since kj\x is not a root of unity, we can find
an embedding a of L such that |a(A//j)| > 1. Further, by taking images under
a on both sides of (23), we have

Now inequality (22) follows from (16) and a Liouville-type argument. •

Corollary 3.8. Put k11=2(kl0+ 1). Suppose XjyL is not a root of unity and
. Assume that (4) and (5) are satisfied. Then

m (24)
implies that

Proof By (22) and (24),

n^k^l
1kl0m-{-

which, together with (24), implies that

Hence m ^ 2fcx 0 log H. •

Proof of theorem 3.4. Assume that (4) and (5) are satisfied. There is no loss of
generality in assuming that m ̂  n. Further there exists an embedding o of L
such that

By considering the equation <j(xm) = <j(yn) in place of (4), there is no loss of
generality in assuming that max(|A|,|/i|)> 1. Write

logmax(|A|,M) = *12. (25)

We may assume that m^kl3\ogH with kx3 sufficiently large. Let k13>
max(/c3,2fe10) so that the assertion of lemma 3.1 is valid and, by corollary
3.8,

m-n>/cf1
1m. (26)
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Further, by (16) and (25),

\yH\^2dHd>»\ (27)

Now it follows from (4), (19) with <5 = min(fc12/6fcu,i), (25) and (27) that

m-n^(2/c1 1)"1m + fc14log//. (28)

Combining (26) and (28), we obtain m<2kllki4r\ogH. •

Proof of theorem 3.5. Suppose that Aa^^Ba^" with m^n. Put

We assume that m^k15 \og(HH') with kx 5 sufficiently large. Let kl5>k3 so
that the assertion of corollary 3.7 is valid. We see from (A.6) and (A.7) that,
for

m*x(\A\9\B\)^dH', min( |4|B|) >(<*/*')"'• (29)

If \Axm\>2\ByH\, then

and the theorem follows from (29) and (20). Thus we may assume that

\Axm\<2\Byn\. (30)

Further, by lemma A.I,

\yn\<2dH\X\'\ (31)

Now it follows from (30), (20), (31), (29) and max(|A|, \fi\)^ |A|> 1 that

m - n ̂  k16(log m log H + log H'). (32)

If kl 5 is sufficiently large, it follows from theorem 3.4 that \j/1 is non-zero.
Further, re-writing \j/l9 we obtain

Since Aa^™'" — Ba3^0, we may write

where

and Ax is non-zero. We apply corollary B.I with n = 3, d = k17, B = n + 2,
log Ax = log A2 = k18 and log ^43^/c19((m — n) + log(if//')) which, together
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with (32), implies that log A3 ^ k20(\og m l°g H + log Hf). We obtain

A^e"*21*.

Further, by (32), (16), (29) and a Liouville-type argument, we obtain

l^'XAa^ "" - Bfl3)| ^ |2|m exp( - /c22(log m log if + log H')).

Hence
|^i |>Wwe-*»v . D

Proof of theorem 3.6. For an integer x in Q(a), denote by [x] the ideal
generated by x in the ring of integers of Q(a). By lemma A. 10, we have

([a2],D»2])=P]

where / is a positive rational integer. In fact, / = (r2, s). Put

Then al and fix are non-zero algebraic integers such that the ideals [ax] and
[/?J are relatively prime. Further, observe that |ax | > |j8i |, ai//?i is not a root
of unity and al9 j8x are roots of a quadratic monic polynomial with rational
integer coefficients. Consequently, we find that |a t | > 1. For m' = 0, 1, 2 , . . .
and (5' = 0,1, write

U2m' + S> = lm'v2m> + 6' (33)
where

Let m and n be non-negative integers such that m > n and umun # 0. Write

uJu^BJA, (34)

where ^ > 0 and Bx are relatively prime non-zero integers. Then

Further, write m = 2m1
 Jrdl,n = 2n1 +S2 where (51,^2^{05 !}• Observe that

mx^nx, since m>rc. By (34) and (33),

Cancelling the common factors of AJ™1'"1 and Bl9 we can find non-zero
rational integers A2,B2 with (A2, B2)= 1 and

(35)
such that

(36)
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We apply theorem 3.4 with ai = A2aaiSl
9 a2 = A2bflSl, a3 = B2aad2, aA =

B2bfid\ X = ccufi = pu xmi = A2vm, yni = B2va and

where c17 and the subsequent symbols c18, c19, . . . , c25 are computable
positive constants depending only on a and /?. We see that T > 1, since
|ax |> 1. If a1X

ni = a3X
ll

9 then, by (36), a2fi
mi = a4iu

ni and, consequently, we
find that (a//?)m = (a//?)M, which is not possible since a/j8 is not a root of unity
and m / n . Further, A//J is not a root of unity. Thus all the assumptions of
theorem 3.4 are satisfied. Hence, by theorem 3.4, we conclude that

m^2m1 + 1 ^c18(log \A2B2\ +log T) (37)

with c 1 8> 1.
We assume that m>c19 log T with c19 sufficiently large. Let cl9>2cl8.

Then, by (37),

m<2cl8\og\A2B2\. (38)

By (36) and lemma 3.1 with <5 = (12c18)~1 and m>n,

which, together with (38), implies that

m<c21 log \B2\ (c 2 1>l) , (39)

if c19 is sufficiently large. Write P = P(B2). By (39), we find P ̂  2. For a prime
p dividing B2, it follows from (36) that

ovdp(B2)^ordp(vm),

since A2 and B2 are relatively prime. Further,

log \B2\ = X ordp(B2) log p^logP^ ordp(vm). (40)

Thus, by (39) and (40), we can find a prime po^P such that

ordp>m)>(c217r(P)logP)-1m

which, by (N.I), gives

ordPo(i;J>(2c21P)-1m.

Let /i0 be a prime ideal in the ring of integers of Q(a) dividing p0. Then

ordJvm)>(2c21P)-1m. (41)

We see from ( [ a j , [/?J) = [1] that / 0 is prime to at least one of the ideals



76 Diophantine equations and recurrence sequences

[ a j and [/JJ. For simplicity, we assume that fc0 and [ax] are relatively
prime. Put

Then, by lemma A.7,

ord>o(*vKA2 + c2 2 log7: (42)

By (42) and (41), we find that

A 2 >(2c 2 1 P)- 1 m-c 2 2 log7:

We may assume that m>4c2 1c2 2Plog T; otherwise the theorem follows
from (35). Then

A2>(4c21P)"1m.

Now we apply corollary B.2 with p = po^P, n = 3, d = dx, l o g ^ = c23,
l og^ = c24log T, B = m and S = (4c21P)~1 to A2. We obtain

which, together with (35), completes the proof of theorem 3.6. •

Proof of theorem 3.7. By lemma A. 10, we have

where / is a positive rational integer. By considering integral binary
recurrences {l~mu2m}^=0

 a n d {I~mu2m + i}m = o separately, we may assume
that ([a], [/?])= [1]. Denote by c26, c 2 7 , . . . computable positive numbers
depending only on the sequence {um}^= 0. We may assume that m ̂  c26 with
c26 sufficiently large. Then \um\> 1. We may suppose that

otherwise the assertion follows immediately. Let p l 9 . . . , ps be all the prime
factors of um such that ^ > m 1 / 4 for 1 ^ i ^ s . It suffices to show that

s>c27(log m)(log log m)"1.

Let 0 < £ < 1. We assume that

5 ̂  a(log m)(log log m)"x

and we shall arrive at a contradiction for a suitable value of £ depending
only on the sequence {um}^=0.
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For a prime p, let ft be a prime ideal in the ring of integers of Q(a) dividing
p. We apply theorem B.3 and ([a], [/?]) = [1] to conclude that

ordp(wm) <ord,(Kj ^ c 2 8 ^ — (log m)2

where dx = [Q(a):Q]. Consequently

£ ^ordp(ujlog p^c28(log m)2 ^ ^ p^1.

Further, since d^ = 1 or 2,

V vdl^m3/4

<m 1 / 4

Hence

^ ^ ordp(t/m) log p^c28rn3/4(log m)2.

Thus we may write

where al9..., as are positive integers and 0 # Um eZ with

Further notice that, for some c29> 1,

ai^c29m (
We put

Observe that
Suppose that |a| > |)8|. Then it follows from (44) and (43) that

(44)

0<|A|<c3"o
m wi thc 3 O >l . (45)

We apply corollary B.I with rc = s + 3^e(logm)(loglogm)~1 + 3, d ^ 2 ,
log Ax =log A2 = c31, log A3= • • • =log An_1 =(logm)2, log An =
c28rn3/4(logm)2 and B = c29m to conclude that

|A| ^ exp( - m3/4+C32£(log m)c")- (46)

Let 8 = min(l/8c32,^). Then it follows from (46) and (45) that m ^ c 3 4 which
is not possible if c 2 6 >c 3 4 .

Thus we may assume that |a| = \P\. Then we employ an elementary p-adic
argument from the proof of theorem 3.2 to find out a prime ideal / in the
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ring of integers of Q(a) such that ord/(/?/a) > 0. Since ([a], [/?]) = [1], we see
that / 1 p and ft Jfai. Now it follows from (43) and (44) that

m ^ c 3 5 + ord,(A). (47)

We apply theorem B.3, with the same parameters as used for corollary B.I
to derive (46), to conclude that

ord,(A) ^m3/4+C36£(log m)c'\ (48)

Put £ = min(l/8c36,\). Then, by combining (47) and (48), we see that
which is not possible if c26 >c 3 8 . •

Notes
In these notes {um}^=0 will denote a non-degenerate binary

recurrence sequence of rational integers with distinct roots a, P unless it is
explicitly stated that we deal with a Lehmer sequence.

Mahler (1934b) showed, by a p-adic generalisation of the Thue-Siegel
theorem, that \um\ -• oo as m -> oo. Lower bounds for \um\ in the special cases
of Lucas or Lehmer sequences were given by Schinzel (1962a), Townes
(1962) and P. Chowla, S. Chowla, Dunton and Lewis (1963). The first
general effective lower bound was given by Schinzel (1967), who employed
his version of a p-adic theorem of Gelfond (see also Mahler (1966) and
P. Chowla (1969)). Stewart's proof of theorem 3.1 can be found in Stewart
(1976, p. 33) and in Shorey and Stewart (1983). Kiss (1979) has given
completely explicit estimates for \um\.

It is a trivial consequence of the fact \um\ -* oo as m -* oo that {um}™=0

attains every value only finitely many times. Ward conjectured that the
multiplicity of {um}^=0 is at most 5. Partial results in this direction were
obtained by P. Chowla, S. Chowla, Dunton and Lewis (1959), S. Chowla,
Dunton and Lewis (1961), Laxton (1967) and Alter and Kubota (1973). By
using Skolem's method, Kubota (1977a) established Ward's conjecture and
proved that the multiplicity of {um}^= 0 is in fact at most 4. Improved results
and simplified proofs were given by Beukers (1980). His results imply that
the multiplicity is at most 3 with essentially only one exception which has
multiplicity 4, namely the sequence defined by uo=l, ux= — 1, um + 2 =
— um + l —2um for m^2 . Multiplicities of Lucas sequences were studied by
Kubota (1977a) and Beukers (1980).

The first lower bounds for P(um) were obtained as by-products of results
on primitive divisors of Lucas and Lehmer sequences. Let A and B be non-
zero integers of an algebraic number field K. A prime ideal fi of K is called a
primitive divisor of Am - Bm if ft \ \_Am - £ m ] but /fe)( [_An - Bn~] for 0 < n < m.

Zsigmondy (1892) and Birkhoff and Vandiver (1904) showed that if v and w
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are coprime non-zero rational integers with v # ± w, then vm — wm has a
primitive divisor for m>6. This result was improved by Schinzel (19626).
Schinzel (1974) improved upon earlier work of Postnikova and Schinzel
(1968) by showing that if ([A, £]) = [1] and A/B is not a root of unity, then
Am — Bm has a primitive divisor for all m>C22, where C22 is a computable
number depending only on the degree d of A/B. The proof depends on
theorem B.I. Further, Stewart (1976, Ch. V; 19775) showed that C22 can be
taken to be equal to max(2(2d —1), e452d67). He used a refinement of
theorem B. 1. By taking A = a, B = fi in the definitions of Lucas and Lehmer
sequences as given in chapter C it follows that every Lucas number um with
m>e 4 5 2 2 6 7 and every Lehmer number um with m>e 4 5 2 4 6 7 has a prime
factor which does not divide un forO<n<m. Stewart proved the stronger
result that there are only finitely many Lucas and Lehmer sequences whose
mth term, m > 6, m # 8,10 or 12, does not possess a primitive divisor and that
these sequences may be explicitly determined. This improves upon results
of Carmichael (1913), Ward (1955a), Durst (1959) and Schinzel (1968,1974).
Since primitive factors of Lucas and Lehmer numbers have the property
that they are + l(modm), we see that P(um)^m-\ for m>e 4 5 24 6 7 for all
Lucas and Lehmer sequences {um}™=0. Stewart (1976, p. 57) conjectured
that, for any Lucas or Lehmer sequence with a, jS real, P(um) > C23(0(m))2 for
all m, where C23 is a computable positive number. However, the much
weaker assertion P(um)/m ->oo is still open. Stewart (1975) proved that
P(vm ± wm)/m tends to infinity as m -> oo and co(m) ^ K log log m and 0 < K <
I/log 2. Stewart (1977a) and Shorey and Stewart (1981) generalised this
result to all Lucas and Lehmer sequences. In fact it follows from the results
of Stewart (1975,1977a), Erdos and Shorey (1976) and Shorey and Stewart
(1981) that P(vm ± wm) > C24.m log m for m 7* 3 where C2 4 > 0 is a computable
number depending only on P(vw) and co(m), and that, in the case of a Lucas
or Lehmer sequence, P(wm)>C25mlogm for m ^ 3 where C 2 5 > 0 is a
computable number depending only on a, /} and co(m), and, moreover,
P(wm)>m(log m)2/(log log m)2 for almost all m. Erdos and Shorey (1976)
applied estimates of linear forms in logarithms and Brun's sieve to show that
P(2P— l)^p(logp)2/(loglogp)3 for almost all primes p. Gyory, Kiss and
Schinzel (1981) proved the following result. If um is the mth term of a Lucas
sequence (m>4) or Lehmer sequence (m>6), then |a|, |/?| and \um\ are
bounded by computable numbers depending only on P(um) and co(um).
Gyory (1982a) computed explicit bounds. As a consequence he showed that
there exists a computable absolute constant C26 such that every Lucas and
Lehmer number um with m>6 and |wm|>C26 satisfies P(um)>
^(loglog |wm|)1/3. For more information on primitive divisors, we refer to
Schinzel (1974) and Stewart (1976, 1977a, b, 1982).
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We consider again sequences {wm}™=o as described at the beginning
of these notes. Polya (1921) proved that there exist infinitely many primes
which divide some term um. Mahler (1934b) proved that P(um) ->ooasm->
oo. The first general lower bound for P(um) was given by Schinzel (1967),
namely

P(uJ>C21rnc>*

where C 2 7 > 0 is a computable constant depending only on the sequence,
and C28 is an absolute positive constant. Stewart (1976, Ch. 3) gave the first
proof of corollary 3.5(ii). As noted in the text, a proof of corollary 3.5(ii)
where C17 depends on a and b only is given in Stewart (1982). In both
publications he further proved that for almost all integers m

P(um)>e(m)m\ogm,

where s(m) is any real-valued function such that e(m) -> 0 as m -• oo. See also
Petho (1985) and papers of Petho and de Weger to appear in Math. Comp.

Shorey (1983a) applied theorem 3.2 to obtain estimates for the greatest
prime factor and the number of distinct prime factors of the product of
blocks of consecutive terms in binary recurrence sequences.

Stewart (1982) also showed that

m \1/d

where C 2 9 > 0 is a computable constant depending only on a and b. In
Stewart (1983) he proved that for Lucas and Lehmer numbers

Q(u ) > rnCi0^m^log m^q^log log m)

where d(m) denotes the divisor function, q{m) = 2w{m) and C30 is a positive
computable number depending only on the sequence. This result implies
the assertion of theorem 3.7 for Lucas and Lehmer numbers. Further,
Stewart (1983) proved that, for Lucas and Lehmer numbers, the inequality

is valid for almost all m. Shorey (1983c) proved the inequality of theorem 3.7
with Q{um) replaced by

for all m>n with umun^0.
Lewis and Turk (1985) showed that the restriction T > 1 in theorem 3.4

can be removed ifa1,a2 are fixed and a3 = a'al9 aAr = a'a2 where a' is a fixed



3. Binary recurrence sequences 81

algebraic number. Thus they proved: if a'#0, then xm = a'xn with
implies that max(m, n) ^ C31 where C31 is a computable number depending
only on {xm}£=0

 a n d a'-
Ramanujan's function x{n) satisfies a binary recurrence

Ram Murty, Kumar Murty and Shorey (1986) applied the theory of linear
forms in logarithms, via this relation, to show that, for an odd integer a, the
equation x(n) = a implies that logn^(2|a|)C32 where C32 is a computable
absolute constant.



CHAPTER

Recurrence sequences of order 2, 3
and 4

Let {wm}£=0 be a recurrence sequence of algebraic numbers. Let the
minimal recurrence relation of {um}%=0 be given by

Wm+k = v f c - i W m + f c - i + v k _ 2 w m + k _ 2 + - - - + v 0 M m (m = 0 , 1 , . . . ) . (1)

It follows from chapter C that v0, v l 5 . . . , vk_ x are algebraic numbers with
vo#0. Put K = Q(u0, ul9..., u ^ , v0, vl9..., v ^ J . Then umsK for all m.
Write the companion polynomial of (1) as

G(z) = zk-vk_1^-1'"-v0=fl(z-(ojn (2)

where co^ cy2, . . . , cos are distinct complex numbers and al9 a2> • • •» °"s
positive integers. Without loss of generality we may assume

\ \ \ \ \ \ 1: = 0. (3)

Define r by

KI=1^2!=• • • = H > K+! l. (4)
By theorem C.I and the minimality of the recurrence there exist non-trivial
polynomials fj with coefficients in K(co1, co2,..., cos) and of degree a} — 1 for
7= 1, 2, . . . , s such that

" m = t fj(m)cDj (m = 0,1,2,...). (5)
J = I

We shall use the above notation throughout the chapter without further
reference. Furthermore, m and n will denote non-negative integers.

We consider the equation

Wm = w,, ( 6 )

82
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in integers m, n with m > n. If r = 1, a direct application of theorem B. 1 yields
the following result of Mignotte (1979).

Theorem 4.1. Assume r = 1, |cox | > 1. Equation (6) wit/z m > n implies that m is
bounded by a computable number depending only on the sequence {um}^=0.

In case r = 2 a direct application of theorem 3.5 gives an analogous result:

Theorem 4.2. Assume r = 2, |coj| > 1, co1/a)2 is not a root of unity. Equation
(6) with m>n implies that m is bounded by a computable number depending
only on the sequence {wm}m = o-

If s = 2, we can use theorem 3.5 to replace \col \ > 1 by [coĵ  | > 1 in theorem 4.2.
The analogous result for r = 3 requires a more complicated argument
involving corollary B.2 and an argument due to Beukers (see Beukers and
Tijdeman, 1984). Theorems 4.3-4.8 are contained in Mignotte, Shorey and
Tijdeman (1984).

Theorem 4.3. Assume r = 39\co1\>l and at least one of the numbers (JO1I(O2,

OJ2/(O3 and 0)3/a)1 is not a root of unity. Equation (6) with m>n implies that m
is bounded by a computable number depending only on the sequence {um}™ = o-

Theorem 4.3 is contained in the following result which is an extension of
theorem 3.3.

Theorem 4.4. Assume r = 3,\co1\>l and at least one of the numbers (D1/(D2,

co2/co39 co2)l(o1 is not a root of unity. There exist computable numbers Cx and
C2 depending only on the sequence {um}^=0 such that

K - un\ ^\co,\m exp( - d (log m)2 log(n + 2)) (7)

whenever m^C2 and m>n.

Theorem 4.4 will be deduced from the following result corresponding to the
case n = 0.

Theorem 4.5. Assume r = 3 and at least one of the numbers co1/(o2, co2/co3,
0)3/0)! 15 not a root of unity. Then there exist computable numbers C3 and C4

depending only on the sequence {um}™=0 such that

| | | ) 2 ) ( 8 )

whenever m ̂  C4.

Theorem 4.5 and corollary 3.7 imply the following result on O-multiplicity.
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Corollary 4.1. Assume r ^ 3 and co2/
coi *s not a root °f unity. The equation

um = 0 implies that m is bounded by a computable number depending only on
the sequence {um}%=0.

We cannot prove an analogous result for r = 4 , but we have

Theorem 4.6. Assume 5^4 and {um}™=0 is a non-degenerate recurrence
sequence of real algebraic numbers. The equation um = 0 implies that m is
bounded by a computable number depending only on the sequence {um}™=0.

The proofs of theorems 4.3, 4.4, 4.5 and 4.6 depend on the following two
results.

Theorem 4.7. Let Al9 A2, A3 be non-zero algebraic numbers of degrees at
most d and of heights at most H (^2). Let yi9y2,y3 be non-zero algebraic
numbers such that at least one of the numbers y1/y2, yjy^ y-shi *s not a root

of unity. Then the equation

O (9)

implies that m^C5 log H for some computable number C5 depending only on

Theorem 4.8. Let Al9 A2, A3 be as in theorem 4.7. Let y1}y2, y3 be algebraic
numbers with \yt \ = \y2\ = \y3|. Let m^ 2. Then either A^ + A2H + A3y% = 0
or

for some computable number C6 depending only on yl9 y2, y3 and d.

Proofs
The proofs of the theorems depend on the following result.

Lemma 4.1. Let f(z) be a non-constant polynomial with algebraic coefficients
and co a non-zero algebraic number. The equation

f(m)(om =f(n)(Dn (m>n) (10)

implies that m is bounded by a computable number depending only on f and co.

Proof. Suppose that m and n with m>n satisfy (10). Denote by bl9 b2,...
computable positive numbers depending only on / and co. We may assume
that m ̂  bx with bx sufficiently large. Denote by L the field generated over Q
by co and the coefficients of / Write v = deg / ^ 1.
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Suppose co is a root of unity. Then a/ = 1 for some positive integer \x.
Consequently, by (10),

g(m) = g(n) (11)
where

g(x)=(f(x)T-

Observe that g(x) is a polynomial of degree p = fiv^ 1. By (11), we see that
p ^ 2 and

p_! mp-np
 p_2

^ m — n ^ 2

which implies that m^fo2-
Thus we may assume that co is not a root of unity. We first prove that

m-n^b3logm. (12)

If co is not a unit, there exists a prime ideal / in the ring of integers of L such
that ord^(co) is non-zero. Counting the power of the prime ideal / on both
sides in (10), we obtain (12) from lemma A.7. Suppose co is a unit. Then, since
co is not a root of unity, there exists an embedding a of L such that |cr(co)| > 1.
Further, by taking images under a on both the sides in (10), we have

°(f(n))

and inequality (12) follows from a Liouville-type argument.
Re-writing (10), we have

Observe that

and, by taking bl large enough,

\f(m)\>b5m\

Thus we obtain from (13) and (12), since co is not a root of unity,

Now apply corollary B.I with n= 1, d = bl9 log A1 = b8 aiid, by (12), B =
m — n+l^2fc3logm to conclude that

|co m -"- l |>( logm)- \

Consequently m^fo6(log m)b9+1 which implies that m^bl0. •
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Corollary 4.2. Let f(z) be a non-trivial polynomial with algebraic coefficients
and co a non-zero algebraic number. Suppose that co is not a root of unity.
Then (10) implies that m is bounded by a computable number depending only
on f and co.

Corollary 4.2 with '|co| > V in place of'co not a root of unity' is sufficient for
our purpose.

Proof. In view of lemma 4.1, we may assume that deg / = 0 . Then equation
(10) implies that co is a root of unity. •

The constants cl9 c 2 , . . . in the proofs of theorems 4.1-4.6 and corollary 4.1
are computable positive numbers depending only on the sequence {um}™= 0.

Proof of theorem 4.1. Suppose that equation (6) with m > n is valid. We may
assume that m^c1 with c1 sufficiently large. Then, by corollary 4.2 with
f=fx and co = cox, we see that s ^ 2 and /i(m)co7^/i(n)co". Further

C2 max(l, |co2|
m)

which, by taking c1 large enough, implies that

o< ^mC3ma.x{\a)1\-
m,\a>l/a)2\-

m). (14)

We apply corollary B. 1 with n = 2, d = c4, log Ax = c5, log A2 = c6 log m and
B = m to conclude that

>exp(-c7(logm)2). (15)1 Mm)

It follows from (15), (14), \cox\> 1 and |co1/co2|> 1 that m^c8(logm)2 which
implies that m^c9. •

Proof of theorem 4.2. Suppose that equation (6) with m > n is valid. We may
assume that m^c10 with cl0 sufficiently large. Then, by corollary 4.2 with
/ = / i and co = co1, we obtain

ZiNcoT^Wco' l . (16)

In the notation of corollary 3.7, put a1=fl(m), a2=f2(m), logH =
c22 log m, A = cox, /i = co2 and xm —Mmjco^ +/2(m)co2. Observe that Xj\x is not
a root of unity. By taking c10 large enough, we see that a 1 a 2 #0 . Hence, by
corollary 3.7,

W > h i | m exp( - c n ( l o g m)2)
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which, together with r = 2, implies that

| g | j ) 2 ) . (17)
Further observe that

I J l c O i l " . (18)
It follows from (6), (17), (18) and |cox|> 1 that

Consequently, by taking cl0 large enough, we obtain

In the notation of theorem 3.5, put a1=f1(m), a2=f2(m)9 a3=f1(n),
a4.=f2(n), log H = c21 log m, A = B= 1, # ' = 2, X =

xm =fMX +/2(»0^2, yn = / i («W

Observe, by taking c10 sufficiently large, that a1a2a3a4.^0. Further notice
that |A| = | / J |> 1, Xlix is not a root of unity and, by (16), Aa^^Ba^".
Hence, by theorem 3.5, we conclude that

K~yn\ >\^i\m exp( -c15(log m)3). (19)

In particular xm^yn and consequently, by (6), we see that s>2 . Further, it
follows from (6) that

\xm-yH\ <rnCl6 max(l, \a)3\
m). (20)

Now it follows from (19), (20), [co^ > \co3\ and [a)^ > 1 that m^c17(log m)3.
Hence m^c 1 8 . D

The constants el9 e2, . . . in the proofs of theorems 4.7 and 4.8 are
computable positive numbers depending only on yi,y29y3 and d.

Proof of theorem 4.7. Suppose that (9) is valid. By interchanging the indices
of yl9 y2 and y3, there is no loss of generality in assuming that y1/y2 is not a
root of unity. Further, we may assume that m^e1 log H with ex sufficiently
large. Denote by L the field generated over Q by Al9 A2, A3, yl9 y2 and y3.
Observe that [ L : Q ] ^ e 2 .

Assume that y1/y2 is not a unit. Then there exists a prime ideal ft in the
ring of integers of L such that ord/(71/y2) is non-zero. By permuting the
indices of yx and y2, we may assume that ord/(71/y2) > 0. Then, by (9), we see
that A2H + A3y% ̂ 0 and

/ ^ V ^ \ (21)
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We apply corollary B.2 with n = 39d = e3,S = \9A' = e4,A = Hes and B = m to

conclude that

(22)

if el is sufficiently large. Consequently we see from (21), (22), lemma A.3 and
lemma A.7 that m < e6 log H which is not possible if e1>e6.

Thus we may suppose that y1/y2 is a unit. Then, since yjy2 is n ° t a root of
unity, there exists an embedding a of L such that |<T(yi/y2)|> !• Therefore
|<T()'i)|>|o'(y2)|- By taking images under a on both sides of (9), we may
assume that |yi|>|y2|- By (9), Arff + A^^O. Further, we may write

We apply theorem B.2 with n = 3, S = min(£ log \y Jy2\, 4), d = e7, log A' — e8,
log A = e9 log H, B'=l and B" = m to conclude that

-m/2

Thus, by (A.7),

Further, by lemma A.1,

By (9), (23) and (24),

-m/2

\A2y
m

2\^dH\y2\
m.

(23)

(24)

m/2

which, together with \yx/y2\> 1» implies that m^el3logH. D

Proof of theorem 4.8. Without loss of generality we may assume \A2\ ^
|A1|^|A3| and A1y™ + A2y

r
2 + A3y™j^0. We may also assume that yl9y2,y3

are distinct; otherwise the assertion follows from corollary B.I. Put

(25)

Then vm is of the form

(26)
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Fig. 4.1

with a1, a2, ocl,oc2 algebraic, 0 < \a2\ < |«i| < 1, whereas ax and a2 are distinct
and |ax | = |a2| = 1. Note that vm ̂  0 and, by lemma A.3, the heights of aY and
a2 do not exceed /T14. Let ?/ be any positive number with Y\<\. We
distinguish two cases:

Case (/). l^l + \a2\
have

Hence

(see fig. 4.1). Put l^a?! = \ax\ = rx. Let |i;m| <^. We

(Im(aia?))2 = r? (1^1 + IJ).

It follows that

Thus

^̂

(27)

Case(»). Iflj| + \a2\ >l+tj (see fig. 4.2). Put rx = |ax|, r2 = \a2\. Note that zx: =
axa7 is on the circle |z| = rx and that z2 : = a 2a^+ 1 is on the circle |z— l| = r2.
These circles intersect in two points, z0 and z0. We may assume that
(Im zo)(Im z J ^ O . Because of symmetry it is no restriction to assume that

y2 = rj, (1 - x ) 2 + y2 = r\ andImz o >0 . Put zo = x + iy. By
we have
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z2f \z{

1 - r2\r1 -rj

4
Fig. 4.2

We infer, by r2 ̂  1 + rj — rx ^ r\,

rl r2 r2 *l

We shall derive a lower bound for |i> 1 = ̂  — z2l. Observe that

(28)

Hence

which implies

\Rez1-Rez0\^3\z1-z2\.

From |zo| = |zx| and (29), we obtain

On the other hand, by I m z ^ O and Im zo = y>0,

|(Im zx)2 — (Im zo)2| ̂  |lm Zj — Im

On combining (31), (30) and (28), we see that

Im Zj —Im z 0 ^ Zj —z 2 .

n
By (29) and (32),

\z1-z0\^\3+-j\zl-z2\,

(29)

(30)

(31)

(32)
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or, equivalently,

-a,

91

(33)

Subsequently we show that z0 is an algebraic number of degree at most
e15H

ei6. By zozo = ala~1 and (l-zo)(l-Jo) = {l-a2)(l-a~2~) we have
z0 + z0 = a2 H- a2 — a2a2 + a ^ . Thus

This proves that z0 is algebraic indeed and that it can be expressed in terms
of ax and a2 by using only sums, products and square roots.

On using lemmas A.3 and A.4 for the heights of sums, products and
square roots of algebraic numbers it becomes clear that we may assume
without loss of generality that the heights of the numbers A3, au a2, rx =
(a1a1)1 / 2 ,r1-l,r?/9,a1/r1 ,a2/(r1-l),zo ,zo-l,a1/zoanda2/(zo-l)areat
most e17/T

18. By a Liouville-type argument these numbers are in absolute
values at least e19H~eis. We use these estimates without reference.

Case (i). If aiU™ = r1 = 1, then vm= —a2<x™ and hence

(34)

If a^™ = rx< 1, then vm = rl — l —a2<x™. On applying corollary B. 1 we obtain

- 1 ei*exp(-e21logmlogH)

^ exp( - e22 log m log H).

If a1a7#r1, then we find by applying corollary B.I,

(35)

^ 2 exp( — e23 log m log H)

where e23 is so large that the right-hand side is less than 1. Put rj =
exp( — e23 log mlog H). Then ^/<^ and, by (27),

\vm\^Y\^exp( — e2Ar log mlog if). (36)

Case (ii). If a1ct™ = z0, then i;m = z0— 1—a2a2, hence, by corollary B.I,

a2
oc2z o - l

- 1 exp( - ^25 log m log #). (37)
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If a^^ZQ, then, by (33), r\< 1 and corollary B.I,

\vj>- ^ exp( - e26 log m log H). (38)
12

By (34)-(38) and |yx| = |y3| we deduce

\ = \A3\\vm\\y1\
m^exp(-e27logmlogH)\y1\

m. Q

Proof of theorem 4.5. We may assume that m^c19 with c19 sufficiently
large. Put

A =fMX +/2(mW +/3M^3 •
We apply theorem 4.7 with ^=/ f(m), yi = coi for l ^ f ^ 3 and log/ / =
c20 log m to conclude that

if c19 is sufficiently large. Then, by theorem 4.8 with the same choice of the
parameters, we obtain

\ \ \ \ (39)

Further observe that

\um\>\A\-8 (40)

where 3 = mC22\co4\
m. Now estimate (8) follows from (40), (39) and \cox\> \co4\.

a

Proof of theorem 4.4. Let m>n. We may assume that m>c23 with c23

sufficiently large. Let c23 > C4 so that estimate (8) is valid. We may assume
that

kl<2k|; (41)
otherwise

and (7) follows from (8). Further, observe that inequality (18) is valid. Now it
follows from (41), (8), (18) and {co^l that

m-n^c 2 4( logm) 2 . (42)

Then n ̂  2. For 1 ^ i ^ 3, put
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and
Ax = B^'l + B2o)n

2 + B3co3.

