

Galbraith cag.tex V2 - 06/02/2009 11:44am Page ii

Galbraith cag.tex V2 - 06/02/2009 4:43pm Page i

Developing Web Applications with Perl,
memcached, MySQL® and Apache

Foreword . xxv
Introduction . xxvii
Chapter 1: LAMMP, Now with an Extra M . 1
Chapter 2: MySQL. 15
Chapter 3: Advanced MySQL . 85
Chapter 4: Perl Primer . 163
Chapter 5: Object-Oriented Perl. 211
Chapter 6: MySQL and Perl . 245
Chapter 7: Simple Database Application . 285
Chapter 8: memcached . 313
Chapter 9: libmemcached . 359
Chapter 10: Memcached Functions for MySQL . 383
Chapter 11: Apache . 417
Chapter 12: Contact List Application . 503
Chapter 13: mod_perl . 565
Chapter 14: Using mod_perl Handlers . 601
Chapter 15: More mod_perl . 633
Chapter 16: Perl and Ajax . 707
Chapter 17: Search Engine Application . 739
Appendix A: Installing MySQL . 793
Appendix B: Configuring MySQL . 811
Index . 831

Galbraith cag.tex V2 - 06/02/2009 11:44am Page ii

Galbraith ffirs.tex V3 - 06/03/2009 4:22pm Page iii

Developing Web Applications with Perl,
memcached, MySQL® and Apache

Patrick Galbraith

Wiley Publishing, Inc.

Galbraith ffirs.tex V3 - 06/03/2009 4:22pm Page iv

Developing Web Applications with Perl, memcached, MySQL® and Apache
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-41464-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or Web site may provide or recommendations
it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009927343

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. MySQL is a registered trademark of MySQL AB.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Galbraith ffirs.tex V3 - 06/03/2009 4:22pm Page v

To my wonderful wife, Ruth, whom I have known for 27 years and who has stood by me while writing
this book, even when I couldn’t give her the time she deserved. Also, to my dear friend Krishna,

who gave me inspiration every day.

Galbraith fcre.tex V3 - 06/02/2009 11:44am Page vi

Credits
Acquisitions Editor
Jenny Watson

Project Editor
Maureen Spears

Technical Editor
John Bokma

Production Editor
Rebecca Coleman

Copy Editor
Sara E. Wilson

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Corina Copp, Word One

Indexer
Robert Swanson

Galbraith fauth.tex V3 - 06/02/2009 11:46am Page vii

About the Author
Patrick Galbraith lives up in the sticks of southwestern New Hampshire near Mt. Monadnock with
his wife, Ruth. Since 1993, he has been using and developing open source software. He has worked on
various open source projects, including MySQL, Federated storage engine, Memcached Functions for
MySQL, Drizzle, and Slashcode, and is the maintainer of DBD::mysql. He has worked at a number of
companies throughout his career, including MySQL AB, Classmates.com, OSDN/Slashdot. He currently
works for Lycos. He is also part owner of a wireless broadband company, Radius North, which provides
Internet service to underserved rural areas of New Hampshire. His web site, which comes by way of a
5.8GHz Alvarion access unit up in a pine tree, is http://patg.net.

About the Technical Editor
John Bokma is a self-employed Perl programmer and consultant from the Netherlands. He has been
working professionally in software development since 1994, moving his primary focus more and
more toward the Perl programming language. John and his wife, Esmeralda, currently live in the
state of Veracruz, Mexico, with their daughter Alice. John’s other two children, Jim and Laurinda,
live with their mother in New Zealand. For more information or to contact John, visit his web site at
http://johnbokma.com/.

Galbraith fauth.tex V3 - 06/02/2009 11:46am Page viii

Galbraith fack.tex V3 - 06/02/2009 11:46am Page ix

Acknowledgments

One weekend in 1993, I had the chance to go on a getaway to San Diego. Instead, I opted to stay home
and download, onto 26 floppies, Slackware Linux, which I promptly installed onto my Packard Bell 386.
I could never get the built-in video card to work with X, so I ended up buying a separate video card and
had to edit my XConfig file to get it to work. How much more interesting this was to do than editing a
config.sys and an autoexec.bat! From then on, I was hooked. I worked at Siemens Ultrasound Group in
Issaquah, Washington, at the time. An engineer there named Debra, when asked what was a good thing
to learn, said something I’ll never forget: ‘‘Learn Perl.’’ Debra — you were right!

I always wanted to be a C++ graphics programmer. That didn’t happen because of this thing called the
World Wide Web. I remember Ray Jones and Randy Bentson of Celestial Software showing me a program
called Mosaic, which allowed you to view text over the Internet. Images would be launched using XV.
Everywhere I worked, I had to write programs that ran on the Web, which required me to write CGI in
Perl. So much for my goal of being a C++ programmer — but I consider this a great trade for a great
career. (I did eventually get to write C++ for MySQL!)

I would first like to thank my editor, Maureen Spears, who is not only a great editor, but also a friend.
She gave me much-needed encouragement throughout the writing of this book.

A special thanks goes to John Bokma for his meticulous attention to detail and great knowledge of
Perl — particularly with regard to Perl programming style and convention that I didn’t realize had
changed over the last several years. I was somewhat set in my ways!

Thank you to Jenny Watson, who gave me the opportunity to write this book in the first place!

Thanks to Monty Widenius for creating MySQL and for being a mentor as well as a good friend, and
thanks, Monty, for looking over Chapters 1, 2, and 3! Thanks also to Brian Aker for being another great
mentor and friend, as well as being a software-producing machine with a scrolling page full of open
source software projects that he’s created, including Drizzle and libmemcached. Thanks to Sheeri Kritzer
for her encouragement and for listening to me — she finished her book not too long before I finished
mine, so she understood completely what I was going through.

I’d like to thank my friend, Wes Moran, head of design for Sourceforge, for providing the nice, clean,
simple HTML design I used for many of the examples in this book.

Thanks to Eric Day for his excellent input and review of chapters pertaining to Gearman.

A special thanks to Joaquı́n Ruiz of Gear 6, who provided a lot of input on Chapter 1, as well as Jeff
Freund of Clickability and Edwin Desouza and Jimmy Guerrero of Sun, who put me in touch with others
and were great sources of memcached information.

I would like to thank my current colleagues at Lycos, and former colleagues at Grazr and MySQL, as
well as the team members of Drizzle, for their part in my professional development, which gave me the
ability to write this book. Thanks also to anyone I forgot to mention!

Galbraith fack.tex V3 - 06/02/2009 11:46am Page x

Acknowledgments

Finally, I would like to thank the entire Open Source community. My life would not be the same without
open source software.

There’s a verse in an ancient book, the Bhagavad Gita, that aptly describes how people like Monty
Widenius, Linus Torvalds, Larry Wall, Brian Aker and other leaders within the Open Source community
inspire the rest of us:

‘‘Whatever action a great man performs, common men follow. And whatever standards he sets by exemplary acts,
all the world pursues.’’

x

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xi

Contents

Foreword xxv

Introduction xxvii

Chapter 1: LAMMP, Now with an Extra M 1

Linux 2
Apache 3
MySQL 4
memcached 5

Gear6 6
Clickability 6
GaiaOnline 7
How memcached Can Work for You 7

Perl 8
Other Technologies 10

Sphinx 10
Gearman 11

The New Picture 11
The Future of Open-Source Web Development and Databases 12
Projects to Watch! 13
Summary 13

Chapter 2: MySQL 15

How CGI and PHP Changed the Web Dramatically 15
About MySQL 16
MySQL Programs 19

Client Programs 20
Utility Programs 25
MySQL Daemon and Startup Utilities 27

Working with Data 28
Creating a Schema and Tables 29
Inserting Data 35
Querying Data 38
Updating Data 50
Deleting Data 52

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xii

Contents

Replacing Data 56
INSERT ... ON DUPLICATE KEY UPDATE 57
Operators 58
Functions 59
Using Help 70
User-Defined Variables in MySQL 72

MySQL Privileges 74
MySQL Access Control Privilege System 75
MySQL Global System User 75
MySQL System Schema Grant Tables 76
Account Management 80

Summary 84

Chapter 3: Advanced MySQL 85

SQL Features 85
Stored Procedures and Functions 86
Triggers 94
Views 102
User Defined Functions 105

Storage Engines 111
Commonly Used Storage Engines 112
Storage Engine Abilities 113

Using Storage Engines 113
MyISAM 115
InnoDB 118
Archive 123
The Federated Storage Engine 125
Tina/CSV Storage Engine 130
Blackhole Storage Engine 132

Replication 133
Replication Overview 133
Replication schemes 134
Replication Command Options 137
Setting Up Replication 139
Searching Text 148
When to Use Sphinx 161

Summary 162

Chapter 4: Perl Primer 163

What Exactly Is Perl? 163
Perl Primer 165

xii

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xiii

Contents

Perl Data Types 165
Scalars 165
Arrays 167
Hashes 167
File Handles 168
Type Globs 168
Subroutines 168

Variable Usage 168
References 169
Scalar Usage 173
Array Usage and Iteration 174
Working with Hashes 179
Writing to Files 184
STDOUT and STDERR 184
File Handles to Processes 185
Subroutines 186
Variable Scope 189

Packages 192
Perl Modules 193
Writing a Perl Module 194
@ISA array 197
Documenting Your Module 197
Making Your Module Installable 201
Testing 201
Adding a MANIFEST file 204
CPAN 205

Regex One-Liners 206
Storing Regular Expressions in Variables 207
Regex Optimizations 208

Perl 6 Tidbits 208
Summary 210

Chapter 5: Object-Oriented Perl 211

About Object Orientation 212
Object Orientation in Perl 213

Writing a Perl Class 213
Adding Methods 217
On-Demand Method Manifestation Using AUTOLOAD 221
Other Methods 231
Making Life Easier: Moose 240

Summary 244

xiii

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xiv

Contents

Chapter 6: MySQL and Perl 245

Perl DBI 245
DBI and DBD 246
Installation 247
DBI API 247

Connect 249
$dsn 249
$username and $password 253
$attributes 253
connect_cached 254

Statement Handles 255
Writing Data 256
Reading Data 258
Fetch Methods, One Row at a Time 258
Fetch Methods — the Whole Shebang 259

Binding Methods 261
Binding Input Parameters 262
Binding Output Parameters 263

Other Statement Handle Methods 264
rows 264
dump_results 265

Statement Handle Attributes 265
MySQL-Specific Statement Handle Attributes 267
Multistep Utility Methods 269

do 270
selectall_arrayref 270
selectall_hashref 272
selectcol_arrayref 273
selectrow_array 273
selectrow_arrayref 274
selectrow_hashref 274

Other Database Handle Methods 274
last_insert_id 275
ping 275
clone 276
Transactional Methods — begin_work, commit, rollback 276

Stored Procedures 277
Error Handling 279
Server Admin 281
Summary 283

xiv

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xv

Contents

Chapter 7: Simple Database Application 285

Planning Application Functionality 285
Schema Design 286
Writing Up a Wire-Frame 286
Declarations, Initializations 287
Program Entry Point 290

Table Creation Subroutine 292
Using information_schema 293
Listing Contacts 294
Editing a Contact 297
Inserting a Contact 301
Updating a Contact 302
Deleting a Contact 303

Testing update_contact, insert_contact, and delete_contact 304
Editing a Contact 304
Adding a Contact 305
Deleting a Contact 306

Lookup of a Contact 309
Testing Lookup of a Contact 310
Summary 312

Chapter 8: memcached 313

What Is memcached? 313
How memcached Is Used 315

What Is Gearman? 317
Caching Strategies 318

Installing memcached 318
Starting memcached 321

Startup Scripts 322
Installing the Cache::Memcached Perl Module 323

Using Cache::Memcached 323
Connecting, Instantiation 324
Memcached Operations 325
Cache::Memcached API 325

Simple Examples 328
Storing a Scalar 328
Complex Data Types 329
Add and Replace 330

A More Practical Example 331
User Application 331
Data Design 332

xv

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xvi

Contents

UserApp Package 334
Instantiation 334
Database Connector Method 334
Data Retrieval Methods 335
Simple Accessor Methods 338
Data Modification Methods 339
Using UserApp 342
Memcached Connector Method 344
Caching Implementation Plan 345
Where to Add Caching? 345
Caching Key Scheme 346
Precaching 346
Precaching Cities 347
Precaching States 347
Using Instantiation for Precaching Method Calls 348
Modifying Accessor Methods to Use Cache 348
User Data Caching — Set Method Modifications 350
User Data Caching — Get Method Modifications 351
UserApp Now Has Caching! 352
Other Caching Issues 352

Summary 357

Chapter 9: libmemcached 359

What Is libmemcached? 359
libmemcached Features 360
Libmemcache Utility Programs 360
Installing libmemcached 360

libmemcached Utility Programs 361
memcat 361
memflush 362
memcp 362
memstat 362
memrm 363
memslap 363
memerror 364

libmemcached Perl Driver 364
Installation 365
Memcached::libmemcached and libmemcached API using Memcached::libmemcached 365
Connection Functions 366
libmemcached Behavioral Functions 366
Functions for Setting Values 369

xvi

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xvii

Contents

Data Retrieval (get) Functions 370
Increment, Decrement, and Delete 371
Informational and Utility Functions 372
Object-Oriented Interface 373
Procedure Memcached::libmemcached Program Example 373
Object-Oriented Memcached::libmemcached Program Example 374

Cache::memcached::libmemcached 375
Performance Comparisons 376
Writing Your Own Comparison Script 377

Summary 380

Chapter 10: Memcached Functions for MySQL 383

What Are Memcached Functions for MySQL? 383
How Do the Memcached Functions for MySQL Work? 384
Install the Memcached Functions for MySQL 385

Prerequisites 385
Configure the Source 385
Build the Source 386
Install the UDF 386
Checking Installation 387

Using the Memcached Functions for MySQL 388
Establishing a Connection to the memcached Server 388
Setting Values 389
Fetching, Incrementing, and Decrementing Functions 395
Behavioral Functions 397
Statistical Functions 400
Version Functions 401

Using memcached UDFs 402
Single Database Handle Example 403
Fun with Triggers (and UDFs) 409
Read-Through Caching with Simple Select Statements 412
Updates, Too! 415

Summary 416

Chapter 11: Apache 417

Understanding Apache: An Overview 417
Understanding the Apache Modules API 419

Apache 2.2 Changes Since Apache 1.3 420
Apache 2.2 Request Phases 421
New and Modified Modules 423

xvii

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xviii

Contents

Installing Apache 424
Installing Apache on Windows 425
Installing Apache and mod_perl on a Working UNIX System 427
Installing Apache on Apple OS X (10.5) 429
Apache Source Install on UNIX 429

Installing mod_perl from Source 433
Installing libapreq2 from Source 434
Apache Configuration 435

Configuration Section Container Directives 436
Basic Directives 440
Server Tuning Directives 444
Logging Directives 446
Error Directives 448
Access Control, Authentication, and Authorization 449
.htaccess File Directives 453
Indexing Directives 454
CGI Directives 457
VirtualHost Directives 459
Handler and Filter Directives 460
Client Handling 462
SSL Directives 463
Clickstream Analysis 466
Rewriting URLs 468
Conditional Pattern 471
Apache Reverse Proxying 478
Enabling mod_proxy 480
mod_proxy Directives 481
Apache Server Control 483

Apache Configuration Schemes 483
Source Install 484
Ubuntu/Debian 484
Centos/Redhat Variants 486
SUSE 487
Windows 489

Common Apache Tasks 492
Configuring a Name-Based Virtual Host 493
Setting Up HTTP Basic Authentication 495
Setting Up Digest Authentication 496

xviii

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xix

Contents

Configuring a Secure Server 497
Settin Up a Secure Server with a Valid Secure Certificate 498
Setting up a Reverse Proxy with Two Virtual Hosts 499

Summary 501

Chapter 12: Contact List Application 503

Using MySQL and memcached Together 503
A CGI Program 504

CGI Apache Setup 504
Your Basic CGI Program, and Then Some 504
User Interface 506
Database Storage Requirements 513

Program Flow 515
First Things First 515
Program Implementation 516

WebApp Class Methods 529
Instantiation with the new() Method 531
Connection to MySQL 532
Connection to memcached 533
The getUsers() Method 534
The getUser() Method 537
The saveUser() Method 538

Database Methods 542
The insertUser() Method 542
The updateUser() Method 543
The deleteUsers() Method 545
The userExists() Method 547

Caching Methods 549
The saveUserToCache() Method 549
The cacheUsers() Method 550
The getUsersFromCache() Method 552
The userExistsInCache() Method 553
The deleteUserFromCache Method 554
The setMemcUIDList() Method 556
The updateMemcUIDList Method 556
The deleteMemcUIDList() Method 558
The getMemcUIDList Method 559

xix

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xx

Contents

Other Methods 560
The getStates() Method 560
The getState() Method 561
The encodeUserData() Method 562

Testing 563
Summary 564

Chapter 13: mod_perl 565

New mod_perl 2.0 Features 566
Configuring mod_perl 566
mod_perl Configuration Directives 569

<Perl> Sections 569
PerlModule 570
PerlLoadModule 571
SetHandler perl-script 571
SetHandler modperl 571
PerlSetEnv 571
PerlPassEnv 572
PerlSetVar 572
PerlAddVar 572
PerlPostConfigRequire 573
PerlRequire 573
PerlOptions 573
PerlSwitches 574
POD 574

mod_perl Handler Directives 575
Handler Scope 575
Handler Type 575
Handler Category 576

Apache Life Cycle Overview 577
Server Life Cycle Phase Handlers 578
Connection Cycle Phase Handlers 578
Filter Handlers 579

Perl Apache2 Modules 585
Apache2 Constants and Request Record Perl Modules 586
Apache2 Connection and Filter Record Modules 590
Apache2 Server Record Modules 591
Apache2 Configuration Modules 592
Apache2 Resource/Performance, Status, and Other Modules 594

Summary 598

xx

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xxi

Contents

Chapter 14: Using mod_perl Handlers 601

PerlResponseHandler Example 601
Initial Handler Setup 602
Log Messages Using the Server Object and Form Parsing 602
Setting the Log Level and Printing the HTTP Header 603
Redirection 603
Print the Document Header 604

Connection mod_perl Handlers 607
PerlPreConnectionHandler Example 608
Other HTTP Request Cycle Phase Handlers 612

PerlAccessHandler Example 612
PerlAuthenHandler Example 615
PerlAuthzHandler Example 619
PerlLogHandler Example 622
Perl Filter Handler Example 627

Summary 630

Chapter 15: More mod_perl 633

mod_perl Handlers or ModPerl::Registry? 633
Using ModPerl::RegistryLoader 634
Converting a ModPerl::Registry Script to a mod_perl Handler 635
Converting a mod_perl Handler to a ModPerl::Registry Script 641

Dealing with Cookies 643
CookieTestHandler 643
Tools for Testing Cookies and Headers 649

Generic Database Methods 651
dbGetRef() 652
dbInsert() 653
dbUpdate() 654
dbDelete() 655
whereClause() 656
buildUpdate() 658
buildInsert () 659
Other Changes to WebApp 660

Session Management 662
Implementing the mod_perl Handler LoginHandler 663
Understanding the WebApp Class 667
Storing Session Data 670

xxi

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xxii

Contents

File Upload mod_perl Handler 675
Storing Files in the Database or Not? 675
Database Table 676
mod_perl Handler Implementation 676
Methods That Need to be Added to WebApp 682
Using the mod_perl Upload Handler 685

Templating 686
Template Toolkit 686
Features 687
Plug-Ins to Template Toolkit 687
Template Toolkit Syntax 687
A mod_perl Handler Example Using Template Toolkit 690
Caching Templates 693

HTML::Template 694
Tags 694
A mod_perl Handler Example Using HTML::Template 695
HTML::Template template 697

HTML::Mason (Mason) 698
Mason Syntax 698
In-Line Perl Sections 699
Mason Objects 700
Mason Components 700
Initialization and Cleanup 702
Userlisting Page in Mason 703

Summary 704

Chapter 16: Perl and Ajax 707

What Is Ajax? 707
mod_perl Applications and Ajax 708

Basic Ajax Examples 708
More Examples Using the JSON Perl Module 713

Summary 738

Chapter 17: Search Engine Application 739

Using Gearman to Put the Search Engine Application Together 740
Gearman 740
Installing and Running Gearman 741
Using the Gearman MySQL UDFs 744
Perl and Gearman 746

xxii

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xxiii

Contents

The Search Engine Application 747
Database Tables for the Search Engine Application 749
Database Triggers 751
Sphinx Setup 752
Gearman Workers 756
Running the Workers 764

mod_perl Handler Web Applications 766
Search Application 766
Using the Search Application 777
URL Queue Application 778
URLHandler — AJAX Application 779
URLQueueHandler mod_perl Handler 787
URLQueueHandler handler() Subroutine 787
URLQueue Interface 790

Summary 792

Appendix A: Installing MySQL 793

Choosing a MySQL Version 793
Choosing a MySQL Package Type 794
Installing MySQL on Windows 795
Installing MySQL on RPM-based Linux Systems 804
Installing MySQL on Ubuntu 804
Installing MySQL from Source on UNIX Systems 807
Unix Post Install 809

Appendix B: Configuring MySQL 811

Running MySQL for the First Time 811
Setting Up Privileges and Creating a Schema 812
MySQL Server Configuration File 812

Basic Command Options 813
InnoDB Path and Tablespace Command Options 815

Backups 817
Replication Backup Slave 817
mysqldump 818
Scripting mysqldump Backups with Perl 818
Creating a Backup by Copying Data Files 820
mysqlhotcopy 821
Snapshots Using LVM 821
InnoDB Hotbackup, ibbackup 822

xxiii

Galbraith ftoc.tex V2 - 06/02/2009 4:42pm Page xxiv

Contents

Monitoring 823
Nagios 823
Cacti 824
MySQL Enterprise Monitor 825

my.cnf Sample File 825
Sample sphinx.conf 827

Index 831

xxiv

Galbraith f07.tex V2 - 06/02/2009 11:47am Page xxv

Foreword

Over a decade ago I walked into an office in Seattle on a Saturday to do an interview. The day before I
had had the worst interview of my life. I had spent an entire day wandering through the halls of a large
Seattle-based company answering asinine questions. I was not in a particularly good mood and doing an
interview on a Saturday was not really what I wanted to be doing.

The interview was not done in the normal one-on-one fashion, but instead it was being done with me
talking to about seven developers at once. I was being asked all sorts of questions about databases, web
servers, and more general stuff about how programming languages work. There was this one particular
guy who kept asking me these oddball questions that just seemed to come out of nowhere. For a while
I kept thinking to myself, ‘‘Where is this stuff coming from?’’ It all seemed random at first, and then I
figured out why he was asking the questions.

He was putting together a bigger picture in his head and was asking questions in order to learn how to
put together entire systems. The questions had nothing to do with the trivial corners of any particular
technology but instead dealt with how to build systems. He was using the opportunity to learn.

Patrick is an amazing fellow. Of all of the people I have worked with over the years, he has been the
one who has always been the person who asked the questions. He is obsessed with learning and, unlike
most engineers, he has no fear of divulging that he doesn’t know something about a particular topic. He
will ask any question and read any book that he must in order to learn how something works. He asks
questions in the most humble of manners and I have never seen him shy away from even the most heated
of personalities in his quest for answers.

The book you hold in your hands is the result of that curiosity. There is no web related system you could
not build given the tools this book provides. Queues, webservers, caching, and databases. You can build
the world we have created in the Internet with these tools.

Brian Aker

Galbraith f07.tex V2 - 06/02/2009 11:47am Page xxvi

Galbraith flast.tex V3 - 06/03/2009 2:28pm Page xxvii

I n t roduc t ion

Web Application development has changed a lot in the past ten years. Now there are so many new
technologies to choose from when implementing a web application, and so many ways to architect an
application to get the most optimal performance.

One of those technologies is memcached, a high-performance, distributed memory object caching system
that you can use as a front-end cache for your applications to store data you would otherwise have to
access from a database. This has been a great boon to numerous companies looking for ways to gain
performance without having to spend a king’s ransom — now affordable commodity hardware can be
used to run memcached to simply provide more memory for application caching. Before, the focus would
have been on how to get more power (hardware) for database servers.

Then there is MySQL, the world’s most popular open source database and a full-fledged relational
database management system. MySQL has advanced greatly in the past ten years, providing many fine
features that you, as a web developer, can take advantage of. MySQL came into being during the advent
of the World Wide Web and, in fact, was the database of choice for many web applications. Thus, it was
a major factor in the very growth of the World Wide Web. Both MySQL and Linux evolved and became
popular because of the Internet and were innately well suited for web application development.

A technology that isn’t so new but is still very pertinent is Perl. Perl is an incredibly versatile program-
ming language that doesn’t get the fanfare of many of the new languages now available; Perl quietly and
dutifully provides the functionality that powers many web sites and applications. Such is the burden of
a mature and stable technology. However, Perl has much to be excited about. There is a legacy of more
than two decades of developers solving many problems, and a plethora of CPAN modules for just about
everything you could ever need to do programmatically. There are also new features and frameworks
for Perl, such as Moose, and the eventual release of Perl 6. It has been long coming, but that’s probably
because Perl 5 works so well. Also, writing Perl programs is incredibly enjoyable!

Other new technologies include:

❑ Ajax, which has made it possible to create rich and interactive web applications that are on par
with traditional desktop applications. This will continue to transform the Web in a fundamental
way.

❑ Gearman, a system to farm out work to other machines. This is a new system that makes it
possible to implement distributed computing/MapReduce.

❑ Sphinx, a powerful, full-text search engine that integrates well with MySQL.

The goal of this book is to cover each of these technologies separately to help you gain an in-depth
understanding of each of them, and then to put the pieces together to show you how you can use these
technologies to create web applications. This book will also introduce you to new technologies that no
other book has yet covered in such detail, as well as the idea of the LAMMP stack — Linux, Apache,
memcached, MySQL, and Perl.

Galbraith flast.tex V3 - 06/03/2009 2:28pm Page xxviii

Introduction

Who This Book Is For
To understand much of what is shown in this book, you should have at least an intermediate level of Perl
or another programming language, the ability to perform some common system administrative tasks,
and a basic understanding of what a database is.

The target of this book is the intermediate programmer, though this can be a broad group. There are some
Perl application developers who are Perl experts but who might avoid becoming intimately acquainted
with the database, and then there are others who are database administrators who can write some Perl
utilities but who have not made the leap to writing web applications in Perl. This book is intended as a
bridge between the two skill sets, to help either of the ‘‘intermediate’’ groups to learn something new.

What This Book Covers
This book will cover each component in the LAMMP stack separately, so you can gain an understanding
of each in isolation. It will then put all the pieces together to show how you can effectively use them for
developing web applications. This isn’t the typical web application programming book! It’s written by
an author who has had to fulfill many different roles in (usually) small organizations, where necessity
dictated that he wear the various hats of a database administrator, systems administrator, and even a
Perl application coder! This is also not a web application design book. The web applications presented in
this book use as simple a design as possible to get the point across.

How This Book Is Structured
This book covers the following topics:

❑ Chapter 1: How web application development has changed over the years and an overview of
the new technologies this book will cover.

❑ Chapters 2–3: Basic and then more advanced MySQL usage and concepts, including introduc-
tions to writing MySQL User Defined Functions and to the Sphinx full-text search engine.

❑ Chapter 4: A refresher on Perl programming.

❑ Chapter 5: A refresher on object-oriented Perl.

❑ Chapter 6: Programming with Perl and MySQL, covering DBI.

❑ Chapter 7: A simple command-line Perl contact list application using MySQL.

❑ Chapter 8: An introduction to memcached and writing Perl database applications using mem-
cached as a caching layer.

❑ Chapter 9: A discussion of libmemcached, a memcached client library written in C that offers
more features and performance as well as a Perl interface.

❑ Chapter 10: An introduction to the Memcached Functions for MySQL (UDFs).

❑ Chapter 11: A complete guide to Apache installation and configuration.

❑ Chapter 12: A simple contact list CGI application written in Perl that shows the use of MySQL
and memcached together.

xxviii

Galbraith flast.tex V3 - 06/03/2009 2:28pm Page xxix

Introduction

❑ Chapter 13: A mod_perl overview.

❑ Chapter 14: Using mod_perl handlers, this chapter shows you some basic mod_perl handlers
and demonstrates the power of mod_perl.

❑ Chapter 15: More mod_perl, showing you how to convert the application from Chapter 12 to a
mod_perl application, as well as some other mod_perl application examples, such as handling
cookies, sessions, and templating systems.

❑ Chapter 16: How to write Ajax mod_perl web applications.

❑ Chapter 17: The crown jewel of this book puts all previous technologies together, presenting a
search engine application using mod_perl, memcached, MySQL, Gearman, and Sphinx!

❑ Appendix A: MySQL installation.

❑ Appendix B: MySQL configuration, backups, and monitoring.

What You Need to Use This Book
This book is targeted for Unix operating systems, but also makes a good attempt at showing you how
to install MySQL, Apache, and mod_perl on Windows. So it’s entirely possible to use Windows for the
examples presented in this book.

The code examples in this book were tested to make sure they work. Some things were changed, though
verified, during the editing phase.

The components you will need for this book are:

❑ MySQL version 5.1 or higher, though 5.0 should work

❑ Apache 2.2

❑ Modperl 2.0

❑ Perl 5.8 or higher, though earlier versions should work

❑ memcached 1.2.6 or higher

❑ Sphinx 0.9.8 or higher

❑ libmemcached 0.25 or higher

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

xxix

Galbraith flast.tex V3 - 06/03/2009 2:28pm Page xxx

Introduction

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use gray highlighting to emphasize code that’s particularly important
in the present context.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-41464-4.

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book’s details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ discovered error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the Book’s Errata page and fix the problem in
subsequent editions of the book.

xxx

Galbraith flast.tex V3 - 06/03/2009 2:28pm Page xxxi

Introduction

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an email with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as for many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxxi

Galbraith flast.tex V3 - 06/03/2009 2:28pm Page xxxii

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 1

LAMMP, Now with
an Extra M

How things have changed in the last decade! The Internet is no longer a luxury. It is now a neces-
sity. Every day, more and more commerce is conducted over the Internet, more businesses are
built around the Internet, and more people use the Internet for their primary source of entertain-
ment, communication, and social networking. To provide all this functionality, more and more web
applications and services are available and required. These applications and services are replac-
ing traditional desktop applications and legacy ways of doing things; the local computer focus is
now Internet-centric. Sun Microsystems’ motto, ‘‘The network is the computer,’’ truly has become
a reality.

The way today’s web sites are developed and how the underlying architecture is implemented have
also changed. With Web 2.0, web applications are much more dynamic than ever and offer rich,
desktop-like functionality. Web applications that once ran exclusively on servers and produced
HTML output for web browser clients are now multitiered, distributed applications that have both
client components like AJAX (Asynchronous JavaScript and XML), JavaScript, and Flash, as well
as server components like mod_perl, PHP, Rails, Java servlets, etc. These new web applications are
much richer in features, and users now expect them to behave like desktop applications. The result
is a satisfying and productive user experience.

The architecture that is required to support these applications has also changed. What used to be
a simple database-to-web-application topography now comprises more layers and components.
Functionalities that were formerly implemented in the web application code are now spread out
among various services or servers, such as full-text search, caching, data collection, and storage. The
concept of ‘‘scale-out versus scale-up’’ has become a given in web development and architecture.
This is the case now more than ever before with cloud computing, which offers dynamically scalable
services, either virtualized or real, over the Internet.

One component in all of these changes is caching. In terms of web applications, caching provides a
means of storing data that would otherwise have to be retrieved from the database or repeatedly
regenerated by the application server. Caching can significantly reduce the load on these back-end
databases, allowing for better web application performance overall. Also, a database isn’t the only

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 2

Chapter 1: LAMMP, Now with an Extra M

point of origin for information. Other sources of information could include remote service calls,
search index results, and even files on disk — all of which can benefit greatly by caching.

Originally, there really was no easy way to provide good caching. There was a kind of caching using
tricks like IPC::Sharable, global/package variables, database session tables, even simply files, but nothing
offered real, centralized caching of the type that is available now.

This is where the extra M in this chapter’s title comes in. It stands for memcached. memcached is a high-
performance, distributed memory object caching system that provides caching for web applications.
Along with covering the other letters of the LAMMP acronym — Linux, Apache, MySQL, and Perl — this
book will also cover how you can leverage memcached in your web application development.

The object of this book is to show you everything you would need to know about MySQL, memcached,
Perl, and Apache, as well as many other great technologies including Gearman, Sphinx, AJAX, and
JavaScript, in order to take advantage of each for writing feature-rich, useful, and interesting web appli-
cations. This book also covers a lot of material that will expand your skill set to help you become a
well-rounded web developer.

Linux
Linux is the world’s most popular open-source operating system and the operating system on which a
significant percentage of web servers run. Linux, originally created by Linus Torvalds starting in 1991,
is itself a term given to the operating system, which includes numerous programs, utilities, and libraries
around the core Linux kernel.

Linux was developed on and freely distributed over the Internet by a growing group of developers. It
matured along with the Internet, emerging with the same principle of open development and commu-
nication that the Internet is known for. This open development concept, known as open source, or free
software, is a model that allows developers to see the source code of a program and make modifications
such as bug fixes and enhancements to the code. This model allowed for developers all over the world
to contribute to Linux. This even included development to the kernel itself, as well as to the utilities and
programs bundled along with the Linux kernel. Programs included compilers, interpreters, web servers,
databases, desktop environments, mail servers, and many other tools that meant people could install an
operating system that had everything they needed for implementing a web server, along with dynamic
web applications.

Many programs that were available (and still are available) were made possible by the GNU Project.
Initiated by Richard Stallman in 1984 along with the Free Software Foundation, GNU had the goal of cre-
ating a UNIX-like operating system with the philosophy that ‘‘people should be free to use software in all the
ways that are socially useful.’’ These tools, particularly the compiler GCC, were crucial to the development
of Linux. Also crucial to Linux’s adoption was the GPL (GNU Public License), which also came from the
GNU Project. This license allowed developers to contribute to projects, knowing that their work would
remain open and free to the benefit of the world.

Apache, Perl, PHP, and MySQL were developed to run on a number of operating systems. They also ran
well on Linux, and with the same concept of open development, they allowed developer contributions to
their advancement and maturation.

Originally, Linux was dismissed by many a pundit as being a ‘‘toy’’ operating system, or at best a ‘‘hob-
byist’’ operating system. Nevertheless, system administrators, who quickly became Linux enthusiasts,

2

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 3

Chapter 1: LAMMP, Now with an Extra M

quietly deployed Linux to run an increasing number of services across the tech world. Ironically, many
of the critical articles written by these skeptical pundits were probably being served at the time on web
servers running Linux.

Today, Linux is considered a serious operating system. You can now buy hardware with Linux pre-
installed from all major server vendors. Most interestingly, even big vendors who sell their own Unix
variants also sell and support Linux on their servers — Sun, IBM, and HP are examples.

Without question, when a web server is installed and launched today, there isn’t much thought as to
whether Linux should be used — just as a desktop operating system is most of the time assumed to be
Windows, a web server operating system can often now be assumed to be Linux. For several years now,
even personal computers have been available with Linux preinstalled.

Although this book’s target operating system is Linux (the L in LAMP), the author has attempted not to
leave Windows Apache MySQL Perl (WAMP) developers out in the cold. Where possible, installation
instructions and other configuration parameters are made available for Windows.

Apache
Another open-source project that had its genesis around the same time as Linux is the Apache HTTP Web
Server. Developed by the Apache Software Foundation, the Apache HTTP Web Server is the world’s
most popular web server. Therefore it is also the web server that this book covers. Apache was originally
released in 1994, around the same time that Linux was coming into popularity. Apache was most often
bundled along with Linux in various Linux distributions, so setting up a Linux server usually meant you
were also setting up Apache.

The pie chart in Figure 1-1 shows the market share of the Apache web server as used by the million
busiest web sites, as of March 2009.

Google, 1.56%

nginx, 3.06%

other, 8.20%

Microsoft, 18.68%

Lighttpd, 0.99%

SunONE, 0.59%

Zeus, 0.26%

Apache, 66.65%

Figure 1-1
Netcraft, http://news.netcraft.com/

3

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 4

Chapter 1: LAMMP, Now with an Extra M

With a running Apache server, you had at your disposal a full-fledged web server that allowed you
to build web sites — both static pages and dynamic web applications using CGI (Common Gateway
Interface). Since then, Apache has evolved even further, becoming much more modular. The number
of programming languages available for building web applications with Apache has also increased:
You now have a choice of using CGI, mod_perl, PHP, Ruby, Python, C/C++, and others. For Java web
application development, the Apache Software Foundation has developed Apache Tomcat, a JSP and
Java servlet engine that can talk HTTP. So there are many choices for developing web sites, depending
on what you prefer and where your expertise lies.

This book will focus on Apache web development using Perl, and in particular, mod_perl. Since Apache
is very modular, it allows for developing various modules to extend its functionality, as well as providing
access to the server to run various interpreted languages such as Perl, PHP, Python, ASP, and Ruby. This
is in contrast to how CGI worked, which was running programs externally to the web server.

MySQL
Another of the open-source hatchlings is the MySQL database. MySQL was originally developed on
Solaris but soon switched to be developed under Linux as Linux became more stable and more popular.
MySQL grew, along with Linux, to become the default database of choice for web application develop-
ment on Apache. This was because MySQL is fast, reliable, easy to install and administer. Also, it didn’t
cost a fortune (whether free or at the various support level pricings), and had various client application
APIs and drivers, including Perl.

As far as web applications go, one change made during the last decade was MySQL’s prevalence as
the de facto database for open-source database development. Already quite popular a decade ago,
MySQL has since advanced greatly in capacity, features, and stability to become the world’s most popu-
lar open-source database. Most Linux distributions make it extremely easy to install MySQL (as well as
PostgreSQL) during operating system installation, so you can have a fully functioning relational database
system (RDBMS) that you can readily use for your web applications in no time.

Many popular web sites and customers use MySQL for a number of purposes. Figure 1-2, shows a list of
the 20 most popular web sites that run MySQL.

Other sites and organizations that run MySQL include:

❑ Slashdot.org

❑ LiveJournal

❑ Craig’s List

❑ Associated Press

❑ Digg.com

❑ NASA – JPL

❑ U.S. Census Bureau

This book shows you much more than previous web application development books. You will see just
how powerful, yet how easy, it is to use MySQL. The author hopes this will give you a reason for making
MySQL your database of choice, if it isn’t already so. In this book, you will see:

4

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 5

Chapter 1: LAMMP, Now with an Extra M

❑ How to install and configure MySQL

❑ How to use MySQL’s various utility and client programs

❑ How to use MySQL. This book starts out with simple usage examples for those who aren’t famil-
iar with databases and progresses to more advanced usage examples, showing you how to write
useful triggers and stored procedures.

❑ How to use MySQL storage engines and what each engine is designed and best suited for

❑ How to set up dual-master replication — something you’ll want to know if you are a web
developer at a smaller start-up company. You can trust the author that this is a possibility in this
industry!

❑ How to write a user defined function (UDF). Yes, this will be implemented in the C program-
ming language, even though this book is targeted to Perl developers. Even if you are a true Perl
geek, you’ll probably find this interesting — possibly even enough to make you want to write
your own. It’s always good to expand your horizons a bit!

Figure 1-2
Sun Microsystems

memcached
memcached is a newer project, the new kid on the block, that came into being later than Linux, Apache,
MySQL, or Perl. However, memcached has become just as much an integral component to the overall
LAMP stack — which is the reason LAMP should now be referred to as LAMMP! Perhaps no one has
thought of this yet because memcached is so simple to run and just works, or because it’s so ubiquitously
used that it almost goes without saying that it’s now the de facto caching solution for horizontal web
application development. That being said, memcached deserves some focus and appreciation for how it
can benefit your web application platform, and likewise deserves a letter up on the LAMMP sign on the
mountaintop above Hollywood.

5

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 6

Chapter 1: LAMMP, Now with an Extra M

memcached is a high-performance, distributed memory object caching system developed by Danga
Interactive to reduce the database load for the extremely busy web site LiveJournal.com, which was at
the time handling over 20 million dynamic page views per day for 1 million users. memcached solved
for LiveJournal.com the problem that many other sites also have — how to reduce read access to the
database.

A typical way to improve the throughput of a site is to store all query results from the database into
memcached. Then, before fetching new data from the database, first check to see if it exists in memcached.

Using memcached, LiveJournal.com reduced their database load to literally nothing, allowing them
to improve user experience. Because memcached was developed and released to the world as open-
source software, Danga’s creation has benefited thousands upon thousands of web developers, system
administrators, and the wallets of numerous organizations due to hardware cost savings. Now it has
become possible to utilize commodity hardware to act as simple memory servers. Some memcached
success stories are discussed in the following sections.

Gear6
Gear6 is a company that built a business around scalable memcached solutions for superior site scaling,
enabling their customers to scale their dynamic sites. Gear6 allowed these sites to increase their use of
memcached (in some cases growing from about 100 gigabytes to 3 terabytes in only six months!) without
using more rack space. memcached also helped Gear6 grow its customer base because of its wide use, as
shown in the following table:

Type of Site memcached Function

Social networking sites To store profile information

Content aggregation sites To store HTML page components

Ad placement networks To manage server-side cookies

Location-based services To update content based on customer location

Gaming sites To store session information

Clickability
Clickability is a company that provides SaaS (Software-as-a-Service) web content management platform
products. Their services include content management, web site publishing and delivery, search, web
analytics, and newsletter delivery. They use memcached as a layer-2 cache for application servers to
store content objects as serialized Java objects. They now run multiple instances of memcached, which
are regularly cleared and versioned for cache consistency. They also use multicast messaging to cache
objects across multiple memcached servers, as well as a messaging queue used for sending a clearing
message to application servers. They originally did not use memcached, but were able to implement it
into their architecture within a couple of days after deciding to take advantage of memcached’s benefits.
Because of memcached, particularly how it provides a caching layer to web applications to prevent
excessive hits to the database, they now serve 400 million page-views a month!

6

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 7

Chapter 1: LAMMP, Now with an Extra M

GaiaOnline
GaiaOnline is the leading online hangout web site (with seven million visitors per month and a billion
posts), geared toward young people for making friends, playing games, trading virtual goods, watching
movies and interacting in an online community. A user can also create a virtual personality, referred to
as an avatar. memcached has been a crucial tool in allowing GaiaOnline to grow their site from serving
originally 15,000 to 20,000 users at a time to now being able to serve 100,000 users simultaneously.

How memcached Can Work for You
Gear6, Clickability, and GaiaOnline aren’t the only memcached success stories. Some other sites that also
use memcached extensively include: LiveJournal, Slashdot, Craigslist, Facebook, Wikipedia, Fotolog,
Flickr, and numerous others.

In fact, Figure 1-3 shows that 80 percent of the top sites use memcached.

1.Yahoo
2.Google
3.Youtube
4.Live
5.MSN
6.MySpace
7.Wikipedia
8.Facebook
9.Blogger
10.Yahoo.co.jp

11.Orkut
12.Rapidshare
13.Baidu
14.Microsoft
15.Google.in
16.Google.de
17.QQ.com
18.eBay
19.Hi5
20.Google.fr

80% of these web
sites use

Memcached!!!

LiveJournal
 20M dynamic page views/day
Facebook
 80S memcached
Fotolog
 40 memcached vs. 140 DS Serv. and 70 Web Serv.
Flickr
 14 memcached vs. 144 DS Serv. and 244 Web Serv.
Wikipedia
 79 memcached vs. 30 DS Serv.

Source: Alexa Top Sites - 08.05.16

Figure 1-3
Sun Microsystems

Indeed, memcached is a now primary component to the LAMMP stack. This book will attempt to show
you why. Things you will learn in this book include:

❑ How memcached works

❑ What read-through and write-through caches are and can do

❑ Caching issues you should be aware of

❑ How to set up and configure memcached

❑ How to write Perl programs that use memcached

❑ The new libmemcached client library, which gives you even more performance for writing Perl
programs that use memcached

❑ The Memcached Functions for MySQL, which are user-defined functions (UDFs) written by the
author. These functions allow you to interface with memcached from within MySQL. You will
see how you can use these convenient functions with MySQL:

❑ From within your Perl code

❑ With triggers

7

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 8

Chapter 1: LAMMP, Now with an Extra M

❑ With handy SQL queries that perform a simple read-through cache

❑ How you can modify your Perl applications to use these functions instead of using the Perl client
to memcached

❑ Some simple caching strategies with memcached

Perl
The Perl programming language is the eldest of all the open-source siblings in the LAMMP stack. Cre-
ated by Larry Wall — a linguist, musician, programmer, and all-around nice guy — in 1987, Perl was first
developed for report processing and text manipulation. With the advent of the World Wide Web, Perl
became a natural choice for developing web applications because of its innate ability to process and parse
data. Implementing the functional equivalent of regular expressions or other Perl string manipulations,
which are easy using Perl, takes many more lines of code and longer development time if implemented
in other programming languages. This, as well as not having to worry about things like memory manage-
ment, means relatively rapid development in Perl. You could write a fully functional Perl web application
in a fraction of the time it would have taken to implement the equivalent application in the other pro-
gramming languages available at the beginning of the World Wide Web. This is one of the many reasons
Perl became popular for web development.

Originally, Perl web applications were written as CGI programs, which meant Perl programs were run
by an external Perl interpreter. Drawbacks to this included a lack of persistence with running web appli-
cations; and running external programs could also adversely affect performance.

Then, in 1996, Gisle Aas developed and released the first version of mod_perl, which is a Perl interpreter
embedded into Apache. Doug MacEachern, Andreas Koenig, and many contributors soon took the lead
in developing mod_perl and released subsequent versions, such as version 1.0.

mod_perl now made it possible for Perl web applications to have persistence that was previously unavail-
able using CGI. Additionally, mod_perl gave Perl developers the ability to write Apache modules in Perl,
because mod_perl is much more than CGI with persistence — it provides the Perl developer access to the
entire Apache life cycle, including all phases of the HTTP request cycle.

A decade later we find that mod_perl is still being used extensively. The buzz and excitement may be
over several new web development technologies and languages — and some would say Perl web devel-
opment is passé — however, Perl is a more mature technology and it just works well — as is usually case
with something that’s been around a while. People are always excited about newer things, but there’s
still a lot to be excited about when you use Perl for web applications and development!

mod_perl 2.0, released in May 2005, provided many new and exciting changes, including support for
threads, integration into Apache 2.0 (which itself had attractive new features and enhancements), the
same great ability to write mod_perl handlers for any part of the Apache life cycle, and the added feature
of writing mod_perl filter handlers for Apache 2.0’s filter interface.

Certainly, other languages and web application development paradigms have some features over
mod_perl. PHP has an application deployment model that has facilitated a bonanza of PHP web
applications, such as Wordpress, Drupal, Joomla, Mediawiki, and many others, and particularly those
with the APS (Application Packaging Standard) used in applications such as Plesk for web site hosting

8

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 9

Chapter 1: LAMMP, Now with an Extra M

services. This makes PHP application installation and deployment even simpler. Why has Perl/mod_perl
not developed an equivalent of this? Perhaps it is because mod_perl already does give you as much
control over the Apache life cycle and because it has a higher level of complexity (it’s not solely focused
on the HTTP response phase).

Also, you do have to have some ability to modify the Apache configuration if you use mod_perl handlers
as your method of web application development. The answer is to use ModPerl::Registry, with which
you can run CGI programs in mod_perl with very little modification to the application and still have
all the benefits that a mod_perl handler has. Configuring Apache to run ModPerl::Registry is no more
difficult for a web site administrator than loading mod_php to run PHP applications. So, where are all
the applications? Well, we, as Perl web application developers, need to write them.

Here are some other reasons you might want to develop web and other applications using Perl:

❑ Code is fun to write and free-flowing. You can solve any number of problems in infinite ways
while focusing on application development and implementation (the problem you’re trying to
solve) rather than on the language itself.

❑ The Perl data structures work. Both hashes and arrays are very easy when you go to organize
data, navigate, and iterate. Try the equivalent in C, and you will see!

❑ CPAN (Comprehensive Perl Archive Network). You have a choice of modules for anything you
could ever possibly want. So much functionality already exists that you don’t have to reinvent
the wheel. Every other day, the author finds an existing module that already does something he
spent hours implementing!

❑ Perl is a dynamically typed language. For those who don’t like to feel constrained, it’s per-
fect. You can just write your program without referencing a document or web site to know how
objects interface. Just code it!

❑ Perl supports object-oriented programming.

❑ Perl clients exist for just about any type of server. To name a few: MySQL, memcached,
Apache, Sphinx, Gearman, and numerous others.

❑ Perl has an XS (eXternal Subroutine) interface. This allows you to write glue code and to use
C code, if you need something to run faster than it would if it were written purely in Perl. This is
what the MySQL Perl driver DBD::mysql uses for working with MySQL’s client library.

❑ Perl supports all the new exciting technologies, such as AJAX.

❑ There are numerous templating options. You have various ways to tackle the site content
versus application functionality.

❑ You can even write Perl stored procedures for MySQL. You do this using external language
stored procedures, developed by Antony Curtis and Eric Herman.

Now, one claim you may have heard needs to be addressed: ‘‘Perl is great for prototyping, but you
should develop the implementation in another ‘real’ language.’’ This is a nonsensical statement that
enthusiasts of other languages, having no experience in Perl development, have often said. Millions of
dollars have been wasted completely reimplementing a perfectly good Perl web application to run in
another language. Consider that many extremely busy web sites are running in Perl — Slashdot and
LiveJournal are two such sites. The irony is that you will often see similar untrue statements ignorantly
posted on the Slashdot forum — a forum that Perl provides so that opinions can be heard!

9

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 10

Chapter 1: LAMMP, Now with an Extra M

This book shows you numerous things you can do in Perl, including:

❑ A Perl primer for those of you who might be rusty

❑ A Perl object-oriented programming refresher

❑ Not just Perl web applications, but also writing utilities and command line programs

❑ Useful snippets of code that you can integrate into your Perl lexicon

You will also see how easy it is to use Perl to work with the other components of the LAMMP stack, for
example:

❑ MySQL and memcached for data storage

❑ Apache mod_perl handlers

❑ Sphinx for full-text search (including the implementation of a simple search engine application)

❑ Gearman, which allows you to farm out work to other machines

It’s the author’s hope that this book will reinvigorate your fondness for Perl, or give you even more
justification and enthusiasm for wanting to develop web and other applications using Perl.

Other Technologies
This book will also introduce you to other new technologies, namely Sphinx and Gearman. It will show
you how to use these as additional components in the LAMMP stack to build truly useful and interesting
applications.

Sphinx
Sphinx is a full-text search engine developed by Andrew Aksyonoff in 2001. It is an acronym for SQL
Phrase Index. It is a standalone search engine, although it integrates nicely with MySQL and other
databases for fetching the data that it then indexes. Sphinx is intended to provide fast, efficient, and
relevant search functions to other applications. It even has a storage engine for MySQL so that you can
utilize MySQL alone to perform all your searches. Sphinx also has various client libraries for numerous
languages, including a Perl client library written by Jon Schutz, Sphinx::Search.

Sphinx also allows you to have multiple Sphinx search engines to provide distributed indexing func-
tionality. This is where you would have an index defined that actually comprises a number of indexes
running on other servers.

This book will not only introduce you to Sphinx, it will also show you a simple search engine application
implemented using Sphinx, as well as a basic Sphinx configuration with a delta index that you could use
for any number of applications that require a full-text search engine. You will also be shown how you
can replace MySQL’s full-text search with Sphinx for a better full-text searching functionality.

10

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 11

Chapter 1: LAMMP, Now with an Extra M

Gearman
Gearman is a project originally created (in Perl) by Brad Fitzpatrick of Danga, who is also known for
creating both memcached and the social web site LiveJournal. Gearman is a system that provides a
job server that assigns jobs requested by clients to various named worker processes. A worker process is
basically a program that runs as a client and awaits an assignment from the Gearman job server, which
it then performs. You split up your processing over various machines tasked for whatever requirements
your applications need. This spreads out functionality, which is implemented in programs known as
workers that might otherwise have been implemented in application code. This can also be used for
MapReduce: distributing the processing of large data sets across numerous machines (for a great descrip-
tion of the MapReduce framework, see http://labs.google.com/papers/mapreduce.html).

This new functionality means web application developers and system architects can completely rethink
how things have traditionally been done, using commodity machines to run some of these tasks.

Eric Day recently rewrote the Gearman job server, referred to as gearmand, in C for performance reasons,
along with client and worker libraries in C. He has also written a package of new Gearman MySQL
user defined functions based on the C library, and is working other developers for new and improved
language interfaces. Another feature being developed is persistence and replication for jobs, which is one
of the main things people ask about when first looking at Gearman for reliable job delivery.

This book will cover these new projects and you will see how to use them to implement automated data
retrieval and storage, as well as Sphinx indexing through Gearman workers. This book also gives you
one idea of how you can use Gearman to pique interest in Gearman.

The New Picture
Yes, things have changed in the last decade. And they probably will change more in the future.

Figure 1-4 represents how it is architecturally possible to implement the various tools and technologies
that are discussed in this book. The architecture includes:

❑ memcached and MySQL, where a web application would retrieve its data: either durable data
not cached from MySQL, or anything that needs to be cached within memcached.

❑ memcached objects, which are kept up to date to represent the state of the durable data in
MySQL. This is done either by the application code or from within MySQL using the Mem-
cached Functions for MySQL (UDFs), which would provide read-through and/or write-through
caching.

❑ Sphinx, which can be run on a number of servers, provides the full-text indexing to the web
application using the Sphinx::Search Sphinx Perl client module or through MySQL using the
Sphinx storage engine. Sphinx has as its data source a query that returns a result set from MySQL
that it in turn uses to create its full-text indexes.

❑ Gearman, which in this case is shown running on two different Gearman job servers (although
it can run on any number of servers). Gearman is a job server for the Gearman clients — either

11

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 12

Chapter 1: LAMMP, Now with an Extra M

clients implemented within the application code, cron jobs, or clients in the form of the Gear-
man MySQL UDFs — to assign jobs to the Gearman workers. In turn, the workers can perform
any number of tasks on all the other components, such as storing and retrieving data to and
from memcached to MySQL, indexing Sphinx, or any other functional requirement for the web
applications.

Worker

Client Client Client Client

Web Applications

Gearman Job
Server

Gearman Job
Server

Memcached

MySQL servers

Sphinx

Worker Worker Worker

Gearman UDF Gearman UDF

Figure 1-4

Variations on the theme that Figure 1-4 shows are infinite and limited only by your imagination. And this
book hopes to provide some fodder for your imagination in this regard! Depending on your application
or architecture requirements, your own version of Figure 1-4 will differ.

The Future of Open-Source Web Development
and Databases

What does the next ten years hold for web development and the Internet in general? What features will
MySQL, Perl, memcached, and Apache have implemented by then? Some things now are showing trends
that are sure to continue:

❑ Open source is a proven development model and will continue to be the one of the major sources
of innovation of new technology.

❑ MySQL has proven itself as a great back-end database for web applications and will continue
to increase its market share, particularly because of its power, ease of use, and low or free cost,
especially important given current economic conditions.

❑ Web applications will continue to evolve, developing more in number and variety of features.
People will use many of these new applications in place of desktop applications.

12

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 13

Chapter 1: LAMMP, Now with an Extra M

❑ Cloud computing will increasingly become a preferred method on which businesses develop
and deploy their web applications. This will depend on economic conditions, which may cause
businesses to seek ways of cutting costs — hardware and hosting service costs traditionally
being one of the largest expenses.

❑ SaaS (Software-as-a-Service), a new way of deploying software to customers as an on-demand
service, will continue to grow. SaaS goes hand in hand with cloud computing.

❑ Multitenancy — users using the database at the same time — will work better and there may be
development in this as a shared environment.

Projects to Watch!
The following are particular projects worth mentioning. These are projects that you will want to keep
an eye on!

❑ Drizzle: Drizzle is a fork of MySQL version 6.0 that has the goal to become ‘‘A Light-weight SQL
Database for Cloud and Web.’’ The idea of Drizzle is to create a very efficient, lightweight, mod-
ular database that is specifically targeted toward the Web and cloud computing. Many features
of MySQL have been removed for efficiency’s sake, although some will eventually be reimple-
mented as long as their reintroduction doesn’t affect Drizzle’s goal of remaining lightweight and
efficient.

❑ MariaDB and Maria Storage Engine: Maria is the next-generation storage engine based on
MyISAM that provides transactional support, crash recovery, and the benefit of the speed for
which MyISAM is known. MariaDB is a branch of the MySQL server that Monty Widenius
and his team have released. It uses the Maria Storage Engine as the default storage engine. The
goal of MariaDB is to keep up with MySQL development and maintain user compatibility, but
also to keep improving the database and adding more features while engaging the open-source
community in this effort.

❑ Gearman: With MapReduce becoming a household word, Gearman will increasingly play a
significant role in distributed computing.

❑ Apache Hadoop: Similar to Gearman, this is a Java-based framework for distributed computing.

❑ Perl: Perl 6 will be released!

❑ Percona: Watch out for the great efforts of Percona. They are focused on providing their own
high-performance branch of MySQL.

❑ Hypertable: A high-performance distributed data storage system, modeled after Google’s
BigTable project.

Summary
This chapter introduced you to the topics and recent technological developments that this book will
cover and it offered some observations about how much things have changed within the last decade. The
suggestion was made that the LAMP stack needs to have an extra M added to it (to become LAMMP)
because memcached has both benefited horizontal web application development and become a major
component for so many web application deployments throughout the Internet — it is just as important
a component as Linux, Apache, MySQL, and Perl. Also, this chapter offered some thoughts on what the
next ten years may hold for open-source databases and web application development.

The author hopes you have fun reading this book. He had fun writing it.

13

Galbraith c01.tex V3 - 06/02/2009 3:06pm Page 14

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 15

MySQL

The purpose of this chapter is to give web developers the necessary knowledge to understand and
use MySQL for developing dynamic web applications. It contains the following discussions:

❑ The ‘‘About MySQL’’ section is a MySQL primer, and provides a brief overview, descrip-
tion and history of MySQL.

❑ The ‘‘Installing and Configuring MySQL’’ section guides you through installation and
configuration to get a MySQL server running and includes database creation, setting up
privileges, and setting up replication.

❑ The ‘‘Database Planning’’ section gives information on how to design an optimal database
schema, set database server settings for performance, and provides simple tips to remem-
ber when developing the database architecture of a web application.

❑ The ‘‘Using MySQL Functionality’’ section covers some of the most useful components
of MySQL such as triggers, functions and procedures, storage engine types, user defined
functions (UDFs), as well as external language stored procedures.

How CGI and PHP Changed the Web
Dramatically

In the beginning of the World Wide Web, all web site content was static. To allow for web servers
to provide search functionality, the original web server code was modified. This was cumbersome
and it proved difficult to provide the ability to add new functionality.

Then two specifications came into being; CGI and PHP changed the world wide web dramatically.

The CGI (Common Gateway Interface) is a standard protocol specification that was developed by
a group of developers who included Rob McCool, John Franks, Air Lutonen, Tony Sanders, and
George Phillips in 1993. Shortly, thereafter, PHP followed. PHP is a scripting language originally

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 16

Chapter 2: MySQL

developed by Rasmus Lerdorf, which originally stood for Personal Home Page because he devel-
oped PHP to replace Perl scripts he used to manage his home page; PHP then became an entire
scripting language.

Both CGI/Perl and PHP now allowed web site developers to write dynamic web applications without
having to modify the web server. At that time, developers who wrote CGI programs often depended
on flat files for data storage, making storage difficult to maintain and resulting in performance issues.
There were databases available for use with web applications. However, these were too expensive for
the average web developer to afford, as well as being much too difficult to set up and administer, requir-
ing a DBA (database administrator). These database also ran only on expensive server hardware. Most
importantly, they were not designed for the web because they were often slow to connect to.

With the release of mSQL (Mini SQL), which although not free, was inexpensive, there was finally a
choice for web development that wasn’t cost-prohibitive and was also easy to use.

With the release of databases such as MySQL (in 1995) and PostgreSQL (in 1996, though evolving from
Postgres and before that Ingres, which came about in the 1980s), along came even more choices of
databases for web developers to use that were easy to install and administer, did most of everything that
they needed, ran on inexpensive hardware and operating systems, and were free. Commodity database
systems such as MySQL and PostgreSQL allowed web development to take off and for dynamic data to
easily be put online and maintained.

Not only that, these databases used SQL which is easy to embed or run from within web applications.
It’s also easier to read what data is being written to or read from the database, which further added to
these databases gaining in popularity. In fact, Monty Widenius at the time had written a program called
‘‘htmlgenerator’’ that parsed SQL out of HTML files and ran embedded queries from those HTML files
in MySQL, results in the HTML being generated at HTML tables.

Today, databases are the main source of data for web applications. This can include page content, user
information, application meta-data, and any data that allows for a dynamic web application to have full,
useful functionality. Without data, there’s not much that an application can do.

About MySQL
Since May 23, 1995, MySQL has been a popular, open-source relational database system (RDBMS)
that millions of users and developers have downloaded. It’s also one of the core components of
this book.

MySQL’s basic functionality can be explained as this:

1. A query is entered via a client program such as the MySQL command line tool mysql.

2. The parser parses this query into a data structure internally, known as an item tree, which
represents the query fragments.

3. The tables that are used by the query are opened through the table handler interface.

4. For the SELECT statement only, the optimizer examines this item/parse tree, determining in
which order the query fragments will be executed, and computes the execution path.

16

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 17

Chapter 2: MySQL

5. The execution path is essentially how the server will retrieve the data.

6. The main server coder makes read, write, update, or delete calls to the table handler interface
depending on the query type.

7. The storage engine, through inheritance (from the table handler), runs the appropriate meth-
ods to act upon the read or write of the data from the underlying data source.

8. MySQL sends the results back to the client. In case of a SELECT, this is the result data. For
other queries, such as INSERT, it’s an OK packet that contains, among other things, how
many rows were affected by the query.

Netbas begat REG800 begat Unireg begat MySQL
In 1980, a then 17-year-old Monty Widenius and Kaj Arno took the Red Viking Line
ferry from Finland to Sweden (tax-free Vodka!) to buy 16KB of memory for their Z80-
based processor, the ABC 80 processor (manufactured by DIAB, a Swedish hardware
company), from Allan Larsson’s computer store in Stockholm and eventually formed
a relationship with Allan. At that meeting Monty also met Lars Karsson, founder of
DIAB, which manufactured the ABC 80. Three years later, Allan convinced Monty
to write a generic database for the ABC microcomputers. Only weeks later, Monty
delivered a working prototype. Around this time Monty developed a friendship and
working relationship with David Axmark, with whom he later founded MySQL.
Later, Monty worked for Tapio Laakso Oy, a Finnish company where he converted
COBOL programs to TRS80 Basic and from TRS80 Basic to ABC Basic. While doing
this, Monty found redundancies that he discussed with Allan. They considered the
market for developing a system to manage data more efficiently. Hence came Netbas,
which begat REG800, which begat DataNET, which begat Unireg, which finally begat
MySQL.

MySQL’s genesis from Unireg was the result of Monty and David’s realization that the
SQL language was well suited, in terms of being used with web application technolo-
gies such as CGI programs written in Perl, for the task of web development (as well as
for non-web Perl programs). One primary reason for Monty to develop MySQL was
how cumbersome it was to use Unireg for Web development. It took Monty about nine
months to code the upper layer of MySQL and it released in October 1996. Thirteen
years and millions of downloads later, MySQL is now the world’s most popular open
source database. Thousands upon thousands of web sites use MySQL.

David had tried to convince Monty for years to write an SQL layer on top of Unireg. It
was, however, when Allan Larsson started to use Unireg’s report generator to generate
web pages that Monty was convinced something had to be done; he thought what Allan
did was a creative hack and he didn’t want to ever have to maintain the resulting web
page code.

It’s important to reflect on Monty’s genius: His ability to develop copious lines of code
that are amazingly efficient. It’s been observed that he can look at numerous lines of
code and find a way to reduce them to a tenth their original size! The core developers

Continued

17

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 18

Chapter 2: MySQL

of MySQL are of the same caliber and possess the same dedication that Monty is
known for.

Monty adheres to the philosophy that having a good code base is a prerequisite to
succeed. He feels the major reason for MySQL’s popularity is that MySQL was free to
use for most people and that he and his team spent a major part of their time helping
MySQL users. As way of example, for the first 6 years, Monty personally sent out more
than 30,000 emails helping people with MySQL-related issues. This attitude of selfless-
ness and charity, together with a good documentation, was what made MySQL stand
out among the all the other databases.

MySQL is written in C and C++, and some of the core API functions are written in assembly language for
speed, again lending to MySQL’s efficiency. For the curious observer, because MySQL is open-sourced,
the source is entirely viewable and a great way to see the inner workings of a complex and powerful
system. Also, because the source is freely available, anyone can contribute enhancements, bug fixes, or
add new functionality to MySQL.

So what are MySQL’s important features? They are as follows:

❑ MySQL is very fast, easy to use, and reliable. One of the primary reasons MySQL was adopted
for web applications was that it is easy to install and ‘‘just works.’’ Originally, MySQL’s simplic-
ity contributed to quick processing of the type of data that web sites commonly required. It’s
more complex now, but still retains its fast nature.

❑ MySQL has documentation. Documentation is available online in various formats and in its
entirety. Gratis. You don’t have to pay for MySQL’s manuals like other RDBMS (or for the sys-
tem itself, unless you want support!).

❑ MySQL is multi-threaded. This allows more connections with less memory because with
threading, you have each thread sharing the same memory versus a model such as forking,
where each child is a copy of the parent, including the memory of the parent.

❑ MySQL supports features such as replication and clustering. Its robust replication supports a
number of replication schemes depending on the application requirements. One example might
be where you have a read/write master that handles all the DML (data-modification language)
statements such as INSERTS, UPDATES, DELETES, etc., and a read-only slave that handles all the
read queries.

❑ MySQL supports transactions and has ACID-compliant Storage Engines (InnoDB, Maria, Fal-
con). In addition to the commonly used InnoDB storage engine, MySQL is also developing two
other transactional storage engines: Maria, which is based on MyISAM, and Falcon, which was
developed from Jim Starkey’s Netfrastructure database. There is also a publicly available, trans-
actional storage engine developed by PrimeBase called PBXT. ACID compliance is implemented
by the storage engine itself. ACID stands for Atomicity, Consistency, Isolation, Durability.

❑ Atomicity: The transaction is atomic and none of the SQL statements within the transaction
should fail, and if they do, the entire transaction fails.

❑ Consistency: The execution of a transaction must occur without violating the consistency
of the database.

18

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 19

Chapter 2: MySQL

❑ Isolation: When multiple transactions are executed simultaneously, they must not
affect any of the other transactions, meaning that a transaction should complete before
another one is started, and the data that a transaction may depend on is not affected by
another.

❑ Durability: Once a transaction is committed, the data is not lost. A good example of dura-
bility is a recent test at a MySQL developer meeting against Maria where the server was
unplugged in the middle of executing various statements, and when it was turned back on,
the statements were completed and no data were lost.

❑ MySQL has various client APIs for Perl, PHP, C/C++, Java, C#, ODBC, Ruby, etc.

❑ MySQL runs on numerous operating systems and hardware platforms.

❑ MySQL has numerous installation options ranging from source compilation to various binary
package formats.

❑ MySQL offers a number of storage engines depending on application requirements as well as
a pluggable storage engine interface for anyone wanting to implement his or her own storage
engine.

MySQL can be broken down into some core components, as shown in the following table:

Component Description

Parser/Command Executor This is the part of MySQL that processes a query that has been
entered into a data structure known as an item tree.

Optimizer The SELECT optimizer uses the item tree that was built by the parser
to determine the least expensive execution plan for the query.

Table Handler This is an abstract interface between the storage engines and the
database server.

Now that MySQL is installed on your system (if it isn’t, see Appendix A for instructions), you are prob-
ably anxious to get your feet wet and actually start using MySQL. The following sections show you how
to use MySQL. This includes explaining what programs are packaged with MySQL, how to work with
data — inserting, reading, updating, deleting, and other basic operations as well as showing how to use
views, triggers, functions, and procedures. This section also covers what the different storage engines are
and how you can write User Defined Functions (UDFs) and external-language stored procedures.

MySQL Programs
MySQL, in addition to the server itself, has many programs that are included with the MySQL installa-
tion. These programs include the MySQL server program, server manager programs, and scripts, clients,
and various utilities. Some of these programs may or may not be included in every installation, depend-
ing on the operating system or the way the MySQL installation is packaged. For instance, the Windows
MySQL installation doesn’t include UNIX startup scripts, whereas RPM divides MySQL install packages
between client and server.

19

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 20

Chapter 2: MySQL

Depending on the installation type, these programs are usually found in a directory with other executable
files, or in some cases only the executable files that come with MySQL. The following table shows the
directory structure that MySQL uses for various operating systems and platforms:

With the Installation Type The Files Are Found in This Folder

Source installation of MySQL /usr/local/mysql/bin

RPM and Ubuntu/Debian installs /usr/bin

Windows C:\Program Files\MySQL\MySQL Server 5.1\bin

UNIX, MySQL server program
(depends on distribution)

/usr/sbin, /usr/local/mysql/libexec, or /usr/libexec

MySQL programs all have various flags or options, specified with a single hyphen (-) and a single letter
(short options) or double hyphens (--) and a word. For instance, the MySQL client monitor program
mysql has the hyphen question mark (-?) or the hyphen help (--help) options to print command-line
option information for a given command. Some of the options are flags with no value, while some take
values with the option. With the short options, the value is followed by the option. With long options
there must be an equal sign and then a value. As an example, the user argument to the MySQL client
program is either -u username or --user=username.

As mentioned above, if you need to know all available command-line arguments that any one of the
MySQL programs accept, enter the name of the program followed by -? or --help. In addition to all the
command-line options that are available, the current defaults for the given program will also be printed.
Examples are:

mysql --help

. . . and for version:

mysql --version

. . . and for a full listing of options:

mysqld --help --verbose

This section covers some of the more common of these programs that you will use most often. Other
sections in this chapter will cover some less commonly used programs.

Client Programs
There are several MySQL client programs that you will use to interact with the MySQL server and
perform common tasks, such as an interactive shell where you enter SQL statements, create database
backups, restore database backups, and perform administrative tasks. This section covers each of these.

mysql
This is the most common program you will use with MySQL. It is the MySQL client monitor as well
as essentially an SQL shell. It’s where you interactively type in SQL commands to manipulate both

20

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 21

Chapter 2: MySQL

data and data definitions within the database, and it has history functionality built into it (stored in
.mysql_history on UNIX systems). You can also use it to pipe the output of a query from a file into
an output file in tabbed or XML format. It can alternatively be used to load data from a file such as a
database dump into the database.

A simple example to use it as an interactive shell is:

shell> mysql --user root --password rootpass test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.1.20-beta-debug-log Source distribution

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>
The command line above used to run the client program mysql connects to the test schema as the user
dbuser. The mysql> prompt is where you interact with the database.

To load a data file produced from a dump to load into the test schema, the usage is:

shell> mysql --user webuser --password=mypass webapp < backup.sql

mysqldump
You use this command to create backups of your database. mysqldump has many options allowing you to
specify all or specific schemas and tables, output format, locking options, replication information, data
and table creation information, data only, or table creation information only.

An example of using mysqldump to dump your webapps data and schema creation is:

mysqldump --user webuser --password=mypass webapps > webapps_dump.sql

This dumps everything in webapps and produces a file you can use to reload the webapps schema in its
entirety — to its state at the time when the dump was performed.

If you want only the data of your webapps schema, and no CREATE TABLE statements (schema creation),
use this:

shell> mysqldump --user webuser --no-create-info --password=mypass
webapps > webapps_data.sql

A common means of producing a nightly backup is to run as a cron job (UNIX) or Scheduled Tasks using
taskmanager with Windows.

mysqladmin
This is a MySQL command-line administrative tool that performs a number of tasks such as creating
and dropping databases and tables, displaying database system status, replicating slave control, granting

21

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 22

Chapter 2: MySQL

table reloading, flushing of various components such as disks and system caches, shutting down the
database, and other tasks.

An example of creating a new database and then dropping a database is:

shell> mysqladmin --user=root --password=-rootpass create webapps

shell> mysqladmin --user=root --password=rootpass drop pariahdb

. . . or chained:

shell> mysqladmin –user=root --password=rootpass create webapps drop parahdb

Another really useful thing you can do with mysqladmin to continually observe the status
of MySQL:

shell> mysqladmin --sleep=1 processlist

. . . which will display the process list every second until you type Ctrl+C. Also:

shell> mysqladmin --sleep=1 --relative extended-status

mysqlimport
This utility is for importing data into MySQL from a text file. For example, you could have tab-delimited
or comma-delimited data from another data source that you want to import into MySQL. This utility
makes it simple and fast to import that data.

One example is if you have a text file with the following three entries:

1,Monty Widenius
2,David Axmark
3,Allan Larsson

And the table you intend to load this data into is:

mysql> CREATE TABLE t1 (id INT(3), name VARCHAR(32));

Then you issue the command.

shell> mysqlimport --fields-terminated-by=, -u webuser –p mypass webapps /tmp/t1.dat

The text file must be named the same as the table you intend to load the data into. Also, it must be
available on the file system in a location that the MySQL server, which runs usually as the mysql user,
can read it. Though it should also be noted that if you can connect to a remote server and the file you
want to load is only available from the client host you are connecting from, you can have the server
read the data file using the --local option on the client, as well as requiring you to set the option
--local-infile when you start the server.

22

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 23

Chapter 2: MySQL

Now the data is imported:

mysql> select * from t1;
+------+----------------+
| id | name |
+------+----------------+
1	Monty Widenius
2	David Axmark
3	Allan Larsson
+------+----------------+

mysqlshow
This is a simple utility to display schemas of a database, the tables in those schemas, and columns and
indexes of those tables. This utility is a convenient way to drill down and see what the organization of
your database is. An example of this is:

shell> mysqlshow --user=username --password=pass rootpass

+--------------------+
| Databases |
+--------------------+
| information_schema |
| federated |
| federated_odbc |
| mysql |
| remote |
| test |
| uc_2008 |
| webapps |
+--------------------+
shell> mysqlshow -user=username –-password=pass webapps
Database: webapps
+---------+
| Tables |
+---------+
| history |
| t1 |
| users |
+---------+
shell> mysqlshow --user=username –-password=pass webapps t1
Database: webapps Table: t1
+-------+-------------+-------------------+------+-----+---------+----------------
+---------------------------------+---------+
| Field | Type | Collation | Null | Key | Default | Extra |
Privileges | Comment |
+-------+-------------+-------------------+------+-----+---------+----------------
+---------------------------------+---------+
| id | int(3) | | NO | PRI | | auto_increment |
select,insert,update,references | |
| name | varchar(32) | latin1_swedish_ci | NO | | | |
select,insert,update,references | |
+-------+-------------+-------------------+------+-----+---------+----------------
+---------------------------------+---------+

23

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 24

Chapter 2: MySQL

Other useful examples of mysqlshow:

shell> mysqlshow --verbose mysql
Database: mysql
+---------------------------+----------+
| Tables | Columns |
+---------------------------+----------+
columns_priv	7
db	20
func	4
help_category	4
help_keyword	2
help_relation	2
help_topic	6
host	19
proc	16
procs_priv	8
tables_priv	8
time_zone	2
time_zone_leap_second	2
time_zone_name	2
time_zone_transition	3
time_zone_transition_type	5
user	37
+---------------------------+----------+

. . . which shows a basic listing of each table in the mysql schema and now how many columns each
table has:

shell> mysqlshow -vv mysql
database: mysql
+---------------------------+----------+------------+
| Tables | Columns | Total Rows |
+---------------------------+----------+------------+
columns_priv	7	0
db	20	22
func	4	30
help_category	4	36
help_keyword	2	395
help_relation	2	809
help_topic	6	466
host	19	0
proc	16	73
procs_priv	8	0
tables_priv	8	3
time_zone	2	0
time_zone_leap_second	2	0
time_zone_name	2	0
time_zone_transition	3	0
time_zone_transition_type	5	0
user	37	29
+---------------------------+----------+------------+
17 rows in set.

24

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 25

Chapter 2: MySQL

Additionally showing you the total number of rows for each table:

shell> mysqlshow --status mysql

The last example displaying a full status of each table in the mysql schema (not shown for brevity).

Utility Programs
This section covers various utility programs that you use to perform tasks such as repairing tables and
accessing replication logging information. It will also provide compilation information for building client
programs for MySQL.

myisamchk
The myisamchk utility is for checking, repairing, optimizing, and describing tables created with the
MyISAM storage engine. Because myisamchk acts upon the table files directly, you must either shut
down MySQL or have the tables being checked locked. A simple example of checking the table t1 is to
issue a FLUSH TABLES command to flush any modifications to the table that are still in memory and to
lock the tables as shown below:

mysql> FLUSH TABLES WITH READ LOCK;

Then enter the directory containing the actual data files for the table:

shell> ls
db.opt
history.ARZ
history.frm
t1.MYD
t1.MYI
t1.frm
users.frm

shell> myisamchk t1
Checking MyISAM file: t1
Data records: 0 Deleted blocks: 0
- check file-size
- check record delete-chain
- check key delete-chain
- check index reference
- check record links

Then unlock the tables:

mysql> UNLOCK TABLES;

In the unlikely case you have serious data corruption, you can use myisamchk (or for the Maria storage
engine, maria_chk) to fix the problem using the following steps:

1. Make a backup of your data using mysqldump. If the fault is with the hard disk, copy the
actual data files to another hard disk from which you’ll run the repair.

2. Shut down MySQL.

25

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 26

Chapter 2: MySQL

3. Execute the following code:

cd mysql-data-directory
myisamchk --check --force --key_buffer_size=1G --sort-buffer-
size=512M */*.MYI

If using Maria, execute the following code:

maria_chk --check --force --page_buffer_size=1G --sort-
buffer-size=512M */*.MAI

The --force option will automatically repair any tables that were corrupted.

You can also use the --recover option instead of the --check option to optimize data usage in a table.
One thing to keep in mind — if you have a lot of data in your table, this can take a long time!

mysqlbinlog
The mysqlbinlog utility is for reading the contents (SQL statements or events) of the binary log as text.
The binary log is a log where all write statements — DML, or data modification language, statements
(INSERT, UPDATE, DELETE, TRUNCATE) and DDL, data definition language, statements (DROP TABLE, ALTER
TABLE, etc.) — are written. The master writes these statements to this binary log so that a slave can read
and execute these statements. In addition to using mysqlbinlog to read events in the master’s binary
log, it can also read statements from the slave’s relay log. The relay log is where the slave writes state-
ments read from the master’s binary log to then be executed. This will be covered in more detail in the
‘‘Replication’’ section of Chapter 3.

The binary log doesn’t have to be used for replication or even be run on a master. It can also be used as a
means of providing incremental backups to be used for recovery from a crash.

The output of this program provides information, such as the SQL statements that were executed and
when they were executed.

An example of running mysqlbinlog to see what statements were executed from 11:52:00 to 12:00:00
would be:

shell> mysqlbinlog --start-datetime=’2008-06-28 11:52:00’\
--stop-datetime=’2008-06-28 12:00:00’ bin.000067

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
DELIMITER /*!*/;
at 4
#8628 11:51:5 server id 1 end_log_pos 106 Start: binlog v 4,
server v 5.1.20- # Warning: this binlog was not closed properly.
ROLLBACK/*!*/;
at 212
#8628 11:53:14 server id 1 end_log_pos 318 Query
thread_id=4 exec_time=0
use webapps/*!*/;
SET TIMESTAMP=1214668394/*!*/;

26

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 27

Chapter 2: MySQL

SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=1,
@@session.unique_checks=1/*!*/;
SET @@session.sql_mode=0/*!*/;
SET @@session.auto_increment_increment=10,
@@session.auto_increment_offset=1/*!*/;
/*!\C latin1 *//*!*/;
SET @@session.character_set_client=8,@@session.collation_connection=8
insert into t1 values (5, ‘Sakila’)/*!*/;
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

mysql_config
The mysql_config utility prints out the options with which MySQL was compiled. This is used to auto-
matically produce compile flags when compiling programs for MySQL. For example, when you build
the Perl driver for MySQL, DBD::mysql, the configuration for the driver uses mysql_config to derive the
flags it needs to build the driver.

Here is an example of using mysql_config to obtain the library compile flags:

shell> mysql_config --libs
-L/usr/local/mysql/lib/mysql -lmysqlclient -lz -lm

MySQL Daemon and Startup Utilities
Finally, the MySQL distribution includes the actual server binary file, mysqld, as well as shell scripts for
running this server — it can run a single server or multiple servers and can start and stop the server.

mysqld
The mysqld daemon is the server. It’s a multi-threaded server that provides the functionality that makes
MySQL a relational database. It can be issued with command-line options, or more often uses a config-
uration file for these options, my.cnf (my.ini for windows). It’s also usually run using a utility such as
mysqld_safe or mysqlmanager.

mysqld_safe
The mysqld_safe utility is a shell script to run mysqld on UNIX and Netware systems. It is the preferred
means of running MySQL because it provides functionality to restart the server in case of a system error
and logs any mysqld daemon errors to an error log.

mysql.server
The mysql.server is a shell script for System-V UNIX variants, used to start and stop mysqld using
mysqld_multi. Using System-V run directories, this script starts or stops MySQL according to the run
level being set.

An example of starting MySQL with mysql.server is:

/etc/init.d/mysql.server start

27

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 28

Chapter 2: MySQL

mysqld_multi
mysqld_multi is a utility to control the running state of multiple MySQL instances. In order to run
multiple instances, the my.cnf file has to have each listed in a separate section named with the con-
vention mysqld1, mysqld2, mysqldN. mysqld_multi can run mysqld or mysqld_safe to start MySQL. An
example of a my.cnf file that can be used with mysqld_multi would be:

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = root

[mysqld1]
datadir = /usr/local/mysql/var/data1
mysqld = /usr/local/mysql/bin/mysqld_safe
user = mysql
port = 3306
socket = /tmp/mysql1.sock

[mysqld2]
datadir = /usr/local/mysql/var/data2
mysqld = /usr/local/mysql/bin/mysqld_safe
user = mysql
port = 3307
socket = /tmp/mysql2.sock

This specifies that there are two servers, one as mysqld1 and the other as mysqld2, running each on their
own ports and sockets, using different data directories.

In the example, the actual servers run as the mysql user, compared to mysqld_multi, which runs as
root. This is so mysqld_multi will have the necessary privileges to start and stop both servers.

Using mysqld_multi to start both servers, the command would be:

shell> mysqld_multi start 1,2

To stop server 2:

shell> mysqld_multi stop 2

Running multiple servers with mysqld_multi will be covered in more detail in the ‘‘Replication’’ section.

Working with Data
Now that post-installation tasks have been performed and the various programs that come with a MySQL
distribution have been explained, you should be ready to start delving into database functionality.

This section guides you through creating a schema that will contain your database objects, creating
tables, inserting, querying, modifying, and deleting data. After these basic concepts are demonstrated,
more advanced database functionality will be explained.

28

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 29

Chapter 2: MySQL

Creating a Schema and Tables
In the section in Appendix A, ‘‘Post Installation,’’ you created a webuser database user with privileges to
the webapps schema. This is the schema, a container of database objects, that will be referred to through-
out the course of this book. To create this schema, the mysqladmin command can be used, run as the root
database user:

shell> mysqladmin --user=root –-password=pass create webapps

With the webapps schema created, tables and other database objects can be created within this schema:

You could alternatively use the MySQL command-line client to do this as well:

mysql> CREATE DATABASE webapps;

Now you can connect to the new schema:

shell> mysql --user=webuser --password=pass webapps
shell> mysql -u webuser -ppassword webapps

This connects you to the MySQL server as the webuser account on the webapps schema. If you want to see
a list of all the schemas within a database to which you have access rights, the command SHOW DATABASES
gives this information, showing other schemas as well as the schema you just created:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| test |
| webapps |
+--------------------+

Now that you are connected, you can create two new tables. The following code snippet shows the
creation of two tables:

mysql> CREATE TABLE users (
-> uid INT(3) NOT NULL AUTO_INCREMENT,
-> username VARCHAR(32) NOT NULL DEFAULT ‘’,
-> score DECIMAL(5,2) NOT NULL DEFAULT 000.00,
-> age INT(3) NOT NULL DEFAULT 0,
-> state_id INT(3) NOT NULL DEFAULT 0,
-> PRIMARY KEY (uid),
-> UNIQUE KEY username (username),
-> KEY state_id (state_id));

Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE states (
-> state_id INT(3) NOT NULL DEFAULT 0,
-> state_name VARCHAR(25) NOT NULL DEFAULT ‘’,
-> PRIMARY KEY (state_id));

Query OK, 0 rows affected (0.02 sec)

29

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 30

Chapter 2: MySQL

The -> is printed by the command-line client when it needs more data. It will send the data once it gets
a line that contains a semicolon (;).

Two tables now exist named users and states.

What Exactly Is (or Is Not) NULL?
NULL is something that you probably want to get a grip on when you work with databases — that is, if
you can grip something that is missing and unknown!

If you’ve ever tried to use Roman numerals, they are pretty tedious and cumbersome for performing
calculations. This is because there is no placeholder digit or zero. The Romans had no concept of zero or
nothingness, nor did much of the West at that time. How could nothing be quantified?

The concept of zero is really key to modern mathematics and a prerequisite to computers ever having
been invented. This concept of nothingness came from India, where Vedic and later Buddhist philoso-
phies had an innate understanding of nothingness. Along with this philosophy there was also a system
of mathematics at the time, rules for the use of zero in Indian philosopher Brahmagupta’s book Brah-
masputha Siddhanta (6th century). The Sanskrit word for nothingness or emptiness is Sunya, and this
useful concept made its way to the West through use by the Arabs, from whom, in turn, the West
adopted it.

This concept of nothingness or emptiness would seem to describe NULL, but in SQL NULL is not zero, nor
is it an empty string. There’s another Sanskrit word that might better describe NULL, Maya, which means
‘‘that which not is.’’

With MySQL, NULL means a missing, unknown value. NULL can also be described by its relation to those
values that are NOT NULL. The table that follows shows the result of a value with a given operator, and
NULL.

Value Operator with NULL Result value

1 = NULL NULL

1 <> NULL NULL

1 < NULL NULL

1 > NULL NULL

1 IS NULL 0

1 IS NOT NULL 1

0 IS NULL 0

0 IS NOT NULL 1

’’ IS NULL 0

’’ IS NOT NULL 1

30

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 31

Chapter 2: MySQL

As you can see, NULL compared, using any operator to any value in SQL is always NULL. Also, 1, 0, and
empty strings are not NULLs. So there is some distinction between zero and NULL, and empty strings and
NULL: both zero and empty strings are known values.

Column Data Types
The first table was created with five columns: uid, username, ranking, age, state_id. The first column,
uid, is an INT(3) (synonym for INTEGER). The specification of (3) is for left-padding when printing
from within the client and does not affect the range of this column. The NOT NULL flag was set to guar-
antee that NULL values cannot be inserted into this column (more about not allowing NULLs in a table
for performance reasons is found in the ‘‘Performance’’ section). Also, the AUTO_INCREMENT flag was set.
AUTO_INCREMENT is a unique feature of MySQL which automatically increments the value of the column
for subsequent insertions into the table. This provides a convenient means of guaranteeing uniqueness of
that column’s value for each record inserted into the table.

The second column, username, is created as a VARCHAR(32) column. This means that the column is able
to store up to 32 characters of text. A VARCHAR is named such because at the storage-engine level, only the
space needed to store that column’s value for a given record is allocated in the data file. There is a CHAR
data type that will allocate exactly what is specified.

The third column, ranking, is a DECIMAL type column. The specification of (5,2) signifies precision
and scale. This means that a number must have five digits and two decimals and that the range for
score is -999.99 to 999.99. In other words, if you were to insert 1000.0 into this column, it would
convert the number to 999.99 and if you inserted 998.999 it would convert the number to 999.00
(rounded).

Then there are the fourth and fifth columns, age and state_id, INT(3) types respectively.

Indexes
The indexes on users are on the columns uid, username and state_id. When you design your schema
and determine which tables you will use for the data you need to store, you have to consider what
columns you’ll be using to find a given record. In this case, it’s easy to imagine that you would want to
look up a user by the user id or uid, his or her username, as well as what state he or she is from.

The index on uid (user id) is the PRIMARY KEY index. A primary key is a unique index — there can be no
two identical values for this column in the table — and it is used to uniquely identify each row in a table.
Because AUTO_INCREMENT is being specified, this will automatically provide the values for this column, so
you don’t have to worry about providing unique numeric values when inserting rows. Also, a table can
have only one PRIMARY KEY index, hence the name PRIMARY.

The index on username is a UNIQUE index. Similar to a PRIMARY KEY index, there can be no two identical
values for this column in the table, except with unique UNIQUE index, many NULL values are permitted.
This is how you can guarantee that there is only one user with a given name in your user table. Unlike
PRIMARY KEY indexes, a table can have more than one UNIQUE index.

The second table, states, is a simple table containing a state_id INTEGER column and a state_name
VARCHAR column. The only index on this table is the PRIMARY KEY index on state_id.

31

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 32

Chapter 2: MySQL

You’ll notice that users and states both have a state_id. This is done to indicate that there is a rela-
tionship between users and states, the state_id column being the common column between the two.
You’ll see after some data is inserted what the relationship means in terms of using an SQL query to
return data.

Schema Information
One way to verify the definition of how you created your table is to use the command
SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE users\G
*************************** 1. row ***************************

Table: users
Create Table: CREATE TABLE `users` (

`uid` int(3) NOT NULL auto_increment,
`username’ varchar(32) NOT NULL default ‘’,
`score` decimal(5,2) NOT NULL default ‘0.00’,
`age` int(3) NOT NULL default ‘0’,
`state_id` int(5) NOT NULL default ‘0’,
PRIMARY KEY (`uid`),
UNIQUE KEY `username` (`username`),
KEY `state_id` (`state_id`)

) ENGINE=MyISAM AUTO_INCREMENT=5 DEFAULT CHARSET=latin1

The output of some commands can contain a lot of formatting characters that make the output ‘‘stretch’’
far to the right. To view the output of a command without this formatting, use \G instead of a
semicolon.

Another way to view the definition of a table is the DESCRIBE command:

mysql> DESCRIBE users;
+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
uid	int(3)	NO	PRI	NULL	auto_increment
username	varchar(32)	NO	UNI		
score	decimal(5,2)	NO		0.00	
age	int(3)	NO		0	
state_id	int(5)	NO	MUL	0	
+----------+--------------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

To see what tables exist in a schema, you can issue the command SHOW TABLES:

mysql> SHOW TABLES;
+-------------------+
| Tables_in_webapps |
+-------------------+
| states |
| users |
+-------------------+

32

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 33

Chapter 2: MySQL

SHOW has a numerous options. You can use HELP SHOW in the command line client to get an extensive list
of the different options available:

mysql> HELP SHOW;

Yet one more tool in your arsenal is the information schema which you can use to view all manner
of information (refer to the MySQL reference manual). The information schema, which is named
INFORMATION_SCHEMA, works just like any other database in MySQL, except it doesn’t contain real tables.
All the tables that provide information are views with the information generated when needed. An
example of using INFORMATION_SCHEMA to give the equivalent of SHOW TABLES is:

mysql> SELECT TABLE_NAME,TABLE_TYPE,ENGINE FROM TABLES
-> WHERE TABLE_SCHEMA = ‘webapps’;

+----------------------+------------+---------+
| TABLE_NAME | TABLE_TYPE | ENGINE |
+----------------------+------------+---------+
| states | BASE TABLE | MyISAM |
| users | BASE TABLE | InnoDB |
+----------------------+------------+---------+

Schema Modification
You will sometimes need to modify your schema, either adding or dropping a column to or from a table,
changing the data type or definition of a column, adding an index to a table, or renaming a table. The
ALTER TABLE statement is the means of doing this. The syntax for ALTER TABLE has numerous options
described in full in the MySQL reference manual. The basic syntax for ALTER TABLE is:

ALTER TABLE [ONLINE | OFFLINE] [IGNORE] tbl_name alter_specification
[,alter_specification] ...

❑ OFFLINE | ONLINE pertain to how ALTER TABLE is performed on NDB Cluster tables.

❑ IGNORE pertains to how the ALTER statement will deal with duplicate values in columns that have
a newly added constraint of unique. If IGNORE is not specified, the ALTER will fail and not be
applied. If IGNORE is specified, the first row of all duplicate rows is kept, the reset deleted, and
the ALTER applied.

❑ The alter_specification would be what you are changing — what columns or indexes you
are adding, dropping, or modifying, or what constraints you are placing on columns.

This section offers a few examples to give the basic idea of how to use ALTER TABLE.

In the previous example you created the table users with several columns. If you now need to mod-
ify some of these columns — for example, if the username column isn’t large enough to store some
names and you want to change it from 32 characters maximum to 64 — the following ALTER TABLE would
achieve this:

mysql> ALTER TABLE users MODIFY COLUMN username VARCHAR(64)
NOT NULL default ‘’;
Query OK, 9 rows affected (0.01 sec)
Records: 9 Duplicates: 0 Warnings: 0

33

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 34

Chapter 2: MySQL

As the output shows, the nine existing records in the table are affected by this change, and the users
table should now have a modified definition for the username column:

mysql> DESC users;
+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
uid	int(3)	NO	PRI	NULL	auto_increment
username	varchar(64)	NO	UNI		
ranking	decimal(5,2)	NO		0.00	
age	int(3)	NO		0	
state_id	int(5)	NO	MUL	0	
+----------+--------------+------+-----+---------+----------------+

Next, you realize that the column score isn’t really the name you want for this column. What you really
want is ranking, so you issue another ALTER TABLE statement:

mysql> ALTER TABLE users CHANGE COLUMN score ranking DECIMAL(5,2)
NOT NULL default ‘0.00’;

Furthermore, you notice that both the age and ranking columns are columns that you will be either using
for sorting or retrieving data and that they need indexes.

mysql> ALTER TABLE users ADD INDEX ranking(ranking);

mysql> ALTER TABLE users ADD INDEX age(age);

You can also perform multiple alterations in one statement (preferable, especially if your table
is huge!):

mysql> ALTER TABLE users ADD INDEX ranking(ranking), ADD INDEX age(age);

Now, if you check to see what the users table definition is, you see that your changes have been made:

mysql> DESC users;
+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
uid	int(3)	NO	PRI	NULL	auto_increment
username	varchar(64)	NO	UNI		
ranking	decimal(5,2)	NO	MUL	0.00	
age	int(3)	NO	MUL	0	
state_id	int(5)	NO	MUL	0	
+----------+--------------+------+-----+---------+----------------+

For more information, the full syntax for ALTER TABLE can be found in two ways:

mysql> HELP ALTER TABLE;

. . . or MySQL’s documentation at http://dev.mysql.com/doc/refman/5.1/en/alter-table.html.

34

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 35

Chapter 2: MySQL

Inserting Data
The next thing you probably want to do is to insert some data into the newly created tables. The SQL
STATEMENT for insertion is INSERT. The INSERT statement’s basic syntax is:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
INTO table_name (col_name,...)
VALUES ({expr | DEFAULT}, ...), (...), ...

The syntax can be explained as:

❑ LOW_PRIORITY means that the data will not be inserted until there are no clients reading from the
table. This option only works on tables that have table-level locking such as MyISAM, Memory,
Merge, etc.

❑ DELAYED means that the data being inserted will be queued up and inserted into the table when
the table is not being read from, allowing the client issuing the INSERT DELAYED to continue.

❑ HIGH_PRIORITY makes it so concurrent inserts are not utilized or overriding the low-priority-
updates server setting.

❑ IGNORE makes it so errors with data insertion are treated as warnings. For instance, if there is
an error inserting data that contains a duplicate value on a PRIMARY KEY or UNIQUE column, that
row will not be inserted and a warning will be issued. If you are not using IGNORE, the INSERT
statement will end when the first error is encountered.

Basic Insert
To begin inserting data into the users table, the two INSERT statements are issued:

mysql> INSERT INTO users (username, ranking, age, state_id)
-> VALUES (’John Smith’, 55.5, 33, 1);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO users (username, ranking, age, state_id)
-> VALUES (’Amy Carr’, 66.55, 25, 1);

Query OK, 1 row affected (0.00 sec)

It is recommended to always specify the column names into which you are inserting data within your
application code. This will allow your application to continue working even if someone were to add extra
columns to the table.

These two queries insert two rows into the users table. As you can see by the output 1 row affected,
both INSERT statements succeeded. The first part of the query specifies what table to insert the data into,
then provides a list of columns that data will be inserted into. The VALUES part of the statement is the
list of the actual values you want to insert. These values have to match each column specified in the first
half of the query. If you notice that the uid column was not specified, that is because it’s not necessary to
specify the uid column’s value as the AUTO_INCREMENT attribute keyword was specified in the creation of
the users table. The first row being inserted will result in the value of uid being 1, and the second row
will result in item_id being 2. AUTO_INCREMENT will set the value of the uid column one more than the
previous value for each subsequent row inserted.

35

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 36

Chapter 2: MySQL

You can also specify a MySQL parameter AUTO_INCREMENT_INCREMENT, which sets the amount to
increment by for each row insertion, making it possible to increment by a value other than 1.

You can specify the value of an auto increment value if you choose to do so:

mysql> INSERT INTO users (uid, username, ranking, age, state_id)
-> VALUES (4, ‘Gertrude Asgaard’, 44.33, 65, 1);

Query OK, 1 row affected (0.00 sec)

Notice, here, the query inserting a predetermined value for uid. When data is inserted this way, you
must ensure that the values you are inserting match the columns of the table as defined when you created
the table. Also, the uid column was specified by the input, not relying on AUTO_INCREMENT to supply this
value. This is completely legitimate, but also requires that you ensure the value being inserted is unique
because it is a PRIMARY KEY. If it was just a regular index, KEY, you could use any value even if not unique
within the table. Also, the value inserted was 4 whereas if AUTO_INCREMENT had assigned the value it
would have been 3. This means that the next value, if set using AUTO_INCREMENT, will be one more than
the previous value, which means the value will be 5.

An alternate INSERT syntax is to set each column explicitly:

mysql> insert into users set uid = 4, username = ‘Gertrude Asgaard’,
-> ranking = ‘44.33’, age = 65, state_id = ‘65’;

Bulk Insert
Bulk inserts can be a convenient way to insert multiple rows of data without having to issue multiple
statements or connections to the database. In many cases, it’s best to try to accomplish as much as possible
within the database in as few statements as possible, and using bulk inserts is a way to do this. Another
benefit of bulk inserts is that they are the fastest way to insert multiple rows of data into a table. The
following example shows that four records are inserted.

You should try to use bulk inserts particularly when you find yourself using statements repeating the
same insert statements with different data. One of the easiest ways to obtain more performance in an
application is if you can cache your data in the client and then insert the cached data many rows at a
time — this is what bulk inserts enable you to do.

An example of using a bulk INSERT statement is:

mysql> INSERT INTO users (username, ranking, age, state_id)
-> VALUES (’Sunya Vadi’, 88.1, 30, 2),
-> (’Maya Vadi’, 77.32, 31, 2),
-> (’Haranya Kashipu’, 1.2, 99, 3),
-> (’Pralad Maharaj’, 99.99, 8, 3);

Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

A detriment of bulk inserts is that if there is a problem with any of the data being inserted the entire
statement fails. For example, if you specified a value that violated a unique index in the statement in only
one of the rows being inserted in a statement inserting 100 records, all 100 of those records would fail
to be inserted even though 99 of them were bona fide statements that would otherwise successfully be
inserted.

36

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 37

Chapter 2: MySQL

mysql> INSERT INTO users VALUES
-> (1, ‘Jake Smith’, 11.12, 40, 4),
-> (9, ‘Franklin Pierce’, 88.3, 60, 4),
-> (10,’Daniel Webster’, 87.33, 62, 4);

ERROR 1062 (23000): Duplicate entry ‘1’ for key 1

As you can see, the first set of values specified in the bulk insert violated the integrity of the primary key
on uid by trying to assign the value of 1 where there is already a record with that value. This causes the
whole statement to fail. The other two sets of data would have otherwise been successfully inserted.

INSERT IGNORE
There are two ways to get around the problem of having multiple records fail in a bulk insert due to
PRIMARY or UNIQUE key violations. You can either fix the data you’re trying to insert, or employ the use
of INSERT IGNORE. INSERT IGNORE inserts the values that wouldn’t cause errors, while ignoring the ones
that do:

mysql> INSERT IGNORE INTO users VALUES
-> (1, ‘Jake Smith’, 11.12, 40, 4),

-> (9, ‘Franklin Pierce’, 88.3, 60, 4),
-> (10,’Daniel Webster’, 87.33, 62, 4);

Query OK, 2 rows affected (0.01 sec)
Records: 3 Duplicates: 1 Warnings: 0

In this statement, INSERT IGNORE was used. As a result, the values that would have otherwise caused the
whole statement to fail are ignored and the two valid sets of data are inserted.

The states table also will need to be populated with data:

mysql> INSERT INTO states VALUES
-> (1, ‘Alaska’),
-> (2, ‘Alabama’),
-> (3, ‘New York’),
-> (4, ‘New Hampshire’),
-> (5, ‘Hawaii’);

This table is a lookup table that will be used for the discussion of the examples in the following sections.

Delayed and Low Priority INSERTs
In some cases, you have data that you don’t need to be readily available and are more interested in
inserting for purposes such as logging and statistics gathering. You do need to save this data, but to be
able to save it ‘‘lazily’’ would be sufficient for your application’s purposes. MySQL has just the means
for accomplishing this using a delayed insert. An example of using delayed inserts to insert data into an
application log is as follows:

mysql> INSERT DELAYED INTO weblog (ip_address, username, request_type, uri)
-> VALUES (’192.168.1.133’, ‘GnaeusPompey’, ‘POST’,
-> ‘http://triumvirate.com/legion?ruler=pompey’);

Delayed inserts cache the rows being inserted into a buffer, which are written to the table when the table
is not being used by any other thread. This can help overall performance because it batches writes.

37

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 38

Chapter 2: MySQL

Delayed inserts are only available for tables using the MyISAM storage engine.

Optionally, you could also use:

mysql> INSERT LOW_PRIORITY INTO weblog (ip_address, username,
request_type, uri)

-> VALUES (’192.168.1.133’, ‘GnaeusPompey’, ‘POST’,
-> ‘http://triumvirate.com/legion?ruler=pompey’);

Using LOW_PRIORITY is different than DELAYED in that LOW_PRIORITY causes the client to wait until no
other clients are reading from the table before it attempts insertion, whereas with DELAYED, the rows
being inserted are queued in a buffer while the client is freed up to run other statements. What you will
use depends on your application and what sort of behavior you require.

It should be noted that normally, you shouldn’t use DELAYED or LOW_PRIORITY. You would utilize these
if you using MyISAM tables and you desperately need some extra performance when all other options
have failed.

For more information on how to use INSERT, use:

mysql> HELP INSERT;

. . . or the MySQL online manual at the URL: http://dev.mysql.com/doc/refman/5.1/en/insert.html.

Querying Data
The way to retrieve data from a table in a database is to use the SELECT statement. The basic syntax of a
SELECT statement is:

SELECT select_expr FROM table_references
WHERE where_condition [GROUPING AND ORDERING]
[LIMIT {[offset,], row_count]

❑ select_expr indicates the column(s) you want to select.

❑ table_references indicates a list of one or more tables.

❑ where_condition indicates a condition that must be satisfied to return rows of columns indi-
cated in select_expr.

❑ GROUPING AND ORDERING indicates you can specify what column you want to order the results by
as well as what column you want to group by.

❑ LIMIT is a way of limiting the result by a given number offset (optional), meaning what row to
begin from and row_count how many records in the result set to display (not optional).

Basic Queries
Using the SELECT statement, different queries can be performed against users and states to retrieve
various data.

38

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 39

Chapter 2: MySQL

To see all the records in users:

mysql> SELECT * FROM users;
+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
1	John Smith	55.50	33	1
2	Amy Carr	66.55	25	1
4	Gertrude Asgaard	44.33	65	1
5	Sunya Vadi	88.10	30	2
6	Maya Vadi	77.32	31	2
7	Haranya Kashipu	1.20	99	3
8	Pralad Maharaj	99.99	8	3
9	Franklin Pierce	88.30	60	4
10	Daniel Webster	87.33	62	4
+-----+------------------+---------+-----+----------+

As you can see, all the data you inserted is now stored in users. In this example, ‘*’ is a special marker
that stands for all columns, in this case meaning that all columns should be included in the rows returned
(result set) from the query. No WHERE clause was applied to the query, so all rows are returned. You could
also specify specific columns:

mysql> SELECT uid, username FROM users;
+-----+------------------+
| uid | username |
+-----+------------------+
1	John Smith
2	Amy Carr
4	Gertrude Asgaard
5	Sunya Vadi
6	Maya Vadi
7	Haranya Kashipu
8	Pralad Maharaj
9	Franklin Pierce
10	Daniel Webster
+-----+------------------+

Aliasing
Another convenient feature of SQL is that you can alias (i.e., temporarily rename) result columns and
table names. In the previous example, uid, username, and the table users all could be aliased:

mysql> SELECT uid AS `User Identification Number`,
-> username `User Name`
-> FROM users U WHERE U.uid <= 9;

+----------------------------+------------------+
| User Identification Number | User Name |
+----------------------------+------------------+
1	John Smith
2	Amy Carr
4	Gertrude Asgaard

39

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 40

Chapter 2: MySQL

5	Sunya Vadi
6	Maya Vadi
7	Haranya Kashipu
8	Pralad Maharaj
9	Franklin Pierce
+----------------------------+------------------+

If you notice, the first alias for uid, User Identification Number, was alias by the following uid with
AS , and the second column username was followed by User Name, without the use of AS. Either of these
is valid. The table name users is followed by U. Aliases are a convenient way to either have a more
canonical column name on the output, or they can be used to shorten table or column names throughout
the statement so the statement is easier to read. Also, the backtick character, known as the identifier quote
character, was used to quote the column aliases in this example. This allows the alias to contain spaces
or other character sets to be used. Other characters can also be used, such as single and double quotes,
but the backtick is MySQL’s default identifier quote character for quoting table names and columns.
Although you can also use double quotes if you do the following:

mysql> SET sql_mode=’ANSI_QUOTES’;
mysql> CREATE TABLE t4 ("some column" int(8));
mysql> SELECT "some column" FROM t4;

The output of database dumps from MySQL’s backup program mysqldump includes the use of the back-
tick character as the identifier quote character by default.

Also, aliases are required for joining a table to itself (a self join) to ensure that the table name used in the
query is unique. For an example of this, see the later section ‘‘JOIN.’’

Limiting Results
If you want to return only the first two rows in a result, you can use LIMIT in the query:

mysql> SELECT * FROM users LIMIT 2;
+-----+------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------+---------+-----+----------+
| 1 | John Smith | 55.50 | 33 | 1 |
| 2 | Amy Carr | 66.55 | 25 | 1 |
+-----+------------+---------+-----+----------+

. . . or if you want to return record number 5, use:

mysql> SELECT * FROM users LIMIT 5, 1;
+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
| 5 | Sunya Vadi | 88.10 | 30 | 2 |
+-----+------------------+---------+-----+----------+

WHERE Clause
The WHERE clause is used to select which rows you want to return from the result set. What if you want
return a particular user’s uid? Say, for instance, you have a function in your web application code to

40

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 41

Chapter 2: MySQL

retrieve just a user’s uid based on supplying the user’s username. Just specify that in another WHERE
clause:

mysql> SELECT uid FROM users WHERE username = ‘Pralad Maharaj’;
+-----+
| uid |
+-----+
| 8 |
+-----+

In the WHERE clause, you can use a lot of different operators to select which data you are interested in
obtaining. This is described in the next several sections.

Operators
Numerous operators can be specified in a query:

mysql> SELECT uid, username FROM users WHERE age < 40 AND state_id = 3;
+-----+----------------+
| uid | username |
+-----+----------------+
| 8 | Pralad Maharaj |
+-----+----------------+

The less-than operator < is used to restrict the rows found to any age less than 40 as well as AND, which
includes the restriction that the state_id be limited to 3.

The operator LIKE allows for specification of word patterns. The percentage character (%) is a
wildcard character in SQL, much like the asterisk (*) character is for file and directory names. You
use this to allow the word ‘‘Jack’’ immediately followed by zero or more characters to be what is
searched for:

mysql> SELECT uid, username FROM users WHERE username LIKE ‘Jack%’;
+-----+--------------+
| uid | username |
+-----+--------------+
| 11 | Jack Kerouac |
+-----+--------------+

Ranges
You can specify ranges with the operators <, <=, =, <> , >, >= or BETWEEN.

mysql> SELECT uid, username FROM users WHERE uid >= 6 AND uid <= 7;
+-----+-----------------+
| uid | username |
+-----+-----------------+
| 6 | Maya Vadi |
| 7 | Haranya Kashipu |
+-----+-----------------+

Or, the previous statement can also use the BETWEEN operator to obtain the same results:

mysql> SELECT uid, username FROM users WHERE uid BETWEEN 6 AND 7;

41

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 42

Chapter 2: MySQL

+-----+-----------------+
| uid | username |
+-----+-----------------+
| 6 | Maya Vadi |
| 7 | Haranya Kashipu |
+-----+-----------------+

Ordering
Ordering, which is done using the ORDER BY clause, allows you to be able to sort the result of a query in a
number of ways. The following examples show how you can use ORDER BY.

For instance, if you want to order your results with the youngest age first (ASC means ‘‘ascending’’):

mysql> SELECT * FROM users ORDER BY age ASC;
+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
8	Pralad Maharaj	99.99	8	3
2	Amy Carr	66.55	25	1
5	Sunya Vadi	88.10	30	2
6	Maya Vadi	77.32	31	2
1	John Smith	55.50	33	1
9	Franklin Pierce	88.30	60	4
10	Daniel Webster	87.33	62	4
4	Gertrude Asgaard	44.33	65	1
7	Haranya Kashipu	1.20	99	3
+-----+------------------+---------+-----+----------+

. . . or with the oldest age first (DESC means ‘‘descending’’):

mysql> SELECT * FROM users ORDER BY age DESC LIMIT 3;
+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
4	Gertrude Asgaard	44.33	65	1
10	Daniel Webster	87.33	62	4
9	Franklin Pierce	88.30	60	4
+-----+------------------+---------+-----+----------+

You can also order by multiple columns:

mysql> SELECT * FROM users ORDER BY age DESC,state_id ASC LIMIT 3;
+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
4	Gertrude Asgaard	44.33	65	1
10	Daniel Webster	87.33	62	4
9	Franklin Pierce	88.30	60	4
+-----+------------------+---------+-----+----------+

This would mean that the age is the first column that the ordering would use (descending), and then of
that result, state_id would be used to sort in ascending order.

42

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 43

Chapter 2: MySQL

Grouping
Grouping is yet another operation in retrieving data that is very useful. GROUP BY is the SQL clause that
provides grouping. With GROUP BY, the result of a query is grouped by one or more columns.

For instance, if you would like to have a count of users per state, this can be achieved by using COUNT()
and GROUP BY, and is a very common query you will use in variations during the course of developing
web applications and producing reports of your site’s data.

mysql> SELECT COUNT(uid) AS `num users`,state_id,state_name
-> FROM users JOIN states USING (state_id) GROUP BY state_id;

+-----------+----------+---------------+
| num users | state_id | state_name |
+-----------+----------+---------------+
3	1	Alaska
2	2	Alabama
2	3	NY
3	4	New Hampshire
+-----------+----------+---------------+

With GROUP BY, the data is grouped (or you could say ‘‘lumped’’ together) using the column or columns
you specify. By using the aggregate function COUNT, it counts how many are in each grouping — for each
grouping, which is then aliased to a column name such as num users in this example, then displayed in
state_id and state_name, giving you a simple output of users per state.

There are numerous grouping functions that you will find of great use when grouping data, which will
be shown in the later section on ‘‘Aggregate Functions.’’

JOIN
In the previous query, one of the columns in the result set is state_id. What would be more useful is
to also have the state name included. In the examples, data was inserted into the states table for both
state_id and state_name.

The states table contains:

mysql> SELECT * FROM states;
+----------+---------------+
| state_id | state_name |
+----------+---------------+
1	Alaska
2	Alabama
3	New York
4	New Hampshire
5	Hawaii
+----------+---------------+

The users table, as seen in previous SELECTS, contains users who have state_id values corresponding
to most of the values in states. To be able to include the state_name column with the result set from
users, a join will have to be employed.

An SQL join works by conceptually creating a result set that contains all row combinations from all
tables and then selecting, with the WHERE clause, which row combinations you are interested in. Normally,
you want to see the rows that have the same value in two columns.

43

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 44

Chapter 2: MySQL

There are several types of joins: CROSS, INNER, OUTER, LEFT, and RIGHT. Each join type will be discussion
in a later section. Also, a join can be used not just in SELECT statements but also in UPDATE and DELETE
statements (which will be discussed in the next section).

For instance, if you want to include state_name as one of the columns in the result set from the previous
query that sorted the results on the age, an inner join will accomplish this:

mysql> SELECT users.*,states.state_name
-> FROM users,states
-> WHERE users.state_id = states.state_id
-> ORDER BY age ASC;

+-----+------------------+---------+-----+----------+---------------+
| uid | username | ranking | age | state_id | state_name |
+-----+------------------+---------+-----+----------+---------------+
8	Pralad Maharaj	99.99	8	3	New York
2	Amy Carr	66.55	25	1	Alaska
5	Sunya Vadi	88.10	30	2	Alabama
6	Maya Vadi	77.32	31	2	Alabama
1	John Smith	55.50	33	1	Alaska
9	Franklin Pierce	88.30	60	4	New Hampshire
10	Daniel Webster	87.33	62	4	New Hampshire
4	Gertrude Asgaard	44.33	65	1	Alaska
7	Haranya Kashipu	1.20	99	3	New York
+-----+------------------+---------+-----+----------+---------------+

This type of join is known as an implicit inner join — implicit because the term INNER JOIN isn’t explicitly
listed in the query. The part of the query that defines what columns must be equal to, users.state_id =
states.state_id, is known as a join predicate. In this example, the columns list is specified as users.*,
states.state_name. The first users.* specifies all columns of the users table and states.state_name
specifies only the state_name column from states. With a JOIN, if only a * had been used, all columns
from both tables would have been returned.

This same JOIN query could have been written in several ways. An explicit inner join:

SELECT users.*,states.state_name FROM users INNER JOIN states
ON (users.state_id = states.state_id) ORDER BY age ASC;

When you are doing a join between two tables only based on equality comparisons, called an equi-join,
you can use the following shorter:

SELECT users.*,states.state_name
FROM users JOIN states using (state_id)
ORDER BY age ASC;

A natural join:

mysql> SELECT * FROM states NATURAL JOIN users ORDER BY age ASC;
+----------+---------------+-----+------------------+---------+-----+
| state_id | state_name | uid | username | ranking | age |
+----------+---------------+-----+------------------+---------+-----+
3	New York	8	Pralad Maharaj	99.99	8
1	Alaska	2	Amy Carr	66.55	25
2	Alabama	5	Sunya Vadi	88.10	30

44

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 45

Chapter 2: MySQL

2	Alabama	6	Maya Vadi	77.32	31
1	Alaska	1	John Smith	55.50	33
4	New Hampshire	9	Franklin Pierce	88.30	60
4	New Hampshire	10	Daniel Webster	87.33	62
1	Alaska	4	Gertrude Asgaard	44.33	65
3	New York	7	Haranya Kashipu	1.20	99
+----------+---------------+-----+------------------+---------+-----+

You’ll notice that in this example, no specific columns were specified in the column list or in the join
predicate. This is because a natural join implicitly joins the tables based on any columns that are named
the same, and only prints once columns are named the same. This query may look cleaner and easier to
read, but it is somewhat ambiguous. If a query like this was used in application code, and there were
changes to the schema, things might break. That might make for one of those bugs that take a long time
to find!

The other types of joins mentioned previously were LEFT and RIGHT joins. For instance, A LEFT join for
states and users will always contain records of states (the ‘‘left’’ table), even if there aren’t matching
records from users (the ‘‘right’’ table). To see the meaning of this:

mysql> SELECT username, states.state_id, state_name
-> FROM states LEFT JOIN users
-> ON (users.state_id = states.state_id);

+------------------+----------+---------------+
| username | state_id | state_name |
+------------------+----------+---------------+
John Smith	1	Alaska
Amy Carr	1	Alaska
Gertrude Asgaard	1	Alaska
Sunya Vadi	2	Alabama
Maya Vadi	2	Alabama
Haranya Kashipu	3	New York
Pralad Maharaj	3	New York
Franklin Pierce	4	New Hampshire
Daniel Webster	4	New Hampshire
NULL	5	Hawaii
+------------------+----------+---------------+

Because there are no users in the table users with a state_id of 5, which is the state_id of Hawaii, there
is no match from users, so NULL is displayed. If the LEFT keyword had been omitted, the row containing
the NULL would not have been displayed. LEFT and RIGHT joins are thus useful to find things that don’t
match!

A RIGHT join works the same way as a LEFT join, except the table on the right is the table that all
records will be returned for, and the table on the left, states, will only contain records that match
with users.

Because every user has a state_id value that exists in states, all records are returned and no NULLs
present in the result set. To see how a RIGHT JOIN works, a user is inserted into users that contain a
state_id that doesn’t exist in states.

mysql> INSERT INTO users (username, ranking, age, state_id)
-> VALUES (’Jack Kerouac’, 87.88, 40, 6);

45

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 46

Chapter 2: MySQL

Then you perform the RIGHT JOIN query:

mysql> SELECT username, states.state_id, state_name
FROM states RIGHT JOIN users
ON (users.state_id = states.state_id);
+------------------+----------+---------------+
| username | state_id | state_name |
+------------------+----------+---------------+
John Smith	1	Alaska
Amy Carr	1	Alaska
Gertrude Asgaard	1	Alaska
Sunya Vadi	2	Alabama
Maya Vadi	2	Alabama
Haranya Kashipu	3	New York
Pralad Maharaj	3	New York
Franklin Pierce	4	New Hampshire
Daniel Webster	4	New Hampshire
Jack Kerouac	NULL	NULL
+------------------+----------+---------------+

And as you can see, then NULLs are displayed in the result set for the new entry in users that does not
yet have a state that exists. Adding another record with a state_id for a state not contained in states
helps to illustrate the concept of how, with RIGHT and LEFT joins, there won’t necessarily be a 1:1 match
in the result set.

This brings up another important point in schema design and how you tailor the queries you use in your
application. If you have a parent to child relationship in your schema, when retrieving the results of a
query to return a list of parents and their children, you need to use the correct query to give you the
desired result.

Consider the two simple tables, parent and children:

mysql> SELECT * FROM parent;
+-----------+--------------+
| parent_id | name |
+-----------+--------------+
| 1 | has kids |
| 2 | empty nester |
+-----------+--------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM children;
+----------+-----------+--------+
| child_id | parent_id | name |
+----------+-----------+--------+
| 1 | 1 | kid #1 |
| 2 | 1 | kid #2 |
+----------+-----------+--------+

If you use an INNER JOIN, the result set omits the record ‘‘empty nester’’ from users, because it doesn’t
have corresponding records in children:

mysql> SELECT * FROM parent p JOIN children c ON
(p.parent_id = c.parent_id);

46

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 47

Chapter 2: MySQL

+-----------+----------+----------+-----------+--------+
| parent_id | name | child_id | parent_id | name |
+-----------+----------+----------+-----------+--------+
| 1 | has kids | 2 | 1 | kid #2 |
| 1 | has kids | 1 | 1 | kid #1 |
+-----------+----------+----------+-----------+--------+

This could be a problem if you intend to display all parents, even those without child records. The way to
solve this issue is to use a LEFT JOIN. The parent table, the table for which you want the result to contain
every record, is the ‘‘left’’ table. So you would need to specify this parent table first in the query:

mysql> SELECT * FROM parent p LEFT JOIN children c ON
(p.parent_id = c.parent_id);
+-----------+--------------+----------+-----------+--------+
| parent_id | name | child_id | parent_id | name |
+-----------+--------------+----------+-----------+--------+
1	has kids	2	1	kid #2
1	has kids	1	1	kid #1
2	empty nester	NULL	NULL	NULL
+-----------+--------------+----------+-----------+--------+

It all depends on what the relational organization of your data is and what data you want your appli-
cation to retrieve. For instance, say you had a database of XML feeds, each of these feeds has items, and
some of those items may or may not contain enclosures (enclosures are for media). If you wanted to dis-
play all the items of a feed and used an INNER JOIN between feeds and items, and an INNER JOIN between
items and enclosures, the result would only contain the items with enclosures. To be able to display all
the items for a feed you would need an INNER JOIN between feeds and items and a LEFT JOIN between
items and enclosures.

Another type of INNER join is a table joined with itself, known as a self-join. The example that follows
shows the table officials list of entries:

mysql> SELECT * from officials;
+-------------+-----------------+---------+
| official_id | name | boss_id |
+-------------+-----------------+---------+
1	American People	0
2	Barack Obama	1
3	Joseph Biden	2
4	Rahm Emanuel	2
5	Ron Klain	3
6	Robert Gates	2
7	Jim Messina	4
+-------------+-----------------+---------+

As you can see, this is data that shows an organizational hierarchy of the President and some of his staff.
If you wanted to see a better view of who works for each other, you can use the following INNER JOIN
syntax:

mysql> SELECT o1.name AS name, o2.name AS boss
-> FROM officials AS o1
-> INNER JOIN officials AS o2
-> ON o1.boss_id = o2.official_id;

47

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 48

Chapter 2: MySQL

+--------------+-----------------+
| name | boss |
+--------------+-----------------+
Barack Obama	American People
Joseph Biden	Barack Obama
Rahm Emanuel	Barack Obama
Ron Klain	Joseph Biden
Robert Gates	Barack Obama
Jim Messina	Rahm Emanuel
+--------------+-----------------+

You’ll notice this required the use of aliased table and column names. This is an extremely useful query
for presenting a flattened view of a normalized table.

This type of join only joins tables based on equality comparisons. The syntax is specific to MySQL, Oracle
and PostgreSQL.

UNION
The SQL statement UNION is another means of combining rows. UNION combines the result sets of
multiple queries. Every result set must have the same number of columns in order for a UNION to
be used:

mysql> SELECT uid, state_id, username FROM users
-> UNION
-> SELECT null, state_id, state_name FROM states;

+------+----------+------------------+
| uid | state_id | username |
+------+----------+------------------+
1	1	John Smith
2	1	Amy Carr
4	1	Gertrude Asgaard
5	2	Sunya Vadi
6	2	Maya Vadi
7	3	Haranya Kashipu
8	3	Pralad Maharaj
9	4	Franklin Pierce
10	4	Daniel Webster
11	6	Jack Kerouac
12	4	Jake B. Smith
NULL	1	Alaska
NULL	2	Alabama
NULL	3	NY
NULL	4	New Hampshire
NULL	5	Hawaii
+------+----------+------------------+

UNION in conjunction with JOIN can be very useful for producing various result sets.

Take, for instance, a table of employees that has a parent-child relationship, an emp_id and
a boss_id. Viewed in its flat form, you have to mentally piece together the hierarchy of the
org chart.

48

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 49

Chapter 2: MySQL

+--------+---------+--------------------+
| emp_id | boss_id | name |
+--------+---------+--------------------+
1	0	Boss Hog
2	1	Rosco P. Coaltrain
3	2	Cleetus
4	0	Uncle Jesse
5	4	Daisy Duke
6	4	Bo Duke
+--------+---------+--------------------+

With the right query using UNIONs and JOINs, it’s possible to have MySQL produce a result set that makes
it a lot more obvious what the org chart is, all without having to write Perl glue hash trickery — where you
use Perl hashes to map the results of children to the results of the parent. The example that follows shows
how a query utilizing JOIN and UNION can display a hierarchical relationship:

mysql> SELECT org_chart FROM
-> (SELECT name AS org_chart FROM employees WHERE boss_id = 0
-> UNION
-> SELECT CONCAT(a.name, ‘ - ‘, b.name) FROM employees a
-> JOIN employees b ON (a.emp_id = b.boss_id)
-> WHERE a.boss_id = 0
-> UNION
-> SELECT CONCAT(a.name, ‘ - ‘, b.name, ‘ - ‘, c.name)
-> FROM employees a
-> JOIN employees b ON (a.emp_id = b.boss_id)
-> LEFT JOIN employees c ON (b.emp_id=c.boss_id)) foo
-> WHERE org_chart IS NOT NULL ORDER BY 1.

+---+
| org_chart |
+---+
| Boss Hog |
| Boss Hog - Rosco P. Coaltrain |
| Boss Hog - Rosco P. Coaltrain - Cleetus |
| Uncle Jesse |
| Uncle Jesse - Bo Duke |
| Uncle Jesse - Daisy Duke |
+---+

This query essentially combines the results of three self joins — where a join is performed within the
same table — eliminating the NULL results, ordering by the first column, which is the only column. The
result is a hierarchical display, showing the top-level bosses with their subordinates and subordinates’
subordinates.

One other thing about UNION is worth mentioning: A UNION can deliver more information in a single
query since it is combining result sets, thus resulting in fewer database calls.

Ultimately, a good principle to keep in mind is simply to let the database do what it’s good at. So many
developers who still aren’t familiar with JOIN or UNION end up using Perl code to do what is simple using
a JOIN statement.

49

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 50

Chapter 2: MySQL

The MySQL client protocol supports sending multiple queries in one request, which can also help you to
avoid unnecessary database calls. More about this in Chapter 6, which discusses the DBD::mysql option
mysql_multi_statements.

INSERT . . . SELECT
The INSERT ... SELECT SQL statement combines INSERT and SELECT, using the result set of a SELECT
statement to provide data to insert for the INSERT statement. It has the same basic syntax as INSERT does,
except it uses a SELECT SQL statement to provide the values to be inserted. So, for instance, say you have
a table with the same schema definition as users called users_copy:

mysql> INSERT INTO users_copy SELECT * FROM users;
Query OK, 10 rows affected (0.00 sec)
Records: 10 Duplicates: 0 Warnings: 0

This is a very fast way of copying data from within the database. You can modify the SELECT statement
to provide any number or specific rows to be used in the INSERT as well.

Updating Data
In addition to inserting data and querying data, you’ll also have to update data. The UPDATE SQL state-
ment is what is used to do this. The UPDATE statement can update one or more tables, unlike INSERTs
which are only one table at a time. The syntax for UPDATE is:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name(s)
SET col_name1=expr1 [, col_name2=expr2] ...
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

An example of an UPDATE against the users table can be shown in the example of where the ranking of a
user with the uid of 9 needs to be changed:

mysql> UPDATE users SET ranking = 95.5 WHERE uid = 9;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

You will notice, as with INSERT, the client reports information on what actions on the table were per-
formed. In this instance, one row was matched and one row was changed. Note that MySQL only counts
rows that were actually changed. If the intent was to change all the score values, simply omitting the
WHERE clause accomplishes this:

mysql> UPDATE users SET ranking = 96.5;
Query OK, 10 rows affected (0.00 sec)
Rows matched: 10 Changed: 10 Warnings: 0

In this case, 10 rows matched, 10 rows were changed. If you take this same query and apply a LIMIT as
well as an ORDER BY, it’s possible to update only the first two rows:

mysql> UPDATE users SET ranking = 97.5 ORDER BY uid LIMIT 2;
Query OK, 2 rows affected (0.00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

50

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 51

Chapter 2: MySQL

In this example, the query is using the result set limit as well as an ORDER BY to guarantee that the first
two rows are changed. This example is used to show that this can be done, but it is not necessarily the
best way to limit the result set that will be used by the INSERT statement. Also, this is not recommended
because there is no guaranteed order for rows in a database. The main reason you would use this is when
you have many identical rows in a database and you only want to update one of them, and in this case
using LIMIT 1 will allow you to do this!

An update of a particular range of rows can better be accomplished by using an index range:

mysql> UPDATE users SET ranking = 95.5 WHERE uid <= 2;
Query OK, 2 rows affected (0.00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

This is much more efficient since this query is using an index to determine which rows to update.

MySQL in this case knows exactly what rows to update and is not using a result set to determine this.

You can also update multiple tables using a JOIN. The tables before the update:

mysql> select * from users;
-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
1	John Smith	95.50	33	1
2	Amy Carr	95.50	25	1
4	Gertrude Asgaard	96.50	65	1
5	Sunya Vadi	96.50	30	2
6	Maya Vadi	96.50	31	2
7	Haranya Kashipu	96.50	99	3
8	Pralad Maharaj	96.50	8	3
9	Franklin Pierce	96.50	60	4
10	Daniel Webster	96.50	62	4
11	Jack Kerouac	96.50	40	6
+-----+------------------+---------+-----+----------+

mysql> select * from states;
+----------+---------------+
| state_id | state_name |
+----------+---------------+
1	Alaska
2	Alabama
3	New York
4	New Hampshire
5	Hawaii
+----------+---------------+

Now an UPDATE is executed against both users and states, being joined by the column state_id to
update any user to have an age of 20 (I wish I could do this for myself so easily!) who have state_id
matching ‘‘New York’’ in the states table as well as updating the values of state_name for the state
with a state_name of ‘‘New York’’ to ‘‘NY:’’

mysql> UPDATE users JOIN states USING (state_id)
->SET age = 20, state_name = ‘NY’

51

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 52

Chapter 2: MySQL

->WHERE state_name = ‘New York’;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

And, of course, the client reports the number of rows updated in both tables as three. The tables after the
UPDATE:

mysql> select * from users;
+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
1	John Smith	95.50	33	1
2	Amy Carr	95.50	25	1
4	Gertrude Asgaard	96.50	65	1
5	Sunya Vadi	96.50	30	2
6	Maya Vadi	96.50	31	2
7	Haranya Kashipu	96.50	20	3
8	Pralad Maharaj	96.50	20	3
9	Franklin Pierce	96.50	60	4
10	Daniel Webster	96.50	62	4
11	Jack Kerouac	96.50	40	6
+-----+------------------+---------+-----+----------+

mysql> select * from states;
+----------+---------------+
| state_id | state_name |
+----------+---------------+
1	Alaska
2	Alabama
3	NY
4	New Hampshire
5	Hawaii
+----------+---------------+

Both users with the uid of 3 now have age set to 20, and state_name for ‘‘New York’’ is now ‘‘NY.’’

Deleting Data
Deleting data from a table or tables is performed using the DELETE SQL statement. Its syntax for single-
table deletions is:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

. . . or for multiple-table deletions:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl_name[.*] [, tbl_name[.*]] ...

52

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 53

Chapter 2: MySQL

FROM table_references
[WHERE where_condition]

. . . or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM tbl_name[.*] [, tbl_name[.*]] ...
USING table_references
[WHERE where_condition]

To delete a specific record for a given uid from the table users, you would execute the SQL statement:

mysql> DELETE FROM users WHERE username = ‘Amy Carr’;
Query OK, 1 row affected (0.00 sec)

As with UPDATE, you can also apply a LIMIT to your statement:

mysql> DELETE FROM users LIMIT 1 WHERE username = ‘Amy Carr’;
Query OK, 1 row affected (0.00 sec)

This is particularly useful when you have identical rows in the table and only want to delete one of them.

Just as with UPDATE, you can also apply ranges:

mysql> DELETE FROM users WHERE uid > 4;
Query OK, 7 rows affected (0.00 sec)

Of course, without any WHERE clause, all rows of the entire table are deleted:

mysql> DELETE FROM users;
Query OK, 10 rows affected (0.00 sec)

The client reports 10 rows affected; all rows in this table are deleted. (This is a query that can often cause
you great grief!)

On way to avoid accidental deletion or updates to a table is to start the client with the --safe-updates
option. If you use this option, you are prevented from incurring these blunders and receive an error if
you try to run either an UPDATE or DELETE statement without either a LIMIT or WHERE clause.

This brings up a point worth discussing — that is, the question of what is the fastest way to delete all
rows from a table. In the previous query, DELETE FROM users, the same thing could have been achieved
with truncate users:

mysql> truncate users;
Query OK, 0 rows affected (0.00 sec)

In this SQL statement, the client reports zero rows as having been affected. If this deletes all the rows of
a table, why does it report zero rows? That’s because TRUNCATE essentially drops and recreates the table
rather than deleting the data by rows. Thus, TRUNCATE is a much faster way to delete all data from a table
(as well as an even more efficient way to shoot yourself in the foot!).

53

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 54

Chapter 2: MySQL

Another point to consider when comparing DELETE FROM table versus TRUNCATE table is whether the
table has an auto_increment column. Consider the following table t1 with a column id, which is an
AUTO_INCREMENT column. It has three rows:

mysql> select * from t1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+

If the data in the table is deleted, and then reinserted:

mysql> DELETE FROM t1;
Query OK, 3 rows affected (0.00 sec)

mysql> INSERT INTO t1 VALUES (),(),();
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> select * from t1;
+----+
| id |
+----+
| 4 |
| 5 |
| 6 |
+----+

If you don’t specify a value upon inserting into an AUTO_INCREMENT column, the value is assigned by
AUTO_INCREMENT.

As you can see, whatever the maximum value of the column with AUTO_INCREMENT prior to the deletion
of all rows was, the next row inserted will result in that column being assigned the value succeeding that
previous maximum value.

TRUNCATE is one way to avoid this:

mysql> TRUNCATE t1;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 VALUES (),(),();
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+

54

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 55

Chapter 2: MySQL

Another way to solve this issue is to ALTER the table to set the initial value to start from 1.

ALTER TABLE t1 AUTO_INCREMENT=1;

As with UPDATE, you can modify (delete) multiple tables in one query. Consider the following tables:

mysql> SELECT * FROM parent;
+-----------+--------------+
| parent_id | name |
+-----------+--------------+
| 1 | has kids |
| 2 | empty nester |
+-----------+--------------+

mysql> SELECT * FROM children;
+----------+-----------+--------+
| child_id | parent_id | name |
+----------+-----------+--------+
| 1 | 1 | kid #1 |
| 2 | 1 | kid #2 |
+----------+-----------+--------+

mysql> SELECT * FROM children_of_children;
+----------+-----------+------------------+
| child_id | parent_id | name |
+----------+-----------+------------------+
1	1	kid #1 of kid #1
2	1	kid #2 of kid #1
3	2	kid #1 of kid #2
+----------+-----------+------------------+

It is possible to delete a given record from a parent so that it ‘‘cascade’’ deletes — meaning that when
a particular row is deleted on the parent table for a given unique key value, the rows on the children
tables that refer to that row (having the same value as the parent’s UNIQUE key on the column with the
foreign key constraint) are deleted as well. Using a DELETE statement joining each table with a column
(parent_id) to ensure the proper relational hierarchy, you can delete an entire ‘‘family’’ from three tables:

mysql> DELETE FROM parent, children, children_of_children
-> USING parent, children, children_of_children
-> WHERE parent.parent_id = children.parent_id
-> AND children.child_id = children_of_children.parent_id
-> AND parent.parent_id = 1;

Query OK, 6 rows affected (0.00 sec)

After which, it can be observed that the record in the parent table and all its child records have been
deleted:

mysql> SELECT * FROM parent;
+-----------+--------------+
| parent_id | name |
+-----------+--------------+
| 2 | empty nester |
+-----------+--------------+

55

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 56

Chapter 2: MySQL

mysql> SELECT * FROM children;
Empty set (0.00 sec)

mysql> SELECT * FROM children_of_children;
Empty set (0.00 sec)

Replacing Data
MySQL also supports REPLACE, a MySQL extension to the SQL standard. REPLACE performs either
an insert or an insert and delete, depending on whether the record being replaced already exists or
not. If it exists, it deletes that record and then reinserts it. If it doesn’t exist, it simply inserts that
record.

The syntax for REPLACE is like INSERT:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
{VALUES | VALUE} ({expr | DEFAULT},...),(...),...

Or UPDATE:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...

To see the full syntax of REPLACE:

mysql> help REPLACE INTO;

To demonstrate how REPLACE works, a new user record is inserted with REPLACE because this record does
not yet exist:

mysql> REPLACE INTO users VALUES (12, ‘Jake Smith’, 78, 50, 4);
Query OK, 1 row affected (0.00 sec)

Note in this example, MySQL indicates one row was affected. That is a good indicator that the row was
only inserted.

The same REPLACE statement is executed again:

mysql> REPLACE INTO users VALUES (12, ‘Jake Smith’, 78, 50, 4);
Query OK, 2 rows affected (0.00 sec)

In this example, MySQL indicates two rows were affected. This is because the row was first deleted (one
row effected) and then reinserted (one more row affected) for a total of two rows affected. Also notice
that despite this being the same data, it is still replaced. This is something to consider when developing
applications. REPLACE may be convenient, but it’s not the most efficient method.

The next example shows an alternate syntax used for REPLACE that resembles UPDATE, except you cannot
specify a WHERE clause to update the record only if the data being replaced is different than what is already
existing.

56

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 57

Chapter 2: MySQL

mysql> REPLACE INTO users
-> SET age = 50, uid = 12, ranking = 77, state_id = 5, username = ‘Jake Smith’;

Query OK, 2 rows affected (0.00 sec)

Another caveat with REPLACE can be seen in the following statement:

mysql> REPLACE INTO users SET age = 50, uid = 12;
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT * FROM users WHERE uid = 12;
+-----+----------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+----------+---------+-----+----------+
| 12 | | 0.00 | 50 | 0 |
+-----+----------+---------+-----+----------+

With this example, only age and uid were specified, and REPLACE promptly deleted the existing row and
then reinserted the row — but only with the value for uid and age. This is something to keep in mind
when using REPLACE. Also notice that username and state_id are set to their respective default values of
an empty string and zero.

As you can see, REPLACE is convenient in simple statements, but if efficiency is needed, REPLACE may
not be the best solution — particularly if you intend to replace many rows of data. The next statement,
INSERT ... ON DUPLICATE KEY UPDATE is better suited to update only if the row (or rows) has changed.

INSERT ... ON DUPLICATE KEY UPDATE
The previous section showed REPLACE, which inserts a row of data if the row doesn’t yet exist, or deletes
and then reinserts that row if it does exist. Instead of deleting and then reinserting the data, there is
another way of ‘‘replacing’’ a row of data that will instead insert the data if it is a new row or update if it
is already existing.

If, in the previous example, you used INSERT ... ON DUPLICATE KEY UPDATE instead of REPLACE, the results
would be different.

If the row doesn’t yet exist, it is inserted:

mysql> INSERT INTO users VALUES (12, ‘Jake Smith’, 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username=’Jake Smith’, ranking=78,

age=50, state_id =4 ;
Query OK, 1 row affected (0.00 sec)

As you can see, only one row is affected because the data with uid of 12 doesn’t yet exist.

If the row already exists, but the data is not different, no update occurs, as follows:

mysql> INSERT INTO users VALUES (12, ‘Jake Smith’, 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username=’Jake Smith’, ranking=78,

age=50, state_id =4 ;
Query OK, 0 rows effected (0.00 sec)

It then reports that zero rows have been affected.

57

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 58

Chapter 2: MySQL

If the data is different, then whatever column is different is modified:

mysql> INSERT INTO users VALUES (12, ‘Jake Smith’, 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username=’Jake Smith’, ranking=78,

age=49, state_id =4 ;
Query OK, 2 rows affected (0.00 sec)

This shows two rows have been affected.

Also, another benefit of INSERT ... ON DUPLICATE KEY UPDATE is that if not every column is listed, in this
case only uid and username, only the column that has a different value is updated.

mysql> INSERT INTO users VALUES (12, ‘Jake Smith’, 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username=’Jake B. Smith’;

Query OK, 2 rows affected (0.00 sec)

mysql> SELECT * FROM users WHERE uid = 12;
+-----+---------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+---------------+---------+-----+----------+
| 12 | Jake B. Smith | 78.00 | 49 | 4 |
+-----+---------------+---------+-----+----------+

In this case, only the username column was modified, leaving all the others alone. This example shows
that the problem illustrated earlier with REPLACE isn’t a problem using INSERT ... ON DUPLICATE KEY
UPDATE.

It all depends on what you need in terms of behavior. REPLACE might work fine if you don’t care whether
the existing row is deleted or not, and is simple enough. However, if you want the statement to exhibit
more discrimination in whether it updates or inserts if it needs to, then INSERT ... ON DUPLICATE KEY
UPDATE is preferred.

Operators
MySQL supports the standard SQL operators you would expect in a database. Some examples of mathe-
matical operations you can use with MySQL are shown in the following table:

Operation Sample Query Result

Basic math SELECT ((234 * 34567) / 32) + 1; 252772.1875

Modulus SELECT 9 % 2; 1

Boolean SELECT !0; 1

Bit operators | (or), & and SELECT 1 | 0; SELECT 1 & 0 1 0

Right shift select 8 << 1; 16

Left shift select 8 >> 1; 4

58

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 59

Chapter 2: MySQL

For a complete listing of all operators and their usage, run the following from the MySQL command-line
client:

mysql> help Comparison operators;
mysql> help Logical operators;

See the section ‘‘Using Help’’ for more information on how to use MySQL’s help facility.

Functions
MySQL has numerous functions to take advantage of and give the developer yet more tools and tricks
to use in development. The various functions perform a variety of purposes and act on various types
of data including numeric, string, date, informational, binary data, as well as provide control flow
functionality.

For a complete listing of the numerous MySQL functions, you can run the following from the MySQL
command-line client:

mysql> help Numeric Functions;
mysql> help Bit Functions;
mysql> help Date and Time Functions;
mysql> help Encryption Functions;
mysql> help Information Functions;
mysql> help Miscellaneous Functions;
mysql> help String Functions;
mysql> help Functions and Modifiers for Use with GROUP BY;

Also, the MySQL online manual has a comprehensive listing at http://dev.mysql.com/doc/refman/5.1
/en/functions.html.

This section explains several of these functions and provides some examples to help you under-
stand just how useful these functions can be. MySQL offers a wide variety of functions, depending
on your application requirements. Here we show you some of the more common ones. The
MySQL user’s manual covers all of them in much more detail than we can within the scope of
this book.

When you are designing and coding your application, you often try to determine whether it’s better to
process something in the application code or in the database. The question comes down to this: What it
is that you need to do? How much complexity do you want to allow in your application code on the one
hand, and do you want the database to take care of storing and retrieving data so that the application is
primarily displaying that data? The answer to the second question comes down to personal preference.
With MySQL functions, you are given even more ways to solve the usual problems that arise when
developing web applications.

Informational Functions
Informational functions are handy tools to provide you with information about the database as well as
the interaction between tables and the data you are modifying them with, as shown in the following
table:

59

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 60

Chapter 2: MySQL

Function Description Example

DATABASE(),
SCHEMA()

This function provides you with
the name of the schema you are
connected to. This is very
convenient if you are like the
author of this book and
sometimes forget what schema
you’ve connected to!

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| webapps |
+------------+

CURRENT_USER(),
CURRENT_USER

If you’ve forgotten what user
you are currently connected to
(again, like the author is known
to do), this MySQL command
will tell you what user and host
you are connected to.

mysql> SELECT CURRENT_USER();
+-------------------+
| CURRENT_USER() |
+-------------------+
| webuser@localhost |
+-------------------+

LAST_INSERT_ID(),
LAST_INSERT_ID

This function returns the last
value automatically generated
and assigned to a column
defined with the
AUTO_INCREMENT attribute.

mysql> INSERT INTO users
(username, ranking, age, state_id)

-> VALUES (’Arthur Fiedler’,
99.99, 84, 9);

mysql> select LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 12 |
+------------------+

For more information on informational functions, simply run:

mysql> help Information Functions;

Aggregate Functions
There are aggregate functions in MySQL that you can use to print out common statistics about data.

Aggregate Function Description

MIN() Returns the minimum value of a column in a result set or expression

MAX() Returns the maximum value of a column in a result set or expression

AVG() Returns the average value of a column in a result set or expression

SUM() Returns the sum of all values of a column in a result set or expression

COUNT() Returns the count of rows of a column or columns in a result set

60

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 61

Chapter 2: MySQL

Aggregate Function Description

COUNT DISTINCT Returns a count of the number of different non-NULL values

GROUP_CONCAT() Returns a comma-separated string of the concatenated non-NULL values
from a group or NULL if there are no non-NULL values

STDDEV() or
STDDEV_POP()

Returns the population standard deviation of a column in a result set or
expression

VARIANCE() Returns the population standard variance of a column in a result set or
expression

For example, if you wanted to see the minimum, average, maximum, sum, and standard deviation and
variable for the ages of all users:

mysql> SELECT MIN(age), AVG(age), MAX(age), SUM(age), STDDEV(age),
-> VARIANCE(age) FROM users\G

*************************** 1. row ***************************
MIN(age): 20
AVG(age): 40.5000
MAX(age): 65
SUM(age): 486

STDDEV(age): 15.6605
VARIANCE(age): 245.2500

Or, if you wanted to count the number of users with the age greater than 40:

mysql> SELECT COUNT(*) FROM users WHERE age > 40;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+

You have a very useful modifier for GROUP BY, ROLLUP, which in addition to the grouping and summation
of ages per state, also shows you the total sum of ages for all states!

mysql> SELECT SUM(age) AS age_total, state_name
-> FROM users
-> JOIN states
-> USING (state_id)
-> GROUP BY state_name WITH ROLLUP;

+-----------+---------------+
| age_total | state_name |
+-----------+---------------+
61	Alabama
123	Alaska
122	New Hampshire
40	NY
346	NULL
+-----------+---------------+

61

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 62

Chapter 2: MySQL

For more information on aggregate functions, simply run:

mysql> help Functions and Modifiers for Use with GROUP BY;

Numeric Functions
MySQL also has many numeric functions for various mathematical operations. A full listing of these
functions can be found on MySQL’s web site http://dev.mysql.com/doc/refman/5.1/en/numeric-
functions.html. Some of these functions include geometrical conversions, numbering system conver-
sions, logarithmic functions, as well as square root and raising a number to a power.

Here are examples of geometrical functions for sine, cosine tangent, cotangent:

mysql> SELECT COS(90), SIN(90), TAN(90), COT(90);
+-------------------+------------------+------------------+-------------------+
| COS(90) | SIN(90) | TAN(90) | COT(90) |
+-------------------+------------------+------------------+-------------------+
| -0.44807361612917 | 0.89399666360056 | -1.9952004122082 | -0.50120278338015 |
+-------------------+------------------+------------------+-------------------+

The function PI() generates an approximation to the number π that you can then convert from radians
to degrees with the DEGREES() function.

mysql> SELECT DEGREES(PI()*1.5), DEGREES(PI()),
-> DEGREES(PI()/2), DEGREES(PI()/4);

+-------------------+---------------+-----------------+-----------------+
| DEGREES(PI()*1.5) | DEGREES(PI()) | DEGREES(PI()/2) | DEGREES(PI()/4) |
+-------------------+---------------+-----------------+-----------------+
| 270 | 180 | 90 | 45 |
+-------------------+---------------+-----------------+-----------------+

This example shows raising a number to a power, and getting the square root of a number:

mysql> SELECT SQRT(4096), POWER(2,8);
+------------+------------+
| SQRT(4096) | POWER(2,8) |
+------------+------------+
| 64 | 256 |
+------------+------------+

And here are conversions to and from different numbering systems:

mysql> SELECT BIN(17), OCT(64), HEX(257), CONV(’ABCDEF’, 16, 10);
+---------+---------+----------+------------------------+
| BIN(17) | OCT(64) | HEX(257) | CONV(’ABCDEF’, 16, 10) |
+---------+---------+----------+------------------------+
| 10001 | 100 | 101 | 11259375 |
+---------+---------+----------+------------------------+

String Functions
MySQL has various string functions that can be found in detail in MySQL’s online manual. Some of the
common ones that you’ll end up using are functions that you would often use in web site development,
such as those that find patterns, concatenate strings, replace strings, etc.

62

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 63

Chapter 2: MySQL

The following example shows the use of CONCAT() and REPLACE()to achieve concatenation of three
strings: username, a spacer string, and the result of replacing any occurrence of state_name having the
value of ‘‘New Hampshire’’ with ‘‘NH.’’

mysql> SELECT CONCAT(username, ‘ : ‘, REPLACE(state_name, ‘New
Hampshire’, ‘NH’))

-> FROM users JOIN states USING (state_id)
-> WHERE state_id = 4;

+---+
| concat(username, ‘ : ‘, replace(state_name, ‘New Hampshire’, ‘NH’)) |
+---+
| Franklin Pierce : NH |
| Daniel Webster : NH |
+---+

LENGTH() is also a very convenient function for web developers:

mysql> select username, length(username) from users where
length(username) > 10;
+------------------+------------------+
| username | length(username) |
+------------------+------------------+
Daniel Webster	14
Franklin Pierce	15
Gertrude Asgaard	16
Haranya Kashipu	15
Jack Kerouac	12
Jake B. Smith	13
Pralad Maharaj	14
+------------------+------------------+

You can also use functions in INSERT and UPDATE statements, where you would normally have an actual
value being changed. For instance, if you had a table called lengths, you could simply use the function
call in the previous SELECT statement:

mysql> INSERT INTO lengths SELECT uid, LENGTH(username) FROM users;

There are also string comparison functions: LIKE, NOT LIKE, SOUNDS LIKE (SOUNDEX()), STRCMP(), and
REGEXP.

The function LIKE is a simple SQL regular expression pattern-matching function.

mysql> SELECT username FROM users WHERE username like ‘Am%’;
+----------+
| username |
+----------+
| Amy Carr |
+----------+

mysql> SELECT ‘Amy’ LIKE ‘%my’;
+------------------+
| ‘Amy’ LIKE ‘%my’ |
+------------------+
| 1 |

63

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 64

Chapter 2: MySQL

+------------------+
mysql> SELECT count(*) FROM states WHERE state_name NOT LIKE ‘%shire%’;
+----------+
| count(*) |
+----------+
| 4 |
+----------+

Note for this code:

❑ 1 (TRUE): Means that you have a match.

❑ 0 (NULL): Means that there are no matches.

❑ LIKE: Will return NULL if either argument is NULL.

It should be noted that SQL uses the % (percent) sign for wildcard matching of one or more. For single
wildcard, _ (underscore) is used.

SOUNDS LIKE is also a useful function for words that sound alike. This performs the same query as
SOUNDEX(string1) = SOUNDEX(string2). Soundex is a phonetic algorithm for indexing names by sound,
as pronounced in English, so these functions primarily work with English words. For a complete
description of soundex, see the wiki page at http://en.wikipedia.org.wiki/Soundex.

mysql> select ‘aimee’ sounds like ‘amy’;
+---------------------------+
| ‘aimee’ sounds like ‘amy’ |
+---------------------------+
| 1 |
+---------------------------+

mysql> select soundex(’Jennifer’) = soundex(’amy’);
+--------------------------------------+
| soundex(’Jennifer’) = soundex(’amy’) |
+--------------------------------------+
| 0 |
+--------------------------------------+

Another example for using soundex is to compare two words or names pronounced the same but with
different spellings. In this example, the return value of sound is the same for both ‘‘Patrick’’ and ‘‘Patrik’’
since when spoken, they are pronounced the same.

mysql> select soundex(’Patrik’), soundex("Patrick");
+-------------------+--------------------+
| soundex(’Patrik’) | soundex("Patrick") |
+-------------------+--------------------+
| P362 | P362 |
+-------------------+--------------------+

Another way of comparing string values is to use regular expressions — a major part of life for a Perl
programmer. They are available to use in MySQL as well. Pattern matching, which you are familiar with
as a Perl programmer, works the pretty much the same as the REGEXP function.

64

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 65

Chapter 2: MySQL

amysql> SELECT ‘A road less traveled’ REGEXP ‘.[var]ele.\s?’;
+---+
| ‘A road less traveled’ REGEXP ‘.[var]ele.\s?’ |
+---+
| 1 |
+---+

mysql> SELECT ‘banana’ REGEXP ‘(an){1,2}’;
+-----------------------------+
| ‘banana’ REGEXP ‘(an){1,2}’ |
+-----------------------------+
| 1 |
+-----------------------------+

The functions SUBSTR() — also named SUBSTRING() and STRCMP() — perform the same functionality as
their C and Perl counterparts. If the two strings are the same, the value returned is 0. The return values
is non-zero:

If the first string is smaller, then the result is 1; if the second string is smaller the result is -1.

mysql> SELECT strcmp(’same’, ‘same’);
+------------------------+
| strcmp(’same’, ‘same’) |
+------------------------+
| 0 |
+------------------------+

mysql> SELECT strcmp(’same’, ‘different’);
+-----------------------------+
| strcmp(’same’, ‘different’) |
+-----------------------------+
| 1 |
+-----------------------------+

SUBSTRING() works as you’d expect, but can take a variety of arguments:

mysql> SELECT SUBSTRING(’foxtrot’, 4);
+-------------------------+
| SUBSTRING(’foxtrot’, 4) |
+-------------------------+
| trot |
+-------------------------+

mysql> SELECT SUBSTRING(’foxtrot’, 2, 2);
+----------------------------+
| SUBSTRING(’foxtrot’, 2, 2) |
+----------------------------+
| ox |
+----------------------------+

mysql> SELECT SUBSTRING(’foxtrot’ from 3);
+-----------------------------+
| SUBSTRING(’foxtrot’ from 3) |

65

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 66

Chapter 2: MySQL

+-----------------------------+
| xtrot |
+-----------------------------+

For more information on string functions, run the following:

mysql> help string functions;

Date Functions
For web developers, date functions are probably some of the most often-used database functions. Often
you have to produce data from a table sorted or grouped by date, limited to a time frame, and then
produce a date format that is more web-server friendly or compatible with the operating system time
format. Whatever type of date operation you need, MySQL has a date function that most likely fulfills
that requirement.

For the full listing of date functions, run the following:

mysql> help date and time functions;

You can also find documentation covering date and time functions on MySQL’s developer web site at
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html.

This section covers the ones that we find useful in web development.

The function NOW() is probably one of the most-used functions. The convenient thing about it is that you
can, in turn, pass it to other functions, as shown in this example:

mysql> SELECT NOW(), DAY(NOW()), WEEK(NOW()), MONTH(NOW()),
QUARTER(NOW()),

-> YEAR(NOW()), DATE(NOW()), TIME(NOW()), TO_DAYS(NOW()),
WEEKOFYEAR(NOW())\G
*************************** 1. row ***************************

NOW(): 2008-07-08 21:28:22
DAY(NOW()): 8
WEEK(NOW()): 27

MONTH(NOW()): 7
QUARTER(NOW()): 3

YEAR(NOW()): 2008
DATE(NOW()): 2008-07-08
TIME(NOW()): 21:28:22

TO_DAYS(NOW()): 733596
WEEKOFYEAR(NOW()): 28

NOW() provides the current time and date of the database. To make it so you have one source of determin-
ing what time it is on your server and to ensure you don’t have to worry if there’s a time zone difference
between your database and operating system, use NOW(). Also, you’ll see that NOW() is the argument to
various date functions in this SQL statement. Each one of these functions converts the value of now into
a different representation of the current time. You can begin to imagine what applications could use this
type of data!

66

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 67

Chapter 2: MySQL

UNIX_TIMESTAMP() is also another useful function that is often used as such:

mysql> SELECT UNIX_TIMESTAMP();
+------------------+
| UNIX_TIMESTAMP() |
+------------------+
| 1215567280 |
+------------------+

For example, UNIX_TIMESTAMP() returns the number of seconds since ‘‘Bridge Over Troubled Water’’
was song of the year and you drove your VW Bus to Half Moon Bay (1970 January 01).

You can also convert back from UNIX_TIMESTAMP:

mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP());
+---------------------------------+
| FROM_UNIXTIME(UNIX_TIMESTAMP()) |
+---------------------------------+
| 2008-07-08 21:47:58 |
+---------------------------------+

And thus produce the same value that NOW() would provide.

There are also data arithmetic functions such as DATE_ADD() and DATE_SUB():

mysql> SELECT NOW(), DATE_ADD(NOW(), INTERVAL 2 DAY),
-> DATE_ADD(’2007-07-01 12:00:00’ ,

INTERVAL 1 WEEK),DATE_SUB(NOW(), INTERVAL 38 YEAR)\G
*************************** 1. row ***************************

NOW(): 2008-07-08 21:58:25
DATE_ADD(NOW(), INTERVAL 2 DAY): 2008-07-10 21:58:25

DATE_ADD(’2007-07-01 12:00:00’ , INTERVAL 1 WEEK): 2007-07-08 12:00:00
DATE_SUB(NOW(), INTERVAL 38 YEAR): 1970-07-08 21:58:25

In this example, you can see how you can obtain the time and date of the some interval specified added
to or subtracted from a date time value provided either explicitly or from the output of NOW().

You could also use functions like DATE_ADD() and DATE_SUB() to obtain records from a table within or
before a given period of time. In this example, there is a table items which stores items of an XML feed,
each having its own created date. This query is run in order to obtain a count of items that are older than
four weeks:

mysql> SELECT COUNT(*) FROM items WHERE created < DATE_SUB(NOW(),
INTERVAL 4 WEEK);
+----------+
| count(*) |
+----------+
| 322180 |
+----------+

67

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 68

Chapter 2: MySQL

You might also want to use date functions to insert data that is older than a certain date from a source
table to either a queue for deletions or even a historical table. In this example, items older than four weeks
are inserted into a table that stores ids of the items that will later be deleted.

mysql> INSERT INTO items_to_delete
-> SELECT item_id FROM items
-> WHERE created < DATE_SUB(NOW(), INTERVAL 4 WEEK);

Query OK, 322180 rows affected (3.94 sec)
Records: 322180 Duplicates: 0 Warnings: 0

Another commonly used date function is DATE_FORMAT(). This is a formatting function that allows you
to specify exactly how you want a date printed out. Its usage is:

DATE_FORMAT(date, format)

Depending on the formatting characters you choose as well as any other text in the format string, you
can have the date printed any way you want:

mysql> select date_format(now(), ‘%Y, %M the %D’);
+-------------------------------------+
| date_format(now(), ‘%Y, %M the %D’) |
+-------------------------------------+
| 2008, July the 8th |
+-------------------------------------+

For a more complete listing on how to use DATE_FORMAT, you can run the following:

mysql> help date_format;

. . . or visit the MySQL user manual page: http://dev.mysql.com/doc/refman/5.1/en
/date-and-time-functions.html#function_date-format.

For a listing of all date functions, run:

mysql> help

Date and Time Functions; Control Flow Functions
Control flow functions allow you to write conditional SQL statements and the building blocks for writing
useful triggers, functions, and stored procedures. The control flow functions are CASE, IF, IFNULL() and
NULLIF().

Values in MySQL conditional expressions are interpreted the following way:

❑ 0 is false.

❑ NULL is NULL (but in most cases can be regarded as false).

❑ 1 (or any integer value <> 0) is regarded as TRUE.

The function CASE works just like the case operator, just as you have in other programming languages. The
syntax for using CASE is essentially:

68

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 69

Chapter 2: MySQL

CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN
result ...] [ELSE result] END

or

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...]
[ELSE result] END

A usage example is as follows:

mysql> SELECT CASE WHEN NOW() > DATE_ADD(NOW(), INTERVAL 1 DAY)
-> THEN ‘Later’ ELSE ‘Earlier’ END;

+---+
| CASE WHEN NOW()> DATE_ADD(NOW(),INTERVAL 1 DAY) THEN ‘Later’ ELSE ‘Earlier’ END |
+---+
| Earlier |
+---+

mysql> SELECT CASE WHEN NOW()> DATE_SUB(NOW(),INTERVAL 1 DAY)
-> THEN ‘Later’ ELSE ‘Earlier’ END;

+---+
| CASE WHEN NOW()> DATE_SUB(NOW(),INTERVAL 1 DAY) THEN ‘Later’ ELSE ‘Earlier’ END |
+---+
| Later |
+---+

This next example shows using CASE on a query against the states table from earlier examples. In this
example, state_name is checked for specific values and if there is a match, the value following THEN is
printed. Everything between CASE and END can then be treated as a return value in a result set and in this
case is aliased with a column name of slogan.

mysql> SELECT state_name,
-> CASE WHEN state_name = ‘Hawaii’ THEN ‘Aloha’
-> WHEN state_name = ‘Alaska’ THEN ‘Denali’
-> WHEN state_name = ‘Alabama’ THEN ‘Sweet Home’
-> WHEN state_name = ‘New Hampshire’ THEN ‘Live Free or Die’
-> ELSE state_name END
-> AS slogan FROM states;

+---------------+------------------+
| state_name | slogan |
+---------------+------------------+
Alaska	Denali
Alabama	Sweet Home
NY	NY
New Hampshire	Live Free or Die
Hawaii	Aloha
+---------------+------------------+

In this example, every state except NY is given a logo, NY defaulting to the state_name value. This
example could also have been written as:

mysql> SELECT state_name,
-> CASE state_name WHEN ‘Hawaii’ THEN ‘Aloha’

69

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 70

Chapter 2: MySQL

-> WHEN ‘Alaska’ THEN ‘Denali’
-> WHEN ‘Alabama’ THEN ‘Sweet Home’
-> WHEN ‘New Hampshire’ THEN ‘Live Free or Die’
-> ELSE state_name END
-> AS slogan FROM states;

IF() is another conditional function that can be used to test a value and toggle to two possible outputs.
The syntax of the IF conditional function is:

IF(condition, expr1, expr2)

As in:

mysql> SELECT IF(1, ‘value1’, ‘value2’);
+---------------------------+
| IF(1, ‘value1’, ‘value2’) |
+---------------------------+
| value1 |
+---------------------------+

mysql> SELECT IF(0, ‘value1’, ‘value2’);
+---------------------------+
| IF(0, ‘value1’, ‘value2’) |
+---------------------------+
| value2 |
+---------------------------+

Using IF() with other functions, you can come up with all manner of convenient statements.

mysql> SELECT TO_DAYS(NOW()), IF(TO_DAYS(NOW()) % 2, ‘odd day’,
‘even day’)

-> AS `Type of Day`;
+----------------+-------------+
| TO_DAYS(NOW()) | Type of Day |
+----------------+-------------+
| 733600 | even day |
+----------------+-------------+

Using Help
The section covered a portion of the total number of operators and functions available for MySQL. For
a complete listing of all the various operators and functions available, in addition to MySQL’s online
documentation at http://dev.mysql.com/doc/, you can also use MySQL’s help facility.

For a top-level listing of all the help categories available, run the following:

mysql> help contents;
You asked for help about help category: "Contents"
For more information, type ‘help <item>’, where <item>
is one of the following
categories:

Account Management

70

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 71

Chapter 2: MySQL

Administration
Data Definition
Data Manipulation
Data Types
Functions
Functions and Modifiers for Use with GROUP BY
Geographic Features
Language Structure
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers

To see a listing of the top-level function and operator categories into which you can drill down deeper
for more detailed information, run the following:

mysql> help functions;
You asked for help about help category: "Functions"
For more information, type ‘help <item>’, where <item>
is one of the following
topics:

CREATE FUNCTION
DROP FUNCTION
PROCEDURE ANALYSE

categories:
Bit Functions
Comparison operators
Control flow functions
Date and Time Functions
Encryption Functions
Information Functions
Logical operators
Miscellaneous Functions
Numeric Functions
String Functions

To see a list of the various comparison operators that each have their own help pages:

mysql> help Comparison operators;
You asked for help about help category: "Comparison operators"
For more information, type ‘help <item>’, where <item>
is one of the following
topics:

!=
<
<=
<=>
=
>
>=
BETWEEN AND
COALESCE
GREATEST

71

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 72

Chapter 2: MySQL

IN
INTERVAL
IS
IS NULL
ISNULL
LEAST
NOT BETWEEN
NOT IN

The help information for the operator >= (greater than or equal) in particular is displayed by running the
following:

mysql> help >=;
Name: ‘>=’
Description:
Syntax:
>=

Greater than or equal:

URL: http://dev.mysql.com/doc/refman/5.0/en/comparison-operators.html

Examples:
mysql> SELECT 2 >= 2;

-> 1

This is an extremely useful feature that is often overlooked but can work even when you are on a long
plane trip with no Internet connectivity!

User-Defined Variables in MySQL
Just as with Perl, MySQL/SQL gives you the ability to define variables. These variables are durable
during the particular connection being used. This means you can set them within a connection and refer
to them in subsequent statements while using that same connection, and are freed when the connection
is closed.

Using user-defined variables in MySQL is very simple. Variables are referenced as @variable, and are
set in the following two ways:

mysql> SET @myvar = ‘someval’, @myothervar= ‘someother val’;

Or

mysql> SELECT @myvar, @myothervar;
+---------+---------------+
| @myvar | @myothervar |
+---------+---------------+
| someval | someother val |
+---------+---------------+

The = or := assignment operators can be used in SET. You can set one or more variables in one statement.

72

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 73

Chapter 2: MySQL

The other method to assign a variable is within any other statement not using SET, where only the :=
operator can be used, because within any other statement than SET, the = operator is treated as a com-
parison operator.

mysql> SELECT @othervar := ‘otherval’;
+-------------------------+
| @othervar := ‘otherval’ |
+-------------------------+
| otherval |
+-------------------------+

mysql> SELECT @othervar;
+-----------+
| @othervar |
+-----------+
| otherval |
+-----------+

As you can see, assignment and display happen in the first statement, and the value is verified as still
being set in the second statement.

mysql> SELECT @myvar := ‘some new val’, @myothervar := ‘some other val’;
+--------------------------+---------------------------------+
| @myvar := ‘some new val’ | @myothervar := ‘some other val’ |
+--------------------------+---------------------------------+
| some new val | some other val |
+--------------------------+---------------------------------+

mysql> SELECT @myvar, @myothervar;
+--------------+----------------+
| @myvar | @myothervar |
+--------------+----------------+
| some new val | some other val |
+--------------+----------------+

You can also set variables within data modification statements such as INSERT and UPDATE.

mysql> UPDATE t1 SET name = @name := ‘first’ WHERE id = 1;

mysql> INSERT INTO t1 (name) VALUES (@newname := ‘Jim Beam’);

mysql> select @name, @newname;
+-------+----------+
| @name | @newname |
+-------+----------+
| first | Jim Beam |
+-------+----------+

mysql> select * from t1;
+----+----------+
| id | name |
+----+----------+
| 1 | first |

73

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 74

Chapter 2: MySQL

2	NULL
3	third
4	Jim Beam
+----+----------+

This makes a very convenient way of both modifying data and accessing the values you updated or
inserted. You can also use variables with func-
tions:

mysql> SET @a= ‘Ab’, @b= ‘stract’;

mysql> SELECT concat(@a,@b);
+---------------+
| concat(@a,@b) |
+---------------+
| Abstract |
+---------------+

Another nifty usage example with user-defined variables is to use the result sets of a query to increment
or sum its value:

mysql> select @a := @a * 33 from t1;
+---------------+
| @a := @a * 33 |
+---------------+
| 66 |
| 2178 |
| 71874 |
| 2371842 |
| 78270786 |
| 2582935938 |
| 85236885954 |
| 2812817236482 |
+---------------+

With user-defined variables, as with functions, you have another choice to make: whether to use your
application code or database to store certain values between statements. It all depends on your develop-
ment style and preference. In some cases, using user-defined variables means you can avoid a call to the
database to retrieve a value that you then use in a subsequent statement, and therefore be more efficient.

MySQL Privileges
The MySQL privilege system is something that a web applications developer or database administrator
should be familiar with. In the course of managing a database for web applications, you will have to
be able to create and delete users as well as limit what resources the users have access to. The MySQL
privilege system offers a lot of control over what database objects a user has access to and what SQL state-
ments can be run against those objects, such as SELECT, INSERT, UPDATE, and DELETE, as well as control
over creating functions, procedures, triggers, accessing system status, and administrative functions.

A MySQL user account is made up of a username and host from which that user can connect, and has
a password. A MySQL account has no connection to any operating system user account. For instance,

74

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 75

Chapter 2: MySQL

MySQL comes installed with a root user as the default administrative user of the database, but the only
connection between MySQL’s root user and the operating system’s root user is the name itself.

MySQL Access Control Privilege System
There are two stages to MySQL access control:

1. The server verifies if the given user can connect to the server.

2. If the user can connect, any statement issued by the user is checked by the server to deter-
mine if the user has privileges to execute that statement.

To connect to MySQL as a specific user with the MySQL client program mysql, the usage, as has been
shown in previous sections, is:

mysql –-user=username –-password schemaname

Also, you do not have to specify a password on the command line:

mysql –-user=username –-password schemaname

With this last usage example, the mysql client program will prompt you for a password.

patg@hanuman:∼$ mysql --user=webuser --password webapps
Enter password:

MySQL Global System User
The root user, which is the default administrative user for MySQL, has global privileges, meaning that
this user has all privileges to all schemas and tables within those schemas, as well as the ability to create
other users and grant those users privileges for the entire database server. By default (unless you later
change permissions for this user), the root user, as installed, can only connect from the same host the
database server has been installed on and requires no password (this can later be set to require one as
well). To connect as the root user, simply specify root on the command line:

mysql –u root

Once connected, you can connect to any schema you need to by using the client command connect or
use (both accomplish the same thing):

patg@hanuman:∼$ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1852
Server version: 5.0.45

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> connect mysql
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

75

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 76

Chapter 2: MySQL

Connection id: 1853
Current database: mysql

mysql>

MySQL System Schema Grant Tables
The mysql schema is the schema in which MySQL stores its system table, and in particular those pertain-
ing to the accounts system. The tables that exist in this schema can be displayed with the SHOW TABLES
command:

mysql> show tables;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

The various tables in the mysql schema can be seen in the output above.

Of these tables, user, db, host, tables_priv, columns_priv and procs_priv are the grant tables, which
pertain to user privileges. These tables can be directly modified by normal SQL statements, but for the
scope of this book, it is recommended that you use the GRANT and REVOKE statements to control user
privileges.

If you ever want to see all the available privileges in MySQL, the statement SHOW PRIVILEGES will
display all of them.

There is a certain hierarchy of scope of permission of these tables. The user table is the top-most grant
table and is the first table checked to determine whether the user can connect to the MySQL instance (the
first stage of authentication), and is essentially the global table for privileges. If you look at this table you
will see entries for the default admin root system user as well as the user webuser that has been created
for demonstrating examples in this book:

mysql> SELECT * FROM user where host=’localhost’ and (user=’root’ or

76

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 77

Chapter 2: MySQL

user="webuser")\G
*************************** 1. row ***************************

Host: localhost
User: root

Password: *81F5E21E35407D884A6CD4A731AEBFB6AF209E1B
Select_priv: Y
Insert_priv: Y
Update_priv: Y
Delete_priv: Y
Create_priv: Y
Drop_priv: Y

Reload_priv: Y
Shutdown_priv: Y
Process_priv: Y

File_priv: Y
Grant_priv: Y

References_priv: Y
Index_priv: Y
Alter_priv: Y

Show_db_priv: Y
Super_priv: Y

Create_tmp_table_priv: Y
Lock_tables_priv: Y

Execute_priv: Y
Repl_slave_priv: Y

Repl_client_priv: Y
Create_view_priv: Y

Show_view_priv: Y
Create_routine_priv: Y
Alter_routine_priv: Y
Create_user_priv: Y

Event_priv: Y
Trigger_priv: Y

ssl_type:
ssl_cipher:

x509_issuer:
x509_subject:

max_questions: 0
max_updates: 0

max_connections: 0
max_user_connections: 0

*************************** 2. row ***************************
Host: localhost
User: webuser

Password: *E8FF493478066901F07DC13F7E659283EFA30AB3
Select_priv: N
Insert_priv: N
Update_priv: N
Delete_priv: N
Create_priv: N
Drop_priv: N

Reload_priv: N
Shutdown_priv: N
Process_priv: N

File_priv: N

77

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 78

Chapter 2: MySQL

Grant_priv: N
References_priv: N

Index_priv: N
Alter_priv: N

Show_db_priv: N
Super_priv: N

Create_tmp_table_priv: N
Lock_tables_priv: N

Execute_priv: N
Repl_slave_priv: N

Repl_client_priv: N
Create_view_priv: N
Show_view_priv: N

Create_routine_priv: N
Alter_routine_priv: N

Create_user_priv: N
Event_priv: N

Trigger_priv: N
ssl_type:

ssl_cipher:
x509_issuer:

x509_subject:
max_questions: 0

max_updates: 0
max_connections: 0

max_user_connections: 0

mysql> SELECT host, user FROM user WHERE user = ‘webapp’ OR
user = ‘root’;
+-------------+------+
| host | user |
+-------------+------+
127.0.0.1	root
localhost	root
radha.local	root
+-------------+------+

Each of the grant tables contains both scope and privilege columns. As shown in the output of the user
table in the previous code, the columns User, Host and Password are the scope columns. The combina-
tion of User and Host is the unique combination used to determine if the given user at a specific host
is allowed to connect. The password column contains the scrambled password of a given user. When
authenticating, the server scrambles the password that the user has entered using the same scrambled
algorithm in which the original password was stored, and compares it to the stored encrypted pass-
word in the password column. Depending on whether there is a match, the user connects. Scrambled here
means that you cannot recover this password and that the original password cannot be deduced from
the scrambled string.

The various privilege columns in user are the privilege names that the user is granted, each a specific
database request he or she is allowed to perform. These privileges are granted or not granted depending
on the value of Y or N respectively. Each of these privileges is described in more detail in the MySQL
reference manual.

78

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 79

Chapter 2: MySQL

As you can see from the example, the global admin user root has three entries, each allowing root to
connect from localhost, 127.0.0.1 and the hostname of the machine, in this case haunuman. These are
all to allow root to connect from the same host the database server is running on. Notice, too, that root
initially has an empty password, making it so a password doesn’t need to be specified when connecting.
Also, root is granted every privilege as indicated with all privilege columns being set to ‘Y.’ Since this
entry is in users, which is the global privilege table, this means root has these privileges on all schemas
and tables.

When the webuser user was created in Appendix A, the command issued was:

GRANT ALL PRIVILEGES ON webapps.* TO ‘webuser’@’localhost’
IDENTIFIED BY ‘mypass’;

For the user table, this means that the user webuser was given an entry to connect and a password, but
since webuser is not a global admin user, no other privileges at the global level were given. Because
webuser is granted privileges to a specific schema, webapps, the privileges for webuser are granted in the
table db, where schema-specific privileges are granted to regular users.

The table db controls what schemas a regular non-global user has access to. The output of the db table for
the user webuser gives an idea of what exactly is meant by schema-level privileges:

mysql> SELECT * FROM db WHERE user = ‘webuser’\G
*************************** 1. row ***************************

Host: localhost
Db: webapps

User: webuser
Select_priv: Y
Insert_priv: Y
Update_priv: Y
Delete_priv: Y
Create_priv: Y
Drop_priv: Y
Grant_priv: N

References_priv: Y
Index_priv: Y
Alter_priv: Y

Create_tmp_table_priv: Y
Lock_tables_priv: Y
Create_view_priv: Y

Show_view_priv: Y
Create_routine_priv: Y
Alter_routine_priv: Y

Execute_priv: Y

For the table db, the role columns are User, Host and DB; the various other ‘‘priv’’ columns are the
privileges. These columns of course mean what username and from which host a user can connect, and
to which schema that user can connect.

In the grant statement where webuser was created, shown previously, webuser was granted every privi-
lege on the webapps schema, which can be seen by this output showing ‘Y’ as the value for all privileges,

79

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 80

Chapter 2: MySQL

with the exclusion of the Grant_priv column. The Grant_priv column indicates the grant privilege,
which merely gives the user the ability to also grant privileges to other users, and could have been given
to the webuser user by appending to the original statement

WITH GRANT OPTION

For this book, it’s not necessary for the webuser to have the grant privilege, but it was worth mentioning
why the Grant_priv column was the only column with an N value.

The host table is not used in most MySQL installations. It is used to give access to the user to connect
from multiple hosts and works when the value of the column Host for a given user in the db table is left
blank. Also, this table is not modified by the GRANT or REVOKE statements.

The tables_priv table provides table-level privileges, and controls a user’s privileges to a specific table.
And columns_priv controls a user’s privileges to specific columns of a table. The procs_priv table
controls privilege access to stored procedures and functions.

Account Management
As stated, the tables in the last section can be modified directly or by using specific account manage-
ment SQL statements. One of the purposes of this book is to give the web application developer a better
understanding of how to properly manage his or her database server. Using these account management
statements is preferable to direct modification of the system tables, and helps avoid shooting oneself in
the foot!

CREATE USER
The statement CREATE USER is used to create a user. This creates a user with no privileges, which you can
then assign to the user using the GRANT statement discussed next. CREATE USER results in the creation of a
new record in the user system privilege table with a password and no permissions assigned. The syntax
for CREATE USER is:

CREATE USER user [IDENTIFIED BY [PASSWORD] ‘password’]

For instance, to create a new user webuser, the following would be used:

CREATE USER webuser IDENTIFIED BY ‘s3kr1t’;

DROP USER
The statement DROP USER is used to delete a user. This results in the user being deleted from the user
system privilege table. The syntax for DROP USER is:

DROP USER user

In an example of deleting the user webuser, the statement would be:

DROP USER ‘webuser’@’localhost’;

Starting from MySQL version 5.0.2, DROP USER drops both the user and all the user’s privileges.

80

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 81

Chapter 2: MySQL

SET PASSWORD
The SET PASSWORD statement is used to set a password for an existing user. As a web developer you will
sometimes need to change the password of a user, and SET PASSWORD is a simple statement you use to do
that. The syntax is:

SET PASSWORD FOR user = PASSWORD(’value’)

For example, to change the password for the webuser account, you would use the following statement:

SET PASSWORD FOR ‘webuser’@’localhost’ = PASSWORD(’newpass’);

GRANT
To be able to grant and revoke privileges to a user, as well as create users, the GRANT and REVOKE state-
ments can be used.

The GRANT statement is used to grant privileges. It has a number of options to control what user and which
host is allowed to connect, to which object and which privilege is being granted, connection number and
frequency, as well as assigning a password to the user. GRANT also has options for SSL connections, which
can be explained in more detail on MySQL’s documentation web site. As seen you have seen, there are
various privilege columns in each of the grant tables that correspond to each type of privilege a user is
allowed or prohibited from running, either set to ‘Y’ or ‘N’ respectively. The GRANT statement is what
sets each of these privileges, and the scope of that permission determines into which grant table a record
specifying those privileges for that user is created. The syntax for the statement is:

GRANT privilege type [(column list)], ...
ON object name
TO user [IDENTIFIED BY [PASSWORD] ‘password’], ...
[WITH with_option [with_option] ...]

The privilege type is one or more (comma separated) valid privileges as defined in the MySQL Reference
Manual.

The object name could be a schema name like webapps, all schemas as *.*, a specific table within webapps
listed as webapps.users, all tables in webapps as webapps.* or even just a table name which would give
access to the table in your current active database.

WITH option can be any of the items in the following table:

Option Description

GRANT OPTION Gives the user the privilege to create or delete users, grant
or revoke privileges

MAX_QUERIES_PER_HOUR count Maximum number of queries per hour a user is allowed to
perform

MAX_UPDATES_PER_HOUR count Maximum number of INSERT, UPDATE, and DELETE
statements a user can execute in an hour

Continued

81

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 82

Chapter 2: MySQL

(continued)

Option Description

MAX_CONNECTIONS_PER_HOUR count Maximum number of logins a user is allowed per hour

MAX_USER_CONNECTIONS count Maximum number of simultaneous connections a user is
allowed

The next example shows giving the user fred the permissions to connect from 192.168.1.100 to the
accounts schema, using the password s3kr1t, and to perform any statement on any object in that
schema.

GRANT ALL on accounts.* to ‘fred’@’192.168.1.100’ IDENTIFIED BY ‘s3kr1t’;

The previous statement could have also used a netmask to give the user fred the ability to connect other
hosts on the 192.168.1.0 network. For instance, ‘fred’@’192.168.1.100/24’ would have made it so
fred could connect from any host on the 192.168.1.0 network.

The second GRANT example shows giving the user sally the permissions to connect to the accounts
schema using the password hidden and being able to perform any statement only on the table users if
connecting from any host from the xyz domain. Also worth mentioning, the user sally will in fact only
be able to see the table user when issuing SHOW TABLES and only the database accounts when issuing
SHOW DATABASES.

GRANT ALL PRIVILEGES on accounts.users to ‘sally’@’%.example.com’
IDENTIFIED BY ‘hidden’;

The GRANT statement that follows granting the user guest the privilege to connect to the schema webapps
but only to perform a select against the table urls. The user guest will only be able to see the table urls
displayed when issuing SHOW TABLES:

GRANT SELECT on webapps.urls to ‘guest’@’localhost’
identified by ‘guest’ ;

The final example shows granting the user webuser privileges to run the statements SELECT, UPDATE,
DELETE, and INSERT to any table in the schema webapps when connecting from www1.mysite.com:

GRANT SELECT, UPDATE, DELETE, INSERT on webapps.* to
‘webuser’@’www1.mysite.com’ IDENTIFIED BY ‘s3kr1t’;

The REVOKE statement does the opposite of the GRANT statement and is for removing the privileges of a
user. The revoke syntax is similar to GRANT:

REVOKE privilege type [(column_list)], ... ON object
name FROM user [,user]...
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

privilege type is the type of privilege, such as SELECT, UPDATE, INSERT, etc. The object name can be the
same as it was in GRANT — a schema name, a specific table of a schema, or just a table.

82

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 83

Chapter 2: MySQL

For instance, you could revoke the ability for the webuser@www1.mysite.com account to not be able to
insert, update, or delete from any of the tables in the webapps schema:

REVOKE UPDATE, DELETE, INSERT FROM ‘webuser’@’www1.mysite.com’;

Or, if you want to have a more sweeping revocation for the user webuser:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM ‘webuser’@’www1.mysite.com’;

SHOW GRANTS
It’s also possible to view a user’s privileges. The statement for this is SHOW GRANTS. The syntax is:

SHOW GRANTS [FOR user]

An example of the output of this statement for the webuser would be:

mysql> show grants for ‘webuser’@’localhost’\G
*************************** 1. row ***************************
Grants for webuser@localhost: GRANT USAGE ON *.* TO ‘webuser’@’localhost’
IDENTIFIED BY PASSWORD ‘*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4’
*************************** 2. row ***************************
Grants for webuser@localhost: GRANT ALL PRIVILEGES ON `webapps`.* TO
‘webuser’@’localhost’

INFORMATION SCHEMA
You can also refer to information schema, which is chock-full of information about your MySQL instance
to learn about your user privileges. You can get a list of all tables within the information schema by
running the following:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;

The information schema tables (views) you would refer to are:

❑ COLUMN_PRIVILEGES: Privileges for users to given columns

❑ SCHEMA_PRIVILEGES: Privileges for users to a given schema or database

❑ TABLE_PRIVILEGES: Privileges for users to given tables

❑ USER_PRIVILEGES: Global privileges for users

The following example shows what the global privileges are for the user webuser:

mysql> connect INFORMATION_SCHEMA;
mysql> SELECT * FROM USER_PRIVILEGES WHERE GRANTEE LIKE ‘\’webuser\’@%’;
+-----------------------+---------------+----------------+--------------+
| GRANTEE | TABLE_CATALOG | PRIVILEGE_TYPE | IS_GRANTABLE |
+-----------------------+---------------+----------------+--------------+
| ‘webuser’@’localhost’ | NULL | USAGE | NO |
+-----------------------+---------------+----------------+--------------+

83

Galbraith c02.tex V3 - 06/03/2009 2:45pm Page 84

Chapter 2: MySQL

The next example shows what schema tables the user webuser has access to for the schema webapp:

mysql> SELECT * FROM SCHEMA_PRIVILEGES
-> WHERE GRANTEE LIKE ‘\’webuser\‘@%’ AND TABLE_SCHEMA= ‘webapp’;

+-----------------------+-------+--------------+----------------+--------------+
| GRANTEE | TABLE_CATALOG | TABLE_SCHEMA | PRIVILEGE_TYPE | IS_GRANTABLE |
+-----------------------+-------+--------------+----------------+--------------+
‘webuser’@‘localhost’	NULL	webapp	SELECT	NO
‘webuser’@‘localhost’	NULL	webapp	INSERT	NO
‘webuser’@‘localhost’	NULL	webapp	UPDATE	NO
‘webuser’@‘localhost’	NULL	webapp	DELETE	NO
‘webuser’@‘localhost’	NULL	webapp	CREATE	NO
‘webuser’@‘localhost’	NULL	webapp	DROP	NO
‘webuser’@‘localhost’	NULL	webapp	REFERENCES	NO
‘webuser’@‘localhost’	NULL	webapp	INDEX	NO
‘webuser’@‘localhost’	NULL	webapp	ALTER	NO
‘webuser’@‘localhost’	NULL	webapp	CREATE	
TEMPORARY TABLES	NO			
‘webuser’@‘localhost’	NULL	webapp	LOCK TABLES	NO
‘webuser’@‘localhost’	NULL	webapp	EXECUTE	NO
‘webuser’@‘localhost’	NULL	webapp	CREATE VIEW	NO
‘webuser’@‘localhost’	NULL	webapp	SHOW VIEW	NO
‘webuser’@‘localhost’	NULL	webapp	CREATE ROUTINE	NO
‘webuser’@‘localhost’	NULL	webapp	ALTER ROUTINE	NO
+-----------------------+-------+--------------+----------------+--------------+

Summary
You should now have a good sense of what MySQL is and what its capabilities are, and how to feel
comfortable interacting with a database. If you have used databases before and are familiar with MySQL
and fluent with SQL, then perhaps this chapter has served as a good refresher of MySQL, covering some
features and functionality you weren’t aware of or might not use every day. This chapter covered the
following:

❑ A basic explanation of what MySQL is including the section on how to use MySQL. You learned
about the various client and utility programs that come with MySQL, what they do, and some
basic usage examples of these programs.

❑ How to work with data within MySQL — schema and table creation and modification, inserting,
querying, updating, and deleting data

❑ How to use SQL joins including examples (to spark your interest and creativity) and various
functions in MySQL — informational, aggregate, numeric, string, date and control flow func-
tions.

❑ A discussion about user-defined variables and how you can use them to store temporary vari-
ables in between SQL statements on the database.

❑ The MySQL access control and privilege system. You learned what the various system grant
tables are, the scope they cover, and the granularity of access control that is set through numer-
ous privilege columns. Numerous examples demonstrated how to create, drop, and modify
database users.

84

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 85

Advanced MySQL

Now that you have had the basics of MySQL explained in Chapter 2, it’s time to explore some of
MySQL’s more advanced features. There is so much more to MySQL than just having a database
you store data in and retrieve data from for your web application.

In the term Relational Database Management System, the words Management and System really do
mean something. It’s an entire system that goes beyond the simple purpose of a data store. Rather,
you have a system that actually has features to manage your data, and contains the functionality that
can be implemented in the database that you might otherwise have to develop into your application.
The purpose of this chapter is to explore the following functions:

❑ First, we will cover the more advanced SQL features, including triggers, functions and
stored procedures, views, and User Defined Functions (UDF). This section gives you
an idea of how you might be able to use some of these features when developing web
applications.

❑ Next, the various storage engines will be discussed. These include MyISAM, InnoDB,
Archive, Federated, Tina, MySQL’s internal new storage engines Maria and Falcon, as well
as PBXT, a storage engine written by Primebase. Each of these storage engines has different
capabilities and performance features. You’ll learn when you would use each, depending
on your needs.

❑ The section following storage engines covers replication, including a functional overview
of replication, a description of different replication schemes, details of replication settings,
and detailed instructions on how to set up replication.

SQL Features
You have seen that beyond simple SELECT, INSERT, UPDATE, and DELETE, there are also functions
and user defined variables that can be used from within MySQL. There are yet more features within
SQL that MySQL supports, which allow even more functionality.

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 86

Chapter 3: Advanced MySQL

This section covers these particular additional features:

❑ Triggers: As the name implies, these are used to write events on a table to fire into action (or
trigger) other SQL statements or processes.

❑ Functions and procedures: These give you the ability to create reusable code defined in the
database to perform often-needed tasks.

❑ Views: These are queries stored in a database with a given name that are accessed just like a
table. You can use these to give the ability to query a single table that may in fact be made up
of a join of other tables.

❑ User-Defined Functions (UDF): Not specifically SQL, this MySQL feature allows you to write
your own functions that can do pretty much anything you need. This section will show you how
to write a simple UDF.

Stored Procedures and Functions
MySQL supports stored procedures and stored functions.

A stored procedure is a subroutine that is stored in the database server that can be executed by client appli-
cations. Stored procedures and functions provide a means of having functionality that would otherwise
be implemented in application code and is instead implemented at the database level. One benefit of
stored procedures is that business logic can be ‘‘hidden’’ in the database from regular application devel-
opers that might provide access to sensitive data or algorithms; a second benefit is being able to simplify
application code.

Another advantage of using stored procedures is that clients, written in different programming languages
or running on different platforms that need to perform the same operations, can each use stored routines
instead of having the same SQL statements repeated in their code. This also makes it easier to make
modifications to those SQL statements.

Stored procedures can return a single value on one or more result sets, just like a SELECT statement would
return, and are evoked using CALL. On the other hand, a function returns a single value and can be used
in regular SQL statements just like any other standard function.

Why Would You (Not) Want to Use Stored Procedures or Functions?
The question then arises: Why would you want to use stored procedures or functions? Depending on
your organization and application, you may wish to have the database assume handling business logic
functionality instead of the web application code. This could be desirable for security purposes or to make
your web applications do less, therefore requiring fewer resources on the servers where the web applica-
tions run. Again, this depends on not only your application, but also the type of hardware you have.

Another benefit is to make it so your web applications are simply calling stored procedures, thereby
reducing the complexity of SQL statements in your application code to a minimum. If you design your
application correctly, ensuring that your stored procedures always take the same arguments, you could
make it feasible to change core functionality with your application without requiring many changes to
application code. Also, since stored procedures are stored in the database, the database also ends up
storing some of the business logic.

86

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 87

Chapter 3: Advanced MySQL

Lastly, one more benefit to using stored procedures is that if you have to execute several statements at
a time, a stored procedure is a lot faster than executing the statements separately from the client as you
don’t have any round trips on the wire for the data.

If you have developers who are not proficient with relational databases, or don’t have a database expert
available, that might be one primary reason to not use stored procedures. Also, if you have a busy
database, you may want to push off the business logic into your application.

Syntax
The syntax for creating a stored procedure is as follows. (Note: the square brackets [and] indicate that
what is contained within is optional.)

CREATE
[DEFINER = { user | CURRENT_USER }]
PROCEDURE <name> ([parameter(s)...])
[characteristic(s) ...] routine_body

The syntax for creating a function is:
CREATE

[DEFINER = { user | CURRENT_USER }]
FUNCTION sp_name ([parameter(s)...])
RETURNS type
[characteristic(s) ...] routine_body

CREATE is the first word, followed by the optional DEFINER or owner of the stored procedure or function.
If DEFINER is omitted, the default is used, in this case, the current user. Again, this is how access to the
stored procedure can be controlled.

Next comes PROCEDURE or FUNCTION <name>, which states that a procedure or function is being created as
well as what name that procedure will have. The parameters have the format of:

[IN | OUT | INOUT] <parameter name> type

Where:

❑ IN means that the parameter is an input argument only supplying a value to the procedure.

❑ OUT means that the parameter is only used to store the return value.

❑ INOUT means that the parameter is used for both an input argument and a return value.

❑ Parameter name is the name of the Type, which is any valid MySQL data type.

For functions, there is also the RETURNS keyword, which simply states the type of data returned.

The characteristic part of the create statement is a non-mandatory, or advisory, listing about the data the
routine utilizes. These characteristics, being advisory, mean that MySQL does not enforce what state-
ments can be defined in the routine. These characteristics are listed as:

❑ LANGUAGE SQL: SQL is the language used in the routine body. More about this is discussed in the
section on external language stored procedures.

87

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 88

Chapter 3: Advanced MySQL

❑ DETERMINISTIC/NOT DETERMINISTIC: If deterministic, the stored procedure or function always
produces the same result based on a specific set of input values and database state when called,
whereas NONDETERMINISTIC will return different result sets regardless of inputs and database
state when called. The default characteristic is NOT DETERMINISTIC.

One of the following characteristics can be listed:

❑ CONTAINS SQL: The default characteristic if none is defined. This simply means that the routine
body does not contain any statements that read or write data. These would be statements such as
SET @myval= ‘foo’;

❑ NO SQL: This means that there are no SQL statements in the routine body.

❑ READS SQL DATA: This means that the routine body contains SQL statements that read but do not
write data (for example SELECT).

❑ MODIFIES SQL DATA: This means that the routine body contains SQL statements that could write
data (for example, INSERT or DELETE).

❑ The SECURITY characteristic: SQL SECURITY {DEFINER | INVOKER}: This determines what user
the stored procedure or function is executed as, whether it is the user who created the stored
procedure/function or the user who is executing the stored procedure/function.

❑ COMMENT: The comment is text that can be used to write information about the stored procedure
or function and display it upon running SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION.

❑ Lastly, the routine body. This is a listing of SQL procedural code. Just as was shown in the
section on triggers, this begins with a BEGIN statement and ends with an END statement and has
one or more SQL statements in between. A really simple example would be:

BEGIN
SELECT ‘my first routine body’;

END

To help you get past the syntax concepts and gain a better idea of how to actually use stored procedures
and functions, as always, we find examples are the best way to illustrate ideas.

Example 1
The first example is a simple procedure that performs the same functionality as an SQL statement shown
earlier in this book — one that returns the average age of users stored in the table users:

mysql> DELIMITER |

mysql> CREATE PROCEDURE user_avg(OUT average NUMERIC(5,2))
-> BEGIN
-> SELECT AVG(age) INTO average FROM users;
-> END ;
-> |

As with triggers, you want to use a delimiter character other than the semicolons (;) that the routine
body contains, which you want to be ignored and not interpreted in creating the stored procedure. This
stored procedure has one parameter defined, OUT only, of the same data type as the age column of users.
The routine body has the BEGIN and END keywords, with the single query to obtain the average age in

88

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 89

Chapter 3: Advanced MySQL

the users table, into the parameter average. Also, notice in this example that none of the optional stored
procedure keywords were used because they aren’t needed.

To execute this stored procedure, the CALL statement is used:

Mysql> DELIMITER ;

mysql> CALL user_avg(@a);

mysql> SELECT @a;
+-------+
| @a |
+-------+
| 38.70 |
+-------+

The user-defined variable @a is used as the OUT parameter when calling user_avg (as defined above) to
assume the value that user_avg obtains from the single statement is executed.

Example 2
The first example was a good start to see how a stored procedure is created and how it can return a value
when called. This same result could also have been implemented with a function. The next example
shows how a function can be used for simple tasks, particularly those that return single values. The
following function, is_young(), returns a simple Boolean value of 1 or 0, depending on whether the
supplied user’s name is a user with an age less than 40.

CREATE FUNCTION is_young(uname varchar(64))
RETURNS BOOLEAN
DETERMINISTIC

BEGIN
DECLARE age_check DECIMAL(5,2);
DECLARE is_young BOOLEAN;
SELECT age INTO age_check FROM users WHERE username = uname;

IF (age_check < 40) THEN
SET is_young = 1;

ELSE
SET is_young = 0;

END IF;

RETURN(is_young);
END;

A function is much the same as a procedure, except in a function one must state what type it will return,
in this example a BOOLEAN. Again, a function can only return a single value, whereas a procedure can
return result sets. A single argument of uname supplies the value of the user’s name as would be found
in the username column of users.

Two variables are declared, age_check, which is the same type as the age column in users, and
is_young, a BOOLEAN. This function will use age_check to store the value returned from the subsequent
query that selects the value of age into age_check for the given user supplied by uname. The variable
is_young is assigned a Boolean 1 or 0, depending on whether the value of age_check is less than 40 or
not, then returned.

89

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 90

Chapter 3: Advanced MySQL

Executing this function is the same as any other function. In this example, SELECT is used:

mysql> SELECT is_young(’Amy Carr’);
+----------------------+
| is_young(’Amy Carr’) |
+----------------------+
| 1 |
+----------------------+

mysql> SELECT is_young(’Jack Kerouac’);
+--------------------------+
| is_young(’Jack Kerouac’) |
+--------------------------+
| 0 |
+--------------------------+

Example 3
The next example shows how it’s possible with stored procedures to hide table details from the appli-
cation or user. It’s quite common in a web application to want to obtain a user’s user id when given a
username. This is normally done with an application function or method that calls an SQL query on the
database server, taking as its argument the user’s username and returning the user’s user id value from
the database. This can also be done using a stored procedure, hiding the details of the SELECT statement
to users. The following stored procedure demonstrates how this can be accomplished:

mysql> CREATE PROCEDURE get_user_id(IN uname VARCHAR(64), OUT userid INT)
-> BEGIN
-> SELECT uid INTO userid FROM users WHERE username = uname;
-> END;
-> |

In this example of get_user_id(), two parameters are defined on an input-only variable uname and an
output-only variable userid. The routine body simply selects the uid for the given username supplied
by uname into the variable userid. To execute get_user_id(), the CALL statement is used, passing the
username in the first argument and a variable @uid as the second argument. @uid is read with a SELECT
statement:

mysql> CALL get_user_id(’Haranya Kashipu’, @uid);

mysql> SELECT @uid;
+------+
| @uid |
+------+
| 7 |
+------+

Example 4
The next example shows how application logic can be pushed down into the database. One of the most
important functionalities in a web application is to log a user into the database and create a session.
This usually involves some means of checking the password — comparing what has been input into
an HTML form, using the sha1() cryptographic hash function to convert it to the value that the stored
password uses, and then comparing that to the stored password. If they match, that means that the login

90

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 91

Chapter 3: Advanced MySQL

was correct, in which case a session is generated. The id is commonly returned to the browser and stored
in a cookie. This can easily be done in the web application, but alternatively, this functionality can also
be implemented in the database using a stored procedure.

For this next example, a password column of type CHAR(40) (since the value from the sha1() function
will always be 40) is added to the table users that was used in previous examples in this book:

mysql> ALTER TABLE users ADD COLUMN password CHAR(40) NOT NULL DEFAULT ‘’;

Also, we will create a table named sessions with four columns: session_id to store the integer value
session id, uid to indicate the user id of the user the session belongs to, date_created to store the value
of when the session was created, and session_ref, a text/blob to store anything associated with the
session, including a serialized Perl object (which will be discussed later in this book).

CREATE TABLE sessions (
session_id bigint(20) unsigned NOT NULL,
uid int(3) NOT NULL default ‘0’,
date_created datetime default NULL,
session_ref text,
PRIMARY KEY (`session_id`),
INDEX uid (uid)

)

The following stored procedure shows how this can be accomplished:

CREATE PROCEDURE login_user(uname VARCHAR(64),pass CHAR(32))

BEGIN

DECLARE user_exists INT(3) DEFAULT 0;
DECLARE password_equal BOOLEAN;
DECLARE sessionid bigint(20) DEFAULT 0;

SELECT uid INTO user_exists FROM users WHERE username = uname;

IF (user_exists != 0) THEN
SELECT password = sha1(pass) INTO password_equal
FROM users
WHERE username = uname AND password = sha1(pass);

IF (password_equal = 1) THEN
SET sessionid = CONV(SUBSTRING(MD5(RAND()) FROM 1 FOR 16), 16,10);
INSERT INTO sessions (session_id, uid, date_created)
VALUES (sessionid, user_exists, now());

ELSE
SET sessionid = 0;

END IF;
END IF;
SELECT user_exists, sessionid;

END

This stored procedure, login_user, takes two arguments: uname and pass. These two arguments will be
used to find out if a user uname exists in the users table (which now has a password column) and if the

91

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 92

Chapter 3: Advanced MySQL

value of the output of the sha1() function with pass as its argument matches the stored password, which
is already in the form sha1() converted it to when the user was created.

Three variables are declared. Just as with table definitions, variables can be defined in the same tables
columns would be defined. In this case, defaults for these variables are set. The variables declared are an
unsigned bigint session_id, an integer user_exists, and Boolean password_equal. The session_id
will store the session id that is created if both the user exists, and if the password that is supplied matches
that stored in the database. The user_exist variable is an integer that stores the uid of the user uname if
that user exists, or remains 0 if not. The password_equal is another Boolean variable used to indicate if
the password in pass matches the stored password for that user.

After variable declaration, the first statement sets the value of user_exists. This is to know whether the
user exists in the first place. If the user_exists is not equal to 0, this indicates that the user does exist
and the next statement to execute is to query if the value of pass returned from sha1() equals the value
of the user’s password as stored. The part of the query password = sha1(pass) evaluates to 1 or 0, which
is stored in password_equal.

Next, if password_equal is 1, true, the session_id is set to the output of the statement:

SET sessionid = CONV(SUBSTRING(MD5(RAND()) FROM 1 FOR 16), 16, 10);

This statement can be broken down thus:

Generate a random number with RAND(). The output of that would be something like:

+------------------+
| rand() |
+------------------+
| 0.13037938171102 |
+------------------+

Take the output of the MD() function with this random number as the argument. The output of this
would be:

+----------------------------------+
| md5(0.13037938171102) |
+----------------------------------+
| 306e74fa57cc23a101cdca830ddc8186 |
+----------------------------------+

Take the value of the characters from 1 through 16 of this md5 string, using SUBSTR(). The output of this
would be:

+---+
| substr(’306e74fa57cc23a101cdca830ddc8186’, 1, 16) |
+---+
| 306e74fa57cc23a1 |
+---+

92

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 93

Chapter 3: Advanced MySQL

Convert this 16-character hex md5 string to decimal using CONV(). The output is:

+----------------------------------+
| conv(’306e74fa57cc23a1’, 16, 10) |
+----------------------------------+
| 3489855379822355361 |
+----------------------------------+

This final integer value is the session id. The md5 could easily be used as a session id, but since there is an
index on the session_id column of the table sessions, using an integer requires less storage and makes
for a faster index. If you end up exceeding this number and having a collision, you either have a really
busy web site with an amazing amount of data, or you have other problems! Also, with sessions, you
don’t need to keep them stored in the sessions table for an amount of time longer than you set the user’s
session cookie for, which depending on the application could be a couple months at most, and certainly
won’t be like saving historical user data. You could have easily used something such as uuid_short() or
even uuid(), because these have their own issues such as possibly being guessable — not something you
want for a session id (see http://www.ietf.org/rfc/rfc4122.txt).

Once this session id value is assigned, the next SQL statement is an INSERT statement to insert the session
id for the user into the sessions table.

Finally, the values for session_id and user_exists are issued via a SELECT statement. The various
outputs of CALL login_user() shows just how this will work.

If the user doesn’t exist or the password supplied doesn’t match, a 0 for user_exists and sessionid is
returned. This would mean that there is no user and they entered an invalid password. The web applica-
tion would have informed the non-user that their entry was invalid and they need to possibly register on
the site to obtain an account and password, or that they could enter their username to have their account
information emailed to them.

mysql> CALL login_user(’Tom Jones’, ‘xyz’);
+-------------+-----------+
| user_exists | sessionid |
+-------------+-----------+
| 0 | 0 |
+-------------+-----------+

If the user does exist, but they entered an invalid password, the value for user_exists is that user’s uid.
But the value for sessionid is NULL. This would mean that web application would have to inform the
user that they entered the incorrect password and then give them the necessary interface to either reenter
their password or have their account information emailed to them.

mysql> call login_user(’Sunya Vadi’, ‘xyz’);
+-------------+-----------+
| user_exists | sessionid |
+-------------+-----------+
| 5 | NULL |
+-------------+-----------+

93

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 94

Chapter 3: Advanced MySQL

Finally, if the user enters the correct credentials — both a username uname that exists in the users table
and password pass that matches their stored password, then both the user_exists and sessionid
values contain the user’s uid and newly created session id.

mysql> call login_user(’Amy Carr’, ‘s3kr1t’);
+-------------+---------------------+
| user_exists | sessionid |
+-------------+---------------------+
| 2 | 2497663145359116726 |
+-------------+---------------------+

Also, an entry is inserted into the sessions table for this user’s session:

mysql> select * from sessions;
+---------------------+---------------------+-------------+-----+
| session_id | date_created | session_ref | uid |
+---------------------+---------------------+-------------+-----+
| 2497663145359116726 | 2008-07-24 22:44:36 | NULL | 2 |
+---------------------+---------------------+-------------+-----+

At this point, the web application would perform tasks such as issuing a cookie to the user’s browser and
displaying a message or page that indicates the user successfully logged in.

Example Summary
These examples have given you a basic idea of how to write stored procedures and functions and have
shown some of the basic functionality they can facilitate. In more complex stored procedures, other
functions or procedures can be called. For instance, the SQL statement to check if a user exists could have
been implemented as a function named get_userid, and used to assign the value user_exists.

The stored procedure statement:

SELECT uid INTO user_exists FROM users WHERE username = uname;

. . . could instead have been written as the following function:

user_exists = get_userid(uname);

As you can see, functions and procedures can be extremely useful for performing common tasks, hiding
database schema details from application developers with an added layer of security, and making it
possible to implement business logic within the database. The several examples provided serve as a brief
demonstration of implementing some common tasks that just about every web application developer will
have to implement at one time or another. We hope this will give you one more box of tools to consider
in your development process.

Triggers
A trigger is a database object consisting of procedural code that is defined to activate upon an event
against a row in a MySQL table. Triggers can be defined to execute upon INSERT, UPDATE, or DELETE
events, either before or after the actual data of the row in the table is added, modified, or deleted.

94

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 95

Chapter 3: Advanced MySQL

Triggers are used to add even-driven functionality to a database, making it so that the application using
the database doesn’t have to implement functionality that would otherwise add complexity to the appli-
cation, thereby hiding the gory details of what the database does simply on an event against the table.

Triggers can do two things: First, they can run any valid statement that could be normally run on a
database, such as a query to obtain a value that, in turn, could be stored in a user-defined variable and
then acted upon in yet another statement. Second, triggers can call a function, stored procedure, or even
a UDF. It’s entirely possible to set up a trigger that also calls external programs, using a UDF, whenever
a row in a table is modified.

Creating a Trigger
The syntax for creating a trigger is quite simple:

CREATE
[DEFINER = { user | CURRENT_USER }]
TRIGGER <trigger name> <BEFORE|AFTER> <trigger event>
ON <table name> FOR EACH ROW <statement(s)>

Just as with any other create statement, a trigger begins with CREATE. The value DEFINER clause deter-
mines who the trigger is created by and can be used to control whether the trigger is executed, depending
on what user is issuing an SQL statement that results in a change to the table that the trigger is associated
with.

Following the DEFINER clause is the trigger name, followed by a trigger time BEFORE or AFTER. This means
that the trigger is executed before or after the row of data in the table that is actually acted upon. This
can be very important, especially if your trigger is dependent upon the data being modified (or not) by
the statement that results in the trigger being run. For instance, say you have a trigger that contains a
statement when executed that depends on that data not yet being deleted. If the value of the trigger time
is AFTER, your trigger most likely won’t work, or will at least give interesting results!

Next, a trigger event is either DELETE, INSERT, UPDATE or REPLACE, meaning that for whatever trigger event
is defined for that trigger, the execution of that type of statement on the table the trigger is associated with
will result in that trigger being executed for each row affected.

ON <table name> is the next part of the statement, which is the table the trigger is associated with. FOR
EACH ROW <statement(s)> is the meat of the trigger, meaning that for each row affected by whatever
type of event — DELETE, UPDATE, INSERT, REPLACE, it executes that trigger statement or statements. The
statements, of course, can be any valid SQL statement or function call.

First Trigger Example
To get a better idea of how idea of how a trigger works, consider the example we saw in the previous
chapter: the table users:

+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
| uid | int(3) | NO | PRI | NULL | auto_increment |
| username | varchar(64) | NO | UNI | | |

95

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 96

Chapter 3: Advanced MySQL

ranking	decimal(5,2)	NO	MUL	0.00	
age	int(3)	NO	MUL	0	
state_id	int(5)	NO	MUL	0	
+----------+--------------+------+-----+---------+----------------+

What if there was another table that stored statistics, the average age and score of users, and you needed
it to have an up-to-date value for these statistics? A trigger would be just the thing to use to ensure the
stats table is automatically updated when there is a change to users.

The stats table would be defined as:

+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
| stat_name | varchar(32) | NO | PRI | | |
| stat_value | int(5) | NO | | 0 | |
+------------+-------------+------+-----+---------+-------+

Also, you would want to pre-populate it with placeholder rows where the averages will be stored. The
two statistics that are needed are the average age of users and the average ranking of these users. Since a
value for these stats is as yet unknown, stat_value isn’t specified in the field list.

INSERT INTO stats (stat_name) VALUES (’average age’), (’average ranking’);

Now, the fun part is to finally create the trigger. Since this trigger executes upon an UPDATE to a row in
users, an appropriate name might be one that includes the table name that the trigger is associated with,
users, as well as the other table that the trigger then updates, stats, as well as the type of statement
that causes the trigger to execute, UPDATE. So, the name chosen in this example is users_stats_update.
Because this trigger will execute whenever there is a change to a column in the users table, in this case
an update, the statements the trigger executes won’t depend on data being in any state either prior to or
after the table modification. So, for this example the timing will be AFTER the update.

mysql> delimiter |
mysql> CREATE TRIGGER users_stats_update

-> AFTER UPDATE ON users
-> FOR EACH ROW BEGIN
-> UPDATE stats SET stat_value = (SELECT AVG(age) FROM users)
-> WHERE stat_name = ‘average age’;
-> UPDATE stats SET stat_value = (SELECT AVG(ranking) FROM users)
-> WHERE stat_name = ‘average ranking’;
-> END |

Query OK, 0 rows affected (0.00 sec)

In this example, the command was issued to change the delimiter to a bar ‘|’ (from the default semi-
colon ‘;’). The delimiter is the character that indicates the end of the statement in the command-line client,
mysql, and whatever precedes the semicolon is executed. If one creates the trigger from an application or
a graphical client, you don’t need to set the delimiter or end the trigger with ‘|’.

Since this particular trigger definition contains SQL statements (UPDATE) ending with semicolons, which
are required for each statement to properly run when the trigger executes but not at the time this trigger
is created, we set the delimiter to a ‘|’. You can use anything other than the semicolon, to ensure these

96

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 97

Chapter 3: Advanced MySQL

semicolons at the end of these statements are ignored when creating the trigger. Also, since the delimiter
is set to a bar ‘|’, the trigger creation itself requires a bar ‘|’ to terminate the statement defining the
trigger creation.

Now that the trigger has been created, any update to records in users will result in this trigger being
executed. The stats table starts out with the values shown here:

+-----------------+------------+
| stat_name | stat_value |
+-----------------+------------+
| average age | 0 |
| average ranking | 0 |
+-----------------+------------+

The users table contains:

+-----+------------------+---------+-----+----------+
| uid | username | ranking | age | state_id |
+-----+------------------+---------+-----+----------+
1	John Smith	55.50	33	1
2	Amy Carr	95.50	25	1
3	Gertrude Asgaard	44.33	65	1
4	Sunya Vadi	88.10	30	2
5	Maya Vadi	77.32	31	2
6	Haranya Kashipu	1.20	20	3
7	Pralad Maharaj	96.50	20	3
8	Franklin Pierce	88.30	60	4
9	Daniel Webster	87.33	62	4
10	Brahmagupta	0.00	70	0
+-----+------------------+---------+-----+----------+

If users is updated, then the trigger should be executed:

mysql> UPDATE users SET age = 41 WHERE UID = 11;

Just to verify:

mysql> select * from stats;

-----------------+------------+
| stat_name | stat_value |
+-----------------+------------+
| average age | 39 |
| average ranking | 63 |
+-----------------+------------+

And it worked! As is shown, the values for average age and average ranking now reflect the averages
of those values in the users table.

Because you would want to have any change on users recalculate these statistics, you would also need
to have a trigger executed on a DELETE as well as an INSERT to users. The timing of both INSERT and
DELETE is also very important. For INSERT, you would want the average to be calculated to include the

97

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 98

Chapter 3: Advanced MySQL

new row being inserted, so the trigger would have to run after the data is inserted into users. The first
part of trigger definition for the INSERT trigger would then read as this:

CREATE TRIGGER users_stats_insert AFTER UPDATE ON users

Also notice that the name users_stats_insert is used as a trigger name to reflect the statement that
causes the trigger to execute. For DELETE, you would also want the trigger to execute after the row being
deleted is actually deleted from users. The first part of the trigger definition for the DELETE trigger would
then read as this:

CREATE TRIGGER users_stats_delete AFTER DELETE ON users

Second Trigger Example
As a variation on the idea shown in the previous example, another way to implement summation and
averaging of values using a separate stats table is demonstrated in the following example, though
without using the functions AVG() and SUM().

In this example, only the age column of the users table will be of interest for the sake of the point being
made — not relying on SUM() and AVG(). The stats table is different for this example:

CREATE TABLE ‘stats’ (
age_sum int(8) NOT NULL default 0,
age_avg int(8) NOT NULL default 0,
records int(8) NOT NULL default 0,
primary key (age_sum)
);

The idea of this table is to keep track of both the sum of all ages in users, age_sum, the average of those
ages, age_avg, and the number of records in users, records, which is used to obtain the average age,
age_avg, by dividing age_sum by records.

The stats table initially has no data, so you need one single record in the table for this example to work.
You can use the following INSERT statement to populate stats :

mysql> INSERT INTO stats (age_sum, age_avg, records)
-> SELECT SUM(age), AVG(age), COUNT(*) FROM users;

Verify the stats table:

mysql> select * from stats;
+---------+---------+---------+
| age_sum | age_avg | records |
+---------+---------+---------+
| 416 | 42 | 10 |
+---------+---------+---------+

Now you need to create the triggers. In this example, all the triggers — UPDATE, INSERT and
DELETE — will be shown below. First is the UPDATE trigger: users_stats_update. It will set age_sum
equal to age_sum - OLD.age + NEW.age. Then age_avg will be assigned the average age value obtained
from dividing the sum of ages, age_sum, by the number of records in users, records.

98

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 99

Chapter 3: Advanced MySQL

DELIMITER |
CREATE TRIGGER ‘users_stats_update’ BEFORE UPDATE on users
FOR EACH ROW BEGIN

UPDATE stats SET age_sum = age_sum - OLD.age + NEW.age;
UPDATE stats SET age_avg = age_sum / records;

END |

The INSERT trigger, users_stats_insert, will set age_sum to the current value of age_sum added to the
value of the age column of the new row being inserted, NEW.age, into users and increment records by
1. The average age is recalculated.

CREATE TRIGGER ‘users_stats_insert’ BEFORE INSERT on users
FOR EACH ROW BEGIN

UPDATE stats SET age_sum = age_sum + NEW.age, records = records + 1;
UPDATE stats SET age_avg = age_sum / records;

END |

The DELETE trigger, users_stats_delete, will subtract from the current value of age_sum the value of
the age column of the row being deleted from users, OLD.age, and decrement records by 1. The average
age is recalculated.

CREATE TRIGGER ‘users_stats_delete’ BEFORE DELETE on users
FOR EACH ROW BEGIN

UPDATE stats SET age_sum = age_sum - OLD.age, records = records - 1;
UPDATE stats SET age_avg = age_sum / records;

END |

Now to verify that these new triggers work! First, delete an existing record from users. You’ll notice that
all the values are correctly set — the value of age_sum decreases as do the number of records, records,
and if you break out a calculator you will see also the value of age_avg is correct!

mysql> DELETE FROM users WHERE uid = 11;

mysql> SELECT * FROM stats;
+---------+---------+---------+
| age_sum | age_avg | records |
+---------+---------+---------+
| 346 | 38 | 9 |
+---------+---------+---------+

Then a new user is inserted into users. You will see that this trigger works as well. The number for
records increases by one, the value of age_sum is increased by 88 and age_avg is correctly recalculated.

mysql> INSERT INTO users (username, age) VALUES (’Narada Muni’, ‘88’);
mysql> SELECT * FROM stats;
+---------+---------+---------+
| age_sum | age_avg | records |
+---------+---------+---------+
| 434 | 43 | 10 |
+---------+---------+---------+

99

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 100

Chapter 3: Advanced MySQL

Also, verify the update trigger. The value being assigned this time to age is set to a really
high value, 1,000 (Narada Muni needs a lot of time to travel through the universe! see
http://en.wikipedia.org/wiki/Narada). You will also see that with this particular update, the
value of age_avg changes quite a bit because of the large value for age being used. This really affects the
overall average.

mysql> UPDATE users SET age = 1000 WHERE username = ‘Narada Muni’;

mysql> SELECT * FROM stats;
+---------+---------+---------+
| age_sum | age_avg | records |
+---------+---------+---------+
| 1346 | 135 | 10 |
+---------+---------+---------+

Third Trigger Example
There are other aspects of creating triggers that can be illustrated with another example, namely, that you
have access to the values being modified when a trigger is executed. For INSERT obviously, there are only
new values. For DELETE and UPDATE, there are both the previous, or old, values as well as the new values
that the row’s columns will assume.

Using OLD.<column name>, the previous value of the named column of the row that’s being updated
or deleted can be read. For obvious reasons this value is read-only. Using NEW.<column name>, the new
value of the named column, as set by the query that initiated the trigger, can be read as well as written.

The following trigger shows just how you can use the NEW and OLD keywords. Suppose you want a trigger
that records an action on one table. This trigger will update a logging table every time there is a change
on a table that contains user comments — for instance, when the user edits their comment. You also
would like to have a way to back up the user’s previous comment if they decide they would like to revert
their changes. Consider the comments table, with an entry:

mysql> SELECT * FROM comments\G
*************************** 1. row ***************************

id: 1
uid: 9

current_comment: The weather today is hot and humid
old_comment:

And a logging table, comment_log:

+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
id	int(3)	NO	MUL		
uid	int(3)	NO	MUL		
action	varchar(10)	NO	MUL		
entry_time	datetime	YES		NULL	
+------------+-------------+------+-----+---------+-------+

A trigger that would perform the function of inserting an entry into comment_log and saving the previous
value of the current_comment into old_comment would be defined like this:

100

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 101

Chapter 3: Advanced MySQL

mysql> DELIMITER |
mysql> CREATE TRIGGER comments_update BEFORE UPDATE ON comments

-> FOR EACH ROW BEGIN
-> SET NEW.old_comment = OLD.current_comment;
-> INSERT INTO comment_log VALUES (OLD.id, OLD.uid, ‘update’, now());
-> END |

This trigger, comments_update, is created to be executed before the table itself is updated. The first action
it will perform is to set NEW.old_comment, which is the value to be inserted into old_comment, to the value
of OLD.current_comment, which is the value of current_comment, before it is updated. Then, a record
is inserted into comment_log with the current value of the id column of comments, which is not being
changed, so OLD.id or NEW.id are both the same value and either could have been used.

Now, if there is an update to the existing comment with a new comment, you hope that your trigger will
perform the appropriate actions:

mysql> UPDATE comments
-> SET current_comment = ‘The weather today was hot, now it has cooled’
-> WHERE id = 1 AND uid = 9;

mysql> SELECT * FROM comments\G
*************************** 1. row ***************************

id: 1
uid: 9

current_comment: The weather today was hot, now it has cooled
old_comment: The weather today is hot and humid

mysql> SELECT * from comment_log;
+----+-----+--------+---------------------+
| id | uid | action | entry_time |
+----+-----+--------+---------------------+
| 1 | 9 | update | 2008-07-20 11:25:12 |
+----+-----+--------+---------------------+

As we can see, this worked as advertised! This is just a simple example, but shows that using the NEW and
OLD keywords can give you a lot of flexibility in what you can have a trigger do. This example could have
even used some logic in the trigger definition to test the values being updated:

IF NEW.current_comment != OLD.current_comment THEN
SET NEW.old_comment = OLD.current_comment;
INSERT INTO comment_log VALUES (OLD.id, OLD.uid, ‘update’, now());

END IF ;

In this example, the value of current_comment is checked to see if it has changed, and if so, then two
statements to back up the previous value of the current_comment into old_comment and inserting into
the comment_log table are performed.

Another example of how this trigger can be extended would be a system where you only back up the
user’s current comment into old_comment if they haven’t updated this comment more than ten times:

SET @max_comments = (SELECT COUNT(*) FROM comment_log
WHERE id = OLD.id

101

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 102

Chapter 3: Advanced MySQL

AND uid = OLD.uid AND ACTION = ‘update’) ;
IF @max_comments <= 10 THEN

SET NEW.old_comment = OLD.current_comment;
INSERT INTO comment_log VALUES (OLD.id, OLD.uid, ‘update’, now());

END IF ;

Trigger Limitations in MySQL
There are a few limitations of triggers, as implemented in MySQL, worth mentioning.

MySQL doesn’t have triggers on statements yet

MySQL can only have one trigger of each type (INSERT, UPDATE, DELETE) for a table

Views
Another useful feature that MySQL supports is a view. A view is a query stored in a database with a given
name that is accessed just like a table. It acts likes like a table, smells like a table, and displays like a table,
but is not a real table. It can be thought of as a virtual table, and behind the scenes it uses a temporary
table for its results. Unlike a table, however, it doesn’t permanently contain the data it accesses.

The query by which the view is defined can reference one or more tables, or can contain a subset or
aggregate data of the entire data set of the table or tables it references. A view, just as a procedure or
function, can also be used to hide details of the underlying schema, thereby providing a layer of security,
depending on how permissions of the view and its underlying tables are arranged.

For instance, you can create a view that displays users joined with states:

mysql> CREATE VIEW v_users AS
-> SELECT uid, username, ranking, age, states.state_id,
-> states.state_name FROM users JOIN states USING (state_id);

If this view is described, the result appears as a single table with the rows specified in the view definition:

mysql> DESC v_users;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
uid	int(3)	NO		0	
username	varchar(64)	NO			
ranking	decimal(5,2)	NO		0.00	
age	int(3)	NO		0	
state_id	int(3)	NO		0	
state_name	varchar(25)	NO			
+------------+--------------+------+-----+---------+-------+

And it is accessed as if it were a table:

mysql> SELECT * FROM v_users WHERE uid < 5;
+-----+------------------+---------+-----+----------+------------+
| uid | username | ranking | age | state_id | state_name |
+-----+------------------+---------+-----+----------+------------+

102

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 103

Chapter 3: Advanced MySQL

1	John Smith	95.50	33	1	Alaska
2	Amy Carr	95.50	25	1	Alaska
3	Gertrude Asgaard	96.50	65	1	Alaska
+-----+------------------+---------+-----+----------+------------+

As you can see, this is a convenient means of having what is essentially a single table to access data of a
join of two tables. This simple example shows how a view hides the details of the SQL join statement and
of the underlying tables.

Views can also be created to display summary or aggregate information as if it, too, were a table. Con-
sider a table of XML feed items, each having a date column. The web application process feeds via feed
URL constantly, parsing items from the XML of the feed and storing those tables into a table called (inter-
estingly enough) items. What would be convenient to know is how many items were processed every
day over the last month. If, for instance, you needed a summary page to display this information, you
could rely on a view to produce this information.

mysql> CREATE VIEW v_items_per_day
-> AS SELECT DISTINCT DATE(items.created) AS ‘creation date`,
-> COUNT(*) AS ‘items per day’
-> FROM items
-> GROUP BY ‘creation date’ ORDER BY ‘creation date`;

Note in the above trigger example, the GROUP BY ‘creation date’ ORDER BY ‘creation date’ is a
MySQL feature that allows you to both SORT and GROUP BY on the name of an output column.

This view could then be queried as if it were an actual database table:

mysql> SELECT * FROM v_items_per_day
-> WHERE ‘creation date’ > date_sub(now(), INTERVAL 1 WEEK);

+---------------+---------------+
| creation date | items per day |
+---------------+---------------+
2008-07-21	56577
2008-07-22	55239
2008-07-23	53612
2008-07-24	58178
2008-07-25	165746
2008-07-26	42269
2008-07-27	49175
+---------------+---------------+

What this gives you is the ability to have convenient tables for summary information as shown in this
example. Also, if you are like the author of this book, you sometimes forget the specific syntax of SQL
queries from time to time — views take care of remembering for you! As you can see, if you run the
SHOW CREATE TABLE on a view, you get the view definition, which includes the query that the view is
defined by:

mysql> show create table v_items_per_day\G
*************************** 1. row ***************************

View: v_items_per_day
Create View: CREATE ALGORITHM=UNDEFINED DEFINER=`webapps`@`localhost`

SQL SECURITY DEFINER VIEW ‘v_items_per_day’ AS select distinct

103

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 104

Chapter 3: Advanced MySQL

cast(`items`.`created’ as date) AS ‘creation date`,count(0) AS ‘items per
day’ from ‘items’ group by cast(`items`.`created’ as date) order by
cast(`items`.`created’ as date)

You will also notice that MySQL has changed the original query defining this view. This is to allow the
trigger to work in future MySQL versions with more reserved words.

The other benefit of views that has been mentioned is that they provide a layer of security. A view can be
used to provide a limited view of data, limiting by table, columns, etc. A good example of this is to create
a view of users with limitations — such as excluding the password and age columns (yes, hide users’
ages, too!) from the SQL query. The view can be of users, or for this example can in fact be run against
another view: v_users:

mysql> CREATE VIEW v_protected_users AS
-> SELECT uid, username, ranking, state_name FROM v_users;

Also, as root, create a user that has only SELECT privileges (read-only) of this view, v_protected_users:

mysql> grant select on webapps.v_protected_users to ‘webpub’@’localhost’
-> IDENTIFIED BY ‘mypass’;

To demonstrate how useful this is, reconnect to the database as this user, to the schema webapps. You
will see that this user can only see and has access to only one object, v_protected_users.

mysql> SHOW TABLES;
+-------------------+
| Tables_in_webapps |
+-------------------+
| v_protected_users |
+-------------------+

mysql> select * from v_protected_users;
+-----+------------------+---------+---------------+
| uid | username | ranking | state_name |
+-----+------------------+---------+---------------+
1	John Smith	95.50	Alaska
2	Amy Carr	95.50	Alaska
3	Gertrude Asgaard	96.50	Alaska
4	Sunya Vadi	96.50	Alabama
5	Maya Vadi	96.50	Alabama
6	Haranya Kashipu	96.50	NY
7	Pralad Maharaj	96.50	NY
8	Franklin Pierce	96.50	New Hampshire
9	Daniel Webster	96.50	New Hampshire
+-----+------------------+---------+---------------+

Even if this user knows that the other database objects exist, they cannot access them. Any SQL statements
referencing anything other than v_protected_users will not be permitted.

mysql> SELECT * FROM users;
ERROR 1142 (42000): SELECT command denied to user ‘webpub’@’localhost’ for

104

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 105

Chapter 3: Advanced MySQL

table ‘users’
mysql> select * from v_users;
ERROR 1142 (42000): SELECT command denied to user ‘webpub’@’localhost’ for

table ‘v_users’
mysql> SELECT * FROM v_protected_users;

User Defined Functions
MySQL also has available an API for writing user-defined functions, otherwise known as a user-defined
function (UDF). A UDF is a function that is written in C or C++ that can do whatever the user needs
it to do. Because a UDF is written in C or C++ and uses MySQL’s UDF API, it runs within the server.
Therefore, it has to be designed within the confines of the MySQL server.

Like any other function, a UDF returns a single value, either a string or numeric, and is also executed
the same way as other functions. With UDFs, there are many possibilities for database functionality that
a web developer who feels able to work with C and C++ and become familiar with the UDF API can
implement. Some UDFs, such as the memcached Functions for MySQL, as you will see later in this book,
are useful enough to developers in general and are used by many people.

The first thing that you would do to develop a UDF is to decide what sort of functionality you would like
to be able to use from within MySQL. It could be something as simple as a conversion function, which
translates a string or number to some desired output, or something more complex that initiates some
external process when run.

For instance, the author of this book wrote a UDF that took as an argument an id of a column of a queuing
table, which in turn was written to a socket that a simple server read. It retrieved the row of that id and
then ran external perl processes with that id. Using triggers on the queuing table that called that UDF on
an INSERT event, any time a row was inserted, it resulted in a perl process handling the row just inserted.
This made it possible to implement an event-driven model of acting on the queue with perl programs, as
opposed to a constantly polling cron script. The benefit of this method is that the process ran only when
there was an insert to the queuing table. When the web site was experiencing little activity, the perl script
was not being called unnecessarily.

Writing a UDF
If you have experience writing C or C++ programs, you can write a UDF. You should become familiar
with the UDF API. There are examples in the MySQL source code that show five functions. These code
examples are a good way to get started. (You can find them in the directory sql/udf_example.c.) If you
have a great idea that you want to implement, just cut and paste from those examples, rename, and then
you should be set! Seriously, though, there is a little more to learn before you write a UDF.

Things to know about writing a UDF:

❑ It must be run on an operating system that supports dynamic loading of libraries.

❑ It must be written in C or C++.

❑ Functions return and accept a string, integer, and real values.

❑ There are simple, single-row functions as well as multiple-row aggregate functions.

105

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 106

Chapter 3: Advanced MySQL

❑ You can have MySQL coerce arguments to a specific type. For instance, you may want to always
use a string as an argument, when internally the function expects an integer. You can force it to
accept a string, but internally convert it to an integer (atoi).

❑ There is a standard functionality in the API that allows checking of argument types, number, as
well as argument names.

UDF Required Functions
To create a UDF, some standard, basic functions must be implemented. These standard functions corre-
spond to the name of the function as they are called in SQL. For the sake of illustration, let’s assume the
function name my_func. The three basic functions (the first of which, my_func(), is mandatory; the last
two, optional) that would be implemented are:

❑ my_func(): This is the main function where all the real work happens. Whatever output or action
your function performs — be that calculations, connections to sockets, conversions, etc. — this is
where you implement it.

❑ my_func_init(): This is the first function called, and is a setup function. This is where basic
structures are initialized. Anything that is used throughout the UDF that requires allocation is
allocated, and checking the correctness of number and type of arguments passed and/or coerc-
ing one type to another happens here.

❑ my_func_deinit(): This function is a cleanup function. This is where you would free any mem-
ory you allocated in my_func_init().

Simple User-Defined Function Example
A practical example of a UDF is one way to see how a user-defined function works. For this example, we
will look at a simple function to retrieve a web page using libcurl, a multiprotocol file transfer library.
Since curl is a popular, highly portable library that can be used to write handy programs to transfer files,
it makes an excellent choice for showcasing the MySQL UDF API.

Here is a simple function that retrieves a web page using the HTTP protocol. This function will be named
http_get().

As mentioned before, there are three primary functions that are defined for each UDF, as well as two
other functions — a callback function and a function for allocating memory. For this example, the func-
tions are as follows:

❑ http_get_init(): This is used for pre-allocating a structure for storing the results of a web
page fetch as well as for checking input arguments for type.

❑ http_get_deinit() : This is used for freeing any data allocated in either http_get_init() or
http_get().

❑ http_get() : This is the actual function that performs the main operation of the UDF — to obtain
a web page.

❑ my_realloc(): This is for allocating a character array for the results http_get() obtains.

❑ result_cb(): This is a callback function required for specifying a character array where the
results will be stored.

106

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 107

Chapter 3: Advanced MySQL

When writing a UDF, it’s good to set up a basic package to contain source and header files, documenta-
tion, as well as autoconf files for making the build process easy:

radha:curludfs patg$ ls
AUTHORS Makefile.am aclocal.m4 docs utils
COPYING Makefile.in config sql
ChangeLog NEWS configure src
INSTALL README configure.ac tests

Even if at first not everything is fully completed or fleshed out, it’s a good practice to have this structure
in place to facilitate the start of a good project. The src directory contains source and header files. For this
project, one header file, common.h, is created. It contains the data types, constants, etc., needed for the one
or more UDF source files. This file can be included and will make it convenient for having all data types
available defined. Shown below is what is included in common.h, which defines several UDF constants as
well as a container structure for the results of a web page access.

#include <curl/curl.h>
/* Common definitions for all functions */
#define CURL_UDF_MAX_SIZE 256*256

#define VERSION_STRING "0.1\n"
#define VERSION_STRING_LENGTH 4

typedef struct st_curl_results st_curl_results;
struct st_curl_results {

char *result;
size_t size;

};

curl_udf.c is the next source file that is created. It contains all the functions for this example. When
creating other UDFs, they, too, can be included in this file. It is possible to create other UDFs in separate
source files, however, they require modifications to the autoconf configuration files (Makefile.am).

❑ The first function in curl_udf.c is myrealloc(). This function is for correctly allocating or real-
locating a pointer to a character array (where the results of the web page access are stored).

static void *myrealloc(void *ptr, size_t size)
{

/* There might be a realloc() out there that doesn’t like reallocating
NULL pointers, so we take care of it here */

if (ptr)
return realloc(ptr, size);

else
return malloc(size);

}

❑ Next, a callback function result_cb() is defined. This is a required function for the libcurl API
to handle the results from a web page access.

static size_t
result_cb(void *ptr, size_t size, size_t nmemb, void *data)
{

107

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 108

Chapter 3: Advanced MySQL

size_t realsize= size * nmemb;
struct st_curl_results *res= (struct st_curl_results *)data;

res->result= (char *)myrealloc(res->result, res->size + realsize + 1);
if (res->result)
{

memcpy(&(res->result[res->size]), ptr, realsize);
res->size += realsize;
res->result[res->size]= 0;

}
return realsize;

}

In this particular case, result_cb() sets up a st_curl_results structure pointer to properly be
allocated to the returned data from a web page access, using the previous function my_realloc.

❑ The first UDF function shown is http_get_init().

my_bool http_get_init(UDF_INIT *initid, UDF_ARGS *args, char *message)
{
st_curl_results *container;

if (args->arg_count != 1)
{

strncpy(message,
"one argument must be supplied: http_get(’<url>’).",
MYSQL_ERRMSG_SIZE);

return 1;
}

args->arg_type[0]= STRING_RESULT;

initid->max_length= CURL_UDF_MAX_SIZE;
container= calloc(1, sizeof(st_curl_results));

initid->ptr= (char *)container;

return 0;
}

The first thing http_get_init() does is to set up a results structure pointer. Then it checks
how many arguments were passed into the UDF, which in this case must be exactly one. Also,
http_get_init()hard-sets the argument type passed into the UDF to be a string type. Next, it
sets the maximum length CURL_UDF_MAX_SIZE, allocates a results structure, and then sets the
UDF_INIT pointer to point to this newly allocated structure, thus making it available throughout
all stages of the UDF.

❑ Next comes http_get (), the primary function that performs the main task of obtaining a web
page.

char *http_get(UDF_INIT *initid, UDF_ARGS *args,
__attribute__ ((unused)) char *result,

unsigned long *length,
__attribute__ ((unused)) char *is_null,
__attribute__ ((unused)) char *error)

108

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 109

Chapter 3: Advanced MySQL

{
CURLcode retref;
CURL *curl;
st_curl_results *res= (st_curl_results *)initid->ptr;

curl_global_init(CURL_GLOBAL_ALL);
curl= curl_easy_init();

res->result= NULL;
res->size= 0;

if (curl)
{
curl_easy_setopt(curl, CURLOPT_URL, args->args[0]);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, result_cb);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, (void *)res);
curl_easy_setopt(curl, CURLOPT_USERAGENT, "libcurl-agent/1.0");
retref= curl_easy_perform(curl);
if (retref) {

strcpy(res->result,"");
*length= 0;

}
}
else
{
res->result[0]= 0;
*length= 0;

}
curl_easy_cleanup(curl);
*length= res->size;
return ((char *) res->result);

}

❑ http_get() first defines a curl connection, then obtains the curl_results_st previously stored
in http_get_init() from initid->ptr. Next it performs curl initialization as well as curl con-
nection allocation. It then sets the curl_result_st pointer res members to initial values. Then it
sets various options for the curl connection handle, including the argument supplied to the UDF
(the URL) as the URL to access, and sets the callback function result_cb() as the callback func-
tion to be used and sets the curl_results_st structure pointer res as the place where the results
will be stored by the callback function. Also, a user agent string identifier is set.

❑ Finally, curl_easy_perform() is called, which accesses the web page supplied by
args->args[0]. If there is a result of success, res->result contains the web page desired. If
there is a failure of any sort, either here or during the original check to see if the curl handle was
allocated, an empty string is copied to res->result. Then curl_easy_cleanup()frees up the
curl handle. The next step (very important for any UDF you write!) is to set the length pointer.
This ensures the UDF has the proper length, matching the length of what was returned. Finally,
the string in res->result is returned, which inevitably displays back to the user.

❑ http_get_deinit() is the final function for the http_get() UDF.

void http_get_deinit(UDF_INIT *initid)
{

/* if we allocated initid->ptr, free it here */
st_curl_results *res= (st_curl_results *)initid->ptr;

109

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 110

Chapter 3: Advanced MySQL

if (res->result)
free(res->result);

free(res);
return;

}

The whole purpose of http_get_deinit() is to free any remaining allocations or perform other
‘‘cleanups’’ that were allocated during http_get_init() or http_get(). In http_get_init() a
curl_st_results structure was allocated and the address of which was pointed to by initid->ptr,
which is then dereferenced to a local st_curl_results pointer variable res. Also, the character
array (string) member of the curl_st_results structure pointer res, res->result was allocated in
result_cb() using mymalloc(). First res->result is freed, and finally res itself is freed, making it so
all memory allocated in the other functions is freed.

To build the UDF, if using autoconf/automake configuration, the configuration step from within the
top-level directory of the UDF package is:

./configure --with-mysql --libdir=/usr/local/mysql/lib/mysql

Followed by:

make
sudo make install

These steps perform what would otherwise have to be done manually, that is, first to determine what
compile flags are needed, particularly for libcurl:

patg@dharma:∼$ curl-config --cflags --libs

-lcurl -lgssapi_krb5

And also obtain any other flags needed to compile the UDFs. The end results are dynamically
loadable libraries, which make install places in the directory specified with –libdir, in this case:
/usr/local/mysql/lib/mysql. This is a directory that MySQL will be able to load the dynamic library
from. To then create the function, all that needs to be run is:

mysql> CREATE FUNCTION http_get RETURNS STRING SONAME "curl_functions_mysql.so";

This makes it so MySQL is able to call this function and know where the dynamic library for this function
can be found. If ever you need to see what functions are installed on MySQL, you can view the contents
of the func table by running this query:

mysql> SELECT * FROM mysql.func;
+----------+-----+-------------------------+----------+
| name | ret | dl | type |
+----------+-----+-------------------------+----------+
| http_get | 0 | curl_functions_mysql.so | function |
+----------+-----+-------------------------+----------+

As you can see, in this instance the query shows that only one function is installed.

110

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 111

Chapter 3: Advanced MySQL

While writing your UDF you release a new version and you compile and run make install for your new
function, as long as the shared library file is named the same and the function is named the same, you
don’t have to perform the above CREATE FUNCTION statement.

The next thing to do is to run the new UDF.

mysql> SELECT http_get(’http://patg.net/hello.html’)\G
*************************** 1. row ***************************
http_get(’http://patg.net/hello.html’): <html>

<head><title>Test Hello Page!</title></head>
<body>
This is a test to verify that the UDF written for MySQL, http_get(),
works.
</body>

</html>

1 row in set (0.03 sec)

It works! This test was run against a simple test page, and shows that the UDF fetches the full page. Some
other sites will give this output:

mysql> SELECT http_get(’http://www.wiley.com’)\G
*************************** 1. row ***************************
http_get(’http://www.wiley.com’):
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved here.</p>
</body></html>

This looks as if there is some sort of failure, but this is because the UDF performs a bare-bones page
access. There needs to be more functionality built into the UDF to handle redirects, and/or anything else
the web server requires to display the page requested. The main idea here is to show that this can be
done in the first place!

As you can see, UDFs are a great way to extend MySQL and create functionality at the database level.

Storage Engines
One of the most useful features of MySQL is that it supports several storage engines. With MySQL 5.1,
we saw the emergence of a pluggable storage engine interface, which allows not only the ability to have
multiple storage engines (as was the case with earlier versions), but also to develop a storage engine
outside the MySQL server and be able to dynamically load that storage engine.

A storage engine is a low-level interface to the actual data storage, whether that resides on disk, in mem-
ory, or is accessed via a network connection. Because MySQL has a layer above the storage engine — the
handler level, which is very generic — it is possible to easily implement storage engines. So you have a
good variety of storage engines to choose from.

111

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 112

Chapter 3: Advanced MySQL

Commonly Used Storage Engines
There are several different storage engines commonly in use. Some are internally developed at MySQL
AB. Others are developed by different vendors. This section covers the well-known storage engines.

The various internal storage engines are:

Internal Storage
Engine

Description

MyISAM MySQL’s standard non-transactional storage engine. This is the default
storage engine in most MySQL installations unless otherwise specified
during installation or configuration. Known for being fast for reads.

InnoDB InnoBase/Oracle’s standard transactional storage engine for MySQL. This is
the most commonly used storage engine for those wanting transactional
support with MySQL.

Maria Maria is a new transactional storage engine for the MySQL relational
database management system. Its goal is to first make a crash-safe alternative
to MyISAM (now in beta) and then a full transactional storage engine.

Falcon Falcon is another new transactional storage engine being developed
internally.

Memory/Heap A Memory storage engine; the data for the table exists in memory. These are
good for running queries on large data sets and getting good performance
since the data is in memory as opposed to disk. Data for Memory tables is
lost if the server restarts, though the table remains.

Merge Merge is made of several identical (same columns and column order)
MyISAM (only) tables. Useful if you have multiple tables, for instance,
logging tables for a small time period. This allows you to access all of them as
one table.

Federated A Network storage engine. A table is created that references a remote table
on another MySQL instance. Data resides at the remote location, and this
engine produces SQL that is used to either fetch that data source or update it.

Archive Stores data in compact (gzip) format, being very well suited for storing and
retrieving large amounts of data that may not need to be accessed often.

NDB The NDB Cluster storage engine is for supporting data clustering and high
performance, high availability.

CSV Data stored in the comma-separated value format. Excellent for being able to
exchange data between MySQL and applications that use CSV, such as
spreadsheets.

Blackhole No actual data is stored. The Blackhole storage engine is used in replication
setups where what’s desired is not to physically store data but rather to have
a means to replicate the queries against the table, so the only thing being
written are the replication binary logs, reducing disk I/O.

112

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 113

Chapter 3: Advanced MySQL

There are also some externally developed storage engines:

External Storage Engine Description

Primebase XT (PBXT) Developed by Primebase, this external storage engine is ACID
compliant, supporting transactions, MVCC (multi-version
concurrency control), enabling reads without locking, offers
row-level locking for updates, uses a log-based architecture to avoid
double-writes (write-once) and supports BLOB streaming.

RitmarkFS This storage engine allows access and manipulation of filesystem
using SQL queries. RitmarkFS also supports filesystem replication
and directory change tracking.

FederatedX This is a fork of the Federated network storage engine allowing more
rapid development of the Federated engine, which includes fixing
bugs and adding enhancements.

Storage Engine Abilities
It’s important to know in advance what each storage engine supports, depending on your database needs
both for the entire schema, and each individual table, since you can use different storage engines for each
table. For instance, you may have user data that you need transactional support for. In this case, you
would use InnoDB as the storage engine. However, if you have a logging table that you don’t need to
access often, the Archive storage engine would be useful.

Using Storage Engines
Using a particular storage engine for a table is quite simple. You simply specify ENGINE=<storage
engine> in the create table statement. For instance, if you wanted to create a log table called site_log
that you wanted to use for logging web site actions that you decided the Archive storage engine would
be suitable for, you would issue a create table specifying the engine:

mysql> CREATE TABLE site_log (
-> id INT(4) NOT NULL auto_increment,
-> ts TIMESTAMP,
-> action VARCHAR(32) NOT NULL DEFAULT ‘’,
-> PRIMARY KEY (id)
->) ENGINE=ARCHIVE;

Another important thing you need to consider first is which storage engines are available on your MySQL
server. The command for this is SHOW ENGINES.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************

Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys

113

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 114

Chapter 3: Advanced MySQL

Transactions: YES
XA: YES

Savepoints: YES
*************************** 2. row ***************************

Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables

Transactions: NO
XA: NO

Savepoints: NO
*************************** 3. row ***************************

Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)

Transactions: NO
XA: NO

Savepoints: NO
*************************** 4. row ***************************

Engine: CSV
Support: YES
Comment: CSV storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 5. row ***************************

Engine: FEDERATED_ODBC
Support: YES
Comment: Federated ODBC MySQL storage engine

Transactions: YES
XA: NO

Savepoints: NO
*************************** 6. row ***************************

Engine: FEDERATED
Support: YES
Comment: Federated MySQL storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 7. row ***************************

Engine: ARCHIVE
Support: YES
Comment: Archive storage engine

Transactions: NO
XA: NO

Savepoints: NO
*************************** 8. row ***************************

Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables

Transactions: NO
XA: NO

Savepoints: NO
*************************** 9. row ***************************

Engine: MyISAM
Support: DEFAULT

114

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 115

Chapter 3: Advanced MySQL

Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO

XA: NO
Savepoints: NO

The output of SHOW ENGINES lists all storage engines that were either compiled into the MySQL server
or were installed as a plug-in. Each row for each storage engine lists the engine name, Support, which
means it’s enabled (YES), not enabled (NO), or the default storage engine (DEFAULT). Of course, in order to
use a storage engine it must be enabled. If you create a table using a storage engine that is not enabled,
the table will be created using the default storage engine. Other fields listed are comments on what
the engine is (added by the developer of the engine), whether it supports transactions, the X/Open XA
standard for distributed transaction processing, and savepoints.

Once you know what storage engines are available and the Support column is YES for that engine, you
can create a table of that type. The following subsections will describe more details about each storage
engine.

MyISAM
The first storage engine that MySQL released with was ISAM, which stands for Indexed Sequential Access
Method, a method developed by IBM and originally used in mainframes for indexing data for fast
retrieval, which is what MySQL, and MyISAM have been known and valued for. MyISAM became
the default storage engine for MySQL from 3.32 onward. Some features MyISAM is known for are the
following:

❑ Three files on disk per each table: <tablename>.MYD data file, <tablename>.MYI index file, and
the <tablename>.frm, which is the table definition file. Data files and index files usually exist in
the same schema directory they are created in, but can also exist separately in different directo-
ries, apart from one another.

❑ Maximum number of indexes per table is 64; can be changed in the source and recompiled.

❑ Maximum number of columns per index is 16.

❑ Maximum index length is 1,000 bytes; can be changed in source and recompiled

❑ NULL values are allowed in indexed columns.

❑ Arbitrary length UNIQUE constraints/indexes.

❑ Supports one AUTO_INCREMENT column per table.

❑ VARCHAR data type is supported, either fixed or dynamic row length.

❑ Sum of VARCHAR and CHAR columns may be up to 64KB.

❑ Supports BLOBS and TEXT.

❑ BLOB/TEXT columns can be indexed.

❑ Columns can have different character sets.

❑ Uses underlying operating system for caching reads and writes.

❑ Supports concurrent inserts, meaning that data can be inserted into a table while the table is also
being read from. Concurrent insert support reduces contention between readers and writers to
a table.

115

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 116

Chapter 3: Advanced MySQL

❑ All data values are stored low byte first, allowing for machine and operating system indepen-
dence.

❑ Numeric index values are stored high byte first for better index compression.

❑ Supports large files (63-bit length).

Creating a MyISAM Table
The following example shows how to create a MyISAM table:

mysql> USE webapps;

mysql> CREATE TABLE t1 (
-> id INT(3) NOT NULL AUTO_INCREMENT,
-> name VARCHAR(32) NOT NULL DEFAULT ‘’,
-> PRIMARY KEY (id)) ENGINE=MyISAM;

For most installations of MySQL, MyISAM is the default storage engine and you don’t even have to spec-
ify the engine type. As Appendix A shows you, the Windows installation wizard even gives the choice of
MyISAM or InnoDB as the default storage engine. Of course, from the previous example showing SHOW
STORAGE ENGINES, whatever engine has the value of DEFAULT for the column Supported is the default
engine. Not specifying the engine type will result in the creation of a table with that type.

MyISAM Under the Hood
If you look in the data directory, where MySQL stores its various data files (specified in my.cnf), you will
see directories for each schema.

root@hanuman:/var/lib/mysql# ls -l
total 12
drwxr-xr-x 2 mysql root 4096 2008-02-18 12:15 mysql
drwx------ 2 mysql mysql 4096 2008-08-01 15:29 test
drwx------ 2 mysql mysql 4096 2008-08-08 08:49 webapps

If you enter the directory for the webapps schema, you will see the newly created table’s files:

root@hanuman:/var/lib/foo# cd webapps/

root@hanuman:/var/lib/foo/webapps# ls -l t1*
-rw-rw---- 1 mysql mysql 8586 2008-08-08 08:49 t1.frm
-rw-rw---- 1 mysql mysql 0 2008-08-08 08:49 t1.MYD
-rw-rw---- 1 mysql mysql 1024 2008-08-08 08:49 t1.MYI

As previously mentioned, there are three different files for each MyISAM table:

❑ t1.frm is the definition file.

❑ t1.MYD is where the data is stored.

❑ t1.MYI is the index file.

116

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 117

Chapter 3: Advanced MySQL

If you were to insert some data into t1:

mysql> INSERT INTO t1 (name) VALUES (’first’), (’second’);

If you run the command strings against the data file, you’ll see it actually has the values just inserted.

root@hanuman:/var/lib/mysql/webapps# strings t1.MYD
first
second

Only the name column’s values are printed because the id column is an indexed column and its values,
as well as a pointer to the data in the data file, are stored in t1.MYI. They are not readable since they are
binary.

Reading directly from the MYD file of a MySQL database table is not something you would normally do
and is only shown to give you an idea of how data is stored with the MyISAM storage engine.

MyISAM Table Maintenance
Sometimes a table can become corrupted. For observing the condition of a MyISAM table, there is the
tool myisamchk, a command line tool, or from within MySQL, you can use CHECK TABLE.

myisamchk works from the command line and can be run using the table name or the specific data file or
index file. As with any MySQL client program, to obtain the list of options for myisamchk, just run it with
the -help option. Most often, you’ll just run it with no options on the table name, and then subsequently
you’ll run it with the -r option to repair any errors you find. The following shows an example of finding
an error on a table and repairing it.

root@hanuman:/var/lib/mysql/webapps# myisamchk t1
Checking MyISAM file: t1
Data records: 2 Deleted blocks: 0
myisamchk: warning: Table is marked as crashed
- check file-size
myisamchk: warning: Size of datafile is: 49 Should be: 40
- check record delete-chain
- check key delete-chain
- check index reference
- check data record references index: 1
- check record links
myisamchk: error: Wrong bytesec: 97-108-107 at linkstart: 40
MyISAM-table ‘t1’ is corrupted
Fix it using switch "-r" or "-o"

With no options, myisamchk reports errors, and it even suggests two options that can be used with
myisamchk to repair the table:

root@hanuman:/var/lib/mysql/webapps# myisamchk -r t1
- recovering (with sort) MyISAM-table ‘t1’
Data records: 2

117

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 118

Chapter 3: Advanced MySQL

- Fixing index 1
Wrong bytesec: 97-108-107 at 40; Skipped

After the repair, running myisamchk with no options shows the table no longer has errors:

root@hanuman:/var/lib/mysql/webapps# myisamchk t1
Checking MyISAM file: t1
Data records: 2 Deleted blocks: 0
- check file-size
- check record delete-chain
- check key delete-chain
- check index reference
- check data record references index: 1
- check record links

Another option for checking a table for corruption is CHECK TABLE, and REPAIR TABLE for repairing any
errors encountered. CHECK TABLE works not only for MyISAM tables, but also InnoDB, Archive, and CSV
tables.

mysql> CHECK TABLE t1\G
*************************** 1. row ***************************

Table: webapps.t1
Op: check

Msg_type: error
Msg_text: Table ‘./webapps/t1’ is marked as crashed and should be repaired

If a table is found to be corrupted upon running CHECK TABLE on a MyISAM table, REPAIR TABLE should
then be run. This performs identically to myisamchk –r:

mysql> REPAIR TABLE t1;
+------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+------------+--------+----------+----------+
| webapps.t1 | repair | status | OK |
+------------+--------+----------+----------+

InnoDB
InnoDB is a storage engine developed by InnoBase Oy, a Finnish subsidiary of Oracle. It provides MySQL
ACID-compliant transactions and crash recovery as well as support for foreign keys, and is the most
popular transactional storage engine for use with MySQL.

InnoDB differs from MyISAM and other storage engines in several ways:

❑ It uses logs for recovery and doesn’t require full rebuilds of indexes or tables if there is a
crash — it simply replays its logs to recover to a point in time.

❑ Whereas other engines use separate data files and indexes, InnoDB stores data and indexes in a
single tablespace file (by default, but can be configured to use separate files).

❑ It physically stores data in primary key order, supporting what is known as clustered indexes.

❑ It implements its own functionality for caching of reads and writes instead of relying on the
operating system.

118

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 119

Chapter 3: Advanced MySQL

❑ It supports raw disk partitions. This means that you can have a disk partition formatted to
InnoDB’s internal format as opposed to the operating system’s; the disk partition functions as a
tablespace itself.

Some other characteristic of InnoDB are:

❑ It supports ACID-compliant transactions (See Chapter 2 for details on ACID compliance).

❑ It has row-level locking, which means that the whole table isn’t locked while a write to that table
is being performed, as well as a non-locking read in SELECT statements.

❑ It supports foreign keys. A foreign key is an index on a table (referencing table) that references a
primary or unique key on another table (referenced table) and is used to ensure the data being
inserted into the referencing table refers to an index that exists on the referenced table.

InnoDB Configuration
Because InnoDB has functionality to support crash recovery, transactions, etc, it has some specific con-
figuration parameters that are set in my.cnf/my.ini, such as for specifying the tablespace directory, size,
and organization, logging, memory usage, buffering, etc. For the scope of this book, some of the more
common options are mentioned.

As mentioned before, InnoDB uses tablespaces for storing both its data and indexes, as shown in
the following table. These are some of the more common InnoDB server parameters. There are
several others that haven’t been mentioned here but can be found in the MySQL reference manual at
http://dev.mysql.com/doc/refman/5.1/en/innodb.html.

Tablespace Description

innodb_data_home_dir = path This parameter simply specifies where InnoDB
tablespace files will be created, much like the
previously mentioned datadir parameter. If not
specified, the location defaults to the value of
datadir.

innodb_data_file_path =
datafile_spec1[;datafile_spec2]...

This parameter specifies one or more tablespace
files — what name and size, and whether they are
autoextendable (meaning they can grow as needed).
The format of the data file specification can be seen in
the example that follows this table.

innodb_data_file_path=tablespace1:10
G;tablespace2:10G:autoextend:max:50G

In this parameter example, the first time MySQL is
started, two files (each 10 gigabytes) will be created
named tablespace1 and tablespace2. Only one file, the
last file listed, can be specified as an autoextend
tablespace file, in this example tablespace2. Also, the
max option enforces a maximum size limit to
tablespace2 of 50 gigabytes. This is optional, of
course, and simply omitting it would allow
tablespace2 to grow uninhibited.

Continued

119

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 120

Chapter 3: Advanced MySQL

(continued)

Tablespace Description

innodb_log_group_home = path This parameter specifies the directory log files are
found.

innodb_log_file_size = size This parameter specifies the maximum size (for
instance 10M for 10 megabytes) a log can be.

innodb_log_buffer_size = size This parameter specifies the size of log buffers before
writing to a log. For this is a setting you will need to
consider whether you might be inserting large bulk
inserts on a regular basis or not for performance.

innodb_flush_log_at_trx_commit = 1 or
0 innodb_lock_wait_timeout = seconds

This parameter specifies the number of seconds a
transaction will wait for a row lock.

innodb_buffer_pool_size = size This parameter specifies the data and cache size in
bytes for InnoDB tables.

innodb_additional_mem_pool_size This parameter specifies size in bytes of a buffer used
to cache internal data structures and data dictionary
information in memory.

Creating An InnoDB Table
Creating an InnoDB table simply requires specifying InnoDB as the engine type in when creating a table:

mysql> CREATE TABLE ‘t1’ (
-> ‘id’ int(3) NOT NULL auto_increment,
-> ‘name’ varchar(32) NOT NULL default ‘’,
-> PRIMARY KEY (`id`)
->) ENGINE=InnoDB;

Alternatively, you can alter a table from one table type to another in this manner:

mysql> ALTER TABLE users ENGINE=InnoDB;

The altered table will retain all of the table’s data and be henceforth an InnoDB table.

InnoDB Under the Hood
If you look in the directory you specified in innodb_data_home_dir or, if not defined, datadir, you will
see both the InnoDB tablespace file (or files) and the log files.

root@hanuman:/var/lib/mysql# ls -l ib*
-rw-rw---- 1 mysql mysql 10485760 2008-08-12 08:06 ibdata1
-rw-rw---- 1 mysql mysql 5242880 2008-08-12 08:06 ib_logfile0
-rw-rw---- 1 mysql mysql 5242880 2008-02-18 12:15 ib_logfile1

The first file, ibdata, is the tablespace file where any InnoDB table defined is stored. The files
ib_logfile0 and ib_logfile1 are the transaction logs.

120

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 121

Chapter 3: Advanced MySQL

Also worth noting is that InnoDB tables, as with any other table type in MySQL, still have .frm files,
found in the schema directory where they are created:

root@hanuman:/var/lib/mysql/webapps# ls -l users.*
-rw-rw---- 1 mysql mysql 8698 2008-08-12 07:14 users.frm

The Beauty of Transactions
One of the key features of InnoDB is transactions. InnoDB supports ACID-compliance transactions. Recall
that ACID stands for Atomicity, Consistency, Isolation, Durability. You can develop applications that in
particular have atomic operations. These types of actions would certainly include anything where money
is exchanged, user information is saved, or any functionality where you want several SQL statements to
happen as one operation. In short, transactions.

To use a transaction, the process is quite simple:

mysql> BEGIN WORK;

mysql> ... various data modification SQL statements as well as queries

mysql> COMMIT;

BEGIN WORK guarantees that AUTOCOMMIT is off for this transaction, telling MySQL that any following
SQL statement is part of this transaction. COMMIT says to make permanent (Durability) whatever state-
ments were executed after BEGIN WORK. Alternatively, if there was a problem or some statements weren’t
intended to be run, ROLLBACK reverts all statements that were executed after BEGIN WORK. This brings to
mind another benefit of transactions — the ability to ROLLBACK ‘‘oopses.’’

mysql> BEGIN WORK;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT COUNT(*) FROM users;
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
1 row in set (0.00 sec)

mysql> DELETE FROM users;
Query OK, 11 rows affected (0.00 sec)

OK, not good. You forgot the WHERE clause. Ack! Any minute now the boss will be calling in a state of
panic. (Well, he’d call about other things in a state of panic anyway.)

The next DELETE statement shows an error being produced because you added the flag --safe-updates
to your my.cnf file, and instead of a frantic call from your boss, you get an error message!

mysql> DELETE FROM users;
ERROR 1175 (HY000): You are using safe update mode and you tried to update a
Table without a WHERE that uses a KEY column
mysql> SELECT COUNT(*) FROM users;

121

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 122

Chapter 3: Advanced MySQL

+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

You can avoid this sort of problem by using the flag --safe-updates in the [mysql] client section of
either your global my.cnf/my.ini or your own private .my.cnf. This wonderful option prevents you
from committing ‘‘oopses’’ by not allowing you to perform queries like this without a WHERE clause.

This verifies the direness of the situation and you might be beginning to feel a sense of despondence
settling in. But wait! This was done from within a transaction, so you can roll it back!

mysql> ROLLBACK;
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT COUNT(*) FROM users;
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+

You breathe a sigh of relief and then feel jubilation. Then your boss calls you panicking about the search
engine returning results he doesn’t agree with.

From this example, you can see that within the ‘‘oops’’ transaction, after all rows were deleted, a query
showed that they were in fact gone. Within the transaction they were gone, but not committed, luckily.
This is the Isolation part of ACID compliance: Everything you do within a transaction doesn’t have any
effect until the transaction has been committed.

Consistency means that a transaction can’t violate a database’s consistency rules. If a transaction does
violate a rule, it’s rolled back, and the database stays consistent.

The Atomicity aspect of ACID is merely the fact that every action that occurs within BEGIN and COMMIT
happens, or else none at all happen.

Another feature of transactions is SAVEPOINT and ROLLBACK TO SAVEPOINT. This allows you to name a
transaction with an identifier. This means you can have different statement sets for each SAVEPOINT, and
it is possible to be roll back to any SAVEPOINT along the way. The idea is shown here:

mysql> SELECT * FROM t1;
+----+--------+
| id | name |
+----+--------+
1	first
2	second
3	three
4	four
+----+--------+

mysql> BEGIN WORK;

122

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 123

Chapter 3: Advanced MySQL

mysql> SAVEPOINT a;

mysql> UPDATE t1 SET name = ‘FIRST’ WHERE id = 1;

mysql> SAVEPOINT b;

mysql> UPDATE t1 SET name = ‘SECOND’ WHERE id = 2;

mysql> SAVEPOINT c;

mysql> UPDATE t1 SET name = ‘THIRD’ WHERE id = 3;

mysql> SELECT * FROM t1;
+----+--------+
| id | name |
+----+--------+
1	FIRST
2	SECOND
3	THIRD
4	four
+----+--------+

mysql> ROLLBACK TO SAVEPOINT b;

mysql> SELECT * FROM t1;
+----+--------+
| id | name |
+----+--------+
1	FIRST
2	second
3	third
4	four
+----+--------+

As you can see, ROLLBACK TO SAVEPOINT reverts back to the state of t1 when SAVEPOINT b was issued,
after the first update statement. Issuing a ROLLBACK would revert all of the transactions.

Archive
As a web applications developer, you might need to be able to store data such as logs or historical infor-
mation that you might not need often but still must store in your database and be able to run summary
queries on. The Archive storage engine is ideal for this. The Archive storage engine is an engine specif-
ically created for organizations to have a means to store large amounts of data that they don’t need to
access often, while still being able to access this data occasionally. The benefit is that storing this data
requires less disk space.

Some characteristics of the Archive storage engine are the following:

❑ It uses zlib (gzip) compression format for data storage, requiring less space.

❑ It does not support indexes.

❑ It supports INSERT and SELECT, but not UPDATE, REPLACE, or DELETE.

123

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 124

Chapter 3: Advanced MySQL

❑ It supports ORDER BY.

❑ It supports BLOBS and TEXT types and all other column types except spatial data types.

❑ If a SELECT statement is made on a table with BLOB or TEXT columns, if none of the BLOB columns
are specified, it scans past that BLOB for increased performance.

❑ It creates an Archive table.

To create an archive table, you simply specify the engine type:

mysql> CREATE TABLE comment_log (
-> id INT(3) NOT NULL,
-> uid INT(3) NOT NULL,
-> action VARCHAR(10) NOT NULL DEFAULT ‘’,
-> entry_time DATETIME DEFAULT NULL
->) ENGINE=ARCHIVE;

Alternatively, if you have a large table you want to convert to an Archive table, you can simply ALTER
that table:

mysql> ALTER TABLE comment_log ENGINE=ARCHIVE;

In some instances, an error such as this will be encountered:

ERROR 1069 (42000): Too many keys specified; max 0 keys allowed

This is because you cannot convert from a table with an engine that does support indexes to Archive,
which does not support indexes. Before you could change the ENGINE type with an ALTER statement, it
would be necessary to drop the indexes:

mysql> DROP INDEX id ON comment_log;

Or,

mysql> ALTER TABLE comment_log DROP PRIMARY KEY ;

Archive under the Hood
The Archive storage engine, like other engine types, has its own set of files that you can see from within
the schema directory for the schema that the table was created in:

root@hanuman:/var/lib/mysql/webapps# ls -l comment_log*
-rw-rw---- 1 mysql mysql 19 2008-08-13 08:56 comment_log.ARM
-rw-rw---- 1 mysql mysql 86 2008-08-13 08:56 comment_log.ARZ
-rw-rw---- 1 mysql mysql 8660 2008-08-13 08:56 comment_log.frm

comment_log.ARM is the meta-data file used. comment_log.ARZ is the actual data file for comment_log,
and is a gzip file containing the compressed data of the table in MySQL’s internal binary storage format.
Lastly, as with every table, there is a data definition file, comment_log.frm.

Interestingly, you can verify that comment_log.ARZ is indeed a gzip file:

root@hanuman:/var/lib/mysql/webapps# file comment_log.ARZ
comment_log.ARZ: gzip compressed data, from Unix

124

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 125

Chapter 3: Advanced MySQL

Archive Table Maintenance
Just as with MyISAM, there may be the rare occasion that an Archive table is corrupted.

mysql> CHECK TABLE comment_log;
+---------------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------------+-------+----------+----------+
| webapps.comment_log | check | error | Corrupt |
+---------------------+-------+----------+----------+

REPAIR TABLE can be used to fix the problem:

mysql> REPAIR TABLE comment_log;

The Federated Storage Engine
The Federated Storage Engine is a storage engine that instead of accessing data from a local file or
tablespace, accesses data from a remote MySQL table through the MySQL client API. It essentially builds
SQL statements internally, based on what the query was against the Federated table, and runs those
statements on the remote MySQL table.

If the query against the Federated table is a write statement such as INSERT or UPDATE, the Federated
storage engine builds a query, deriving the column names and values from internal data structures that
are dependent on the fields and values of the original query. Then it executes the SQL to perform that
write operation on the remote table, reporting back to the storage engine the number of rows affected.

If it’s a read operation, it constructs a SELECT statement also built using internal data structures for col-
umn names, as well as WHERE clauses for ranges and indexes, and then executes that statement. After the
statement is executed, the Federated storage engine retrieves the result set from the remote table and
iterates over that result, converting it into the same internal format that all other storage engines use and,
in turn, returning the data to the user.

A DELETE statement is similar to a SELECT statement in how the column names are built into the con-
structed SQL statement, as well as in building the WHERE clause. The main difference is that the operation
is DELETE FROM versus SELECT, resulting in the rows specified in the SQL statement being deleted and the
count of the rows affected being returned to the storage engine, which in turn decrements its total row
count.

Characteristics of the Federated Storage Engine
The Federated storage engine was developed with some principles that IBM defines for their own Feder-
ated functionality, which is more or less its own standard. These basic principles are as follows:

❑ Transparency: The remote data sources and details thereof are not necessarily known by the
user, such as how the data is stored, what the underlying schema is, and what dialect of SQL
is used to retrieve information from that data source.

❑ High degree of function: To be able to have, as much as possible, the same functionality that is
had with regular tables.

❑ Extensibility and openness: To adhere to a standard as defined in the ANSI SQL/MED (Man-
agement of External Data).

125

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 126

Chapter 3: Advanced MySQL

❑ Autonomy of data sources: Not affecting the remote data source, not interfering with its normal
operation. This also means that the Federated storage engine cannot modify the definition of the
remote data source, as in the case of statements such as ALTER and DROP TABLE not being sent to
the remote data source.

❑ Optimized performance: Utilizing the optimizer to create the most efficient statements to run on
the remote data source. Also, the long-term goal would be to have a means of delegating opera-
tions to the local server and remote server according to which is best suited for each operation.

Of course, not all of these guiding principles have been achieved, but these are certainly goals for devel-
opment of the Federated storage engine that provide a roadmap of the long-term direction of Federated
development.

Some of the basic characteristics of the Federated storage engine are these:

❑ When creating a Federated table, the table must have the same named columns as the remote
table, and no more columns than the remote table. The remote table can have more columns than
the Federated table.

❑ A query on a Federated table internally produces an entire result set from a table on a remote
server, and as such, if that table contains a lot of data, all of that data will be retrieved. One way
to deal with huge result sets is to define an index on a column of the Federated table, even if that
column is not indexed on the remote table, and try to use any means to limit the result set. How-
ever, note that LIMIT does not affect the size of the result set from the remote table.

❑ The remote table must be in existence prior to creating the Federated table that references it.

❑ The Federated storage engine supports indexes insofar as the column that is defined as an index
is specified in a WHERE clause in the SQL query the table generates, and that the column it spec-
ifies is an index on the remote table. This means that you could have a Federated table with an
index on a column that is not an index on the remote table, which is not a problem, and in fact
can be used to reduce result set size.

❑ The manual states a Federated table can reference a Federated table. This is a bad idea. Don’t
do it.

❑ Transactions aren’t supported.

❑ Federated supports SELECT, INSERT, UPDATE, DELETE. However, ALTER TABLE cannot be used to
change the remote table’s definition (this would violate the very definition of a Federated table),
but it can be used to modify the local Federated table’s definition.

❑ DROP TABLE only drops the local Federated table.

It’s worthwhile to mention that although the Federated storage engine may not support some features
such as transactions as well as other enhancements, there is a fork of Federated called FederatedX, which
is a more active development branch of Federated.

Creating a Federated Table
As with other storage engines, creating a Federated table involves setting ENGINE=FEDERATED. Also neces-
sary with Federated is specifying a connection string of either a connection URL or a server name (more
about Federated servers is covered in the next subsection):

CONNECTION=scheme://user:password@host/schema/table

126

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 127

Chapter 3: Advanced MySQL

CONNECTION=server

CONNECTION=server/tablename.

The following shows the creation of a non-Federated table on a remote data source, and then the creation
of a Federated table.

The remote server is 192.168.1.118, and the schema is named remote:

mysql> CREATE TABLE ‘t1’ (
-> ‘id’ int(3) NOT NULL auto_increment,
-> ‘name’ varchar(32) NOT NULL default ‘’,
-> PRIMARY KEY (`id`)
->);

mysql> INSERT INTO t1 (name) VALUES (’first’), (’second’), (’hello world’);

Then on a local server, 192.168.1.100, in a schema named federated:

mysql> CREATE TABLE ‘t1’ (
-> ‘id’ int(3) NOT NULL auto_increment,
-> ‘name’ varchar(32) NOT NULL default ‘’,
-> PRIMARY KEY (`id`)
->) ENGINE=FEDERATED
-> CONNECTION=’mysql://feduser:feduser@192.168.1.118/remote/t1’;

Query OK, 0 rows affected (0.07 sec)

mysql> SELECT * FROM t1;
+----+-------------+
| id | name |
+----+-------------+
1	first
2	second
3	hello world
+----+-------------+

mysql> INSERT INTO t1 (name) VALUES (’hello federated’);

mysql> SELECT * FROM t1;
+----+-----------------+
| id | name |
+----+-----------------+
1	first
2	second
3	hello world
4	hello federated
+----+-----------------+

Then back on the remote server:

mysql> SELECT * FROM t1;
+----+-----------------+
| id | name |

127

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 128

Chapter 3: Advanced MySQL

+----+-----------------+
1	first
2	second
3	hello world
4	hello federated
+----+-----------------+

This means there has been a successful Federated table creation.

Federated Servers
As you’ve seen in the example above, a URL-like string was specified to give the necessary information
for the Federated table to be able to connect to the remote data source. In cases where there is a large
number of Federated tables, changing these tables’ connection information can be cumbersome and
requires altering all of the tables with a modified connection string. For instance, if there was the need to
change what server 1,000 Federated tables connect to, you would have to alter each one of those tables to
have a new server in its connection string.

To devise a better solution, in MySQL 5.1, the idea of a Federated Server was developed. This concept was
part of the SQL/MED specification. It essentially lets you create a named database object called a SERVER
that is associated with various connection meta-data information. The other half of this functionality is
that the Federated storage engine can merely specify the server name (as well as a table if it is desired to
name the table differently than the Federated table). This means you can change the connection informa-
tion of the table one or more Federated tables uses to connect to their remote data source with a single
SQL statement against the SERVER. So, in the 1,000 table scenario, not a single table would have to be
changed!

The syntax for a Federated Server is straightforward:

CREATE SERVER
server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)

In the previous example, to use a Federated server, you would create it as:

mysql> CREATE SERVER
-> ‘servera’ FOREIGN DATA WRAPPER ‘mysql’
-> OPTIONS
-> (HOST ‘192.168.1.118’,
-> DATABASE ‘remote’,
-> USER ‘feduser’,
-> PASSWORD ‘feduser’,
-> PORT 3306,
-> SOCKET ‘’,
-> OWNER ‘root’);

Then, to use this server with the previously created table, you would have to drop the table first (this the
Federated standard method; the engine does not support ALTER on the remote table) and then recreate it,
using the server name that was just created instead of a URL connection string:

mysql> DROP TABLE t1 ;
Query OK, 0 rows affected, 1 warning (0.00 sec)

128

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 129

Chapter 3: Advanced MySQL

mysql> CREATE TABLE ‘t1’ (
-> ‘id’ int(3) NOT NULL AUTO_INCREMENT,
-> ‘name’ varchar(32) NOT NULL DEFAULT ‘’,
-> PRIMARY KEY (`id`)
->) ENGINE=FEDERATED DEFAULT CHARSET=latin1 CONNECTION=’servera’;

mysql> SELECT * FROM t1;
+----+-----------------+
| id | name |
+----+-----------------+
1	first
2	second
3	hello world
4	hello federated
+----+-----------------+

A table name could have been specified in this example and would be separated from the server name
with a forward slash ‘/’.

CONNECTION= ‘servera/t1’

This would be useful if the remote table name and Federated table name differed.

Federated under the Hood
To gain a little insight to how Federated works, there are several things that can be observed. First, as
mentioned before, Federated accesses its data not from a local file, but from a remote data source through
the MySQL client library. This means there will only be one file created for a Federated table, the .frm
file, which is the table definition file. For Federated, this file merely contains the connection information
for the Federated table:

ishvara:/home/mysql/var/federated # ls
db.opt t1.frm

The other revealing thing to look at is the SQL log, if it is turned on, on the remote server. On the server
with the Federated table, you issue:

mysql> SELECT * FROM t1;

The query log on the remote sever shows:

080823 11:17:56 181 Connect feduser@arjuna on remote

181 Query SET NAMES latin1

181 Query SHOW TABLE STATUS LIKE ‘t1’

181 Query SELECT ‘id`, ‘name’ FROM ‘t1`

As you can see:

❑ The first command the server with the Federated table sends is SET NAMES <character set>. This
is to ensure that the character set of the Federated table is set on the remote server.

129

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 130

Chapter 3: Advanced MySQL

❑ The second command sent is SHOW TABLE STATUS. This is to obtain information on the remote
table, which Federated then uses to set values for the local Federated table, such as the number
of records in the table.

❑ Finally, the Federated storage engine sends the query to obtain the data that was specified in the
original query. The difference between the original query on the Federated table and the query
that Federated constructs to be run against the remote table is that Federated specifies each col-
umn. It does this internally by looping over each field (column) in a data structure representing
the structure of the table and appending each to the complete statement.

If data is inserted into the Federated table, such as with this query:

mysql> INSERT INTO t1 (name) VALUES (’one more value’);

Then the statement as found in the log on the remote server is:

080823 11:29:06 181 Query INSERT INTO ‘t1’ (`id`, ‘name`)
VALUES (0, ‘one more value’)

Just as with the SELECT statement, the INSERT statement is built by the Federated storage engine, addi-
tionally appending into the VALUES half of the INSERT statement the values being inserted.

Viewing the SQL log on a remote server that a Federated table utilizes can be a very useful means of
seeing how the Federated storage engine works, as well as a good debugging tool.

Tina/CSV Storage Engine
The CSV storage engine uses a CSV (comma-separated value) file as its underlying data store. This
is a novel way of easily importing or exporting data between MySQL and various applications such
as spreadsheets. Another benefit of the CSV storage engine is its ability to instantaneously load large
amounts of data when you merely create a CSV table, and place data in CSV format named with the
same table name into the schema directory in which the table is created.

Some characteristic of the CSV storage engine are:

❑ Uses CSV — comma-separated values — as its data format.

❑ Does not support indexes.

❑ Does not support AUTO_INCREMENT.

Creating a CSV Table
To create a CSV table, just specify the ENGINE value as CSV:

mysql> CREATE TABLE contacts (
-> contact_id INT(8) NOT NULL,
-> first varchar(32) NOT NULL DEFAULT ‘’,
-> last varchar(32) NOT NULL DEFAULT ‘’,
-> street varchar(64) NOT NULL DEFAULT ‘’,
-> town varchar(32) NOT NULL DEFAULT ‘’,

130

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 131

Chapter 3: Advanced MySQL

-> state varchar(16) NOT NULL DEFAULT ‘’) ENGINE=CSV;

mysql> INSERT INTO contacts VALUES
-> (1, ‘John’, ‘Smith’, ‘133 Elm St’, ‘Madison’, ‘WI’),
-> (2, ‘Alan’, ‘Johnson’, ‘4455 Cherry Ave’, ‘Fitchburg’, ‘MA’),
-> (3, ‘Sri’, ‘Narayana’, ‘1 Govardhana Way’, ‘Vrndavana’, ‘UP’);

CSV under the Hood
Looking in the data directory, you see three files:

radha:test root# ls -l
total 40
-rw-rw---- 1 _mysql _mysql 35 Aug 24 13:04 contacts.CSM
-rw-rw---- 1 _mysql _mysql 154 Aug 24 13:04 contacts.CSV
-rw-rw---- 1 _mysql _mysql 8730 Aug 23 19:15 contacts.frm

The contacts.CSM file is a meta-data file containing information such as a total row count of contacts as
well as the state of the table. contacts.CSV is the actual data file containing the records that were inserted
above, and .frm file is of course the table definition file that every table in MySQL has, regardless of the
storage engine employed.

If you view the contents of contacts.CSV, you’ll see:

radha:test root# cat contacts.CSV
1,"John","Smith","133 Elm St","Madison","WI"
2,"Alan","Johnson","4455 Cherry Ave","Fitchburg","MA"
3,"Sri","Narayana","1 Govardhana Way","Vrndavana","UP"

You can edit this file directly, save it back to the data directory, and then use it. This gives you the ability
to work with this data either through MySQL using SQL or any tool that works with CSV:

1. The code below shows copying the CSV data file to a user’s document directory. Don’t
worry about the meta-data file. This will be updated to reflect the changes you made using
the FLUSH TABLES statement from MySQL.

radha:test root# cp contacts.CSV /Users/patg/Documents/

2. Then this CSV file can be edited by simply loading contacts.CSV into a spreadsheet, as
shown in Figure 3-1.

Figure 3-1

131

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 132

Chapter 3: Advanced MySQL

3. You can then add a record in the spreadsheet, shown in Figure 3-2.

Figure 3-2

4. Copy the CSV file back to the data directory:

radha:test root# cp /home/patg/Documents/contacts.CSV

5. From within MySQL, issue a FLUSH TABLES command, which updates the meta-information.
Then the newly added record is displayed:

mysql> FLUSH TABLES;

mysql> SELECT * FROM contacts;
+------------+-------+----------+------------------+-----------+-------+
| contact_id | first | last | street | town | state |
+------------+-------+----------+------------------+-----------+-------+
1	John	Smith	133 Elm St	Madison	WI
2	Alan	Johnson	4455 Cherry Ave	Fitchburg	MA
3	Sri	Narayana	1 Govardhana Way	Vrndavana	UP
4	Sarah	Shedrick	9988 51st St. NE	Seattle	WA
+------------+-------+----------+------------------+-----------+-------+

And now, handily, the records added from an external application are available from within MySQL
with minimal effort.

Blackhole Storage Engine
Last, but not least, there is the Blackhole storage engine. This storage engine is a bit like the roach
motel — data goes in, but doesn’t ever get out! Seriously, the question you might be asking as you read
this is, ‘‘Why would there be an engine like this?’’ The main reason the Blackhole storage engine was
written is to provide a means for running data modification statements on a table without actual data
storage, yet retain the benefit of those statements being logged to a binary log, which is at the core of how
replication works.

Other benefits of the Blackhole storage engine include being able to vary SQL statement syntax, particu-
larly the syntax contained in a dump created with mysqldump. Also, the Blackhole storage engine can be
used to measure performance excluding the actual storage engine performance, as well as the effects of
binary logging.

To create a table using the Blackhole storage engine:

mysql> CREATE TABLE deadend (
-> id int(8) NOT NULL auto_increment,

132

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 133

Chapter 3: Advanced MySQL

-> name varchar(32) NOT NULL DEFAULT ‘’,
-> PRIMARY KEY (id)
->) ENGINE=BLACKHOLE;

And have fun trying to insert actual data into the newly created table, deadend!

mysql> INSERT INTO deadend (name) VALUES (’not’), (’here’), (’at’), (’all’);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM deadend;
Empty set (0.00 sec)

As you can see, data is not stored in this table. Also, note that creating this table allowed indexes and
auto_increment to be used. The indexes themselves don’t physically exist, but their definitions do.
This facilitates the ability to use the same table definitions the MyISAM or InnoDB uses, without any
changes. This makes it simple to import a schema creation file that was dumped from another database
(mysqldump –d), regardless of the storage engine for the tables dumped. All this requires is for the setting
default-storage-engine=BLACKHOLE to be specified in the my.cnf/my.ini. When the schema dump
is imported to the database with Blackhole set as the default, the tables will automatically be correctly
defined.

If you alter a real table with data to become a Blackhole table, all the data will be
lost.

Replication
Replication is the means of copying data from a MySQL master database instance to one or more slave
database instances. MySQL replication is asynchronous, meaning that data replication is not instanta-
neous and, as such, the slave doesn’t have to be connected continuously to the master; this also allows
the slaves to replicate from the master over a long-distance connection.

Replication can be used for many purposes such as scaling out read-intensive applications by having
multiple read slaves to reduce the reads on the master. Another application for replication is a backup
slave that allows for data backups without affecting any of the database servers being used by live appli-
cations. Also, you can use replication to replicate to tables that use different storage engines than on
the master. One example would be using the Blackhole storage engine for a logging table on a master
database that replicates to an archive logging table on the slave.

MySQL replication supports either statement-based or row-based replication (in MySQL 5.1 and higher),
or mixed (both statement and row-based replication, MySQL 5.1 and higher). Statement-based replication
uses SQL statements from the master run on the slaves to replicate data, whereas row-based replication
duplicates the actual binary-level changes on the table from the master to the slave.

Replication Overview
Figure 3-3 shows the basic concept of how MySQL replication works.

133

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 134

Chapter 3: Advanced MySQL

binary log

logs updates, inserts, deletes...

myschema

relay log

myschema

SQL
Thread

applies SQL
statements
in relay log
to schema

being replicated

reads from master’s
binary log, applies

to relay log

IO thread

MySQL Replication
Master Slave

Figure 3-3

The first part of replication is the binary log, which resides on the master. When binary logging is turned
on, the master records changes (events) to the binary log. These changes are any data modification state-
ment, such as UPDATE, INSERT, DELETE, TRUNCATE, etc. Also, these events correspond to a position in the
binary log. Moreover, this log rotates over time, and each new log has a new log name sequence.

The other half of replication is the slave. There are two threads (processes) that run on a slave — the
I/O thread, and the SQL thread. The I/O thread reads the master’s binary log changes (events, SQL
statements) and stores them in relay logs. The SQL thread reads the SQL statements from relay logs and
applies them to the local database instance to whatever schema or table that should be replicated. Like
the binary log, the relay log also rotates, in numeric sequence. The slave always maintains the mapping
of SQL statements (events) it has to perform to the original binary log position (and binary log name) of
the master where it read that statement from. This makes it possible to know how far behind the slave is
from the master.

The reason for having two threads for replication is simple. The I/O thread ‘‘collects’’ the statements
from the master, and the SQL thread runs those commands. This allows for the reading of events from
the master without waiting for those events to be executed on the slave — hence the ‘‘asynchronous’’
nature of MySQL replication.

Replication schemes
MySQL allows for various replication schemes. There is the simple single master with one or more slaves
(see Figure 3-4) attached.

Another replication scheme is a dual master with each master having one or more slaves attached, as
Figure 3-5 shows.

134

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 135

Chapter 3: Advanced MySQL

Master

Slave Slave Slave

Figure 3-4

Master Master

Slave

Slave

Slave

Slave

Slave

Slave

Figure 3-5

The dual master configuration is possible because a slave can also be a master as well. Each master is
also a slave of the other. Writes occurring on each master are replicated to each other, which, in turn,
are replicated to the slaves of each dual master. A dual master can be a particularly useful scheme, as it
allows you to have two masters available, like having a pair of kidneys! The benefit of this is that should
one of those masters fail, you would simply point its slaves to the other master.

With this in mind, another replication scheme, as shown below in Figure 3-6, is known as the ring con-
figuration.

This configuration can be useful in that it creates multiple masters, allowing you to split up writes, which
although not shown in Figure 3-6, can also have slaves attached to each. It does present a requirement:
Each master/slave must be able to automatically switch over to a new master should its master fail. With
this ring scheme, if any master/slave’s replication is broken or down, it breaks the overall replication of
the entire ring. Just think about how Christmas tree lights break!

135

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 136

Chapter 3: Advanced MySQL

Master/
Slave

Master/
Slave

Master/
Slave

Master/
Slave

Master/
Slave

Master/
Slave

Figure 3-6

One other replication scheme worth mentioning, shown below in Figure 3-7, is the previously men-
tioned benefit of the Blackhole storage engine — using a master/slave MySQL instance to act as a filter
or dummy logging server, which has slaves attached. The filter logging server is a MySQL instance that
is a slave of the main master, which, in turn, is a master of other slaves, either on a separate machine or
running on the same server as the main master that has the Blackhole storage engine as its default storage
engine (--default-storage-engine=BLACKHOLE in my.cnf/my.ini). Using replication filtering rules set
to filter (a) particular schema(s) specified results in a much smaller binary log, and therefore less net-
work traffic to the slaves connected to this filter logging server. Also with this setup, because the tables
are using the Blackhole storage engine, the disk I/O for this MySQL instance is low. This is because the
actual table data isn’t written to disk — only SQL statements being logged to the binary log are written.
These in turn are read by the slaves connected to it that do have actual data.

Master Filtering
Slave

Slave

Slave

Slave

Figure 3-7

136

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 137

Chapter 3: Advanced MySQL

MySQL replication is very flexible, and there are many other schemes that can be used beyond these basic
four. It depends on your application, ratio of reads to writes, hardware allotment, data center locations,
and most importantly, budget.

Replication Command Options
MySQL replication command options, like other MySQL command options, are set in MySQL’s configu-
ration file my.cnf or my.ini respectively.

The command options listed here have two dashes (--) in front of the name of the option as if they were
specified in the command line for mysqld. In the my.cnf/my.ini file, they are listed without the two
dashes.

Also, for the items --report-host = <canonical name of host> and --report-port = <numeric
port in the following table, the output for SHOW SLAVE HOSTS is as follows:

mysql> show slave hosts;
+-----------+---------+------+-------------------+-----------+

| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+---------+------+-------------------+-----------+
| 3 | slave-b | 3308 | 0 | 1 |
| 2 | slave-a | 3307 | 0 | 1 |
+-----------+---------+------+-------------------+-----------+

The replication command options are as follows:

Command Option Description

--log-bin [= <binary log name>] or:
--log-bin --logbin =
<binary log name>

Turns on the binary log for a master and optionally sets
the name of the binary log. The name is the base name of
the file, where each log file will have this name as well as
the numeric value that increments each time a log file is
rotated to a new log file.

--binlog-do-db = <schema name>
--binlog-ignore-db = <schema name>

Used to control if data modification statements (UPDATE,
INSERT, DELETE, etc.) are logged or not logged to the
binary log per the schema listed.

--log-slave-updates Turns on logging of data modification statements that
occurred via replication, which is explained later on. This
is used for the dual master or ring replication scheme, as
well as if you want a backup slave and want to use the
binary log for incremental backups.

--log-bin-index = <filename> Name of file containing inventory of binary logs that exist.

--expire-logs-days = <number> The maximum age, in days, that binary logs are allowed
to remain on the master. Make sure not to set this to a
value that ends up causing logs to be deleted that slaves
might not have read yet, particularly if you have a
situation where slaves might not regularly connect to the
master to update.

Continued

137

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 138

Chapter 3: Advanced MySQL

(continued)

Command Option Description

--server-id = <number> This is a unique number (unique among all servers in a
given replication paradigm). The only requirement is
that every server has a different value. It’s quite
common to give the first id, 1, to the main master, and
increment from there. For instance, in a dual master
scheme, one master would be 1, the other master 2, the
slaves with 1 as their master would be numbered odd
and the slaves with 2 as their master would be even.

--report-host = <canonical name of host>
--report-port = <numeric port>

This is a feature available in 5.1 that is the preferred
hostname, port of the slave as reported to the master,
and displayed in the output of SHOW SLAVE HOSTS.

--master-host = <hostname, ip address> This is the hostname or IP address of the master the
slave connects to.

--master-user = <slave user name> This is the username the slave uses to connect to the
master. This user requires REPLICATION SLAVE
privileges in order to connect to the master and read its
binary logs.

--master-password = <slave user’s
password>

Password of the slave user required to connect to the
master.

--master-port = <numeric port> The port that the master is running on, default 3306. In
the case of a MySQL master instance being run on a
different port, you would explicitly set this.

--relay-log = <relay log> The base name of the relay log to be used. If no path is
specified, the value of datadir is used as the location
of the relay log.

--relay-log-info-file = <log file name> The name of the file that stores the current name and
position of the relay log being processed.

--relay-log-index = <log file name> The name of the file that stores an inventory of the
relay logs existing on the slave.

--master-ssl
--master-ssl-ca=file_name
--master-ssl-capath=directory_name
--master-ssl-cert=file_name
--master-ssl-cipher=cipher_list
--master-ssl-key=file_name

These command options are for replication over SSL
(Secure Sockets Layer). More detail on these can be
found in the MySQL user’s manual.

--replicate-do-db = <schemaname>
--replicate-ignore-db = <schemaname>

Filter rule specifying the schema to be replicated or
ignored (do-db means to replicate, ignore-db means
ignore, do not replicate). For statement-based
replication, only SQL statements that contain the
schema name of the default database, as specified in
USE schemaname, are replicated. For row-based
replication, it’s any change to any table in schemaname,
regardless of default database.

138

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 139

Chapter 3: Advanced MySQL

Command Option Description

--replicate-do-table =
schemaname.tablename
/ --replicate-ignore-table =
schemaname.tablename

Filter rule specifying the table from a specific schema
to replicate or not replicate.

--replicate-do-wild-table =
schemaname.tablename%
--replicate-ignore-wild-table=
schemaname.tablename%

Filter rules giving even more granularity over what is
replicated or ignored. This option allows you to use
wildcards — SQL wildcards % for multiple characters,
and _ for a single character. Whatever syntax works
with LIKE works with this rule.

replicate-do-wild-table = webap%.% Replicate any schema starting with the name webap,
any table. This would be webapps.t1, webapps2.t3,
webappbak.t3 — all would be replicated.

replicate-ignore-wild-table =
webapps.t%

Do not replicate any table in webapps schema that
begins with t followed by any one or more characters.

--replicate-rewrite-db=from_name->
to_name

This allows you to replicate a schema on a master to a
differently named schema on the slave. For instance,
if you wanted to replicate a schema called myschema
on the master to yourschema on the slave’s
configuration file, you would have
— replicate-rewrite-db=myschema->yourschema.

Setting Up Replication
Setting up replication is a fairly straightforward task. It mainly consists of ensuring that binary logging
is enabled on a master, that privileges are in place for slaves to connect to the master, and that the slaves
know what binary log name and position to start reading from. Other considerations are that you have
already ensured that the data on the slave is at a state where replicated statements will result in the slave
being equal, in terms of data, to the master, which is usually accomplished by loading a data dump from
the master on the slave.

The following section will show in detail how to set up replication. In this case, we show a dual master
replication setup using two instances of MySQL running on the same machine on separate ports. Also,
this replication setup will only be using statement-based replication.

Running Multiple Instances of MySQL with mysqld_multi
mysqld_multi is a utility script that comes bundled in the MySQL distribution. It allows you to run
multiple instances of MySQL on the same server. Whether you need to use it for one or multiple servers, it
is a very useful script. Its usage is simple. For example, if you had two MySQL instances set up, identified
in the my.cnf as mysqld1 and mysqld2, the way to start both servers would be:

mysql_multi start 1,2

And to stop both servers you would use this:

mysqld_multi stop 1,2

139

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 140

Chapter 3: Advanced MySQL

You can also specify an action for each individual server, such as:

mysqld_multi start 2

To be able to use mysqld_multi, you must have separate sections in your my.cnf/my.ini for each server.
Instead of the normal:

[mysqld]
...options...

You would use this:

[mysqld1]
... options for mysql instance 1 ...

[mysqld2]
... options for mysql instance 2 ...

Also, each instance should have its own data directory. For example, in a source install, a single instance
of MySQL, you would have /usr/local/mysql/var be the data directory. For the example in this book,
each server will have its own data directory in /usr/local/mysql/var/dataN, with N corresponding to
the number of the server. To set this up, you would simply:

1. Copy what is in /usr/local/mysql/var to /usr/local/mysql/var/dataN, as well as make
sure the permissions of /usr/local/mysql/var/dataN are owned by both the mysql user
and mysql group. You would also make sure the current MySQL instance is not running.

mkdir /usr/local/mysql/var/data1

cp –r /usr/local/mysql/var/* /usr/local/mysql/var/data1

chown –R mysql:mysql /usr/local/mysql/var/data1

2. You do the same for the second instance, except the data directory is data2.

3. Set up my.cnf to allow for two servers to run. The first thing is that mysqld_multi requires
its own section in my.cnf.

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = root

mysqld_multi needs to know which programs to run as the mysqld daemon as well as
mysqladmin (for stopping the servers), and runs as root to be able to run these processes
(mysqld_safe runs as the mysql user).

4. Next, each server has its own section:

[mysqld1]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = mysql

140

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 141

Chapter 3: Advanced MySQL

port = 3306
socket = /tmp/mysql.sock
datadir = /usr/local/mysql/var/data1

Shown above are the basic command options for the first server. The command options for
the second server would be as follows:

[mysqld2]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = mysql
port = 3307
socket = /tmp/mysql2.sock
datadir = /usr/local/mysql/var/data2

5. With these in place, it should be possible to start the servers.

radha:∼ root# mysqld_multi start 1,2

6. And checking with ps, it’s possible to see that both are now running (this output is cleaned
up/reduced from the original!).

radha:∼ root# ps auxww|grep mysqld|grep -v mysqld_safe

mysql 7936 0.0 0.6 134988 12720 s000 S Tue11PM 0:52.05
/usr/local/mysql/libexec/mysqld --datadir=/usr/local/mysql/var/data1
--user=mysql --socket=/tmp/mysql.sock -
-port=3306

mysql 33148 0.0 0.1 135020 2200 ?? S 22Aug08 1:40.33
/usr/local/mysql/libexec/mysqld --datadir=/usr/local/mysql/var/data2
--user=mysql --socket=/tmp/mysql2.sock --port=3307

Now that you have two MySQL instances running, you can set up replication!

Adding Replication Command Options
This section details how to add replication with a dual master setup using the two separate instances
of MySQL that were shown in the previous section. Listed below are the steps required to set up the
my.cnf/my.ini for both servers for replication to run. When it’s mentioned that each setting is made
for both servers, this means that the command options are made below each server section, as indi-
cated by [mysqld1] and [mysqld2]. The configuration file of this example can be seen in its entirety in
Appendix B.

To turn on binary logging on both servers, follow these steps:

1. Add the log-bin to my.cnf or my.ini respectively for Windows, for both servers (under
[mysqld1], [mysqld2]).

[mysqld1]

log-bin = /usr/local/mysql/var/data1/bin.log

141

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 142

Chapter 3: Advanced MySQL

[mysqld2]

log-bin = /usr/local/mysql/var/data2/bin.log

2. To turn on log-slave-updates, just specify in my.cnf/my.ini for both servers:

log-slave-updates

3. You want to set –master-host, --master-user, --master-password slave command
options for both servers. For this example, the user repl and password of repl will be used.
(Don’t do this in a production environment! repl is not a secure password, and you should
never use the same value for a password that you have as the username.) The port value will
be 3307 because the second master/slave [mysqd2] will be running on port 3307.

master-host = localhost
master-user = repl
master-password = repl
master-port = 3307

This is for the first master/slave.

4. For the second master/slave, you would use

master-port = 3306

. . . because the first master/slave is running on the default port of 3306.

5. Set relay logs for both servers. These logs reside in the datadir for that server. For the
first master/slave, this is /usr/local/var/data1, and for the second master/slave it is
/usr/local/mysql/var/data2.

relay-log = /usr/local/mysql/var/data1/relay.log
relay-log-info-file = /usr/local/mysql/var/data1/relay-log.info
relay-log-index = /usr/local/mysql/var/data1/relay-log.index

6. Specify schema(s) to be replicated for both servers. In this example, webapps schema and all
tables will be replicated. For both master/slave servers, the setting is:

replicate-wild-do-table = webapps.%

7. Next you want to set –auto-increment-increment and –auto-increment-offset to ensure
you have no conflicts of auto-increment values between the dual masters. Without speci-
fying this, you would have each master/slave incrementing in the same sequence, one at a
time, and starting at 1, resulting in a conflict. To avoid this, –auto-increment-increment
overrides the default increment of one greater than previous to a value that must be at min-
imum equal to the number of masters. For a dual master setup, the value of 2 must be used.
If, for instance, you have five master/slaves in a ring replication setup, this value must be at

142

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 143

Chapter 3: Advanced MySQL

least 5. This number can be set to a larger number than the total number of master/slaves to
allow for growth. The other piece of this is –auto-increment-offset, a point from which
the server starts counting. To explain this better, the first master/slave needs to start at 1,
increment by 2, so that the sequence is 1,3,5 . . . , and the second master/slave needs to start
at 2, increment by 2, so that the sequence is 2,4,6 . . . , thus preventing collisions between both
servers. The values in my.cnf/my.ini would appear as:

auto-increment-increment = 2
auto-increment-offset = 1

for the first master/slave, and

auto-increment-increment = 2
auto-increment-offset = 2

for the second master/slave.

8. You want to set up permissions for both servers to be able to connect to their respective mas-
ters. The permissions required for replication are REPLICATION SLAVE, and can be granted on
the first master/slave with the command:

radha:∼ root# mysql -u root -P 3306 –h hostname

mysql> GRANT REPLICATION SLAVE ON *.* TO ‘repl’@’localhost’ IDENTIFIED BY
‘repl’;

Then grant permissions on the second master/slave by connecting to the specific socket
(mysql –S).

radha:∼ root# mysql -u root –S 3307 -h hostname

mysql> GRANT REPLICATION SLAVE ON *.* TO ‘repl’@’localhost’ IDENTIFIED BY
‘repl’;

If the webapps schema already exists, dump that schema from the first master/slave, and
then load it on the second master/slave, thus:

radha:∼ patg$ mysqldump -u root –S /tmp/mysql.sock webapps >webapps.sql
radha:∼ patg$ mysql -u root -S /tmp/mysql2.sock webapps < webapps.sql

9. If the webapps schema doesn’t already exist, when both servers are restarted with the new
settings, creating the schema on one master/slave will result in it being created on the other
master/slave, due, of course, to replication.

10. Finally, restart both servers:

radha:∼ root# mysqld_multi stop 1,2
radha:∼ root# mysqld_multi start 1,2

143

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 144

Chapter 3: Advanced MySQL

Verify the Replication is Running
Now replication should be running! To verify that replication is running, the first thing is to run SHOW
MASTER STATUS and SHOW SLAVE STATUS on both servers:

1. Enter the first master/slave as follows:

mysql> SHOW MASTER STATUS;
+------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------+----------+--------------+------------------+
| bin.000001 | 106 | | |
+------------+----------+--------------+------------------+

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: repl
Master_Port: 3307

Connect_Retry: 60
Master_Log_File: bin.000002

Read_Master_Log_Pos: 106
Relay_Log_File: relay.000005
Relay_Log_Pos: 245

Relay_Master_Log_File: bin.000002
Slave_IO_Running: Yes

Slave_SQL_Running: Yes

There are more output parameters reported by SHOW SLAVE STATUS, but they have been omit-
ted here for brevity. The values of interest in this output are:

❑ Slave_IO_Running and Slave_SQL_Running, which are in this case both ‘‘Yes,’’ which
is an indication that replication is running.

❑ Master_Log_File, which is bin.000002 and Read_Master_Log_Pos, which is 106. This
is the master log file name and position of the binary log on the second master/slave.

❑ The binary log name and position from SHOW MASTER STATUS which is named
bin.000001, and position 106. When SHOW SLAVE STATUS is executed on the second
master/slave, Master_Log_File and Read_Master_Log_Pos should be bin.000001 and
106, respectively.