By taking c23 sufficiently large, it follows from corollary 4.2 and min^coj,
Iw2|> |^3|) > 1 t h at B1B2B3 ^ 0. We apply theorem 4.7 with A{ = Bt, yt = (Dt for
1 ^ K 3 and, by (42), Iog#^c 2 5( logm) 2 to conclude that

Ai/0

if c23 is large enough. Then, by theorem 4.8 with m = n, At = Bh y( = co, for i =
1,2,3 and Iogi/^c2 5(logm)2 , we obtain

| A i | > h i I" exp( -c26(log m)2 log n)

which, together with (42), implies that

I Ai I > \cot \
m exp( - c27(log m)2 log n). (43)

Observe that

K-*n\>M-&l (44)

where 5^ ^nf28 max(l, |a)4|
m). Now inequality (7) follows from (44), (43) and

|co1|>max(l,|co4|). •

Proof of corollary 4.1. If r = 3, then it follows from theorem 4.5 that m < C4.
Suppose r ̂  2. If s = 1, then um =/x (rri)oj™ with /x non-trivial, cot # 0, and the
assertion is obvious. Since we may replace um by vmum for any integer m, and
hence ct); by vcot. for i = 1,2,..., s, it involves no loss of generality to assume
that co 1 ? . . . , cos are algebraic integers. Then, since co2/coi is not a root of
unity, we see from lemma A.5 that max(|co11, |co2|)> 1. Therefore we may
assume [co^ 1. Apply corollary 3.7 with X = col9 tt = co2, #i = / i W , a2 =
/2(m), H = c29 log m. Hence

| / i ( m K +/2NW21 > h i |m exp( - c30(log m)2)

for m^c3l. If 5>2, then the contribution of the other terms is of smaller
order. Hence,

for m^c 3 3 . Since wm = 0, we have m<c33. •

Proof of theorem 4.6. By corollary 4.1 we may assume r = 4. By § 2 of chapter
C the sequence {um}™=0 is induced by a recurrence of real algebraic
numbers. By considering the sequence {vmum}^=0 where v is a positive
integer such that va>1?..., vco4 are algebraic integers, we see that there is no
loss of generality in assuming that the coefficients of the companion
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polynomial to {um}™= 0 are real algebraic integers. Consequently a>1,..., o>4

are algebraic integers. Put L=Q(cw1, . . . , a>4) and denote by h the class
number of L. For an integer m ̂  0 let

um = 0. (45)

Since the companion polynomial to {wm}*=0 has real coefficients and none
of the quotients ojaij (1 ̂  i <j^4) is ± 1, it follows that col9co2, a>3, co4 are
non-real. Further, by permuting the indices of a^, (O2,a>3, a>4, there is no loss
of generality in assuming that

co1=co3, co2 = co4. (46)

Suppose o)1/a>3 is a unit. Since co1/co3 is not a root of unity, there exists an
embedding a of L such that |(J(Q)1)|>|(7((U3)|. Further, (45) implies that
<r(wm) = 0. Now we apply corollary 4.1 to {<x(wm)}m = o t o conclude that m is
bounded by a computable number depending only on the sequence

Thus we may assume that col/a>3 is not a unit. Further, we see from (A.36)
that

where n is an algebraic integer in L. For 1 ^ / ^ 4 , put

W—coin-1. (47)

Notice that W ,̂ W2, W39 W4 are algebraic integers in L satisfying

([»i],[wg,[^3l[»a)=[i]. (48)

It follows from (47), (46) and |co3| = |co4| that

WlW3=W2W4. (49)

Since co1/a>3 is not a unit, it follows from (47) that W1/W3 is not a unit. We
know that Wx and VF3 are algebraic integers. Hence Wx W3 is not a unit. Thus
there exists a prime ideal / in the ring of integers of L such that / 1 W1W3.
Consequently, by (49), / 1 W2W4. By permuting the indices of Wl9 W3 and
W2, W4, there is no loss of generality in assuming that

Write m = nh + q with 0^q<h and pi(z)=fi(z)(o1 for l ^ / ^ 4 . We may
assume that n ̂  c34 with c34 sufficiently large; otherwise the assertion of the
theorem follows. Dividing both sides of (45) by n'\ we obtain

Pi(m)W"1+p2(m)W"2= -P3(m)Wn
3-p4(m)Wl
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By counting the power of prime ideal / on both sides, it follows from (50)
and lemma A.7 that

n ̂  c3 5 log m + ord^(A) (51)
where

A = p1(m)Wn
1+p2(m)Wn

2.

By (47) and col/co2 not a root of unity, we see that Wl/W2 is not a root of
unity. Further, by taking c34 large enough, it follows from corollary 4.1 that

In view of (48) and (50), we find that either fi)( Wx or / ) ( W2. For
simplicity, assume that ^JfW1. Then, by lemma A.7,

) (52)

We apply theorem B.3 with n = 3, d = c37, p = c38, log Ax = log A2 = c39,
log A3 = c40logm and B = n^m to conclude that

Combining (51), (52), (53) and n +1 ^ m/h, we obtain m ̂ c42(log m)3 which
implies that m^c43. D

Notes
In § 3 of chapter C the theorem of Skolem-Mahler-Lech was

stated. The result was proved by Skolem (1935) for rational recurrence
sequences, by Mahler (1935a) for algebraic sequences, by Lech (1953) for
sequences in a field of characteristic 0, and later once more for complex
sequences by Mahler (1956). Robba (1978) derived an upper bound for the
period length of the vanishing terms in an algebraic recurrence sequence
with infinite O-multiplicity (see also Mignotte (1978)).

Polya (1921) proved that if {um}™=0 is a non-degenerate rational
recurrence sequence of order at least 2, then there exist infinitely many
primes p with p | um for some m. This result was rediscovered by Ward (1954,
1955ft) for integer sequences of order 2 or 3, and by Laxton (1974) for integer
sequences of arbitrary order (see van Leeuwen (1980)). It was proved by
Berstel and Mignotte (1976) that for a given integer recurrence sequence the
following two questions are decidable. (i) Is the O-multiplicity finite? (ii) Is
the set of prime numbers dividing at least one term of the sequence finite?

Mignotte (1974) and Loxton and van der Poorten (1977) explained how
p-adic methods can be used to compute an upper bound for the 0-
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multiplicity of a given non-degenerate integer recurrence sequence, and in
certain cases to determine all vanishing terms. Loxton and van der Poorten
further proved some results on the growth order of \um\ and P(um). Far
better, and in many respects the best possible, results can be obtained by the
p-adic analogue of the Thue-Siegel-Roth-Schmidt method. Applications
of these results of van der Poorten and Schlickewei (1982) and Evertse
(1984b) to exponential equations were already mentioned in the notes of
chapter 1. The fundamental result is the so-called Main Theorem on S-units
of which a special case reads as follows (cf. van der Poorten and Schlickewei
(1982), Evertse (1984ft) and Laurent (1984)).

Let K be an algebraic number field. If G is a finitely generated subgroup of
K* then, for m fixed, the equation

has only finitely many solutions (Xl9 X2, • • •, Xm)eGm such that no non-
empty proper subsum Xti + • • • + Xit (1 ^ ix < • • • < it ̂  m) vanishes.

The following results can be derived for a non-degenerate recurrence
sequence of arbitrary order k.

(i) (see van der Poorten and Schlickewei (1982)). Let Q be the maximal
absolute value of the roots of the non-degenerate algebraic recurrence
sequence {um}™=0. Then for every e>0 there exists an m0 such that

kl>"ra(1~£l

for m>m0. Note that it is obvious that \um\ <Qm(l+E) for sufficiently large m.

(ii) (see Glass, Loxton and van der Poorten (1981, 1986)). The total
multiplicity of a non-degenerate recurrence sequence {um}™=0 is finite, that
is, the number of solutions of the equation um = un with m > n is finite. It
follows directly that for any complex a the a-multiplicity of {um} is finite.

(iii) (see van der Poorten and Schlickewei (1982), Evertse (1984ft)). / /
{um}m = o is a non-degenerate recurrence sequence of rational integers with at

least two distinct roots, then P(um/(um, un)) -+ oc if ra - • oc, m > n, wM # 0. This

implies both (ii) and P(um) -• oc as m->oc. The extensions to algebraic
recurrence sequences hold true too. The example {m3am}™=0 with aeZ,
a^2, where uai is a power of a for every positive integer /, shows that the
assertion does not hold if there is only one characteristic root.

Because of the ineffective nature of the Thue-Siegel-Roth-Schmidt
method, the arguments do not, in general, permit computation of m0 in (i),
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all solutions of um = un in (ii) and a lower bound for P(um) in (iii) for a given

sequence {wm}m = o-
Effective results of type (i), (ii), (iii) have only been obtained under

restrictions on r and s. First we state some results for r bounded and s free,
then we consider the case when s is bounded. Suppose first that r = 1, hence
there is only one root of maximal absolute value. Stewart (1982) proved
that, if wm^/1(m)co7 and e>0 then

P(um)>(l-e)\ogm, Q(um)>ml-£

for m > C7, where C7 is a computable number depending only on e and the
sequence {um} *= 0. Weaker estimates for P(um) were obtained by Sparlinskij
(1980) and Kiss (1982). Mignotte (1979) investigated the equation um = vn

where both {um}^=0 and {i>m}m = o are integer recurrence sequences with
exactly one root of maximal absolute value. Kiss (1986) considered the
more general equation slum = s2vn with sl9s2eS and gave a lower bound for
\slum-s2vn\. Mignotte (1974,1975) was the first to investigate the case r = 3.
He proved that if there are at most three roots of maximal absolute value
and all these roots are simple, then

when f1{m)a>™+'-'+fr(m)co™^0 and m^C10. Here C8,C9,C10 are
computable positive numbers depending only on the sequence. The results
in Mignotte, Shorey and Tijdeman (1984), which are treated in this chapter,
were the first ones in which the condition on three roots of maximal
absolute value being simple was dropped. It was already noticed by
Mignotte (1974) that certain cases of four simple roots with co1 =co2, co3 =
co4 can be handled in the same way as three simple roots.

The arguments in the proof of theorem 4.6 can be used to prove the
following result. If r = s = 5 and {um}™=o *s a non-degenerate sequence of
rational integers, then the equation um = 0 implies that m is bounded by a
computable number depending only on the sequence {wm}^=0-

Now we turn to the study of multiplicity of recurrence sequences of order
2 and 3. Results on the multiplicity of integer recurrence sequences of order
2 have already been given in the notes of chapter 3. Suppose we have a non-
degenerate integer sequence of order 3. If the three roots are distinct, non-
zero and real, then the O-multiplicity is at most 3. This was shown by Smiley
(1956) and later also proved by Scott (1960) and Picon (1978). In general the
O-multiplicity of the sequence can be as large as 6 as is shown by the
following example due to Berstel (1974) (cf. Loxton and van der Poorten
(1977) ) : uo = u1 = 0 , u2= 1, um + 3 = 2um + 2 - 4 u m + l + 4 u m f o r m = 0 , 1, 2 , . . .
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which satisfies u0 = ux = w4 = u6 = ux3 = u52 = 0. This example contradicts a
conjecture of Ward. Kubota (1911b) claimed that he could prove that the 0-
multiplicity of a non-degenerate ternary integer recurrence sequence is at
most 6 but he has not substantiated his claim. Beukers (1982) proved that 7
is indeed an upper bound. Beukers and Tijdeman (1984) showed that the 0-
multiplicity of a non-degenerate ternary rational recurrence sequence is at
most 44.

A slightly more general problem is to find upper bounds for the
multiplicity of non-degenerate binary algebraic recurrence sequences.
Kubota (1977b) proved that if all terms of such a sequence belong to some
number field K, then its multiplicity is bounded from above by a number
depending only on the degree of K over Q. An explicit bound can be found
in Beukers and Tijdeman (1984). Presumably there is an absolute upper
bound, but this has not been established yet. Beukers and Tijdeman further
showed that if a binary complex recurrence sequence has multiplicity at
least 4, then it is equivalent to an algebraic recurrence sequence. They used
this result to prove that for any complex number z with \z\ ^ 2 at most seven
powers z" (neZ) are on a given line not passing through the origin. They
applied the ineffective hypergeometric method. Tijdeman (1981) sketched
how the effective method on linear forms in logarithms can be used instead,
yielding the slightly worse bound of nine powers.

Lewis and Turk (1985) investigated the cardinality r(a) of the set of pairs
(m,n) with um = aun and m>n where a is a number and {wm}*=0 a non-
degenerate binary recurrence sequence in a field of characteristic 0. Thus
r(l) corresponds to total multiplicity. They call the sequence {wm}^ = o
transcendental if it cannot be made algebraic by multiplying all the terms by
some fixed constant. Lewis and Turk proved that if r(a)^3 for a
transcendental sequence, then a = 1 and r(l) = 3. Further, they proved that,
given integers m>n>p>q, there are , up to multiplication by a constant,
only finitely many non-degenerate binary recurrence sequences (necessarily
algebraic) such that um = un = up = uq.



CHAPTER 5-

The Thue equation

Suppose that f(X, Y) is a binary form with rational integer coefficients and
with at least three pairwise non-proportional linear factors in its
factorisation over C. Let k be a non-zero rational integer. We consider the
solutions of

f(x,y) = k (1)

in rational integers x and y. Equation (1) is known as a Thue equation. Thue
(1909) proved that equation (1) has only finitely many solutions in rational
integers x and y. Thue's result was a direct consequence of his fundamental
result on the approximations of algebraic numbers by rationals. His
argument is ineffective, that is, it fails to provide a bound for the solutions
x, y of (1). Baker (1968ft), having established his fundamental inequality on
linear forms in the logarithms of algebraic numbers, applied his work to
give a proof of Thue's theorem which was effective. His estimates for the
solutions of (1) were improved by several authors. Feldman (1971a) and
Baker (1973), independently, proved the following theorem. (They made the
assumption that / is irreducible, but it was not necessary to do so.)

Theorem 5.1. / / x and y are rational integers satisfying (1), then

for some computable numbers Cx and C2 depending only on f

The infinitely many solutions of the Pell equation x2—dy2= 1 show that
theorem 5.1 is not true if / has only two distinct linear factors. In case y is
composed of bounded primes, we have the following result.

Theorem 5.2. Let Al9A2, A3, B^Z such that BX{A2
2 -AA^^Q. Put B2 =

|2*i|+ 1. Let x,yeZ. The equation

Axx
2 +

99
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implies that

where C3 is a computable number depending only on Al9 A2, A3 and P(y).

Combining corollary 2.1 with theorem 5.1, Tijdeman (1975) derived the
following result.

Theorem 5.3. If A^0,B^0,k^0,n^3,x>l and y^O are rational integers
satisfying

then
max(x, y9 n) ^ C 4

where C4 is a computable number depending only on A, B and k.

We state notation for a generalisation of theorem 5.1. Let d and n be
positive integers with n ^ 3. Let K be a finite extension of degree d over Q.
Denote by (9K the ring of integers of K. Let R be the regulator of K. Let <xl9

. . . , a,, e (9K with H(<xt) ^ G for 1 ^ i < n. Suppose that at least three of OLX , . . . ,
a,, are distinct. Let

be a binary form. Let 0^fie(9K such that \/x | ̂  M, where we assume M ^ 2.
Siegel (1921) proved that equation (2) has only finitely many solutions in
x,ye(9K. Baker (1969) (see also Baker and Coates (1970, p. 601)) gave an
effective upper bound for these solutions. The following improvement is
due to Gyory and Papp (1978).

Theorem 5.4. / / x,ye(9K satisfy

g(x9y) = fi9 (2)
then

where C5 is a computable number depending only on d, R, n and G.

By combining theorem 5.4 with corollary A.7, we obtain the following
generalisation of theorem 5.1 due to Gyory and Papp (1978). Denote by Q)
the discriminant of K.

Theorem 5.5. Let f(X, Y) be a binary form with coefficients in (9K and with at
least three pairwise non-proportional linear factors in its factorisation over
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C. If x,ye (9K satisfy
f(x,y) = ti,

then

where C6 is a computable number depending only on d, <2) and f

Proofs
Proof of theorem 5.2. Let

A1x
2 + A2xy + A3y

2 = Bl for x,yeZ. (3)

We may assume that AlA3xy^=0; otherwise the assertion follows
immediately. Further, there is no loss of generality in assuming that
(x,y)= 1. Put ^ = max(|x|,|y|). We may assume that \y\^2 and therefore
# > 2 . Further, put P = P(y)^2. Multiplying both sides of (3) by Al and
replacing x by Axx, we may assume that A1 = l. Let ax and a2 be the roots of
X2 + A2X + A3. By Al~4A3^0, the numbers ax and a2 are distinct
algebraic integers. For i= 1,2, put

Then /?x ^ j82. Put L = ©(aj and denote by (9L the ring of algebraic integers of
L. If L is a real quadratic field, let ex be the fundamental unit of L. Further,
put

(el if L is a real quadratic field,

1 otherwise.

Denote by cl9 c 2 , . . . , c n computable positive numbers depending only on
Al9 A2, A3 and P. It follows from (3) that

and

where a e Z such that a = 0 if e =

max( \y

Observe that \fit\ ^ |x | + |a{| \y\ <c 2

Liouville-type argument,

2 = e"fl72

1 and yl9

^ f o r i =

y2t(9L satisfying

: t B 2 .

1,2. Hence, by (4), (5), (6)

(4)

(5)

(6)

and a

where c 3 > 1. Subtracting (5) from (4), we have

(«2-0Ll)y = eayl-e-ay2. (7)
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For a rational prime p ̂  P, let / be a prime ideal in (9L dividing p. Then, by
(x, y) — 1, we have

For simplicity, assume that ord /(j82)^c4. Then, by (7),

We apply theorem B.4 with n = 2, d^2, p ^ P , log A = c5 log B2, ff=l9B =
2c3\og(B2&) and ^ = (16Pc3)"1 to conclude that

ordp(y) < c6 log B2 + (8P)" l log «

Now it follows from (N.I) and (8) that

(8)

Thus

If , then it follows from (9) that

hence, by (3),

Thus we may assume that 9£>y2. Consequently |x| =
follows from (7) that

0<
72 x-ct2y

<c9\x\ -1/2

(9)

. Now it

We apply theorem B.2 with n = 2, d ^ 2 , log A = c5 log B29 B'= 1, B" =
) = 2c3log(B2|x|) and S = (16c3)~

1 to conclude that

Therefore |x

e 2 a i i - l
?2

, hence |y|<|x D

We now turn to the proof of theorem 5.4. Assume that K has s real
conjugate fields and t pairs of non-real conjugate fields so that d = s + 2t. We
shall signify the conjugates of any element 6 of K by 6{1\ . . . , 0(d) with 6{1\
. . . , 0(s) real and 6{s + 1\ . . . , 0(s+r) the complex conjugates of 8is+t + 1\ . . . ,
(̂s + 20 reSpectively. Set r = s + £ — 1 and denote by rj1,..., rjr an independent
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system of units for K satisfying (A.45). The constants v, vl9 v2 and v3 are
computable positive numbers depending only on d and R.

Let x,ye(9K, xy^O. For i= 1, 2 , . . . , n we write

and
(10)

(11)

For every i with 1 < i ̂ n , it follows from lemma A. 15 that there exists an
associate yt of j8f (with respect to nl9 . . . , nr) such that

|log(/7t£~
 1/rfJ7p)|)| ̂  t̂  (l^j^d). (12)

For i= 1 , . . . ,n, write

y^Ptf^.-^Kr (13)
and

Let / be the subscript for which

If r = 0, we may suppose Ht = 0. The proof of theorem 5.4 depends on the
following result.

Lemma 5.1. There exist an integer a with l^cr^d and computable positive
constants vl9v2 depending only on d and R such that

Proof. If r = 0, then Ht = 0 and the assertion follows. Thus we may assume
r>0. Consequently d^2. By (13) with / = /, we have

log y\k)

This system of r linear equations in bltj with 1 ^ j f ̂  r has a non-zero
determinant E with |E| ^ £. On solving bhj in this system of equations we
have

log (14)

where

log W_
= max log



104 Diophantine equations and recurrence sequences

By (14) and (12), we have

• - ^ W D I ^ i o g ^

We may assume H,^2vv3. Then

Re-writing (11) with i = /, we have

(15)

(16)

Now the lemma follows immediately from (16) and (15). •
Proof of theorem 5.4. Denote by c12, c13, . . . , c19 computable positive
numbers depending only on d, R, n and G.

Let x9ye0K satisfy (2). We may assume xy^O; otherwise the theorem
follows immediately. By taking norms on both sides in (2), we see from (10)
and (11) that

m1---m,, = | ^ ) | ^ M d . (17)

Since at least three and so two of <x1? . . . , a,, are distinct, there exist indices X
and v between 1 and n inclusively such that aA^av. Solving the equations
(10) with i = k and i = v for x and y, we have

J
aA-av

Thus we have

Consequently, in view of (13), (12) and (17), the proof of theorem 5.4 is
complete if we show that Hl^c13 log M.

We assume that Hl^cl4\ogM with c14 sufficiently large. Let c1 4 be so
large that H^v2 and thus the assertion of lemma 5.1 is valid. Hence there
exists an integer a with 1 ^ a < d such that

which, together with (17), implies that
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Consequently, if c14 is sufficiently large,

105

(18)

where cl5 = vJ2. Since \i is a non-zero algebraic integer, \N(ji)\ ^ 1. Hence,
by a Liouville-type argument,

-d + 1

By (18), we have

Z ft
fefii

n#

(19)

(20)

Consequently, by (18) and (21), we have

Since at least three of ocl,..., a,, are distinct, observe that the product on the
left-hand side of (20) is non-empty. Now it follows from (20) and (19) that
there exists an integer m with l^m^n such that jSm#ft and

(21)

(22)

ifc14 is sufficiently large. Since at least three of a l 9 . . . , a;i are distinct, we can
find an integer p with l^p^n such that ft,/?m and j8p are distinct. By
permuting 1,2,... ,n, there is no loss of generality in assuming that ft = j8l5

An = /?2> PP = P3-
The proof of theorem 5.4 depends on the following identity, which can be

verified by direct computation,

(a(
2
CT) - a (

3
a ) )^ + ( a ? - otfip? + (a(^ - a ^ ) ^ = 0.

For simplicity we omit the superscript (a). It follows from this identity and
(13) that

oc2-oc3

ai-«3

Pi
Pi

where uk = b2>k — b3k for

0<

r. By (22), we obtain

By (12) and (17) the height of y3/y2 does not exceed MCl7. We apply theorem
B.2 with H = r + 2 ^ d + 2, 5 = min(i,c16/4n), A' = cl8, A = MCl\ B'=\ and
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B" = 2Ht. We obtain

. - < * 3 . l l

Thus 2~1c16Hl^cl9\ogM which is not possible if c14>2c19c1~6
1. •

Proof of theorem 5.5. Let n be the degree of /, and H an upper bound for the
heights of the coefficients of / There is a rational integer a such that 0 ̂  a ^
n and / ( l , a ) ^ 0 . Thus g(X, Y): =f(X, aX + Y) is also a binary form with
coefficients in (9K and with at least three pairwise non-proportional linear
factors. Further, a0: = a(l, 0) = / ( l , a) # 0 and the heights of the coefficients
of a do not exceed c20 where c20, and c21, c22 below, are computable
numbers depending only on d, n and H. It suffices to derive a bound of the
form Mc for the solutions x, y in (9K of the equation a(x, y) = \i. If a0 ^ 1, then
we multiply both sides by an

0~
l and replace aox by x and an

0~ V by fi. We
may therefore assume that the coefficient of X" in g is 1, that the heights of
the coefficients of g do not exceed c21 and that LI ^MC22. Denote by

the factorisation of g over C. Put L = K(fil,..., /?„). Further, let G be the
maximum of the heights of j8l9 . . . , ft,. By theorem 5.4, there exists a
computable number c23 depending only on dL, RL, n, H and G such that

By corollary A.7 applied to g(X, 1) the number c23 can be bounded from
above by a computable number depending only on d, Q) and / (cf. the
remark after corollary A.5).

Proof of theorem 5.1. This theorem is a special case of theorem 5.5. •

Proof of theorem 5.3. By corollary 2.1, n is bounded from above. For each
possible n ^ 3 w e can apply theorem 5.1, since the linear factors of the binary
form Ax11 + By" are all distinct. •

Notes
We present some explicit estimates for the magnitude of the

solutions of Thue's equation (1). The first bounds, due to Baker (1968b),
were further improved by Feldman (197 la), Sprindzuk (1970a, 197 la, 1972),
Baker (1973), Stark (1973) and Gyory and Papp (1978, 1983). In fact, the
first two papers of Sprindzuk deal with Thue-Mahler equations and for
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such results we refer to the notes of chapter 7. Let f(X, Y) be an irreducible
binary form of degree n ^ 3 with rational integer coefficients whose absolute
values are bounded from above by A (^ 2). Let a be a root of f(X, 1) = 0 and
D and R (^ 2) upper bounds for the absolute value of the discriminant and
for the regulator, respectively, of Q(a). Let x, y and k ̂  0 be rational integers
satisfying (1). Then there exist computable numbers C7, C8 and C9

depending only on n such that

log max(|x|, \y\) < C7i?(log R)\R + log A + log |/c|), (23)

log max(|x|, |y|)<C851/2(log D)2n(D1/2 + log A + log |fc|), (24)

| | | | (25)

This was proved by Gyory and Papp (1983) with completely explicit
constants C7, C8 and C9. Inequality (25) is an improvement on an estimate
of Baker (1968b), (23) is an improvement on Sprindzuk (1972) and (23)-(25)
give slight improvements on the estimates of Stark (1973). For further
history, see Sprindzuk (1982).

In some exceptional cases the hypergeometric method of Thue and Siegel
leads to better upper bounds for the solutions of (1). This has been worked
out for some cubic equations by Baker (1964a, b) and Faddeev (1966).
Related results have been obtained by Osgood (1970a, fo, 1971), Bombieri
(1982), Bombieri and Mueller (1983,1986), Mueller (1984) and Chudnovsky
(1983a, b). It is possible to use similar, but ineffective, methods to obtain
general upper bounds for the numbers of solutions of Thue equations. In
special cases the bounds are quite good. See Lewis and Mahler (1960),
Hyyro (1964fc), Mahler (1984), Evertse (1983a, b, 1986), Silverman (1982a,
1983a, b) and Evertse and Gyory (1985) obtained upper bounds which are
independent of the coefficients of / A considerable improvement on results
of Mahler and Evertse has been given by Bombieri and Schmidt (1986).

Many results mentioned in the preceding paragraph are not formulated
in terms of diophantine equations, but in the equivalent way of irrationality
measures of algebraic numbers. Let a be an algebraic number of degree

2. An immediate consequence of theorem 5.1 is the following result.

Let d>2. There exist computable numbers C 1 0 > 0 and K with 0<K<d
depending only on cc such that for every rational number p/q with q>0, we
have

\oL-p/q\>Cloq-\ (26)

This is the best-known general effective improvement of Liouville's
inequality. The first effective general improvement is due to Baker (1968b).
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For explicit values of the constants Cl 0 and K and extensions of the result to
certain linear forms with algebraic coefficients in an arbitrary number of
variables, see Gyory (1980/z). His results cover those of Kotov and
Sprindzuk (1977) and Gyory and Papp (1983). If we disregard the effective
nature of inequality (26), the method of Thue-Siegel-Roth gives more. By
improving the results of Thue (1909), Siegel (1921), Dyson (1947) and
Gelfond (1952), Roth (1955) proved the following.

Given s > 0, there exists a constant Cll>0 depending only on a and e such that

\*-p/q\>Cliq-
2-E (27)

for every rational number p/q with q>0.

Inequality (27) is the best possible in the sense that - 2 - e cannot be re-
placed by —2+8 in general. It is conjectured (see Lang, 1965, p. 184) that
q~2~E can be replaced by q~2(\og q)~l~e with q^2. For generalisations to
linear forms with algebraic coefficients see Schmidt (1970,1971a, b, 1980b).
If the constant C11 is allowed to depend on the greatest prime factor of pq,
the theory of linear forms in logarithms gives a considerable improvement
of inequality (27). As an immediate consequence of corollary B.I we have
the following result of Feldman (1968a, b).

Let P^2. There exists a computable number Cl2 depending only on a and P
such that for every rational number p/q with q^2 and P(pq)^P,

\a-p/q\>(logq)-c». (28)

This represents a considerable improvement on an ineffective result of
Ridout (1957). For an analogue of (28) with p/q replaced by the quotient of
two elements of a non-degenerate binary recurrence, see theorem 3.5.
Further, theorem 5.2 implies:
Let a be an algebraic number of degree 2. Then

\«-p/q\>C13q-2+s (29)

for every rational number p/q with q>0, where C13 and S are computable
positive numbers depending only on a and P(q).

This inequality strengthens a result of Schinzel (1967).
Irrationality measures (26)-(29) yield upper bounds for the solutions of

equation (1) in terms of k. The best general effective bound (26) leads to
theorem 5.1. The better ineffective bound (27) enables us to replace k by a
polynomial in x and y of degree less than deg(/) —2, provided that / is
irreducible. See Davenport and Roth (1955). Davenport and Lewis
(unpublished) and later Schinzel (1969) proved that if / eZ[X, Y] is an
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irreducible binary form of degree at least 3 and geT{X, Y~\ has total degree
less than the degree of /, then

f{x9y) = g(x,y) (30)

has only finitely many solutions in rational integers x, y. The proof is
ineffective. In corollary 7.1 we shall give an effective proof of the result on
equation (30) for the case that g is also a binary form.

Let a $ Q be a real algebraic number. Denote by pjqn the nth convergent
in the simple continued fraction expansion of a. Mahler (1936) proved that
P(pnqn) tends to infinity with n. Further, Ridout (1957) proved that both
P(pn) and P(qn) tend to infinity with n. However, these results are not
effective. We see from (28) an effective version of Mahler's result. Further,
Shorey (1976b) proved that

P(Pnqn)>C l4\oglogqn (n>3)

where C 1 4 >0 is a computable number depending only on a. For a
quadratic irrational a, inequality (29) implies that P(qn) -> oo effectively
whenever n -• oo. For further results in this direction, see Erdos and Mahler
(1939) and Shorey (1983ft).

Let if (^ 2) be an upper bound for the heights of the coefficients of /, and
n the degree of / Gyory (1981fo) proved a general result which implies the
explicit estimate

in theorem 5.5. Here hKRK can be estimated by theorem A.3. See also Gyory
and Papp (1978, 1983).

There are many generalisations of results mentioned above. It follows
from a theorem of Lang (1960, 1983) that if ft is a non-zero element of a
finitely generated (but not necessarily algebraic) extension K of Q and
f(X9 Y)eK[X, 7 ] denotes a binary form having at least three distinct
linear factors (over the algebraic closure of K), then f(x,y) = fi has only
finitely many solutions in any subring of K finitely generated over Z. An
effective version of this result was proved by Gyory (1983). For other
generalisations, see the notes of chapters 6-8, Lang (1960, 1978, 1983),
Schmidt (1971a, 1980a), Sprindzuk (1982) and Gyory (19846).

Let K be a finite extension of Q. Let feK[Xl9 . . . , Xm] be a form of
degree n. We call / a decomposable form if there exist n linear forms ££$Xl9

. . . , Xm) = (xilX1 + • • • +a i mZm (l^i^n) with algebraic coefficients such
that
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Let O^fieK. In this case the equation

f(xl9...9xm) = n inxl9...,xmin (9K (31)

will be called a decomposable form equation over (9K. Obviously all binary
forms are decomposable, but forms of more than two variables need not be.
Consequently, all Thue equations are decomposable form equations.
Further important examples of decomposable forms are norm forms,
discriminant forms and index forms. The corresponding equations of the
form (31) are said to be norm form equations, discriminant form equations
and index form equations over (9K. These equations play an important role
in algebraic number theory (see e.g. Gyory, 1980e).