2. Enter the second master/slave as follows:

mysql> SHOW MASTER STATUS;
+------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------+----------+--------------+------------------+
| bin.000002 | 106 | | |
+------------+----------+--------------+------------------+

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

144

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 145

Chapter 3: Advanced MySQL

Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: repl
Master_Port: 3306

Connect_Retry: 60
Master_Log_File: bin.000001

Read_Master_Log_Pos: 106
Relay_Log_File: relay.000002
Relay_Log_Pos: 245

Relay_Master_Log_File: bin.000001
Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Of interest are the following:

❑ Slave_IO_Running and Slave_SQL_Running on the second master/slave both show
‘‘Yes,’’ verifying that replication is running on the second master/slave.

❑ SHOW MASTER STATUS on the second master/slave shows that the master binary log
name and position corresponds to the binary log name and position that was noted
from the first master/slave values for Master_Log_File and Read_Master_Log_Pos
from SHOW SLAVE STATUS — that is, bin.000001 and 106.

❑ The output of SHOW SLAVE STATUS on the second master/slave shows Master_Log_File
as bin.000001 and Read_Master_Log_Pos as 106 — which was the value of the binary
log as shown from the output of SHOW MASTER STATUS on the first master/slave.

The following table summarizes the correlation between log positions of the binary master log on a
master to the relay log of a slave and vice versa for both dual slave/masters.

First Master/Slave Second Master/Slave

Values from SHOW MASTER STATUS Values from SHOW SLAVE STATUS

Binary log name: bin.000001 Master_Log_File: bin.000001

Binary log position: 106 Read_Master_Log_Pos: 106

Values from SHOW SLAVE STATUS Values from SHOW MASTER STATUS

Master_Log_File: bin.000002 Binary log name: bin.000002

Master_Log_Pos: 106 Binary log position: 106

The next way of proving that replication is working is to modify a table on either server and verify that
the change occurs on the other server.

1. Enter the first master/slave. (SHOW VARIABLES is used to demonstrate the first master/slave
is being used in this client session.)

mysql> SHOW VARIABLES LIKE ‘port’;

145

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 146

Chapter 3: Advanced MySQL

+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| port | 3306 |
+---------------+-------+

mysql> SELECT * FROM t1;
+----+--------+
| id | name |
+----+--------+
1	first
2	second
3	third
4	four
+----+--------+

mysql> INSERT INTO t1 (name) VALUES (’fifth value’);

mysql> SELECT * FROM t1;
+----+-------------+
| id | name |
+----+-------------+
1	first
2	second
3	third
4	four
5	fifth value
+----+-------------+

2. Enter the second master/slave as follows:

mysql> SHOW VARIABLES LIKE ‘port’;
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| port | 3307 |
+---------------+-------+

mysql> SELECT * FROM t1;
+----+-------------+
| id | name |
+----+-------------+
1	first
2	second
3	third
4	four
5	fifth value
+----+-------------+

The values inserted on the first master/slave were replicated to the second!

3. Now insert some values from the second master/slave:

mysql> INSERT INTO t1 (name) VALUES (’sixth value’);

mysql> SELECT * FROM t1;

146

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 147

Chapter 3: Advanced MySQL

+----+-------------+
| id | name |
+----+-------------+
1	first
2	second
3	third
4	four
5	fifth value
6	sixth value
+----+-------------+

4. Now verify that these were replicated from the second master/slave to the first
master/slave:

mysql> SHOW VARIABLES LIKE ‘port’;
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| port | 3306 |
+---------------+-------+

mysql> SELECT * FROM t1;
+----+-------------+
| id | name |
+----+-------------+
1	first
2	second
3	third
4	four
5	fifth value
6	sixth value
+----+-------------+

Which it did!

Manually Setting the Master
Another demonstration worth showing is how to manually set the master. In the previous demonstration,
it wasn’t necessary to manually set the master with CHANGE MASTER, but often you will be required to run
this statement in order to connect to the master. To illustrate this, the master on the first master/slave
will be reset. This causes the master to delete all of its binary logs and start from scratch — which would
break replication on the second master/slave because it would still be pointing to the binary log file
before the reset.

mysql> RESET MASTER;

mysql> SHOW MASTER STATUS;
+------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------+----------+--------------+------------------+
| bin.000001 | 106 | | |
+------------+----------+--------------+------------------+

147

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 148

Chapter 3: Advanced MySQL

On the second master/slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State:
Master_Host: localhost
Master_User: pythian
Master_Port: 3306

Connect_Retry: 60
Master_Log_File: bin.000001

Read_Master_Log_Pos: 586

As you can see, the second master/slave is pointing to the wrong binary log position. This can be fixed
by using the CHANGE MASTER statement.

mysql> STOP SLAVE;

mysql> CHANGE MASTER TO master_user=’repl’,
master_password=’repl’, master_host=’localhost’, master_port=3306,
master_log_file=’bin.000001’, master_log_pos=106;

mysql> START SLAVE;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: repl
Master_Port: 3306

Connect_Retry: 60
Master_Log_File: bin.000001

Read_Master_Log_Pos: 106

This shows that replication has been restored.

CHANGE MASTER can be used anytime to set a slave to read from the correct master or change to a differ-
ent master for whatever reason — a failure of the current master, or even during maintenance, when a
backup master is used.

Searching Text
Searching text is one of the most common functions of a web site and a must-have for RDBMSs. Some-
times, developers will search text in the database using the LIKE operator, but this is very inefficient,
especially if there is a large data set involved. This is where Full-text search engines become a necessity.

There are two means of supporting Full-text search functionality using MySQL, that this book will cover:
Full-text indexes, which are part of the functionality of MySQL, and Sphinx Full-Text Search Engine, an
open-source project that is designed to work well with MySQL.

148

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 149

Chapter 3: Advanced MySQL

MySQL FULLTEXT Indexes
MySQL supports full-text indexes, which are b-tree indexes that are created against columns containing
text and built by indexing words found in the text fields with a pointer to the word in the actual location
where it exists, eliminating stopwords such as the, and, etc. For a complete list of default stopwords, see
http://dev.mysql.com/doc/refman/5.0/en/fulltext-stopwords.html.

When the index is used in a search, the term being searched is matched against the index. The location is
known because the index provides a pointer to the text where the term is physically located.

Creating a full-text index is as easy as creating a regular index. It can be specified when creating a table
or on an existing table:

FULLTEXT indexes are only supported with tables created using either the MyISAM or Maria storage
engines.

mysql> CREATE TABLE books_text (
-> book_id int(8) NOT NULL DEFAULT 0,
-> title varchar(64) DEFAULT ‘’,
-> content text,
-> PRIMARY KEY (book_id),
-> FULLTEXT INDEX title (title),
-> FULLTEXT INDEX content (content)) ENGINE=MyISAM;

Or, alternatively:

mysql> CREATE FULLTEXT INDEX title ON books_text (title);
mysql> CREATE FULLTEXT INDEX content ON books_text (content);

Once these indexes are created, they are ready for use.

To use full-text indexes, there is the full-text search function MATCH() ... AGAINST. Its syntax usage is:

MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier:
{

IN BOOLEAN MODE
| IN NATURAL LANGUAGE MODE
| IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
| WITH QUERY EXPANSION

}

The search modifier values can be explained as such:

❑ BOOLEAN MODE: Uses a search string that has its own syntax containing the terms to be searched
for. This syntax allows word weighting, negation, and/or, etc., omitting stopwords.

❑ NATURAL LANGUAGE MODE: Uses a string as is, without special syntax, and searches for the string
specified. Words that are present in more than 50 percent of the rows are not matched.

149

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 150

Chapter 3: Advanced MySQL

❑ NATURAL LANGUAGE MODE WITH QUERY EXPANSION: Basically the same as NATURAL LANGUAGE MODE
except the results from the search of the initial search terms aren’t returned to the user, but
are added to the original search terms, which are then searched again. These results are then
returned to the user. This is also known as ‘‘bling query expansion.’’ An example of this would
be if the initial search term was database, which returned results with MySQL and Oracle, which
then were searched to return results containing database, Oracle, or MySQL.

Using MySQL Full-text Indexes
MySQL provides a sample database that you can load into any schema on your instance of
MySQL you like. It’s called sakila, and can be found on MySQL’s developer web site at the URL
http://dev.mysql.com/doc/sakila/en/sakila.html.

This database contains a table, complete with data, called films_text, that has full-text indexes, which
will be used for demonstration of full-text indexes in this book.

The best way to see how to use FULLTEXT is to provide several examples:

❑ Natural language mode:

mysql> SELECT film_id, title FROM film_text
-> WHERE MATCH(title,description)
-> AGAINST(’Frisbee’ IN NATURAL LANGUAGE MODE) LIMIT 5;

+---------+---------------+
| film_id | title |
+---------+---------------+
308	FERRIS MOTHER
326	FLYING HOOK
585	MOB DUFFEL
714	RANDOM GO
210	DARKO DORADO
+---------+---------------+

❑ Boolean mode — matched term must have technical and writer:

mysql> SELECT film_id, title, description FROM film_text
-> WHERE MATCH(title,description)
-> AGAINST(’technical +writer’ IN BOOLEAN MODE) LIMIT 5\G

*************************** 1. row ***************************
film_id: 19
title: AMADEUS HOLY

description: A Emotional Display of a Pioneer And a Technical Writer who must
Battle a Man in A Balloon
*************************** 2. row ***************************

film_id: 43
title: ATLANTIS CAUSE

description: A Thrilling Yarn of a Feminist And a Hunter who must Fight a
Technical Writer in A Shark Tank
*************************** 3. row ***************************

film_id: 44
title: ATTACKS HATE

description: A Fast-Paced Panorama of a Technical Writer And a Mad Scientist
who must Find a Feminist in An Abandoned Mine Shaft

150

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 151

Chapter 3: Advanced MySQL

*************************** 4. row ***************************
film_id: 67

title: BERETS AGENT
description: A Taut Saga of a Crocodile And a Boy who must Overcome a Technical
Writer in Ancient China
*************************** 5. row ***************************

film_id: 86
title: BOOGIE AMELIE

description: A Lackluster Character Study of a Husband And a Sumo Wrestler
who must Succumb a Technical Writer to The Gulf of Mexico

Boolean mode — title or description must contain the term technical but not writer:

mysql> SELECT film_id, title, description FROM film_text
-> WHERE MATCH(title,description)

-> -> AGAINST(’technical -writer’ IN BOOLEAN MODE) LIMIT 5\G
Empty set (0.00 sec)

Boolean mode — title or description must contain the exact phrase Fight a Pastry Chef:

mysql> SELECT film_id, title, description FROM film_text
-> WHERE MATCH(title,description)
-> AGAINST(’"Fight a Pastry Chef"’ IN BOOLEAN MODE) LIMIT 5\G

*************************** 1. row ***************************
film_id: 11

title: ALAMO VIDEOTAPE
description: A Boring Epistle of a Butler And a Cat who must Fight a Pastry Chef
in A MySQL Convention

Full-text Index Issues
There are a number of issues you should be aware of when using full-text indexes. These have primarily
to do with performance. Full-text indexes are very easy to use, and are part of MySQL functionality, but
they can also affect a table’s performance.

FULLTEXT indexes can only be used with tables created using the MyISAM storage engine. This is fine if
you are using mostly MyISAM or if you have no problem with multiple storage engine types used for
your database. However, if you want to use InnoDB as the sole storage engine for all tables in a schema
or an entire database, using a FULLTEXT index will prevent you from doing so on the table or tables on
which you want to have that index. For some implementations, the very table that contains text you want
to search is large and you might actually want the benefits that InnoDB provides, particularly with regard
to recovery time in case of a crash. Repairing MyISAM tables can take a long time on large tables that
have been found to be corrupt: Phones will be ringing and bosses will be unhappy while the table is out
of use during table repair! Given this, you will be faced with the choice either to use FULLTEXT indexes
and not to use InnoDB, or vice versa for the table containing the text.

FULLTEXT indexes are updateable indexes. When a new record is inserted, updated, or deleted from a
table that is using FULLTEXT, the index must be modified each time. This can slow down performance
to queries against this table — especially the larger the table gets — both in terms of the time it takes to
update the index, as well as the fact that the table is locked for each modification, thus preventing other
modifications from occurring.

151

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 152

Chapter 3: Advanced MySQL

FULLTEXT indexes do not work well with ideographic languages (such as Chinese, Japanese, Korean, etc.)
because these languages do not have word delimiters, making it impossible to determine where words
begin and end.

Sphinx Full-Text Search Engine
Sphinx (an acronym for SQL Phrase Index) is a full-text search engine, distributed under GPL version 2,
developed by Andrew Aksyonoff. It closely integrates with MySQL as well as PostgreSQL.

Sphinx is a standalone search engine that provides fast, efficient, and relevant searching. It uses as data
sources SQL databases (MySQL, PostgreSQL) or XML pipe. Included with it are a number of utilities and
programs:

❑ indexer: The program that builds indexes using a data source such as MySQL.

❑ search: A utility program that searches an index directly, used for testing searches.

❑ searchd: The daemon that serves out search functionality, handling inputs or search requests,
searching indexes, and returning results of searches.

Sphinx has its own Sphinx API which is a set of libraries for various programming languages such as
Perl, PHP, Python, Java and Ruby. Also, the Sphinx distribution contains the Sphinx Storage Engine,
which can be used internally with MySQL to provide even further integration with MySQL.

Unlike MySQL FULLTEXT indexes, the steps to retrieve data from the database after using the Sphinx
full-text index are a somewhat manual process. With Sphinx, you obtain the ID of the document upon
performing a search, which corresponds to a row in the database, which you then use to retrieve the data
from the database.

Another difference between Sphinx and MySQL FULLTEXT indexes is that Sphinx indexes cannot be
updated. This at first sounds like a show stopper, but the design is somewhat intentional. Sphinx’s
indexes can be very quickly rebuilt. With this in mind, the way to make up for Sphinx indexes not being
updateable is to use a distributed index (explained later), which is a networked virtual index to under-
lying indexes. You would have one main, large index that you build once, and a smaller delta index that
comprises recent changes and that you rebuild regularly. The delta index then is merged into the main
index on a regular basis (say nightly). Both indexes are searchable as one index using the distributed
index. So, in essence, Sphinx is updateable!

Sphinx Configuration and Installation
Installing Sphinx is a very straightforward task. The steps are as follows:

1. Create a sphinx user and group on the host:

group add sphinx

useradd -d /usr/local/sphinx -g sphinx -s /bin/bash -m sphinx

2. Download the latest Sphinx source code from the Sphinx web site
(http://sphinxsearch.com/downloads.html) and untar/gzip the downloaded file
to the directory of choice for building software.

152

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 153

Chapter 3: Advanced MySQL

shell> wget http://sphinxsearch.com/downloads/sphinx-0.9.8.tar.gz
shell> tar xvzf sphinx-0.9.8.tar.gz

3. Change into the newly created sphinx-version directory and run the configure script, spec-
ifying the install prefix as the home directory of the sphinx user, as well as –enable-id64.
–enable-id64 makes it work with 64-bit indexes (BIGINT UNSIGNED) in your data source.

shell> patg$ cd sphinx-0.9.8
shell>./configure --prefix=/usr/local/sphinx --enable-id-64

4. Compile and install Sphinx:

radha:sphinx-0.9.8 patg$ make

And if there are no errors during compile:

radha:sphinx-0.9.8 patg$ sudo make install
radha:sphinx-0.9.8 patg$ sudo chown -R sphinx /usr/local/sphinx

5. Set up the sphinx.conf configuration file. This requires that you sudo to the sphinx user,
which will place you in the sphinx user’s home directory, /usr/local/sphinx, where the
Sphinx was installed. In the sphinx user’s home directory, there is a subdirectory etc/, con-
taining several configuration files. A copy of the file sphinx.conf.dist will be used as a start-
ing point in this book, copy sphinx.conf.dist to sphinx.conf:

radha:sphinx-0.9.8 patg$ sudo su – sphinx

radha:sphinx sphinx$ ls etc
example.sql sphinx-min.conf.dist sphinx.conf.dist
radha:sphinx sphinx$ cp etc/sphinx.conf.dist etc/sphinx.conf

With the editor of choice, edit etc/sphinx.conf. This requires some explaining of the sphinx.conf con-
figuration file.

Sphinx.conf Settings
The sphinx configuration file contains several sections that are discussed in the following sections.

Sphinx Data Sources
The sphinx configuration file contains various data sources. These sources are defined as:

source src1 {
sql_host = localhost
sql_user = test
sql_pass =
sql_db = test
sql_port = 3306
sql_query = select id, content FROM foo_text;

... numerous other parameters, options ...

}

153

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 154

Chapter 3: Advanced MySQL

They have an inheritance scheme. For instance, in the example above, src1 is defined and has its own
options. You can have an inherited data source from src1, shown as:

source src1_delta : src1 {
... inherits options/paramters from parent unless otherwise specified ...

sql_query = select id, content FROM foo_text WHERE id > (SELECT MAX(id) FROM
index_counter WHERE index_name = ‘src1’);

}

The derived data source inherits all the parameters and options of its parent, unless otherwise overrid-
den. In this example, the only thing overridden was the range of the source query (this delta index will
be explained later).

Sphinx Indexes
The sphinx configuration file contains various indexes. Like sources, these also allow for inheritance.
They are defined as such:

index main_idx {
... numerous parameters, options ...

source = src1
path = /usr/local/sphinx/var/data/main_idx

}

index main_idx_stemmed : main_idx {
...(inherits everything from parent) ...
morphology = stem_en
}

index main_idx_delta : main_idx {
source = src1_delta
}

In this example, three indexes are defined, two inheriting from main_idx. One, main_idx_stemmed,
only overrides the morphology value, causing the index to include word stemming. The other,
main_idx_delta, only overrides the data source, using src1_delta for the source that it is built from.

Also, there is what is known as a distributed index. A distributed index is a virtual index that includes one
or more actual indexes, either locally or residing on remote Sphinx servers, and interfaces with searchd,
the daemon that allows for networked index querying. A distributed index gives the functionality of an
index clustering. Figure 3-8 shows how a distributed index works.

In Figure 3-8, each server has three indexes — idx_part1, idx_part2, and idx_delta. Each server also
has a distributed index. For instance ServerA has defined idx_dist, which includes its local indexes
idx_part1, idx_part2, and idx_delta, as well as the remote indexes idx_part1, idx_part2 and
idx_delta on ServerB. This gives the ability to search all six indexes on each server from one index!

154

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 155

Chapter 3: Advanced MySQL

This is a great way of having multiple, smaller, easier-to-manage indexes and still be able to search all of
them as one index.

idx_A

idx_B

idx_dist

Server A

searchd

idx_C

idx_D

idx_dist

Server B

searchd

Figure 3-8

A distributed index is defined as such:

index dist_idx {
type = distributed
agent = localhost:3312:idx_part1
agent = localhost:3312:idx_part2
agent = localhost:3312:idx_delta
agent = ServerA:3312:idx_part1
agent = ServerA:3312:idx_part2
agent = ServerA:3312:idx_delta
agent = ServerB:3312:idx_part1
agent = ServerB:3312:idx_part2
agent = ServerB:3312:idx_delta
}

Sphinx Indexer Section
The next section in the sphinx.conf is the indexer section. The indexer, as mentioned before, is the
program that connects to the data source and then builds the index as specified in the sphinx.conf. Its
section appears as such:

indexer {
maximum IO calls per second (for I/O throttling)
optional, default is 0 (unlimited)
max_iops = 40
max_iosize = <according to your machine, in bytes>
}

155

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 156

Chapter 3: Advanced MySQL

The searchd Section
searchd is the daemon that accepts search terms, searches the indexes, and returns results:

searchd {
... numerous options/parameters ...
}

To set up Sphinx with the sakila schema, as shown in the previous section using FULLTEXT indexes, start
by defining the main data source:

source sakila_main
{

sql_host = localhost
sql_user = webuser
sql_pass = mypass
sql_db = sakila
sql_port = 3306 # optional, default is 3306
sql_sock = /tmp/mysql.sock
sql_query = SELECT film_id, title, description FROM film_text
sql_query_info = SELECT * FROM film_text WHERE film_id=$id

}

The following options are database connection options as well as data source options:

Option Description

sql_host The MySQL host that Sphinx connects to; in this example, this is running on
localhost.

sql_user The MySQL user that Sphinx connects as; in this example, this is connecting as
the webuser.

sql_pass This is the MySQL password.

sql_db The schema that Sphinx will connect to. In this example this is connecting to the
sakila schema.

sql_port The MySQL port; default is 3306.

sql_sock The MySQL socket file.

sql_query The database query that the indexer uses to build the index. The table used for
this data source is film_text, as was used in the previous section showing
FULLTEXT indexes. The primary key (or a unique index) must be the first column
specified. This is because the index has to have a unique identifier for each
‘‘document’’ (meaning row for the database query). Also, you obviously need
your text searches to have the same primary key ID as the row from the
database, which you use to retrieve data from the database after a Sphinx index
search. After the first primary key column, other columns can follow. Date and
text columns (varchar, char, text) can be indexed.

sql_query_info The query the utility search uses to obtain the data from the database after
searching the index.

156

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 157

Chapter 3: Advanced MySQL

Defining the Main Index
Next, the main index is defined, film_main.

1. Because the film_text table has a default character set of UTF-8, define charset_type as
utf-8:

index film_main
{

source = sakila_main
path = /usr/local/sphinx/var/data/film_main
charset_type = utf-8

}

2. For the sake of demonstration, a distributed index is defined, using only the local film_main
index.

index sakila_dist
{

type = distributed
local = film_main

}

3. Set some basic options for the indexer. mem_limit is set to 32 megabytes for this installation.
This is the maximum amount of memory that the indexer is allowed to use.

indexer
{

mem_limit = 32M
}

4. searchd options are also defined:

❑ address: 127.0.0.1, localhost address will be used .

❑ port: searchd port 3312 (default port for searchd).

❑ searchd_log: The log that shows requests to the local instance of searchd.

❑ query_log: Shows what queries were run against indexes.

❑ max_children: The maximum number of search process that can run.

❑ pid_file: The pid file used by searchd.

❑ max_matches: The maximum number of matches returned (1,000).

❑ seamless_rotate: Set this to 1. This means searchd can be restarted without any effect
on applications using searchd.

searchd
{

address = 127.0.0.1
port = 3312
log = /usr/local/sphinx/var/log/searchd.log

157

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 158

Chapter 3: Advanced MySQL

query_log = /usr/local/sphinx/var/log/query.log
read_timeout = 5
max_children = 30
pid_file = /usr/local/sphinx/var/log/searchd.pid
max_matches = 1000
seamless_rotate = 1

}

Starting Sphinx
Now that the sphinx.conf is set up, the indexer can be run:

radha:sphinx sphinx$ indexer --all
Sphinx 0.9.8-release (r1371)
Copyright (c) 2001-2008, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
indexing index ‘film_main’...
collected 1000 docs, 0.1 MB
sorted 0.0 Mhits, 100.0% done
total 1000 docs, 108077 bytes
total 0.105 sec, 1029893.31 bytes/sec, 9529.25 docs/sec
distributed index ‘sakila_dist’ can not be directly indexed; skipping.

The last line simply means the specified distributed index cannot be indexed as a local file.

First, you want to start searchd:

radha:sphinx sphinx$ bin/searchd
Sphinx 0.9.8-release (r1371)
Copyright (c) 2001-2008, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...

Now the index is ready to be searched! Searches can be performed using the search utility.

Searching Sphinx
Sphinx has its own search language, similar to but different from MySQL FULLTEXT indexes. It also has
different search modes, which are specified in the program and which you can set using the Sphinx API.
The search modes are:

❑ SPH_MATCH_ALL: Matches all query words, default.

❑ SPH_MATCH_ANY: Matches any of the query words.

❑ SPH_MATCH_PHRASE: Matches query as a phrase, requiring perfect match.

❑ SPH_MATCH_BOOLEAN: Matches query as a Boolean expression.

❑ SPH_MATCH_EXTENDED: Matches query as an expression in Sphinx internal query language.

158

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 159

Chapter 3: Advanced MySQL

Boolean Query Syntax
The Boolean query syntax can be explained by the following:

❑ AND: Both terms must be found, anywhere in the source. It can either be specified with a space
(implicit AND), or an ampersand (&). For example, both the terms technical and writer.

technical writer
technical & writer

❑ OR: One or both terms. Either technical or writer, or both.

technical | writer

❑ NOT: Negation of the term. In this example you can have technical, but not writer.

technical -writer

❑ Grouping, so you can have multiple: In this example you would specify both technical and writer
or database and administrator.

(technical writer) | (database administrator)

❑ Extended Query Syntax: Allows you to have proximity searching as well as specify specific fields
to search against.

❑ AND search: Searches for technical and writer against only the title column.

@title technical writer

❑ AND search: This searches against both title and description AND search bhagavad against only the
title field.

@title @description (technical writer) & @title (bhagavad)

❑ EXACT phrase search

"technical writer"

❑ Proximity search: Allows for no more than five words in between the two terms. This means that
the phrase technical writer and the phrase technical expertise, database administration, novel writer
would both be found.

"technical writer"∼5

The Utility Search
The utility search is a useful tool for debugging, whether your index is working or not — specifically if
you are trying to determine if there’s a problem with Sphinx and how you’ve generated an index, or if

159

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 160

Chapter 3: Advanced MySQL

there’s a problem with your application. It bypasses your application as well as searchd and searches the
index directly.

Search cannot search distributed indexes.

The utility search has the following options:

radha:sphinx sphinx$ bin/search
Sphinx 0.9.8-release (r1371)
Copyright (c) 2001-2008, Andrew Aksyonoff

Usage: search [OPTIONS] <word1 [word2 [word3 [...]]]>

Options are:
-c, --config <file> use given config file instead of defaults
-i, --index <index> search given index only (default: all indexes)
-a, --any match any query word (default: match all words)
-b, --boolean match in boolean mode
-p, --phrase match exact phrase
-e, --extended match in extended mode
-f, --filter <attr> <v> only match if attribute attr value is v
-s, --sortby <CLAUSE> sort matches by ‘CLAUSE’ in sort_extended mode
-S, --sortexpr <EXPR> sort matches by ‘EXPR’ DESC in sort_expr mode
-o, --offset <offset> print matches starting from this offset (default: 0)
-l, --limit <count> print this many matches (default: 20)
-q, --noinfo don’t print document info from SQL database
-g, --group <attr> group by attribute named attr
-gs,--groupsort <expr> sort groups by <expr>
--sort=date sort by date, descending
--rsort=date sort by date, ascending
--sort=ts sort by time segments
--stdin read query from stdin

For instance, to search for the terms technical and writer, limiting your results to only three, search is run
with the following options:

radha:sphinx sphinx$./bin/search -i film_main -e ‘technical writer’ -l 3
Sphinx 0.9.8-release (r1371)
Copyright (c) 2001-2008, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
index ‘film_main’: query ‘technical writer ‘: returned 76 matches of 76
total in 0.000 sec

displaying matches:
1. document=19, weight=2582
film_id=19
title=AMADEUS HOLY
description=A Emotional Display of a Pioneer And a Technical Writer who must Battle
a Man in A Baloon

2. document=43, weight=2582
film_id=43
title=ATLANTIS CAUSE
description=A Thrilling Yarn of a Feminist And a Hunter who must Fight a Technical
Writer in A Shark Tank

160

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 161

Chapter 3: Advanced MySQL

3. document=44, weight=2582
film_id=44
title=ATTACKS HATE
description=A Fast-Paced Panorama of a Technical Writer And a Mad Scientist who
must Find a Feminist in An Abandoned Mine Shaft

words:
1. ‘technical’: 76 documents, 76 hits
2. ‘writer’: 76 documents, 76 hits

As you can see, Sphinx not only finds results, but also gives you information about the search, such as
the weight of what was found, as well as a summary for all results found.

Or, say you want to search only the title column for the exact phrase attacks hate, with no limit on the
results.

radha:sphinx sphinx$./bin/search -i film_main -e ‘@title("attacks hate")’
Sphinx 0.9.8-release (r1371)
Copyright (c) 2001-2008, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
index ‘film_main’: query ‘@title("attacks hate") ‘: returned 1 matches of 1 total in
0.057 sec

displaying matches:
1. document=44, weight=2697
film_id=44
title=ATTACKS HATE
description=A Fast-Paced Panorama of a Technical Writer And a Mad Scientist who
must Find a Feminist in An Abandoned Mine Shaft

words:
1. ‘attacks’: 3 documents, 3 hits
2. ‘hate’: 2 documents, 2 hits

The utility search handles taking the results from a search (the film_id values) and retrieving the results
from film_text using the query that was specified in sphinx.conf by the parameter sql_query_info,
which is located in the sakila_main data source section.

When to Use Sphinx
In applications you write yourself, you have to implement this functionality. Namely, your application
will perform a search against Sphinx to whatever index you choose, obtaining the unique IDs of terms
found in your search, and then querying MySQL against the table of the data source with those IDs to
obtain the results from the database.

Sphinx also includes in its API code for generating excerpts — text with the original terms searched for
enclosed within HTML bold tags (..).

The other thing that can be done if you use Sphinx for full-text searching is the following:

mysql> ALTER TABLE film_text DROP INDEX idx_title_description;

mysql> ALTER TABLE film_text ENGINE=InnoDB;

161

Galbraith c03.tex V3 - 06/03/2009 3:37pm Page 162

Chapter 3: Advanced MySQL

You can now use InnoDB! Because Sphinx is an external index to MySQL, there is no longer the need for
the FULLTEXT index that was created on film_text, so the MyISAM-only restriction no longer applies.
You can use whatever storage engine you like with Sphinx. The only requirement is that Sphinx can
select data out of that table, as defined in the data sources section of sphinx.conf.

Summary
This chapter introduced you to more advanced MySQL features such as triggers, stored procedures and
functions, user defined functions (UDFs), storage engines, replication and full-text search.

❑ You learned how to use user-defined variables to be able to store values within a client session.
You also were shown how you can use triggers, stored procedures and functions, as well as
user defined functions (UDFs) to push some of your application’s business logic down to the
database. You saw some useful and practical examples of each that gave you a hint of just how
much functionality you can implement within MySQL that you might otherwise have to imple-
ment in your application code.

❑ You saw a complete demonstration of how to write a simple user-defined function (UDF) that
can be used to fetch remote web pages using the libcurl library, a multiprotocol file transfer
library.

❑ You then learned about the various MySQL storage engines that are available, and gained some
insight into how each storage engine works, such as how you can use transactions with the
InnoDB storage engine as well as how to set up and use the Federated storage engine to query a
remote database table as if it were a local table.

❑ Next, the chapter covered replication. You saw how replication works, learned about various
types of replications schemes that can be implemented with MySQL, and then you studied a
demonstration of how you can set up multiple-master replication.

❑ The last section in this chapter dealt with Full-text searching using both MySQL’s built-in Full-
text search functionality, and Sphinx, an external search engine that integrates well with MySQL
and offers greatly improved performance over the built-in MySQL Full-text search functionality.

162

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 163

Perl Primer

This book assumes the reader is versed in Perl programming. What this book does not assume is
that every reader will have written object-oriented Perl, or have used Perl to connect with MySQL,
or even necessarily have written web applications in Perl. This book will attempt to iteratively
introduce you to concepts you may or may not know about, but as a whole, provide knowledge to
be able to build complete web applications.

This particular chapter will cover the first of those concepts — object-oriented Perl, as well as other
Perl tricks, snippets, and other tools.

What Exactly Is Perl?
This question may seem more appropriate for a beginner’s book on Perl programming. It may
be. But the author of this book has had various revelations about writing Perl code throughout
the years, especially after spending time writing software in other languages such as C and C++,
and then returning to writing Perl programs. It’s worth quantifying exactly what Perl is because
different perspectives are always worth considering — giving a new way of thinking of things that
might help you to understand Perl even better. At least you will have another description to give
your mother if she ever asks.

Perl consists of program, perl, written in C, that compiles Perl code into an internal representation
that it then interprets and executes, along with numerous libraries written in C and Perl.

A Brief History of Perl
Perl was first developed in 1987 by Larry Wall, as a general-purpose scripting language
designed to make report writing easier. Perl as a word doesn’t really stand for any-
thing in particular. Its first name, given by Larry Wall, was ‘‘Pearl’’ but he renamed
it Perl upon discovering there was an already existing language called PEARL. There

Continued

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 164

Chapter 4: Perl Primer

is one acronym, given after the naming of Perl — Practical Extraction and Reporting
Language, which you will sometimes see in various manuals, but this is not an official
name. Larry Wall was trained as a linguist, which is one of the reasons Perl is so easy to
read and has an intuitive quality about it. At least two other ‘‘backronyms’’ exist, one of
which was coined by Larry Wall himself after dropping the a from Pearl, and it reflects
Larry Wall’s sense of humor: Pathologically Eclectic Rubbish Lister.

Perl quickly developed into a programming language used in just about every type
of development sphere: web applications, GUI development, network programming,
database programming, etc. It’s known as the ‘‘swiss army knife’’ or ‘‘duct tape’’ of
programming languages, both of which are good analogies that attest to the usefulness
of the language.

One of Perl’s greatest strengths is its ability to process text. Other strengths include ease of use and the
ability to quickly develop applications without the overhead of other languages. Other main characteris-
tics of Perl are listed below (note there are many other aspects of Perl):

❑ It is an interpreted language.

❑ It supports procedural, functional, and object-orientation programming.

❑ Built-in regular expressions make it extremely suitable for web application development because
web application programming involves processing and parsing data. With Perl, this is trivial.

❑ Processing strings in other languages isn’t as elegant as it is with Perl since regular expressions
are part of Perl.

❑ It has its own garbage collection — you don’t have to explicitly allocate and free required mem-
ory, a common source of errors in programming languages without garbage collection.

❑ It possesses C/shell-like syntax.

❑ It’s a very loosely typed language. Variable types (scalars, arrays, hashes) are indicated by the
type of sigil in front of the variable name.

❑ It supports scoping — lexical, global, dynamic (see: http://www.perlmonks.org/?node_
id=66677).

❑ It has a C API that allows for writing Perl programs that can internally call C programs as well
as create Perl packages that interact at a lower level with a library such as a database driver.

❑ It has an extensive library of Perl packages, CPAN (Comprehensive Archive Network), that
provides reusable functionality for an endless number of features, needs, tasks, including the
kitchen sink!

One thing that the author never thought about but heard recently from another developer is that Perl’s
variables are all objects. This is an interesting way to think of it, but consider that variables, under the
hood, as implemented by the Perl API, are C data structures. Perl takes care of the ugly details of handling
these structures, such as maintaining reference counts (for garbage collection), changing the type of a
variable from, for instance, a scalar (single-value variable) integer variable to a string variable without
missing a heartbeat. Operations like this, which in Perl are trivial, would be much more difficult to
implement in a language such as C — thus the term object seems appropriate.

164

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 165

Chapter 4: Perl Primer

One last thought. In the course of the author’s career in software development, he has heard statements
such as Perl ‘‘is a good prototyping language,’’ or ‘‘is good for modeling, but not for a serious appli-
cation.’’ These statements are nonsense. Often these opinions came from developers who were in the
process of a major rewrite/architectural switch to another not-to-be-named-OO-language of a well-
known, perfectly working, major web site, all previously implemented; the reasoning was that the new
architecture and language would require fewer resources to manage as well as fewer developers to
develop new applications. In reality, millions of dollars were spent to develop a system that, at best,
did only what the previous system did. Moreover, it ended up requiring even more programmers than
before, many of whom came from the company that performed the architectural switch!

If anyone should ever tell you that same line about developing with Perl, just refer them to a list of the
many major web sites, such as Slashdot and Livejournal, which are using Perl as the core application
language. Perl is perfectly suited for major application development. Yes, Perl is very simple to use and
can sometimes allow for bad code to be written, perhaps more so than other languages. Perl may require
more resources to run a web site with than some other languages. But here are several facts in favor
of Perl:

1. Developing Perl-based web applications can be done quickly.

2. There are thousands of Perl modules on CPAN with functionality for numerous applica-
tions.

3. Perl is flexible, giving you the ability to solve a particular problem in any number of ways.

4. Hardware costs, in terms of CPU power, aren’t what they used to be, so Perl is quite suitable
for major web application development!

Perl Primer
This book is targeted for the intermediate programmer. Sometimes intermediate programmers, and even
expert programmers, might find that they have been busy with so many other projects or have written so
much code in other languages (ahem) that they have forgotten little tricks they haven’t used in a while,
or possibly even basic concepts. A brief refresher covering some basics can certainly help and is worth
covering. That’s what the rest of this chapter is for, and it will provide an emphasis on code snippets that
are at the core of working with data from a database, or within a mod_perl-based web application.

Perl Data Types
The basic data types of Perl are scalars, arrays, hashes, file handles, type globs, and subroutines.

Scalars
Scalars are single values of string, integer, character, or reference:

$ival= 12; # number scalar

$fval= 3.14 # float/double scalar

$scinum= 1.82e45

165

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 166

Chapter 4: Perl Primer

$dval= 0xDEADF007 # hex number scalar

$oval= 0457 # octal number scalar

$binnum= 0b0101; # binary number scalar

$readable_num= 10_000; # readable, 10000 int

$myval= "This is a test, it’s the first value"; # string scalar, double
quoted

$anotherval= ‘this one is single quoted, but works just the same...
It\’s "special"’;

$rval= \$myval; # reference scalar to $myval, explained in next section!

$long_string= <<EOT;
This string
can be on multiple
lines
EOT
the EOT above terminates the string, must be at very beginning of line
after
last part of string

There are several instances when you will have the need to use long, long unsigned (bigint unsigned
int in MySQL) integers, particularly if you are creating unique numeric indexes based on the md5 of a
URL. There is a module just for this. The Math::BigInt package provides the means to create a long, long
unsigned (sort of!) scalar value.

my $bignum= Math::BigInt->new("0x18446653155892999077"); # instantiate
$bignum= "$bignum"; # cast as a string from an object.

These are five different scalars, each a different data type. In some other languages, each type would
have to have been specified, but in Perl, any type can be assigned. Also note that with Perl, a string can
be enclosed using either single or double quotation marks. The difference between single and double
quotation marks are most importantly that single-quote strings are not interpolated, whereas double-
quote strings are.

So if you have a variable in a string, it will not be evaluated if the string is enclosed within single quo-
tation marks. A good illustration is shown below. Assume the value for the variable $title is ‘‘Perl is
cool!’’

$html= "<title>$title</title>"

would display as:

<title>Perl is cool!</title>

but:

$html= ‘<title>$title</title>’;

166

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 167

Chapter 4: Perl Primer

would display as:

<title>$title</title>

The other aspect of quoting can be best explained in the next example:

$html= ‘’;
$html= "’;

These are both the same, and the reverse is true:

$blurb= "it’s a boy!";
$blurb=’it\’s a boy!";

It depends on whether or not the text you have to inevitably print contains a variable. If you have a
bunch of text you need to print out that doesn’t contain any variables, use the single quotation marks for
efficiency because single-quote strings are not interpolated. Or, if you have a bunch of text — especially
HTML that contains double quotation marks within the string — using single quotes can provide clarity.
Although you should make sure you don’t have variables in whatever you have within single quotes.

You can also use the functions q() and qq(), which work like using single and double quotes,
respectively, and allow you to have single or double quotation marks in the string without having to
escape them.

works like using single quotes
my $text= q(<input type="text" name="address">);

works like using double quotes
my $text= qq(<input type="text" name="address" value="form->{address}">);

Arrays
Arrays are a type of variable that holds one or more ordered scalars that are accessed by the value of the
position within the list:

array with constants and variables
@myarray= (1, 2, 3, ‘string 1’, "string 2", $myval, $ival);

array reference, same members as above
$aref= [1, 2, 3, ‘string1’, "string 2", $myval, $ival];

Hashes
Hashes are unordered associative key/value arrays with strings being the key and value being any other
data type:

%myhash = (# hash
’key1’ => ‘First key value’, # key1, quoted (optional), string value
’key2’ => "second key value", # key2, double quoted, string value
key3 => 2,
key4 => $myval

);

167

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 168

Chapter 4: Perl Primer

File Handles
File handles are written in uppercase letters, per Perl best practices, with no sigil in front. This example
is the old-school way:

open(DATA,‘<’,‘mydata.txt’) or die "unable to open mydat.txt$!";my $line =
<DATA>close(DATA) or die "unable to close mydat.txt$!";

Though the preferred method nowadays (Perl 5.6) is to use lexical file handles:

open($DATA,‘<mydata.txt’) or die "unable to open mydat.txt$!";my $line =
<$DATA>close($DATA) or die "unable to close mydat.txt$!";

Type Globs
With an asterisk sigil in front, type globs are variables that point to every type of variable in the sym-
bol table of the same name (more about the symbol table later). Back in the old days, prior to real Perl
references, type globs were how variables were passed to subroutines by reference. The following line
will make $me an alias for $you, @me an alias for @you, %me an alias for %you, and so on and so forth for all
data types.

*me = *you;

Subroutines
Subroutines can be called with or without the sigil ‘&’ in front (it is optional in modern Perl), and the
parentheses are optional if you predeclare the subroutine. You must use the sigil ‘&’ if you are naming
the subroutine, as in the case when you pass a subroutine as an argument to another subroutine, or if you
are setting a reference to that subroutine.

sub my_sub {
my ($msg)= @_;
print "this is my own subroutine,!\n";
print "MSG: $msg\n" if $msg;

}
&my_sub(); #called with option sigil in front
my_sub(’My own message’); # called with no sigil, and an argument

Variable Usage
Now that you’ve briefly examined each Perl data type, the following will give a brief refresher on how
each data type is used. The next section will also cover a number of common Perl functions and demon-
strate control structures — with the angle tailored for database and web development fundamentals.
You’ll also see examples of core tasks that a developer working with data from a database or from parsed
form inputs to a mod_perl handler will encounter.

168

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 169

Chapter 4: Perl Primer

References
A reference in Perl is a scalar that refers to the data stored in another variable of any type, as well as
subroutines and methods. This gives you the ability to pass by reference a large variable to a function. Just
as in other programming languages, the same is true in Perl — it is more efficient to pass by reference
than by value. This is for the simple reason that the reference to the data of the variable is passed to
the function, which gives the variable access to that function, versus passing the whole variable to the
function, which results in a copy of the entire variable being created. This also makes it possible for a
function to modify a large variable without having to return that variable at the end of the function, since
the function had access to the actual data of that variable.

To reference a variable, a backslash is used:

\$somescal # scalar reference to $somescal
\@somearr # scalar reference to @somearr
...

Here, you see that a scalar $somescal and an array @somearray are referenced with the backslash.

You can also reference a subroutine:

$sub_ref= \&my_function;

In this case, the scalar $sub_ref is set as a reference to the subroutine my_function() and is referenced
with the backslash.

To define a reference to a particular type, you would use the following:

$scalar_ref = \"scalar value"; # scalar reference

$aref = [1, 2, 3] # array reference

$href = { ‘key1’ => ‘val1’, ‘key2’ => ‘val2’}; # hash reference

$anon_fref= sub { ...}; # subroutine reference (anonymous subroutine)

In these code snippets, first the scalar reference $scalar_ref is set to be a reference to the string "scalar
value". Next, the variable $aref is set to be an array reference to the anonymous array reference contain-
ing [1,2,3]. The variable $href is set to refer to an anonymous hash reference.

Knowing how to dereference a reference is key to successfully using references in Perl. With Perl, there
are always a number of ways to do things. Showing examples in code is the best way to explain.

Scalar References
Scalar references can be set to refer either to an existing scalar or a value, as shown in the snippet that
follows:

my $name= "Test user"; # regular scalar
my $rname= \$name; # scalar reference to another scalar

169

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 170

Chapter 4: Perl Primer

Scalar references are dereferenced with two sigils ($$), which is shown in the subroutine that follows.
This code shows how to use the passed scalar reference.

sub my_func {
my ($sref) = @_;

for both calls shown above, this prints:
"Scalar ref value is: Test user"
print "Scalar ref value is: $$sref\n";

Append a string to the end
$$sref .= ‘ my_func called’;

Location of data was passed and is now already changed,
no need to return it, but best practice to do so
return;

}

An example of using my_func() is shown in the two lines below. The first example, $name is passed by
reference; in the second, the variable $rname, a reference to $name, is passed as is.

my_func(\$name); # passing a scalar as a reference
$name now equals "Test user my_func called"

my_func($rname); # $rname is already a reference, no need to reference in
passing
$name now equals "Test user my_func called my_func called"

Array References
Array references can refer either an actual array or an anonymous array:

use Data::Dumper;

my @vals= (’one’, ‘two’, ‘three’); # regular array
my $valref= [’four’, ‘five’, ‘six’]; # array reference, to anonymous array
my $valsref= \@vals; # also an array reference

Arrays are dereferenced in two ways — either using the -> or double sigils ($$):

$valref->[1] # this is "five", using ->
$$valref[1] # this is also five, using double sigils

If you wish to dereference the scalar so the whole array is available, you would use this:

print Dumper @$valref

for (@$valref) { ... }

Sometimes, for clarity, a more readable form involves using the Data::Dumper module, which is an
extremely useful module for printing (stringifying) Perl data structures.

print Dumper @{$valref}

170

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 171

Chapter 4: Perl Primer

Hash References
Hash references, like other references, can refer to an already defined hash variable or an anonymous
hash:

my %thash = (’key1’ => ‘value1’, ‘key2’ => ‘value2’); # hash variable
my $thash_ref = \$thash; # reference to hash

my $href = { ‘key3’ => ‘value3’, ‘key4’ => ‘value4’}; # reference to
anonymous hash

Dereferencing hash references, like array references, can be done in two ways — using the -> or double
sigil $$:

$href->{key1} # this is "value1"
$$href{key1} # this is also "value1"

If you are dereferencing the whole hash reference, use this:

print Dumper %$href; # dumps the whole hash
for (keys %{$href}) { ... } # for more clarity, enclose in curly brackets

Reducing Arguments Passed with Hash References
Another benefit to using hash references is the ability to pass multiple, arbitrary arguments to a subrou-
tine or method. Without hash references, you might have:

insertData(’mytable’, $id, $name, $age);

sub insertData {
my ($table, $id, $name, $age)= @_;

....
}

With hash references, you don’t have to be concerned with the order of arguments in the case where
you pass multiple values. The function definition is simpler, too, as in the example that follows: Only
two scalars are read in, with the second scalar being a hash reference as opposed to a bunch of variables.
Another side benefit is the abstraction that it provides. If the subroutine itself is changed, there’s less of a
chance of breaking the code that uses it.

insertData(’mytable’, { id => 1, name => $name, age => $age});

sub insertData {
my ($table, $dataref) = @_;

...
}

Subroutine References
Subroutine references can refer to an already defined subroutine, as well as to an anonymous subroutine:

sub print_msg {
my ($msg)= @_;

print "MSG: $msg\n";

171

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 172

Chapter 4: Perl Primer

return();
}
my $fref= \&print_msg;
my $afref= sub { my ($msg)= @_; print "ANON SUB MSG: $msg\n"; return() }

To reference a subroutine reference, use this:

$fref->("Hello World! Aham Bramhasmi!");
$aref->("Patram Pushpam Toyam Phalam Yo Me Bhaktya Prayachati");

or this:

&$ref("hello world");

Using a Hash to Create a Dispatch Table
Until Perl version 5.10, Perl didn’t have a native switch statement. One way to have switchlike statement
behavior is to use a hash or hash reference of subroutine references. A more accurate term for this is a
dispatch table, and this is a common Perl technique for automatically calling the appropriate method
or subroutine based on a given value of the key for the particular subroutine reference. The following
example defines a hash reference with keys that are anonymous subroutine references. It is not exactly
a switch statement, but can be used in cases where you want switchlike behavior to call the appropriate
subroutine based on a value.

my $ref= {
‘add’ => sub { my ($val1, $val2)= @_; return $val1 + $val2},
‘subtract’ => sub { my ($val1, $val2)= @_; return $val1 - $val2},
‘multiply’ => sub { my ($val1, $val2)= @_; return $val1 * $val2}

};

for my $op (qw(multiply add subtract)) {
my $val= $ref->{$op}->(4,3) ;
print "val: $val\n";

}

. . . which gives the output:

val: 12
val: 7
val: 1

Identifying References
The function ref() can be used to determine whether a variable is a reference. This can be very useful in
knowing how to handle arguments passed to a subroutine or method, whether that means error handling
or an algorithm that processes the arguments based on their type. The function ref() just returns the type
(SCALAR, ARRAY, HASH, CODE, etc.) of reference if the variable is a reference, and nothing if the variable is
not a reference. The code that follows shows how ref is used:

my $ref1= [’this’, ‘that’];
my $ref2= { foo => ‘aaa’, fee => ‘bbb’};
my $ref3= \$mystring;

172

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 173

Chapter 4: Perl Primer

my $mystring = ‘some string val’;
my @ar1 = (’1’, ‘2’);

print ‘ref $ref1’ . ref $ref1;
print "\n";
print ‘ref $ref2 ‘ . ref $ref2 ;
print "\n";
print ‘ref $ref3 ‘ . ref $ref3 ;
print "\n";
print ‘ref $mystring ‘ . ref $mystring ;
print "\n";
print ‘ref $ar1 ‘ . ref @ar1;
print "\n";

The output of this program is this:

ref $ref1 ARRAY
ref $ref2 HASH
ref $ref3 SCALAR
ref $mystring
ref $ar1

This makes it possible to have processing according to type, as in the next example:

sub handle_var {
my ($var)= @_;

print "var is " ;
print ref $var ? ‘not ‘ : ‘’ ;
print "a reference.\n";

}

If used in the previous example:

handle_var($ref1);
handle_var($mystring);

The output would be this:

var is not a reference.
var is a reference.

Scalar Usage
Scalars can be used in two ways:

❑ Addition:

$val1 = 33;
$val2 = 44;
$val3 = "200 horses ";
$val4 = "4 castles";

173

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 174

Chapter 4: Perl Primer

print $val1 + $val2 ; # prints 77
prints 204, Perl drops the non-numerics out upon evaluation
of addition
print $val3 + $val4;

❑ Concatenation:

prints "200 horses and 4 castles" with a newline
print $val3 . " and " . $val4 . "\n";

prints "I used to be 33, but I became older and now I am 44" with newline
print ‘I used to be ‘ . $val1 . ", but I became older, and now I am $val2\n";

Array Usage and Iteration
You can do a ton of operations and tricks with arrays. Since this chapter is a primer, a few basics will be
shown, as well as some nifty tricks that even the author of this book sometimes has to jog his memory
to recall.

There are several ways to iterate over the values in an array, as shown in the following subsections. Just
to be clear, the terms array and list are often used interchangeably, but there is a difference between the
two. An array is the actual variable containing a list of values positioned by index, whereas a list is a
temporary construct of values that cannot be modified on the stack that can be assigned to an array. To
explain a little bit better, here is an example:

my @arr = (1, 2, 3, 4);

The left-hand side of the assignment ‘=’ is the array; the right-hand side is the list.

for/foreach loop:
for and foreach are equivalent. Their use simply depends on the style you like.

for (@myarray) { # $_ is the current value being iterated over
print "current value: $_\n";

}
for my $row (@myarray) {

print "current value: $row\n"; instead of using $_
}
for (0 .. $#myarray) { # this "$#" thing will be explained below!

print "current subscript: $_ value: $myarray[$_]\n";
}
for (0 .. (scalar @myarray - 1)) {

print "current subscript: $_ value: $myarray[$_]\n";
}

If you modify the value of the current value being iterated, $_, you modify the actual member in the
array; $_ is aliased to each member. If you need to modify the current value but not affect the original,
just use another variable and set it to that.

174

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 175

Chapter 4: Perl Primer

map
The map operator is useful if you don’t have a ton of code within the loop:

print map { "current value: $_\n" } @myarray;

Although, you could just as easily use the for idiom:

print "current value: $_\n" for @myarray;

Adding and Splicing Arrays
You can add arrays using the following lines of code. To add two or more arrays together, you add them
within parentheses.

my @my_array = (1,2,3);
my @your_array = (4,5,6);
my @combined= (@my_array, @your_array); # contains 1,2,3,4,5,6

Splice is a nifty function that the author admits to not using as often as he should. It is very useful for
slicing and dicing arrays. The usage for splice takes between one and four arguments.

splice ARRAY,OFFSET,LENGTH,LIST

splice ARRAY,OFFSET,LENGTH

splice ARRAY,OFFSET

splice ARRAY

Basically, splice replaces the elements starting from the subscript of OFFSET for a given LENGTH, and
replaces those elements with LIST, if LIST is provided. Otherwise, it removes the elements from
OFFSET to LENGTH. If no LENGTH is provided, it removes all elements from LENGTH to the end of the
array. If both OFFSET and LENGTH are omitted, it removes all elements. In list context, the elements
removed from the array are returned. In scalar context, the last element removed is returned. If no
elements are removed, undef is returned.

An example of the use of splice follows:

my @dest= (1,2,3,4,5,6,7,8,9,10); # @dest contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
my @src= (’a’,’b’,’c’);
my @scraps;

@dest contains 1, 2, 3, 4, a, b, c, 8, 9, 10, @scraps 5, 6, 7
@scraps = splice(@dest, 4, 3, @src);

@dest= (1,2,3,4,5,6,7,8,9,10); # reset

@dest contains 1,2,3,4,8,9,10, @scraps 5, 6, 7, 8, 9, 10
@scraps = splice(@dest, 4, 3);

@dest= (1,2,3,4,5,6,7,8,9,10); # reset

@dest contains 1, 2, 3, 4, 5, 6, 7, 8, @scraps 9, 10

175

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 176

Chapter 4: Perl Primer

splice(@dest, 8);

@dest= (1,2,3,4,5,6,7,8,9,10); # reset

@dest contains nothing, @scraps 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
splice(@dest);

shift, unshift, pop, and push
These functions work on single members, either first or last, of an array.

❑ shift(): Shifts off first value in an array and reorders the entire array to accommodate

❑ pop(): Pops off the last value in the array

❑ push(): Pushes the value as the first value in array and reorders the entire array to accommodate

❑ unshift(): Sticks the value at the end of the array

The following snippets show the effect of subsequent calls of shift(), pop(), push(), and unshift()
on the array @a1.

The initial value of @a1 is set to the list of numbers from 1 to 10:

my @a1 = (1,2,3,4,5,6,7,8,9,10);

$shifted contains 1, @a1 is now 2, 3, 4, 5, 6, 7, 8, 9, 10:

my $shifted= shift @a1;

$popped contains 10, @a1 is now 2, 3, 4, 5, 6, 7, 8, 9:

my $popped= pop @a1;

push() puts back 10 to the end of array so @a1 is now 2, 3, 4, 5, 6, 7, 8, 9, 10:

push(@a1, $popped);

unshift() puts back 1 to the beginning of the array so @a1 is now 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:

unshift(@a1, $shifted);

split and join
These two functions are opposites of each other. split and join allow you to split a scalar into a list and
recombine members of a list into a scalar, respectively.

The following code snippet loops through lines of an already-opened comma-separated data file. First it
splits the current line on commas, then it recombines the values of @cols into a scalar string with tabs,
converting the line from comma-separated values to tab-separated values.

while(<CSV>) { # looping through a CSV flat file
split current line by comma, assigning the returned list to an array.

176

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 177

Chapter 4: Perl Primer

my @cols = split /,/, $_;

and recombine, with tabs as the delimiter
my $tsv_line= join "\t", @cols;

}

sort
The sort function sorts according to value using standard string comparison order by default. If you use
it in iteration, the order is by values of the list instead of by the order of the elements of the list. In this
example, you can see the use of join in conjunction with sort:

my @a1= (’x’, ‘d’, ‘h’, ‘z’, ‘a’, ‘m’, ‘g’); # unordered array
my $ordered= join ", ",sort @a1; # ordered = "1, 2, 3, 4, 5, 6, 10"
print "ordered $ordered\n";
ordered a, d, g, h, m, x, z

However, if you have a list of numbers assigned to the array and you perform the same type of sort, you
would get this:

@a1= (4,5,1,3,6,2,10); # unordered array
$ordered= join ", ",sort @a1; # ordered = "1, 2, 3, 4, 5, 6, 10"
print "ordered $ordered\n";
ordered 1, 10, 2, 3, 4, 5, 6

You can clearly see it didn’t perform a numeric sort. It sorted the values by ordinal/ASCII order. To sort
numerically, use the following:

ordered= join ", ",sort {$a <=> $b} @a1; # ordered = "1, 2, 3, 4, 5, 6, 10"
print "ordered $ordered\n";
ordered 1, 2, 3, 4, 5, 6, 10

The $a <=> $b forces a numeric sort. This is one of those Perl tidbits you want to email yourself for when
you forget!

reverse
reverse() reverses the order of the elements in list context. In scalar context, the elements of the list are
concatenated and a string value is returned with all the characters appearing in the opposite order.

my @values= (1,2,3,4);
my @seulav= @values; # contains 4,3,2,1

scalar
This returns a scalar value, numeric, of the total number of members in a list:

my $num_values= scalar @values; # should be 4, using array from last
example

Last Subscript Value of Array
The $# sigil combination means ‘‘subscript of last array member.’’ This is something you will most likely
use in the course of development.

177

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 178

Chapter 4: Perl Primer

for my $iterator (0 .. $#values) { ... # this would loop from 0 to 3 .. }
my $last_member_index = $#values; # this would equal 3

Array Slices
Quite often, you will be presented with the task of writing a program that takes an array and splits it
up. Say for instance that you have a large array of feed URLs obtained from a database that you need
to divide into specified ‘‘slices’’ and hand each ‘‘slice’’ to a forked child process, in effect processing in
parallel the entire array. Perl makes this easy.

The basic concept is this:

@a1= (1,2,3,4,5,6,7,8,9,10);
@a2= @a1[5 .. 10]; # this would contain 5, 6, 7, 8, 9, 10

The example mentioned would be implemented as such:

my $concurrency= 8; # number of children
my $start= 0; # starting point of range
my $end= 0; # end point of range
my $slice_size= int scalar @big_list/ $concurrency; # size of each slice
my $remainder= scalar @big_list % $concurrency; # this will be added to
last slice
for my $iter (1 .. $concurrency) {

$end += $slice_size; # each iteration, this increments
$end += $remainder if $iter == $concurrency; # add if last range

my $pid= fork(); # fork

if ($pid) {
... parent

}

elsif ($pid == 0) { # this is the child

for (@big_list[$start .. $end]) { # slice from $start to $end
processing for each "slice"

}
}

must add one more to $end for $start to assume correct
value on next iteration
$start= $end + 1;

}

Printing an Array
Another handy trick is printing an array, so that its contents will be printed separated by spaces through
interpolation, which causes the Perl special variable ‘$’’’, the single-space variable, to be inserted between
each of the array elements:

my @a1= (1,2,3,4,5, "fun"); print "@a1\n" # prints 1 2 3 4 5 fun

178

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 179

Chapter 4: Perl Primer

Working with Hashes
Working with hashes is similar in many ways to working with arrays, since hashes are in essence asso-
ciative arrays. An array contains a list of values positioned by an index, whereas a hash is an unordered
list positioned by key values.

Where the similarities to arrays end is that there are some specific functions for iterating over hashes.

Looping: keys and values
The two primary functions for hash iteration are keys and values. Each produces either a list (array) of
keys or values of the hash, respectively. keys returns keys in the same order that values are returned by
values. In other words, the output of each corresponds to and is in the same order as the other.

for (keys %myhash) {
print "current key is $_, value $myhash{$_}\n";

}

Or:

print map { "current value $_\n" } values %myhash;

Make a Hash Out of Two Arrays
One thing you might run across while developing web applications is the need to take two arrays and
make a hash out of them. Your first impulse might be to iterate over one array, and assign a key from the
current iterated value of the first array, and a value of the current iterated value of the second array. But
really, it’s much simpler than that and requires no explicit iteration — this is the beauty of Perl! Note also
the use of sort listed prior to keys for ordering:

my %h1;
my @a1 = (’a’,’b’,’c’);
my @a2 = (’x’,’y’,’z’);
@h1{@a1} = @a2;
print "key $_ value $h1{$_}\n" for sort keys %h1;

The output would be:

key a value x
key b value y
key c value z

Hashes as Arrays
You can always assign the key-value pairs of a hash to an array as follows:

@a1 = %h1 # @a1 will contain key, value, key, value ... of %h1

You can also create an array out of keys and values:

@a1 = sort keys %h1; # a, b, c
@a1 = sort keys %h1, values %h1 # this would give a, b, c, x, y, z

179

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 180

Chapter 4: Perl Primer

Many other things that can be done with hashes are beyond the scope of this book. However, you can
learn more about them by typing:

man perldsc

This is the Perl manpage for Perl data structures, titled ‘‘Perl Data Structures Cookbook.’’ It provides
documentation about working with complex Perl data structures.

Later chapters in this book will provide you with many opportunities to practice using hashes and hash
references. The preceding information presented just the basics and core concepts that are useful when
working with data to jog the memory.

Complex Perl Data Structures
With Perl programming using databases, you often deal with result sets of database queries. These result
sets can be more complex than a single-dimension hash reference or array reference, and can contain both
references to arrays of hashes or references to hashes of arrays, and multidimensional array references.
You can see how much depth is possible, although the basic principles of arrays and hash references still
apply.

Knowing how to navigate these multidimensional data structures using references is key to being able to
work with databases and web application programming in Perl.

For instance, the following reference refers to a data structure that has references to various types: scalars,
arrays, and hashes. One way to be able to process such a structure is to use recursion. The following
example shows a data structure that has varying depth and type:

my $ref1= [
{

‘22’ => [‘John Smith’, 33, ‘Cincinati’],
‘27’ => [‘Laxmi Narayan’, 24, ‘Cochin’],
‘34’ => [‘Lars Jensen’, 42, ‘Stockholm’]

},
{

‘CA’ => {
‘San Diego’ => [32.4, 117.1, ‘Coronado Bay Bridge’],
‘Los Angeles’ => [33.4, 118.1, ‘Vincent Thomas Bridge’],
‘San Francisco’ => [37.4, 122.2, ‘Golden Gate Bridge’],

},
‘NH’ => {

‘Concord’ => [43.3, 71.2, ‘I93’],
‘Manchester’ => [42.5, 71.8, ‘Queen Street Bridge’],
‘Cornish’ => [43.3, 72.2, ‘Cornish Windsor Covered

Bridge’]
},

},
{

‘scalar_key’ => "I’m a string!"
}

];

180

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 181

Chapter 4: Perl Primer

To properly process each type of reference, you must know its type — hash, array, or scalar — to know
how to iterate through it. The next example shows a simple subroutine ref_iterate()that accomplishes
this. It takes three arguments:

❑ The reference being passed in.

❑ A flag that signifies the very first call or top-level of the reference that is being processed.

❑ A tab string that contains the number of tabs to print according to depth, which through recur-
sion is properly incremented, as well as being lexical and incrementing only within scope.

ref_iterate() uses the ref() function to check the type of variable passed, and assumes only scalar,
array, and hash references will be passed. For each type of reference a different means of iteration is
applied, and is printed accordingly.

sub ref_iterate {
my ($ref1,$top_flag,$tabcount) = @_;

my $tabchar= ‘ ‘;

if (ref($testref) eq ‘HASH’) {
$tabcount++;
for (keys %$testref) {

print $tabchar x $tabcount . "$_ => ";
print "\n" unless $top_flag; # no need for newline if first

time
print "\n" if ref($testref->{$_}); # newline if a reference
ref_iterate($testref->{$_}, 0, $tabcount);

}
}
elsif (ref($ref1) eq ‘ARRAY’) {

$tabcount++;
print $tabchar x $tabcount;
print "[" unless $top_flag;
for my $i (0 .. $#{$ref1}) {

ref_iterate($ref1->[$i],0, $tabcount);
print ‘, ‘ unless $i == $#{$ref1}

}
print "],\n" unless $top_flag;

}
else {

print "\"$ref1\"";
}
return;

}

The output of this program resembles a pseudo-Data::Dumper. The purpose here is to show a possible
algorithm for handling a reference of variable type and depth.

radha:perl patg$./struct.pl
27 =>
["Laxmi Narayan", "24", "Cochin"],

22 =>
["John Smith", "33", "Cincinati"],

181

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 182

Chapter 4: Perl Primer

34 =>
["Lars Jensen", "42", "Stockholm"],

, NH =>
Concord =>

["43.3", "71.2", "I93"],
Cornish =>

["43.3", "72.2", "Cornish Windsor Covered Bridge"],
Manchester =>

["42.5", "71.8", "Queen Street Bridge"],
CA =>

San Francisco =>
["37.4", "122.2", "Golden Gate Bridge"],

Los Angeles =>
["33.4", "118.1", "Vincent Thomas Bridge"],

San Diego =>
["32.4", "117.1", "Coronado Bay Bridge"],

, scalar_key => "I’m a scalar!"

File Handles
File handles are yet another Perl variable type. A file handle is essentially a label given to a connection to
a file on disk, directory, or open a pipe to a process. By convention, file handles are usually named with
capital letters, and are the only Perl variable type that doesn’t use a sigil. A file handle can be named any
name except the following:

❑ STDIN

❑ STDOUT

❑ STDERR

❑ ARGV

❑ ARGVOUT

❑ DATA

File Functions
Many Perl functions work with file handles.

The simplest example of opening a file using a file handle, which opens the file in input mode, is:

my $filename = ‘my.txt’;
open(my $fh, $filename) or die "Unable to open $filename $!";

There are other IO modes of opening a file that can be specified upon opening:

❑ Read-only: For reading contents of a file:

open my $fh, ‘<’, $filename or die "Unable to open $filename $!";

❑ Write: For writing to a file. This will clear the existing contents of the file:

open my $fh, ‘>’, $filename or die "Unable to open $filename $!";

182

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 183

Chapter 4: Perl Primer

❑ Append: For appending to the file. This appends to end of existing contents of the file:

open my $fh, ‘>>’, $filename or die "Unable to open $filename $!";

Reading Files
The following shows how a file is used in read-only mode:

my $filename = ‘my.txt’;
open my $fh, ‘<’, $filename

or die "Unable to open ‘$filename’ for reading: $!\n";
for my $filerow (<$fh>){

print "$filerow\n";
}

close($fh) or die "unable to close $filename $!\n";

You can also read the entire file into an array. Each array member will be a line in the file:

my @file_array= <$fh>;

Normally, if you use a scalar to read from the file handle, it reads only one line of that file at a
time. If you want the whole file into a scalar, you have to undefine the output record separator (See
Appendix C):

{
this allows you to undefine the output record separator
just for this code closure

local($/);
my $file_contents= <$fh>;

}

In this example, an enclosure is used to localize the output separator so that it is undefined only within
the enclosure instead of being program-wide. You can also use the Perl module File::Slurp:

use File::Slurp;
my $file_contents = read_file($filename);

Any time you read from a file handle, the position is modified to the last line read. If you read the entire
file into a scalar or array as in the previous examples, the file handle will point to the end of the file. You
can return to the beginning of the file using the seek function. Its usage is this:

seek FILEHANDLE, OFFSET, WHENCE

OFFSET is where in the position is the file relative to WHENCE. These positions are in bytes, not line num-
bers. Position 0 is the beginning of the file. So, to ‘‘rewind’’ to the beginning of the file, you would use
the following example:

seek(MYFILE, 0 , 0) or die "Seek to start of ‘$filename’ failed: $!"

183

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 184

Chapter 4: Perl Primer

A more portable way to do this is:

use Fcntl;
open my $fh, $filename or die "Unable to open $filename $!\n";
seek $fh, 0, SEEK_SET ;
close($fh);

Here are two more useful things to know about reading files: If you need to know the line number while
reading through a file, you can utilize the $. special Perl variable. It gives the current line or record
number, without having an increment variable! If you need the actual byte position, you can use the
tell function:

while (<MYFILE>) {
print "current line is: $. current byte position is " . tell . "\n";

}

Writing to Files
As shown earlier, a file can also be opened in write or append modes:

my $filename = ‘/tmp/somefile.txt’;
open my $fh, ‘>’, $filename

or die "Can’t open ‘$filename’ for writing: $!\n";

(print $fh "print text to file\n")
or die "Writing text to ‘$filename’ failed: $!\n";

In the previous example, print specified the specific file handle. Using the function select, you can
make it so any subsequent print statements automatically print to this file.

select $fh;
print "This will be printed to somefile.txt";

close $fh
or die "Can’t close ‘$fh’ after writing: $!\n";

STDOUT and STDERR
As was mentioned earlier, there are some reserved system file handles that you can’t use when naming
your own file handle. These two file handles, STDOUT and STDERR, can be convenient for you. Here is how.
As a web developer, you will most likely have to write Perl utility scripts that you might need to run as
cron jobs. You will need these files to be able to print to a log any errors or other output they encounter.
The trick to achieve this is to open these handles, using globbing to other files. Here is an example:

my $log = ‘/tmp/myutil.log’;
open *STDERR, ‘>>’, $log or die "unable to open (STDERR) $log $!\n";

open *STDERR, ‘>>’, $log
or die "Unable to open ‘$log’ for appending (STDERR): $!\n";

184

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 185

Chapter 4: Perl Primer

open *STDOUT, ‘>>’, $log or die "unable to open (STDOUT) $log $!\n";
... < program contents > ...
print localtime() . " processed such and such.\n";

File Handles to Processes
File handles can also be used to open processes to write to or read from. In addition to files, you can open
pipes to programs to read the output of the program.

Reading from Process File Handles
Reading from a process file handle is done by specifying a command, along with any arguments it takes,
with a pipe symbol at the end denoting that the process is being opened for reading:

my $ls = ‘ls -l’;
open($fh, "$ls|") or die "unable to open $ls $!\n";
my @dir_contents = <$fh>;
close $fh or die "unable to close $ls $!\n";
print "$_" for @dir_contents;

close($ls);

Writing to Process File Handles
Writing to a process file handle is similar to reading from a process file handle, except the pipe symbol is
at the beginning of the program, denoting that the program will be opened to take input:

my $log= ‘/tmp/mysql.out’;
open(*STDERR, ">>$log");
open(*STDOUT, ">>$log");
my $mysql_client = ‘mysql -u root information_schema’;
open(my $fh, "|$mysql_client") or die "Unable to open ‘$mysql_client’
$!\n";
select $fh;
print ‘show tables;’;
close($fh) or die "unable to close ‘$mysql_client’\n";

Directory Handles
Another type of file handle is a directory handle. A directory handle allows work within the contents of
a directory. Directory handles also have their own functions:

❑ opendir(): Creates a file handle, opening the directory

❑ readdir(): Reads the contents of a directory

❑ telldir(): Gives the current byte position of the directory handle

❑ seekdir(): Moves to position of handle within directory

❑ rewinddir(): Sets position of handle back at the beginning of the directory

❑ closedir(): Closes the directory handle

185

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 186

Chapter 4: Perl Primer

Just What Is a Directory?
Have you ever edited a directory on UNIX by accident? With the vim editor, you can
view a directory as a file. A directory is essentially a file, except it provides a structure
to organize filenames, having pointers to actual files on disk. So, opening a directory is
more like opening a file than it first appears.

#!/usr/bin/perl

use strict;
use warnings;

my $homedir=’/home/perluser’;
my $dh;
opendir($dh, $homedir) or die "unable to open $homedir: $!\n";
while(my $curfile= readdir($dh)) {

my $pos= telldir $dh;
my $type= -d "$homedir/$curfile" ? ‘directory’ : ‘file’;
print "$type : $curfile pos $pos\n";

}
closedir($dh);

opendir($dh, $homedir) || die "can’t opendir $homedir: $!";
my @images= grep { /\.jpg|\.gif|\.png|\.tiff?$/i && -f "$homedir/$_" }
readdir($dh);
closedir($dh);
print "image: $_\n" for @images;
closedir($dh);

Subroutines
Subroutines and functions are the same thing in Perl and the names can be used interchangeably. There
are numerous ways to declare and define subroutines.

Declaring subroutines in Perl is optional; defining them is sufficient. The basic form of declaring a sub-
routine in Perl is this:

sub mysub;

Or, you can use:

sub mysub(prototype);

The basic form of defining a subroutine in Perl is this:

sub mysub { block };

. . . or:

sub mysub(prototype) { block};

186

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 187

Chapter 4: Perl Primer

The prototype is an optional list of variable types passed to the subroutine. If not specified, the subroutine
takes any number of arguments.

Using prototypes is not considered a best practice; however you will probably run across them in your
adventures as a Perl code wrangler, so understanding how they work can help you to either deal with
them or else modify the code you inherited to not use them.

An example of using a prototype is:

sub mysub($$@);

This would mean that the function mysub() takes three arguments: two scalars and one an array.
An important note: Since the third argument is an array, which is a list of scalars, this would make
it so mysub() requires at least three arguments, but could take more since the last argument is
an array.

For instance, if mysub() can be correctly called with any of the variables:

just as it’s defined
mysub($val1, $val2, @ar1);

$val3 is a single scalar, just like an array with only one member
mysub($val1, $val2, $val3);

$val3 and $val4 treated like two member array
mysub($val1, $val2, $val3, $val4);

$val3, %hval1, @ar1 all treated as a single array
mysub($val1, $val2, $val3, %hval1, @ar1);

. . . then the following would cause an error because there aren’t enough values:

mysub($val1, $val2);

The error printed:

Not enough arguments for main::mysub...

If mysub() is defined as this:

mysub($$$);

. . . then mysub() will have to be called with exactly three arguments.

In this book, subroutine calls have been shown with closing parentheses for the variables being passed.
This is optional and a style preference of the author, but subroutines can be called without parentheses.
The following two calls to mysub() are equivalent:

mysub($var1, $var2, $var3);

mysub $var1, $var2, $var3;

187

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 188

Chapter 4: Perl Primer

shift Versus Using @_
There are several ways to read in the variables passed to a subroutine. The two most common ways are
either to use shift() or to directly assign values from the @_ array.

sub mysub {
my $var1 = shift;

}

Or:

sub mysub {
my ($var1)= @_;

}

Are these equivalent? The one thing to consider is that shift() is a call, and is yet one more operation,
as opposed to simply assuming the values of the @_ array. If only a few values are being shifted, this
is negligible. However, if you are passing multiple variables to a subroutine, you would have to call
shift() to set each of those variables. Using the @_ can all be done on one line with no calls required.
So, it really depends on what you need to do with the variables that are being passed to a subroutine.
You may, in fact, want to use shift() to shift in some variables and then use the remaining members
of @_:

sub mysub {
my $bar = shift;

my $baz = shift;
use $bar and $baz here
old_mysub(@_);

}

Who Called?
You can identify what the caller of a subroutine is with the caller() function. This function returns the
name of the package from which it was called:

sub mysub {
print "caller " . caller() . "\n";

}

In the case of a Perl script, the package name would be main, and, as shown in the code below:

sub main {
mysub();

}

The output is:

caller main

The benefit of this may not be apparent in this example, but in later discussions on packages and object-
oriented programming, you will see that caller() can be extremely useful.

188

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 189

Chapter 4: Perl Primer

Variable Scope
One thing that is worth reviewing is variable scope. This is something that the author of this book often
has to review from time to time.

Symbol Table
Perl has what is known as a symbol table, which is a hash where Perl keeps all the global variables, Perl
special variables, and subroutine names for a given package. (More about packages will be presented
in the next section, ‘‘Perl OO Primer.’’) The keys of this hash are the symbol names. The values are
typeglob values of the current package. The default package of any Perl program is %main::, or just %::
if a package name is not specified.

Looking under the hood always helps to make certain concepts more understandable, so the following
simple code example, along with its output, is presented to show you just what a symbol table contains:

our $var1= "var1 value";
our $var2= "var2 value";
my $var3= "var3 value";
sub sub1 { print "sub1\n"};
printf("%-20s => %25s,\n", $_, $main::{$_}) for keys %main::;

Here is the output:

/ => *main::/,
stderr => *main::stderr,
utf8:: => *main::utf8::,
" => *main::",
CORE:: => *main::CORE::,
DynaLoader:: => *main::DynaLoader::,
stdout => *main::stdout,
attributes:: => *main::attributes::,

=> *main::,
stdin => *main::stdin,
ARGV => *main::ARGV,
INC => *main::INC,
ENV => *main::ENV,
Regexp:: => *main::Regexp::,
UNIVERSAL:: => *main::UNIVERSAL::,
$ => *main::$,
<perlio.c => *main::<perlio.c,
main:: => *main::main::,
var2 => *main::var2,
- => *main::-,
<perlmain.c => *main::<perlmain.c,
sub1 => *main::sub1,
perlIO:: => *main::perlIO::,
<universal.c => *main::<universal.c,
0 => *main::0,

=> *main:,
@ => *main::@,
<xsutils.c => *main::<xsutils.c,
var1 => *main::var1,

189

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 190

Chapter 4: Perl Primer

STDOUT => *main::STDOUT,
IO:: => *main::IO::,

=> *main::,
_ => *main::_,
+ => *main::+,
STDERR => *main::STDERR,
Internals:: => *main::Internals::,
STDIN => *main::STDIN,
DB:: => *main::DB::,
<none>:: => *main::<none>::,

As you can see, the variables defined as global with our, var1 and var2, as well as the subroutine sub1,
are pointing to typeglobs main::var1, main::var2, main::sub1. So, really, there is no such thing as a
global in Perl! A global is really a package variable of main. (Again, you will explore more about packages
in the next section.)

The point here is to explain scoping of variables in Perl. The Perl scoping mechanisms are:

❑ my: This is lexical scoping, meaning that the variable is only visible within the block of code it is
declared in, including functions called within that block. For instance, in the following code,
even though the variable $val assumes a value of the current value being iterated over, since
it is declared as my, aka lexical, within that for loop (in a block, within brackets). It is not the same
variable as the variable $val declared at the beginning of mysub(). The variable $val, is returned
at the end of mysub(), which returns a reference to this lexical variable, giving it life beyond
mysub(). This means the variable $val itself is no longer in scope, but rather a reference to it. It is
returned, gives access to it, and it ‘‘survives.’’ Internally, Perl keeps a reference count of variables
that is a count of any reference created for this variable. When the reference count reaches zero,
the variable is destroyed.

sub mysub {
my $val= ‘x’;
for (0 .. 1) {

my $val= $_;
}

return $val;
}

❑ local: This is dynamic scoping, meaning dynamic variables are visible to functions called within
a block where those variables are declared. In other words, if you declare a global (package) vari-
able and in another block declare that same variable as local, the value it previously had is tem-
porarily stashed, and the new value assigned. Once the block containing the variable scoped as
local is exited, the previous original value (prior to the local assignment) is assumed. This gives
local the effect of being able to temporarily override a global variable with a different value with-
out losing the original value, hence the name dynamic scoping.

❑ our: This is package scoping, meaning all subroutines have access to this variable. In previous
versions of Perl, this was done by the following:

use vars qw(var1 var2);
$var1= ‘some value’;
$var2= 33;

190

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 191

Chapter 4: Perl Primer

It is now done with:

our ($var1, $var2);

Scope Example
Working code is always a good way to see a concept in action. The following example shows how scoping
works:

our $foo= "our foo";

sub main {
print "main: $foo\n";
my_foo(’main’);
local_foo(’main’);

}
sub my_foo {

my ($caller)= @_;
my $foo= "my foo";
print "my_foo foo: $foo, caller $caller\n";
inner_foo(’my_foo’);

}
sub local_foo {

my ($caller)= @_;
local $foo= "local foo";
print "local_foo foo: $foo, caller $caller\n";
inner_foo(’local_foo’);

}
sub inner_foo {

my ($caller)= @_;
print "1: inner_foo foo $foo, caller $caller\n";
my $foo= "my foo";
print "2: inner_foo foo $foo, caller $caller\n";

}
main();

Notice the following about the previous example:

❑ The global/package variable $foo is declared at the top level of the code, outside any subrou-
tines. This makes this variable visible in all subroutines.

❑ The main() subroutine just prints out $foo without making any changes.

❑ my_foo() declares a lexical $foo, which is not the global $foo, that will have its own
value that is only scoped within my_foo() and not available to inner_foo(), which it
then calls.

❑ local_foo() scopes $foo as local, which will temporarily set the global $foo to "local foo".
This should be visible to inner_foo(), which it calls, until the end of local_foo().

❑ inner_foo() first prints out whatever the current value of $foo is, then declares its own lexi-
cal $foo, just to drive home the idea of lexical variables. Regardless of whatever value that $foo
was, whether scoped via our or local, the lexical variable will be "inner foo" until the end of
inner_foo().

191

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 192

Chapter 4: Perl Primer

The program’s output confirms the expected functionality:

main: our foo

my_foo foo: my foo, caller main

1: inner_foo foo our foo, caller my_foo

2: inner_foo foo my foo, caller my_foo

local_foo foo: local foo, caller main

1: inner_foo foo local foo, caller local_foo

2: inner_foo foo my foo, caller local_foo

Forcing Scope Adherence
One way to ensure that your code is using scoped variables (and also a good Perl programming practice
generally), is to use the strict pragmatic module. A pragmatic module works somewhat like compiler
directives (pragmata) in that they tend to affect the compilation of your Perl program by Perl. The strict
pragmatic module prohibits the use of unsafe constructs. When you use it, it causes your code to fail
to compile should you not have variables scoped properly, or have other violations of stricture, such as
improper use of variables, symbolic references, or are using bareword identifiers that are not subroutine
names.

To use it:

use strict;

Another pragmatic module you will want to use is the warnings pragmatic module. To use it:

use warnings;

Packages
Having discussed variable scope, subroutine calls, caller(), the symbol table, and having mentioned
packages, this chapter now turns to a discussion of packages. As mentioned before, a Perl program is by
default within the main namespace. A namespace is the name of the compilation unit, or anything from the
beginning of the program (or from where the namespace is defined with the package declaration) to the
end of the enclosing block or program. This allows variables to exist independently from other packages’
variables.

A Perl package is a way to explicitly specify the namespace of a Perl program. As discussed and shown
in the previous example in which the symbol table was printed out, a program without a package decla-
ration assumes the package name of main. An explicitly named package has its own symbol table, which
defines the namespace in which variables and subroutines (or methods) exist. This provides the indepen-
dence from other packages or the program using the package, and protects both the package’s variables
from being modified by other packages and vice versa.

192

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 193

Chapter 4: Perl Primer

To create a package, simply begin the code block with the package declaration, as the example shows:

package MyPackage;

With this declaration, any code after it exists within the MyPackage namespace. A more complete example
shows how this package would be used:

#!/usr/bin/perl

my $val= ‘this is a test’;

MyPackage::printThis($val);

print "$MyPackage::val2\n";

package MyPackage;

our $val2; # package variable, package scope

sub printThis {
print "MyPackage::printThis: $_[0]\n";
$val2= $_[0]; # sets the package variable

}

package MyPackage::OtherPackage;

our $val1;
sub printThis {

print "MyPackage::OtherPackage::printThis: $_[0]\n";
}

Notice the following concerning the previous example:

❑ Everything prior to package MyPackage is within the main namespace.

❑ Everything after package MyPackage and before package MyPackage::OtherPackage, is within
the MyPackage namespace, which in this example, is the variable $val2 and the subroutine
printThis().

❑ Everything from package MyPackage::OtherPackage to the end of the file is within the
MyPackage::OtherPackage namespace, which in this example, is the variable $val1 and the
other printThis() subroutine.

In the previous section, it was mentioned that there is no real global variable scoping, but there is package
scoping. In this case, $var2 is a package variable of MyPackage. In the example above, the code above the
package declaration shows how to access MyPackage’s variable $var2 and how to call its subroutine
printThis() by prefixing both with the MyPackage name. Also shown is how the package variable $var2
is set within printThis() and is accessible outside of the package.

Perl Modules
The previous example is very simple, and shows both the code using the package as well as the package
within the same file. More commonly, the code for a package is stored within its own file, with the

193

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 194

Chapter 4: Perl Primer

filename convention being the name of the package with a .pm extension. This is what is known as a Perl
module. In other words, a Perl module is a file with a .pm extension containing Perl code for one or more
package definitions.

Perl modules enable you to reuse code, having functionality that you often use in a library of its own.
Modules are written to abstract the details of code so the program using the module need only use these
subroutines. This is conceptually similar to using dynamic libraries in C, allowing the main C program
to not have to implement these library functions. In the course of development, you may have code déjà
vu — code that you find yourself often reimplementing that performs common tasks. This is when you
should consider making that code a module — write once, reuse often! An example of this is code that
you write into a script or application, or at least use require to include a Perl file that contains functions
such as storing a user’s information. This would be a prime candidate for turning into a module.

Writing a Perl Module
With Perl modules, the :: (double colon) is the package delimiter that can signify the directory a package
is found in, just as a ‘.’ delimiter in java signifies a directory for its classes. It is important to note however,
that a single Perl file can contain multiple packages.

Either use or require translates the "::" in the expression or module name into a directory delimiter
character ‘‘/’’ and assumes a ‘‘.pm’’ extension of the expression or specified module name. This assumes
that, for require, the expression is a bareword (doesn’t have any quotes around it), and for use, the
module name is a bareword.

In the previous example showing the MyPackage and MyPackage::OtherPackage packages:

❑ The code from the package declaration to the end of the example would be stored in a file,
MyPackage.pm.

❑ MyPackage::OtherPackage module would exist in a subdirectory with the MyPackage module
MyPackage/, stored as OtherPackage.pm.

To explain this better, the layout would be this:

./MyPackage.pm

./MyPackage

./MyPackage/OtherPackage.pm

...

1;

The use statement expects to find <modulename>.pm either in the current directory or within the path
where Perl finds its modules, known as the include path. You can find out what your include path is by
running the tiny Perl expression at the command line:

radha:perl patg$ perl -e ‘print join "\n", @INC’
/System/Library/perl/5.8.8/darwin-thread-multi-2level
/System/Library/perl/5.8.8
/Library/perl/5.8.8/darwin-thread-multi-2level

194

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 195

Chapter 4: Perl Primer

/Library/perl/5.8.8
/Library/perl
/Network/Library/perl/5.8.8/darwin-thread-multi-2level
/Network/Library/perl/5.8.8
/Network/Library/perl
/System/Library/perl/Extras/5.8.8/darwin-thread-multi-2level
/System/Library/perl/Extras/5.8.8
/Library/perl/5.8.6
/Library/perl/5.8.1/darwin-thread-multi-2level
/Library/perl/5.8.1

This example in particular shows the Perl include path on an Apple OS X computer. This path varies
according to OS, distribution, etc. The variable @INC is a special Perl variable that stores the include path.

You can add your own directory to the Perl include path using this:

use lib ‘/home/patg/perllib’;

This simply adds /home/patg/perllib to the start of @INC, the array of paths that Perl searches to find
any module that has been specified with the use statement. This gives you the means to use any mod-
ule you write from whatever directory you choose to locate your modules, if it is not a standard Perl
library path.

The use statement is similar to the require statement. The difference is that require happens at compile
time, while use happens at run time. Also, use imports any exportable variables or subroutines from the
module, inserting an entry into the program’s symbol table, while require does not. So this:

imports printThis of subroutine
BEGIN { require MyPackage; import MyPackage qw(printThis) };

. . . is the same as this:

imports printThis subroutine
use MyPackage qw(printThis);

and this:

BEGIN { require MyPackage; } # imports no subroutines

. . . is the same as this:

use MyPackage () # imports no subroutines

Often, you may not want to import every subroutine or method from a module. In this case you would
use:

use MyPackage qw(printThis);

. . . which would just import the printThis subroutine.

195

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 196

Chapter 4: Perl Primer

By importing package subroutines and variables into your program and having an entry for them made
in the program’s symbol table, you can use them in your program without a full package qualifier. To
show the full concept of this, let’s suppose you were to create a module with MyPackage from the previ-
ous example. You would create MyPackage.pm with the code from the package block stored in this file.
Additionally, if you want to allow the printThis subroutine to be imported into our program, it would
now have the code:

package MyPackage;

use strict;

use Exporter qw(import);

our @EXPORT = qw(&printThis $val2);

our $val2; # package variable, package scope

sub printThis ($) {
print "MyPackage::printThis: $_[0]\n";
$val2= $_[0]; # sets the package variable

}

1;

In this example, two new lines are added to use the Exporter Perl module and import is its import
method. This provides a means for any module to export subroutines and variables to any program’s
namespace using the module. In this example, MyPackage is able to export the subroutine printThis and
the scalar variable var2 by setting the @EXPORT array, which is an array Exporter uses to export symbols.

The program that uses this module now need only specify the full module name in calling the printThis
subroutine or the $val2 scalar:

#!/usr/bin/perl

use strict;
use warnings;
use MyPackage;

printf("%-18s => %20s,\n", $_, $::{$_}) for keys %::;

printThis("test");
print "\$val2 $val2\n"; # printThis sets this
$val2= ‘my val’; # now set here
print "\$val2 $val2\n"; # should be ‘my val’

The output of this program is this:

MyPackage::printThis: test
$val2 test
$val2 my val

196

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 197

Chapter 4: Perl Primer

To see the effect of importing a module’s symbols on a program’s symbol table, the previous code to
print out the symbol table (excluding all other entries) shows there are new entries for the module itself,
as well as the module’s variable and subroutine that were imported:

printThis => *main::printThis,
MyPackage:: => *main::MyPackage::,
val2 => *main::val2,

What this shows you is that indeed, the imported symbols are part of the main package now, as if they
were defined in the program. In essence, importing subroutines from a module makes it as if the code
from the module has been copied and pasted into the program. The convenience you enjoy is that they
are contained in a module that can be reused, making your program easier to read and contain less code.

One thing to keep in mind is that if you are writing a method in a class module (object-oriented, which
will be covered in Chapter 5), as opposed to a subroutine in a non-object-oriented module, you want to
avoid exporting methods because they will be accessed via an object.

@ISA array
In the previous example, using Exporter, like so:

use Exporter qw(import);

. . . could have also been accomplished using this:

require Exporter;
@ISA = qw(Exporter);

. . . with the require not importing Exporter into MyPackage’s namespace. This can, however, be accom-
plished used the @ISA array. The @ISA array is where the interpreter searches for symbols it cannot find
in the current package, and also handles inheritance (hence the ‘‘is-a’’ name). More about this will be
discussed in Chapter 5, which covers object-oriented Perl.

Documenting Your Module
Perl is easy enough to read, and you can often ascertain what the original intent of code is. However,
having more documentation is better than having less. Even more so, having a concise way to display that
documentation is even better. Perl gives you a great way to do this with POD, Plain Old Documentation.
POD is a markup language you use in your Perl code that allows you to write documentation that is
viewable using another Perl utility, perldoc. For instance, the module used in previous examples has its
own documentation, as do the large collection of CPAN modules that are available.

To use perldoc to read Exporter’s documentation, you simply run:

perldoc Exporter

It will display the documentation in the same manner as UNIX manpages are displayed.

197

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 198

Chapter 4: Perl Primer

POD removes any excuses you may have to not document your code because it’s so easy to use! POD
can even be used for non-Perl projects using yet another Perl tool, pod2man. For instance, projects such
as libmemcached and Memcached Functions for MySQL (both C projects), use POD and run through
pod2man to produce manpages.

The next example shows MyPackage with POD documentation added:

package MyPackage;

use strict;

use Exporter qw(import);

our @EXPORT = qw(&printThis $val2);
our $VERSION = ‘0.0.1’;

our $val2; # package variable, package scope

sub printThis ($) {
print "MyPackage::printThis: $_[0]\n";

$val2= $_[0]; # sets the package variable
}

=head1 NAME

MyPackage - Simple Perl module example for showing how to write Perl
modules

=head1 SYNOPSIS

use MyPackage;

my $text= ‘test’;

printThis($text);

MyPackage::printThis($text);

print "val2 $val2\n";

print "val2 $MyPackage::val2\n";

=head1 DESCRIPTION

This module is written to show how to write the most I<simple> Perl module,
as well as how to document that module using POD, and how B<easy> it is!

=head2 Subroutines
=over 4

=item C<printThis($text)>

198

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 199

Chapter 4: Perl Primer

Prints the $text scalar passed to it, then sets the package variable $var2
to $text

=back

=head2 Package variables

=over 4

=item C<$var2>

Scalar variable

=back

=head1 AUTHORS

Patrick Galbraith

=head1 COPYRIGHT

Patrick Galbraith (c) 2008

=cut

1;

As you can see in the previous example, the documentation begins with =head1 and ends with =cut
commands and the Perl interpreter ignores everything in between. This is a top-level heading, out
of 4 levels 1-4, which you would use for sections such as the NAME, SYNOPSIS, DESCRIPTION, AUTHORS,
COPYRIGHT — anything that you might feel is a top-level section header. The convention is that such
headers appear in all caps. The next heading level shown here is =head2. You would usually use this
level for listing subroutines or methods in a module, showing what arguments the method takes, what it
does, and what it returns.

Each subroutine would be listed, starting with a =over 4 command and ending with a =cut command.
The number after =over is the indent level, and each subroutine =item command. This documentation
uses POD markup for code. The markup for POD is:

❑ C<code>

❑ I<italic>

❑ B<bold>

❑ U<underlined>

To view the output of this documentation, you would type the command:

perldoc MyPackage

199

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 200

Chapter 4: Perl Primer

. . . if MyPackage is in your module path, or if not:

perldoc /Users/patg/perl/modules/MyPackage.pm

It should be apparent that POD is not limited to modules. You can document regular scripts this way as
well. The output of the above POD documentation displays as:

MyPackage(3) User Contributed perl Documentation MyPackage(3)

NAME
MyPackage – Simple Perl module example for showing how to write Perl
modules

SYNOPSIS
use MyPackage;

my $text= ‘test’;

printThis($text);

MyPackage::printThis($text);

print "val2 $val2\n";

print "val2 $MyPackage::val2\n";

This module is written to show how to write the most simple Perl
module, as well as how to document that module using POD, and how easy
it is!

Subroutines

"printThis($text)"
Prints the $text scalar passed to it, then sets the package
variable $var2 to $text

Package variables

$var2
Scalar variable

AUTHORS
Patrick Galbraith

COPYRIGHT
Patrick Galbraith (c) 2008

perl v5.8.8 2008−10−05 MyPackage(3)

200

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 201

Chapter 4: Perl Primer

This displays a really nice looking page of documentation. It is well worth the effort and allows others
who use your code to understand it. This was a simple example. If you need to learn more about POD
syntax, just type:

perldoc perlpod

Making Your Module Installable
In some instances, you may want to have your module installed into the Perl system library so you don’t
have to specify a library path with use lib to run your code. For this, you can use a file that you create
with your module, Makefile.PL, which for the previous example would contain the following code:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
print "\nIMPORTANT!\nTo install this module you will need";
WriteMakefile(

‘NAME’ => ‘MyPackage’,
‘VERSION_FROM’ => ‘MyPackage.pm’, # finds $VERSION
0 could be used, but is printed (which is confusing)
so use ‘’ instead

‘PREREQ_PM’ => {
‘Data::Dumper’ => ‘’,
},

‘PREREQ_PRINT’ => 1,
‘PM’ => {
‘MyPackage.pm’ => ‘$(INST_LIBDIR)/MyPackage.pm’ ,
‘MyPackage/SubPackage.pm’ => ‘$(INST_LIBDIR)/MyPackage

/SubPackage.pm’,
}

);

This file makes it easy to install your module system-wide. It also takes care of any prerequisites that are
required for your module to run. It also handles what directories to install your module into.

To make use of it, you simply run:

perl Makefile.PL
make
sudo make install

Then you can run your code without specifying where the module is located. It all depends on whether
you want to keep your own modules separate from the system-wide modules. There are varying opinions
on this matter. It’s Perl, so it’s your choice!

Testing
You can easily add tests to your module. You should accustom yourself to this good practice whenever
you add a new feature. To add tests, you first create a ‘t’ directory in your package directory. For this
example, three new subroutines will be added to MyPackage.pm:

sub addNumbers {
my ($num1, $num2) = @_;

201

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 202

Chapter 4: Perl Primer

return $num1 + $num2;
}

sub subtractNumbers {
my ($num1, $num2) = @_;
return $num1 - $num2;

}

sub doubleString {
my ($string) = @_;
return "$string$string";

}

These subroutines are very simple and not all that exciting, but they serve to show you how you can add
tests to your module!

In the ‘t’ directory, create test files. These are named with numeric file names, which determine the order
in which the tests are run, like so:

ls -1 t/
00basic.t
01add.t
02subtract.t
03string.t

Each test will test a specific feature of MyPackage. The Perl module Test::More is the module you use
for testing. It provides a clean, easy-to-follow API for creating tests. (Run perldoc Test::More to see the
full usage.) Essentially, you list how many tests are going run with the value specified in tests => N. You
can use various Test::More methods such as is, ok, and cmp_ok to test the return values of a test. The
tests are:

❑ t/00basic.t: This tests if the various modules can simply be loaded:

use strict;
use warnings;

use Test::More tests => 3;
BEGIN {

use_ok(’Data::Dumper’) or BAIL_OUT "Unable to load Data::Dumper";
use_ok(’MyPackage’) or BAIL_OUT "Unable to load MyPackage";
use_ok(’MyPackage::SubPackage’) or

BAIL_OUT "Unable to load MyPackage::SubPackage";
}

❑ t/01add.t: This specifically tests addNumbers():, testing both if the value of $retval is set using
the method ok, as well as if $retval is the correct value using the method is:

use Test::More tests => 6;
use MyPackage;

ok my $retval = MyPackage::addNumbers(3,3);

202

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 203

Chapter 4: Perl Primer

is $retval, 6, "Should be 6";

ok $retval = MyPackage::addNumbers(16,16);

is $retval, 32, "Should be 32";

ok $retval = MyPackage::addNumbers(32,-16);

is $retval, 16, "Should be 16";

❑ t/02subtract.t: This tests subtractNumbers():

use strict;
use warnings;

use Test::More tests => 6;
use MyPackage;

ok my $retval = MyPackage::subtractNumbers(6,3);

is $retval, 3, "Should be 3";

ok $retval = MyPackage::subtractNumbers(64,32);

is $retval, 32, "Should be 32";

ok $retval = MyPackage::subtractNumbers(32,-16);

is $retval, 48, "Should be 48";

❑ t/03string.t: This tests if the value of $retval matches the expected text value with the method
cmp_ok:

use strict;
use warnings;

use Test::More tests => 4;
use MyPackage;

ok my $retval = MyPackage::doubleString(’this’);

cmp_ok $retval, ‘eq’, ‘thisthis’;

ok $retval = MyPackage::doubleString(’them’);

cmp_ok $retval, ‘eq’, ‘themthem’;

Then if you rebuild MyPackage, you can run make test:

radha:modules pgalbraith$ perl Makefile.PL

IMPORTANT!

203

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 204

Chapter 4: Perl Primer

To install this module you will needWriting Makefile for MyPackage
radha:modules pgalbraith$ make
Skip blib/lib/MyPackage.pm (unchanged)
Skip blib/lib/MyPackage/SubPackage.pm (unchanged)
Manifying blib/man3/MyPackage.3pm
radha:modules pgalbraith$ make test
PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e"\

"test_harness(0, ‘blib/lib’, ‘blib/arch’)" t/*.t
t/00basic.......ok
t/01add.........ok
t/02subtract....ok
t/03string......ok
All tests successful.
Files=4, Tests=19, 0 wallclock secs (0.08 cusr + 0.04 csys = 0.12 CPU)

And now your module has the beginnings of a test suite!

Adding a MANIFEST file
Adding a file named MANIFEST to your module’s directory, containing all the files you want to put into a
distribution, allows you to run make dist, which creates a tar.gz file of your package for distribution.

Just run this:

find . > MANIFEST

. . . from within the directory of your module. Also, remove any lines that are directory-only — those that
only specify a directory — so that the only things listed in MANIFEST are files:

foo.pl
Makefile.PL
MANIFEST
MyPackage/SubPackage.pm
MyPackage.pm
t/00basic.t
t/01add.t
t/02subtract.t
t/03string.t

Then, when you run make dist, you will see it make a package file:

make dist
rm -rf MyPackage-0.0.1
/usr/bin/perl "-MExtUtils::Manifest=manicopy,maniread" \

-e "manicopy(maniread(),’MyPackage-0.0.1’, ‘best’);"
mkdir MyPackage-0.0.1
mkdir MyPackage-0.0.1/t
mkdir MyPackage-0.0.1/MyPackage
Generating META.yml
tar cvf MyPackage-0.0.1.tar MyPackage-0.0.1
MyPackage-0.0.1/
MyPackage-0.0.1/foo.pl

204

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 205

Chapter 4: Perl Primer

MyPackage-0.0.1/Makefile.PL
MyPackage-0.0.1/MANIFEST
MyPackage-0.0.1/META.yml
MyPackage-0.0.1/MyPackage/
MyPackage-0.0.1/MyPackage/SubPackage.pm
MyPackage-0.0.1/MyPackage.pm
MyPackage-0.0.1/t/
MyPackage-0.0.1/t/00basic.t
MyPackage-0.0.1/t/01add.t
MyPackage-0.0.1/t/02subtract.t
MyPackage-0.0.1/t/03string.t
rm -rf MyPackage-0.0.1
gzip --best MyPackage-0.0.1.tar

And now you have a distribution file that you can make available to others — or even put on CPAN if
it’s something you want to share with the world!

CPAN
Most often, you can find an existing Perl module to do something you need on CPAN (Comprehensive
Perl Archive Network). This can save you countless hours of work since modules that other people have
already written can do just about everything you’d ever need. Some common Perl modules you’ll use
from CPAN (and these are usually already installed on most operating systems, particularly Linux) for
web application development are the following:

❑ DBI: Database access methods.

❑ DBD::mysql: Low-level Perl driver for MySQL, used by DBI, automatically loaded by DBI.

❑ Apache:DBI: Apache web server/mod_perl-specific database layer to handle DBI calls.

❑ Cache::Memcached: memcached data access methods.

❑ Apache2::Const: Provides return codes for mod_perl handlers.

❑ LWP: Provides web client functionality.

❑ HTML::Mason: Perl web application templating.

❑ Template: Another Perl web application template solution.

❑ Date::Manip: Date handling methods.

❑ Getopt: Standard, convenient, and simple methods for processing program flags and
arguments.

So, before you start hacking together a Perl module to run your house’s heat exchange system or to
display seismometer readings into a report, first find out if there is a module for your needs by accessing
the CPAN search page at http://search.cpan.org/.

Installing a CPAN module, once you know its name, is done with the cpan program. You can run it by
command line or with an interactive shell. To install a module with a single command line, as the root
user, use this:

radha:∼root# cpan -i Date::Manip

205

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 206

Chapter 4: Perl Primer

Or, to install it via the shell, use this:

radha:∼ root# cpan

cpan shell -- CPAN exploration and modules installation (v1.7602)
ReadLine support enabled

cpan> install Date::Manip

This handy program will download the module from the CPAN site, compile it (some Perl modules have
C code for core functionality), run tests, and install it if all the tests pass.

Check your operating system’s packaging system first to see if there is already a
package for a given Perl module you might otherwise try to install with CPAN.

Before this chapter comes to a close, it’s worthwhile to revisit regular expressions. Regular expressions in
Perl are one of the key features that make Perl suitable for database and web application development.
Being able to parse strings and pattern-match, as well as perform substitutions on regular expressions
easily is one of the core functionalities of Perl that facilitates rapid development. Other languages require
more work — requiring more coding — to do what is trivial in Perl. Regular expressions in Perl use the
same basic syntax as other tools, such as grep, sed, awk, so the knowledge is transferable.

Regular expressions are a complex enough topic to justify an entire book, and there are many good
books and web site pages on the topic. For the sake of saving many trees, this book won’t attempt to be
comprehensive! However, let’s cover some information on the subject.

Regex One-Liners
You may find yourself searching for various quick and convenient one-liner regular expressions that you
have forgotten.

For example, to obtain a value from regex grouping when you try to parse a value from your my.cnf, you
would apply a regular expression to the string that contains it. Then, if you want to obtain the value from
the grouping, you would use $1.

my $var1= "innodb_buffer_pool_size = 64M";
$var1=∼ /pool_size\s+=\s+(\d+\w)\b/;
my $innodb_bsize= $1;

If you wish, the last two lines could instead be done in one step:

my ($innodb_bsize) = $var1=∼ /pool_size\s+=\s+(\d+\w)\b/;

So the previous code would give you:

64M

206

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 207

Chapter 4: Perl Primer

Similarly, if you are using a regex with a global modifier, you can store every grouping match in an array
(the author really loves this trick):

var1= "This is a test. So many things to test. I have 2 cats and one dog";
@var2 = $var1 =∼ /([ˆ \s\d]{3,})/g;

This array contains (using Data::Dumper) the following:

$VAR1 = [
‘This’,
‘test.’,
‘many’,
‘things’,
‘test.’,
‘have’,
‘cats’,
‘and’,
‘one’,
‘dog’

];

The same holds true for replacement. A convenient one-liner for testing if a replacement actually took
place is this:

$stuff= "cat and dog";
for (1 .. 2) {

my $replaced = $stuff =∼ s/dog/mice/;
print "$_: was" . $replaced ? ‘’ : "n’t" . " replaced\n";

}

Some extra-tricky conditional-string appending was added to this example, the point being that
$replaced can be used to determine if the string was affected by the substitution. In the first iteration of
the for loop, the output of this snippet is:

1: was replaced
2: wasn’t replaced

Storing Regular Expressions in Variables
Storing regular expressions in variables is another useful feature. This can be done with the qr// regexp
quote-like operator.

$regex= qr/PATTERN/imosx; # the trailing characters are various regex
options

$val =∼ /$regex/;

For instance, you might have an admin interface in your web application that gives admin users the
ability to enter regular expressions that filter whatever the site administrator wants filtered — perhaps
submitted comments for certain patterns you may want to block. Slashcode, for example, the source
code that runs Slashdot.org, has this feature. An arbitrary list of these regular expressions would be

207

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 208

Chapter 4: Perl Primer

stored in the database and retrieved when the web server starts. The following example shows how
this works:

my $stuff= "1st, second and 3rd, but not fourth, but maybe 5th, or even
sixth";

for my $rawpat (’(\d\w\w)\b’, ‘([a-zA-Z]+th)\b’) {
$pat= qr/$rawpat/;
my (@matched)= ($stuff =∼ /$rawpat/g);
print Dumper \@matched;

}

You can see how two strings that contain regex patterns can in turn be interpolated as regexes is applied
within a loop. In a real-world situation, the regex strings in an array would be retrieved from the database
and applied in the same way.

Regex Optimizations
There are some basic optimizations you can apply to your regular expressions. These optimizations can
save a CPU cycle here and there, which can add up in the end!

Regex Compilation
Using the /o ‘‘once-only’’ modifier at the end of a regular expression causes it to be compiled and cached
only once. One thing to keep in mind: When using this modifier, you cannot change the regular expres-
sion after compiling it once (for example if you use interpolation to create a regular expression). In the
previous example, using a variable as a pattern would not have worked with this once-only modifier
because its value varied within the iterative for loop, so Perl would not have heeded the change!

$var1 =∼ /pattern/o

Grouping Optimization
By not storing grouped patterns, in other words the $1, $2, $N . . . variables, you can make your regular
expressions more efficient. This, of course, is if you don’t need to store the value and want to use the
grouping only for matching instead of capturing. To prevent capturing, you would use this:

$var1 =∼ /(?:pattern)/;

Perl 6 Tidbits
Perl 6.0 is slated to be the next major revision of Perl and promises many new and exciting features.
Although Perl 6 has not yet been released, some of its syntactic features have been back-ported to
Perl 5.10.

To use these new syntactic features, you use the feature pragma:

use feature ‘:5.10’; # enables all features

use feature qw(switch say); # loads only switch and say

208

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 209

Chapter 4: Perl Primer

Some of the new syntactic features are:

❑ say(): This is a new printing function that automatically includes a new line in what it prints
out:

my $you = "you";
my $me = "me";
my @always = (’say’, ‘it’, ‘together’, ‘naturally’);

say "say";
say $you;
say $me;
say $_ for @always;

Also new is the defined ‘‘or’’ // operator, which allows you to write the following code:

my $val1 = ‘val1’;
my $val2 = undef;

my $val3 = defined ($val2) ? $val2 : $val1;

. . . to instead be written as:

my $val3 = $val2 // $val1 ;

❑ switch(): Native switch() has arrived for Perl! With the given/when construct, you can now
enact switch() within your code. It can work on numeric values like so:

my $someval = 33;
given ($someval) {

when (31) { say "31 is the value"}
when (32) { say "32 is the value"}
when (33) { say "33 is the value"}
default { say "none of the above"}

};

. . . and also on strings — using equality or regex:

print "enter a value:";
$someval = <STDIN>;
chomp($someval);
given ($someval) {

when ("this") { say "You entered ‘this’"}
when (/that/) { say "You entered ‘that’"}
when (/ ˆ z/) { say "You entered a word begging with ‘z’"}
default { say "You entered $someval"}

}

There are several other new features available for use with Perl 5.10, which you can read more about by
running perldoc feature.

209

Galbraith c04.tex V3 - 06/02/2009 8:19am Page 210

Chapter 4: Perl Primer

Summary
This chapter serves as a Perl refresher for several categories of developers: (1) those who perhaps aren’t
familiar with Perl but who have programmed using other languages and now wish to learn about Perl,
(2) former Perl programmers who have more recently been busy working with other languages and now
need to review various Perl concepts, and (3) even avid Perl programmers who want to revisit some of
the basics. The following topics were discussed in this chapter:

❑ The various Perl data types, usage, and scope, as well as references, subroutines, file and direc-
tory handles, and Perl modules.

❑ How to code a simple Perl module.

❑ How to use POD for documenting the module.

❑ How to create tests and use a MANIFEST file for creating a distribution file of a module.

You were also shown some new Perl 6.0 syntactic features that are available with Perl 5.10.

210

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 211

Object-Oriented Perl

Perl is a procedural language by nature. Many of the early programs written in Perl that you occa-
sionally stumble upon on the Internet attest to this. With the advent of Perl 5.0, syntax and semantics
were added to Perl to facilitate its use as an object-oriented language. As with many other aspects
of Perl, Perl’s implementation of object orientation is not ‘‘strict,’’ and is not an inherent attribute
of the language. This in no way diminishes its use as an object-oriented language, though it may
incur the scorn of some object-oriented language purists. This has been the topic of many heated
debates. Just buy your Java programmer friends lunch, and everything will be OK!

Chapter 4 covered references and packages/modules, both of which are key to understanding
how to work with object-oriented Perl. With packages, you can have reusable code within a file
that has variables and subroutines that are pertinent to a given functionality, as well as their own
namespace. The subroutines and variables are accessed by specifying the package name. You saw
how you could set a reference to a subroutine. These two things combined, along with the magical
Perl function bless (which will be discussed in this chapter), essentially give you what you need
for object-oriented programming in Perl!

This chapter gives an overview of object-oriented Perl. Much of the code you will write for mod_perl
database-driven web applications takes advantage of the benefits of object orientation — whether
you write your own classes or use the multitude of Perl modules available that have object-oriented
interfaces. This makes your application a lot easier and faster to develop, modify, fix bugs for, and
add enhancements to, because with object orientation, your code will innately have structure and
organization. Also with object-oriented programming, you can have convenient objects providing
APIs that you can use in programs, such as mod_perl handlers. These APIs could include object
methods that handle user sessions, obtaining user information from the database, or methods that
perform operations such as displaying page content.

This chapter will cover the basic concepts and terminology of object orientation. It starts with a
bare-bones class, presenting code examples using that class, and then gradually fleshes them out. In
the opinion of the author, this is one of the best ways to explain a concept and is also a good way to
develop classes and the applications that use them.

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 212

Chapter 5: Object-Oriented Perl

About Object Orientation
What exactly is object orientation? This might be clearer if we start with some definitions:

Term Definition

Class Object orientation starts with grouping code with similar functionality and
attributes into a class. This is the blueprint of a given type of object.

Object A specific instance of a particular class. Objects provide access to data.

Method A subroutine or function of a class is a method, providing access to a given
object of the particular class. A method is the thing an object can do — for
instance, an object that is of the Lion class would have a roar() method.

Attribute The container for data belonging to an object.

Abstraction The simplification of complexity. An object is a particular type of ‘‘thing’’
that hides the gory details of how the functionality is implemented — this
is abstraction.

Interface The overall set of methods or functionality that provides access to a given
class. This provides the definition for how the class is actually used.

Implementation The actual implementation details of the object’s functionality which are
abstracted from the user through the means of the members of the class
being encapsulated. The class’s implementation can internally change, but
not the interface.

Encapsulation How access to a particular class’s member (attribute or method) is
concealed within a given class, preventing direct access to that member. It
is the class’s interface that provides access to encapsulated class members.

With object-oriented programming, the user’s focus is on writing an application or other program that
uses the object, without being too concerned with how that object works under the hood. Object ori-
entation makes writing applications easier and faster to implement since you have reusable code that
provides functionality you don’t have to implement in your program. It also makes the program aesthet-
ically pleasing to read and easier to follow.

With this said, objects support inheritance, either inheriting from a parent object or derived objects. Inher-
itance might be best explained in Figure 5-1, which uses the species Felidae — the cat.

The top-level class in Figure 5-1 is the main species of cats, Felidae, which has two subclasses, otherwise
known as derived classes: the families Pantherinea and Felinea. The derived classes inherit from Felidae, and
in turn, each derived class has its own derived classes. So a tiger is a Pantherinea, and it inherits attributes
and other distinct qualities of that family, while the family Pantherinea inherits its qualities from the top
species, Felidae. The major qualities and attributes that a Felidea has are also possessed by a tiger and by
a domestic cat, but with some variance. For example, all cats — tigers, lynx, housecats, and lions — have
coats of fur (even those odd-looking hairless cats). But fur differs among them. A tiger’s fur has stripes;
a lion’s does not. Male lions have a mane; male tigers do not. A lynx has long fur, particularly on its
feet, and domestic cats have all types of fur. This fur attribute, which in the top-level class is generic, is
overridden in each subclass and implemented in its own way. This ability for a derived class (child class)

212

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 213

Chapter 5: Object-Oriented Perl

to override a behavior or attribute of the class from which it is derived (from parent or ancestor class) is
known as polymorphism.

Is-A Is-A Is-A Is-A

Pantherinae

Tiger Lion Lynx Domestic
Cat

Cougar

Felinae

Felidae

Is-AIs-A

Is-A

Figure 5-1

Object Orientation in Perl
Perl object orientation is just as full-featured as any other object-oriented programming language. Here
are some things about Perl object orientation you should know:

❑ It supports classes, class attributes, and methods

❑ It provides a means of instantiation

❑ It supports inheritance

❑ It supports polymorphism

❑ It supports using objects (instantiated classes)

❑ Public/private is not enforced by design, only encouraged through implementation

To better understand just what Perl object-oriented programming is and what it means, this section will
show you how to write a simple class, slowly fleshing out its details, adding members and the methods
for accessing these members to this class. It also will show you how to use inheritance to create derived
classes, as well as how Perl programs can instantiate and use this class.

Writing a Perl Class
How does Perl implement and provide object-orientation functionality? Packages and references are
two of the key components to how Perl provides object orientation. Plus, as others have stated before:
syntactic sugar.

The object-oriented programming terms were described in the table in the previous section. Building on
these terms and on what you covered in Chapter 4, you should know the following about Perl object-
oriented programming:

❑ Classes are defined using packages. With Perl, a class is nothing more than a package with a
constructor subroutine.

❑ A constructor is the subroutine that instantiates or creates the object in the first place, returning a
reference to the instantiated class.

213

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 214

Chapter 5: Object-Oriented Perl

❑ Methods are simply a class’s subroutines. There are two types of methods in Perl: static meth-
ods, in which the first argument passed to the method is the class name; and instance or object
methods, in which the first argument passed to the method is an object reference to itself.

❑ An object is simply an instantiated class, accessible via a reference. This reference ‘‘knows’’ what
type of object it is because of the Perl bless() function, which will be discussed in the ‘‘Con-
structors’’ section.

Writing a class in Perl is quite simple and involves:

❑ Creating a package that can contain package variables such as those for version and other
attributes

❑ Creating a constructor method (static method) that will be used to instantiate the class

❑ Adding instance methods

Creating a Package
The following code shows the beginning of writing a Perl class. The first thing that must be done is to
create a package.

package Felidea;

1;

This, of course, sets what namespace this class will be using — what type of class an object belonging to
this will be.

The next thing to add is the $VERSION package variable and then set a version. $VERSION is another special
variable name, just like @EXPORT, @EXPORT_OK, etc. You can use any value for $VERSION, depending on
which version format you choose. In this case, it’ll be <main version>.<minor version>:

our $VERSION = 0.001;

Using a package $VERSION variable also provides an easy way to find out what version of a module or
class you’re using:

perl -MFelidea -e ‘print "$Felidea::VERSION\n";’
0.001

Constructors
Now, you create a constructor method to Felidea.pm. The purpose of a constructor method is to instan-
tiate a class as an object, returning a variable that is a reference to that object. This reference is used to
interact with the object.

sub new {
my ($class, $opts)= @_;

some common attributes

214

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 215

Chapter 5: Object-Oriented Perl

my $self= {
‘_fur’ => ‘’,
‘_weight’ => 50,
‘_claws’ => 1,
‘_fur_color’ => ‘’,
‘_fur_length’ => ‘’,
‘_tail’ => 1,
‘_fangs’ => 1,

};

other options that can be passed
$self->{$_} = $opts->{$_} for keys %$opts;

this makes it so $self belongs to the class Felidea
bless $self, $class;

return the object handle
return $self;

}

The new() subroutine or method is the constructor for Felidea. Its purpose is to instantiate a
Felidea object. With Perl, an object is a reference to any data type that ‘‘knows’’ to what class — or
namespace — it belongs. The Perl function bless() is the key to this. It makes object orientation
possible. The function bless() tells the thingy (yes, this is terminology!), which in this case is a variable
called $self, that it belongs to a class — in this case whatever the value of $class is. Now, $self, the
class’s object reference to itself, is what other programming languages call ‘‘this,’’ however, the variable
name ‘‘self’’ is only a common convention in Perl and could be called anything you want it to be.

The new() method is a static method (class method) since it takes as its first argument the name of the
class, as well as a hash reference that contains various options that may be set upon instantiation. An
anonymous hash, referred to by $self, is set with some attributes — key names beginning with under-
scores to denote privacy. Privacy in Perl object orientation is not enforced by design, although can it be
enforced in a number of ways, like using closures or even Perl modules such as Moose.

Next, any values in $options are keyed into $self. These are what are known as instance
variables — variables that are set upon instantiation. As already stated, the bless() function is
the key to instantiation and Perl’s object orientation. The bless() function makes it so $self belongs to
the class specified in $class. In this case, $self now is a reference to a Felidea object. Finally, $self is
returned, the caller now having a reference to the Felidea object.

The constructor method name ‘‘new’’ is a convention, but is not a reserved word in Perl as it is in other
programming languages and does not have to be used as the name of the constructor. In other languages,
the name of the class is the name of the constructor; the constructor in this example could have just as
easily have been named Felidea instead of new.

To begin using this object, as with a module, your program will use the Felidea module in your program
or script:

use Felidea;

215

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 216

Chapter 5: Object-Oriented Perl

Different from using a regular module (non-object-oriented) is the use of the new method of the Felidea
class to obtain an instantiated (with bless) Felidea object reference, which it can now call Felidea meth-
ods through:

my $fel= new Felidea();

The call to new in the first line is not the same as it is in C++ and other object-oriented languages. As
mentioned before, new is not a reserved word — you’re actually calling the new() constructor method
listed in the Felidea class, not allocating memory for an object as you would in a programming language
such as C++. Another way of writing the above call to the constructor is this:

my $fel= Felidea->new();

In this example, you can see how it is a call to Felidea’s new subroutine/method. Also, notice the
use of:

Felidea->new

. . . as opposed to:

Felidea::new

. . . which was used in the last chapter for package subroutine calls. As you saw previously in the imple-
mentation of the constructor, the constructor takes as its first argument the name of the class that it is
going to instantiate.

To accomplish this using the :: notation, you would have had to write:

my $fel= Felidea::new(’Felidea’);

It would be tedious and redundant to have to construct all of your methods this way. The arrow method
call takes care of this for you. So in object orientation, you will be using:

$object_handle->method_name

Remember, you don’t have to use new as the constructor name. If you had used the convention of naming
the constructor the same name as the class, the line above would be written like so:

my $fel= Felidea Felidea();

. . . or like so:

my $fel= Felidea->Felidea();

Now that the constructor has been called, you have an object reference that will be used for all subsequent
uses of the object. This is why it’s important to understand that references are one of the key concepts
of object-oriented programming. This object reference is similar to the reference to a subroutine shown
in Chapter 4, except that an object reference knows what type of class it is (which was accomplished by
using the function bless()), and can call all the methods in the class that it refers to.

216

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 217

Chapter 5: Object-Oriented Perl

Both object references are to different instantiated objects for the same class. Also, because instance vari-
ables are allowed, it is also possible to instantiate Felidea with arguments:

my $fel= Felidea->new({
DEBUG => 1,
fur_color => ‘pink’,
fur_length => ‘long’}
);

Adding Methods
Next, you want to add methods to Felidea.pm. These methods can be a variety of functionalities, either
setting object attributes or retrieving attributes. This next section will show you how this is done.

Accessors
The first method that will be added is a simple method to provide encapsulation — accessing a ‘‘private’’
class/object attribute by way of a method:

sub hasFur {
my ($self)= @_;
return $self->{_fur};

}

You’ll notice that the method above, hasFur(), is different than the subroutines of regular Perl modules
shown in the previous chapter. hasFur() is an object or instance method, as opposed to a regular package
subroutine. For those readers who are familiar with object-oriented programming in other languages,
hasFur() could also be considered a virtual method in that it can be overridden, though the term virtual
method is not often used in Perl object-oriented programming. hasFur() takes as its first argument an
object reference, $self, to the instantiated class, as opposed to class methods, such as new(), which take
the name of the object.

One thing to keep in mind: The constructor method’s first argument was the name
of the class, so it is a static method. In an instance method, the first argument is a
reference to the object, so the rest of the methods shown in the Felidea class are
instance methods.

In the new method, the class attribute $self->{_fur} was defined and set to a default of 1, using an
underscore key name to denote privacy. This method simply provides proper access to that private
attribute. To use this method in your program, you would call it:

print "has fur\n" if $fel->hasFur();

Since Perl doesn’t enforce privacy, you could have called it like so:

print "has fur\n" if $fel->{_fur};

217

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 218

Chapter 5: Object-Oriented Perl

But this would be rude! Seriously, you are welcome to do whatever you like in terms of using the nomen-
clature of public versus private. Perl doesn’t enforce it by name alone, so you can do whatever you like.
That is Perl’s nature. However, it might be good to follow some sort of naming convention and to use
underscores as a standard naming convention, as this is often used for naming private methods and
attributes in Perl programming.

Setting Methods
As well as retrieving attributes, you also want to set attributes. Again, you set an attribute that is intended
to be private from within Felidea.pm:

sub furColor {
my ($self, $fur_color)= @_;
$self->{_fur_color}= $fur_color if defined $fur_color;

return $self->{_fur_color};
}

The method furColor() simply takes as an argument the fur color that program wishes to pass and sets
its private attribute _fur_color to that passed argument. To use this method in your program, it is called
just like any other method is called, except you can either specify a value or not as an argument:

$fel->setFurColor(’tan’);

This sets the private attribute _fur_color to ‘tan’. To access the fur color:

print "fur color " . $fel->furColor() . "\n";

This returns the _fur_color attribute. You could also call it this way:

print "fur color" . $fel->furColor(’tan’) . "\n";

The previous snippet both sets and accesses _fur_color. So, the complete Felidea class as defined in
Felidea.pm is now:

package Felidea;

use strict;
use warnings;

our $VERSION = 0.001;

{ # this is a closure

The subroutines in this enclosure are here to give
access to lexical variables which are not visible outside
the closure, aka encapsulation

this is a listing of permitted instance variables
are permitted
my $OPTIONS= {

‘_DEBUG’ => 1,
‘_fur’ => 1,

218

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 219

Chapter 5: Object-Oriented Perl

‘_weight’ => 1,
‘_fur_color’ => 1,
‘_fur_length’ => 1

};

this gives a true or false of whether an option is permitted
sub _permitted_option {

if 2 args, called as method, if only 1, subroutine
my $key= scalar @_ == 2 ? $_[1] : $_[0];
$key= ‘_’. $key;
return exists $OPTIONS->{$key};

}

}
sub new {

my ($caller, $opts)= @_;

this allows an already instantiated object to be able to
be used to instantiate another object- to behave as either
a static or dynamic method
my $class= ref($caller) || $caller;

some common attributes
my $self= {

‘_name’ => ‘’,
‘_fur’ => 1,
‘_weight’ => 50,
‘_claws’ => 1,
‘_fur_color’ => ‘’,
‘_fur_length’ => ‘’,
‘_tail’ => 1,
‘_fangs’ => 1,

};

instance variables passed via $opts hashref
for (%$opts) {

Only if _permitted_option returns a true value
$self->{$_} =

$opts->{$_} if _permitted_option($_);

this makes it so $self belongs to the class Felidea
bless $self, $class;

return the object handle
return $self;

}

sub name {
my ($self, $name)= @_;
$self->{_name}= $name if defined $name;
return $self->{_name};

}

219

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 220

Chapter 5: Object-Oriented Perl

sub fur {
my ($self, $fur)= @_;
$self->{_fur}= $fur if defined $fur;
return $self->{_fur};

}
sub weight {

my ($self, $weight)= @_;
$self->{_weight}= $weight if defined $weight;
return $self->{_weight};

}

sub claws {
my ($self, $claws)= @_;
$self->{_claws}= $claws if defined $claws;
return $self->{_claws};

}

sub furColor {
my ($self, $fur_color)= @_;
$self->{_fur_color}= $fur_color if defined $fur_color;
return $self->{_fur_color};

}

sub furLength {
my ($self, $fur_length)= @_;
$self->{_fur_length}= $fur_length if defined $fur_length;
return $self->{_fur_length};

}

sub tail {
my ($self, $tail)= @_;
$self->{_tail}= $tail if defined $tail;
return $self->{_tail};

}
sub fangs {

my ($self, $fangs)= @_;
$self->{_fangs}= $tail if defined $fangs;
return $self->{_fangs};

}
sub solitary {

my ($self, $solitary)= @_;
$self->{_solitary}= $tail if defined $solitary;
return $self->{_solitary};

}

1;

Each attribute now has its own accessor method. You’ll notice the naming convention follows
these rules:

❑ If the attribute is a single word with no underscores, the method name is the same.

❑ If the attribute value contains underscores, the underscore is omitted and the first character
following the underscore is capitalized in the method name.

220

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 221

Chapter 5: Object-Oriented Perl

This style is known as CamelCase, and is often used in object-oriented languages. However, this is just a
style preference and not a requirement. Use whatever naming convention you prefer.

Also added is an $OPTIONS hash reference, scoped lexically, inside an enclosure. This reference
makes it possible for $OPTIONS or any of its members to be accessed directly. An accompanying
_permitted_option() method is used to obtain a true or false value, telling you whether the instance
variables exist in $OPTIONS or not. This controls which instance variables can be set at the time of
instantiation. Also note that this can be called as either a subroutine or a method, since it checks the
number of arguments that are passed. If there are two arguments, this means it was called as a method
and you should use the second argument. If there is only one argument, it was called as a
subroutine and you should use the one and only argument.

The other thing you’ll notice or realize is that it seems a bit redundant to have to list all the methods for
each attribute. Your developer’s brain is probably screaming, ‘‘I see duplication!’’ For each attribute you
might add to the Felidea class, you would also have to code a method to match it. Fear not, there is a
way to make this more compact!

On-Demand Method Manifestation Using AUTOLOAD
In Perl, autoloading — using the subroutine AUTOLOAD() — is one way to create subroutines (or, in the
case of object-orientation, methods) that are not defined and have them handled without an error. It
allows a method to function upon its invocation without having to have the method defined in your
class. It can be used in the case of the Felidea class to dynamically create accessor methods for each of
its attributes.

It should be noted that using AUTOLOAD() is the traditional or ‘‘old school’’ way of autogenerating
methods and is now not considered to be a Perl ‘‘best practice,’’ although you are free to use it if you
want. The Perl cops won’t come and arrest you if you do. Life can be made easier for you because there
are now a number of philosophies and ways to autogenerate methods, by using various Perl modules
such as Class::Std, Class::InsideOut, Object::InsideOut, Class::Accessor and Moose. These can a bit more
straightforward than AUTOLOAD().

However, because you will still find many articles online and books in print that still show AUTOLOAD()
as the mechanism used in Perl for creating accessor get/set methods, it is good to understand how it
works. Seeing this done with AUTOLOAD() will also give you appreciation for some of the newer methods,
which is the reason for this section. After this chapter covers AUTOLOAD(), you will then see an easier
way of doing this with Moose in the next section!

How does AUTOLOAD() work? When a subroutine in a package — or a method in a class in object
orientation — is called, if it doesn’t exist in the class, and is not found by looking recursively through
@ISA, Perl next checks to see if there is a subroutine called AUTOLOAD() and calls it if it exists. AUTOLOAD()
is called in the same exact way that the intended method was called, with the same number and order of
arguments. Next, the package variable $AUTOLOAD (which has already been declared a package-scoped
variable with our) assumes the fully qualified name of the called method. Subsequent calls to this
method are handled by whatever code is defined in the AUTOLOAD method.

The Felidea class is then changed to the following:

package Felidea;

221

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 222

Chapter 5: Object-Oriented Perl

use strict;
use warnings;

this is so we can use croak – which gives more info
than "die"
use Carp qw(croak);

our $VERSION = 0.001;

{ # this is a closure.

The subroutines in this enclosure are here to give
access to lexical variables which are not visible outside
the closure, aka encapsulation

this is a listing of permitted instance variables
are permitted
my $OPTIONS= {

‘_DEBUG’ => 1,
‘_fur’ => 1,
‘_weight’ => 1,
‘_fur_color’ => 1,
‘_fur_length’ => 1

};

this gives a true or false of whether an option is permitted
sub _permitted_option {

if 2 args, called as method, if only 1, subroutine
my $key= scalar @_ == 2 ? $_[1] : $_[0];
$key= ‘_’. $key;
return exists $OPTIONS->{$key};

}

this can be used both in supplying a list of attributes that are
members in the class, as well as in the constructor
my $ATTRIBS= {

‘_name’ => ‘felidea’,
‘_fur’ => 1,
‘_weight’ => 50,
‘_claws’ => 1,
‘_fur_color’ => ‘’,
‘_fur_length’ => ‘unset’,
‘_tail’ => 1,
‘_fangs’ => 1,
‘_solitary’ => 1,

};

returns default of attribute
sub _attrib_default {

if 2 args, called as method, if only 1, subroutine
my $arg= scalar @_ == 2 ? $_[1] : $_[0];
return $ATTRIBS->{$arg}

}

returns true/false of whether attribute exists or not

222

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 223

Chapter 5: Object-Oriented Perl

sub _attrib_exists {
if 2 args, called as method, if only 1, subroutine
my $arg= scalar @_ == 2 ? $_[1] : $_[0];
return exists $ATTRIBS->{$arg}

}

returns a list of class attributes
sub _attrib_keys {

return keys %$ATTRIBS
}

} # end of closure

Creates methods if existing in $ATTRIBS
sub AUTOLOAD {

my ($self, $value) = @_;

only want the attribute value, not the full package name
my ($attrib) = (our $AUTOLOAD) =∼ / ˆ .*::(\w+)$/ or die "Error:

$AUTOLOAD";

again, converting from Capital studly caps
$attrib=∼ s/([A-Z])/_\l$1/g;

leading underscore
$attrib = ‘_’ . $attrib;

only if the attribute is a member, do you create it
if (_attrib_exists($attrib)) {

$self->{$attrib}= $value if $value;
return $self->{$attrib};

}

this handles if the attribute, and therefor the method,
does not exist – except for DESTROY, which is automatically called
when done with an object
croak "Method $AUTOLOAD is not a valid method!\n"

unless $AUTOLOAD =∼ /DESTROY/;
}

sub new {
my ($class, $opts) = @_;

some common attributes
my $self;
$self->{$_} = _attrib_default($_) for _attrib_keys();

instance variables passed via $opts hashref
for (keys %$opts){

Only if _permitted_option returns a true value
$self->{$_} =

$opts->{$_} if _permitted_option($_);
}

this makes it so $self belongs to the class Felidea
bless $self, $class;

223

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 224

Chapter 5: Object-Oriented Perl

return the object handle
return $self;

}

1;

The changes made to the Felidea class are summarized here:

❑ A lexically scoped $ATTRIBS hash reference: This is added in the enclosure that already contains
$OPTIONS. This $ATTRIBS hash reference has keys, which are the attributes the class will use. This
is where you would add new attributes, resulting in new class accessor/modifier methods for
those attributes.

❑ Encapsulated hash reference accessor subroutines: These are added to prevent direct access to
$ATTRIBS.

❑ _attrib_default(): Returns the default of the attribute. It can be called as either a method or
subroutine since it has logic to check the number of arguments just as _permitted_options()
does.

❑ _attrib_keys(): Returns a list of the keys, or attributes. Can be called as either a method or
subroutine.

❑ _attrib_exists(): True/false of whether the attribute exists or not, whether it should have a
method AUTOLOADed for it. Can be called as either a method or subroutine.

❑ Adding the use of Carp This has subroutines to act as warn() or die() but with useful informa-
tion. For Felidea, croak() functions like die(), and is used when an attribute is not existing.

❑ AUTOLOAD: The AUTOLOAD subroutine/method is added. This contains the functionality to
dynamically generate methods based on the attribute name. Because the method naming style
used here is studly-caps, the attribute supplied needs to be converted from word fragments
(if it exists) separated by capitalization, to word fragments separated by underscores, giving
the correct attribute name. Furthermore, a check to ensure that the attribute exists using
_attribute_exists() is made. If it does exist, the same code as used before in each individual
method is called. Finally, if the attribute did not exist, the croak() function handles the error
with a message printing out $AUTOLOAD, which will call the full method name, unless the method
is DESTROY, which is automatically called when the program exits.

❑ The constructor new(): This now uses _attribute_keys() to obtain an attribute list, mapping
each by key for populating attributes to $self.

Notice now that this class no longer has the various accessor methods! AUTOLOAD takes care of this for
you. If you want to add attributes and associated methods for each, just add to $ATTRIBS.

The following code block shows the program used to test this. It uses all the different methods to give
you an idea how this program is used, and also shows that AUTOLOAD does its trick:

#!/usr/bin/perl

use strict;
use warnings;

224

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 225

Chapter 5: Object-Oriented Perl

use Felidea;
my $fel= new Felidea();
print "has fur\n" if $fel->fur();
print "Setting fur color to tan.\n";
$fel->furColor(’tan’);
print "fur color " . $fel->furColor() . "\n";
$fel->furLength(’short’);
print "fur length" . $fel->furLength() . "\n";
$fel->weight(30);
print "weight " . $fel->weight() . "\n";

print "Has a tail.\n" if $fel->tail();
print "Has fangs.\n" if $fel->fangs();
print "Has claws.\n" if $fel->claws();
$fel->claws(0);
print "But, declawed now.\n" unless $fel->claws();

The output of this program verifies that AUTOLOAD works as advertised:

has fur
Setting fur color to tan.
fur color tan
fur lengthshort
weight 30
Has a tail.
Has fangs.
Has claws.
But, declawed now.

What about calling a method that doesn’t exist? This is easy enough to check:

print "This Fildea is going to moo: " . $fel->moo(); "\n";

This results in the Felidea object letting you know that you called an invalid method:

Method Felidea::moo is an invalid method!
at ./feline_app.pl line 21

You can now also see the benefit of using the carp() error handling.

Although autoloading is useful, there are some issues that need to be brought up:

❑ As stated before, AUTOLOAD() is not considered to be a Perl ‘‘best practice,’’ particularly when
you have a derived class that has its own AUTOLOAD() subroutine, yet you end up with the hier-
archical search using the top-level class’s AUTOLOAD()instead. There are ways to get around this
issue, though you end up having to add more code, which makes your AUTOLOAD() methods
more complex and slower, and thus more difficult for you to maintain.

❑ There is some overhead with this method generation every time the method is called, as opposed
to having the method already defined in the class. This can result in slower overall execution of
the code. (There is a way around this that will be discussed later.)

225

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 226

Chapter 5: Object-Oriented Perl

❑ As a developer, you have to ensure you have a mechanism to handle methods that don’t exist (as
already shown). Nothing in life is free!

❑ The other question is: How could you have read-only methods, as well as methods that have
a different naming convention than you’ve already been shown? The answer lies in what you
want to implement. With AUTOLOAD, you have to provide the functionality to make sure it cre-
ates the methods you want, handles errors for missing arguments or methods that are called for
attributes that don’t exist, and controls access to those methods. You have more work up front,
but of course it saves you from having duplicate code and having to write the same method func-
tionality over and over again.

As an example, some developers want to have their methods named get_<attribute>, and
set_<attribute>. They also want it so that certain attributes cannot be written. The following
modification to the Felidea class shows how this can be done:

package Felidea;

use strict;
use warnings;

use Carp qw(croak carp);

our $VERSION = 0.001;

our $AUTOLOAD;

{ # enclosure
this is a listing of permitted instance variables
are permitted
my $OPTIONS= {

‘_DEBUG’ => 1,
‘_fur’ => 1,
‘_weight’ => 1,
‘_fur_color’ => 1,
‘_fur_length’ => 1

};

this gives a true or false of whether an option is permitted
sub _permitted_option {

my $key= ‘_’. $_[0];
return exists $OPTIONS->{$key};

}

these are the class’s attributes, value a hashref of
the default, and rw (read-write) flag
my $ATTRIBS= {

‘_name’ => { default => ‘felidea’, rw => 0 },
‘_fur’ => { default => 1, rw => 1},
‘_weight’ => { default => 50, rw => 1},
‘_claws’ => { default => 1, rw => 1},
‘_fur_color’ => { default => ‘grey’, rw => 1},
‘_fur_length’ => { default => ‘unset’, rw => 1},
‘_tail’ => { default => 1, rw => 0},
‘_fangs’ => { default => 1, rw => 0},

226

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 227

Chapter 5: Object-Oriented Perl

‘_solitary’ => { default => 1, rw => 0},
};

true/false if an attribute is writeable
sub _attrib_canwrite { return $ATTRIBS->{$_[0]}{rw} }

returns default of attribute
sub _attrib_default { return $ATTRIBS->{$_[0]}{default}}

returns true/false of whether attribute exists or not
sub _attrib_exists { return exists $ATTRIBS->{$_[0]}}

returns a list of class attributes
sub _attrib_keys {return keys %$ATTRIBS}

} # end enclosure

sub AUTOLOAD {
my ($self, $value) = @_;
return if $AUTOLOAD =∼ /::DESTROY/;

my ($action, $attrib)=
($AUTOLOAD) =∼ / ˆ .*::(get|set)([A-Z]\w+)$/
or croak "Invalid method $AUTOLOAD\n";

$attrib=∼ s/([A-Z])/_\l$1/g;

if ($action && $attrib && _attrib_exists($attrib)) {
if ($action eq ‘set’ && attrib_canwrite($attrib)) {

carp "No value to $AUTOLOAD supplied!" unless defined $value;
$self->{$attrib}= $value if defined $value;

}
return $self->{$attrib};

}
croak "Method $AUTOLOAD is an invalid method!\n";

}

sub new {
my ($class, $opts)= @_;

some common attributes
my $self;
$self->{$_}= _attrib_default($_) for _attrib_keys();

instance variables passed via $opts hashref
for (keys %$opts) {

Only if _permitted_option returns a true value
my $priv_attrib= ‘_’ . $_;
$self->{$priv_attrib} =

$opts->{$_} if _permitted_option($_);
}

this makes it so $self belongs to the class Felidea
bless $self, $class;

227

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 228

Chapter 5: Object-Oriented Perl

return the object handle
return $self;

}

1;

All the dual-purpose accessor methods are now replaced with get<Attrib> and set<Attrib> methods.
The changes made to the Felidea class were the following:

❑ A modified $ATTRIBS hash ref: Instead of the attribute value being a scalar (which is the default
value), its value is now a hash reference with two members: one default, which is the
default value of the attribute; the other rw, which is a simple flag the code will now use to
determine if the attribute is writeable. The default key will be used in the constructor method
new() and the rw key will be used in AUTOLOAD to control access to the attribute.

❑ The addition of _attrib_canwrite(): This subroutine returns true or false based on whether the
rw value for the attribute is 1 or 0.

❑ The _attrib_default() was modified to return the default key value for the attribute.

❑ The package-scoped variable $AUTOLOAD is defined prior to use in AUTOLOAD() subroutine: This
is because the previous code defined and used $AUTOLOAD at the same time. Now it’s required
to check the value of $AUTOLOAD for the method DESTROY, which would result in an error of
$AUTOLOAD not being defined the way it was coded before.

❑ The check for the DESTROY() method moved to the top of the AUTOLOAD() subroutine. This
is because the subsequent lines that use regular expressions to extract both the $action and
$attrib from the value of $AUTOLOAD will not parse DESTROY() correctly. Also, this is more
efficient to immediately return if DESTROY() is the method being called.

❑ The value of $action is checked for set. This determines if the method is a set method as well as
if the attribute is writeable. If it is writeable, then writes to the class attribute will be permitted.
In this example, there could be a message returned to the user using either croak() or carp() in
the event the attribute is not permitted to be written to, but instead silent failure is what is used.
This is where documentation would be useful. Also, there is a warning message using carp() if
there is not value passed into the set method. Finally, the attribute is set if $value is defined.

❑ The constructor method is modified: Instead of using the previous scalar value of the keyed
$ATTRIB hash reference, you’re using the value of the default hashref that results from the keying
of the $ATTRIB hashref.

The program using the Felidea object is also changed to utilize the new read-write checking
functionality:

#!/usr/bin/perl -w

use Felidea;

my $fel = Felidea->new();
print "has fur\n" if $fel->getFur();
print "Setting fur color to tan.\n";
$fel->setFurColor(’tan’);
print "fur color " . $fel->getFurColor() . "\n";

228

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 229

Chapter 5: Object-Oriented Perl

$fel->setFurLength(’short’);
print "fur length" . $fel->getFurLength() . "\n";
$fel->setWeight(30);
print "weight " . $fel->getWeight() . "\n";
$fel->setWeight();

print "Has a tail.\n" if $fel->getTail();
$fel->setTail(0);
print "Still has a tail.\n" if $fel->getTail();
print "Has a fangs.\n" if $fel->getFangs();
print "Has claws.\n" if $fel->getClaws();
$fel->setClaws(0);
print "But, declawed now.\n" unless $fel->getClaws();

The main changes to the program are to change any method calls that were previously reading
values from <attribute>() to get<Attribute>(), and to change any that modified attributes from
<attribute>(somevalue) to set<Attribute>. A line calling setWeight() with no argument is added.
This attempt will fail with a warning message. Also, an attempt is made to cut off the tail of this Felid.
Depending on the type of cat, this could result in anything from a scratch to the arm to getting your
head clawed or bitten off! Luckily, here it just results in a warning message. $fel->setTail(0) will fail
because the attribute _tail in $ATTRIBS has a rw value of 0. The output verifies that the changes are
working, including both error handing and access control to attributes:

has fur
Setting fur color to tan.
fur color tan
fur lengthshort
weight 30
No value supplied! at ./feline_app.pl line 14
No value supplied to Felidea::setWeight ! at ./feline_app.pl line 14
Has a tail.
Still has a tail.
Has fangs.
Has claws.
But, declawed now.

As previously mentioned, one shortcoming of AUTOLOAD() is that every time the method is created with
AUTOLOAD(), it has to first try to locate a method for the method called in the calling program and when
it doesn’t find one, it has to use AUTOLOAD(). This certainly adds some overhead. This happens yet again
when the method is called. What would be useful is if when AUTOLOAD() is called, the implementation
details of the method called are stashed and used as if they were actually hard-coded in the class. There
is a way to do this and gain the benefits.

This is accomplished using the package’s symbol table. As you recall, the symbol table is particular to a
package and contains all symbol names for that package. A way to get your AUTOLOAD-created methods
to behave as if they were hard-coded is to get the Felidea package to have entries for these subrou-
tines/methods. This can be accomplished within AUTOLOAD(); before you had code to handle what the
method should do. Now, the first time AUTOLOAD() is called for a particular method, you have that same
code in an anonymous subroutine. You then must ensure that an entry in the symbol table for Felidea
with the symbol name of the method being called is set to this anonymous routine.

sub AUTOLOAD {

229

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 230

Chapter 5: Object-Oriented Perl

my ($self, $value) = @_;
return if $AUTOLOAD =∼ /::DESTROY/;

parse get or set, and rest of the name of the method
my ($action, $attrib)=

($AUTOLOAD) =∼ / ˆ .*::(get|set)([A-Z]\w+)$/
or croak "Invalid method $AUTOLOAD\n";

convert from attributeName to attribute_name
$attrib=∼ s/([A-Z])/_\l$1/g;

if ($action && $attrib && _attrib_exists($attrib)) {
$method is used to properly handle the method the first time
it’s handled by AUTOLOAD. Subsequent calls will be handled by
code stored in symbol table
my $method;
if ($action eq ‘set’ && _attrib_canwrite($attrib)) {

set symbol table entry to anon sub
*{$AUTOLOAD}= $method= sub {

print "DEBUG: $AUTOLOAD called.\n" if $_[0]->{_DEBUG};
carp "No value supplied to $AUTOLOAD !" unless defined $_[1];
$_[0]->{$attrib}= $_[1];
return $_[0]->{$attrib};

};
}
else {

set symbol table entry to anon sub
*{$AUTOLOAD}= $method= sub {

print "DEBUG: $AUTOLOAD called.\n" if $_[0]->{_DEBUG};
return $_[0]->{$attrib};

};
}
return using anon sub ref, next time done via symbol table
return $method->($self, $value);

}
else { croak "Invalid method $AUTOLOAD\n"; }

}

You also need to add one important line to Felidea.pm:

package Felidea;

use strict;
use warnings;
no strict ‘refs’;

The changes to the Felidea class are shown. This time, only the AUTOLOAD method was changed. The
changes can be explained as such:

❑ Declare a variable called $method. Even though the goal is to have the code inserted into the
symbol table for a given method, the code still has to be able to handle the method call the first
time AUTOLOAD handles it. This variable will be set to the same subroutine that the typeglob is set

230

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 231

Chapter 5: Object-Oriented Perl

to — just so it can be called this first time around. All subsequent calls will be handled by code
in the symbol table for this package/class.

❑ The $AUTOLOAD variable has the value Felidea::methodname. Using a typeglob *{$AUTOLOAD}
translates to *Felidea::methodname, which is in turn set to the anonymous subroutine that will
handle subsequent calls of this method. Also, $method is also set to the same value, this anony-
mous subroutine.

With the symbol table ready for subsequent calls to this method, it still has to be handled this first time
around. So, since $method is set to the proper subroutine, just call it by dereferencing it with the proper
arguments.

The addition of no strict ‘refs’ at the top of Felidea.pm is required for setting *{$AUTOLOAD} to the
anonymous subroutines. Otherwise you will encounter this error:

Can’t use string ("Felidea::getFur") as a symbol ref while "strict
refs" in use at
Felidea.pm line 89.

Other Methods
Now that the Felidea class has its various accessor methods, you can also add other methods to it. So
far, the methods shown have been attribute accessor methods. Other types of methods can be added to
the Felidea class as well. For the sake of discussion, as well as to explain inheritance concepts later in
this chapter, two methods will be added:

sub makeSound {
my ($self)= @_;
print "Generic Felidea vocalization\n";
return;

}

sub attackPrey {
my ($self, $preyType)= @_;
if ($preyType eq ‘fast’) {

print "sprint after prey\n";
}
elsif ($preyType eq ‘big’) {

print "Jump and chew on neck\n";
}
else {

print "Pounce\n";
}
return;

}

Debug
Throughout these examples, you have seen that the constructor method has the ability to pass in
$options, which are checked to make sure they are valid options in the $OPTIONS hash reference. One
of these keys is _DEBUG. This can be used to set a debug flag, which throughout the class can be used to

231

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 232

Chapter 5: Object-Oriented Perl

perform useful actions such as printing various information, particularly during the development phase
or when researching a bug.

To use this option, develop a method that allows you to set the debug value either during instantiation
or after instantiation. The simple method to do this is called debug():

sub debug {
my ($self, $debug)= @_;
$self->{_DEBUG}= $debug;
return $self->{_DEBUG};

}

In AUTOLOAD(), simple modifications are made to take advantage of debug():

if ($action eq ‘set’ && $ATTRIBS->{$attrib}{rw}) {
set symbol table entry to anon sub
*{$AUTOLOAD}= $method= sub {

print "DEBUG: $AUTOLOAD called.\n" if $_[0]->{_DEBUG};
carp "No value supplied to $AUTOLOAD !" unless defined $_[1];
$_[0]->{$attrib}= $_[1];
return $_[0]->{$attrib};

};
}
else {

set symbol table entry to anon sub
*{$AUTOLOAD}= $method= sub {

print "DEBUG: $AUTOLOAD called.\n" if $_[0]->{_DEBUG};
return $_[0]->{$attrib};

};
}

Anything could have been done based on whether or not the class attribute _DEBUG is set. In this example,
the code prints out the fully qualified package name.

To turn debug on or off, the application code is changed to either set debug on instantiation, like so:

my $fel= Felidea->new({_DEBUG => 1});

. . . or after instantiation, in this way:

$fel->debug(0);

The output of some of the methods if debug is on appears as such:

DEBUG: Felidea::getFur called.
has fur
Setting fur color to tan.
DEBUG: Felidea::setFurColor called.
DEBUG: Felidea::getFurColor called.

You can add whatever functionality to your debug mechanism that you like. In later chapters, you’ll see
how to create debug routines that print out nicely formatted debug information.

232

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 233

Chapter 5: Object-Oriented Perl

Documentation
Certainly, you want your class to be documented. As shown in the previous chapter, POD is a simple way
to add documentation to your Perl code. In the case of this class, you will have to remember that despite
using AUTOLOAD(), you will still need to add documentation for the methods that you use AUTOLOAD() to
dynamically generate.

Add to the end of Felidea.pm:

... rest of code ...
1;

__END__
=pod

=head1 NAME

Felidea - A class representing the the biological family of cats, Felidea

=head1 SYNOPSIS

use Felidea;

my $fel= Felidea->new({<OPTIONS>});

$fel->fur_color(’green’);
print "Fur color " . $fel->getFurColor() . "\n";
$fel->fur_length(’long’);
print "Fur color " . $fel->getFurLength() . "\n";

=head1 DESCRIPTION

A class representing a Felidea. Felidea is the name for the
biological family of cats, each member called a felid. Felids
are the most strictly carnivorous of all families in the order
of Carnivora.

=head2 METHODS

=over 4

=item C<makeSound()>

Produces the sound the particular Felid makes ie "Roar", "meow", "growl"

=item C<attackPrey()>

Prey attacking method, prints out steps the Felid attacks its prey

=item C<debug(1|0)>

Sets the debug to true or false

233

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 234

Chapter 5: Object-Oriented Perl

=item C<getFur()>

Retrieves the fur color of the Felid

=item C<setFur(’value’)>

Sets the fur color of the Felid

=back

=head2 OPTIONS/CLASS ATTRIBUTES

These can be set at instantiation

my $fel= Felidea->new({
DEBUG => 1,
fur_color => ‘brown’,
fur_length => ‘short’,
...

});

Felid fur length, ie ‘long’, ‘short’, ‘fuzzy’

=item fangs

True/False of whether the felid has fangs or not. Cannot be set.

=item solitary

True/False of whether the felid is a solitary animal or not

=item ... all other options ...

=back

=head1 AUTHORS

Patrick Galbraith

=head1 COPYRIGHT

Patrick Galbraith (c) 2008

=cut

Inheritance and Felidea Subclassing
Perl implements inheritance simply with the use of a package variable aptly named @ISA — as in the
phrase ‘‘is a.’’ In the case of Pantherinea, which needs to inherit from Felidea, this would be accomplished
simply with:

@ISA = qw(Felidea);

234

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 235

Chapter 5: Object-Oriented Perl

Pantherinea ‘‘is a’’ Felidea, so this mechanism is very intuitive and simple to use. @ISA is another one of
the reserved package variable names like @EXPORT, @EXPORT_OK, $VERSION, etc.

Also, the package of the class specifies the namespace the class takes on, and naturally you will want
this to reflect the inheritance hierarchy. This can be demonstrated using our example by showing how to
subclass the Felidea class.

From Figure 5-1, you saw how Felidea was the top-level family, or object. The next level down were the
Pantherinea and Felinea families, and below that were the species — tiger, lions, domestic cats, lynx and
cougar. The first step in creating these derived classes is to create the package files with the proper class
definitions, starting out with the first descendant, then on to the species classes. The examples shown
here provide the same concept and techniques that can be used for any type of object.

The Perl classes (package names) to match the object hierarchy shown in Figure 5-1 would need to be
named as such:

❑ Felidea

❑ Felidea::Pantherinea

❑ Felidea::Pantherinea::Tiger

❑ Felidea::Pantherinea::Lion

❑ Felidea::Felinea

❑ Felidea::Felinea::Cougar

❑ Felidea::Felinea::DomesticCat

❑ Felidea::Felinea::Lynx

As already mentioned, the :: class delimiter can signify a directory structure in Perl where each subclass
has its own package file. This means that there will need to be a directory structure to contain these
classes. The directory structure will look like this:

Felidea/
Felidea/Pantherinea/

Felidea/Felinea

Each directory will contain the derived classes and be at the same level as the class being derived from.
In other words:

Felidea.pm

Felidea/

Felidea/Pantherinea.pm

Felidea/Pantherinea/

Felidea/Pantherinea/Tiger.pm

Felidea/Pantherinea/Lion.pm

235

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 236

Chapter 5: Object-Oriented Perl

Felidea/Felinea/

Felidea/Felinea/Cougar.pm

Felidea/Felinea/DomesticCat.pm

Felidea/Felinea/Lynx.pm

The first step is to create the Felidea directory, and then create a Pantherinea.pm and Felinea.pm.
Pantherinea.pm is shown in the following code:

package Felidea::Pantherinea;

use strict;
use warnings;
no strict ‘refs’;

use base qw(Felidea);

use Carp qw(croak carp);

{ # enclosure
my $ATTRIBS= {

‘_name’ => { default => ‘pantherinea’, rw => 0 },
};
returns default of attribute
sub _attrib_default {

if 2 args, called as method, if only 1, subroutine
my $arg= scalar @_ == 2 ? $_[1] : $_[0];
return $ATTRIBS->{$arg}{default};

}

returns a list of class attributes
sub _attrib_keys {

return keys %$ATTRIBS
}

} # end enclosure

sub new {
my ($class, $opts)= @_;

some common attributes
my $self = $class->SUPER::new($opts);
$self->{$_}= _attrib_default($_) for _attrib_keys();

this makes it so $self belongs to the class Felidea
bless $self, $class;

return the object handle
return $self;

}

1;

236

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 237

Chapter 5: Object-Oriented Perl

The differences in this derived class from its parent class you already saw implemented can be explained
thus:

❑ The package name changes to Felidea::Pantherinea

❑ The next line, use base qw(Felidea), sets the base class that Felidea::Pantherinea inher-
its from. It is the equivalent to the two lines below, which first would use the top level class
Felidea, as well as set the @ISA array to contain the class name that says what class Pantherinea
inherits from:

use Felidea::Pantherinea;

@ISA= qw(Felidea);

❑ Felidea::Pantherinea class has its own $ATTRIBS hash reference in an enclosure, which
in this case has only the _name attribute set. This overrides the _name attribute Panther-
inea would have inherited from the class it descends from, the parent, Felidea. Also,
_attrib_keys() and _attrib_default() are implemented. It would have been possible to use
$self->SUPER::_attrib_<xxx>, but because this code uses encapsulation for the class attributes
in $ATTRIBS, that would result in the $ATTRIBS of Felidea being read.

❑ The call of my $self = $class->SUPER::new($opts) SUPER is a pseudo-package that refers to the
parent package of the current package, in this case Felidea. The end result here is that Felidea’s
new() method is called, which instantiates a Felidea object. All the option checking and setting
up of package variables, as well as creating an object variable to Felidea, is accomplished because
of this. This makes it so you don’t have to reimplement a constructor for Pantherinea. Anything
other than what SUPER::new accomplishes construes overriding Felidea.

❑ The _name class attribute is overridden, which the line $self->{$_} = _attrib_default($_)
for _attrib_keys(); does. As stated before, _attrib_keys() is reimplemented since it needs
to return the default value for the attribute from the lexical $OPTIONS hashref in Pantherinea,
which in this case contains only the _name attribute.

❑ Finally, $self is blessed as a Felidea::Pantherinea object.

Felidea::Pantherinea is a class that represents a family of Felidea. It really won’t be used that
much, and the only specific attributes that discern it for this example at least (of course, there are
DNA differences that aren’t within the scope of this book) from the other family, Felinea, is the _name
attribute. If there were other attributes and more complexity in the top-level class — for instance DNA
markers — those also would be overridden.

The Felinea class would be implemented the same way Pantherea was, except of course with a different
package name and _name attribute. The main purpose here is to show how to create classes representing
the inheritance hierarchy of Figure 5-1, starting from the Felidea class on down. Of real interest are the
species classes which will be subclasses of Pantherinea and Felinea.

Now that the Pantherinea and Felinea family classes have been created, to create their subclasses,
two subdirectories named Pantherinea and Felinea must be created. Each of these directories will
contain their subclasses. For discussion, the lion species class will be created. To make it easy, just use the
Pantherinea.pm, since it is pretty minimal, as a template:

cp Pantherinea.pm Pantherinea/Lion.pm

237

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 238

Chapter 5: Object-Oriented Perl

Then you would create Lion.pm:

package Felidea::Pantherinea::Lion;

use strict;
no strict ‘refs’;
use base qw(Felidea::Pantherinea);
use Carp qw(croak carp);

{ # closure
my $ATTRIBS= {

‘_name’ => { default => ‘lion’, rw => 0 },
‘_latin_name’ => { default => ‘panthera leo’, rw => 0 },
‘_family’ => { default => ‘pantherinea’, rw => 0 },
‘_solitary’ => { default => 0, rw => 0 },
‘_fur_color’ => { default => ‘light tan’, rw => 1 },
‘_weight’ => { default => 250, rw => 1 },

};
returns default of attribute
sub _attrib_default {

if 2 args, called as method, if only 1, subroutine
my $arg= scalar @_ == 2 ? $_[1] : $_[0];
return $ATTRIBS->{$arg}{default};

}

returns a list of class attributes
sub _attrib_keys {

return keys %$ATTRIBS
}

} # end closure

sub new {
my ($class, $opts)= @_;

some common attributes
my $self = $class->SUPER::new($opts);
$self->{$_}= _attrib_default($_) for _attrib_keys();

this makes it so $self belongs to the class Filidea
bless $self, $class;

return the object handle
return $self;

}

sub fightOffHyenas {
my ($self)= @_;

}

sub shareKillWithPride {
my ($self)= @_;

}

238

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 239

Chapter 5: Object-Oriented Perl

sub makeSound {
my ($self)= @_;
print "ROAR!\n";

}

sub attackPrey {
my ($self, $preyType)= @_;
$self->fightOffHyenas();
$self->SUPER::attackPrey($preyType);
$self->shareKillWithPride();

}

1;

The Lion class implementation shown above can be explained like so:

❑ Package name is declared as Felidea::Pantherinea::Lion; the @ISA array is set with the class
Felidea::Pantherinea with the line use base qw(Felidea::Pantherinea).

❑ The attributes _name, _latin_name, _family, _solitary (lions are one type of cat that are
actually social creatures, living in the constructs of pride), _fur_color, _fur_length are set,
overriding the values inherited from Felidea and from Felidea::Pantherinea.

❑ The methods fightOffHyenas() and shareKillWithPride() are added. These are methods spe-
cific to just the Lion class and aren’t overriding any methods inherited.

❑ makeSound() is overridden with the lion’s trademark sound of a ‘‘ROAR.’’

❑ attackPrey() is overridden, but extended using the parent class’s attackPrey(), plus its own
particular functionality.

This is script to exhibit how the Lion class works:

use Felidea::Pantherinea::Lion;

my $fel = Felidea::Pantherinea::Lion->new();
print "Name: " . $fel->getName() . "\n";
print "Latin Name: " . $fel->getLatinName() . "\n";
print "Is not a solitary cat\n" unless $fel->getSolitary();
print "Weight: " . $fel->getWeight() . "\n";
$fel->attackPrey(’wilderbeast’);
$fel->makeSound();

It produces the output:

Name: lion
Latin Name: panthera leo
Is not a solitary cat
Weight: 250
Fight off hyenas
Pounce
Share kill with pride
ROAR!

239

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 240

Chapter 5: Object-Oriented Perl

So, you probably see that that extending the Felidea class through inheritance is relatively easy, and
didn’t require a lot of coding because so much of the needed functionality was in the parent class. Once
you have the top-level class’s functionality nailed down, you should only have to add overridden func-
tionality to the inherited classes. This is what they mean when they say ‘‘reusable’’ code!

Every species class can be implemented much in the same way as Lion was. Each species has its own
particular attributes, which make it distinct from its general parent classes and from the other species.
You simply code the species class, or any class in object-orientated programming according to those
particular attributes.

Making Life Easier: Moose
You saw in the previous sections how to create classes and derived classes, as well as how to use
AUTOLOAD() to automatically generate methods that aren’t implemented based on the attributes of the
class. There are more current ways to do this that involve using a number of Perl modules, such as
Class::Std, Class::InsideOut, Object::InsideOut, Class::Accessor, and Moose. Of these, Moose, a more
recent object-oriented system for Perl, looks very promising. This section will show you how to use
Moose to easily implement the classes shown in the previous section.

Moose is described on the project web site http://www.iinteractive.com/moose/ as . . .

‘‘a postmodern object system for Perl 5 that takes the tedium out of writing object-
oriented Perl. It borrows all the best features from Perl 6, CLOS (LISP), Smalltalk,
Java, BETA, OCaml, Ruby and more, while still keeping true to its Perl 5 roots.’’

Moose is an entire system with a ton of functionality — so much so that the discussion here only touches
the tip of the iceberg. Moose really does take out the tedium of writing object-oriented Perl, and will save
your tired hands and wrists many keystrokes!

Showing you the reimplementation of the Felidea class using Moose in the code that follows is the best
way for you to get an idea of just how much easier it is to use Moose, and how much simpler you code
will become:

package Felidea;

use strict;
use warnings;

use Moose;
use Carp qw(croak carp);

our $VERSION= 0.001;

has ‘_name’ => (
default => ‘felidea’,
reader => ‘getName’,
writer => ‘setName’,
is => ‘rw’);

has ‘_latin_name’ => (
default => ‘felidea’,
reader => ‘getLatinName’,

240

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 241

Chapter 5: Object-Oriented Perl

is => ‘ro’);
has ‘_family’ => (

default => ‘felidea’,
reader => ‘getFamily’,
is => ‘ro’);

has ‘_fur’ => (
default => 1,
reader => ‘getFur’,
writer => ‘setFur’,
is => ‘rw’);

has ‘_weight’ => (
default => 50,
reader => ‘getWeight’,
writer => ‘setWeight’,
is => ‘rw’,
isa => ‘Int’);

has ‘_claws’ => (
default => 1,
reader => ‘getClaws’,
writer => ‘setClaws’,
is => ‘rw’,
isa => ‘Int’);

has ‘_fur_color’ => (
default => ‘grey’,
reader => ‘getFurColor’,
writer => ‘setFurColor’,
is => ‘rw’);

has ‘_fur_length’ => (
default => ‘unset’,
reader => ‘getFurLength’,
writer => ‘setFurLength’,
is => ‘rw’);

has ‘_tail’ => (
default => 1,
reader => ‘getTail’,
is => ‘ro’,
isa => ‘Int’);

has ‘_fangs’ => (
default => 1,
reader => ‘getFangs’,
is => ‘ro’,
isa => ‘Int’);

has ‘_solitary’=> (
default => 1,
reader => ‘getSolitary’,
is => ‘ro’,
isa => ‘Int’);

sub makeSound {
my ($self)= @_;
print "Generic Felidea vocalization\n";

}

sub attackPrey {
my ($self, $preyType)= @_;

241

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 242

Chapter 5: Object-Oriented Perl

$preyType ||= ‘’;
if ($preyType eq ‘fast’) {

print "sprint after prey\n";
}
elsif ($preyType eq ‘big’) {

print "Jump and chew on neck\n";
}
else {

print "Pounce\n";
}

}
sub debug {

my ($self, $debug)= @_;
$self->{_DEBUG}= $debug;
return $self->{_DEBUG};

}

1;

What you see in the code can be described as follows:

❑ Notice, there is no constructor method such as new() listed. Moose takes care of this for you by
way of inheriting from Moose::Object.

❑ You only need to import Moose to get started. No need for strict ‘refs’ as with AUTOLOAD().

❑ Less code altogether!

❑ Instead of a hash reference (see the previous sections) containing all the class attributes along
with their default values and whether they are read or write, there is a standard means of defin-
ing and installing class attributes using has. There are numerous options available; some of the
ones shown in the previous code example are the following:

❑ The option is has the value of ‘ro’ (read-only) or ‘rw’ (read-write) for creating read-only or
read-write accessors.

❑ The default option specifies the default value of the attribute.

❑ The options reader and writer can be used to specify the method names for accessing
or writing to the attribute. If not specified, then the accessor has the same name as the
attribute.

❑ The isa option enforces a constraint on the attribute and forces run-time checking to ensure
that the attribute is of the specified type, as specified in Moose::Util::TypeConstraints.

Also, setting up inheritance for the derived classes Pantherinea and Lion are much simpler:

package Felidea::Pantherinea;

use strict;
use warnings;
use Moose;

extends ‘Felidea’;

242

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 243

Chapter 5: Object-Oriented Perl

has ‘+_name’ => (default => ‘pantherinea’);
has ‘+_latin_name’ => (default => ‘pantherinea’);

1;

That was easy! To override the _name and _latin_name attributes, the ‘‘+’’ character is prefixed with
the attribute name, which allows you to clone and extend the attribute of the parent class. In this case, it
overrides the default option with a new value. The same things are done with the Lion class:

package Felidea::Pantherinea::Lion;

use strict;
use warnings;

use Moose;

extends ‘Felidea::Pantherinea’;

has ‘+_name’ => (default => ‘lion’);
has ‘+_latin_name’ => (default => ‘panthera leo’);
has ‘+_family’ => (default => ‘pantherinea’);
has ‘+_solitary’ => (default => 0);
has ‘+_fur_color’ => (default => ‘light tan’);
has ‘+_weight’ => (default => 250);

sub fightOffHyenas {
my ($self)= @_;
print "Fight off hyenas\n";

}

sub shareKillWithPride {
my ($self)= @_;
print "Share kill with pride\n";

}

sub makeSound {
my ($self)= @_;
print "ROAR!\n";

}
sub attackPrey {

my ($self, $preyType)= @_;
$self->fightOffHyenas();
$self->SUPER::attackPrey($preyType);
$self->shareKillWithPride();

}

1;

As you see, using Moose makes object-oriented programming in Perl even easier than it normally is.
There is so much more to Moose than what this brief section can cover. It is worthy of an entire section or
even book of its own. Again, the web site http://www.iinteractive.com/moose is an excellent resource,
where you can continue to learn about Moose and build on what you learned in this section.

243

Galbraith c05.tex V3 - 06/02/2009 8:24am Page 244

Chapter 5: Object-Oriented Perl

Summary
Although it is not what Perl was originally designed for, object-oriented programming is very much
supported and, as with everything else with Perl, very easy to use. From this chapter, you learned the
following:

❑ Perl implements objects using packages, which differ from regular modules in that they have a
constructor class that takes as its first argument a class name. The class name then uses the Perl
command bless to create a reference that knows to which class it belongs and returns that refer-
ence. That returned reference from the constructor is the object reference that an application uses
to interact with the object.

❑ AUTOLOAD() is a special method in a Perl class that is used to dynamically generate attribute
accessor class methods based on the list of those attributes. This saves explicitly writing these
methods as well as development time. Also, using typeglobs, these dynamically generated meth-
ods can be stored in the package symbol table, making it so that subsequent calls to these
methods don’t have to rely on AUTOLOAD regenerating the methods each time they are called.

❑ Inheritance in Perl is implemented using package naming as well as the @ISA array. The @ISA
array stores the name of the class’s parent, providing the mechanism of Perl’s inheritance. Using
the pragmatic module base, as in ‘use base’, is an easy way to establish an is-a relation instead of
working directly with the @ISA array.

❑ How a top-level class, Felidea, was created. This was extended with the Felidea::Pantherinea
class, which was in turn extended with the Felidea::Pantherinea::Lion class. All of these
inherited from the parent class from which they were derived.

❑ The Moose postmodern object system for Perl 5 was briefly covered, showing you how easy it is
to implement the chapter’s examples (the Felidea class and its derived classes), and particularly
how you can use Moose to implement dynamic generation of accessor methods without having
to use AUTOLOAD().

By now, you should have a good understanding about object-oriented Perl. It is the author’s hope
that you at least have reviewed some concepts in such a way as to refresh your understanding of Perl
object-oriented programming.

244

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 245

MySQL and Perl

The first several chapters of this book have covered both MySQL and Perl, showing you how both
are very powerful and easy-to-use tools: one a powerful, open-source database that you can use as
your backend data store, the other a flexible, rapid-development, great-at-parsing text, and even an
object-oriented programming language. This chapter shows how both can be used together.

Ever since the advent of MySQL, Perl has been a natural choice for many programmers to work with
MySQL. With so much data to process within a database, having an easy programming language to
build applications that access and modify that data makes for a potent combination — one that has
resulted in the development of many great applications, particularly web applications that major
sites run.

This chapter gives you an overview of the Perl module, Database Independent Interface (DBI) and
the API calls it provides, as well as how to start writing applications with MySQL in Perl. It will
primarily focus on MySQL and Perl alone. The web applications that use both will be discussed in
later chapters.

In addition, this chapter explains DBI, which is a standard set of database calls that work on a
variety of databases. It also discusses the lower-level driver, DBD::mysql (DBD stands for database
driver), which is MySQL-specific. This chapter gives an overview of various DBI methods,
attributes, API method descriptions as well as some examples, and gives you a good start on how
to write programs using DBI.

After covering DBI, this chapter next shows you how to write a DBI wrapper API and how it can
make writing programs even more simplified.

Perl DBI
The MySQL RDBMS (Relational Database Management System) comprises both a server and client.
The client is where you have all your interactions with the database server. This client is manifested
in the various client drivers, in various languages, available to MySQL. The MySQL server’s client

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 246

Chapter 6: MySQL and Perl

library, libmysql, is written in C and is what programs such as the mysql client command shell,
mysqldump, mysqladmin, as well as other programs use to connect to the MySQL server. Libmysql is
a straightforward API that makes it fairly simple to write C programs that connect to MySQL.

A Little More about Perl
Perl was one of the first languages to have a driver for MySQL. Originally, there was a
Perl driver specific to MySQL that supported both MySQL and mSQL. It was written
on top of libmysql using XS as the ‘‘glue’’ code to interface with the underlying C func-
tions. Then around 1998, DBI became the standard for Perl-based database applications.

DBI and DBD
DBI is the Database Independent Interface for Perl — independent in that it was created to allow devel-
opers to write applications using standard API methods, variables, and conventions that will work
regardless of the RDBMS. DBI doesn’t know or care about the underlying data source being used. Prior to
DBI, various databases had to implement their own Perl drivers with their own API calls. DBI simplified
life for anyone wishing to interact with RDBMSs using Perl. It is a standard that makes it much easier to
quickly write applications. It also lends itself to portable applications. For instance, if you had written an
application using Oracle, and wanted to allow the application to use MySQL, the code using DBI would
need very few changes, and most likely only the SQL statements would need to be changed to the dialect
of SQL being used for MySQL versus Oracle, which has some of its own specific syntax.

DBI is the interface between application code and the underlying driver, which in this case is DBD::mysql.
The driver interface, DBD, is driver specific. There is a vast array of DBD modules for various RDBMSs
as well as other client methodologies such as ODBC, or even pure-Perl language drivers.

DBD::mysql is written using XS glue to use libmysql for its underlying database calls. Using the C client
library as the underlying mechanism makes for a fast and efficient driver.

Figure 6-1 shows the basic idea of how DBI and DBD::mysql work. The Perl application code utilizes
DBI API calls, which in turn are dispatched by DBI to the driver, DBD::mysql, which uses libmysql,
which then executes the actual database statements against MySQL. These statements can either be write
statements that return the number of database rows affected, or query result sets or cursors to those query
results sets that the driver must return in a usable form the database to the DBI handle. The DBI API
provides methods for processing these result sets, as well as ensuring that the database operation — write
or read statement — ran successfully.

DBI
Perl

Application
using DBI API

DBD::mysql libmysql MySQL RDBMS

Figure 6-1

246

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 247

Chapter 6: MySQL and Perl

Installation
You need to install both DBI and DBD::mysql to be able to write programs to access MySQL. Linux
distributions often already have both installed, particularly if you selected MySQL to be installed during
the installation. Even if they weren’t installed, they are very easy to install after the fact, as is illustrated
in the following sections.

Ubuntu
To install on Ubuntu, just use apt-cache to find both DBI and DBD::mysql:

root@hanuman:∼# apt-cache search DBI

This provides a large list of various debian packages; the two you want are:

libdbd-mysql-perl - A Perl5 database interface to the MySQL database

libdbi-perl - Perl5 database interface by Tim Bunce

Then, you would install them.

root@hanuman:∼# apt-get install libdbi-perl libdbd-mysql-perl

If you install each separately, DBI has to be installed first.

Redhat, CentOS
With Redhat variants, you use yum to find the package name to install:

[root@localhost ∼]# yum search DBI

This provides a large list of various RPM packages. These are the two you want from the list (versions
may vary):

libdbi.x86_64 : Database Independent Abstraction Layer for C

perl-DBD-MySQL.x86_64 : A MySQL interface for perl

CPAN
You may just want to use CPAN, particularly if the vendor for your OS provides packages that are out of
date. CPAN installations are really simple:

cpan –i DBI

cpan –I DBD::mysql

DBI API
The DBI is a very straightforward and intuitive API for writing applications that access MySQL. There
are methods for connecting to the database, preparing SQL statements, executing prepared statements,
retrieving results in numerous formats, and many others.

247

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 248

Chapter 6: MySQL and Perl

Loading DBI
To write a program using DBI, the first thing to do is to load the DBI module. The use statement, as
shown previously in other chapters, is used for this: use DBI;

Driver Methods
DBI provides a means to see what drivers are available. This is done with the available_drivers()
method:

use DBI;

my @driver_names= DBI->available_drivers;

for my $driver_name(@driver_names) {
print "available: $driver_name\n";

}

. . . which produces the output (this varies according to your server installation and configuration):

available: DBM
available: ExampleP
available: File
available: Proxy
available: SQLite
available: Sponge
available: mysql

To find out what data sources are available with your MySQL instance, you can use the data_sources()
method:

my @data_sources=DBI->data_sources(’mysql’, {
host => ‘localhost’,
port => 3306,
user => ‘root’,
password => ‘s3kr1t’
});

This produces an output like this one (depending on what schemas your MySQL installation has):

data source: DBI:mysql:information_schema
data source: DBI:mysql:admin
data source: DBI:mysql:contacts_db
data source: DBI:mysql:mysql
data source: DBI:mysql:sakila
data source: DBI:mysql:test
data source: DBI:mysql:webapps

. . . which displays the various schemas within your MySQL installation in a DSN (Data Source Name)
format. DSN will be explained in Chapter 7.

Another driver method is:

my $drh= DBI->install_driver(’mysql’);

248

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 249

Chapter 6: MySQL and Perl

This method obtains a driver handle, which can be used for administrative functions that will be shown
later in the ‘‘Server Admin’’ section of this chapter.

The following code returns a list of name and driver handle pairs suitable for assignment to a hash.

my %drivers= DBI->installed_drivers;

In most applications, you won’t be using these much, but they are useful for database administration and
for knowing what drivers and data sources you have available on your system.

Connect
The next thing to do is to connect to the database and obtain a database handle, and this is done using
the DBI::connect() method:

my $dsn= ‘DBI:mysql:test;host=localhost’;

my $username= ‘username’;

my $password= ‘mypassword’;

my $attributes= { RaiseError => 1,
AutoCommit => 1,

};

my $dbh= DBI->connect($dsn, $username, $password, $attributes);

The DBI::connect() method returns a database handle, a reference to an instantiated DBI object. This
database handle is what you will use to interact with the database in the course of your program that
uses MySQL.

DBI::connect takes four arguments, discussed in the following sections.

$dsn
This is the DSN, or data source name value. If you are familiar with ODBC, you may already be aware
that it has a data source name, which is a way of naming a connection and having meta-data information
about that connection associated with a canonical name. The canonical name is used to connect without
requiring all the various connection parameters listed. The $dsn variable is a similar concept to this ODBC
DSN.

The format of the DSN string always begins with the scheme part of the string, DBI (can be upper or lower
case), followed by the driver, in this case mysql. You might have been wondering why it wasn’t required
to use DBD::mysql because DBD::mysql is the required driver Perl module. It’s the very specification of
mysql in the DSN that causes DBI to automagically use DBD::mysql as the underlying database client
driver.

The next parameter in the DSN string is the schema name. Other parameters following can be host, port,
and socket. The format can also vary from what is listed in this example. Also, the value would be:

DBI:mysql:test

249

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 250

Chapter 6: MySQL and Perl

DBI:mysql:test@localhost:3306

DBI:mysql:database=test;host=localhost;port=3306

The last format is preferred over the previous one because it adheres to the ODBC style. You will notice,
the primary components — scheme, driver, and database (schema) — of this DSN are delimited by a
single colon. There are other options that can be used in the DSN string, such as host, port, etc., that are
delimited by a semicolon.

Additionally, there are other options that can be used in the DSN that are MySQL-specific, which you
can specify in the DSN string, or, of course, delimit with a semicolon:

mysql_server_prepare=1|0

This turns on server-side prepared statements. A prepared statement is a way of caching the execution
plan of a query on the MySQL server. An execution plan is how the optimizer decides to retrieve data
from the database. This makes it so if you use server-side prepared statements, the server stores the
execution plan for the SQL statement, using the SQL statement itself as the key for that execution plan.
This is particularly useful when inserting a bunch of rows; you would prepare the INSERT statement, and
then simply insert the data on the prepared statement handle. The database does not having to parse
that statement over again. By default, DBD::mysql emulates a prepared statement by doing all the grunt
work of parsing the statement for placeholders and replacing placeholders with actual values. More on
prepared statements will be covered later, in the section ‘‘Writing Data.’’ This option can also be set with
the environment variable MYSQL_SERVER_PREPARE:

export MYSQL_SERVER_PREPARE=1

This option can be set during the execution of the program by changing the attribute in the database
handle $dbh:

$dbh->{mysql_server_prepare} = 1;

$dbh->{mysql_server_prepare} = 0;

You can also set this option in the statement handle, which will be discussed more later.

mysql_auto_reconnect

mysql_auto_reconnect causes DBD::mysql to reconnect to MySQL in the event that the connection is
lost. This is off by default except in the case of either CGI or mod_perl since they depend on this driver
behavior, in which case, the driver detects the environment variables GATEWAY_INTERFACE or MOD_PERL
and sets mysql_auto_reconnect to on (1). If AutoCommit is turned off, mysql_auto_reconnect will be
ignored regardless of value:

mysql_use_result

By default, the driver uses the mysql_store_result() C API call after executing a query that causes
a result set to be stored in local buffers or temporary tables. Using mysql_use_result driver option

250

Galbraith c06.tex V3 - 06/02/2009 3:14pm Page 251

Chapter 6: MySQL and Perl

causes the client driver to use the mysql_use_result()C API call. mysql_use_result() initiates result
set retrieval, but doesn’t read the result set into the client, requiring each row of the result set be read indi-
vidually. mysql_use_result() uses less memory and can be faster than using mysql_store_result(),
but the downside is that because it ties up the server while each row is being fetched, it prevents updates
from other threads to tables from which the data is being fetched. This can be a problem particularly
if you are doing a lot of processing for each row. The default is off, meaning mysql_store_result()
is used.

mysql_client_found_rows=1|0

mysql_client_found_rows enables Q16 (1) or disable (0) the MySQL client flag CLIENT_FOUND_ROWS
while connecting to the MySQL server. This has a somewhat funny effect: Without mysql_client_found
_rows, if you perform a query like:

UPDATE $table SET id = 1 WHERE id = 1

the MySQL engine will always return 0, because no rows have changed. With mysql_client_found
_rows, however, it will return the number of rows that have an id of 1, as some people are expecting. (At
least for compatibility to other engines.)

Other things of note:

❑ mysql_compression turns on/off compression between the client and server:

mysql_compression=1|0

❑ mysql_connect_timeout sets the time, given in seconds, that a request to connect to the server
will timeout:

mysql_connect_timeout=<numeric value>

❑ mysql_read_default_group allows you to specify a mysql configuration file where client
settings are set. You could, for instance, have it set as:

mysql_read_default_file=<file location>

mysql_read_default_group=<my.cnf file location>

❑ /home/jimbob/my.cnf would need the following sections:

$dsn= ‘DBI:mysql:test:host=
somehost;mysql_read_default_file=/home/jimbob/my.cnf’

❑ In the following example, you would by default be connected to localhost:

[client]
host=localhost
port=3306

251

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 252

Chapter 6: MySQL and Perl

❑ If you added to /home/jimbob/my.cnf the following code:

[perl]
host=dbfoo.myhost.com
port=3306

. . . you would by default be connected to dbfoo.myhost.com. Also, the previous [client]
section example must come before the current [perl]section example.

❑ In the following code, mysql_socket lets you specify the socket file:

mysql_socket=<socket file>

Normally, you don’t have to concern yourself with this, although there are occasions where
libmysql was built with a different default socket than what the server is using:

mysql_ssl=1|0

❑ mysql_ssl turns on encryption (CLIENT_SSL libmysql flag) when connecting to MySQL. Other
options for using ssl are:

mysql_ssl_client_key
mysql_ssl_client_cert
mysql_ssl_ca_file
mysql_ssl_ca_path
mysql_ssl_cipher

mysql_local_infile=1|0

❑ mysql_local_infile enables/disables the ability to execute the command LOAD DATA in lib-
mysql, which the server by default may have disabled.

mysql_multi_statements=1|0

❑ mysql_multi_statements enables/disables the ability to run multiple SQL statements in one
execution, such as

INSERT INTO t1 VALUES (1); SELECT * FROM t1;

The previous example of running two queries may cause problems if you have server-side pre-
pare statements enabled with mysql_server_prepare=1

❑ The option mysql_embedded_options can be used to pass ‘‘command-line’’ options to the
embedded server.

mysql_embedded_options

252

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 253

Chapter 6: MySQL and Perl

❑ The following example causes the command-line help to the embedded MySQL server library to
be printed:

use DBI;
$testdsn="DBI:mysqlEmb:database=test;mysql_embedded_options=
––help,––verbose";
$dbh = DBI–>connect($testdsn,"a","b");

❑ The option mysql_embedded_groups can be used to specify the groups in the config file (my.cnf)
which will be used to get options for the embedded server.

mysql_embedded_groups

❑ If not specified, the settings of the sections[server] and [embedded] groups will be used. An
example of using mysql_embedded_groups in the DSN string would be:

$testdsn="DBI:mysqlEmb:database=test;mysql_embedded_groups=
embedded_server,common";

❑ The option mysql_enable_utf8 will result in the driver assuming that strings as well as data are
stored in UTF-8. Default is off.

mysql_enable_utf8

$username and $password
The next two arguments to DBI::connect are $username and $password, which are pretty straightfor-
ward:

my $username = ‘webuser’;
my $password = ‘s3kr1t’;
my $dbh= DBI->connect($DSN, $username, $password);

The above example shows a simple connection for the user webuser using the password s3kr1t.

$attributes
The final argument is a hash reference containing various attributes. These attributes are set to 1 or 0,
such as:

{ ..., Attribute => 0 }

These attributes can also be set after the connection is created with:

$dbh->{Attribute}= <value>;

253

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 254

Chapter 6: MySQL and Perl

The various attributes are presented in the following table:

Attribute Description

AutoReconnect Sets the driver to reconnect automatically if the connection to the database
is lost.

AutoCommit Sets the driver so that any transactional statement is automatically
committed.

RaiseError Turns on the behavior in DBD::mysql which causes a die() upon an error:

"$class $method failed: $DBI::errstr"

Where $class is the driver class and $method is the name of the method
that failed, for instance:

DBD::mysql::prepare failed: error text

PrintError Similar to RaiseError, except the error is only printed; a die() is not
issued.

PrintWarn Prints warnings if they are encountered.

HandleError Allows you to specify your own error handler. For instance:

my $attr= {
RaiseError => 1,
HandleError => sub { my ($err)= @_;

print "Argh! Problems: $err\n"; }
};

my $dbh= DBI->connect($dsn, $username,
$password, $attr);

Used in conjunction with RaiseError, this will result in your error handler
being called and a subsequent die().

ErrCount Contains the number of errors encountered.

TraceLevel Allows you to turn on debug tracing in the driver to a specific numeric
value. Depending on what value is coded in the source code of DBD::mysql,
having that level set will result in that debug message to be printed.

connect_cached
This method works the same as connect(), except that it stores the connection handle in a hash based on
the parameters that it connected with.

$dbh = DBI->connect_cached($data_source, $username, $password,
\%attributes);

254

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 255

Chapter 6: MySQL and Perl

Any subsequent connections that use connect_cached() to connect will return this cached handle if
the parameters are the same. If somehow the cached handle was disconnected, the connection will be
reestablished and then returned.

The cached handle is global, but can be made private by enforcing privacy through the $attributes
hash reference. Using a key prefixed with private_<keyname> can accomplish this, as you can see in the
following example:

my $dbh= DBI->connect_cached(’DBI:mysql:test’,
‘username’,
‘s3kr1t’,
{ private_connection_key1 => ‘connX’})

The previous example will make it so unless you connect using that same attribute key and value, even
if the rest of the other values such as username, password and DSN are the same, you will still not obtain
that cached connection.

Statement Handles
Once you have a database handle, you can start interacting with the database. You will issue SQL state-
ments against the database. To do so, you will prepare a statement with the DBI prepare() method. The
usage for prepare is:

$sth= $dbh->prepare($sql_statement);

$sth= $dbh->prepare_cached($sql_statement);

Both return a prepared statement handle, prepare_cached(), returning an already cached statement
handle for the SQL statement in question. Also of note, several of the options for the database handle $dbh
can also be set in the statement handle, and in a number of ways. For instance, mysql_server_prepare
turns on server-side prepared statements:

$sth= $dbh->prepare("insert into t1 values (?, ?)",
{ mysql_server_prepare => 1});

. . . for this prepare() call as well as any subsequent prepare() calls.

A statement handle is a Perl reference that you will use to call DBI methods that execute and fetch data
from MySQL. Once you have a statement handle, you will call execute():

$sth->execute(...);

This returns the number of rows affected by an UPDATE, INSERT, DELETE, or other data modification
statements, or, if a SELECT query has been executed, the result set will be retrieved through the statement
handle:

while (my $ref= $sth->fetch()) { ...}

That’s the basic idea, anyhow. Some code examples will help explain statement handles in more detail.

255

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 256

Chapter 6: MySQL and Perl

Writing Data
The most simple example can be shown with an INSERT statement:

my $sth= $dbh->prepare("insert into t1 values (1, ‘first’)")
or die "ERROR in prepare: " . $dbh->errstr . "\n";

my $rv= $sth->execute();

print "rows affected $rv\n";

In the previous example, a simple SQL INSERT statement is prepared. If the statement is successfully
prepared, a statement handle reference $sth is returned. If it fails to prepare, die() exits printing the
value in $dbh->errstr, which will show why prepare() failed.

Also, an SQL statement can contain what are called placeholders, which are question mark characters in
an SQL query. They are essentially markers that indicate where the actual values will be transliterated
to in the SQL statement when it is inevitably executed. The values for these columns are supplied in
execute(), the process of which is called binding. Using placeholders and bind values is a good way
to avoid SQL injection attacks because it forces proper value checking through the prepare-execution
process, as opposed to just executing a string to which you have manually appended the values. The
previous example can also be written as:

$sth= $dbh->prepare("insert into t1 values (?, ?)")
or die "ERROR in prepare: " . $dbh->errstr . "\n";

my $rv= $sth->execute(1, ‘first’);

print "rows affected $rv\n";

For the previous code, note the following:

❑ First, the statement is prepared, then executed.

❑ If you are using server-side prepared statements, prepare() checks the syntax of the SQL state-
ment, parsing the placeholders. Prepare will fail if the statement has a syntax error in the SQL
statement, using the error handling that prints out the value of $dbh->errstr. This is because
with server-side prepared statements, the database server parses the SQL statement, checking
syntax, and then devises an execution plan. When execute() is called, that execution plan is
used with any values provided to execute.

❑ If you are not using the server-side prepared statements, DBD::mysql emulates prepared state-
ments by parsing the SQL statement itself, looking for placeholders, which, if found, interpolate
the values each time execute() is called. If there is a syntax error, prepare() will not catch it.
execute() will fail when subsequently called.

You may ask: why not use server-side prepared statements all the time? The problem is that the server-
side prepared statements in libmysql have issues that have never been completely resolved. In 2006, it
was decided within MySQL that drivers should by default emulate prepared statements, while in some
cases leaving the option to the user to use server-side prepared statements. DBD::mysql gives this option
with mysql_server_prepare.

256

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 257

Chapter 6: MySQL and Perl

Server-side prepared statements can give a performance boost and reduce the necessity of having the
database re-parse the SQL statement, as well as reduce network traffic. The benefit of using server-side
prepared statements is especially pertinent with data modification statements — UPDATE, DELETE, INSERT.
For instance, you could have an application that inserts thousands of records into a table using a single
SQL INSERT statement. In the case of server-side prepared statements, you would only prepare the one
statement, then call execute() for each row of data that needs to be inserted. This would be much faster
than executing the same statement over and over again. Also, as previously stated, server-side prepared
statements also parse the original SQL query for correctness; emulated prepared statements do not.

With read statements — in other words, regular queries — it may not make much sense to use server-
side prepared statements. Earlier chapters have mentioned MySQL’s query cache. This is a no-brainer in
that the query cache contains the results of SQL queries. For instance, if you run the same query against
a table thousands of times, if the query cache is turned on (by default), the MySQL server would only
parse that query and come up with an execution plan once as well as produce result sets for that query.
The MySQL server would then cache the results (not the execution plan itself). All subsequent queries
against that table would obtain the result set from the query cache — as long as the data in that table
doesn’t change.

In this case of development, there is no right way. It all depends on the application and what table a
query is running against, and whether it changes a lot or not. The one good practice to adhere to is to use
prepared statements in general, whether server-side or emulated, to avoid SQL injection attacks. Even
if you are using emulated prepared statements, the driver is very efficient at parsing placeholders and
transliterating them with values.

Here is an example showing how server-side prepared statements can be beneficial in the case of inserting
multiple values into a table:

$dbh->{server_side_prepare} = 1;

$sth= $dbh->prepare("insert into t1 values (?, ?)")
or die "ERROR in prepare: " . $dbh->errstr . "\n";

my $charcol;
my @chars = grep !/[0O1Iil]/, 0..9, ‘A’..’Z’, ‘a’..’z’;
for my $iter (1 .. 1000) {

$charcol= join ‘’, map { $chars[rand @chars] } 0 .. 7;
$sth->execute($iter, $charcol);

}

$dbh->{server_side_prepare} = 0; # turn it off if we want

In the previous example, server-side prepared statements are turned on just for this data insertion block.
The initial INSERT statement is prepared with two placeholders, then in an iterative loop the data is
inserted into the table using execute() with the two values as arguments, which are transliterated to
values in the insert operation on the database in the subsequent loop. A random character generator is
used to create the data to be inserted into the varchar column, the iteration number for the integer value.
This all happens within the iterative loop, which runs 1,000 times, inserting 1,000 rows of data, which,
since the database has already created an execution plan with the one and only prepare() call, it knows
exactly how to insert this data. This is much faster than if each INSERT statement were run without using
placeholders.

257

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 258

Chapter 6: MySQL and Perl

Reading Data
You can also use prepare to execute read statements. The process is similar to write statements, except
after calling execute(), you need to fetch the resultant data set:

$sth= $dbh->prepare("select * from t1");

$sth->execute();

print "Number of rows in result set: " . $sth->rows . "\n";

my $names= $sth->{NAME};
for (@$names) {

printf("%-15s",$_);
}
print "\n";

while (my $row_ref= $sth->fetch()) {
for (@$row_ref) {

printf("%-15s",$_);
}
print "\n";

}

In the previous example is a simple SELECT statement, which is prepared, returning a statement handle.
The statement handle is then executed, at which point the statement handle then can be used to retrieve
results. The number of rows is reported using the statement handle method rows(). This is a very useful
method in that you can find out in advance how large the data set is for the data you are about to retrieve.
Also, the statement handle attribute NAME contains an array reference to the column names of the result
set, which is used to print out a formatted string for the header. Finally, each row is fetched from the
statement handle using fetch(), which returns an array reference of each row. The while() loop runs
until every row is fetched.

Fetch Methods, One Row at a Time
The above example is not the only way to fetch data after executing a SELECT query. There two other
fetching methods for a statement handle, both are the same, with fetch() being an alias.

❑ fetch, fetchrow_arrayref

❑ The following returns a reference to an array holding the field values:

$row_ref= $sth->fetchrow_arrayref() or $row_ref= $sth->fetch()

❑ The following fetches the current row as a list containing the field values, as opposed to
array reference:

@row= $sth->fetchrow_array()

❑ fetchrow_hashref. Here is an example:

$row_hashref= $sth->fetchrow_hashref()

258

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 259

Chapter 6: MySQL and Perl

The previous line of code fetches the current row as a hash reference keyed by column names.
For instance, the previous example would have not needed to use $sth->{NAME} to obtain the
column names and could have been coded as:

my $row_num= 0;
while (my $row_href= $sth->fetchrow_hashref()) {

if ($row_num == 0) {
printf("%-15s",$_) for keys %$row_href;
print "\n";

}
printf("%-15s",$row_href->{$_}) for keys %$row_href;;
print "\n";
$row_num++;

}

Fetch Methods — the Whole Shebang
You can also fetch all the rows, the entire result set, at once if you like. The methods for this are as follows:

fetchall_arrayref
This returns a result set as an arrayref; all arguments, $slice and $max_rows, are optional:

$resultset_aref= $sth->fetchall_arrayref($slice, $max_rows);

The return array reference, $resulset_ref, is a reference of arrays — an array reference of rows that are
references to an array of each row’s columns such that:

$resultref_aref= [
[col1val, cal2val, col3val, colNval, ...], # first row
[col1val, cal2val, col3val, colNval, ...], # second row
[col1val, cal2val, col3val, colNval, ...], # third row
... Nth row ...

];

An example of using fetchall_arrayref() with no arguments could be applied to a previous code
example, in which 1000 newly inserted rows were subsequently retrieved would be coded as:

my $names= $sth->{NAME};
for (@$names) {

printf("%-15s",$_);
}
print "\n";

my $resultset_ref= $sth->fetchall_arrayref();

for my $row_ref(@$resultset_ref) {
for (@$row_ref) {

printf("%-15s",$_);
}
print "\n";

}

259

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 260

Chapter 6: MySQL and Perl

The $slice argument is a convenient way to specify what parts of the result set you want. The $slice
argument allows you to specify how you want each row served up:

each row is an array ref with only the first column
$resultset_ref = $sth->fetchall_arrayref([0]);

each row is an array ref with the first and second column
$resultset_ref = $sth->fetchall_arrayref([0,1]);

each row an array ref, 2nd to last and last columns
$resultset_ref = $sth->fetchall_arrayref([-2, -1]);

each row in the array is a hash reference
$resultset_ref = $sth->fetchall_arrayref({});

each row is a hash reference of the columns name
and someothercol
$resultset_ref =
$sth->fetchall_arrayref({ name => 1, someothercol => 1});

For instance, in the previous example, you could have it so that each row (array member) in the result set
array reference is a hash reference (the entire data structure is an array reference of array members that
are hash references to each column):

my $resultset_ref= $sth->fetchall_arrayref({});

only attempt if results
if (defined $resultset_ref) {

since we have the whole result set, we can print the header
column names from the first row
printf("%-15s",$_) for keys %{$resultset_ref->[0]};
print "\n";

for my $row_href(@$resultset_ref) {
printf("%-15s",$row_href->{$_}) for keys %$row_href;;
print "\n";

}
}

The last argument is $max_rows, which simply limits the result set to that number.

fetchall_hashref
The following code returns a result set of hash references, each member a hash reference corresponding
to a row, which must be keyed by a unique column specified. This must be a column that is either the
primary key or a unique index for the result set that will be produced.

$result_ref= $sth->fetchall_hashref($unique_column)

The result hash reference would be:

$result_ref= {
unique_column_id1 =>

260

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 261

Chapter 6: MySQL and Perl

{ col1 => col1val, col2 => col2val, col3 => col3val, ...}, # 1st row
unique_column_id2 =>

{ col1 => col1val, col2 => col2val, col3 => col3val, ...}, # 2nd row
unique_column_id3 =>

{ col1 => col1val, col2 => col2val, col3 => col3val, ...}, # 3rd row
unique_column_idN =>

{ col1 => col1val, col2 => col2val, col3 => col3val, ...}, # Nth row
};

For instance, the previous example would be written as:

my $resultset_href= $sth->fetchall_hashref(’id’);

my $row_num = 0;

for my $id (sort keys %$resultset_href) {
my $row_ref= $resultset_href->{$id};

print a header
if ($row_num == 0) {

printf("%-15s",$_) for keys %$row_ref;
print "\n";

}
printf("%-15s",$row_ref->{$_}) for keys %$row_ref;
print "\n";
$row_num++;

}

You can also specify column number:

$resultset_href= $sth->fetchall_hashref(0);

. . . which would key the results by the first column, id, as in the previous example.

Finish
This method tells the statement handle that it will no longer fetch any rows.

$return_code= $sth->finish() ;

This method is seldom required usually automatically called unless you manually fetch data and stop
prior to fetching all rows. Even if you need a single row, using the selectall, selectrow methods, which
will be discussed later, will automatically call finish().

Binding Methods
Sometimes, you may want to ‘‘bind,’’ or associate explicitly, a value with a placeholder in an SQL state-
ment, or even specify the SQL data type that you want to bind the value as. For this, DBI has various
binding methods. Here, we will discuss bind_param().

The MySQL driver does not support the DBI bind_param_inout() method.

261

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 262

Chapter 6: MySQL and Perl

Binding Input Parameters
You can also explicitly bind input parameters using the DBI method bind_param(). This method is called
prior to execute().

$return_code= $sth->bind_param($param_number, $value, $bind_type);

The first two arguments $param_number and $value are required. $param_number is the position of the
placeholder in the SQL statement, starting from 1. $value is the value you are binding to that placeholder.
An example of this would be:

$sth->prepare(’INSERT INTO t1 (id,name) VALUES (?, ?)’);

...

$sth->bind_param(1, 22);

...

$sth->execute();

This achieves binding the number 22 to the first placeholder for the id column, resulting in the call to
execute() inserting 22 into the id column. Notice that since bind_param() is being used, there is no
need to supply the values to execute().

The third argument shown, $bind_type, can either be a hash reference or scalar, and is optional. This
allows you to specify what data type you are binding $value as. An example of using a hash reference
would be:

$sth->bind_param(1, 22, { TYPE => SQL_INTEGER });

Passing $bind_type as a scalar, you would supply the integer value of the SQL data type. An example of
this would be:

$sth->bind_param(1, 22, SQL_INTEGER);

In this example, the constant SQL_INTEGER was used. To be able to use SQL constants, you must import
them:

use DBI qw(:sql_types);

The following example modifies a previous code example to use bind_param() to bind two placeholders
to two values in a loop that incremented an integer value and generated a random string for the varchar
value:

$sth= $dbh->prepare("insert into t1 values (?, ?)") ||
die "ERROR in prepare: " . $dbh->errstr . "\n";

my @chars = grep !/[0O1Iil]/, 0..9, ‘A’..’Z’, ‘a’..’z’;
for my $iter (1 .. 1000) {

my $charcol= join ‘’, map { $chars[rand @chars] } 0 .. 7;
$sth->bind_param(1, $iter);

262

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 263

Chapter 6: MySQL and Perl

$sth->bind_param(2, $charcol);
$sth->execute();

}

Binding Output Parameters
You can also bind output parameters. This means you can associate a variable or multiple variables to
particular columns in a result set from a SELECT statement.

$return_code= $sth->bind_col($column_number, \$var_to_bind, $bind_type);

The method bind_col() binds a single variable to a given column indicated by a position number,
starting from 1. This method is called after execute().

The first argument, shown as $column_number, is a column number, starting from 0 and corresponding
to the position of the column in the result set from a SELECT statement. Of course, this makes it necessary
for you to know what the order of the columns will be if you use SELECT * in your statement. The second
argument, which is a scalar reference shown as a, is the output variable you wish the result set to associate
with the column specified in $column_number, resulting in $var_to_bind, assuming the value of that
column upon fetching the result set.

An example of using bind_col() would be:

my $sth= prepare(’SELECT id, name FROM t1’);
...
$sth->execute()
...
my ($id, $name);
$sth->bind_col(1, \$id);
$sth->bind_col(2, \$name);

The third argument, $bind_type, is optional. It can be either a hash reference with TYPE as a key and the
value of the SQL data type of the column being bound, or the shortcut, which is simply a scalar of the
type.

Usage examples would be as follows:

❑ Using a hash reference:

$sth->bind_col(1, \$id, { TYPE => SQL_INTEGER});
$sth->bind_col(2, \$name, { TYPE => SQL_VARCHAR});

❑ Using a scalar:

$sth->bind_col(1, \$id, SQL_INTEGER);
$sth->bind_col(2, \$name, SQL_VARCHAR);

An example of using bind_col() to bind to output variables in the previous example demonstrating the
fetching the 1000 values just inserted is as follows:

$sth= $dbh->prepare("select * from t1");

263

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 264

Chapter 6: MySQL and Perl

$sth->execute();

my ($id, $name);
$sth->bind_col(1, \$id);
$sth->bind_col(2, \$name);

my $col_names= $sth->{NAME};
for (@$col_names) {

printf("%-15s",$_);
}
print "\n";

while ($sth->fetch()) {
printf("%-15d %-15s\n",$id, $name);

}

There is also a way to bind multiple columns to multiple variables in one call using the bind_columns()
method:

$return_code= $sth->bind_columns(\$col1, \$col2, \$colN, ...);

bind_columns() requires a list of scalar references having the same number of columns as the SELECT
statement would produce.

The previous example showing bind_col() could be implemented as:

$sth->bind_columns(\$id, \$name)

or,

$sth->bind_columns(\($id, $name));

Then, of course:

while ($sth->fetch()) {
printf("%-15d %-15s\n",$id, $name);

}

Other Statement Handle Methods
In addition to prepare(), execute(), and the various fetching methods, there are also some really useful
statement handle methods.

rows
This returns the number of rows affected by the SQL statement executed — the same as the return value
from $sth->execute().

$sth->rows()

264

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 265

Chapter 6: MySQL and Perl

For instance, the following example runs against a table containing 1,000 rows of data:

my $return_value= $sth->execute();

my $rows= $sth->rows();

print "return value $return_value rows $rows\n";

Both $return_value and $rows will both be 1000:

return value 1000 rows 1000

dump_results
This method is useful for debugging or prototyping SQL statements. It simply dumps the result set from
an executed statement handle:

$sth->dump_results($maxlen, $line_separator, $field_separator,
$file_handle);

The arguments are:

Argument Status Description

$maxlen Optional Maximum number of rows to dump. Default
unlimited.

$line_separator Optional This specifies the line separator between rows.
Default is newline.

$field_separator Optional This specifies the field/column separator. Default is a
comma.

$file_handle Optional This specifies a file handle that you can pass where
the results get dumped to. Default is STDOUT.

Statement Handle Attributes
Statement handles also have various attributes that can be very useful in applications, providing infor-
mation about the underlying data structure of a result set or about the underlying columns. These
attributes are worth reiterating, as even the most seasoned developers can forget about them (ahem)!
These attributes can be accessed by specifying them as:

$sth->{attribute name}

Most of these attributes are read-only, so trying to set them would result in a warning. The previously
listed attributes that can be used upon connecting to the database or in the database handle ($dbh) that
can also be set in the statement handle and work the same way are RaiseError, PrintError, PrintWarn,
HandleError, ErrCount, TraceLevel.

265

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 266

Chapter 6: MySQL and Perl

The attributes that are specific only to the statement handle are shown in the following table:

Attribute Description

NUM_OF_FIELDS The number of columns that a result set would return from a
SELECT statement. If a write SQL statement such as DELETE,
UPDATE, or INSERT, this number is 0. Read-only.

NUM_OF_PARAMS The number of placeholders of the prepared statement.
Read-only.

NAME Returns an array of the column names. Read-only.

NAME_lc, NAME_uc Same as NAME, except all lowercase uppercase respectively.
Read-only.

NAME_hash,
NAME_lc_hash,
NAME_uc_hash

Similar to NAME, except a hashref of column names, the values the
index of the column. Read-only.

TYPE Returns an array reference of integer values representing the date
type of the column in the order of the columns of the result set.
These integer values correspond to the ODBC data type standard
specified in the international standard specs ANSI X3.135 and
ISO/IEC 9075. Read-only.

PRECISION Returns an array reference of integer values for each column
representing the maximum number of digits of the data type of
the underlying columns. Read-only.

SCALE Returns an array reference of integers representing the column
scale in the result set. Read-only.

NULLABLE Returns an array reference indicating if the column of the result
set is nullable.

CursorName Returns the name of the cursor associated with the result
statement, if available. This is not supported with DBD::mysql yet.
Read-only.

Database Returns the database handle $dbh of the statement. Read-only.

ParamValues Returns a hash reference containing the values currently bound to
the placeholders. Read-only.

ParamArrays Returns a hash reference containing the values bound to
placeholders using execute_array() or bind_param_array().
Read-only.

ParamTypes Returns a hash reference of data types of the columns of the
currently bound placeholders. Read-only.

Statement Returns the SQL statement that the statement handle was
prepared with Read-only.

RowsInCache Returns the number of rows pre-cached upon execute().

266

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 267

Chapter 6: MySQL and Perl

MySQL-Specific Statement Handle Attributes
There are also some DBD::mysql-specific statement handle attributes that are very useful, convenient, and
quite often overlooked (even by the author of this book!) for obtaining particular result set information.
These are presented in the following table:

Attribute Description

ChopBlanks=1|0 Causes leading and trailing blanks to be chopped off upon fetching
data.

mysql_insertid As shown in a previous example, this gives you the last insert
id — PRIMARY KEY value assumed due to auto increment upon the
insertion of a row, after $sth->execute().

mysql_is_blob Provides an array reference of true/false Boolean values, each
member corresponding to columns of a result set in the order found,
of whether the column is a blob column or not, after execute().

mysql_is_autoincrement Provides an array reference of Boolean values, each member
corresponding to columns of a result set in the order found,
true/false of whether the column is auto increment or not, after
execute().

mysql_is_pri_key Provides an array reference of Boolean values, each member
corresponding to columns of a result set in the order found,
true/false of whether the column is the primary key or not, after
execute().

mysql_is_key Provides an array reference of Boolean values, each member
corresponding to columns of a result set in the order found,
true/false of whether the column is indexed or not, after execute().

mysql_is_num Provides an array reference of Boolean values, each member
corresponding to columns of a result set in the order found,
true/false of whether the column is a numeric column or not, after
execute().

mysql_length Provides an array reference, each member corresponding to columns
of a result set in the order found, the values of each being the
maximum length of the data type for the column, after execute().

mysql_type Provides an array reference, each member corresponding to the
columns of a result set in the order found, numeric value of the
MySQL data type for the column, after execute(). These values of
each being the MySQL data types found in include/mysql.com.h,
enum enum_field_types.

mysql_type_name Provides an array reference, each member corresponding to columns
of a result set in the order found, the values of each being the data
type name for the column, after execute().

267

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 268

Chapter 6: MySQL and Perl

You can see an example of the outputs of these handy attributes in the following code. It’s a simple
program where a statement selecting three columns from a table of four types — id an int, name a varchar,
age an int and info a text/blob column — shows the use of these attributes and their output using
Data::Dumper:

my $sth =
$dbh->prepare(’insert into t1 (name, age, info) values (?, ?, ?)’,

{mysql_server_prepare => 1});

$sth->execute(’John’, 33, ‘some text here’);
print "\$sth->{mysql_insertid} " . $sth->{mysql_insertid} . "\n";

$sth->execute(’Jim’, 40, ‘more text here’);
print "\$sth->{mysql_insertid} " . $sth->{mysql_insertid} . "\n";
$sth->execute(’Sally’, 20, ‘text text text’);
print "\$sth->{mysql_insertid} " . $sth->{mysql_insertid} . "\n";

$sth= $dbh->prepare(’select * from t1’);
$sth->execute();
for my $var(qw(mysql_table

mysql_is_auto_increment
mysql_is_blob
mysql_is_pri_key
mysql_is_key
mysql_is_num
mysql_length
mysql_type
mysql_type_name)) {

print "\$sth->{$var}\n";
print Dumper $sth->{$var};

}

And the output is:

$sth->{mysql_insertid} 1
$sth->{mysql_insertid} 2
$sth->{mysql_insertid} 3
$sth->{mysql_table}
$VAR1 = [

‘t1’,
‘t1’,
‘t1’,
‘t1’

];
$sth->{mysql_is_auto_increment}
$VAR1 = [

1,
‘’,
${\$VAR1->[1]},
${\$VAR1->[1]}

];
$sth->{mysql_is_blob}
$VAR1 = [

‘’,

268

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 269

Chapter 6: MySQL and Perl

${\$VAR1->[0]},
${\$VAR1->[0]},
1

];
$sth->{mysql_is_pri_key}
$VAR1 = [

1,
‘’,
${\$VAR1->[1]},
${\$VAR1->[1]}

];
$sth->{mysql_is_key}
$VAR1 = [

1,
${\$VAR1->[0]},
‘’,
${\$VAR1->[2]}

];
$sth->{mysql_is_num}
$VAR1 = [

1,
0,
1,
0

];
$sth->{mysql_length}
$VAR1 = [

4,
32,
3,
65535

];
$sth->{mysql_type}
$VAR1 = [

3,
253,
3,
252

];
$sth->{mysql_type_name}
$VAR1 = [

‘integer’,
‘varchar’,
‘integer’,
‘blob’

];

Multistep Utility Methods
DBI also offers methods that automatically call, prepare, execute, and fetch. All of these methods take as
their first argument either a scalar containing an SQL statement, or a prepared statement handle. If you
use a prepared statement handle as the first argument, these methods will skip the prepare() step. If
you pass a string value containing an SQL statement, as opposed to a statement handle, all three steps

269

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 270

Chapter 6: MySQL and Perl

(prepare, execute, and fetch) will be run. So, you need to keep in mind that prepare() is only called once,
which would making using these methods suitable for situations where you don’t need to take advantage
of single statements being prepared and executed multiple times. You’ll notice with these methods, you
call using a database handle as opposed to a statement handle.

do
do() prepares and executes a single statement and returns the rows affected. This is a convenient method
if you only need to run a single write statement — a data modification statement such as UPDATE, DELETE,
INSERT, as well as data definition statements such as ALTER, DROP, CREATE, TRUNCATE.

$rows= $dbh->do($statement, $attr_hashref, @bind_values)

The arguments for do() are presented in the following table:

Argument Status Description

$statement Required A scalar containing an SQL statement to be
executed. This would be a statement not
producing a result set, such as ALTER, DROP,
DELETE, INSERT, TRUNCATE, etc.

$attr_hashref Optional A hash reference containing attributes.

@bind_values Optional An array of bind values that would be used if
the $statement contained placeholders.

Some examples of using do() are as follows:

❑ The first example runs a query to alter a table. No return value is needed.

$dbh->do(’ALTER TABLE t1 ADD COLUMN city VARCHAR(32)’) or die $dbh-
>errstr;

❑ The second example is an INSERT statement with a single placeholder, then the value ‘Narada
Muni’ supplied, and the number of rows this INSERT statement results in are returned from do():

my $insert= ‘INSERT INTO t1 (name) VALUES (?)’;

my $rows_inserted= $dbh->do($insert, undef, qw(’Narada Muni’))

selectall_arrayref
selectall_arrayref() is similar to the previously discussed method, fetchall_arrayref. It, too, is
used for returning data from a SELECT SQL statement (statements with result sets).

$resultref_arrayref= $dbh->selectall_arrayref(
$statement,

270

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 271

Chapter 6: MySQL and Perl

$attrib_hashref,
@bind_values);

The return array reference has the same structural organization as the method fetchall_arrayref():

$resultref_aref= [
[col1val, cal2val, col3val, colNval, ...], # first row
[col1val, cal2val, col3val, colNval, ...], # second row
[col1val, cal2val, col3val, colNval, ...], # third row
... Nth row ...

];

The arguments are presented in the following table:

Argument Status Description

$statement Required This argument can be either a previously prepared state-
ment handle, or a scalar containing an SQL statement. If
this argument is a previously prepared statement handle,
selectall_arrayref() skips the prepare stage it would
normally run.

$attrib_hashref Optional The second argument usage example shows the second
argument $attrib_hashref hash reference. This is used
to set several attribute values that affect the result set. If
$attrib_hashref is omitted, the result set includes the
values for all columns as array references:

$attrib_hashref= { Attribute =>
value };

@bind_values Required if
statement
contains
placeholders

The third argument is a list of values that are used to
replace the value as indicated by a placeholder ? when
the SQL statement is executed. This argument is required
if you are using placeholders in your SQL statement.

The different attributes that can be set are Slice, Columns, and MaxRows. Slice and Columns can be used
to modify result set output in terms of which columns to include and whether to use a hash reference for
each row. The usage is:

Attribute Usage Description

{ Slice => [0,1,2,N]} Include values for the 1st, 2nd, 3rd, and Nth, starting from 0 in the result set.

{ Columns => [1,2,3,N]}Include values for the 1st, 2nd, 3rd, and Nth, starting from 1 in the result set.

{ MaxRows => N } Only fetch N number of rows.

271

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 272

Chapter 6: MySQL and Perl

For instance:

$resultset_arrayref= $dbh->selectall_arrayref(’SELECT id, name FROM t1’,
{ Slice => [0]});

. . . would make it so only the first column specified in the SELECT statement, id, has its column values
included in the result set, such that:

$resultset_arrayref= [[1], # row1
[2], # row2
[3], # row3
... # row N...

];

Using the Columns attribute is the same as Slice except Columns starts from one. In other words, the id
column would be referenced as index number 0 with Slice and 1 with Columns in the previous example:

{ Slice => {}}
or
{ Columns => [1,2,3,N...]}

The result set is an array reference of hash references (rows, each row having column name key, value
the column value). The result set reference would be structured as:

$resultref_aref= [
[col1 => col1val, col2 => cal2val, col3 => col3val,

colN => colNval, ...],
[col1 => col1val, col2 => cal2val, col3 => col3val,

colN => colNval, ...],
[col1 => col1val, col2 => cal2val, col3 => col3val,

colN => colNval, ...],
];

The MaxRows attribute can be used to limit the number of rows retrieved in the result set to that value
specified. Whatever value is specified with MaxRows, once that many rows have been retrieved, finish()
will be called for that result set.

selectall_hashref
selectall_hashref() combines prepare(), execute() and fetchall_hashref() into one single
method. selectall_hashref() returns a hash reference with the same structural organization as
fetchall_hashref():

$hash_ref = $dbh->selectall_hashref($statement, $key_field);

The arguments for selectall_hashref() are:

272

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 273

Chapter 6: MySQL and Perl

Argument Status Description

$statement Required Scalar containing an SQL statement or a prepared statement handle.
If the argument is a prepared statement handle, the prepare() stage
is skipped.

$key_field Required Can be a single scalar containing the name of a column or an array
reference of multiple columns that specify the hash keys that are
used for each row in the returned result set hash reference. If you
intend to have a hash for each row, you should ensure the column
you use contains all unique values in the result set, otherwise rows
will be replaced for each duplicate value.

selectcol_arrayref
selectcol_arrayref() is a method that combines prepare(), execute() and fetch(), returning by
default an arrayref containing only the first column of the result set for a given query.

$ary_ref = $dbh->selectcol_arrayref($statement, \%attributes);

The arguments are presented in the following table:

Argument Status Description

$statement Required Scalar containing the SQL SELECT statement or prepared
statement handle. If $statement is a prepared statement
handle, then the prepare() step is skipped.

$attributes Optional Hash reference containing the attributes Columns, Slice or
MaxRows. Works the same as selectall_arrayref. This
would override the default behavior of selectcol_arrayref
(returning only one column, the first column).

selectrow_array
Combines prepare(), execute() and fetchrow_array() to retrieve a single row (the first row if multiple
rows are returned) as an array, with each column an array member:

@row_ary = $dbh->selectrow_array($statement, \%attributes,
@bind_values);

273

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 274

Chapter 6: MySQL and Perl

Returns an array containing the columns of a single row, such that:

@row_ary = (col1val, col2val, col3val, colNval, ...);

The arguments are presented in the following table:

Argument Status Description

$statement Required Scalar containing an SQL SELECT statement or prepared
statement handle. If a prepared statement handle is
provided, the prepare step is skipped.

\%attributes Hash reference, optional Used to specify the attributes Slice, Columns or
MaxRows, working as other similar methods

@bind_values Required if the statement
contains placeholders

Array containing scalars to pass to a statement
containing placeholders

A usage example of this method would be:

my @resultset_array=
$dbh->selectrow_array("select * from t1 where id = ?", undef, (33));

print "returned: " . join("\t", @resultset_array) . "\n";

selectrow_arrayref
Combines prepare(), execute(), and fetchrow_arrayref(). This works the same way as
selectrow_array except that it returns an array reference of the single row, with each column an array
member.

$ary_ref = $dbh->selectrow_arrayref(
$statement, \%attributes, @bind_values);

selectrow_hashref
This combines prepare(), execute(), and fetchrow_hashref(). This works the same way as
selectrow_array and selectrow_arrayref except that it returns a hash reference with each member a
column keyed by column name.

$hash_ref = $dbh->selectrow_hashref(
$statement,
\%attributes, @bind_values);

Other Database Handle Methods
In addition to methods that deal with executing SQL statements, there are also several useful methods
that can be called from a database handle.

274

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 275

Chapter 6: MySQL and Perl

last_insert_id
If you are inserting data into a table with an auto-increment primary key value, you often want to know
what value the auto-increment column assumed due to insertion. There are two ways to do this:

$dbh->insert_id($database, $schema, $table, $field, \%attributes) ;

or,

$sbh->{mysql_insertid}

For the first option, some databases require the $database and $schema arguments. For MySQL, you
should only need the $table argument. The use of these two means of obtaining the last inserted value
of an auto-increment table can be shown in the following example:

my $create= <<EOC;
create table t1

(id int(4) auto_increment,
name varchar(32) not null default ‘’,
primary key (id))

EOC

my $return_value= $dbh->do($create);

...

$sth= $dbh->prepare("insert into t1 (name) values (?)");

$sth->execute($charcol);

the values of both of these should be the same
print "last insert id: (dbh) " .

$dbh->last_insert_id(undef, undef, ‘t1’, undef,undef) .
"mysql_insert_id " . $sth->{mysql_insertid} . "\n";

ping
The simplest way to test if the database handle is still connected to the database is as follows:

$dbh->ping();

If that database handle AutoReconnect attribute is not set, you can implement your own reconnect:

my $connected= $dbh->ping();

if ($connected) {
print "connected\n";

}
else {

$dbh= DBI->connect($dsn, $username, $password, $attr);
}

275

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 276

Chapter 6: MySQL and Perl

clone
The following clones a database handle:

$cloned_dbh= $dbh->clone(\%attributes);

The $attributes hash reference is optional and, if supplied, overrides and is merged with the database
handle’s options it is being cloned from.

Transactional Methods — begin_work, commit, rollback
If you are using InnoDB tables you can, of course, use transactions. There are three methods for running
transactions in your code, as shown in the following table:

Method Description

$dbh->begin_work(); This results in BEGIN WORK being issued on the database server by turning
off AutoCommit. This initiates the beginning of a unit of work. It marks the
beginning of the issuance of one or more SQL statements that will not be
committed (made permanent) until COMMIT is called. If AutoCommit is off,
an error will be returned.

$dbh->rollback(); This rolls back any uncommitted SQL statements. If AutoCommit is off, the
statements made since the last commit, or since the beginning of the
current session, are rolled back. If AutoCommit is on, the statements that are
rolled back are any statements issued after BEGIN WORK (DBI call
$dbh->begin_work()). If BEGIN WORK was not called and AutoCommit is on,
rollback() has no effect except for causing a warning to be issued.

$dbh->commit(); This commits database changes. If AutoCommit is off, this means database
changes since the last commit, or since the beginning of the current
session. If AutoCommit is on, this means any SQL statements issued after
BEGIN WORK ($dbh->begin_work()) are those that are committed. If BEGIN
WORK was not issued and AutoCommit is on, this has no effect.

Here is a simple example of how to use these three methods:

$dbh->begin_work();

eval {
$sth1= $dbh->prepare("insert into t1 (name) values (?)");

$sth2= $dbh->prepare("insert into t2 (city,state) values (?, ?)");
};

if any of the statement failed to prepare, roll back
if ($@) {

$dbh->rollback();
die "prepare ERROR: " . $dbh->errstr . "\n";

276

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 277

Chapter 6: MySQL and Perl

}

eval {
execute first statement
$sth1->execute(’Jim Bob’);

execute second statement
$sth2->execute(’Peterborough’, ‘New Hampshire’); };

};

if any of the executions failed, roll back
if ($@) {

$dbh->rollback();
die "execute ERROR: " . $sth->errstr . "\n";

}

if everything went ok, commit
$dbh->commit;

In this example, the first thing that is called is begin_work() to issue BEGIN WORK on the database server to
begin the transaction. All statements issued thereafter will not be made permanent until COMMIT is issued.
Within the first eval block, two statements are prepared, and two statements are executed in the second
one. If any errors are encountered by way of $@ being set, rollback() is called, resulting in ROLLBACK
being issued and a return to the state prior to begin_work() being called. This is the essence of using
transactions in Perl.

Stored Procedures
Working with stored procedures using DBI is pretty simple. When you use stored procedures, it’s quite
common to have a procedure that calls multiple SQL queries, therefore producing multiple result sets.
With this in mind, there needs to be a way to retrieve numerous result sets. As described earlier in this
chapter, when you fetch all the rows of a query, the statement handle has the method finish() applied.
There is no way to retrieve any more data from that statement handle. The method more_results()
solves this problem.

The usage for more_results() is basically:

$sth= $dbh->prepare(’call stored_proc()’);

$sth->execute();

$resultset_ref= $sth->fetchall_arrayref();

$sth->more_results();

$resultset_ref= $sth->fetchall_arrayref();

$sth->more_results();

. . . for each result set produced.

277

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 278

Chapter 6: MySQL and Perl

To see a practical working example, the following code demonstrates how to work with stored proce-
dures. This example creates a stored procedure that queries two tables, producing two result sets. The
first table is a two-column table (state_id, state) containing the states of India (two records in this
case). The second table is a three column table (city_id, state_id, city) containing cities, in this case,
cities in India with a relationship to the states table via the column state_id.

Follow these steps:

1. First, create the stored procedure — do this in Perl of course!

$dbh->do(’drop procedure if exists india_cities’);

my $proc = <<EOP;
CREATE PROCEDURE india_cities ()
BEGIN
SELECT state_id, state FROM states;
SELECT state_id, city_id, city FROM cities order by state_id;

END;
EOP

$dbh->do($proc);

2. Once the procedure is created, it can be utilized. One thing you can do to avoid code duplica-
tion when working with and displaying multiple result sets is to create a subroutine to print
out these results, which is shown in the example below:

sub print_results {
my ($sth)= @_;
my $resultset_ref= $sth->fetchall_arrayref();

my $col_names= $sth->{NAME};

print "\n";
map { printf("%-10s", $_)} @$col_names;
print "\n";

for my $row (@$resultset_ref) {
printf("%-10s", $_) for @$row;
print "\n";

}
}

This subroutine takes a statement handle that has already been executed, with a result set to
be retrieved.

3. Finally, the process to work with multiple result sets is this:

$sth= $dbh->prepare(’call india_cities()’)
or die "prepare error: " . $dbh->errstr . "\n";

$sth->execute() or die "execute error: " . $sth->errstr . "\n";

278

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 279

Chapter 6: MySQL and Perl

print_results($sth);

$sth->more_results();

print_results($sth);

The single call to the stored procedure india_cities() is made by a prepare() and execution of the
statement. Then the first result set is retrieved and printed. Then with more_results(), the next result set
is retrieved and can then be printed out. This is how you write Perl programs that use stored procedures.
This is a very simple example, but the idea can be built upon.

Error Handling
Previous examples in this chapter showed variations in how to handle errors, mostly by using manual
error handling. This was to make you familiar with the fact that each DBI call can fail and needs to
be handled. As you have seen, you can set the database handle attributes at the time of connection or
afterward, particularly with RaiseError, PrintError, and PrintWarning, which cause errors to be
handled automatically.

Manual error handling:

my $dbh= DBI->connect(’DBI:mysql:test’, ‘username’, ‘s3kr1t’)

or die "Problem connecting: $DBI::errstr\n";

my $sth= $dbh->prepare(’insert into t1 values (?, ?)’)
or die "Unable to prepare: " . $dbh->errstr . "\n";

$sth->execute(1, ‘somevalue’)
or die "Unable to execute " . $sth->errstr . "\n";

...

This type of error handling is explicit in that every DBI method call requires its own error handling using
the method errstr(). This is one of three error handling methods that can be used with either a database
handle or statement handle (see the following table):

Method Description

$h->errstr Returns the error text reported from MySQL when an error is encountered. This
can also be accessed via $dbh->{mysql_error}.

$h->err Returns the error code from MySQL when an error is encountered. This can also
be accessed via $dbh->{mysql_errno}.

$h->state Returns a five-character code corresponding to the error.

279

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 280

Chapter 6: MySQL and Perl

Furthermore, another way to explicitly print out the error from the last handle used is to use these func-
tions via the DBI class level variable, as was shown in the very first line in the example above. The
example becomes:

my $dbh= DBI->connect(’DBI:mysql:test’, ‘username’, ‘s3kr1t’) or
die "Problem connecting: $DBI::errstr\n";

my $sth= $dbh->prepare(’insert into t1 values (?, ?)’) or
die "Unable to prepare: $DBI::errstr\n";

$sth->execute(1, ‘somevalue’) or die "Unable to execute $DBI::errstr\n";

...

You’ll also notice that since this is a variable, its value can be assigned to the error message.

Automatic error handling can be achieved using:

Error Handler Description

$h->{RaiseError} RaiseError causes the error to be printed out via die()

$h->{PrintError} PrintError causes the error to be print out via warn()

The handle attributes can be set either on connection via attributes, or after connection with whatever
handle you need to set either database connection or prepared statement handles.

Without automatic error handles, the previous example now becomes much less verbose:

my $dbh = DBI->connect(’DBI:mysql:test’, ‘username’, ‘s3kr1t’,
{ RaiseError => 1});

my $sth = $dbh->prepare(’insert into t1 values (?, ?)’);
$sth->execute(1, ‘somevalue’);

Any errors will be automatically handled and cause the program to die.

You may not always want to have automatic error handling, at least for the whole program.

use Carp qw(croak);

my $dbh= DBI->connect(’DBI:mysql:test’, ‘username’, ‘s3kr1t’)
or croak "Unable to connect Error: $DBI::errstr\n";

$dbh->{RaiseError}= 1;

eval {
$sth= $dbh->prepare(’insert into t1 values (?, ?)’);

};
if ($@) { croak "There was an error calling prepare: $DBI::errstr\n";

280

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 281

Chapter 6: MySQL and Perl

In this example, automatic error handling was not turned on for connecting to the database, and manual
error handling was used to print a custom message using croak() from the Carp module. After connect-
ing, RaiseError was turned on, though the next call and prepare were run in an eval block, after which
the $@ variable was checked to see if there was an error. If an error was found, a specific error message
for the failed prepare printed out via croak() .

As always with Perl, there are numerous ways to solve a problem, and with error handling, that maxim
holds true.

Server Admin
Driver-level administrative functions are also available. At the beginning of this chapter, you saw how
you obtained a driver handle. This is one way you can perform these administrative functions using the
func() method. The other means is via a database handle.

Database handles are convenient methods if you intend to write any administrative code. Hey, anyone
up for writing a Perl version of PHPMyAdmin called PerlMyAdmin?!

As previously shown, to install a driver handle, you use the install_driver() DBI method:

use DBI;
use strict;
use warnings;

my $drh= DBI->install_driver(’mysql’);

The functions are:

❑ createdb: Creates a schema; performs the equivalent of CREATE DATABASE. With a driver handle,
call the func() method with administrative login credentials.

$drh->func(’createdb’, $schema_name, $hostname, $admin_user_name,
$password)

With a database handle, the handle has to be one created with sufficient privileges to run CREATE
DATABASE.

$dbh->(’createdb’, $schema_name, ‘admin’);

❑ dropdb: Drops a schema; performs the equivalent of DROP DATABASE. With a driver handle:

$drh->func(’dropdb’, $schema_name, $hostname, $admin_user_name,
$password)

With a database handle:

$dbh->func(’dropdb’, $schema_name, ‘admin’);

281

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 282

Chapter 6: MySQL and Perl

❑ shutdown: Shuts down the MySQL instance. Of course, no subsequent calls will work after call-
ing this until you restart MySQL. This functions the same as ‘mysqladmin shutdown’.

$drh->func(’shutdown’, ‘localhost’, $admin_user_name, $password)

❑ reload: Reloads the MySQL instance, causing MySQL to reread its configuration files.

$drh->func(’reload’, ‘localhost’, $admin_user_name, $password)

The following example provides some context for how to use these functions. This simple script could be
used to create, or drop and recreate, a schema.

#!/usr/bin/perl

use strict;
use warnings;

use DBI;
use Data::Dumper;
use Getopt::Long;

our $opt_schema;
our $opt_user= ‘adminuser’;
our $opt_host= ‘localhost’;
our $opt_password= ‘’;
our $opt_port= 3306;

GetOptions (
‘h|host=s’ => \$opt_host,
‘p|password=s’ => \$opt_password,
‘port=s’ => \$opt_port,
‘s|schema=s’ => \$opt_schema,
‘u|user=s’ => \$opt_user,

);

$opt_schema or usage("You need to provide a schema name!");

my $drh= DBI->install_driver(’mysql’);

my @data_sources=$drh->data_sources({
host => $opt_host,
port => 3306,
user => $opt_user,
password => $opt_password
});

my $schemas;
for (@data_sources) { /:(\w+)$/; $schemas->{$1}= 1;}

print Dumper $schemas;
if ($schemas->{$opt_schema}) {

schema exists, must drop it first

282

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 283

Chapter 6: MySQL and Perl

print "dropping $opt_schema\n";
$drh->func(’dropdb’,

$opt_schema,
$opt_host,
$opt_user,
$opt_password, ‘admin’

) or die $DBI::errstr;
}

print "creating $opt_schema\n";

$drh->func(’createdb’,
$opt_schema,
$opt_host,
$opt_user,
$opt_password, ‘admin’

) or die $DBI::errstr;

Notice in this example that the method data_sources() is used to provide a list of all schemas for this
MySQL instance, which then in a loop uses a regular expression to obtain the actual schema name (strip-
ping off DBI:mysql:), which is then used in a hash reference to test if the schema exists or not. If the
schema exists, it is first dropped and then recreated. If it doesn’t exist, it is just created.

Summary
This chapter introduced you to writing MySQL database-driven perl applications using the Perl DBI
module. You learned that DBI is the database-independent layer and DBD::mysql is the database-specific
driver, and that both work together to provide an API as well as database connectivity.

The numerous DBI methods were explained in detail, and examples were provided to demonstrate how
you can take advantage of the DBI API. You learned the concepts of database and statement handles and
looked at how you connect to the database to obtain a database connection handle, with which you then
prepare an SQL statement, which then returns a statement handle. The statement handle is then what
you use to execute the statement. Next, you either retrieve the number of rows affected if the statement
was an INSERT, UPDATE, DELETE, etc., or else retrieve result sets with a SELECT statement. The chapter also
explained the methods that allow you to accomplish all steps without having to use a statement handle
through the database connection handle.

As stated in earlier chapters and underscored in this one, Perl references are key to working with data
and writing database-driven applications. A good number of the DBI methods return data from SELECT
statements in the form of either hash or array references, and being able to iterate or navigate through
these references to access the data they’ve returned.

You should now be ready to tackle writing Perl database applications.

283

Galbraith c06.tex V3 - 06/02/2009 9:07am Page 284

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 285

Simple Database
Application

Now that the DBI API has been discussed in detail, you probably would like to see a practical
example using what you’ve learned and see a database-driven Perl program in action. The purpose
of this chapter is to give you a simple example of using Perl to write a MySQL database-driven
application using the DBI Perl module and its API, without web functionality so the focus is solely
on Perl and MySQL. The application will be a simple command-line interface contact list. This will
be a fully functional Perl program with a simple menu for selecting different operations, which
prompts the user for various decision making as well as data inputs.

Planning Application Functionality
The first thing to do in writing any application is to think about what functionality you want it to
have — inputs and expected outputs. What primary operations does it need to be able to do?

With a contacts application, you would probably want to do the following operations:

❑ Add contacts (INSERT)

❑ Update contacts (UPDATE)

❑ Delete contacts (DELETE)

❑ Edit a contact (calls UPDATE or INSERT)

❑ List contacts (SELECT)

❑ Display menu of choices

❑ Allow lookup of contacts (selective list)

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 286

Chapter 7: Simple Database Application

Schema Design
For a program to store contacts and support all of these operations, you will want a simple table contain-
ing various contact attributes:

CREATE TABLE $table (
contact_id int(4) not null auto_increment,
first_name varchar(32) not null default ‘’,
last_name varchar(32) not null default ‘’,
age int(4) not null default 0,
address varchar(128) not null default ‘’,
city varchar(64) not null default ‘’,
state varchar(16) not null default ‘’,
country varchar(24) not null default ‘’,
primary key (contact_id),
index first_name (first_name),
index last_name (last_name),
index age (age),
index state (state),
index country (country)
);

As this table creation shows, there are nine different columns. The contact_id column is the primary
key and is an auto increment field.

Writing Up a Wire-Frame
All these operations can be implemented with a relatively simple Perl script. Indexes, created on any
column, are used to look up a contact. In this case, every column except address can be used to look up
a contact.

The first thing to do, then, is to code a wire-frame with simple print statements and comments to help
you think about what each subroutine will do as well as give you something you could actually run
from the start and incrementally add functionality. One thing you want to strive for is abstracting the
database calls into short subroutines, and, if possible, avoid mixing code that directly interacts with
the database from the user interface code.

sub insert_contact {
my ($contact)= @_;
insert contact using $contact reference

print "insert_contact() called\n";
}
delete_contact {

my ($contact_id)= @_;
delete contact with id $contact_id
print "delete_contact($contact_id) called\n";

}
update_contact {

my ($contact)= @_;
update a given contact with $contact reference
print "update_contact() called\n";

}

286

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 287

Chapter 7: Simple Database Application

list_contacts { # displays the contacts
my ($contact_ids) = @_; # take one or more ids
obtain contacts from the db

obtain a result set of contacts from the db
my $contacts = get_contacts($contact_ids);
print "listing of contacts here...\n";

}
get_contacts { # obtains the data to display

my ($contact_ids) = @_; # take one or more ids
select contacts from db table IN (... id list ...)

return the result set
}
find_contact {

prompt user to enter search parameters
get ids from database given those search parameters
call list function for those list of ids
print "find contact called\n";

}
display_menu {

display choices. Use single letters to represent operations
print "Add Menu Here.\n"

}
dispatch {

prompt user to make a choice (from menu choices)
process choice
display_menu();
my $choice= <STDIN>;
chomp($choice); # get rid of newline
print "calling other subroutines here using selected value: $choice\n";

}
initialize {

connect to db
set up any variables

}
main {

this is the entry point of the program
initialize();
dispatch();

}

As you can see, this doesn’t do much other than simple printing. It is a very simple stubbing of the
functionality needed for this application. There are many details that still must be provided, but at least
this wire-frame gives you a skeleton onto which you’ll hang the flesh — inevitably giving your program
full functionality.

Declarations, Initializations
Now that you have a wire-frame, you want to flesh out functionality, starting from the top level, with
prerequisites that are required for this program to work. The first thing that comes to mind is a database
connection! Also, package scoped variables need to be declared and you need to determine if values need
to be set prior to use. If so, you need to define/set them. The declarations can be done at the top of the

287

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 288

Chapter 7: Simple Database Application

program and the database connection and variable definitions can be done in a subroutine, which, as
shown in the wire-frame, is called initialize().

#!/usr/bin/perl

use strict;
use warnings;

use Getopt::Long;
use DBI;
use Carp qw(croak carp);
use IO::Prompt;

declare database handle variable
my $dbh;

declare $fields array ref, will be populated with initialize()
my $fields= [];

our $opt_debug;
our $opt_reset;

defaults, GetOptions can over-ride
our $opt_schema= ‘contacts_db’;
our $opt_hostname= ‘localhost’;

our $opt_username= ‘contacts’;
our $opt_password= ‘s3kr1t’;

GetOptions (
‘debug’ => \$opt_debug,
‘reset|r’ => \$opt_create,
‘schema|s=s’ => \$opt_schema,
‘username|u=s’ => \$opt_username,

) or usage();

my $dsn = "DBI:mysql:$opt_schema;host=$opt_hostname";

my $table= ‘contacts’;

the subscript of the position of fields that are searchable
my $search_fields= [1,2,3,5,6,7];

fields that are required when creating a new contact
my $required= {

‘first_name’ => 1,
‘last_name’ => 1

};

the brain/nerve-center
my $ops = {

‘c’ => \&create_contacts_db,
‘d’ => \&delete_contact,

288

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 289

Chapter 7: Simple Database Application

‘e’ => \&edit_contact,
‘f’ => \&find_contact,
‘l’ => \&list_contacts,
‘m’ => \&display_menu,

};

For this code, you have the top part of the program where required modules are imported, and variables
used throughout the program are declared and/or defined. Of interest, IO::Prompt is a useful Perl mod-
ule for processing user input and will be used wherever a message and expected input will be required
throughout the program.

The database connection $dbh database handle variable is lexically scoped outside any subroutine, so
that all subroutines have access to it. This will make it so that you don’t have to pass the database handle
around as a subroutine argument. In some cases, you might want the database handle variable lexically
scoped within a subroutine, but for the purpose of this program and simplicity in demonstration, it’ll
be scoped at the top of the program.

Notice the $opt_xxx variables. These are package variables which GetOptions sets if provided on the
command line. GetOptions is a handy way to process command arguments, both long style --option
and short style -o (provided by Getopt::Long). As shown, these options can either be true/false (no
argument), or accept a value (using =s), specified in each key which in turn points to a scalar reference to
the $opt_<xxx> variable or even a subroutine.

If GetOptions returns false, that means incorrect options were used and the usage() subroutine is called.
The usage subroutine simply prints out the program options.

Also shown is the hash reference variable $ops. From earlier chapters, you’ll remember the discussion
about using a hash reference as a method or subroutine dispatcher, which this example will do.

This functionality is just what is required for having a means to call lower-level subroutines based on a
choice made by the user in a top-level user-interface subroutine. Not only that, you avoid if/else cruft
entanglement. The menu subroutine displays the menu, and the dispatch subroutine will read user input,
which in turn can use the input value with a hash reference, where each possible choice is a key and the
value the subroutine you want calls for that choice. This is the nerve center of the program and provides
a mechanism to connect all the various subroutines to the top level of the program.

The other variables shown are for other required parts of the program that will become apparent in the
discussion of the various subroutines.

Now, for the database connection as well as for setting up the $fields array reference variable, you
would call the subroutine initialize():

sub initialize {

$dbh=
DBI->connect($dsn, $opt_username, $opt_password)

or die "Unable to connect to the database $DBI::errstr\n";

$dbh->{RaiseError}= 1; # enable internal error handling

scalar @$fields && return;

289

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 290

Chapter 7: Simple Database Application

my $query= <<EOQ;
SELECT COLUMN_NAME FROM information_schema.COLUMNS
WHERE TABLE_NAME=’contacts’ AND TABLE_SCHEMA=’contacts_db’;
EOQ

print "fields query:\n$query\n" if $opt_debug;

my $sth= $dbh->prepare($query);
$sth->execute();
my $ref= $sth->fetchall_arrayref();
push(@$fields, $_->[0]) for @$ref;

return;
}

initialize() simply connects to MySQL, with the handle to the database being $dbh. initialize()
also ensures the array reference variable $fields is populated using a query of the information_schema
table COLUMNS to provide the column names of the contacts, if not previously populated. The variable
$fields provides all the field/column names in the same order a SELECT * FROM contacts would list
them and is used throughout the program, particularly for displaying field names in contact listing. Once
populated, it will contain:

$fields = [
‘contact_id’,
‘first_name’,
‘last_name’,
‘age’,
‘address’,
‘city’,
‘state’,
‘country’
];

Program Entry Point
The entry point subroutine is called main(), which has been shown in the wire-frame. This is an arbi-
trary name and is only a style preference, despite its resembling other programming languages. For this
example, it shall be the entry point into this program.

sub main {
initialize();
dispatch();

}

This is pretty simple, and is the same as what was shown in the wire-frame example. main() simply calls
initialize() to set up $fields and the database connection $dbh, and then calls dispatch(), which
provides top-level user interface functionality, particularly the user interface that in turn calls lower-level
subroutines.

In order to explain dispatch(), some context is required. A menu display is required to provide the user
with a list of choices that he or she will make that dispatch() will then act upon. display_menu() is the
simple subroutine to print out this information.

290

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 291

Chapter 7: Simple Database Application

sub display_menu {
print <<MENU_END;

Menu: (enter one)

c Create a new contacts table
d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

MENU_END

return;
}

For the menu to be able to do more than just display, there also must be a way to process user input for
the available menu choices. This is accomplished with the aforementioned dispatch() subroutine. You
might think that this could be part of the menu subroutine, but it would be better to have this be separate
from the menu so as to make each subroutine have a specific task, thus separating each functionality.

sub dispatch {
display_menu();
while (prompt "Enter choice: ") {
my $choice = $_;
exit if ($choice eq ‘q’);
defined $choice or $choice = ‘m’;

this catches an option that doesn’t exist which would result
in an error, with this it will silently fail and call dispatch()
eval {$ops->{$choice}->()};
display_menu();

}
}

dispatch() will read the selection from the user using the IO::Prompt method prompt, and exit if the
choice is ‘q’ for ‘quit’. If a choice is not made, it will default the choice to ‘m’ to redisplay the menu.
Next, the $ops hash reference will automatically call the appropriate subroutine through dereferencing
whatever is keyed by the value chosen. The method dispatch() is wrapped in an eval block to make
it silently fail should the choice be none of the keys defined. Whether the subroutine is called or silently
fails, the while loop will result in the display of the menu and ask for a choice yet again, until of course
the user enters ‘q’, ending the while loop, or Ctrl+C’s out of the program. With the display_menu() and
dispatch() subroutines implemented, most of the functionality is now implemented for the top-level
user interface.

At this point, you could begin testing whether the menu and program selection works. Since the wire-
frame has the not-yet-implemented subroutines stubbed out using print statements, you can just test

291

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 292

Chapter 7: Simple Database Application

the logic of display_menu(), along with dispatch(). Each selection made using options in dispatch()
should result in the correct print statement being printed.

Table Creation Subroutine
The first subroutine that makes sense to implement is the one that creates the contacts table. As you can
see, one of the choices from the menu is ‘c’ for creating a new contacts table, otherwise called resetting.
Whatever you want to call it, its job is to create the contacts table if it does not already exist and drop
and re-create it if it does.

You might not necessarily have a subroutine to do this. Why would you have a subroutine that
re-creates the table containing the data for contacts when this could be accomplished with an SQL
script causing the table to be dropped and re-created? The answer is, for convenience. In this case,
it’s going to be in the program. It’ll allow you to effectively delete all contacts, should you want
to. create_contacts_db() is the top-level subroutine that does this. It will call three lower-level
database access methods: contacts_table_exists()to perform the actual check to see if the
table is there; drop_contacts_table() if the table exists and the user agrees to its deletion; and
create_contacts_table() to create the actual contacts table.

sub create_contacts_db {
initialize() unless $dbh;

if the table already exists, prompt user to make sure they want
to drop and re-create it
if (contacts_table_exists()) {

prompt "Do you wish to re-create the contacts table? [y|N] ";
my $answer= $_;

$answer eq ‘y’ or return;

print "Recreating the contacts table.\n";
drop_contacts_table();

}
else {

print "Creating the contacts table.\n";
}

print "Created table contacts.\n";
}

contacts_table_exists uses information schema to determine if the contacts table exists:

this subroutine performs a check using information_schema to see
if the contacts table exists
sub contacts_table_exists {

check information schema to see if the table exists already
my $contacts_exist = <<END_OF_QUERY;

select count(*) from information_schema.TABLES
where TABLE_NAME = ‘$table’

292

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 293

Chapter 7: Simple Database Application

and TABLE_SCHEMA= ‘$opt_schema’
END_OF_QUERY

my $sth= $dbh->prepare($contacts_exist);
$sth->execute();
my $exists= $sth->fetchrow_arrayref();
return $exists->[0];

}

drop_contacts_table() simply deletes contacts:

this method simply drops the contacts table
sub drop_contacts_table {

$dbh->do("drop table if exists $table");
}

create_contacts_table() creates
this simple subroutine creates the contacts table
sub create_contacts_table {

create statement
$create= <<END_OF_TABLE;

CREATE TABLE $table (
contact_id int(4) not null auto_increment,
first_name varchar(32) not null default ‘’,
last_name varchar(32) not null default ‘’,
age int(4) not null default 0,
address varchar(128) not null default ‘’,
city varchar(64) not null default ‘’,
state varchar(16) not null default ‘’,
country varchar(24) not null default ‘’,
primary key (contact_id),
index first_name (first_name),
index last_name (last_name),
index age (age),
index city (city),
index state (state),
index country (country)

);
END_OF_TABLE

$dbh->do($create);

}

Using information_schema
This subroutine gives a good example of how to use the information_schema schema to check if a
given table in a given schema exists. This is a schema that most RDBMSs implement and contains ANSI
standard read-only views that provide information about tables, views, procedures, and columns in all
schemas — the idea being that the database eats its own dog food and contains information about itself
within itself! Earlier versions of MySQL didn’t have an information_schema, but with the release of
version 5, this became standard to MySQL.

293

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 294

Chapter 7: Simple Database Application

Previously, you would have used SHOW TABLES to obtain this sort of information:

mysql> show tables from contacts_db;
+-----------------------+
| Tables_in_contacts_db |
+-----------------------+
| contacts |
+-----------------------+

SHOW TABLES is simple enough and certainly can be used. However, information_schema contains even
more information and is a standard, making your application portable if you ever need it to work with
another RDBMS. Notice how much more information is shown using the information_schema, which
can also give you the functionality for checking whether the table exists in the first place:

mysql> select * from information_schema.TABLES
-> where information_schema.TABLES.TABLE_NAME = ‘contacts’
-> and information_schema.TABLES.TABLE_SCHEMA= ‘contacts_db’\G

*************************** 1. row ***************************
TABLE_CATALOG: NULL
TABLE_SCHEMA: contacts_db

TABLE_NAME: contacts
TABLE_TYPE: BASE TABLE

ENGINE: MyISAM
VERSION: 10

ROW_FORMAT: Dynamic
TABLE_ROWS: 4

AVG_ROW_LENGTH: 58
DATA_LENGTH: 232

MAX_DATA_LENGTH: 281474976710655
INDEX_LENGTH: 2048

DATA_FREE: 0
AUTO_INCREMENT: 5

CREATE_TIME: 2008-11-07 18:55:43
UPDATE_TIME: 2008-11-07 20:26:53
CHECK_TIME: NULL

TABLE_COLLATION: latin1_swedish_ci
CHECKSUM: NULL

CREATE_OPTIONS:
TABLE_COMMENT:

So, create_contact_table() checks to see if the contacts table exists in the first place, and if
it does, asks the user if he or she really wants to drop and re-create it. If the user chooses not to,
create_contact_table() returns and the user is back in the main menu. If the user chooses to drop the
table, the table is dropped and the subroutine continues.

Finally, the contacts table is created, a message is displayed, and the user is returned to the menu.

Listing Contacts
One of the other main functionalities you would want (which is also a menu choice) is listing one or more
contacts using the subroutine list_contacts(). This would require this listing subroutine to accept a list

294

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 295

Chapter 7: Simple Database Application

of contact ids, if provided. list_contacts() first passes the values of $contact_ids to get_contacts()
to obtain a result set of contacts.

sub list_contacts {
my ($contact_ids)= @_;
my $contacts = get_contacts($contact_ids);
if contact doesn’t exist, notify user
unless (scalar @$contacts) {

if contact id, the means a specific user didn’t exist
if ($contact_ids) {

print "\nContact(s) not found.\n";
return 0;

}
otherwise, no users existing
print "\nYou have no contacts in your database.\n";
return 0;

}

for my $contact (@$contacts) {
print ‘-’ x 45 ,"\n";
for my $field_num (0 .. $#{$contact}) {

my $label= make_label($field_num);
printf("%-15s %-30s\n", $label,$contact->[$field_num]);

}
}
return 1;

}

The fetched array reference containing the result set from get_contacts() is printed out using an itera-
tive loop with the array subscript variable starting from 0 to the last member (column) of the contact using
$#{$contact}. The reason a subscript is used as opposed to just printing the value is that, in addition to
the value, the program needs to print out what the column name is for that value. This is accomplished
using the subroutine make_label(<subscript>), which takes the lower-cased column name and which
may also contain underscores. It returns a more human-friendly column name. make_label() requires a
column subscript value in order to return the proper column name.

sub make_label {
my ($field_num)= @_;
my $label= "\u$fields->[$field_num]"; # uppercase first letter
$label =∼ s/_/ /g; # convert underscore to space
return $label;

}

make_label utilizes the array reference $fields, which was populated with the correct field names in
the proper order in the subroutine initialize() to provide a field name at the subscript $field_num.
In turn, $field_num formats $label, uppercasing the first letters and removing underscores.

list_contacts() then prints out the label and field value using the line:

printf("%-15s %-30s\n", $label,$contact->[$field_num]);

This makes an easy-to-read, formatted line of text.

295

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 296

Chapter 7: Simple Database Application

Based on whether or not a list (using an array reference) of contact ids is provided from the caller, in this
case list_contacts(), then get_contacts() will build the appropriate SQL query. If a contact id list is
provided by $contact_ids, the query is appended with a WHERE clause specifying placeholders for these
contact ids. If no contact id list is provided, the SQL query will not have a WHERE clause appended and
all contacts will be listed.

sub get_contacts {
my ($contact_ids) = @_;
build select query
my $query= "select * from $table" ;
append where clause if contact id supplied
if ($contact_ids) {
the following join will join an array of placeholder
characters per number of $contact_ids with commas
$query .= ‘ where contact_id in (’

. join(’,’, (’?’) x @$contact_ids)

. ‘)’;

}
$query .= ‘ order by contact_id’;

print "list query:\n$query\n" if $opt_debug;

my $sth= $dbh->prepare_cached($query);

execute with contact_ids bind params if exists
$sth->execute(defined @$contact_ids ? @$contact_ids : ());

fetch data
my $contacts= $sth->fetchall_arrayref();

}

For the execution of the prepared statement, if a contact id list is provided, it is supplied to
$sth->execute() since the query that had been built contained the number of placeholders to the
number of contact ids. If no data is returned via fetching, that means either the specified contact doesn’t
exist or no contacts exist (depending on whether the contact id list was provided), in which case a 0
(false) is returned. This allows the calling function to know if finding a contact was successful.

At this point, if you were to insert a test user into the contacts table manually, you should be able to
have it print properly.

mysql> insert into contacts
-> (first_name, last_name, age, address, city, state, country)
-> values (’Test’, ‘User’, 30, ‘111 Test Ave.’, ‘Someville’, ‘XX’, ‘US’);

Then run the program and use –d to see the SQL being printed:

Menu: (enter one)

c Create a new contacts table

296

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 297

Chapter 7: Simple Database Application

d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

Enter choice: l
list query:
select * from contacts

make_label query:
SELECT COLUMN_NAME FROM information_schema.COLUMNS
WHERE TABLE_NAME=’contacts’ AND TABLE_SCHEMA=’contacts_db’;

Contact id 1
First name Test
Last name User
Age 30
Address 111 Test Ave.
City Someville
State XX
Country US

Excellent! The program prints out the test user you inserted, as well as the SQL statements that the debug
option caused to print. Also notice the nice, lovely labels. Eye candy indeed! You now have the means to
print the menu, receive input for a menu selection, and print contacts. That means you can continue
to add functionality.

Editing a Contact
The next step would be to flesh out the edit_contact()subroutine. This is yet another user interface
subroutine which is used to either add or edit (update) a contact. It will have to be able to take input
from the user — both decision-making input (add or edit) and the actual contact data. So it would make
sense to split the functionality up into two subroutines to handle both levels of input processing.

edit_contact() will be the top-level method that prompts the user for a decision about whether
to add or update a contact. It will then call edit_contact_fields() to process the input for each
contact field. Depending on the value of the decisions made, edit_contact() will then call the
lower-level database subroutines that insert or update the contact record with the contact information
that edit_contact_fields() processed.

sub edit_contact {
my $new_values;
my $contact_id = ‘’;

print "The current contacts are:\n";
list_contacts(); # list all contacts, contact id listed
while (not length($contact_id)) {
prompt "\nEnter which contact id you would like to edit, or ‘a’ for add new: ";
$contact_id = $_;

297

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 298

Chapter 7: Simple Database Application

unless (length($contact_id)) {
print "You need to supply a contact id or add!\n";

}
}

unless ($contact_id eq ‘a’) {
This will be used for update_contact() where clause
$new_values->{contact_id}= $contact_id;

unless this is a new contact, list the specific user given
by the contact id
list_contacts([$contact_id]) or return;

}

this subroutine prompts the user for each value
edit_contact_fields(\$new_values, $contact_id);

if ($contact_id eq ‘a’) {
my $contact_id= insert_contact($new_values);
print "Added contact_id $contact_id\n";
return;

}
update_contact($contact_id, $new_values);
print "Updated contact_id $contact_id\n";
return;

}

In the previous code, notice the following:

❑ First, a $new_values hash reference is declared. This will be used later to contain contact values
either for a new or existing contact. edit_contact() then prints out all the current contacts using
list_contacts() with no contact id specified.

❑ Next, the user is prompted for input to select what particular user to edit using the contact id
value displayed from the contact listing above or to add a contact by means of ‘a’:

❑ If the user enters nothing, edit_contact() prints out a message telling the user that he
or she didn’t select a value and then recursively calls itself so as to prompt the user for
input again. The user has to enter something, even if he or she becomes annoyed and enters
Ctrl+C!

❑ If the user enters a contact id value, that value is passed to list_contacts() so that the
specific contact the user wants to edit is displayed before prompting the user to enter
new values. Notice that the value is passed as a single member of an array reference, as
list_contacts() expects. If the contact is not found, meaning list_contacts() returns a
false, then edit_contact() returns to its calling subroutine, dispatch().

❑ $new_values->{contact_id} is set to the value of the contact_id selected if it is a contact id
and not ‘a’ for creating a contact. This will be the primary key value used in the WHERE clause in
the case of update_contact().

❑ Next, edit_contact_fields() is called with $new_values passed by reference, which will be
used to store user input for each contact field.

298

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 299

Chapter 7: Simple Database Application

❑ Finally, the contact is either updated or inserted by passing $new_values to either
$insert_contact or $update_contact and edit_contact() returns to the calling subroutine,
dispatch().

The subroutine edit_contact_fields(), which you saw was called by edit_contact(), uses an itera-
tive loop that starts from 1 through $#{$fields}, the last index value of $fields. This sets the subscript
variable $field_num to the current index value to process user input for each contact field value. The
reason the loop starts at 1 is because 0 is the first field/column, which is contact_id — the primary key
value — and cannot be set by the user, so it is skipped. The user input is read into $value. The user can
skip the column by entering nothing and hitting enter. If the user is adding a contact, he or she is required
to enter first_name and last_name columns using a while loop to check if he or she entered something
and using the $required hash reference to check if the current column name is a required one. As the
user enters values, they are stored in the hash reference $new_values, keyed by column name.

sub edit_contact_fields {
my ($new_values, $contact_id) = @_;
start from subscript #1 -- skipping the primary key column contact_id which
cannot be set by the user
for my $field_num (1 .. $#{$fields}) {

my $label = make_label($field_num);
prompt "Enter new value for $label (empty string to not change

if update) :\n";
my $value = $_;
for a new user, there has to be some required fields.

Do not allow the
user to enter empty values for these fields/columns.

A while loop is
just the tool for forcing the issue!
while (! length($value) &&

$contact_id eq ‘a’ &&
$required->{$fields->[$field_num]}) {
prompt "Adding a new contact requires a value for

$label :\n";
$value = $_;

}

$$new_values->{$fields->[$field_num]}= $value if length($value);
}
return;

}

You can begin testing this contact edit functionality. Of course at this point, nothing will be saved
because the lower-level database subroutines have yet to be implemented. However they are stubbed
out with print statements. One way to debug the newly implemented edit and add functionality is to
use Data::Dumper. Because both update_contact() and insert_contact() take as an argument, the
$new_values hash reference, you can use Data::Dumper to print out $new_values to make sure that the
values you’ve modified or created are. Or, you could also use a debugger!

If you want to use Data::Dumper to verify that the values set in $new_values are what you expect them
to be, make sure to import Data::Dumper at the top of the program and add it to both insert_contact()
and update_contact() with the following:

print Dumper $new_values;

299

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 300

Chapter 7: Simple Database Application

Now let’s test edit_contact(). First, edit an existing contact, the one already added by hand:

Menu: (enter one)

c Create a new contacts table
d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

Enter choice: e
The current contacts are:

Contact id 1
First name Test
Last name User
Age 30
Address 111 Test Ave.
City Someville
State XX
Country US

Enter which contact id you would like to edit, or ‘a’ for add new: 1
Enter new value for First name (empty string to not change if update) :
Henry
Enter new value for Last name (empty string to not change if update) :
Thoreau
Enter new value for Age (empty string to not change if update) :
40
Enter new value for Address (empty string to not change if update) :
Walden Pond
Enter new value for City (empty string to not change if update) :
Concord
Enter new value for State (empty string to not change if update) :
MA
Enter new value for Country (empty string to not change if update) :
US
$VAR1 = {

‘country’ => ‘US’,
‘city’ => ‘Concord’,
‘contact_id’ => ‘1’,
‘address’ => ‘Walden Pond’,
‘age’ => ‘40’,
‘state’ => ‘MA’,
‘last_name’ => ‘Thoreau’,
‘first_name’ => ‘Henry’

};
insert_contact() called

300

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 301

Chapter 7: Simple Database Application

Excellent! It seems to work. As you can see, the proper value for the contact_id is retained and the
new values that you entered are found in the $new_values hash reference. Now let’s test adding a new
contact:

Enter which contact id you would like to edit, or ‘a’ for add new: a
Enter new value for First name (empty string to not change if update) :
John
Enter new value for Last name (empty string to not change if update) :
Smith
Enter new value for Age (empty string to not change if update) :
33
Enter new value for Address (empty string to not change if update) :
100 Main St.
Enter new value for City (empty string to not change if update) :
Peterborough
Enter new value for State (empty string to not change if update) :
NH
Enter new value for Country (empty string to not change if update) :
US
insert_contact() called
$VAR1 = {

‘country’ => ‘US’,
‘city’ => ‘Peterborough’,
‘address’ => ‘100 Main St.’,
‘age’ => ‘33’,
‘state’ => ‘NH’,
‘last_name’ => ‘Smith’,
‘first_name’ => ‘John’

};

So, you see the logic for adding or editing an existing contact works and the hash reference that stores
the new values properly does so. Now insert_contact() and update_contact() can be implemented.

Inserting a Contact
insert_contact takes as an argument a hash reference containing the keys corresponding to the columns
of the database and the values that will be inserted for those columns. What you must do is to use that
hash reference to build an SQL INSERT statement and prepare and execute that INSERT statement.

Since it’s a good practice to use prepared statements, the SQL INSERT statement will contain as many
placeholders as there are columns in $new_values that will be prepared with prepare() and to then in
turn pass the proper values in the proper order to a subsequent execute() call.

sub insert_contact {
my ($new_values)= @_;

append each field name separated by comma
my $insert_statement_fields

= join ‘,’, keys %$new_values;
append placeholders for each column

301

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 302

Chapter 7: Simple Database Application

my $insert_statement_values
= join ‘,’, (‘?’) x keys %$new_values;

glue the full insert statement together
my $insert_statement = "insert into $table

($insert_statement_fields)"
. " values ($insert_statement_values)";

print "insert statement: $insert_statement\n" if $opt_debug;
my $sth= $dbh->prepare_cached($insert_statement);

my $rows= $sth->execute(values %$new_values);
return ($dbh->last_insert_id(undef, $opt_schema, $table, undef, undef));

}

The SQL INSERT statement that is used to insert the contact is built by first joining the keys of
$new_values with commas to construct the columns specification string, $insert_statement_fields.
Then the values specification string, $insert_statement_values, is built by joining placeholders by
the number of columns being inserted with commas. Then the entire SQL statement is built using both
$insert_statement_fields and $insert_statement_values transliterated in the main SQL string. The
end result is a string that will have a column specification (col1, col2, col3...) as well as the values
in VALUES (?, ?, ? ...).

The SQL INSERT statement is prepared with prepared_cached(), and then executed with the output of
values %$new_values in the form of an array, as is required for execute().

To know whether insert_contact() successfully inserted the contact, last_insert_id() is returned
along with its own return value to the calling subroutine, edit_contact(). If the insert statement was
successful, a non-zero value (the value of the $contact_id for the inserted contact) is returned. If there
was a failure, undef is returned.

Updating a Contact
update_contact(), like insert_contact(), also uses the key/value pairs of the $new_values hash ref-
erence to construct an SQL UPDATE statement. What needs to be appended is slightly different than with
an INSERT.

sub update_contact {
my ($new_values)= @_;

save the value of contact_id which we need for the where clause later
and delete the contact id from $new_values so @values won’t obtain it
my $contact_id = delete $new_values->{contact_id};

@values are the values for the bind array
my @values= values %$new_values;

build up the update statement string
my $update_statement = "update $table set "

. join(‘,’, map { "$_ = ? " } keys %$new_values)

. " where contact_id = ?";

302

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 303

Chapter 7: Simple Database Application

tack on contact id to the end of the @values bind array since contact_id
is the the last placeholder value
push(@values, $contact_id);

print "update contact statement:\n$update_statement\n" if $opt_debug;
my $sth= $dbh->prepare_cached($update_statement);

$sth->execute(@values);

}

The first thing is to take from $new_values the contact id and then delete it from $new_values, since
$new_values will be used to build the UPDATE statement. You only need one join-map combination to
build the part of the UPDATE statement specifying the new values as "col=val" for each column and
value, and since column_id was deleted from $new_values, it will not be included.

$contact_id has the value saved from $new_values->{contact_id}, which has since been deleted.
This is the primary key value that will be used for the WHERE clause of the UPDATE statement (and has a
placeholder for it). It is simply ‘‘tacked on’’ to the end of @values. It is also important to make sure, as
with insert_contact(), to pass the array of values in the same order of the columns in the statement
that the placeholders will be transliterated with.

Deleting a Contact
One other low-level database write operation that will be needed is a subroutine to delete a contact.
That’s where delete_contact() comes in.

delete_contact() needs to prompt the user for decisions just as edit_contact() does. It’s important
to make sure in the interface that there is user verification to ensure that the user really wants to delete
a contact. Such verification allows he or she to confirm that deleting a contact (or not) is what he or she
wants to do. It’s also helpful to print a list of the contacts to give the user the list of contacts that exist
currently in order to help the user make a decision.

sub delete_contact {
list_contacts();
prompt "\n\nEnter the contact id of the contact you wish to delete: ";
my $contact_id= $_;

print "\ncontact id selected $contact_id:\n";

list_contacts([$contact_id]) or return;

prompt "Do you realy want to delete contact id $contact_id? [y|N] ";
my $answer= $_;

if ($answer eq ‘y’) {
if (delete_contact_db($contact_id)) {

print "\nDeleted contact $contact_id\n";
}
else {

print "\nError deleting $contact_id\n";
}

303

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 304

Chapter 7: Simple Database Application

}
else {

print "\nNot deleting contact id $contact_id\n";
}

return;
}

The user is prompted with a ‘y’ or ‘N’ as to whether or not he or she wants to delete a contact. ‘y’ is
the only character that will result in a contact being deleted. ‘N’ or any other value will cancel the dele-
tion. This behavior is common for most command-line interfaces and is what is being coded into this
application.

Since there is so much user interface logic in this subroutine, to keep the number of lines down and sepa-
rate logic further, making the design more concise, the actual low-level subroutine that deletes the contact
from the database is implemented in its own subroutine, delete_contact_db(). This is an extremely
simple subroutine. All it has to do is prepare an SQL DELETE statement with a single placeholder for the
contact_id column value:

sub delete_contact_db {
my ($contact_id)= @_;

return ($dbh->do("delete from $table where contact_id = ?", undef,
$contact_id));
}

Testing update_contact, insert_contact,
and delete_contact

You now have a way to add, edit, and delete a contact. You can now test these three functionalities, as
demonstrated in the next sections.

Editing a Contact
This time, editing a contact should result in the user being changed, as opposed to a simple printout as
before.

Enter which contact id you would like to edit, or ‘a’ for add new: 1

Contact id 1
First name Test
Last name User
Age 30
Address 111 Test Ave.
City Someville
State XX
Country US
Enter new value for First name (empty string to not change if update) :
Henry
Enter new value for Last name (empty string to not change if update) :

304

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 305

Chapter 7: Simple Database Application

Thoreau
Enter new value for Age (empty string to not change if update) :
40
Enter new value for Address (empty string to not change if update) :
Walden Pond
Enter new value for City (empty string to not change if update) :
Concord
Enter new value for State (empty string to not change if update) :
MA
Enter new value for Country (empty string to not change if update) :
US
Updated contact_id 1

Menu: (enter one)

c Create a new contacts table
d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

Enter choice: l

Contact id 1
First name Henry
Last name Thoreau
Age 40
Address Walden Pond
City Concord
State MA
Country US

Editing works! A contact with a contact_id of 1 was chosen, the values changed, and the listing of
contacts shows that this user was indeed modified.

Adding a Contact
Testing the addition of a contact will determine if the entered contact is saved. A listing of contacts should
display this new contact in addition to the previously modified contact.

Enter which contact id you would like to edit, or ‘a’ for add new: a
Enter new value for First name (empty string to not change if update) :
John
Enter new value for Last name (empty string to not change if update) :
Brown
Enter new value for Age (empty string to not change if update) :
30
Enter new value for Address (empty string to not change if update) :

305

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 306

Chapter 7: Simple Database Application

111 Main St.
Enter new value for City (empty string to not change if update) :
Denver
Enter new value for State (empty string to not change if update) :
CO
Enter new value for Country (empty string to not change if update) :
US
Added contact_id 2

Menu: (enter one)

c Create a new contacts table
d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

Enter choice: l

Contact id 1
First name Henry
Last name Thoreau
Age 40
Address Walden Pond
City Concord
State MA
Country US

Contact id 2
First name John
Last name Brown
Age 30
Address 111 Main St.
City Denver
State CO
Country US

And this test is successful! Both the new contact and the previous contact are displayed with the values
entered.

Deleting a Contact
Now we’ll test the deletion of a contact. The way to test this functionality is to select a contact to delete,
and cancel the deletion by not selecting ‘y.’ Then select another contact to delete and choose ‘y.’ Finally,
verify that the selected contact was deleted.

Some of the output is deleted from brevity.

306

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 307

Chapter 7: Simple Database Application

Enter choice: d

Contact id 1
First name Henry
Last name Thoreau
Age 40
Address Walden Pond
City Concord
State MA
Country US

Contact id 2
First name John
Last name Brown
Age 30
Address 111 Main St.
City Denver
State CO
Country US

Enter the contact id of the contact you wish to delete: 2

contact id selected 2:

Contact id 2
First name John
Last name Brown
Age 30
Address 111 Main St.
City Denver
State CO
Country US
Do you realy want to delete contact id 2? [y|N] n

Not deleting contact id 2

Menu: (enter one)

c Create a new contacts table
d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

Enter choice: d

Contact id 1
First name Henry

307

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 308

Chapter 7: Simple Database Application

Last name Thoreau
Age 40
Address Walden Pond
City Concord
State MA
Country US

Contact id 2
First name John
Last name Brown
Age 30
Address 111 Main St.
City Denver
State CO
Country US

Enter the contact id of the contact you wish to delete: 2

contact id selected 2:

Contact id 2
First name John
Last name Brown
Age 30
Address 111 Main St.
City Denver
State CO
Country US
Do you realy want to delete contact id 2? [y|N] y

Deleted contact 2

Menu: (enter one)

c Create a new contacts table
d Delete a contact
e Edit a contact (add or update)
f Find user
l List all contacts
q Quit

Enter choice: l

Contact id 1
First name Henry
Last name Thoreau
Age 40
Address Walden Pond
City Concord

308

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 309

Chapter 7: Simple Database Application

State MA
Country US

This shows that deletion works. The contact selected is properly deleted if the user confirms deletion by
selecting ‘y.’

Lookup of a Contact
The last bit of needed functionality is being able to perform a lookup of a contact. This means being able
to specify values for any number of contact attributes — first name, last name, age, city, and country.

The subroutine find_contact() will be the subroutine to implement the user interface functionality. The
user interface is fairly simple. It simply needs to prompt the user for each field/column in the contacts
table, storing the values in a hash reference with key/value pairs corresponding to each column.

sub find_contact {
print "Lookup user(s)\n";
my $lookup;

print "Enter any of the following, return to ignore.\n";

for (@$search_fields) {
my $label= make_label($_);
print "Enter $label: ";
my $val= <STDIN>;
chomp($val);
$lookup->{$fields->[$_]}= $val if length($val);

}

my $contact_ids = get_contact_id($lookup);

unless ($contact_ids) {
print "No contacts could be found.\n";
return ;

}
list_contacts($contact_ids);
return;

}

An iterative loop is used looping through the values of the $fields array reference. If the user enters
a value, that value is stored. If he or she enters nothing and hits return, it is ignored. Once all fields
have been iterated through, get_contact_id() is called with the $lookup hash reference. This returns
a list of one or more contact ids as the results. These contact ids are then passed as arguments to
list_contacts(), which will list the results of the lookup.

The subroutine get_contact_id() performs the actual lookup in the contacts table for whatever is
specified in the hash reference $contact.

sub get_contact_id {
my ($contact)= @_;

309

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 310

Chapter 7: Simple Database Application

build up the query
my $query = "select contact_id from $table where "

. join(‘ AND ‘, map { "$_ = ? " } keys %$contact);

my $sth= $dbh->prepare($query);
$sth->execute(values %$contact);
my $id_ref= $sth->fetchall_arrayref();

return a simple array reference, not result set
my $result_ref;
push @$result_ref, $_->[0] for @$id_ref;
return $result_ref;

}

Just as was done in insert_contact() and update_contact(), the SQL query WHERE clause is built by
appending a column name and a placeholder for the number of keys in $contact. The full query is
then glued together, prepared, and executed with the values of $contact, which are in the order of the
columns in the executed statement. The results of the query are fetched with fetchall_arrayref(). This
is an array reference of arrays that must be converted to a simple array reference of contact ids, so a
mapping loops through the result set, and then the array reference is returned.

Testing Lookup of a Contact
Now that both find_contact() and get_contact_id() are implemented, you can test the lookup of a
contact.

For testing, let’s assume more data has been added:

Contact id 1
First name Henry
Last name Thoreau
Age 40
Address Walden Pond
City Concord
State MA
Country US

Contact id 3
First name Ralph
Last name Emerson
Age 50
Address Old Manse
City Concord
State MA
Country US

Contact id 4
First name Walt
Last name Whitman
Age 30

310

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 311

Chapter 7: Simple Database Application

Address 33 Fulton St.
City Brooklyn
State NY
Country US

Contact id 5
First name William
Last name Wordsworth
Age 65
Address Scafell Pike
City Lake District
State Lakeland
Country UK

For a successful testing, supplying a specific value for any of the contact attributes should return the
appropriate contact.

The following test searches just on a supplied country value:

Enter choice: f
Lookup user(s)
Enter any of the following, return to ignore.
Enter First name:
Enter Last name:
Enter Age:
Enter City:
Enter State:
Enter Country: UK

Contact id 5
First name William
Last name Wordsworth
Age 65
Address Scafell Pike
City Lake District
State Lakeland
Country UK

Excellent! That worked. Now let’s try a lookup by first name:

Enter choice: f
Lookup user(s)
Enter any of the following, return to ignore.
Enter First name: Henry
Enter Last name:
Enter Age:
Enter City:
Enter State:
Enter Country:

Contact id 1
First name Henry
Last name Thoreau
Age 40

311

Galbraith c07.tex V3 - 06/02/2009 9:13am Page 312

Chapter 7: Simple Database Application

Address Walden Pond
City Concord
State MA
Country US

That worked, too!

Now, to make sure search functionality doesn’t return false searches, perform the previous search again
with UK for the country value:

Enter choice: f
Lookup user(s)
Enter any of the following, return to ignore.
Enter First name: Henry
Enter Last name:
Enter Age:
Enter City:
Enter State:
Enter Country: UK
No contacts could be found.

Great! Lookup functionality is now implemented, completing the contacts application.

Summary
Building on what you learned in Chapter 6, this chapter has shown you the implementation of a simple
Perl database application using the DBI module to retrieve and modify data with MySQL. This was a
great start to understanding how easy it is to write Perl database applications. Web applications have
even more complexity, so this chapter’s demonstration was a good foundational exercise because it
focused only on using Perl and MySQL together.

Now you should have a good fund of knowledge to build upon and add other concepts to. As you
continue reading through this book and come to the end of each chapter, you will repeatedly realize
what you have in this chapter: that using Perl to program your applications is great and easy to work
with.

The full program listing for this contacts application can be seen in the download file ‘‘Chapter 7: Simple
command-line contact list application.’’ Visit www.wrox.com to download this code.

312

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 313

memcached

Web applications are all about data. Being able to process data, both storing data that a user submits,
as well as retrieving data to display, is the primary function of a web application. How fast and
efficiently the application obtains that data is the most important issue pertaining to scalability. You
have learned in this book that MySQL is a relational database system where data is organized and
stored, and is the primary data source for web applications. Certainly, the database is the durable
data store where all your data will be stored and available for the web application to use, however,
having to retrieve data from a database does have a cost, depending on the type of database query
executed and the subsequent result set that is retrieved.

Various types of data are frequently retrieved from the database for the application to function
properly, including data that frequently changes, such as user or session data, as well as data that
doesn’t change as often, such as actual page content. Having to access the database for this data can
affect performance significantly, and is a major scaling consideration.

This is where it would be useful not to have to always access the database to obtain this data — to
have a cache. This is the problem that memcached solves.

What Is memcached?
memcached is a high-performance, distributed memory object caching system. It is essentially a sim-
ple memory server that provides a caching layer for applications to store data to alleviate database
load, as well as a dictionary, or hash lookup table — something that you as a Perl programmer can
certainly understand. The data stored in memcached is not durable — meaning it’s gone when the
memcached server is shut down or restarted — and it has no failover or authentication, so it is up
to the application using memcached to implement how data is managed and kept up to date.

memcached has a structure that is known as an LRU (Least Recently Used) cache, so that stored data
that is the oldest and least accessed will be replaced with newer items when memcached’s memory
capacity is reached. Also, memcached provides expiration timeouts for stored data, so you can set
data you are storing to expire some time in the future, or not at all. memcached will replace data

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 314

Chapter 8: memcached

that has expired first, then replace the least recently used data, when its memory capacity has been
reached.

memcached can run in any type of configuration: either on one or more servers, or even in multiple
instances on the same server. The memcached server simply provides a storage structure where the data
is stored by key value and a hash lookup table that is used for retrieval. The intelligence that really glues
it all together is implemented in the memcached client, which takes a hash value of the key to reference
what is being stored or retrieved. It uses a particular hashing algorithm that determines which servers
the request for one or more keys should be sent to. Once the client knows which servers to request for a
given item, it sends the requests in parallel to the appropriate servers. Each server then uses its hash key
lookup table to retrieve the stored item and sends the results to the client. The client then aggregates the
results for the application to use them.

Figure 8-1 shows how a memcached cluster comprises multiple servers and the client library provides the
functionality for all of them to work as a single source of storage via a single connection to the application
utilizing memcached.

Application

memcached Client library

memcached Cluster

Figure 8-1

memcached is extremely fast for both storing and retrieving data since it uses memory instead of a disk
to store data. It doesn’t require much from the CPU, and can be run on the same server that the Apache
web server is running on, or on any servers that have spare memory available.

With memcached, a common architecture setup is to have a number of servers that are simply configured
for the sole purpose of providing memory. Because memcached needs memory more than it needs CPU
power, in contrast to what a database would require, it’s possible to use hardware that is much more

314

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 315

Chapter 8: memcached

affordable than that required for a database. This lets you use multiple lower-end servers to provide a
distributed memory caching layer for your web application, and makes for easier and more affordable
scaling.

Prior to the advent of memcached, developers used various schemes to cache data that they wanted
to avoid having to access the database to obtain. One way was to cache data in the web process (since
mod_perl is persistent). The problem with this is that each child ended up having a copy of the same
data that other processes have already cached, resulting in duplicated data across threads/children.
There were also some file-based caching systems (the various Perl Cache:: modules), but, of course, the
best means of caching is to use memory, not disk. Another trick was to use IPC (IPC::Sharable in Perl),
but this was tricky (speaking from experience) and only worked per machine.

Along came memcached, which was developed for the site Livejournal.com by Brad Fitzpatrick, who
wanted a better caching solution than those that existed at the time. Livejournal is a social web site with
millions of users and millions of dynamic page views per day. With memcached, the millions of page
views that previously accessed the database for all this data could now use a lightweight cache to obtain
data, thereby reducing the load on their database to almost nothing.

How memcached Is Used
Normally, when you either store or retrieve data in your application, your application runs a query if
retrieving data, or an INSERT or UPDATE statement when storing data directly to the database. With a cache
system like memcached, the design of your application changes to take advantage of the caching. There
are two types of caching: read-through caching and write-through caching.

❑ Read-through caching: When data is retrieved, the application checks the cache first to see if
the data being retrieved is already there. If the data is in the cache, it just returns that data with-
out having to query the database. If it’s not in the cache, the data is obtained from the database,
then stored in the cache, and finally returned to the user. The idea is that a read operation not
only obtains data, but also ensures that the cache has the required data for subsequent reads.
Figure 8-2 shows a diagram of how a read-through cache works.

❑ Write-through caching: Data is written to memcached, and a separate process reads the stored
data from memcached to the databases. The mechanism that initiates that separate process can
be implemented in several ways:

❑ When the data is written to memcached, a job is requested by a Gearman client; Gearman
then assigns the job to a worker that then obtains the stored data from memcached and
stores it in MySQL.

❑ When the data is written to memcached, an entry is made to a simple catalogue table that
contains the hash key value of the data stored to memcached.

❑ A trigger exists on this table that, when executed (when data is inserted), sends a command
to a server that in turn calls the process that pulls the data from memcached and then stores
it in MySQL.

❑ A cron job periodically runs and reads the stored keys from this catalogue table, retrieves
the stored data for those keys from memcached, and then stores that data in MySQL. This
is known as ‘‘lazy’’ processing/caching.

315

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 316

Chapter 8: memcached

Is object in
memcached?

NoYes

Obtain object from
memcached

memcached

Obtain object from
MySQL and write
to memcached

MySQL

Start-
application

request

Figure 8-2

Figure 8-3 shows write-through caching with three possible mechanisms, as just described, of getting
data that is stored in memcached stored into MySQL.

Caching also gives you liberty to use all sorts of useful tricks. You can use the cache to perform ‘‘lazy’’
processing. For instance, imagine an application that processes RSS feeds and needs to both store the
components of the feed into the database as well as provide a JSON cache of the feed for an AJAX client
application to display.

One part of the application, run via a web request, requests an RSS feed from the Internet. It obtains the
RSS feed, which is an XML file. The application then parses this XML file into a DOM Perl object and
also converts the XML into JSON. The JSON is then stored in memcached, available for being served by
the application to the AJAX client, and the XML DOM object is stored as a separate object in memcached
and an entry is made in a queue table containing the key of the DOM object. By some mechanism, either
cron job or trigger to a UDF on the queue table, the queue table is read from by yet another process (non-
web) that obtains all keys stored in this queue table, retrieving the DOM objects that have been stored in
memcached with these key values. This process then loops through each DOM object, storing each feed
item in the database. This process also deletes the entries in the queue table and deletes the DOM objects
from memcached that it has processed.

What memcached allows for is that an application that would normally have to perform all of these
actions within the web application layer can now be split into two processes: The first is a web applica-
tion, which mainly has to take care of fetching and caching. The second is a non-web application that can
run asynchronously apart from the web request, which takes care of the heavier database processing at
whatever frequency is desired.

316

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 317

Chapter 8: memcached

MySQL

Start-write
object to

memcached write to catalogue table,
activate trigger

Add task to
Gearman

-OR-

-OR-

-OR-

Gearman

call data
access process

memcached

call data
access process

Obtain keys from
catalogue table

Data access process

Obtain object from
memcached given
key(s), then write
object to MySQL

Cron job reads
hash keys from
catalogue table

cron job

Figure 8-3

What Is Gearman?
Gearman is yet another useful project from the same people who created memcached and Danga — Brian
Fitzpatrick, et al. It is a server that is used for dispatching assign, or to ‘‘farm out’’ jobs to machines that
are better suited to run these tasks than the machine that made the call. Thus tasks can be run in parallel,
allowing for load balancing and better scaling, and even being able to call functions that are not written
in the same programming language as the application code.

Gearman consists of a server called, interestingly enough, gearmand and clients: caller clients that make
requests to the server, and workers that can perform the work requested by the clients. There are client
APIs for Perl, PHP, Ruby, Python and others.

You can use Gearman to handle things like processing items stored in memcached (write-through
caching) as well as for any processing you want to distribute so as to relieve the load on your main
server.

In Chapter 18, you will see just how useful Gearman is. This chapter provides a search engine application
as a practical example of how you can use Gearman.

317

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 318

Chapter 8: memcached

Caching Strategies
There are different types of caching strategies you can employ for different types of data, depending on
how often that data changes and what type of data is being stored:

❑ Deterministic cache: This is the caching described in the read-through cache example. Data is
requested. If it is in memcached, it simply returns that data. If it is not in memcached, data is
obtained from MySQL and then written to memcached and returned to the requester.

❑ Nondeterministic cache: This is data that you would assume to always be in memcached. This
would be particularly useful for more static data. This would also require the promise that the
data is always loaded into memcached, for example when a web server is started. Also, if possi-
ble, you would want to try to keep this cache on its own server, where it would have other types
of objects stored that might cause the more static data to be replaced through the mechanism of
LRU.

❑ Session or state cached: This is cache that you would use for storing using data such as user
session data — something that could be particularly useful for applications such as shopping
carts.

❑ Proactive caching: Similar to nondeterministic caching, proactive caching is where data is auto-
matically updated in cache on a database write. This could be done using triggers and the Mem-
cached Functions for MySQL, which will be covered in Chapter 10.

❑ File system or page caching: This is where you would cache templates or HTML code that
makes up the design of your web site. This would allow you to avoid having to use the file
system to obtain your site content.

❑ Partial page caching: This is where you would have page components stored. You could avoid
having to use expensive queries that provide calculations, such as comment or story popular-
ity, to display a page every time. You could instead build these components on a regular basis
and then store them in memcached. When the page is displayed, it just obtains these pre-built
components from memcached and displays them!

❑ Cache replication: You can build the functionality into your application so that it writes data to
multiple memcached servers for each item stored to ensure that you have redundancy.

Installing memcached
Installing memcached is very simple. You can either use a package installer for most Linux distributions
or else compile the source. There is only one prerequisite package that memcached requires — libevent.
Libevent is an API that memcached uses to scale any number of open connections. You can install this on
most Linux distributions with package management or by source.

CentOS
To install memcached on a CentOS Linux server, follow these steps:

1. Start out by running:

[root@testbox ∼]# yum search memcached

This produces various results, the two most important of which are: (This is on a 64-bit CPU.
On a 32-bit it may be i386.)

318

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 319

Chapter 8: memcached

memcached.x86_64 : High Performance, Distributed Memory Object Cache
memcached-selinux.x86_64 : SELinux policy module supporting memcached

The SELinux package is to ensure that memcached has the correct firewall settings to be
allowed to be run. Memcached runs by default on port 11211. You could just as easily set
the firewall to allow 11211 through.

2. Next you run the install:

[root@testbox ∼]# yum install memcached.x86_64
....
Dependencies Resolved

==
Package Arch Version Repository Size

==
Installing:
memcached x86_64 1.2.5-2.el5 epel 59 k
Installing for dependencies:
libevent x86_64 1.1a-3.2.1 base 21 k

Transaction Summary
==
Install 2 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 80 k
Is this ok [y/N]:

As you can see, libevent is automatically included as a dependency, so there is no need to
specifically install it.

3. Select y to complete the installation. The installer will also set up the init scripts that start
memcached when the operating system is booted.

Ubuntu
With Ubuntu, use apt-cache search:

root@hanuman:∼# apt-cache search memcached
libcache-memcached-perl - Cache::Memcached - client library for memcached
libmemcache-dev - development headers for libmemcache C client API
libmemcache0 - C client API for memcached memory object caching system
memcached - A high-performance memory object caching system

All of these packages are ones that you might as well install. The libmemcached packages are for the high-
performance client library libmemcached, which will be explained later in this chapter. The package
libcached-memcached-perl is the one that supplies the Perl client libraries needed for writing programs
in Perl using memcached; you’ll need this also. Use apt-get install to install these packages:

apt-get install memcached libcache-memcached-perl libmemcache-dev
libmemcache0
Reading package lists... Done

319

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 320

Chapter 8: memcached

Building dependency tree
Reading state information... Done
The following extra packages will be installed:

libevent1 libstring-crc32-perl
The following NEW packages will be installed:

libcache-memcached-perl libevent1 libmemcache-dev libmemcache0
libstring-crc32-perl memcached

0 upgraded, 6 newly installed, 0 to remove and 96 not upgraded.
Need to get 227kB/278kB of archives.
After unpacking 946kB of additional disk space will be used.
Do you want to continue [Y/n]? Y

As with yum, apt-get will ensure that libevent is installed, taking care of any dependencies.

Installing memcached from Source
You can also install memcached by source. This may be your preferred option, especially if
you want the latest and greatest release. The web page for memcached is found at Danga.com
(http://www.danga.com/memcached/). From there you will find a link to the latest source, or repository
in either git or subversion. If you are not using a packaged version of libevent, you’ll need to obtain that,
too, from http://monkey.org/∼provos/libevent/.

Now, follow these steps:

1. Download libevent:

wget http://monkey.org/∼provos/libevent-1.4.8-stable.tar.gz

2. Compile and install libevent:

tar xvzf libevent-1.4.8-stable.tar.gz

cd libevent-1.4.8-stable

./configure

make

make install

3. Download memcached:

[root@testbox src]# wget http://www.danga.com/memcached/dist/
memcached-1.2.6.tar.gz

4. Compile and install memcached:

tar xvzf memcached-1.2.6.tar.gz

cd memcached-1.2.6

./configure

320

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 321

Chapter 8: memcached

make

make install

Starting memcached
Depending on where memcached is installed, you will need to start it from that location. You can start
memcached by hand. To see all options available to memcached, use the -h switch:

[root@testbox memcached-1.2.6]# /usr/local/bin/memcached -h
memcached 1.2.6
-p <num> TCP port number to listen on (default: 11211)
-U <num> UDP port number to listen on (default: 0, off)
-s <file> unix socket path to listen on (disables network support)
-a <mask> access mask for unix socket, in octal (default 0700)
-l <ip_addr> interface to listen on, default is INDRR_ANY
-d run as a daemon
-r maximize core file limit
-u <username> assume identity of <username> (only when run as root)
-m <num> max memory to use for items in megabytes, default is 64 MB
-M return error on memory exhausted (rather than removing

items)
-c <num> max simultaneous connections, default is 1024
-k lock down all paged memory. Note that there is a

limit on how much memory you may lock. Trying to
allocate more than that would fail, so be sure you
set the limit correctly for the user you started
the daemon with (not for -u <username> user;
under sh this is done with ‘ulimit -S -l NUM_KB’).

-v verbose (print errors/warnings while in event loop)
-vv very verbose (also print client commands/reponses)
-h print this help and exit
-i print memcached and libevent license
-b run a managed instanced (mnemonic: buckets)
-P <file> save PID in <file>, only used with -d option
-f <factor> chunk size growth factor, default 1.25
-n <bytes> minimum space allocated for key+value+flags, default 48

The most common options you will use are –u and –m. The first option, -u specifies the user, defaults to
the current user, and won’t let you run memcached as root, so if you start memcached as root, you will
have to specify a non-root user. The second option, –m, is the size in megabytes of the block of memory
that will be slated for memcached. The default is 64 megabytes.

If you are logged in as yourself and just want to run memcached with defaults, you can certainly just
start it, backgrounded:

/usr/local/bin/memcached &

If you want to run memcached in super-mega-umlaut verbose mode to a log file:

/usr/local/bin/memcached –u username –vv >>/tmp/memcached.log 2>&1 &

321

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 322

Chapter 8: memcached

The –vv flag causes memcached to print out any request to the server. You can see exactly what mem-
cached is doing if you run it with –vv.

Startup Scripts
Alternatively, there are startup scripts that come with memcached found in the scripts directory of the
source package, if you are running a UNIX variant that uses SYSV startup scripts. Some of these scripts
are a bit dated and you will most likely have to edit them for the particular setup of your system.

[root@testbox scripts]# ls
memcached-init memcached.sysv memcached-tool start-memcached

The scripts of interest depend on what UNIX variant or Linux distribution you’re running. If you are
running Debian-based Linux, you will need to edit memcached-init and start-memcached to have
the correct path information. For Redhat-based systems (Redhat, CentOS, Fedora), you will only edit
memcached.sysv.

Debian-Based Startup Scripts
memcached-init relies on start-memcached, which also needs to be edited and placed in a directory
specified in memcached-init.

Once you have memcached-init edited, copy it as /etc/init.d/memcached. Make sure to set the correct
permissions.

chmod 755 /etc/init.d/memcached

Then set up the run-level permissions for this script to be automatically started (linked to their appropri-
ate run-levels), ensuring that memcached will start up upon system boot:

root@testbox:∼# update-rc.d memcached-init defaults
Adding system startup for /etc/init.d/memcached-init ...
/etc/rc0.d/K20memcached-init -> ../init.d/memcached-init
/etc/rc1.d/K20memcached-init -> ../init.d/memcached-init
/etc/rc6.d/K20memcached-init -> ../init.d/memcached-init
/etc/rc2.d/S20memcached-init -> ../init.d/memcached-init
/etc/rc3.d/S20memcached-init -> ../init.d/memcached-init
/etc/rc4.d/S20memcached-init -> ../init.d/memcached-init
/etc/rc5.d/S20memcached-init -> ../init.d/memcached-init

Redhat-based Startup Scripts
You will have to edit scripts/memcached.sysv. You must ensure the correct paths, port, and the user
that memcached runs as:

PORT=11211
USER=nobody
MAXCONN=1024
CACHESIZE=64
OPTIONS=""

322

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 323

Chapter 8: memcached

One other change you might have to make to ensure the path to memcached is known to the startup
script is to add the variable prog_path right after prog:

prog="memcached"
prog_path="/usr/local/bin/memcached"

Then you would change:

daemon memcached -d -p $PORT -u $USER -m $CACHESIZE -c $MAXCONN...

to:

daemon $prog_path -d -p $PORT -u $USER -m $CACHESIZE -c $MAXCONN...

Once the script is ready, it can be copied as /etc/init.d/memcached. To set up the script to be started
upon system reset, first add it:

[root@testbox memcached-1.2.6]# chkconfig --add memcached

Verify that it will still need to have its levels set up:

[root@testbox memcached-1.2.6]# chkconfig --list memcached
memcached 0:off 1:off 2:off 3:off 4:off 5:off 6:off

Then set memcached to run in the proper levels (2, 3, 4, 5):

[root@testbox memcached-1.2.6]# chkconfig --level 2345 memcached on

Then verify that the changes were made:

[root@testbox memcached-1.2.6]# chkconfig --list memcached
memcached 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Installing the Cache::Memcached Perl Module
In addition to memcached, you will also want to install the Perl module, Cache::Memcached, which you
will use for writing Perl programs that connect to memcached. As stated before, the client for memcached
is where most of the real functionality that allows caching of data amongst multiple memcached servers
is implemented.

Cache::Memcached can be installed (as shown in previous install procedures) through operating system
packages or via CPAN:

Using Cache::Memcached
Using memcached is extremely easy. The first thing you do in your program is to open a connection
to your memcached cluster — meaning one or more instances of memcached running on one or more
servers. This is accomplished by instantiating a Cache::Memcached object. The constructor is called in
the example below:

323

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 324

Chapter 8: memcached

Connecting, Instantiation
The first thing you will want to do in order to interact with a memcached server using Perl is to instantiate
the Cache::Memcached module.

use Cache::Memcached;
my $memc = new Cache::Memcached({

‘servers’ => [
"172.16.221.128:11212",
"172.16.221.128:221122"],

‘debug’ => 0,
‘compress_threshold’ => 10_000});

The constructor takes a hash reference of various options. First and foremost is servers. The value of this
key is an array reference of servers. The servers array reference values are IP:port, in this case there are
three different memcached servers that this client will refer to as one memcached object (one on the local
server and the other two both on the same remote server, but running on different ports). The standard
port that memcached servers default to using is 11211, but other ports can also be used. Either way, you
must provide this port. The servers you use can also be set with the method set_servers():

$memc->set_servers([’127.0.0.1:11211’, ...]);

The debug option determines whether Cache::Memcached will be instantiated in debug mode or not. If
debug is 1 (true), debug messages of what the client is setting or fetching from the memcached server will
be printed to STDERR. You can also set this value with the method set_debug()

$memc->set_debug(1|0);

The other option, compress_threshold, is the value in bytes that, if exceeded by the object being stored,
will result in compression being applied to that store operation of that object. You can change this value
after instantiation with the method set_compress_threshold():

$memc->set_compress_threshold(10_000);

You can also turn on or off compression altogether with enable_compression():

$memc->enable_compression(1|0);

Other options used for instantiation are:

❑ no_rehash: If set to true, this disables finding a new memcached server when one goes down.
You can set this value after instantiation with set_norehash():

$memc->set_no_rehash(1|0);

❑ readonly: If set to true, this makes it so you can only read from the memcached servers the client
object references. It is useful for debugging. You can set this after instantiation with the method
set_read_only():

$memc->set_readonly(1|0);

324

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 325

Chapter 8: memcached

❑ namespace: This causes a value to automatically be prepended to any key you set. For instance, if
you have namespace set to myapp:, and you subsequently set the key t1, the actual key being set
on the server will be myapp:t1.

Memcached Operations
The next thing you probably want to see is an example of how to use memcached for caching! The basic
operations in memcached are quite a bit simpler than with a database and are worth reviewing:

❑ Set: Sets a value given by key, regardless of whether it is there already. If it’s not there, a com-
pletely new object is set. If an existing object is there, it will replace that object. You can also set
this value to expire upon setting it.

❑ Get: Fetches a value, by key.

❑ Add: Adds a value by the given key, if it doesn’t yet exist.

❑ Replace: Replaces a value by the given key, if that key exists.

❑ Delete: Deletes a value stored by the given key.

❑ Increment: Increments a value of the given key. You can use this as a sequence or central
counter.

❑ Decrement: Decrements a value of the given key. You can use this as a sequence or central
counter.

❑ Stats: Returns statistics of the memcached servers.

Cache::Memcached API
This section explains the various Cache::Memcached methods and gives examples for each. The methods
that Cache::Memcached provides for these basic operations are as follows:

❑ set: Sets the value $value specified by the key $key, regardless of whether it was already exist-
ing. $value can be a scalar value or any Perl data type. $expiration, in seconds, is optional. The
default is 0, which means no expiration. Returns true if the value was stored successfully.

$was_set= $memc->set($key, $value[, $expiration]);

❑ get: Retrieves the value $value specified by $key.

$value= $memc->get($key);

❑ get_multi: Retrieves a hash reference of the values specified by the array @keys, with each value
referenced by the key value that was specified in @keys.

$hashref= $memc->get_multi(@keys);

❑ add: Adds a value $value specified by the key $key if that value hasn’t yet been stored. Optional
$expiry sets the value of when $value will expire. The default for $expiry is 0, which means no
expiration. Returns true if that value was stored.

325

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 326

Chapter 8: memcached

$was_added= $memc->add($key, $value[, $expiry]);

❑ replace: Replaces the value $value specified by the key $key if that value exists. Optional
$expiry sets the value of when $value will expire.

$was_replaced= $memc->replace($key, $value[, $expiry]);

❑ delete/remove (either works): Deletes the value from the memcached cluster referred to by
$key. The optional value $time will block writes to that object, in seconds. This is a hack to pre-
vent race conditions.

$was_deleted= $memc->delete($key[, $time]);

❑ incr: Increments a numeric value specified by $key by 1 or by optional $value. Returns the
newly incremented value.

$increment_value= $memc->incr($key[, $value])

❑ decr: Decrements a numeric value specified by $key by 1 or by optional $value. Returns the
newly decremented value.

$decrement_value= $memc->decr($key[, $value]);

❑ stats: Returns a hash reference of memcached statistics, either all statistics, or those specified by
$keys.

$stats_hashref= $memc->stats([$keys]);

The statistics keys available are:

❑ misc: The statistics that running a stats command on the memcached server would return:
pid, uptime, version, get_bytes, etc.

❑ malloc: The statistics that running a ‘stats malloc’ command on the memcached server
would return: total_alloc, arena_size, etc.

❑ sizes: The statistics that are returned from running a ‘stats sizes’ on a memcached server.

❑ self: The statistics for the memcached object itself, a copy of $memc.

❑ maps: The statistics returned by running ‘stats maps’ on a memcached server.

❑ cache_dump: The statistics returned by running ‘stats cachedump’ on a memcached server.

❑ slabs: The statistics returned by running ‘stats slabs’ on a memcached server.

❑ items: The statistics returned by running ‘stats items’ on a memcached server.

To better understand what these stats look like and see just how much useful information they provide,
a dump of these stats is shown here.

326

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 327

Chapter 8: memcached

The code:

my $memc = new Cache::Memcached({
‘servers’ => [

"127.0.0.1:11211"],
‘debug’ => 0,
‘compress_threshold’ => 10_000});

my $stats_hashref= $memc->stats();

print Dumper $stats_hashref;

. . . produces the output:

$VAR1 = {
‘hosts’ => {

‘127.0.0.1:11211’ => {
‘misc’ => {

‘bytes’ => ‘0’,
‘curr_connections’ => ‘3’,
‘connection_structures’ => ‘4’,
‘pointer_size’ => ‘32’,
‘time’ => ‘1228227275’,
‘total_items’ => ‘0’,
‘cmd_set’ => ‘0’,
‘bytes_written’ => ‘0’,
‘evictions’ => ‘0’,
‘curr_items’ => ‘0’,
‘pid’ => ‘1093’,
‘limit_maxbytes’ => ‘67108864’,
‘uptime’ => ‘5’,
‘rusage_user’ => ‘0.001329’,
‘cmd_get’ => ‘0’,
‘rusage_system’ => ‘0.004006’,
‘version’ => ‘1.2.6’,
‘get_hits’ => ‘0’,
‘bytes_read’ => ‘7’,
‘threads’ => ‘1’,
‘total_connections’ => ‘4’,
‘get_misses’ => ‘0’
}

}
},

‘self’ => {},
‘total’ => {

‘cmd_get’ => 0,
‘bytes’ => 0,
‘get_hits’ => 0,
‘connection_structures’ => 4,
‘bytes_read’ => 7,
‘total_items’ => 0,
‘total_connections’ => 4,

327

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 328

Chapter 8: memcached

‘cmd_set’ => 0,
‘bytes_written’ => 0,
‘curr_items’ => 0,
‘get_misses’ => 0

}
};

As you can see, stats provides every tidbit of information you would ever want to know about your
memcached cluster. In this example, only one host was used (for brevity, so this book doesn’t become an
encyclopedia of Data::Dumper!). You can see that in the statistics hash reference, each server is keyed.