We call / a norm form over K if there exists a linear form J^ (X l 5 . . . ,
Xm) = cc1Xl + • • • +0LmXm with coefficients in a finite extension L of K such
that

where n = \L:K] and for i = l , . . . , n9 &®{Xl9 . . . , Xm) = zfX1 + • • • +
a$Xm and the a(I) denote the images of a eL under the X-embeddings of L.
Then we write NL/K (&(Xl9 . . . , Xm)) for / We note that all irreducible
binary forms over K are, up to a constant factor, norm forms over K.
Consider the solutions (xl9 . . . , xm)e#£ of the norm form equation

NL/K(<?(xl9...,xm)) = ii9 (32)

where \i is a given non-zero element in K. We may assume without loss of
generality that cc1 = 1. If in particular m = 2 and the degree of a2 is at least 3
over X, then (32) is a Thue equation over (9K and, by theorem 5.4,
computable upper bounds for the heights of the solutions can be given.
Several authors obtained ineffective finiteness results for certain special
norm form equations of more than two variables. For references, see
Skolem (1938) and Schmidt (1971ft, 1980ft). In case K = Q, Schmidt (1971a,
1972) characterised all linear forms if for which (32) has only finitely many
solutions (xl9..., xj e Zm for any \i e Q, /i # 0. Schmidt (1972,1973,1980ft)
also obtained finiteness results for equations of the form f(xl9..., xm) =
g(xl9..., xm) over Z, where g is a polynomial whose degree is small with
respect to deg(/). For K = Q9 Gyory and Petho (1977, 1980) gave
asymptotic estimates for the number of solutions of (32) with max^ |x;| <#"
in case (32) has infinitely many solutions.

When f(X9 Y) is irreducible, equation (1) can be considered as a norm
form equation over Z in two variables. Sprindzuk (191 Aa, 1982) extended
theorem 5.1 to the case of three variables in the norm form equation among
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which two are dominating. For certain special extensions L/K and certain
numbers a l 9 . . . , am of special types, Skolem (1937,1938), Baker (1967) and
Feldman (1970, 1971b, 1979) proved effective finiteness theorems on norm
form equations in more than two unknowns. Furthermore, Gyory and
Lovasz (1970) and Vojta (1983) gave effective versions of Schmidt's (1971a)
finiteness criterion mentioned above in case m = 3, K = Q and L is special.
Gyory and Lovasz assumed L to be a totally imaginary quadratic extension
of a totally real algebraic number field. Vojta assumed L to be a normal and
complex extension of Q. Gyory, partly in collaboration with Papp,
extended Baker's method described in this chapter to several classes of
decomposable form equations in an arbitrary number of variables. Gyory
(1976) obtained general effective finiteness theorems for discriminant form
equations and index form equations over Z which make it possible to solve
any such equation. These theorems have many applications in algebraic
number theory (see Gyory (1976,1980e)). Under the general hypothesis that
in (32) al + 1 is of degree at least 3 over Kfa^ . . . , a,) for i— 1, . . . , m— 1,
Gyory and Papp (1978) derived explicit bounds for the solutions of (32), too.
Similar results were proved by Kotov (1980a), Sprindzuk (1982) and Gyory
and Papp (1983). Recently Gyory (1981a, ft) and Kotov (1981, 1983),
independently, obtained a further improvement. Gaal (1986) gave a
common generalisation of results of Sprindzuk (1974a) and Gyory and
Papp (1983). We refer to the notes of chapter 7 for references of papers on
decomposable form equations of Mahler type (see chapter 7, (38)). General
effective results for decomposable form equations were given by Gyory and
Papp (1978) and Gyory (1981a, b). Both the main result of Gyory (1981a)
and that of Gyory (1981ft) cover theorems 5.1, 5.4 and 5.5 and the above-
mentioned general effective results on norm form, discriminant form and
index form equations. An extension to the case that the ground ring is a
finitely generated (but not necessarily algebraic) extension of Z is given in
Gyory (1983). For a good survey of these results, we refer to Gyory (1980e,
1984ft).

In the notes of chapter 1 we mentioned some results on unit equations
over function fields. Corresponding theorems have been proved for Thue
equations over function fields. Schmidt (1978,1980a) gave upper bounds for
the heights of both the integer and the so-called rational solutions of these
equations. Mason (1981; see also 1984a) derived a better bound for the
integer solutions and gave an algorithm to find all solutions. Mason (1986)
generalised his results to norm form equations and Gyory (1983)
generalised Schmidt's result concerning integer solutions to decomposable
form equations over function fields. Recently, Evertse (1986) gave an
analogue to the function field case of the bound which he obtained in
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Evertse (1984a) for the numbers of integer solutions of Thue equations over
number fields. Further, Evertse and Gyory (1985) generalised the result of
Evertse (1984a) to a wide class of decomposable form equations in an
arbitrary number of variables over finitely generated (but not necessarily
algebraic) extension rings of Z. A general finiteness criterion for
decomposable form equations is given in Evertse and Gyory (19866).



CHAPTER 6

The superelliptic equation

In this chapter we prove that, under suitable conditions, the superelliptic
equation (1) has only finitely many integral solutions. The resulting
theorems 6.1 and 6.2 are applied to a system of two quadratic equations in
corollary 6.1.

Denote by K a finite extension of Q. Suppose that a x , . . . , a,, are algebraic
numbers in K. Write

For a rational integer m ^ 2 and a non-zero algebraic number b in X, we
consider the superelliptic equation

f(x) = bf> (1)

in algebraic integers xeK and yeK. We shall apply a method of Siegel
(1926) and theorem 5.5 to prove the following theorems of Baker (1969,
1975) on the integral solutions of (1).

Theorem 6.1. Let m ̂  3. Suppose that f(X) has at least two simple roots. If x
and y are algebraic integers in K satisfying (1), then

for some computable number Cx depending only on b9 m,f and K.

Theorem 6.2. Suppose that m = 2 and f(X) has at least three simple roots.
Then all the solutions of (1) in algebraic integers xeK, yeK satisfy

max(|x|,|7|)<C2

where C2 is a computable number depending only on b9f and K.

The ineffective versions of theorems 6.1 and 6.2 are consequences of a well-
known theorem of Siegel (1929) which implies that all irreducible algebraic

113
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curves over any algebraic number field K on which there are infinitely many
integer points in K must be of genus 0. Theorem 6.2 includes the elliptic
equation

y2 = Ax3 + Bx2 + Cx + D in xeZ, yeZ

with A, B, C, Del. For this equation, Baker (1968c) established the
assertion of theorem 6.2 from his variant of theorem 5.1 by a method, due to
Mordell (1922, 1923), involving the theory of reduction of binary quartic
forms. For the case K = Q, Baker (1969) proved theorems 6.1 and 6.2 with
explicit bounds for the solutions. Furthermore, Baker and Coates (1970)
established an effective version of SiegePs theorem for curves of genus 1.

Theorem 6.2 has the following consequences for systems of two quadratic
equations.

Corollary 6.1. Let A, B, C, D, E,F,k,leZ with (B2 -4AC)(E2 -4DF)kl^ 0
be given. If the system

Ax2 + Bxy + Cy2 = k )
(2)

in x, y, zeZ has infinitely many solutions, then

Ck_B2-4AC

7l~E2-4DF

and this ratio is the square of a rational number. If CFkl is not a square, then
there exists a computable upper bound for max(|x|, \y\, \z\).

The proofs of theorems 6.1 and 6.2 depend on the following lemma.

Lemma 6.1. Let m^2. Suppose that b^O and ocl9 . . . , an are algebraic
integers and that f(X) has a simple root, say a. / / x and y are algebraic
integers in K satisfying (1), then there exist algebraic integers C¥=O,
d in K such that

x-a
and

where C3 is a computable number depending only on b, m,f and K.

Proofs
The constants c1,c2,.. .in the proofs of lemma 6.1, theorem 6. land

theorem 6.2 will denote computable positive numbers depending only on b,
m,f and K.



6. The super elliptic equation 115

Proof of lemma 6.1. Let rjl9..., rjr be an independent system of units for K
satisfying (A.45). By permuting the suffixes of a l 9 . . . , a;j, there is no loss of
generality in assuming that oc = cc1 is a simple root of / Put

j=2

Since a is a simple root of /, we find that A is a non-zero ideal of (9K.
Suppose that x and y are in (9K satisfying (1). We may assume that x # a;

otherwise the lemma follows with ( = 1 , 0 = 1 and d=0. By (1), we have the
following ideal equation in (9K:

From here, we obtain

[ x - a ] = */m (3)

where a and 6 are non-zero ideals in (9K and a divides Am - 1 in (9K. By
lemma A. 11, there exist non-zero ideals ax and 6X in OK such that

and the ideals

are principal. Multiplying both sides of (3) by ax^ we see that ax&l is
principal. Write

Observe that

Further

since ^ divides Am - 1 and A is a non-zero ideal. Hence, by corollary A.6, we
can find associates C2 and c/>2 of £t and 0 l 9 respectively, such that

max(|C2|,|02|)<c3.

From the ideal equation (3) we get

Thus we obtain

where e is a unit in (9K. Now, by corollary A.5, we may write
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where ex and e2
 a r e units in (9K and \ex | ^ c 4 . Hence

Set C = e1£2>
 (/> = (/>2 a n ( l <5 = 62<51. Observe that

Proof of theorem 6.1. Let * and y be in 0X satisfying (1). By multiplying both
sides of (1) by r" where r is the product of the denominators of b, al9..., a,,,
and replacing rx by x, we may assume without loss of generality that b, al9

. . . , a,, are algebraic integers. By permuting the suffixes of OL1 , . . . , a,,, we may
assume that OL1 and a2 are distinct simple roots of / Then, by lemma 6.1,
there exist elements {l9 £2> ^ , 1A2 an<l 7^72 in ^K such that ^i^2lAilA2^0
and

x-a^x/iAiW, (4)

^ - a 2 = (^M2)72 (5)
and

| ^ " | | ^ | | ^ 7 | | ^ | (6)
Subtracting (5) from (4) and multiplying by \j/^2^

 w e obtain

We apply theorem 5.5 with f(X,Y)^^2X
m-^Jm and fi =

(a2 —a1)i^1^2. Since m^3 , €i%2ll/ill/2z£Q and a 1 #a 2 , all assumptions are
fulfilled. Hence, by (6),

Now apply (5) and (6) to conclude that \x\ <c8 . Hence, by (1), |y| <c9 . •

Proof of theorem 6.2. By the same argument as in the proof of theorem 6.1,
we may assume that b, a l s . . . , a,, are algebraic integers. By permuting the
suffixes of a l 5 . . . , a,, we may assume that al9 a2 and a3 are distinct simple
roots of /

Let x and y be in (9K satisfying (1) with m = 2. It follows from lemma 6.1
that there exist elements ^ ^ O , i /^O and yt (1 ^ / ^ 3 ) of (9K such that for
i= 1,2,3, we have

(7)
and

| ^ l | ^ l . (8)
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From equations (7) we obtain

2 =

3 - ^ y =

where <r£ = (&/?,.) for i = 1,2,3. Let <rj/2, a\12 and <73
/2 be an arbitrary choice

of the square roots. Put

Observe that dL^c11. Let rj'l9..., rj'r be an independent system of units for L
satisfying (A.45). Put

and i4 = ^ 1 ^ 2 ^ 3 - By (8), |-4| ^^io a n d consequently \A\^c12. Hence,by (8)
and lemma A.2, Aa\11 (i= 1,2,3) is an algebraic integer of height at most
c13. Since also dL^cll9 lemma A. 16 gives |®L| <c 1 4 . Observe that i4)!1, ^j?2

and XjS3 are non-zero algebraic integers in L, for al9 a2 and a3 are distinct.
Further,

Consequently, by lemmas A. 15 and A. 16, there exist associates p\, P'2 and P'3
of Apl9 Ap2 and Afi3, respectively, such that m a x U K 3 |j8}| <c1 6 . Hence we

can write

Ap^vtf ( i=l,2,3) (9)

where el5 e2, e3 are units in $L and vx, v2, v3 are non-zero elements of (9L

satisfying

| | ^ c 1 7 . (10)

Observe that

Thus, by (9),
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We apply theorem 5.5 with f(X, Y) = v1X
3 + v2Y

3 and fi= - v3. By dL^
c n , ®L^c1 4 , v1v 2v 3 /0 and (10), we obtain

max (11)

It follows from (10) that \vt\ ^ c19 for i = 1,2,3. We may fix any choice of the
sign of cr2

/2. Then we can select the sign of o\12 such that |/?3| ̂ c 2 0 . Now it
follows from (9) with i = 3 that |e3 |<c2 i , since |̂ 4| =^cf0 and |v3 |>c1 9.
Further, by (11) and |e3|<c2i, we find |fii|^c22. We obtain from (9) with
i = l that |j5i|<c23, since \A\^c12 and I v ^ c ^ . The inequality | /?i |^c2 3

holds for either choice of the sign of o\12. Consequently, by (8), we find that
ma.x(|<>;2|9 |y3|) < c24. Now, by (7) and (8), we conclude that |x| ̂  c25. We argue
similarly from the equations conjugate to (1). We obtain |x] ^ c26. Hence, by
(1), we obtain | y | ^ c 2 7 . •

Proof of corollary 6.1. Suppose that the system (2) has infinitely many
solutions x9y,ze / . Then each of the equations has an infinity of solutions.
Hence both B2 — 4AC and E2 — 4DF are positive and non-square.
Consequently, CF^O. Furthermore,

(Bx + 2Cy)2 -(B2 -4AC)x2 = 4C/c,

(Ex + 2Fz)2 - (E2 - 4DF)x2 = 4FI

and therefore

((B2 - 4AC)x2 + 4Ck)((E2 - 4DF)x2 + 4FI) = ((Bx + 2Cy)(Ex + 2Fz))2.

(12)

By theorem 6.2 the polynomial at the left-hand side has at most two simple
zeros. Since (B2-4^C)(E2-4DF)(4C/c)(4F/)^0, we have

4Ck 4FI

B2-4AC E2-4DF'

Hence, by (12), CkFl and therefore Ck/Fl is the square of a rational number.
If Ck/Fl is not a square, then we may apply theorem 6.2 to (12). Since

f(X) = ((B2-4AQX2 + 4Ck)((E2-4DF)X2 + 4FI) now has four simple
roots, the second assertion follows. •

Notes
Mordell (1914) established the connection between the equation

y2 = Ax3 + Bx2 + Cx + D (A, B9C,De Z) and equations of the type /(x, y) =
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1, where / denotes an irreducible binary form with rational integer
coefficients of degree 3 or 4. By using the theorem of Thue, Mordell (1922,
1923) proved that the equation Ey2 = Ax3 + Bx2 + Cx + D (A9 B, C9D9Ee Z,
E T* 0) has only finitely many solutions if the polynomial Ax3 + Bx2 + Cx +
D has three distinct roots. In particular the equation y2 = x3 + k (k / 0) has
only finitely many rational integer solutions x, y. In a letter to Mordell,
Siegel (1926) showed how Mordell's result can be extended to the ineffective
analogues of theorems 6.1 and 6.2 by using a result of Siegel (1921).
Subsequently, Siegel (1929) classified all irreducible algebraic curves
defined over any algebraic number field K on which there are infinitely
many points in (9K. In particular these curves must be of genus zero and
have at most two infinite valuations. Lang (1960) generalised Siegel's result
by showing that one may take any finitely generated (but not necessarily
algebraic) extension of Q in place of K and any finitely generated subring of
this extension in place of (9K. LeVeque (1964) proved that equation (1) has
only finitely many integer points in (9K unless m divides the multiplicities of
all but one root of / or, if m is even, the multiplicities of all but two roots of/
are divisible by m and the remaining two by m/2. Faltings (1983) proved the
remarkable result that any irreducible algebraic curve defined over K which
is of genus greater than or equal to 2 contains at most finitely many points
in K2. This result was conjectured by Mordell. Hurwitz (1917) proved that
the assertion does not hold for all curves of genus 1. The proofs in the
above-mentioned papers are ineffective.

Baker (1968ft) gave the first effective solution of the Mordell equation

y
2 = x3 + k (13)

where k is a non-zero integer. Namely, if x and y are rational integer
solutions of (13), then

logmax(|jc|,|>;|)^1010|/c|10000. (14)

Stark (1973) applied his version of estimate (24) of chapter 5 to improve the
estimate (14) as follows: Given e>0, there is a computable number C4

depending only on e such that, if x and y are rational integer solutions of
(13), then

Sprindzuk (1982, p. 149) replaced the right-hand side of (14) by C5|fe|x
(log |fc| + I)6, where C5 is a computable absolute constant. Baker (1968c)
gave an estimate similar to (14) for the integral solutions of the equation
y2 = Ax3 + Bx2 + Cx + D.

Let f(X) be a polynomial with rational integer coefficients. Denote by n,
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9) and H the degree, the discriminant and the height of/, respectively. Baker
(1969) gave upper bounds for max(|x|, \y\)9 where x, y is a rational integer
solution of f(x) = /" , namely

expexp{(5m)1V0'13//'12} (15)

if ra^3 and / has at least two simple zeros, and

exp exp exp{nl0n*Hn2} (16)

if m = 2 and / has at least three simple zeros. These bounds were improved
by Sprindzuk (1973a, 1976, 1977, 1982). He proved that if m = 2 and / is
monic with n ̂  3 simple zeros and A ^ 0 a rational integer, then the rational
integer solutions x, y of Ay2 =f(x) satisfy

logmax(|x|,|>;|)^C6|>l|12+£|^|24(n+2)+£(log//)1+e (17)

where e > 0 and C6 is a computable number depending only on n and e (cf.
Sprindzuk, 1982, p. 164). The bounds in case m ^ 3 can be found in
Sprindzuk (1977; 1982, p. 182). A more explicit version of (17) was given by
Turk (1986, theorem 2). We remark that we could have applied theorem 1.4
in place of theorem 5.5 in the proof of theorem 6.2. Further, we note that it
follows from the proofs that, in theorems 6.1 and 6.2 and lemma 6.1, the
dependence on K can be refined to dependence on the degree and the
discriminant of K only.

Brindza (1984a) gave an effective proof of LeVeque's result (cf. theorem
8.3). Baker and Coates (1970) proved that if / e Z [ X , 7 ] is an absolutely
irreducible polynomial of degree n and height H such that the associated
curve f(X, Y) = 0 has genus 1, then all rational integer solutions of /(x, y) =
0 satisfy

max(|x|, \y\) < exp exp exp{(2i/)10/ll°}.

Baker and Coates observed that there is no difficulty in dealing in a similar
way with curves of genus 0 when there are at least three infinite valuations,
but an effective extension to curves of genus greater than 1 remains an
important quest.

The bounds (16) and (17) can be used to derive lower bounds for the
greatest square-free part Q*(x) of f(x) where / e Z [ X ] has at least three
simple zeros and x is a rational integer. Sprindzuk (1982, p. 164) derived
from (17) that

Q*(f(x)) > C7(log |x|)<i-«>/3<»- W.-2)

where n is the degree of / and C7 > 0 is a computable number depending
only on / and s. Sprindzuk (1977; 1982, p. 193) and Turk (1982, 1986) gave
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similar bounds for the greatest m-free part of f(x) where m is any rational
integer with m ^ 3 . Sprindzuk (1976, 1977) used these bounds to derive
lower bounds for the discriminants and class numbers of certain algebraic
number fields.

Turk (1984) gave an explicit upper bound for the solutions x, y of (2) in
the special case B = E = 0 and under the assumption that CFkl is not a
square.

For certain special equations all solutions have been determined by using
estimates for linear forms in logarithms. Ellison et al. (1972) determined all
the rational integer solutions x,y of the equation y2 = x3 — 28. Boyd and
Kisilevsky (1972) solved the equation y2 = x3 — x + 1 . The first effective
result of determining all the solutions by linear forms in logarithms was
given by Baker and Davenport (1969) in relation to a problem of
Diophantos. They solved the system of equations

3x2-y2=-y2=2\

- z 2 = 7)

(cf. corollary 6.1). The proof also depends on a useful lemma on
inhomogeneous diophantine approximation (cf. Grinstead, 1978).
Elementary solutions for (18) were derived by Kanagasabapathy and
Ponnudurai (1975) and by Sansone (1976). Similar systems of quadratic
equations were solved by Jones (1976, 1978), Veluppillai (1980) and
Mohanty and Ramasamy (1984). Theorem 6.2 has been applied to tight
designs by Bannai (1979). For a similar application of a diophantine
equation, see Bremner (1979).

Estimates like (14)—(17) can also be used to derive lower bounds for
\y2 — x3| and, more generally, for {by"1— /(x)|, provided that these
expressions are non-zero. For another type of lower bound for \y2 — x3|, see
Nair (1978). For general information on the equation y2 = x3 + k we refer to
Hall Jr (1971), London and Finkelstein (1973) and Danilov (1982).

It follows from theorem 6.2 that equation

(19)

has only finitely many solutions in non-negative integers x, y. For this,
observe that equation (19) can be re-written as (2x + 3)2 = 4(>> + l)(y + 2)x
(y + 3)+ 1. Mordell (1963) proved that the only solutions of (19) in non-
negative integers x,y are given by x = 1, y = 0 and x= 13, y = 4. Further,
MacLeod and Barrodale (1970) conjectured that the product of two
consecutive positive integers is never equal to the product of / ^ 4
consecutive positive integers. They proved the conjecture for / = 4 and / = 8.
Boyd and Kisilevsky used their result on y2 = x3 — x + 1 to determine all
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solutions of the equation (x + l)(x + 2)(x + 3) = (y + l)(y + 2)(y + 3)(y + 4) in
rational integers x, y. This equation has some relation with sporadic simple
groups.

For positive integers a, b, x, y and k with b>a and x — y^k, Shorey
(1984c) proved that the equation

(20)

implies that either k ^ C8 or k = [a + 1] where a = (log(b/a))(log(x/y)) ~* and
C8 is a computable number depending only on a and fc. Further, he applied
corollary B. 1 to show that equation (20) implies that max(x, y, k) is bounded
by a computable number depending only on a, b and the greatest prime
factor of xy. For given a, b and fc^3 such that a(X+ l)--(X + k)-
b(Y +1) • (Y + fc) is irreducible over rationals, it follows from a theorem of
Schinzel (1969), stated below, that equation (20) has only finitely many
solutions in integers x,y. Cohn (1971) proved that equation (20) with a=l9

b = 2, fe = 4, has only one solution, x = 4, y = 3 , and Ponnudurai (1975)
showed that equation (20) with a = 1, 6 = 3, fe = 4 has only two solutions in
positive integers, namely x = 2, y= 1 and x = 6, y=4.

The first general result concerning the integer solutions of a diophantine
equation in two unknowns is due to Runge (1887).

Let F(X, Y) = Y}=o lij=oaijXlYj be an irreducible polynomial with integer
coefficients. Suppose that the equation F(x, y) = 0 has infinitely many rational
integer solutions. Then there exist integers m, n such that (i) am0^0, aOn^09

(ii) ^- = 0 if ni + mj>mn, (iii) Y,m+mj=mn dijXlYj is a constant multiple of a
power of an irreducible polynomial.

Runge's method of proof is effective. Hilliker and Straus (1983) proved that
if / does not satisfy (I)—(iii),, then each rational integer solution x, y of
F(x,y) = 0 satisfies

max(|x|,|);|)<(8r/ffr3)

where H is the height of F. Hilliker (1982) showed how to find all solutions
of some diophantine equations of this kind in practice. An immediate
consequence of Runge's theorem is that if F(x,y) = 0 has infinitely many
solutions, then the highest homogeneous part of F is a constant multiple of
a power of an irreducible polynomial. By combining this assertion with the
theorem of Siegel (1929), Schinzel (1969) showed, ineffectively, that this
irreducible polynomial is either a linear form or an indefinite quadratic
form. In fact the result was proved in greater generality. It implies the result
of Davenport and Lewis on equation (30) of chapter 5. Skolem (1929)
deduced from Runge's result that, if a00 = 0, then F(x, y) = 0 has only finitely
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many solutions x, y for which (x, y) is bounded. For more results in this
direction we refer to Skolem (1938).

Kleiman (1976) used theorem 6.2 to derive conditions on F such that
computable upper bounds can be given for all rational integer solutions x, y
ofF(x,y) = 0.

We shall consider the solutions of superelliptic equations in rational
numbers whose denominators are composed of primes from some fixed
finite set in chapter 8 and of the corresponding equations over function
fields in the notes of chapter 8.

Lang (1960) also proved the analogue of Siegel's (1929) result for function
fields of characteristic 0. In particular his result applies to superelliptic
equations over function fields. Upper bounds for the solutions of such
equations were given by Schmidt (1978), Mason (1983, 1984a) and Mason
and Brindza (1986). The papers of Mason and Brindza also provide efficient
algorithms for determining all solutions.



CHAPTER 7-

The Thue-Mahler equation

Let /(X, Y) be a binary form of degree n with rational integer coefficients
and with at least three pairwise non-proportional linear factors in its
factorisation over C. Mahler (1933a) generalised the theorem of Thue (1909)
by proving that P(/(x,y)) -» oo whenever max(|x|,|y|), with x,yeZ and
(x, y)=l, tends to infinity. Mahler proved this result by way of his /?-adic
analogues of the methods of Thue (1909) and Siegel (1921) on the
approximations of algebraic numbers by rationals and by algebraic
numbers. Thus Mahler's result is not effective. Coates (1970a), having
established a p-adic analogue of an inequality of Baker on linear forms in
logarithms, proved an effective version of Mahler's result. This result has
been improved as follows.

Theorem 7.1. For all rational integers x,y with (x,y)= 1 and /(x,y)^0, we
have

Piffayj&Ciloglogar (1)

where ^ = max(|x|, \y\, 3) and C1 > 0 is a computable number depending only
on f.

For irreducible forms, Coates (1970a) proved (1) with the right-hand side
replaced by C2(loglog#)1/4 where C2 is an explicitly given positive
constant depending only on / Sprindzuk (1971c) proved (1) for all
irreducible forms of degree greater than or equal to 5 and for so-called non-
exceptional forms of degree 4. Shorey et al. (1977) proved theorem 7.1 in its
presented form. Note that the assertion of theorem 7.1 does not hold for
forms with at most two non-proportional linear factors in their
factorisations over C.

Theorem 7.1 implies a bound for the solutions of equation (2), the so-
called Thue-Mahler equation (over Z). Here we present an upper bound
which is the best known in terms of P and s.

124
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Theorem 7.2. Let k and s be rational integers with k^O and s > 0. Let px,...,
ps be primes with p1 <p2<" ' <PS= -P- All solutions of the equation

f(x,y) = kpz
1
l'-pz

s° in x,y,zl9...,zseZ (2)

with (x, y) = 1 and zx ^ 0 , . . . , zs ̂  0, satisfy

max(|x|, \y\, emax^0 ^exp{((C3s log P)sPf*}

where C3 and C4 are computable numbers such that C3 depends only on f and
k and C4 only on n.

For the equation f(x, y) = k one may take s = 1, px = 2, z1 = 0, but theorem
5.1 provides a more precise bound for this equation. Coates (1970a) proved
theorem 7.2 for irreducible forms with another explicit upper bound. The
presented upper bound is due to Gyory (1980c) who gave explicit values of
C3 and C4.

Let P ^ 3 and denote by S the set of all rational integers composed of
primes not exceeding P. Theorem 7.2 implies that the equation f(x, y) = z in
rational integers x,y,z with (x,y) = 1 and zeS has only finitely many
solutions. In the following result / may be multiplied by any non-zero
rational integer and z by a binary form in x and y.

Theorem 7.3. Let f(X, Y) and g(X, Y) be binary forms with rational integer
coefficients. Suppose f has at least three pairwise non-proportional linear
factors in its factorisation over C which do not divide g over C. Then all
solutions of the equation

w/(x, y) = zg(x, y) in rational integers w, x, y, z (3)

with w/(x, y) # 0, z e 5, (w, z) = (x, y) = 1 satisfy max(|w|, |x|, \y\, \z\) ^ C5 where
C5 is a computable number depending only on P, / and g.

The supposition of theorem 7.3 certainly holds if / is irreducible of degree at
least 3 and the degree of g is less than the degree of /

The restriction (x, y) = 1 does not occur in the following application of
theorem 7.3.

Corollary 7.1. Under the conditions of theorem 7.3, suppose deg(/) > deg(g).
Then all solutions of the equation

/ (x, y) = g(x, y) in rational integers x, y

with f(x, y) 7^0 are such that max(|x|, \y\) is bounded by a computable number
depending only on f and g.

Combining theorem 2.4 with theorem 7.3, we obtain the following result.
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Theorem 7.4. Let A^O, £ # 0 , C and D be rational integers. Then the
equation

w(Axm + By"1) = z(Cxn + Dyn) (4)

has only finitely many solutions in integers w, x, y, z, m, n with w#0 , Z G 5 ,
(w,z)=l, |X>>|>1, (x,y)=l , 0^rc<m, m>2, w,4xm7*zCxn and Axm +
Bf^O provided that

m = 4, n = 2 is exc/w<ted i/ CX2 + DY2 divides AX4 + BY* over Q,

m = 3, n= 1 is excluded if CX + DY divides AX3 + BY3 over Q, and

m = 3,n = 2is excluded if CX2 + DY2 and AX3 + BY3

have a common linear factor over Q.

Further, max(|w|, |x|, \y\, |z|, m, n) is bounded by a computable number
depending only on A9 B, C, D and P.

The following result of Shorey (1982, 1984a) is a consequence of theorem
7.4.

Corollary 7.2. Let A^O, B^O, C and D be rational integers. Then the
equation

Axm + Bym = Cxn + Dyn (5)

has only finitely many solutions in rational integers x, y, m, n with \x\ # | j ; | , 0 <
n<m, m>2, Axm^Cxn and Axm + Bym^0 provided that m = 4, n = 2 is
excluded if CX2 + DY2 divides AX4 + BY* over Q. Further, max(|x|, \y\, m,
n) is bounded by a computable number depending only on A, B, C and D.

The conditions are necessary. For example, the equation x4 — 4y4 = x2 +
2y2 has infinitely many solutions x, y.

Another consequence of theorem 7.4 is the following result of van der
Poorten (1977ft).

Corollary 7.3. For every pair A, B of non-zero rational integers,

P(Axm + Bf1) -• oc, effectively,

as ma.x(x,y,m) tends to infinity through positive integers x>\,y,m with
(x,y) = 1 and m>2.

We state notation for another generalisation of theorem 7.1. Let K be a
finite extension of degree d over Q with discriminant 2. Denote by 0K the
ring of integers of K. For <x,pe(9K, denote by [a] the ideal generated by a in
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&K, by (a, j8) the greatest common divisor of the ideals [a] and [/?] and by
JV((a, j8)) the norm of the ideal (a, /?) with respect to the field K. Let f(X, Y)
be a binary form of degree n with coefficients from (9K. Suppose that / has at
least three pairwise non-proportional linear factors in its factorisation over
C. Let No be a positive integer.

Theorem 7.5. Suppose that x and y are in (9K such that f(x,y)^0 and

(6)
Then

(7)

where 3C = max(|N(x)|, |N(j;)|, 3) and C6 > 0 is a computable number depending
only on K,f and No.

An ineffective proof that P(N(f(x, y))) -> oo as 3C -> oo is due to Parry (1950).
By generalising the method of Sprindzuk (1972), Kotov (1975) proved
theorem 7.5 for all irreducible forms fe(9K[X, Y] of degree ^ 5. Theorem
7.5 in its full generality is due to Gyory (19796). Explicit lower bounds for
P(N(f(x, y))) were given by Coates (1970a) in case K = Q and / irreducible,
and by Gyory (1979ft) in case 3C exceeds a certain bound.

The next result is a more explicit version of theorem 7.5. Let t ̂  1. Let {fiu

. . . , fit) be a finite set of prime ideals of (9K. Denote by ^ the set of all non-
zero elements a of (9K such that [a] has no prime ideal divisors other than
fa,..., fct. Let P be the maximal rational prime which is divisible by at least
one of these prime ideals. Observe that 9* contains all the units of (9K.

Theorem 7.6. For every solution of

f(x,y) = z in x9ye0K9 ze^ (8)

with N((x9y))^NO9 there exists a unit s in (9K such that

exp{((C71 log PfPf*} (9)

where C7 and C8 are computable numbers such that C7 depends only on d,
and N09 and C8 only on d and n.

The following corollary of theorem 7.6 may be compared with theorems 5.5
and 7.2.