Other methods include the following:

❑ disconnect_all: The name speaks for itself. Disconnect and close all cached sockets from all
memcached connections. You must use this if you are using forking in your program and the
parent the child spawned from used Cache::Memcached.

$memc->disconnect_all();

❑ flush_all: This method also speaks for itself. It flushes all cached items from all memcached
servers the connection references. Only use this if you really mean to!

$memc->flush_all();

Simple Examples
To help you get started with Perl programs that take advantage of memcached, the following sections
show simple examples of using memcached to perform the basic functions described above — set, get,
delete, add, replace, increment, decrement, etc.

Storing a Scalar
The first example shows setting, retrieving, and then deleting a simple scalar:

use Cache::Memcached;

my $memc = new Cache::Memcached({
‘servers’ => ["127.0.0.1:11211"],
‘compress_threshold’ => 10_000});

use the return value of set() to check if the value was actually set
if ($memc->set(’key1’, ‘value1’)) {

my $val= $memc->get(’key1’);
print "val $val\n";
$memc->delete(’key1’);

}
else {

print "unable to set ‘key1’\n";
}

328

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 329

Chapter 8: memcached

If you are curious, you can see what the memcached server is doing if you run memcached with the –vv
flag (make sure to shut it down first if it’s already running):

radha:memc patg$ /usr/local/bin/memcached -vv >>
/tmp/memcached.log 2>&1 &

And the log shows the output from running the previous script:

...
slab class 38: chunk size 391224 perslab 2
slab class 39: chunk size 489032 perslab 2
<4 server listening
<5 server listening
<6 send buffer was 9216, now 7456540
<6 server listening (udp)
<7 new client connection
<7 set key1 0 0 6
>7 STORED
<7 get key1
>7 sending key key1
>7 END
<7 delete key1
>7 DELETED
<7 connection closed.

This is a highly useful way to debug your programs. If you are working on a program and pulling your
hair out trying to figure out if something was really stored or not, this is one way to know for certain
what really happened on the memcached server. Of course, you do have to realize that if you are running
multiple memcached servers and $memc was instantiated against those servers, you’ll have to keep an eye
on the output of each one of those servers.

Complex Data Types
The next example shows that you can store more complex Perl objects in memcached, in this case an
array reference:

my $ar_ref= [’this’, ‘is’, ‘a’, ‘test’];

store the array reference
if ($memc->set(’key1’, $ar_ref)) {

my $val= $memc->get(’key1’);
print "scalar key1: " . scalar @$ar_ref . "\n";
$memc->delete(’key1’);

}

This is because Cache::Memcached uses Storable, which will serialize Perl objects, making it possible to
store scalars, arrays, hashes, and references to scalars, arrays, and hashes. You cannot store glob refer-
ences or subroutine references — Storable doesn’t like that. The author of this book tested each type to
ensure what he was writing was valid. (Reading the Storable documentation also would have revealed
this!)

329

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 330

Chapter 8: memcached

About expiration — this is another extremely useful feature you can take advantage of. You may have
data to temporarily store that you want to be automatically deleted after a given amount of time. For
instance, you may have session data or CAPTCHA strings that you need to make sure aren’t used more than
once, but over a short period of time, such as fifteen minutes. The following example shows expiration in
action (the term action being used in an unexciting sense):

my $val= ‘test’;
set a expiration of 10 seconds
if ($memc->set(’test1’, $val, 10)) {

for (0 .. 15) {
my $retval = $memc->get(’test1’);
print "count: $_ ";
if ($retval) {

print "still there: $retval\n"
}
else {

print "toasted.\n";
exit;

}
sleep 2;

}
}

The output shows the excitement:

radha:memc pgalbraith$./memc5.pl
count: 0 still there: test
count: 1 still there: test
count: 2 still there: test
count: 3 still there: test
count: 4 still there: test
count: 5 toasted.

Just think of how many times you have had to code something to go back into the database and delete
data that you didn’t need anymore. So, not only do you not have to store the data in the database in the
first place, you also don’t have to run a DELETE on the database to delete that data! You can imagine how
quickly the savings adds up.

Add and Replace
Normally, you will most likely use set() to store values in memcached, whether they are there or not.
There are times when you may want to have logic to only store something if it doesn’t exist or replace it
if it does. The following code snippet shows the implementation of its own handling of setting an object:

sub my_set {
my ($key, $val, $exp)= @_;
defined $exp or $exp = 0;

my $retval= $memc->get($key);
if ($retval) {

print "$key exists ";
if ($retval eq $val) {

330

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 331

Chapter 8: memcached

print "\n";
return;

}
print "replacing ";
if ($memc->replace($key, $val, $exp)) {

print "replaced key $key";
};
print ".\n";

}
else {

print "adding $key.\n";
if ($memc->add($key, $val, $exp)) {

print "added $key\n";
}

}
}

This can then be used just like the regular set() method:

my_set(’key1’, ‘val1’);
my_set(’key1’, ‘val1’);
my_set(’key1’, ‘val2’);

The output shows how it works:

adding key1.
added key1
key1 exists
key1 exists replacing replaced key key1.

A More Practical Example
So you have seen some simple examples of how to deal with storing data in memcached. Now you
probably want to see how you can actually use memcached in a practical manner and reduce the load on
your database.

User Application
Imagine an application for user data storage. The database schema this application will use has a table
for users (users) that stores attributes such as the user’s username, email, full name, address, city, state,
account level, or any other information you might want in your application. Also, for good, normalized
schema design, this database uses foreign keys on columns of the user table to ensure referential integrity
to other tables such as states, cities, regions, account levels, and any other user attribute (column)
that otherwise would be repeated, and also provides other data for each possible user attribute. This
application provides an API for user data retrieval and modification, as well as retrieval of data from the
other tables.

To show how memcached can be a benefit to this user application, it will be useful to show this applica-
tion as it works with only the database first, without any caching. Then any part of the code that would
benefit from using memcached will be modified, and the cases where reduced access to the database are
achieved will be detailed.

331

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 332

Chapter 8: memcached

The following application is a somewhat practical application library. It could be used in a web site
application that stores user or customer data. It allows you to view, create, and change a user. Also, it
has geographical information that can either be used for the user or stand alone. The main idea here is to
show a subset of your common database application that can greatly benefit from caching.

Data Design
The first thing to conceptualize this application is to define the database tables that it will use. A real
application would have a much more complex schema, but again, this is a subset of a full-fledged appli-
cation. For the purposes of this discussion, a subset of a schema of an application like this will suffice.
These are the tables that will be used:

❑ users: Contains user data with a foreign key each to account_levels and cities.

❑ account_levels: Various account levels, one of the attributes of a user.

❑ cities: Cities data, one of the attributes of a user, has a foreign key to regions.

❑ states: States data, one of the attributes of a user.

❑ regions: Regions data, such as a region name like ‘‘Pacific Northwest.’’

Here are the table definitions for users:

CREATE TABLE users (
uid int(8) NOT NULL auto_increment,
username varchar(32) NOT NULL default ‘’,
email varchar(32) NOT NULL default ‘’,
password char(16) NOT NULL default ‘’,
firstname varchar(32) NOT NULL default ‘’,
surname varchar(32) NOT NULL default ‘’,
address varchar(128) NOT NULL default ‘’,
city_id int(8) NOT NULL default 0,
account_level int(3) NOT NULL default 0,
PRIMARY KEY (uid),
UNIQUE INDEX username (username),
UNIQUE INDEX email (email),
INDEX password (password),
INDEX city_id (city_id),
INDEX account_level (account_level),
CONSTRAINT city_id FOREIGN KEY (city_id)

REFERENCES cities (city_id)
ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT account_level FOREIGN KEY (account_level)
REFERENCES account_levels (account_level)
ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE = InnoDB;

The users table is any user attribute you would want to store. This particular application example will be
similar to many other web applications — uid (a user id), username (like a nickname), email, password,
first name, surname (last name), address, city_id foreign key to cities, account_level foreign key to
the account_levels table.

332

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 333

Chapter 8: memcached

The next table is cities:

CREATE TABLE cities (
city_id int(8) NOT NULL auto_increment,
city_name varchar(32) NOT NULL default ‘’,
state_id int(4) NOT NULL default 0,
region_id int(3) NOT NULL default 0,
population int(3) NOT NULL default 0,
PRIMARY KEY (city_id, state_id),
INDEX state_id (state_id),
INDEX region_id (region_id),
INDEX city_name (city_name),
CONSTRAINT region_id FOREIGN KEY (region_id) REFERENCES regions

(region_id)
ON DELETE CASCADE ON UPDATE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=1;

The cities table provides not only a city name for a user, but also various attributes for this city. In
addition to providing user attributes, the application can also provide geographical information about
cities.

cities in turn has a foreign key to states on state_id. So, to know what state a user belongs to, you
have to join users to cities on city_id and join states on state_id.

CREATE TABLE states (
state_id int(4) NOT NULL auto_increment,
state_abbr varchar(3) NOT NULL default ‘’,
state_name varchar(32) NOT NULL default ‘’,
state_bird varchar(32) NOT NULL default ‘’,
state_flower varchar(32) NOT NULL default ‘’,
PRIMARY KEY (state_id),
INDEX state_name (state_name)

) ENGINE=InnoDB AUTO_INCREMENT=1;

cities has a foreign key to regions on region_id, so if you need to obtain the region of a user, you
would have to join users with cities using city_id and join cities to regions on region_id.

CREATE TABLE regions (
region_id int(3) NOT NULL,
region_name varchar(16) NOT NULL default ‘’,
PRIMARY KEY (region_id)

) ENGINE=InnoDB;

Also, there is a table for account levels:

CREATE TABLE account_levels (
account_level int(3) NOT NULL default 0,
account_level_name varchar(16) NOT NULL default ‘’,
primary key (account_level)

) ENGINE= InnoDB;

333

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 334

Chapter 8: memcached

UserApp Package
The application will be implemented using a class that will be called UserApp. All the usual setup will be
required for creating a Perl class, which, since you’ve already read Chapter 3, you are well aware of!

package UserApp;

use strict;
use warnings;
use DBI;
for MD5-hexing passwords
use Digest::MD5 qw(MD5_hex);

This application will, of course, use DBI, and strict and warnings. Another module this example will use is
Digest::MD5 for the function MD5_hex() to calculate the MD5 digest of the password to avoid storing the
password itself. When the password needs to be verified, the MD5 digest of the password is calculated
and compared against the stored MD5 digest.

Instantiation
The first method this application will implement is instantiation via new().

sub new {
my ($class) = @_;
my $this= {};
bless $this, $class;
$this->connectDB();
return $this;

}

Database Connector Method
If you’ll notice, new() also calls a method called connectDB(), which does just what it says — connect
to the database. A class attribute $this->{dbh} is assigned the database connection handle that will be
available to all methods:

sub connectDB {
my ($this)= @_;
wrap in eval to catch failure
eval {

$this->{dbh}= DBI->connect_cached(’DBI:mysql:userdb;host=
localhost’,

‘webuser’,
‘webuser’);

};
if ($@) {

die "Unable to connect to database! $@\n";
}
set RaiseError once successfully connected
$this->{dbh}->{RaiseError}= 1;

}

334

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 335

Chapter 8: memcached

Data Retrieval Methods
Next, the method getUser() obtains all the user attributes for a given username in a single query and
returns a hash reference with these attributes. This might not seem to be the most object-oriented way
of doing things, but it is extremely convenient. The $user can always be turned into an object easily
enough — it helps you sleep at night. As you can see, the query below in getUser() uses a join to four
tables to obtain canonical names of a state, region, and account level, since the state_id, region_id,
and account_level columns are foreign key ids and would not necessarily be attributes you would use
when displaying user information. This would probably be the first candidate for caching — anything
that would reduce the need to perform this five-table join.

sub getUser {
my ($this, $username)= @_;
my $query= <<EOQ;

SELECT uid, username, email, firstname, surname, address, city_id,
password,

cities.city_name as city_name,
states.state_id AS state_id,
states.state_name AS state_name,
regions.region_id AS region_id,
regions.region_name AS region_name,
account_levels.account_level AS account_level,
account_levels.account_level_name AS account_level_name

FROM users
JOIN cities USING (city_id)
JOIN states ON (cities.state_id = states.state_id)
JOIN regions ON (cities.region_id = regions.region_id)
JOIN account_levels USING (account_level)
WHERE username = ?
EOQ

my $sth= $this->{dbh}->prepare($query);
$sth->execute($username);
my $user_ref= $sth->fetchrow_hashref();
return $user_ref;

}

Also, there are generic methods for obtaining other data types, such as for cities and states. These can
return a single record or all records, depending on arguments. All columns that could be requested are
selected. Each one of these methods would greatly benefit from caching, especially since they retrieve
data that doesn’t change often.

method to obtains one or more cities, depending on $cols reference
which will result in a specific WHERE clause being set
sub getStatesFromDB {

my ($this, $cols)= @_;
my $states;

my @bind_vals;

define the base query
my $query=

335

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 336

Chapter 8: memcached

‘SELECT state_id, state_abbr, state_name, state_bird, state_flower
FROM states’;

build a where clause using the hashref $cols
$this->_makeWhereClause($cols,\$query,\@bind_vals);

my $sth= $this->{dbh}->prepare($query);

$sth->execute(@bind_vals);
$states= $sth->fetchall_arrayref({});

return $states;

}

method to obtains one or more cities, depending on $cols reference
which will result in a specific WHERE clause being set
sub getCities {

my ($this, $cols)= @_;
my $cities;

my @bind_vals;

define the base query
my $query=
‘SELECT city_id, city_name, cities.state_id as state_id,
state_abbr, state_name, cities.region_id, region_name, population

FROM cities
JOIN regions USING (region_id)
JOIN states USING (state_id) ‘;

build a where clause based off of hashref $cols
$this->_makeWhereClause($cols, \$query, \@bind_vals);

my $sth= $this->{dbh}->prepare($query);

$sth->execute(@bind_vals);
$cities= $sth->fetchall_arrayref({});

return $cities;

}

Notice the handy private method _makeWhereClause(). This is an attempt to reduce redundancy in the
code. While writing the code examples, the author noticed he was writing the same code over again,
which is a blinking light notifying one of the need for cut-and-paste into a convenient, reusable method.
This method, _makeWhereClause(), takes three arguments:

❑ $cols: A hash reference containing the column names as keys, the values of which are the actual
values to use for the query being built.

❑ $query: A scalar reference to the string containing the full query that will inevitably be run. This
string will be built (appended to) by the method _makeWhereClause()

❑ $bind_vals: An array reference where each value being plucked from $cols is pushed into for
later use when the query is run.

336

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 337

Chapter 8: memcached

You may be looking at this and thinking, ‘‘Well, it could be abstracted further.’’ Yes, it can and will
be in a later chapter. For now, it’s as it is for the sake of discussion. _makeWhereClause builds a query,
appending column names and placeholders according to what keys representing columns are in $cols,
and pushing each value into the array reference $bind_values. This makes it so each method performing
a query doesn’t have to recode this dynamic query building.

Notice the overall picture is one of clean, short methods. This is a good practice to try to follow!

sub _makeWhereClause {
my ($this, $cols, $query, $bind_vals)= @_;
return unless keys %$cols;
my $where;

if column parameters were specified, build a where clause
my $where = join(‘ AND ‘, map { "$_ = ?" } keys %$cols);
push @$bind_vals, values %$cols;

if a where clause was built, add to main query
$where= " WHERE $where";
chop of trailing AND (including spaces)
$where= substr($where, 0, -5);
$$query .= $where;
return;

}

For further abstraction, you could create simple one-record return methods to use the generic database
methods explained above to obtain a single state or city. These can be as convenient as you want.
getState() even lets you specify a state name or abbreviation for the lookup.

These methods are not where caching would be implemented, if caching is already implemented at a lower
level.

uses getCities, specifying a single city-state abbrev.
sub getCity {

my ($this, $city_name, $state)= @_;
return undef unless defined $city_name and defined $state;

need to specify the correct column name based off of what it sees
my $state_key= length($state == 2) ? ‘state_abbr’ : ‘state_name’;
my $city_ref= $this->getCities({

city_name => $city_name,
$state_key => $state});

return single record
return $city_ref->[0];

}

sub getState {
my ($this, $name)= @_;
return undef unless $name;
this allows you to use either a state name or abbreviation
my $col= length($name) == 2 ? ‘state_abbr’ : ‘state_name’;
my $state_ref= $this->getStatesFromDB({ $col => $name });

337

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 338

Chapter 8: memcached

return single record
return $state_ref->[0];

}

Simple Accessor Methods
The head bone is connected to the . . . neck bone is connected to the . . . shoulder bone. Even more abstract
are accessor methods that use the above single-entity accessor methods. These accessor methods return
various attributes of other data objects such as states and cities. These use the single-record accessor
methods above, which select all columns that could be requested. You might think, ‘‘Why not select
only the columns you need?’’ These could be implemented that way, but for this type of data, there’s no
real overhead for selecting all columns, and doing it this way reduces the number of methods that have
to query the database in your library code. You could also use dynamic method loading, as shown in
Chapter 3.

None of these methods really needs caching, if the caching is implemented at a lower level.

sub getStateID {
my ($this, $name)= @_;
my $state_ref= $this->getState($name);
return $state_ref->{state_id};

}
sub getStateBird {

my ($this, $name)= @_;
my $state_ref= $this->getState($name);
return $state_ref->{state_bird};

}
sub getStateFlower {

my ($this, $name)= @_;
my $state_ref= $this->getState($name);
return $state_ref->{state_flower};

}
sub getCityID {

my ($this, $city, $state)= @_;
my $city_ref= $this->getCity($city, $state);
return $city_ref->{city_id};

}
sub getCityRegion {

my ($this, $city, $state)= @_;
my $city_ref= $this->getCity($city, $state);
return $city_ref->{region_name};

}

sub getCityPopulation {
my ($this, $city, $state_abbr)= @_;

my $city_ref= $this->getCity($city, $state_abbr);
return ($city_ref->{population});

}

sub getStateBird {
my ($this, $name)= @_;
my $state_ref= $this->getState($name);

338

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 339

Chapter 8: memcached

return $state_ref->{state_bird};
}
sub getStateFlower {

my ($this, $name)= @_;
my $state_ref= $this->getState($name);
return $state_ref->{state_flower};

}

Data Modification Methods
It’s great to be able to access (read) data, but you also need to write data, too. This includes inserts,
updates and deletion. For insert (creation) and updates, there is a setUser() method.

sub setUser {
my ($this, $user_ref)= @_;

unless (defined $user_ref->{username}) {
warn "ERROR: No username specified!\n";
return;

}

$user_ref->{account_level} = 0 unless defined $user_ref
->{account_level};

my $user= $this->getUser($user_ref->{username});

if ($user->{password} && length($user->{password})) {
$user->{password}= MD5_hex($user->{password});

}

the user exists, so update
if ($user && $user->{uid}) {
warn "user $user->{username} exists (uid $user->{uid}), updating.\n";
$user_ref->{uid}= $user->{uid};
unless ($this->updateUser($user_ref)) {

return 0;
}

}
else {
otherwise, create the new user
$user_ref->{uid}= $this->createUser($user_ref);

}
return $user_ref->{uid};

}

So, setting can mean either create or update. setUser() uses getUser() to determine if the user exists,
and if the user exists, calls update. If the user does not exist, it creates a new user and returns the user id
of the newly created user.

The method createUser()calls the actual SQL INSERT statement. It performs the insert of the user and
returns the uid value from the newly inserted row. Its job is to nail down all the values for a user prior
to the insert, such as any foreign keys that must have valid values for the insert to succeed.

339

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 340

Chapter 8: memcached

sub createUser {
my ($this, $user_ref)= @_;
my @bind_cols;
my $insert= ‘INSERT INTO users ‘;

for my $field (keys %$user_required) {
unless (defined $user_ref->{$field}) {

warn "ERROR: you are missing the required field $field\n";
return 0;

}
}

unless ($this->setUserGeoParams($user_ref)) {
warn "ERROR: unable to set state and city ids\n";
return 0;

}

$this->_makeInsertStatement($user_ref, \$insert, \@bind_cols);
my $sth= $this->{dbh}->prepare($insert);
if ($sth->execute(@bind_cols)) {
returns UID for new user
return $this->{dbh}->last_insert_id(’’, $database, ‘users’, ‘uid’);

}
failed to insert
return 0;

}

Since a user has parameters that are foreign keys to other tables — city_id, state_id — these foreign
key ids will have to be obtained from the canonical state_name and city_name values of the yet-to-
be-inserted user. To do this, there is a convenient method, setUserGeoParams(), which obtains both
the city_id and state_id. These values have to be valid for the insert to succeed due to foreign key
restraints. This, of course, requires a query of the states and cities tables to obtain these ids. This
certainly would be another place where caching could prevent database accessing.

sub setUserGeoParams {
my ($this, $user_ref)= @_;
these are all foreign keys that have to be set prior to insert
$user_ref->{state_id} ||= $this->getStateID($user_ref->{state_name});
unless ($user_ref->{state_id}) {
warn "ERROR: unable to obtain state_id for $user_ref->{state_name}\n";
return 0;

}
$user_ref->{city_id}||= $this->getCityID(

$user_ref->{city_name},
$user_ref->{state_name});

Unless there was a city_id
unless ($user_ref->{city_id}) {
warn "ERROR: unable to obtain city_id for $user_ref->{city_name}\n";
return 0;

}

we will not insert these columns
delete $user_ref->{state_name};

340

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 341

Chapter 8: memcached

delete $user_ref->{city_name};
return;

}

To build the insert statement, use the method _makeInsertStatement(), which is basically the same
concept as _buildWhereclause():

sub _makeInsertStatement {
my ($this, $user_ref, $insert, $bind_cols)= @_;
my ($cols, $placeholders);

for (keys %$user_ref) {
$cols.= $_ . ‘,’;
$placeholders.= ‘?, ‘;
push(@$bind_cols, $user_ref->{$_});

}

remove trailing comma from each
chop($cols);
$placeholders= substr($placeholders, 0, -2);

$$insert= "$$insert ($cols) VALUES ($placeholders)";
return;

}

_makeInsertStatement() uses the $user_ref hash reference to build both a list of the appropriate num-
ber of placeholders and columns from the keys of $user_ref. It also pushes into the $bind_cols array
reference the values of $user_ref.

updateUser() updates an existing user:

sub updateUser {
my ($this, $user_ref)= @_;
my $update= ‘UPDATE users SET ‘;
my @bind_cols;
unless ($user_ref->{uid} || $user_ref->{username}) {
warn "ERROR: you must have either a UID or username specified!\n";
return 0;

}
unless ($this->setUserGeoParams($user_ref)) {
warn "ERROR: unable to set state and city ids\n";
return 0;

}

$this->_makeUpdateStatement($user_ref, \$update, \@bind_cols);
my $sth= $this->{dbh}->prepare($update);
return ($sth->execute(@bind_cols));

}

_makeUpdateStatement works just like _makeInsertStatement, but is used for updates:

sub _makeUpdateStatement {
my ($this, $user_ref, $update, $bind_cols)= @_;

341

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 342

Chapter 8: memcached

for (keys %$user_ref) {
we don’t want to update UID or username
next if ($_ eq ‘uid’ || $_ eq ‘username’);
$$update .= "$_ = ?, ";
push(@$bind_cols, $user_ref->{$_});

}
remove trailing comma and space
$$update= substr($$update, 0, -2);

my $pk= $user_ref->{uid} ? ‘uid’ : ‘username’;
$$update .= " WHERE $pk = ?";
push(@$bind_cols, $user_ref->{$pk});

}

Finally, there is a method to delete a user:

sub deleteUser {
my ($this, $user_ref)= @_;
my $col= $user_ref->{uid} ? ‘uid’ : ‘username’;
my @bind_vals;
push (@bind_vals, $user_ref->{$col});

don’t bother if the user doesn’t even exist
$this->getUser($user_ref->{$col}) or return;

return($this->{dbh}->do("DELETE FROM users WHERE $col = ?", {}, @bind_vals));

}

deleteUser() allows the use of either uid or username as the unique identifier to obtain a user. You could
abstract this even further by having a deleteUserByUsername(), which would take only a username.
How much abstraction you use is up to you.

So, for writes, there are several places that caching could provide a means to reduce database accesses:

❑ Checking if the user exists to determine whether the user needs to be created, updated, or
deleted.

❑ Obtaining both state and city foreign key values based off canonical values.

Using UserApp
To use this library, instantiate it and then simply use it.

use strict;
use warnings;
use Data::Dumper;
use UserApp;

my $uapp;

342

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 343

Chapter 8: memcached

instantiate the UserApp object
$uapp= new UserApp;

obtain user reference
my $user= $uapp->getUser(’capttofu’);
print Dumper $user;
print "$user->{username}’s state is $user->{state_name}\n";
print "State flower for $user->{state_name} is " .

$uapp->getStateFlower($user->{state_name}) . "\n";

print "Seattle’s region is " . $uapp->getCityRegion(’Seattle’, ‘WA’) . "\n";

print "Tampa’s region is " . $uapp->getCityRegion(’Tampa’, ‘FL’) . "\n";

print "Portland Oregon’s region is " .
$uapp->getCityRegion(’Portland’, ‘OR’) . "\n";

print "Portland Maine’s region is " .
$uapp->getCityRegion(’Portland’, ‘ME’) . "\n";

print "Wasilla Alaska’s region is " .
$uapp->getCityRegion(’Wasilla’, ‘AK’) . "\n";

print "Arizona state bird is: " . $uapp->getStateBird(’AZ’) . "\n";

print "Bakersfield, CA, population is: " .
$uapp->getCityPopulation(’Bakersfield’, ‘CA’) . "\n";

print "Burlington, VT, population is: " .
$uapp->getCityPopulation(’Burlington’, ‘VT’) . "\n";

The output shows:

$VAR1 = {
‘firstname’ => ‘Patrick’,
‘city_id’ => ‘47’,
‘uid’ => ‘1’,
‘account_level_name’ => ‘Free’,
‘state_id’ => ‘30’,
‘state_name’ => ‘New Hampshire’,
‘region_name’ => ‘New England’,
‘username’ => ‘capttofu’,
‘surname’ => ‘Galbraith’,
‘email’ => ‘capttofu@capttofu.org’,
‘password’ => ‘65a8f5ebd748ae11’,
‘region_id’ => ‘15’,
‘account_level’ => ‘0’,
‘address’ => ‘100 Main St.’,
‘city_name’ => ‘Peterborough’

};
capttofu’s state is New Hampshire
State flower for New Hampshire is Purple lilac
Seattle’s region is Pacific Northwest
Tampa’s region is Gulf Coast

343

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 344

Chapter 8: memcached

Portland Oregon’s region is Pacific Northwest
Portland Maine’s region is New England
Wasilla Alaska’s region is Alaska
Arizona state bird is: Cactus Wren
Bakersfield, CA, population is: 315000
Burlington, VT, population is: 38889

Here is an example of creating, updating, and deleting a user:

instantiate the UserApp object
$uapp = new UserApp;

my $new_user= {
‘username’ => ‘jimbob’,
‘firstname’ => ‘Jim’,
‘surname’ => ‘Bob’,
‘email’ => ‘jimbob@foo.com’,
‘password’ => ‘bleh’,
‘account_level’ => 0,
‘address’ => ‘’,
‘city_name’ => ‘Tampa’,
‘state_name’ => ‘Florida’

};

my $uid= $uapp->setUser($new_user);
UID of newly created user
print "UID $uid\n";

set a different email address
$new_user->{email}= ‘james_robert@newsite.com’;

this should update the user
$uid= $uapp->setUser($new_user);

now delete the user
$uapp->deleteUser({ username => ‘jimbob’});

As you can see, all of these methods have to perform queries on one or more tables to obtain data, regard-
less of whether they are read-only methods or write methods. A lot of the data that is being accessed is
data that doesn’t change often, and is thus a prime candidate for caching.

Memcached Connector Method
To have any caching, the first thing required is a connection to memcached. Just as with the database,
there can be a class attribute for this connection to memcached that will allow the connection to be used
throughout the program. Just as with the database, a memcached connection method will be called
upon instantiation. This will be similar to connectDB, except in how a memcached object is instantiated
compared to connecting via DBD::mysql.

sub connectMemcached {
my ($this)= @_;
$this->{memc} = new Cache::Memcached({

‘servers’ => ["127.0.0.1:11211"],
‘compress_threshold’ => 10_000});

344

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 345

Chapter 8: memcached

unless ($this->{memc}->set(’testping’, 1)) {
die "Unable to connect to memcached!\n";

}
return;

}

With DBD::mysql, the connect is wrapped within an eval, and if it fails $@ contains an error. This method
of failure trapping doesn’t work with Cache::Memcached, so a good way of testing if a connection was
made is to set something immediately after connecting, as shown with set(). You might think, ‘‘Why not
use stats()?’’ The author of this book also thought of trying that, but instead of getting a nice true/false,
even when wrapped in an eval, it just spews errors.

Caching Implementation Plan
The main idea to adding caching to the subroutines previously presented is to access the cache when
obtaining data to avoid accessing the database. This requires:

❑ Checking first to see if the data exists in the cache, and if not, obtaining the data from the
database and then writing that data to the cache (read-through caching), so that all subsequent
calls will be able to obtain the data from the cache, and then finally returning the data to the
calling subroutine.

❑ Listing all the places where caching could be implemented. Any data that seldom changes
should simply be available. In this case, states, cities, and regions would fit into this
category. This would automatically eliminate database accesses to these tables upon saving
user data where the foreign key values have to be obtained. All the various methods such as
getStatesFromDB(), getState(), getStatexx(), getCities(), getCity(), and getCityxxx().

❑ Pre-caching data in the cache. This pre-caching would occur when the program is first executed.
In the case of a mod_perl application, this would mean when the web server is first started (more
on this will be covered in later chapters).

❑ getUser(): Even though user data changes often, it still can be cached. The key is to make sure if
any writes occur that they also are written to the cache to help avoid the thundering herd prob-
lem. This caching will eliminate the multi-table JOIN to obtain user data.

❑ setUser(): Since users do change often, setUser() would also have to ensure it writes to the
cache when a user is created or updated. setUser() itself would also be able to use caching
when it calls getUser() to determine if a user exists or not, as well as geographical data that can
be precached.

❑ setUserGeoParams() can now obtain user geographical data from the various ‘‘get’’ methods
that formerly required database queries.

Where to Add Caching?
The next question is how you want to store the data in the cache — what identifier you will use for the
value of the lookup key to associate with the data you store in memcached, which you will also use when
fetching that data from the memcached. You would want to use a unique identifier that makes for easy
lookup of the data you need.

❑ users: The username column makes a good key for the user data since it’s unique in the database
as well as what is used in the SQL query to obtain the data from the database. This would be a

345

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 346

Chapter 8: memcached

nondeterministic cache because it can’t necessarily depend on the user data being in the cache,
and so it obtains the data from the database if not in memcached and then re-populates the data
in memcached.

❑ states: The state abbreviation, state_abbr column, is an appropriate key since it’s unique
and is what the application uses in the SQL query to look up the state to obtain state data from
the database. Since there aren’t a huge number of states, you store two state objects, one using
state name, and the other using state abbreviation. This would be a deterministic cache in that
the application could assume that the data is in memcached and the cache is kept up to date
periodically with a process such as a perl cron job.

❑ cities: As anyone from New England knows, every New England state has a Concord,
Amherst, Groton, etc., so the city name alone is not a unique identifier! However, the city’s name
in combination with either a state name or state abbreviation will ensure uniqueness. This also
could be a deterministic cache, because city data doesn’t change.

❑ regions: The regions table is a simple lookup table while the region_id is the only column
used to look up a region when joining with the table cities. It’s never accessed by itself, so
there’s no need to cache regions. When caching a user as well as cities, the region name will be
one of the city attributes that will be cached.

❑ account_levels: This, too, is a lookup table, and will only be used when caching other objects,
so there is no need to precache or go to a lot of trouble to cache. This would be a deterministic
cache.

Caching Key Scheme
In addition to the unique identifiers discussed above, you can also use a namespace to prefix the key for
the type of object it is. For instance, if what you are caching is a user, you would most likely use the name
of the table users as a namespace. Examples of this key scheme are:

❑ Caching of users: If user’s username is capttofu, the full key value that you would use as a key
would be users:capttofu. Also, since you may want to look up a user using the user id (UID),
you can also use the key value users:1 (if the uid were 1).

❑ Caching of cities: If the city being cached was Concord in the state of New Hampshire, the key
value would be cities:Concord-NH.

❑ Caching of states: If the state being cached was California, you could use two key values such as
states:CA and states:California.

With a plan in place for how caching will work (including what to store, when to store, and how to store),
the caching code can be added to the different methods.

Precaching
The first area to look at for implementing caching will be the geographical data. To precache data that
doesn’t change (as already mentioned, states, cities, regions), you would implement a method that
fetches every city and then caches each with two types of namespaces, cities:<city_name>-<state
abbreviation> and cities:<city_name>-<state name>.

346

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 347

Chapter 8: memcached

Precaching Cities
The method cacheCities() will utilize getCities() to obtain all the city data and then cache each entry
with two different hashing keys in order to look up city data by city name along with either state name
or state abbreviation.

sub cacheCities {
my $this= $_[0];

a simple true/false to indicate that cities have been cached
if ($this->{memc}->get(’cities_cached’)) {
return;

}
my $cities= $this->getCities();
for (@$cities) {
my $state_name_safe= $_->{state_name};
$state_name_safe =∼ s/\s/_/g;
my $city_name_safe= $_->{city_name};
$city_name_safe =∼ s/\s/_/g;
example - cities:San_Francisco-CA
my $key1= ‘cities:’ . $city_name_safe . ‘-’ . $_->{state_abbr};
example - cities:Santa_Fe-New_Mexico
my $key2= ‘cities:’ . $city_name_safe . ‘-’ . $state_name_safe;
$this->{memc}->set($key1, $_);
$this->{memc}->set($key2, $_);

}

indicate that cities have been cached
unless ($this->{memc}->set(’cities_cached’, 1)) {
warn "ERROR: setting ‘cities_cached’\n";

}
}

Please note several things about cacheCities():

❑ The code will not cache the entire result set of getCities(). It’s better to convert the result set
into individual records so that what will be fetched from memcached won’t be large.

❑ A simple cached object called cites_cached is used to set a true/false value indicating the cities
have already been cached. This prevents having to recache all the cities if they have already been
cached. Why access the database any more than you have to?

❑ The key cannot contain spaces. This is the reason for $city_name_safe and $state_name_safe.

Precaching States
cacheStates() will perform the same precaching as cacheCities, and the same concepts as
cacheCities() are used.

sub cacheStates {
my ($this)= @_;

347

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 348

Chapter 8: memcached

a simple true/false to indicate that cities have been cached
if ($this->{memc}->get(’states_cached’)) {
return;

}
my $states= $this->getStatesFromDB();
for (@$states) {
my $state_name_safe= $_->{state_name};
$state_name_safe =∼ s/\s/_/g;
example - states:NH
my $key1= ‘states:’ . $_->{state_abbr};
example - states:New_Hampshire
my $key2= ‘states:’ . $state_name_safe;
unless ($this->{memc}->set($key1, $_)) {

warn "ERROR: unable to set $key1";
}
unless ($this->{memc}->set($key2, $_)) {

warn "ERROR: unable to set $key2"
};

}

indicate that cities have been cached
unless ($this->{memc}->set(’states_cached’, 1)) {
warn "ERROR: unable to set ‘states_cached’\n";

}

return;
}

Using Instantiation for Precaching Method Calls
Both cacheCities() and cacheStates() can automatically be called from the constructor.

sub new {
my ($class) = @_;
my $this= {};
bless $this, $class;
$this->connectDB();
$this->connectMemcached();

cache all cities records
$this->cacheCities();

cache all cities records
$this->cacheStates();

return $this;
}

Modifying Accessor Methods to Use Cache
Next, getCity() and getState() need to be modified to utilize the precached data. Why not
getCities() and getStatesFromDB(), since those are where the database is accessed? Because city and
state data was cached per-record, and getStatesFromDB() and getCities() can return one or more

348

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 349

Chapter 8: memcached

cities. It would be possible to code it so you could obtain multiple records from memcached, but in this
application, having multiple records returned for cities and states is seldom required, except in the initial
caching with cacheCities() and cacheStates() of cities and states, which was part of the reason for
having a getCities() and getStatesFromDB()!

getCity()
In getCity(), $city_ref is scoped at the beginning of the program, as opposed to when it’s retrieved
from the database, because it could be retrieved from memcached first. A lookup key, $memc_key is first
constructed, of course without allowing any spaces in the key. The key is the same as how each city was
stored. The method get() looks up the object, and if found and actually set, $city_ref is simply returned
and the database is never touched.

sub getCity {
my ($this, $city_name, $state)= @_;
my $city_ref;
return undef unless $city_name && $state;

check memcached first
my $memc_key = "$city_name-$state";

no spaces allowed
$memc_key =∼ s/ /_/g;
$memc_key= "cities:$memc_key";
$city_ref= $this->{memc}->get($memc_key);
return $city_ref if $city_ref->{city_name};

need to specify the correct column name based off of what it sees
my $state_key= length($state == 2) ? ‘state_abbr’ : ‘state_name’;
$city_ref= $this->getCities({

city_name => $city_name,
$state_key => $state});

return single record
return $city_ref->[0];

}

getState()
The same type of changes are made to getState()

sub getState {
my ($this, $name)= @_;
my $state_ref;
return undef unless $name;

check memcached for state
my $memc_key = $name;
$memc_key =∼ s/ /_/g;
$memc_key= "states:$memc_key";
$state_ref= $this->{memc}->get($memc_key);
return $state_ref if $state_ref->{city_name};

this allows you to use either a state name or abbreviation

349

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 350

Chapter 8: memcached

my $col= length($name) == 2 ? ‘state_abbr’ : ‘state_name’;
$state_ref= $this->getStatesFromDB({ $col => $name });

return single record
return $state_ref->[0];

}

No Change Needed for Accessor Methods
Now both getCity() and getState() check memcached for the requested object first before accessing
the database. This also means that any other method that requires state information for a city or state
now has the added benefit of caching:

❑ All the getStatexxx() and getCityxxx() accessor methods. Because these applications all use
getState() and getCity(), they also get the benefit of caching. This means one less database
operation any time these are called.

❑ setUserGeoParams(), which also uses getStateID() and getCityID(). Therefore, there are
two fewer database operations in writing a user.

User Data Caching — Set Method Modifications
To implement user caching, the first place to add the caching is to setUser(). Of course, setUser()
calls getUser() to determine if a user exists in the first place, so getUser() could have caching imple-
mented first as well, but it makes no sense to check memcached for data that doesn’t yet have a method
implemented that stores the data in it in the first place!

Any time a user is written, the simplest thing to do would be to write it to the cache, regardless of whether
it’s a user creation or update. It can be assumed the setUser() is called for a good reason, that the user
is changed or created one way or another. This also ensures the cached user object reference is always
up to date. Also note that this is not write-through caching, which would only write to memcached and
activate some process that would read from memcached to the database.

The Cache::Memcached method set(), as you will recall, will either update or create a memcached entry.
You could alternatively call add() or replace(), depending on whether there is a create or update, but
why not just use the simplicity of set()? For this example, set() will be used.

For the memcached key, this example will use both users:<username> and users:<user id> since you
may want to look up the user based off of the user’s username or UID, as is allowed in the database
lookup code.

sub setUser {
my ($this, $user_ref)= @_;
my ($memc_key1, $memc_key2);

unless ($user_ref->{username}) {
print "ERROR: No username specified!\n";
return;

}
$user_ref->{account_level}||= 0;

my $user= $this->getUser($user_ref->{username});

350

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 351

Chapter 8: memcached

if ($user->{password} && length($user->{password})) {
$user->{password}= MD5_hex($user->{password});

}

if ($user && $user->{uid}) {
$user_ref->{uid}= $user->{uid};
unless ($this->updateUser($user_ref)) {

return 0;
}

}
else {
$user_ref->{uid}= $this->createUser($user_ref);

}

cache the user both using uid and username
$this->{memc}->set("users:$user_ref->{ $_ }", $user_ref)
for qw(uid username);

return $user_ref->{uid};
}

User Data Caching — Get Method Modifications
Now that setUser() has the code needed to cache a user, the next part of user caching would be to add
caching functionality to getUser().

sub getUser {
my ($this, $username)= @_;
my $memc_key= ‘users:’ . $username;
my $user_ref;

check memcached first
$user_ref= $this->{memc}->get($memc_key);

simply return from memcached if already cached
return $user_ref if $user_ref->{username};

obtain from db if not in memcached
my $query= <<’EOQ’;

SELECT uid, username, email, firstname, surname, address, city_id,
password,

cities.city_name as city_name,
states.state_id AS state_id,
states.state_name AS state_name,
regions.region_id AS region_id,
regions.region_name AS region_name,
account_levels.account_level AS account_level,
account_levels.account_level_name AS account_level_name

FROM users
JOIN cities USING (city_id)
JOIN states ON (cities.state_id = states.state_id)
JOIN regions ON (cities.region_id = regions.region_id)

351

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 352

Chapter 8: memcached

JOIN account_levels USING (account_level)
WHERE username = ?
EOQ

my $sth= $this->{dbh}->prepare($query);
$sth->execute($username);
$user_ref= $sth->fetchrow_hashref();

store in memcached (Read-through caching!)
return unless $user_ref;
unless ($this->{memc}->set($user_key, $user_ref)) {
warn "ERROR: unable to set user!\n";

}

return user reference
return $user_ref;

}

The changes made to getUser() shown in the code eliminate the need to always obtain the user from
the database using the multi-table JOIN for every access. With the added caching, the code now first
checks to see if it exists in memcached. If it does, the code simply returns it. If it doesn’t, the code obtains
the user from the database using the multi-table JOIN only one time, and then stores it in memcached
for subsequent retrievals. It then returns the data that was just retrieved. This is a good example of
read-through caching.

UserApp Now Has Caching!
Caching has been added to the UserApp class! The various benefits of not having to access the database
for every data request are as follows:

❑ In obtaining a user (hash reference. This also means not having to perform a multi-table JOIN.

In writing a user: accessing states and cities tables for the foreign key values of these tables.

❑ In obtaining geographical information for states and cities.

This application was a very simple example of how memcached can add the benefit of caching to reduce
database accesses. You can probably imagine how valuable memcached would be if you had a much
more complex application with numerous data access needs that is running a huge, busy site. Using
memcached for caching can add up to immense savings in resources, both on the database and the web
server running the application.

Other Caching Issues
There are other caching issues that are worth discussing. The next section will help you to understand
issues that you will encounter in the course of implementing caching using memcached.

Cache Stampede/Dog-Piling/Thundering Herd
In the previously shown examples, you saw a read-through, or deterministic, cache implemented. An
object was requested that, if found in memcached, was returned. Or if it was a cache miss, it was obtained

352

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 353

Chapter 8: memcached

from MySQL and then written to memcached to replace what was initially missing and then returned to
the requester. This works well most of the time, particularly if you ensure that what is in cache is updated
whenever a write to that object occurs, writing to both MySQL and memcached.

However, there is a problem that can sometimes occur where a large number of requests simultaneously
are requesting an item that is no longer in memcached — either it has since expired or is no longer there
due to the LRU functionality. In such cases, these requests then go to MySQL, hammering the database
all at once to obtain the item that was not in memcached. This is known by several terms, including cache
stampede, dog-piling, and thundering herd. For this section, this phenomena will be referred to as dog-piling.
Whatever it is called, it can be a problem and can cause a significant slowdown in your application.

There are several ways to address the problem of dog-piling:

❑ Limit the rate of requests on your web server, and set the wait timeout (wait_timeout) low and
maximum clients (max_clients) on MySQL to a number less than the maximum number of con-
current connections MySQL can handle for your specific hardware.

❑ Use two keys — one for the actual data being stored, and one that is associated with the data
being stored that has a value of an expiration time that is used to force that item to be refreshed.

❑ Again, make certain to always write the item to memcached whenever you store the item in
MySQL.

❑ Regularly run cron jobs to update particular items.

❑ Use cache distribution, storing the item on multiple servers to ensure that the data has a higher
chance of being found in the cache.

There is no right or wrong way, or one solution that fits all for dealing with this issue. It all depends on
the type of data you have, how you are caching it, the traffic of your site, the capacity of your database,
and how you have your architecture scaled.

Example of a Stale Key Used to Avoid Dog-Pile Effect
The following is an example of a cache fetching method you would use to fetch your data and help reduce
the chance for the dog-piling issue. This example is a Perl adaptation of the one by Alexy Kovrin writ-
ten in Ruby at http://blog.kovyrin.net/2008/03/10/dog-pile-effect-and-how-to-avoid-it-with
-ruby-on-rails-memcache-client-patch/.

The idea of this method is to use both a main key to reference the actual stored data that expires at a later
time than normal, and a stale key that will expire earlier. When a value is read from memcached, the stale
key value is also read. If the stale key has expired, the expiration time is recalculated and the stale key is
restored with that new value.

This method takes as one of its arguments a reference to the method or subroutine that obtains the data
from the database as well as the arguments that this method requires, which are different from what the
cache fetch method requires.

Variables this new method requires are:

my $STALE_REFRESH = 1;
my $STALE_CREATED = 2;

353

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 354

Chapter 8: memcached

my $EXPIRY = 300;
my $GENERATION_TIME = 30;

The method for implementation is this:

sub memcGet {
my ($this,

$key,
$db_get_method, $db_method_args,
$expiry,
$generation_time)= @_;

$expiry = $EXPIRY unless defined $expiry;
$generation_time = $GENERATION_TIME unless defined $GENERATION_TIME;

simply return if not using an expiration
return $this->{memc}->get($key) unless $expiry;

create window for data refresh
my $full_expiry = $expiry + $generation_time * 2;

set the stale key
my $stale_key = "$key:stale";
my $value = $this->{memc}->get($key);
my $stale_value = $this->{memc}->get($stale_key);

if not defined, create and set
unless(defined $stale_value) {
$this->{memc}->set($stale_key, $STALE_REFRESH, $generation_time) ;
print "SETTING stale_value\n";
$value= undef;

}

if no value, then obtain using the db access method that was
passed
unless (defined $value) {
$value= $db_get_method->($this, $db_method_args);

then set both keys
$this->{memc}->set($key, $value, $full_expiry);
$this->{memc}->get($stale_key, $STALE_CREATED, $expiry);

}
return the value
return $value;

}

To use this in the previous examples, you would have to recode wherever you set values in memcached
from within various ‘‘get’’ methods to let this method handle obtaining and setting from the database the
value being requested. In the example that follows, getUser() is modified into a more generic method
that now uses two other methods: the new getMemc() method, and the actual code that retrieved the user
from the database is moved to getUserFromDB().

sub getUserFromDB {
my ($this, $username)= @_;

354

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 355

Chapter 8: memcached

obtain from db if not in memcached
my $query= <<EOQ

SELECT uid, username, email, firstname, surname, address, city_id,
password,

cities.city_name as city_name,
states.state_id AS state_id,
states.state_name AS state_name,
regions.region_id AS region_id,
regions.region_name AS region_name,
account_levels.account_level AS account_level,
account_levels.account_level_name AS account_level_name

FROM users
JOIN cities USING (city_id)
JOIN states ON (cities.state_id = states.state_id)
JOIN regions ON (cities.region_id = regions.region_id)
JOIN account_levels USING (account_level)
WHERE username = ?
EOQ
;

my $sth= $this->{dbh}->prepare($query);
$sth->execute($username);
my $user_ref= $sth->fetchrow_hashref();

return unless $user_ref;

return user reference
return ($user_ref);

}

The getUserFromDB()is the method that is passed by reference to getMemc():

sub getUser {
my ($this, $username)= @_;
my $memc_key1= ‘users:’ . $username;
my $user_ref;

check memcached first
$user_ref= $this->memcGet($memc_key1, \&getUserFromDB,

$username, 300, 30);
return;

}

You can use a method such as getMemc(), along with the other ideas mentioned above, to reduce the
problem of dog-piling, or you can come up with your own ideas. Again, there is no correct way to deal
with issues like this.

Replicating Data to Multiple Caches
Another issue in caching data involves losing a particular memcached server, and this can mean losing
a significant part of your cached data on which your application relies. One way to get around this is to
replicate your data to multiple memcached servers upon storing an item.

355

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 356

Chapter 8: memcached

To do this, you can employ a simple array or hash reference that contains connections to each memcached
server. Whenever you store an item, you loop through the servers, storing the item in each. For retrieval,
you can just use a single memcached connection that is connected to all servers. You will get the data one
way or another because they all have the item stored. The example that follows shows how this can be
done.

First, five servers are connected to individually, each connection stored as a member in a hash reference
of connections. Also, a single connection is created that specifies all memcached servers and is used for
fetching data:

use Cache::Memcached;

my $con_href;

my $servers= [
‘127.0.0.1:11221’,
‘127.0.0.1:11222’,
‘127.0.0.1:11223’,
‘127.0.0.1:11224’,
‘127.0.0.1:11225’];

for my $server (@$servers) {
$con_href->{$server} = new Cache::Memcached({

servers => [$server],
compress_threshold => 10_000 });

}
my $main_con= new Cache::Memcached({

servers => $servers,
compress_threshold => 10_000});

my $value = "Test value";
my $key = "test:key1";

my $rc = multi_set($key, $value);

my $retval = $main_con->get($key);

print "retval: $retval\n";

Instead of using the regular ‘‘get’’ method, the subroutine multi_set() is used for storing data on all
servers specified in con_href. This stores the item on all servers.

sub multi_set {
my ($key, $value) = @_;
my $all_set= 0;
for my $server (@$servers) {
my $rc = $con_href->{$server}->set($key, $value);
unless ($rc) {

print "ERROR: unable to set $key in server $server\n";
$all_set--;

}
$all_set++;

356

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 357

Chapter 8: memcached

}
return ($all_set == scalar @$servers);

}

Of course, there are other ways of implementing this. Numerous articles and information are available
online.

Summary
Memcached is a high-performance, distributed memory object caching system that will give you the
ability to cache data that you would otherwise have to obtain from the database. This can benefit your
application in many ways, such as relieving the load on the database, reducing application calls to
the database, and providing faster data access because obtaining data from memcached is extremely
fast — faster than obtaining it from the database. This chapter showed you everything you would want
to know about using memcached, including the following:

❑ Basic concept of memcached: How memcached is a simple memory server that allocates a
block of memory for storing data that is accessible with key values. Also, the chapter covered
how memcached can run on multiple servers so you can utilize less-powerful machines (than
database or web server machines) that have ample memory and have all machines work
collectively as a cluster.

❑ Read-through and write-through caches: A read-through cache is where there is a cache miss
(the data being requested is not in the cache). The data that is obtained from the database for
the read request is then written to the cache prior to returning to the requester. A write-through
cache is written to. A separate process obtains data that is cached in memcached and stores it to
the databases.

❑ The Perl client library for memcached: Cache::Memcached.

❑ A step-by-step demonstration for modifying a simple database user application to have caching
functionality using memcached with the Perl module Cache::Memcached. This demonstration
showed where the caching should be implemented in the code, how the application should be
modified, and how and in what way the added caching benefited that application in terms of
reduced database calls and overall increased efficiency of the application.

❑ How to deal with dog-piling, also known as cache stampede or thundering herd: This is where a
requested cached item no longer exists and so a large number of requests then go to the database
simultaneously to retrieve the data that was not in memcached.

❑ How to replicate data to multiple memcached servers.

You should now have a good understanding of how to use memcached. You should now be able to create
new applications that implement caching using memcached as well as modify existing applications to
use memcached.

357

Galbraith c08.tex V3 - 06/02/2009 9:18am Page 358

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 359

libmemcached

The Perl module for memcached, Cache::memcached, is a client library for accessing memcached
that is written entirely in Perl. This was the first client library for memcached and works just fine
for most applications. Though, as any programmer knows, there is always room for more efficiency
and speed, and sometimes you just have to implement code in C if you need speed. Brian Aker had
a need for such a thing and started a new client library for memcached: libmemcached.

What Is libmemcached?
libmemcached is a memcached client library written in C. It is a faster, more efficient, thread-safe,
full-featured C library that has a significant performance gain over existing client libraries. Not only
that, you also have much more control to affect how the client functions because you can set the
client behavior (memcached_behavior_set()) with numerous behavior settings, such as hashing
algorithm or whether the client is blocking or nonblocking, CAS (Check and Set) support, server
host sorting, etc.

Perl support for libmemcached comes in two approaches: a lower-level one-to-one C API mapping
Memcached::libmemcached and Cache::memcached::libmemcached, which is a drop-in replace-
ment for Cache::memcached. This chapter will explain both of these in greater detail.

Do you want to use libmemcached instead of Cache::memcached? It is much newer than
Cache::memcached and some developers or administrators shy from using newly released soft-
ware, but its performance benefits and added features, which will be shown, provide justification
for using it over Cache::memcached for your applications that need to use memcached. Since it is a
new client library, there may be kinks to work out, bugs that manifest themselves — as is the case
with any project that is new. However, libmemcached is actively being developed and many people
are now using it, exposing any issues rapidly. A changelog is always a good thing to examine with
any open-source project and the changelog for libmemcached reveals that memcached is an ideal
open-source project — it is released early and often, particularly when there are bugs that need to
be fixed.

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 360

Chapter 9: libmemcached

libmemcached Features
Some of the design notes for memcached are:

❑ Synchronous and asynchronous support

❑ Ability to set with high degree of control how the client behaves

❑ Ability to fetch and store data by a master key, which gives the ability to group values or objects
to a specific server

❑ TCP and Unix Socket protocols

❑ Half a dozen or so different hash algorithms

❑ Implementations of the new CAS, replace, and append operators

❑ Extensive documentation covering in detail the entire API

❑ Implements both modulo and consistent hashing solutions, which have to do with how data is
partitioned among servers within the cluster

Consistent hashing is a scheme where a hash table is employed for mapping keys to slots for each server.
It provides a means of not having to significantly change the mapping of keys to slots when one slot
is removed. Rather, it only requires the remapping of K/n keys (with K the number of keys and n the
number of slots). Modulo hashing is another scheme where data is partitioned to nodes based on the
division of the number of nodes within a network. With modulo hashing, additions or subtractions to
nodes in the network result in high miss rates.

Libmemcache Utility Programs
libmemcached also includes several command-line tools (shown in the following table) that allow you to
debug your memcached cluster and gauge its performance:

Command Description

memcat Copy the value of a key to standard output

memflush Flush the contents of your servers

memrm Remove a key(or keys) from the server

memcp Copy files to a memcached server

memstat Dump the stats of your servers to standard output

memslap Generate testing loads on a memcached cluster

Also, of particular interest to readers of this book, libmemcached provides several client inter-
faces/libraries to other languages such as Ruby, Python, PHP, and Perl.

Installing libmemcached
libmemcached can be installed via the OS vendor’s specific install utilities such as yum or apt-
get. However, since libmemcached is a new project and changes often, it’s preferable to compile

360

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 361

Chapter 9: libmemcached

libmemcached from source or use the latest RPM from the libmemcached project page if
you’re using a Linux distribution that uses RPM. The project page for libmemcached is found at:
http://tangent.org/552/libmemcached.html

To install RPM:

rpm –ihv libmemcached-0.25-1.x86_64.rpm

Source install:

tar xvzf libmemcached-0.25.tar.gz
./configure
make
sudo make install

At this point, libmemcached will be installed. You can write programs that utilize the libmemcached
library (including the Perl driver, which will soon be discussed) and use the utility programs.

libmemcached Utility Programs
As mentioned before, libmemcached includes useful utility programs that provide various functionalities
for testing your memcached cluster. These utilities are simple to use and all specify a list of servers to use
with the --servers option.

memcat
This utility displays the output of one or more cached values in memcached by key value. For instance,
two values were stored using the code snippet:

my $memc = new Cache::memcached({ servers => [’localhost:11211’,
’localhost:22122’],

compress_threshold => 10_000});

$memc->set(’somekey’, "This is a value in memcached");
$memc->set(’anotherkey’, 123456789);

You can view these stored values by using memcat:

patg@vidya libmemcached]$ memcat –servers=localhost:22122,localhost:
11211 somekey anotherkey
This is a value in memcached
123456789

This is a convenient means to quickly check what you have stored for a certain value, without having to
write any code. Now, if you have stored a Perl data structure other than a simple scalar, it will probably
not display correctly since it is stored serialized in memcached.

You can also use this to figure out what value is cached on what server:

[patg@vidya ∼]$ memcat --servers=localhost:11211 somekey anotherkey
123456789

361

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 362

Chapter 9: libmemcached

[patg@vidya ∼]$ memcat --servers=localhost:22122 somekey anotherkey
This is a value in memcached

As you can see, in both cases, both keys were used and only one value was fetched. In the first case, you
can see the value for anotherkey is obtained from the memcached server running on port 11211, whereas
in the second case the value for some key is obtained from the memcached server running on port 22122.

memflush
This utility does what the name implies — it cleans house, flushing all servers listed in the argument to
-servers. This code shows the usage and result (or lack thereof) after using memflush:

[patg@vidya ∼]$ memflush --servers=127.0.0.1:22122,127.0.0.1:11211

[patg@vidya ∼]$ memcat --servers=localhost:22122,localhost:11211
somekey anotherkey

[patg@vidya ∼]$

memcp
This is a really nifty utility that allows you to copy a file to memcached. The file will be keyed with the
name of the file sans directory path:

[patg@vidya ∼]$ cat /etc/redhat-release
CentOS release 5.2 (Final)

[patg@vidya ∼]$ memcp --servers=localhost:11211 /etc/redhat-release
[patg@vidya ∼]$ memcat --servers=localhost:11211 redhat-release
CentOS release 5.2 (Final)

memstat
This utility lists the status of one or more memcached servers (just like the Cache::memcached method
stats()):

[patg@vidya ∼]$ memstat --servers=localhost:11211
Listing 1 Server

Server: localhost (11211)
pid: 3055
uptime: 1367933
time: 1229221949
version: 1.2.6
pointer_size: 64
rusage_user: 2.904558
rusage_system: 2.159671
curr_items: 3

362

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 363

Chapter 9: libmemcached

total_items: 18
bytes: 323
curr_connections: 2
total_connections: 80
connection_structures: 3
cmd_get: 103
cmd_set: 18
get_hits: 78
get_misses: 25
evictions: 0
bytes_read: 323
bytes_written: 323
limit_maxbytes: 67108864
threads: 1

memrm
This utility removes a value from memcached:

[patg@vidya ∼]$ memrm --servers=localhost:11211 redhat-release

[patg@vidya ∼]$ memcat --servers=localhost:11211 redhat-release

[patg@vidya ∼]$

memslap
This is a load generation simulation and benchmark tool for memcached servers. The options it takes can
be displayed with --help:

[patg@vidya ∼]$ memslap --help
memslap v1.0

Generates a load against a memcached cluster of servers.

Current options. A ‘=’ means the option takes a value.

--concurrency=
Number of users to simulate with load.
--debug

Provide output only useful for debugging.
--execute-number=

Number of times to execute the given test.
--flag

Provide flag information for storage operation.
--flush

Flush servers before running tests.
--help

Diplay this message and then exit.
--initial-load=

363

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 364

Chapter 9: libmemcached

Number of key pairs to load before executing tests.
--non-blocking

Set TCP up to use non-blocking IO.
--servers=

List which servers you wish to connect to.
--tcp-nodelay

Set TCP socket up to use nodelay.
--test=

Test to run (currently "get" or "set").
--verbose

Give more details on the progression of the application.
--version

Display the version of the application and then exit.
--binary

forgot to document this function :)

An example of running memslap with a concurrency of 100 and 10 test runs would be:

[patg@vidya ∼]$ memslap --servers=localhost:22122,localhost:11211
--concurrency=500
--execute-number=20 --verbose

Threads connecting to servers 500
Took 1.020 seconds to load data

As you can see, this is much faster than such a test would be against a database server!

memerror
This prints the canonical error message for a given memcached server error code. In the example below,
we see an error code of 13:

memerror 13

CONNECTION DATA DOES NOT EXIST

libmemcached Perl Driver
As mentioned, the libmemcached client API and library can be used with Perl in two forms:

❑ Memcached::libmemcached: A low-level Perl driver for libmemcached offering Perl equivalents
to libmemcached C API functions.

❑ Cache::memcached::libmemcached: A higher-level interface that uses/inherits from Mem-
cached::libmemcached. It is a drop-in replacement of Cache::memcached and can be used with
very little modification.

Figure 9-1 gives a graphical representation to better explain the various modules discussed and the
languages they are implemented in:

364

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 365

Chapter 9: libmemcached

Installation
You can install both Memcached::libmemcached and Cache::memcached::libmemcached by installing
Cache::memcached. Some Linux/Unix distributions come with both included, although since libmem-
cached changes often, these packaged versions may be stale and out of date. The best bet is to use CPAN
to install:

cpan –i Cache::memcached::libmemcached

Memcached::libmemcached and libmemcached API using
Memcached::libmemcached

The thin, low-level Perl driver for libmemcached is Memcached::libmemcached, written by Tim Bunce of
DBI (and many other projects) fame, with some help from Daisuke Maki (who now is the current main-
tainer) and the author of this book. It offers a cent-per-cent, straight binding to libmemcached’s C API,
but for Perl. It has extensive documentation and is an extremely clean implementation. It’s almost entirely
written in C, so its performance should be on par with an application using the C library directory.

libmemcached

Memcached::libmemcached

Cache::memcached::libmemcached Cache::memcached

memcached

Perl application-OR-

Perl

C, Perl-XS, Perl

C

-OR-

Figure 9-1

365

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 366

Chapter 9: libmemcached

Because Memcached::libmemcached is a one-to-one binding to the C API, whatever functions the C API
provides, you also have access to with this. The usage of each is the same. It’s important to become
familiar with the libmemcached C API if you wish to use Memcached::libmemcached. Fortunately, there
is plenty of documentation with numerous manual pages for each libmemcached API function, as well
as POD documentation for Memcached::libmemcached:

perldoc Memcached::libmemcached

Another thing to remember with Memcached::libmemcached is that it is a straight, no-frills Perl binding
to libmemcached. There is no automatic serialization as with Cache::memcached, so you cannot simply
store complex Perl data types — only scalars.

Connection Functions
These functions pertain to the connection, and are shown in various examples as $memc. They are for
establishing a connection, setting the servers that $memc is associated with, counting the number of
servers that $memc is associated with, and disconnecting from memcached.

❑ memcached_create(): Creates and returns a memcached connection handle that represents the
state of communication with the cluster of memcached servers. The C equivalent of this $memc
function is a connection structure. Think of this as a $dbh in DBI.

my $memc = memcached_create();

❑ memcached_free(): Frees the memory associated with $memc, the underlying C structure that
was allocated upon memcached_create(). After calling this, you can no longer use $memc.

memcached_free($memc);

❑ memcached_server_count(): Returns a numeric value of the number of memcached servers
within the cluster that $memc is associated with.

$server_count = memcached_server_count($memc);

❑ memcached_server_add(): Adds a memcached server via TCP/IP, as defined in $hostname and
$port, to the memcached cluster associated with $memc.

memcached_server_add($memc, $hostname, $port);

❑ memcached_server_add_unix_socket():Adds a memcached server via UNIX domain socket to
the memcached cluster associated with $memc.

memcached_server_add_unix_socket($memc, $socket_file);

libmemcached Behavioral Functions
libmemcached provides functionality that allows you to set and retrieve the behavior of the client itself
and its functions. These affected client behaviors include object distribution amongst servers, hashing of
keys, network parameters, etc.

366

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 367

Chapter 9: libmemcached

The various libmemcached behaviors are as follows:

Behavior Description

MEMCACHED_BEHAVIOR_NO_BLOCK Causes libmemcached to use asynchronous IO. This is
the fastest transport available for storage functions.

MEMCACHED_BEHAVIOR_SUPPORT_CAS Turns on support CAS. Off by default since there is a
very small performance penalty when it is on.

MEMCACHED_BEHAVIOR_BINARY
_PROTOCOL

Enables binary protocol. This cannot be set on an
open connection, only prior to a connection.

MEMCAHCED_BEHAVIOR_CONNECT
_TIMEOUT

Sets the value of the timeout for nonblocking mode
during socket connection.

MEMCACHED_BEHAVIOR_SERVER
_FAILURE_LIMIT

Enables and sets the value that, when exceeded,
results in the automatic removal of a server.

MEMCACHED_BEHAVIOR_DISTRIBUTION Sets the type of object distribution to servers. Default
is MEMCACHED_DISTRIBUTION_MODULA. To use
consistent hashing, you would use
MEMCACHED_DISTRIBUTION_CONSISTENT (alias to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA),
which provides better distribution and allows servers
to be added to the overall cluster with minimal cache
losses.

MEMCACHED_BEHAVIOR_KETAMA Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA and
the hashing algorithm to MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_KETAMA
_WEIGHTED

Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA with
weighted support, and the hashing algorithm to
MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_SND_TIMEOUT Sets microsecond behavior of the socket against the
SO_SNDTIMEO flag. Will still allow you to have
timeouts on the sending of data in cases where you
can’t utilize nonblocking I/O.

MEMCACHED_BEHAVIOR_RCV_TIMEOUT Sets microsecond behavior of the socket against the
SO_SNDTIMEO flag. Will still allow you to have
timeouts on the reading of data in cases where you
can’t utilize nonblocking I/O.

MEMCACHED_BEHAVIOR_TCP_NODELAY Turns on the no-delay feature for connecting sockets,
which may be faster in some environments.

Continued

367

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 368

Chapter 9: libmemcached

(continued)

Behavior Description

MEMCACHED_BEHAVIOR_HASH Sets the default hashing algorithm for keys. The
values that can be set are:
MEMCACHED_HASH_DEFAULT
MEMCACHED_HASH_MD5
MEMCACHED_HASH_CRC
MEMCACHED_HASH_FNV1_64
MEMCACHED_HASH_FNV1A_64
MEMCACHED_HASH_FNV1_32
MEMCACHED_HASH_FNV1A_32
MEMCACHED_HASH_JENKINS
MEMCACHED_HASH_HSIEH
MEMCACHED_HASH_MURMUR

MEMCACHED_BEHAVIOR_KETAMA_HASH Sets the hashing algorithm for host mapping on
continuum. The values can be:
MEMCACHED_HASH_DEFAULT
MEMCACHED_HASH_MD5
MEMCACHED_HASH_CRC
MEMCACHED_HASH_FNV1_64
MEMCACHED_HASH_FNV1A_64
MEMCACHED_HASH_FNV1_32
MEMCACHED_HASH_FNV1A_32

MEMCACHED_BEHAVIOR_CACHE_LOOKUPS Turns on named lookup caching to make it so DNS
lookups only occur once.

MEMCACHED_BEHAVIOR_POLL_TIMEOUT Sets timeout value used by poll(). Default is -1.
Signed integer must be used to change this value.

MEMCACHED_BEHAVIOR_BUFFER_REQUESTS Enables buffered I/O, which makes commands
buffered instead of being sent immediately. A get
operation, quitting, or closing down the connection
will cause the buffer to be sent to the remote
connection.

MEMCACHED_BEHAVIOR_VERIFY_KEY Enables testing of the validity of all keys by
libmemcached.

MEMCAHCED_BEHAVIOR_SORT_HOSTS Enables host additions to be placed into the host list
in sorted order. This will defeat consistent hashing.

MEMCACHED_BEHAVIOR_IO_MSG_WATERMARK Sets the value to the number of messages that will be
sent before libmemcached starts to automatically
drain the input queue. Do not set this value too high
because it could result in deadlocking.

MEMCACHED_BEHAVIOR_IO_BYTES_WATERMARK Sets the number of bytes that will be sent before
libmemcached starts to automatically drain the input
queue. You will need at least 10 I/O requests without
reading the input buffer. Do not set this value too
high because it could result in deadlocking.

368

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 369

Chapter 9: libmemcached

The behavioral functions that are applied to the connection $memc are described in this table:

Function Description

memcached_behavior_set Changes the value of various behaviors, as shown in the
following code, for the connection, $memc:
memcached_behavior_set($memc, $behavior_name,
$behavior_value);

memcached_behavior_get Obtains the value of a particular behavior for $memc:
memcached_behavior_get($memc, $behavior_name);

Functions for Setting Values
The functions for setting values in memcached include set, replace, add, and delete. Additionally, lib-
memcached supports CAS, which is a check and set operation that sets the value only if the value has not
been updated by anyone else since it was last fetched.

As previously mentioned, libmemcached also supports the ability for setting values for each server,
a process known as key partitioning. This is done with a master key, and the functions for doing this
key partitioning are named <function name>_by_key. For instance, the key partitioning variant of
memcached_set is memcached_set_by_key. Key partitioning functionality is available for both set and
get operations. Here is a list of the libmemcached methods used for setting values:

❑ memcached_set: Sets the value of $key to $value. $expiration, which is optional, is a numeric
value that specifies how long the value stored as $key will exist within the memcached cluster.
This defaults to 0. $flags is also optional and is used to set options for the value being stored; it
also defaults to 0. If function memcached_set_by_key, the value of $master_key is used to map
objects to particular servers.

memcached_set($memc, $key, $value);

memcached_set($memc, $key, $value, $expiration, $flags);

memcached_set_by_key($memc, $master_key, $key, $value);

memcached_set_by_key($memc, $master_key $key, $value, $expiration, $flags);

❑ memcached_add: Does the same thing as memcached_set, memcached_set_by_key, but only sets
the value specified by $key to $value if it doesn’t yet exist, and returns an error if it does exist.

memcached_add($memc, $key, $value);

memcached_add($memc, $key, $value, $expiration, $flags);

memcached_add_by_key($memc, $master_key, $key, $value);

memcached_add_by_key($memc, $master_key, $key, $value, $expiration, $flags);

❑ memcached_replace: Replaces the value specified by $key if $key exists in memcached;
otherwise, an error is returned. $expiration and $flags are optional and work the same as in
memcached_set(), memcached_set_by_key().

369

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 370

Chapter 9: libmemcached

memcached_replace($memc, $key, $value);

memcached_replace($memc, $key, $value, $expiration, $flags);

memcached_replace_by_key($memc, $master_key, $key, $value);

memcached_replace_by_key($memc, $master_key, $key, $values, $expiration, $flags);

❑ memcached_prepend: Prepends $value to the existing value specified by $key, or returns an
error if $key doesn’t exist. $expiration and $flags are optional and work the same as in
memcached_set(), memcached_set_by_key().

memcached_prepend($memc, $key, $value);

memcached_prepend($memc, $key, $value, $expiration, $flags);

memcached_prepend($memc, $master_key, $key, $value);

memcached_prepend($memc, $master_key, $key, $value, $expiration, $flags);

❑ memcached_append: Appends $value to the existing value specified by $key, or returns an
error if $key doesn’t exist. $expiration and $flags are optional and work the same as in
memcached_set().

memcached_append($memc, $key, $value);

memcached_append($memc, $key, $value, $expiration, $flags);

memcached_append_by_key($memc, $master_key, $key, $value);

memcached_append_by_key($memc, $master_key, $key, $value, $expiration, $flags);

❑ memcached_cas: Overwrites the value specified by key with $value if $cas has the same value
in the server. In order to use cas, you must have support for it turned on in libmemcached using
memcached_behavior_set().

memcached_cas($memc, $key, $value, $expiration, $flags, $cas);

memcached_cas_by_key($memc, $master_key, $key, $value, $expiration, $flags, $cas);

Data Retrieval (get) Functions
The functions that fetch data come in two varieties: one simply fetches data with one or more keys (get
and mget), and the other or those that get data.

❑ memcached_get(): Gets the value referred to by $key from memcached. Returns undef on error.
$flags is optional and when used is updated to the value of $flags for the $value when it was
set. $rc is optional and is the return code of the operation.

$value= memcached_get($memc, $key);

$value= memcached_get($memc, $key, $flags, $rc);

$value= memcached_get_by_key($memc, $key);

370

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 371

Chapter 9: libmemcached

$value= memcached_get_by_key($memc, $master_key, $key, $flags, $rc);

❑ memcached_mget(): Fetches the values of multiple keys asynchronously, at once. This func-
tion is the fastest way to fetch data for multiple keys. It is the first of two steps for retrieval of
multiple keys; the second step is to fetch the values that were retrieved from the server using
memcached_fetch() or memcached_fetch_result(). No errors are given for keys that are not
found.

To obtain multiple keys without having to explicitly fetch them and/only if you are using the
object-oriented interface to Memcached::libmemcached (this will be explained later) you can use
the mget_info_hashref() method.

memcached_mget($memc, \@keys);

memcached_mget($memc, \%keys);

memcached_mget_by_key($memc, $master_key, \@keys);

memcached_mget_by_key($memc, $master_key, \%keys);

❑ memcached_fetch(): Fetches the next $key and $value pair returned in the response to a
memcached_mget() call. This is analogous to fetching data from a database result set after
executing a database query. Returns undef when all values have been fetched. $flag is optional
and when used assumes the value that $flag was set to for the value being fetched. $rc is also
optional and is updated with the return code.

memcached_fetch() is similar to memcached_get() except that it is fetching results from a pre-
vious call of memcached_mget(). Instead of $key specifying a value to get, it is instead an output
parameter that assumes the value of the key being fetched from the result set.

$value= memcached_fetch($memc, $key);

$value= memcached_fetch($memc, $key, $flag, $rc);

Increment, Decrement, and Delete
These functions are used to increment integer values stored in memcached. There are no _by_key variants
of these functions.

❑ memcached_increment(): Works just like memcached_decrement() except it increments the
value. The function increments the integer value referred to by $key by the amount speci-
fied in $offset, if $offset is specified; otherwise, it increments by 1. $offset is optional.
$new_value_out is optional and assumes the newly incremented value.

memcached_increment($key, $offset, $new_value_out);

❑ memcached_decrement(): Decrements the integer value referred to by $key by the amount
specified in $offset, if $offset is specified; otherwise, it decrements by 1. $offset is optional.
$new_value_out is optional and assumes the newly decremented value.

memcached_decrement($key, $offset, $new_value_out);

371

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 372

Chapter 9: libmemcached

❑ memcached_delete(): Deletes the value referred to by $key from memcached. $expiration is
optional and specifies the number of seconds when the value will be expired from the cache.
memcached_delete_by_key() has an additional $master_key for deleting objects that were set
with server key distribution.

memcached_delete($memc, $key);

memcached_delete($memc, $key, $expiration);

memcached_delete_by_key($memc, $master_key, $key);

memcached_delete_by_key($memc, $master_key, $key, $expiration);

Informational and Utility Functions
In addition to functions that you use for working with items stored in memcached, libmemcached also
provides informational and utility functions that you can use to determine the version of the memcached
server or client library, error code translation, as well as to flush your server of all objects or disconnect
from memcached servers.

❑ memcached_lib_version(): Returns a string containing the version of the libmemcached client
library version.

$libmemcached_version= memcached_lib_version();

❑ memcached_version(): Depending on context, memcached_version() returns either a string
value containing the server version, or, as in the code snippet that follows, a three-member list
containing the three components of the version of the first memcached server in the memcached
cluster specified by $memc.

$memcached_version= memcached_version($memc);

($major, $minor, $micro)= memcached_version($memc);

❑ memcached_verbosity(): Modifies the verbosity of the memcached servers specified by $memc.

memcached_verbosity($memc, $verbosity);

❑ memcached_flush(): Clears all memcached servers specified by $memc. This results in deleting
all previously stored values.

memcached_flush($memc, $expiration);

❑ memcached_quit(): Disconnects from all currently connected memcached servers and resets the
libmemcached state specified by $memc.

memcached_quit($memc);

❑ memcached_strerror(): Returns a descriptive string to describe a return code value specified
by $rc.

$error_string= memcached_strerror($memc, $rc);

372

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 373

Chapter 9: libmemcached

Object-Oriented Interface
The API calls for Memcached::libmemcached shown have used the procedural interface. Mem-
cached::libmemcached also has an object-oriented interface. To use it, the first thing you would want to
call is instantiation:

my $memc= Memcached::libmemcached->new; # same as memcached_created

This creates the object handle to a Memcached::libmemcached object, which you will use for all subse-
quent API calls. For instance, to use memcached_set, which would be written procedurally:

memcached_set($memc, $key, $value)

. . . the object-oriented interface usage would be:

$memc->memcached_set($key, $value)

So, the calls are all the same as any procedural call except you no longer explicitly pass in the connection
handle as the first argument along with the other arguments (well, it is passed automatically to the
method as the first argument according to the way OO works in Perl).

Also with the object-oriented interface, you can use the all-in-one multiple get and fetch method,
mget_into_hashref:

$memc->mget_into_hashref(\@keys, \%results);

%results will be populated with the values fetched from memcached.

For errors, you can access via errstr:

my $errstr = $memc->errstr;

Procedure Memcached::libmemcached Program Example
The following example shows a simple program using Memcached::libmemcached. This example uses
a procedural style of usage which requires you import Memcached::libmemcached subroutines. The
exporter allows you to use patterns for the import list, as shown here:

use strict;
use warnings;

#import using pattern, all memcached_xxx subroutines
use Memcached::libmemcached qw(/ ˆ memcached/);

allocation of $memc
my $memc = memcached_create();

add both memcached servers
memcached_server_add($memc, ‘localhost’, 11211);
memcached_server_add($memc, ‘localhost’, 22122);

373

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 374

Chapter 9: libmemcached

set behavior to non-blocking
memcached_behavior_set($memc, MEMCACHED_BEHAVIOR_NO_BLOCK, 1);

set a value with expiration of 60 seconds
memcached_set($memc, ‘key1’, ‘this is a value’, 60);

my $rc= memcached_replace($memc, ‘key1’, ‘replaced value’, 60);

memcached_set($memc, ‘key2’, ‘bbbbb’, 60);

memcached_set($memc, ‘key3’, ‘ccccc’, 60);

fetch the value
my $retval= memcached_get($memc, ‘key1’, {}, $rc);

mget and fetch
memcached_mget($memc, [’key1’, ‘key2’, ‘key3’]);
fetch, one at a time and must be in order
my $retval= memcached_fetch($memc, ‘key1’);
print "key1: $retval\n";

$retval= memcached_fetch($memc, ‘key2’);
print "key2: $retval\n";

$retval= memcached_fetch($memc, ‘key3’);
print "key3: $retval\n";

disconnect from the memcached server(s)
memcached_quit($memc);

free the memcached object
memcached_free($memc);

Notice in this example, memcached_free() is called. Yes, in Perl you don’t have to worry about memory
allocation, but this is a low-level Perl driver to libmemcached, and in the C equivalent you must free the
$memc (connection structure in C). So you must also free it from Perl.

Object-Oriented Memcached::libmemcached Program
Example

The next example shows that you can also use an object-oriented approach to this program. This
doesn’t require that you have to import the Memcached::libmemcached methods. Also in this example is
mget_into_hashref, which the object-oriented interface provides.

use strict;
use warnings;

use Memcached::libmemcached;

allocation of $memc
my $memc = Memcached::libmemcached->new;

374

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 375

Chapter 9: libmemcached

add both memcached servers
$memc->memcached_server_add(’localhost’, 11211);
$memc->memcached_server_add(’localhost’, 22122);

set behavior to non-blocking
$memc->memcached_behavior_set(MEMCACHED_BEHAVIOR_NO_BLOCK, 1);

set a value with expiration of 60 seconds
$memc->memcached_set(’key1’, ‘aaaaa’, 60);
$memc->memcached_set(’key2’, ‘bbbbb’, 60);
$memc->memcached_set(’key3’, ‘ccccc’, 60);

get
my $key1val = $memc->memcached_get(’key1’);
print "key1val $key1val\n";

mget
$memc->memcached_mget([’key1’, ‘key2’, ‘key3’]);
fetch, one at a time, and must be in order
my $retval = $memc->memcached_fetch(’key1’);
print "retval $retval\n";

$retval = $memc->memcached_fetch(’key2’);
print "retval $retval\n";

$retval = $memc->memcached_fetch(’key2’);
print "retval $retval\n";

must set it as a hashref prior to using it
my $ret_ref= {};

convenient way to mget
$memc->mget_into_hashref([’key1’, ‘key2’, ‘key3’], $ret_ref);
map { print "$_ => $ret_ref->{$_}\n"} sort keys %$ret_ref;

disconnect from the memcached server(s)
$memc->memcached_quit();

free the memcached object
$memc->memcached_free();

As you can see, you can take two approaches in programming philosophy with Mem-
cached::libmemcached!

Cache::memcached::libmemcached
Cache::memcached::libmemcached is a Perl module written by Daisuke Maki. It uses (and inherits
from) Memcached::libmemcached as its low-level interface to libmemcached. Whereas Mem-
cached::libmemcached was meant to provide a Perl API to libmemcached, Cache::memcached::
libmemcached is meant to provide API compatibility to Cache::memcached.

375

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 376

Chapter 9: libmemcached

To use it, simply change instantiation from:

my $memc= Cache::memcached->new({
servers => $servers,
compress_threshold => 10_000});

. . . to:

my $memc= Cache::memcached::libmemcached->new({
servers => $servers,
compress_threshold => 10_000});

That’s all! All the code you have that is currently using Cache::memcached should work as is.

Performance Comparisons
The real issue and reason for potentially using Cache::memcached::libmemcached is perfor-
mance. To see what performance gains there are and to justify why you might want to use it,
Cache::memcached::libmemcached has a utility script within the tools directory of the distribution.
The author of this book modified this script to only compare Cache::memcached::libmemcached to
Cache::memcached. Here are the numbers:

[root@vidya tools]# perl ./benchmark.pl
Module Information:
+ Cache::memcached => 1.24
+ Cache::memcached::libmemcached => 0.02008

Options:
+ Memcached server: localhost:11211
+ Include no block mode (where applicable)? :NO

Prepping clients...

==== Benchmark "Simple get() (scalar)" ====
Rate perl_memcached libmemcached

perl_memcached 7092/s -- -78%
libmemcached 32051/s 352% --
==== Benchmark "Simple get_multi() (scalar)" ====

Rate perl_memcached libmemcached
perl_memcached 1810/s -- -85%
libmemcached 11848/s 555% --
==== Benchmark "Serialization with get()" ====

Rate perl_memcached libmemcached
perl_memcached 6394/s -- -74%
libmemcached 24876/s 289% --
==== Benchmark "Simple set() (scalar)" ====

Rate perl_memcached libmemcached
perl_memcached 17544/s -- -36%
libmemcached 27624/s 57% --
Pretty compelling

The numbers are pretty compelling! Even the last test, with a gain of 57 percent over Cache::memcached.
That’s reason enough to use it.

376

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 377

Chapter 9: libmemcached

Writing Your Own Comparison Script
Not content to just use the utility script that comes included with Cache::memcached::libmemcached? A
separate test script/tool can be written to see if the type of performance gains displayed in the previous
example of running benchmark.pl hold true for a different program. This also provides a good example
of how you might benchmark memcached.

This test script is written using both Cache::memcached::libmemcached and Cache::memcached. It
runs several operations — set, get, replace, increment, decrement, delete — each within a loop
that iterates a given number of times, as chosen via a command-line option. This script will record
the duration from the beginning of the loop to the end of the loop for each of these operations using
Time::HiRes and store the results in a hash reference, which it will then print out at the end of all tests.
It then compares the differences between the timings of the test using Cache::memcached versus using
Cache::memcached::libmemcached:

use strict;
use warnings;

use Cache::memcached;
use Cache::memcached::libmemcached;
use Time::HiRes qw(tv_interval gettimeofday);

use Getopt::Long;

global options
our $opt_num_loop;
our $opt_servers;

GetOptions(
‘loops|l=s’ => \$opt_num_loop,
‘servers|s=s’ => \$opt_servers,

) or usage();

defaults
$opt_servers||= ‘127.0.0.1:11211’;
$opt_num_loop||= 10;

sub main {

hashref containing key values
my $scalars = {};
my $servers;
results of tests
my $results;
set up servers
(@$servers)= split(’,’, $opt_servers);

build up hashref, outside of timing and before
any memcached access
for (0 .. $opt_num_loop) {
$scalars->{hashkey()} = hashkey();

}

for my $opt_libmemcached (0 .. 1) {

377

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 378

Chapter 9: libmemcached

toggle which library to use
my $memc= $opt_libmemcached ?

Cache::memcached::libmemcached->new({
servers => $servers,
compress_threshold => 10_000}) :

Cache::memcached->new({
servers => $servers,
compress_threshold => 10_000});

clear all values
$memc->flush_all();

obtain start time
my $start_time= my $t0 = [gettimeofday];

loop through entire hashref
set operation
for my $key (keys %$scalars) {

set, get, replace, incr, decr, delete...
$memc->set($key, $scalars->{$key});

}
my $elapsed = tv_interval($t0);
push @{$results->{set}}, $elapsed ;

get operation
$t0 = [gettimeofday];
for my $key(keys %$scalars) {

my $var = $memc->get($key);
}
$elapsed = tv_interval ($t0);
push@{$results->{get}}, $elapsed;

replace operation
$t0 = [gettimeofday];
for my $key (keys %$scalars) {

$memc->replace($key, 1);
}
$elapsed = tv_interval($t0);
push @{$results->{replace}}, $elapsed ;

increment operation
$t0 = [gettimeofday];
for my $key (keys %$scalars) {

$memc->incr($key, 10);
}
$elapsed = tv_interval($t0);
push @{$results->{increment}}, $elapsed;

decrement operation
$t0 = [gettimeofday];
for my $key (keys %$scalars) {

$memc->decr($key, 5);
}
$elapsed = tv_interval($t0);
push @{$results->{decrement}}, $elapsed;

378

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 379

Chapter 9: libmemcached

delete operation
$t0 = [gettimeofday];
for my $key (keys %$scalars) {

$memc->delete($key);
}
$elapsed = tv_interval($t0);
push @{$results->{’delete’}}, $elapsed;

obtain total time
$elapsed = tv_interval($start_time);
push @{$results->{’total’}}, $elapsed;

}
printf("%-10s %-16s %-14s %-14s %-14s\n",

‘Operation’,
‘Cache::memcached’,
‘libmemcached’,
‘libmem % faster’,
‘C::M % slower’);

for my $op qw(set get replace increment decrement delete total) {
lexical variables to make easier to read
my $cm_t= $results->{$op}[0];
my $lm_t= $results->{$op}[1];
printf("%-10s %-16s %-14s %-14.2f %-14.2f\n",

$op,
$cm_t,
$lm_t,
(($cm_t - $lm_t)/$lm_t) * 100,
(($lm_t - $cm_t)/$cm_t) * 100);

}
}

sub hashkey {
my @chars = grep !/[0O1Iil]/, 0..9, ‘A’..’Z’, ‘a’..’z’;
return join ‘’, map { $chars[rand @chars] } 0 .. 7;

}
sub usage {

print <<’EOM’;
loops|l <number of loops>
servers|s <server1:port, server2:port, ...>

EOM

exit();
}
main();

Simply running this test several times (with 1,000, 10,000, and 100,000 iterations) affirms the first test’s
optimism:

[patg@vidya perl]$./memtest.pl -l 1000
Operation Cache::memcached libmemcached libmem % faster C::M % slower
set 0.087627 0.079952 9.60 -8.76

379

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 380

Chapter 9: libmemcached

get 0.169981 0.057917 193.49 -65.93
replace 0.082767 0.063166 31.03 -23.68
increment 0.087826 0.054967 59.78 -37.41
decrement 0.080666 0.055666 44.91 -30.99
delete 0.083432 0.060025 39.00 -28.06
total 0.592368 0.371783 59.33 -37.24
[patg@vidya perl]$./memtest.pl -l 10000
Operation Cache::memcached libmemcached libmem % faster C::M % slower
set 0.810394 0.66024 22.74 -18.53
get 1.62237 0.582148 178.69 -64.12
replace 0.834778 0.64598 29.23 -22.62
increment 0.864778 0.57 51.72 -34.09
decrement 0.807877 0.559809 44.31 -30.71
delete 0.770756 0.544149 41.64 -29.40
total 5.711064 3.562453 60.31 -37.62
[patg@vidya perl]$./memtest.pl -l 100000
Operation Cache::memcached libmemcached libmem % faster C::M % slower
set 8.537003 6.638635 28.60 -22.24
get 17.22665 5.921637 190.91 -65.63
replace 8.64765 6.8835 25.63 -20.40
increment 8.246872 5.765545 43.04 -30.09
decrement 8.294751 5.522195 50.21 -33.43
delete 7.84551 5.41309 44.94 -31.00
total 58.798621 36.144834 62.68 -38.53

Using Cache::memcached::libmemcached obviously is faster than Cache::memcached on every operation
in every test, particularly get(), which is around 190 percent faster. get is an operation that you will be
calling a lot! Overall, the various operations combined show a performance gain of around 60 percent.
This was a very simple test in that it runs serially but backs up the generally increased performance from
the first test, benchmark.pl.

Summary
libmemcached is a memcached client library written in C to have a faster, more efficient, thread-
safe, full-featured C library with performance gain over existing client libraries. It also offers
the ability to adjust and tune the behavior of the client. libmemcached, written in C, has two
Perl interfaces: Memcached::libmemcached, which offers a direct interface to the C API, and
Cache::memcached::libmemcached, which uses libmemcached as the underlying client to memcached
and works as a drop-in replacement to Cache::memcached. With Cache::memcached::libmemcached, you
can use all the code that you’ve written using Cache::memcached without making any modifications.

This chapter covered the following topics:

❑ How to install libmemcached, Memcached::libmemcached, and Cache::memcached::
libmemcached.

❑ That Memcached::libmemcached is a thin, highly efficient wrapper around the libmemcached
library. It offers a 1:1 binding to the libmemcached API.

❑ Cache::memcached::libmemcached is a drop-in replacement for Cache::memcached (covered in
Chapter 8), and the API is exactly the same in terms of use.

380

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 381

Chapter 9: libmemcached

❑ The libmemcached API using Memcached::libmemcached. We explained the various behaviors
that you can tune with libmemcached. Also provided were some simple usage examples with
Memcached::libmemcached.

❑ Code examples of usage and demonstrations showed Cache::memcached::libmemcached using
two scripts, the results of which proved increased performance with Cache::memcached::
libmemcached. One example showed the Cache::memcached::libmemcached distribution,
benchmark.pl. Another example was written solely for this book and showed how to write such
an application for memcached. This example provided results that were in line with the first
script, which gives you a good justification for using Cache::memcached::libmemcached over
Cache::memcached.

You should now have a good understanding of what libmemcached is — how to install it, its numerous
API calls, and client behaviors — as well as its performance benefits.

381

Galbraith c09.tex V3 - 06/03/2009 3:48pm Page 382

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 383

Memcached Functions
for MySQL

You were introduced to memcached in Chapter 8, where you learned about Cache::Memcached and
how to write programs to use memcached. In Chapter 9, you learned about libmemcached, a faster
client library. So, you should now have a good idea how to use memcached with Perl.

What about memcached and MySQL? Is there any sort of interoperability between the two, since
they are so commonly used together? It would be great if there was some sort of ‘‘glue’’ between
the two, without having to write Perl code, to get data to and from MySQL and memcached.

Well there is. This is why the Memcached Functions for MySQL, aka memcached UDFs, were
written.

What Are Memcached Functions for MySQL?
MySQL has an API for writing user-defined functions (otherwise known as UDFs), as you learned
in Chapter 3. There, you saw the example of a UDF using libcurl. Because the UDF API is so flex-
ible, it’s possible to write many different functions to do a number of things. With the advent of
libmemcached, it became obvious that there could be UDFs that interact with memcached through
libmemcached and provide all the functionality that one would normally implement with an exter-
nal language at the application layer.

The Memcached Functions for MySQL, written by Patrick Galbraith and Brian Aker, are a suite of
functions available to use with MySQL that allow you to store, retrieve, and delete data, as well
as perform most of the functions/operations that are available with libmemcached, such as server
connectivity to the client, server status, client behaviors, and more.

Additionally, since these functions can be used from within MySQL, you have at your disposal the
power of the SQL engine, which can be used to initiate caching or data retrieval using the result sets
from query. You can combine the fetching of data from one or more tables with the fetching of data
from memcached and be able to apply any SQL operations on that result set, such as LIMIT, sorting
and other conditional operations.

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 384

Chapter 10: Memcached Functions for MySQL

Some features of the Memcached Functions for MySQL include the following:

❑ Written in C using libmemcached and the MySQL UDF API

❑ Provide get, set, delete, replace, add, flush, stats, behavior setting and retrieval, as well as other
functionality

❑ Can be used in stored procedures and triggers

❑ Allow one to interact with memcached and MySQL independent of the language of the applica-
tion using them, or for languages that don’t have clients for memcached

❑ Open source

How Do the Memcached Functions
for MySQL Work?

The user-defined functions utilize libmemcached. When a particular UDF is called, say for instance when
the user types memc_get(`mykey´), the UDF processes the arguments, ensuring the proper number of
arguments have been passed (in this case one argument, the key mykey) for the value that is desired
to be retrieved. The UDF then passes this argument to the appropriate libmemcached API call, in this
case memcached_mget(), memcached_fetch_result(), and then finally memcached_result_value().
So, what these UDFs provide are convenient functions that have the advantage of using the fast, light-
weight libmemcached library, hiding the implementation details of the libmemcached calls much in the
same way that the Cache::Memcached::libmemcached does for Perl.

Figure 10-1 illustrates the concept of how the Memcached Functions for MySQL give the user the ability
to access data from MySQL and memcached, and how simple UDF functions are implemented with API
functions of libmemcached. Also, the application using MySQL can be implemented in any programming
language that has client support for connecting to MySQL. This isn’t a problem for Perl, but there are
some languages that don’t have clients for memcached.

Memcached

libmemcached

Application

Database and
memcached data
accessed from
MySQL.

memcached_set,
memcached_mget,
memcached_fetch ...

memc_set(),
memc_get(),
memc_replace() ...

MySQL

Figure 10-1

384

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 385

Chapter 10: Memcached Functions for MySQL

Install the Memcached Functions for MySQL
The MySQL plug-in interface allows for easy loading of UDFs. All that is involved with using a UDF is
to compile, install, and then run the SQL command to load the UDF shared library. To obtain the source
for the Memcached Functions for MySQL go to:

http://tangent.org/586/Memcached Functions for MySQL.html.

This page provides links to the source code as a source archive file, or you can use the Mercurial revision
control system repository to obtain the latest source.

Prerequisites
The prerequisites for building, installing, and using the Memcached Functions for MySQL are these:

❑ A MySQL database server

❑ libmemcached installed (see Chapter 9)

❑ One or more memcached servers

❑ A compiler

Configure the Source
To configure the source, follow these simple steps:

1. Untar/gzip the source package: tar memcached_functions_mysql-0.7.tar.gz

2. Enter the project directory: cd memcached_functions_mysql

3. Run the configure script:

./configure --with-mysql=/usr/local/mysql/bin/mysql_config
--libdir=/usr/local/mysql/lib/mysql/plugin/

The two arguments can be explained as follows:

❑ --with-mysql: This argument tells the configure program where to find the mysql_config pro-
gram, which provides the necessary compiler flags for the specific system so the UDFs can be
built properly.

❑ --libdir: This is the directory where the compiled shared library will be installed. On
MySQL 5.0, this would be the directory where other libraries are found. With 5.1, the plug-in
interface was changed for programs such as storage engines and UDFs so that shared libraries
would reside in a directory on a level deeper within the normal library directory, called
plugin.

Additionally, you may want to add an entry on your operating system to be able to load the shared
library. Some operating systems might need this set because, by default, they don’t load dynamic
libraries in directories that are in their library path. For instance, if you needed to add an entry for

385

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 386

Chapter 10: Memcached Functions for MySQL

/usr/local/mysql/lib/mysql/plugin, you would add a mysql.conf file in /etc/ld.so.conf.d that
might look like this:

/usr/local/mysql/lib/mysql
/usr/local/mysql/lib/mysql/plugin
/usr/lib64/mysql/

You would then run ldconfig to create the necessary links and cache to the most recent shared libraries
found in the directories you specified in /etc/ld.so.conf.d/mysql.conf:

sudo ldconfig

Build the Source
The next thing you’ll do is compile the source:

make
sudo make install

When you install the built source, the dynamic libraries created from the compilation are installed to the
same directory specified in the directory you used in the --libdir argument.

Install the UDF
Now that the dynamic library is installed, you should be able to load the various UDFs. There are two
ways to do this. The source package comes with several goodies (which will be explained in detail later
in this chapter). There are two install methods — an SQL script that you can either run or cut and paste,
or a Perl utility.

SQL Script Install
The SQL script that contains the SQL statements to install the UDFs can be found in the sql directory
install_functions.sql of the source distribution. It contains statements for each function, such as this
one for memc_get:

CREATE FUNCTION memc_get RETURNS STRING SONAME "libmemcached_functions_mysql.so";

You can simply run this script by loading with the MySQL command-line client, which you will need to
run as the root user because creating functions in MySQL requires this privilege level:

mysql –u root –p < sql/install_functions.sql

Perl Install Utility
The utility install.pl is another way to install the UDFs. It can be run interactively or noninteractively.
To see the available options for this program use this:

./utils/install.pl -h

386

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 387

Chapter 10: Memcached Functions for MySQL

When running it, you will have to specify a user and password to run it as — which must be a user that
has system privileges. With only the --user and --password arguments, the program runs interactively:

[root@vidya memcached_functions_mysql]# ./utils/install.pl -u root -p root
function memc_cas_by_key doesn’t exist. Create? [Y|n]
Y
Running: CREATE FUNCTION memc_cas_by_key
RETURNS INT SONAME ‘libmemcached_functions_mysql.so’
function memc_cas doesn’t exist. Create? [Y|n]
Y
Running: CREATE FUNCTION memc_cas
RETURNS INT SONAME ‘libmemcached_functions_mysql.so’
function memc_servers_set doesn’t exist. Create? [Y|n]

If you supply the argument –s or –silent, it will run without interaction:

./utils/install.pl -u root -p root –s

Checking Installation
After installing the functions, you can check the table in the mysql system schema, using func to verify
that the UDFs were installed. You should see:

mysql> select * from mysql.func;
+---------------------------+-----+---------------------------------+----------+
| name | ret | dl | type |
+---------------------------+-----+---------------------------------+----------+
memc_add	2	libmemcached_functions_mysql.so	function
memc_add_by_key	2	libmemcached_functions_mysql.so	function
memc_servers_set	2	libmemcached_functions_mysql.so	function
memc_server_count	2	libmemcached_functions_mysql.so	function
memc_set	2	libmemcached_functions_mysql.so	function
memc_set_by_key	2	libmemcached_functions_mysql.so	function
memc_cas	2	libmemcached_functions_mysql.so	function
memc_cas_by_key	2	libmemcached_functions_mysql.so	function
memc_get	0	libmemcached_functions_mysql.so	function
memc_get_by_key	0	libmemcached_functions_mysql.so	function
memc_delete	2	libmemcached_functions_mysql.so	function
memc_delete_by_key	2	libmemcached_functions_mysql.so	function
memc_append	2	libmemcached_functions_mysql.so	function
memc_append_by_key	2	libmemcached_functions_mysql.so	function
memc_prepend	2	libmemcached_functions_mysql.so	function
memc_prepend_by_key	2	libmemcached_functions_mysql.so	function
memc_increment	2	libmemcached_functions_mysql.so	function
memc_decrement	2	libmemcached_functions_mysql.so	function
memc_replace	2	libmemcached_functions_mysql.so	function
memc_replace_by_key	2	libmemcached_functions_mysql.so	function
memc_servers_behavior_set	2	libmemcached_functions_mysql.so	function
memc_udf_version	0	libmemcached_functions_mysql.so	function

387

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 388

Chapter 10: Memcached Functions for MySQL

memc_list_behaviors	0	libmemcached_functions_mysql.so	function
memc_stats	0	libmemcached_functions_mysql.so	function
memc_stat_get_keys	0	libmemcached_functions_mysql.so	function
memc_stat_get_value	0	libmemcached_functions_mysql.so	function
+---------------------------+-----+---------------------------------+----------+

This means you have successfully installed the functions. Using the functions will verify that everything
works.

Using the Memcached Functions for MySQL
The Memcached Functions for MySQL use libmemcached, and each function mirrors the API functions
of libmemcached. As you may recall from Chapter 3, the way to call a UDF is to use a SELECT statement,
like so:

mysql> select memc_get(’abc’);
+-----------------+
| memc_get(’abc’) |
+-----------------+
| this is a test |
+-----------------+

Or, use a SET statement, assigning the variable to a user-defined variable:

mysql> set @test = memc_get(’abc’);

mysql> select @test;
+----------------+
| @test |
+----------------+
| this is a test |
+----------------+

Depending on which of the memcached UDFs you run, some may return a value retrieved from mem-
cached or set a value in memcached (retrieving a true/false indicating success or failure).

Establishing a Connection to the memcached Server
The first thing you need to do when using these UDFs is to establish a connection to the memcached
servers being used.

memc_servers_set
memc_servers_set makes a connection to the memcached servers being used.

memc_servers_set(`server1:port, server2:port, serverN:port ...´);

You supply a list of servers with their port numbers, as many as you like, delimited by commas. Upon
success, a 1 is returned; −1 means a failure has occurred.

mysql> SELECT memc_servers_set(’127.0.0.1:11211, 127.0.0.1:22122’);
+--+

388

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 389

Chapter 10: Memcached Functions for MySQL

| memc_servers_set(’127.0.0.1:11211, 127.0.0.1:22122’) |
+--+
| 0 |
+--+

Once a connection is established, you can begin to use all the other functions to store and retrieve values.

memc_server_count
The function memc_server_count() takes no arguments and will return the number of memcached
servers that you are connected to.

memc_server_count();

If for instance, you had connected to two servers as in the preceding example of memc_servers_set(),
memc_server_count() will show:

mysql> select memc_server_count();
+---------------------+
| memc_server_count() |
+---------------------+
| 2 |
+---------------------+

Setting Values
Just as with libmemcached, there are functions in the Memcached Functions for MySQL to store values
in memcached servers.

memc_set
The function memc_set() allows you to store a value in memcached. It takes two required
arguments — the key for what’s being stored, and a value. The value being stored can be either a
string or a numeric value. If it’s a string, it of course must be quoted, if numeric, it doesn’t need to be
quoted. memc_set() can also take a third numeric optional expiration argument for the expiration time
in seconds. memc_set() returns a zero upon success or a nonzero value upon failure. The syntax for
memc_set() is:

memc_set(`key´, value, expiration);
memc_set(`key´, value);

This example below shows a value of xyz being stored with the key foo for 5 seconds:

mysql> select memc_set(’foo’, ‘xyz’, 5);
+---------------------------+
| memc_set(’foo’, ‘xyz’, 5) |
+---------------------------+
| 0 |
+---------------------------+

The above memc_set() would set the value xyz keyed with foo to be stored for 5 seconds in the mem-
cached server. If you run the following three statements on the same line (so they run all at once), you

389

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 390

Chapter 10: Memcached Functions for MySQL

can see the effect of putting an expiration value on something being stored in memcached. (You’ll also
see the use of memc_get(), which will be explained in detail later.)

mysql> select memc_set(’foo’, ‘xyz’, 5); select memc_get(’foo’); select sleep (6);
-> select memc_get (’foo’);

+---------------------------+
| memc_set(’foo’, ‘xyz’, 5) |
+---------------------------+
| 0 |
+---------------------------+
1 row in set (0.01 sec)

+-----------------+
| memc_get(’foo’) |
+-----------------+
| xyz |
+-----------------+
1 row in set (0.00 sec)

+-----------+
| sleep (6) |
+-----------+
| 0 |
+-----------+
1 row in set (6.01 sec)

+------------------+
| memc_get (’foo’) |
+------------------+
| NULL |
+------------------+
1 row in set (0.01 sec)

As you see, after 6 seconds, foo is expired to the bit-bucket in the sky.

The following will of course set foo to the value of xyz without an expiration.

mysql> select memc_set(’foo’, ‘xyz’);
+------------------------+
| memc_set(’foo’, ‘xyz’) |
+------------------------+
| 0 |
+------------------------+

memc_set_by_key
The function memc_set_by_key() functions the same way as memc_set(), except the first argument is
a master server key that allows you to group stored values by server. The rest of the keys are the same
as memc_set, except they are shifted by one. The second argument is the key for the object being stored,
the third is the value being stored, and the optional fourth value is a numeric expiration in seconds. The
syntax for memc_set_by_key() is:

memc_set_by_key(`master key´, `key´, value);
memc_set_by_key(`master key´, `key´, value, expiration);

390

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 391

Chapter 10: Memcached Functions for MySQL

The example below shows storing of a value by server key:

mysql> select memc_set_by_key(’A’, ‘key1’, ‘test’);
+--------------------------------------+
| memc_set_by_key(’A’, ‘key1’, ‘test’) |
+--------------------------------------+
| 0 |
+--------------------------------------+

memc_add
The function memc_add() takes two required arguments — a string key and a value, either numeric or
string, that will be stored as a value in memcached specified by the key if not already set — as well as
a third optional numeric argument for the number of seconds that the value will be stored before being
expired. memc_set() returns a zero upon success or a nonzero value upon failure.

The function memc_add_by_key() works the same as memc_add(), except it has as its first argument a
master server key that allows you to group stored values by server. The arguments following the master
key argument are the same as those for memc_add(), just shifted in order.

Syntax of memc_add() and memc_add_by_key() is:

memc_add(`key´, value);
memc_add(`key´, value, expiration);
memc_add_by_key(`master key´, `key´, value);
memc_add_by_key(`master key´ `key´, value, expiration);

The example shows a value being added that yet doesn’t exist:

mysql> select memc_set(’key1’, 333);
+-----------------------+
| memc_set(’key1’, 333) |
+-----------------------+
| 0 |
+-----------------------+

memc_replace
The function memc_replace takes two required arguments: a string key and a value, either numeric or
string, that will replace the existing value of the key already stored. memc_replaced returns a zero upon
success or a nonzero value upon failure.

The function memc_replace_by_key() works the same as memc_replace(), except it has as its first argu-
ment a master server key, which allows you to group stored values by server. The arguments following
the master key argument are the same as for memc_replace(), just shifted in order.

Syntax of memc_replace() and memc_replace_by_key() is:

memc_replace(`key´, value);
memc_replace(`key´, value, expiration);
memc_replace_by_key(`master key´, `key´, value);
memc_replace_by_key(`master key´, `key´, value, expiration);

391

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 392

Chapter 10: Memcached Functions for MySQL

This example shows the retrieval of a value previously stored and then replaced:

mysql> select memc_get(’key2’);
+------------------+
| memc_get(’key2’) |
+------------------+
| before value |
+------------------+

mysql> select memc_replace(’key2’, ‘replaced value’);
+--+
| memc_replace(’key2’, ‘replaced value’) |
+--+
| 0 |
+--+
mysql> select memc_get(’key2’);
+------------------+
| memc_get(’key2’) |
+------------------+
| replaced value |
+------------------+

The next example shows memcached trying to replace a value that yet doesn’t exist and returning an
error code of 14:

mysql> select memc_replace(’doesntexist’, ‘abcdefg’);
+--+
| memc_replace(’doesntexist’, ‘abcdefg’) |
+--+
| 14 |
+--+

memc_cas
The function memc_cas()sets a value if the cas value is the same as the cas value on the server itself.

Syntax for memc_cas() and memc_cas_by_key() is:

memc_cas(`key´, value, cas);
memc_cas(`key, value, cas, expiration);
memc_cas_by_key(`master_key´, `key´, value, cas, expiration);

This functionality is still experimental and you have to enable it by setting the behavior MEMCACHED
_BEHAVIOR_SUPPORT_CAS

mysql> select memc_servers_behavior_set(’MEMCACHED_BEHAVIOR_SUPPORT_CAS’, 1);
+--+
| memc_servers_behavior_set(’MEMCACHED_BEHAVIOR_SUPPORT_CAS’, 1) |
+--+
| 0 |
+--+

392

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 393

Chapter 10: Memcached Functions for MySQL

memc_prepend
The function memc_prepend() prepends value to the beginning of an existing stored value, stored by
key. The value being prepended can be either numeric or a string, if the value already stored is a string.
You cannot prepend anything to an existing stored numeric value or it will result in that value being set
to a NULL value. The expiration argument is optional and sets the expiration time in seconds.

The function memc_prepend_by_key() works the same as memc_prepend except the first argument is a
master server key to which the value is being prepended. All other values work the same.

Syntax for memc_prepend() and memc_prepend_by_key() is:

memc_prepend(`key´, value);
memc_prepend(`key´, value, expiration);
memc_prepend_by_key(`master key´, `key´, value);
memc_prepend_by_key(`master key´, `key´, value, `expiration´);

The example shows a value initially set to this is some text has prepended to it this will be
prepended... by memc_prepend():

mysql> select memc_set(’abc’, ‘ this is some text’);
+---------------------------------------+
| memc_set(’abc’, ‘ this is some text’) |
+---------------------------------------+
| 0 |
+---------------------------------------+

mysql> select memc_get(’abc’);
+--------------------+
| memc_get(’abc’) |
+--------------------+
| this is some text |
+--------------------+

mysql> select memc_prepend(’abc’, ‘this will be prepended.. ‘);
+---+
| memc_prepend(’abc’, ‘this will be prepended... ‘) |
+---+
| 0 |
+---+

mysql> select memc_get(’abc’);
+--+
| memc_get(’abc’) |
+--+
| this will be prepended... this is some text |
+--+

memc_append
The function memc_append() appends the argument value to the existing value stored as key. The value
being appended can be either numeric or a string, if the value already stored is a string. You cannot

393

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 394

Chapter 10: Memcached Functions for MySQL

append anything to an existing stored numeric value or it will result in that value being set to NULL. The
argument expiration is optional and specifies the expiration time in number of seconds.

The function memc_append_by_key() works the same as memc_append() except the first argument is a
master key value that the value stored was stored as.

Syntax for memc_append() and memc_append_by_key() is:

memc_append(`key´, value);
memc_append(`key´, value, expiration);
memc_append_by_key(`master key´, `key´, value):
memc_append_by_key(`master key´, `key´, value, expiration);

An example showing what memc_append() does is shown next. First an existing value has text appended
to it, and a subsequent memc_get() retrieves the value, verifying that it had the text appended by
memc_append():

mysql> select memc_append(’abc’, ‘ .. this will be appended to the end’);
+---+
| memc_append(’abc’, ‘ .. this will be appended to the end’) |
+---+
| 0 |
+---+

mysql> select memc_get(’abc’);
+---+
| memc_get(’abc’) |
+---+
| this will be prepended.. this is some text ..this will be appended to the end |
+---+

memc_delete
The function memc_delete() deletes from memcached the value stored as key. Expiration is an optional
numeric value in seconds. The return value is zero if the value is deleted and a nonzero value if it
is not.

Just as with the other *_by_key() functions, memc_delete_by_key() works the same as memc_delete(),
except it has as its first argument a master key that is the key representing the server that the object was
stored with.

Syntax for memc_delete() and memc_delete_by_key() is:

memc_delete(`key´);
memc_delete(`key´, expiration);
memc_delete_by_key(`master key´, `key´);
memc_delete_by_key(`master key´, `key´, expiration);
mysql> select memc_delete(’foo’);
+------------------------+
| memc_delete(’foo’, 15) |
+------------------------+
| 0 |
+------------------------+

394

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 395

Chapter 10: Memcached Functions for MySQL

Fetching, Incrementing, and Decrementing Functions
The Memcached Functions for MySQL have the means to fetch data, of course. These return the actual
value stored, one value per function call. There aren’t any functions at the present time to fetch multiple
values at once because the UDF interface only allows for one row to be returned.

Also, there may be times when you want a centralized counter, without having to use a table. You can do
this using the increment or decrement (if you want an anticounter!). The thing to remember is that that
data is not durable.

memc_get
As you have seen in the examples showing the setting functions, memc_get() fetches a value stored in
memcached. memc_get_by_key() additionally has as its first argument the server key which would be
whatever the server key the value was stored with.

Syntax for memc_get() and memc_get_by_key() is:

memc_get(`key´);
memc_get_by_key(`master_key´, `key´);

This example shows how memc_get() is used:

mysql> select memc_get(’abc’);
+----------------------------+
| memc_get(’abc’) |
+----------------------------+
| A value that was stored... |
+----------------------------+

mysql> set @a = memc_get(’abc’);

mysql> select @a;
+----------------------------+
| @a |
+----------------------------+
| A value that was stored... |
+----------------------------+

memc_increment
The function memc_increment() is used to increment an integer value stored in memcached by key. The
value argument is optional and is the number by which the stored value will be incremented. If the
value is not supplied, the value of 1 is the default assumed. The incremented value is returned upon a
successful increment of the value. If you use an invalid value to increment by, memc_increment() will
ignore it and return the existing value.

Syntax for memc_increment():

memc_increment(`key´);
memc_increment(`key´, value);

395

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 396

Chapter 10: Memcached Functions for MySQL

The example that follows shows how to use memc_increment() to increment a value counter by 1, which
is the default increment value that is used when not supplying an increment value, as well as by explicitly
supplying the increment value to increment the value counter by 12.

mysql> select memc_set(’counter’, 1);
+------------------------+
| memc_set(’counter’, 1) |
+------------------------+
| 0 |
+------------------------+

mysql> select memc_get(’counter’);
+---------------------+
| memc_get(’counter’) |
+---------------------+
| 1 |
+---------------------+

mysql> select memc_increment(’counter’);
+---------------------------+
| memc_increment(’counter’) |
+---------------------------+
| 2 |
+---------------------------+

mysql> select memc_increment(’counter’, 10);
+-------------------------------+
| memc_increment(’counter’, 10) |
+-------------------------------+
| 12 |
+-------------------------------+

memc_decrement
The function memc_decrement() decrements an integer value stored in memcached as the first
argument key. The optional value argument is the amount to decrease by, which defaults to 1 if
not supplied. You cannot decrement a value below 0. The return value of memc_decrement() is the
decremented value.

The syntax of memc_decrement() is:

memc_decrement(`key´);
memc_decrement(`key´, value);

The examples that follow show how to use memc_decrement() to decrement a value by 1 (the default) by
not supplying a decrement value, and by 20, an explicitly supplied decrement value of 20.

mysql> select memc_decrement(’counter’);
+---------------------------+
| memc_decrement(’counter’) |
+---------------------------+
| 21 |
+---------------------------+

396

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 397

Chapter 10: Memcached Functions for MySQL

mysql> select memc_decrement(’counter’,20);
+------------------------------+
| memc_decrement(’counter’,20) |
+------------------------------+
| 1 |
+------------------------------+

Behavioral Functions
libmemcached gives you a lot of control over the behavior of the client as you saw in Chapter 9 and the
Memcached Functions for MySQL have a means to extend this versatility.

memc_list_behaviors
The function memc_list_behaviors() displays a list of all the available behavior types that you can set
for the client.

The syntax for memc_list_behaviors() is:

memc_list_behaviors()

The example below shows the output of memc_list_behaviors():

mysql> select memc_list_behaviors()\G
*************************** 1. row ***************************
memc_list_behaviors():
+---+
| MEMCACHED SERVER BEHAVIORS |
+---+
| MEMCACHED_BEHAVIOR_SUPPORT_CAS |
| MEMCACHED_BEHAVIOR_NO_BLOCK |
| MEMCACHED_BEHAVIOR_TCP_NODELAY |
| MEMCACHED_BEHAVIOR_HASH |
| MEMCACHED_BEHAVIOR_CACHE_LOOKUPS |
| MEMCACHED_BEHAVIOR_SOCKET_SEND_SIZE |
| MEMCACHED_BEHAVIOR_SOCKET_RECV_SIZE |
| MEMCACHED_BEHAVIOR_BUFFER_REQUESTS |
| MEMCACHED_BEHAVIOR_KETAMA |
| MEMCACHED_BEHAVIOR_POLL_TIMEOUT |
| MEMCACHED_BEHAVIOR_RETRY_TIMEOUT |
| MEMCACHED_BEHAVIOR_DISTRIBUTION |
| MEMCACHED_BEHAVIOR_BUFFER_REQUESTS |
| MEMCACHED_BEHAVIOR_USER_DATA |
| MEMCACHED_BEHAVIOR_SORT_HOSTS |
| MEMCACHED_BEHAVIOR_VERIFY_KEY |
| MEMCACHED_BEHAVIOR_CONNECT_TIMEOUT |
| MEMCACHED_BEHAVIOR_KETAMA_WEIGHTED |
| MEMCACHED_BEHAVIOR_KETAMA_HASH |
| MEMCACHED_BEHAVIOR_BINARY_PROTOCOL |
| MEMCACHED_BEHAVIOR_SND_TIMEOUT |
| MEMCACHED_BEHAVIOR_RCV_TIMEOUT |
| MEMCACHED_BEHAVIOR_SERVER_FAILURE_LIMIT |
+---+

397

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 398

Chapter 10: Memcached Functions for MySQL

memc_behavior_get
The function memc_behavior_get() retrieves the current value of any of the behaviors that can be set in
libmemcached, either numeric or a named value. If the value returned is one of the object distribution
or hash algorithm behaviors, memc_behaviors_get() is versatile enough to convert it to the named
canonical value instead of the numeric value.

The function memc_servers_behavior_get() is the same as memc_behavior_get() and exists for histori-
cal purposes.

You must call the function memc_servers_set() to connect to one or more memcached servers prior to
calling memc_behavior_get(). In the example that follows, you can see that memcached_behavior_get
obtains a named hash algorithm, a binary true or false value, as well as an integer value, depending on
the behavior being obtained.

The syntax of memc_behavior_get() and memc_servers_behavior_get() is:

memc_behavior_get(`<behavior name>´);
memc_servers_behavior_get(`<behavior name>´);

Here is an example of using memc_behavior_get() to obtain the values of several behaviors:

mysql> select memc _behavior_get;(’MEMCACHED_BEHAVIOR_HASH’);
+--+
| memc_servers_behavior_get(’MEMCACHED_BEHAVIOR_HASH’) |
+--+
| MEMCACHED_HASH_DEFAULT |
+--+

mysql> select memc_behavior_get(’MEMCACHED_BEHAVIOR_SUPPORT_CAS’);
+---+
| memc_servers_behavior_get(’MEMCACHED_BEHAVIOR_SUPPORT_CAS’) |
+---+
| 1 |
+---+

mysql> select memc_behavior_get(’MEMCACHED_BEHAVIOR_POLL_TIMEOUT’);
+--+
| memc_servers_behavior_get(’MEMCACHED_BEHAVIOR_POLL_TIMEOUT’) |
+--+
| 1000 |
+--+

memc_behavior_set
The function memc_behavior_set() allows you to set any one of the behaviors that libmemcached allows
you to modify, as shown in memc_behaviors_list(). Some behaviors are Boolean 1 or 0, and some are
canonical constant values that are internally converted to their actual numeric values. The numeric values
can either be quoted or not, but the canonical values must be quoted.

You must call memc_servers_set() to connect to one or more memcached servers prior to setting a client
behavior.

398

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 399

Chapter 10: Memcached Functions for MySQL

The syntax of memc_behavior_set() is:

memc_behavior_set(`<behavior name>´, value);
memc_servers_behavior_set(`<behavior name>´, value)

The following example shows the setting of a numeric and a canonical hash type value, and then the
retrieval of those behaviors to verify that they were indeed set:

mysql> select memc_behavior_set(’MEMCACHED_BEHAVIOR_POLL_TIMEOUT’, 2000);
+--+
| memc_behavior_set(’MEMCACHED_BEHAVIOR_POLL_TIMEOUT’, 2000) |
+--+
| 0 |
+--+

mysql> select memc_behavior_set(’MEMCACHED_BEHAVIOR_HASH’, ‘MEMCACHED_HASH_MD5’);
+--+
| memc_behavior_set(’MEMCACHED_BEHAVIOR_HASH’, ‘MEMCACHED_HASH_MD5’) |
+--+
| 0 |
+--+

mysql> select memc_behavior_get(’MEMCACHED_BEHAVIOR_POLL_TIMEOUT’);
+--+
| memc_behavior_get(’MEMCACHED_BEHAVIOR_POLL_TIMEOUT’) |
+--+
| 2000 |
+--+

mysql> select memc_behavior_get(’MEMCACHED_BEHAVIOR_HASH’);
+--+
| memc_behavior_get(’MEMCACHED_BEHAVIOR_HASH’) |
+--+
| MEMCACHED_HASH_MD5 |
+--+

memc_list_hash_types
The function memc_list_hash_types() lists the canonical hash value types that can be assigned using
memc_behavior_set(), or are returned from using memc_behavior_get() for the behavior types
MEMCACHED_BEHAVIOR_HASH or MEMCACHED_BEHAVIOR_KETAMA_HASH.

The syntax of memc_list_hash_types() is:

memc_list_hash_types();

The example shows the output of memc_list_hash_types():

mysql> select memc_list_hash_types()\G
*************************** 1. row ***************************
memc_list_hash_types():
MEMCACHED_HASH_DEFAULT
MEMCACHED_HASH_MD5

399

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 400

Chapter 10: Memcached Functions for MySQL

MEMCACHED_HASH_CRC
MEMCACHED_HASH_FNV1_64
MEMCACHED_HASH_FNV1A_64
MEMCACHED_HASH_FNV1_32
MEMCACHED_HASH_FNV1A_32
MEMCACHED_HASH_JENKINS
MEMCACHED_HASH_HSIEH

To read more about these hash types, use the following:

man memcached_behavior_set

memc_list_distribution_types
The function memc_list_distribution_types() lists the canonical distribution types for values among
servers that can be assigned using memc_behavior_set(), or are returned using memc_behavior_get()
for the behavior type MEMCACHED_BEHAVIOR_DISTRIBUTION.

The syntax of memc_list_distribution_types() is:

memc_list_distribution_types()
mysql> select memc_list_distribution_types()\G
*************************** 1. row ***************************
memc_list_distribution_types():
MEMCACHED_DISTRIBUTION_MODULA
MEMCACHED_DISTRIBUTION_CONSISTENT
MEMCACHED_DISTRIBUTION_KETAMA

Statistical Functions
You can also obtain statistics about each memcached server with the various statistical functions. This can
be extremely useful in obtaining information such as usage statistics, server version, process id, uptime,
and many other details. This type of information could be used in managing connections to memcached,
as well as if you were building an application that keeps and displays statistics on your overall system.

memc_stats
The function memc_stat()returns a list of the various statistics from one or more memcached servers
specified in the single argument for servers, which is in the same format you would provide to the func-
tion memc_server_add().

The syntax for memc_stats() is:

memc_stats(`server1:port, server2:port, ...´);

The output of memc_stats() is shown as follows:

mysql> select memc_stats(’127.0.0.1:11211’)\G
*************************** 1. row ***************************
memc_stats(’127.0.0.1:11211’): Listing 1 Server

Server: 0.0.1 (26)
pid: 32446

400

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 401

Chapter 10: Memcached Functions for MySQL

uptime: 89157
time: 1232245757
version: 1.2.6
pointer_size: 64
rusage_user: 1.344795
rusage_system: 0.916860
curr_items: 3
total_items: 7
bytes: 215
curr_connections: 2
total_connections: 53
connection_structures: 7
cmd_get: 8
cmd_set: 7
get_hits: 7
get_misses: 1
evictions: 0
bytes_read: 215
bytes_written: 215
limit_maxbytes: 67108864
threads: 1

memc_stat_get_value
The function memc_stat_get_value() can be used to retrieve a particular statistic from a memcached
server. The first argument is a comma-separated list of one or more servers; the second argument is the
statistic name.

The syntax for memc_stat_get_value() is:

memc_stat_get_value(`server1:port, server2:port, ...´, `stat name´);

The example that follows shows how this can be quite handy to retrieve a statistic, such as the mem-
cached server version:

mysql> select memc_stat_get_value(’127.0.0.1:11211’, ‘version’);
+---+
| memc_stat_get_value(’127.0.0.1:11211’, ‘version’) |
+---+
| 1.2.6 |
+---+

memc_stat_get_keys
The function memc_stat_get_keys() takes no arguments and returns statistic keys available to be used
with the function memc_stat_get_value():

memc_stat_get_keys()

Version Functions
Also available are version functions that provide version information for both the UDF package them-
selves as well as the library that the Memcached Functions for MySQL were built against.

401

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 402

Chapter 10: Memcached Functions for MySQL

memc_libmemcached_version
The function memc_libmemcached_version() takes no arguments and returns the version of libmem-
cached library that the Memcached Functions for MySQL were linked against.

The syntax for memc_libmemcached_version() is:

memc_libmemcached_version()

This example shows the output of libmemcached_version():

mysql> select memc_libmemcached_version();
+-----------------------------+
| memc_libmemcached_version() |
+-----------------------------+
| 0.22 |
+-----------------------------+

memc_udf_version
The function memc_udf_version() takes no arguments and returns the version of the Memcached
Functions for MySQL that are being used.

The syntax for memc_udf_version() is:

memc_udf_version()

The output of memc_udf_version() is shown here:

mysql> select memc_udf_version();
+--------------------+
| memc_udf_version() |
+--------------------+
| 0.8 |
+--------------------+

Using memcached UDFs
Now that you’ve read about all the functions, you are probably wondering how you can use them. In
the previous chapters you saw how to write data to memcached using Perl. With these UDFs, you can
do all of your interaction with memcached through MySQL, as opposed to Perl client libraries. This may
provide some performance advantages, with MySQL retrieving or setting values directly in memcached
with a fast C library instead of going back and forth from MySQL to your application and then back
to memcached and vice versa. You already are connected to MySQL with DBI/DBD::mysql, which is
sufficient for these UDFs, yet you won’t need an additional handle to a memcached cluster. Also, you can
move some of the caching logic from your application to the database.

The following sections will show you two practical usage examples:

❑ The first approach will show you how you would change the Perl application from a previous
chapter, which handled caching data for MySQL using a database connection with DBD::mysql
and a memcached connection with Cache::Memcached, to just a single database connection.

402

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 403

Chapter 10: Memcached Functions for MySQL

❑ The second approach details setting up triggers that automatically cache data to memcached
when a table has data inserted or updated.

Single Database Handle Example
The following section will show you how you can use the Memcached Functions for MySQL
without having to rely on Perl to connect to memcached using either Cache::Memcached or
Cache::Memcached::libmemcached.

There are two things to consider:

❑ Cache::Memcached and Cache::Memcached::libmemcached automatically take care of serializing
Perl data structures (particularly those other than simple scalars) stored in memcached for you.
To do the same with the memcached UDFs, you will have to handle serialization and deserial-
ization using the Perl module STORABLE.

❑ Cache::Memcached and Cached::Memcached::libmemcached have compression functionality
with compress_enable and compress_threshold. This is done using the Compress::Zlib Perl
module to compress or decompress a value being stored if it exceeds compress_threshold. This
also can be added to your code easily enough. For the sake of brevity in this example, however,
you won’t be adding in this functionality. Also, none of what this example stores exceeds the size
limits of what can be stored to memcached.

Changes to Connection
The first thing you would change in the code is to remove the import of Cache::Memcached and add the
import of the STORABLE Perl module. For this example, we only need nfreeze() and thaw():

use Storable qw(nfreeze thaw);

my $memc_servers = ["127.0.0.1:11211"];

The use of nfreeze() here is significant. Use this instead of freeze() for portability, regardless of archi-
tecture. The author of this book once had to spend hours tracking down a bug that caused errors in
reading session data on a 64-bit server that was stored from a 32-bit server!

The next thing to change would be the method that connected to memcached, connectMemcached():

sub connectMemcached {
my ($this)= @_;
$this->{memc} = Cache::Memcached->new({

‘servers’ => $memc_servers,
‘compress_threshold’ => $memc_compress_threshold});

unless ($this->{memc}->set(’testping’, 1)) {
die "Unable to connect to memcached!\n";

}
}

This is changed to:

sub connectMemcached {
my ($this)= @_;
for memc_servers_set();

403

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 404

Chapter 10: Memcached Functions for MySQL

my $memcached_servers= join(`,´, @$memc_servers);
my $sth= $this->{dbh}->prepare("SELECT memc_stat_get_value(?, ?)");

with memc_stat_get_value, only one server can be checked at a time
for my $server(@$memc_servers) {
$sth->execute($server, `version´);
my $ret_ref= $sth->fetchrow_arrayref();
unless ($ret_ref->[0]) {

$sth->finish;
die "ERROR: Unable to connect to memcached server ‘$server’\n";

}
}
$sth->finish;

$sth= $this->{dbh}->prepare("SELECT memc_servers_set(?)");

here a string of comma-separated servers can be used
$sth->execute($memcached_servers);
my $ret_ref= $sth->fetchrow_arrayref();
unless (defined $ret_ref->[0]) {
die "ERROR: Unable to set servers for memcached\n";

}
$sth->finish;

}

The method connectMemcached() performs the same essential function it did before: It connects to one
or more memcached servers. The difference is that it now connects to memcached from within MySQL,
as opposed to a handle in Perl that connects directly to memcached. All interactions with memcached
will now be through the database handle.

Since the UDF memc_servers_set() takes a string of comma-separated servers, $memcached_servers is
built using a join of the elements in the array referenced by $memc_servers, with commas.

Before an actual connection is made, an attempt using UDF memc_stat_get_value() is made to obtain
the version to each of the servers in the $memc_servers array reference. If any of the servers don’t provide
a version, that means that server cannot be connected to. If all servers return a version, then a connection
is made.

Another thing to make sure of is that connectMemcached() is called after a database connection is made.
Previously, this was not a concern since memcached had its own handle independent of MySQL. If you
will recall, the new() method was where a connection was established for the UserApp application for
subsequent calls to memcached:

sub new {
my ($class) = @_;
my $this= {};
bless $this, $class;
$this->connectDB();
$this->connectMemcached();
cache all cities records
$this->cacheCities();
cache all states records

404

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 405

Chapter 10: Memcached Functions for MySQL

$this->cacheStates();
return $this;

}

Changes to getUser()
To provide practical examples of how these UDFs can be used, there are several get/set calls in this
library that retrieve and store different types of data — users, states, regions, cities, etc. The method that
retrieves a user, getUser(), will be the one used here to show what changes need to be made because it
has both the retrieval and storing of user data in memcached, and the types of changes you would make
in this method you would also make to other methods.

As you recall from Chapter 8, getUser() had caching added to it that checked first to see if a user was
already stored in memcached before it attempted to read the user from MySQL. The keys for storing
the user were the name of the table, users, a colon, and the username and UID. The sole argument to
getUser, the variable $username, is the value used to construct on the memcached keys that check if the
user is stored in memcached. If the user is in memcached, the variable $user, which is a hash reference
of a user, is returned. If not, a query to retrieve the $user hash reference is issued against MySQL. Once
retrieved from the database, it’s also stored in memcached (a read-through cache). The memcached-
specific code is in boldface type in this example for easier reading:

sub getUser {
my ($this, $username)= @_;
my $memc_key1= "users:$username";
my $user_ref;

check memcached first
$user_ref= $this->{memc}->get($memc_key);

simply return from memcached if already cached
return $user_ref if $user_ref->{username};

obtain from db if not in memcached
my $query= <<EOQ

SELECT uid, username, email, firstname, surname, address, city_id, password,
cities.city_name as city_name,
states.state_id AS state_id,
states.state_name AS state_name,
regions.region_id AS region_id,
regions.region_name AS region_name,
account_levels.account_level AS account_level,
account_levels.account_level_name AS account_level_name

FROM users
JOIN cities USING (city_id)
JOIN states ON (cities.state_id = states.state_id)
JOIN regions ON (cities.region_id = regions.region_id)
JOIN account_levels USING (account_level)
WHERE username = ?
EOQ
;

my $sth= $this->{dbh}->prepare($query);
$sth->execute($username);

405

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 406

Chapter 10: Memcached Functions for MySQL

$user_ref= $sth->fetchrow_hashref();

now that we have UID from DB
my $memc_key2= ‘users:’ . $user_ref->{uid};

store in memcached (Read-through caching!)
return unless $user_ref;

unless ($this->{memc}->set($memc_key1, $user_ref)) {
print "ERROR: unable to set user!\n";

}
unless ($this->{memc}->set($memc_key2, $user_ref)) {
print "ERROR: unable to set user!\n";

}

return user reference
return ($user_ref);

}

What would need to be changed in this method is to remove the get() and set() calls to memcached
through the class member memc (to Cache::Memcached) and replace them with calls to the appropriate
UDFs via MySQL.

These lines . . .

check memcached first
$user_ref= $this->{memc}->get($memc_key);

simply return from memcached if already cached
return $user_ref if $user_ref->{username};

are replaced with these:

obtain from MySQL
my $user_serial= $this->{dbh}->selectrow_arrayref("SELECT memc_get(?)", {}, ($memc_key1));

de-serialize
$user_ref= thaw($user_serial->[0]) if defined $user_serial->[0];

simply return from memcached if already cached
return $user_ref if $user_ref->{uid};

. . . and also result in the storing of the user when the user has been read from the database. Replace these
lines . . .

now that we have UID from DB
my $memc_key2= ‘users:’ . $user_ref->{uid};

store in memcached (Read-through caching!)
return unless $user_ref;

unless ($this->{memc}->set($memc_key1, $user_ref)) {
print "ERROR: unable to set user!\n";

406

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 407

Chapter 10: Memcached Functions for MySQL

}
unless ($this->{memc}->set($memc_key2, $user_ref)) {
print "ERROR: unable to set user!\n";

}

with these lines:

2nd key with UID
my $memc_key2= ‘users:’ . $user_ref->{uid};

serialize $user_ref
my $user_serial= nfreeze($user_ref);

prepare query
my $sth= $this->{dbh}->prepare("select memc_set(?, ?)");

store both in memcached
$sth->execute($memc_key1, $user_serial);
$sth->execute($memc_key2, $user_serial);

As you can see, there are a few more lines of code, but now everything is happening through MySQL.
Also, if you are like the author of this book and you see places where code becomes redundant, you
realize there might be the need for a generic get and set method to take care of the details of storing,
retrieving, serialization and deserialization of data.

Creating More Convenience with Generic Get and Set Methods
Whenever you see code that you know will be used in multiple places and multiple times, you should
hear an alarm in your head telling you to create a convenient function or method containing that code.
To change this UserApp application to use the Memcached Functions for MySQL (memcached UDFs),
you create generic set and get methods.

An example of a generic store method would be:

sub memc_set {
my ($this, $key, $value)= @_;
my $sth = $this->{dbh}->prepare_cached(’SELECT memc_set(?, ?)’);

my $storable_value = ref $value ? nfreeze($value) : $value;
$sth->execute($key, $storable_value);
my $stored = $sth->fetchrow_arrayref();
returns 0 on success, greater than 0 error

return $stored->[0];

}

The method memc_set() provides a simple way to store data in memcached without having to consider
any of the details of how to both serialize the data and prepare and execute the SQL statement calling the
UDF. The method memc_set() takes two arguments: $key and $value. $key is the key that you want to
associate with the $value you store.

407

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 408

Chapter 10: Memcached Functions for MySQL

Furthermore, $value is only serialized if it is a reference — for instance, if you were trying to store a hash
reference such as the $user in previous examples. If $value is a simple scalar, it is stored as is. The value
of calling memc_set(), which is 0 if successful and > 0 if a failure, is returned.

memc_set() is also the place where you would add in the compression functionality that is currently
missing using the Perl module Compress::Zlib.

An example of a generic fetching method would be:

sub memc_get {
my ($this, $key)= @_;
my $de_serialized;
my $sth= $this->{dbh}->prepare_cached(’SELECT memc_get(?)’);

$sth->execute($key);
my $stored= $sth->fetchrow_arrayref();
will be 1 or 0

if (defined $stored->[0]) {
eval { $de_serialized = thaw($stored->[0])};
return $@ ? $stored->[0] : $de_serialized;

}
else {
return undef;

}
}

This method memc_get() provides a simple interface to fetching data using the memc_get() UDF, hiding
all the details of deserialization and preparing, executing, and fetching the stored value. An eval block is
used to attempt a call to thaw() for the retrieved value. Conveniently, thaw() will fail if the value is not
a serialized object. The variable $@ indicates that eval failed, and if so, it will just return the value as is.
Otherwise it will return the value that successfully was thawed. If no value was retrieved, then undef is
returned.

With these two methods (memc_set() and memc_get()), the previous code of storing and retrieving the
user reference becomes even simpler. The method getUser() checked if the user hash reference already
existed in memcached to avoid a database lookup:

check memcached first
$user_ref= $this->memc_get($memc_key1);

simply return from memcached if already cached
return $user_ref if $user_ref->{username};

And getUser() stored the user hash reference if retrieved from the database:

store both
if ($this->memc_set($memc_key1, $user_ref)) {;
print "ERROR: unable to store $memc_key1\n";
return;

}
if ($this->memc_set($memc_key2, $user_ref)) {;

408

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 409

Chapter 10: Memcached Functions for MySQL

print "ERROR: unable to store $memc_key2\n";
return;

}

In fact, it is really simple now to replace the previous Cache::Memcached calls with this generic method,
as illustrated here. Throughout the code, set . . .

$this->{memc}->set($key, $val);

. . . can be replaced with:

$this->memc_set($key, $val);

And get . . .

$return_val= $this->{memc}->get($key, $val);

. . . can be replaced with:

$return_val= $this->memc_get($key, $val);

Fun with Triggers (and UDFs)
You can get really creative with the use of triggers and the Memcached Functions for MySQL. As you
will recall, triggers provide a means to have a given action take place upon a change to a row in a
table — insert, update, and delete — either before or after the change is made. With memcached, you
could hide a lot of the details of caching from the application code, at least the part of caching where
data is written to the database and you want the data in memcached to mirror the changes made to the
database.

In the distribution directory containing the source code to the Memcached Functions for MySQL, there is
a file in the sql/ directory called trigger_fun.sql. This interesting file contains some practical examples
of how you can employ triggers to use these UDFs to do things such as work as a sequence, as well as
store data in memcached whenever there is a change to a row in a table.

The first thing this file creates is a simple table called urls that contains two columns: an id, which is
the primary key, and url, which is a string which URL values will be stored.

drop table if exists urls;
create table urls (

id int(3) not null,
url varchar(64) not null default ‘’,
primary key (id)
);

The next thing that is set up is the connection to memcached:

select memc_servers_set(’localhost:11211’);

And then a simple sequence object that will start at 0 is established:

select memc_set(’urls:sequence’, 0);

409

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 410

Chapter 10: Memcached Functions for MySQL

Then the INSERT trigger is created:

DELIMITER |

DROP TRIGGER IF EXISTS url_mem_insert |
CREATE TRIGGER url_mem_insert
BEFORE INSERT ON urls
FOR EACH ROW BEGIN

SET NEW.id = memc_increment(’urls:sequence’);
SET @mm = memc_set(concat(’urls:’,NEW.id), NEW.url);

END |

The trigger url_mem_insert does two things upon (before) the insertion of a row to urls:

❑ Increments the counter object, urls:sequence by 1.

❑ Sets the URL value keyed by concatenating the string users: with the new id value that was
just incremented and then calls memc_set(). The SQL statement SET must be used because you
cannot call SELECT from within a trigger.

For instance, the first record inserted will increment urls:sequence to 1, which the value of id will
assume, hence the key created will be `users:1´, then whatever url value is being inserted into urls
will also be inserted into memcached as users:1.

Next comes an update trigger:

DROP TRIGGER IF EXISTS url_mem_update |
CREATE TRIGGER url_mem_update
BEFORE UPDATE ON urls
FOR EACH ROW BEGIN

SET @mm = memc_replace(concat(’urls:’,OLD.id), NEW.url);
END |

The trigger url_memc_update is executed any time a record in users is updated. It uses the same scheme
to create a memcached key by concatenating urls: with the id of the record being updated. For example,
if the first record is updated, its existing url value `http://www.foo.com´ with `http://www.fee.com´,
memc_replace(`urls:1´, `http://www.fee.com´); will subsequently be called. The syntax SET is used
because you cannot call SELECT from within a trigger.

Then finally, here is a DELETE trigger:

DROP TRIGGER IF EXISTS url_mem_delete |
CREATE TRIGGER url_mem_delete
BEFORE DELETE ON urls
FOR EACH ROW BEGIN

SET @mm = memc_delete(concat(’urls:’,OLD.id));
END |

The trigger url_mem_delete is executed on the deletion of any row in urls. It also uses the scheme to
build a memcached key that the other two triggers use. For example, upon the deletion of a record that
contains ‘http://www.fee.com’, which has the id value of 1, the UDF memc_delete(`users:1´) is called.

410

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 411

Chapter 10: Memcached Functions for MySQL

trigger_fun.sql also has some use case SQL statements to show the triggers in action:

1. First, the data is inserted:

insert into urls (url) values (’http://google.com’);
insert into urls (url) values (’http://lycos.com/’);
insert into urls (url) values (’http://tripod.com/’);
insert into urls (url) values (’http://microsoft.com/’);
insert into urls (url) values (’http://slashdot.org’);
insert into urls (url) values (’http://mysql.com’);

2. An SQL statement to verify that the data exists in the table is issued:

select * from urls;

3. Each value that should be stored as a result of the previous inserts is retrieved and should
match the output of the previous select statement:

select memc_get(’urls:1’);
select memc_get(’urls:2’);
select memc_get(’urls:3’);
select memc_get(’urls:4’);
select memc_get(’urls:5’);
select memc_get(’urls:6’);

4. One of the records is updated and immediately the key for this record is selected from the
table as well as fetched from memcached. It should have the updated value — the same
value as the select statement following the update:

update urls set url= ‘http://mysql.com/sun’ where url = ‘http://mysql.com’;
select url from urls where url = ‘http://mysql.com/sun’;
select memc_get(’urls:6’);

5. The same type of test is performed, except this time a record is deleted:

delete from urls where url = ‘http://microsoft.com/’;
select * from urls where url = ‘http://microsoft.com/’;
select memc_get(’urls:4’);

6. You can run trigger_fun.sql by command line to verify that these triggers work as
advertised:

mysql -u root -p test < trigger_fun.sql

memc_servers_set(’localhost:11211’)
0
memc_set(’urls:sequence’, 0)
0

This is the output of selecting all records after inserting the six records:

id url
1 http://google.com
2 http://lycos.com/

411

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 412

Chapter 10: Memcached Functions for MySQL

3 http://tripod.com/
4 http://microsoft.com/
5 http://slashdot.org
6 http://mysql.com

The following code is the output of fetching the same records from memcached. You’ll see that all of the
values were in fact stored via the trigger:

memc_get(’urls:1’)
http://google.com
memc_get(’urls:2’)
http://lycos.com/
memc_get(’urls:3’)
http://tripod.com/
memc_get(’urls:4’)
http://microsoft.com/
memc_get(’urls:5’)
http://slashdot.org
memc_get(’urls:6’)

The following code is the output after the update statement, first from the urls table, then from mem-
cached. And yes, they match!

http://mysql.com
url
http://mysql.com/sun
memc_get(’urls:6’)
http://mysql.com/sun

Then the result of memc_delete(), which of course, the select from urls for the URL ‘http://
microsoft.com’ yields nothing, but for memcached NULL is returned (correct).

memc_get(’urls:4’)
NULL

So, you can see all the triggers work as advertised.

Using triggers can hide all of these details from the application. Values are automatically cached upon
writing to the database. This is very convenient and powerful in that it offers an integration of durable
data store (MySQL) and lightweight, fast caching (memcached)!

Read-Through Caching with Simple Select Statements
One last part of this chapter is to show how you can use these UDFs to cache data in a single select.

As you saw earlier in this chapter, a user would be fetched from the database and memcached in separate
SQL statements. You can combine obtaining data and caching in one step.

For instance, you can cache a single user, in this case the user with the username of capttofu.

mysql> SELECT uid, username, email, firstname, surname,
-> memc_set(concat(’users:uid:’,username), uid),
-> memc_set(concat(’users:username:’,uid), username),

412

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 413

Chapter 10: Memcached Functions for MySQL

-> memc_set(concat(’users:email:’, username), email),
-> memc_set(concat(’users:firstname:’, username), firstname),
-> memc_set(concat(’users:surname:’, username), surname)
-> from users where uid = 1\G

*************************** 1. row ***************************
uid: 1

username: capttofu
email: capttofu@capttofu.org

firstname: Patrick
surname: Galbraith

memc_set(concat(’users:uid:’,username), uid): 0
memc_set(concat(’users:username:’,uid), username): 0
memc_set(concat(’users:email:’, username), email): 0

memc_set(concat(’users:firstname:’, username), firstname): 0
memc_set(concat(’users:surname:’, username), surname): 0

In this example, the key used is tablename:column:unique_identifier. Also, since both uid and
username are unique, you can create a key using both, particularly storing so you can look up each
using the other. For instance, you cache user:uid:capttofu to have the value of 1 and user:username:1
to have the value of capttofu — you can look up either given either key.

To see that these values were stored, you can select them all out on one line:

mysql> select memc_get(’users:uid:capttofu’) as uid,
-> memc_get(’users:username:1’) as username,
-> memc_get(’users:email:capttofu’) as email,
-> memc_get(’users:firstname:capttofu’) as firstname,
-> memc_get(’users:surname:capttofu’) as surname;

+-----+----------+-----------------------+-----------+-----------+
| uid | username | email | firstname | surname |
+-----+----------+-----------------------+-----------+-----------+
| 1 | capttofu | capttofu@capttofu.org | Patrick | Galbraith |
+-----+----------+-----------------------+-----------+-----------+

. . . which is how you can cache without using serialization. You just have to keep your keys in order!

Also, you can use the Power of the SELECT™ to cache multiple records in one fell swoop!

If you will recall, some things, such as geographical data like states, can be precached at the beginning of
a program’s execution, and the UserApp example did this very thing. This can be done with one simple
SQL statement.

mysql> select state_abbr, state_name,
-> memc_set(concat(’states:state_abbr:’,state_name), state_abbr),
-> memc_set(concat(’states:state_name:’, state_abbr), state_name),
-> memc_set(concat(’states:state_flower:’,state_abbr), state_flower)
-> from states\G

*************************** 1. row ***************************
state_abbr: AL
state_name: Alabama

memc_set(concat(’states:state_abbr:’,state_name), state_abbr): 0
memc_set(concat(’states:state_name:’, state_abbr), state_name): 0

memc_set(concat(’states:state_flower:’,state_abbr), state_flower): 0
*************************** 2. row ***************************

state_abbr: AK

413

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 414

Chapter 10: Memcached Functions for MySQL

state_name: Alaska
memc_set(concat(’states:state_abbr:’,state_name), state_abbr): 0

memc_set(concat(’states:state_name:’, state_abbr), state_name): 0
memc_set(concat(’states:state_flower:’,state_abbr), state_flower): 0
*************************** 3. row ***************************

state_abbr: AR
state_name: Arkansas

memc_set(concat(’states:state_abbr:’,state_name), state_abbr): 0
memc_set(concat(’states:state_name:’, state_abbr), state_name): 0

memc_set(concat(’states:state_flower:’,state_abbr), state_flower): 0
...
...
*************************** 49. row ***************************

state_abbr: WI
state_name: Wisconsin

memc_set(concat(’states:state_abbr:’,state_name), state_abbr): 0
memc_set(concat(’states:state_name:’, state_abbr), state_name): 0

memc_set(concat(’states:state_flower:’,state_abbr), state_flower): 0
*************************** 50. row ***************************

state_abbr: WY
state_name: Wyoming

memc_set(concat(’states:state_abbr:’,state_name), state_abbr): 0
memc_set(concat(’states:state_name:’, state_abbr), state_name): 0

memc_set(concat(’states:state_flower:’,state_abbr), state_flower): 0
*************************** 51. row ***************************

state_abbr: DC
state_name: District of Columbia

memc_set(concat(’states:state_abbr:’,state_name), state_abbr): 8
memc_set(concat(’states:state_name:’, state_abbr), state_name): 0

memc_set(concat(’states:state_flower:’,state_abbr), state_flower): 0

This query will cache all the states for the columns specified in memc_set using concatenation to create
the key, just like the previous example, except with this there are 51 records in the result set, all of which
are now cached!

To select the data:

mysql> select memc_get(concat(’states:state_abbr:’,state_name)) as state_abbr,
memc_get(concat(’states:state_name:’,state_abbr)) as state_name,
memc_get(concat(’states:state_flower:’,state_abbr)) from states limit 20;
+------------+-------------+---+
| state_abbr | state_name | memc_get(concat(’states:state_flower:’,state_abbr)) |
+------------+-------------+---+
AL	Alabama	Camellia
AK	Alaska	Forget Me Not
AR	Arkansas	Apple Blossom
AZ	Arizona	Saguaro Cactus Blossom
CA	California	California Poppy
CO	Colorado	Rocky Mountain Columbine
CT	Connecticut	Mountain Laurel
DE	Delaware	Peach Blossom
FL	Florida	Orange Blossom
GA	Georgia	Cherokee Rose
HI	Hawaii	Pua Aloalo

414

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 415

Chapter 10: Memcached Functions for MySQL

ID	Idaho	Syringa - Mock Orange
IA	Iowa	Wild Prairie Rose
IN	Indiana	Peony
IL	Illinois	Purple Violet
KS	Kansas	Sunflower
KY	Kentucky	Goldenrod
LA	Louisianna	Manolia
ME	Maine	White pine cone and tassel
MD	Maryland	Black-eyed susan
+------------+-------------+---+

Fantastic! You now have a multiple-key data fetch from memcached. The table states essentially pro-
vides the list of keys. Notice also that any SQL statement condition can be used, in this case a LIMIT
clause.

OK, so you may think this chapter is now done and you can go to sleep (if you haven’t already). Well,
there’s one more trick to show you!