Corollary 7.4. Let fie(9K, fi^O. Let {%, . . . , rcj be a set of non-zero non-
units in (9K where s^ 1. All solutions of

-nl> (10)
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in non-negative rational integers zl9..., zs and x,ye(9K with N((x9y))^No

satisfy

m3Lx(\x\9\y\,zl9...9zs)^C9

where C9 is a computable number depending only onK9f9fi9nl9... ,ns and No.

Equations (8) and (10) are called Thue-Mahler equations (over (9K). Kotov
(1975) and Kotov and Sprindzuk (1977) proved results like theorem 7.6 and
corollary 7.4 for binary forms / of degree greater than or equal to 5 which
are irreducible over K. Theorem 7.6 and corollary 7.4 are due to Gyory
(1980c, 1981a) who provided explicit constants Cn — C9.

Proofs
We first prove theorem 7.6 for a special class of binary forms.

Denote by h and R the class number and regulator of K, respectively.

Lemma 7.1. Let a l 5 . . . ,anbe elements of (9K such that at least three of them

are distinct. Let maxf |a,| ^ A Put

For every solution of

g(x9y) = z in x9yeGK9 zeSf (11)

with N((x,y))^N0, there exists a unit e in (9K such that

£exp{((Cl0t log PYP)C>'} (12)

where C10 and Cx x are computable numbers such that C10 depends only on d,
h9 R, No, n and A, and C n only on d.

Proof We shall denote by c1? . . . , c6 computable positive numbers
depending only on d, /z, R, N09 n and A, and by /cx a computable positive
number depending only on d. Suppose x, y9 z is a solution of (11) as specified
in the lemma. Put j8, = x —a^ for /= 1 , . . . , n. Then (11) implies fte^ for
i= 1 , . . . , n. We may assume without loss of generality that a1 ,a2 ,a3 are
distinct. We have

(a2-a3) j?1+(a3-a1) i82 + (a1-a2) j53 = 0 (13)

and max(|a2— a3|, |a3—ax|, |ax —(X2\)^2A. By theorem 1.4 applied to (13),
there exist oetf and pl9 p2 , p3e^ such that pi^=opi (i= 1,2,3) and

max \
i = l , 2 , 3
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From the system of equations

x-ociy = api (f=l,2),
we obtain

X = G(J)IK, y = G\jj/K (14)

for suitable non-zero elements 0, ifr, K in (9K satisfying

c2T, \K\^C3. (15)

Since o divides KX and Ky in $K, the ideal [p~] divides the ideal (/ex, Ky) =
[K](X, y). Consequently we obtain, by taking norms with respect to K,

By corollary A.6, there exists a unit £ in K such that

c5. (16)

Since ex, sye(9K, we have, by using (16), (14), (15) and a Liouville-type
argument for K,

Proof of theorem 7.6. By c 7 , . . . , c16 we shall denote computable positive
numbers depending only on d, % f and No, and by /c 2 , . . . , /c7 computable
positive numbers depending only on d and n. Without loss of generality, we
may assume that / (1 ,0)^0 . Indeed, there is a rational integer a with 0 ^
a^n such that f(l,a)^0. Since the ideals (x, y) and (x, ax + y) are equal, and
hence N({x, ax + y)) ̂  No for x, y e 0K, it suffices to prove the assertion for
/(X, aX + 7) in place of f(X, Y).

L e t a l 5 . . . , a,, be the zeros of f(X, l)in Candpu tL = X(a 1 , . . . , a,,). Note
that the degree of L is at most k2. By corollary A.7, the heights of the
numbers at- as well as the class number and the regulator of L are less than
c7. Put a o =/ ( l ,0) . Let x,y,z be a solution of (8) with the properties as
specified in the theorem. Then, putting x' = aox, y' = y, aj = aoat- for i = 1 , . . . ,
n and z' = a'o~1z, we have OL\e(9L (i= 1 , . . . , n) and

{x'-z\y')--{x'-*'ny
f) = z'. (17)

We are going to apply lemma 7.1 in the field L to this equation. Observe that
NK((x\y'))^c8 and [L:K]^/c2 , hence NL((x',y'))^c9. Further, since
[L: K~] ^ k2, the number of distinct prime ideal divisors in (9L of z' is at most
k2t + cl0 and P(AT(z/))^P + c11 where we choose c n ^ l . Hence, by
applying lemma 7.1 with /c2t + c10 in place of t and P + c n in place of P,
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there exists a unit e! in (9L such that

max(eV , e'?

Observe, by distinguishing cases c l o ^ t , t<c 1 0 ^ logP / log logP and
Ci o > t, cx 0 > log P/log log P, that

Hence

max(p7|, |77|) < exp{((Cl 2r log Pypf*} = :TV (18)

This implies

max(|JVL(x)|, |NL();)|) = max(|iVL(e'x)|, \NL(e>y)\H1*>.

Now, considering norms with respect to K over Q, we have

By corollary A.4 and lemma A. 15, there exist units sx and e2 i
n /̂c s u c h that

max(|fii^Mfi2y|)^c137;fca. (19)

From (18) we obtain, by a Liouville-type argument,

Hence

^ | |fi2y/fii^| 'fi/y\^c15 Tp. (20)

From (19) and (20), we deduce

| ^ | . | ^ 7 | ^cl6T*\ (21)

Combining (19) and (21), we complete the proof. •

Proof of corollary 7.4. By cx 7 , . . . , c23 we shall denote computable numbers
depending only on KJ, fi,nl9... ,ns and No. Let x, y, z1,..., zs be a solution
of(10)as specified in the co rollary. Denote b y / j , . . . , fa all the prime ideals
which divide \jan1 • • • nj. Since t ̂ c x 7 and P(N(fcx • • • /,)) ^Cj 8, there exists
by theorem 7.6, a unit e in OK such that

| | | | c 1 9 . (22)

From (10), we have

- n z
s ° . (23)
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Since nl9..., ns are non-zero non-units, this gives, by (23) and (22),

2'>^\N(nj)\*>^\N(f(sx9ey))\^c20 (Kj^s). (24)

Hence, by (23) and (22), \e | ^ |e"| <c2 i | / (ex, ey)\ ^c22. From (22), we obtain

(25)

The combination of (24) and (25) proves the corollary. •

Proof of theorem 7.2. By c24, c25 and k8 we shall denote computable positive
numbers which depend on the same parameters as C3, C3 and C4,
respectively. Let x, y, zl9..., zs be a solution as specified in the theorem. By
theorem 7.6 with J£ = Q, we have

max(|x|, |y|) <exp{((c245 log i W ° } . (26)

Hence, by (2), for 7 = 1 , . . . , s,

2 2 ^ ^ ^ |/(x, y)| ^exp{((c255 log P)SP)*°}. (27)

The combination of (26) and (27) proves the theorem. •

Proof of theorem 7.5. We shall denote by c26, c27, c28 computable positive
numbers depending only on KJ and No. Put f(x, y) = z. Let ^ l 9 . . . , / , be
all the prime ideal divisors of [z]. For t = 0, put P = 2 and, for t > 0, let P be
the maximal rational prime divisible by at least one of these prime ideals.
Then P = max(P(iV(/(x,y))), 2). By theorem 7.6, there exists a unit e in GK

such that

max(|^ | , | ^ | ) sc exp{((c26(t + 1) log P)<+1 P)c-} = : T2. (28)

Since there are at most d prime ideals which divide a given rational prime,
we have, by (N. 1),

t ^dn(P) ^2 dP/log P.

Hence, by (28),

| | | | t { } •

Proof of theorem 7.1. Immediate consequence of theorem 7.5. •

Proof of theorem 7.3. By c 2 9 , . . . , c32 we shall denote computable positive
numbers depending only on P, / and g. There is a rational integer a with 0 ^
a^deg(/) + deg(#) such that f(l,a)^0 and g(\,a)^0. We may therefore
assume that / ( l ,0 )*0 and flf(l,0)#0. Let f(X9Y) = ao(X-oc.Y)-- •
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) = b0(X-piY)'-(X-pnY) and K=Q(*l9 . . . , am, 0l9

. . . , /?„). We may further assume that ocj, a2 and a3 are distinct and that none
of these numbers is contained in the set {fil9 . . . , /?„}.

Let w/(x, y) = zg(x, y) with w, x, y, z as specified in the theorem. Recall that
ao(Xi e (9K for i = 1 , . . . , m and fcoft- e 0K for; = 1 , . . . , n. Let ft be a prime ideal
in 0£ which divides

Then, by

either / | [zaofoo] or ^ | [_aobox — aobof}jy] for some;. In the former case
N(/t) ^ c 2 9 ; in the latter case / 1 (aobox -aofeoa^, aobox-aobof5jy) for some
1,7 with af # jSj, hence ^ | [aofco] [af - j87] in view of (x, j) = 1, and therefore

0. Thus

P AT n K M " f l o M i y ) Umax(c29,c3o).

By applying theorem 7.5 to the polynomial f(X,Y) = (X-aobo<x1Y)x
(X-aobooc2Y)(X-aoboa3Y) we obtain max(|x|,|>>|Kmax(|0ofoox|,|j;|K
3C ^ c31 which, together with equation (3), (w, z) = 1 and w/(x, >;) # 0, implies
that max(|w|,|z|Xc32. D

Proof of corollary 7.1. Let x, y be rational integers such that /(x,j;) =
g(x, y) ¥= 0. Let m = deg(/), n = deg(gf). Put (x, y) = d,xx= x/d, yx = y/d. Then
m > n and

By theorem 7.3 applied with w = dm~'\ x = x1? ^ = y1, z= 1, we obtain that
m a x ( < T - ' 1 , | x i | , | y i | ) ^ C 5 . H e n c e d I ^ d l I D f

Proof of theorem 7.4. Suppose (4) holds for values of w, x, y9 z, m, n as
specified in the theorem. By (x,y)=l and |xy |>l we have |x|#|y|. If
AxmDyn = BymCx'\ then, by (4), wAxm = zCxn and this case is excluded. It
therefore follows from theorem 2.4 that m is bounded by a computable
number c33 depending only on A, B, C, D and P. Thus we may assume that
m and n are fixed.

Define binary forms f(X, Y) = AXm + BYm, g(X, Y) = CXn + DYn. Since
the zeros of f(X, 1) are the mth roots of unity all multiplied by some fixed
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constant and, if C is non-zero, g(X, 1) has the corresponding property with
respect to nth roots of unity, the number of common linear factors of
f(X, Y) and g(X, Y) is at most (m, n). From the conditions of the theorem,
we see that / has at least three non-proportional linear factors in its
factorisation over C none of which is a divisor of g over C. It follows from
theorem 7.3 that, for all solutions as specified in theorem 7.4, max(|w|, |x|, \y\9

\z\) is bounded by a computable number depending only on A, B, C, D, m
and n, hence only on A, B, C, D and P. •

Proof of corollary 7.2. Suppose (5) holds for values of x, y, m, n as specified in
the corollary. Observe that x^=0 and y^O. Put

" l (x,y)' ' l (x,y)'

Then {x1,y1)= 1 and equation (5) can be written as

(29)

Apply theorem 7.4 to equation (29) with w = (x, y)m ~" and z = 1. Since xx, yx,
m, n satisfy all the conditions of the theorem if m > 3, the only remaining case
is m = 3, and AX3 + BY3 has a common linear factor over Q with either
CX + DY or CX2 + DY2.

Suppose m = 3, n= land XX3 + £ 7 3 is divisible by CX + D7. Put AX3 +
By 3 = (CX + D7)(A1X2 + 5 1 Xy + C1y2) with Al5 £1? Q G Q . Observe
that both zeros of AlX

2 + B1XY + C1Y
2 are non-real. By (5) and Axm +

O, we have Cx + Dy^O and

Since the discriminant of the quadratic form is negative, there exists a
computable upper bound for max(|x|, \y\) in this case.

Suppose m = 3, n = 2. By a similar reasoning, we now obtain an equation

A2x
2 + B2xy + C2y2 = yl3x + £ 3 j ;

with A2> ^2» ^2? ^3» B 3 e Q and Bl — 4A2C2<0. Hence there exists a
computable upper bound for max(|x|, \y\) in this case too. •

Proof of corollary 7.3. Apply theorem 7.4 with w = l , C = l , Z ) = n = 0. D

Notes
Let f̂(X) be a polynomial with rational integer coefficients. If g is
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quadratic with distinct roots, then

P(g(x)) -> oc as |x| -> oc•, x e Z. (30)

This was proved by Polya (1918) who used Thue's method. Siegel (1921)
improved Thue's approximation theorem. From this, he derived (30) for all
polynomials g with at least two distinct roots.

The above results are ineffective. Now we describe effective results on the
greatest prime factor of a polynomial at integer points. Stormer (1897) used
his method on Pellian equations to prove that P(x(x — 1)) -> oc as |x| -» oc.
Chowla (1935), Mahler (19356) and Nagell (1937,1955) used similar ideas to
prove that P(g(x)) ̂  log log |x| for certain special polynomials of the form
g(X) = aX2 + b and g(X) = aX3 + b with a,beZ. Schinzel (1967) applied
Gelfond's method on linear forms in logarithms of algebraic numbers to
prove that there exists a computable number C 1 2 > 0 depending only on g

such that
P(g(x))>Cl2\oglog |x| (xeZ, |x|>3) (31)

for all quadratic polynomials g with distinct roots (cf. Langevin, 1976b).
Keates (1969) used an estimate of Baker (1968c) to prove (31) for all
polynomials g of degree 3 with distinct roots. Kotov (1973a) proved (31) for
all irreducible polynomials g of degree at least 2. Theorem 7.1 applied to the
binary form f(X, 7) = Yn + 1g(X/Y), where n is the degree of g, implies that
(31) is valid for all polynomials g with at least two distinct roots. Shorey and
Tijdeman (1976ft) gave a simple proof of this result without using p-adic
methods. In fact they proved more, namely the following. Let A>0.
Suppose g has at least two distinct roots. There exists a computable number
C 1 3 >0 depending only on A and g such that if

P(g(x)) ^ exp((log2 x)A) (x e Z, x > 3)
then

co(g(x)) ̂  Cx 3 log2 x/log3 x.

Inequality (31) follows by applying (N. 1).
A particularly interesting polynomial is g(X) = (X + 1) • • • (X + k) in which

case P(g(x)) is the greatest prime factor of a block of consecutive integers.
The first non-trivial estimate in this direction is due to Sylvester (1892) who
proved that

for all pairs x,/ceZ with x^k>0. This theorem of Sylvester was
rediscovered by Schur (1929). It follows from Hanson's (1973) inequality

H p < 3" (cf. Rosser and Schoenfeld, 1962, p. 77) (32)
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that P((x+l)-'(x + k))^1.5k-l for x^ /c>0 . The best results in this
direction obtained by elementary methods and the method of Stormer
(1897) can be found in Langevin (1916a, 1978). Improvements of the results
of Erdos (1934), Ramachandra (1970, 1971) and Tijdeman (1972) by
Ramachandra and Shorey (1973), Jutila (1974) and Shorey (1974b) show
that

/ l og / c 3 / 2

if x>exp — —
V lQg2^

where C14, C1 5, C16 are computable positive absolute constants. The proof
of (33) depends on estimates for exponential sums and for linear forms in
logarithms of algebraic numbers. Langevin (1975a, b) proved that, for any
£>0,

where Cx 7 is a computable number depending only on k and e. See also
Erdos and Shorey (1976), Langevin (1975c, 1976b) and Stewart (1984) in this
connection.

More generally, it is possible to derive lower bounds for P(g(x + l)#(x + 2)
• • • g(x + k)) where g e 1\X\ For short intervals the method for estimating
linear forms in logarithms of algebraic numbers yields better results. Shorey
and Tijdeman (1976b) used their result mentioned above to prove the
following. Let B > 0. Suppose g e 1\X\ has at least two distinct roots. Then
for any positive integers x(>3) and k with /c^exp((log2x)B) there is a
computable number C 1 8 > 0 depending only on B and g such that

1%k 1Q
 2 (log k + log3 x). (34)

See also Langevin (1975b, theoreme 2; 1975c, 1976b, 1981) and Turk (1980b,
theorem 2). Lower bounds for P(IXi<x 0(n)) have been obtained by different
methods. For an account of these results, see Hooley (1976, Ch. 1).

Let fceZ, /c>3. It follows from (33) that, if nl9 n2, ... is the increasing
sequence of all positive integers with P(nt) > k, then

ni + i —ni^C19klog3k/(\ogk\og2k) for all i

where C19 is a computable absolute constant. Erdos (1955) has conjectured
that supf(nI. + 1 — nt)~(logk)2 as /c->oo. Improving on the results of
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Ramachandra (1973) and Shorey (1976a), Ramachandra, Shorey and
Tijdeman (1976) proved that there is a computable absolute constant C20

such that if x ̂  exp(C20(log k)2) then the number of integers i with 1 ^ i ^ k
and P(x + i)^k is at most n(k). Hence there exists a computable absolute
constant C21 such that

for /c^exp(C21(logx)1/2). Extensions of these results, also to the
corresponding case of polynomial values, were given by Turk (1978; 1979,
Ch. 4; 1980a, b). A general theorem covering many of the above-mentioned
results was given by Langevin (1978, 1981). Since P((x + 1) • • • (x + /c)) is the
greatest prime factor of the binomial coefficient

x + fc
k

and co((x + 1) • • • (x + k)) differs from

k

by at most TT(/C), the above results imply lower bounds for

* ) ) a n d " ( ( * .

Various bounds can be found in Langevin (1979).
A related problem is the conjecture of Grimm (1969) that if p and p + k are

consecutive prime numbers, then there exist distinct prime numbers pl9...,
pk-x with Pi\p + i for f= l , . . . , k— 1. Grimm also made the weaker
conjecture co((p+ 1) • • • (p + k))^k. Erdos and Selfridge (1971) pointed out
that the validity of these conjectures implies

i t o = o
n 'n-+co Fn

where pn denotes the nth prime. Let G(x) be the largest integer such that
there exist distinct prime numbers p x , . . . , pG{x) with pt | x 4- i for f = 1 , . . . ,
G(x). Improving upon earlier results of Grimm (1969), Erdos and Selfridge
(1971), Ramachandra (1973) and Cijsouw and Tijdeman (1973),
Ramachandra, Shorey and Tijdeman (1975) showed that

G(x)>C22(logx/log2x)3

where C 2 2 >0 is a computable absolute constant. The corresponding
problem for arithmetical progressions has been treated by Langevin (1978).
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In the notes of chapter 6 we referred to bounds of Sprindzuk and Turk for
the m-free part of g(x) where g e Z[X]. These lower bounds can be combined
with (32) to derive (31). Recall that the m-free part of an integer n is the
smallest positive integer a such that |n| = aym for some yeZ + . Turk (1982)
proved that, if g e J\X~\ has at least two distinct roots and gm(x) denotes the
m-free part of a(x), then

23
\og2x (m^2, |x |>3) (35)

where C 2 3 > 0 is a computable number depending only on a, hence
independent of m. Obviously (35) implies (31).

The first bounds for the solutions of Thue-Mahler equations over Z were
given by Coates (1969, 1970a), Sprindzuk (1968, 1969, 1970a, 197 lft, c,
1973ft) and Vinogradov and Sprindzuk (1968). One may consider Thue
equations in 5-integers as well. A rational number is called an S-integer if it
is the quotient of a rational integer and an element of S. Every solution of
the equation

/(x, y) = k in S-integers x, y (36)

induces a solution of (2). Hence theorem 7.2 implies an upper bound for the
solutions of (36). For the best-known explicit bound see Gyory (1981ft).
Conversely, equation (2) can be reduced to a finite number of equations of
type (36) in S-integers.

The method described in this chapter may be used to solve a given Thue-
Mahler equation in practice. An example of historical interest is the
equation x2 + 7 = 2" in rational integers n, x. Ramanujan (1913) conjectured
that the only solutions are (w,x) = (3,1), (4,3), (5,5), (7, ll)and(15,181). This
was confirmed by Nagell (1948,1961). Other papers in which this or related
equations are solved by arguments from elementary and algebraic number
theory are Skolem, Chowla and Lewis (1959), Browkin and Schinzel (1956,
1960). Chowla, Dunton and Lewis (1960), Lewis (1961), Mordell (1962),
Cohen (1978), Inkeri (1979), Bremner et al. (1983) and Tzanakis (1983,1984).
For solving these equations, Mignotte (1984) developed a method using
recurrence sequences which turns out to be efficient in practice. See, further,
Apery (1960a, ft) and the survey paper by Hasse (1966). If the
hypergeometric method can be applied, it provides more general results; see
Beukers (1979, 1981) and Tzanakis and Wolfskill (1986). All equations
referred to up to now in this paragraph are of the form (2) with y constant.
Algebraic methods may not suffice to solve an equation (2) with both x and
y variable, but the method described in this chapter may be used. In this
way Agrawal et al (1980) solved the equation x3 - x2y + xy2 + y3 = ± 11" in
rational integers x, y, n. Some of the above-mentioned results have been
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applied to other fields: The results of Nagell and Bremner et al. have
applications in the theory of perfect codes. Agrawal et al. used their result to
determine all rational elliptic curves of conductor 11.

Theorem 7.3 can be extended in the following way. The upper bound C5

can be made to depend only on P and the rational prime factors and non-
constant irreducible factors of / and a. A similar result can be proved for
equations (3) with w/(x, y) ̂  0, w, z e S and (w, z) = (x, y) = 1 provided that /
and g are relatively prime binary forms such that fg has at least three
pairwise non-proportional linear factors in its factorisation over C. It is also
possible to give quantitative bounds, thereby generalising theorems 7.1 and
7.2. For these results, see Evertse et al (1986). The proofs of theorems 7.3
and 7.4 can be considered as an elaboration of the ideas mentioned in the
note added in proof in Shorey (1984a).

Skolem (1945b) dealt with some special Thue-Mahler equations over
algebraic number fields. The ineffective versions of theorems 7.5 and 7.6
were obtained by Parry (1950). Bounds for the numbers of solutions of
Thue-Mahler equations over Z were given by Mahler (1933b) and Lewis
and Mahler (1960) and over (9K by Evertse (1983b, Ch. 6; 1984a), Silverman
(1983b) and Evertse and Gyory (1985). Kotov (1973b, 1975), Sprindzuk
(1973b, 1974b), Sprindzuk and Kotov (1973, 1976) and Kotov and
Sprindzuk (1977) gave effective proofs of results like theorems 7.5 and 7.6
but only valid for binary forms / which are divisible by an irreducible form
of degree greater than or equal to 5 or an irreducible non-exceptional
binary form of degree 4. See also Sprindzuk (1980, 1982). Gyory obtained
several versions of theorems 7.5, 7.6 and corollary 7.4 as consequences of
more general theorems concerning decomposable form equations, see
Gyory (1979b, 1980c, d, a, 1981a, 1984b).

Theorem 7.6 and corollary 7.4 may also be formulated in terms of Sf-
integers. A number a eK is called an 9-integer if ord^(a)^0 for all prime
ideals/in (9K w i t h / ^ l / ^ , . . . , / J . Thus a is an 5^-integerifandonly if it is
the quotient of an element of (9K and an element of 9*. Denote the set of Sf-
integers by Oy. Every solution of the equation

f(x,y)=l in x9yed)y (37)

induces a solution of (8). Hence theorem 7.6 implies an upper bound for the
solutions of (37). For explicit bounds for the solutions of (37) see Gyory
(1981b, 1983, 1984b).

In the notes of chapter 5 the connection between bounds for the solutions
of Thue equations and inequalities on the approximations of algebraic
numbers by rationals was indicated. Similarly, bounds for the solutions of
Thue-Mahler equations can be transferred to inequalities on the p-adic
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approximations of algebraic numbers. The first result in this direction is due

to Coates (1969). Sprindzuk (1970b, 1971a, d), Sprindzuk and Kotov (1976)

and Kotov and Sprindzuk (1977) derived such inequalities for the

approximations of algebraic numbers of degree at least 5. Gyory (1980/z)

extended these approximation results to the case of all algebraic numbers of

degree at least 3 as well as to a wide class of linear forms with algebraic

coefficients in an arbitrary number of variables.

Let K be a finite extension of Q with ring of integers (9K. Let fe(9KlXl,

. . . , X m ] be a decomposable form and / / e $ K , / z#0 . Let {nl9..., ns} be a

finite set of non-zero non-units in (9K and let No ^ 1 be a rational integer. As

a generalisation of equation (31) of chapter 5, consider the decomposable

form equation of Mahler type:

-TC? (38)

in non-negative rational integers zl9...,zs and x 1 ? . . . , xm e (9K

with # ( (* ! , . . . , x m )KN 0 .

The Thue-Mahler equations (2) and (10) are special cases of (38). Further
examples are the norm form equations, discriminant form equations and
index form equations of Mahler type. These equations play an important
role in algebraic number theory (see e.g. Gyory, 1980e, 1984b,c, and
Evertse and Gyory, 1985).

Let &{XU..., Xm) = oi1Xl + • • • +ocmXm be a linear form with non-zero
algebraic integer coefficients in a finite extension L of K and consider the
norm form equation of Mahler type:

NvK(&(xl9...,xm)) = ii7%-'-7Z (39)

in non-negative rational integers z1 ? . . . ,z s and xl,... ,xme(9K

with JV((x1,...,xm)KAT0.

We may assume without loss of generality that ax = 1. If in particular m = 2
and the degree of a2 is at least three over K, then (39) is a Thue-Mahler
equation over (9K and, by corollary 7.4, there are only finitely many
solutions which can all be bounded by a computable number depending
only on K, L, <x2,..., am, fi, s, n1,..., ns and AT0. In case K = Q9 Schlickewei
(1977a) extended Schmidt's (1971a, 1972) general ineffective fmiteness
theorems on norm form equations to norm form equations of Mahler type.
For certain further ineffective extensions to the case of ground rings that
are finitely generated (but not necessarily algebraic) over Z, see Laurent
(1984) and Evertse and Gyory (1985, 1986fo). Schlickewei (1911b, c) also
established fmiteness results for equations of the form
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over Z where / is an appropriate decomposable form and g is a polynomial
whose degree is small relative to deg(/). For K = Q, Petho (1982ft) extended
the results of Gyory and Petho (1977, 1980) on the distribution of the
solutions of norm form equations to equations of the form (39).

Gyory and Papp (1977) extended Gyory's (1976) general effective
finiteness results on discriminant form equations and index form equations
to such equations of Mahler type. Independently, Trelina (1977ft) obtained
an extension of Gyory's (1976) result on index form equations to index form
equations of Mahler type. For certain special extensions L/K and certain
numbers a 1 ? . . . , am of special types, Matveev (1979, 1980, 1981) obtained
effective finiteness theorems for (39). The first general effective finiteness
results for (39) were established by Gyory (1979ft, 1980c). Later, Gyory
(1980d, g) and Kotov (1980ft) independently derived explicit bounds for the
solutions of (39), under the general hypothesis that in (39) af + x is of degree at
least 3 over K ( a j , . . . , a,) for i= 1 , . . . , m— 1. Further, Gyory (1981a) and
Kotov (1981) independently established a further improvement. General
effective finiteness results for decomposable form equations of Mahler type
were given by Gyory (1979ft, 1980c, 1981a). The main result of Gyory
(1981a) implies theorems 7.2, 7.6 and corollary 7.4 and the above-
mentioned general effective results on norm form, discriminant form and
index form equations of Mahler type. In several of the above-mentioned
papers, the authors deduced effective lower bounds for the greatest prime
factors of the norms of decomposable forms at algebraic integer points.
Further, Gyory (198 lft) deduced explicit bounds for the 5-integral solutions
of decomposable form equations, and, in particular, of norm form,
discriminant form and index form equations. Extensions of the results of
Gyory (198 la) on decomposable form equations of Mahler type to the case
that the ground ring is a finitely generated (but not necessarily algebraic)
extension of Z are given in Gyory (1984ft). For a survey of the effective
results mentioned above, we refer to Gyory (1980c, 1984ft).

Generalising earlier results of Evertse (1983ft, 1984a) on Thue-Mahler
equations, Evertse and Gyory (1985) derived explicit bounds for the
numbers of solutions of decomposable form equations of Mahler type in an
arbitrary number of variables over finitely generated (but not necessarily
algebraic) extension rings of Z. Their bounds are independent of the
coefficients of the decomposable forms involved, but their method is
ineffective. Warkentin (1984a, ft) extended results of Schmidt (1972) and
Schlickewei (1977ft) to norm form equations over a rational function field.



CHAPTER

The generalised superelliptic
equation

Denote by K a finite extension of Q and by (9K the ring of integers of K. Let
{/iu..., / , } be a finite set of prime ideals of (9K. Denote by Sf the set of all
non-zero elements of (9K that are composed of fa,..., fot. Let OLX , . . . , afJ be
distinct elements of K. Write

where rl9..., rn are positive rational integers. For given rational integers
m ^ 2 , T > 0 and for a given non-zero algebraic number b in K, we consider
the superelliptic equation

f(x9z) = byr (1)

in xetf^, ze £f and y e 0 x satisfying

max min(ord^.(x), ord^^z)) ^ T . (2)

The above notation will be used throughout the chapter without further
reference.

We shall apply theorem 7.6 to generalise theorem 6.1 as follows.

Theorem 8.1. Letm^3. Suppose that f(X, 1) has at least two distinct simple
roots. Let xeOK,ze^ and ye(9K satisfy (2) and (1). There exist a unit ele(9K

and a computable number Cl depending only on b, m, T,/, K and £P such that

For m = 2, we shall apply theorems 7.6 and 6.2 to generalise theorem 6.2
as follows.

141
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Theorem 8.2. Suppose that f(X, 1) has at least three distinct simple roots. Let
xe(9K,ze^ and ye(9K satisfy (2) and (1) with m — 2. There exist a unit e2 in
(9K and a computable number C2 depending only on b, T,/, K and £P such that

max(|£2x|,|e2z|)^C2.

We shall apply theorems 8.1 and 8.2 to prove the following result which is
an effective version of a theorem of LeVeque (1964).

Theorem 8.3. Let m ^ 2 and n^2. Put

(qt ( i l , . . . , n ) .
(m, rt)

Suppose that (ql9..., qn) is not a permutation of either of the n-tuples (q, 1,1,
...9l)and (2, 2, 1, 1 , . . . , 1). LetxeOKize^ andye®K satisfy (2) and (1).
There exists a unit e3 in (9K and a computable number C3 depending only on b,
m, T,/ , K and ^ such that

Clearly theorem 8.3 includes theorems 8.1 and 8.2. Theorem 8.3 was
proved by Brindza (1984a); in fact, Brindza gave a quantitative version of
theorem 8.3. An immediate consequence of theorem 8.1 is the following
result which is an effective version of a theorem of Mahler (1953).

Corollary 8.1. Let A and B be non-zero rational integers. Let m^2 and n^2
with mn^6 be rational integers. Then

P(Axm + By11) -+ oo, effectively,

as max(|x|, \y\) tends to infinity through non-zero rational integers x,y with
(x,30=l.

A quantitative version of corollary 8.1 follows from a result of Kotov (1976).

Proofs
The proofs of theorems 8.1, 8.2 and 8.3 depend on the following

lemma.

Lemma 8.1. Let m^2. Suppose that b^O and cc1,..., a,, are in GK. Let ocbea
root of f(X, 1) of order r. Put

q = m/(m,r).

Letxe®K,ye(9KandzeSf. Then there exist £ ̂  0, </> ^ 0 and 5 in (9K such that
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equation (1) implies that

where

for some computable number C4 depending only on ft, m,f K and if.

Proof. By permuting the suffixes of a 1 ? . . . , a,,, there is no loss of generality
in assuming that OL = OL1 and r=rx. Put

j=2 v=l

Since a 1 ? . . . , a,, are distinct, we find that A is a non-zero ideal in 0K.
Let xe(9K, ye(9K and zeif satisfy (1). We may assume that x#az ;

otherwise the theorem follows with £ = 1,<j> = 1 and <5 = 0. By (1), we have the
ideal equation in (9K

Hence
[ x - a z ] ' = ^ m (3)

for some ideals a, 6- in 0K where a is composed exclusively of prime ideal
factors of A and (6, A)= [1]. If /fc is a prime ideal in 0K and / " is the highest
power of / which divides tf", then clearly m | u and, by (3), r | w. This implies
that the least common multiple of m and r divides u. Hence qr\u.
Consequently, it follows from (3) that

where ax and ̂  are ideals in 0K and a^ divides Aq~1 in 0X. Now proceed as
in the proof of lemma 6.1 to complete the proof of lemma 8.1. •

We denote by cl9 c2,... computable positive numbers depending only on b,
m,x,f,K and <f.