Updates, Too!
Consider a simple table foo; it has one column ‘a,’ which is an int. Not important other than for showing
this example. Follow these steps:

1. Insert four values into this table, then set a value in memcached using a key that maps to the
table:

mysql> insert into foo values (1), (2), (3), (4);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> select memc_set(’foo:3’, 3);
+----------------------+
| memc_set(’foo:3’, 3) |
+----------------------+
| 0 |
+----------------------+

2. Fetch the value to verify it was set:

mysql> select memc_get(’foo:3’);
+-------------------+
| memc_get(’foo:3’) |
+-------------------+
| 3 |
+-------------------+

3. Now update the table and memcached!

mysql> update foo set a = 33 where a = 3 and not memc_replace(’foo:3’, 33);
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

415

Galbraith c10.tex V3 - 06/02/2009 9:27am Page 416

Chapter 10: Memcached Functions for MySQL

4. Verify it was replaced:

mysql> select memc_get(’foo:3’);
+-------------------+
| memc_get(’foo:3’) |
+-------------------+
| 33 |
+-------------------+

Which it was!

The trick here is that you can use a conjunction in an update statement — so long as the condition eval-
uates to true. Recall that memc_set(), and memc_replace() return false (a zero) upon a successful data
store. So, for the condition to be evaluated as true and then make the update statement occur, you would
negate the return value of memc_replace().

Summary
The Memcached Functions for MySQL are a suite of user-defined functions (UDFs) available to use with
MySQL that allow you to store, retrieve, and delete data. With these functions, you can manage your
data in MySQL and the data you cached from MySQL alone.

This chapter explained or contained the following:

❑ What exactly the Memcached Functions for MySQL are and the basic concept of how they
work — using the MySQL UDF API and the libmemcached C library. A detailed explanation of
syntax and examples were provided to teach you how to use each of these UDFs.

❑ A demonstration using the Perl user application from Chapter 8 showed how to modify this
application from using the Perl library, Cache::Memcached, to using these UDFs. This gave a
good example of how an application can use these UDFs to make MySQL the source for both
durable data in the database, as well as volatile/mortal data in memcached. Also shown was
how to make a generic store and retrieval method that can hide the specific UDF calls to MySQL
and provide a means of serializing complex Perl data types that need to be stored in memcached.

❑ Finally, the chapter closed with a discussion showing how to employ the use of triggers to
automatically keep memcached objects in sync with data changes to the source table for insert,
update, and delete.

You should now have a good understanding of how you can utilize the Memcached Functions for MySQL
in application development.

416

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 417

Apache

From 1996 until the present time, the Apache HTTP Server has the most popular web server.
Maintained by the Apache Software Foundation, an open community of developers, it is an open-
source HTTP (Hypertext Transfer Protocol) server that runs on numerous UNIX variants as well as
Microsoft Windows platforms. It includes a programming interface (API) that can extend Apache
using numerous programming languages, including C, Perl (with CGI and mod_perl, which we
will discuss later), PHP, Java, Python, Ruby, and Tcl. Apache also includes functionality for SSL
(Secure Sockets Layer) and TLS (Transport Layer Security) for running secure web sites.

Apache is one of the core technologies of this book, and as such this chapter will discuss in detail
how Apache is installed and configured, as well as how it works.

Understanding Apache: An Overview
As an HTTP server, Apache is an agreed-upon standard client/server communications application-
level protocol as defined by the Internet Engineering Task Force in RFC 2616. HTTP is a generic,
stateless protocol, meaning that when connections are made between the client and server, no client
information is maintained between requests. HTTP provides the mechanism for a server (the web
server) to respond to a request from a client (a web browser or other client program requesting
content). The basic function of HTTP follows this pattern:

❑ The server waits for a request.

❑ A client connects to the server, sending a request header that contains several lines: a
particular method (HEAD, GET, POST, PUT, etc.) followed by a URI/URL (Uniform
Resource Identifier/Locator) for a particular document or other data source such as an
image, video, sound file, etc., various headers, and an optional message body.

❑ The server:

❑ Reads the request, specifically what URI is being requested.

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 418

Chapter 11: Apache

❑ Through a configuration file, figures out what file or resource on disk to serve based on the
relative path.

❑ Responds to the client with a response header containing several lines — a numeric
status code and a textual reason phrase (a canonical term such as OK, Not Found, Moved,
etc.) indicating success or failure in returning the resource to the client, content length
indicating the size of what is being returned, the type of content, character set, etc., and
then finally the response body, which contains the contents of the file.

Figure 11-1 illustrates a client request and server response that is the result of an access of a web browser
to the Wiley web page (publishers of this book). As you can see, both the request and response contain
information about both the client making the request and the server giving the response. (In fact, both
the request and response in this example were reduced to fit into the illustration — there is usually much
more data in both.)

HTTP/1.x 200 OK
Date: Fri, 23 Jan 2009 20:35:40 GMT
Server: Apache/2.2.4 (Unix) Dav/2.
X-Powered-By: SPA
Set-Cookie: JSESSIONID=B5BBCBB
Set-Cookie: Domain=.wiley.com; Path=/
Vary: Accept-Encoding
Content-Encoding: gzip
Connection: close
Content-Length: 50818
Transfer-Encoding: chunked
Content-Type: text/html

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html14/loose.dtd">
<!-- Build: R15B010 -->
<!-- Strand Id: 0480701362 -->

<!-- layout(wiley Homepage) -->
 <html>
 <head>
 <link href="/style.css" .../>
 <title>
Wiley::Home
...
...

GET / HTTP/1.1
Host: www.wiley.com
User-Agent: Mozilla/5.0
Accept: text/html
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1, utf-8;
Keep-Alive: 300
Connection: keep-alive
cookie: __utma=15464607

Server ResponseClient Request

Figure 11-1

Brief History of Apache
Due to the efforts of Rob McCool and other developers, Apache was first released
in 1994. Previously, Rob had been involved in the development of Apache’s prede-
cessor, NCSA (National Center for Supercomputing Applications) HTTP web server,
which stalled when Rob left NCSA. As a result, various patches started circulating via
email, and the Apache Group formed to address how to integrate these patches into
a new web server. With all the patches, this new server was considered ‘‘a patchy’’
server — Apache.

418

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 419

Chapter 11: Apache

The new Apache project became increasingly popular due to the features it offered,
including running CGI (Common Gateway Interface) programs written in shell, C or
Perl, and PHP. In addition, Apache became the standard web server preinstalled on
another popular open-source operating project, Linux. Both Linux and Apache grew
together, resulting in Apache becoming the most popular web server in 1996.

With the coming of Apache, setting up a web server was not only free, it was also sim-
ple! All you had to do was install Linux, opt to install Apache, configure networking,
and edit the stock HTML pages that came bundled with Apache — then you had a run-
ning web server. It was also extremely easy to produce CGI programs — simply write
them and put them in a cgi-bin directory. You could have a web server with dynamic
content — applications — with minimal configuration.

mod_perl, developed by Lincoln Stein, was also developed around this time and was
a tremendous advancement over running CGI Perl scripts because it presented a new
approach — it embedded a Perl interpreter into Apache (versus CGIs), which ran as
forked executions of Perl. Now you could write Perl handlers (more about this later)
that had access to the Apache API, which meant persistence within Perl-based applica-
tions and which saved on the overhead of forking.

Apache 2.0, a substantial rewrite of Apache 1.x, generally became available in 2002 and
included further development of APR (Apache Portable Runtime), a portability layer.
Other developments included threading on UNIX, better non-UNIX support, and a
new API. With Apache 2.0, and now 2.2, mod_perl 2.0 followed.

Other functions of the HTTP server are these:

❑ To manage child processes of the server. Generally, a main process launches initially and starts
other child processes or threads, depending on whether Apache uses the pre-fork or worker
model to handle requests.

❑ To kill those child processes that the main process started after they have served out their maxi-
mum number of requests, as defined in the Apache configuration.

Understanding HTTP and how the web server works, particularly that it is a stateless protocol, helps you
understand the limitations and parameters of developing web applications. HTTP is all about connecting,
requesting info, and getting info from the server in single shots. To maintain some sort of semblance of
persistence, tricks like cookies (the ultimate hack!), state encoded in URLs, and state encoded in hidden
form fields, are employed. In fact, you should think of duct tape when you think of web programming;
many technologies were developed to make a stateless protocol have the illusion of state.

This is the world of web programming and developers must be aware of the confinements within which
they work.

Understanding the Apache Modules API
One of Apache’s best features is that it has an API that allows for the extension of the web server using
loadable modules. These are extensions of Apache — much like Linux plug-ins are DSOs (Dynamically
Shared Object files) — which the Apache server loads. In essence, the module code becomes part of the

419

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 420

Chapter 11: Apache

Apache server process when the web server process, httpd, is started. This allows the site administrator
to have the web server include only the functionality he or she wants.

Originally, much of what is now modular functionality was compiled into the Apache web server binary,
httpd, such as mod_perl. Then many of these features, such as mod_perl, PHP, and mod_layout, were
made into loadable modules. Now, in addition to external features, even the core functionalities are made
into modules. This makes it possible for module developers to alter Apache’s basic functionality. With
modularization, you can choose only what you want to be linked into the server, making for a smaller,
more efficient Apache process.

Apache 2.2 Changes Since Apache 1.3
Many existing books available for Perl web development, CGI, and mod_perl are based on Apache 1.3,
and in fact, many web sites still use Apache 1.3 because it works well. This book is specifically for
Apache 2.2. The following is a list of the new Apache 2.2 features:

❑ Modularization of the server: Whereas Apache 1.3 used modules for various external features,
now even what used to be part of the Apache server is modularized, allowing module develop-
ers to modify even the basic functionality of Apache.

❑ Simplified, modular configuration file: The confusion as to what was considered an Apache
configuration file (the author can attest to this!) has been cleared up. The configuration files have
been cleaned, cruft stripped, with confusing directives jettisoned and trashed. For instance, Port
and BindAddress are gone; greater clarity is possible through the use of directives Listen (IP
address binding) and ServerName (server name and port number, used for virtual host recogni-
tion and redirection). The common setup is to have a main configuration file with other parts of
the configuration including security and virtual hosts. A new virtual host often means merely
creating a virtual host configuration file in the proper directory, which automatically loads the
next time Apache restarts.

❑ New Apache API: It is now much easier to load Apache modules than back in the old days!

❑ Apache Model: Apache now has four execution/MPM (Multiprocessing Modules) models:

❑ MPM Worker: UNIX threading through a hybrid of multiprocess and multi-threaded
server. This model uses multiple servers to provide stability, with each server having its
own threads to answer requests and thus saving resources since multiple processes for
each request aren’t required.

❑ MPM Prefork: This is similar to how Apache 1.3 works. The parent process forks children
to serve requests, with each child remaining until MAX_REQUESTS is served.

❑ MPM NT: Windows threading, using Windows native networking features. Consists of a
single control process that launches a single child process, which creates threads to handle
requests.

❑ MPM Event: Here is a caveat: this is experimental, based on MPM Worker. This model
passes subsequent requests from main threads to supporting threads in order for the main
threads to serve out new/initial requests.

❑ Filtering: Apache modules can be written as filters that enable applications to act upon content
going both to and from the server. This uses mod_filter, dynamic configuration of the filter chain,
as well as conditional insertion of a filter based on a request or response header.

420

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 421

Chapter 11: Apache

❑ Large file support: With web sites that serve videos, audio, and other large files, Apache 2.2 now
supports files greater than 2 gigabytes. Let the floodgates open!

❑ Better regular expression support: As a Perl developer, you use regular expressions. In fact,
they are one of the key reasons you love Perl! Apache uses a library called PCRE (Perl Compati-
ble Regular Expressions), which provides Apache regular expressions for redirect rules, parsing
configuration files, etc. Other projects, such as Drizzle, use PCRE as well.

❑ Authentication code refactoring: Along with the new module mod_authn_alias to simplify
authentication, the authentication code itself has been refactored.

Apache 2.2 Request Phases
The Apache 2.2 request phases have changed somewhat from Apache 1.3. Whereas Apache 1.3 had 11
request phases, Apache 2.2 now has four primary request phases (see http://httpd.apache.org/docs/
2.2/developer/request.html), as shown in Figure 11-2. The following sections further discuss
each phase.

Security Phase

Request

Response

Request Parsing Phase

Unescape URL

Strip ../ and ./ from path

Initial URI <Location> walk

translate_name

Hook: map_to_storage

URI <Location> walk

Header Parser

Preparation Phase

Hook: Mime
checking

Hook: fixups
Logging

Handler Phase

Hook: insert_filter

Hook: handler

Check host/IP access

Check user id

Check if user id is in group
file if specified

Figure 11-2

Request Parsing Phase
This phase is where the initial client request is parsed and the incoming URI is doctored into a form
that can be used to compare against configuration directives, particularly <Location>, <Directory>,
<Files>, and <Proxy>. The following are steps that occur within the request parsing phase:

1. Un-escape the request URI, unless proxy.

2. Strip away the ../ and ./ from the request URI.

421

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 422

Chapter 11: Apache

3. Initial URI <Location> walk: This ensures that <Location> sections are enforced.

4. translate_name: Where directives such as <Alias> or <VirtualHost> are used to modify the
file or directory name.

5. map_to_storage hook: This is the phase where the actual resource, be it a file on the server
or a proxy URL, is mapped to the request. Per-directory sections such as <Directory>,
<Files>, and <Proxy> (if mod_proxy) are merged together. This is a hook that, at this stage,
allows for modules to implement their own processing, if desired.

6. URI Location walk (second): Another location walk to test the translated request URI against
<Location> sections. Unless the URI has been changed from the previous location walk due
to processing, previous processing from the previous step is utilized for efficiency.

7. Header parser hook: This step parses the client headers and provides a hook, allowing for
module developers to implement additional functionality at this phase, if desired.

Security Phase
In this phase, the server checks if the request URI specified in a <Directory> section requires an access
control check, authentication and authorization. Depending on whether the directive Satisfy is the value
Any or All, any or all of the following checks will give the request access to the resource:

❑ If the directive Order is specified, ap_run_access_checker determines if the host or IP of the
client request is given access.

❑ If the directive Require is specified, the credentials of the user for the request are checked against
the user file specified with the directive AuthUserFile, and a group file, if it is specified with
AuthGroupFile, exists.

Preparation Phase
This phase provides two hook opportunities:

❑ MIME checking hook: Checks the resource being requested for the MIME type and responds
accordingly by setting the MIME information of the request. This hook also allows modules an
opportunity to perform their own processing or filtering.

❑ Fixups hook: Previous phases and steps may have modified the state of what certain modules
require of the request object. This hook allows modules an opportunity to reestablish the state
and ownership of the request object and its fields.

Handler Phase
This phase is not officially part of the processing function that handles the previous three phases,
ap_process_request_internal. This phase provides two hook opportunities:

❑ insert_filter hook: This is the last opportunity for a module to modify the content that will be
returned in the response.

❑ Handler hook: This provides the content serving opportunity for modules. This is where the
content is dished out!

If you are feeling adventurous and want to explore the Apache 2.2 source code, you can view the request
phases, as well as where you can use hooks, by pursuing the source files in the server/ subdirectory of
the Apache source code, particularly the files request.c and exports.c.

422

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 423

Chapter 11: Apache

Understanding Hooks and Filters
Apache 2.2 supports what are called hooks, which are essentially locations in the code that implement
the Apache request phase cycle. Hooks allow Apache module developers to ‘‘hook in’’ and take
advantage of particular points in the Apache request phase cycle. The developer can choose to skip the
remaining phases or even specific phases, thus modifying the default server request behavior.

Filters, or the Filter Chain, is a new functionality in Apache 2.0 and above. Application developers can
now write filters that process both input (on either the request body or the connection itself) and output
data (on either the response body or the connection) independent of the request phases. Filters allow you
to modify either the data the server is reading from the client or the data that the server is returning to
the client.

New and Modified Modules
As stated before, Apache has a modular design, allowing developers to write functionality that can be
used to alter Apache’s behavior. Apache 2.2 has a plethora of new, modified, renamed, and refactored
modules compared to what was available with Apache 1.3.

The following table lists new modules for Apache 2.2.

Module Description

mod_ssl Supports Open SSL protocols SSL (Secure Sockets Layer)/TLS
(Transport Layer Security).

mod_dav Supports web development using HTTP DAV (Distributed
Authoring and Versioning)

mod_deflate Allows for page compression upon a request from browsers that
support and request compression.

mod_version Provides the ability to have configuration blocks enabled, depending
on version of the server

mod_proxy_load_balancer Provides load balancing services for mod_proxy.

The following lists the modules that are complete rewrites or are renamed:

Module How Changed Description of Rewrite/Rename

mod_proxy Rewrite Divided into specific support of FTP and HTTP with support
modules proxy_connect, proxy_ftp and proxy_http. Is now
HTTP/1.1 compliant. Now takes advantage of the filter
infrastructure. New <Proxy> sections for better readability,
control, and performance of proxied sites. Overloaded
<Directory proxy:... > no longer supported.

mod_imap Renamed Renamed to mod_imagema.

423

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 424

Chapter 11: Apache

The following table lists the various changes made to modules:

Module Change

mod_headers Allows for more flexibility such as conditionally setting response headers
and setting mod_proxy request headers.

mod_include: Uses Perl-compatible regular expressions, utilizing results from grouping
with $0 .. $9 variables. New directives for SSI for more flexibility.

mod_autoindex Allows directory index listing to be displayed using HTML tables.

mod_info Passes config to return Apache configuration directives, much like you see
when running httpd -V at the command line.

The following table list changes to the Authentication modules:

Module Description of Change

mod_auth Split into mod_auth_basic and mod_authn_file.

mod_auth_dbm Renamed to mod_authn_dbm.

mod_access Is now mod_authz_host.

mod_authn_alias New module.

mod_authnz_ldap New module. Allows for basic authentication credentials to be stored in an
LDAP database.

mod_authz New module. Uses user permissions on files to determine whether they
can be accessed. This would be good for hosting companies.

Installing Apache
Installing Apache is quite simple, and in most UNIX/Linux distributions, it often occurs by default as
part of the operating system installation process when you select general installation types, such as an
Internet server.

The three main components you want, whether you install from source or use a package, are provided in
the following list. The order of the list corresponds to the order in which you will need to install them.

❑ Apache web server: Known as Apache HTTP Server, which has already been described.

❑ mod_perl: One of the most important components in this book. This module provides a Perl
interpreter that is built into the Apache web server so you don’t have to run Perl separately as
CGI does.

❑ Apache Request library, libapreq/libapreq2: This is a C library with Perl bindings that gives
you the functionality to parse HTTP headers, particularly cookies, POST, and GET. You may have
used the Perl module CGI in your programs.

424

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 425

Chapter 11: Apache

The last two of these components are covered in more detail later in this chapter. The point here is to let
you know that you do want to install them! The rest of the subsections cover how you will install them.

Installing Apache on Windows
For Windows platforms, you’ll want to access http://apache.org and search for HTTP Server project
(Apache.org hosts many other projects other than the HTTP server). The download page for the most
recent version of Apache HTTP server appears as shown in Figure 11-3:

Figure 11-3

Depending on whether you intend to run a web server with support for HTTPS using OpenSSL, select
either one of the MSI installers. Once it is downloaded, execute the downloaded file. Upon executing the
MSI file, the installation wizard presents you with a number of prompts for you to supply various values
(Figure 11-4).

1. The first prompt, shown in Figure 11-4, asks you to supply the following:

❑ Network Domain: Type the base domain for your site, in this example patg.net.

❑ Server Name: This is the actual web site name. Type the domain plus a hostname such
as www or in this example, virtual.

Figure 11-4

425

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 426

Chapter 11: Apache

❑ Administrator Email Address: Provide the email address where you want administra-
tor email to go to.

2. Click Next. The next several prompts are self-explanatory.

3. You most likely want the Typical install. Click Next.

4. Select the default path provided by the installer for Apache to be installed. This should suf-
fice. This is the base directory of your web server where you will place all of your documents
pertaining to your web server. Click Next.

5. Click Finish.

Installation of mod_perl
This assumes you’ve installed Perl already on your Windows system, in particular ActiveState
Perl, found at http://www.activestate.com/. The following simple steps will install mod_perl on
your system:

1. Bring up a command prompt and run the following:

ppm install http://cpan.uwinnipeg.ca/PPMPacka ges/10xx/mod_perl.ppd

You will be asked where to install the dynamic library file for mod_perl, as shown in the
screen shot in Figure 11-5.

Figure 11-5

2. Then from your start menu, select from the ‘‘Start’’ button, select from the menu ‘‘All
Programs’’ -> ‘‘Apache HTTP Server 2.2’’ -> ‘‘Configure Apache Server’’ -> ‘‘Edit the
Apache httpd.conf Configuration File.’’ This brings you into Notepad, where you can edit
your Apache configuration file. Add to your Apache configuration file the following:

LoadFile "C:/Perl/bin/perl510.dll"
LoadModule perl_module modules/mod_perl.so

426

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 427

Chapter 11: Apache

3. Depending on where you will have your Perl scripts and programs running, you can add the
following:

Alias /perl/ "C:/Documents and Settings/username/web/Perl/"
<Location /perl/>

SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlOptions +ParseHeaders
Options +ExecCGI
Order allow,deny
Allow from all

</Location>

4. Restart Apache by selecting from the Start button ‘‘Apache HTTP Server 2.2’’ -> ‘‘Control
Apache Server’’ -> ‘‘restart.’’ You now have the ability to write mod_perl programs on your
Windows box!

Installing Apache and mod_perl on a Working UNIX System
For cases where Apache was not installed by default for whatever reason, it’s simple enough to install
using the operating system’s software package management system. The following will show you how
to install Apache for a number of Linux distributions as well as Apple OS X.

Ubuntu/Debian-based Linux

1. Run the following:

sudo apt-cache search

This gives you a big list of various packages that have something to do with Apache, includ-
ing the server itself. Particularly:

apache2
apache2-mpm-prefork
apache2-mpm-worker

The apache2 package installs a threaded Apache by default, libapreq (required), and a PostgreSQL library.

Considering this book is about developing applications using MySQL as the back-end database, a discus-
sion of the PostgreSQL library is not needed for the scope of this book. Also the apache2 package defaults
to a threaded Apache, which if you want a forked Apache, will not work. Instead, use one of the other
listed packages: apache2-mpm-worker or apache2-mpm-prefork, depending on whether you want to use
a threaded Apache or the traditional forking model. Select the mpm-worker for threaded or mpm-prefork
for forked.

2. These packages can be installed by running:

sudo apt-get install <package, ...>

You can install one or more packages at a time.

427

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 428

Chapter 11: Apache

3. Other required modules (for the scope of this book) are:

libapache2-mod-perl2 – Mod_perl
libapache2-mod-apreq2 -- Apache request library
libapache-dbi-perl – Apache::DBI

You will also see numerous libapache-‘‘mod’’ packages. These are optional and offer various
extensions to Apache functionality, some of which are mentioned later in this chapter. You
can refer to Ubuntu documentation for more information on each. As well, there are the
‘‘dev’’ packages that match the name of the base packages. These are also optional and can
be installed if needed. Again, refer to Ubuntu documentation.

4. To enable mod_perl and Apache request/libapreq2, you will have to run the command:

sudo a2enmod perl

sudo a2enmod apreq

This ensures that the Apache modules for mod_perl and Apache request/libapreq2 are
loaded when Apache is started.

You have two ways to start Apache. This:

sudo /etc/init.d/apache2 <start|stop|restart>

. . . or this:

sudo /usr/sbin/apache2ctl <start|stop|restart>

Redhat-Based Systems (Centos, Fedora, Redhat Enterprise, etc.)
Yum is the tool for finding RPM packages to install, and it takes care of satisfying dependencies such as
prerequisite RPMs.

1. To use, find a listing of Apache and related packages:

yum-search apache

2. This gives a large list of Apache and Apache-related packages (just as the apt-cache search
did for Ubuntu). The ones that you would want to install in this case are:

httpd.x86_64 : Apache HTTP Server
httpd-devel.i386 : Development tools for the Apache HTTP server.
mod_ssl.x86_64 : SSL/TLS module for the Apache HTTP server
libapreq2.i386 : Apache HTTP request library
mod_perl.x86_64 : An embedded Perl interpreter for the Apache Web server
mod_perl-devel.x86_64 : Files needed for building XS modules that use
mod_perl
perl-Apache-DBI.noarch : Persistent database connections with

428

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 429

Chapter 11: Apache

Apache/mod_perl
apr-util.x86_64 : Apache Portable Runtime Utility library

The dev packages are optional, but depending on how much you intend to tinker, you
may want to install these as well. Also, mod_ssl.x86_64 is an optional install, but if
you intend to have a secure web server, then it will be required. Also note that ‘‘x86_64’’
is for the 64-bit architecture. For the 32-bit architecture, the name would be ‘‘i386.’’

3. To install these, run the Yum install command:

yum-install <package, ...>

You can install one or more packages at a time.

Installing Apache on Apple OS X (10.5)
Installing the Xcode developer CD that comes with either your new Mac or with OS X, if you bought
OS X separately, will automatically install Apache 2.2. It’s that simple!

Apache Source Install on UNIX
A great Jedi once said to his disciple ‘‘Use the Source, Luke!’’ Seriously, you often want to build a soft-
ware package from source to get the latest and greatest version. You also want to have the source around
for development using Apache (for instance if you want to write your own Apache modules). In fact, this
method is a good way to learn more about Apache. Many Linux distributions or other operating systems
have done such a great job packaging Apache, with everything working perfectly out of the box, that you
rarely get a chance to really get your hands dirty, like in the old days. This is the perfect opportunity to
explain to you how to set up Apache because a source install starts from scratch. Not to mention, with a
source install you can specify that Apache is installed in its own directory, which keeps it all in one place.
This can be convenient, especially for learning purposes.

To install Apache from source, including how to get the server up and running as quickly as possible,
follow these steps.

1. First and foremost, log in or sudo as root and create the apache group and user both:

sudo groupadd apache

sudo useradd –d /usr/local/apache/htdocs –g apache –s /sbin/nologin

2. Obtain the Apache source code. From Apache’s web site, obtain the UNIX source
distribution for the Apache HTTP Server, download the source to a directory such as
/usr/local/src

tar xvzf httpd-2.2.xx.tar.gz

cd httpd-2.2.xx

429

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 430

Chapter 11: Apache

3. Read the file INSTALL. It will provide you with instructions on building Apache, as well as
mention you can run:

./configure -help

This lists all the options that you can supply the auto configure — what directory to install
Apache into, what modules to build, suexec settings, etc.

4. For this building of Apache demonstration, the command line that follows will suffice. The
option to –enable-mods-shared=all commands the compiler to build all the modules that
come with Apache (this doesn’t include mod_perl), and build them shared so they can be
dynamically loaded.

./configure --prefix=/usr/local/apache2 --enable-mods-shared=all
make

5. After all the source has been built, install Apache, which will require root privileges:

sudo make install

At this point, the build source has now been installed to /usr/local/apache2 and the server
is ready for configuration! This section won’t delve into a full-fledged configuration, but will
provide the steps necessary for getting a web server up and running.

6. Go ahead and enter the directory containing the newly installed Apache.

cd /usr/local/apache2/

7. Now examine the contents that were installed:

root@ispconfig apache2]# ls -l
total 112
drwxr-xr-x 2 root root 4096 Jan 24 09:45 bin
drwxr-xr-x 2 root root 4096 Jan 24 09:45 build
drwxr-xr-x 2 root root 4096 Jan 24 10:28 cgi-bin
drwxr-xr-x 4 root root 4096 Jan 24 10:16 conf
drwxr-xr-x 3 root root 4096 Jan 24 09:58 error
drwxr-xr-x 2 root root 4096 Dec 6 07:16 htdocs
drwxr-xr-x 3 root root 4096 Jan 24 09:45 icons
drwxr-xr-x 2 root root 4096 Jan 24 09:45 include
drwxr-xr-x 4 root root 4096 Jan 24 09:45 lib
drwxr-xr-x 2 root root 4096 Jan 24 10:16 logs
drwxr-xr-x 4 root root 4096 Jan 24 09:45 man
drwxr-xr-x 14 root root 12288 Dec 6 07:18 manual
drwxr-xr-x 2 root root 4096 Jan 24 09:45 modules

The directories in /usr/local/apache2 contain different components of the entire server
package. Of importance for this section are the ones listed in the following table:

430

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 431

Chapter 11: Apache

Directory Description

Bin Where Apache binaries are found. These binaries include the server binary httpd,
benchmarking, daemon start utility, and other programs for managing the server.

Conf Where the configuration files are found.

Htdocs Where the actual web site documents are found.

Icons Where the icons the server uses for things like directory listings are found.

Logs Where the access and error logs are found.

Modules Where the loadable Apache modules are found.

8. As you will notice from the previous output, these are all owned by the root user when first
installed. For all of these directories, go ahead and change their ownership permissions to
apache:apache:

chown –R apache:apache <directory>

9. Additionally, the directory cgi-bin contains CGI scripts that will need to be executable:

chmod 755 cgi-bin/*

10. Make some small changes to the main Apache configuration file. Edit the file
conf/httpd.conf. In this file you will find the lines for which user Apache will run
as. Since you created an apache user and group, use these. Change the lines from the value
that is in this stock httpd.conf from:

User daemon
Group daemon

to

User apache
Group apache

11. You should now be able to start Apache. Run the program:

/usr/local/apach/bin/apachectl start

This is a shell script that starts the actual Apache server (httpd).

If you check with the command ps, you should see Apache running now:

ps auxwww|grep apache
root 21955 0.0 0.1 27412 1956 ? Ss 10:16 0:00
/usr/local/apache2/bin/httpd -k start

431

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 432

Chapter 11: Apache

apache 21956 0.0 0.1 27544 1992 ? S 10:16 0:00
/usr/local/apache2/bin/httpd -k start

apache 21957 0.0 0.1 27544 2024 ? S 10:16 0:00
/usr/local/apache2/bin/httpd -k start

apache 21958 0.0 0.1 27544 2016 ? S 10:16 0:00
/usr/local/apache2/bin/httpd -k start

apache 21959 0.0 0.1 27544 2024 ? S 10:16 0:00
/usr/local/apache2/bin/httpd -k start

apache 21960 0.0 0.1 27544 2000 ? S 10:16 0:00
/usr/local/apache2/bin/httpd -k start

apache 21997 0.0 0.1 27544 1996 ? S 10:17 0:00
/usr/local/apache2/bin/httpd -k start

Notice in the previous listing that there is one Apache process running as root. This is the main Apache
process, which was started and then spawned child processes running as the user specified in the
Apache configuration file.

You should be able to access your site now. The stock Apache 2.2 comes with a very simple front page.
If you access your site, you should see the message ‘‘It works!’’ You can even use the telnet program,
telneting your server’s IP address at port 80 to get the server to give you a page :

telnet 127.16.221.130 80
Trying 127.16.221.130...
Connected to 127.16.221.130 (127.16.221.130).
Escape character is ‘ ˆ]’.
GET / HTTP/1.1
Host: localhost
User-Agent: telnet/100.1
Accept: text/html

HTTP/1.1 200 OK
Date: Sat, 24 Jan 2009 19:12:55 GMT
Server: Apache/2.2.11 (Unix) DAV/2
Last-Modified: Sat, 20 Nov 2004 20:16:24 GMT
ETag: "8f38c-2c-3e9564c23b600"
Accept-Ranges: bytes
Content-Length: 44
Content-Type: text/html

<html><body><h1>It works!</h1></body></html>

The IP address in this example would be whatever is the IP address of your own server you installed
Apache on. For this example, it was on a virtual machine, which seems to be assigned 172.xx addresses.
You need to enter everything up to and including Accept: text/html, then hit Enter twice. The web
server will then print out the output of the web page to your terminal screen as shown above.

You now have a working, albeit very basically configured, Apache 2.2! This chapter will cover configu-
ration in more detail in later sections. This installation demo was provided just to show you how easy it
is to set up Apache, even from source.

432

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 433

Chapter 11: Apache

Installing mod_perl from Source
Now that you have freshly built from source and installed the Apache 2.2 server, you can build and
install mod_perl. Just like installing Apache, this also is a fairly simple procedure, much more so now
than previously with Apache 1.3. Now there are more enhancements and improvements to the Apache
module API.

Follow these steps:

1. Visit the main site for mod_perl at http://perl.apache.org/. This is where you
can find the source for mod_perl which you will build, as well as a documentation,
mailing list subscription information, bug reporting, and many other useful resources.
The download URL for the current mod_perl source distribution is conveniently the
same, regardless of release. From /usr/local/src you can use wget to obtain it: wget
http://perl.apache.org/dist/mod_perl-2.0-current.tar.gz

2. Once the download is complete, you can untar it, then enter the directory:

tar xvzf mod_perl-2.0-current.tar.gz

cd mod_perl-2.0.4

3. Just as with so many open source packages, there is a file called INSTALL which contains
the installation instructions for mod_perl. This file you will find is pretty much verbatim an
Apache source installation.

4. The first command you’ll run, like with so many other Perl module compilations, is this:

perl Makefile.PL MP_APXS=/usr/local/apache2/bin/apxs

The one argument shown here, MP_APXS, tells the compilation where to find the program
apxs.

What is apxs?
It’s a program that comes with the Apache source distribution that is used for building
and installing Apache modules. As previously mentioned, these modules that are built
are DSOs, Dynamically Shared Object files, which Apache loads when starting up. So, in
building any Apache module, the directory path for this program is crucial.

5. Build and install mod_perl (for the make install, either run as root or using sudo):

make
make install

433

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 434

Chapter 11: Apache

At this point, mod_perl is installed. The dynamic library module file has been com-
piled and installed into the modules directory for the installed Apache (in this example
/usr/local/apache/modules).

6. Ensure that mod_perl is loaded by Apache. In /usr/local/apach/conf/httpd.conf, you’ll
see multiple lines containing:

LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_module modules/mod_alias.so
LoadModule rewrite_module modules/mod_rewrite.so

Add to this the line:

LoadModule perl_module modules/mod_perl.so

7. Restart Apache. Then you can verify that mod_perl is loaded with the argument to httpd –D
DUMP_MODULES, which will show which modules have been loaded:

/usr/local/apache2/bin/httpd -t -D DUMP_MODULES

In the output, along with all the other modules listed, you should see the line:

perl_module (shared)

You now have a mod_perl-enabled Apache!

Installing libapreq2 from Source
Installing the Apache request library, libapreq2, is not as straightforward as the Apache install was. What
is convenient, however, is that you can use CPAN to fetch the source. Notice that the word fetch was used,
as opposed to install. The reason is because when you use CPAN to install a module, it automatically
compiles and installs the modules, and in some cases the proper compile flags aren’t provided to perl
Makefile.PL in order for the package to successfully be built. Particularly with a Perl module that has an
underlying C library, you want to make sure that the build configuration has the correct compile flags.
Apache request /libapreq2 is very much in the category of those modules needing the proper build flags,
particularly the path to apxs, which it needs to properly build.

You may have to install the library expat (dev) prior to building libapreq2, an XML parsing library. Use
whatever package tool is required according to your operating system documentation.

Follow these steps.

1. With CPAN, fetch the source (note emphasis on Apache2 — not just Apache)

perl -MCPAN -e "get Apache2::Request"

434

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 435

Chapter 11: Apache

2. Go to your CPAN build directory:

cd ∼/.cpan/build

cd libapreq2-2.xx

3. Build the package:

perl Makefile.PL --with-apache2-apxs=/usr/local/apache2/bin/apxs

4. Install (either as root or using sudo):

make install

Apache request is installed, and the dynamically shared object module libapreq2.so is
installed into /usr/local/apache/modules.

5. The only thing remaining to do is to add it to httpd.conf to be loaded:

LoadModule apreq_module modules/mod_apreq2.so

6. Restart Apache. Then you can verify, just as you did with mod_perl, that libapreq2 is
loaded:

/usr/local/apache2/bin/httpd -t -D DUMP_MODULES
...
apreq_module (shared)

You now have Apache request loaded with Apache!

Apache Configuration
Now that all the pieces are installed, whether from source or packages, you can configure Apache to your
own settings. There are numerous configuration parameters found in the Apache configuration file, for
the source installation, httpd.conf. This setup does vary depending upon whether you installed Apache
from source or used a binary distribution.

Understanding the Apache configuration file is a good way to understand your overall Apache configu-
ration. This section covers the basic settings you’ll find in most Apache configuration files for both source
Apache installations and packaged Apache installations of various operating system distributions.

Because of the encyclopedic amount of information on Apache configuration, a full dis-
cussion is far beyond the scope of this book. You can find all the information you need at:
http://httpd.apache.org/docs/2.2/configuring.html.

435

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 436

Chapter 11: Apache

You should understand that an Apache configuration file is constructed in SGML (Standard Generalized
Markup Language), of which XML and HTML are a type, so it’s pretty easy to read. Apache configura-
tions have numerous directives, some of which are the SGML tags in this file, known as Configuration
Section Containers, both with an open tag and a close tag. Directives are either outside or within these
configuration sections. This is how you scope directives and can sectionalize your configuration file. If
a particular directive is outside the configuration section, it applies for the whole server; if inside the
configuration section tag, that directive is scoped for whatever constraint that tag applies. For instance,
there is a <Directory> configuration section, and say you had <Directory /www/mypages>. Any directive
listed between <Directory /www/mypages> and </Directory> would scope in such a way to apply only
within the path /www/mypages.

With Apache 2.2, you are not confined to having only one configuration file. You can modularize your
Apache configuration to whatever scheme you want, separating out sections into other ‘‘sub’’ configu-
ration files that that you include in your main Apache configuration file with the directive Include. An
example of a virtual host’s configuration parameters kept in a separate file is:

Include /etc/apache2/conf.d/mysite.conf

Configuration Section Container Directives
To become familiar with the directives to use in your Apache configuration, here is a listing of the Con-
figuration Section Container directives. Note that all of these, as mentioned above, have a begin <tag>

and end </tag>.

<Directory> and <DirectoryMatch>

Usage: <Directory /path/to/dir>, <DirectoryMath path-pattern>

<Directory> is used to sectionalize directives by a directory path on disk. Any directive defined in this
section is applied to the directory and its subdirectories.

The directory path can use wildcards such as:

<Directory /www/sites/*>

. . . as well as regular expressions with the use of the tilde character (∼)

<Directory ∼ "/www/site_[\d]+">

<DirectoryMatch> allows the use of regular expressions without having to specify the ∼ character. The
last example would appear as:

<DirectoryMatch /www/site_[\d]+>

Another good example is the stock Apache configuration file that is included with the monitoring tool
Nagios :

<DirectoryMatch (/usr/share/nagios2/htdocs|/usr/lib/cgi-bin/nagios2)>

436

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 437

Chapter 11: Apache

<Files> and <FilesMatch>

Usage: <Files filename>, <FilesMatch filename-pattern>

You use this to sectionalize directives based on a filename. The example:

<Files ∼ " ˆ \.ht">

. . . would scope directives for .htaccess files.

<FilesMatch> lets you use regular expressions without specifying the ∼ character:

<FilesMatch "\.(htm[l]?|php|xml)$">

. . . would scope directives for files ending with .htm, .html, .php, .xml

<Location>

Usage: <Location URL or URL path>

As a Perl/mod_perl web developer, this is one of the most common tags you use. <Location> is used
to sectionalize based on a URL path, per the web server. This is similar to <Directory> except that
<Location> deals with the URL that you access via the web server, as it serves it, as opposed to the path
on disk that you have with <Directory>. You would most often use <Location> for setting up your
mod_perl handlers, and for limiting access to server URLs such as server-status.

For URLs that are origin, not proxy, requests, only the URL path can be used — no scheme, port, or
query string such as http://xyz.com/foo.pl?this=them&that=those may be used. For URLs that are
for proxy requests, you can use a full-fledged URL with scheme and all.

As with the other directives, you can use wildcards and regular expressions:

<Location /webapp/*>

<Location ∼ "/user_data/[a-m].*$">

<LocationMatch>

Usage: <LocationMatch regex>

This does the same thing as <Location> except it takes as an argument a regular expression. This makes
it so you don’t have to specify a tilde (∼) character to indicate regular expression. These two lines are
the same:

<Location ∼ "/foo/app[_].*$">

<LocationMatch "/foo/app[_].*$">

437

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 438

Chapter 11: Apache

<IfDefine>

Usage: <IfDefine parameter or ! parameter>

This makes it so directives are conditional based on the parameter set upon whether Apache was started
with the –D parameter. For instance, if you started Apache with this:

httpd –D capttofu

. . . in the configuration file, then you would use:

<IfDefine capttofu> ... </IfDefine>

<IfModule>

Usage: <IfModule modulename>

Conditional directives are based upon whether a specific module has been included. For instance, for
mod_perl, you might have this:

<IfModule mod_perl.c>
<Location /somedir>

SetHandler perl-script
PerlModule MyModule
....

</Location>
</IfModule>

This would only specify the directives within the <IfModule> tags if mod_perl was installed and loaded.

<IfVersion>

Usage: <IfVersion operator version>

Conditional directives are based upon the version of Apache, the various operator being ==, =, <, >, <=,
>=, ! An example would be:

<IfVersion > 1.3>
various directives.... Apache 2.0 and above

</IfVersion>

<Limit>

Usage: <Limit method [method] ...>

The <Limit> directive limits access controls to the methods specified. For instance, this example:

<Directory /var/www/publishing>
<Limit GET POST OPTIONS PROPFIND>

438

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 439

Chapter 11: Apache

Order allow,deny
Allow from all

</Limit>
</Directory>

. . . would enforce the policy of allowing from all addresses the use of the HTTP methods GET and POST
(web apps, forms) as well as OPTIONS, for requesting information about communications available on
a request/response. It would allow the use of PROPFIND to request information about a resource for
Distributed Authoring and Versioning (DAV), within the directory /var/www/publishing.

<LimitExcept>

Usage: <LimitExcept method [method] ...>

Works just like <Limit> except . . . except! <LimitExcept> means every method but the listed methods.
This is a better choice if you want to avoid forgetting about all the various HTTP methods to apply a
policy.

<Proxy>

Usage: <Proxy URL>

This applies directives only to the URL as specified via a proxy server. This can be a means of enforcing
the access to content via a proxy server, as in this example:

<Proxy *>
Order Deny, Allow
Deny from All
Allow from proxy.candycoated.com

</Proxy>

This would enforce the use of a proxy server to access content on your server for the hostname
proxy.candycoated.com.

You can also use tricks such as this example:

PerlModule ModPerl::Registry
Alias /perl /usr/local/perl
<Location /perl>

SetHandler perl-script
PerlHandler ModPerl::Registry
PerlSendHeader On
PerlOptions +ParseHeaders
Options +ExecCGI

</Location>

This would result in any proxy request for files with a .pl extension within the URL http://nomodperl
.com/perl to have mod_perl turned on, and would make it possible to run CGI scripts through mod-
_perl. More about ModPerl::Registry and mod_perl will be presented in Chapter 13 ‘‘mod_perl.’’

439

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 440

Chapter 11: Apache

<ProxyMatch>

Usage: <ProxyMatch regex>

This works just like <Proxy> except that it allows the use of regular expressions.

<VirtualHost>

Usage: <VirtualHost address[:port] [address[:port] ...>

The VirtualHost tag is one of the most common sectionalized directives you’ll be using. <VirtualHost>
encloses directives for a virtual host as listed in one or more addresses, port if specified. Here are
examples of the types of addresses that can be used:

<VirtualHost 192.168.1.33>
ServerName privatebox.com
DocumentRoot /var/www/privatebox
ErrorLog /var/log/apache2/privatebox-error.log
TransferLog /var/log/apache2/privatebox-access.log

</VirtualHost>

And here is a named virtual host:

NameVirtualHost *
<VirtualHost *>
ServerName patrampushpamtoyam.com
DocumentRoot /var/www/patrampushpamtoyam.com
<VirtualHost>

Basic Directives
The following directives are the more basic directives in an Apache configuration file that control funda-
mental settings for your web server.

ServerName

Usage: ServerName [schema://]fully-qualified-domainname[:port]

The scheme (optional), hostname, and port (optional) that you wish the web server to respond to. For
instance, the full name of the machine of patg.net might be chakra.patg.net, but the name it should
respond to is either patg.net or www.patg.net. An example would be as follows:

ServerName patg.net:80

ServerName becomes especially important when using name-based virtual hosts. You must
have ServerName set within a <VirtualHost> directive if you wish for that host to respond by that name.

ServerRoot

Usage: ServerRoot directory

440

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 441

Chapter 11: Apache

This is the directory in which Apache lives and which most often contains configuration and log direc-
tories. Different OS distributions, however, spread Apache components into other directories within
the operating system than what a source installation would default to: A source installation will install
Apache into its own directory, usually /usr/local/apache or /usr/local/apache2, and that directory
will contain every component of Apache.

DocumentRoot

Usage: DocumentRoot directory

This is the base directory from which Apache will serve content. Any path within a URL for the server
is relative to DocumentRoot. For instance, if the DocumentRoot is /usr/local/apache/htdocs, and
the client requests the URL http://somesite.com/pictures, the actual directory on disk would be
/usr/local/apache/htdocs/pictures.

Include

Usage: Include path

This allows you to include a separate configuration file. This gives the ability to modularize and separate
out different parts of your configuration into files of their own. Various operating system distributions
take advantage of this, as you will see in a later section.

Paths can be absolute or relative to the directory specified in the ServerRoot directive.

An example of including all configuration files in /etc/apache2/mods-enabled with the extension of
.conf would be:

Include /etc/apache2/mods-enabled/*.conf

Listen

Usage: Listen [IP]port [protocol]

This tells Apache to which IP address (optional), port (required), and protocol (optional) it needs to
respond. By default, if you don’t specify an IP address, Apache will respond to all IP addresses on the
machine that it is running on. An example would be:

Listen 192.168.1.33:80

You can also specify Apache to listen to multiple ports by having multiple Listen directives, like so:

Listen 192.168.1.33:80
Listen 192.168.1.33:81

You only need to specify protocol if you want to explicitly tell Apache to respond with a particular
protocol such as HTTPS on a nonstandard port. The last example with port 81, for instance, could be
forced to responds with HTTPS:

Listen 192.168.1.33:81 https

441

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 442

Chapter 11: Apache

This directive is mandatory; the server will not start without it.

LoadModule

Usage: LoadModule modulename filename

Loads a module, a library, or an object file, linking it into the list of active modules and enabling it for the
Apache server process. An example of loading mod_perl would be:

LoadModule perl_module /usr/lib/apache2/modules/mod_perl.so

Options

Usage: Options [+ | −] option [[+ | −] option]...

This controls which features are set within a <Directory>. Values other than All or None can have a plus
(+) or minus (−) sign in front of them for true or false (enabled or disabled, specifically). For instance,
the default is All, and you could specify −Includes, which would mean everything but Includes (SSI,
server-side includes).

The following table provides a list of options that can be set within a <Directory> sectional directive:

Value Description

All (Default) All options.

None No options.

ExecCGI Ability to run CGI scripts.

FollowSymLinks Whether or not to allow Apache to serve pages from links to real
directories outside the directory specified. Ignored inside
<Location> directive.

Includes Allow server-side includes. The Apache module that provides this is
mod_include.

IncludesNOExec Allow server-side includes, but without #exec cmd and #exec cgi.

MultiViews Allow for content negotiation. This lets you deliver content based on
client specifics, such as language and browser type. It also lets you
deal with incomplete negotiation information. The Apache module
that provides this is mod_negotiation.

Indexes Allow automatic directory listing when a page is not specified in the
URL being requested on a directory without an index file as
specified in DirectoryIndex (for instance index.html, index.php, . . .).
This functionality is provided by mod autoindex.

442

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 443

Chapter 11: Apache

Value Description

SymLinksIfOwnerMatch Allows for symbolic links to be used if the target file is owned by the
same user as the symbolic link pointing to the file.

IncludesNoExec Server-side includes are permitted, but with #exec cmd and #exec
cgi disabled.

Redirect

Usage: Redirect [status] local-URL URL

With this, you can set a URL on your site so that it redirects elsewhere. The status is optional and is either
an HTTP code or a named status of that redirect, such as permanent, temp, seeother, or gone. If omitted,
the default is temporary.

An example of this where a local URL named google redirects to http://google.com is as follows:

Redirect permanent /google http://google.com

You could also redirect a URL where you’re doing work that’s not yet complete:

Redirect /new_application http://workingsite.com

User

Usage: User <#UID | username>

This specifies the UNIX user the process will run as. Of course, if running the web server on a port
below 1024, you start the server as root, and the main Apache process runs as root and then all children
spawned will run as the user specified with User.

AddType

Usage: AddType type file-extension

This is a common option you will often see that maps a filename extension to determine how the server
will serve out the file — what type of header it emits in Content-type: <type>.

Here is an example of adding a type for files named .tgz, which is just a shortened way of writing tar.gz
(from back in the old days when we used to download Slackware onto floppies, so the filenames would
work with DOS!):

AddType application/x-tar .tgz

So, when serving up a file ending in .tgz, Apache will emit "Content-type: application/x-tar\n\n"
in its header.

443

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 444

Chapter 11: Apache

Standard types are usually kept in a file defined with the TypesConfig file, which points to a file,
/etc/mime.types, that contains a huge list of mime types followed by the extension of the file for
that type.

Server Tuning Directives
These are directives that control the performance of Apache, depending upon which MPM you are run-
ning. These include things like how many child processes or threads to initially start up, how many
requests each thread or child process serves, the maximum number of children or threads, etc. With
these directives, you have a lot of control over how Apache runs. However, you also have to be careful
to think about the settings you are making to ensure that you’re not setting values that will exceed your
machine’s capacity.

StartServers

Usage: StartServers number

This is the number of child processes to start when Apache starts up. It is used both for hybrid/threaded
(worker) and forked (prefork) servers. During run-time, the number of processes is determined by load.
The default for forked is 5, and for threaded, 3.

MaxClients

Usage: MaxClients number

This is the maximum number of connections that are allowed to be served simultaneously. Extra con-
nections will be queued until a child process is freed up to service the awaiting request. The number of
allowed queued connections is determined by the directive ListenBacklog.

MaxClients for forked servers (prefork) also mean the maximum number of child process that will be
spawned to serve requests, should the number of requests require it. For threaded and hybrid/threaded
servers (worker), this means the maximum total number of threads, regardless of the number of child
processes, that will be allowed to serve requests. For hybrid/threaded servers, MaxClients is determined
by the product of ServerLimit (total number of child processes for the lifetime of the Apache process)
and ThreadsPerChild (the maximum number of threads for the lifetime of a given child). So break out
your calculator if you want to determine what value each should be.

MaxSpareServers

Usage: MaxSpareServers number

This is a setting you don’t want to use unless you have a really busy site. You will have to get out your
calculator and scratch pad to carefully determine the value to use.

As the name implies, this is the maximum number of spare child processes, which means idle processes
that aren’t currently handling any requests and that the server should allow to remain running. The
culling of child processes is performed by the main parent process. The default value is 10.

444

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 445

Chapter 11: Apache

MinSpareServers

Usage: MinSpareServers number

This is the same concept as MaxSpareServers, except this equates to the minimum number of idle child
processes that the main parent process will ensure are running. If the number of child processes drops
below this number, the main parent process will spawn new child process, one per second, until the
MinSpareServers number is achieved. The same caveat applies here as with MaxSpareServers: You
don’t want to modify this setting unless you have a busy site. The default is 5.

ServerLimit

Usage: ServerLimit number

This allows you to override the compiled-in limit of MaxClients for the life of the Apache process (default
256) for a prefork Apache, and a combination of ServerLimit and ThreadLimit for a threaded, worker
Apache. Changing this setting won’t have any affect with a restart. You have to completely stop and start
the server for it to take effect, though you can change MaxClients up to the value of ServerLimit with a
restart.

This is a setting you usually don’t want to tinker with unless you really know what you’re doing. You
have to take special care to not set it to a value that exceeds your machine’s capacity.

MaxRequestsPerChild

Usage: MaxRequestsPerChild number

This is the maximum number of client requests that a process will serve before the parent kills it off. The
default is 10,000. If left to the value of 0, then there is no limit. There are many discussions about this
setting, especially whether it’s good to keep it at a lower number in the case that there are memory leaks
either in the code (due to bugs) or operating system libraries. It all depends upon what works best for
you. Also, the best policy is to fix bugs — fix them, don’t just work around them! Like a manager once
used to say ‘‘What’s a the first thing’a you do in the morning? You look at your a’ bugs and you fix’a
them.’’

ThreadLimit

Usage: ThreadLimit number

This allows you to override the compiled-in limit of ThreadsPerChild for the duration of the running
Apache process. Changing this setting won’t have any effect on a restart. You have to completely stop
and start the server for it to take effect, though you can change MaxRequestsPerChild up to the value of
ThreadLimit with a restart.

ThreadsPerChild

Usage: ThreadsPerChild number

This is the total number of threads that a child processes will create, no more, no less. Unlike the prefork
MPM, a child creates all the threads it will ever use at startup. This is true for each child, so you have to

445

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 446

Chapter 11: Apache

consider what type of threaded MPM you are using. If you’re using an MPM such as the worker MPM,
which spawns a number of children that then spawn threads, you must figure out how many total threads
you have based on the product of the number of children and ThreadsPerChild. If you’re using a MPM
that is purely threaded, such as MPM winnt, which spawns only one child process that subsequently
spawns threads, you must ensure you have enough threads to serve out the traffic of your web server.

KeepAlive

Usage: KeepAlive On | Off

This allows multiple requests to be served from the same connection, making for a persistent connection.
The number of requests served out within a single connection, with KeepAlive turned on, is not counted
toward MaxRequestsPerChild. The default is ‘on.’

MaxKeepAliveRequests

Usage: MaxKeepAliveRequests number

This refers to the total number of requests a connection, with KeepAlive turned on, will serve out.

KeepAliveTimeout

Usage: KeepAliveTimeout seconds

This is the time in seconds that a process, KeepAlive enabled, waits after serving a request for a subse-
quent request before disconnecting.

Timeout

Usage: Timeout seconds

This is the number of seconds the server will wait, depending on event. The types of events are: the
duration of a GET request, the duration of receiving data from a POST or PUT, and the duration of time
between ACKs on transmissions of packages in responses. The default is 300.

Logging Directives
Apache has various options for logging. You can control what the format of log entries, the level of
logging, as well as whether to log to a file or a process.

CustomLog

Usage: CustomLog file|pipe format|nickname [env=[!]environment-variable]

This defines the file that Apache requests are logged to, as well as the format to use. The file is either an
absolute path or relative to ServerRoot.

446

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 447

Chapter 11: Apache

The format can be either an explicit format string or a name of a format. You can also define new format
string names.

An example of logging to a regular file with an explicit format string is as follows:

CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b"

Then you can define format nicknames with the LogFormat directive:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%v %h %l %u %t \"%r\" %>s %b" vhost_common

Then use the aliases with a log:

CustomLog logs/mysite_acces_log vhost_common

Here is an example of using a pipe to send the output of the logs to a process that creates a new log every
time with the date stamp as the file name, archiving old logs:

CustomLog "|/usr/sbin/rotatelogs -l /var/log/apache/access_log.%Y-%m-%d 86400"

You have all manner of logs using Customlog. For instance, you may want to just have a log that logs
cookies along with your main Apache log:

CustomLog /var/log/apache2/access.log combined
CustomLog /var/log/apache2/cookie.log cookielog

TransferLog

Usage: TransferLog file-path|log_processor

The same as CustomLog except you cannot specify a log format.

ErrorLog

Usage: ErrorLog file-path|log_proccessor

This sets the file errors are logged to. The file path is either absolute or relative to ServerRoot.

LogFormat

Usage: LogFormat format_string [nickname]

This lets you define the default logging format (without a nickname) or defines a format with a nickname
for a logging format string. (See the example in the description of CustomLog above.)

Some examples are the following:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common

447

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 448

Chapter 11: Apache

LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
LogFormat "%C" cookielog

LogLevel

Usage: LogLevel level

This allows you to set how much information is logged to the error log. The error levels are emerg,
alert, crit, error, warn, notice, info, debug, in the order of increasing verbosity and information.

Error Directives
There are a number of directives that allow you to control what action should occur and what content to
display when an error is encountered.

ErrorDocument

Usage: ErrorDocument error-code file|url

This sets what content to display or action to take should an error occur, depending upon what the error
code is. The options for error handling are:

❑ Static file is served, such as an HTML file with a blurb about failure

❑ A message, as defined, is displayed

❑ Redirect to either a local URL path or remote URL

Some examples are

❑ HTML file:

ErrorDocument 410 /errors/410.html

❑ mod_perl handler:

ErrorDocument 400 /error_handler/400

❑ Redirect:

ErrorDocument 500 http://howdyougethere.com/error

There are even more clever ways of handling errors to be able to dynamically handle various errors,
and in various languages. Several distributions use an approach of type-map files to handle errors for
multiple languages:

<IfModule mod_include.c>
<Directory "/usr/share/apache2/error">

AllowOverride None

448

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 449

Chapter 11: Apache

Options IncludesNoExec
AddOutputFilter Includes html
AddHandler type-map var
Order allow,deny
Allow from all
LanguagePriority en es de fr
ForceLanguagePriority Prefer Fallback

</Directory>

ErrorDocument 400 /error/HTTP_BAD_REQUEST.html.var
ErrorDocument 401 /error/HTTP_UNAUTHORIZED.html.var
ErrorDocument 403 /error/HTTP_FORBIDDEN.html.var
ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var
...

</IfModule>

The type-map error file /error/HTTP_BAD_REQUEST.html.var has entries for each language (only
German is displayed here):

----------cs--

Content-language: de
Content-type: text/html; charset=ISO-8859-1
Body:----------de--
<!--#set var="CONTENT_LANGUAGE" value="de"
--><!--#set var="TITLE" value="Fehlerhafte Anfrage!"
--><!--#include virtual="include/top.html" -->

Ihr Browser (oder Proxy) hat eine ungültige Anfrage
gesendet, die vom Server nicht beantwortet werden kann.

<!--#include virtual="include/bottom.html" -->
----------de-

As you can see, type-map files make it so the proper language is displayed based upon what language
the server detects from the client. In this case, the message that is displayed is German.

ServerSignature

Usage: ServerSignature On|Off|Email

This sets whether or not a footer line is displayed in server-generated documents such as error messages.
Having this directive turned on is especially useful if you have proxy servers, so that the server where
the error message was generated can be discerned.

Access Control, Authentication, and Authorization
You will have to set values for access control to your web server, and Apache has several directives to
accomplish this that you will often see while administering your web server. The directives listed here are
the common ones you’ll see in several default Apache configuration files for different operating system
distributions.

449

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 450

Chapter 11: Apache

There is first the means of blocking access to your site or directories within your site: this can be accom-
plished by the Order directive. Authentication and authorization have to do with specific users having
access to your site and its resources. Understanding just what each is can be useful in determining how
you want to configure your server.

Access Control
Access control is the mechanism that checks the host or IP address of the client making the request against
that list. You enable it using the directive Order from within a <Directory> section, or by using an
.htaccess file to allow or disallow certain hosts. This functionality is provided by mod_authz_host.

Authentication
Authentication is the mechanism that checks your credentials when you log in. This would be the function-
ality that takes the input of a user logging in and compares it to the authentication information (username
and password) stored in a file or database. The two types of authentication available to use with Apache
are these:

❑ Basic: Allows for a browser to supply a username and password, transmitted in base-64 to retain
the integrity of the HTTP protocol data encoding (in particular because passwords could contain
special characters that break the HTTP protocol data). This is not very secure because the data is
plaintext, and base-64 can be converted back to the actual data value. The Apache module that
provides this is mod_auth_basic.

❑ Digest: Doesn’t pass a username and password over the network. Instead, it uses two MD5 hash
values: one called ‘‘HA1,’’ which is an MD5 of username, realm, and password; and another
MD5 hash called ‘‘HA2,’’ which is an MD5 of method (such as GET) and the URI being requested.
When access to the restricted resource is attempted, the response contains a nonce — a number
only used once. In turn, the client creates another MD5 hash called ‘‘response’’ that comprises
HA1, the nonce that was retrieved in the initial request from the server (as well as other data),
and HA2. This is the response that’s sent back to the server that then authenticates based on that
response key. The Apache module that provides Digest authentication is mod_auth_digest.

The Apache modules that provide authentication can be broken up into two categories:

❑ Authentication types: This is the mechanism of how the authentication credentials are negoti-
ated with the server. The Apache modules that provide this are named mod_auth_<type>.

❑ Basic: As has been discussed. Provided by mod_auth_basic.

❑ Digest: As has been discussed. Provided by mod_auth_digest.

❑ Authentication provider: This is the mechanism determining where the authentication informa-
tion is stored on the server. The Apache modules that provide this are named mod_authn_<type>
and are listed below:

❑ File, using .htaccess – mod_authn_file.

❑ DBM files. Provided by mod_authn_dbm.

❑ DBD/Database, using a database such as MySQL. Provided by mod_authn_dbd.

❑ LDAP (Lightweight Directory Access Protocol), using an LDAP server. Provided by
mod_authn_ldap.

450

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 451

Chapter 11: Apache

❑ Anonymous access, allows anonymous user access, similar to the concept of anonymous
FTP. Provided by mod_authn_anon.

❑ Fallback, default, if authentication type is not configured, this is used. Provided by
mod_authn_default.

Authorization
Authorization is the mechanism that gives you access to resources once the user is authenticated. Think of
this functionality as a bouncer or Rottweiler of a web server resource within a protected directory. Autho-
rization functionality is provided by mod_authz_<type> modules. The different types of authorization
you can use are the following:

❑ User authorization, based upon the user name of an authenticated user. Provided by
mod_authz_user.

❑ Group membership, based upon entries of membership of an authenticated user to a group in a
group file. Provided by mod_authz_group.

❑ Group membership, based upon entries of membership of an authenticated user to a group
in a DBM file. This performs better for larger numbers of users than a regular text file that
mod_authz_group provides. This DBM functionality is provided by mod_authz_dbm.

❑ User ownership of a file. If the authenticated user owns the file or directory being accessed, they
are authorized to that resource. Provided by mod_authz_owner.

❑ LDAP. Provided by mod_authz_ldap.

❑ Default, fallback in case authorization is not configured.

Both authentication and authorization directives are found either in the Apache configuration file — in
the file itself only on <Directory> configuration section container directives, or in an included configura-
tion file — or within an .htaccess file. Because there are so many configurations available, and to keep
the scope of this book to something a little less encompassing than an encyclopedia, this next section will
only describe the directives more commonly seen in typical default Apache configuration files.

Order

Usage: Order ordering

This is probably the first access control directive you will see throughout an Apache configuration. It
determines the default access policy and the order in which it is evaluated, allowed, or denied. For
instance, if the ordering is deny, allow, then all the deny directives are evaluated first and then all the
allow directives are evaluated, if there is a match. With the Allow directive, if there are no matches of
any of the Allow directives, the request is rejected. With the Deny directive, if there is a match, the request
is rejected. For example, this:

Order Allow, Deny
Allow from all
Deny from foo.scriptkiddie.com

. . . would mean that every host is allowed except for foo.scriptkiddie.com.

451

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 452

Chapter 11: Apache

Whereas this:

Order Deny, Allow
Deny from all
Allow from patg.net
Allow from wrox.com

. . . would mean that everyone except patg.net and wrox.com is permitted.

Order is provided by mod_authz_host.

Require

Usage: Require entity-name [entity-name] ...

This sets requirement of which user can access a directory or resource. This can be a user, user ID, group,
valid-user, or other entity.

<Directory /var/www/mysite/book>
AuthUserFile /etc/apache2/ht/htpasswd-wrox
AuthType Basic
AuthName "Wiley/Wrox Stuff"
Require user wrox

</Directory>

AuthName

Usage: AuthName realm

This is the name of the authorization realm, and is used within a <Directory> section. This is simply a
name for that realm, authentication credentials being specific for each realm. In terms of user experience,
this is the name that the user is presented with on a login prompt when authenticating on a directory that
requires it. An example would be:

<Directory /rahasya>
... other auth directives...
AuthName "Sunya"

</Directory>

AuthType

Usage: AuthType Basic|Digest

This sets the authentication type used; the two choices are Basic or Digest.

AuthBasicProvider

Usage: AuthBasicProvider file

452

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 453

Chapter 11: Apache

This sets what type of provider (an htpassword file, DBM, or whatever type of storage is used for the
authentication information), will be used when using basic authentication.

AuthUserFile

Usage: AuthUserFile file-path

This sets the name of the file containing usernames and passwords, and is created by the utility htpasswd.
An example would be:

AuthUserFile /etc/apache2/ht/htpasswd-global

AuthGroupFile

Usage: AuthGroupFile file-path

This sets the name of the file used to store authorized user groups. The format of this file is this: group
name, colon, followed by the list of users in the group. An example would be this:

pandavas: arjuna bhima yudhistira

AuthDBMType

Usage: AuthDBMType type

This sets the type of database file if using DBM to store usernames and passwords for authentication.

AuthDBMUserFile

Usage: AuthDBMUserFile file-path

This sets the name of the DBM file containing usernames and passwords, and is created by the utility
dbmmanage.

.htaccess File Directives
The file .htaccess, which can be named whatever you want using the AccessFileName, is a file that
performs the same functions as a <Directory> directive that doesn’t contain regular expressions, for
the directory it exists in. These files can be very convenient if you don’t have access to the main server
configuration. For instance, you may have your web site at a hosting company that only gives you regular
user access. In that case, .htaccess files let you set your own configuration for the directory that the
.htaccess file is contained in. You can also configure what can and can’t be done within .htaccess
AllowOverride.

If you do have access to the main Apache configuration file, you should avoid an .htaccess file because
there is a performance penalty for each file that Apache has to read.

Just as you would see within a <Directory> sectional directive, you could also have the .htaccess file
in your home directory /home/capttofu/public_html/private containing the following:

453

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 454

Chapter 11: Apache

AuthUserFile /home/capttofu/web_pass_files/passwd.txt
AuthType Basic
AuthName "CaptTofu Private"
Require user capttofu

AccessFileName

Usage: AccessFileName filename

This allows you to set the name of .htaccess files to something other than default. An example
would be:

AccessFileName .myconfig

Instead of looking for .htaccess, Apache would instead use .myconfig. On Windows, this directive is
useful in that it can use "AccessFileName htaccess’’ to get around issues of having a dot on a filename.

AllowOverride

Usage: AllowOverride All|None|directive-type [directive-type] ...

This sets which directive types are permitted to be overridden from the main Apache server configuration
within an .htaccess file. Directive types are:

❑ AuthConfig: Authorization directives such as AuthName, AuthType, Require, etc.

❑ Action

❑ FileInfo: Directives that handle the following:

❑ Document types such as ErrorDocument, SetHandler, etc.

❑ Meta-data such as BrowserMatch, CookieName, Header

❑ mod_rewrite directives

Indexing Directives
There a several directives that control various aspects of how a request for a URL that is a directory,
meaning a URL not containing a specific filename, is handled. These would include which specific icons
to use for specific file types in directory listings. Also, of these directory index directives, there is the
IndexOptions directive that provides numerous options on how a directory index is displayed, influenc-
ing column widths, sorting order, and precedence per column.

DirectoryIndex

Usage: DirectoryIndex file [file] ...

This specifies the filename to use when a client requests a URL that ends in a directory, without a speci-
fied file. For instance, if the URL requested is http://somesite.com/info and the DirectoryIndex value
is index.html, the actual file served out will be http://somesite.com/info/index.html.

454

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 455

Chapter 11: Apache

HeaderName

Usage: HeaderName filename

This causes the file filename to be included at the top of a directory listing.

IndexOptions

Usage: IndexOptions [+|-] option [[+|-] option] ...

This sets which options to use for directory indexing. It provides numerous options, more than most
users would ever need, for adjusting how directory indexes are displayed.

The various options for use with IndexOptions are listed in the following table:

Option Description

FancyIndexing Turns on the sorting of files based on column headers in the index dis-
play. Options that can be used with FancyIndexing are:

❑ HTMLTable: Use a table for displaying directory index.

❑ FoldersFirst: List directories first.

❑ IconsAreLinks: Makes it so icons are links to the filename
or directory listed.

❑ ScanHTMLTitles: Scan title elements of HTML documents
used for display in directory listing.

❑ SuppressDescription: Turns off file descriptions in direc-
tory listing.

❑ SuppressIcon: Turns off display of icons in directory list-
ing.

❑ SuppressLastModified: Turns off last modification date in
directory listing.

❑ SuppressFileSize: Turns off file size in directory listing.

IconHeight, IconWidth,
=pixels

The dimensions (height or width) of the directory index icons.

IgnoreCase Sorts directory contents in order regardless of case.

IgnoreClient Ignores query variables from client.

NameWidth Sets the width of the filename column.

ShowForbidden Shows files that would otherwise be hidden due to HTTP_FORBIDDEN
or HTTP_UNAUTHORIZED.

SuppressHTMLPreamble Turns off display of the HTML file specified in HeaderName directive.

SuppressRules Turns off <hr> tags used in directory listings.

Continued

455

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 456

Chapter 11: Apache

(continued)

Option Description

TrackModified Turns on Last-Modified as well as ETag (content change response
header) for directory listings.

VersionSort Turns on sorting of files by filename version number.

XHTML Turns on the printing of the directory index using XHTML instead of
HTML.

An example would be:

IndexOptions FancyIndexing VersionSort

IndexOrderDefault

Usage: IndexOrderDefault Descending|Ascending Name|Date|Size|Description

Sets which column the directory index is ordered by when it is displayed.

HeaderName

Usage: HeaderName file

This defines a file that is prepended to directory listing. This is one way you could put design into direc-
tory indexes, or some sort of logo for your site that shows up on directory listings.

And example of this would be:

HeaderName /header.html

AddIcon

Usage: AddIcon icon-name file-name|file-extension [icon-name file-exension] ...

This sets the icon to use in directory indexing, with FancyIndexing enabled, for the given file or directory
name, or filename glob. You can customize your site’s directory listing by simply making your own icons
and setting them with AddIcon.

Examples would be the following:

AddIcon /icons/hand.right.gif README
AddIcon /icons/folder.gif ˆ ˆ DIRECTORY ˆ ˆ
AddIcon /icons/blank.gif ˆ ˆ BLANKICON ˆ ˆ
AddIcon /icons/dvi.gif .dvi
AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl
AddIcon /icons/bomb.gif core

456

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 457

Chapter 11: Apache

AddIconByEncoding

Usage: AddIconByEncoding icon MIME-encoding [MIME-encoding] ...

This sets the icon to use in a directory listing per the MIME content encoding of the file, with
FancyIndexing enabled. Here is an example of compressed files being set to an image representing a
compressed image:

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip x-bzip2

AddIconByType

Usage: AddIconByType icon MIME-type [MIME-type] ...

This sets the icon to use in a directory listing per the MIME type encoding of the file, with FancyIndexing
enabled. An example of setting the type for entire directories containing various types would be this:

AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*

DefaultIcon

Usage: DefaultIcon url-path

This sets the default icon to use in a directory index listing, with FancyIndexing enabled, when there
isn’t an icon set for the filename being displayed. An example would be this:

DefaultIcon /icons/dunno.gif

IndexIgnore

Usage: IndexIgnore file [file] ...

This sets names of files or patterns of filenames that directory indexing should ignore. Use this to hide
files you don’t want seen by people perusing your site. An example would be this:

IndexIgnore .??* *∼ *# HEADER* RCS CVS *,v *,t *.hg *.svn

CGI Directives
CGI scripting, which will be discussed more in the next chapter, has several directives for handling how
to execute CGI scripts. With Apache 2.x, CGI is now provided by the module mod_cgi, as well as other
directives provided by mod_alias.

The first thing you want to do to use CGI is to ensure mod_cgi is loaded. This is pretty much the default
for most Apache installations, both source or packaged:

LoadModule cgi_module /usr/lib/apache2/modules/mod_cgi.so

457

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 458

Chapter 11: Apache

The next setting you’ll often see in an Apache configuration file for CGI scripts is to alias a site URL to a
directory containing CGI programs:

ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

Then the actual directory has various directives to ensure CGI is executed. Here is an example:

<Directory "/usr/lib/cgi-bin">
AllowOverride None
Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all

</Directory>

ScriptAlias

Usage: ScriptAlias URL-directory directory

This allows you to set a relative URL directory to be the alias, or to respond to an actual directory that may
be out of your DocumentRoot directory (recommended). You may have your CGI scripts and programs
(CGI can be written in any language, interpreted or compiled).

ScriptAliasMatch

Usage: ScriptAliasMatch regex path

Works just as ScriptAlias does except it allows you to use regular expressions to match against a
requested CGI URL. An example would be:

ScriptAlias ˆ /perl/(.*) /var/www/perl-scripts/$1.pl

This allows execution of programs with no file extension. For instance, the URL form of
/perl/programname will be executed with the actual file being executed /var/www/perl-scripts/
programname.pl

User Directory Directives
You may be a site administrator or developer who has to manage a multiuser or multihosting setup. User
directories allow users to have their own directory into which they can place web site content. Depending
on how you, the administrator, have it set up, you can permit users to have various functionalities, such
as CGI scripting, mod_perl with Apache::Registry, PHP, and other dynamic web functionalities. You can
also permit users to use .htpasswd to set a number of settings using the AllowOver.

UserDir

Usage: UserDir directory [directory] ...

UserDir enabled|disabled user [user] ...

458

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 459

Chapter 11: Apache

Sets these parameters:

❑ The directory path within a user’s home directory that is used as a user directory, one that
http://sitename.com/∼user goes to. This can be a list of directories to attempt to use in the
order that they are listed.

❑ Enable or disable for a list of particular users.

Next, we show a full-fledged example of setting up a user with a user directory to allow for the
following:

❑ User directory site for documents.

❑ Disabled for the users ‘‘root,’’ ‘‘wheel,’’ ‘‘mysql,’’ ‘‘ingleburt,’’ and ‘‘engelbert humperdinck.’’

❑ Enabled for ‘‘patg,’’ ‘‘capttofu,’’ ‘‘brian,’’ and ‘‘chandra.’’

❑ Allowance of GET, POST, OPTIONS methods for any client, disallowance for all other methods.

❑ CGI scripting.

<IfModule mod_userdir.c>
UserDir public_html
UserDir disabled root wheel mysql ingleburt humperdink

UserDir enabled patg capttofu brian chandra

<Directory /home/*/public_html>
AllowOverride FileInfo AuthConfig Limit Indexes
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS>

Order allow,deny
Allow from all

</Limit>
<LimitExcept GET POST OPTIONS>

Order deny,allow
Deny from all

</LimitExcept>
</Directory>
<Directory /home/*/public_html/cgi-bin>

Options +ExecCGI
SetHandler cgi-script
</Directory>

</IfModule>

VirtualHost Directives
As from the earlier section on Apache configuration section directives, the <VirtualHost> directive is
the tag you use to define a virtual host. What is a virtual host? As many of you reading this know, a
virtual host is the means of supporting multiple web sites, each with their own domain name, on the
same server.

459

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 460

Chapter 11: Apache

Types of Virtual Hosting
There are two types of virtual hosting:

❑ IP-based: This is where the server running Apache would be configured with multiple IP
addresses, using either real or virtual network interfaces, with each web server using each IP to
respond to requests to particular web site DNS domain or host.domain

❑ Name-based: This is where Apache is configured to respond to multiple web sites with different
domain names on the same IP address. Each domain has a different document root with its own
set of documents being served based on the domain of the URL.

The <VirtualHost> configuration section directive has been covered already, but there is one more
directive that is required if you use name-based virtual hosting: NameVirtualHost.

NameVirtualHost

Usage: NameVirtualHost addr[:port]

This specifies the IP address and port, if supplied, that requests for a particular virtual host will respond
to. The other important piece of this is the value you supply with the ServerName directive:

NameVirtualHost 192.168.1.120

Or, you can even use an asterisk to allow for all network interfaces to be used:

NameVirtualHost *

Here is a simple example of a simple virtual host, using all interfaces:

NameVirtualHost *
<VirtualHost *>

ServerName mysite.com
ServerAlias www.mysite.com
ServerAdmin webmaster@localhost
DocumentRoot /var/www/mysite
<Directory />
Options Indexes FollowSymLinks MultiViews
AllowOverride None

</Directory>
</VirtualHost>

Handler and Filter Directives
An Apache handler is a functionality that handles, or processes, particular types of files, and generates
some sort of content. For instance, the perl-script handler is a handler that processes Perl code through
mod_perl, interpreting the Perl code and generating an output that is served to the client. Another
example is server-status, an Apache status handler that provides status information for the running
Apache server, which it displays on an information page.

460

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 461

Chapter 11: Apache

An Apache filter is a new Apache 2.0 feature that allows for processing of both ingoing and outgoing
data, independent of the Apache request phase cycle. Filters allow you to either modify the data coming
in from the client in the request body or from the connection as a whole, as well as the response body.

AddHandler

Usage: AddHandler handler-name file-extension

This sets the handler of a file based on the file extension. A handler is a process that through Apache
parses and acts accordingly to a particular file type, producing output that Apache returns to the client.
For instance, cgi-script is a handler that causes Apache to call the Perl interpreter to run a Perl script
and to return the output of the script’s execution in the web server response. The following example
would make it so any file in the URL /cgi-bin with a .pl or .cgi extension is handled as CGI script:

ScriptAlias /cgi-bin /usr/local/apache2/sites/default/cgi-bin
<Directory /usr/local/apache2/sites/default/cgi-bin>
AddHandler cgi-script .cgi
AddHandler cgi-script .pl
SetOptions +ExecCGI

</Directory>

SetHandler

Usage: SetHandler handler-name|None

This sets the handler of an entire directory or URL path and is used within <Location> and <Directory>
sections:

<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from localhost 127.0.0.1

</Location>

In this case, SetHandler forces any request to the /server-status URL to be processed with the server-
status handler. Another handler example is setting an entire directory so that any access to the URL
/perl, will be run as an ModPerl::Registry script (ModPerl::Registry and mod_perl will be covered in
more detail in a later chapter).

<Location /perl>
SetHandler perl-script
PerlHandler ModPerl::Registry
Options +ExecCGI
allow from all
PerlSendHeader on

</Location>

AddInputFilter

Usage: AddInputFilter filter[;filter...] file-extension

461

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 462

Chapter 11: Apache

This allows you to add a filter for input processing. For instance, you could enable PHP by using this
directive with the example below:

<Location />
AddInputFilter PHP .php

</Location>

AddOutputFilter

Usage: AddOutputFilter filter[;filter...] file-extension

This sets the filter that will be used for the output of data. The following is an example of making it so
that html, shtml, htm and php files are processed through mod_layout, which is an Apache module that
provides a Header and Footer directive to automatically include output from other URIs at the beginning
and ending of a web page:

AddOutputFilter LAYOUT html
AddOutputFilter LAYOUT shtml
AddOutputFilter LAYOUT htm
AddOutputFilter LAYOUT php

Client Handling
Apache provides the ability to respond differently based on the request headers of the client. This is
useful to avoid having problems with browsers that do not support the most recent features or that have
problems with certain features.

BrowserMatch

Usage: BrowserMatch user-agent-pattern [!]env-variable[=value] [[!]env-
variable[=value]]

BrowserMatch response-behavior

BrowserMatch sets environment variables and response behavior, depending on the browser user-agent
string, as shown in the following table:

String Function

Nokeepalive Disable keepalive for this connection

downgrade-1.0 Change the HTTP protocol to conform to HTTP 1.0

force-response-1.0 Force the response to conform to HTTP 1.0

redirect-carefully Redirect

Here is an example:

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

462

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 463

Chapter 11: Apache

SSL Directives
Running a secure web server is a must if you are going to be building an e-commerce web site, and
accordingly, you need to encrypt transactional data between your web server and the customer’s
browser. Additionally, you need to assure users that your site is indeed the site they wished to connect
to. With the module mod_ssl, Apache has all the functionality you need to implement a secure web
server. mod_ssl provides SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols, including
the functionality for the server to guarantee that it is legitimate and is the organization or entity it claims
to be through the use of a signed certificate. A signed certificate is a digital certificate that a verifying
organization such as Verisign digitally signs, vouching for the authenticity of your organization.

The client/server communication process using SSL/TLS is as follows:

1. Handshake: The client provides a list of the ciphers and hash functions it supports.

2. Cipher and hash function selection: From the list of ciphers and hash functions the client
provided, the server picks the strongest of those that it also supports and notifies the client
of the one that both the client and the server will use for the connection.

3. Identification: To identify itself, the server sends back its certificate containing the server’s
name, public key, and CA (certificate authority).

4. Verification: The client verifies the certificate with the CA the server provides either by veri-
fying against its own local CA information or by connecting to the server of the CA issuer.

5. Session key generation: The client generates a session key comprising the encrypted
server’s public key with a random number and sends this session key to the server. Since
this session key was created with the server’s public key, only that server can decrypt it.

6. Communication: Of the session key components, the random number, which both the server
and client possess, will be used for all subsequent information sent between the server and
client.

The following section will cover some of the more common SSL directives required for running a secure
server.

To use any of these SSL directives, many Apache configurations will utilize the <IfModule> directive
only if mod_ssl is loaded:

<IfModule mod_ssl.c>
...SSL Directives...
</IfModule>

SSLEngine

Usage: SSLEngine On|Off

This turns SSL/TLS on or off. It is used within a <VirutalHost> section. Here is an example of a simple
SSL-enabled site:

NameVirtualHost *:443
<VirtualHost *:443>

SSLEngine On
</VirtualHost>

463

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 464

Chapter 11: Apache

In this example, the standard secure HTTPS port of 443 is used.

SSLRequireSSL

Usage: SSLRequireSSL

Forces the use of SSL (HTTPS) to connect, and denies any requests to connect without SSL. This would
be a directive you would use within a virtual server running SSL.

SSLCertificateFile

Usage: SSLCertificateFile file-path

This is the X.509 PEM-encoded certificate file used for verification of the authority of the server. Often
you will create a self-signed certificate, which is fine for testing, but if you intend to run an actual secure
web site, you’ll have to get it signed by a signing authority such as Verisign. This file can also contain
the DSA or RSA private key. If it does, it can be specified twice if you intend to have a private key for
both DSA and RSA. You should, as good practice, have your private key(s) in a separate file, as specified
by the directive SSLCertificateKeyFile.

Another issue to keep in mind: If the private key is encrypted, you will have to supply a password
upon server startup. It’s up to you as to whether you want to encrypt your private key. The pros for
having a password are that you can be assured that your key is password protected, which if it wasn’t,
in the unlikely event (you have your system locked down, right?) someone were to hack into your web
server, they could potentially use it to decrypt a TCP dump, or could possibly create false authentication
certificates. This sounds bad, but is very unlikely.

The cons of having your key password protected are that you have to supply the password on startup.

For most pros, if someone hacks into your web server and obtains root access, you have bigger prob-
lems. And if they can get that far, they might even be able figure out the password to your key. Happy
thoughts, happy thoughts!

Seriously, for most web system administrators, not having a key works fine. Just make sure you have
good system security!

An example of SSLCertificateKeyFile is this:

SSLCertificateFile /etc/apache2/ssl/apache.pem

SSLCertificateKeyFile

Usage: SSLCertificateKeyFile file-path

This specifies the file containing the private key, if you didn’t include your server’s private key file in
your certificate file, SSLCertificateFile. As stated before, if your server’s private key is encrypted, you
will have to supply a password every time you start your web server.

464

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 465

Chapter 11: Apache

An example of SSLCertificateKeyFile is this:

SSLCertificateKeyFile /etc/apache2/ssl/apache.key

SSLSessionCache

Usage: SSLSessionCache type

Defines a session cache type that can be used among various HTTP processes for a given session. In the
case that the page being served has images, this requires being able to serve multiple requests in parallel
requiring multiple processes, all of which need access to the same session information. Using this cache
can provide a performance gain.

The value for session cache type has a number of options:

Value Description

None Disabled

Nonetonull Disabled, but enables sending of a non-null session id to the client

dbm:/path/file Using a DBM file

shm:/path/file[size] Using shared memory

dc:UNIX/path/socketfile Distcache, a distributed network-based session cache

It’s important to know that you cannot set this value within a <VirtualHost> section. You could do
this, however, if you use a separate file that you include into your main Apache configuration file using
Include. You would need to specify this at the top of the file, as shown in the following example:

NameVirtualHost *:443
SSLSessionCache shm:/etc/apache2/ssl/session_cache_shm
SSLSessionCacheTimeout 300
<VirtualHost *:443>
...
</VirtualHost>

SLSessionCacheTimeout

Usage: SLSessionCacheTimeout [seconds]

This defines how long to keep the session cache and when to expire it. The default is 300.

SSLMutex
Usage: SSLMutex [type]

This defines a mutex to use for synchronizing Apache forked processes. The mutex type can be one of
the following:

465

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 466

Chapter 11: Apache

Type Description

default Let Apache decide which type, out of all types, to use based on availability
and platform/OS

none No mutex, disabled

pthread Posix threads

fcntl:/path/file Lock file, using fcntl()

flock:/path/file lock file, using flock()

posixsem Posix semaphore

sysvsem SystemV Unix semaphore

sem Let Apache pick the best semaphore

Important to note is that SSLMutex directive cannot be used within a <VirtualUser> section. As with
other options with this requirement, you can simply opt to include it at the top of your virtual host
configuration file that you include from the main Apache configuration file, like so:

NameVirtualHost *:443
...

SSLMutex pthread
<VirtualHost *:443>
...
</VirtualHost>

Limitations when Using Virtual Hosts and SSL
There are some limitations with using virtual hosts and SSL that are due to how the SSL protocol works:

❑ You can not use name-based, non-IP virtual hosts due to the design of the SSL protocol.

❑ You can not use name-based virtual hosts to identify different virtual hosts.

For more information, see http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#vhosts and
http://www.oreillynet.com/pub/a/apache/2005/02/17/apacheckbk.html

Clickstream Analysis
The module mod_usertrack tracks users throughout your site using a cookie, which you name. You then
use CustomLog to define a log that tracks only this cookie and can then view the clickstream analysis,
which is a marketing term for what URLs a user visits within your site. Follow these short steps:

1. Define a cookie log format in your main Apache configuration file:

LogFormat "%{cookie}n %r %t" cookielog

2. Define a log that uses this format in the virtual host file of the site for which you want user
tracking:

466

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 467

Chapter 11: Apache

CustomLog /var/log/apache2/patg_cookie.log cookielog

3. Make sure that mod_usertrack is enabled:

LoadModule usertrack_module /usr/lib/apache2/modules/mod_usertrack.so

With distributions like Ubuntu, you would run sudo a2enmod usertrack.

4. In either the main Apache configuration file or the virtual host configuration file, turn on
CookieTracking:

CookieTracking on

5. Restart Apache, tail the new log, and you’ll see entries like these:

10.222.182.1.1238500307149019 GET /book/ HTTP/1.1 [31/Mar/2009:09:02:12
-0400]
10.222.182.1.1238500307149019 GET / HTTP/1.1 [31/Mar/2009:09:02:12 -0400]
10.222.182.1.1238500307149019 GET /back.gif HTTP/1.1 [31/Mar/2009:09:02:12
-0400]
192.168.1.118.1238504695026736 GET / HTTP/1.0 [31/Mar/2009:09:04:55 -0400]

With this information, you can now parse this file into some sort of site stats analysis software (let
the marketing people do this for you!) Also, analyzing click stream data, or generating stats of your
access_log is one way to find out about issues with you web site or web application. It’s not just a mar-
keting tool, but another useful tool in the toolbox of the web developer.

The following table shows the various Apache options for configuring the cookie used for clickstream
analysis.

Option Usage Description

CookieTracking CookieTracking on|off Enables or disables user-tracking cookie.

CookieName CookieName name This is the name of the cookie that is used for
user tracking clickstream analysis. Default
name is Apache.

CookieDomain CookieDomain domain This is the domain value of the cookie that is
used for user tracking, found in the cookie
headers. The domain name must begin with a
dot. Here is an example: CookieDomain
.patg.net

CookieExpires CookieExpires expiry Defines the amount of time for the
user-tracking cookie to expire. You can use
either numeric seconds (non-quoted), or string
values such as ‘‘3 months 1 week 1 day,’’ etc.
(must be years, months, weeks, days, hours,
minutes, seconds). An example would be:
CookieExpires "6 months"

467

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 468

Chapter 11: Apache

Rewriting URLs
One of the most powerful tools for Apache is manipulating URLs using mod_rewrite, an Apache module
that lets you change the incoming request URL and transparently direct the client to the new, modi-
fied URL. mod_rewrite manipulates a URL based on the pattern of the source URL, environment and
server variables, as well as several other conditions. Being a Perl developer, you will especially love
mod_rewrite because of its support of regular expressions to test the patterns!

To fully explain mod_rewrite would require a book of its own. There are many great resources out there
for studying to become a mod_rewrite guru.

This section won’t attempt to make you a guru, but will give you a taste of what you can do with
mod_rewrite. Explaining the various rewrite directives will provide a framework from which to begin.

RewriteEngine

Usage: RewriteEngine On|Off

This option not surprisingly turns rewrite functionality on or off. This directive might not work in
.htaccess depending on how Apache is configured.

RewriteCond

Usage: RewriteCond string regex [flags]

This defines a rule condition, which is a value of string that is matched against a regular expression,
regex, used by a subsequent rewrite rule defined as RewriteRule to apply modifications to the URL
based on the rule condition evaluating as true. The optional [flags] argument is used to further modify
the RewriteCond condition.

The way it works is this: you have one or more RewriteCond directives to match whatever pattern you
are looking for, and if all are evaluated as true (they are implicitly ANDed unless using the [OR] flag is
used), the RewriteRule directive is applied, thus modifying the URL.

Essentially, you would see something like the following:

RewriteCond string regex1 # is this true?
RewriteCond string regex2 # is this true?
RewriteCond string regexN # is this true?
...
RewriteRule pattern <substituted URL> # all previous RewriteCond and this are true?

So what you often end up with are groupings of RewriteCond directives with their do-something-please
RewriteRules. The more complex your site, the more of these you will have!

Test String
The value of string can be a simple value or can refer to numerous variables. Refer to the Apache doc-
umentation to learn all the variable names that are available. They are organized into the following
groups:

468

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 469

Chapter 11: Apache

Group Description

Server Variables This would be a way of matching the host of the client:

RewriteCond %{HTTP_HOST} ˆ (.*).somesite.com$

Server Internals Matching the document root’s first directory name:

RewriteCond %{DOCUMENT_ROOT} ˆ /(\w+)/.*$

HTTP Headers Matching the user agent, which has all sorts of useful applications!

RewriteCond %{HTTP_USER_AGENT} " ˆ Googlebot/"

Connection and
Request

Matching the class C networks 172.16.220.0 through 172.16.229.0:

RewriteCond %{REMOTE_ADDR} " ˆ 172\.16\.22[0-9]\."

Date and Time This example would be for matching date and time to December

RewriteCond %{TIME_YEAR} ˆ (11)$

Special Variables Testing for Apache version 1.x:

RewriteCond %{API_VERSION} " ˆ 1\."
RewriteCond %{THE_REQUEST} "GET"

Look-ahead This is a feature that allows you to see how the request will resolve, or look
ahead at what it will be, since rewriting occurs at a stage prior to when some
variables may be set. You can use this feature with any of the variables men-
tioned, for instance:

RewriteCond %{LA-U:REQUEST_FILENAME} ˆ /memberhandler/(.*)

Back-References
You also have access to back-references to both RewriteRule and RewriteCond matches within group
parts (inside parentheses). For example, to have a back-reference in a RewriteCond to the grouped parts
of the subsequent RewriteRule, you use $N back-references — with N denoting a number from 0 to 9,
starting from the first grouped part. Do realize, however, that with RewriteRule, $0 is the URI being
tested, $1 the actual first group match. For back-references to the group matches of the last matched
RewriteCond having group matches, you would use %N, with N being a number from 1 to 9.

capture the last two octets of the IP address being tested
RewriteCond %{REMOTE_ADDR} 172\.16\.([\d]+)\.([\d]+)

Set environment variable CAPTTOFUS_COMPUTER equal to the last
octet, captured by the second grouping in the previous RewriteCond
$0 is the actual URL being tested of the RewriteRule, $1 is
the first actual group match, the base name of the Perl program.
RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1 [E=CAPTTOFUS_COMPUTER:%2]

The previous example shows how both types of back-references work. Shown in this example are the
RewriteCond directive and a RewriteRule, which will be discussed soon. Essentially these use back-
references, two from the last RewriteCond having group matches which are referenced as %1 and %2, and
a back-reference from itself, $1, which captures the base name of the Perl script. It then rewrites the URL

469

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 470

Chapter 11: Apache

to a mod_perl handler named the same as the base name of the Perl script, and sets the environment
variable CAPTTOFUS_COMPUTER to the value of the second group match of the RewriteCond: the last octet
of the IP address.

If the REMOTE_ADDR happens to be 172.16.221.183, %1 will have the value of 221 and %2 will have the
value of 183. Finally, for the RewriteRule, if you’re testing the URI value of /perl/user.pl, the
group match will result in $1 having the value of user, which it then substitutes into the result URL,
/handlers/user. The special action flag of [E=CAPTTOFUS_COMPUTER:%2] sets the environment variable
CAPTTOFUS_COMPUTER to %2, which was 183.

Let’s distill what the end result of the example : If the user accesses http://example.com/perl/user.pl,
the value of the requested URL that is tested is /perl/user.pl, and the request of the user originates
from 172.16.221.183, then the request is ultimately served by the mod_perl handler /handlers/user with
CAPTTOFUS_COMPUTER being 183, which you would access in the Perl code as $ENV{CAPTTOFUS_COMPUTER}.
The address value of http://example.com/user.pl in the address bar on the browser will not change.
And it will appear that the user accessed the page with http://example.com/handlers/user despite
that being the actual URL that served the request. This is because all this work is being done internally in
Apache (internal redirect).

Now, if you want a request to end up visibly being served as http://example.com/handlers/user, you
would change the previous example to the following:

RewriteCond %{REMOTE_ADDR} 172\.16\.([\d]+)\.([\d]+)

RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1?HOST_IP=%2 [R]

In the previous example, the same group matches occur. The real difference is that the [R] (redirect) flag
is applied, which causes an external redirect, ‘‘302 Moved Temporarily’’ to the substituted URL, in this
case http://example.com/handlers/user?HOST_IP=183.

You will also notice the absence of the special flag to set the environment [E=HOST_IP:%2] and the addi-
tion of a query string value of HOST_IP. This is because the environment variable can only be set in the
redirect rule within the same request. By redirecting, it becomes another request and the environment
variable set would be lost.

One other very important thing to consider: back-references can only be used by one rule. After they are
used, they are unset. The author found this out by trial and error in coming up with examples for this
book, and has the logs to prove it! For instance, if you had:

RewriteCond %{REMOTE_ADDR} 172\.16\.([\d]+)\.([\d]+)
RewriteCond %1 221
RewriteCond %2 183

. . . the test of %1 against 221 would be true, but the test in the next rule of %2 against 183 would
actually be testing "" against 183. This is because %2 is unset in the second RewriteCond. This also
means that %2 in the RewriteRule is unset.

Rewrite Map Extensions
This is a feature where you can define a rewriting map file which contains named (by key) patterns, or
can even be a program that the server passes data to, which can be used in RewriteRule directives. Let’s
look at an example:

470

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 471

Chapter 11: Apache

RewriteMap mymap txt:/etc/apache2/maps/mymap.txt

. . . would contain an entry like this:

pattern1 perl|cgi|.pl

. . . and then the RewriteCond would be:

RewriteCond ${mymap:pattern1}

Conditional Pattern
The conditional pattern regex is a Perl-compatible regular expression. Since one of the main topics of this
book happens to be Perl, it is assumed you are familiar with regular expressions. You can also use the
following expressions:

Expression Description

< (less than), > (greater than), = For non-regular expression lexical comparisons

-d, -f, -s, etc, Also, for non-regular expression lexical comparisons. You
can use any of the file tests you have with Perl. These were
previously discussed in Chapter 4.

-F A flag for testing if the file is accessible via the server using
a subrequest.

-U A flag for testing if a URL is accessible via the server using
a subrequest.

Flags
These flags let you further modify how RewriteCond behaves:

[OR] or [ornext]

Normally, RewriteCond conditions preceding a RewriteRule are explicitly ANDed, meaning that all
conditions have to evaluate as true for the RewriteRule to be applied. For instance, you could have a list
of specific network IP address ranges that are internal to your organization for which you don’t want to
have pop-up advertisements displayed. You might use an environment variable to set whether pop-up
ads display. The following rewrite block would accomplish this using the [OR] flag:

RewriteCond %{REMOTE_ADDR} " ˆ 10\.17\.221\.14[0-9]\." [OR]
RewriteCond %{REMOTE_ADDR} " ˆ 192\.168\.1\" [OR]
RewriteCond %{REMOTE_ADDR} " ˆ 172\.16\.22[0-9]\."
RewriteRule ˆ .* - [E=SECRET_NO_POPUP_VAR:1]

The following are the flags you would use:

❑ [NC] or [nocase]: Allows the pattern matching of TestString and CondPattern to be case
insensitive.

471

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 472

Chapter 11: Apache

❑ [NV] or [novary]: Prevents an HTTP header that is being tested from being added to the Vary
header of the response. The author knows of no one who uses this.

RewriteRule

Usage: RewriteRule condition-pattern substitution [flags]

The RewriteRule directive performs the actual directory manipulation depending on whether the condi-
tion it checks evaluates as true. When a RewriteRule is evaluated as true, whatever substitution value is
defined is then performed on the condition. Whether a RewriteRule is evaluated as true is based upon
how any previous RewriteCond directives were evaluated — all are required to be evaluated as true
unless you use the [OR]type with the preceding RewriteCond directives. The condition RewriteRule tests
is the URL being requested on the first RewriteRule, and on the output of preceding RewriteRules that
it evaluated as true — meaning the manipulated value of the URL because the preceding RewriteRule
modified it.

Condition-Pattern
This is a regular expression, just as you would use in Perl. As previously stated, the condition pattern
test is applied to the initial URL being requested upon the first RewriteRule directive. And then the test
is performed on the now-modified URL (from the preceding RewriteRule) in subsequent RewriteRule
directives. For instance, the following example, which ultimately results in nothing happening, can be
used to explain how this works:

❑ A RewriteCond checks the variable HTTP_HOST, which happens to be patg.net, and evaluates as
true.

RewriteCond %{HTTP_HOST} patg\.net

❑ A RewriteRule tests the URL being requested, which in this case happens to be /perl/user.pl,
which with the group match, captures the value user into the first grouping variable $1. It then
modifies the URL to be /handlers/user:

RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1 # value being tested is
/perl/user.pl

❑ Another RewriteCond rule tests the variable REMOTE_ADDR, which for this discussion happens to
be 192.168.1.200, against the pattern ˆ 192\.168\.1. It evaluates as true. This could be any
RewriteCond test — the variable REMOTE_ADDR is used here only for the sake of discussion.

RewriteCond %{REMOTE_ADDR} ˆ 192\.168\.1

❑ A RewriteRule tests the output of the last RewriteRule, which was /handers/user capturing in
a group the value user. It then substitutes the value user, making the output /perl/user.pl all
over again!

RewriteRule ˆ /handlers/(\w+)$ /perl/$1\.pl # value being tested is
/handlers/user

472

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 473

Chapter 11: Apache

So, these steps resulted in nothing happening — the URL was changed to /handlers/user, but then
changed back to the original URL of /perl/user.pl. This is a good way to describe how RewriteRule, in
conjunction with RewriteCond, works and how the first value tested by a RewriteRule is the URL, and
subsequent RewriteRule directives test the output of the last match.

Substitution
Substitution works the same as substitution using Perl regular expressions. In the following snippet:

$val =∼ s/oldval(foo)/someval\/$1/

. . . someval\/$1 is the substitution, and for RewriteRule, the same type of syntax can be used.

The types of values suitable for substitution are the following:

❑ File system path.

❑ URL path, relative to DocumentRoot.

❑ Absolute URL, with schema and hostname, such as http://example.com/mydir. If the URL is
the same host as the web server host, then the URL is stripped down to a URL path. So, if it were
example.com, it would end up as /mydir.

❑ Server variables, as shown with RewritCond, i.e., ${HTTP_HOST}, ${REQUEST_URI}, . . .

❑ Map file, ${mymap:pattern1}.

❑ $N, with N being 0 to 9 and representing the values captured in a pattern grouping from
RewriteRule pattern matching. Note: $0 is the value being tested.

❑ %N, with N being 1 to 9 and representing the values captured from the previous (last)
ReewriteCond that had a pattern match with a grouping that evaluated as true.

❑ - (dash), which means URL manipulation is not performed and no action is taken.

Flags
Just as with RewriteCond, you can specify flags:

Flag Description

[B] Escape back-references. Ensures that the URLs being rewritten will work
with proxying.

[C] or [chain] Works like Christmas tree lights — if one is out, then they all are out.
Makes it so the next rule requires the current rule to be evaluated as true,
otherwise neither will evaluate as true nor activate. Works like a logical
AND where any failure of one negates all.

The following code allows you to set a cookie when evaluated as true:

[CO=name:value:domain[:expiration[:path[:secure[:httponly]]]]

473

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 474

Chapter 11: Apache

Or you can use this:

[cookie=name:value:domain[:expiration[:path[:secure[:httponly]]]]

The fields can be described as:

Field Description

name String name of the cookie

domain Domain of the cookie such as wrox.com

expiration Numeric, in minutes

path The path the cookie is set for, such as /handlers

secure Forces cookie to only be used for HTTPS

httponly Prevents JavaScript from reading the cookie

Here is how this useful feature could be applied to the previous example:

RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1
[E=HOST_IP:%{REMOTE_ADDR},CO=REDIR:%{REMOTE_ADDR}:%{HTTP_HOST}:600:/handlers]

Along with setting the environment variable HOST_IP, a cookie named REDIR is set with the value of
the client making the request. The domain is set to that of the web server, the path of the URI is now
/handlers, and an expiration of 10 hours is established.

The following table shows you the list of special flags for substitution. These are appended as the third
argument to RewriteRule directives:

Value Description

[E:name:value] or
[env:name:value]

Sets an environment variable, as previous examples have shown.

[F] or [forbidden] Causes the server to send the code for FORBIDDEN, 403.

[G] or [gone] Causes the server to send the code for GONE, 410.

[H=content-handler] or
[handler=content-handler]

Sets a content handler. You could use this to make a matched rule
respond with a cgi-handler, just for the Perl scripts — though you
do have to have ExecCGI option set for the directory. An example
would be this:

<Directory /var/www/apache2-default/docs>
Options +ExecCGI
</Directory>
RewriteRule /docs/\w+\.pl

- [H=cgi-script]

474

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 475

Chapter 11: Apache

Value Description

[L] or [last] Makes the current RewriteRule that last rule. No further rewrite
rules will be evaluated.

[N] or [next] Creates a loop; the rewrite process starts over again from the first
RewriteRule. This can be deadly if you don’t know what you’re
doing because it could result in an endless loop. Luckily, Apache
will detect such a thing, break out of it, and then report the prob-
lem to the browser.

[NC] or [nocase] Makes the pattern matching case insensitive.

[NE] or [noescape] mod_rewrite normally performs URLs escaping, modifying cer-
tain characters into hexcode equivalents. For instance, a space is
converted to %20. This flag turns off this escaping behavior.

[NS] or [nosubreq] If the current request is a subrequest, the current rewrite rule will
not run.

[P] or [proxy] Causes the substituted URL to be internally processed as a proxy
request via mod_proxy. The substitution URL must have a scheme
and hostname in the URI of the proxy server to which it will be
sent.

[PT] or [passthrough] Allows for the use of the output of the current RewriteRule by
other modules or directives that occur after the rewrite stage. This
flag works as a [L] flag, in that it causes the current rule to be the
last RewriteRule processed.

[QS] or [querystring] Allows a query string to be passed, when not redirecting. This
solves a common dilemma.

[R=http_code] or
[redirect=http_code]

This causes the substituted URL to be accessed via an external
redirect. If the RewriteRule is:

RewriteRule /fee/foo /foo/fee [R]

. . . and the domain being accessed is example.com, the URL
being accessed ends up being http://example.com/foo/fee
using a temporarily redirect (code 302). HYPERLINK
‘‘http://example.com/foo/fee‘‘[R=301] or [R=permanent]
must be used if the old URL shouldn’t be used anymore (e.g., for
SEO — Search Engine Optimization — purposes), instead of [R],
[R=302], [R=temp] (the default).

Also important to note is that if you set values that are per-request,
such as environment variables using the [E] flag, they will be lost
in the redirection.

[S=number] or
[skip=number]

Causes the rewriting process to ignore the number of
RewriteRules defined succeeding the current rule if the current
rule evaluates as true.

Continued

475

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 476

Chapter 11: Apache

(continued)

Value Description

[T=mime-type] or
[type=mime-type]

Allows you to set the mime type for how the server will handle a
particular resource. An example of this would be where you have
images that have no file extension stored in a specific URL, say for
instance a directory named /image_repo:

RewriteRule /image_repo - [T=image/jpeg]

This RewriteRule would allow the url /image_repo/img_0133
to be served as a jpeg. You certainly would have to make sure,
though, that all the files in that directory were real jpegs!

Now let’s look at a couple of more extensive examples (that couldn’t fit in the table!).

❑ For the [QS] or [querystring] flag:

RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1?QS_HOST_IP=%{REMOTE_ADDR} \
[E=ENV_HOST_IP:%{REMOTE_ADDR}]

This would pass the environment variable ENV_HOST_IP but not pass the query string
QS_HOST_IP=192.168.1.200.

The following code would be one way to pass the query string but not pass the environment
variable ENV_HOST_IP since it is a redirect:

RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1?QS_HOST_IP=%{REMOTE_ADDR} \
[E=HOST_IP:%{ENV_REMOTE_ADDR},R]

However, you can have the best of both worlds! The following would pass both the query string
QS_HOST_IP=192.168.1.200 and pass the environment variable ENV_HOST_IP.

RewriteRule ˆ /perl/(\w+)\.pl$ /handlers/$1?QS_HOST_IP=%{REMOTE_ADDR} \
[E=HOST_IP:%{ENV_REMOTE_ADDR},QS]

❑ For the [S=number] or [skip=number] flag:

RewriteRule /abc /def [S=2] # if evaluated as true, then

RewriteRule /cba /ihg # is ignored

RewriteRule /ihg /lkj # is ignored

RewriteRule /def /xyz # is evaluated, and happens to be true

Think of this block in terms of pseudo code:

unless (uri matches ‘/abc’) {
if (uri matches ‘/cba’) {

substitute to /ihg

476

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 477

Chapter 11: Apache

}
if (uri matches ‘/ihg’) {

substitute to /lkj
}

}
if (uri matches ‘/def’) {

substitute to /xyz
}

This gives you a quasi-ability to have if-else blocks in your rewrite rules. Using [S] flag and the
flag [N] for next (looping) and provided you know what you are doing, you can truly realize
your Rewrite Fu!

RewriteLog

Usage: RewriteLog file-path

RewriteLog is your best friend when it comes to creating rewrite rules. It allows you to see what you’re
doing wrong and why you are at the end of your rope trying to get your rewrite rules to work. Without
this log, you would be in the dark and in great despair trying to determine whether a RewriteRule does
what you think it should. RewriteLog logs the actions of the rewrite engine.

The entries in the log with the debug level set to 9, the highest, would appear like the following code:

192.168.1.200 - - [01/Feb/2009:11:50:07 --0500]
[www.example.net/sid#7ee638][rid#c4ff68/initial]
(3) applying pattern ‘/perl/(\w+)\.pl’ to uri ‘/perl/user.pl

The information you really want to use for debugging and finding out how your rewrite rules work is
the latter half of the previous line:

[rid#c4ff68/initial] (3) applying pattern ‘/perl/(\w+)\.pl’ to uri ‘/perl/user.pl

This tells you that this is an initial request, and was testing the pattern indicated.

If you had the following directives from a previous example:

RewriteCond %{REMOTE_ADDR} 192\.168\.([\d]+)\.([\d]+)
RewriteCond %2 200
RewriteRule /perl/(\w+)\.pl /handlers/$1?HOST_IP=%{REMOTE_ADDR}
[E=HOST_IP:%{REMOTE_ADDR},CO=REDIR:%{REMOTE_ADDR}:%{HTTP_HOST}:600:/handlers/$1,
QSA,S=2]

RewriteRule .* - [E=SKIP1:1]
RewriteRule .* - [E=SKIP2:1]
RewriteRule .* - [E=SKIP3:1]

. . . and then stripped out everything but the action in the log, you can see what the rewrite engine does
to make these rules work:

(2) init rewrite engine with requested uri /perl/user.pl(3) applying pattern
‘/perl/(\w+)\.pl’ to uri ‘/perl/user.pl’

477

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 478

Chapter 11: Apache

(4) RewriteCond: input=’192.168.1.200’ pattern=’192\.168\.([\d]+)\.([\d]+)’
=> matched(4) RewriteCond: input=’200’ pattern=’200’ => matched

(2) rewrite ‘/perl/user.pl’ -> ‘/handlers/user?HOST_IP=192.168.1.200’(5)
setting env variable ‘HOST_IP’ to ‘192.168.1.200’

(5) setting cookie ‘REDIR=192.168.1.200; path=/handlers/user;
domain=www.example.net; expires=Mon, 02-Feb-2009 03:00:38 GMT’(3) split

uri=/handlers/user?HOST_IP=192.168.1.200 -> uri=/handlers/user,
args=HOST_IP=192.168.1.200
(3) applying pattern ‘.*’ to uri ‘/handlers/user’(5)

setting env variable ‘SKIP3’ to ‘1’
(3) applying pattern ‘/docs/\w+\.pl’ to uri ‘/handlers/user’(2) local path result:
/handlers/user

(2) prefixed with document_root to /var/www/apache2-default/handlers/user(1)
go-ahead with /var/www/apache2-default/handlers/user [OK]

The messages are very useful for debugging and ensuring that your rewrite rules work. Once you feel
confident that they work, you can turn the log’s debug level down, or else turn off RewriteLog altogether.

RewriteLogLevel

Usage: RewriteLogLevel number

This sets the verbosity level of the RewriteLog. It’s recommended that you not exceed this (or turn off the
RewriteLog altogether) if you are running in a production environment. However, if you are debugging
your rewrite rules, you will want to set this to a higher level.

Apache Reverse Proxying
Another functionality you will have a good chance to work with and take advantage of as a web devel-
oper is reverse proxying using mod_proxy. In addition to mod_rewrite covered in the previous section, you
definitely want to become savvy in reverse proxying.

A reverse proxy server simply forwards client requests to another server. This allows a client to trans-
parently connect to one front-end web server — requesting a resource that may be on yet another
internal, nonpublicly accessible server — and have that resource retrieved without considering its ulti-
mate source. Apache provides this functionality through mod_proxy and related submodules such as
mod_proxy_http, mod_proxy_ftp, etc. This is especially useful when dividing up functionality among
servers.

Every type of web application has its own resource requirements for running optimally. Some appli-
cations require a web server configured to provide them ample memory, while not requiring as many
processes to deal with requests as a static web site (which simply serves out static content such as docu-
ments and images). If you have a busy site with a lot of requests for static pages, you wouldn’t necessarily
want to force your more memory-intensive application to have to work with the settings that are opti-
mal for a static sever. Conversely, you wouldn’t want to have to limit your static site with the settings
your web application needs. Additionally, you wouldn’t want to load all the code into memory that is
needed for the application to run on a site that has numerous requests for mostly static content because
this would make for a slow server.

478

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 479

Chapter 11: Apache

With reverse proxying, servers can be split out by application. For instance, you may have an Apache
Tomcat server running a huge Java application, and another server you have designated for PHP appli-
cations using FastCGI, and a virtual server running mod_perl applications. With mod_proxy, you can
configure your sever to proxy to these servers based on the URL being requested. Furthermore, along
with mod_proxy, you can have very clever setups that proxy to the appropriate server based even on a
file extension.

Another security benefit of reverse proxying is that these application-specific servers can be on a pro-
tected internal network so they can never be directly accessed from the outside. Figure 11-6 below shows
how reverse proxying can be set up:

Web client

1. http://example.com/Apache tomcat
java application server

4. ajp://10.0.04:8084/java_app

2. http://10.0.2:8082/mp_app

mod_perl application
server

3. http://10.0.0.3:8083/drupal

PHP/fast-cgi
application server

1. http://example.com/
2. http://example/mp_app
3. http://example.com/drupal
4. http://example.com/java_app

mod_perl, port
8080

Fast-cgi PHP,
port 8082

Front end
Apache, port

80

mod_proxy
Apache

Tomcat, port
8081

Figure 11-6

Three servers are shown in this figure. The main server runs a front-end Apache on the normal HTTP
port of 80. This front-end server would be tuned for static pages. Also shown are three other specialized
application servers running on an internal, private network:

❑ An Apache server running mod_perl applications at the IP address of 10.0.0.2 (arbitrary; only
used for an example) port 8082.

❑ An Apache server running at the IP address 10.0.0.3, port 8083, specifically for PHP applica-
tions using fast-cgi, a common configuration for hosting companies to run PHP applications for
multiple users.

❑ An Apache Tomcat server running at the IP address 10.0.0.4, port 8084, for some sort of Java
application servlet or JSP pages. Also of importance is that the protocol used is ajp (Apache
JServ Protocol, requiring mod_proxy_ajp) as opposed to http.

479

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 480

Chapter 11: Apache

Figure 11-6 also shows the URLs a client would use to access different web site applications:

1. A client would use http://example.com to access the main front-end server without any
proxy.

2. A client would use http://example.com/mp_app, which would in turn, through mod_proxy
directive configuration, connect transparently and internally to http://10.0.0.2:8082/
mp_app. User interaction to http://example.com/mp_app would appear to be running on
the same server seamlessly, with the user experiencing it as if it were running on the main
front-end server.

3. A client would use http://example.com/drupal through yet another mod_proxy directive,
and would be proxied to http://10.0.0.3:8083/drupal (internal network IP address).

4. A client would use http://example.com/java_app, which would proxy to ajp://
10.0.0.4:8084/java_app.

This is just one example of how you can use reverse proxying to divide your functionality among sev-
eral servers. You could have any number of back-end servers including mod_python, regular CGI, PHP
through mod_php/libphp5 (instead of what’s shown here with FastCGI), or even a back-end Microsoft
IIS server!

Enabling mod_proxy
You may need to make sure the loadable module for mod_proxy is enabled. This is critical because
mod_proxy provides the actual proxying functionality, as well as the protocol module for mod_proxy,
mod_proxy_http and any other modules that handle any back-end server protocols. Some prepackaged
OS distribution Apache configurations have mod_proxy and its other protocol modules already config-
ured to load. Other distributions, such as Ubuntu, require that you enable it. For Ubuntu, you would
enable both modules with these commands:

sudo a2enmod proxy
sudo a2enmod proxy_http

Then restart Apache:

sudo /etc/init.d/apache2 restart

Other configurations will require that you edit the Apache configuration file and add the following
two lines:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so

. . . to the Apache configuration file. Or, if you like, you can add them to a module-specific configuration
file using the Include directive.

It’s important to load mod_proxy.so first, then any subsequent proxy modules afterward since they
contain symbols that are defined in mod_proxy.so. If mod_proxy.so is not loaded, those symbols won’t
resolve.

480

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 481

Chapter 11: Apache

mod_proxy Directives
There are many mod_proxy configuration directives available for some really advanced setups, such
as load balancing, remote proxying, running an intranet proxy — and more! For this book, only the
ones required for a simple reverse proxy setup (for splitting applications between servers, as already
explained) will be covered.

ProxyPass

Usage: ProxyPass local-url !|remote-url [key=value key=value ...]

This is the main mod_proxy directive, used to map a remote server to a URL. When it is requested, this
results in the server handling the request to interact with the remote server so that the local server appears
to be the remote server in terms of the objects and functionality it provides — this happens transparently.

The first local URL, if accessed, will be proxied to the remote URL. The key/value parameters are optional
and give you fine control on various settings, such as timeout values, min and max connections, etc. Do
consult the Apache manual for specific information on these settings because there are many. The defaults
should work just fine.

To understand how ProxyPass works, start with this example:

ProxyPass /internal/ http://127.0.0.2:8080/

This simply means that any access to the URL /internal/ will be proxied to http://127.0.0.2:8080/.
For instance, if a user accesses your site http://example.com/internal, then through the magic of
proxying, the front page of the internal server will be displayed as http://example.com/internal. All
interactions with the URL /internal as the base URL will be proxied to that internal server. For instance,
http://example.com/internal/otherdir, will be proxied to http://127.0.0.2:8080/otherdir. But
the user will never know!

The use of ! prevents the proxying of a URL that may be in the same path of what would otherwise be
proxied. For example:

ProxyPass /internal/foo/ !
ProxyPass /internal/ http://127.0.0.2:8080/

If the requested URL is http://example.com/internal/foo, the result will be a NOT FOUND. This
works to ensure you don’t proxy parts of the internal site that you want to remain inaccessible. Note that
the negation proxy rule is — and must be — listed before the main proxy rule.

Proxying — it’s that simple.

ProxyPassReverse

Usage: ProxyPassReverse local-url remote-url

This is the companion directive to ProxyPass, and is something you want to use to ensure that reverse
proxying works for you. ProxyPassReverse ensures that redirection works. The issue with redirection

481

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 482

Chapter 11: Apache

is that if the internal server to which you are proxying issues a redirect, the redirect headers will be
referencing internal URLs that will not work outside the front-end proxy.

So, for completeness you would have:

ProxyPass /internal/ http://127.0.0.2:8080/
ProxyPassReverse /internal/ http://127.0.0.2:8080/

ProxyPassReverseCookieDomain

Usage: ProxyPassReverseCookieDomain internal-domain public-domain

This ensures that the domain of a cookie set by the internal server is the correct public-domain of the
front-end server. Here is an example:

ProxyPassReverseCookieDomain backend.example.net example.net

ProxyPassReverseCookiePath

Usage: ProxyPassReverseCookieDomain internal-url external-url

This ensures that the cookie path is a path of the external front-end server and not a back-end server
path:

ProxyPassReverseCookiePath / /internal/

ProxyPreserveHost

Usage: ProxyPassReverseCookieDomain

This ensures that the HTTP_HOST environment variable retains the host value of the front-end server. This
is an extremely useful feature; the author can attest to this.

Disclaimer: This is a story involving PHP in a Perl book
I was assigned a project for Tripod.com to implement the ability for Tripod mem-
bers to have PHP and MySQL functionality. I had to implement PHP in such a way
that PHP code execution was contained within each member’s directory (limiting by
using the php.ini setting open_basedir). This project required that each user’s PHP
programs would run separately without interference from other users’ PHP programs.
This further required the front-end web servers to proxy through to back-end web
servers running FastCGI to execute PHP. Many PHP applications such as Wordpress,
Joomla, Gallery, etc., initially broke using this setup because they were designed to
use the PHP server variable $_SERVER[HTTP_HOST] for constructing application URLs,
and this needed to be the value of the hostname of the front-end web server. However,
the server variable $_SERVER[HTTP_HOST] takes on the value of its own hostname, as it
should. In this case the value was the hostname of the back-end server, which of course

482

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 483

Chapter 11: Apache

was not accessible from the outside — regardless of the hostname of the front-end
server that the proxy request came from.

The front-end server was Apache 1.3, which doesn’t have the Apache 2.2 mod_proxy
directive ProxyPreserveHost, so I employed another trick to work around this
issue — I used auto_prepend_file to prepend a PHP file that would overwrite
various PHP server variables, including $_SERVER[HTTP_HOST], to take on the value
of $_SERVER[HTTP_X_FORWARDED_HOST], which does contain the front-end web server
hostname.

The Apache manual says that ProxyPreserveHost should normally be turned off. It
really depends on your needs. If you are doing any type of work involving web site
hosting where you employ mod_proxy to divide up server functionality, you will prob-
ably want to use this setting.

Apache Server Control
Several arguments that you supply to the script to restart the Apache httpd daemon are worth
explaining:

Argument Description

apachectl start Starts Apache, obviously.

apachectl stop Sends a kill to the parent Apache process; immediately kills all the
children.

apachectl graceful Apache parent process initiates the termination of its children to
terminate once they are finished servicing their current request, or
immediately if they are idle. The parent will then reread the
configuration file and reopen its log files. As each child started from the
previous configuration file dies off, the parent replaces it with a new
child with the new configuration settings.

apachectl restart The Apache parent process is sent a HUP or restart signal, which in
turn sends a term to its children regardless of the state of any requests
they are serving. The parent then rereads its configuration files and
reopens its log files. It then starts up another batch of children that will
have the new configuration settings.

Apache Configuration Schemes
In the course of configuring servers, in particular web servers, you will come across a wide variety of pre-
configured Apache setup schemes. Each one has its merits and philosophy behind why it’s set up the way
it is. Some operating system vendors take advantage of Apache’s modular capabilities. Others, such as
the source install, leave it to you to start with a stock configuration and slice and dice it however you like.

483

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 484

Chapter 11: Apache

This section will cover some of the more common operating system vendor configuration schemes for
Apache.

Source Install
The source install is very much about letting you determine how you want to tweak your own sys-
tem. The place where you install Apache (defined when you run "./configure –prefix=/path" when
you first build it) is where every component of Apache will reside. In this book, the directory chosen is
/usr/local/apache2

❑ Configuration files: There is a single httpd.conf file, which is not set up to be modular in the
way that various operating system vendors package their Apache. httpd.conf is found in
/usr/local/apache2/conf. It includes files in the modules that loaded directly, rather than
including them as separate configuration files for each module. Although you can change this if
you like.

❑ Document root: Found in /usr/local/apache2/htdocs. If you’re running virtual
hosts, which is a great possibility, you will probably end up changing ApacheRoot to
/usr/local/apache2/htdocs, and then each site will have a document root found in this parent
directory.

❑ CGI: Found in /usr/local/apache2/cgi-bin. Like document root, you may also want to divvy
this up or even specify a site-specific CGI directory for each virtual server.

❑ Loadable modules: Found in /usr/local/apache2/modules. This is fine where it is.

❑ Binary files: These include the Apache server, httpd, as well as other programs and are found in
/usr/local/apache2/bin.

Ubuntu/Debian
The Ubuntu/Debian package installation uses a very modular approach to setting up Apache (the two
may vary). This is intended to make your server and web sites easier to develop and maintain.

Configuration Files
Configuration files are found in /etc/apache2. The main configuration file apache2.conf, which is very
modular, uses the Include directive to include other ‘‘sub-configuration’’ files. Then there are subdirec-
tories within /etc/apache2:

❑ conf.d/: By default, this contains a single file charset that defines what character set. Apache
will use using the line:

Include generic snippets of statements
Include /etc/apache2/conf.d/

❑ mods-available/: Contains configuration files for all available modules, though this directory is
not used with an Include directive.

❑ mods-enabled/: This directory has links to the modules you want to load. They link to the con-
figuration files in mods-available:

484

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 485

Chapter 11: Apache

ls -l mods-enabled/
lrwxrwxrwx 1 root root 28 2009-01-25 10:23 alias.conf -> ../mods-
available/alias.conf
lrwxrwxrwx 1 root root 28 2009-01-25 10:23 alias.load -> ../mods-
available/alias.load
...

All the files in this line are included with the use of a wildcard in the Include directive:

Include module configuration:
Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf

❑ sites-available/: All of the virtual hosts that are available, but not specified in an Include
directive in apache2.conf. These files contain virtual host configuration, one virtual host per
file. All sites (even the local, default site) are set up as virtual hosts in this directory. By default,
Ubuntu includes a default site configuration file in sites-available called, interestingly
enough, default.

❑ sites-enabled/: Just as with the mods-enabled/ directory, this directory contains links to its
sibling directory, mods-available/, which takes you to the sites you want working upon your
start of Apache. The mechanism for this to work is an Include directive specifying the whole
directory, which loads any file in the directory:

Include the virtual host configurations:
Include /etc/apache2/sites-enabled/

Other configuration files that are included in the Ubuntu/Debian package installation are these:

❑ The file /etc/apache2/httpd.conf. You might think for a second that this is the main Apache
configuration file. You’ll find it is empty. This file can be used for compatibility with other soft-
ware so that it may exist or any other miscellaneous configuration parameter. You can probably
ignore it!

Include all the user configurations:
Include /etc/apache2/httpd.conf

❑ The ports configuration file ports.conf, which specifies the port that Apache will run on:

Include ports listing
Include /etc/apache2/ports.conf

It contains:

NameVirtualHost *:80
Listen 80

<IfModule mod_ssl.c>
SSL name based virtual hosts are not yet supported, therefore no
NameVirtualHost statement here

485

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 486

Chapter 11: Apache

Listen 443
</IfModule>

Documents, Content
The standard document root on Ubuntu/Debian for web site documents is /var/www, and the
default site is located in /var/www as well. However, as you add virtual hosts, you may want to put
each site’s documents in /var/www/<sitename>. For instance, the default site that comes included with
the Apache installation could be changed from having /var/www as the document root to instead having
/var/www/default, otherwise the default site would contain the directories of other virtual hosts.

Apache Modules
Note the following concerning the Apache modules:

The actual Apache loadable modules are installed in /usr/lib/apache2/modules/.

Binary Files
❑ The binary files are located in /usr/sbin.

❑ The Apache binary on Ubuntu/Debian is called apache2 instead of httpd.

❑ Apache startup script apache2ctl.

❑ The Apache benchmarking utility ab.

Also specific to Ubuntu is the Perl utility a2enmod. As seen in the mod_perl and Apache
request/libapreq2 installation sections, this utility was used for Ubuntu/Debian and is for enabling
mod_perl and libapreq2. All this utility does is create a link from mods-available to mods-enabled for
the module you specify.

Apache Server Control
There are two server control utilities available:

sudo /etc/init.d/apache2 <start|stop|other options...>
sudo /usr/sbin/apache2ctl <start|stop|other options...>

Centos/Redhat Variants
On Centos/Redhat variants, the Apache configuration is set up modularly.

Configuration Files
The configuration files reside in /etc/httpd. The main configuration file is /etc/httpd/conf/
httpd.conf and has Include directives to sub-configuration files:

486

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 487

Chapter 11: Apache

❑ conf/: This direc tory contains the main httpd.conf as well as a file called magic, which is for
the mod_mime_magic Apache module. The mod_mime_magic module determines file type using
the first few bytes of a file to differentiate the proper mime type.

❑ conf.d/: This directory contains any configuration files, both for virtual sites as well as Apache
modules. All files in this directory must be named with the extension of .conf in order to be
loaded. These files are included in the httpd.conf file using the Include directive:

Include conf.d/*.conf

❑ logs/: A link to /var/log/httpd, where the Apache logs go.

❑ modules/: A link to /usr/lib64/httpd/modules or /usr/lib/httpd/modules (depending on
architecture) where the Apache loadable modules are located.

❑ run/: A link to /var/run, where the PID file for Apache resides.

Binary Files, Server Control
/usr/sbin is where the binary files such as httpd, apachectl, ab and apxs are found.

Documents, Content
The following is a list of document files:

❑ /var/www/html is the main document root. You would then give your virtual hosts
that you define with conf.d/<virtualhost>.conf their own document roots located in
/var/www/<sitename>.

❑ /var/www/cgi-bin is the default CGI directory.

❑ /var/www/icons is the location of icons the Apache server uses to display things like directories.

❑ /var/www/manual is the Apache manual, in HTML form.

SUSE
Just as other Linux variants, SUSE 11.x has a modular configuration. It is probably the most modu-
lar of all distributions — modularity taken to another level! However, this provides a very convenient
organization; you easily know exactly where to set any part of the Apache installation.

Anything that could be construed as a component or section in an httpd.conf has its own file.

Configuration Files
The configuration figures for SUSE are located in the directory /etc/apache2 and are shown in the table
that follows:

487

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 488

Chapter 11: Apache

File Description

httpd.conf The main configuration file, which doesn’t contain a lot of
settings itself, but does contain a lot of <Include> directives.

charset.conv Lookup table of character-set types by abbreviated language
name, such as ‘‘en’’ for English.

default-server.conf A global configuration file that all virtual hosts will inherit.
Specifies the main document root, icon directory, cgi-bin, etc.
for the entire server.

errors.conf Defines all of the error documents, which are found in errors
as variables so that the appropriate error message according to
language will be displayed.

listen.conf Defines the default ports used by Apache — both secure SSL
server and non-secure server.

magic Used by mod_mime_magic for setting proper mime type
according to file type.

mime.types Defines all available mime types.

mod_autoindex-defaults.conf Configuration file for directory indexing module. You can
control all of the settings for how directory indexes are
displayed in this file.

mod_info.conf Configuration file for mod_info, which is used for Apache’s
/server-info handler.

mod_log_config.conf Configuration file for how logging is configured.

mod_mime_defaults.conf Configuration file for associating meta information with files
by filename extensions.

mod_perl-startup.pl Perl startup script that is executed to load Perl modules upon
the startup of Apache.

mod_status.conf Configuration file for mod_status, which gives Apache’s
/apache-status handler.

mod_userdir.conf Configuration file for user web directories (public_html).

mod_usertrack.conf Configuration file for mod_usertrack, which is an Apache
module that provides logging for clickstream analysis.

server-tuning.conf Configuration file for Apache tuning settings, grouped by
whether the server is a threaded or forking server. The settings
are StartServers, MinSpareServers, MaxSpareServers,
ServerLimit, MaxClients, MaxRequestPerChild, etc.

ssl-global.conf SSL settings configuration file, if running SSL.

Configuration directory subdirectories, located in /etc/apache2, are listed in the following table:

488

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 489

Chapter 11: Apache

Subdirectory Description

ssl.crl/ Contains PEM-encoded X.509 Certificate Revocation Lists (CRL) for SSL.

ssl.crt/ Contains SSL certificates.

ssl.csr/ Contains PEM-encoded X.509 Certificate Signing Requests for SSL.

ssl.key/ Contains RSA private keys for SSL.

ssl.prm/ Contains DSA parameter files for SSL.

sysconfig.d Contains files created whenever Apache is restarted; shows run-time settings
of Apache.

uid.conf Sets the user and group Apache runs as.

vhosts.d/ Contains configuration files for each virtual host.

conf.d/ This directory contains various files for different modules such as mod_perl,
PHP, GitWeb, Nagios, etc. — anything that isn’t a core module or component
of Apache.

Binaries
Binaries, such as the server binary ab, are located in /usr/sbin. The Apache daemon is httpd-prefork
or httpd-worker, which is linked to by httpd2. Also found in this directory is apache2ctl.

Modules
The Apache modules are found in /usr/lib/apache2-<prefork|worker>.

Documents, Content
The base directory is /srv/www, and it contains the subdirectories htdocs, cgi-bin, as well as perl-lib
(a location for Perl libraries).

Apache Server Control
There are two utilities available for server control. This one:

/etc/init.d/apache2 <various options>

Or this:

/usr/sbin/apache2ctl <start|stop|graceful|gracefull-stop|stop|various options>

Windows
Windows has its own particular setup. As with so many windows programs, the Apache installation
is installed in C:\Program Files in a folder called by default Apache Software Foundation. The overall
structure is somewhat Unix-like.

489

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 490

Chapter 11: Apache

Apache is fully threaded on Windows, and features a MPM winnt server module.

Configuration
To begin Apache configuration on Windows, select Apache HTTP Server 2.2 from the start menu, as
shown in Figure 11-7.

Figure 11-7

This will open up a Notepad window where you can edit your Apache configuration file.

Configuration Files
The directory, C:\Program Files\Apache Software Foundation\Apache2.2\conf\ is where the Apache
configuration files belong. They are split up as shown in the following table:

File Description

httpd.conf Main Apache configuration file

magic Mime types file

charset.conv Charset information file

extra\httpd-autoindex.conf Autoindexing configuration

extra\httpd-default.conf This contains the default httpd settings for the entire Apache
server

extra\httpd-languages.conf This contains settings for hosting different languages

extra\httpd-mpm.confq Server pool management for a threaded server. On Windows,
Apache is threaded

extra\httpd-ssl.conf SSL configuration file

extra\httpd-vhosts.conf Virtual hosts configuration file

extra\httpd-dav.conf Distributed authoring configuration file

extra\httpd-info.conf Configuration file for the server-status handler

490

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 491

Chapter 11: Apache

File Description

extra\httpd-manual.conf Configuration file for the included Apache documentation,
which is in a directory in the server root, /manual. This
configuration is set up to automatically serve the manual pages
in whatever language is detected using the type-map handler

extra\httpd-multilang-
errordoc.conf

Configuration file for serving out the proper error document
according to language

extra\httpd-userdir.conf Configuration file for user directories. On UNIX, this is
public_html, but on Windows, it will be C:/Documents and
Settings/*/My Documents/My Website

Other Files
The files in the following table are the other files required for a Windows setup:

File Description

Binaries C:\Program Files\Apache Software Foundation\Apache2.2\bin\ is the
directory that contains binaries such as the server httpd.exe, htpasswd.exe, etc.
It also contains library files for APR, APR dbd and the zlib compression library

Modules C:\Program Files\Apache Software Foundation\Apache2.2\modules contains
modules. You might think that these would be .dll files, but they have the .so
extension just as they have in UNIX

CGI C:\Program Files\Apache Software Foundation\Apache2.2\cgi-bin is the
directory that contains a single printenv.pl, which works if you have Perl
installed

Error Pages C:\Program Files\Apache Software Foundation\Apache2.2\error contains the
error page messages for each language

Manual C:\Program Files\Apache Software Foundation\Apache2.2\manual contains
the entire Apache manual, which can be browsed

Logs C:\Program Files\Apache Software Foundation\Apache2.2\logs contains
Error and Access logs

Apache Administration on Windows
You can use the service manager to start and stop the Apache daemon, as shown in Figures 11-8
and 11-9.

From the control panel, select ‘‘Administrative Tools.’’ This will give you a window of administrative
tool applications. Click ‘‘Services.’’ Once launched, you will see Apache listed among other services as
shown in Figure 11-8.

491

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 492

Chapter 11: Apache

Figure 11-8

If you click Apache, you will be given a ‘‘Properties’’ window that allows you to edit the Apache service,
as shown in Figure 11-9.

Figure 11-9

Common Apache Tasks
This section is devoted to showing you how to accomplish certain Apache tasks — these are com-
monplace things you have to do when you are a web developer. This section will also build on the

492

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 493

Chapter 11: Apache

configuration information provided in previous sections, showing you some practical examples to put
that information into action.

Configuring a Name-Based Virtual Host
Configuring a virtual host is amazingly simple with Apache 2.2. It basically involves configuring an
Apache configuration file with a <VirtualHost> section and the correct directives. You then ensure that
you have all the directories created for the virtual host.

Step 1: Modify Your Apache Configuration File
You can add the <VirtualHost> section to your main Apache configuration file if you want, but to be
more organized, it’s recommended that you take advantage of a modular configuration scheme. Some
operating system distributions already have Apache set up this way. For this example, a source install of
Apache will be used so you can appreciate the prepackaged setups!

As mentioned earlier, the source install of Apache located in /usr/local/apache2, has a single config-
uration file /usr/local/apache2/conf/httpd.conf for the entire configuration. It’s your job to break it
up into smaller pieces! To do so, follow these steps:

First, make a directory:

cd /usr/local/apache2
mkdir conf.d

Next, edit conf/httpd.conf. Add this line to it:

include conf.d/*.conf

This will make it so any configuration file with the file extension .conf in the conf.d directory will be
included in the Apache configuration for your server. Currently, you have none, but you can modular-
ize your configuration as much as you want. If you desire it, you could create separate configuration
files in the conf.d directory containing any part of the main configuration file that you see, starting
a <IfModule> tag and including everything up to the close tag </IfModule>. For instance, you could
create a file called log.conf with the contents from the main file, starting with and including <IfModule
log_config_module> to </IfModule>. Just cut from the main, paste into the new log.conf file, and when
you restart it will be loaded. Now you won’t have to navigate through a monolithic file.

You probably want to start with the default site for creating a virtual host configuration file. Many con-
figurations have the configuration for the default site contained in the main Apache server configuration
file. For the sake of good organization, it makes sense to have the default site served as a virtual host.

For an example, let’s suppose your site’s main URL is http://example.com.

Edit a file, conf.d/default_site.conf. In it, have the lines:

NameVirtualHost *:80
<VirtualHost *:80>

ServerName example.com

493

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 494

Chapter 11: Apache

ServerAlias www.example.com

DocumentRoot /usr/local/apache2/sites/default/
<Directory /usr/local/apache2/sites/default/>
Options FollowSymLinks
AllowOverride None
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>
ScriptAlias /cgi-bin /usr/local/apache2/cgi-bin
<Directory /usr/local/apache2/cgi-bin>
Options +ExecCGI

</Directory>
</VirtualHost>

This is a very minimal virtual host, but it will work just fine. You can customize it and modify it as
much as you want for your particular site needs. There are some assumptions in this file, particu-
larly where your document root is, as well as what port you’re running Apache on. As you can see,
the document root is set to /usr/local/apache2/sites/default/, and cgi-bin is in the directory
/usr/local/apache2/cgi-bin.

Step 2: Create the Virtual Host Directories
Create the directories needed for the virtual host. This can be accomplished in one step with
the mkdir command (assuming that the working directory is to be already within the directory
/usr/local/apache2):

mkdir –p /usr/local/apache2/sites/default/{cgi-bin,www}

This creates all the directories using the –p command — the main virtual host directory as well as the
site’s document root and its cgi-bin. Make sure the ownership is set to the same ownership as the user
Apache runs as. In this example, both the user and group are apache:

chown –R apache:apache /usr/local/apache/sites

Step 3: Restart Apache
Now restart Apache, then access your new site at http://www.example.com!

Adding Other Virtual Hosts
To add another virtual host, you would create another virtual host configuration file for that site, named
in a fashion that indicates what site it’s for. For instance, if the site’s name were otherexample.com, you
would perhaps name it otherexample.conf. If you are creating a site that will run on port 80, just as the
default site does, you could simply use the default site’s configuration file as a template. Then all you
would have to change is this:

ServerName othersite

DocumentRoot /usr/local/apache2/sites/othersite

494

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 495

Chapter 11: Apache

You would also want to create document root directory and other necessary directories for the site, as
specified in the file just created. It should have the same the permissions as the user Apache runs as. Of
course, you can add whatever other specific settings you want for this additional site.

Setting Up HTTP Basic Authentication
How many times have you needed to add a password on a web site or a directory in a web site? Despite
being the web guru you are, sometimes even you forget the trick for doing this. You do it only once in
a while, so you have to look online every time you set it up because you forget how. The following task
description will refresh your memory and distill it into simple steps that even a marketing person with
shell access could do. OK, maybe not that simple.

Step 1: Modify the Apache Configuration
This can be accomplished within your configuration file or with an .htaccess file. Avoid the latter if
you can because having .htaccess files scattered all about your file system adds to your management
overhead and can affect the performance of Apache.

If, for instance, the directory you wish to place authentication requirements on happens to be the URL
http://example.com/private, using the configuration you set up in the previous section, you will need
to place an authentication requirement on the directory /usr/local/apache2/sites/default/private.
Do this in a <Directory> section:

<Directory /usr/local/apache2/sites/default/www/private>
AuthUserFile /use/local/apache2/auth/password.txt
AuthType Basic
AuthName "Secret Directory"
Require user patg john

</Directory>

This configuration is using Basic Authentication. The realm is called ‘‘Secret Directory’’ and the two
users allowed are patg and john.

Step 2: Adding Users to the Password File
The command htpasswd is what you use to add users to the password file. The password
file, as shown from the previous basic HTTP authentication example, needs to be named
/usr/local/apache2/auth/password.txt.

The file isn’t created yet, but by using the –c flag when adding the first user patg, the file is created. It
will prompt you to verify the password for the user:

htpasswd -c passwd.txt patg
New password:
Re-type new password:
Adding password for user patg

When adding the user john you don’t need or want to use the –c flag because the password file is already
created. It will ask you to verify the password just as you did for the first user:

htpasswd passwd.txt john

495

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 496

Chapter 11: Apache

Step 3: Restart Apache
Next, restart Apache. Then attempt to access the directory http://example.com/private. You should
be prompted with a login window to supply credentials. When you enter the correct username and
password, you will be granted access to that directory.

Setting Up Digest Authentication
Most often, Basic Digest Authentication is used, but Digest is just as easy to set up and provides a better
security algorithm than does Basic.

Step 1: Modify Your Apache configuration
For this example, you will be putting an authentication requirement on http://example.com/private2,
which corresponds to the directory /usr/local/apache2/sites/default/www/private2. This requires
you to add the following changes to your configuration file — which in this example is default.conf,
as shown in the virtual host example.

<Directory /usr/local/apache2/sites/default/www/private2>
AuthType Digest
AuthName "Secret Directory 2"
AuthDigestDomain /private2/
AuthDigestProvider file
Require valid-user
AuthUserFile /usr/local/apache2/auth/ht_passwd
</Directory>

First, AuthType is set to Digest and the realm for this will be "Secret Directory 2," and the directive
DigestDomain is set to the URL /private2/. The type of provider is a file, and to access this directory
requires a valid user versus specific users, since Digest Authentication specifies authentication by realm.

Step 2: Create Digest Users
The command to do this is the command htdigest. The arguments are:

htdigest [-c] passwordfile realm username

Just as with the htpassword command, the first user you create will also generate the digest file with
the -c flag. You will also be prompted for your password. One primary difference is that you have to
supply the realm name that you specified in your Apache configuration file, as shown in the code snippet
above.

htdigest -c ht_passwd "Secret Directory 2" patg
Adding password for patg in realm Secret Directory 2.
New password:
Re-type new password:

Step 3: Restart Apache
Now you can restart Apache. Then access http://example.com/secret2. You should be prompted with
a login panel asking you for your credentials. Once you enter them, you will be permitted to access
/secret2

496

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 497

Chapter 11: Apache

Configuring a Secure Server
Another task that you have to do every so often is setting up a secure server. This is a very simple task,
yet the steps are easily forgotten over time! This section will distill it down to three simple steps:

Step 1: Create a Self-Signed Certificate
For this example, a self-signed certificate and key will be created. A self-signed certificate won’t suf-
fice if you are running an e-commerce site, but will provide you with a secure server you can use
internally in your organization. In this example, the URL for this secure virtual site is assumed to be
secure.example.com.

In this example, the certificate and key will be stored in /usr/local/apache2/ssl, so first and foremost
you need to create this directory and change it, like so:

mkdir /usr/local/apache2/ssl
cd /usr/local/apache2/ssl

Next, create the certificate using openssl. You will be prompted with organizational information
questions:

openssl req -new -x509 -days 365 -sha1 -newkey rsa:1024 -nodes -keyout example.key
-out example.crt
Generating a 1024 bit RSA private key
...............++++++
..............++++++
writing new private key to ‘example.key’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:NH
Locality Name (eg, city) []:Sharon
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Inc.
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:Patrick Galbraith
Email Address []:someemail@address.com

You should now have two files: example.key and example.crt.

Step 2: Add the Secure Virtual Host
Just as you did with the default virtual host and any other virtual hosts you added, you will now add a
secure server configuration file for this secure virtual web site. As with other sites, you probably want
to name it so you know that the configuration file is for your secure site. In this example, it’s called
secure.conf:

NameVirtualHost *:443

497

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 498

Chapter 11: Apache

SSLSessionCache shm:/usr/local/apache2/ssl/session_cache_shm
SSLSessionCacheTimeout 600
SSLMutex pthread
<VirtualHost *:443>

ServerName secure.example.com
ServerAdmin someemail@address.com

SSLEngine On
SSLCertificateFile /usr/local/apache2/ssl/example.crt
SSLCertificateKeyFile /usr/local/apache2/ssl/example.key

DocumentRoot /usr/local/apache2/sites/secure
<Directory /usr/local/apache2/sites/secure>

SSLRequireSSL
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>
</VirtualHost>

You will also want to create the virtual site’s document root directory and ensure correct permissions:

mkdir /usr/local/apache2/sites/secure
chown apache:apache /usr/local/apache2/sites/secure

Step 3: Restart Apache
Restart Apache. Browse to the URL https://secure.example.com. You may be asked by your browser
to make an exception for the unsigned certificate.

Settin Up a Secure Server with a Valid Secure Certificate
If you want to get a certificate signed by an authorized certificate authority, the steps are the same as in
the last section ‘‘Configuring a Secure Server’’ except:

Step 1: Create a Key and Certificate Request
For this example, you will create a key and certificate request. You’ll keep the key stored on your server
and you’ll use the certificate to submit a request to a signing authority. The URL that will be used for this
secure virtual site in this example will be secure.example.com.

In this example, the certificate, which is yet to be obtained, and key will be stored in /usr/local/
apache2/ssl. So first and foremost you will have to create this directory and change it to:

mkdir /usr/local/apache2/ssl
cd /usr/local/apache2/ssl

Next, create the key and certificate request using openssl. You will be prompted with organizational
information questions — do not enter the email or challenge password.

openssl req -new -sha1 -newkey rsa:1024 -nodes -keyout example.key -out example.csr

498

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 499

Chapter 11: Apache

Step 2: Obtain a Certificate Using the Certificate Request
Whatever you use to obtain a certificate (Verisign, RapidSSL), you must follow the steps of selecting what
certificate product you want. You will eventually be given a form to enter your certificate request. You
need to cut and paste everything in the example.csr file — everything including:

-----BEGIN CERTIFICATE REQUEST-----
....Request contents...
-----END CERTIFICATE REQUEST-----

Depending on the signing authority, it may have you provide a phone number. The authority’s system
will call that number to prove you are who you say. Once the process is complete, you’ll receive your
certificate. If the certificate is in an email, just cut and paste the entire key’s contents into example.crt,
which is stored (for this example) in /usr/local/apache2.ssl.

Step 3: Set Up a Virtual Host
This step is exactly the same as Step 2 in the section ‘‘Configuring a Name-Based Virtual Host’’ earlier in
this chapter.

Step 4: Restart Apache
After restarting Apache, you can access your secure site and verify that your site uses a valid certificate
now.

Setting up a Reverse Proxy with Two Virtual Hosts
The section ‘‘Apache Reverse Proxying,’’ that appeared earlier in this chapter, gave you insight into
how a reverse proxy works and how you can use it to split up servers by task. It also explained the
various settings. This section will show you how to put that information into action by setting up a
back-end server, which for this discussion will have the URL http://backend.example.com:8080 (run-
ning on port 8080) and a front-end server configured to proxy to the back-end server from the URL
http://example.com/internal.

Step 1: Set Up the Internal Virtual Host
The internal virtual host will be set up to run on an internal IP address 127.0.0.2 and on port 8080. You
won’t need to create an IP alias for this address since it is a 127.x.x.x address. You will, as with other
virtual hosts, create a virtual host configuration file. For this example, it will be called backend.conf, and
will be stored in /usr/local/apache2/conf.d with the other virtual server configuration files. It will
contain the following:

NameVirtualHost 127.0.0.2:8080
Listen 127.0.0.2:8080
<VirtualHost 127.0.0.2:8080>

ServerName backend.example.com

DocumentRoot /usr/local/apache2/sites/backend/www
<Directory /usr/local/apache2/sites/backend/www>
Options FollowSymLinks
AllowOverride None
Options Indexes FollowSymLinks MultiViews

499

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 500

Chapter 11: Apache

AllowOverride None
Order allow,deny
allow from all

</Directory>

ScriptAlias /cgi-bin /usr/local/apache2/sites/backend/cgi-bin
<Directory /usr/local/apache2/sites/backend/cgi-bin>
Options +ExecCGI

</Directory>
</VirtualHost>

This is set up pretty much like the main site, including a cgi-bin directory for running scripts and other
applications. The main difference is that the configuration file uses the address 127.0.0.2 on port 8080
using the NameVirtualHost, Listen, and <VirtualHost> directives.

You will also want to create the site’s document root and cgi-bin directories:

mkdir -p /usr/local/apache2/sites/backend/{www,cgi-bin}
chown -R apache:apache /usr/local/apache2/sites/backend

Also, place a simple HTML file in /usr/local/apache2/sites/backend:

<html>
<head><title>Backend Server</title></head>
<body><h1>This is the backend server</h1></body>

</html>

This will come in handy when you test to see if it works — hopefully you’ll see this file!

Step 2: Add Proxy Directives to the Front-End Server Configuration
Next, add the ProxyPass and ProxyPassReverse — which are the only required directives for this to
work — as well as other optional ProxyXXX directives to the front-end site’s configuration file (which in
this case was default.conf):

ProxyPass /internal/ http://127.0.0.2:8080/
ProxyPassReverse /internal/ http://127.0.0.2:8080/
ProxyPassReverseCookieDomain backend.example.com example.com
ProxyPassReverseCookiePath / /internal/
ProxyPreserveHost On

Also, you will need to ensure that the proxy server is permitted to connect to the front-end server. Specify
the IP address of the back-end proxy server:

<Location />
Allow from 127.0.0.2

</Location>

Step 3: Restart Apache
Now restart Apache. You should be able to access http://example.com/internal and see the ‘‘This is
the backend server’’ message from the file added to the document root of the internal server in Step 1.
This will prove that your reverse proxy works!

500

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 501

Chapter 11: Apache

Summary
This chapter introduced you to the Apache HTTP Server, the world’s most popular web server. Its pop-
ularity is due in large part to how powerful, how configurable, how extendable, and, last but not least,
how free, it is! Also in this chapter you had an overview of the HTTP protocol and how Apache works.
You were shown how to install and configure Apache, including some standard Apache configurations
for several Linux distributions and for Windows. Also shown in this chapter were several common
Apache tasks, such as setting up a secure web server, virtual hosts, and a reverse proxy. Another section
covered one of the most powerful tools for Apache, mod_rewrite, which allows you to rewrite or manip-
ulate URLs.

501

Galbraith c11.tex V3 - 06/02/2009 9:42am Page 502

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 503

Contact List Application

You’ve read about MySQL and everything you’d want to know about it. You’ve also read about
both memcached and Apache. Now, you’ll see just how all of these can fit together in a way for you
to build a practical web application — with MySQL for the data store and memcached to provide a
caching layer for this application.

This chapter shows you the complete implementation of a contact list application, which allows
you to add or edit contacts through an HTML form, save the contact, and then provide a listing of
the existing contacts. In this chapter, this application will be a CGI application using both MySQL
and memcached. It will use basic HTML design and style sheets to present a clean, simple user
interface. The following chapter will show how you can turn this CGI application into a mod_perl
application.