Proof of theorem 8.1. As in the beginning of the proof of theorem 6.1, we
may assume without loss of generality that b, ocl9 ..., an are algebraic
integers. By permuting the suffixes of a x , . . . , aw, we may further assume that
ax and a2 are simple roots of f(X, 1). Then, by lemma 8.1, there exist £l9 £2,
\j/l9 \j/2 and yl9 y2 in (9K such that £i£2

ll/ill/2:£Q a n c*

x - a 1 z = «1/^1)yr, (4)

(5)
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and

max(|^|, l ^ l ^ l ^ l K c v (6)
If / is a prime ideal in ®K and fc\u^ 1) divides both [x—axz] and

[x —a2z], then /M | [a2 — a r][x] and fcu\ [a2 — a j [ z ] . Since ze5^ it follows
that N'/ <c2 . Further,by (2), u<c3. Consequently, by (4), (5) and (6), we find
that

(7)

Subtracting (5) from (4) and multiplying by i/^i/^, we obtain

We apply theorem 7.6 to the binary form £>l\j/2X
m — {2*Ai^m a n d with y1? y2

and (a2 — a1)^1i/^2z in place of x,y,z, respectively. Observe that P =
P(iV((a2—a1)i^1^2z))^c5. Therefore the number t of prime ideals in (9K

dividing (a2 — a1)i/^1^2z is bounded from above by some number c6. Since
m^ 3, f î 2<Ai 1A2 ^ 0, ax 7̂  a2, z7^ 0 and (7) holds, all assumptions are fulfilled
with N0 = c4. Hence, by theorem 7.6, there exists a unit e in (9K such that

ey2

Now, by solving for x and y in the equations (4) and (5), we obtain that
1 1 1 1

max(|£mx |, |emz|) is bounded by a computable number depending only on b,

•
Proof of theorem 8.2. As in the proof of theorem 8.1, we may assume that b,
a 1 ? . . . , a,, are algebraic integers and that a l5 a2 and a3 are simple roots of
/ (X, 1). It follows from lemma 8.1 that there exist £t ̂  0, ^. # 0 and yt in ^
such that, for i= 1,2,3, we have

x-a l-z = (^l./^)?I
2 (8)

and

l£|[^| (9)
From equations (8), we obtain

2-^373 = ( a 3 -

where a.^^./xl/. for i= 1,2,3. Let o-}/2, cr2
/2 and c^ 2 be arbitrary, but fixed,

choices of the square roots. Put
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Observe that L is a finite extension of K of degree at most 8 and therefore
dL^c9. Let r\\,..., r\'r be an independent system of units for L satisfying
(A.45). Put

Put A = \j/i*!/2*1*3- Notice that A is a non-zero element of (9K satisfying | A \ ^
Cg, hence \A\ ^ c 1 0 . By (9) and lemma A.2, 4<7*/2 is an element of (9L of height
at most clv Since dL^c9, we infer from lemma A. 16 that max(/zL, RL, \@L\) ^
c12. Further observe that 40 l 9 Afi2 and ^tj83 are non-zero elements of ®L.
Since z e 5^ we see that

Consequently we see from lemma A. 12, corollary A.6 and corollary A.5 that

48<=/i&3' ( i=l ,2,3) (10)

where / i , / 2 , / 3 , #i, 2̂? ^3»' a r e non-zero elements of (9L satisfying

max |7^c 1 4 , (11)
UK3

(12)

and the ideals [_g{\, [_g2] and [gf3] are relatively prime. Observe that

+ 403 = 0.

By (10),
(13)

Since there are only finitely many possibilities for fl9f2 and f3 in view of
dL ^ c9 and (11), we may assume that fx ,/2 and f3 are fixed. We are going to
apply theorem 7.6 to the binary form / 1 X 3 + / 2 7 3 with x = gl9 y = g2 and
z= —f3g3. Recall that dL^c9 and |^L | ^ c 1 2 . Since [^fj, [#2] and [gf3] are
relatively prime, we have, by (13) and (11), N((gl9 g2)) ̂ c16. Furthermore,by
(11) and (12), P(NL(f3gl)) ^ c x 7, whence the number of prime ideal factors in
(9L dividing f3g\ does not exceed c18. We conclude, by theorem 7.6, that
there exists a unit e4 in (9L such that



146 Diophantine equations and recurrence sequences

This, together with (10) and (11), implies that

max I
i I

L 2 0

where e5 = el. Thus e5Ap1 = A.ll and £5Ap2 = A2l f° r some kx,X2e(9L wi

Recall that, in the definitions of pl9 p2 and /?3, we have taken an arbitrary
but fixed choice of square roots for o^ o2 and <T3. Similarly we can find /', A3,
A4e0L with max(P(NL(/')), |A3|, | A 4 | ) ^ C 2 1 and a unit £ 6 e0 L such that

where

Consequently
U3f, (14)

U 3 r (15)
and

66A2/ = 65A4/
/. (16)

If ^ is a prime ideal in 0K and / " divides both [x— a2z] and [x — a3z],
then > M | [ a 3 - a 2 ] [x ] and >"| [ a 3 - a 2 ] [ z ] . Hence, by (2), u ^ c 2 2 . Since
dL^c9, we obtain from (8) that

minford^yj, ord/(y3)) ^ c 2 3

for every prime ideal /fc in 0L. Consequently, the equations (14) and (15)
imply that

min(ord/i(/), ord/4(/
/)) ^ c 2 4

for every prime ideal ft in 0L. Now it follows from (16) and P(NL(ll')) ̂  cx 5 +
c21 that max(|JVL(/)|, |NL(//)|)^c25 which implies that

Since i? i^i=(a 3-a 2)z , we find that |A/A:(Z)|^C26. By corollary A.6, there

exists a unit e7e(9K such that |e7z| ^ c 2 7 . Hence e7z can be assumed to be
fixed. Write N = r1 + r 2 + •• -+rn. By corollaries A.4 and A.5, we may
further write e^=s88g where |e8| ̂ c 2 8 . Multiplying both sides of (1) by e7,
we obtain

Now apply theorem 6.2 to conclude that |a7x| ^ c 2 9 .
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Proof of theorem 8.3. Since (ql9..., qn) is not a permutation of either of the
n-tuples (q, 1, . . . , 1) and (2, 2, 1, . . . , 1), we have the following two
possibilities.

(a) There exist distinct i,j with ije{1,..., n) such that qt^3 and q^2.
(b) There exist distinct i,j9 k with i9j9 k e { 1 , . . . , n} such that q{ — qj = qk = 2.

Case (a). By permuting the suffixes of al9..., a,,, we may assume that qx ̂  3
and q2 ̂  2. It follows from lemma 8.1 that there exist £l9 £2, ij/l9il/2 and yl9 y2

in 0X such that

(17)

(18)

. (19)

Subtracting (17) from (18) and multiplying by i/^i/^ w e obtain

^iy¥-«i^yil=(ai - a J ^ i ^ . (20)

Since z e ^ w e may write

z = Z l ^ (21)

where z1,z2e«5^ and |z1 |<c3 1 . Hence, by (20),

We are going to apply theorem 8.1 to the binary form ^2ij/1X
q2-

(<Xi-<*2Wi*l'2ziY9z a n d w i t h ^ = ^1^2 a n d ™ = <li' fiy (22), (21), (17),
(18), (19) and (2), we have

max min(ordA(y2), ordA(z2)) ^ c 3 2 .

Hence, by theorem 8.1, there exists a unit e10 in (9K such that

This, together with (21) and (18), implies that |ej2
oz| ^ c 3 4 and \e\2

Qx\ ^ c 3 5 .

Case (b). By permuting the indices of a l 5 . . . , a,,, we may assume that qx =
^2 = ^3 = 2. By lemma 8.1, the relations (8) and (9) are valid. Consequently

Y1Y2Y3

Now apply theorem 8.2 to conclude the assertion of theorem 8.3. •
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Proof of corollary 8.1. There is no loss of generality in assuming that
and n ̂  2. Suppose that x and y with (x, y) = 1 are non-zero integers. Since
(x,y)= 1, we have

whenever max(|x|, |y|)>c for some computable number c depending only
on A and B. We assume that max(|x|, |)>|)>c. Then write

Axm + Byn=±pa
1
1'-pa

s*

where px < p2 < " * < ps = : P are rational prime numbers and ax,..., as are
non-negative rational integers. We can write

where w and z are non-zero rational integers and |w|<PSfl. Thus

Axm= -Byn + wzn.

Since (x, y) = 1, we have (y, z) ^ |i4|. Now we apply theorem 8.1 to conclude
that \y\, \z\ and hence |x| are bounded by a computable number depending
only on A, B, m, n and P. •

Notes
Denote by Zs the set of rational numbers with denominators in S,

the so-called 5-integers. Mahler (1934a) used his p-adic analogue of Thue's
theorem to prove that if for F e Z[X9 7 ] the equation F(X, Y) = 0 represents
an (irreducible) curve of genus 1, then there are only finitely many x,yeZs

with F(x,y) = 0. Mahler's result is ineffective. Kotov (1977, 1979) used the
(p-adic) method on linear forms in logarithms to derive an effective
analogue of Mahler's result. For absolutely irreducible polynomials F of
degree at least 3, Kotov computed an upper bound for the absolute values
of the numerators of x,yeZs with F(x,y) = 0. Kotov and Trelina (1979)
improved upon this bound by showing that in this case

max(H (x), H(y)) ^ exp(exp(C4P))

where C4 is an almost explicitly given function of the degree and the height
of F. In case the curve has complex multiplication, Bertrand (1978) derived
an essentially better upper bound exp(PCs), but with an ineffective constant
C5.

The full p-adic analogue of Siegel's (1929) theorem was established by
Lang (1960), and independently by LeVeque (1961): Let K be a finite
extension of Q. (Lang assumed K to be any finitely generated (not
necessarily algebraic) extension of Q and considered the solutions in an
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arbitrary subring of K which is finitely generated over Z.) Let F eK[X, Y]
be such that the equation F(X, Y) = 0 represents an (irreducible) curve of
genus g ̂  1. Denote the ̂ -integers by $)#,. Then there are only finitely many
x9ye@y with F(x, y) = 0. As in chapter 6, the general effective analogue has
not been proved yet, but effective results are available for the special class of
superelliptic equations y"1 = G(x) where meZ,m^2 and Ge 1\X\ Trelina
(1978) generalised results of Sprindzuk on the integral solutions of
superelliptic equations to the 5^-integral solutions of these equations.
Brindza (1984a) gave also a p-adic extension of his effective proof of
LeVeque's (1964) theorem. Essentially Brindza's result is equivalent to
theorem 8.3, but he specified the bound too. He proved that, under the
conditions of theorem 8.3, the solutions x, ye@y of /(x, 1) = / " satisfy

max{tf (x), H(y)} < exp(exp(C6P
2(f + I)3))

where P = max1</<t P(NK(/tj)) and C6 is a computable number depending
only on K,f and m. We could have applied theorem 1.4 instead of theorem
7.6 in the proof of theorem 8.2. We recall that in theorems 8.1-8.3 the
dependence on K can be refined to dependence on the degree and the
discriminant of K only.

It is a consequence of Mahler's (1934a) paper that P(Ax3 + By2) -> oo as
max(|x|,|y|) tends to infinity through non-zero rational integers x,y with
(x, y) = 1. An effective proof of this result for A = 1, J3 = —1 was obtained by
Coates (1970b), who also computed an effective lower bound for P(x3 — y2),
namely: if x,yeZ with (x,y)= 1 and x3^y2 then

where ^ = max(|x|,|y|). Kotov (1979) and Kotov and Trelina (1979)
extended Coates' result to arbitrary elliptic curves and improved on the
lower bound in such a way that, as a particular case, it follows that

where C7 >0 is a computable absolute constant. For an entirely algebraic
approach to results on P(Ax3 + By2), see Herzberg (1975).

The ineffective version of corollary 8.1 is due to Mahler (1953). The
effective corollary 8.1 can be derived from Coates' (1970a) result on the
Thue-Mahler equation. Kotov (1976) generalised corollary 8.1 to algebraic
number fields. He derived explicit bounds which, under the conditions of
corollary 8.1, yield

P(Axm + Bf) > C8(log2 ar log3 ^ ) 1 / 2

where C8 > 0 is a computable constant depending only on A, B, m and n.



CHAPTER 9

Perfect powers in binary recurrence
sequences

In this chapter, we show that there are only finitely many perfect powers of
the form ux+u2 where MX and u2 are relatively prime rational integers
composed of a given finite set of primes. We consider the analogous
question in a number field. As applications, we prove that there are only
finitely many perfect powers in a non-degenerate binary recurrence of
algebraic numbers and that, under suitable restrictions on rational integers

- • oo

uniformly in positive integers t> 1, x> 1 and y with (x\y)= 1 whenever
max(t, x, y) tends to infinity.

Let P ̂  3 and a ̂  1. Denote by S the set of all rational integers composed
of primes not exceeding P. Then we have

Theorem 9.1. Let w, ux and u2 with (ul9 u2) ̂ abe members of S. Let q^2 and
y with \y\ > 1 be rational integers. If

Ui+u^uf, (1)

then P(q) is bounded by a computable number depending only on P and a.

Combining theorem 9.1 with theorem 7.2, we obtain

Theorem 9.2. Under the conditions of theorem 9.1, equation (1) implies that

for some computable number C^ depending only on P and a.

Now we state notation for a generalisation which includes theorem 9.2.
Denote by K a finite extension of Q, by (9K the ring of integers of K and by R

150
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the regulator of K. Put [K: Q] = d. Let v^ 1 and s 3*0. Let {nu..., rcs} be a
set of non-zero non-units of 0X. Denote by S^0 = S^KiV{nu. • • ,7rs)thesetofall
non-zero elements of (9K of the form

where Vj , . . . , vs are non-negative rational integers and \i e 0K with \fi | ̂  v. If

s = 0, then <9Q is the set of all fie(PK with /i # 0 and \fi | ̂  i;. We consider the

equation

£i7i+£2?2 = 7 / (2)

in el9 62, y e ^ K , yl9 y2> 7 e^o» ^ G ^+ w ^ h ei» e2 units and y^O. We shall use
the above notation throughout the chapter without any further reference.

Theorem 9.1 is contained in the following result.

Theorem 9.3. Let y be a non-zero non-unit in (9K. Let T ^ O . Suppose

minford^!), ord^(y2)) ^ T (3)

for every prime ideal ft in (9K. Then equation (2) implies that P(q) is bounded
by a computable number depending only on T, K and ^0.

It is impossible to prove the assertion of theorem 9.3 if y is a unit. However,
if (2) is satisfied with a unit y e (9K and (3) is valid, then we may apply
theorem 1.3 to obtain

and

max( |e rV| , |fi2 V | > | O

where C2 is a computable number depending only on T, K and ^ (and not

For a given q^>2, we apply theorem 7.6 to equation (2) to derive the
following result.

Theorem 9.4. Let q^2. For %^0, assume that (3) is valid. Then there exists a
computable number C3 depending only onq,r,K and 5 0̂ such that equation (2)
implies that

| | | M N (4)
and

| i y | F?v| F^l < c3. (5)
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Thus, under the assumptions of theorem 9.4, it follows from (4) and (5) that

max(£fV}H,k £i?i >k~ WiV^C^ (6)

The assertion of theorem 9.2 may be obtained by combining theorems 9.3
and 9.4.

We apply theorems 9.3, 9.4 and 1.3 to prove the following result.

Theorem 9.5. Let O^meZ. Let a, (I be non-zero elements of (9K such that a//?
is not a root of unity and (a, /?)= [1]. Let T1 ̂ 0 . Suppose

for every prime ideal /? in (9K. Assume

y1a
m + y2P

m = eyf (7)

with 0^ye(9K, a unit ee(9K and 2^qeZ. Then

max(|7|,|^,|yI|,m)<C4 (8)

for some computable number C4 depending only on T1? a, /?, K and ^0.

An immediate consequence of theorem 9.5 is the following result.

Corollary 9.1. Suppose that the assumptions of theorem 9.5 are satisfied.
Further, assume that e = 1 and y is not a root of unity. Then

where C5 is a computable number depending only on T1? a, /?, K and ^0.

Further, we apply theorem 9.5 to prove the following result on perfect
powers in a non-degenerate binary recurrence.

Theorem 9.6. Let {um}^=0 be a simple non-degenerate algebraic recurrence

of order 2 and let q^2. If

um = yf (9)

with O^yeK, then m is bounded by a computable number depending only on

K9 Se0 and

Theorem 9.6 admits the following consequence.

Corollary 9.2. Let {um}™=0 be a simple non-degenerate algebraic recurrence
of order 2. Let O^deK and q^2. If

um = Sf (10)
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where O^yeK is not a root of unity, then

for some computable number C6 depending only on d, K and the sequence

Some special cases of this corollary can be found in the literature. Shorey
and Tijdeman (1976a) proved that there are only finitely many perfect
powers in the Lucas sequence given by wo = 0, wx = 1 and

where x > 1 is a fixed integer. Here um = (xm — l)/(x — 1). Thus there are only
finitely many perfect powers among the integers whose digits in the x-adic
expansion are all equal to 1. We shall return to this problem in chapter 12.
For a non-degenerate recurrence sequence {um}^= 0 of order 2 induced by a
(rational) integral recurrence, it has been proved, independently, by Petho
(1982a) and Shorey and Stewart (1983) that equation (10) with O^SeZ,
yeZ, |y |>l and q^2 implies that max(|y|,g,m) is bounded by a
computable number depending only on S and the sequence {um}™= 0; in fact,
Petho proved that max(|);|,g,m) is bounded by a computable number
depending only on P(3) and {um}™=0 provided that the companion
polynomial to {um}™=0 has relatively prime integral coefficients.

Shorey and Stewart (1983) applied their result to prove the following.

Theorem 9.7. Let Al9A2, A3,BeZ with AXA2B#0and A\-4AlA3#0.Let
x,y,t with \x\> 1 and t> 1 be rational integers satisfying

B. (11)
Then

max(|x|,|j;|,f)<C7

where C7 is a computable number depending only on Au A2, A3 and B.

Let Al9 A 2, A3, BeZ with B^O and A2
l—4A1A3 positive and not a square.

It is well known that if the equation

A1x
2 + A2xy + A3y

2 = B (12)

has one solution in integers x and y, then it has infinitely many solutions in
integers x and y. Theorem 9.7 states that among these solutions there are
only finitely many in which x is a perfect power. Theorem 9.7 is contained in
the following result.

Theorem 9.8. Let ax^ 1. For P ^ 3 , denote by S the set of all integers
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composed of primes not exceeding P. Let Al9 A2, A3eZ with AtA3^0 and
Al~4A1A3^0. Suppose x9y9t with | x |> l , y^O and t>\ are rational
integers satisfying (xt,y)^a1 and

Axx
2t + A2x

xy + A3y
2 e S. (13)

There exists a computable number C8 depending only on al9 Al9 Al9 A3 and
the set S such that

m<ix(\x\9\y\9t)^C8.

Proofs
Proof of theorem 9.1. Suppose that equation (1) holds. Denote by kl9..., k6

computable positive numbers depending only on P and a. There is no loss of
generality in assuming that q is prime. Further, we may assume that q>kx

with kx sufficiently large. Put

t/ = max(|M1|,|M2|,e).
Write

U=±Y\p\ « i = ± n A u2=±npcp

where ap9 bp and cp are non-negative integers. Observe that

max max(fep, cp) ^ 2 log U.

It follows from (1) that

max ap^2 log|w| ̂ 2 \og(2U).

Let p1 be a prime dividing ux such that p°^^{U))>a. Then equation (1)
implies that

since (ul9u2)^a. In theorem B.4, set n = n(P) + 29 d— 1, p = px ^ P , d= 1/2,
A' = P, i4 = 3|3;|, B = 2log(2U) and B' = bn = q. Let kx >P. Then, since px ^
P<kx<q and q is prime, we have q ̂ 0(mod px). Now we apply theorem B.4
to conclude that

Thus
log I/"
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Consequently

I I V ( I l o g U

p\u\ \

Similarly

log \u2\ <k5ilog q log \y\ +

Let /cx > 2/c5. Then, since k5q ~1 < k5k^x < 2 ~x, the above inequalities imply
that

logl/^2fc5k>g«log|)>|. (14)

Further, it follows from (1) that

^log|y|^log(2C7)

which, together with (14), implies that q^k6. •

Proof of theorem 9.2. Suppose that equation (1) is valid. There is no loss of
generality in assuming that q is prime. By theorem 9.1, we see that q is
bounded by a computable number depending only on P and a. Write

u = u3u
q
4 and ul = usu%

where

Then, by multiplying both sides of (1) by uq
5u6, we obtain

u5u6((u5u6)
q - u3u

q
5~

1(u4ry)q) = - u2u
q

5u6.

Note that —u2u
q
5u6eS. Since (u1,u2)^a, equation (1) implies (u1,yu)^a

which gives b: = (u5u6, u4y)^a. Divide both sides by bq. Now apply
theorem 7.2 with

to complete the proof of theorem 9.2. •

Now we turn to the proof of theorem 9.3. Suppose that (2) is fulfilled for
some non-zero non-unit y in (9K. First we make some simplifications. We
may assume q > 1. Further, since every power of y is a non-zero non-unit in
(9K, there is no loss of generality in assuming that q is prime.

Let rjl9..., rjr be an independent system of units for K satisfying (A.45).
By corollary A.5, we may write

-narr and e2 = p2iyj1- • -rjb; (15)
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where au ..., an bl9..., brsZ and p l 5 p2e(9K with PiP2^0 and

for some computable number c depending only on K. For 1 ^ i ^ r , write

and

Thus s2 = p2e4s
q

3. O
n dividing both the sides of (2) by e% and observing that

ys^1 is a non-zero non-unit in $ x , we may assume that

(17)

Let <T0 be an embedding of K such that \cro(y)\ = \y |. By taking images under
<70 on both sides of (2), we may assume |y| = |y|. Finally, by corollary A.2,
observe that there are only finitely many pl,p2e(9K satisfying (16). By
lemma A.2, their heights are bounded and we may therefore assume that px

and p2 are fixed.
Thus, for the proof of theorem 9.3, it suffices to prove the following result.

Theorem 9.3'. Let c be a computable number depending only on K. Let 0 ^
px e 0K, 0 T£ p2 e (9K satisfy (16). Let s1 and s2 be given by (15). Assume that 0 ^
b{ < q for 1 ^ i ^ r. Suppose that y is a non-zero non-unit in (9K satisfying \y\ =
|y |. Assume that equation (2) is satisfied. For T ̂  0, suppose that inequality (3)
is valid. Then q is bounded by a computable number depending only on T, K
and 9>0.

Put

W1=max(|a1|,...,|ar|,fc1,...,for).

We may write

and y2 = fi2n^'"7i^ (18)

where f x , . . . ,fs, gx,..., gs are non-negative rational integers and fi1,fi2e(9K

with ^ ^ 2 7*0 and

max( |^ , | ^ )< i> . (19)
Set

W2 = max(f1,...Js,gl9...,gs)
and

Finally we write
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where hl9 ..., hs are non-negative rational integers and 0 / / i 3 e $ K with
|ju3| <r. Denote by cl5 c 2 , . . . , c29 computable positive numbers depending
only on T, K and ^0. We assume that cx is sufficiently large.

We split the proof of theorem 9.3' into four lemmas. We apply theorem B.3
to obtain the following estimate for integers hx, . . . , hs.

Lemma 9.1. Suppose that the assumptions of theorem 9.3' are satisfied. Then

hi^c2(\ogW)2 ( U K s ) . (20)

Proof Let 1 ^ i ̂  5 and ht > 0. Since nt is not a unit, there exists a prime ideal
/fc in GK dividing nt. In view of (3), either o r d ^ y j ^ r or ord^(y2)^t. If

r, then equation (2) implies that

We apply theorem B.3 with n = r + s + 3, p ^ c 3 , i4t = A2 = • • • = An = c4 and
5 = w to conclude that

Thus

whenever ord^(y1)^T. This inequality follows similarly when

•
Further, we apply theorem B.4 and lemma 9.1 to obtain

Lemma 9.2. Suppose that the assumptions of theorem 9.3' are satisfied and
q>cl. Then

Proof. Let 1 ^ i ^ s and gi > 0. Since nt is not a unit, we can find a prime ideal
/ in (9K dividing nv Let p be the rational prime divisible by ft. Then \
Let c1>c8. Hence q^O (mod/?), since q is prime. By (2) and (3),

if ord/(y1)^r. We apply theorem B.4 with rc = r + s + 3, p^c8, S=l/q,
Af = c9,A = clo\y\,bn = q,B' = q and, by lemma 9.1,5 = max( W, hx,..., hs) ^
c u W to conclude that

By (3), this inequality is also valid if ord/(y1)>r. Here we have used the
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inequality \y\ = \y\ > 1 + c 1 3 which holds by (A. 13). It follows that

and, similarly,

y;^c14(log ^ log |y| + V^r-2)

Hence (21) follows. •

Now we apply lemma 9.1 and lemma 9.2 to obtain

Lemma 9.3. Suppose that the assumptions of theorem 9.3' are satisfied and
q>cv Then

W^cl5q\og\y\. (22)

Proof. Let rx and 2r2 be the number of conjugate fields of K which are real
and non-real, respectively. For oceK, we signify by a ( 1 ) , . . . , a(ri) the real
conjugates of a and by a(ri +1},..., a(/>1+2'2) the conjugates of a satisfying a0) =

If W= W2, then (22) follows from (21). Thus we may assume that W—
max(W/

1,e). Since max(fcx,..., br, e)<g, we may assume that

W=msLx(\a1\,...9\ar\).

If r = 0, we may put W=0. Thus we may assume r>0 . Re-writing equation
(2), we have

Thus, for ;= 1,.. . ,d,

|log \e?\ | ^ |log \y<f>\ | + |log \(yyq-e2y2)
U)\\. (23)

By (15), (16) and (17),

|log|f iy| |<c16^ (1 < / « * ) . (24)

By lemma 9.1,

| log|ya ) | |^c1 7(log^02 (25)

and, by lemma 9.2,

max(|log \y(/>| |, |log |yi/>11) ^ c, 8(log 9 log | y\ + Wq ' 2) (26)

for/= 1,... ,rf.Henceitfollowsfrom(15),(23),(24),(25),(26)andaLiouville-
type argument that

|fli !og foil + • •' +ar log fo^H ̂ c1 9(^log |j; | +(log W)2+Wq~2)
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for j= 1, . . . , r. This is a system of linear inequalities with a non-zero
determinant E with | £ | ^ # . Consequently

| f l l | , . . . , \ar\)^c20(qlog \y\ + (log W)2+Wq~2)

which implies (22) if q>c1 with cx sufficiently large. •

Lemma 9.4. Suppose that the assumptions of theorem 9.3' are satisfied and
q>cv Then

\\ (27)

Proof By (2),

We apply theorem B.2 with n = r + s + 3, S= \/q, A = c12, A = c23|^|, B' =
and, by (20) and (22), B"^c24qlog \y\ to obtain

Thus
1̂ 2721 > \lf\ exp( - c 2 5 log q log |y|)

which, together with (25) and (22), gives

On the other hand, it follows from (24), (26) and (22) that

|e2y2| ̂ exp(c27(4 + log q log \y\)).
Hence

r̂ log |y| ̂ c27^r + (c26 +c27)(log ^)2 log |y|

which implies that

if cx is sufficiently large. Hence log \y\ ^2c21. D

Proof of theorem 9.3'. We may assume that q>cx with cx sufficiently large
so that (27) is valid. Then, since y is not a unit, we apply (27) and theorem 1.3
to equation (2) to obtain

Consequently, since y is not a unit, we have

2^|N(>;)|^|iV(y/)|

which implies q^c29. •
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Proof of theorem 9.4. Suppose that equation (2) with q ^ 2 is satisfied.
Denote by c 3 0 , . . . , c38 computable positive numbers depending only on q,
T, K and Sf0. We may write

(28)

where 0 l 9 c/>2, </>3, 0 4 are elements of 5^ and e5, e6 e $ x are units such that

max(|^|,|^|,|^JKc30. (29)

Multiplying both sides of (2) by (s^^Y'1, we have

(fi5fi6^4)'-fi |"10i0r1(02^=-fi2fi |"10r172.
Set

Note that, by (29), the function / belongs to a finite and computable set of
polynomials. Observe that there is a constant c31 such that

3(/)4,4>2y))) =

and that, by (28) and (3),

We apply theorem 7.6 to conclude that there exists a unit e in $ x such that

max(|££5£603(/>4|, |e02 .y |Kc3 2

which, together with (28) and (29), implies that

max(|e'£171 | , |£'7/|)^c33 (30)

with £' = £g. Now equation (2) and (30) imply that

|£ /£2y2 |^c34. (31)

Since y,yi,y2
e^o> ^ follows from (30) and (31) that

which, together with (30) and (31), implies that

Hence, by a Liouville-type argument,

| | 1 | . •
Now we turn to the proof of theorem 9.5. It depends on the following
application of theorem 1.3 to equation (7).
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Lemma 9.5. Suppose that the assumptions of theorem 9.5 are satisfied.
Further, assume that y is a unit. Then

where c38 is a computable number depending only on T1? a, /?, K and <9Q.

Proof Let yl and y2 be given by (18) where ju1? \i2 satisfy (19). Observe that,
by lemma A.2, the pair fil9fi2 belongs to a computable finite set. Thus it
suffices to prove lemma 9.5 with c38 depending only on T1 , a, /?, K, ^ 0 ^ i a n ^
jz2. Put

j l if/Xj is a non-unit,
[/i! if /i! is a unit.

Thus ju3 e (̂ x is a unit. Denote by c 3 9 , . . . , c46 computable positive numbers
depending only onT1,oc,^K96^0,iul and /i2. We split the proof of lemma 9.5
into two cases.

Case 1: At least one of a and /? is a non-unit. By permuting a and /?, it involves
no loss of generality to assume that a is a non-unit. Note that
P(N((xpyyly2))^c39. After dividing both sides of (7) by ^3, we apply
theorem 1.3 with Sl=fi^1syyq, S2= -ju3

 ly2p
m and ^3 =- / i 3" 1y 1a m to

conclude that

Therefore, since y,yi,y2£&?
0 and /i3 \ a, a, /?, y are non-zero algebraic

integers, we obtain

| | , | y 1 | , | y 2 | ) ^c 4 1 . (32)
Consequently

Since a is a non-unit, we see, by (A. 13), that

Case 2: Both a and (I are units. After dividing both sides of (7) by /x3a
m, we

apply theorem 1.3 with

to conclude that max(|^1|,|<52|, | ^ 3 | )^c 4 4 . Therefore, sincey,yi,y2e<% and
jU3

 i
9 e, a"1, /?/a, y are non-zero algebraic integers, we obtain (32) and

|jS/a|m^c45. Then, since /?/a is not a root of unity, we see m^c46. •
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We apply theorem 9.3 to equation (7) to prove:

Lemma 9.6. Suppose that the assumptions of theorem 9.5 are satisfied.
Further, assume that y is not a unit. Then

(33)

for some computable number c 4 7 depending only on xl9 a, j?, K and <9Q.

Proof Dividing both sides of (7) by e, we have

7 / = e-1amy1+8-1jSmy2. (34)

If both a and /? are units, then we apply theorem 9.3 with e1=e~1(xm and
s2 = e~1pmto equation (34) to obtain (33). If botli a and /? are non-units, then
we apply theorem 9.3 with ^ : = S^KiV(ni^ • • •»ns*a /9> 7i anc* ?2 replaced by
7jam and y2j3

m, respectively, and e1=e2 = s~1 to equation (34) to conclude
that P(q) is bounded by a computable number depending only on x x, a, /?, X,
^ whence (33) follows.

Thus we may assume that exactly one of a and /? is non-unit. It involves
no loss of generality in assuming that a is the non-unit and /? the unit. Now
we apply theorem 9.3 with Sf2\ = SfK%vip^... 9n890L)9y1 replaced by y l a

m, ex =
e"1 and 82 = e~1j?m to equation (34) to conclude that P(q) is bounded by a
computable number depending only on xl9 a, jS, X, ^ 2 whence (33) follows.

a
Proof of theorem 9.5. In view of lemma 9.5, we may assume that y is a non-
unit. Further, there is no loss of generality in assuming that q is prime. Then,
by lemma 9.6, we see that q ̂ c 4 7 . Therefore it suffices to prove theorem 9.5
with C4 depending only on q, xl9 a, /?, K and SfQ. Denote by c 4 8 , . . . , c5l

computable positive numbers depending only on q, xl9 a, j8, K and Sf0.
We apply theorem 9.4 to equation (34). It follows from (6) that there exists

a unit e'e(9K (in fact, g' = £or e' = ect~m) such that

)<c
48

which, since y, yx, y2 e ^o and e', g~x, a, /?, y are non-zero algebraic integers,
implies that

Consequently, by a Liouville-type argument,

| ^ l m < c 5 0 .
Since a//? is not a root of unity, we find that m^c51. •
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Proof of corollary 9.1. Denote by c52 and c53 computable positive numbers
depending only on xl9 a, /?, K and <9Q. In view of theorem 9.5, inequality (8) is
valid. By equation (7) with e = 1 and (8), we see that

which, since y is not a root of unity, implies that q ̂ c 5 3 . •

Proof of theorem 9.6. Suppose that equation (9) is valid. By §2 of chapter C,
the sequence {um}™=0 is induced by a recurrence relation with algebraic
coefficients v0, Vj. Let OLX and j?x be the roots of the companion polynomial
to {um}™=0. Since {um}^=0 is non-degenerate, ocl/P1 is not a root of unity.
Put L=K(u0, ul9 v0, v1? al9 jSJ. Let (PL be the ring of integers of L, and h the
class number of L. For m = 0, 1, 2, . . . we have

where

q^Y1""1 and

Put ^?3 = ̂ L>v(nl, . . . , 7is). It suffices to prove that m is bounded by a
computable number depending only on L, 5^ and {wm}m = o- Denote by c54,
. . . , c63 computable positive numbers depending only on L,Sf3 and

Denote by d1 the least positive integer such that d1al, dxb^ d1oi1,
dx$xe(9L. Put

b2 = d1bl9 a2 = dlotl, P2 = d1p1. (35)

Multiplying both sides of equation (9) by d™ + 1, we have

(36)
where

73 = ^ + V (37)

Observe that y3 e C?L.
Let rf2 be the least positive integer such that y^ : = d2yeCr

L. Then, since
the left-hand side of (36) and y3 are algebraic integers, we see from (36) and
(37) that

(38)

Multiplying both sides of (36) by d\, we have

(39)
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By corollary A.3, notice that

where either n= 1 or n is a non-unit in (9L. Put

a3 = 7 r V 2 and P^n'1^. (40)

Then a3, jS3 e #L satisfy ([a3], [j?3]) = [1]. Further, since a1/pl is not a root of
unity, we see from (40) and (35) that a3/j83 is not a root of unity. Putting

m = mlh + m2 (0^m2</i) (41)
and

b3 = pm
2>b2, (42)

we re-write (39) as

a3a!?+b3ft = d;'n-m>y3fl. (43)

Observe that a3,b3eOL and, by (42) and (35),

max(|^],|^])<c55. (44)
We may write

where y2, y3 e (9L satisfy

( [y 3 ] , [^ 2 ] )=[ i ] (45)

and, by (38) and lemma A. 12,

y2 = ril'-M (46)

where v x , . . . , v, are non-negative rational integers and, for 1 ^7 ̂  /, \j/j e (9L

are non-units with |iV(^-)| ^ c56. Therefore, by corollary A.6, we may choose
non-units ij/1,..., \j/l e (9L with

(47)

Put
yt = d2qn-m*y3fi.

Then y4 e GL9 since the left-hand side of (43) is an algebraic integer and, by
(45), the ideals [y3] and [7rd2] are relatively prime. Further, it follows from
(37), (46) and (47) that

P(iV(y4)Kc58. (48)

Therefore, by lemma A. 12 and corollary A.6, there exist non-units ^f,...,
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ij/fe (9L such that

max

and

where s7e(9L is a unit and y5 eyL1(i^jf, . . . , i/̂ f). We re-write (43) as

(49)

Put vx = max(i;,c55)and ^4 = ^L,^(7ri?-.. ,ft s ,^*,. . . , i^*). Observe that a3,
ft3, y5 G ^4 . We apply theorem 9.5 with K = L,£fo = ^4 , w = m1, a = a3 ,£ = j83,
7i=«3,72 = ^3,7 = 7 5 ^ = ^ 3 ^ = 67 and, by (44) and (a 3 , ^ 3 )=[ l ] ,T 1 =c 6 0 to
equation (49) to conclude that ml is bounded by a computable number
depending only on L, 5^ and {um}™=0. Therefore ml ^ c 6 1 , whence, by (41),

Proof of corollary 9.2. Let d3 be the least positive integer such that d3d e (9K.
Multiplying both sides of (10) by d3, there is no loss of generality in
assuming that 5 e (9K. Denote by c 6 2 , . . . , c65 computable positive numbers
depending only on d,K and {um}%=0.

We apply theorem 9.6 with Sfo = S?Kt\s\(0) and y = 6 to conclude that
1—1

2. Consequently, by (10), \dy^\ ^ c 6 3 which implies that

( c 6 4 > l ) . (50)

Therefore \y\ ^ c 6 4 . Further, since y is not a root of unity, we see from (50)

•
Proof of theorem 9.8. There is no loss of generality in assuming that t is
prime. Denote by c 6 6 , . . . computable positive numbers depending only on
al9 Al9 A2, A3 and S. Write

Q(X,Y) = AXX2 + A2XY + A3Y
2.

Denote by ax and a2 the roots of Q(X, 1). Then

A1Q(x\y) = (A1x
t-Alaly)(Alx

t-A1ot2y).

Put L=Q(OL1) and denote by (9L the ring of integers of L. In view of (13),
lemma A. 12 and corollary A.6, we may choose a set of non-zero non-units
1/4,..., \j/'ke(9L such that

k^c66, max |iA;.|^c66 (51)

and
Alx

t-Alct1y =
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where e8, e9 e GL are units and y\,y2 are products of powers of i / / l 5 . . . , ij/'k
with non-negative exponents. Further, since (x\y)^al9 we have

for every prime ideal ft in 0L. It follows from the above equations that

(52)
and

Aj((x2 - a j x ' = ^AlOL2y\ - £ 9 ^ 1 / 2 - (53)

Observe that a 1 ^ a 2 , since Al~4A1A3^0. Put

i;2 = Xjmax( |a 2 -a 1 | , | a 1 | , | a 2 | )
and

In view of (51) and corollary A.2, we see that ^5 belongs to a computable
finite collection of sets. We apply theorem 9.3 with y1 = A1ct2y'l9 72 =

= A\(&2 — a j and </?
0=<?s to equation (53) to conclude that

8. Let t (^2) be fixed. By applying theorem 9.4 to equation (53), it
follows that

max(|7;|,|7'2|)^c69 (54)
and

I ^ T ^ I ^ o (i = 8,9). (55)

Observe that leT1**] = Î T1"! |xr| for i = 8,9. Therefore, by (55) and the fact
that gg^fig1 are algebraic integers, we see that

|x | ' ^c 7 0 (56)
and

Consequently, max(|£8|, |£9 | )^c7 1 which, together with (52) and (54),
implies that \y\ ^ c 7 2 . Further, by (56) and |x| > 1, we find that max(t, |x |)^

Proof of theorem 9.7. We may assume that y is non-zero; otherwise the
assertion follows from (11) and |x|> 1. Further, observe that equation (11)
implies that (x\y)^B. Now apply theorem 9.8 to complete the proof of
theorem 9.7. •

Notes
Shorey and Tijdeman (1976a) applied theorems B.2 and 5.1 to

show that there exist computable positive numbers C9, C10 and C n
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depending only on P such that if

beS, a = byq + leS

with /, q, yeZ, /^0, q^3, y> 1, then

\ \ ° (57)
where

\

If g = 2, inequality (57) can be derived from theorem B.4 (see Turk, 1986,
§4.1.2). Weaker versions of inequality (57) were given by Schinzel (1967) for
q = 2 and q = 3 and by Langevin for general q.

For the Fibonacci sequence {um}%=0, Cohn (1964) and Wyler (1964),
independently, proved that um is a square only when m = 0, 1, 2 and 13.
Cohn (1965) and Steiner (1980) solved the equations um = 2y2 and um = 3y2.
Cohn (1965) applied these results and the corresponding ones for Lucas
sequences to determine all integer solutions of certain diophantine
equations. London and Finkelstein (1969) determined all the cubes in the
Fibonacci sequence. Lagarias and Weisser (1981) gave another proof.
Steiner (1978) derived some partial results for higher powers. See also
Robbins (1978, 1983). The proofs of these results do not depend on
estimates for linear forms in logarithms. Petho (1983, 1984) utilised the
theory of linear forms in logarithms and computer calculations to
determine all the cubes and the fifth powers in the Fibonacci sequence. As
mentioned in the text of this chapter, Petho (1982a) and Shorey and Stewart
(1983) proved that there are only finitely many perfect powers in a simple
non-degenerate binary recurrence sequence {vm}^=0 of rational integers.
Petho extended this result to the equation vm = byq with beS, provided that
the companion polynomial has relatively prime integral coefficients.
Shorey and Stewart (1983, 1986) and Kiss (1986) proved the assertion for
certain recurrence sequences of order >2. Shorey and Stewart (1983)
applied their result to show that, under suitable conditions, there are only
finitely many integers x, y, z, q with q > 1 and \z\ > 1 satisfying

and
a2x

2 + b2xy + c2y
2 = d2z*.

For a generalisation of this result, see Shorey and Stewart (1986) which also
contains an inhomogeneous analogue of theorem 9.7. For q = 2, see
Mordell (1969, Ch. 8).
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Finkelstein (1973), Williams (1975) and Steiner (1980) gave proofs for the
fact that 1, 2 and 5 are the only Fibonacci numbers which are of the form
y2+\. Finkelstein (1975) proved a similar result for Lucas numbers.
Robbins (1981) claims to have determined all Fibonacci numbers of the
form y2-\ and y 3 ±l . Stewart (1981) and Shorey and Stewart (1986)
investigated the more general equation vm = y2 + k where {vm}%=0 is a
simple non-degenerate binary recurrence sequence of rational integers and
k a given rational integer. Nemes and Petho (1984, 1986) studied the
equation

vm = bf+f(y) (58)

in rational integers m, q, y where beZ and feZ\jC\ are fixed. Kiss (1986)
and Shorey and Stewart (1986) dealt with equation (58) for recurrence
sequences {vm}^=0 of any order, under certain conditions on {vm}^=0 and
deg(/).



CHAPTER

Perfect powers at integral
values of a polynomial

We consider the superelliptic equations of chapters 6 and 8, but now with m
as a variable. Tijdeman (1976a) proved the following result.

Theorem 10.1. Let f(X) be a polynomial with rational integer coefficients
and with at least two simple rational zeros. Suppose b^0,m^0,x and y with
\y\ > 1 are rational integers. Then the equation

(1)

implies that m is bounded by a computable number depending only on b and f.

Schinzel and Tijdeman (1976) extended theorem 10.1 as follows.

Theorem 10.2. Let f(X) be a polynomial with rational integer coefficients and
with at least two distinct roots. Suppose b^O, m^O, x and y with \y\ > 1 are
rational integers satisfying (1). Then m is bounded by a computable number
depending only on b and f.

Let K be a finite extension of Q and denote by (9K the ring of integers of K.
For given non-zero non-units nx,..., ns of (9K, denote by 9* the set of all the
products of non-negative powers of nl9..., ns. Let a 1 ? . . . , a,, be distinct
elements of (9K. Write

f(X,Z) = (X-atZr- • -(X-0LnZ)r»

where rl9 . . . , rn are positive integers. Then theorems 10.2 and 9.3 are
contained in the following result that generalises a theorem of Shorey, van
der Poorten, Tijdeman and Schinzel (1977).

Theorem 10.3. Suppose / ( Z , 1) has at least two distinct roots. Let e e CK be a

169
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unit and yetf Suppose x ^ 0, x e (9K and ze<f satisfy

min(ord,(x),ord,(z))<T (2)

for every prime ideal ft in (9K. Assume Q^ye(9K is not a unit and m^O is a
rational integer. Then the equation

(3)

implies that m is bounded by a computable number depending only on K, Sf9f
and x.

If y is a unit in ®K, we can apply theorem 1.3 to obtain the following result
on equation (3).

Theorem 10.4. Let f e9y9x9x,z and m be as in theorem 10.3. Suppose yeOK is a
unit. Then equation (3) implies that

for some computable number C1 depending only on K, S^f and x.

Combining theorems 10.3 and 10.4, we obtain the following result.

Theorem 10.5. Let f y9 T, X, Z and m be as in theorem 10.3. Suppose 0^ye(9K

is not a root of unity. Then equation

f(x,z) = yym (4)

implies that m is bounded by a computable number depending only on K, Sf
and T.

Theorem 8.1 can now be applied to find bounds for x,y9 z.

Theorem 10.6. Suppose f(X91) has at least two simple roots.
and ze£f satisfy (2) for every prime ideal ft in GK. Suppose ye£f,0^ye(9Kis
not a root of unity and m^3 is a rational integer. Then equation (4) implies
that

max(|7|, |7|,R,R
where C2 is a computable number depending only on K, Sf9f and x.

If m = 2, then we apply theorem 8.2 in place of theorem 8.1.

Theorem 10.7. Suppose f(X91) has at least three simple roots and m^lisa
rational integer. Let x, x, z, y and y be as in theorem 10.6. Then equation (4)
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implies that

max(|y], [y

for some computable number C3 depending only on K, S/^f and T.

An immediate consequence of theorem 10.7 is the following extension of
corollary 8.1.

Corollary 10.1. Let A^O, B^O and n^2 be given rational integers. Then

P(Axm + By11) -• oc effectively,

as max(|x|, \y\, m) tends to infinity through rational integers x^O, y # 0 and
satisfying \x\> 1, (x,y)= 1

Corollary 10.1 is due to Shorey, van der Poorten, Tijdeman and Schinzel
(1977).

Proofs
The constants c 1 ? . . . , c23 in the proofs of theorems 10.1 and 10.2

are computable positive numbers depending only on b and /

Proof of theorem 10.1. Suppose that equation (1) is satisfied. We may then
assume m ^ 2. Let ô  and a2 be simple rational zeros of / Denote by a0 the
leading coefficient of/ and by N the degree of/ Multiplying both sides of (1)
by ^o"1, we have

where g(X) is given by

Observe that g(X) is a monic polynomial with rational integer coefficients
and has at least two simple rational zeros. Thus there is no loss of generality
in assuming that / is monic. Consequently ax and a2 are rational integers.
Write

f1(X)=f(X)/(X-ocl)(X-ot2).

Then f{X)eZ[_X]. Put

D = b((X1-0L2)f1((X1)f1((X2).

Observe that O ^ D E Z , since a 1 ? a 2 6 / are simple zeros of / and
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Equation (1) implies that

p\D p\D

where ap^0, bp^0, \ix ^ 0 , \i2^ are rational integers and the product is
taken over the rational primes dividing D. For p | D, we write

ap = AJmod m), bp = BJmod m)

where 0 ^ Ap<m and 0^Bp<m. Then

p\D
(5)

p\D

for some non-zero rational integers ^3,/^4. By interchanging the suffixes of
ô  and a2, if necessary, we may assume that |/x3| ^ |/i4|. We split the proof of
theorem 10.1 in two cases.

Case 1.

Then |jU4|= 1. Hence, by (5),

(6)

i 2 n Y i
p \ D p \ D

We apply corollary 1.1 to the above equation to conclude that

p\D

Consequently, by (5) and (6), | x | ^c 2 which, together with \y\> 1 and (1),
implies that

Hence

Case 2.

Observe that

and, by OL1¥
IOL2 and (5),

a 1 - a 2

(7)

(8)

x —
- 1 UP

p \ D ^ 3

We apply corollary B.I with n = co(D)+ 1, d= 1, Ax = A2= • • • =An_1 =c 5 ,
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4 J = |A*3|+ 1 a n d B = m to conclude that

N~ C 6 l o g m - (9)

Now combine (9), (8) and (7) to obtain m^c 7 . •

Proof of theorem 10.2. As in the proof of theorem 10.1, there is no loss of
generality in assuming that / is monic. Write

where n^2 , al5 . . . , a,, are distinct algebraic integers and rl5 . . . , rn are
positive rational integers. Put L = Q(ocl,..., a,,) and denote by 0L the ring of
integers of L. Let rjl9..., rjr be an independent system of units for L satisfying
(A.45), and h the class number of L. Put

Observe that A is a non-zero ideal in (9L. Denote by / 1 ? . . . , fa all the prime
ideals in (9L dividing A. Observe that /? is principal and N(^)^c8 for 1 ̂
i^t. Consequently, by lemma A.9 and corollary A.6, /% is generated by
some \jf{ e (9L satisfying

|^]^c9 (l^i^t). (10)
Equation (1) gives

[/(*)] = [&/•].

Hence there exist non-zero ideals ax and a2 in (9L with (axa2, A) = [1] such
that

where aUj with i = 1,2,..., t andj = 1,2 are non-negative rational integers.
If / is a prime ideal in (9L such that / J || a™ and ft11| ^2, then m \ ll9 m \ l2 and,
by (11), rx | /j and r2112. This implies

m

Putting <r1,r2) for the least common multiple of rx and r2 and

M - . . " . . . (12)
(m(rr))

we see that M | (/7/^) for7 = 1,2. Now it follows from this observation and
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(11) that

for some non-zero ideals f>x and f>2
 m ®L a n d non-negative integers bUj with

/= 1 , . . . , r and 7= 1,2. We may write

for some non-zero <!;i,£2e0L. Then, for7= 1,2, we have

(x-a/ = p^?^ * -e^i1- ' • #%" (13)

where Pi,p2e#L satisfy, by corollary A.5, max(|p1|,|p2|)^cio a nd u
qj

e^
forq= 1,... ,rand7= 1,2. By incorporating every Mth powering, we may
assume that

0^w^<M, 0^fotJ<M (14)

for l^^f^r, l ^ i < r and./=1,2.
By interchanging the suffixes of a2 and a2, if necessary, we may assume

that

Put

A = max(|^],3).

Let cr0 be an embedding of L such that

k«i)|=|^l-
Further, set

^i,o = ^o(^-ai) = x-(To(a1), ^ 2 , o = o-o(^-a2) = x-(jo(a2).

By (12),
mKr^^y^M^m. (15)

We may assume that M ^ c n with c n sufficiently large; otherwise the
assertion follows from (15). Consequently, by \y\>l and (1),

(16)

By taking cll sufficiently large, it follows from (16) that

\fi,o\>2-h\x\h. (17)

Also, by (13), (14) and (10),

\PU\Mc^A)M (18)
with c1 3> 1.
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Suppose that (x — oc1)
h = (x — (X2)

h. Then, since ô  # a 2 , we see that h> 1
and there exists an integer / with 0<l<h such that

x-a 1=e2 n / / / / l (x-a2) .

This implies that

which, together with (16), implies
Thus we may assume (x-a 1 ) / V(x-a 2 ) ' 1 . Then /?i,o^/?2,o- Further

observe that

- l

and
\h

2,0\ph Oh I _ ! / ? / ! I

|Pl,0"~P2,0| — |Pl,O|
1.0

(20)

We apply (13) and corollary B.I with n = r + t + 2, d = [ L : Q ] , A1 = A2 =
'" = An_1=c16, An = ACil and B = M to conclude that

Combining (20), (17), (21) and (19), we obtain

|X|^AC"1O8M. (22)

Further, it follows from (20), (18), (21), (19) and (22) that

AM-c1 8logAf ^ 1 ^ Q _p^ o | c M 3 ^ Ac 2 0 logMc M3

By taking c n sufficiently large, these inequalities imply that
Consequently, by (22) and (15),

which, together with (16), gives m^c23. •

The constants c24, c25, . . . in the proofs of theorems 10.3-10.7 are
computable positive numbers depending only on K, 5 ^ / and T.

Proof of theorem 10.3. Suppose that equation (3) is valid. Let rj1,..., rjr be an
independent system of units for K satisfying (A.45). Put

A = U1---7rs f ] («*-«/)•
L Ui<j^« J

Denote by / 1 ? . . . , fet all the prime ideals in (9K dividing A. As in the proof of
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theorem 10.2, we can find \j/l,... 9\l/teOK such that $=\}\i^\ and |iA,|^c24
for U i < t . Put

M =

Observe that
m

^M^m. (23)

Therefore we may assume that M^c25 with c25 sufficiently large; otherwise
the assertion follows from (23).

Equation (3) gives

which, as in the proof of theorem 10.2, implies that

(x-aLJzy = pfiu
1*.j- • - 1 / ^ . i - • • xj/Hf ( /= 1,2) (24)

where pup2sGK satisfy max(|p1|, |p2|)^c26 an<^ Q^bitjeZ, uqJeZ for
1 ̂ i ^ t , 1 ^q^r and j= 1,2. By incorporating every Mth power in £,., we
may assume that

0^uqtJ<M, 0^bu<M (25)

for 1 ^ q ̂  r, 1 ^ i < t and; = 1,2. By interchanging the suffixes of OL1 and a2, if

necessary, we may assume 1^71^1^]. Set

Further, put
pl=x-cc1z, p2 = x-(

Let G0 and a1 be embeddings of K satisfying

For ; = 1,2 and ^ = 0,1, denote

P
By (24) and (25),

\fi.o\>chM*M (26)
and

Ki\>2-"\x\k ifR>2|^7| |7| . (27)
Suppose that

fS\ = fS\. (28)
Then

M
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Therefore, by (2) and z e ^ we see that

| | (29)

Putting a1(x) = x\ o-1(a1) = a/
1, o-1(a2) = a/

2 and cr1(z) = z/, equation (28)
implies that

Then, since a\ ^ a2, it follows that h > 1 and there exists an integer / with 0 <
/ < h such that

This implies that

| = |x'| <cosec(7c//i)(|a1| + |a2|)|z|

which, together with (29), gives |x| ^ c 2 9 . Therefore, by taking norms on
both sides of (3), we obtain

since y is not a unit. Hence
Thus we may assume that ff[ ̂  jS2 which implies j8*^# fas for 5 = 0,1. We

may write

where w 1 ? . . . , ws are non-negative integers. By interchanging the suffixes of
nl9..., TTS, if necessary, we may assume that Wj ^ w2 ̂  • • • ^ ws. Recall that
% is not a unit. Let / be a prime ideal in (9K dividing nl. Observe that

If f> || [ f l ] and p || [jS*], then fc|Vl,fc|v2 and > ^ | [jSJ, / ^ | [j8J. Put
v3 = min(v1//i, v2//z). Hence ft1 divides both [jSJ and [j82]. Consequently,
/V3 divides both [a2— a j [ x ] and [a2 — ax][z]. Now we apply (2) to
conclude that v 3 ^c 3 2 . For simplicity, assume that v3 = v2/h. Then

Now we apply (24) and theorem B.3 with n = r + t + 2, d= [X :Q] ,
Ax = A2= " ' = An_1=c34., An = AC35 and B = M to conclude that

ord M - lW36(log M)2 log A.
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Consequently
w1^c3 7(logM)2logA

whence
I -r I <r A C38(l°g M)2 CXfW

Therefore, for 3 = 0,1, we obtain

We may write

= 0,1).

We apply (24) and corollary B. 1 with n = r +1 + 2, d = [K: Q], Ax = A2 =
'- = An_1= c40, An = AC41 and B = M to conclude that

Thus

^A~C42logM (3 = 0,1).

(3 = 0,1). (31)

(32)

which, by taking c25 sufficiently large, implies that A ̂ c 4 5 . Consequently,
by (32), (30) and (23), we obtain

By (27), (31) with 3= l a n d (30),

Further, it follows from (26), (31) with 3 = 0 and (32) that

Now we take the norm on both sides of (3) to conclude

since y is not a unit. Hence m^c 4 8 . •
Proof of theorem 10.4. Suppose that equation (3) is valid. Then we apply
theorem 1.3 to

to conclude that

max(|x-OLXZ\, | x - a 2 z | , \ L49
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whence

Therefore, by (3),

|^?7|^51. (33)
Consequently

which, since y e^ implies that |y | ̂ c 5 3 and therefore, by (33), |eym| ^ c 5 4 .

D

Proof of theorem 10.5. Suppose that equation (4) is valid. In view of theorem
10.3, we may assume that y is a unit. Then, by theorem 10.4, it follows that

c55. (34)

Further, since y is not a root of unity, we see from (A. 13) that

|7>l+c56. (35)

Now combine (35) and (34) to conclude that m^c51. •

Proof of theorem 10.6. By theorem 10.5, equation (4) implies that
Therefore it suffices to prove theorem 10.6 with C2 depending only on K, ^
/ , T and m. We allow the constants c 5 9 , . . . , c64 in the proof of the theorem to
depend on m too. We may write

\ \ c 5 9 . (36)

Re-write (4) as

f(x9z) = yi(y2yr. (37)

Observe that there are only finitely many possibilities for y x and they can be
determined explicitly. Further, recall that m ^ 3 . We apply theorem 8.1 to
equation (37) to conclude that there exists a unit sl e (9K such that

max(|e1x|, [ e i Z ^ ^ o . (38)

Since z e ^ it follows from (38) that |z| ^ c 6 1 . Therefore, by (38), |ex| ^ c 6 2

and consequently, again by (38), |x| =^c63. Now we infer from (37), (36) and

y e ^ t h a t | y | ^c 6 4 and |>>|<c64. •

Proof of theorem 10.7. By theorem 10.5, equation (4) implies that
Now apply theorem 8.2 and argue as in the proof of theorem 10.6 to obtain
the assertion of theorem 10.7. •
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Proof of corollary 10.1. Suppose that x^O, y^O and m^O are rational
integers satisfying |x| > 1, (x, y) = 1 and mn ^ 6. We assume that max(|x|, | j / | ,
m) exceeds a sufficiently large computable number depending only on A, B
and n. Then, since |x|> 1 and (x,y)= 1, we see that Axm + Byn is non-zero.
Write

Axm + Bym=±pa
1*--pa

s°

where al9 . . . , <ss are positive integers and pl9 . . . , ps are primes not
exceeding Pv We may write

pji • • • pj- = wz", 0 < w ^ P?"* )s.
Then

(39)

Suppose n = 2. Then we see from mn^6 that m ^ 3 . We apply theorem
10.6 to equation (39) to conclude that max(|x|, \y\, m) is bounded by a
computable number depending only on A, B and Pl.

Thus we may assume n >2. Then we apply theorem 10.7 to equation (39)
to derive that max(|x|, \y\, m) is bounded by a computable number
depending only on A, B, n and Pv •

Notes
The equations considered in this chapter are more general than the

ones considered in chapter 9, but the approach in chapter 9 is different from
the one followed in this chapter. In chapter 10, the proofs depend heavily on
a factorisation that the equation under consideration provides, whereas
this information is not utilised in chapter 9. For explicit estimates on the
magnitude of the solutions, the approach followed in chapter 9 gives better
bounds than are obtainable by the method of the present chapter.

The original proofs of Schinzel and Tijdeman (1976) of theorem 10.2 and
its generalisation due to Shorey et al (1977) depend on theorem 7.1. Shorey
(1980) gave proofs of these theorems which do not depend on theorem 7.1;
in fact he gave a quantitative version which implies the following.

Let n>\ and A,B be non-zero integers. For integers m>3 , x and y with
| x |> l , (x,y)= 1 and Axm + Byn^0, we have

P(Axm + By") ̂  C4((log m)(log log m))1/2

and
\Axm + By»| > exp(C4((log m) (log log m))1/2)

where C 4 > 0 is a computable number depending only on A,B and n (cf.
corollary 10.1).
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Explicit upper bounds for m in theorem 10.2 have been derived by
Sprindzuk (1982, Ch. 7, § 2) and Turk (1982,198x). For example, in the latter
paper he proved that, under the conditions of theorem 10.2,

where C5 is some computable absolute constant and N and H are the degree
and height of /, respectively. Turk used such an estimate to deduce lower
bounds for the greatest prime factor of the power-free part of f(x). Here the
power-free part Z(n) of an integer n is the smallest integer b such that \n\ can
be written as by" for some m> 1, y> 1. Let /eZ[X] with at least three
simple zeros. One of the results of Turk (1982) is that

where C6 > 0 is a constant depending only on /
Le tp 1 ? . . . , ps be a set of distinct primes. Put ^=Y[Sj=i log p,-. Let S be the

set of rational integers composed of p l 5 . . . , ps. Brindza, Gyory and
Tijdeman (1985) extended theorem 10.2 to the equation

af(x) = bwym

in rational integers a, b, m, w, x and y with ab^O^eS and \y\> 1. They
proved that this equation implies that

m^(C1(s+ l)s + 1^)c°(log A)(loglog A)2

where y4 = max(|a|,|b|, 3) and C7 and C8 are computable constants
depending only on N andH. The special casea = b=l was already obtained
by Turk (1982).

An immediate consequence of theorem 10.6 is that generalised
Ramanujan-Nagell equations like

x2 + l = ym in integers m>2, x,y>l
and

Ix2+l = ym in integers m>2, x ,y>\

have only finitely many solutions. For a discussion of such equations and
their relations with algebraic number fields generated by roots of
cyclotomic integers, see Ennola (1978).

Another choice of the polynomial / in equation (1) which has received
special attention is

where k is a fixed positive integer. Schaffer (1956) proved that for fixed k> 0



182 Diophantine equations and recurrence sequences

and m> 1, the equation

lk + 2*+---+xk = / n in integers x,y>l

has an infinite number of solutions only if (fc, m) = (1,2), (3,2), (3,4) or (5,2).
He conjectured that all other solutions have x = y = 1 apart from k = m = 2,
x = 24, y=70. Gyory, Tijdeman and Voorhoeve (1980) extended Schaffer's
result by proving that for fixed b9k,reZ with b/0, k^2 and fe £ {3,5}, the
equation

\k + 2k+--- + xk + r = bym in integers m>l, x>0, y>l (40)

has only finitely many solutions and that all the solutions can be effectively
determined. In Voorhoeve, Gyory and Tijdeman (1979) they gave an
ineffective proof that, in (40), r can be replaced by R(x) where R e 1\_X\ is a
fixed polynomial. Brindza (1984b) gave an effective proof of this result and
extended it to a certain class of equations

F(x, lk + 2k+--+xk) = bym in integers m>l, x>0, y>\

where F e Z\_X, 7] is a fixed polynomial. Dilcher (1986) showed that under
general conditions the equation

in integers m>l, x>0, y> l ,

where % is a primitive quadratic residue class character with conductor <j>
and b is a non-zero integer, has only finitely many solutions. In particular,
he showed that for any integers b^O and fc^3, fc<£{4,5} there exist
computable upper bounds for the solutions of the equation

in integers m> 1, x>0 and y> 1.
Erdos (1951) showed that the equation

| = yn in integers m>l, n>l, x ^ l , y > l (41)
n J

has no solutions provided that n ̂  4. On the other hand, it is clear that there
are infinitely many solutions when m = n = 2. The only other known
solution of (41) is m = 2, n = 3, x = 47, y = 140 and it is conjectured that there
are no more. It is a direct consequence of theorems 10.6 and 10.7 that there
are computable bounds for the solutions of (41) with m ̂  3, n = 2 and m ̂  2,
n = 3 (cf. Tijdeman, 1976a).
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Erdos and Selfridge (1975) proved that the related equation

ym (42)

in integers m > l , n > l , x ^ l , y>\

has no solution at all. That is, the product of two or more consecutive
positive integers is never a perfect power. For earlier results in this
direction, see Erdos and Selfridge (1975). Further, Shorey (1986a) applied
linear forms in logarithms to give a different proof of the assertion that
equation (42) implies that n is bounded by a computable absolute constant.
The proof does not depend on the fact that apj (see Erdos and Selfridge
(1975) for the definition of the ats) are distinct for distinct pairs ij and this
fact is crucial in the proof of Erdos and Selfridge.

Estimates for linear forms in logarithms have also been used to prove
results like this: the product of two or more neighbouring positive integers
cannot be a perfect power. Here a set of integers is called neighbouring if
they all belong to some small interval. Turk (1983b) and Erdos and Turk
(1984) proved this assertion for integers in an interval of the form

(N,N + C9 log log log N)

where AT ̂ 1 6 and C 9 > 0 is some computable absolute constant.
Furthermore, Shorey (1986a) proved that for e > 0 and integers m, n9 x with
m > 3 , x>nm and n exceeding a computable number depending only on e,
any product of (̂ (m — l)/(m — 2) + s)n distinct integers from x + 1 , . . . , x + n
is never an mth power. If m = 3 and x>n4+E, the assertion is valid for any
product of Cx on distinct integers from x + 1 , . . . , x + n where 0 < Cx 0 < 1 is a
computable number depending only on e.