Using MySQL and memcached Together
The purpose of showing you this application’s implementation is to demonstrate how you can
use MySQL and memcached together to provide data to a web application, with the focus being
how to implement caching. The application looks simple on the surface, but there is some complex
functionality at a lower level that ensures that caching is working properly.

Also, this application will introduce you to handling CGI and web programming, particularly how
to process submitted form values. For this application, the CGI.pm Perl module will be used to
provide a means of obtaining those submitted form values, as well as showing you some of its
content generation methods.

Another Perl module demonstrated in this application is DBIx::Password, which provides a means
of having a global file for storing database passwords. With this you do not have to provide
database connection specifics such as the database user and password in your application code.
This is always a hot debate: where to store the password for database connections. The author
presents one solution for doing this; you might have your own preference.

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 504

Chapter 12: Contact List Application

A common issue in developing web applications is a lack of understanding about what is involved. You
might have what appears on the surface to be a simple application that your employer thinks is simple to
implement and should take only a fairly short amount of time to develop. However, you have no way of
explaining intricate technical details about what is actually involved and have to translate those details
into terms they can understand.

A CGI Program
Before there was light, there were web servers with static pages. Web site developers wanted to provide
a means to process data input by users. The web site developers looked around and said ‘‘let there be
dynamic pages,’’ hence CGI was created.

CGI stands for Common Gateway Interface and is a standard way in which a web server runs an external
program. As previously mentioned, a web server’s purpose in life is to receive requests from web clients
(browsers) for certain resources — HTML, XML, text pages, images, videos, audio files, etc. — and then
to respond accordingly and deliver these resources. These are all examples of static resources. They don’t
change. The client requests them and the server responds with the content. In order for a web server to
offer interactive content, you want it to be able to do something other than simply display data, to be
dynamic based on some sort of user action or input. For that to happen, you need some sort of executable
program or engine. CGI is the very mechanism that made this possible.

CGI defines a standard means for the web server to interact with an external program. It provides that
program with web server environment variables as well as request headers containing submitted form
values, file uploads, and any content from the client for processing. It then returns the output of the
program as a web server response. That output consists of response headers, which could include con-
tent specifications as well as cookies, and the response body, which contains the output of the program
organized within HTML. The client then receives this output and displays it to the user.

CGI Apache Setup
The first thing you want to do is ensure that CGI can run. From the previous chapter, you saw in the
Apache configuration file how this was done.

ScriptAlias /cgi-bin /usr/local/apache2/sites/default/cgi-bin
<Directory /usr/local/apache2/sites/default/cgi-bin>
Options +ExecCGI

</Directory>

That’s all you really need to run CGI scripts. What this says is to alias the URL /cgi-bin to
/usr/local/apache2/sites/default/cgi-bin as well as make it so that URL is handled by mod_cgi.
Setting Options +ExecCGI provides the Apache option that gives permission for CGI to be executed.
Since it is the only option listed, only running CGI is permitted.

Your Basic CGI Program, and Then Some
So many other texts start out with ‘‘hello, world’’ examples. Such examples may be great for learn-
ing theory, but if you are anything like the author in terms of how you learn something, working
examples are the best lesson. This chapter will show you a fully functional CGI program including some

504

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 505

Chapter 12: Contact List Application

of the components that have been covered thus far in this book — a simple contact list application that
stores and displays user data, using MySQL and memcached, written in Perl of course, and running on
Apache.

Understanding the Application’s Functionality
The functionality of this application will be split up in stages:

❑ Design. You will see how to come up with an interface concept before coding the more internal
functionalities.

❑ Data storage requirements. The schema for this application is very simple, but the purpose here
is to focus on caching more than on any particular schema in MySQL, other than a simple table
to store contact data.

❑ Application requirements. This provides a guide to knowing the basic program flow and what
sort of subroutines and methods will be provided. The concept of how to divide presentation
functionality and logic from data storage and retrieval (back-end) functionality will be shown by
splitting the code between a fairly small CGI script and a larger Perl module/class that the CGI
script instantiates.

❑ Application functionality. This gives you a good idea how to write a web application with
similar applications with similar requirements using memcached and MySQL.

Conceptualizing
The first thing to do is come up with an idea and design for a simple application. What features do
you plan to implement? For this simple contact list application, it will store eight fields or attributes of
data per contact — a unique username, unique email address, first name, surname, phone number, city,
address, and state.

This application will provide the following user interface functionality:

❑ Display a form for contact data to be entered and saved.

❑ Display a listing of any contacts already in the database.

❑ Save a new contact while preventing the use of a username and email that already exists in the
database.

❑ Allow a contact to be edited and saved for an update. This application must not allow the user to
change the contact username attribute.

❑ Allow a contact to be displayed.

❑ Allow one or more contacts to be deleted at a time from the contact listing.

❑ Display error messages when the following things happen:

❑ A user tries to save a contact that doesn’t exist.

❑ A user does not provide required form inputs (which will be all fields in this example).

❑ Any database or system errors occur.

There are a lot of other user interface features for which this application could provide a
demonstration — it could certainly have more fields of data — but the purpose of this particular

505

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 506

Chapter 12: Contact List Application

application is to show simple, core functionality and how to implement it using a Perl CGI program.
This shows you how to get started implementing a Perl-MySQL web application sooner rather than
later! Adding more to it would be rather pointless since its functionality will be locked down.

Program Requirements
Next, you want to define internal design requirements:

❑ The application will provide connections to MySQL and memcached. MySQL is required and
crucial for the application; memcached is optional and provides the performance benefits of
caching.

❑ The application must provide methods that retrieve, add, update, and delete users.

❑ The application must have logic to display the appropriate functionality.

❑ The application must provide error handling for incorrect user input. Also, the application must
do something — at least display an error message — if it cannot connect to MySQL.

The trickiest but most beneficial functionality is the caching of data to reduce database accesses as much
as possible. The application must provide caching through the use of memcached. The application
should always try to utilize memcached for obtaining data whenever possible in order to avoid database
accessing.

The application must ensure that memcached is updated whenever MySQL is updated — on any data
modification operation (INSERT, UPDATE, DELETE) — to ensure that when it does use memcached to obtain
data instead of MySQL, the data it retrieves is the same as what is stored in durable storage in MySQL

The application must cache objects in such a way that they are cataloged as having been stored in mem-
cached so the functionality that obtains data from memcached has a reliable accounting of what it can
find in memcached.

User Interface
You also want to have an HTML design for your page. The requirements for the design follow the
program design:

❑ As stated, the application needs to display a listing of users.

❑ As stated, the functionality calls for listing users and providing a form to input new users. The
form needs to have four input text fields.

❑ Additionally, you want to be able to delete one or more users. That would require checkboxes, or
some other means of selecting each user, and a Delete button to delete all checked users selected
for deletion.

❑ A number of style sheet attributes should also be defined to give the form a useful yet aesthet-
ically pleasing interface. If you are more of a developer than a designer, it can help to have a
friend help you create an interface design (just as the author does)!

So the following HTML will be split into the various parts, and the names in italics listed here will be the
name of the functions that will be assumed.

506

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 507

Chapter 12: Contact List Application

❑ A header display function, which will be HTML containing the title, style sheets, JavaScript if
any, and any other things that would exist between the beginning of the document and the main
body.

❑ A mainform display function, the default display when no particular operation has been selected.
This will display a list of users in tabular form with a main Delete button at the bottom. In each
list entry, there will be a link for viewing and a link for editing the user, as well as a delete check-
box that, when selected, will include the user in the user deletion when the Delete button is
clicked. Also in this display is a link to create a new contact entry.

❑ A userform display function that provides a form for the user to enter a new user, or edit and
existing contact. You would access this from the link from the mainform display or the viewuser
display.

❑ A viewuser display function that will display data for the contact selected from the mainform
user listing, per contact.

❑ An optional footer display function that will display the bottom of the page, depending on how
much data there is.

Having this breakdown of display functions will help you to come up with an HTML design and get a
better idea of the program’s flow. You’ll also find it useful to mock up the HTML before you write the
code, putting in HTML comments where each part of display functionality begins and ends. First and
foremost would be the delineation of different sections of the entire page. Then you would consider any
iteration within the application that produces a list or table — and for this application that would be the
user listing. You would have it so more than one contact is displayed, and add HTML comments to
the beginning and end of each table row.

Then you can cut and paste later!

The Main User Form, User Listing
The interface for the mainform will look like Figure 12-1.

Figure 12-1

507

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 508

Chapter 12: Contact List Application

As you can see, this is a simple, clean interface that provides a tabular display consisting of four columns
of the eight contact attributes for each contact, as well as the user id UID. Also included for each row are
the following:

❑ The UID is a link to a page to view the contact.

❑ The last column is a link to edit the contact.

❑ A check box allows you to select a contact. You can select the contact on a particular row and
click the Delete button at the bottom right corner to delete the selected contacts.

❑ A link in the bottom left corner allows you to create a new contact.

In order for the page to appear as it does in the design shown, the header display function will display
the HTML header portion of the entire document, which includes CSS styling information that controls
the look and feel of the document.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Contact List Application Example</title>
<style type="text/css">

body
{

font-family: Georgia, "Times New Roman", Times, serif;
margin: 1em;
color: black;
background-color: #fff;

}
p.msg
{

font-weight: bold;
padding: .5em;
border: .2em solid #fcc;
background: #fdd;

}
table.userlist th, table.userlist td
{

text-align: left;
padding: .5em 1em;
margin: 0;
border-bottom: .1em solid #ddd;

}
table.userlist th
{

border-bottom: .2em solid #ddd;
}
table.userlist
{

background-color: #eee;
border: .2em solid #ccc;
margin: 0 0 1em;

}
table.userlist tfoot td

508

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 509

Chapter 12: Contact List Application

{
text-align: right;
border: none;

}

form label
{

display: block;
}

</style>
</head>
<body>
<!-- end of header() content -->

As you can see, most of the style information is intended for the userlist HTML table, which is the
most ‘‘complex’’ part of the display. The next portion of the page includes the HTML for the mainform
display function. This includes the table where each contact or user is listed. It might make sense to
have a function that creates this table, so comments are used in this code sample to delineate where the
userlist begins and ends.

<!-- begin mainform -->
<p class="msg">Contact List Application Example</p>
<p>

<!-- begin userlist -->
<form action="/cgi-bin/app.pl" name="delete_user_form"
id="delete_user_form" method="POST">
<table class="userlist">

<thead>
<tr>
<th>UID</th>

<th>Username</th>
<th>Email</th>
<th>First Name</th>
<th>Sur Name</th>
<th colspan="2"> </th>
</tr>

</thead>
<tbody>

<!-- row for uid 25 -->
<tr>

<td>25</td>
<td>CaptTofu</td>
<td>patg@patg.net</td>
<td>Patrick</td>
<td>Galbraith</td>

<td><input type="checkbox" name="25" id="25"></td>
<td>Edit</td>
<!-- only reason for this is to have nice message -->
<input type="hidden" name="username_25" value="CaptTofu">

</tr>
<!-- end row for uid 25 -->

509

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 510

Chapter 12: Contact List Application

<!-- row for uid 26 -->
<tr>

<td>26</td>
<td>wes</td>
<td>wes@osdn.com</td>
<td>Wes</td>
<td>Moran</td>
<td><input type="checkbox" name="26" id="26"></td>

<td>Edit</td>
<!-- only reason for this is to have nice message -->
<input type="hidden" name="username_26" value="wes">

</tr>
<!-- end row for uid 26 -->

</tbody>
<tfoot>
<tr>

<td colspan="2">
Create a new entry
</td>
<td align="right" colspan="5">
<input type="submit" name="delete_user" id="delete_user" value="Delete">
</td>

</tr>
</tfoot>

</table>
</form>

<!-- end userlist -->

</p>
<!-- end mainform -->

Each row (there are two) also has a comment at the beginning and end of the row. This will be an HTML
fragment that you will end up putting in the portion of the code that displays each contact row from a
database result set.

Next is the immense footer content

<!-- footer -->
</body>

</html>

You may find this comedic, but there may be a need for adding more design content to this footer. You
might was well make this a functional unit now so that if you do end up adding more content, the logic
for it is separated out.

User Edit Form
The next page that this application will display is a form for editing existing contacts and adding new
contacts. Figure 12-2 shows how this page will appear:

510

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 511

Chapter 12: Contact List Application

Figure 12-2

The contact edit page, which for discussion can be referred to as userform, contains form elements for all
contact attributes, including a pull-down selection for states. If you recall in a previous chapter, there was
code that cached a table of state attributes. That code will be scavenged and reused for this application.

The HTML code that follows shows the userform, including four elements in the pull-down for states,
which also is delineated with comments. The same style attributes apply, as this page and others will use
the header function containing the style sheet.

<!-- begin userform -->
<p class="msg">Editing new user</p>
<p>Back to main page</p>
<p>
<form action="/cgi-bin/app.pl" name="appform" method="post">

<fieldset>
<p>

<label for="username">Username:</label>
<input type="text" name="username" id="username" size="16"
value="CaptTofu">

</p>
<p>

511

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 512

Chapter 12: Contact List Application

<label for="email">Email:</label>
<input type="text" name="email" size="16" value="capttofu@cpan.org">

</p>
<p>

<label for="firstname">First Name:</label>
<input type="text" name="firstname" size="16" value="Patrick">

</p>
<p>

<label for="surname">Sur Name:</label>
<input type="text" name="surname" size="16" value="Galbraith">

</p>
<p>

<label for="phone">Phone Number:</label>
<input type="text" name="phone" size="16" value="2923582908">

</p>
<p>

<label for="address">Address:</label>
<textarea name="address" rows="3"
columns="30">1333 Elm Ave.</textarea>

</p>
<p>

<label for="city">City:</label>

<input type="text" name="city" size="16" value="Marlow">
</p>
<p>

<label for="state">State:</label>
<! — this will be generated -->
<select name="state" >

<option value="AK">Alaska</option>
<option value="AL">Alabama</option>
<option selected="selected" value="NH">New Hampshire</option>
<option value="WV">West Virginia</option>
<option value="WY">Wyoming</option>

</select>

<!-- end generated state list -->
</p>
<p>

<!-- this hidden element for uid will be conditional -->
<input type="hidden" name="uid" id="uid" value="25">
<input type="submit" id="save_user" name="save_user" value="Save">

</p>

</form>
</p>
<!-- end userform -->

At the bottom, also notice that there is a hidden element uid. This is used as a toggle for the subroutine or
method to know if the form being submitted is for an existing or new contact. For an existing contact, it

512

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 513

Chapter 12: Contact List Application

will be included and have the contact’s uid. For a new contact, it will not be displayed. When the contact
is saved, the system will create a uid for the new contact through MySQL’s auto increment.

Contact View Page
The design for the next page — the page that will display a contact — is shown in Figure 12-3:

Figure 12-3

The contact view page, which can be referred to as viewuser, displays all the contact fields. This page
uses a simple table to display all contact attributes for a given contact, taking advantage of the same
styling as was illustrated for the contact list userlist, making for a clean interface. It also offers the
ability to edit the current user being viewed, as well as a link to return to the front page. This viewuser
contact view page will be accessible from the front page from the contact list for each listed contact. This
page is just for viewing.

Database Storage Requirements
As stated, what you’ll store will be a contact consisting of eight text fields. So the table must have these
eight fields. You should also add to them a contact ID field, uid, which the database will use as an
auto_increment column to automatically set its value — the application you are creating won’t set this,
but it will display it. The following table shows the various columns in the list:

513

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 514

Chapter 12: Contact List Application

Column Description

uid Integer, primary key, auto-increment

Username Text, unique, should be at least 16 characters

Email Text, unique, make it 32 characters to be safe. Anything beyond 32 is
insane.

First Name Text, 32 characters

Surname Text, 32 characters

Phone No, this won’t be an integer. Make it a varchar 32.

Address 255 characters should be sufficient.

City 24 characters

State This app will use state abbreviations, only 2 characters are needed.

The schema definition would then need to be:

CREATE TABLE users (
uid int(8) NOT NULL auto_increment,
username varchar(16) NOT NULL default ‘’,
email varchar(32) NOT NULL default ‘’,
firstname varchar(32) NOT NULL default ‘’,
surname varchar(32) NOT NULL,
phone varchar(16) NOT NULL default ‘’,
address varchar(255) NOT NULL default ‘’,
city varchar(24) NOT NULL default ‘’,
state varchar(2) NOT NULL default ‘’,
PRIMARY KEY (uid),
UNIQUE KEY username (username),
UNIQUE KEY email (email)

) ENGINE=InnoDB

To satisfy the requirements for uniqueness, what is shown in the previous code is a table with three
unique indexes — uid is a primary key (which happens by design to be unique), username and email. The
purpose of these unique indexes is to ensure that a user with the same username or email address cannot
be inserted into the users table. The value of uid is assigned through the mechanism of auto_increment,
so you don’t have to worry about collisions through user input. But with email and username you do.
With the UNIQUE constraints on the indexes for those columns, however, you won’t have to worry about
duplicated data — at the database level.

Even though the table has these constraints placed upon these columns, your application should not
rely on the database for enforcing them. Nor should the database be used to indicate whether a value
being inserted is for a duplicate user because it will result in an error from the database about a duplicate
record. The constraints are a last-ditch effort to prevent duplicate data from being inserted. You should
provide logic at the application level to check for a duplicate record even before an attempt is made to
insert the user into the database, possibly resulting in an error.

514

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 515

Chapter 12: Contact List Application

The other table, which is a stripped-down version of a similar table from an earlier chapter, is states. It
will only contain three columns, two of which are needed for this application:

CREATE TABLE states (
state_id int(4) NOT NULL auto_increment,
state_abbr varchar(3) NOT NULL default ‘’,
state_name varchar(32) NOT NULL default ‘’,
PRIMARY KEY (state_id),
KEY state_abbr (state_abbr),

) ENGINE=InnoDB;

This table will contain the state abbreviations and full state names used for dynamically generating the
pull-down states menu in the contact edit form.

Program Flow
The next step is to plan how to implement the program. This means figuring out the flow of the program.
What does the program need to do to deliver the functionality required? How will it handle errors, how
will it function based on user input, and what sort of decision process will there be?

Start with a skeletal frame.

First Things First
You want to think about the first things the program will need to do:

❑ Connect to MySQL

❑ Connect to memcached

❑ Parse submitted form data, if any

❑ Generate error messages, should any error occur

❑ Print a response HTML header

❑ Print the HTML page header

❑ Display the appropriate page according to user input or lack thereof. This will require some sort
of decision maker, or dispatcher

❑ If there is no user input, display the default page — in this case the userlist

❑ If there is user input, is it a contact view, edit form, contact creation, contact modification, or
contact deletion?

❑ If a contact edit of new or existing users, display the edit form userform

❑ If a contact is being saved, new or existing, save the contact, then display the main page
mainform

❑ If contacts are being deleted, delete those contacts, then display the main page mainform

❑ If the contact is merely being viewed, then display viewuser

❑ Display the footer

515

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 516

Chapter 12: Contact List Application

This also brings up another issue in design and organization; since this is an application utilizing MySQL
and memcached for data storage and caching, it will contain a lot of non-display functionality as well
as SQL statements and interactions with memcached. It might be useful to divide the display logic from
the non-display logic. The main CGI script could contain all the display logic, and the non-display and
database functionality can be implemented in a Perl class.

For this application, the CGI script will be called app.pl and for the Perl class, another incarnation of the
ones oft-used in this book, WebApp.pm.

Since the HTML design for this application has already been determined, the CGI will be the first thing
to sketch out.

Program Implementation
With the program flow and basic logic decided, you can now begin to implement your program.

Getting Started
So, to get started, the first things you will have to have in the code are various declarations and module
importations:

#!/usr/bin/perl

use strict;
use warnings;

use CGI qw(:cgi :html);
use CGI::Carp qw(carp confess);
use Data::Dumper;

First and foremost, be strict on yourself with warnings and use strict pragma to ensure good coding from
the start. You also need the ability to process submitted form values, so take advantage of the CGI Perl
module.

CGI.pm, written by Lincoln Stein, is a mainstay in Perl web development that provides an API with a
plethora of useful methods to enable you to do just about everything you need to write feature-rich Perl
web applications. There are probably billions of lines of code running web sites throughout the Internet
using this module. For this application, only the set of methods provided by :cgi and :html will be
required.

The examples in this book will give you an idea of how CGI.pm is used, although do realize these
examples show only the tip of the iceberg. CGI::Carp is also another useful module because it can pro-
vide as little or as much logging information as you want. CGI::Carp’s subroutine carp works like a
warning; confess gives you a full stack trace. Your Apache error log will love you for it.

Also, you can use Data::Dumper while you’re developing. There are more elegant ways of debugging
available, but the author prefers printing errors and Perl objects with Data::Dumper to the error log with
the print statement or carp to give insight into what is being processed. This is useful for making sure
data is what you expect it to be within different parts of the code. At least, the author thinks so.

516

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 517

Chapter 12: Contact List Application

Next, instantiate a CGI object.

CGI object
my $cgi= new CGI();

URL of program, used in form submit url, other parts of code
my $url = $cgi->url(-absolute=>1);

The HTML forms in this program will have an action to a given URL to submit to, its own good self,
which can be obtained through the CGI method url() using the --absolute parameter. So, if the full
URL is www.yoursite.com/cgi-bin/app.pl, the value would end up being /cgi-bin/app.pl, which is
what you want. Then, of course, you want to define a database handle variable to use. Defining all of
these variables outside any subroutine will make them available to all subroutines.

Already discussed was the need for having a Perl class implement all the back-end, non-display,
database/memcached functionality. In this example, this will be WebApp.pm. So, without further ado,
instantiate a WebApp object:

WebApp
my $webapp= WebApp->new();

Since WebApp implements the functionality that interacts with MySQL and memcached by design,
instantiation will also cause connections to MySQL and memcached to be made. These previous steps
have taken care of the initial setup of objects that the application needs to proceed.

The next thing you want to do is run actual display functionality. To containerize this application, a
main() subroutine will be used. This is the function from which all the primary display functions will in
turn be called:

call main subroutine
main();

main() Subroutine
In the introduction to this section, the basic functionality of what needs to happen was laid out. This is
the functionality main() will call.

#
main
run all other primary display subroutines
#
arguments:
none
#
returns:
nothing
#
sub main {

my $msg;
print $cgi->header(’text/html’);
print header();

517

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 518

Chapter 12: Contact List Application

dispatcher(\$msg);
print footer();

}

The steps to follow are:

1. Define a scalar string, $msg, which will be passed around by reference to the dispatcher,
which will in turn pass it to other subroutines by reference (fast to pass by reference).

The HTML response header is printed. This tells the browser to expect HTML for this appli-
cation. Every CGI program, mod_perl application, and anything interactive has to perform
this step.

2. Print the HTML page header, shown in the previous code, from the HTML mock-up.

3. The decision processor is the dispatcher. This is the ‘‘brain’’ of the program. From it, all
primary decision and display logic of what the program does is performed.

4. The footer is printed. Most important part!

header() Subroutine
The first subroutine, header(), is very simple. It just returns the HTML of the header as shown in the
code that follows. The CSS information is omitted for brevity’s sake, avoiding redundancy and saving
trees. You will also notice the use of comments at the top of each program to provide the purpose and
arguments to each subroutine. For modules, you could also make this POD.

#
header
prints the header of the page, including style sheet
#
arguments: none
#
returns:
HTML code
#
sub header {

return <<EOHTML;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Contact List Application Example</title>
<style type="text/css">

... style contents as shown in HTML mockup from above ...

</style>
</head>
<body>
<!-- end of header() content -->

EOHTML

}

518

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 519

Chapter 12: Contact List Application

dispatcher() Subroutine
Next, comes the real functionality. This is the dispatcher() subroutine that handles the top-level deci-
sion making. This is a fairly long subroutine because it must provide form processing and decision
making.

#
dispatcher
process the form values and controls main program logic,
calling appropriate pages
+ If submitted, and calls appropriate function based on the submission value.
+ Supplies functions with required arguments.
+ Handles missing arguments
+ display appropriate page
#
arguments:
$msg - scalar ref for writing the error or success message to
#
returns:
1 - success or some action taken
0 - no action or error
#
sub dispatcher {

my ($msg) = @_;
my $delete_ids;
my $user = {};
my $saved = 0;
WebApp
my $webapp = WebApp->new();

The following steps explain how the dispatcher() subroutine works:

1. First, several variables are declared. $delete_ids will be used to assume the list of contact
IDs, uids, for deletion should the operation be contact deletion. $user is used to retrieve a
single user hash reference should the operation be a contact edit or view page. $saved will
be used to contain the value of failure or success upon an attempt to save a contact. It is then
used to determine whether to redisplay the edit form where the information was entered
that the caused the error.

if fatal is set, just print the form with the error
unless (defined $webapp->{dbh}) {

obtain whatever error message was set
$$msg ||= $webapp->{msg};
print mainform($user,$webapp, $msg);
return;

}

2. A check determines if the $webapp attribute dbh is defined. If it is not defined, this means the
database could not be connected to due to some sort of error condition. If the database con-
nection is not made, the mainform() immediately displays along with the message produced
from the error. This ensures the application at least does something — in particular, displays
the error message if the database is down.

519

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 520

Chapter 12: Contact List Application

get all submitted form values into a hashref
my $form = $cgi->Vars();

3. This next stage of the program deals with obtaining the submitted form values, saving, or
deleting contact data. The $cgi->Vars() method provides a hash reference containing the
form values, keyed by the names of the form elements submitted. The hash reference $form
is used to obtain the output of $cgi->Vars(). The first decision is to determine if the form
value save_user is set, which is the name of the submit button element that would have
been submitted when the Save button is selected.

if save_user operation - create or update
if (defined $form->{save_user}) {
my $not_set = 0;

4. $WebApp::REQUIRED_COLS is a class variable of WebApp (which will be discussed later)
that provides an array reference of the contact attribute names that are required to be set in
the contact edit form. Each required contact attribute name is used to check the submitted
form values in $form. It checks to see if $form member is defined has string length. If both
requirements are not satisfied, then it would mean that the $form member is not set. A
simple $not_set variable is then incremented. If $not_set is true, the checking loop ends
and there will be no attempt to save the contact, resulting in the user form being redisplayed
with an error message indicating to the user which required contact field is not filled out. If
$not_set is false, the user is saved, and the variable $saved is set to be used in later decision
making.

check all fields for being set - this means "required"
for (@$WebApp::REQUIRED_COLS) {

both defined and containing a value with a length
unless (defined $form->{$_} && length($form->{$_})) {
create a message
$$msg = "Error: the field for ‘\u$_’ is not set!";
$not_set++;
last;

}
}
if all required fields, saveUser
unless ($not_set) {

$saved = $webapp->saveUser($form);
}

}

5. The next test determines if a delete operation is being requested. Then a loop is used to
obtain all form values in $form that are completely numeric. These numeric values are the
user IDs (uids) that are to be deleted. These user IDs are ‘‘collected’’ into a hash reference
$delete_ids. If there are one or more of these user IDs at the end of the loop, a call to
$webapp->deleteUsers() is made, passing these IDs.

#
delete of one or more users
#

520

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 521

Chapter 12: Contact List Application

elsif (defined $form->{delete_user}) {
check all form values
for my $param (keys %$form) {

if the param is completely numeric, that is the uid
if ($param =∼ / ˆ (\d+)$/ && $form->{$param} eq ‘on’) {
create hash ref keyed by uid, value username which will be
used to build both a list of uids to delete as well as a message
$delete_ids->{$param}= $form->{"username_$param"};

}
}
if there are no ids to delete, don’t bother
if (keys %$delete_ids) {

$webapp->deleteUsers($delete_ids);
}

}

Now comes the final act of dispatcher(): it displays the appropriate page, depending on
the operation being set by user action:

6. The scalar reference $msg assumes, if not set already, any messages in the $webapp object
handle that were generated during the previous steps. These messages will be displayed in
whatever page ends up being displayed.

7. The page display logic begins with a check for the $form parameter save_user and the value
of $saved. If $saved is false and the $form parameter save_user is set, this indicates that the
previous attempt to submit the contact editing form, with either a new or existing contact,
failed and the user form userform() should again be displayed. The difference between this
error condition and editing a user is that $form is passed to userform()instead of to $user,
which is not set due to the error. Also, $form will contain the parameter values that were
submitted in the failed attempt to save the user that might have caused the failure.

8. The next two tests determine whether there should be a view or edit operation. Many web
applications could possibly use an ‘‘op’’ form value, but for the sake of convenience, either
the value edit or view $form members are used for a true or false test, as well as for supply-
ing the uid. Also, both edit and view are set with a GET as opposed to a POST, so having a
single form parameter makes for a cleaner URL to have as few variables as possible passed
in a query string. In either case, $webapp->getUser() is called supplying the user ID uid,
depending on whether the action is an edit or view and the $user hash reference — a hash
reference with the data for the contact — is retrieved for displaying in either the user editing
form edituser or user display page viewuser.

9. Finally, if no particular action is being requested, the default contact listing page,
mainform(), is displayed.

#
if no previous message, set to whatever WebApp created
$$msg||= $webapp->{msg};
if (!$saved && defined $form->{save_user}) {
edit form
print userform($form,$webapp, $msg);

}
elsif (defined $form->{edit}) {
edit form
$user= $webapp->getUser({ uid => $form->{edit}});

521

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 522

Chapter 12: Contact List Application

print userform($user,$webapp,$msg);
}
elsif (defined $form->{view}) {
view page
$user= $webapp->getUser({ uid => $form->{view}});
print viewuser($user,$webapp, $msg);

}
else {
default, print user list
print mainform($user,$webapp, $msg);

}
return;

}

This completes the dispatcher() subroutine, and the application displays the appropriate page. The
subroutines that were called from within dispatcher() will be discussed next.

mainform() Subroutine
As you saw in dispatcher(), when no submission or contact lookup for either editing or viewing is
initiated by the user, the default display mainform() displays its content. mainform() has the purpose
of displaying the list of contacts as well as displaying the message returned from any previous action.
When implementing this, it was possible to utilize the sections of HTML from the mock-up, as shown by
the HTML comments.

#
mainform
prints the main form of the page, when no user action
printing out the list of users
#
arguments:
$msg - scalar ref containing error or success messages
#
returns:
HTML code
#
sub mainform {

my ($user, $msg)= @_;
my $ulist= ‘’;

#
obtain the contact list HTML
do not attempt to obtain the contact list HTML if a fatal condition,
such as the database not being able to be connected to is set
#
$ulist = userlist($$msg) unless $webapp->{fatal};

$$msg||= "Contact List Application Example";

return <<EOHTML;
<!-- begin mainform -->
<p class="msg">$$msg</p>
<p>
$ulist

522

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 523

Chapter 12: Contact List Application

</p>
<!-- end mainform -->

EOHTML
}

mainform() obtains the content for the contact list table from a call to userlist(), passing along $msg by
reference to assume any messages generated in other subroutines or from the WebApp object.

userlist() Subroutine
The subroutine userlist(), called by mainform(), generates the HTML display that consists primarily
of a table containing rows for each contact. Each of these rows provides the ability to view, edit, or delete
the contact. For deletion, a checkbox for each contact is provided. The Delete button below the table will
delete the contacts that are checked.

#
userlist()
builds an HTML table containing the list of users who exist
or print a message that there are no users
#
arguments:
$msg - scalar ref for writing the error or success message to
#
returns:
$data - HTML table with list of users or messages stating that
users can be added
#
sub userlist {

my $msg= shift;
start out with empty string
my $data= ‘’;

not looking for a specific user, specified in first argument
so pass empty hashref
my $uref= $webapp->getUsers({});

The call to the method $webapp->getUsers() returns a hash reference, $uref, where each key is the uid
for each user, pointing to yet another hash reference for each user, keyed by user attributes. The table
header is started in advance of iterating through each contact entry of $uref — if, of course, $uref has
any records. If $uref has no data, then an alternative to the table must be generated, notifying the user
that there are no contacts yet in the database.

if there is data and no error, build a table
if (defined $uref && keys %$uref) {
table header
$data= <<EOHTML;
<!-- begin userlist -->
<form action="$url" name="delete_user_form"

id="delete_user_form" method="POST">
<table class="userlist">

<thead>
<tr>
<th>UID</th>

523

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 524

Chapter 12: Contact List Application

<th>Username</th>
<th>Email</th>
<th>First Name</th>
<th>Sur Name</th>
<th colspan="2"> </th>

</tr>
</thead>
<tbody>

EOHTML

This is where the iteration of each hash reference member, a contact hash reference, is iterated over.
Seven columns are displayed: uid with a link to view the contact, username, email, firstname, surname,
a checkbox that uses the user id as the checkbox’s form element name, and the final column that is a
link with the contact uid as the value to the edit parameter. Also included is a hidden form element
with the form element name of the concatentation of username_ and the contact uid value. This is so any
subsequent messages generated can utilize this value in messages.

build up the row with each row of the result set
for my $uid (sort keys %$uref) {

my $row= $uref->{$uid};

encode any entities to prevent HTML injection
$webapp->encodeUserData(\$row);

for each row, build the <tr>...</tr>
$data .= <<EOROW;
<!-- row for uid $row->{uid} -->
<tr>

<td>
{uid}" title="View contact $row->{uid}">
$row->{uid}
</td>
<td>$row->{username}</td>
<td>$row->{email}</td>
<td>$row->{firstname}</td>
<td>$row->{surname}</td>
<td>
<input type="checkbox" name="$row->{uid}" id="$row->{uid}">

</td>
<td>{uid}">Edit</td>
<!-- only reason for this is to have nice message -->
<input type="hidden" name="username_$row->{uid}"

value="$row->{username}">
</tr>
<!-- end row for uid $row->{uid} -->

EOROW
}

Finally, the bottom of the table is generated, along with the Delete button to submit a deletion for what-
ever checkboxes in each contact row for the uid values of the contacts selected for deletion.

table footer
$data .= <<EOHTML;

524

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 525

Chapter 12: Contact List Application

</tbody>
<tfoot>
<tr>

<td colspan="2">Create a new entry</td>
<td align="right" colspan="5">
<input type="submit" name="delete_user" id="delete_user" value="Delete">
</td>

</tr>
</tfoot>

</table>
</form>
<!-- end userlist -->

EOHTML

}
otherwise, let the user know there aren’t any contacts, give them
link to create some
else {
$data= ‘<p class="msg">You have no users in your contact list currently</p>’;
$data.="<p>Create a new entry</p>";

}
return $data;

}

If $userlist didn’t have any contact rows, then an alternative display notifying the user that there were
not any contacts in the database is generated.

Finally, the generated contact list data or alternative notification message is returned to the calling
subroutine, mainform().

userform() Subroutine
The userform() subroutine has the purpose of displaying the contact editing form elements either for
entering data to add a new contact or for editing an existing contact. The form fields for user data that
can be entered are all contact attributes except the contact id, uid.

Additionally, there needs to be some logic to disable the username form element for editing an existing
contact since this is one attribute, at least in the design of this application, that cannot be changed.

#
userform
generates the contact edit form.
#
args
$user - hash reference of user attributes
$msg - scalar reference for messages
#
returns
contact editing HTML data
sub userform {

my ($user, $msg)= @_;
my $hidden_uid_element;

525

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 526

Chapter 12: Contact List Application

A test is made to determine if $msg has a value. If it does, that means an error occurred. If it does not
have a value, then it will construct a message depending upon whether this is a new or existing contact
being edited.

unless ($$msg) {
$$msg= "Editing ";
$$msg.= $user->{uid} ? "$user->{username}" : " New Contact" ;

}

A call to the $webapp->getStates() method returns a hash reference keyed by state abbreviates and the
values of the full state names.

my $states= $webapp->getStates();

The logic to test whether a user is being edited either sets the scalar string value $readonly with a
read-only attribute or with an empty string:

make read-only if user edit existing user
my $readonly= $user->{uid} ? ‘readonly="1"’ : ‘’;

Next, a pop-up menu form element is created using the CGI method popup_menu(). This is just one of
the many useful form generation methods CGI provides that can make building dynamic HTML quite
simple for you.

For this application, the state abbreviations are stored in the database for each contact instead of the full
state name. So in addition to the keys of $states — the value of the –values argument to popup_menu()
which in turn provides popup_menu() a list of the values it will contain — the argument -labels is
provided the full $states hash reference to map the state abbreviations. The abbreviations are the value
of each option to a label display value, the full state name. This makes it so the user selects a state name
for a contact, but when the data is saved, the state abbreviation will be the value used.

To ensure that the user interface has some indication that a state value must be selected, another member
called default is added to $states along with a label of Select a state, which in turn will result in that
option being provided in the pop-up menu. The mechanism for setting Select a state is provided by a
check for the value of the contact id uid upon assignment to the –default argument to popup_menu().
This is the argument to determine which pop-up menu option is the selected option. If uid is set, then
the argument to –default is the state abbreviation, which results in the value of the state for the contact
being edited to become the selected value. If uid is not set, the option selected by default is the default,
displaying as Select a state.

add a default select option to the states hashref
$states->{default}= ‘Select a state’;

my $states_select= popup_menu(
-name => ‘state’,
-values => [sort keys %$states],
-default => $user->{uid} ? $user->{state} : ‘default’,
-labels => $states);

A scalar string $hidden_uid_element is set either to the value of a hidden form element named uid or
to an empty string, depending on whether the contact id uid value for $user is set. This makes is so a

526

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 527

Chapter 12: Contact List Application

contact id value uid is available upon the submission of a form for an existing user being edited. If the
submission of the form is for a new user, there will not yet be a contact id uid value, but one will be
created as soon as the contact is inserted.

set this if the user exists - a $user->{uid} existing.
$hidden_uid_element=
‘<input type="hidden" name="uid" value="’. $user->{uid} . ‘">’ if $user->{uid};

Finally, the entirety of the form, along with the pregenerated form elements, is returned to the calling
subroutine dispatcher(), which prints this returned content. The form values are all set with $user,
which is unset by default when the form is displayed.

encode HTML entities
$webapp->encodeUserData(\$user);

return <<USERFORM;
<!-- begin userform -->
<p class="msg">$$msg</p><p>Back to main page</p>
<p>
<form action="$url" id="appform" name="appform" method="post">

<fieldset>
<p>

<label for="username">Username:</label>
<input type="text" $readonly id="username" name="username"
size="16" value="$user->{username}">

</p>
<p>

<label for="email">Email:</label>
<input type="text" id="email" name="email" size="16" value="$user->{email}">
</p>
<p>

<label for="firstname">First Name:</label>
<input type="text" id="firstname" name="firstname" size="16"
value="$user->{firstname}">

</p>
<p>

<label for="surname">Sur Name:</label>
<input type="text" id="surname" name="surname" size="16"
value="$user->{surname}">

</p>
<p>

<label for="phone">Phone Number:</label>
<input type="text" id="phone" name="phone" size="16" value="$user->{phone}">
</p>
<p>

<label for="address">Address:</label>
<textarea id="address"
name="address" rows="3" columns="30">$user->{address}</textarea>

</p>
<p>

<label for="city">City:</label>
<input type="text" id="city" name="city" size="16" value="$user->{city}">

</p>
<p>

527

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 528

Chapter 12: Contact List Application

<label for="state">State:</label>
$states_select

</p>
<p>

$hidden_uid_element
<input type="submit" id="save_user" name="save_user" value="Save">

</p>
</form>
</p>
<!-- end userform -->

USERFORM

viewuser() Subroutine
The viewuser() subroutine displays a user for the uid value supplied by the parameter value of view,
which if set is what results in viewuser() being called from within dispatcher().

#
viewuser
prints the contact view page
#
arguments:
$msg - scalar ref containing error or success messages
#
returns:
HTML code
#
sub viewuser {

my ($user, $msg)= @_;
my $hidden_uid_element;

my $statename = $webapp->getState($user->{state});

A call is made to the method, $webapp->getState(), supplying the argument with the state member of
$user, which is a state abbreviation. The full state name will be returned, which will in turn be displayed
in the subsequent page.

Next, the WebApp method encodeUserData() is used to encode any HTML entities in the user data to
prevent HTML injection in the page about to be displayed.

encode HTML entities, prevent HTML injection
$webapp->encodeUserData(\$user);

Then the page itself, a simple table with a row for each contact attribute is retuned and printed by the
calling subroutine dispatcher().

return <<USERFORM;
<!-- begin viewuser -->
<p class="msg">View User $user->{username}</p>
<p>Back to main page</p>
<p>{uid}">Edit $user->{username}</p>
<table class="userlist">

<tbody>

528

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 529

Chapter 12: Contact List Application

<tr><td>UID:</td><td>$user->{uid}</td></tr>
<tr><td>Username:</td><td>$user->{username}</td></tr>
<tr><td>Email:</td><td>$user->{email}</td></tr>
<tr><td>First Name:</td><td>$user->{firstname}</td></tr>
<tr><td>Surname:</td><td>$user->{surname}</td></tr>
<tr><td>Phone Number:</td><td>$user->{phone}</td></tr>
<tr><td>Address:</td><td>$user->{address}</td></tr>
<tr><td>City:</td><td>$user->{city}</td></tr>
<tr><td>State:</td><td>$statename</td></tr>

</tbody>
</table>

<!-- end viewuser -->
USERFORM

}

WebApp Class Methods
Now that all the front-end display logic functionality, as implemented in the main CGI script app.pl,
has been explained, this section will explain the methods that app.pl utilized for data retrieval, storage,
modification, and deletion:

1. First of all, there is a package declaration for setting the namespace of this module, and
importation of strict and warning pragmas for the sake of being picky. Also, other modules
necessary for use within WebApp are imported.

package WebApp;

use strict;
use warnings;

use CGI::Carp qw(carp confess);

2. Use of CGI::Carp provides several types of error display. For this application, you have the
choice of carp() or confess(). carp() provides a print-out similar to what warn() would
provide; confess() provides a full stack trace.

3. DBIx::Password is a very useful module that inherits from DBI.

use DBIx::Password;

Developed by Brian Aker, this module provides a way to connect to the database without
having to provide full connection credentials, thereby keeping all database connection val-
ues stored in a single location. This is a common database application developer dilemma:
where one should store database connection information for an application. DBIx::Password
has the concept of a virtual database user, which is implemented with the use of a hash ref-
erence, keyed by this virtual username and containing the connection meta-data as the hash
members. Wherever your Perl library is, DBIx::Password will contain this connection infor-
mation. When you want to add a new database user, you can add to this file another virtual
user by adding another hash member to the $virtual hash reference, as shown in the file
/usr/lib/perl5/site_perl/5.8.8/DBIx/Password.pm

529

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 530

Chapter 12: Contact List Application

my $virtual1 = {
this is the virtual user
‘webuser’ => {

‘port’ => ‘’,
‘username’ => ‘webuser’,
‘host’ => ‘localhost’,
‘database’ => ‘test’,
‘password’ => ‘webpass’,
‘attributes’ => {},
‘connect’ =>
‘DBI:mysql:database=test;host=localhost’,
‘driver’ => ‘mysql’

},

this is where you would enter other virtual
database users, having their own
same attributes as shown here with webuser

}

4. Next import Cache::Memcached::libmemcached, which will be used for caching data to
memcached, as well as Data::Dumper, which you will remove after testing!

use Cache::Memcached::libmemcached;
use Data::Dumper;

5. Finally, the Perl module HTML::Entities is imported. This module provides methods for
encoding and decoding HTML entities. This will be used in WebApp to filter user data
for display in HTML pages to prevent HTML injection.

use HTML::Entities;

There are declarations of various package-scoped variables shown in the code that follows:

❑ $MEMC_DEFAULT_SERVERS is the default memcached server list connect to.

❑ $DB_VIRTUAL_USER is the default virtual user unless specified otherwise in instantiation.

❑ $USER_COLS is the list of contact attributes that will be used throughout the code, particularly for
building dynamic SQL statements and value verification.

❑ $REQUIRED_COLS is used in various parts of the code to provide a list of contact attributes that
must be specified when entering data.

memcached server list, can be overridden upon instantiation
our $MEMC_DEFAULT_SERVERS= [’127.0.0.1:11211’];

virtual user for DBIx::Password
our $DB_VIRTUAL_USER= ‘webuser’;

when to expire the cache catalogue
our $MEMC_CATALOGUE_EXPIREY= 300;

all columns except primary key for the user, which auto_increment sets

530

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 531

Chapter 12: Contact List Application

our $USER_COLS = [qw(username email firstname surname phone city state address)];

required columns for submissions
our $REQUIRED_COLS = [qw(username email firstname surname)];

Instantiation with the new() Method
The new() method is for instantiating the WebApp object. Its purpose in life is first and foremost to
return a blessed object reference to itself, as well as set class attributes for $DB_VIRTUAL_USER and
$MEMCACHED_SERVERS, and to establish a connection with MySQL and memcached for the rest of the
class’s methods to use.

$MEMC_CATALOGUE_EXPIREY is a class variable that determines when the object that contains a list of the
contact IDs uids is expired in memcached. This is used to control the frequency of how often the cache
users are reloaded in memcached.

It takes two arguments:

❑ $caller is a reference to another WebApp object or the scalar string value of its name set upon
instantiation.

❑ $opts provides a means of overriding class attributes — in this case $DB_VIRTUAL_USER and
$MEMCACHED_SERVERS.

One other thing new() does is to set an attribute msg to an empty string, which is where messages (either
errors or success operation notifications) will be stored.

=head2 new()

instantiates a new WebApp object

=item args

=over

$caller - class name

$opts - for overriding default values

=back

=item returns

=over

$self - object reference

=back

=cut

sub new {
my($class, $opts) = @_;

531

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 532

Chapter 12: Contact List Application

my $self = {
memc_servers => $MEMC_DEFAULT_SERVERS,
db_virtual_user => $DB_VIRTUAL_USER,
db_virtual_user_ro => $DB_VIRTUAL_USER_RO,

set the message to empty string
msg => ‘’,

};
$self->{$_} = $opts->{$_} for keys %$opts;

bless($self, $class);

Of course, the connections are made to MySQL and memcached, and each connection handle is stored
in the class attribute $self->{dbh} and $self->{memc} respectively. Connecting to MySQL is crucial for
this application to function, so if the connection to MySQL fails, then WebApp must immediately return
the instantiated class reference. This will result in app.pl simply displaying a message saying that the
database cannot be connected to.

connect to MySQL
return $self unless $self->_connectDB();

connect to memcached
$self->_connectMemcached();

return $self;
}

Finally, the constructor new() will return a blessed object reference.

Connection to MySQL
The _connectDB() method provides a simple means to connect to MySQL. This is different than previous
database connection subroutines or methods discussed in this book in that it is using DBIx::Password. As
was already mentioned, DBIx::Password provides an abstraction to the connection specifics of DSN, user
and password, storing the database connection credentials in one place. All that is needed to connect is
virtual user that exists in Password.pm (found in your system’s Perl library). Since DBIx::Password inherits
from DBI, all DBI methods are available via the handle you instantiate.

Also different about this connection is the number of tests performed to ensure the database connection
is working. This is the one method that is crucial to the application working at all. The class attribute
dbh, which if not set, means the database connection could not be established and is used in app.pl to
indicate that a major error has occurred and to display the error message. You might think that upon
such an error you would want to return undefined, but in order for the script using WebApp to obtain
the database error message, you need to return the object reference so the script can print the database
error message that was set when the connection failed, or at least have access to it.

The attribute PrintError is set to cause the error to be printed as a warning to the Apache error log.

=head2 _connectDB()

connects to MySQL, sets the object attribute "dbh", database handle

532

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 533

Chapter 12: Contact List Application

=item arguments

=over

$self - object reference

=back

=item returns

=over

1 - success

0 - failure

=back

=cut

sub _connectDB {
my ($self)= @_;

eval {$self->{dbh}= DBIx::Password->connect(
$self->{db_virtual_user}, {PrintError => 1})};

if ($@) {
$self->{msg}= "Database ERROR: $@ $DBI::errstr\n";
confess $self->{msg};
return 0;

}
unless (defined $self->{dbh}) {
$self->{msg}= "Database ERROR: $@ $DBI::errstr\n";
return 0;

}
return 1;

}

Connection to memcached
The method _connectMemcached() connects to the memcached cluster specified in the array reference
list of $self->{memc_servers}. The default is ["127.0.0.1:11211"], but can be specified to override
the default upon WebApp instantiation. _connectMemcached() also has logic to test the connection by
attempting to set a simple value. If it fails it sets a message and returns 0. If successful, the class attribute
$self->{memc} is available to use for calling Cache::Memcached::libmemcached methods, and a 1 is
returned.

With error handling, the app only needs to log a warning that it cannot connect to memcached. This
application must be able to work without memcached.

=head2 _connectMemcached()

connects to Memcached, sets the object attribute "memc", database handle

533

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 534

Chapter 12: Contact List Application

=item arguments

=over

$self - object reference

=back

=item returns

=over

1 - success

0 - failure

=back

=cut
sub _connectMemcached {
my ($self)= @_;

$self->{memc}= new Cache::Memcached::libmemcached({
servers => $self->{memc_servers},
compress_threshold => 10_000 });

unless ($self->{memc}->set(’memcached_alive’, 1)) {
don’t need to display message, just log the error
carp "ERROR: memcached unable to connect!";
$self->{memc}= undef;
return 0;

}
return 1;

}

The getUsers() Method
The getUsers() method is the first method shown in the previous section covering app.pl display logic.
The call, as you will remember, was made from the userlist() subroutine to obtain the list of contacts.

not looking for a specific user, specified in first argument
so pass empty hashref
my $uref= $webapp->getUsers({});

getUsers() returns one or more contact records in a hash reference keyed by uid, which in turn is used
to generate an HTML table listing the contacts. In doing so, getUsers() also caches to memcached the
hash reference of users so that subsequent retrievals of contacts obtain data from memcached as opposed
to MySQL.

=head2 getUsers()

select and retrieve an arrayref of users from the database

534

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 535

Chapter 12: Contact List Application

=item arguments

=over

$self - object reference

$uref - user ref containing one or more keys

$reload_cache - used to cause the cached users to be reloaded

=back

=item returns

=over

return arrayref containing result set

=back

=cut
sub getUsers {
my ($self, $uref) = @_;
my $userlist_ref;
my @bind_values;

The first argument to getUsers() is the object hash reference to its own class. This provides access
to all class attributes and methods, as well as the msg class attribute. The second argument, which is
optional, is a hash reference containing lookup contact attributes such as uid, username, or email (each
being a unique attribute). Any of these could be used for the lookup of a single contact. This makes it so
getUsers() can be used for either single- or multiple-contact retrieval.

The variable $userlist_ref will be used to store the contacts retrieved from either memcached or
MySQL. @bind_values will be used to contain any bind values used to satisfy placeholder values upon
database query execution, should the data not be found in memcached and need to be retrieved from
MySQL.

An attempt is made to obtain the contact list into $userlist_ref from memcached. If it is found in
memcached, $userlist_ref is simply returned, and no data retrieval $userlist_ref from MySQL is
attempted.

There is one major assumption in all of this that if not done correctly would be fraught with peril. This is
the assumption that memcached contains an up-to-date representation of the contact database, matching
what is stored in MySQL. In order for this to work, it’s absolutely important to make sure when you
update MySQL that you also update everything that needs to be set in memcached. There are other tricks
and mechanisms you can use to ensure memcached has one-to-one data correlation with MySQL.

One possible method would be to store a value in memcached that expires within a given time, forcing
data to be retrieved from MySQL on some regular basis, thus helping to lessen the chances of data being
missing from memcached that is in MySQL, as well as the chances of having data in memcached that has
since been deleted from MySQL. You could also have a regularly scheduled cron job to reload all contacts
from the database into memcached. It all depends on what lets you sleep at night!

535

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 536

Chapter 12: Contact List Application

For this application, every write operation will ensure that whatever write action — DELETE, INSERT,
UPDATE — that is performed in MySQL is also performed in memcached. Also, a hash reference of all
contact IDs, uid, or every contact in MySQL is stored in memcached. This is a catalogue value and it will
be called user_uid_list, and will be set with an expiration of 5 minutes, forcing it to be reloaded from
the database every 5 minutes. This provides a little extra CYA.

Remember, this is a simple contact list application, and the object of this example is to show how you can
reduce the requirements of having to obtain data from MySQL using memcached.

obtain from cache, use if there are entries
$userlist_ref= $self->getUsersFromCache();
return $userlist_ref if keys %$userlist_ref;

If $userlist_ref is not in memcached, proceed to obtain it from MySQL. Also, you will use this oppor-
tunity to reload the contact list in the database.

not in memcached, procede to check the database

#
this check is here to make sure something happens so the page will
print, as well as provide an error message
#
unless (defined $self->{dbh} && $self->{dbh}->ping) {
$self->{msg}= "Unable to connect to MySQL";
carp $self->{msg};
return undef;

}

start a query
my $query= ‘SELECT * FROM users’;

Next, the database query is constructed and bind values are gathered for each user attribute — only if
they are defined in $uref.

#
if the $uref hashref has any keys specified, then construct
a WHERE clause
#
if (keys %$uref) {
$query .= ‘ WHERE ‘;
here, we want the uid
for my $key(’uid’, @$USER_COLS) {

if (defined $uref->{$key}) {
$query .= "$key = ? AND ";
push(@bind_values, $uref->{$key});

}
}
chop off trailing ‘ AND ‘
$query= substr($query, 0, -5);

}

Then the query is executed. If there is an error, set $self->{msg} to that error, which will be displayed
to the user. This is also something you have to consider — that you may not necessarily want to display

536

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 537

Chapter 12: Contact List Application

database error messages to the end user. This is all your decision. You may want to euphemize the gory
details of database errors with a more benign message to the end user. For this example, the audience is
you, and you like database error messages!

my $sth= $self->{dbh}->prepare($query);
$sth->execute(@bind_values);
if ($self->{dbh}->err) {
build a message
$self->{msg}= "ERROR: $DBI::errstr";
print to log
carp $self->{msg};
return undef;

}
force results into arrayref of hashrefs

$userlist_ref= $sth->fetchall_hashref(’uid’);

Upon successfully obtaining the data for the list of contacts, immediately cache that data into memcached,
and return it to the caller.

$self->cacheUsers($userlist_ref);
return $userlist_ref;

}

The getUser() Method
The getUser() method is all about code reuse. Its first argument $self is an object reference to its own
class. The second argument is the hash reference $uref, which contains the attributes and values of those
attributes for a specific contact, namely the uid value of that contact that will be used as a lookup value.

getUser() simply uses the method getUsers(), specifying the specific user with whatever attributes
happen to be found in $user. In most cases, because of caching, it will not require a database access to
obtain them, and instead will be simply provided by the hash keying of the main user list. If it were
not for memcached, getUser() would initiate a database query obtaining the correct user since it is
specifying the uid.

=head2 getUser()

obtains a user hashref, using getUsers to do the heavy lifting
taking the list of hashrefs returned (which there should only be one)
and returning a single user hashref obtained by user key uid

=item arguments:

=over

$self - object reference

$uref - hashref with uid, username , email or other lookup value

=back

=head returns:

537

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 538

Chapter 12: Contact List Application

=over

hashref representing a user keyed by user fields

undef - no user or an error, msg will be set

=back

=cut

sub getUser {
my ($self, $uref)= @_;

$users is a multilevel hash reference containing keys that are the uid value of yet other hash references
for each contact. The goal of getUser() is to then return the correct hash reference. Since a uid is being
specified with $uref being passed to getUsers(), there should be only one member in $users, that single
contact hash reference per uid.

get the big user ref, keyed by uid
my $users= $self->getUsers($uref);

Hashes/hash references are the greatest things in the programming world! This is why we love Perl! The
specified user is returned using the uid value of $uref to return yet another hash ref that that uid points
to in $users. This single-contact hash reference, containing the attributes and values of those attributes,
is returned.

return a single hashref obtained using uid
return $users->{$uref->{uid}};

}

The saveUser() Method
The next method that was used from app.pl is saveUser(). It takes as its first argument an object refer-
ence to its own class. The second argument is a hash reference, $user, which contains contact attributes
and values of those attributes. saveUser() has the task of saving a contact, whether the contact being
saved is new (an insert) or existing (an update). This logic is tricky, because it has to test a number of
conditions, as well as handle attempts to insert duplicate contacts or change existing contacts to having
values for unique attributes that other contacts already have.

=head2 saveUser()

either inserts or updates the user specified by $user into both
MySQL and memcached

=item arguments

=over

$user - hashref representing a user keyed by user fields

$msg - scalar ref for writing the error or success message to

538

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 539

Chapter 12: Contact List Application

=back

=item returns

=over

1 - success

0 - error

=back

=cut

sub saveUser {
my ($self, $user) = @_;

Note these steps:

1. saveUser() takes a single argument, a hash reference containing the contact attributes,
which will be the data that saveUser() will attempt to save. The first check is to see whether
$user has the attribute uid. If it does it means that what is being saved is an existing
contact.

#
if $user has a uid update
#
if ($user->{uid}) {
my $update_user;

2. Check to ensure that the contact does in fact exist. $check_user assumes the hash reference
value of the contact, if the existing contact is currently stored, or an empty hash reference
if not.

check if the user is in the database, even though a uid is specified
this $check_user ref will be used to see what columns actually were
changed
my $check_user= $self->getUser({ uid => $user->{uid}});

#
if the user’s email address changed, make sure the address they are

changing
it to is not already existing.
#
if ($check_user->{email} ne $user->{email}) {

3. A comparison is then made of the email address of the contact being saved to determine
if the user is changing their email address. If the email address is different, then that
means the user is changing their email address. The value of $exists_uid is obtained from
userExists() using the email address as a lookup argument, which is different from the
contact’s existing email address. userExists() will either return a valid uid value of

539

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 540

Chapter 12: Contact List Application

the contact being checked (true) or a 0 (false), indicating whether the contact exists or not.
The return value of -1 means there was a systemic failure of userExists() — a database or
some other error, and if this happens saveUser() then returns a 0.

4. If $exists_uid is set and $exists_uid is different than $user->{uid}, the uid of the contact
being saved, this means that there is an existing contact with this same email address, hence
this email address value the user is trying to use for this existing contact cannot be used. An
error message is set to notify the user that there is a conflict, and 0 is returned to the caller.

my $exists_uid= $self->userExists({email => $user->{email}});
return 0 if $exists_uid == -1;

let the user know they have to use a different email address
if ($exists_uid && $exists_uid != $user->{uid}) {

$self->{msg}=
"ERROR: You cannot use $user->{email} as an email address, it’s

being
currently used";
return 0;

}
}

Otherwise, those checks/tests have passed.

5. The next check is to test whether the user is changing the username. This will not happen in
the example because of the way the application is designed, since the form has the username
form element set to read-only. But, if that form wasn’t set to read-only, this check would pre-
vent the user from changing the contact’s username. It’s good to check this anyway because
a web application must always assume it can be called via a script, and hence never rely on
restrictions coded in HTML (or JavaScript).

for this application, do not allow the user to change their username
if ($check_user->{username} ne $user->{username}) {

$self->{msg}= "ERROR: You cannot change your username!\n";
return 0;

}

6. A hash reference is used to ‘‘collect’’ only the attributes (database columns) for the
contact that have changed. This is not really necessary, but since the data in $check_user
is available, you might as well put it to good use. It can’t hurt to update only those
attributes/columns that have changed. Also, if none of the attributes have been changed,
then there will be no attempt made to update the user, thus saving a trip to MySQL and
memcached.

use the user columns as the mapping
for my $key (@$USER_COLS) {

tmp user ref for storing changed keys
only update keys that are changed
if ($user->{$key} ne $check_user->{$key}) {
$update_user->{$key}= $user->{$key}

}
}

540

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 541

Chapter 12: Contact List Application

7. The uid value is added to $update_user. This is required to pass to the method
updateUser(), which must have a uid value to know what contact to update. Then if there
are any keys in $update_user, that means the contact changed and can be updated. The
update is then performed by the method updateUser(). If updateUser() returns a true
value, the method saveUserToCache() is called to set the user in memcached.

if $update_user has keys, something changed with the user, so update
if (keys %$update_user) {

#
the uid has to be in $update_user in order by the WHERE clause to
work

#
$update_user->{uid}= $user->{uid};

if ($self->updateUser($update_user)) {

$self->{msg}= "Updated $user->{username}\n";

save user in cache
$self->saveUserToCache($user);

return 1;
}

}
} # end of saving existing user

8. If the hash reference $user doesn’t have a uid, then that means the contact being saved is a
new contact. The method userExists() is called, performing a lookup using both the email
address and username for the new contact. If the user doesn’t exist, a call is made to the
method insertUser() within the unless block, and if successful, the contact is subsequently
saved into memcached using the method saveUserToCache().

If either the email or username is used for the new contact, then the default value of 0 at the end of the
program is returned. The message indicates that the contact’s email or username is set already through
userExists():

#
otherwise, no uid, must be a new user
#

else {

make sure user doesn’t exist and no error
unless ($self->userExists($user)) {

insert the suer
$user->{uid}= $self->insertUser($user);

#
if there is a $user->{uid}, then the insert was successful, so
store in memcached too
#
if ($user->{uid}) {

541

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 542

Chapter 12: Contact List Application

$self->saveUserToCache($user);

$self->{msg}= "Created contact $user->{username}\n";
return 1;

}
}

}
default return 0, if errors, msg contains error message
return 0;

}

Database Methods
These are the methods that will insert, update, and delete contacts in MySQL. For the most part,
the logic for storing data in memcached is separated from MySQL, except in the case of the method
deleteUsers(), which has an iterative step that cannot be resisted for being made useful!

The insertUser() Method
The insertUser() method inserts the contact into the database as well as into memcached. Its first argu-
ment is the object reference to itself, the second argument is the contact being saved, $user, which is a
hash reference with contact attributes as the keys and the values for those attributes.

=head2 insertUser()

insert the user into MySQL

=item args

=over

$self - object reference

$user - user hash reference

=back

=item returns

=over

insert id containing new user uid

0 failure

=back

=cut
sub insertUser {
my ($self, $user)= @_;

542

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 543

Chapter 12: Contact List Application

The values of $USER_COLS provides a mapping to the attributes and values of $user, which is used to
build the SQL statement fields.

build up the columns specification
my $query = ‘INSERT INTO users (’ . join(’,’, @$USER_COLS) . ‘)’;

It is also a nice trick to build the VALUES portion of the statement with the correct number of
placeholders:

build up the placeholders
$query .= ‘ VALUES (‘ . join(‘,’, (‘?’) x @$USER_COLS) . ‘)’;

remove the trailing comma
chop($query);my $sth= $self->{dbh}->prepare($query);

Finally the query is executed, using the hash slice to provide the bind values to satisfy the placeholders
in the previously prepared statement. As you can see, the order in which the fields were appended to the
SQL statement is in the same order of the bind values because $USER_COLS was used for both operations!

#
use hash slice to provide the bind values,
which will be in the correct order
#
$sth->execute(@{$user}{@$USER_COLS});

If there is an error, the message is set to that error — again, remember that you may not want to display
database error messages to the user.

if ($self->{dbh}->err) {
$self->{msg}= "Database Error: $DBI::err_str";
return 0;

}

Lastly, the last insert id is returned to the caller, which happens to be the new uid of the contact.

return the new uid
return $self->{dbh}->{mysql_insertid};

}

The updateUser() Method
The updateUser() method updates an existing contact. Its first argument is an object reference to its own
class. Its second argument is a hash reference, $user, which contains the keys as the contact attributes
for the contact being updated, and the values for those attributes. Like the insertUser() method, it also
uses both the $user hash reference and the $USER_COLS array reference to dynamically generate the SQL
statement used to update the contact. The difference with updateUser() is that $user will have a uid
attribute set.

=head2 updateUser()

543

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 544

Chapter 12: Contact List Application

update the user in MySQL, make sure there is a uid

=item args

=over

$self - object reference

$user - user reference

=back

=item returns

=over

number of rows on update - should be 1 on success

0 on failure

=back

=cut

sub updateUser {
my ($self, $user)= @_;
my @bind_values;

Note the following steps:

1. The first pre-update check is to test if the uid attribute is the only attribute in $user, in which
case no update will be performed, an informational message is set, and 0 is returned.

no need to update if all there is is a uid
if ($user->{uid} && keys %$user == 1) {
$self->{msg}= "Contact unchanged, not updated";
return 0;

}

2. The second check tests if there is no uid attribute, in which case an error message is set and
0 returned.

no uid, set error, return
unless ($user->{uid}) {

$self->{msg}= "ERROR: uid not set!";
carp $self->{msg};
return 0;

}

3. Next comes the generation of the UPDATE statement. Each attribute of the package variable,
array reference $USER_COLS, is used to build the column specification and placeholders of
the update statement and populate the @bind_values for each placeholder for only those
attributes that are defined in $user.

544

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 545

Chapter 12: Contact List Application

my $query = "UPDATE users SET " ;
construct a query
for my $key (@$USER_COLS) {
if (defined $user->{$key}) {

$query .= "$key = ?,";
push(@bind_values, $user->{$key});

}
}
chop off trailing ,
chop($query);

Also, the WHERE clause specifying the uid has to be appended to the statement and the value
pushed into @bind_values — all of which are in the same order as listed in the UPDATE
statement.

where clause
$query .= " WHERE uid = ?";

value for where clause
push(@bind_values, $user->{uid});

4. Finally the query is prepared, and then executed with @bind_values providing the values.
If there is a database error, the message is set and 0 is returned. If the update was successful,
the number of rows, which is one, will be returned.

my $sth= $self->{dbh}->prepare($query);
$sth->execute(@bind_values);
if ($self->{dbh}->err) {
$self->{msg}= "Database Error: $DBI::err_str";
return 0;

}
return 1 - since uid specified, only one row should be updated
return $sth->rows();

}

The deleteUsers() Method
The deleteUsers() method deletes one or more contacts at a time. Its first argument is an object reference
to its own class. The second argument is a hash reference having as the keys the uids to be deleted and
the usernames as the values.

Since the interface provides checkboxes for each contact row displayed in the contact listing, it’s possible
to select one or more contacts at a time to be deleted with the submission of the Delete button. The idea of
deleteUsers() is to have a means to accept a list of uids and construct an SQL DELETE statement using
the WHERE uid IN (...) to delete the selected contacts.

Also, it would be a bonus to have a useful message indicating back to the user which uids were deleted:

=head2 deleteUsers()

deletes one or more users specified by uid in $delete_ids

545

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 546

Chapter 12: Contact List Application

=item arguments

=over

$self - object reference

$delete_ids - hashref keyed by uid, values usernames

=back

=item returns

=over

1 - success

0 - no deletion or error

=back

=cut

sub deleteUsers {
my ($self, $delete_ids) = @_;
no ids, don’t bother

keys %$delete_ids or return 0;

Note the following steps:

1. The SQL DELETE statement is built, particularly the WHERE IN (?, ?, ...) clause, which is
simple enough to accomplish by appending placeholders for each uid to be deleted and
calling the method deleteUserFromCache()for each uid, which deletes that contact from
memcached.

start the query
my $query = ‘DELETE FROM users WHERE uid IN (’;

put together placeholder list
for my $uid(keys %$delete_ids) {
$self->deleteUserFromCache($uid);

}

2. The following is the join that builds the WHERE IN (?, ?, ?. ...) clause:

build up placeholders list
$query .= join(‘,’, (‘?’) x keys %$delete_ids);

$query .= ‘)’;

3. The query is executed. Since the statement used $delete_ids was used to construct the
WHERE IN clause, its keys can be used for the bind values.

546

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 547

Chapter 12: Contact List Application

my $sth= $self->{dbh}->prepare($query);

keys are the ids
$sth->execute(keys %$delete_ids);

if ($self->{dbh}->err) {
$self->{msg}= "Database Error: $DBI::err_str";
return 0;

}

4. After the DELETE statement is successfully executed, an informational message is con-
structed using the values of the $delete_ids hash reference — this is the whole reason for
$delete_ids being a hash reference, which satisfies the need for providing both the list of
uids to delete as well as the usernames for the message, as opposed to an array reference.

deleteUsers() returns the number of rows deleted using $sth->rows()

#
if any rows were deleted from the database
create a success message
#
if ($sth->rows()) {
warn "deleted: " . $sth->rows() ."\n";

values are the usernames. Make a nice message
$self->{msg}= sprintf("Deleted contacts: \u%s",

join(’, ‘, values %$delete_ids));

return $sth->rows();
}
return 0;

}

The userExists() Method
The userExists() method is used to return the uid value of a contact if found using either the email
or username contact lookup attributes. The first argument of userExists() is $self, the object reference
to its own class. The second argument is $user, a hash reference with either email or username as the key
attributes and the values of the email address and username for that contact. Each of these will be used
to perform a query to the database to see if the contact exists. If the contact exists, the uid for that contact
will be returned.

Since userExists() does perform two queries against MySQL, it does perform the lookup against mem-
cached first to avoid these database accesses if possible.

=head2 userExists()

checks to see if a user exists by either the username or email address

=item arguments

=over

547

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 548

Chapter 12: Contact List Application

$user - hashref representing a user keyed by user fields

=back

=item returns

=over

uid > 1 - user exists
0 - user doesn’t exist
-1 - error

=back

=cut

sub userExists {
my ($self, $user)= @_;
my @bind_values;

Check memcached first. If the uid is found, return it without further ado.

try memcached first before hitting the database
my $uid= $self->userExistsInCache($user);
return $uid if $uid;

Next, query MySQL uses both the email and username:

ok, not in memcached, check MySQL

now attempt to see if in MySQL, using username or email
for my $key(qw (username email)) {
#
have to run a separate query for each column
otherwise there is no way to tell the user which column
there is a duplicate on
#
if (exists $user->{$key}) {

my $query= "SELECT uid FROM users WHERE $key = ?";

The single uid value is then returned to the caller, if found.

my $exists= $self->{dbh}->selectcol_arrayref($query, {}, $user->{$key});
if ($exists->[0]) {
$self->{msg}= "Error the \u$key $user->{$key} exists already";
return ($exists->[0]);

}
}

}

If no uid values are found, 0 is returned.

return 0;
}

548

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 549

Chapter 12: Contact List Application

Caching Methods
The other part of data storage for this application is caching contact data in such a way that the data
is available and reliable for retrieval to reduce the necessity of obtaining it from MySQL as much as
possible.

When developing an application that uses memcached, you may find that you are repeating certain
caching retrieval and modification steps. This is where it’s helpful to abstract this functionality into
methods that hide the details of how that cache is maintained.

For this application, a memcached object, referred to from this point on as uid_list, is what will be used
to ensure an accounting of what contacts are stored in memcached. It will be a simple hash reference with
the keys the memcached key values used to store or retrieve the hash references for each contact. Not only
will this provide a ‘‘catalog’’ or inventory of cached contact uid for lookup of single contacts, but it can
also be used as the key list argument to Cache::Memcached::libmemcached method get_multi() to
automatically provide the list of keys needed to fetch all stored contacts at once.

It is crucial to ensure that this uid_list is accurate and reflects the contact uids of the contacts cur-
rently stored in MySQL. With painstaking logic, this is achieved by updating the list in both MySQL and
memcached whenever a contact is inserted, updated or deleted. Also, the expiration for uid_list is set
to 5 minutes whenever this uid_list is stored. This will cause the cache to be reloaded at least every
5 minutes with the full contact list, or whenever the user loads the contact listing page.

Most importantly, all of these methods must immediately return to the caller a false or undefined
value (depending on what is being expected) in case there was no connection to memcached
established — $self->{memc} being undefined. This is so that the application can function without
using memcached.

The saveUserToCache() Method
The saveUserToCache() method has an easier job to perform than saveUser with memcached —
particularly the Cache::Memcached::libmemcached set() method, which sets a value whether or
not that value already exists. That behavior is the reason saveUserToCache() can simply store the
values that it needs to.

The saveUserToCache() method takes two arguments. The first, $self, is an object reference, and the sec-
ond, $user, is the hash reference of contact attributes, with the keys being the contact attribute (database
columns) names and the values being those for the attributes. The values saveUserToCache() stores in
memcached are the contact hash references stored using the memcached key ‘‘uid_$user->{uid}’’; If
$user->{uid} is 22, the key would be uid_22. It also stores the contact id $user->{uid}, using both the
email and username as keys. This will provide a means of lookup by email and username.

=head2 saveUserToCache()

stores a user into cache, insert or update since ‘set’ doesn’t care

=item args

=over

549

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 550

Chapter 12: Contact List Application

$self - object reference

$uref - user hash ref

=back

=item returns

=over

1 on success

0 failure

=back

=cut
sub saveUserToCache {
my ($self, $user)= @_;
return 0 unless defined $self->{memc};

saveUserToCache() also must update the uid_list, which again is a hash reference stored in
memcached that provides an inventory of contacts stored in memcached. For it to work, any method
that modifies data in memcached must also update this list. This is what the calls to the method
updateMemcUIDList() provide.

#
ensure uid_list is updated - this is vitally important
for this app to work properly!
#
$self->updateMemcUIDList($user->{uid});

store the user
$self->{memc}->set("uid_$user->{uid}", $user);

#
other lookup keys - mail and username
used in userExists/userExistsInCache
#
$self->{memc}->set($user->{email}, $user->{uid});
$self->{memc}->set($user->{username}, $user->{uid});

}

The cacheUsers() Method
The cacheUsers() method does what it says it does. It caches all contacts stored in MySQL. Its first
argument, $self, is an object reference to its own class. The second argument, $users, is the result set
from selecting all contacts as returned from the DBI method, fetchall_hashref(). This is a multiple-
level hash reference having as keys the uid values of each contact the key is pointing to. cacheUsers()
iterates through each key of $users and stores each contact hash reference in memcached.

head2 cacheUsers()

stores the complete user reference of users to memcached

550

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 551

Chapter 12: Contact List Application

=item args

=over

$self - object reference

$uref - hashref of user hash refs

=back

=item returns

=over

success if stored

=back

=cut

sub cacheUsers {
my ($self, $users)= @_;
defined $self->{ memc } or return 0;
my $uid_list;

This for loop will iterate over each uid for each contact hash reference in $users. Within the loop, it first
creates the key value (found in $key) by creating a string of ‘‘uid_<uid>’’. So, if the current uid being
iterated over is 22, the key will be uid_22. This key will be used to store the contact in memcached and
be added to the hash reference $uid_list.

Then the following will be stored within this loop:

❑ The current contact hash reference containing the keys for the attributes of the contact and the
values for those attributes, stored with the key $key. So if the uid value is 22

❑ The uid value of the contact, keyed by the email, used for email lookup of the contact in
memcached

❑ The uid value of the contact, keyed by the username, used for username lookup of the contact in
memcached:

for my $uid (keys %$users) {
first, set the entire user, keyed by uid_<uid>
my $key= "uid_$uid";
$self->{memc}->set($key, $users->{$uid});
if new, add it to the list, otherwise no effect
$uid_list->{$key} = $uid ;

then by email
$self->{memc}->set($users->{$uid}{email}, $uid);

then by username
$self->{memc}->set($users->{$uid}{username}, $uid);

}

551

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 552

Chapter 12: Contact List Application

The last thing cacheUsers() does is to call setMemcUIDList(), which properly caches uid_list:

so we know what keys we have without asking the database!
$self->setMemcUIDList($uid_list);
return;

}

The getUsersFromCache() Method
The getUsersFromCache() method returns the cached contacts from memcached. Its first and only argu-
ment is $self, an object reference to its own class. getUsersFromCache() returns all the hash references
for every contact stored in memcached. The purpose is to return the same data structure that MySQL
would return by using the DBI method fetchall_hashref(), which happens to be a multilevel hash
reference consisting of hash keys the uid values pointing to contact hash references. This is the hash
reference that will inevitably be used to generate the HTML table containing the contact list.

=head2 getUsers()

select and retrieve an arrayref of users from the database

=item arguments

=over

$self - object reference

$uref - user ref containing one or more keys

$reload_cache - used to cause the cached users to be reloaded

=back

=item returns

=over

return arrayref containing result set

=back

=cut

sub getUsersFromCache {
my ($self)= @_;
my $users = {};
return $users unless defined $self->{memc};

$uid_list is set to the value of uid_list, which is returned from a call to $self->{memc}->get():

get the list of keys for multiple fetching
my $uid_list= $self->{memc}->get(’uid_list’);

#

552

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 553

Chapter 12: Contact List Application

if empty, Cache::Memcached::libmemcached returns an empty string
so test whether it’s a ref or not as well as being defined
if this isn’t set, then return, which will in turn
force the data to be re-cached
#
ref $uid_list or return {};
keys %$uid_list or return {};

Besides providing an accounting of what contacts are stored in memcached, uid_list has another
use: to provide an automatic list of keys for every contact stored in memcached. It is important to note
however, that these contacts were stored with the key uid_$uid, so to get the data structure so that the
keys are only the $uid value, some processing is required:

the key values of $uid_list from uid_list provides
the list of keys to get
$users= $self->{memc}->get_multi(keys %$uid_list);

The following for loop iterates over all the contacts retrieved from memcached. Each key is ‘‘uid_$uid’’
($uid is used here for discussion to mean a numeric-only key with the uid value for the contact), and
what is needed is to convert $users into a hash reference keyed by just $uid. To do this, the numeric part
of the ‘‘uid_$uid’’ key is parsed and then in turn used to create another key in $users pointing the hash
reference for the current contact, then original key ‘‘uid_$uid’’ is deleted. At the end of the loop, $users
is now keyed by $uid.

what is needed is for it to be keyed by UID
for my $uid(keys %$users) {

parse out the numeric part of the key
$uid =∼ /uid_(\d+)/;

$users->{$1}= $users->{$uid};
delete $users->{$uid};

}

return $users;
}

Finally, the converted $users hash reference is returned to the caller.

The userExistsInCache() Method
The userExistsInCache() method is used to perform the same operation as the similarly named
database access method, userExists. userExistsInCache() has as its first argument $self, which is
an object reference to its own class. The second argument, $user, is a hash reference containing lookup
attributes for a contact such as email and username. Because when a contact is cached, the email and
username values are also used to store the $uid value to provide a cache lookup to return a fast uid
value, userExistsInCache() will attempt a lookup with either of these attributes. If a contact hash
reference is found with either of those keys, it is returned to the caller.

=head2 userExistsInCache()

553

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 554

Chapter 12: Contact List Application

=item args

=over

$self - object reference

$user - user hashref

=back

=item returns

=over

uid value, if exists

0 if not

=back

=cut

sub userExistsInCache {
my ($self, $user)= @_;
return 0 unless defined $self->{memc};
over-assuming I am
$self->{msg}= "ERROR: The ";

The following loop is where the lookup to memcached is attempted. A loop that iterates over the strings
email or username is used to look up the contact based on the value either of email or username of $user.
If found, the value of the memcached object is returned, which happens to be the $uid for the particular
contact.

#
try to see if in memcached, using username or email
which are two possible storage keys
#
for my $key(qw (username email)) {

exists $user->{$key}) or next; # pre-condition
my $uid= $self->{memc}->get($key);
$uid or next; # pre condition for following code

provides a message showing column and value
$self->{msg} .= "\u$key $user->{$key} exists already.";
return $uid;

}

The deleteUserFromCache Method
The deleteUserFromCache() method deletes a contact hash reference from memcached. Its first argu-
ment is $self, an object reference pointing to the current class. The second argument is $uid, the uid
value for the contact to be deleted.

554

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 555

Chapter 12: Contact List Application

=head2 deleteUserFromCache()

deletes a user from memcached - any entry in memcached for the user
including the email, username, as well as from the list of user uids

=over args

$self - object reference
$uid - user id

=back

=over

=item returns

no value

=back

=cut

sub deleteUserFromCache {
my ($self, $uid)= @_;
return 0 unless defined $self->{memc};

First, deleteUserFromCache() creates the memcached lookup key ‘‘uid_$uid’’

my $key= ‘uid_’ . $uid;

Then the contact is retrieved from memcached for the sole purpose of obtaining the username and email
attributes which will be used to delete the username and email lookup entries for the contact. The first
deletion is the contact hash reference, then the email and username lookup values.

obtain the user - why? Need the email address and username
my $user= $self->{memc}->get($key);

delete entry keyed by email
$self->{memc}->delete($user->{email});
delete entry keyed by username
$self->{memc}->delete($user->{username});

now delete the user
$self->{memc}->delete($key);

Finally, deleteMemcUIDList() deletes from the user_list the contact id of the contact that was just
deleted.

take user out of uid list
$self->deleteMemcUIDList($user->{uid});

}

555

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 556

Chapter 12: Contact List Application

The setMemcUIDList() Method
The setMemcUIDList() method is a convenience method, which means it merely is used to abstract
some of the details of setting the user_list in memcached. In particular, it automatically sets the expi-
ration value determined by $MEMC_CATALOGUE_EXPIREY at the top of the class, unless a different value
is used upon instantiation of WebApp with the option memc_catalogue_expirey. The first argument
to setMemcUIDList(), $self, is an object reference to itself. The second argument, $uid_list, is the
actual hash reference that will be stored in memcached indicating the uids of the contacts stored in
memcached.

=head2 setMemcUIDList()

convenience method to set the uid_list object in memcached

=item args

=over

$self - object reference

$uid_list - hash reference of UIDs

=back

=item returns

=over

true - success

false - failure

=back

=cut

sub setMemcUIDList {
my ($self, $uid_list)= @_;

return 0 unless defined $self->{memc};

$self->{memc}->set("uid_list", $uid_list, $self->{memc_catalogue_expirey});

}

The updateMemcUIDList Method
The updateMemcUIDList() method is another method to hide the details of how the user_list is
updated. Its first argument, $self, is an object reference to its own class. Its second argument, $uid,
is the $uid that is to be acted upon within the list. The third argument, $delete_flag, is used to toggle
deletion of the $uid value from user_list.

556

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 557

Chapter 12: Contact List Application

head2 updateMemcUIDList()

convenience method used to either insert, update or delete (if flag set)
a UID into/from the hashref stored as uid_list and re-stored in memcached

=item args

=over

$self - object reference

uid - UID

$delete_flag - 1 delete, 0 no delete

=back

=item returns

=over

true - success

false - failure

=back

=cut

sub updateMemcUIDList {
my ($self, $uid, $delete_flag)= @_;

return 0 unless defined $self->{memc};

if no uid supplied, error
unless ($uid) {
$self->{msg}= "ERROR: No UID value for updateMemcUIDList";
carp $self->{msg};

}

get the uid_list
my $uid_list= $self->getMemcUIDList;

At this point, the variable $uid_list should contain a current inventory of uids, which if $delete_flag
is set, deletes then the hash member with the value of ‘‘uid_$uid.’’ If $delete_flag is not set, then the
value of ‘‘uid_$uid’’ is set into $uid_list. This either sets an existing hash member or creates it — it
doesn’t matter — the point is that the uid_list is updated.

if the delete flag was set, then delete the uid from the list
if ($delete_flag) {
delete $uid_list->{"uid_$uid"};

}

557

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 558

Chapter 12: Contact List Application

otherwise, add the uid
else {
this will do nothing if there? , add if not
$uid_list->{"uid_$uid"}= $uid;

}

Lastly, the modified hash reference $uid_list is stored back in memcached as uid_list and provides
an up-to-date inventory of uids.

store it back in there
$self->setMemcUIDList($uid_list);

}

The deleteMemcUIDList() Method
The deleteMemcUIDList() method is a convenient method that uses the updateMemcUIDList() to do the
dirty work. All deleteMemcUIDList() does is to call updateMemcUIDList() with its second argument,
$uid, the uid to be removed from the uid_list, as well as passing a 1 (true) as the $delete_flag, the
third argument of updateMemcUIDList().

=head2 deleteMemcUIDList()

convenience method to updateMemcUIDList, passing the delete flag,
resulting in the UID being removed from uid_list and re-stored in
memcached

=item args

=over

$self - object reference

$uid - UID

=back

=item returns

=over

true - success

false - failure

=back

=cut
sub deleteMemcUIDList {
my ($self, $uid)= @_;

return 0 unless defined $self->{memc};

$self->updateMemcUIDList($uid, 1);

558

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 559

Chapter 12: Contact List Application

return;

}

The getMemcUIDList Method
The getMemcUIDList() method obtains the uid_list from memcached. Its first and only argument,
$self, is an object reference to its own class. getMemcUIDList() ensures that the uid_list hash reference
is up to date with an accurate accounting of the uids of contacts stored in memcached, and then returns
uid_list.

=head2 getMemcUIDList()

convenience method used to retrieve the UID hashref
stored as uid_list in memcached, ensuring if it isn’t
stored either due to expiration or restart of a memcached server,
it is re-cached, then returned to the caller

=item args

=over

$self - object reference

=back

=item returns

=over

hashref

=back

=cut
sub getMemcUIDList {

my ($self)= @_;

return {} unless defined $self->{memc};

try to obtain the uid_list
my $uid_list= $self->{memc}->get(’uid_list’);

First, an attempt is made to obtain $uid_list from memcached. If this is not found — either due to the
memcached server being restarted (who did it!?) or expiring, or LRU causing it to be replaced —
the method getUsers() is called. This will result in the contact list being reloaded into memcached,
which in turn will cause uid_list to be reloaded into memcached as well.

force re-caching of users if the list is not there
unless (ref $uid_list) {

$self->getUsers({});

now get the $uid_list again, should be there ;)

559

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 560

Chapter 12: Contact List Application

$uid_list= $self->{memc}->get(’uid_list’);

}

return $uid_list;
}

Finally, the $uid_list hash reference is returned, supplying the inventory of cached contacts to the
caller.

Other Methods
The two other methods worth discussing are getState() and getStates(). These provide the state data.
For this application, that means the data for the pulldown menu that lists the states in the contact edit
form. Since state data hardly ever changes, these methods don’t have to have any functionality to deal
with the consistency of the number of states stored (which was required with the contacts, where each
contact is stored separately). You know there are a fixed number of states, and that number is not huge,
so it’s just as easy to store all the state data in memcached once. If it’s there in memcached, it can be used,
otherwise getState() and getStates() will reload the cache.

The getStates() Method
The getStates() method has the simple task of returning the entire hash reference consisting of keys
of the state abbreviations: the values the state names. getStates() takes a single argument, $self, the
blessed object reference to its own class.

=head2 getStates()

method to obtains a hash reference of states - keyed by state
abbreviation, value the state name

=over args

$self - object reference

=back

=over returns

hash reference of states keyed by state abbr, value state name

=back

=cut

sub getStates {
my ($self)= @_;

my $states;

First, getStates() for checks to see if $states are stored in memcached already. If $states are found in
memcached, it returns $states.

560

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 561

Chapter 12: Contact List Application

a simple true/false to indicate that cities have been cached
$states= $self->{memc}->get(’states_cached’) if defined $self->{memc};

return if in memcached
return $states if ref $states;

Otherwise, getStates() obtains the state data from MySQL and then maps that data from an array ref-
erence of hash references for each state record into the hash reference required — a simple hash reference
of state_abbr for the keys and state_name for the values. Then it stores the $states hash reference in
memcached with the key states_ cached then returns $states.

define the base query
my $query= ‘SELECT state_abbr, state_name FROM states’;

my $sth= $self->{dbh}->prepare($query);

$sth->execute();

fetch the states data
my $sref= $sth->fetchall_arrayref({});

map into hashref of keys the state abbreviation values the state names
$states->{$_->{state_abbr}} = $_->{state_name} for @$sref

cached $states and indicate that $states have been cached
unless ($self->{memc}->set(’states_cached’,$states)) {
$self->{msg}= "ERROR: setting ‘states_cached’\n";

}
return $states;

}

The getState() Method
The getState() method takes two arguments: $self, a blessed object reference to its own class, and
$state_abbr, a scalar string containing the value of state abbreviations. getState() is a simple conve-
nience/lookup method that simply uses the getStates() to provide the hash reference of states, referred
to as $states. This then returns a member of $states keyed by $state_abbr. The getState() method
is used to provide a state name for display of contact data in the viewuser page since the value stored for
a contact in the database is a state abbreviation.

=head2 getState

returns a full state name given a state abbreviation, using
the state ref returned by getStates()

=item args

=over

$self - object reference

561

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 562

Chapter 12: Contact List Application

$state_abbr - scalar string state abbreviation value

=back

=item returns

=over

scalar string state name, success

undef on failure

=back

=cut

sub getState {
my ($self, $state_abbr)= @_;

my $states= $self->getStates();

return $states->{$state_abbr};
}

The encodeUserData() Method
The encodeUserData() method encodes any HTML entities found in each user attribute. This pre-
vents HTML injection — also known as cross-site scripting, where HTML entities (or even JavaScript)
alter the page that displays to the end user. For an excellent description of cross-site scripting, see
http://www.cgisecurity.com/xss-faq.html.

An example of encodeUserData():

=head2 encodeUserData()

Encodes any HTML entities which might be contained in each
user attribute to prevent HTML injection in any forms or pages
that print out this data

=item arguments

=over

$self - object reference

$user - reference to user hash reference

=back

=item returns

=over

562

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 563

Chapter 12: Contact List Application

does not return a value since it modifies $user passed as a reference

=back

=cut

sub encodeUserData {
my ($self, $user)= @_;

encode any HTML entities if defined
for my $attr (@$USER_COLS) {

if (defined $$user->{$attr}) {
$$user->{$attr}= encode_entities($$user->{$attr}) ;

}
}
return;

}

Testing
Now that the application code is completed, you should be able to use this application. You will want
to perform some usability tests to make sure it works as you have intended it to work. Here is what you
should be able to see in testing:

❑ Save a new contact, start by clicking on the ‘‘Create a New Contact’’ link from the contact listing
page.

❑ Supply completely new data for a contact, no existing email address.

❑ Supply an existing username or email address. When you save it, the program should display an
error stating that one of those attributes is already being used for an existing contact.

❑ Supply incomplete data, particularly username, email, firstname or lastname. The application
should display an error and return you to the contact edit form to complete the form.

❑ Edit an existing contact from the contact list.

❑ Modify an existing contact successfully, see the modified values displayed in the contact listing,
contact view and contact edit pages.

❑ Attempt to use an email address of an existing contact other than the contact being edited. Upon
submission, an error should be displayed along with the edit form for the user to try a different
email address.

❑ Attempt to submit empty values for required fields such as email address, first name, and last
name.

❑ Delete one or more contacts from the contact list.

❑ Delete one or more contacts by selecting from the checkboxes for each contact in the contact list.
Upon submission by the Delete button, the list should be redisplayed along with a message that
those contacts were deleted and are absent from the list.

❑ Delete all contacts. The contact listing page should indicate that there are no contacts and should
not display any contacts.

563

Galbraith c12.tex V3 - 06/02/2009 10:14am Page 564

Chapter 12: Contact List Application

❑ View a contact. Selecting a contact to view should display that contact.

❑ When you shut down memcached, the application should still function.

❑ When you shut the database down, the application should at least display an error.

Summary
This chapter showed you a fully functional contact list application. This application is a CGI application,
but as you will see in Chapter 13, you can use it as a mod_perl ModPerl::Registry application or convert
it to a mod_perl handler. On the surface, this application is simple in terms of user functionality, but it’s
fairly complex internally, especially in how it implements that functionality, particularly the caching.

This chapter discussed the following:

❑ The stages of conceptualization, design, and implementation.

❑ A comprehensive listing of every subroutine and method of the application.

❑ How to divide up functionality between front-end display logic and back-end data storage logic.

❑ In the example application, you saw how you can use memcached to cache application data to
reduce database access to MySQL.

❑ A listing of user interface testing, showing you what functionality you have to test to ensure that
all of the code you wrote results in the application functioning correctly.

This application provided you with an idea that can be built upon for other web applications. From here
this book can go on to explain other concepts, such as mod_perl, templating and web applications that
use Ajax, which you will read about in the next several chapters.

564

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 565

mod_perl

In Chapter 12, you learned about programming a Perl CGI application. As was stated, CGI is a
standard for web servers to be able to execute external programs. It provides both input data to
the program, and receives data back from the program. In the case of the contact application in
Chapter 12, the Perl interpreter perl, running the Perl code in app.pl was the external program.
This requires that in addition to each Apache child or thread, for whatever number of requests call
this program, an equal number of external processes also are executed. Secondly, and key to this
discussion, the state of the program execution — the interpreted Perl code, database connections,
are all created and then destroyed for each CGI URL request and have to be re-created every time
the program runs again.

This is where mod_perl steps in. mod_perl is an Apache module that loads a persistent Perl inter-
preter into each Apache process. This allows Perl applications to be parsed and compiled by this
persistent Perl interpreter once so that each request to the application will receive the benefit of
precompiled code.

Having a persistent Perl interpreter loaded into the Apache server is certainly a big benefit to using
mod_perl. Most importantly, and the primary advantage of using mod_perl, is that mod_perl pro-
vides you complete access to the Apache API. This lets you write mod_perl handlers, and — just
as can be done with regular Apache modules — this allows you to implement them in any stage of
the Apache life cycle, including the HTTP request phase cycle. When you develop web applications
using several other programming languages, you are developing functionality only within the last
part of the HTTP request phase cycle, the response phase.

In addition to being able to write handlers that have the same access that C modules have, there
are also Perl language bindings into Apache’s request library, libapreq2. This library is the Apache
subproject httpd-apreq that includes the Perl modules Apache2::Request, Apache2::Cookie, and
Apache2::Upload, and provides you, the Perl developer, with methods for parsing cookies, file
uploads, and POST and GET form data.

Essentially, mod_perl gives you all the access that C developers have to the Apache API, but with
Perl you can significantly expedite the development process. This is an incredibly compelling reason
to use mod_perl.

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 566

Chapter 13: mod_perl

The purpose of this chapter is to cover mod_perl in a general sense, showing you some of what you can
accomplish with it. In the chapters following this one, you will see practical demonstrations of these
concepts that you can use!

New mod_perl 2.0 Features
There are some new features and changes in mod_perl 2.0 worth mentioning:

❑ Namespace for the modules has changed from Apache to Apache2.

❑ Naming conventions for mod_perl handler phase names have changed.

❑ Threads support — now mod_perl uses a thread-safe Perl interpreter known as ithreads or Inter-
preter Threads. There is a pool of Perl interpreters used instead of one interpreter per thread.

❑ Two APIs: Apache API and Apache Portable Runtime (APR) API.

❑ Better Windows support.

❑ Filters that interface to Apache’s filtering API using either streaming or bucket brigades.

❑ Protocol modules that make the web server behave like another type of server, such as an IMAP
server.

❑ Apache::Registry is now ModPerl::Registry.

The API has changed significantly enough that if you have code written for mod_perl 1.x, you will want
to review the mod_perl web site documentation at http://perl.apache.org to see all that has changed
and modify your code. The effort will be worth it.

For more on installing Apache, see Chapter 11, which also covers the installation of mod_apreq2.

Configuring mod_perl
The first thing is to load the mod_perl shared library from your Apache configuration file (shown in
Chapter 11):

LoadModule perl_module modules/mod_perl.so

Also, load libapreq2:

LoadModule apreq_module modules/mod_apreq2.so

With these added, after restarting Apache, your web server will have mod_perl and libapreq2 loaded so
you can start using mod_perl.

To easily begin, use the module ModPerl::Registry. This instantly turns your CGI scripts into mod_perl
applications by compiling the contents of your script into a handler routine and into memory, thus
making what was a one-time-only script persistent. It also provides a tremendous performance gain for
your old CGI applications.

566

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 567

Chapter 13: mod_perl

So, to turn the CGI contact application example from Chapter 12 into a mod_perl application, you first
have to think about how it will behave if it becomes persistent. For the most part, it should run out of the
box, with no changes required. However, there are certain caveats.

In the original version, the CGI module was instantiated at the top of the script as a lexical global variable,
making it available to the other various methods, prior to main() being called.

use strict;

use CGI qw(:standard);
use WebApp;

CGI object
my $cgi = new CGI;

URL of program, used in form submit url, other parts of code
my $url = $cgi->url(-absolute=>1);

WebApp
my $webapp= new WebApp();

call main subroutine
main();

exit();

This was so you didn’t have to pass the instantiated object hash reference around explicitly. However,
since this is an object having to do with request parsing, etc., it can cause problems to scope it as a global
variable. You would have to change the instantiation of the $cgi object reference to main():

sub main {
my $msg;

my $cgi = new CGI;

URL of program, used in form submit url, other parts of code
$url = $cgi->url(-absolute=>1);

print $cgi->header(’text/html’);
print header();

dispatcher($cgi, \$msg);

print footer();
}

You would leave $url scoped as a global variable at the top of the script, but not set it to anything until
$cgi is instantiated. Also, notice that you would pass $cgi to dispatcher(), which uses it to get the
submitted form values:

sub dispatcher {
my ($cgi, $msg)= @_;

567

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 568

Chapter 13: mod_perl

...
get all submitted form values into a hashref
my $form = $cgi->Vars();

...
}

You may need to make other tweaks, but these should be sufficient changes for the script to be persistent.

Next, you would simply add to your Apache configuration file:

PerlModule ModPerl::Registry
PerlModule Apache::DBI

PerlPostConfigRequire /usr/local/apache2/perl-conf/startup.pl

Alias /perl/ /usr/local/apache2/sites/default/perl/

<Location /perl>

SetHandler perl-script

PerlResponseHandler ModPerl::Registry

PerlOptions +ParseHeaders

Options +ExecCGI

</Location>

You would create a file /usr/local/apache2/perl-conf/startup.pl that contains the following:

#!/usr/bin/perl

use lib ‘/usr/local/apache2/perl-lib’;
use WebApp

my $webapp = new WebApp();

$webapp->getUsers();

1;

1;

Make sure WebApp.pm is in /usr/local/apache2/perl-lib, and then, as long as your CGI script is in
the newly configured directory, restart Apache. Then run the application as normal, except much more
efficiently!

What you see in the previous examples are the various mod_perl configuration directives, which will
be explained in more detail later in this chapter. The purpose here was to show you just how simple it

568

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 569

Chapter 13: mod_perl

is to set up and use mod_perl, particularly with ModPerl::Registry; as a developer you might not delve
deeper into the full capabilities that mod_perl offers. The author can certainly attest to this!

The directives in the previous Apache configuration file simply mean this:

❑ PerlModule ModPerl::Registry: This is just like having use ModPerl::Registry in your source
code. It imports the Perl module ModPerl::Registry into mod_perl.

❑ PerlModule Apache::DBI: This is a very useful module that buys you a lot with hardly any
effort. Apache::DBI basically intercepts all DBI database connection requests, caching database
handles.

❑ PerlPostConfigRequire = /usr/local/apache2/perl-conf/startup.pl: This causes
startup.pl to load whenever Apache is started. It runs whatever is in startup.pl, which
can be a convenient way to load modules, preconnect to databases. In this example, all that
startup.pl currently has is:

#!/usr/bin/perl

use lib ‘/usr/local/apache2/perl-lib’;

use WebApp

my $webapp = new WebApp();

$webapp->getUsers();

1;

This allows for WebApp to be imported for either ModPerl::Registry scripts or mod_perl han-
dlers. Also notice that $webapp->getUsers() is called — this caches all the users when Apache
is started! These are just a few mod_perl features and configuration directives.

❑ Options +ExecCGI: This causes whatever file is being accessed within this URL location to be
executed instead of being served as a static file.

mod_perl Configuration Directives
Just as the main Apache server has configuration directives, so too does mod_perl. These directives are
set the same way Apache directives are set.

<Perl> Sections
Usage: <Perl> ... Perl code ... </Perl>

Just as you saw with the PerlPostConfigRequire directive in the previous section, to run the startup
Perl script, startup.pl, you can do this with <Perl> sections. A <Perl> section allows you to write Perl
code directly into your Apache configuration file and configure your server as a whole, if you so desire.

569

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 570

Chapter 13: mod_perl

This is useful when you have many virtual hosts and could actually use a database connection to pro-
vide information about each virtual host, dynamically creating what would normally require numerous
virtual host configuration files with Perl code.

An example of how to implement both the startup script above and configure the /perl directory to run
ModPerl::Registry scripts is accomplished by the following code:

<Perl>
use Apache::DBI;
use ModPerl::Registry;
use lib qw(/etc/apache2/perl-lib);

use WebApp;

my $webapp= new WebApp();

$webapp->getUsers();
$webapp->cacheBannedIPs();
$webapp->cacheUsersByMD5();

$Alias= "/perl /var/www/apache2-default/perl";

$Location{"/perl"} = {
SetHandler => "perl-script",
PerlHandler => "ModPerl::Registry",
PerlSendHeader => "On",
PerlOptions => "ParseHeaders",

};

</Perl>

Each Apache directive becomes a Perl variable having the same name. Nesting is accomplished with hash
references. If an attribute has multiple values, an array reference is used:

DirectoryIndex => [qw(index.html index.htm index.shtml index.php)]

PerlModule
Usage: PerlModule ModuleName [ModuleNameN, [...]]

This imports a Perl module, the same as:

Use ModuleName

You can also specify that you want the module to be automatically loaded at Apache startup by having a
plus (+) sign in front of the module:

PerlModule +MyLib::MyModule

570

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 571

Chapter 13: mod_perl

PerlLoadModule
Usage: PerlLoadModule ModuleName [ModuleNameN, [...]]

This is the same as PerlModule, except it causes Perl to start up earlier than the default, which is normally
after the configuration phase of the Apache server life cycle.

SetHandler perl-script
Usage: SetHandler perl-script

This sets the handler for a <Location> or <Directory> to be handled by mod_perl. This is used with
ModPerl::Registry scripts so that they are run through mod_perl. It allows you to take your CGI scripts
and run them as mod_perl handlers. It also automatically sets several things:

❑ PerlOptions +GlobalRequest for PerlResponseHandler handlers (including ModPerl::
Registry).

❑ PerlOptions +SetupEnv so your CGI scripts automagically have the $ENV{XXX} variables avail-
able to them, otherwise they would break if they had to rely on these $ENV values being set .

❑ Ties $r (Apache2::RequestRec) object to STDERR and STDOUT.

❑ Saves the Perl global variables such as @INC, %ENV, STDOUT, STDERR, etc., before the response han-
dler, the script, is called. Then it restores them afterward.

SetHandler modperl
Usage: SetHandler modperl

This is the same as perl-script, except without much of the setup that perl-script provides for CGI com-
patibility. SetHandler modperl has:

❑ No PerlPassEnv: Does not pass $ENV variables. The only variables available are what you define
with PerlSetEnv as well as MOD_PERL and MOD_PERL_API_VERSION.

❑ No preservation of $ENV variables before and after the response phase.

PerlSetEnv
Usage: PerlSetEnv ENV_VARIABLE_NAME value

This is a very useful feature that allows you to set an environment variable that is accessible via $ENV in
your mod_perl script or handler.

Here is an example:

PerlSetEnv VIRTUAL_DB_USER webuser

571

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 572

Chapter 13: mod_perl

Then, in the code you would have:

my $dbh= DBIx::Password->connect($ENV{VIRTUAL_DB_USER});

PerlPassEnv
Usage: PerlPassEnv VARIABLE

This causes environment variables set on your system to be passed to your ModPerl::Registry scripts
or handlers. This is particularly useful for ModPerl::Registry scripts. You may have CGI code that you
migrated to mod_perl that depends on environment variables being set. This ensures that those specified
environment variables are available from mod_perl as $ENV{VARIABLE}.

PerlSetVar
Usage: PerlSetVar name value

This allows you to set a variable that you can retrieve using the Apache2::RequestRec method
dir_config() in your mod_perl code. In your Apache configuration file you would have:

PerlSetVar ADMIN_USER CaptTofu

Then in the code you would use:

my $admin_user= $r->dir_config(`ADMIN_USER´)

PerlAddVar
Usage: PerlAddVar name value (...)

This has the same effect as using the Perl push() function. This allows you to set array configuration
variables available via $r->dir_config.

An example would be in your Apache configuration file:

PerlAddVar MEMCACHED_SERVERS 1̋27.0.0.1:11211˝
PerlAddVar MEMCACHED_SERVERS 1̋92.168.10.33:11211˝
PerlAddVar MEMCACHED_SERVERS 1̋72.16.221.130:11211˝

Then, in your code, you could connect with this array to memcached:

my @servers= $r->dir_config(’MEMCACHED_SERVERS’);

my $memc= new Cache::Memcached::libmemcached({
servers => \@servers,
compress_threshold => 10_000});

572

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 573

Chapter 13: mod_perl

PerlPostConfigRequire
Usage: PerlPostConfigRequire file-path [file-path [...]]

This works just like require in Perl.

PerlPostConfigRequire /etc/apache2/perl-lib/startup.pl

The above is the same as this:

require `/etc/apache/perl-lib/startup.pl´;

. . . which causes the file specified to be loaded at Apache startup. You can use this to set up whatever
you need to — paths, variables, database connections, etc., so they are already set up for use later.

PerlRequire
Usage: PerlRequire file-path [file-path [...]]

Same as PerlPostConfigRequire, except there is no way to control when the file specified is loaded. Use
PerlPostConfigRequire instead.

PerlOptions
Usage: PerlOptions option [option [...]]

PerlOptions works similarly to the regular Apache options:

Option Description

Enable Used to disable or enable mod_perl. For instance, PerlOptions –Enable
would disable mod_perl for the server or virtual host it is set for.

Clone Allows a virtual host to have its own Perl interpreter pool.

InheritSwitches Allows the virtual host to inherit the PerlSwitches settings of the parent
server.

Parent Creates a new parent Perl interpreter and interpreter pool for the virtual
host.

Perl*Handler Allows you to specify which handler phases you can run handlers
for, using the phase part of the handler name. For instance, if you
wanted to allow PerlResponseHandler, PerlAuthenHandler, and
PerlAuthzHandler but no others, you would have:

PerlOptions none +Authz +Authen +Response

Continued

573

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 574

Chapter 13: mod_perl

(continued)

Option Description

AutoLoad Loads modules at Apache startup. This can also be accomplished with using
the plus (+) sign in front of the module, as in:

PerlAuthenHandler +WroxHandlers::AuthTestHandler

GlobalRequest Sets up the global request object, $r, as the first argument to any
ModPerl::Registry script or a mod_perl handler.

ParseHeaders Scans the output of a response handler — mainly for ModPerl::Registry
scripts — for HTTP headers. Required if these scripts manually print the
HTTP header.

MergeHandlers Causes mod_perl handlers that are defined within <Directory> or <Location>
sections to be merged with mod_perl handlers that are defined in the main
configuration file. For instance:

PerlLogHandler WroxHandlers::LogHandlerMain
<Location /mydir>

PerlOptions +MergeHandlers
PerlLogHandler

WroxHandlers::LogHandlerMyDir
</Location>

Normally, requests to /mydir would result in only using LogHandlerMyDir,
but +MergeHandlers will cause /mydir to have both LogHandlerMain and
LogHandlerMyDir to handle the logging phase.

SetupEnv Causes all environment variables to be populated within mod_perl. This
allows CGI scripts to be migrated to ModPerl::Registry easily, which would
otherwise break due to relying on environment variables to function. If you
do have scripts that use environment variables, it might be worth it to modify
the code to use other means, as there is a performance cost to using SetupEnv.

PerlSwitches
Usage: PerlSwitches switch

Allows you to set any Perl switch that you would set in your code, such as –w:

PerlSwitches –w

This would make your code run with the –w flag.

POD
You can use Perl’s POD tokens =pod, =over, and =cut in your Apache configuration file if mod_perl is
enabled:

NameVirtualHost *
<VirtualHost *>
=pod

574

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 575

Chapter 13: mod_perl

Welcome to the apache configuration file. You can add
documentation this way

=over mysite

ServerName example.net
ServerAlias www.example.net
ServerAdmin webmaster@localhost

=back

That was the value that set which hostname this virtual host will answer

=cut

mod_perl Handler Directives
These directives are listed as other directives. For instance, the most common handler directive you will
use is PerlResponseHandler. The usage for this would be:

PerlReponseHandler WroxHandlers::TestHandler

As was mentioned in Chapter 12, handlers are a unit of functionality that performs a certain task in
the web server. That chapter also discussed Apache 2.2’s various phases of processing a connection
and how the Apache API provides hooks for modules to access those phases with callbacks, or han-
dlers that can ‘‘hook’’ into the particular request phase. This enables modules to alter or extend the
default functionality of Apache. mod_perl can use all those same hooks by means of different types of
handlers.

Handler Scope
With mod_perl 2.0, you can employ handlers at any part of the request phase cycle, as well as during
the connection to the web server itself. Since these mod_perl handlers can be applied at any phase of the
connection or request cycle, they have a particular scope:

❑ SRV: Server-wide. This means either in the main configuration file or within a <Virtualhost>
sectional directive. This will run for every connection to the server.

❑ DIR: The handler will only run within a particular <Directory>, <Location> or <Files> sec-
tional directive.

Handler Type
Handlers can be stacked, which means you can assign more than one handler to an Apache phase. All
handler types are executed in the order they are defined or registered and their type is determined by
how it behaves with regard of the return value of the previously defined handler in a stacked group for
that phase.

❑ VOID: All handlers in the grouping will run regardless of the value returned, though these han-
dlers need to and are expect to return OK.

575

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 576

Chapter 13: mod_perl

❑ RUN_FIRST: All handlers will be executed as long as every handler returns DECLINED. Apache will
move on to the next phase if one of these handlers in the grouping returns the value of OK, and
any other return value will cause execution of the cycle to abort and be logged.

❑ RUN_ALL: All handlers will be executed as long as every handler returns either DECLINED or OK.

Handler Category
mod_perl handlers are categorized by the scope of when they run: The full scope is the entire Apache
server. The other possibilities are the connection loop or the request phase cycle.

In Chapter 11, the Apache request phase cycle was described as having four primary phases:

❑ Request parsing

❑ Security

❑ Preparation

❑ Handler

Each of these primary Apache phases has steps or hook names, as described in Chapter 11 of this book
and in the Apache documentation (http://httpd.apache.org/docs/2.0/developer/request.html).
In the mod_perl 2.0 documentation (http://perl.apache.org/docs/2.0/user/handlers/intro.html),
some of the steps or hooks in these four phases are themselves considered to be phases. The mod_perl
manual lists 12 phases. The following table correlates mod_perl phases (in the mod_perl documentation)
to the steps or hooks shown in the Apache documentation:

mod_perl Request Phase
Handler Name

Apache Server Steps

PostReadRequest Unescape URL, strip ../ and ./ from path, initial URL <Location>
walk, post_read_request

Trans translate_name

MapToStorage map_to_storage

Second URI location walk

HeaderParser header_parser

Access access_checker

Authen check_user_id

Authz auth_checker

Type type_checker

Fixup fixups Insert_filter

Response response/handler

Cleanup (mod_perl only)

Log log_transactions

576

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 577

Chapter 13: mod_perl

Apache Life Cycle Overview
The following table gives an overview of the category, name, scope, and type of the Apache life cycle
phase name, or hook name, and the name of the mod_perl handler type you would use for declaring a
handler for the given phase.

Apache
Phase Name

Apache Step/
Hook Name

mod_perl Phase,
Handler Name

Scope Type

Server Life
Cycle

open_logs PerlOpenLogsHandler SRV RUN_ALL

post_config PerlPostConfigHandler SRV RUN_ALL

child_init PerlChildInitHandler SRV VOID

child_exit PerlChildExitHandler SRV RUN_ALL

Protocol,
connection

pre_connection PerlPreConnectionHandler SRV RUN_ALL

process_connection PerlProcessConnectionHandler SRV RUN_FIRST

Filters Connection or
request phase

PerlInputFilter DIR VOID

Connection or
request phase

PerlOutputFilter DIR VOID

Request
phase, HTTP
protocol

post_read_request PerlPostReadRequestFilter SRV RUN_ALL

translate PerlTransHandler SRV RUN_FIRST

map_to_storage PerlMapToStorageHandler SRV RUN_FIRST

post_read_request
or
header_parser

PerlInitHandler SRV
or
DIR

RUN_ALL

header_parser PerlHeaderParserHandler DIR RUN_ALL

access_checker PerlAccessHandler DIR RUN_ALL

check_user_id PerlAuthenHandler DIR RUN_FIRST

auth_checker PerlAuthzHandler DIR RUN_FIRST

type_checker PerlTypeHandler DIR RUN_FIRST

fixups PerlFixupHandler DIR RUN_ALL

handler PerlResponseHandler DIR RUN_FIRST

log_transaction PerlLogHandler DIR RUN_ALL

PerlCleanupHandler DIR RUN_ALL

577

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 578

Chapter 13: mod_perl

Server Life Cycle Phase Handlers
These phases pertain to the entire scope of a parent process starting up, spawning children, and the
shutting down of child processes. In a prefork MPM, the parent spawns a child. The connection loop of
that child begins, which is where it serves a given number of requests as determined by the configuration
parameter MaxRequestsPerChild. With the threaded model, the connection loop is served by threads.

❑ PerlOpenLogsHandler: This phase is when the Apache parent process is first executed, the
open_logs phase. During this, Apache opens the primary log files that it will log to, such as the
main access and error logs, and SSL logs. Scope is SRV; type is RUN_ALL.

❑ PerlPostConfigHandler: This phase immediately follows the reading of the configuration files
but happens prior to any child processes, and is known as the post_config phase. At this stage,
it’s possible to set settings that all subsequent child processes will share. Scope is SRV; type is
RUN_ALL.

❑ PerlChildInitHandler: This phase occurs immediately following the spawning of child pro-
cesses (not thread), and is known as the child_init phase. Scope is SRV; type is RUN_ALL.

❑ PerlChildExitHandler: This phase provides access immediately prior to the shutdown of a
child process (not thread), as known as the child_exit phase. Scope is SRV; type is RUN_ALL.

Connection Cycle Phase Handlers
This phase pertains to the connection as a whole, which will be served by a particular protocol such as
HTTP. A connection will serve one or more requests. At this level, you can rewire Apache to use whatever
protocol you want — SMTP, IMAP, FTP, etc. — in addition to HTTP. With the new filter interface, you
also have the ability to apply filters to a connection.

Connection Cycle Phase Handler Template
The connection cycle phase handler template is pretty simple. It declares the package name, imports
various pragmas to force good behavior, and imports the constants you need within the body of your
handler, such as return values.

the name of your package
package WroxHandlers::ConnectionHandlerTemplate;

good practice
use strict;
use warnings;

use Apache2::Connection ();
use Apache2::Const qw(OK FORBIDDEN ...);

import other modules here

Connection handlers take as their first argument an Apache2::Connection object reference. This is an
object reference that provides methods and attributes for various values you will use in your handler.
For more information, see perldoc Apache2::Connection:

sub handler {
the first argument is the Apache2::Connection object reference
my ($c)= @_; # connection

578

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 579

Chapter 13: mod_perl

Then, you return either a success or failure value provided by Apache2::Const.

an error might be
return FORBIDDEN;

return OK;
}

1;

Connection Cycle Phase Handler Names
There are two connection handler phases for implementing connection handlers:

❑ PerlPreConnectionHandler: This phase occurs immediately after Apache accepts the connec-
tion, prior to being handed off to a protocol such as HTTP, and is known as the pre_connection
phase. At this point, you can set what protocol you want to serve the connection. This is also
where you would insert input connection filters. Scope is SRV; type is RUN_FIRST.

❑ PerlProcessConnectionHandler: Incoming connections are processed at this phase, the
process_connection phase, and can be used to assign protocol handlers, replacing the default
HTTP protocol with another protocol handler if desired. Scope is SRV; type is RUN_FIRST.

Filter Handlers
Filters are a new feature in Apache 2.2 and mod_perl has the ability to take advantage of them. They
can be applied in scope to either the connection or the request/response phases, and were developed in
response to the need for an Apache module to modify the output of another Apache module. Filters are
applied to buckets, which are segments or chunks of data connected in a set of bucket brigades — which,
as a whole, are used to store data from the network. Filters act upon each bucket in the bucket brigade
one at a time, and are able to replace, remove, and modify from first bucket in the brigade to the last.
Additionally, filters can be chained. The output of one filter is the input to another.

Filter Handler Template
In some ways, filters resemble handlers in terms of the handler method they use. However, filters work
differently in that a filter is run against chunks of the page being filtered, and the processing part of the
filter can run several times, depending on how large the document is.

The first argument, shown in the template code that follows, is $f, which is an Apache2::Filter object
reference. The documentation (perldoc Apache2::Filter) provides information on what methods and
attributes are available to this object.

package WroxHandlers::TestFilter;

use strict;
use warnings;

use Apache2::Filter ();
use Apache2::RequestRec ();
use APR::Table ();
use Apache2::Const qw(OK);
use Data::Dumper;

579

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 580

Chapter 13: mod_perl

use constant BUFFER_LENGTH => 1024;

#
FilterTemplate – a template for Apache mod_perl filters
#
sub handler {

my ($f)= @_;

The code here happens at least once, usually at the beginning. This is the filter initialization.

unless($f->ctx) {
$f->r->server->warn(’filter start.’);
$f->r->headers_out->unset(’Content-Length’);
$f->ctx(1);

}

This is where the processing of the filter occurs, where the real work is done:

while ($f->read(my $buffer, BUFFER_LENGTH)) {
code here happens as many times as necessary per the
size of the document
$f->r->server->warn(’filter apply.’);
$f->print($buffer);

}

This is the finalization of the filter. This is where you would perform any cleanups or flushing of data:

if ($f->seen_eos) {
this happens when last, the EOS bucket brigade is detected
$f->r->server->warn(’filter end.’);

}

return OK;
}

Filter Handler Type Descriptions
The following lists the two handler directives available for filter handlers:

❑ PerlInputFilterHandler: These act upon input data as it is being processed at the start of either
the connection or HTTP request phase cycle. Scope is DIR; type is VOID.

❑ PerlOutputFilterHandler: Acts upon output data from a content generator, from the output of
the connection or HTTP request phase cycle. Scope is DIR; type is VOID.

HTTP Request Cycle Phase Handlers
These are the handlers you are probably most familiar with if you have done any mod_perl program-
ming before. They provide hooks into the various phases of the HTTP request phase cycle, of which the
response is part. The best known part of this is the response phase, which is where actual content gener-
ation occurs. This is the realm in which other web programming approaches and languages such as CGI,
PHP, Python, etc., primarily exist.

580

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 581

Chapter 13: mod_perl

HTTP Request Cycle Handler Template
The basic template for HTTP request cycle phase handlers is shown in the following code. You would
give your handler some sort of name with the package declaration. The next thing to know is that the
default method name for a mod_perl handler is handler(), but you can use any name you want if you
set the particular name of the method in your Apache configuration file when declaring a handler for a
given <Location> directive.

named to whatever naming scheme you need
package WroxHandlers::HandlerTemplate;

good practice
use strict;
use warnings;

list of return values you want to use
use Apache2::Const qw(OK DENIED REDIRECT ...);

any list of modules to import can go here
use WebApp

#
this is an Apache HTTP Request Phase Cycle template
#

The next thing to know is that the handler will obtain as its argument the Apache2::RequestRec object
reference. This is a handle to the Apache request record where you have access to numerous methods
and attributes. This is a very powerful object reference. To see how to use it, you can read the documen-
tation by running perldoc Apache2::RequestRec, which provides good information, as is the case for all
Apache* Perl modules.

sub handler {
#
this is the Apache2::RequestRec object.
"perldoc Apache2::RequestRec" to see how to use it!
my ($r)= @_;

#
handler implementation
#

A handler returns various values for which you can obtain descriptions with perldoc Apache2::Const:

if everything goes well
return OK;

if there are problems, you would return an error code
#
return DECLINED ... etc. "perldoc Apache2::Const" to
obtain a list of return values and what they mean

#
}
you need to include this
1;

581

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 582

Chapter 13: mod_perl

HTTP Request Cycle Handler Phase Names
The follow table shows the 13 handler names for the different HTTP request cycle phases. These are
the names you specify when defining a mod_perl handler for a given phase in your Apache configura-
tion file.

Phase Name Description

PerlPostRead
RequestHandler

This is the handler name used for the phase immediately following
when the server reads the request and the headers are parsed. This is
known as the post_read_request phase (as shown in the mod_perl
documentation). This handler is used in the main server directory and
within <VirtualHost> directives. The handler at this stage has access to
the request headers and can implement useful functionality, such as
blocking of certain clients based on the type of user agent being used.
This handler has server-wide scope, meaning that it runs for the entire
server or within a <VirtualHost> sectional directory, and you cannot
confine its functionality to a particular directory or URI. Scope is SRV;
type is RUN_ALL.

PerlTransHandler This is the handler name where the request URI can be manipulated,
also known as the translate_name Apache hook. You could implement
similar functionality to rewrite at this phase. Scope is SRV; type is
RUN_FIRST.

PerlMapToStorageHandler This is the handler name for the Apache hook map_to_storage, where
the URL is mapped to the file on disk by reading the directory starting
from the document root, which, depending on how deep the directory
structure is, carries with it some overhead. mod_perl response handlers
are implemented within the Apache <Location> sectional directive and
there is no corresponding file for the URI of the handler. If you had a
mod_perl application-only server that never had to worry about
mapping URI to a file, this step would be unnecessary and could be
bypassed using a PerlMapToStorageHandler handler. Scope is SRV;
type is RUN_FIRST.

PerlInitHandler This handler name is an alias to either PerlPostReadRequestHandler or
PerlHeaderParserHandler, depending on where it is declared. If it is
server-wide, global configuration including within <VirtualHost>,
then it is an alias to PerlPostReadReqestHandler. If this handler is
directory-scoped, meaning within a container directive such as
<Directory>, <Location>, etc., then it is an alias to
PerlHeaderParserHandler, in which case it is the first handler to serve
a request. The scope of this handler is either server-wide or
directory-based. Scope is SRV or DIR; type is RUN_FIRST.

582

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 583

Chapter 13: mod_perl

Phase Name Description

PerlHeaderParser
Handler

This is the handler name used for the header_parser Apache hook that
immediately follows the URI mapping phase, which, if the resource was
for a file, was mapped to the resource on disk. This handler has access
to the request headers where it can implement functionality to make a
decision at an early stage in the request cycle, similar to
PerlPostReadRequestHandler, though after URI mapping. Scope is
DIR; type is RUN_ALL.

PerlAccessHandler This is the handler name used for the access_checker Apache hook
that is used to check the source IP or host of a request, as well as any
nonuser-specific attributes that would be used for access control. You
could, for instance, implement a handler to permit or reject client access
from a given IP address at this stage. Scope is DIR; type is RUN_ALL.

PerlAuthenHandler This is the handler name used for the auth_checker Apache hook. This
is where access is either granted or denied on a directory that requires
user authorization. Authentication succeeds for a user depending on
whether or not the user credentials (user id) and password supplied
match the username and password values from the password file or
other user/password storage scheme. You could implement a handler
at this stage that uses a MySQL database table as the user credential
source. The user would have to supply a username and password that
match what is stored in the table, which could further be tied into an
entire user account application. Scope is DIR; type is RUN_FIRST.

PerlAuthzHandler This is the handler name used for the Apache hook check_user_id.
This happens after authentication. If authentication was required for a
given resource or directory and the user was successfully authenticated,
that user is then either authorized or not to a given access to the
resource. This is the stage where you could implement a handler that
further limits the access to a directory based on a username. For
instance, you could have the requirement of ‘‘valid-user’’ required for a
given directory, and then further control which users have access to
specific subdirectories within that protected directory. Scope is DIR;
type is RUN_FIRST.

PerlTypeHandler This is the handler name for the Apache hook type_checker. This is
where the MIME headers ‘‘Content-type’’ is set. This is one stage that is
not commonly implemented with mod_perl handlers because when
you override the default handler for this stage you are also required to
set the handler for the response phase. Caveat emptor. Scope is DIR; type
is RUN_FIRST.

PerlFixupHandler This is the handler name used for the Apache hook fixups.This
happens just prior to the response phase. At this stage, you can
implement handlers to perform any functionality prior to the content
being generated. You could, for instance, set any variables the response
handler utilizes or even short-circuit the default handler based on a
subdirectory or file extension of the <Directory> or <Location> for
which this is in effect. Scope is DIR; type is RUN_ALL.

Continued
583

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 584

Chapter 13: mod_perl

(continued)

Phase Name Description

PerlResponseHandler This is the handler name that you will most often use. This corresponds
to the handler Apache hook. This is the one that every web developer
is the most familiar with: the response phase. This is where the actual
response content is generated and displayed to the client. Most
mod_perl handlers are written for this phase, as are ModPerl::Registry
scripts and other web programming approaches such as PHP, CGI,
Python, Ruby, etc. Most of what you will develop in terms of web
applications has to do with producing output, which is why this
will be the most important stage to you. Scope is DIR; type is
RUN_FIRST.

PerlLogHandler All paths lead to this phase — you’ve got to get in to get out. Seriously,
this is the log_transaction phase that will always be executed,
regardless of whether all other handlers succeeded or failed. It logs
information about the request and response. You could implement a
handler to log to a MySQL database at this phase. Scope is DIR; type is
RUN_ALL.

PerlCleanupHandler This is a mod_perl-specific phase; there is no corresponding Apache
phase. This is where you would implement cleanup code, which
runs immediately following the response being generated by the
PerlResponseHandler handler. Scope is DIR; type is RUN_ALL.

Figure 13-1 gives you a visual idea of when in both the server life and request cycles handlers can
be implemented. It’s pretty amazing to see just how encompassing mod_perl is, in terms of where
within the Apache server life cycle you can implement Perl handlers. This is especially true when you
consider various other web programming approaches or languages that are confined to the response
phase!

Every type of handler is displayed, pointing to where within the server life cycle or request life
cycle they exist. The server life cycle image shows all the various stages of the Apache process,
including the HTTP request phase cycle, which is further expanded in the image to the right. The four
primary phases of the request phase cycle as described in the Apache manual are shown in the HTTP
request phase cycle block. The HTTP request phase cycle block displays them grouped by the four
primary phases listed in the Apache documentation, as well as the twelve phases that mod_perl is
concerned with.

Also of particular interest is where the filter handlers can be implemented, either on the input or output
of a connection or response.

This is power that mod_perl gives you for developing web applications — not just page generation
applications, but server applications.

584

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 585

Chapter 13: mod_perl

open_logs

pre_connection

Connection
Loop

process_
connection

Request Phase
Cycle

post_config

child_init

Request
Parsing

Security

Preparation

child_exit

Handler

Server Life Cycle

Request CyclePerlOpenLogs
Handler

PerlPostConfig
Handler

PerlChildinit
Handler

PerlPreConnection
Handler

PerlProcess Connection
Handler

PerlInputFilter
Handler

PerlInputFilter
Handler

PerlOutputFilter
Handler

PerlChildExit
Handler

post_read_request

translate

map_to_storage

header_parser

access_checker

authen/
check_user_id

authz/
auth_checker

type_checker

fixups

handler/
response

log transaction

cleanup

PerlPostReadRequest
Handler

PerlResponseHandler

PerlTransHandler

PerlInitHandler
PerlHeaderParserHandler

PerlTransHandler

PerlAccessHandler

PerlAuthenHandler

PerlAuthzHandler

PerlTypeHandler

PerlFixupHandler

PerlLogHandler

PerlCleanupHandler

Figure 13-1

Perl Apache2 Modules
Available to you as a mod_perl developer are a number of Apache2 Perl modules, as well as the APR
modules. You can always read any Perl module perldoc page for detailed information about these. For
brevity, this section will cover the ones you will use the most.

585

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 586

Chapter 13: mod_perl

It’s extremely useful to have a good understanding of these modules for developing mod_perl applica-
tions. Virtually every part of Apache can be accessed from mod_perl, and each of these Apache2 modules
are categorized by what type of Apache component they provide an API for (as shown in the following
table).

Module Description

Constants Provides constant values needed for proper return codes.

Request/Request Record A Perl object that provides you with access to the Apache
request_rec data structure (in C), which contains everything
pertaining to the current web client request.

Connection Record A Perl object that provides you with access to the Apache conn_rec
data structure (in C), which represents the current connection.

Filter Record A Perl object that provides you with access to the Apache
ap_filter_t structure, which is a C data structure containing
information for a filter chain.

Server Record A Perl object that provides you with access to the Apache
server_rec structure, which is a C data structure containing
information for each virtual server.

Logging The server_rec structure has a file descriptor, error_log, used for
logging messages to the Apache error log.

Server Configuration Allows you to access information about your Apache configuration
settings by means of your Apache configuration file.

Performance Allows you to see thresholds of how many resources or how much
memory processes can consume.

Status Provides you with status information about mod_perl as it is
running with your Apache server.

Apache2 Constants and Request Record Perl Modules
The Apache request record (request_rec) is an object that is at the core of your mod_perl development.
There are a number of Apache2 Perl modules you will use in the course of development that provide you
with different APIs for the request record.

Also, you will want a Perl interface for Apache constants, which Apache2::Const provides.

Apache2::Const
Apache2::Const provides constants to use within your code, particularly for return values in the mod-
_perl handlers you write. Its usage is simple:

use Apache2::Const qw(OK REDIRECT);

586

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 587

Chapter 13: mod_perl

This would make it so you can have the following in your handler:

sub handler {
my ($r)= @_;
... do some processing ...

return OK;
}

In this example, OK is imported into your handler code’s namespace. There is a memory requirement for
this, so to save memory you could instead use:

use Apache2::Const –compile => qw(OK REDIRECT);

sub handler {
my ($r)= @_;
... do some processing ...

return $Apache2::Const::OK;
}

But then you have to use the fully qualified name for each constant, for example $Apache2::Const::OK
and $Apache2::Const::Redirect.

Apache2::Request
Apache2::Request provides API methods for processing GET or POST form data. Usage is pretty much the
same as with CGI.pm. You can use this to obtain either single form values, or set a hash reference to all
values.

sub handler {
my ($r)= @_;
my $form;

obain the request object
my $req= new Apache2::Request($r);

map all the keys that were submitted to $form hashreference
$form->{$_} = $req->param($_) for $req->param();

code body, print header, etc...
$r->print("<p>" . $req->param(’item1’) . "</p>");
$r->print("<p>˝ . $form->{item2} . <̋/p>");

code body
}

You can also use it for uploads:

my $upload= $req->upload(’file’);

$upload->link("/uploaddir/$newfile");

For a full listing of all the methods Apache2::Request provides, run perldoc Apache2::Request.

587

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 588

Chapter 13: mod_perl

Apache2::RequestRec
Apache2::RequestRec is the primary API you will work with using mod_perl. This is the request record
object that is the first argument to a mod_perl handler. It has accessor methods for everything you would
need. Some of the methods and simple usage are shown in the handler code here:

sub handler {
my ($r) = @_;
$r->content_type(`text/html´);
$r->print(<̋html><head><title>test</title></head><body>˝);
$r->print(<̋h1>test this<h1>˝);
$r->print(<̋p> IP ˝ . $r->connection->remote_ip() . <̋/p>˝);
$r->print(<̋p> METHOD ˝ . $r->connection->method() . <̋/p>˝);

$r->print(<̋p> HOST ˝ . $r->hostname() . <̋/p>˝);

$r->server->warn(w̋arned you˝);
$r->print(<̋/body></html>˝);

}

Apache2::RequestUtil
Apache2::RequestUtil provides API methods for request record utilities. Examples of some of the meth-
ods are:

❑ Obtain a variable set with PerlSetVar MY_VAL f̋oo˝ in the Apache configuration file:

my $var= $r->dir_config(`MY_VAL´);

❑ Get the document root of the server:

my $doc_root = $r->document_root();

❑ Get an array reference of registered handlers for a given phase:

my $access_handlers = $r->get_handlers(`PerlAccessHandler´) ;

❑ Set new handlers for a given phase:

$r->set_handlers(`PerlResponseHandler´, [`WroxHandlers::MyNewHandler´]);
$r->set_handlers(`PerlResponseHandler´, \&hander_code_ref);

❑ Set an HTTP config value:

$r->add_config([’require valid-user’]);

See perldoc Apache2::RequestUtil for a full listing of methods for this API.

588

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 589

Chapter 13: mod_perl

Apache2::RequestIO
Apache2::RequestIO provides API methods for accessing the raw IO of an Apache request record. You
will use one of its methods extensively: print(). Some of the other methods it provides are shown here:

❑ Reading

my $buffer;
my $len = 1024;
$r->read($buffer, $len);

❑ You can also send/print the contents of a file to the output of your handler:

$r->sendfile(’/tmp/foo.txt’);

❑ Of course print() :

$r->print(<̋p>this is a test</p>˝);

❑ And printf():

$r->printf("test %s %d\n", "this", 2);

To see all the methods available with Apache2::RequestIO, run perldoc Apache2::RequestIO.

Apache2::Response
Apache2::Response provides an API for request record response methods, such as setting response head-
ers, content-length header, last-modified, keepalive, custom response headers, etc. Run perldoc
Apache2::Response for API usage details.

Apache2::Access
The Apache2::Access module provides an API that has methods you would use for handlers you use in
the access, authentication and authorization phases. An example of the usage of one of the methods is:

❑ Get the password from the request headers:

my ($status, $password)= $r->get_basic_auth_pw;

❑ Note failure of authentication:

$r->note_basic_auth_failure;

Apache2::URI
The Apache2::URI module provides an API for processing URI strings via the Apache::RequestRec object,
$r. This also includes methods for constructing and analyzing components of URI strings.

589

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 590

Chapter 13: mod_perl

Apache2::Util
The Apache2::Util module provides two utility methods:

❑ escape_path(): Converts an OS path to URL path.

❑ ht_time(): Converts a numeric time value to a string of a specified format.

Apache2 Connection and Filter Record Modules
Also available are Apache2 Perl modules for both the connection record and filter object, which are used
for writing connection and filter handlers respectively.

Apache2::Connection
This module provides an API for the Apache connection record object. This object is available as the first
argument in mod_perl connection handlers and also is a member of the Apache2::RequestRec (request
record) object in HTTP request phase cycle handlers.

Simple usage examples are:

get the connection record from the request record
my $c= $r->connection();
client remote IP
my $ip= $c->remote_ip();
client host
my $host= $c->remote_host();

Apache2::Filter
The Apache2::Filter module provides an API for the Apache filter object. This is the first argument in a
filter handler, $f, as shown here:

sub handler {
my ($f)= @_;

filter handler body
}

The filter API provides numerous methods and attributes for working with the filter object, such as the
following:

❑ Request record object:

my $r = $f->r;

❑ Server object:

my $server = $f->server;

❑ Connection record object:

my $c = $f->c;

590

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 591

Chapter 13: mod_perl

❑ Read and set filter context:

my $context = $f->ctx;
$f->ctx(1);

❑ print():

$f->print($buffer);

But these are just some of the methods it provides. For a more complete list (and this is a topic in itself),
see perldoc Apache2::Filter.

Apache2 Server Record Modules
For developing server handlers, or even having access to the error log file descriptor, you should use the
Apache2::ServerRec server record.

Apache2::ServerRec
The Apache2::ServerRec Perl module provides an API for the Apache server record. It can be accessed
via the request record. Some of the methods are shown here.

sub handler {
my ($r) = @_;
my $server = $r->server
my $servername = $s->server_hostname();
my $process_id = $s->process();
handler body

}

You can run perldoc Apache2::Server for more details on the API.

Apache2::ServerUtil
The Apache2::ServerUtil module provides a Perl API to the server record utilities. You can obtain a server
record object from the request object:

my $server = $r->server;

❑ This sets a value for the server as you would with PerlSetVar:

$server->add_config([`ReloadDebug off´]);

❑ This gets a value:

my $debug_off = $server->dir_config(`ReloadDebug´);

❑ This gets the server version:

my $server_version = Apache2::ServerUtil::get_server_version();

For a full description and details, run perldoc Apache2::ServerUtil.

591

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 592

Chapter 13: mod_perl

Apache2::Log
The Apache2::Log module provides an API for logging methods. It gives you the ability to log mes-
sages to the Apache error log at various logging levels (see Chapter 11 for information about the various
Apache logging levels). Just as is the case with the server record, this is available via the Apache::Server
object:

$r->server->log_error(E̋RROR! You have problems.˝);

$r->server->warn(I̋ am warning you...˝);

Apache2 Configuration Modules
Several Apache2 Perl modules can be used to access and modify Apache configuration settings.

Apache2::Directive
The Apache2::Directive provides an API for accessing information about your Apache configuration file.
It basically parses your Apache configuration file, which is an SGML file, into a DOM-like tree structure
so that you can manipulate it to retrieve any directive’s value, or other configuration values.

For instance, to obtain the value of your server’s error log:

my $tree = Apache2::Directive::conftree();
my $error_log = $tree->lookup(`ErrorLog´);

. . . which would be:

/var/log/apache2/error_log

To access one of your servers as a hash, which would take the same format as it would need for Perl
sections (<Perl>), you would use:

my $conf_ref = $tree->as_hash();

This would give you a hash reference that would show your entire Apache configuration file in the same
format that <Perl> sections would require. For instance, a truncated view of an entire dump (using
Data::Dumper) of the reference for an Apache configuration file would be the following:

$VAR1 = {
Listen’ => [

‘80’,
‘443’,
‘127.0.0.2:8080’
],

],
‘NameVirtualHost’ => [

‘*’,
‘127.0.0.2:8080’,
‘192.168.1.118:443’,
‘*’
],

592

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 593

Chapter 13: mod_perl

‘MaxSpareServers’ => ‘10’,
‘DefaultType’ => ‘text/plain’,
‘MaxClients’ => ‘20’,
‘VirtualHost’ => {

‘127.0.0.2:8080’ => {
‘DocumentRoot’ => ‘/usr/local/apache2/sites/default-backend’,
‘ServerSignature’ => ‘On’
‘ErrorLog’ => ‘/var/log/apache2/error-backend.log’,
‘ServerName’ => ‘backend.someexample.net’,
‘CustomLog’ => ‘/var/log/apache2/access-backend.log combined’,
‘LogLevel’ => ‘warn’,
‘ScriptAlias’ => ‘/perl /usr/local/apache2/sites/default/perl’,
‘ServerAdmin’ => ‘webmaster@localhost’,
‘Directory’ => {

‘/’ => {
‘Options’ => ‘FollowSymLinks’,
‘AllowOverride’ => ‘None’

},
‘/usr/local/apache2/sites/default-backend’ => {

‘Order’ => ‘allow,deny’,
‘Options’ => ‘Indexes FollowSymLinks MultiViews’,
‘Allow’ => ‘from all’,
‘AllowOverride’ => ‘None’

}
},
‘Location’ => {

‘/’ => {
‘Order’ => ‘allow,deny’,
‘Allow’ => ‘from all’

},
‘/perl’ => {

‘Options’ => ‘+ExecCGI’,
‘SetHandler’ => ‘cgi-script’

}
},

},
‘*’ => {

‘DocumentRoot’ => ‘/usr/local/apache2/sites/default’,
‘ErrorLog’ => ‘/var/log/apache2/error.log’,
‘ServerName’ => ‘someexample.net’,
‘ScriptAlias’ => ‘/cgi-bin/ /usr/lib/cgi-bin/’,
‘Directory’ => {

‘"/usr/lib/cgi-bin"’ => {
‘Order’ => ‘allow,deny’,
‘Options’ => ‘+ExecCGI –MultiViews +SymLinksIfOwnerMatch’,
‘Allow’ => ‘from all’,
‘AllowOverride’ => ‘None’

},
}
... more directives ...

}
}

};

593

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 594

Chapter 13: mod_perl

As you can see, this would get quite huge — especially considering that even this example has been
truncated in order to save some trees!

You can also see that each directive, having no children, is a scalar. Whereas if there are children or a list
of settings, these are found as hash references to yet more configuration parameters or array references
for lists of settings.

Apache2::MPM
This module provides an API for accessing Apache MPM (Multi-threaded Processing Module). This
has not been discussed much here because it is beyond the scope of this book. But you should know it
provides methods for accessing information from your server if you are using a threaded server. For
instance, if you wanted to test to see if your server is threaded using Perl, you would use the following:

my $is_threaded = Apache2::MPM->is_threaded;

To read more about this module, run perldoc Apache2::MPM.

Apache2::PerlSections
Apache2::PerlSections provides the ability to completely configure your Apache web server using Perl,
as was shown earlier in this chapter under the heading ‘‘mod_perl Configuration Directives’’ and the
subheading ‘‘Perl Sections’’ (<Perl> ... </Perl>.). You can read more about Perl Sections by running
perldoc Apache2::PerlSections.

Apache2 Resource/Performance, Status,
and Other Modules

A number of Perl modules relate to performance and you will probably want to become familiar with
them. These modules provide features such as database handle caching, displaying mod_perl system
status, and making mod_perl handler development easier by not requiring you to have to restart Apache
to see changes to your application.

Apache2::Reload
Apache2::Reload is a Perl module that provides you with the ability to force your mod_perl handlers to
be reloaded by mod_perl if the underlying code has changed. This is very useful for development; you
don’t have to restart your web server every time you want to see the results of changes you have made
to your code. To use it, you just need to add the following to your Apache configuration file:

PerlModule Apache2::Reload
PerlInitHandler Apache2::Reload

You can set other variables as well, such as whether to check all loaded Perl code or specify particular
modules to be reloaded. In this example, only the modules with the name WroxHandlers will be
reloaded.

PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "WroxHandlers::*"

594

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 595

Chapter 13: mod_perl

You can also turn on debugging:

PerlSetVar ReloadDebug On

Doing so will make it so you can see in your error log what modules Apache2::Reload is reloading:

[Mon Feb 16 10:29:46 2009] -e: Apache2::Reload: Checking mtime of
WroxHandlers/TestResponseHandler.pm

Make sure when you are done with the development stage and ready to release your code into produc-
tion that you don’t use this setting. Apache2::Reload is something you would set up on a development
server. When you are ready to move your code to a QA or live server, those servers will not be using
Apache2::Reload.

Apache::DBI
This provides persistent database connections. This is one of the easiest modules you will ever have
to use!

The module does not use the Apache2 namespace, but works just as well with mod_perl 2.0.

DBI will forward a database connection request to Apache::DBI, which will first try to see if there is a
cached database handle already available (meaning it is still connected to the database). If so, it will
summarily return that one. Otherwise, it will create a new database handle, which it keeps in the cache
for subsequent requests to take advantage of.

To use it, simply have this:

PerlModule Apache::DBI

. . . or this:

Use Apache::DBI;

. . . in your Apache configuration file Perl sections or in your startup file.

Apache2::Resource
Apache2::Resource allows you to limit resources used by Apache children. For instance, the following
code would limit the address space for a child process to a soft limit of 16MB and a hard limit of 32MB:

PerlSetEnv PERL_RLIMIT_AS 16:32

See perldoc Apache2::Resource for more usage details.

Apache2::SizeLimit
Apache2::SizeLimit allows the server to kill off child processes that exceed a certain value. You use it by
including it in either your startup script that you included with PerlPostConfigRequire, or within Perl

595

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 596

Chapter 13: mod_perl

sections. You would use the following code to limit the max process size to 15MB, minimum shared to
8MB, and unshared to 6MB:

$Apache2::SizeLimit::MAX_PROCESS_SIZE = 15000;
$Apache2::SizeLimit::MIN_SHARE_SIZE = 8000;
$Apache2::SizeLimit::MAX_UNSHARED_SIZE = 6000;

You can also use Apache2::SizeLimit in both your mod_perl handlers and ModPerl::Registry scripts.

❑ For ModPerl::Registry scripts:

Use Apache2::SizeLimit;
...
Apache2::SizeLimit::setmax(15000);
Apache2::SizeLimit::setmin(8000);
Apache2::SizeLimit::setmax_unshared(6000);

❑ For mod_perl handlers:

use Apache2::SizeLimit;
sub handler {

my $r= (@_);
Apache2::SizeLimit::setmax(15000, $r);
Apache2::SizeLimit::setmin(8000, $r);
Apache2::SizeLimit::setmax_unshared(6000, $r);
code body

}

For a full description of how you can take full advantage of Apache2::SizeLimit, see perldoc
Apache2::SizeLimit.

Apache2::Status
This Perl module provides a very comprehensive view into the status of mod_perl for your server. To
use it, simply add to your Apache configuration file the following:

<Location /perl-status>
SetHandler modperl
PerlOptions +GlobalRequest
PerlResponseHandler Apache2::Status

</Location>

The interface you will see (shown in Figure 13-2) is a top-level menu that takes you to other informational
pages, such as those in the following table:

Page Description

Environment Displays the environment variables.

Loaded Modules Shows which modules are loaded.

Inheritance Tree Provides a tree view showing module inheritance.

596

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 597

Chapter 13: mod_perl

Page Description

Perl Configuration Shows how mod_perl is configured for the server including
perl version, compile flags, platform information, and anything
you might need to know about your specific installation of
mod_perl.

Compiled Registry
Scripts

Shows a listing of ModPerl::Registry scripts that have been compiled.

Required Files Shows all files either required from included modules or from
PerlPostConfigRequire.

Signal Handlers Shows a listing of all signals such as KILL, ALRM, and IO and their
current values.

Symbol Table Dump Shows a listing of all symbols for all Perl code loaded by mod_perl.
This will even show you the actual code, deparsed, for each method
or subroutine of every piece of code loaded, as well as view variables
for each.

Figure 13-2

If for instance, you select Loaded Modules, you will see a long list of the modules that are loaded for
your Apache server, as shown in Figure 13-3.

597

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 598

Chapter 13: mod_perl

Figure 13-3

There are many configuration settings provided for using Apache2::Status. For more information, read
the perldoc for Apache2::Status.

Summary
This chapter introduced you to mod_perl 2.0, an Apache module that embeds a Perl interpreter into the
Apache web server and allows significant improvement to Perl web application performance over using
CGI. This is because with mod_perl, you are using a built-in interpreter within the web server, rather
than an external execution of a Perl interpreter. Thus, mod_perl 2.0 is able to provide persistence to Perl
web applications, which is a great improvement over Perl web applications using CGI, where every time
the CGI script runs it must reparse and recompile the Perl code. mod_perl instead parses and compiles
the Perl code once when it’s first loaded, and thereafter the compiled code is available for subsequent
requests. This persistence is of great benefit to web applications, particularly for objects such as database
handles and memcached connections.

This chapter also discussed how easy it is to run your existing Perl CGI scripts and mod_perl applications
using ModPerl::Registry, a Perl module that results in your CGI application being compiled into the body
of Perl subroutine that is compiled once and stored in memory, breathing persistent life into your Perl
CGI code.

598

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 599

Chapter 13: mod_perl

You also explored an overview of the various mod_perl configuration directives that let you specify
various settings controlling how mod_perl functions for your server, as well as the 12 different handler
directives, each with an Apache life cycle in addition to processing cycles within the Apache life cycle,
such as the HTTP request phase cycle connection loop.

Finally, filters, one of several new Apache 2 features, were explained. Filters differ from regular handlers
in that they act on brigades, which are groupings of data chunks known as buckets, forming a bucket
brigade.

Upon finishing this chapter, you should have a good idea of just how powerful mod_perl is!

599

Galbraith c13.tex V3 - 06/02/2009 10:39am Page 600

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 601

Using mod_perl Handlers

In Chapter 13, you learned what mod_perl is and how it can be used, what different types of mod-
_perl handlers there are, and what stages of the Apache life cycle and the HTTP request phase cycle
they can be implemented for.

You probably are curious to see just what this really means. If you are like the author, you thought
more in terms of writing Perl code to implement a web application, displaying content, processing
input, and displaying other content based on user input. This all happened at the HTTP request
response phase. mod_perl is about much more than just implementing functionality at the response
phase. It’s about having complete access to the Apache life cycle and HTTP request cycle. This is
what the various handlers are for. They take advantage of Apache 2.0/2.2 hooks, which provide
modules with the ability to alter the way Apache runs at given phases of its life cycle. mod_perl
gives you the same ability to do what Apache module developers do.

This chapter will show you some simple, practical examples that give you a hint of how powerful
mod_perl handlers can be. Also, these examples will use MySQL and memcached to show you how
you could theoretically build an entire system around Apache using mod_perl that has access to the
same database.

PerlResponseHandler Example
The first handler you probably want to see is a PerlResponseHandler, since this would be the most
common handler you would implement for your various web application requirements.

The following example is a little bit more involved and somewhat odder than your usual Hello,
World! example. The idea here is to show you a little taste of programming with mod_perl handlers,
particularly the response handler since that’s the phase you most likely are curious about.

Also, if you are familiar with Apache 1.3/mod_perl 1.x, you’ll see in this example that things have
changed a bit in your write handlers. Hopefully the code shown in this chapter will give you ideas
of what you need to do in your own code to migrate to mod_perl 2.0.

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 602

Chapter 14: Using mod_perl Handlers

This example shows a few concepts:

❑ Form parsing with Apache2::Request

❑ Printing debug to the error log with $r->server (Apache2::ServerReq)

❑ Setting the log level in order to print debug messages

❑ Redirecting internally or externally to a URL of the user’s choice

❑ Setting HTTP headers

Initial Handler Setup
This first thing is to create the handler file. As you recall, there is a directory on this server (your own
will vary on your own setup): /usr/local/apache2/perl-lib. In this directory there is already a
startup.pl and WebApp.pm. In this example, the handler will be called TestResponseHandler, and
since there will be other handlers, it will be stored in a directory that will be called WroxHandlers as
TestResponseHandler.pm, so its package name will be WroxHandlers::TestResponseHandler.

package WroxHandlers::TestResponseHandler;

use strict;
use warnings;
use Apache2::Const –compile => qw(OK REDIRECT LOG_DEBUG);
use Apache2::Request;

The line –compile => (OK REDIRECT LOG_DEBUG) is used to make the Apache2::Const constants available.
Also, for this example, to have access to the Apache2::Request object (obtaining form parameters), that
module is imported.

The next thing to do is to define the handler() method. This is the default name entry method to mod-
_perl handlers, though you can use other names, as you will see later.

The only argument to this handler method is $r, which is an Apache::RequestRec object reference. Next,
the $url of the script is obtained with $r->uri. This provides the URL of itself to be used in the form that
will soon be printed.

sub handler {
Apache2::RequestRec object reference.
my ($r)= @_;
my $url= $r->uri;

scalar to hold the html list of arguments
my $table;

Log Messages Using the Server Object and Form Parsing
Next, $s is set to the value of $r->server, an object reference to the Apache2::ServerRec object. For the
example, this will be used for logging debug messages to the error log.