In a similar way as the deduction of theorem 7.6 from lemma 7.1, it is
possible to extend theorem 10.3 to the situation that the coefficients of
f(X9 Y) belong to K, but the roots of f(X, 1) are not necessarily in K. In case
K = Q, Shorey et al. (1977) proved such an assertion.

By using theorem 8.3 in place of theorems 8.1 and 8.2, we can easily derive
a common generalisation of theorems 10.6 and 10.7. We recall that in
theorems 10.3-10.7 the dependence on K can be refined to dependence on
the degree and the discriminant of K only.



CHAPTER 11-

The Fermat equation

Fermat's Last Theorem states that the equation

zn (1)

in positive integers n, x, y, z with n > 2 has no solution, but no proof of this
assertion is available. We call (1) the Fermat equation. We refer to
Ribenboim (1979) for the history and a general treatment of the Fermat
equation. Without loss of generality we may assume x < y < z and (x, y, z) =
1 in (1) and we shall do so throughout the chapter without further mention.
Hence (x, y) = (y, z) = (z, x) = 1.

The celebrated result of Faltings (1983) quoted in chapter 6 implies that
for every n > 2 there are only finitely many triples of positive integers x, y, z
such that (1) holds. Heath-Brown (1985) and Granville (1985),
independently, used this result to prove that Fermat's Last Theorem is true
for almost all exponents n. Faltings' proof is ineffective. In theorems 11.4,
11.6 and 11.7 we present some conditions under which effective proofs can
be given.

The method of estimating linear forms in logarithms enables us to prove
that, under suitable conditions, equation (1) implies that n is bounded. Such
a result is given by theorem 11.3. On combining such results with those for
fixed n, we obtain assertions that, under suitable conditions, equation (1)
has only finitely many solutions n, x, y, z (see theorems 11.2 and 11.5).

Abel's conjecture says that (1) has no solution in positive integers n>2,
x, y, z such that at least one among x, y, z is a prime power. Even this special
case of Fermat's Last Theorem is still open. In order to confirm Abel's
conjecture it suffices to show that there are no solutions with z — y= 1. In
theorem 11.1 lower bounds for z — y9 y — x and |(z — y) — (y — x)| are given,
but the case z — y—\ is excluded. The bound for z — y is proved by using
ideas of Barlow and Abel. Bounds for y — x were given by Stewart (1977c)
and Inkeri and van der Poorten (1980). The former derived a slightly

184
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weaker lower bound; the latter authors restricted themselves
(unnecessarily) to prime exponents.

Theorem 11.1. Let n>2, x9y,z be positive integers satisfying (1).

(a) Suppose z — y>\ if n is odd. Then

z-y^T/n.

(b) There is a computable absolute constant Cl such that

y-x^zl-c^n)i/n. (2)

(c) There is a computable absolute constant C2 such that

\{z-y)-{y-x)\^zx-c^n)*ln. (3)

The next theorem and its corollary deal with the situation that x, y and z
assume polynomial values. They are due to Brindza, Gyory and Tijdeman
(1985).

Theorem 11.2. Let £,F, GeZ[X, 7 ] be pairwise non-proportional binary
forms of the same degree m. Then all solutions of the equation

(E(t,u)r + (F(t,u))» = (G(t,u)r (4)

in rational integers n, t, u

with n>2, (t,u)=l and E(t,u)F(t,u)G(t,u)^O satisfy max(n, \t\, |M | )<C 3

where C3 is a computable number depending only on E, F and G.

By taking M = 1 we obtain the following result for polynomials in one
variable.

Corollary 11.1. Let E,F, GeZ[X] be pairwise non-proportional poly-
nomials. Then all solutions of the equation

(E(t))n + (F(t))n = (G(t))n in rational integers n, t (5)

with n>2 and E(t)F(t)G(t)^0 satisfy max(n,|f|)<C4 where C4 is a
computable number depending only on E, F and G.

The remaining results deal with solutions of (1) such that values of certain
polynomial expressions in x, y and z are composed of fixed primes. Let P ̂  3
be a fixed number. Denote by S the set of all rational integers composed of
primes not exceeding P.

We shall apply corollary B.I and theorem B.3 to prove
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Theorem 11.3. Let n, x9 y, z be positive integers satisfying (1). Assume that at
least one of the following conditions holds:

(a) xeS, (b) yeS, (c) zeS,

(d) y-xeS9 (e) y + zeS and n odd,

(/) x + zeS and n odd.

Then n is bounded by a computable number depending only on P.

Inkeri and van der Poorten (1980) gave quantitative results in case y — x has
a large factor belonging to S.

For fixed n we shall apply theorem 8.1 to derive the following
generalisation of a theorem of Inkeri (1976).

Theorem 11.4. Let x,y,z and n>2 be positive integers satisfying (1). For
A9BeZ put £P(X, Y)-• AX + BY. Assume that at least one of the following
conditions holds:

(a) &(x,y)eS, (b) J?(y,z)eS, (c) J?(z,x)eS.

Then there exists a computable number C5 depending only on n, <£ and P such
that

max(x,j;,

The combination of theorems 11.3 and 11.4 yields the following result.

Theorem 11.5. Let x, y, z and n>2bepositive integers satisfying (1). Assume
that at least one of the following conditions holds:

(a) xeS, (b) yeS, (c) zeS, (d) y-xeS,

(e) y + z e S and n odd,

(/) x + zeS and n odd.

Then there exists a computable number C6 depending only on P such that

We shall apply theorems 11.5 and 9.6 to prove that the assertion of
theorem 11.5 remains valid if the linear form is replaced by a quadratic
form.

Theorem 11.6. Let x,y,z and n>2 be positive integers such that (1) holds.
For A,B,Ce1 put Q(X, Y) = AX2 + BXY + CY 2. Assume that at least one
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of the following conditions holds:

(a) Q(x,y)eS, (b) Q(y,z)eS, (c) Q(z,x)eS.

Then there exists a computable number C7 depending only on n, P and Q such
that

max(x, y,:

Theorems 11.4, 11.6 and 7.1 imply the following result.

Theorem 11.7. Let x9y9z and n>2 be positive integers satisfying (1). Let
FeI\X9 y ] be a non-constant binary form. Assume that at least one of the
following conditions holds:

(a) F(x,y)eS, (b) F{y,z)eS, (c) F(z,x)eS.

Then there exists a computable number C8 depending only on n, F and P such
that

max(x, y, z)^C8.

Proofs
The proofs of the theorems depend on the following result,

essentially due to Abel (1823), on factorisations in (1).

Lemma 11.1. Suppose n,x,y,z are positive integers satisfying (1). Then

(a) there exist 31,d2e {0,1} and positive integers al9 a2, dl9 d2 with d^n and
d2\n such that

z-x = 2s>d;1an
1 (6)

and

(b) Suppose n is odd. Then (6) and (7) hold with Sx =<52 = O. Further,

x + y = d3
1atl

3. (8)

for some positive integers a3, d3 with d3\n.

Proof We may assume n> 1. It follows from (1) that

(z-x)V=f (9)
where

zn-x11

V=
z — x
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Let 0 < r e Z and p prime. Suppose pr | (z — x) and pr | K Then pr | nz""*. Since
(/?, z)= 1, this implies that pr1 n. Thus (z —x, K) | n. For any odd prime p with
/? | n and p | (z — x) we have

Further, if 21 n and 41 (z — x), then

ord2(F) = ord2(n).

Formula (6) follows from (9). Clearly (5X = 0 if n is odd. Formulas (7) and (8)
are proved similarly.

Lemma 11.2. Suppose x,y,z and n>2 are positive integers satisfying (1).
Then n>100.

This result was already known in 1926. See Ribenboim (1979, p. 200). The
best lower bound for n known today, 125 000, is due to Wagstaff (1978). We
shall use lemma 11.2 in two ways. Firstly it implies that (1) has no solutions
such that n is a multiple of 4, a result already proved by Fermat. Secondly it
is used for convenience in certain estimates.

Lemma 11.3. Suppose x,y,z and n>2 are positive integers satisfying (1).
Then

(a) y2^2n/2/n, (b) y/n2^20.

Proof Ifn is odd, then, by lemma 1 l.l(b), there exist positive integers a3, d3

with d3^n such that x-\-y = d^1a"3- Hence a3> 1 and

x + v 2"
y>-/>Yn do)

If n is even, then, by lemma 11.2, n = 2v with v odd. By lemma ll.l(fe) there
exist positive integers a, d with d^v such that x2 + y2 = d~1a\ Hence a> 1
and y2 > av/2v ̂  2v/(2v) = 2n/2/n. This estimate, together with (10), proves (a).
Since n> 100 by lemma 11.2, assertion (b) is an immediate consequence
of (a). D

Theorem ll.l(a) is a direct consequence of lemma 11.1 if we know that
a2 > 1. This is obvious unless z — y=lorz — y = 2 and n even. For the cases n
even, z — ye{1,2} we need a separate argument.

Lemma 11.4. Let x,y9z and v> 1 be positive integers satisfying

x
2v + y2v = z2v. (11)

Then z — y>2.
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Proof. By lemma 11.2, we may assume that v is odd and v>50.

Case 1. Assume z — y = 2. Then x is even and y is odd. By writing
(xv)2 + (yv)2 = (zv)2, we see that there exist positive integers r, s with r > s > 0,
(r, s) = 1 and rs even such that

xv = 2rs, yv = r2-s\ zv = r2 + s2. (12)

Since (r, s)= 1 and r2 — s2 is odd, there exist positive integers y^y2 such
that

r-s = y\, r + s = yv
2. (13)

We have, by lemma 11.3,

This implies s^2v 1 / 2 / " 1 ) / 2 - Further, by (13) and (12), y2>r1'v>y112.
Hence, by (13),

On the other hand, y2>yi and therefore, by lemma 11.3,

yv2-y\>y'2-(y2- i)"=v/2-'

On combining these inequalities we obtain ^v^4v1 /2 , which is impossible.

Case 2. Assume z — y= 1. We now have x odd, y even. Hence there exist
positive integers r,s with r > s > 0 , (r,s)= 1, rs even such that

v 2 2 v <"* v 2 • 2

x —r —s , y =2rs, z =r -\-s .

Since r2 + s2 = zv = (y+ l)v, we have, by lemma 11.3,

(14)
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Furthermore, by lemma 11.3,

4
y y

Hence
y(2v)/-1/2<r2-s2<y(3v)/-1/2. (15)

On combining (14) and (15) we obtain, by lemma 11.3,

/ < 2 r 2 < / + 2x/v/-1/2

and
/ - 2 v / v / - 1 / 2 < 2 5

2 < / .
This implies

v/2 < r <

and, by lemma 11.3,

(17)

Observe that (r + s, r — s) = 1, (r + s)(r — s) = xv imply that r + s = x\ for some
positive integer xx. Furthermore, either r is even, s is odd or r is odd, 5 is
even. In the former instance (2r, s) = 1,2rs = / , hence 2r = / 3 for some y3 eZ;
in the latter (r, 2s) = 1, 2rs = / , hence 2s = / 3 for some };3 e Z. We have, by
(16) and (17),

| | | v ; v / 2 - 1 / 2 . (18)

On the other hand, by (17),

min(xv
x, y

 v
3) ̂ 2s>Jl yv/2 - ijv yv/2"1/2.

Hence, by lemma 11.3,

min(x;, /3) ^ yv/2 + {{Jl -\)Jy- 2y/v)yv/2 ~x'2 > y*.

Thus min(x1,y3)>yjy. Since x1 ^y 3 , this implies

1*1 -yv3\>{y/y+ i)v-(N / j ' )1>v/ / 2-1 / 2 .

Since v>4, this yields a contradiction to (18). •

We shall use lemmas 11.1 and 11.4 to prove that (1) has no solution with
z — y = y — x= 1.
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Lemma 11.5. If n>2 and y are positive integers, then
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Proof. Suppose n>2 and y satisfy (y - 1)" + / = (y +1)". By lemma 11.4, n is
odd. Hence, by (6) with Sx = 0, there are positive integers ax and dx with d11 n
such that 2dx = a\. This is impossible, since dx is odd and n> 1. •

Proof of theorem 11.1. (a) By lemma 11.1 we have z —y^an
2 if n is odd and

z — y ^2an
2if nis Qven.Since z — y> lifn is odd and, by lemma 11.4,z —

if n is even, we have a2> 1. Thus, by (7),

(b) Let cuc2, c3 denote computable absolute positive constants. By lemma

11.1, we have

where 5l9 <52e{0,1} and dl9 d2, al9 a2 are positive integers with dx\n and

d2\n. Hence

z — x

z-y - 1
z — x

p
d2\a1

(20)

From (19) we deduce that max(a1? a2) ^(nz)1/n. By lemma 11.1, we have z>
z — x^2n/n>2n/3. On applying corollary B.I we obtain

d2\a1

>exp(-c1(logn)3(logz1/w)). (21)

Since x < y < z, we see from (1) that 2xn < z'\ hence z - x > (1 - 2 x //1)z > z/2n.
We therefore obtain, by (20) and (21),

Hence

Thusy-x>z1-C3(log/l)3/".

(c) In lemma 11.6 we shall prove slightly more than we need, namely that if
(z — y)/(y — x) is almost equal to some rational number r*, then it equals r*.

Lemma 11.6. Let x,y, z and n>2be positive integers satisfying (1). Let r be
some rational integer. Then there exists a computable number C9 depending
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only on r such that if

\r(z-y)-(y-x)\^zl-c^\ (22)

then y — x = r(z — y).

Proof. Put s = r + 1. Assume that r(z — y) ̂  y — x. Then s(z — y) ̂  z — x. As in
the proof of theorem ll.l(fe) we have (19), hence

z — x
s.. (23)

where Sl9d2e {0,1} and d1,d2,a1,a2 are positive integers with d11 n and d2 \ n
and max(^l5 a2)^(nz)1/n with z1/n>21/3. Suppose s(z-y)^z-x. On
applying corollary B.I we obtain that the right-hand side of (23) exceeds

where c4 is a computable constant depending only on r. Thus, using z — x>
z/2n and arguing as before, we find

where c5 is a computable number depending only on r. •

Proof of theorem ll.l(c) (continued). In view of lemma 11.6 with r— 1, we
may assume that z — y = y — x. It was proved by Goldziher (1913) and
rediscovered by Mihaljinec (1952) and Rameswar Rao (1969) that (1) has no
solutions with x, y, z in arithmetical progression. We give a proof which is
an immediate consequence of lemma 11.5. Put A = z — y. Hence, by (1),

(y-A)" + / = (y + A)'\ (24)

It is clear from equation (24) that every prime divisor of A is a prime divisor
of y. By (y,z)= 1, we must have (y, A)= 1. Thus A= 1 in contradiction to
lemma 11.5.

Proof of theorem 11.3. We have n>6 by lemma 11.2. If (a), (b) or (c) holds,
then the assertion follows from theorem 2.2. Thus we may assume that (d),
(e) or (/) holds. Denote by c6, c7, . . . , c13 computable positive numbers
depending only on P.

(d) Suppose y — xeS. By lemma 11.1 there exist d1,S2e{0,1} and positive
integers al9a2,dl9d2 with d1\n,d2\n such that (6) and (7) hold. By lemma
11.5, we have z — x>2. By a deduction similar to that of (20) and (21), we
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obtain, by corollary B.I,

ZZ^-c6(.og*)3
 ( 2 5 )

z — x

where a = max(a1,a2)>l. We have y — x — {z — x) — (z — y). By (1) and

(x,y, z)= 1, it follows that z — x and z —y are relatively prime. Let p be a
prime dividing y — x. Then p^P, since y — xeS . Further, either
ordp(z — x) = 0 or ordp(z — y) = 0. Assume, for simplicity, that ordp(z — x) = 0.
Now we apply (19) and theorem B.3 with n = 3,d= l , p ^ P , Ax = 3 , A2 = n,
A3 = a+ 1 and £ = n to conclude that

: " y > ^ ^ l o g a ( l o g n ) 3 .
Z — Xj

The above inequality is also valid when ovdp(z — y) = 0. Consequently,

log(y - x) = X ordp(y - x) log /? ̂  c8 log a(log rc)3. (26)

Combining (25) and (26), we obtain

log(z - x) ̂  c9 log a(log n)\ (27)

On the other hand, it follows from (6), (7) and x<y<z that

log(z — x) ̂  n log a — log n. (28)

Now (28), (27) and a> 1 imply that n^c10.

(e) Suppose y + zeS and n is odd. By lemma 11.1, there exist positive
integers au a3, dl9 d3 with dl\n,d3\n such that (6) with S1=0 and (8) are
valid. Observe that a3> 1. Put fc = max(a1,a3). By (6) and (8),

y+z=l X~Z=1
x + y x + y \ d1j\a3y

Apply corollary B. 1 with n = 2,d=l,A1 = n,A2 = b+l and B = n to obtain

As in the proof of (d), it follows from y + z e 5 and theorem B.3 that

\og(y + z) ^ Cl 2 log b{\og n)\ (29)

By x<z this implies log(x + y)^c12logb(logn)3 . On the other hand, it
follows from (8) that log(x + y)^n log a3 — log n. Therefore we may assume



194 Diophantine equations and recurrence sequences

that b = av Then, by (6) and (29),

n log b - log n ̂  log(z - x) ̂  log(y + z) ̂  ct 2 log ft(log rc)3

which implies that n ^ c 1 3 .

(/) The proof is similar to that of (e). •

Proof of theorem 11.4. Since 0 <£ S, we may assume that at least one of A and
£ is non-zero. By theorem 7.1 we may suppose that none of x, y and z is a
member of S. Consequently we may assume that AB ^ 0. Denote by cx 4, cx 5,
c16 computable positive numbers depending only on n, J£ and P.

(a) Suppose g>(x,y) = Ax + ByeS. Put

Ax + £j; = /c. (30)

Observe that {x,k)\B, since (x,y)= 1. Further, by (1) and (30),

Bnzn = Bn(xn + / ) = (Bx)n + (fc - Ax)'1. (31)
Set

(7
and

f(X Y)J(BXTHYAXT if L/#0,
^^ ' ; \{(BX)n + (Y-AX)n}/Y if (7 = 0. ;

Observe that /eZ[X,7] is a binary form of degree N^n- 1^2 with
/(l,0)#0.By(32)and(31),

fc/(x,/c) if (7 = 0.

If (7 = 0, then BV/fceZ and we may write JB"z7/c = J31z'{ for some integers
B^Zi with i B ^ ^ c ^ . Thus

f(x,k) = B2?2 (33)

where z2 = zx or Bz and B2 = B1 or 1. Notice that | £ 2 | ^ c i

Notice that F e 1[_X~\ has degree greater than or equal to n — 1 ̂  2. Further,
observe that

n AF(X) + (1 - AX)F(X) = nBnXn ~1

which, together with F(0) ̂  0, implies that all the roots of F are simple.
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Apply theorem 8.1 to (33) to conclude that

which, together with (30) and (1), implies that max(y,
The proofs for (b) and (c) are similar. •

Proof of theorem 11.5. Apply first theorem 11.3 then theorem 11.4. •

Proof of theorem 11.6. We may assume that at least one of A, B, C is non-
zero. In view of theorem 11.4 we may further assume that Q(X, Y) is
irreducible over the rationals. Put A = B2— 4AC and denote by a, /? the
roots of Q(X91). Thus

Q{X, Y) = A(X - ocY)(X - pY).

Set L = Q(a). Observe that [L: Q] =2. Let (9L be the ring of integers of L.
Define

[fundamental unit in L if A > 0,
£ = {l ifA<0.

Denote by c17,..., c28 computable positive numbers depending only on A,
B, C, n and P. It follows from lemma A. 12 and corollary A.6 that there exists
ac 1 7 such that for every pair x0, y0 of rational integers with g(x0, y0)

e S>we

have

A(xo-*yo) = pnlf-nl°eM (34)

where p e (9L is a root of unity, M, lx ^ 0 , . . . , /s ̂  0 are rational integers and

nl9..., ns are all non-units of (9L satisfying |TTV| ^ C 1 7 for 1 ^ v ^ s . Denote by

£f the set of all the products of non-negative powers of nl9..., ns.

(b) Assume that Q(y,z)eS. By lemma 11.1, there exist a S2e{0,1} and
positive integers a2, d2 with d2 \ n such that

z-y = 2d2d2
1an

2. (35)

By (34) with x0 = y and y0 = z,

m (36)

where m e Z, (f)l e Sf and px is a root of unity in GL. Let a be an embedding of
L such that <J(P) = a. Observe that o(&) = ±e~1. We prove the theorem when
G(E) = e "1 . If <r(fi) = — e ~1, the proof is similar. Put c(p^) = p2 and ^ (^J = (j>2.
Notice that (j>2 e Sf. By taking images under a on both sides in (36), we obtain

Pz) = p2ct>28-m. (37)
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Solving for y and z in equations (36) and (37), we obtain

28-m (38)
and

A{p-oi)z = pl(i>1E
m-p24>2E-m. (39)

Consequently

which, together with (35), implies that

S(x)an
2 = (t)3£

m-(l)4£-m (40)
where

l - 0 # 2 - (41)

Notice that (x((/>3) = <j>4. Since /} ̂  1, we have c/>3 ^ 0 and consequently c/>4 / 0.
Further, it follows from (38), (39) and (y,z) = 1 that

min(ord/(01),

and consequently, by (41),

for every prime ideal / in (9L. Now we apply theorem 9.4 to equation (40). It
follows from (6) of chapter 9 that there exists a unit ex e(9L such that

max(|e1(/>3em|,|£1(/)4e"m|)^c20.

Since 0-(</>3e
m) = </)4£~m and sl is an algebraic integer, we obtain

and

max(|(/>3e
m|,|</>4£-m|)^c22.

By (41) this implies max(|(/>1e
m|, \(t>2

e~m\)^c23' N o w ^ follows from (38),
(39) and a^jS that max(y,z)^c24. Hence, by (1), x^c25.

(c) The proof is similar to that of (b).

(a) Assume Q(x, y) eS.lfn is odd, proceed in a similar way to (b) to conclude
that max(x, y, z) ^ c26. Thus we may assume that n is even. Further, we may
suppose that n = 2v with v odd and v>2. Re-write (1) as

In view of theorem 11.4, we may assume that Q(X, Y)^A(X2

Further, by lemma 11.1, there exist positive integers a5, d5 with d5 \ v such
that
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Thus

Therefore, since (x,y) = 1, we obtain

where a6, d6 e Z[i] with \d61 ^c21. Now proceed as in (b) to conclude that

. •
Proof of theorem 11.7

(a) If F contains a linear factor $£ in its factorisation over Q, then J£(x, y)eS
and we apply theorem 11.4. If F contains a quadratic factor in its
factorisation over Q, then we apply theorem 11.6. Otherwise F has at least
three simple roots and, by theorem 7.1, it follows already from the fact that
F(x, y) e iS, that max(x, y, z) is bounded. The proofs of (b) and (c) are
similar. •

Now we turn to the proof of theorem 11.2. The proof of theorem 11.2
depends on the following lemma.

Lemma 11.7. Let MeU. If x,y,z and n>2 satisfy (1) and y<M'\ then
n<C10 where C10 is a computable number depending only on M.

Proof Since there are no solutions of (1) with 41 n, it suffices to prove the
theorem when n is odd. By c29, c30, c31 we shall denote positive computable
numbers depending only on M. By (1), we have z"<2y", hence z<2M'\ By
lemma 11.1, we can write

z-x = d;1a'[, z-y = d^1an
2, x + y = d^an

3 (42)

where at and dt are positive integers satisfying dt\n for i = l , 2, 3. We
deduce a"^4wM", hence

We may therefore assume that a{ is fixed for i= 1,2,3. By (42)

2x= —d^a'l

(43)

Let n>c29 with c29 sufficiently large. Then, by x<y and d2^n, we have
d2

lan
2<dlxd[ and a2^a1. Further, since x>0 and dx ^n, it follows that
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Case l.az>av Observe that (X - A)n + (X + A)n ̂  2Xn for all real A, X with
X> A>0. Using this inequality, (1) and (43) we obtain

2(d3~ Va)"^(2x)" + (2y)" = (2z)"
Hence

which implies n

Case 2. a3 = av By (42) we have d1(z-x) = d3(x + y). By (1) and (z,x) = 1, we
see that (x + y, z —x)=l. Thus j x x + y ^ d ^ n , which, together with
lemma 11.3(a), implies that n<c 3 1 . D

In the proof of theorem 11.2 we shall also apply the following lemma. This
lemma is well known and can be found, for example, in the introduction of
Shafarevich (1977).

Lemma 11.8. Let e(X)9f(X)9 g(X) be relatively prime non-trivial polynomials
in C[X], not all constant. Let n>2 be a rational integer. Then

(e(X))n±(f(X)y*(g(X)T.

Proof. Suppose (e(X))n±(f(X))n = (g(X))n. Without loss of generality we
may assume that deg(#) ̂  max(deg(e), deg(/)) and that e9 f and g are pairwise
relatively prime. We have

Hence, by differentiation,

(e(X)T -' (e'(X)f(X) - e{X)f\X)) = (g(X))n ~' (g'(X)f(X) - g(X)f(X)).

Since e and g are relatively prime, we obtain

(g(X)Y ~' | (ef(X)f (X) - e(X)f(X)).
Hence

(n -1) deg(0) ^ deg(^) + deg(/) - 1 < 2 deg(^) - 1.

Consequently n ^ 2 , a contradiction. •

Proof of theorem 11.2. By c 3 2 , . . . , c37 we shall denote computable positive
numbers depending only on £, F and G. Suppose n, t, u is a solution of (4) as
specified in the theorem. There exists a rational integer b with \b\ ^ 3m such
that the coefficients of Xm in E(X, bX + 7), F(X, bX + Y) and G(X, bX + Y)
are non-zero (cf. the proof of theorem 5.5). Hence we may assume without
loss of generality that the coefficients of Xm in E, F and G are non-zero. By
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applying a similar argument to E(X -{-aY, Y),F(X + aY, Y) and G(X + aY9Y)
with an appropriate rational integer a with \a\ ^ 3m, we may further assume
that the coefficients of Ym in E, F and G are also non-zero. Let

F(X9 Y) =f0X
m +f1X

m~1Y+-- +fmYm . (44)

Then eoemfofmgogm^0.
First we shall prove that n is bounded. If e£ + / J = # J or e^ + / £ = gn

m then
by corollary 1.2. If

then, by (4) and (44),

w | K + / S - ^ m " and t\{en
m+fn

m-gn
m)u™\

hence, by (r, u)= 1,

max(|t|, |«|) <max(|c-0 +/"0 -g"0\, \C +f"m -g"m\) <c«34.

Thus

By (4) and lemma 11.7 with M = c35, we obtain n ^ c 3 6 .
In the sequel we may assume that n is fixed. Observe that En + F" — G" is a

binary form of degree mn or vanishes. In the former case, (E(X, Y))n +
(F(X, Y))n - (G(X, Y))n can be decomposed into linear factors OL{X + ptY over
C and we find a^ + /?£u = 0 for some i. Since the coefficients ai5 j8f are
constants and (£ ,M)=1 , we obtain max(|r|, |w|)^c37 in this case. Now
suppose En + Fn = Gn. We may divide by any common factor. By the
conditions of the theorem it follows that it is no restriction to assume that £,
F and G are relatively prime non-trivial binary forms in Z[X, 7 ] , not all
constant. Applying lemma 11.8 with e(X) = E(X, 1), f(X) = F(X, 1) and
g(X) = G(X, 1) we derive a contradiction. •

Notes
In these notes we restrict ourselves to publications which are of

special interest in connection with the results proved in this chapter. For
other results on the Fermat equation, see Ribenboim (1979). Other books
on Fermat's Last Theorem are Bachmann (1919) and Edwards (1977).

Inkeri (1953) derived lower bounds for the solutions of

= zp with (x,y,z)=l , 0 < x < y and p>2, (45)
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in terms of prime p. He proved that if pjfxyz then x>((2p3+p)/log(3p))p

andi fp |x - yz thenx>p 3 p " 4 and>;>^ 3 p ~ 1 (see Rotkiewicz, 1960). Brindza,
Gyory and Tijdeman (1985) proved a similar bound forgeneral exponents n
(cf. lemma 11.7). They showed that (1) implies x > rit/3. Turk (1983a) showed
that every solution of (1) implies n < 0> and zlt < exp(exp(Cx j ̂

3)) where 0* =
min(P(x), P(y), P(z)) and CX1 is a computable absolute constant.

Inkeri (1946) proved that, for given p, there are only finitely many
solutions (x, y, z) of (45) for which y — x or z — y is less than a given number
M (cf. Everett, 1973; Inkeri, 1976). Stewart (1977c) proved that there is some
computable upper bound C12 for all solutions n, x, y9 z of (1) with y — x < M.
Inkeri and van der Poorten (1980) refined Inkeri's result as follows: Let pl9

. . . , pm be distinct primes less than p such that pp\ y — x for i = 1 , . . . , m.
Then (45) implies that

i — 1

where Cx 3 equals 1 + px + • • • + pm multiplied by some computable absolute
constant. Furthermore, they proved that (45) implies z — x>p2p.

Lemma 11.4 is the main result of Tijdeman (1986). It is remarkable that
Fermat's Last Theorem has not even been established for even exponents.
Terjanian (1977) proved that for an odd prime p the equation x2p + y2p = z2p

in positive integers x, y, z implies 2p \ x or 2p | y.
Consider the equation (cf. (5))

(E(t))n + (F(t))n = zn in rational integers n, t, z (46)

where £, F e I\_X~\ are non-constant relatively prime polynomials. Brindza
(1984c) improved on a result of Inkeri (1976) by showing that, for given
H > 2 , all solutions t,z of (46) with E(t)F(t)z^0 satisfy max(|r|, |z|)^C14

where C1 4 is a computable number depending only on n, E and F. Brindza,
Gyory and Tijdeman (1985) generalised another result of Brindza (1984c)
by proving that all solutions n, f, z of (46) with n > 2 and E(t)F(t)z^= 0 satisfy
max(n, |t|, |z|)<Cl5 where Cx5 is a computable number depending only on
E and F, provided that at least one of the following conditions holds:

(a) E + F has at least two distinct zeros,
(b) the degrees of E and F are different,
(c) the leading coefficients of E and F are equal.

For Fermat's equation over function fields, see lemma 11.8, Shanks
(1962, pp. 144-7), Gross (1966a, b\ Greenleaf (1969) and Albis Gonzales
(1975).



CHAPTER 12-

The Catalan equation
and related equations

Catalan (1844) conjectured that 8 and 9 are the only two consecutive
positive integers which are both perfect powers. Here and elsewhere in this
chapter we use integers for rational integers unless stated otherwise.
Catalan's conjecture says that the equation

xm-f=l inm,n,x,yeZ (1)

with m> 1, H > 1 , x> 1, y>\

has only one solution, m = y = 2, n = x = 3. Pillai (1945) conjectured that for
given non-zero integers a, b and /c, the more general equation

axm-bf = k in m,n,x,yeZ (2)

with m> 1, n> 1, x> 1, y> 1

and mn > 4 has only finitely many solutions. Both conjectures are still open.
By the results in this tract we can show that equation (2) has only finitely
many solutions if m, n, x or y is fixed and mn > 4. This is a straightforward
consequence of theorems 12.1 and 12.2.

Let J P ^ 2 and denote by S the set of all integers which are composed of
primes less than or equal to P. The first theorem is an extension of Shorey
and Tijdeman (1976a, theorem 4(iii)).

Theorem 12.1. Let T > 0 . There exists a computable number Cx depending
only on P and % such that the equation

axm-byn = k (3)

in aeS, beS, keS, xeS, yeZ, meZ, neZ

201
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with m> 1, n> 1, x > 1, y>\ and (axm,k)^T implies that

max(|a|, |fe|, |/c|, m, w, x, y) < C t .

The second theorem is an extension of Shorey et a\. (1977, theorem 3).

Theorem 12.2. Let T > 0,meZ, m> 1. TTiere exf5^5 a computable number C2

depending only on m, P and T SWC/Z r/zat £/ie equation

axm-bf = k (4)

in a e S , fteS, fceS, neZ, x e Z ,

itfi n> 1, |x|> 1, \y\> 1, mn>4 anrf (axm,/c)^t implies that

The only values of a, b and /c for which PiUai's conjecture has been proved
are a = b = k= 1, the case of Catalan's equation (1).

Theorem 12.3 (Tijdeman, 1976b). There exists a computable absolute
constant C3 such that (1) implies that max(m, n,x,

Van der Poorten (1911b) generalised this result to the equation xm —y" =

z<mn> in positive integers m> l , n > l , x > l,y> l , z e S where <m,n> denotes

the least common multiple of m and n. We shall give a further extension.

Theorem 12.4. There exists a computable constant C4 depending only on P
such that the equation

l A " = l (5)

in positive integers m> 1, n> 1, v,w,x,y

with (x, t;) = (3;, w) = 1, mn > 4 and at /easf one of v, w, x, y in S implies that
max(m, n, v, w, x, y) ̂  C4.

We conjecture that (5) with (x, v) = (y, w) = 1 and mn>4 has only finitely
many solutions. For a historical survey on consecutive powers, see
Ribenboim (1984).

An equation which is closely related to (1) and has been studied by several
authors is

xm —1
7~ = yn in integers m>2, n> 1, x > 1, y> 1. (6)
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Known solutions are (m, w, x, y) = (4,2,7,20), (5,2,3,11) and (3,3,18,7). We
conjecture that (6) has only finitely many solutions, but we can only prove
the following weaker result (cf. Shorey and Tijdeman, 1976a).

Theorem 12.5. The equation (6) has only finitely many solutions if at least
one of the following conditions is satisfied:

(i) x is fixed,(l) x is fixed,
(ii) m has a fixed prime divisor,
(iii) y has a fixed prime divisor.

Bounds for the solutions can be computed in each of the three instances.

The number-theoretical interpretation of (6) is which perfect powers in the
x-adic number system are written as a repetition of digits 1. A more general
question is which perfect powers in the x-adic number system are written by
repeating the same digit a again and again. Oblath (1956) proved that the
latter question has no solution for x=10, l < a < x . Inkeri (1972)
determined all solutions for l < a < x ^ l O . The following result is a
generalisation of one from Shorey and Tijdeman (1976a). It shows that for
given x there are only finitely many perfect powers of the form baa • • • a in
the x-adic system.

Theorem 12.6. Let c and x be integers with x > 1. There exists a computable
constant C5 depending only on c and x such that

xm— 1
a — = yn + c in integers a^l,m>2,n>\,y>l (7)

x i

subject to a<x and a^ — c(x— 1) implies that max(m,n,y)^C5.

Note that if l ^ a < x and a= - c ( x - l ) , then a = x - l , c = - 1 . Hence (7)
becomes xm = j / 1 . This equation has infinitely many solutions m, ny y.

Goormaghtigh posed the question which numbers have identical digits
in two different number systems. The only known solutions of x m" r +
x m ~ 2 +--- + l = / - 1 + y l ~ 2 + - - - + 1 in integers m>n>2,y>x> 1 are(m,
n, x, y) = (5,3,2,5) and (13,3,2,90). The following result is a straightforward
application of theorem 1.2.

Theorem 12.7. Let x and y be integers with y>x>\. There exists a
computable constant C6 depending only on x and y such that the equation
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x
m — 1 v" — 1

x— 1 y —1

in integers l^a<x, l^b<y, m > l , n>\

with a(y — 1) / fo(x — 1) implies that max(m, n) ̂  C6.

Balasubramanian and Shorey (1980) generalised theorem 12.7 as follows.

Theorem 12.8. There exists a computable constant C7 depending only on P
such that the equation

in integers a^ 1, b ^ 1, m> 1, n> 1, x > 1, y> 1

t/z a, b, x, y in 5, (a, fo) = 1 and a(y — 1) ̂  b(x — 1) implies that max(a, b, m, n,

Proofs
Proof of theorem 12.1. The constants cl5 c2, c3 occurring in the proof are
computable and depend only on P and T. Assume that (3) holds with m > 1,
H > l , x > l , y > l and (axm, /c) ^ T . Without loss of generality we may assume
that d: = (axm,k) is fixed. Since deS, there exist integers al9bl9kl9 xx in S
and yx > 0 such that axx™ = axm/d, bxy\ = byn/d, kx = k/d, (axx^9 fcx) = 1 and

If yx = l? then we can apply corollary 1.2. If ̂  > 1, then we apply theorem
9.2 with u1=a1x™,u2= —kl,u = b1,q = n,y = y1.In either case \a11, |fox |, |/cx |,
|x?| and |y" | are bounded by some constant cx. Since d^c2, this implies that
a, b, /c, m, n, x and y are bounded by some constant c3. •

Proof of theorem 12.2. Without loss of generality we may assume that (4)
holds with n>\, x > l , y>\, mn>A and (axm,/c)^r. If yeS, then the
assertion follows from theorem 12.1. We consider the case y$S. Hence,
following the argument of the previous proof, we see that we may assume
without loss of generality that (axm, by") = (axm,k) = 1 and y> 1. We may
further assume that a is m-free. Write k = /q/c™ where k1 is m-free and k2 eS.
Since there are only finitely many possibilities for a and kl9 we may assume
that they are fixed. We apply theorem 10.6 if n > 2 and theorem 10.7 if n = 2,
with T = 1 and f(X,Z) = aXm-k1Z

m, to the equation

axm-klk'2=-bf.
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We obtain that |b|, y, x, \k2\ and n are bounded by a computable constant
depending only on m, P and T. This implies the statement of the theorem.

•
Proof of theorem 12.3. In the proof c4, c5, . . . , c n denote computable
absolute constants. We shall deal with the equivalent equation

x
p-yq = e in integers p^q> 1, x> 1, y> 1, e e { - 1,1}. (11)

Without loss of generality we may assume that p and g are distinct primes.
Moreover, by theorem 12.1 applied with x fixed and by theorem 12.2
applied with p fixed, it is no restriction to assume that x > c4, y > c4, p > c4,
q > c4 where c4 is some suitable large constant, and that p and q are odd. By
(11) and p>q we have

(x,30=l, *<>; (12)
and

g | (y + e), then (ŷ  + e)/(y + e) contains exactly one factor q. Thus there are
integers 6 e {— 1,0} and s > 0 such that

gV. (13)

In a similar way we derive from

that there exist integers ye{ — 1,0} and r>0 such that

x-e = pyr«. (14)

Note that r> 1, s> 1, if y= - 1 then p | r , if S= - 1 then ^ | s . Hence p V ^
2q~x and qty^l"'1. On substituting (13) and (14) into (11) we obtain

(pyr« + 8)p-(qssp-eyi = e. (15)

The crucial point for the proof is that r and s are nearly equal. We shall use
the following estimates. From (14), (11) and (13) we infer that

(2q)«

These inequalities are also valid when p and q, r and s, x and y are
interchanged. Hence, by p > q > c4,

(16)
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We shall first prove that a constant c5 exists such that

It follows from (13), (14) and

max((x- l)p,(y-
that

pyprp<i _

(17)

If) (18)

(19)

In order to prove (17) we may assume that p V ^ 2 q ~ l > 12p3. We have, by
(14), (11) and (13) respectively,

— 1 J 1
- 1

1

Recalling that if | a | ^ i then |log(l + a) |<2|a| , we obtain, by - l < y < 0 ,

(20)

(21)

(22)
Hence,

A, : =

By (19), Ax = |py log p — qd log ^ H- p^ log(r/s)| ̂  0. On applying theorem B. 1
to Ax with d = 1, n = 3, /I 1 = >l2 = p, A3 = 2r, B = p2 we obtain, by (16),

A^expt -CgOog/OMogr) . (23)

Comparing (23) with (22) we see that

r* ^ 12p3rC6(log/7)4 < rC7(logp)4

which implies the assertion (17).
By another application of theorem B. 1 we shall show that p is bounded. It

follows from (14), (13) and (18) that

(pyi« + e)p - qSqspq = xp - (y 4- e)q # 0. (24)

We have, by (20) and (21),

Further, by (11) and (13), xp^f- I>2q/2y>2qy>sp. Hence

— qSlogq + plog- (25)
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We apply theorem B. 1 to A2 with n = 2, Ax = p, A2 = 5ps*, B = p. Since A2 # 0
in view of (24), we obtain, by (16),

A2 > exp( -c8(log p)3 log(5ps*)). (26)

Comparing (26) and (25) we find, by (17),

sp ^ 4g2(5ps«)C8(log p? < sC9(log p)\

Hence p ̂  c9(log p)1. This implies that p and g are bounded by a computable
number c10.

We may now assume that p and q are fixed. It is a direct consequence of
theorem 6.1 that there is a constant c n such that x < c n , ^ ^ c n for every
solution of (11). Thus the total number of solutions of (1) is finite and there is
a computable constant C3 such that max(m, n, x, y)^C3. •

Proof of theorem 12.4. In this proof cl2, c 1 3 , . . . , c28 denote computable
constants which depend only on P. Suppose that (5) holds with (x,u) =
(y, w)= 1, mn>4 and at least one of v9 w, x, y in 5. Then

xmw" - /i?m = vmwn. (27)

By (x, t;) = (y, w) = 1, we have i?m | wn and wn \ vm, hence vm = wn. Choose z > 0
such that z<mn> = t;m = ww. Then, on dividing by vm = wn in (27),

x m - / W m ' M > . (28)

By theorem 12,3 we may assume z > 1. If p is a prime such that p | x and p | y,
then p | z, hence p | (;. But (x, v) = 1. Thus (x, y) = 1. Further, at least one of
x, y, z belongs to S.

If x eS, then (28) can be written as

It follows from theorem 2,2 with A = B= 1 that n<c 1 2 . Then we apply
theorem 12.2 to the equation / + z<m/l> = xm to conclude that max(m, v, w,x,
y)^c1 3 . If y e 5 , then w^ can apply a similar argument.

The only remaining Case is zeS, which is in fact van der Poorten's
theorem. If m is evert and n>2, then the claim follows from theorem 12.2
applied to (xm/2)2 - / == z<mn>. If n is even and m>2, then the claim follows
from theorem 12.2 applied to (y j / 2 ) 2 -x w = -z<m'n>. Thus we may assume,
without loss of generality, that m and n are odd. It follows that m has an odd
prime factor p and n has an odd prime factor q. If p = g, then (28) implies

with x 1 = / / « , y1 = z<mM>/S z1=xm/«, yxGS and the result follows from
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theorem 11.3(b) and theorem 7.1. Without loss of generality we may
consider in the sequel

xp-yq = zpq in integers p>q>2, x > l , y>l, zeS (29)

with (x, y) = 1, p and q prime. It will suffice to show that max(p, q9 x, y, |z|) ^
c14 for some constant c14.

We have

Let rf be the greatest common divisor of the two factors on the right-hand
side. Then y=—zp (modd), hence, by (y, z )=l , d\q. If q\(y + zp), then
(y* + zpq)/(y + zp) contains at most one factor q. Thus there are integers
<5e{-l,0} and s # 0 such that

= q3sp. (30)

Similarly, we derive the existence of integers y e {— 1,0} and r # 0 such that

(31)

Note, by distinguishing z>0 and z<0, that \pyqsr*sp\^2, whence |rs|>2.
Furthermore, q~d\s and p~v | r. On substituting (30) and (31) into (29) we
obtain

- (^^sp - zpf = z« (32)

Our first object is to show by p-adic methods that \z\ is relatively small.
Suppose p\ || z, />0, px prime. Plainly, by (32),

| g V « ) , (33)
hence,

ordP i (p
yprpq - q3qspq) ^ Iq. (34)

It follows from (29) and

max((x - |z|T, (y ~ \z\p)q) <xp=f + zpq< min((x + |z|T, (y + klP)') (35)

that
pyprp<i _ ^ J M = (x _ #y - (y + z ^ # 0. (36)

We apply theorem B.3 to A3: = pypq~Sq(r/s)pq-l with rc = 3, A1 = A2 = p,
y43 = 2|rs|, B = p2. Since A 3 # 0 in view of (36), we obtain that

oidPl(A3)<c150ogp)4log(|rs|).

Comparing this with (34) we see that
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Let |z| = rijPj- T h e n

Next we intend to show that

209

(37)

(38)

for some computable constant c17. Thus we may assume that

4>c18(log/?)4 and p>c 1 9 , (39)

where c1 8>6c 1 6 and c19 are suitable large constants. In order to derive
inequalities like (16) we use (39) repeatedly without further reference.
Assume |r|<|s|. Then \s\> 1 and, by (37) and (39),

^ / a ^ ( 4 Q )

Hence, by (30) and s> 1,

y^qdsp-\z\p>qssp-sp/3>\qssp.

By (31) and (29) it follows that

(pV + 2«)p = xp = yp -f zpq > (%qssp)q -

Hence
-zq> \q V -

In particular,
(41)

and r> 1. By a similar reasoning we find that if \s\ ^|r|, then r> 1 and
s. Combining this with (41) we see that in both cases

(42)

We have, by (31) and (42),

- 1

by (29), (42) and (31),

r2pq/3
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and by (30), (40) and (42),

y - 1

Recalling that if |a| s%̂  then |log(l +a)| <2|a|, we obtain

|plog(pV)-plogx|<8p3r-2« / 3 ,

\p log x -q log y\ <2 J^f

Hence,
A4: = \yp log p - <5$ log q + M log(r/s)| ̂  24p3r~q/3. (43)

By (36), A4 ̂  0. On applying theorem B. 1 to A4 with n = 3,A1 = A2 = p,A3 =
2r, B=p2 we obtain, by (41),

A4 ̂  exp( - c20(log p)4 log r). (44)

Comparing (44) with (43) we find

which implies the assertion (38).
Our third object is to improve upon estimate (37). Suppose p\ \\z,l>0. By

(32), we have

Put A5 = (prf« + 2«) '«-*s-"-1- We have, by (x,z)= 1,

ordPi(A5)^/p. (45)

Suppose A5 = 0. Then, by (32), (qssp-zpY = (qdsp)q-zpq. Since q3sp-zp =
y>0, this is impossible. Thus A 5 #0 . We apply theorem B.3 to A5 =
q-%py^ + z*)/sfl)p - 1 with n = 2, ^ = p, A2 = x\s\q, B = p.By (31) we obtain

ordPi(A5) ̂ c22(log pf log(x|s|«). (46)

Comparing (46) with (45) we see that

On taking the product of these inequalities for all prime divisors of z, we
obtain that

< (47)
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We now want to show that p is bounded. Suppose |s|* ^x. Then, by (29)
and (30),

x* = f + zM = (q'sp - zp)q + zM ^ (\s\p + \z\p)q.

Here we use that q is odd and therefore the terms — zM and zm cancel.
Hence, by (47) and (38).

xp/q - \s\p^ \z\p^ x*"0011*3 <\xp/q.

Here and in the sequel we suppose that p is sufficiently large. It follows that
xp/*<2|s|p, which implies that x<2|s|«. Thus unconditionally

x^2|s|*. (48)

Hence, by (47) and (38),

| | 2 ( l ) 3 | | ( l ) 7 (49)

By \z\ > 1, we have |s| > 1. Since >;>0 and p is odd, we infer from (30) that
5> 1. We have, by (29), (49) and (30),

x" ,
1

y —
zM

(qdsp-zp)q

and, by (30),

|_y t

\qssp q5sp 4̂ f

Hence,

and

So we obtain
5-p/2. (50)

We apply theorem B.I to A6 with n = 29A1=p, A2 = 2tiq, B = p. By (32) we
have A 6 #0 . It follows, by (48), that

A6^exp(-c2 5(log p)3q log 5). (51)

Comparing (51) with (50) we see that, by (38),

sp/2 ^ 5c25?(log p)3 ^ sc26(log p)7^

Thus p^2c26(logp)7, which implies that p<c 2 7 . Hence
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We have reduced (29) to finitely many cases with p, q fixed. On applying
theorem 7.1 we find that for each pair p,q there are only finitely many
integer solutions x, y of (29). Thus max(p, q, x, y, \z\) ^c 2 8 - •

Proof of theorem 12.5. Assume that (6) holds.

(i) Suppose x is fixed. Apply theorem 9.2 with ux = xm, u2 = — 1, u = x — 1. It
follows that m, n and therefore y are bounded.

(ii) Let d>\ be a fixed divisor of m. Put

xm _ j xm/d _ i

X ' — 1 X — 1

Then AB=y" and (4, B) | d. Hence there exist positive integers r, s, y^ y2

with (r,s)= 1, rs^d such that

A = r-fi, B=S-f2. (53)

Without loss of generality we may assume that r and 5 are fixed. Put z = xm/d.
Then

^ 2 + --- + l) = ry{. (54)

We distinguish three cases.

Case 1. rf ̂  4. On applying theorem 10.7 with /(X, Z) = s(Xd -1+Xd~2Z +
•- +Zd~1),y = r,m = n,X = z,Y = y1,Z=\,we obtain that there are only
finitely many solutions n, yx > 1, z = xm/d of (54). Obviously there are only
finitely many solutions with yx = 1. Thus there are only finitely many
solutions of (6).

. d = 2. If m is divisible by 4, then the assertion follows from case 1 with
d = 4. So we may assume that m is an odd multiple of 2. If (A, B)= 1, then
r/s=\ and A = xm/2+ 1 = > .̂ Theorem 12.3 implies that there are only
finitely many solutions of this equation. If (A, B) > 1, then (A9 B) = 2 and x is
odd. By (52) we have 41 B(x -1) = xm/2 - 1, hence x = 1 (mod 4). We have

xm—

Since x + l = 2 (mod4) and n > l , the quotient (x m - l)/(x2-1) is even.
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However,

— = 1 + x 2 + • • • + xm~2=— (mod 2)

is odd.

Case 3.d = 3. On applying theorem 10.6 we obtain that (54) has only finitely
many solutions n>2 , y1 > 1 and z = xm/d. Obviously there are only finitely
many solutions with yx = 1. We may therefore restrict our attention to the
case n = 2. Since case 2 can be applied if m is even, we may also assume that
m is odd. Since case 1 can be applied if 91 m, we may further assume that m/3
is not divisible by 3. If(^4, B)= 1, then r = s= 1 and A= l + z + z2 = y2. Since
z2 < z2 + z + 1 < (z + I)2, this is impossible. If (A, B) > 1, then {A, B) = 3 and
r = 3 , 5= 1. Hence

If x = 1 (mod 3), then 31 (m/3) because of 31B, a contradiction. If x = 2
(mod3), then 2|(m/3), again a contradiction. Since 3|x is plainly
impossible, there are no solutions at all if d = 3, n = 2, 2J(m, 9 )(m.

(iii) Suppose that y has a fixed prime factor p. If p | (x — 1), then

xm — 1

x—1
=m (modp).

Since p | (xm — l)/(x — 1), we see that m has a fixed prime factor and we can
apply (ii). If pj((x— 1), then let p|(xf — 1) with t> 1 minimal. Since f|m and
r|(p — 1), t is a bounded divisor of m. As £> 1, we can apply (ii) again.

Proof of theorem 12.6. By c29, c30, c31 we shall denote computable positive
constants depending only on c and x. Suppose (7) holds subject to a < x and
fl# -c(x-1). We may assume that 0 is fixed. By (7),

axm-{cx + a-c) = (x- I)/1.

We apply theorem 9.2 with ux = axm, u2 = — (ex + a — c), w = x — 1 and g = n.
Note that (axm, cx + a — c)^c29, since ex + a — c is fixed and non-zero. We
infer max(m, n)^c30. Since the left-hand side of (7) is bounded, we obtain

•
Proof of theorem 12.7. Assume that (8) holds with a(y- l )#fc(x-l) . We
may assume that a and b are fixed. We have

a(y - l)xm - b(x - I)/1 - (a(y - 1) - b(x - 1)) = 0.
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The common factor of the three terms is bounded, since the third term is
bounded and non-zero. On dividing by the common factor and applying
corollary 1.2 we obtain that m and n are bounded. •

Proof of theorem 12.8. Assume that (9) holds with a, b, x, y in S, (a, b) = 1 and
a(y-l)*b(x-l). Write

Here pl9..., ps are primes less than or equal to P and the exponents of p u

..., ps in the factorisations of x, y, a, b are non-negative integers not
exceeding 2 log x, 2 log y, 2 log(a +1), 2 log(b +1), respectively. It involves
no loss of generality to assume that m^n. Further, (9) implies

axm-l<nbf-\ bf-x<maxm-\ (55)

By c32, c33, . . . , c48 we shall denote computable positive constants
depending only on P.

Lemma 12.1. max(log a, log b) <c32(log(m log x))2.

Proof We prove the inequality for log b. Suppose p \ b. Then, by (9), we have

?Xl- • -p^- 1).

On applying theorem B.3 with n = s^P, A1 = A2= - = An = P and B =
2m log x to the right-hand side of the above inequality, we obtain

ordp(b) ^c33(log(m log x))2,
hence

log b = X ordp(b) log p ̂  c34(log(m log x))2.
P\b

Similarly
log a ̂ c35(log(n log y))1.

In view of (55) the lemma follows immediately. •

Lemma 12.2. min(log x, log y) ^ c 3 6 log m.

Proof We prove the lemma for x^y. The proof for the case x > y is similar.
Let S be the smallest positive integer such that axm~8^bf~8. Observe that

2, since a(y - 1 ) ^ b(x -1) and (a, b) = 1. Now it follows from (9) that
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hence, by (55),

0<\axm~s -bf-5\^maxm-s-1 + nbf-s-1 ^2m2axm-s-\

Thus we have

\ \ - \ (56)

where ui = bi — ai + (n — S)yi—(m — S)xi for i= 1 , . . . , 5. By lemma 12.1 and
(55), we find that the integers \ut\ do not exceed c37m log x. Now apply
theorem B.I with n = s^P, A1 = A2="=An = P and B = c31mlogx to
obtain

|p i - - -^ - l |> (mlogx) - c - (57)

Comparing (57) with (56) we obtain lemma 12.2 by transferring secondary
factors. •

Lemma 12.3. max(log x, log y) ̂ c39(log m)2.

Proof. We prove the lemma for x ^ y. The proof for the case x > y is similar.
From (9), lemma 12.1 and (55) we have

axm a
0< bf

x—1 x—1

^ a + nbf ~2^f~2 exp(c40(log(n log y))2).
Thus

0 ± (p J • • • pv
six - 1)" 1 - 1) ^ y ~1 exp(c40(log(n log y))2) (58)

where vt = at — bt + mxt — (n— l)y( for i = 1 , . . . , 5. From lemma 12.1 and (55)
we observe that the absolute values of vt with i= 1 , . . . , 5 do not exceed
c41mlogx which, by lemma 12.2, is less than c42mlogm. Now apply
theorem B.I with rc = s + l ^ P + l , A1="=An_1=P, An = x^mC36 and
B — c^m log m to conclude that

ft • • • pv
six - 1)"x - 1 ^ exp( - c43(log m)2). (59)

Now lemma 12.3 follows immediately from (59), (58), (55) and lemma 12.1.

•
From (9) and lemma 12.1 we have

axm bf

x - 1 y-1

b

x - 1 y - 1
^ exp(c44(log(m log x))2).
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Thus, by lemma 12.3,

0< (60)Ks y-i

where w—^—^ + n^ — rnXj. Observe that |wf|^c46m(logm)2for i= 1 , . . . ,
s. Now apply theorem B.I withn = s+ l^P+l,Al = '- = An_l=P,An =
max(x- 1, y- I)^exp(c39(logm)2) and B = c46rn(logm)2. We obtain

x— 1
' >exp(-c47(logm)3). (61)

Combining (61) and (60) we find that m^c48. This completes the proof of
theorem 12.8 in view of lemma 12.3 and lemma 12.1. •

Notes
Theorem 12.1 implies that (1) has only finitely many solutions if x

or y is fixed. Hyyro (1964a) improved upon a result of Rotkiewicz (1961) by
showing that for all solutions of (1) apart from

(m,n,x,y) = (2,3,3,2) (62)

we have min(x, y)> 1011. The theory of linear forms in logarithms can be
applied to show that if m>l,n>l, x^l, y^l are positive integers with

then

\x
m — yn\

and
|xm-yi|>c9(xm)Ci°

where C8, C9 and C10 are certain computable positive numbers depending
only on x. See Shorey and Tijdeman (1976a, theorems 1,2) and Turk (1986).

It follows from a result of LeVeque (1952) that (1) has no solutions with
|x — y\ = 1 apart from (62). Schinzel (1956) gave a simpler proof of this fact.
Rotkiewicz (1956) generalised this result to the equation xm — / ' = a" subject
to |x — y\ = a. By estimating linear forms in logarithms it can be proved that,
for given non-zero integers a, fc,/c, equation (2) has only finitely many
solutions for which |x — y\ is bounded. If m = n, then the result follows
(unconditionally) from theorem 2.1. If m ̂  n, then a simple estimation yields
that x/m and y/n are bounded from above. By estimating \axm/by" —1| from
below by corollary B. 1 and from above in a trivial way and comparing both
estimates it follows that m and x, hence n and y, are bounded. Theorem
12.2 implies that (1) has only finitely many solutions if m or n is fixed.
Lebesgue (1850) proved that (1) has no solutions when n = 2. Chao Ko
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(1965) proved that (1) has no solutions apart from (62) when m = 2. Nagell
(1921) showed that (62) is the only solution of (1) if m = 3 or w = 3. Hence
there is no solution with min(m, n) < 5 other than (62). Inkeri (1964) proved
that (1) is unsolvable for a large number of pairs m, n. Evertse (19836)
improved upon an estimate of Hyyro (1964a) by showing that for fixed m
and n the number of solutions of (1) is at most (mn)minim'n). Turk (1986)
applied linear forms in logarithms to prove that there exists a computable
absolute constant C n > 0 such that, for all integers m> l,n>l,x>l,y>l
with x m 7*/ ,

|xm - / | > - exp( % (log m log log(m + 1))1/2Y
n \n )

For lower estimates of \axm — byn\, see the notes of chapter 10. Shorey and
Tijdeman (1976a) proved that forgiven non-zero integers a, ft, k equation (2)
has only finitely many solutions if m\n and mn>4. Ribenboim (198x)
proved that, for any k ̂  0, the density of pairs (m, n) such that xm — y" = k has
a non-trivial solution x,y is zero. For integers a > 0 , ft>0, /c^O, x > l and
y > 1, Shorey (1986c) proved that there are at most nine distinct pairs (m, n)
in positive integers satisfying (2) and max(axm, by")>953 k6. If x ^ 4 and
y ^ 4 , Shorey (1986c) derived from the above result that there are at most
nine distinct pairs (m, n) in integers m ̂  3 and n ^ 3 satisfying (2) with k = 1.

Langevin (1916b) elaborated the proof of theorem 12.3 to show that if (1)
holds, then

xm < exp exp exp exp(73O) and P(mn) < exp(241).

Cassels (1960a) proved that if (1) holds for x, y and primes m, n then m | y and
n | x. This result was used by Makowski (1962) and Hyyro (1963) to prove
that no three consecutive positive integers can be all perfect powers. Turk
(1980a) used estimates of linear forms in logarithms to derive an upper
bound for the number of perfect powers in the interval [/i, n + yjn~]. Loxton
(198x) used his simultaneous version of theorem B.I to improve on this
bound by showing that there are at most exp(40(log2 n log3 n)1/2) perfect
powers in the interval [n,n + ̂ /ri] for n^20. For comparable results on
numbers axm with \a\ small, see Turk (1984) and Loxton (1986).

In theorem 12.4 the condition that x and y are positive is superfluous (see
Tijdeman, 1985). In this paper it is also shown that if (5) holds and f =
max(m, n), then

where C 1 2 and C 1 3 are certain (ineffective) absolute constants.

Oblath (1956) showed that a . x m ~ 1 + a . x m ~ 2 + - - - + a i s never a perfect
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power y1 if m ̂  2, x = 10 and 1 < a < 10. If there is some solution with a = 1,
then 2 ̂  m, 2 J" w, 3 ^m, 3 ^n . Shorey and Tijdeman (1976a) proved that in
this case n ̂  23. Inkeri (1972) determined all solutions for 1 < a < x < 10 and
many other pairs (a, x). All solutions of (6) have been determined if 41 m by
Nagell (1920) and if 21 n or 31 m by Ljunggren (1943). Further, Ljunggren
(1943) determined all the solutions of (6) if n = 3 and m ̂  5 (mod 6). Shorey
(1986a, 1986b) proved that (6) has only finitely many solutions if n is prime
and co(m)>n-2. This, together with theorem 12.5(ii), implies that (6) has
only finitely many solutions if n = 3 and m ̂  5 (mod 6) whenever co(m) = 1.
Richter (1982) considered equation (6) with m = n. For fixed integers a and b
with (a, b)= 1 and a n-free, Shorey and Tijdeman (1976a) gave a number of
conditions under which the equation

xm — 1
y in integers m>2, n> l , x > l , y > la f c

has only finitely many solutions. One would like to show that (6) has only
finitely many solutions. For this, it suffices to restrict the variable m to prime
powers (see Shorey, 1986a). For integers X, A with 1 ^A<X and a prime
p ^ 5, Shorey (1986b) showed that the number of pth powers whose all the
digits are equal to A in the AT-adic number system is at most p + CA 4 where
C1 4 is a computable absolute constant. If A = 1, the restriction p^ 5 is not
necessary.

Gyory, Kiss and Schinzel (1981) and Gyory (1982a) considered the
equation

= z in integers m>3 , x > y ^ l , z > 0
x-y

with (x9y)= 1 (cf. chapter 3, notes). Gyory (1982a) proved that m^P and

max(x, y, z) < exp{5sP(P+30)/2(20P2)sP(P+6)+ I4(P+2)}

where P = P(z) and s = co(z). Loxton (1986) proved that for any e > 0 and any
positive integer z the equation (xm — \)/(x — 1) = z has at most Cx 5(log z)(l/2)+<:

solutions in integers m,x with m>2 and x> 1 where C15 is a computable
number depending only on s.

Davenport, Lewis and Schinzel (1961) proved that equation (9) has only
finitely many solutions if a = b= 1 and m and n are fixed. If in (9) a, b, n and x
are fixed, then it follows from theorem 10.4 that there is only a finite number
of solutions. Shorey (1984b) proved, effectively, that equation (9) has only
finitely many solutions in integers x > l ,y> \,m^n> l ,m>2,1 ^ a < x , 1 ̂
b<y with (a,b)= 1, a(y— \)^b(x— 1) and \x—y\ bounded. Further, if a —
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b=l9 equation (9) has only finitely many solutions in integers m > 1, n > 1,
x > 1 and y > 1 with x / y and P(x(y — x)) bounded. It follows from a result of
Shorey (1984c) that equation (9) with m = n9 a<b and x>y implies that
either m ̂  C1 6 or m = [a + 1] where Q 6 is a computable number depending
only on a and b and a = log(b/a)/log(x/y). For given integers a^l, b^\
and /, the arguments in the proof of theorem 12.8 allow us to show that
equation

x
m — l v" — 1

a - = b - + / in integers m > l , w>l , x > l , v > l
x—1 y-\

with x,yeS and a(x — I)"1 — b(y— I)"17^/ implies that max(m, /?, x, y) is
bounded by a computable number depending only on a, b, I and P.

Let x > 1 and y> 1 be fixed distinct integers. Senge and Straus (1973)
proved that the number of integers, the sum of whose digits in each of the
bases x and y lies below a fixed bound, is finite if and only if (log x)/log y is
irrational. Their proof depends on a p-adic version of the ineffective Thue-
Siegel-Roth method. Stewart (1980) used estimates of linear forms in
logarithms to exhibit an explicit lower bound for the sum of the digits of/; in
base x plus the sum of the digits of/? in base y, which tends to infinity as n
tends to infinity provided that (log x)/log y is irrational. For integers X and
A with 1 ^ A <X, denote by SX(A) the set of integers whose digits are all
equal to A in their X-adic expansions. For integers X, y, A and B with 1 ̂
A < X, 1 ^ B < Y and A(Y - 1) # B(X - 1), Shorey (1986c) showed that the
number of elements in SX(A) n SY (B) and Sx( 1) n SY (1) is at most 24 and 17,
respectively.

Brindza, Gyory and Tijdeman (1986) obtained the following
generalisation of theorem 12.3 to algebraic number fields. Let K be an
algebraic number field with ring of integers C K. There exists a computable
number C17 depending only on K such that all solutions of the equation

xm — y"=l in x,ye(<K,

with x, y not roots of unity and m> 1, n> 1, mn>4 satisfy

max(|x|, |y | ,m,/i)<C1 7.

The assumptions made on x, y, m and n are necessary.
Catalan's equation has also been considered over function fields. Let K

be any field. Let m and n be integers greater than 1 and not divisible by the
characteristic of K. Nathanson (1974) and Albis Gonzalez (1975) proved,
independently, that the equation xm — y"= 1 has no non-constant solution
x, y in the polynomial ring K [r]. Nathanson further proved that if m > 2 and
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n>2, then xm — y" = 1 has no non-constant solution in the rational function
field K(t) either. Silverman (19826) studied the Pillai equation axm + bf = c
over function fields of projective varieties.
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