Apache2::ServerRec object
my $s = $r->server;

602

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 603

Chapter 14: Using mod_perl Handlers

An Apache2::Request object reference is obtained to use with $req. This will be used to obtain the sub-
mitted form values — which will work for both a POST and GET:

obain the request object
my $req = new Apache2::Request($r);

a hashref for the submitted form keys/values
my $form = {};

The Apache2::Request method is $req->param() with no arguments provided. It returns a list of all the
submitted form value names. With these names, you can then obtain all the values for those named form
parameters. That is what the mapping and assignment to the hash reference variable $form achieves:

map all the keys that were submitted to $form
$form->{$_} = $req->param($_) for $req->param();

Setting the Log Level and Printing the HTTP Header
The log level is set to LOG_DEBUG. This is required to set the log level equal to or greater than the type of
logging level you wish to print at. In this case printing at debug level is desired. Without this, Apache
will not log these debug messages because the default debug level for Apache is warn, which is not high
enough for a debug level message.

set the apache log level to debug
needed in order to user r->log->debug()
$s->loglevel(Apache2::Const::LOG_DEBUG);

This prints out a debug message in the Apache error log.

print a nice debug message
$r->log->debug("--> WroxHandlers::TestResponseHandler::handler");

These previous lines of code that set up printing debug messages could be abstracted into your own
logging module, if you did not want to implement these details in your web applications. You need some
method of printing to the Apache error log easily while you are still developing your application.

Next, the HTTP header needs to be printed out. This prints out the MIME type for this handler, which is
HTML:

print mime header
$r->content_type(’text/html’);

Redirection
The following logic tests the pattern of the submitted form value $form->{redirect}. This is a crude
test and is not by any means bulletproof. It is used to show how you can achieve an internal or external
redirect.

If $form->{redirect} starts with a forward slash (/), then it most likely needs to be an internal redirect.
To call an internal redirect (subrequest) to the internal URL requires the constant Apache2::Const::OK
to be returned:

603

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 604

Chapter 14: Using mod_perl Handlers

just to show you how redirect works
if (defined $form->{redirect} && length($form->{redirect})) {

if no scheme, this is an internal redirect
if ($form->{redirect} =∼ / ˆ \//) {

subrequest to the internal URI
$r->internal_redirect($form->{redirect});

make sure to print exit debug statement
$r->log->debug("<-- WebPub::TestHandler::handler (internal redirect)");

return OK - no REDIRECT
return Apache2::Const::OK;

}

If it does not start with a forward slash, perform an external redirect. To do this, the location header
is set. Print a debug before you redirect. Then return from the handler the Apache::Const::REDIRECT
constant:

otherwise, external redirect
else {

set the Location header
$r->headers_out->add(’Location’ => $form->{redirect});

make sure to print exit debug statement
$r->log->debug("<-- WebPub::TestHandler::handler (external redirect)");

return REDIRECT
return Apache2::Const::REDIRECT;

}
}

Print the Document Header
Next, an HTML header is printed:

$r->print(q(
<html>

<head>
<title>Test Handler</title>

</head>
<body>
));

The following code shows the printing of the form, which has various form values for the purpose of
having something to submit. In this case, the method will be POST. But this form will also process GET if
you use a query string when accessing this handler:

$r->print("\t\t<h1>This is the Test (TM) handler</h1>");
$r->print(qq(

604

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 605

Chapter 14: Using mod_perl Handlers

<form action="$url" method="POST" id="testform" name="testform">
<fieldset>

<p>
<label for="item1 ">item1</label>
<input type="text" id="item1" name="item1" size="16">

</p>
<p>

<label for="item2">item2</label>
<input type="text" id="item1" name="item2" size="16">

</p>
<p>

<label for="item3">item3</label>
<input type="text" id="item1" name="item3" size="16">

</p>
<p>

<label for="lifes_options">Life’s options</label>
<select name="lifesoptions" id="lifesoptions">
<option value="savemoney">Save Money</option>
<option value="spendanddebt">Spend Money</option>
<option value="monk">Live like a monk</option>
<option value="mooch">Mooch off of Mom and Dad</option>
</select>

</p>
<p>

<label for="redirect">Redirect to:</label>
<input type="text" id="redirect" name="redirect" size="16">

</p>
<p>

<label for="myfile">File upload:</label>
<input type="file" id="myfile" name="myfile" size="40">

</p>
<input type="submit" value="Press me" id="pressme" name="pressme">

</fieldset>
</form>));

Next, a table is built to display the submitted form values, and the Apache::RequestRec method
$r->method()shows what method was used:

build up a table
if (keys %$form) {

print the method
$r->print("\t\t<p>method was: " . $r->method() . "</p>\n");

table header prior to row generation
$table= <<’EOHEAD’;
<p>
<table>

<thead>
<tr>

<th>Argument Name</th><th>Value</th>
</tr>

</thead>

605

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 606

Chapter 14: Using mod_perl Handlers

<tbody>
EOHEAD

use the keys of the form to print the table
for my $key (keys %$form) {

$table.= "\t\t\t<tr><td>$key</td><td>$form->{$key}</td></tr>\n";

}
$table.= "\t\t</tbody></table><p>\n";

print the table
$r->print($table);

}

print the rest of the document
$r->print("\n\t</body>\n</html>");

The debug return message is printed to indicate that this handler is done executing. OK is returned, as
required to indicate success:

$r->log->debug("<-- WroxHandlers::TestResponseHandler::handler");
return Apache2::Const::OK;

}
1;

To use this handler, you would need to add the following change to your Apache configuration file:

PerlPostConfigRequire /usr/local/apache2/perl-lib/startup.pl
<Location /test>
SetHandler perl-script
PerlResponseHandler WroxHandlers::TestResponseHandler

</Location>

Then you would need to restart Apache.

With mod_perl handlers, you will need to restart the server for changes to take effect every time you
make a change. This can get old fast. There is fortunately, an answer to this problem — the perl module
Apache2::Restart. To use this module, set it to run as a PerlInitHandler in your Apache configuration
file. It causes mod_perl to check if the handler or handlers you define to be checked using ReloadModules
or ReloadAll have changed on disk. If so, it reloads that file from disk. This allows you to be able to
develop mod_perl handlers without having to restart Apache every time you make a change. This will
certainly help your sanity and ensure better relations among developers!

The following lines show you how you can possibly use Apache::Reload:

PerlModule Apache2::Reload
PerlInitHandler Apache2::Reload

PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "WroxHandlers::*"
PerlSetVar ReloadDebug On

606

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 607

Chapter 14: Using mod_perl Handlers

The handler WroxHandlers::TestReponseHandler is accessible for you at the /test URL. If example.net
were the site in question, this would be http://example.net/test. If you enter values into the various
fields and hit the Submit button, you should see a form such as the one shown in Figure 14-1.

Figure 14-1

This figure shows the resulting form after a submission — the values shown in the form, which have
already been submitted to show you what was submitted.

Also, if you look in your error log, you will see that the logging in the code works as well:

[Sat Feb 14 19:33:34 2009] [debug] TestResponseHandler.pm(32):
[client 192.168.10.3] --> WroxHandlers::TestResponseHandler::handler
[Sat Feb 14 19:33:34 2009] [debug] TestResponseHandler.pm(129):
[client 192.168.10.3] <-- WroxHandlers::TestResponseHandler::handler

This handler, though basic, is a good testing tool to see how mod_perl handlers work. You can extend it
or use it as a skeleton for other applications.

Connection mod_perl Handlers
As stated, these are mod_perl handlers that act upon the connection of a client. The connection phase
happens prior to requests being served and responded to. The two handlers for this phase are PerlPre-
ConnectionHandler and PerlProcessConnectionHandler. This is the phase where you can utilize connection
input filters as well as do useful things like banning abusive IP addresses.

607

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 608

Chapter 14: Using mod_perl Handlers

PerlPreConnectionHandler Example
The next example shows you how you can use MySQL, memcached, and a PerlPreConnectionHandler to
deny a malicious IP address at the earliest possible stage in a connection — at the connection level, before
even attempting to serve a request.

This could be part of an overall system you design, which would also include a PerlResponseHandler
web application to enter miscreant IP addresses, ban or unban those addresses, and to store the data in
MySQL.

The following application will use the startup script in perl-lib, startup.pl, to load the full result set
of a MySQL table called banned_ips into memcached, with each IP address stored with the IP address
as the memcached key and the value of the banned value. The startup script will utilize the Perl module
from the previous example in Chapter 12, WebApp.pm, since it already has the database and memcached
connection in place and adding other methods to it is easy to do.

The table will be defined as:

CREATE TABLE banned_ips (
id int(3) NOT NULL auto_increment,
ip_address int(10) unsigned not null default 0;
banned tinyint(1) default ‘0’,
PRIMARY KEY (id),
KEY ip_address (ip_address),
KEY banned (banned)

) ENGINE=InnoDB;

This table will contain records that have three columns, two of which are the following:

❑ ip_address for the IP address. This will be an unsigned integer. The MySQL function
inet_aton() will be used to store the string value of the IP address as an integer in this column.

❑ banned, a Boolean column that indicates whether the IP address is banned or not.

The next step is to create the handler module, which will be called WroxHandlers::DenierHandler, with the
filename WroxHandlers/DenierHandler.pm. This handler will act upon a connection object reference to
Apache2::Connection, as opposed to acting on a request object. For this handler, the two constants that
are needed are the constants Apache::Const::OK and Apache::Const::FORBIDDEN. One of these will be
returned. Also, this handler is using WebApp, which will provide a connection to memcached and the
method for checking the IP address.

package WroxHandlers::DenierHandler;

use strict;
use warnings;
use Apache2::Connection ();
use Apache2::Const –compile => qw(OK FORBIDDEN);
use WebApp ();

sub handler {
my ($c)= @_; # connection

instantiate WebApp

608

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 609

Chapter 14: Using mod_perl Handlers

my $webapp= new WebApp();
obtain the IP address
my $ip_address= $c->remote_ip;

check if the IP address is allowed to connect
if ($webapp->isDenied($ip_address)) {

if denied, return forbidden
warn "The IP address $ip_address is not welcome here. SCAT!";
return Apache2::Const::FORBIDDEN;

}
otherwise, they are permitted to connect
warn "The IP address $ip_address is welcome at this site.";
return Apache2::Const::OK;

}

The IP address is checked with the WebApp method isDenied(), which will return a true or false as to
whether or not the IP address will be denied/banned. In order to do this, isDenied() checks memcached
for the value stored by the IP address being checked. For this, the UDF memc_get() will be used along
with the MySQL function inet_aton() to convert the IP address string value to an integer, which is how
the IP address is stored in memcached.

If the value is true, the handler needs to return $Apache::Const::DENIED, denying the connection to the
client. If the value is false, the handler will return $Apache::Const::OK and allow the client to connect.

To WebApp.pm, you would add two methods. One to cache the banned_ips table by select all the data and
caching each in memcached by IP address:

=head2 cacheBannedIPs()

cache the banned_ips table

=over

=item args

$self - object reference

=back

=over

=item returns

no value

=back

=cut

sub cacheBannedIPs {
my ($self)= @_;

fetch all data from banned_ips
my $query = ‘SELECT ip_address, banned FROM banned_ips’;

609

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 610

Chapter 14: Using mod_perl Handlers

my $bref= $self->{dbh}->selectall_arrayref($query);

cache by IP address
$self->{memc}->set($_->[0], $_->[1]) for @$bref;

return;
}

With just loading the data on startup, this might not be completely sufficient to ensure complete rep-
resentation of the list of banned IP addresses, but the application that enters or modifies the list could
update memcached as well. You get the idea!

Also, the method you called in the handler in the previous code, isDenied(), uses MySQL, through the
UDF memc_get() and the function inet_aton(), to check if the IP address is stored in memcached. The
reason the UDF is used here instead of the Perl memcached client is to be able to use the inet_aton()
MySQL function within the UDF function memc_get() to retrieve the value stored by numeric IP address.

There are three return values from isDenied:

❑ undef if the value is not found in memcached, in which case the user is not banned.

❑ 0, if the value is found in memcached but the IP address has the banned column as false, in
which case the user is not banned.

❑ 1, if the value is found in memcached and the banned column is true, in which case the user is
banned and cannot connect.

=head2 isDenied()

Returns true or false whether a given IP address is banned or not.
It uses memcached to fetch the object from memcached for the
IP address value, returning the 1 or 0 that it was stored with

=over

=item args

$ip_address - the IP address being checked

=back

=over

=item returns

1 or 0, banned or not

=back

=cut

sub isDenied {
my ($self, $ip_address)= @_;

610

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 611

Chapter 14: Using mod_perl Handlers

set the memcached server to use
$self->{dbh}->do("select memc_servers_set(’127.0.0.1:11211’)");

obtain the value from memcached, using inet_aton to convert to int
my $sth = $self->{dbh}->prepare("select memc_get(inet_aton(?))");

$sth->execute($ip_address);

my $ip_ref= $sth->fetchrow_arrayref();

return($ip_ref->[0]);
}

Next, you would set the PerlPreConnectionHandler to this handler in your Apache configuration file:

PerlPreConnectionHandler WroxHandlers::DenierHandler

The other piece required for this handler to function properly is the means to load memcached with the
list of banned IP addresses from MySQL. This is done with the startup perl script (set with PerlRequire
in your Apache configuration file) startup.pl. This will instantiate the WebApp class (as was shown
when explaining ModPerl::Registry) and call cachedBannedIPs(). startup.pl (or <Perl> section)
would then be seen as:

use lib qw(/usr/local/apache2/perl-lib);
use WebApp;

use strict;
use warnings;

my $webapp= new WebApp();

$webapp->getUsers();

$webapp->cacheBannedIPs();

1;

This calls cacheBannedIPs(), which simply selects all rows out of banned_ips and stores each one, by
IP address, into memcached upon Apache startup.

To test, you can add an entry into the banned_ips table to ban the IP of your choice (use yours for
testing!). Notice that you must use the MySQL function inet_aton() to properly set the numeric value
of the IP address.

insert into banned_ips (ip_address, banned) values (inet_aton(’192.168.1.123’), 1);

Finally, you must restart Apache.

Now, when a banned client attempts to connect to your site, they will see the unwelcoming message
shown in Figure 14-2.

611

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 612

Chapter 14: Using mod_perl Handlers

Figure 14-2

The beauty of this is that you get to ban a malicious IP before you spend any more CPU cycles serving
a request. This demonstrates the power of mod_perl and how you have access to the Apache life cycle
using the Perl programming language, as well as using MySQL and memcached together to provide the
cached banned IP data.

Finally, before moving on to other sections, one thing you might want to do is un-ban your
IP address!

update banned_ips set banned = 0 where ip_address = inet_aton(’192.168.1.123’);

Other HTTP Request Cycle Phase Handlers
You saw above the use of a PerlResponseHandler mod_perl handler to serve up a simple form applica-
tion. This is the most common phase in the HTTP Request Cycle where you would implement mod_perl
handlers. However, there is much more to the HTTP request cycle phase in terms of the functionality you
can implement with mod_perl handlers.

There are 12 phases of the HTTP request cycle loop to chose from in which to implement a mod_perl
handler. The previous section explained what each of those phases does and gave you a sense of what
you can implement in each of those phases. This section will make manifest some practical examples that
give you a better sense of what having access to all these phases means.

PerlAccessHandler Example
You just saw how to ban a client IP address at the connection level. The next three mod_perl han-
dlers will deal with the access, authentication, and authorization phases. The first of which will take
the PerlPreConnectionHandler example, DenierHandler.pm, and modify it somewhat to work as a
PerlAccessHandler handler.

612

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 613

Chapter 14: Using mod_perl Handlers

The easiest way to do this is to copy over DenierHandler.pm to a new filename called
AccessTestHandler.pm.

The first thing to do would be to rename the package:

package WroxHandlers::AccessTestHandler;

All the various module imports will remain the same, but you will add the constant
Apache2::Const::LOG_INFO for printing [info] to the error log for a successful access:

use strict;
use warnings;
use Apache2::Connection;
use Apache2::RequestRec;
use Apache2::Const –compile => qw(OK FORBIDDEN LOG_INFO);
use WebApp;

Handlers for the HTTP request cycle phase take a request record object (instead of a connection record
object, as was used in the PerlPreConnectionHandler example), so simply change $c to $r, and then
obtain $c from $r->connection, which is a connection record. The rest of the code will simply work!

sub handler {
my ($r)= @_; # connection

obtain connection from request object
my $c= $r->connection;

obtain the IP address
my $ip_address= $c->remote_ip;

get a webapp object
my $webapp= new WebApp();

check if the IP address is allowed to connect
if ($webapp->isDenied($ip_address)) {

if denied, return forbidden
$r->server->warn("The IP address $ip_address is not welcome here. SCAT!");
return Apache2::Const::FORBIDDEN;

}

The only other change to mention here is that the code will use LOG_INFO log level to print [info] to the
error log when the login is successful.

otherwise, they are permitted to connect
$r->server->loglevel(LOG_INFO);

$r->log->info("The IP address $ip_address is welcome at this site.");
return Apache2::Const::OK;

}

Also, change your Apache configuration file. Make sure to comment out the PerlPreConnectionHandler
directive if you want to test that this bans a banned IP address, otherwise the PerlPreConnection
Handler will deny the IP address before your PerlAccessHandler has a chance to deny it!

613

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 614

Chapter 14: Using mod_perl Handlers

#PerlPreConnectionHandler WroxHandlers::DenierHandler

Then add this:

PerlPostConfigRequire /etc/apache2/perl-lib/startup.pl

<Location /test>

PerlAccessHandler WroxHandlers::AccessTestHandler

SetHandler perl-script
PerlResponseHandler WroxHandlers::TestResponseHandler

</Location>

Also remember that PerlAccessHandler is per <Directory> or <Location>, which is different than how
PerlPreConnectionHandler was for the entire server, so it will only be applied to the /test URL in this
example.

You already have the caching of banned IP addresses happening with your changes to startup.pl from
the previous example of the PerlPreConnectionHandler, so that part is already taken care of. All you
have to do now is set the IP address you want to test to being banned:

update banned_ips set banned = 1 where ip_address = inet_aton(’192.168.1.123’)

Then restart Apache!

When you access the URL http://example.net/test (whatever your domain is), you see a page like the
one shown in Figure 14-3.

Figure 14-3

614

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 615

Chapter 14: Using mod_perl Handlers

PerlAuthenHandler Example
Another good handler example is one that implements authentication using a mod_perl handler. Not
only that, but using a mod_perl handler that uses both MySQL and memcached for the source of data to
verify authentication.

The following example, WroxHandlers::AuthenTestHandler, will use basic authentication to verify user-
supplied credentials that are stored in both memcached and MySQL. The handler will, of course, attempt
to check memcached first, and then MySQL. If neither sources have the user stored, then authentication
will return unauthorized, denying the user from the protected resource. Again, the WebApp class will be
used to provide the database and memcached connection.

The user database table is the same as the users table as shown for the app.pl CGI application, except
with a password column added:

alter table users add (password char(32) NOT NULL default ‘’);

A UNIQUE index on username and password should also be added. You would first need to drop the
existing index on username:

alter table users drop index username;
alter table add unique index username (username, password);

The table definition ends up being:

CREATE TABLE users (
uid int(8) NOT NULL auto_increment,
username varchar(16) NOT NULL default ‘’,
firstname varchar(32) NOT NULL default ‘’,
surname varchar(32) NOT NULL,
email varchar(32) NOT NULL default ‘’,
phone varchar(16) NOT NULL default ‘’,
state varchar(3) NOT NULL default ‘’,
address varchar(255) NOT NULL default ‘’,
city varchar(24) NOT NULL default ‘’,
password char(32) NOT NULL default ‘’,
PRIMARY KEY (uid),

UNIQUE KEY username (username,password),
UNIQUE KEY email (email)

) ENGINE=InnoDB;

If you already had an existing user, you would simply update that user to now have a password. In this
example, this will be the user with the uid of 5:

update users set password = md5(’foo’) where uid = 5;

Or, insert a new user:

Insert into users (username, firstname, surname, email, password)
values (’someuser’, ‘Test’, ‘User’, ‘user@example.com’, md5(’s3kr1t’));

Additionally, for extra credit, you can modify the contact list application to have a password field with
minimal effort and have means to update these contacts/users!

615

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 616

Chapter 14: Using mod_perl Handlers

The password is a hexidecimal representation of the MD5 digest of the password the user enters when
being authenticated, as well as when he or she sets his or her password in whatever application man-
ages the account. The method of looking up the user in memcached is to store the user’s uid value
using the key username-md5password. The method of looking up the user in MySQL is to look up the
user by username and password. The application must supply a MD5 hex value of the password in
the lookup.

package WroxHandlers::AuthTestHandler;

use strict;
use warnings;

use Apache2::Access;
use Apache2::RequestUtil;
use Apache2::Const –compile => qw(OK DECLINED HTTP_UNAUTHORIZED LOG_INFO);

In this example, WebApp.pm will again provide connectivity to memcached and MySQL. Addi-
tionally, the constant Apache2::Const::HTTP_UNAUTHORIZED will be required. Also, the constant
Apache2::Const::LOG_INFO will be used to demonstrate using the info logging level.

use Digest::MD5 qw(md5_hex);
use WebApp;

#
AuthTestHandler will authenticate a user using memcached and MySQL. It will
attempt to find the user in memcached, if not, then in MySQL. If not found,
authentication for the user will fail and they will not have access to the
restricted resource.
#
sub handler {

my ($r)= @_;

The method $r->get_basic_auth_pw returns the status and password, unencrypted, from the user-
supplied credentials. If the status was anything other than OK, then that status is returned. Next, the
$username is set to the value of the user id with $r->user.

get the password from the request headers
my ($status, $password)= $r->get_basic_auth_pw;

return if $status not OK
$status == Apache2::Const::OK or return $status;
instantiate a WebApp
my $webapp= new WebApp();

obtain the username
my $username= $r->user;

Now that the $username and $password values are set, they can be checked with isAuthorized(), which
returns 1 (true) or 0 (false). If the return value from isAuthorized() is true, then a log message of the
appropriate level of info is printed to the Apache error log, and then OK is returned, resulting in the user
being authenticated and allowed to access the protected resource. If the returned value is false, then the
user is not authorized and the constant Apache2::Const::HTTP_UNAUTHORIZED is returned.

616

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 617

Chapter 14: Using mod_perl Handlers

check if the user is authentcated, if so, return OK
if ($webapp->isAuthenticated($username, $password)) {

$r->server->loglevel(Apache2::Const::LOG_INFO);
$r->log->info("User $username is authenticated");
return Apache2::Const::OK;

}

The method $r->note_basic_auth_failure sets up the client headers so the client will know how to
authenticate itself the next time.

default is to return un-authenticated
$r->note_basic_auth_failure;
$r->server->warn("User $username is not authenticated");
return Apache2::Const::HTTP_UNAUTHORIZED;

}

The WebApp method isAuthenticated()has a simple interface where a $username and $password
are supplied. If the username and password are found, it will return a 1 or 0. The first attempt to find
the user entry (which is the uid value in memcached) is using a key derived from concatenating the
username with a hyphen and the MD5 password and is made against memcached. If this is found in
memcached, 1 (true) is returned immediately before even attempting to connect to MySQL. If this is not
found in memcached, an attempt is made to check in MySQL. If the information is found in MySQL,
then 1 (true) is returned. If the user cannot be found, a 0 is returned. This 0 means the user will not be
authenticated.

Digest::MD5 will have to be used to obtain the hexadecimal representation of the MD5 digest using
md5_hex. So, to the top of WebApp.pm, add:

use Digest::MD5 qw(md5_hex);

Then implement isAuthenticated() like so:

=head2 isAuthenticated

A method used to check if the user and password are in the database,
as supplied when prompted when accessing an <Location> or <Directory>
that requires it using md5 digest

=over

=item Arguments

$self - object reference

$username - username supplied at prompt

$password - password, in non-md5 form, from prompt

=back

617

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 618

Chapter 14: Using mod_perl Handlers

=over

=item Returns

The UID value or undef

=cut

sub isAuthenticated {
my ($self, $username, $password)= @_;

create a hex password using md5_hex, which is how the password is stored
my $digest = md5_hex($password);

create a memcached key by username and hex password
my $memc_key= $username . ‘-’ . $digest;
my $uid= $self->{memc}->get($memc_key);
return($uid) if $uid;

user and password must match
my $query= ‘SELECT uid FROM users WHERE username = ? AND password = ?’;

my $resref= $self->{dbh}->selectrow_arrayref($query,
{},
($username, $digest));

return uid or undef
return $resref->[0];

}

Another requirement for this to function properly is to ensure memcached is preloaded with the users
is to add caching of users from the users table using the startup.pl script or <Perl> section in your
Apache configuration file. For the previous example, this now appears as:

!/usr/bin/perl

use lib qw(/usr/local/apache2/perl-lib);
use WebApp;

my $webapp= new WebApp();

$webapp->getUsers();

$webapp->cacheBannedIPs();

$webapp->cacheUsersByMD5();

1;

Since passwords are already MD5-hexed, there is no need to do anything other than select all records
from users, keyed in memcached by username-MD5.

To use this module, you need to add the handler directive to your Apache configuration. Since this
directive is of type DIR, you will add it within a <Directory> or <Location> sectional directive. For
this example it will be added to the <Location> of the test response handler:

618

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 619

Chapter 14: Using mod_perl Handlers

<Location /test>

PerlAccessHandler WroxHandlers::AccessTestHandler

PerlAuthenHandler WroxHandlers::AuthTestHandler
AuthType Basic
AuthName TestAuth
require valid-user

SetHandler perl-script
PerlResponseHandler WroxHandlers::TestResponseHandler

</Location>

Once you restart Apache and try to access the URL, you will find you need to supply the credentials
for whatever user you created or updated with a new password. If everything works correctly, and you
authenticate correctly, you will see in your Apache error log:

[Sat Feb 14 22:57:15 2009] [info] [client 192.168.1.1] User someuser
is authenticated

PerlAuthzHandler Example
Now that you have a working example of a PerlAuthenHandler example, you can easily use much of that
code to implement a PerlAuthzHandler. This is a handler that would check the user id after the user has
made it past the authentication phase, and apply yet one more layer of credential checking to the access
control.

In this example, a handler named WroxHandlers::AuthZTestHandler will check memcached and MySQL
for a user’s admin status. If the user has the admin parameter set, then they will be granted access.

First of all, you will need to add yet another column to the users table, admin, which will be a simple
Boolean true or false value:

alter table users add (admin tinyint(1) NOT NULL DEFAULT 0);

You can then set the appropriate value of admin for the users you want to give admin privileges to:

update users set admin = 1 where uid = 3;

You can basically copy over AuthenTestHandler.pm to AuthZTestHandler.pm and rename the
package. You can use the same imports that you used in the last example as well.

package WroxHandlers::AuthZTestHandler;

use strict;
use warnings;

use Apache2::Access;
use Apache2::RequestUtil;

619

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 620

Chapter 14: Using mod_perl Handlers

use Apache2::Const –compile => qw(OK HTTP_UNAUTHORIZED LOG_INFO);

use WebApp;

AuthZTestHandler only has to check the username since the user and password have already been
authenticated at this point. A WebApp object reference will be instantiated and will establish the connec-
tion to both MySQL and memcached. Next, simply pass the username to $webapp->isAdmin(), which
will return a 1 or 0, depending on whether the user is an admin or not:

#
AuthZTestHandler will authorize a user using memcached and MySQL. It will
attempt to find the user in memcached, if not, then in MySQL. If found,
it will check if the user ‘admin’ attribute is 1 or 0. If 1, then the
user is authorized. If 0 or if not found, authorization for the user will fail
and they will not have access to the restricted resource.
#
sub handler {

my ($r)= @_;

obtain the username
my $username= $r->user;

my $webapp= new WebApp();

If a 1 (or true) is returned, then that user is authorized, otherwise he or she is not and the constant
Apache2::Const::HTTP_UNAUTHORIZED is returned, just as in the previous PerlAuthenHandler example.

check if the user is authorized, if so, return OK
if ($webapp->isAdmin($username)) {

$r->server->loglevel(LOG_INFO);
$r->log->info("User $username is authorized");
return Apache2::Const::OK;

}

default is to return unauthorized
$r->note_basic_auth_failure;

$r->server->warn("User $username is not authorized");
return Apache2::Const::HTTP_UNAUTHORIZED;

}

1;

The isAdmin() method is added to WebApp.pm. It uses getUser() to obtain the $user hash reference that
contains all the user attributes for the user specified by $username, including the admin attribute. If the
user is found and that user has the admin attribute set to 1, then 1 is returned, and the user is an admin
user. Otherwise, 0 is returned, and the user is not an admin user.

=head2 isAdmin()

This method returns 1 or 0, representing if the user is
an admin user or not

620

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 621

Chapter 14: Using mod_perl Handlers

=over

=item args

$self - instantiated object ref to itself

$username - the username to check

=back

=over

=item returns

1 - is admin

0 - is not admin

=back

=cut

sub isAdmin {
my ($self, $username)= @_;
my $user= $self->getUser({username => $username});
return defined $user ? $user->{admin} : 0;

}

Next, add the PerlAuthZHandler directive for WroxHandlers::AuthZTestHandler to your Apache con-
figuration file:

<Location /test>

PerlAccessHandler WroxHandlers::AccessTestHandler

PerlAuthenHandler WroxHandlers::AuthTestHandler

PerlAuthzHandler WroxHandlers::AuthZTestHandler

AuthType Basic
AuthName TestAuth
require valid-user

SetHandler perl-script
PerlResponseHandler WroxHandlers::TestResponseHandler

</Location>

The final piece to this has already been taken care of. startup.pl called getUsers() upon startup,
caching all the users and ensuring that the user will be retrieved from memcached as often as possible,
with as few cache misses as possible. So, after the previous examples, it now appears as:

#!/usr/bin/perl

621

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 622

Chapter 14: Using mod_perl Handlers

use lib qw(/etc/apache2/perl-lib);
use WebApp;

my $webapp= new WebApp();

$webapp->getUsers();

$webapp->cacheBannedIPs();

$webapp->cacheUsersByMD5();

1;

Restart Apache, clear your authenticated sessions (depending on the web browser you use), and attempt
to log in. Just as before, you will be presented with a login panel. Upon a successful login, you will see
the following in your Apache error log:

[Sun Feb 15 10:16:55 2009] [info] [client 192.168.3.4] User someuser is authenticated
[Sun Feb 15 10:16:55 2009] [info] [client 192.168.3.4] User someuser is authorized

You can see that both the authentication and authorization phases are being served by mod_perl
handlers.

PerlLogHandler Example
The logging HTTP request cycle phase is also another phase of interest for implementing mod_perl
handlers. There are a few Apache modules that can log to a database (such as mod_log_mysql). But it’s
worth seeing just how you can alter the logging phase to log things however you want with a mod_perl
handler.

This next example will show how you can set up logging to log to the <Location> where you have
implemented the other handlers.

1. The first thing to do is define a MySQL table for logging to. In this example, the weblog table
will be created. It will use the archive storage engine, which is used in many cases for storing
logs and data warehousing:

CREATE TABLE weblog (
created timestamp,
uri varchar(32) not null default ‘’,
hostname varchar(32) not null default ‘’,
ip_address int(10) unsigned NOT NULL default ‘0’,
method varchar(5) not null default ‘’,
userid varchar(16) not null default ‘’,
useragent varchar(64) not null default ‘’,
filename varchar(64) not null default ‘’,
last_modified datetime,
status varchar(16) not null default ‘’
) ENGINE=archive;

622

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 623

Chapter 14: Using mod_perl Handlers

This handler will be called WroxHandlers::LogTestHandler. This will resemble the other
handlers in that it also accepts the $r Apache2::RequestRec object. First, it will define a hash
reference called $logref, which will have various attributes that will be logged to MySQL.
The hash reference is then simply passed to $webapp->weblog(). The return value is OK:

package WroxHandlers::LogTestHandler;

use strict;
use warnings;

use Apache2::RequestRec;
use Apache2::Connection;
use Apache2::Const –compile => qw(OK);
use Data::Dumper;

use WebApp;

#
LogTestHandler will log various request parameters to a MySQL
database table using the WebApp method weblog()
#
sub handler {

my ($r) = @_;
my $webapp = new WebApp();

obtain the username
my $logref = {

uri => $r->uri,
hostname => $r->hostname,
ip_address => $r->connection->remote_ip,
method => $r->method,
userid => $r->user,
useragent => $r->headers_in->{’User-Agent’},
filename => $r->filename,
last_modified => $r->mtime,
status => $r->status,

};

$webapp->weblog($logref);

return Apache2::Const::OK;
}

1;

2. The method weblog() is added to WebApp. This method will take the second argument
$logref, which it will then use to construct an SQL INSERT statement to insert the log
contents.

=head2 weblog()

A method that is used to log apache log entries to MySQL

623

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 624

Chapter 14: Using mod_perl Handlers

=over

=item Args

$self - object reference

$logref - a hash reference containing the following:

=over

uri - the URI of the request

hostname - the hostname of the client

ip_address - the ip address of the client

method - the request method

user - the user id of the client, if set

filename - the mapped filename of the URI

useragent - the user-agent value

last_modifed - last modification date of the resource

status - status of response

=back

=back

=over

=item Returns

1 for inserted, 0 for not

=back

=cut

sub weblog {
my ($self,$logref)= @_;

3. An array, @logfields, is created to use as a map to ensure order when building up both the
fields, placeholders, and bind variables inevitably passed to DBI execute(). It might even
make sense to make this a class variable, depending on whether you want to have access
outside this method to the list of fields.

#
$logfields is used from the mapping of field value in query
generation and bind values to placeholder
#

624

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 625

Chapter 14: Using mod_perl Handlers

my @logfields = qw(
uri
hostname
ip_address
method
userid
useragent
filename
status
last_modified
);

my $insert = ‘INSERT INTO weblog (’;

4. Build up the fields:

build up the fields list
$insert .= join(’,’,@logfields);
$insert .= ‘) VALUES (’;

5. Build the values (placeholders) — it’s important to note the following about the last two
fields: ip_address and last_modified:

❑ ip_address is an IP address string value that needs to be converted to an integer using
the MySQL function inet_aton(), so the mapping that creates a comma-separated
string of placeholders must stop at two less than the number of elements to let the
value ‘ inet_aton(?) ,’ to be appended to the insert statement string.

❑ The value for last_modified is in epoch time and needs to be converted to a regular
date-time value using the MySQL function from_unixtime(), which will be appended
as ‘ from_unixtime(?) ‘ to the insert statement string:

#
build up the placeholders
using -2 because inet_aton and from_unixtime need to be used
#
$insert .= ‘?,’ x (scalar @logfields - 2);
$insert .= ‘ inet_aton(?), ‘;
$insert .= ‘ from_unixtime(?))’;

my $sth= $self->{dbh}->prepare($insert);

6. Next, execute the INSERT statement. Pass the bind values by using a hash slice. @logfields
provides the mapping of $logref members to obtain the values of the $logref in the correct
order, cast as an array, which is what the DBI execute() expects. This will insert the row
into MySQL:

#
use a hash slice to pass the bind variables- the values of
$logfields ensures order of placeholders and their values
#

625

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 626

Chapter 14: Using mod_perl Handlers

my $inserted = $sth->execute(@{$logref}{@$logfields});

return $sth->rows();

}

7. Next, add to your Apache configuration file the PerlAccessHandler directive:

<Location /test>

PerlAccessHandler WroxHandlers::AccessTestHandler

PerlAuthenHandler WroxHandlers::AuthTestHandler

PerlAuthzHandler WroxHandlers::AuthZTestHandler

AuthType Basic
AuthName TestAuth
require valid-user

SetHandler perl-script
PerlResponseHandler WroxHandlers::TestResponseHandler

PerlLogHandler WroxHandlers::LogTestHandler

</Location>

You’ll soon realize you have infiltrated the HTTP request phase cycle with mod_perl handlers doing
your bidding! Now you must restart Apache.

If you want to have all logging for the entire site use this handler, just specify this with the following in
your Apache configuration file:

<Location />
...
PerlLogHandler WroxHandlers::LogTestHandler

</Location>

Now, after accessing the URL http://example.net/test with three different browsers, you will see
that there are now rows in the database for those accesses. You now have log messages being stored to
MySQL for this URL, which will allow you perform data analysis of web site accesses using MySQL, and
you won’t have to crunch through text logs.

mysql> select created,uri,hostname,inet_ntoa(ip_address),
-> method,userid,useragent,last_modified,status from weblog;\G

*************************** 1. row ***************************
created: 2009-02-15 12:54:28
uri: /test
hostname: example.net
ip_address: 192.168.1.1
method: GET

626

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 627

Chapter 14: Using mod_perl Handlers

userid: sam
useragent: Mozilla/4.0 (compatible; MSIE 5.23; Mac_PowerPC)
filename: /usr/local/apache2/sites/default/test

last_modified: 1969-12-31 19:00:00
status: 401

*************************** 2. row ***************************
created: 2009-02-15 12:54:33

uri: /test
hostname: example.net

ip_address: 192.168.1.44
method: GET
userid: CaptTofu

useragent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.0.
filename: /usr/local/apache2/sites/default/test

last_modified: 2009-02-14 12:44:39
status: 200

*************************** 3. row ***************************
created: 2009-02-15 12:54:39

uri: /test
hostname: www.example.net

ip_address: 192.168.1.203
method: GET
userid: wes

useragent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_4; en-us) AppleWe
filename: /usr/local/apache2/sites/default/test

last_modified: 2009-02-14 12:44:39
status: 200

Perl Filter Handler Example
Filters are altogether different from anything you might have come across previously. They are applied to
either the input of the connection or request, or the output of the connection or request. They are applied
to data chunks known as buckets. Filters work on the principle of bucket brigades, which are groupings of
sequential buckets of data that the filter processes one at a time until all the data in the document or other
content has been processed. This is then indicated by an EOS (end of stream) brigade.

It takes a little bit of thinking to figure out how you might want to use a filter. It’s not a response
handler. It is a filter. It filters content, as opposed to producing content as a response handler does. It
filters the content of whatever you set it up to filter in your Apache configuration file, such as HTML. It
can even be set to trigger something such as PHP being run. Of interest, the following code shows how
you could use a filter to execute PHP (yes, this is a Perl book, I know):

<Location />
AddInputFilter PHP .php
Allow from 127.0.0.2
</Location>

This would, of course, cause files ending in .php to be filtered by the PHP filter. If you think about it,
this makes sense because with PHP the code is embedded in the document that is then parsed or filtered,
then interpreted based on what tags are found in the document. This makes PHP an ideal candidate for
filtering.

627

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 628

Chapter 14: Using mod_perl Handlers

Filters are a topic that is worthy of a book in and of itself, so this section won’t attempt to try to make you
an expert with filters. However, it will give you a simple idea of what you can accomplish with filters.

The following section will show a mod_perl filter handler example. It’s a very simple, and maybe not
entirely practical, filter that filters HTML documents, uppercasing HTML tags using regular expres-
sions for those who like their HTML that way. (Of course XML requires it be lowercase, but that’s yet
another topic.) The idea here is to show a simple implementation of a filter — you can always build on
the idea!

This is an output filter, using the simple streaming interface, without attempting to shuffle, slice, and dice
bucket brigades, an activity which would be best suited for a gray, rainy Sunday afternoon.

It also ensures that the word mysql is properly formatted to MySQL, and sql is changed to SQL. Further-
more, it prepends the DTD (document type definition) to the HTML document.

This filter is called, interestingly enough, TestFilter:

package WroxHandlers::TestFilter;

use strict;
use warnings;

use Apache2::Filter;

use Apache2::RequestRec;
use APR::Table;
use Apache2::Const –compile => qw(OK);
use constant BUFFER_LENGTH => 1024;

The only argument to this filter is $f, an Apache2::Filter object reference, which is a Perl object refer-
ence that provides you with access to the Apache ap_filter_t structure, a C data structure containing
information for a filter chain. This provides you with access to filter methods and attributes, including ref-
erences to the Apache2::RequestRec and Apache2::Server objects. You can run perldoc Apache2::Filter
for more information.

#
LogTestHandler will log various request parameters to a MySQL
database table using the WebApp method weblog()
#
sub handler {

my ($f)= @_;

This is the filter initialization part of the code. It is run once for each request. This is where you implement
code that you want to run at the beginning of the filter execution. You can use this as a point where you
return the constant Apache2::Const:DECLINED if, for instance, the filter is turned off.

unless($f->ctx) {

obtain the value for ApplyFilter
my $apply_filter= $f->r->dir_config->get(’ApplyFilter’);

if ApplyFilter is Off, return DECLINED so filter is not applied

628

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 629

Chapter 14: Using mod_perl Handlers

return Apache2::Const::DECLINED
unless defined $apply_filter && $apply_filter eq ‘On’;

$f->r->server->warn(’filter start.’);

$f->r->headers_out->unset(’Content-Length’);

a DTD at the beginning of the document
my $doctype=
‘<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">’;
$f->print($doctype);
$f->print("\n");
$f->ctx(1);

}

Apply the regular expressions to uppercase HTML tags. This makes
 tags conform to HTML 4.01
as well as ensure that instances of the term mysql are changed to MySQL in the following code, for each
chunk of the document until EOS (end of stream):

while ($f->read(my $buffer, BUFFER_LENGTH)) {
$f->r->server->warn(’filter read.’);
$buffer =∼ s/<([\w ˆ \s]+)>/<\U$1>/g;
$buffer =∼ s/<\/(\w+)>/<\/\U$1>/g;
$buffer =∼ s/<([\w ˆ \s]+)\s/<\U$1 /g;
$buffer =∼ s/\s([\w]+=)/ \U$1/g;
$buffer =∼ s/
/<BR \/>/gi;
$buffer =∼ s/mysql/MySQL/gi;
$buffer =∼ s/sql/SQL/gi;

$f->print($buffer);
}

This happens on the last bucket brigade, known as an EOS (end of stream) brigade:

if ($f->seen_eos) {
$f->r->server->warn(’filter end.’);
$f->print(’<!-- END OF DOCUMENT -->’);

}

return Apache2::Const::OK;
}
1;

The settings that are required for your Apache configuration file to activate this filter are both to set a
variable with PerlSetVar for ApplyFilter as well as to have the filter process all HTML documents with
either the .html or the .htm extension.

PerlSetVar ApplyFilter On
<FilesMatch "\.htm*">

PerlOutputFilterHandler WroxHandlers::TestFilter

</FilesMatch>

629

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 630

Chapter 14: Using mod_perl Handlers

So, to test this filter, create an HTML file. For instance, the file containing the following:

<html>
<head><title>This is a test</title></head>
<body>
<h1>This is a test</h1>
<p>mysql</p>
<p>I use sql all the time</p>

</body>

</html>

. . . will be filtered to have the following output:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>

<HEAD><TITLE>This is a test</TITLE></HEAD>
<BODY>
<H1>This is a test</H1>
<P>MySQL</P>
<P>I use SQL all the time</P>

</BODY>

</HTML>
<!-- END OF DOCUMENT -->

So, what you can do with filters is limited only by your imagination. The Apache documentation contains
many snippets of code as well as extensive information on filters.

Summary
This chapter showed how you can use mod_perl handlers at various phases of the Apache server life
cycle and the HTTP request phase cycle. The handlers shown were:

❑ PerlResponseHandler — WroxHandlers::TestResponseHandler. This is a response phase mod-
_perl handler that presented the user with a form that he or she can submit. You saw how to
process form inputs and log messages to the error log at different levels.

❑ PerlPreConnectionHandler — WroxHandlers::DenierHandler: A preconnection connection han-
dler that uses the WebApp module to obtain information from memcached to determine if an IP
address was banned or not. If the IP address is banned, it blocks the IP address at the connection
level, long before a request would be read.

❑ A PerlAccessHandler — WroxHandlers::AccessTestHandler. This handler is an access request
cycle phase handler that uses essentially the same code as WroxHandlers::DenierHandler, which
uses the WebApp module to obtain information from memcached to determine whether an IP
address is banned or not. If the IP address is banned, it denies access to the IP address for the
<Location> tag specified (/test) within the response phase cycle.

❑ PerlAuthenHandler — WroxHandlers::AuthTestHandler. This handler uses the WebApp mod-
ule to determine if credentials supplied by the user match those in memcached, or MySQL if
not cached for the specified <Location>. If the user credentials match, authentication is passed,

630

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 631

Chapter 14: Using mod_perl Handlers

allowing access. If the user is not authenticated, he or she is not permitted to access the directory
specified by the <Location> tag in the Apache configuration file.

❑ A PerlAuthzHandler — WroxHandlers::AuthZTestHandler. This handler uses the WebApp
module to determine if a user is an admin user for the specified <Location>. This is determined
by looking in memcached if cached, or in MySQL for an admin flag for that user. If the user has
the admin flag, authorization is granted. If not, he or she is denied.

❑ PerlLogHandler — WroxHandlers::LogTestHandler. This handler uses the WebApp module to
log Apache requests for the specified <Location> to a MySQL database.

❑ PerlOutputFilterHandler — WroxHandlers::TestFilter. This handler is used to filter HTML files
to have uppercase tag names and to make instances of the term ‘‘mysql’’ always be printed as
MySQL.

Having seen some practical examples of just how much functionality you have with mod_perl, you
should now have a better appreciation of how it can be used to extend Apache’s overall functionality and
be used for much more than content generation for the HTTP response. The HTTP life cycle response
phase.

631

Galbraith c14.tex V3 - 06/02/2009 10:40am Page 632

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 633

More mod_perl

In Chapter 14, you saw just how versatile mod_perl handlers are and how they can be used within
the various phases of the server life cycle as well as HTTP request phase cycle. Most often, you will
be most concerned with developing applications for the HTTP response phase. This chapter focuses
on providing examples for this phase.

mod_perl Handlers or ModPerl::Registry?
You saw in Chapter 14 how to easily use ModPerl::Registry to convert the contact list CGI applica-
tion to mod_perl application. In most cases, if you have a lot of code written as a ModPerl::Registry
program, this should suffice for what you want to do. ModPerl::Registry essentially turns your
script into a mod_perl handler, though it’s worth considering the steps that that ModPerl::Registry
has to perform. These steps include the following:

❑ Create a namespace derived from the filename.

❑ Check if the script should be compiled, depending on whether it is in the cache, as well as
whether it was modified. If there is no need for it to be compiled, skip to execution.

❑ If it is not in cache, a check is made to determine if the script was allowed to be executed
and can be compiled (if Options ExecCGI is set, which is the Apache configuration file for
the directory the script is in).

❑ The process changes its current working directory from the server root directory to the
directory where the script exists.

❑ Read in the script, stripping various components, including the options in the shebang
#!/usr/bin/perl line of the script, as well as the code body.

❑ Generate a Perl package name based on the URI of the script

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 634

Chapter 15: More mod_perl

❑ Compile the code read by eval (as an expression), cache, and set a timestamp on this
compiled code.

❑ The process changes its current working directory from the directory where script exists back to
the server root directory.

❑ Execute the handler code.

❑ Change to the directory of the script.

❑ Check to see if the %INC hash needs to be changed.

❑ Set return code to Apache::Const::OK.

❑ eval the compiled code as a block { ...code...}.

❑ Checks for any errors; if any, set return code to the error.

❑ Flush the namespace

❑ Return to the server root directory

❑ Just as any mod_perl does, return the return code. This would be Apache::Const::OK if there
were no errors.

With today’s hardware capabilities, this complex process isn’t so much an issue as it once was. However,
these steps do translate into CPU cycles. So why not cut out any steps that negatively affect performance?

There are several benefits to using ModPerl::Registry scripts:

❑ You can make changes to your program and not have to restart the server.

❑ The Apache configuration file can be set up so that regular non-root users don’t need access
to the Apache server configuration file to run their applications. If ModPerl::Registry is set up
for regular users to run, they can run their Perl web applications in the same manner that PHP
developers can easily write applications that don’t require modifying the Apache configuration.
This can be a boon to encouraging development of Perl applications that are easy to install, just
like the various PHP applications that exist.

❑ Depending on how the ModPerl::Registry scripts are coded, you can run them on the command
line, which could be used to generate static content (Slashdot) or for testing.

So, what do you choose to use? Ultimately, you go with whatever works for your development organi-
zation. You would certainly want to run tests for your hardware and compare both mod_perl handlers
and ModPerl::Registry scripts.

For this and the next chapter, the examples will be mod_perl handlers. The same code could work with
ModPerl::Registry.

Using ModPerl::RegistryLoader
You can use ModPerl::RegistryLoader to preload your Apache Registry scripts. Doing so can help with
performance in that it eliminates the step of compilation for every Apache child process. The parent
process runs the compilation of the Perl code, to which each child is given a copy. When the script is
initially accessed, it will be ready for execution.

634

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 635

Chapter 15: More mod_perl

In your startup.pl or <Perl> sections, you would have, for instance:

use ModPerl::RegistryLoader;

my $registry= ModPerl::RegistryLoader->new(package=> ‘ModPerl::Registry’);

$registry->handler(’/perl/app.pl’, ‘/var/www/apache2-default/perl/app.pl’);
$registry->handler(’/perl/contact.pl’, ‘/var/www/apache2-default/perl/contact.pl’);
$registry->handler(’/perl/bench.pl’, ‘/var/www/apache2-default/perl/bench.pl’);
$registry->handler(’/perl/user.pl’, ‘/var/www/apache2-default/perl/user.pl’);

. . . for each script you want to have precompiled.

Converting a ModPerl::Registry Script
to a mod_perl Handler

Now you’re familiar with the contact list application. This is a simple application that could be used to
store contacts or manager users. It’s simple enough, but it could be extended to be more specific:

❑ The main idea is to show you how to write an application that stores, lists, and provides a means
to edit data.

❑ The other purpose is to show you how you can use memcached to reduce the number of
database accesses. This next section will show you how easy it is to convert the contact list
application to a mod_perl handler.

You already know from the previous chapter that by default, a mod_perl handler has the subroutine
handler() as the entry point to the program. You can, however, have any subroutine name you want.
For contact.pl, the subroutine main() was used as the top-level call. For this chapter’s example code, the
top-level call won’t be changed.

For a mod_perl handler, the code is implemented in a package file with a .pm extension. So, for a start,
you could copy contact.pl into a directory containing your mod_perl handler code. In this example,
the handlers are stored in the apache root (/usr/local/apache2) under perl-lib/WroxHandlers. For
this example, the handler name will be ContactHandler, so the filename would be ContactHandler.pm,
which is the file you would copy contact.pl to.

The next thing to do would be to decide what URL you want the handler to respond as. For this example,
http://example.com/contact is what will be used. The entry will be:

PerlModule WroxHandlers::ContactListHandler
<Location /contact>
SetHandler perl-script
PerlResponseHandler WroxHandlers::ContactListHandler->main
</Location>

You’ll notice that that this handler is registered differently than those you saw in the previous chapter, in
that main() is called as a class method. This allows the use of main() as the entry point to the handler. It
also makes it so that there are two arguments passed to the handler instead of the usual one: the calling
object or class, and the request object.

635

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 636

Chapter 15: More mod_perl

Now you can begin editing ContactHandler.pm. The first thing is to give it a package name.

The code currently at the top appears like so:

#!/usr/bin/perl

use strict;
use warnings;

use CGI qw(:standard);
use lib qw(/etc/apache2/perl-lib);
use WebApp;

package scoped so other subroutines have access
my $url;

call main subroutine
main();

You would remove the #!/usr/bin/perl line — that is no longer needed. Replace it with the pack-
age name:

package WroxHandlers::ContactHandler;

Since the WroxHandlers directory where ContactHandler.pm resides is a subdirectory of the Perl
include path perl-lib, the package name has to include WroxHandlers, hence the package name
WroxHandlers::ContactHandler.

Also, this program will need to import the modules needed:

use Apache2::Const -compile => qw(OK);
use Apache2::RequestRec ();
use Apache2::RequestIO ();

The first module, Apache2::Const, provides constant values you will need for your handler. For this
example, only the OK constant is needed. This will be the return value that is returned at the end of
handler process to provide a response to the client.

The other two modules, Apache2::RequestRec and Apache2::RequestIO (which were described in
Chapter 14), are needed to provide methods for the Apache request object. You will next see this is what
you will use throughout the handler for a number of purposes.

Since the handler is registered in the Apache configuration file with this:

PerlResponseHandler WroxHandlers::ContactListHandler->main

main() will be the entry point to this handler. You no longer need to call main() explicitly. Remove
that call.

636

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 637

Chapter 15: More mod_perl

The top of the program now looks like this:

package WroxHandlers::ContactListHandler;

use strict;

use Apache2::Const -compile => qw(OK);
use Apache2::RequestRec ();
use Apache2::RequestIO ();
use CGI qw(:standard);
use WebApp;

my $url;

The next thing to modify is the top-level subroutine main(). The current implementation of main() in
contact.pl is this:

sub main {
CGI object
my $cgi= CGI->new();

URL of program, used in form submit url, other parts of code
$url = $cgi->url(-absolute=>1);

print the HTML mime header
print $cgi->header(’text/html’);

print header();

dispatcher($cgi);

print footer();
}

As is shown, a CGI object is instantiated to provide various functionality, such as parsing submitted
form variables, obtaining the URI of the program, printing the HTTP content-encoding response header,
etc. Simple print statements are used to print content from the other subroutines. The real processing is
accomplished with a call to dispatcher(). The object reference variable $cgi is passed to provide form
variable parsing, which is processed in dispatcher().

For this handler, CGI will still be used for variable processing, but won’t be required for printing the
HTTP as it will instead be accomplished using the request object to do instead.

The implementation of main() for the handler now becomes the following:

sub main {
my ($class, $r) = @_;

print the HTML mime header
$r->content_type(’text/html’);

637

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 638

Chapter 15: More mod_perl

$r->print(header());

dispatcher($r);

$r->print(footer());

return OK, response
return Apache2::Const::OK;

}

Since this handler was registered with main being called as a class method, it is passed two arguments,
the class object and the request object. Also notice is that CGI is no longer instantiated in main(). CGI will
still be used, but its instantiation will be moved to dispatcher(), which will be shown later. Instead of
using the CGI method header() to print the HTTP content-encoding response header, the request object’s
(Apache2::RequestRec) content_type() method is used. The printing of each section of the page is imple-
mented using the request object’s print() method. Finally, the response constant Apache2::Const::OK
is returned.

The next piece to modify is dispatcher(). The current incarnation of dispatcher(), as it is in
contact.pl is (highlighted code shows changes):

sub dispatcher {

my ($cgi,$msg)= @_;

my $delete_ids;
my $user= {};
my $saved= 0;

WebApp
my $webapp= WebApp->new();

unless (defined $webapp->{dbh}) {
$$msg||= $webapp->{msg};

print mainform($user,$webapp, $msg);

return;
}

get all submitted form values into a hashref
my $form = $cgi->Vars();

if save_user operation - create or update
if (defined $form->{save_user}) {
my $not_set = 0;
check all fields for being set - this means "required"
for (@$WebApp::REQUIRED_COLS) {

both defined and containing a value with a length
unless (defined $form->{$_} && length($form->{$_})) {
create a message
$$msg= "Error: the field for ‘\u$_’ is not set!";
$not_set++;
last;

}
}

638

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 639

Chapter 15: More mod_perl

if all required fields, saveUser
unless ($not_set) {

$saved= $webapp->saveUser($form);
}

}
delete of one or more users
elsif (defined $form->{delete_user}) {
check all form values
for my $param (keys %$form) {

if the param is completely numeric, that is the uid
if ($param =∼ / ˆ (\d+)$/ && $form->{$param} eq ‘on’) {
create hash ref keyed by uid, value username which will be
used to build both a list of uids to delete as well as a message
$delete_ids->{$param}= $form->{"username_$param"};

}
}
if there are no ids to delete, don’t bother
if (keys %$delete_ids) {

$webapp->deleteUsers($delete_ids);
}

}
if no previous message, set to whatever WebApp created
$$msg||= $webapp->{msg};
if (!$saved && defined $form->{save_user}) {
edit form

print userform($form,$webapp, $msg);

}
elsif (defined $form->{edit}) {
edit form
$user= $webapp->getUser({ uid => $form->{edit}});

print userform($user,$webapp,$msg);

}
elsif (defined $form->{view}) {
view page
$user= $webapp->getUser({ uid => $form->{view}});

print viewuser($user,$webapp, $msg);

}
else {
default, print user list

print mainform($user,$webapp, $msg);

}
return;

}

There isn’t much to change with dispatcher(), really. The changes in the highlighted areas that follow
show what needs to be changed with dispatcher():

sub dispatcher {

my ($r)= @_;

my $delete_ids;

639

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 640

Chapter 15: More mod_perl

my $user= {};
my $saved= 0;

CGI object
my $cgi = CGI->new($r);

WebApp
my $webapp= WebApp->new();

unless (defined $webapp->{dbh}) {
$$msg||= $webapp->{msg};

$r->print(mainform($user,$webapp, $msg));

return;
}

get all submitted form values into a hashref
my $form = $cgi->Vars();

if save_user operation - create or update
if (defined $form->{save_user}) {
my $not_set = 0;
check all fields for being set - this means "required"
for (@$WebApp::REQUIRED_COLS) {

both defined and containing a value with a length
unless (defined $form->{$_} && length($form->{$_})) {
create a message
$$msg= "Error: the field for ‘\u$_’ is not set!";
$not_set++;
last;

}
}

if all required fields, saveUser
unless ($not_set) {

$saved= $webapp->saveUser($form);
}

}
delete of one or more users
elsif (defined $form->{delete_user}) {
check all form values
for my $param (keys %$form) {

if the param is completely numeric, that is the uid
if ($param =∼ / ˆ (\d+)$/ && $form->{$param} eq ‘on’) {
create hash ref keyed by uid, value username which will be
used to build both a list of uids to delete as well as a message
$delete_ids->{$param}= $form->{"username_$param"};

}
}
if there are no ids to delete, don’t bother
if (keys %$delete_ids) {

$webapp->deleteUsers($delete_ids);
}

}
if no previous message, set to whatever WebApp created

640

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 641

Chapter 15: More mod_perl

$$msg||= $webapp->{msg};
if (!$saved && defined $form->{save_user}) {
edit form

$r->print(userform($form,$webapp, $msg));

}
elsif (defined $form->{edit}) {
edit form
$user= $webapp->getUser({ uid => $form->{edit}});

$r->print(userform($user,$webapp,$msg));

}
elsif (defined $form->{view}) {
view page
$user= $webapp->getUser({ uid => $form->{view}});

$r->print(viewuser($user,$webapp, $msg));

}
else {
default, print user list

$r->print(mainform($user,$webapp, $msg));

}
return;

}

As you can see, the request object $r is now passed instead of $cgi, which is instead instantiated within
dispatcher(). Any printing is now handled by the request object’s method $r->print().

The next changes you have to make are — wait! There are no other changes to make! Since the code was
implemented in such a way that the content generated in the various subroutines, such as userform(),
viewuser(), and mainform(), was simply returned and didn’t print anything in the response, and
because dispatcher() performs all of the printing for the application, only the methods main() and
dispatcher()needed to be change.

This code is now a handler! The last small thing you should do is to add:

1;

. . . to the end of ContactHandler.pm. Of course, you now need to restart Apache. Then you can access
this handler at http://example.com/contact and it should function just as it did when it was a Mod-
Perl::Registry script.

Converting a mod_perl Handler
to a ModPerl::Registry Script

OK, what is the meaning of this? You just went through the steps of converting your ModPerl::Registry
script to a mod_perl handler! Seriously, the purpose of this very short section is to point out a couple
things about using ModPerl::Registry for writing applications. There really is no significant change. You
can run the handler code that you just converted in the last example with this:

#!/usr/bin/perl

use strict;

641

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 642

Chapter 15: More mod_perl

use warnings;

use lib qw(/etc/apache2/perl-lib);
use WroxHandlers::ContactHandler;

my $r = defined $_[0] ? $_[0] : Apache2->request; # or you could have used shift
return WroxHandlers::ContactHandler->main($r);
1;

That’s all there is to it! In this example, you are simply using the WroxHandlers::ContactHandler module
as you would any other module, as well as passing it the request object that it expects. The first argument
to any ModPerl::Registry script (which above is accessed as $_[0]) is the request object. This works
because the code is wrapping in a sub {} block.

Another approach would have been to copy the handler module file, ContactHandler.pm, back as a Perl
script and simply add the calling of main() at the top of the file, before any subroutine definitions:

main($_[0]);

This makes it so you can actually use all the same functionality you have in a handler within a Mod-
Perl::Registry script. The following simple code snippet shows you how:

#!/usr/bin/perl

use strict;
use warnings;

use Apache2::RequestRec ();

main($_[0]);

sub main {
my ($r)= @_;

$r||= Apache2->request;

$r->content_type(’text/html’);

my $page= <<’EOHTML’;
<html>

<head><title>Test Code</title></head>
<body>
<p>This is a test</p>
<pre>

EOHTML

$page .= $̋ => $ENV{$_}\n˝ for keys %ENV;

$page .=<<EOHTML;
</pre>
</body>

</html>

642

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 643

Chapter 15: More mod_perl

EOHTML
$r->print($page);

}
1;

You’ll see that you have to squint for a second, because this almost looks like a mod_perl handler. The
point is, you can use either mod_perl handlers or ModPerl::Registry scripts and have code that works
with both.

Bomb alert/IMPORTANT: There are a couple issues you must be aware of with
using ModPerl::Registry scripts. The first and foremost is never name a subroutine
in your code handler() ! This is because the way ModPerl::Registry works is to load
your script into a method called handler() . You can imagine what happens if
handler() has yet another subroutine called handler()!

The other issue is that if you use the request object methods, they may not work if
you run your script by command line.

Dealing with Cookies
One of the most important things you’ll have to understand as a web developer is cookies. You prob-
ably already know what a cookie is. In the simplest of terms possible, a cookie is strings of text that
are exchanged between the web client and web server. The text is passed via the request headers as
the header Cookie from the client to the server, and via the response headers as the response header
Set-Cookie of the server. Your web browser stores these cookie values for a given web site and presents
them when accessing the site they were created by.

Cookies are used for a number of purposes:

❑ User tracking: Both within the web site and between web sites. An application of this would be
ad systems where cookies are used to determine how many or what type of advertisements a
user has seen on a web site.

❑ Session ids: For instance, keeping track of items you have selected for purchase from a shop-
ping cart.

❑ Access control: Using the cookie to determine if you have been authenticated or not.

CookieTestHandler
This section will show you a very simple mod_perl handler that allows you to set and unset a cookie
using a form.

The first thing, of course, is to define the package name as well as some variables used throughout
the code.

package WroxHandlers::CookieTestHandler;

use strict;

643

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 644

Chapter 15: More mod_perl

use warnings;

use Apache2::Const -compile => qw(OK);
use Apache2::Request;
use Apache2::Cookie;

package scoped scalar to store URL
my $url;

package scoped scalar to store message
my $msg;

global scoped scalar to store submit button value
my $submit;

the name of the cookie this example will use
my $cookiename = ‘wroxcookie’;

expiration time of the cookie
my $expires = ‘+3M’;

negative expiration used for deleting the cookie
my $delete_expires = ‘-3M’;

the domain of the cookie
my $cookiedomain = ‘.example.com’;

the path the cookie is set for
my $cookiepath = ‘/’;

The various module importations are defined. The Perl modules in particular you will want for this are
Apache2::Request for parsing the submitted form (you could also use CGI), and Apache2::Cookie, which
has the methods you will use for processing cookies.

The variables defined are globally scoped so all subroutines have access to them.

❑ The first two variables are $msg and $submit. $msg is used to display the message of whatever
action has occurred, and $submit is used to toggle the value of what the Submit button
does — either create or delete a cookie.

❑ The other package-scoped variables include (as the comments indicate) values for the name,
expiration, domain, and path of the cookie. For this example, the expiration will be 3 months.
The cookie name will be wroxcookie, and to allow all example.com domains, ‘‘.example.com’’
is used.

❑ Additionally, there is a $delete_expires variable. This is used to set an expiration of the cookie
to 3 months ago, which will be used for cookie deletion. When you set a cookie’s expiration in
the past, your browser will automatically delete that cookie from its stored cookies.

If you intend for a cookie to work for all hosts of your domain — for instance,
example.com, www.example.com, otherhost.example.com, use ‘‘.example.com’’ as the
cookie domain value.

644

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 645

Chapter 15: More mod_perl

❑ The main handler body is very simple and calls first the handle_cookie() subroutine, which
performs the processing for setting the cookie and setting the values, such as the Submit button
value and message that will be displayed when the page is displayed.

❑ handle_cookie() is called first, particularly before content response is generated because it
needs to read the Cookie request header from the client, as well as set the Set-Cookie response
header from the server. This must be set prior to page content response.

sub handler {
my ($r)= @_;

this subroutine processes cookies
handle_cookies($r);

$r->content_type(’text/html’);

$r->print(header());
$r->print(form());
$r->print(footer());

return Apache2::Const::OK;
}

❑ The handle_cookies() subroutine does all the work for processing cookies. The first thing it
does is instantiate an Apache2::Request. This will be used for parsing the submitted form val-
ues. Then an Apache2::Cookie::Jar object is instantiated. This provides you with access to all the
cookies for this domain if you don’t specify a cookie name. For this application, you only want
the particular cookie defined in $cookiename, which is wroxcookie, so this scalar is passed.

❑ Next, a default value for the Submit button is set. Then the cookie is tested to see if it exists and
has an actual value. If it does, that means the cookie is set. With the cookie known to be set, the
message and Submit button values are changed to indicate this.

❑ A test is made to determine if the form submitted was set to delete the cookie. If the cookie is to
be deleted, then a new Apache::Cookie object is instantiated. This particular cookie will be used
to unset and delete the existing cookie. This is accomplished by both setting the cookie value to
an empty string and setting the expiration date to the past, in this case 3 months ago.

❑ The call to $cookie->bake() sets the Set-Cookie response header with this cookie. When the
browser reads this cookie and sees that it’s set for 3 months in the past, it will delete it from its
cookie list. The Submit button and message variables are set to indicate that the cookie is deleted
and the Submit button is then set to create a cookie since the old cookie no longer exists.

sub handle_cookies {
my ($r)= @_;

obtain the request object
my $req = Apache2::Request->new($r);

obtain the cookie jar object
my $j = Apache2::Cookie::Jar->new($r);

get the particular ‘wroxcookie’ cookie
my $cookie = $j->cookies($cookiename);

645

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 646

Chapter 15: More mod_perl

set up the text for the submit button and message to a default value
$submit = "Create";
$msg = "Cookie is not set";

if a cookie exists
if (defined $cookie && $cookie->value()) {

change button message
$submit = "Delete";
$msg = "Cookie is set";

if a delete, then set a cookie which expires 3 months ago, with
and empty value
if ($req->param(’cookie_action’) eq ‘Delete’) {

my $delcookie = Apache2::Cookie->new($r,
-name => $cookiename,
-value => ‘’,
-expires => $delete_expires,
-domain => ‘.patg.net’,
-path => $cookiepath,
);

this sends the cookie via response headers
$delcookie->bake($r);

set the submit button back to the appriate message
$submit = "Create";
$msg = "Cookie was deleted";

}
no need to create if existing
elsif ($req->param(’cookie_action’) eq ‘Create’) {

$msg= "No need to create. You already have a cookie";
}

}
if a cookie doesn’t exist, then create one
elsif ($req->param(’cookie_action’) eq ‘Create’) {

create a new cookie
my $newcookie = Apache2::Cookie->new($r,

-name => $cookiename,
-value => ‘thisisset’,
-expires => $expires,
-domain => $cookiedomain,
-path => $cookiepath,
);

set the cookie via response headers
$newcookie->bake($r);

set the message and submit button value
$msg= "Cookie was created";
$submit= "Delete";

}
return;

}

646

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 647

Chapter 15: More mod_perl

❑ If the value is made to create a cookie, a new Apache2::Cookie object is instantiated. This cookie
will have an expiration of 3 months from now. $newcookie->bake() sets the Set-Cookie
response header for this cookie.

❑ Finally, the form is printed. It prints out the form with the message and Submit buttons set
according to whatever action has occurred.

sub form {
return <<"COOKIEFORM";
<!-- begin cookieform -->
<p class="msg">$msg</p>
<p>
<form action="$url" id="cookieform" name="cookieform" method="post">

<fieldset>
<label for="cookie_action">$submit cookie</label>
<p>

<input type="submit" name="cookie_action"
id="cookie_action" value="$submit">

</p>
</form>

</p>
<p>Reload page</p>
<!-- end cookieform -->

COOKIEFORM

}

❑ Next, the needed handler registration is made in the Apache configuration file:

PerlModule WroxHandlers::CookieTestHandler
<Location /cookietest>
PerlOptions +GlobalRequest

SetHandler perl-script
PerlResponseHandler WroxHandlers::CookieTestHandler
</Location>

Apache is restarted, and the test begins:

1. First, the page when it is first loaded shows that there is not yet a cookie, as in Figure 15-1.

Figure 15-1

647

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 648

Chapter 15: More mod_perl

2. When you click on Create, it will create a cookie, as shown in Figure 15-2. At this point, the
client header is passed, as are numerous other headers left out for brevity’s sake.

POST /cookietest HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US;
rv:1.9.0.4)
Gecko/2008102920 Firefox/3.0.4
...
Cookie: inventory=Cacti=ab8a174bb44b59b130b3e7bf62f939b8
Content-Type: application/x-www-form-urlencoded
Content-Length: 20
cookie_action=Create

You’ll see that there is one cookie for Cacti (a monitoring application) already existing. Also,
you’ll see the POST data, which has a length of 20 and a value of cookie_action=Create,
which the handler will parse.

Figure 15-2

3. The server then responds with a Set-Cookie header with the new cookie:

HTTP/1.x 200 OK
Date: Wed, 25 Feb 2009 19:24:41 GMT
...
Set-Cookie: wroxcookie=thisisset; path=/; domain=.example.com;
expires=Tue, 26-May-2009 19:24:41 GMT

This is where the cookie gets set. Notice all the values you expected are set — particularly
the expiration date 3 months from February 25.

4. Then delete the cookie by clicking the Delete button. The client headers as a result of the
deletion are these:

POST /cookietest HTTP/1.1
Host: example.com
Cookie: inventory=Cacti=ab8a174bb44b59b130b3e7bf62f939b8;
wroxcookie=thisisset

648

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 649

Chapter 15: More mod_perl

Content-Type: application/x-www-form-urlencoded
Content-Length: 20
cookie_action=Delete

You can see the cookie set prior to this is presented in the request headers. However, considering the
POST data this time is cookie_action=Delete, that won’t be the case for long!

The server’s response is quick and painless:

HTTP/1.x 200 OK
Date: Wed, 25 Feb 2009 19:24:42 GMT ˆ M
...
Set-Cookie: wroxcookie=; path=/; domain=.patg.net; expires=Thu,
27-Nov-2008 19:24:42 GMT

The browser reads in the new cookie which has an expiration date set for 3 months in the past and acts
accordingly, deleting the cookie from its cookie inventory. Figure 15-3 below shows the resulting page
after deleting a cookie.

Figure 15-3

The handler displays the form with the appropriate information.

As you can see, this application is very simple. But it serves to show you that working with cookies with
mod_perl, and, in particular, Apache2::Cookie is very easy.

Tools for Testing Cookies and Headers
Having the tools to troubleshoot what cookies you have or view what client request and server response
HTTP headers are being passed is invaluable to debugging issues with cookies and sessions in web
development. There are a various tools for this. The first tool, which you can use to see what cookies you
have stored is built right into Firefox. You access it by selecting Preferences ➪ Privacy ➪ Show Cookies.
The Cookies tool is shown in Figure 15-4.

Firefox also has numerous ‘‘add-ons’’ to do any number of tasks, such as viewing headers, debugging
JavaScript, blocking ads, downloading managers, photo tools, the NHL Vancouver Canuck Hockey
Toolbar and Theme, etc.

649

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 650

Chapter 15: More mod_perl

Figure 15-4

Two add-ons you will particularly find useful in web development are these:

❑ Firebug: This allows you full access to the CSS, JavaScript, DOM of the loaded page, headers,
cookies, and many other features, of the pages you load. This is the tool for debugging not only
server-side web programming, but AJAX, JavaScript, etc. Figure 15-5 shows the cookies tab in
action.

Figure 15-5

❑ LiveHTTPHeaders: This is a fairly simple but extremely useful tool that displays both the client
request and server response HTTP headers. Figure 15-6 shows you the output of a HTTP POST
operation.

650

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 651

Chapter 15: More mod_perl

Figure 15-6

Generic Database Methods
Before this chapter digs deep into sessions, there are some things that can be done to make data storage
and retrieval easier, which is something that makes implementing session saving a lot easier. These
methods would have to be implemented one way or the other. It’s better to implement generic methods
so any code that is subsequently implemented will be able to take advantage of methods that work,
regardless of the table being used.

The same module that has been used in previous chapters (for which there already is code) can be reused
for this endeavor. WebApp.pm requires only a couple of changes that will be discussed next.

WebApp.pm already has various methods for storing data, however, these methods have been for spe-
cific tables. There was a need to store data for various types of entities, yet the methods all performed
similar steps that you end up implementing over again, such as building SQL statements for INSERT,
UPDATE, DELETE, and SELECT. Take, for instance, the snippet from the method insertUser():

build up the columns specification
my $query = ‘INSERT INTO users (’ . join(’,’, @$USER_COLS) . ‘)’;
build up the placeholders
$query .= ‘ VALUES (‘ . join(‘,’, (‘?’) x @$USER_COLS) . ‘)’;

$query .= ‘)’;

651

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 652

Chapter 15: More mod_perl

This is something find yourself having to implement for every type of data or table you access or insert in
order to be able to pass hash references to database methods and have them automatically stored. What
is needed are more generic data access methods. The other big benefit of this is that you will confine the
methods that have SQL queries in them to these methods. Thus, there will no longer be a need to have
SQL strewn about your application code.

Though there are some CPAN modules available, such as DBIx::Class, that provide this generic database
functionality out of the box, the intention of this section is for you to see how you can implement this
type of functionality by writing a simple API. You can use this to abstract database calls and dynamically
generate SQL statements based on the data you are either reading (SELECT) or writing (INSERT, UPDATE,
DELETE) from the database.

dbGetRef()
This method is used to obtain a hash reference containing one or more records that you select. As you’ll
see, it is a generic method that has code you’ve seen elsewhere, particularly when constructing database
queries off hash references you pass to it.

=head2 dbGetRef()

Retrieves an array reference of hash references for each record
retrieved from a query specified by list of columns being
selected, a hashref containing the column names and values
used to construct a WHERE clause

=over 4

=item Arguments

$self object reference

$table table name

$fields scalar, comma separated list of columns being selected

$where hashref, keys column names, values the conditions.

=item Return value

Array reference of hash references for each record

=back

=cut

sub dbGetRef {
my ($self, $table, $fields, $where, $options) = @_;
my $rows;
$fields||= ‘*’;

my $query = "SELECT $fields FROM $table ";

build up the where clause
$query .= $self->whereClause($where) if defined $where;

652

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 653

Chapter 15: More mod_perl

run the query, obtain statement handle
my $sth = $self->runQuery({

‘sql’ => $query,
‘values’ => [values %$where]}, \$rows);

return $sth->fetchall_arrayref({});
}

Using this is very simple (which is why it was written):

my $ref= $webapp->dbGetRef(’users’, ‘*’, {uid => 27, username => ‘capttofu’});

You’ll notice that the $where variable, the third argument to dbGetRef, is what determines what the
WHERE clause will specify. In this case, it specifies uid of 27, username of capttofu.

This would return a hash reference:

{
‘admin’ => ‘1’,
‘firstname’ => ‘Patrick’,
‘uid’ => ‘27’,
‘phone’ => ‘2828282822’,
‘state’ => ‘NH’,
‘surname’ => ‘Galbraith’,
‘username’ => ‘CaptTofu’,
‘email’ => ‘patg@patg.net’,
‘city’ => ‘Stoddard’,
‘password’ => ‘acbd18db4cc2f85cedef654fccc4a4d8’,
‘address’ => ‘11122 Granite St.’

},

dbInsert()
The method dbInsert() is a generic insertion method that allows you to insert a hash reference, corre-
sponding to a record in the database, of a given table. This hash reference contains hash keys that are the
columns of the table, the values the value being inserted. It returns the insert id of the inserted column if
the table has an auto_increment column, or the number or rows inserted if there is no auto_increment
column.

=head2 dbInsert()

Inserts a single hash reference, which represents a particular entity into
the named table. You are responsible for providing the correct name and
number of columns

=item Arguments

$self -- object reference

$table -- name of the table to be inserted to

$dataref -- hashref, keys column names value values, to be inserted

$options -- any particular options such as IGNORE

=item Returns

653

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 654

Chapter 15: More mod_perl

Id of item inserted from insert id

=cut

sub dbInsert {
my ($self, $table, $dataref, $options) = @_;

this would cause INSERT IGNORE to be used
my $ignore= $options->{IGNORE} ? ‘IGNORE’ : ‘’;

build up the SQL INSERT statement
my $sql = "INSERT $ignore INTO $table " . $self->buildInsert($dataref);

run the query
my $sth = $self->runQuery({

‘sql’ => $sql,
‘values’ => [values %$dataref]}, \$rows);

return(0) unless $sth;

return last insert id
return($sth->{mysql_insertid} ? $sth->{mysql_insertid} : $sth->rows());

}

You’ll see here that it uses a method called buildInsert() to build up the columns and values part of
the SQL statement. The implementation details of buildInsert() will be shown later.

Usage of dbInsert() would be this:

my $newuser = { ‘admin’ => ‘1’,
‘firstname’ => ‘Dharma’,
‘phone’ => ‘5558881818’,
‘state’ => ‘AZ’,
‘surname’ => ‘Vidya’,
‘username’ => ‘dharma’,
‘email’ => ‘dharma@somesite.com’,
‘city’ => ‘Tucson’,
‘password’ => ‘acbd18db4cc2f85cedef654fccc4a4d8’,
‘address’ => ‘1 River St.’};

my $id = $webapp->dbInsert(’users’, $newuser);

dbUpdate()
The method dbUpdate() updates one or more records of the table specified with the variable $table.
$fields_ref is a hash reference containing keys for the column that will be updated; $where contains
the keys and values that are used to build up the WHERE clause.

=head2 dbUpdate()

Updates a particular record in the table specified. Uses a hash
reference to supply the values that will be updated, as well as
another hash reference to supply the WHERE clause

=item Arguments

654

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 655

Chapter 15: More mod_perl

$self -- object reference

$table -- the table being updated

$fields_ref -- hash reference containing the keys the columns
and values being updated

$where -- hash reference containing the keys as the columns and values
that will be used in the where clause

=item Returns

number of rows updated

=cut

sub dbUpdate {
my ($self, $table, $fields_ref, $where, $options) = @_;
my $rows;

my $query = "UPDATE $table ";

build the SET part of the UPDATE statement
$query .= $self->buildUpdate($fields_ref) if defined $fields_ref;

build the SET part of the UPDATE statement
$query .= $self->whereClause($where) if defined $where;

my $sth = $self->runQuery({
‘sql’ => $query,
‘values’ => [values %$fields_ref,values %$where]
}, \$rows);

return ($sth->rows());
}

You’ll notice that dbUpdate() uses two helper methods to build up the different parts of the UPDATE
statement. The first is buildUpdate(), which builds the SET col1= `value2´, col2 = `value3´, etc.,
based on the value of $fields_ref, which contains the column names and values of the table being
updated. The second method used, whereClause (also used in dbGetRef()), builds up the WHERE clause.

The use of dbUpdate() is just as simple as the other new methods have been:

my $ref= $webapp->dbUpdate(’users’, {
‘firstname’ => ‘Sara’, surname => ‘Smith’},

{ username => ‘Sjones’});

dbDelete()
The method dbDelete() deletes one or more records in the table specified by $table, and uses the same
convention as dbGetRef() and dbUpdate. The $where hash reference argument specifies the WHERE clause
columns and values.

=head2 dbDelete()

Deletes one or more records specified in $where

655

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 656

Chapter 15: More mod_perl

=item Arguments

$self -- object reference

$table -- table variable

$where -- hash reference used to specify WHERE clause

$options -- any specific options, none for this method yet

=item Returns

Number of rows deleted

=cut

sub dbDelete {
my ($self, $table, $where, $options) = @_;
my $rows;

my $query = "DELETE FROM $table ";

use whereClause to build the WHERE clause from $where
$query .= $self->whereClause($where) if defined $where;

my $sth = $self->runQuery({
‘sql’ => $query,
‘values’ => [values %$where]}, \$rows);

return ($sth->rows());

}

Usage of dbDelete() is the following:

$webapp->dbDelete(’users’, { uid => 44});

In this example, the resulting query would be ‘DELETE FROM users WHERE uid = 44’

whereClause()
This is the helper method used to build the WHERE clause. This is the type of database query building code
that you would often end up duplicating. What was done in the following code was to make it non-table
specific as well as non-query specific — meaning this method can be used to build a WHERE clause for
SELECT, DELETE, or UPDATE.

This whereClause() method is a helper method. All it does is take a hash reference, $fields_ref, which
has the keys that represent the table column names, and the values of this hash reference (the values
specified in the WHERE clause), and it builds up a string containing the WHERE clause.

Please note, this method will use placeholders ‘?’ and not the actual values, unless the column names
are specified with a dash in front of them. In this case, the key is deleted from $fields_ref, which is the

656

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 657

Chapter 15: More mod_perl

very hash reference that will be also used in the actual query execution to supply the bind values. This is
important to know because whereClause() ensures the order of both the fields and values in the string
it produces is passed in the query execution and must correspond to the bind values being passed or an
error will occur.

The code that handles whether to use a placeholder or a literal value is shown in the highlighted block
that follows:

=head2 whereClause()

Builds up a WHERE clause for a SELECT, DELETE, UPDATE
statement based off of a Perl hash reference containing
the column names with the values of the WHERE condition

=item Arguments

$self - object reference

$fields_ref - hash reference. Fields are columns of the
where clause, values the values of the where condition
This will build up the where clause with either placeholder
or literals. If literal, it removes that column from
the hashref so it won’t be used in passing placeholders

=item Returns

String, WHERE clause

=cut
sub whereClause {

my ($self, $fields_ref)= @_;
return unless ref $fields_ref && keys %$fields_ref;
my $where;

loop through the reference
for (keys %$fields_ref) {

if the key contains a dash, translate as a literal
if ($_ =∼ / ˆ -/) {

my $actual_col = $_;
need to make sure to strip off hyphen/dash from column name
$actual_col =∼ s/ ˆ -//;

$where .= " $actual_col = ". $fields_ref->{$_} . ‘ AND ‘;

since this won’t be used for a place-holder, remove it
delete $fields_ref->{$_};

$_ =∼ s/ ˆ -//;
}
or append a placeholder
else {

$where .= " $_ = ? AND ";
}

}

657

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 658

Chapter 15: More mod_perl

remove the trailing AND
if (defined $where && length($where)) {

$where= substr($where, 0, -5);
$where = "WHERE $where" ;

}
return $where;

}

Just so you will understand the whereClause() a bit more, two snippet examples demonstrate usage:

$where_string= $self->whereClause({
‘name’ => ‘John’,
‘age’ => 33 });

$where_string would be this:

WHERE name = ? AND age = ?

And the values passed in query execution will be values %$fields_ref, which would pass (’John’,
33), to satisfy both placeholders in the WHERE clause.

$where_string = $self->whereClause({
`name´ => `John´,
`-age´ => 33 }) ; # notice the dash `-` for –age

$where_string would be:

WHERE name = ? AND age = 33

The age key would have been deleted from %fields_ref, so the value passed in query execution would
be only (`John´), for the single placeholder in the WHERE clause.

You would support literal values in cases where you don’t want to use a placeholder — for instance, if
you want to use something like ‘‘colname = now()’’ in your WHERE clause.

buildUpdate()
This is another helper method, just like whereClause(), that builds up a string based off a hash reference
of keys, the table column names, and the values of the placeholder or literal value, depending on how
the column names are referenced. A dash ‘-’ prepended to the key denotes a literal value is to be used.
This also results in the removal of that member from the hash reference, which will inevitably be used in
query execution for the bind values.

=head2 buildUpdate()

Helper method to construct the SET part of an UPDATE statement. This method
uses a hash reference $fields_ref to construct the column names and values
specified in the SET part of an UPDATE statement. Like whereClause, this also
allows you to specify literals so the default placeholder isn’t appended for
that column as well as deleting the value for that column from fields_ref
which is inevitably used for the query execution

658

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 659

Chapter 15: More mod_perl

=item Args

$self - object reference
$fields_ref - hash reference containing the columns and values for the SET

=item Returns

SET string

=cut
sub buildUpdate {

my ($self, $fields_ref)= @_;
return unless ref $fields_ref && keys %$fields_ref;
my $set;

for (keys %$fields_ref) {
if ($_ =∼ / ˆ -/) {

need to make sure to strip off hyphen/dash from column name
my $actual_col = $_;
$actual_col =∼ s/ ˆ -//;

$set .= "$actual_col = " . $fields_ref->{$_} . ‘,’;

delete $fields_ref->{$_};
$_ =∼ s/ ˆ -//;

}
else {

$set .= "$_ = ?,";
}

}
chop($set); # remove trailing comma

return " SET $set ";
}

Usage for buildUpdate() is similar to that of whereClause(). If you have, for instance, this:

$set_string= $self->buildUpdate({ `name´ => `John´, `-age´ => 33, `state´ => `NH´});

... then $set_string will be this:

SET name = ? AND age = 33 AND state = ?

$fields_ref will only have `name´ and `state´ remaining, so the values supplied to the query execu-
tion will be (`John´, `NH´)

buildInsert ()
This is another helper method that constructs SQL statement components. buildInsert() constructs the
string ‘‘(col1, col2, col3) VALUES (value1, value2, valueN)’’ part of the SQL INSERT statement. It has
the same ability to allow you to specify literals, otherwise it appends placeholders.

=head2 buildInsert()

This is a helper method that constructs the fields and values of an INSERT

659

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 660

Chapter 15: More mod_perl

SQL statement. It builds the string based off of the keys and values
of the $fields_ref hash reference

=item Args

$self -- object reference
$fields_ref -- hash reference used to construct the string

=item Returns

String of the form
"(field1,field2,fieldN...) VALUES (value1, value2, valueN..)"

=cut

sub buildInsert {
my ($self, $fields_ref)= @_;
my ($values, $fields);

for (keys %$fields_ref) {
if ($_ =∼ / ˆ -/) {

$values .= $fields_ref->{$_} . ‘,’;
delete $fields_ref->{$_};
$_ =∼ s/ ˆ -//;

}
else {

$values .= ‘?,’;
}

}
chop($fields);
chop($values);

return ‘(‘ . $fields . ’) VALUES (‘ . $values . ’)’;
}
Usage is just like whereClause() and buildInsert() my $insert_string
$self->buildInsert({

‘name’ => ‘John’,
‘age’ => 33,
‘-state’ => ‘NH’);

The value of $insert_string would be this:

(name, age, state) VALUES (?, ?, `NH´)

Other Changes to WebApp
Some other convenient changes were made to WebApp. Since every handler has had to obtain the sub-
mitted form values, this is something that will automatically be done by instantiating WebApp and
passing it the request object. The changes to the constructor method for WebApp, new(), are shown in
the highlighted code:

sub new {
my($class, $opts) = @_;

660

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 661

Chapter 15: More mod_perl

my $self = {
memc_servers => $MEMC_DEFAULT_SERVERS,
db_virtual_user => $DB_VIRTUAL_USER,
db_virtual_user_ro => $DB_VIRTUAL_USER_RO,

set the message to empty string
msg => ‘’,

};
$self->{$_} = $opts->{$_} for keys %$opts;

bless($self, $class);

if ($self->{r}) {
$self->{req}||= new Apache2::Request($self->{r});
$self->{form}->{$_} = $self->{req}->param($_) for $self->{req}->param();

}

connect to MySQL
return undef unless $self->_connectDB();

connect to memcached
$self->_connectMemcached();

return $self;
}

So now, if you pass a request object to WebApp upon instantiation, you will automatically be able to
have access to submitted form values (stored as $self->{form}), as well as the Apache2::Request object,
stored as $self->{req}.

There is also now an accessor method, getForm():

=head2 getForm()

Returns a hash reference containing the submitted form values

=item Args

$self -- object reference

=item Returns

hash reference with form values

=cut
sub getForm {

my $self= $_[0];
return $self->{form};

}

661

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 662

Chapter 15: More mod_perl

. . . which you would now be able to use from within your handler, by using the following code:

my $webapp = WebApp->new({r => $r});
my $form = $webapp->getForm();

Also added is an export list:

our @EXPORT = qw(
randomString);

This allows the use of the randomString method without instantiation:

$random_string = randomString();

This is a method that you will use to create a random session key value.

Session Management
Now that the mechanics and basic details of cookie management have been explained and demonstrated
with the simple cookie handler from an earlier section, it’s time to add some flesh to the concept.

Also, there are now database methods that make storing data much simpler.

The cookie is one part of session management. What you do with the cookie is what can give you the
ability to implement many things. For this section, you’ll see how to use a cookie for session management.

Essentially, the session will be implemented by using a cookie that has a value that can be used to look
up information in memcached, if cached, and in MySQL, if it is not in memcached. When this cookie is
created, an entry into a database table for sessions will be made. In this sessions table, Perl objects can
be serialized and stored. Also, any data stored in sessions will have data stored in memcached. Since
the Perl drivers for memcached, Cache::Memcached or Cache::Memcached::libmemcached, both serialize
Perl objects, the same data stored in the sessions table will also be stored in memcached. This will make
it so that all sorts of information for that session can be stored. And since that information is stored in
memcached, accessing that information won’t result in accesses to MySQL, thus helping with the site’s
overall performance. This is especially true considering that in order to store serialized Perl objects, you
will most likely have to use a table with a BLOB column to store this information, which can carry with
it a performance penalty.

For instance, sessions can be used for shopping carts. A user comes to a site and a session is created for
that user after they have logged in to the site, or even if they remain anonymous. The user selects several
products. Each product has some sort of ID or other identifier that is stored in that session. If the user
is distracted, depending on how long that session exists, the user can come back and resume shopping.
This is just one such application where sessions are useful.

The first thing to do is to plan how the session will work. The steps are these:

1. When the user accesses a page, the session cookie for that user is checked. Does the user
have a session cookie? If so, then check both memcached and MySQL for the session id of
the cookie read.

662

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 663

Chapter 15: More mod_perl

2. If the session doesn’t exist in the database or in memcached, then delete their session cookie,
and have the user log back in.

3. If session does exist in the database or in memcached, then the user is allowed access to the
page, and their session data is made available.

4. If the user doesn’t have a cookie, the user is presented with a login form. They will enter
their username and password and submit the form.

5. If the user credentials are satisfied, then a session cookie is created, and an entry in both the
database as well as in memcached is inserted.

6. If the user credentials are not satisfied, then the login form is presented again.

Furthermore, this can be implemented in such a way that the session checking code will use redirection
to send the user to the login form if they need to log in. When you redirect them to that login form, also
use a GET parameter to set the URL that the user was trying to access when they failed to have a session
cookie.

Implementing the mod_perl Handler LoginHandler
The first place to start is the mod_perl handler implementation that allows the user to log in. This handler
will also demonstrate how you can store session values — such as for applications like shopping carts:

1. First, define a package name and import the necessary modules. This handler will be called
LoginHandler:

package WroxHandlers::LoginHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT);
use Apache2::Request;
use WebApp;
my $url;

2. Next come the handler implementation details. This handler is like many other handlers you
have seen so far, except this one will use the WebApp method getSession(), which will per-
form all the steps of checking for the existence of the session cookie and determining if there
is an existing session for the user:

sub handler {
my ($r)= @_;
my $msg;

$url= $r->uri;
my $webapp= WebApp->new({ r => $r});
my $form= $webapp->getForm();

this is the URL that the user came from, so when they are
given a session, they will return to that page

663

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 664

Chapter 15: More mod_perl

my $returnto= $form->{returnto};

my $path_info= substr($r->path_info, 1, length $r->path_info);
my $headers= $r->headers_in();

3. The line below is where the session is checked. If a session exists, the $sessionref->
{sessionid} and $sessionref->{uid} will be set. This is the piece of code you can use in
any handler you wish to make it so a session is required for access:

obtain the session
my $sessionref= $webapp->getSession(\$msg);

4. Next, a check is made to determine if the submission is trying to also store session values; if
so, store those values like so:

if they are storing session values
if ($form->{save} && $sessionref->{sessionid}) {

$sessionref= $webapp->storeSession($sessionref->{sessionid},
{ $form->{fieldname} => $form->{fieldvalue}});

}

5. Then, a check is made to see if a returnto value is set. If so, and they have a session set, the
user is redirected to the page they came from:

if the user has a session id and the returnto value is set
then redirect them back to that page
if ($sessionref->{sessionid}) {

if ($returnto) {
$r->headers_out->add(’Location’ => $returnto);
return Apache2::Const::REDIRECT;

}

}

6. Finally, print out the content. The body() subroutine will make a determination of what
form to display, depending on whether the user is logged in or not:

$r->content_type(’text/html’);
$r->print(header());
$r->print(body($sessionref, $returnto, $msg));
$r->print(footer());

return Apache2::Const::OK;
}

The body subroutine prints out the appropriate form, depending on the state of the session. If a session
is set, and the user hasn’t already been redirected, call the sessionInfo() subroutine, which displays
information about their session and provides a way to set session values (for the purpose of showing
how to save sessions):

sub body {
my ($sessionref, $returnto, $msg) = @_;

664

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 665

Chapter 15: More mod_perl

warn $returnto;
my $data= ‘’;

default messages
leave room for unauthenticated sessions (those without uid)
$msg||= ($sessionref->{sessionid} && $sessionref->{uid}) ?

"User UID $sessionref->{uid} is logged in" :
"Login Form";

if there is a session and user is logged in
if ($sessionref->{sessionid}) {

$data= sessionInfo($sessionref, $msg);
}
if there is not a session, user is not logged in
else {

$data= loginForm($returnto, $msg);
}

handy reload to test page
$data.= qq(\t\t<p>Reload page</p>\n);
return $data;

}

The sessionInfo() subroutine is an informational page that shows you that your session works, what is
stored in the session, and provides you with a form to insert a session name and value. It then calls the
sessionVariablesTable() subroutine to return a table containing the current session information:

sub sessionInfo {
my ($sessionref, $msg)= @_;

my $table= sessionVariablesTable($sessionref);

return <<"EOPAGE";
<p class="msg">$msg</p>
<!-- begin sessionInfo form -->
<p>
<form action="$url" id="loginform" name="loginform" method="post">

<p>Add a session field and value:</p>
<fieldset>

<label>Field Name</label>
<p><input type="text" name="fieldname" /></p>
<label for="fieldvalue">Field Value</label>
<p><input type="text" id="fieldvalue" name="fieldvalue" /></p>
<input type="submit" name="save" value="Save" />

</fieldset>
</form>
</p>
$table
<p>
<form name="logout" method="POST" action="$url">

<fieldset>
<input type="submit" name="logout" value="Log out" />

</fieldset>
</form>

665

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 666

Chapter 15: More mod_perl

</p>
<!-- end sessionInfo form -->

EOPAGE

}

The sessionVariablesTable() subroutine loops over all the session variables as stored in the
$sessionref hash reference. If one of the session variables has a reference itself — this would be if you
stored in the session previous form submissions, shopping cart items, etc. — then Data::Dumper will be
used to print it out:

sub sessionVariablesTable {
my ($sessionref)= @_;
my $table=’’;

if the session has values, display what they are
if (scalar keys %$sessionref) {

$table .= <<EOTABLE;
<p class="msg">Session data for $sessionref->{uid}</p>
<table class="userlist">

<thead>
<tr><th>Key</th><th>Value</th></tr>
</thead>
<tbody>

EOTABLE

for my $key (keys %$sessionref) {
my $value;
if (ref($sessionref->{$key})) {

$value= Dumper $sessionref->{$key};
$value= ‘<pre>’ . $value . ‘</pre>’ ;

}
else {

$value= $sessionref->{$key};
}

$table .="
<tr><td>$key</td><td>$value</td></tr>\n";

}

$table .="
</tbody>

</table>
</p>\n";

}

return $table;
}

The loginForm() subroutine is the form displayed if the user does not have a session, so that they have
the opportunity to log in and thereby create a session:

sub loginForm {
my ($returnto, $msg)= @_;

666

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 667

Chapter 15: More mod_perl

if ($returnto) {
$returnto = encode_entities($returnto);
$returnto = qq(<input type="hidden" name="returnto" value="$returnto">);

}
return <<EOPAGE;
<!-- begin loginform -->
<p class="msg">$msg</p>
<p>
<form action="$url" id="loginform" name="loginform" method="post">

<fieldset>
<label for="username">Username</label>
<p>

<input type="text" name="username" id = etc.>
</p>
<label>Password</label>
<p>

<input type="password" name="password">
</p>
$returnto
<input type="submit" name="login" value="Login">

</form>
</p>
<!-- end loginform -->

EOPAGE
}

Understanding the WebApp Class
Now that LoginHandler handler details are fleshed out, it is time to explain the WebApp meth-
ods that LoginHandler uses. These will show you the inner workings of how sessions can be
implemented.

1. First, some package imports and package variables are added to WebApp. These are
required for the session cookie to be properly set:

use Apache2::Cookie;
use Apache2::Request;
use Storable qw(nfreeze thaw);

our $COOKIENAME = ‘websession’;
our $COOKIEDOMAIN = ‘.example.net’;
our $COOKIEPATH= ‘/’;

Apache2::Cookie is for processing cookies, as you saw in the last chapter. Storable
is used for the methods nfreeze() and thaw(), which are the same methods the
Cache::Memcached::libmemcached module uses internally to serialize Perl data objects.
nfreeze() is used particularly because it will allow session data to be stored on either 32-bit
or 64-bit machines interchangeably because it always stores bytes in the network order
(big-endian), for portability regardless of machine used.

2. The session cookie name will be websession, the domain for example.net, and the path the
root of the web site.

667

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 668

Chapter 15: More mod_perl

3. The method getSession() is the top-level method that handles setting up a session. First,
the Apache2::Cookie::Jar object is instantiated. Then the cookie, if it exists, is retrieved
for the cookie $COOKIENAME, which as you saw above is websession:

sub getSession {
my ($self, $msg)= @_;

my $j = Apache2::Cookie::Jar->new($self->{r});
my $cookie= $j->cookies($COOKIENAME);

4. If the cookie is defined and has a value, call the method digestCookieValue(), which pro-
duces a hash reference containing the user’s uid and session id, which was encoded in the
cookie value:

if ($cookie && $cookie->value()) {
my $cookieref= digestCookieValue($cookie->value());

5. memcached both action was for a logout, then delete the cookie and session from the
database and memcached both.

if ($self->{form}{’logout’}) {
unsetCookie($self->{r});
$self->deleteSession($cookieref->{sessionid});
$$msg= ‘User is logged out’;
return {};

}

6. Otherwise, the user has a session, so obtain the session data (a hash reference of anything
saved for that user for that session). Then there is a check to make sure that there is actually
a session id set. If not, it deletes the session cookie, resulting in the user having to log in to
have a session created:

else {
my $sessionref= $self->getSessionData($cookieref->{sessionid});
unless ($sessionref->{sessionid}) {

unsetCookie($self->{r});
return {};

}
return $sessionref;

}
}

7. If the operation is a login, then the login credentials are checked. If they are satisfied, then
a session id is created, the session is inserted in the database and in memcached, and the
cookie for that session is set:

elsif ($self->{form}{login}) {
if (my $uid= $self->isAuthenticated(

$self->{form}{’username’},
$self->{form}{’password’})) {

get a session id
my $sessionid= $self->makeSessionId($uid);

initial entry in the sessions database table
my $sessionref= $self->insertSession($sessionid, $uid);

668

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 669

Chapter 15: More mod_perl

set the cookie
setCookie($self->{r}, encodeCookieValue($uid, $sessionid));

$$msg= "Session was created";

return $sessionref;
}

8. If, on the other hand, the login credentials supplied did not satisfy isAuthenticated(), then
it returns an empty hash reference that will result in the user having to resubmit the login
with the correct credentials:

otherwise, force the user to log in again
else {

$$msg= "User " . $self->{form}{username} .
" not authenticated. Try again";

return {};
}

}
}

9. Next comes the setCookie() method. This method will look very familiar to you, except
here it has a little more functionality than before. There is an optional $value argument,
which is then checked for its length. If the length is zero, this means that the cookie needs
to be deleted, so then the expiration value is set to 3 months in the past, which will result in
the cookie being deleted by the browser. If the value has a length, the expiration will be set
3 months in the future:

sub setCookie {
my ($r, $value)= @_;

if no value, then this means a delete cookie
my $expires= length($value) ? ‘+3M’ : ‘-3M’;

my $cookie = Apache2::Cookie->new($r,
-name => $COOKIENAME,
-value => $value,
-expires => $expires,
-domain => $COOKIEDOMAIN,
-path => $COOKIEPATH,
);

$cookie->bake($r);
}

10. All unsetCookie() does is to call setCookie() with an empty string, which you know from
above means that the cookie will be set with an expiration value in the past, resulting in its
deletion:

sub unsetCookie {
my ($r)= @_;
setCookie($r, ‘’);

}

669

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 670

Chapter 15: More mod_perl

11. The method makeSessionId() creates a unique session id key. It appends both the random
eight-character string returned from randomString() with the value of localtime() and
then converts that to an MD5 string. This could also be done using MySQL to generate a
UUID or CPAN module Data::UUID:

sub makeSessionId {
my ($uid)= @_;
my $value= randomString();
$value.= localtime;
$value= md5_hex($value);
return $value;

}

12. The method encodeCookieValue() is used to hide the details and store separate strings of
the cookie value — which is the $id and $value passed in separated by ‘::’. This can be
used to provide both the session id, sessionid and the user uid without having to even
access the database or memcached just from the cookie’s value. It does this by converting
the value to a hexadecimal string:

sub encodeCookieValue {
my ($id, $value) = @_;
$value = $id . ‘::’ . $value;
$value =∼ s/(.)/sprintf("%%%02x", ord($1))/ge;
return $value;

}

13. The method digestCookieValue() allows you to read the value of the cookie as encoded by
encodeCookie(), returning a hash reference with the id and sessionid decoded from the
cookie value:

sub digestCookieValue {
my ($value) = @_;
$value =∼ s/%([a-fA-F0-9][a-fA-F0-9])/pack(’C’, hex($1))/ge;
my ($id, $sessionid) = split(/::/, $value, 2);
return({

id => $id,
sessionid => $sessionid});

}

Storing Session Data
The next set of methods to show you are those that store the session data in the database and in mem-
cached. To first understand what is being stored, a look at the sessions table:

CREATE TABLE sessions (
sessionid char(32) not null default ‘’,
uid int(8) not null default 0,
stored_session blob,
primary key sessionid (sessionid),
key uid (uid)
) ENGINE = InnoDB ;

670

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 671

Chapter 15: More mod_perl

❑ The sessions table is pretty simple. It has two columns: sessionid, using fixed number of 32
characters since the MD5 session id will always be 32 characters; and stored_session, which is
a BLOB where the serialized Perl object will be stored.

❑ The other table you will need is the users table, which is the same table as the one used for the
contact list application. This users table can be used for this application as well; you’ll just need
to add a password column to it:

ALTER TABLE users ADD (password char(32) NOT NULL default ‘’);

❑ Then set a password for the user:

UPDATE users SET password = md5(’password’) WHERE username = ‘CaptTofu´;

You could modify the contact application to have a password field, as well as a check for whether you
are an administrative user. You could even extend the contact list application to become a web site user
administrative tool! All the pieces are there.

The method insertSession() is used to create an initial session entry in the sessions table and in
memcached. The initial session, as stored as $sessionref, will contain a session id, and a hash reference
for the user, as returned from the method getUser(). You’ll also notice the use of the nice shiny, new
method dbInsert()! This makes inserting data so much easier; you do not have to write a database
query. Also notice the use of Storable’s nfreeze() method to serialize $sessionref to be stored in
the sessions table. For storing $sessionref in memcached, it is not necessary to serialize $sessionref
because Cached::Memcached::libmemcached automatically serializes data, using the same technique
used here for the database.

After inserting this hash reference into the sessions table, the hash reference is returned to the caller:

sub insertSession {
my ($self, $sessionid, $uid)= @_;

my $sessionref = {
uid => $uid,
sessionid => $sessionid,
user => $self->getUser({ uid => $uid})
};

$self->dbInsert(’sessions’, {
sessionid => $sessionid,
uid => $uid,
stored_session => nfreeze($sessionref),
}

);
$self->{memc}->set($sessionid, $sessionref);
return $sessionref;

}

The method storeSession() is used to store session data. Since insertSession() is always used to
create an initial entry into the sessions table, storing a session will always be an update, which will be
accomplished using the other new database method, dbUpdate(). With this method, the existing session
hash reference has to be retrieved; the method getSessionData() will provide it either from memcached

671

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 672

Chapter 15: More mod_perl

or from MySQL. The new session hash reference values are mapped into the existing session hash refer-
ence; new values overwrite the old ones. The same idea of storing the session hash reference that you saw
in insertSession() is applied — nfreeze()serializes the hash reference and then updates the existing
session with the new session data using dbUpdate(). Also, the session data (stored in memcached) is
updated as well:

sub storeSession {
my ($self, $sessionid, $newsession)= @_;

obtain the existing session
my $existingsession= $self->getSessionData($sessionid);

map new values into exiting, new values overwrite old

@{$existingsession}{keys %$newsession}= values %$newsession;

update the existing session record in sessions
$self->dbUpdate(’sessions’,

{ stored_session => nfreeze($existingsession)},

{ sessionid => $sessionid});

$self->{memc}->set($sessionid, $existingsession);

return $existingsession;
};

The method getSessionData() obtains an existing session from either memcached or MySQL. If it is
able to obtain it from memcached, it returns it immediately. If not, it obtains the session from MySQL,
using the new database access method dbGetRef(), and then writes back to memcached what it just read
from MySQL (read-through caching):

sub getSessionData {
my ($self, $sessionid)= @_;
my $sessionref;

check in memcached
$sessionref= $self->{memc}->get($sessionid);

return if in memcached and has a session id
return $sessionref if $sessionref->{sessionid};

otherwise, obtain from database
my $sref= $self->dbGetRef(’sessions’, ‘sessionid, uid, stored_session’,

{ sessionid => $sessionid, });

if nothing, return empty hash ref
return {} unless defined $sref && scalar @$sref;

de-serialize
$sessionref= thaw($sref->[0]{stored_session});

write to memcached on the way out
$self->{memc}->set($sessionid, $sessionref);

672

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 673

Chapter 15: More mod_perl

finally, return the session ref
return $sessionref;

}

Finally, the method deleteSession() deletes the session from both MySQL and memcached:

sub deleteSession {
my ($self, $sessionid)= @_;
$self->dbDelete(’sessions’, {sessionid => $sessionid});
$self->{memc}->delete($sessionid);

}

So, the appropriate entry is made in the Apache configuration file:

PerlModule WroxHandlers::LoginHandler
<Location /login>

SetHandler perl-script
PerlResponseHandler WroxHandlers::LoginHandler

</Location>

Restart Apache, and then you can test this handler.

The first thing in testing would be to access http://example.com/login. You will see the login form as
shown in Figure 15-7.

Figure 15-7

Upon submitting the login form (Figure 15-7) with the correct credentials, you will then see the session
information page. This page has two parts to it. The top half is a form, as shown in Figure 15-8; it is where
you can submit a value in both "Field Name" and "Field Value" input text fields, which correspond
to a key and value stored in the session. This form shows you how you can store values for a given
session.

The second half of the form, the lower half, as shown in Figure 15-9, is where the contents of the current
session are displayed. As you can see, these values can be scalars or any Perl data type. In this instance,
you’ll see the hash reference for the session user. At the very bottom of this form is a button to log out. If
you then press this button, you will be logged out of your session.

The form shown in Figure 15-10 shows what is displayed after you log out. Since your session has been
deleted, this form is automatically displayed.

673

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 674

Chapter 15: More mod_perl

Figure 15-8

Figure 15-9

Figure 15-10

674

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 675

Chapter 15: More mod_perl

This concludes the section on session management. As you can see, there are a lot of pieces required
to make session management work. The functionality that is implemented for session management is
something that’s taken for granted; it seems to simply work. As a web developer, though, it helps to
understand what exactly is required for it to work. That’s what this section on session management
hoped to achieve.

File Upload mod_perl Handler
Another common web application functionality that’s worth looking at is how to handle file uploads.
This is what allows you to develop applications that perform a number of functions:

❑ Image gallery

❑ Web publishing

❑ Web site hosting

❑ File manager application

Luckily, mod_perl has just the tools for handling file uploads. It’s easier than you would think.

Storing Files in the Database or Not?
The following handler shows you how to perform file uploads. It’s a very simple application that allows
you to upload a file. It stores that file’s location in MySQL, but not the file’s contents. The file is stored on
disk, and the database provides a ‘‘legend’’ or map to where the file is.

There is a debate over whether or not to store files (images, text, etc.) in databases. Certainly, MySQL is
capable of storing BLOBs, which is where you would store the file contents, regardless of file type.

The pros of storing a file in the database are the following:

❑ All your data, including the file contents, are stored in one place.

❑ You don’t have to provide functionality to map a file’s actual location to where it is on disk.

❑ Backups of the database include the files.

The cons of storing a file in the database are these:

❑ It has an impact on performance. Having to fetch a blob requires memory.

❑ Cost of database disk space is higher than regular file-system disk space.

The performance issue is the clincher — having to select a BLOB, or multiple BLOBs, requires memory.
The official dogma about what should be done doesn’t always correspond to reality. It’s not that difficult
to have a scheme that maps a file on disk. MySQL is especially fast with meta-data. Just remember, it’s
best to let MySQL do what it’s good at doing, and let the filesystem do what it’s good at — storing files.

675

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 676

Chapter 15: More mod_perl

Database Table
The database table that will be used to store the file meta-data is, not surprisingly, called files. This
table stores various parameters, some of which won’t be used for the following handler example, but are
included to give an idea of the type of data you might want to store for a given file.

CREATE TABLE files (
id int(8) NOT NULL auto_increment,
filename varchar(32) NOT NULL default ‘’,
fileurl varchar(80) NOT NULL default ‘’,
filetitle varchar(64) NOT NULL default ‘’,
filecomment varchar(128) NOT NULL default ‘’,
filepath varchar(128) NOT NULL default ‘’,
created timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
fileid varchar(16) NOT NULL default ‘’,
filesize int(8) NOT NULL default ‘0’,

filetype varchar(32) NOT NULL default ‘’,
uid int(8) NOT NULL default ‘0’,
PRIMARY KEY (id),
UNIQUE KEY filename (uid,filename),
KEY uid (uid)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

mod_perl Handler Implementation
Next, you’ll see a mod_perl handler that implements the core of file uploading, using MySQL for the
file information. Once you have file uploading, it could be extended into a number of applications. The
following handler will demonstrate:

❑ How to handle file uploads

❑ How to ensure the directory path where the uploaded file resides is set up

❑ How to store meta-data for the file in MySQL for a given user

❑ Display the list of files for a given user

Set Up the Uploads Directory in the Apache Configuration
To have a directory where this handler will upload its files, you need to set up an ‘‘uploads’’ directory.
You will want to set this outside your document root and not allow directory indexes within this
directory and its subdirectories to prevent peeking into these directories — only the upload application,
which is about to be implemented, provides a means of viewing what is contained within. You can
do this using the Alias Apache directive along with a <Directory> directive in your Apache configu-
ration file:

Alias /uploads/ "/var/uploads/"
<Directory /var/uploads>

AllowOverride None

676

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 677

Chapter 15: More mod_perl

Order allow,deny
Allow from all

</Directory>

Implement the mod_perl Handler
Create the handler file. You will declare a namespace for the package and import the various Apache2
packages. The key module here is Apache2::Upload. It implements methods for file uploads, as well as
HTML::Entities:

package WroxHandlers::UploadHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT :log);
use Apache2::Upload ();

use Apache2::RequestRec ();
use HTML::Entities;
use WebApp();

The handler() Subroutine
Implement the handler() subroutine. The main body of the handler implementation is defined. In this
example, the new session functionality from the last chapter will be used. This will allow files to be
owned by particular users and only viewable by them. Also, a WebApp object is instantiated. The Apache
request object is passed upon instantiation. WebApp will then provide access to an Apache2::Request
object through $webapp->{req}, which has access to the file being uploaded:

sub handler {
my ($r) = @_;
my $msg = ‘’;

obtain the main URL
my $url = $r->uri;

instantiate a webapp object
my $webapp = WebApp->new({ r => $r});

❑ This is where the session is obtained, if set. If not set, then a redirection to the /login URL
(LoginHandler) is made so the user can log into the application. Note also that the returnto
value is set upon redirection. That of course is how the login handler can redirect the user back
to the page that originally sent them from to log in:

get the session
my $sessionref = $webapp->getSession();

if no session, redirect to login page
unless ($sessionref && $sessionref->{uid}) {

$r->headers_out->add(’Location’ => "/login?returnto=$url");

677

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 678

Chapter 15: More mod_perl

return Apache2::Const::REDIRECT;
}

print mime header
$r->content_type(’text/html’);

❑ The subroutine saveUpload() handles the uploaded file and stores it in the database:

call saveUpload() which will process any file that is uploaded
saveUpload($r, $webapp, $sessionref->{uid}, \$msg);

❑ The file upload form is printed. This is the form that will allow the user to upload files. It
gives the user the ability to give the file a title as well as select the file to be uploaded. An
additional checkbox is provided to give the user the ability to overwrite an existing file. A
message displays the status of the file being uploaded — whether it was saved or not, if this is
defined:

print the HTML header
$r->print(q(

<html>
<head>

<title>File Upload Handler</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet"></style>

</head>
<body>
));

my $msg_block = qq(<p class="msg">$msg</p>) if length($msg);
print main form of the document
$r->print(qq(

<h1>File Upload handler</h1>
$msg_block
<form action="$url" id="uploadform" name="uploadform"
method="POST" enctype="multipart/form-data" name="testform">

<fieldset>
<p>

<label for="filetitle">File title:</label>
<input type="text" name="filetitle" size="20">

</p>
<p>

<label for="upload_file">File upload:</label>
<input type="file" name="upload_file">
Overwrite: <input type="checkbox" name="overwrite">

</p>
<input type="submit" value="Upload" name="pressmebutton">

</fieldset>
</form>));

678

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 679

Chapter 15: More mod_perl

❑ Display any files the user owns. This is accomplished by looping over the results of the query to
obtain the user’s files. Also notice that the loop provides an HREF link displayed in the loop. You
will be able to access the files you upload:

obtain the array reference of files
my $files= $webapp->getFiles($sessionref->{uid});

only attempt printing the table if there are any files to begin with
if (scalar @$files) {

$r->print(qq(
<table name="filelist" id="filelist" class="userlist">

<thead>
<tr>

<th>Title</th>
<th>Date entered</th>
<th>Size</th>
<th>Link</th>

</tr>
</thead>

<tbody>
));

variable for accumulating the rows of the table
for (@$files) {

encode any HTML entities for file title and name
$_->{filetitle} = encode_entities($_->{filetitle});
$_->{filename} = encode_entities($_->{filename});

$rowcontent.= <<EOROW
<tr>

<td>$_->{filetitle}</td>
<td>$_->{created}</td>
<td>$_->{filesize}</td>
<td>{fileurl}">$_->{filename}</td>

</tr>
EOROW

}
$rowcontent.= <<EOTAB;

</tbody>
</table>

EOTAB

$r->print($rowcontent);
}

❑ After the list of files is printed, the rest of the document is displayed, and OK is returned.

print the rest of the document
$r->print(qq(

679

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 680

Chapter 15: More mod_perl

</body>
</html>)
);

return Apache2::Const::OK;

}

The saveUpload() Subroutine
Implementation of the subroutine, saveUpload(), processes the uploaded file. It stores the file on disk,
and stores the file’s meta-data in MySQL table called files. The submitted form values are obtained with
getForm():

sub saveUpload {
my ($r, $webapp, $uid, $msg)= @_;
my $saved = 0;
my $filepath;

my $form = $webapp->getForm();

1. First, the upload directory value is obtained.

obtain the value of the directory in which files will be uploaded
$upload_dir= $r->dir_config(’UploadDir’);

2. Then an Apache2::Request object — accessed via the attribute req of $webapp — is used
to call the method upload() for parsing the submitted file from upload form element
upload_file. Then a check is made to ensure that the upload exists and, if so, to set the path
information of where the file will be stored and the file meta-data is stored in MySQL.

obtain the upload,if there was an upload
my $upload= $webapp->{req}->upload(’upload_file’);

if there is an upload, process it
if ($upload) {

3. Each user has their own subdirectory, specified by the $uid value and obtained by looking
up the uid from the database when given the session id from the session cookie. For instance,
if the path is /var/uploads, and the user’s uid is 27, the full path to the user’s upload direc-
tory will be /var/uploads/27:

append the uid to the path
$filepath = $upload_dir . ‘/’ . $uid;

4. This is where the base directory /var is stripped from the full file path to provide a URL
path which the Alias directive in your Apache configuration specified. For instance, the
URL from the path above after substitution would end up being /uploads/27.

strip out /var to obtain the url
my ($fileurl) = $filepath =∼ /\/var(.*)/;

680

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 681

Chapter 15: More mod_perl

5. Then the filename value is obtained from the $upload handle (an Apache2::Upload object
reference). It should be noted that this might be a good place to implement filtering of the
filename. This example won’t show the implementation of this for the sake of simplicity, but
it’s definitely something worth mentioning since the filename comes from user input and
can contain anything.

filename
my $filename= $upload->filename();

full path on disk
$filepath = "$filepath/$filename";

url path
$fileurl = "$fileurl/$filename";

build the fileinfo hash reference which will be inserted
my $fileinfo = {

uid => $uid,
fileid => $webapp->randomString(),
filename => $filename,
filesize => $upload->size(),
fileurl => $fileurl,
filepath => $filepath,
filetitle => $form->{filetitle},

};

6. The next line is a call to the method fileExists() to determine if this meta-data for the
file already exists in the database. If the meta-data exists, another check is made to deter-
mine if the user checked the overwrite checkbox. If the file’s meta-data exists and the user
checked the overwrite checkbox, then the file meta-data will be updated by the method
saveFileInfo(). If not, then an error message is set and the subroutine returns.

if ($webapp->fileExists($fileinfo)) {
if ($form->{overwrite}) {

$saved = $webapp->saveFileInfo($fileinfo);
$$msg = "File $fileinfo->{filename}, saved and

overwritten"
if $saved;

}
else {

exists error
$$msg = "File $fileinfo->{filename} already exists, not \

overwriting";
return -1;

}
}

7. If the meta-data for the file doesn’t exist, then it is inserted by the method saveFileInfo()
and a message indicating success is set.

else {
$saved = $webapp->saveFileInfo($fileinfo);
$$msg = "New file $fileinfo->{filename} saved." if $saved;

}

681

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 682

Chapter 15: More mod_perl

8. If the file meta-data was either successfully inserted or updated, the value of $saved should
be true. In that case, the file can be linked into the upload directory. A check is made to
ensure that the user’s upload directory exists, and if not, it creates one. If $saved is false,
then an error message is set and displayed back in the upload form page. Whatever is the
value of $saved is returned. If there was no uploaded file at all, 0 is returned.

if ($saved) {
if the upload directory doesn’t exist, create it
unless(-e $filepath) {

mkdir($filepath);
}
this creates the file on disk
$upload->link($filepath);

}
else {

$$msg = "Unable to save $fileinfo->{filename}";
}
return $saved;

}
return 0;

1; # end of handler file

Methods That Need to be Added to WebApp
The database methods previously shown in the upload handler implementation need to be implemented
in WebApp. These are very straightforward and are required for storing and retrieving file meta-data
methods.

getFiles() Method
The method getFiles() obtains an array reference, using dbGetRef, of the specified user’s files. This is
the data that is displayed in the previous handler when listing the files.

=head2 getFiles()

Returns an array reference containing hash references for each
file’s meta-data saved in the files table

=item arguments

=over

$self - object reference

$uid - the user ID of the files owner

=back

=item returns

=over

682

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 683

Chapter 15: More mod_perl

Array reference containing hash references of meta data for every file

=back

=cut

sub getFiles {
my ($self, $uid) = @_;
return $self->dbGetRef(’files’, ‘*’, { uid => $uid});

}

fileExists() Method
The method fileExists() is used to determine if meta-data for a given filename and user id exists. If it
exists, the file id for that meta-data entry is returned, if not, then 0 is returned.

=head2 fileExists()

Returns an either the file id of the entry for a given file’s
meta-data or zero, if not exists. The look-up for the data is
done using the file name (filename) and the user id (uid)

=item arguments

=over

$self - object reference

$fileinfo - hash reference of file meta data

=back

=item returns

=over

file id - success
0 - failure

=back

=cut

sub fileExists {
my ($self, $fileinfo)= @_;

my $file_exists= $self->dbGetRef(’files’, ‘id’, {
uid => $fileinfo->{uid},
filename => $fileinfo->{filename}});

file id, primary key of file
return(defined $file_exists->[0]{id} ? $file_exists->[0]{id} : 0);

}

683

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 684

Chapter 15: More mod_perl

saveFileInfo() Method
The method saveFileInfo() will insert a file meta-data hash reference if it exists. It uses the previously
mentioned fileExists() method to determine if there is an existing entry for the file’s meta-data. If the
file’s meta-data exists, the return value from fileExists() is a valid file id. This is then used to update
the existing record for the file meta-data. If the file’s meta-data doesn’t exist, then it is inserted with
dbInsert().

=head2 saveFileInfo()

Either updates or inserts a given file’s meta data, depending on
whether the meta-data entry already existed or not

=item arguments

=over

$self - object reference

$fileinfo - hash reference of file meta data

=back

=item returns

=over

$rows
> 0 - success
0 - failure

=back

=cut

sub saveFileInfo {
my ($self, $fileinfo)= @_;
my $file_id= $self->fileExists($fileinfo);
my $rows;

warn "file_id $file_id";
if file exists, update
if ($file_id) {

$rows = $self->dbUpdate(’files’, $fileinfo, { id => $file_id });
}
otherwise update
else {

$rows = $self->dbInsert(’files’, $fileinfo);
}
return $rows;

}

684

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 685

Chapter 15: More mod_perl

Using the mod_perl Upload Handler
Now let’s use this handler and upload some files! Set the appropriate settings to declare the handler in
your Apache configuration file:

PerlModule WroxHandlers::UploadHandler
<Location /uploadhandler>

PerlSetVar UploadDir /var/www/apache2-default/uploads
SetHandler perl-script
PerlResponseHandler WroxHandlers::UploadHandler

</Location>

Restart Apache, and upload some files! The interface for this handler will appear as shown in
Figure 15-11. Notice the clean table displaying the list of files that were uploaded, with each one
providing a link to the file.

Figure 15-11

This completes the section showing you how to work with file uploads. This simple example is something
you could easily extend. For instance, you could make an image sharing program with this. You would
just need to limit the files being uploaded to image type, preventing uploads of other types of files, and
creating thumbnails of the image when the image is created in the upload directory.

685

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 686

Chapter 15: More mod_perl

Templating
The other big question in mod_perl development specifically, and web application development
in general, is what templating system you should use. Up until this section, all the Perl handlers
shown have been implemented using the simple printing of HTML from within the handler code.
This section will show you how templating can be used to separate code from content. Perl, which
always has a way to solve a problem (sometimes numerous ways), also has a number of templating
systems.

This section will show you three of the many templating solutions available for Perl. Each has its own
philosophy and implementation details.

The two philosophies or approaches are outlined here:

❑ Have code to perform the processing in either a ModPerl::Registry script or a mod_perl handler,
and then use the template to display the content.

❑ Similar to the philosophy of PHP; have a template with tags that allow you to embed Perl code
into the template. The tags also allow you to separate the code from the content.

Of the three template solutions presented in this section, the first two take the former approach. The third
is like the latter. The three templating solutions are:

❑ Template Toolkit: As described on its own web site, ‘‘The Template Toolkit is a fast, flexible and
highly extensible template processing system.’’ Template Toolkit has its own presentation lan-
guage, specifically for displaying data that you provide to the template when you call it to be
processed.

❑ HTML::Template: ‘‘HTML::Template is a new solution to an old problem — Perl CGI develop-
ment,’’ as described on its web site. Its focus is to completely separate the tasks of developers
from those of designers. HTML::Template keeps the template language very simple, offering the
ability to display variables, use conditionals, loop, and include another template.

❑ HTML::Mason: The Mason web site states, ‘‘Mason is a powerful Perl-based web site develop-
ment and delivery engine. With Mason you can embed Perl code in your HTML and construct
pages from shared, reusable components.’’ Mason’s aim is content management of large sites,
but it is also fine for small sites. Its markup language is simple enough to use and designers can
edit without having to learn Perl.

The first two are solutions that allow you to process and display the template from within the code. The
HTML::Mason template has code embedded in it that is indicated with tags.

The following examples will all perform the same basic functionality, but each uses a different templating
system.

Template Toolkit
Template Toolkit, also referred to as Template, has its own presentation language. This language is simi-
lar to other programming languages and has all the conditionals, variables, loops, etc. Template::Toolkit
was written in such a way that the back-end is Perl-specific and aimed at developers, whereas the front-
end template presentation language is aimed at the designer.

686

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 687

Chapter 15: More mod_perl

The web site for Template Toolkit, http://template-toolkit.org, is a wealth of information. It includes
a tutorial, installation information, and other reference manuals. It should be noted that Template Toolkit
also has a Python version.

Features
Template Toolkit has a number of features that it is known for, including these:

❑ Full support for all Perl data types

❑ Clear separation between content and application code, making it easy for designers to work
with

❑ Good balance — front-end is designer-centric, back-end is programmer-centric

❑ Templates are precompiled into Perl code and cached for performance

Plug-Ins to Template Toolkit
Template Toolkit has a good number of plug-ins available via CPAN and as shown on
http://template-toolkit.org/docs/manual/Plugins.html. These plug-ins provide functionality
extensions to Template Toolkit, such as database connectivity, an iteration abstraction object, a string
class, filtering, and much more.

Template Toolkit Syntax
The language uses the opening and closing square brackets and percent symbol ([% and %]) to enclose
tags that contain directives and variables. Here is an example:

<h1>[% main_message %]</h1>

This will interpolate the variable $main_message in between the h1 tags. If $main_message was equal to
‘‘Hey, I’m here,’’ the value displayed would be this:

<h1>Hey, I´m here</h1>

You can also use filtering. The example that follows shows you that you can filter a string through an
HTML filter to translate HTML entities, which is something you want to do to avoid HTML injection. If
main_message contains ‘‘Up & running,’’ like so:

<h1>[% main_message | html %]</h1>

. . . it would result in the following being displayed:

<h1>Up & running</h1>

More complex data is accessed using the dot(.) notation operator. The following is a Perl array reference:

my $list_of_things = [`patram´, `pushpam´, `toyam´, `phalam´];

687

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 688

Chapter 15: More mod_perl

In the Template Toolkit syntax, when passed to the template, it would appear like this:

[% list = [’patram’, ‘pushpam’, ‘toyam’, ‘phalam’] %]

And it would be accessed as this:

[% list = [’patram’, ‘pushpam’, ‘toyam’, ‘phalam’] %]
<p>[% list.0 %]</p>
<p>[% list.1 %]</p>
<p>[% list.2 %]</p>
<p>[% list.3 %]</p>
<p>size [% list.size %]</p>

. . . which would produce in the resulting HTML:

<p>patram</p>
<p>pushpam</p>
<p>toyam</p>
<p>phalam</p>
<p>size 4</p>

To print out all the elements, you can then loop over this array with the following:

[% FOREACH word = list %]
<p>[% word %]</p>
[% END %]

Hashes are accessed similarly:

[%
states = {
NH => "New Hampshire",
VT => "Vermont",
WA => "Washington"

}
%]

<p>[% states.NH %]</p>
<p>[% states.VT %]</p>
<p>[% states.WA %]</p>
<p>size of states [% states.size %]</p>

This would result in the display of this:

<p>New Hampshire</p>
<p>Vermont</p>
<p>Washington</p>
<p>size of states 3</p>

To loop over the hash, an example would be:

[% FOREACH abbr = states.keys %]
<p>Abbr [% abbr %] Name [% states.$abbr %]

[% END %]

688

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 689

Chapter 15: More mod_perl

And here is a more complex data structure, a hash reference of hash references:

[% FOREACH uid = userlist.keys %]
<tr>

<td>[% userlist.$uid.uid | html %]</td>
<td>[% userlist.$uid.username | html %]</td>
<td>[% userlist.$uid.firstname | html %]</td>
<td>[% userlist.$uid.surname | html %]</td>

</tr>
[% END %]

Whereas Perl would use $userlist->{$uid}{username}, Template Toolkit’s language uses the dot
notation, and would refer to the former as userlist.$uid.userame.

The INSERT directive is used to insert the contents of an external file at the location in the page specified.
No interpolation of the file will be attempted.

[% INSERT .signature %]

. . . would insert the contents of the .signature file.

The INCLUDE directive includes and processes the template named at the location in the page specified:

<html>
[% INCLUDE header title = title %]
<body>
... Content ...
[% INCLUDE footer %]
</html>

. . . which would include the contents of the header and footer templates. For instance, the header
template may have something like this:

<head>
<title>[% title %]</title>

<link type="text/css" href="/css/webapp.css" rel="stylesheet">
</head>

You can also use the PROCESS directive, along with defining a BLOCK:

<html>
[% PROCESS header title = title %]
<body>
... content ...
</body>
</html>
[% BLOCK header %]
<head><title>[% title %]</title></head>
[% END %]

In this example, the BLOCK directive is used to define a component block within the current page that will
provide the header content. The block also contains a title variable.

689

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 690

Chapter 15: More mod_perl

A mod_perl Handler Example Using Template Toolkit
Now that you’ve seen some examples of the template language, you will now see how to use Template
Toolkit with a mod_perl handler. As stated, all these templating examples will print out exactly the same
page — a listing of contacts/users from the users table. The object here is to try to use various features
of Template Toolkit to show you how it works.

Handler Declaration in the Apache Configuration File
This is just like any other handler declaration, with the addition of specifying the template path that the
mod_perl handler will obtain with dir_config().

It should be noted that /var/www is not the document root, and that you should not
put your templates in a subdirectory of the document root.

PerlModule WroxHandlers::TemplateToolkitHandler
<Location /userlisttemp>
SetHandler perl-script
PerlSetVar TEMPLATE_PATH "/var/www/templates"
PerlResponseHandler WroxHandlers::TemplateToolkitHandler

</Location>

Handler Body
The handler works similarly to the other handlers you’ve seen in this book, except that there is no display
logic in the code — no HTML or other content. This handler works by preparing the data required for
the template to function properly. This includes any variables that are used within the template.

package WroxHandlers::TemplateToolkitHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT SERVER_ERROR);
use Apache2::Request;
use Template;
use WebApp;
sub handler {

my ($r)= @_;
my $msg;
my $url= $r->uri;
my $template_path;

instantiate a WebApp object
my $webapp= WebApp->new({ r => $r});

get the submitted form values
my $form= $webapp->getForm();

my $sessionref= $webapp->getSession(\$msg);

if no session, redirect to login page
unless ($sessionref && $sessionref->{uid}) {

690

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 691

Chapter 15: More mod_perl

$r->headers_out->add(’Location’ => "/login?returnto=$url");
return Apache2::Const::REDIRECT;

}

To understand this code, note the following:

1. The first thing that is needed is the path to where the templates exist. This can be set, as
shown here, in the Apache configuration file. This is a base directory where templates are
located. Whatever template name you use, it must exist in that directory.

obtain the template path
$template_path= $r->dir_config(’TEMPLATE_PATH’);

2. The next step is to instantiate a template object. Several parameters are provided here upon
instantiation and each has a particular effect on how the object is instantiated, as indicated
by the comments for each.

instantiate a new Template object
my $template = Template->new({

INCLUDE_PATH => $template_path, # where to look for templates
INTERPOLATE => 0, # expansion of Perl variables in plain text
POST_CHOMP => 1, # removal of whitespace
EVAL_PERL => 0, # evaluate [%Perl%] code blocks

});

3. The hash reference $userlist is obtained, which is a result set of the users table. This and
other parameters are specified in the hash reference $tparams, which will be passed to the
template. These variables will be accessible in the template using the Template Toolkit lan-
guage syntax.

get the userlist reference
my $userlist= $webapp->getUsers();

set up template parameters
my $tparams = {

msg => $msg,
url => $r->uri,
userlist => $userlist

};

The template name is set.
set up the template name
$url =∼ s/ ˆ \///;
my $tname= $url . ‘.tt2’;

4. The content generation, which first includes printing out the HTTP Content-type header,
and is then followed by the Template Toolkit method process(). process()takes two
arguments: the name of the template file, and the parameters passed in the hash reference
$tparams. This produces output based on the template and the variables supplied to it.

$r->content_type(’text/html’);

this will process the template
$template->process($tname, $tparams) ||

691

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 692

Chapter 15: More mod_perl

do {
if an error, return SERVER_ERROR
$r->server->warn($template->error());
return Apache2::Const::SERVER_ERROR;

};
return Apache2::Const::OK;

}

1;

5. The template code is shown next. Here you can see a template included called dtd. This con-
tains the document type declaration. Then the title is set with the SET directive. Also seen
here are conditional checks for the msg variable, then a PROCESS directive to include the loop-
ing over the userlist hash reference to display the table rows.

[% INCLUDE dtd %]
[% SET title = "Template Toolkit Test" %]
<html>

<head>
<title>[% title %]</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>

[% IF msg %]
<p class="msg">[% msg | html %]</p>

[% END %]
<p class="msg">URI [% url %]</p>
<table class="userlist">

<thead>
<tr>
<th>UID</th>
<th>Username</th>
<th>First Name</th>
<th>Surname</th>

</tr>
</thead>

[% PROCESS userloop userlist = userlist %]
<tbody>
</tbody>

</table>
</body>

</html>

[% BLOCK userloop %]
[% FOREACH uid = userlist.keys %]

<tr>
<td>[% userlist.$uid.uid | html %]</td>
<td>[% userlist.$uid.username | html %]</td>
<td>[% userlist.$uid.firstname | html %]</td>
<td>[% userlist.$uid.surname | html %]</td>

</tr>
[% END %]

[% END %]

692

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 693

Chapter 15: More mod_perl

Caching Templates
Template::Toolkit has many optimizations to how it compiles and caches templates, but you can take a
step further and cache your templates in memcached.

First, you want to import the File::Slurp to WebApp. File::Slurp has the subroutine read_file() for
reading in the contents of the template.

use File::Slurp;

The following method is added to WebApp. It will read in a template file directly into memcached, which
the mod_perl handler can easily use to obtain a cached template instead of having to read from disk:

sub cacheTemplate {
my ($self, $template_path, $template_name)= @_;

set the content to an empty string
my $template_content = ‘’;

construct a key with namespace and template name
for memcached lookup
my $template_key = "templates:$template_name";

check memcached first, if it’s there, return it
$template_content = $self->{memc}->get($template_key);

otherwise,
if ($template_content) {

return $template_content;
}

$template_content = read_file("$template_path/$template_name");

cached the template contents
$self->{memc}->set($template_key,$template_content);
return $template_content;

}

Now to use this new method, just add the following to your mod_perl handler:

obtain the contents of the template, only the first time will
it need to be read from disk, then subsequently from memcached
my $template_cached= $webapp->cacheTemplate($template_path,$tname);

if ($template_cached) {
$tname = \$template_cached;

}

The first time the handler is executed, the template will have to be read and cached, but in subsequent
requests it will be obtainable from memcached. The template will display one way or another — either if
$tname is a scalar reference to the template contents, or if $tname is a template name.

693

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 694

Chapter 15: More mod_perl

HTML::Template
HTML::Template is another templating solution available for Perl web applications. Written by Sam
Treger, the templating syntax is very simple and includes a few directives. It doesn’t have as much
syntax features as Template Toolkit, but depending on your needs and preferences, it may work just fine
for you. It does have in common with Template Toolkit the concept of dividing design from the code,
passing variables that are prepared prior to display, and then processing the template, which is in turn
printed in a CGI script or mod_perl handler.

Tags
HTML::Template has what they refer to as ‘‘HTML-esque’’ tags. The name indicates the variable name,
and the variable name can be quoted or not and still work either way.

<TMPL_VAR NAME=VARNAME> when displayed is converted to the variable value of VARNAME. If, for instance,
you had a variable $foo with the value of ‘‘hello world,’’ the following line:

<p><TMPL_VAR name=foo><p>

. . . would, when displayed, be:

<p>hello world</p>

To escape HTML entities, preventing HTML injection, for HTML::Template you can use:

<TMPL_VAR ESCAPE=HTML NAME=foo>

To be able to use conditionals (if, else, unless), you use the following:

* <TMPL_IF somevariable> begins an if block

* </TMPL_IF> ends an if block

* <TMPL_ELSE> begins an else block

* ended by </TMPL_IF>

An example is:

<TMPL_IF testflag>
<p>Test flag set</p>
<TMPL_ELSE>
<p>Test flag not set</p>
</TMPL_IF>

The <TMPL_UNLESS> is the opposite of <TMPL_IF>, and to use the tag, you would have this:

<TMPL_UNLESS "somevariable">
some variable is set to the value of <TMPL_VAR somevariable>

<TMPL_ELSE>

694

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 695

Chapter 15: More mod_perl

some variable is not set
</TMPL_UNLESS>

<TMPL_LOOP somearrayref> iterates over an array reference of hash references. This requires you to
prepackage anything you want to loop over to a hash reference.

So if you have in your Perl code, prior to display, a hash reference variable $aref:

my $aref= [
{ one => `eins´, two => `zwei´, lang => `German´},
{ one => `uno´, two => `dos´, lang => `Spanish´},
{ one => `ek´, two => `do´, lang => `Hindi´},
{ one => `ekam´, two => `dva´, lang => `Sanskrit´}

];

You would iterate over this as:

<TMPL_LOOP aref>
<p>English: one is <TMPL_VAR name=one> is in <TMPL_VAR name=lang> </p>
<p>English: two is <TMPL_VAR name=two> is in <TMPL_VAR name=lang> </p>
</TMPL_LOOP>

You can also include other templates with <TMPL_INCLUDE="filename.tmpl">, which would cause the
display of filename.tmpl at the location in the template that this tag was specified.

A mod_perl Handler Example Using HTML::Template
The following shows an example of how to use HTML::Template to print out the hash reference result
set of the users table. This will resemble the steps that were used with Template Toolkit, in that the data
that the template requires is set up prior to display.

1. First, the Apache configuration:

PerlModule WroxHandlers::HTMLTemplateHandler
<Location /userlist>
SetHandler perl-script
PerlResponseHandler WroxHandlers::HTMLTemplateHandler
PerlSetVar TEMPLATE_PATH "/var/www/templates"
</Location>

You’ll notice the same directory that was used for Template::Toolkit is used here for
HTML::Template to find its templates as well.

2. Then comes the handler code, itself:

package WroxHandlers::HTMLTemplateHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT);

use HTML::Template;

695

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 696

Chapter 15: More mod_perl

use WebApp;

sub handler {
my ($r)= @_;
my $url= $r->uri;
my $tpath;

3. The template path is obtained as set in the Apache configuration file. This could also have
been set with the environment variable HTML_TEMPLATE_ROOT.

obtain the template path
$tpath= $r->dir_config("TEMPLATE_PATH");

instantitate WebApp
my $webapp = WebApp->new({ r => $r});

my $sessionref= $webapp->getSession();

if no session, redirect to login page
unless ($sessionref && $sessionref->{uid}) {

$r->headers_out->add(’Location’ => "/login?returnto=$url");
return Apache2::Const::REDIRECT;

}

4. Here is where the template variables are prepared. Initially, $tparams only has msg and url
members.

set up the template parameters that will be passed
my $tparams = {

msg => "Session " . $sessionref->{sessionid} . " logged in",
url => $r->uri,

};

5. Next, the result set of users is obtained. This is a hash reference, so it needs to be organized
into an array reference in order to be used in the template with a <TMPL_LOOP> tag. An iter-
ative loop is used to construct an array reference for the users into the $tparams userloop
member:

get the user list ref
my $users= $webapp->getUsers();

build up an array reference of hash references for each
user. This is what the template requires for <TMPL_LOOP>
for my $uid (keys %$users) {

push(@{$tparams->{userloop}}, {
uid => $uid,
username => $users->{$uid}{username},
firstname => $users->{$uid}{firstname},
surname => $users->{$uid}{surname},
});

}

696

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 697

Chapter 15: More mod_perl

6. The template name is specified and then an HTML::Template object is instantiated. Its sole
argument is the template name passed as a hash member filename.

set up the template name
$url =∼ s/ ˆ \///;
my $tname= $url . ‘.tmpl’;

my $template = HTML::Template->new(
filename => $tpath . ‘/’ . $tname);

7. The param() method sets the parameters that the template will use.

$template->param($tparams);

8. Finally, the HTTP Content-type is set, then the document is printed by calling print() with
a call to $template->output(), displaying the template.

$r->content_type(’text/html’);

$r->print($template->output());

return Apache2::Const::OK;
}

1;

HTML::Template template
The template for displaying the userlist table is fairly straightforward. The main thing to notice here is the
use of the tag <TMPL_VAR> to display the message and the URL. Also, the loop over the userlist array
reference containing the result set of the users table, which was then mapped to an array reference:

<html>
<head>
<title>HTML::Template test</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>
<p class="msg"><TMPL_VAR ESCAPE=HTML name="msg"></p>
<p class="msg">URI <TMPL_VAR name="url"></p>
<table class="userlist">

<thead>
<tr>
<th>UID</th>
<th>Username</th>
<th>First Name</th>
<th>Surname</th>

</tr>
</thead>
<tbody>

<TMPL_LOOP NAME="userloop">
<tr>

697

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 698

Chapter 15: More mod_perl

<td><TMPL_VAR ESCAPE=HTML name="uid"></td>
<td><TMPL_VAR ESCAPE=HTML name="username"></td>
<td><TMPL_VAR ESCAPE=HTML name="firstname"></td>
<td><TMPL_VAR ESCAPE=HTML name="surname"></td>

</tr>
</TMPL_LOOP>

</tbody>
</table>

</body>
</html>

So, as you can see, HTML::Template is pretty simple to use. For more information about how to use
HTML::Template, please see http://search.cpan.org/∼samtregar/HTML-Template-2.9/Template.pm.

HTML::Mason (Mason)
HTML::Mason, or just Mason, takes a different approach to that of Template::Toolkit and
HTML::Template. Developed by Jonathan Swartz, Dave Rolsky, Ken Williams, and John Williams,
Mason is a ‘‘a powerful Perl-based web site development and delivery engine,’’ as stated on the Mason
web site. Indeed, it does give you a lot of functionality and flexibility. It is targeted for large, dynamic,
high-load web sites, but can be used just as well for any sized web site, even your own person web site.

Mason uses the concepts of components, which are files containing HTML, Perl, and Mason commands.
Generally, you would have a top-level component such as the main page, then smaller components that
are embedded in the larger components.

Mason is run in such a way that it is set as a mod_perl handler to interpret files in a given directory, site-
wide, or with a particular extension using the Apache <LocationMatch> sectional directive, as shown in
the following code:

PerlModule HTML::Mason::ApacheHandler
<LocationMatch "\.(mhtml|mtxt)$">

SetHandler perl-script
PerlResponseHandler HTML::Mason::ApacheHandler
PerlAddVar MasonCompRoot "main => /var/www/apache2-default"
PerlAddVar MasonCompRoot "datadir => /etc/apache2/mason"

</LocationMatch>

So instead of having a mod_perl handler that prepares data for a template that has a display method to
display the template, you simply write the code in the Mason component, and the server interprets it if it
meets the criteria for being interpreted. In the case of the previous code, that would mean any files with
.mhtml or .mtxt extensions on the web site will be interpreted.

Mason Syntax
Mason has a syntax that is very easy to understand because, for the most part, it uses Perl syntax. How-
ever, there are a couple of things to know.

698

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 699

Chapter 15: More mod_perl

In-Line Perl Sections
There are three primary types of in-line Perl Sections:

❑ Using the block form of <% $variable %>. If you have for instance <% $variable %> and
$variable is of the value ‘‘Hey!’’ then what would be interpreted would be: Hey!.

An entire line is treated and interpreted as Perl if it begins with the percentage sign (%). Anything
between open tag <%perl> and close tag <%/perl> is interpreted as Perl. This is case-sensitive.

An example of all of these in use would be the following:

% my $msg = "This is a test";
<html>

<head>
<title><% $msg |h %></title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>
<p class="msg"><% $msg |h %></p>
<p class="msg">URI <% $r->uri %></p>

% if ($r->method() eq ‘POST’) {
<p>This was a POST</p>

% } else {
<p>This was a GET<p>

% }

<%perl>
my $aref= [’one’, ‘two’, ‘three’];
</%perl>

Numbers
% for (@$aref) {

<% $_ %>
% }

</body>

</html>

In this example, all three types of in-line Perl sections were used. The message variable was set at the
top of the file with a % line sectional directive, then displayed in a block as <% $msg|h %>, with the |h
providing HTML entity escaping. As you can see, the Apache request object, $r, is available. The line
sectional directive was then used for an if/else block to display text based on whether the request was a
GET or POST. Next, the <%perl> sectional block was used to set an array reference that was then iterated
over in a for loop with a line sectional directive to print out an unformatted list. The HTML produced
from the above example (using GET) would be this:

<html>
<head>
<title>This is a test</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>

699

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 700

Chapter 15: More mod_perl

<p class="msg">This is a test</p>
<p class="msg">URI /mason_basic.mhtml</p>
<p>This was a GET<p>

Numbers
one
two
three

</body>
</html>

Mason Objects
As stated above, you have available to you the Apache request object $r. You also have available $m,
which is the Mason request object for accessing Mason’s API for features not available using the syntactic
tags described above. This is a full API that is worthy of a book of its own, and the details of it are well
documented on the Mason web site. Some later examples will show some examples of how it is used.

Mason Components
Mason components can be called by other components, the top-level page itself being a component. In
these component calls, you can pass variables to the component being called. A component is called using
the <& ... &> tag. This tag takes two arguments: the first argument lets you specify the path and name
of the component, the second argument lets you set parameters to the template in name => value pairs.

No arguments:

<& header &>

Specifying a $msg and $color parameter:

<& header, msg => $msg, color => $color &>

The following example shows how you could use components and have a top-level Mason document:

% my $msg = "This is a test";
<& mason/dtd &>
<& mason/header, msg => $msg |h &>
<& mason/body &>
<& mason/footer &>

Then, each component, as found in the subdirectory ‘‘mason’’:

❑ mason/dtd

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

700

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 701

Chapter 15: More mod_perl

❑ mason/header

<%args>
$msg
</%args>
<html>

<head>
<title>This is a test</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>
<p class="msg"><% $msg |h %></p>
<p class="msg">URI <% $r->uri %></p>

❑ mason/body

<p>This is the body</p>

❑ mason/footer

</body>
</html>

The entire document would appear like so:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>This is a test</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>
<p class="msg">This is a test</p>
<p class="msg">URI /main_mason.mhtml</p>

<p>This is the body</p>

</body>
</html>

You can also include components using the Mason request object, $m, from within a Perl code block. For
instance:

% $m->comp(’/mason/dtd’);

You will also notice the <%args> section. This is used to read in the variables passed to a component. The
example for the header above could have alternatively used this:

% my ($msg) = @_;

701

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 702

Chapter 15: More mod_perl

This is also how you would read in form parameters from a POST or GET. The following example shows
you a simple form and the page that it posts to:

<html>
<head><title>Mason form</title></head>
<body>
<form action="/mason_post.html" method="POST">

<label>Var1</label>
<input type="text" name="var1">
<label>Var2</label>
<input type="text" name="var2">
<input type="submit" name="varsubmit" value="Submit">

</form>
</body>

</html>

Two form elements, var1 and var2, are submitted by this form, and then read by mason_post.html:

<%args>
$var1
$var2
</%args>
<html>

<head><title>form post</title></head>
<body>
var1: <% $var1 |h %>
var2: <% $var2 |h %>
</body>

</html>

Since Mason reads the GET or POST parameters, you cannot use Apache2::Request to
read them.

Initialization and Cleanup
There are sections that define code that will execute at specific times:

❑ <%init>: Executes as soon as the component is called.

❑ <%cleanup>: Executes just prior to the exit of the component.

❑ <%once>: Executes only once when the component is loaded; all variables declared here are avail-
able to the entire component and any subcomponent for the lifetime of the component.

❑ <%shared%>: Runs once per request; all variables declared are available to the entire component
and subcomponents, however, only per request.

An example of an <%init> section will be shown later in the component called webapp_load:

<%init>
use WebApp;
my $webapp = WebApp->new({ r => $r});
return $webapp;
</%init>

This will be used in the following example to load the WebApp object.

702

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 703

Chapter 15: More mod_perl

Userlisting Page in Mason
You have now seen how to implement this page that lists users in both Template Toolkit and
HTML::Template. Now you will see how it is implemented with HTML Mason.

This works just like the other examples; both mod_perl examples with and without templating. The
WebApp object is instantiated with the mason/webapp_load component. Then the session is obtained,
variables declared, and the variable $url set.

If there is no session, then the Mason request object, $m, is used to perform a redirect — this is how you
do redirects with Mason. The list is created by the component specified in the variable $page, which
happens to be ‘userlist’. The userlist component takes the argument $webapp, which it uses to obtain
the result set of users.

% my $webapp= $m->comp(’mason/webapp_load’);
% my $session= $webapp->getSession();
% my $msg = $webapp->{msg};
% my ($page, $title);
% my $url= $r->uri;
%
%
% if ($session->{sessionid}) {
% $page= ‘userlist’;
% $title= ‘User Listing with HTML::Mason’;
% }
% else {
% $m->redirect("/login?returnto=$url");
% }
<& mason/dtd &>
<html>

<head>
<title>HTML::Mason Example</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

</head>
<body>

% if ($msg) {
<p class="msg"><% $msg |h %></p>

% }

<p class="msg">URI <% $url %></p>
<& "mason/$page", webapp => $webapp, url => $url &>
Log out

</body>
</html>

The userlist template is passed both the $url and $webapp variables, as shown in the <%args> section
as having been passed. It then calls getUsers() to obtain the $users hash reference, which it then loops
over and displays.

<%args>
$webapp
$url
</%args>
% my $users= $webapp->getUsers();

703

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 704

Chapter 15: More mod_perl

<table class="userlist">
<thead>

<tr><th>Username</th><th>First Name</th><th>Surname</th></tr>
</thead>
<tbody>

% for my $uid(keys %$users) {
<tr>

<td><% $uid %></td>
<td><% $users->{$uid}{username} |h %></td>
<td><% $users->{$uid}{firstname} |h %></td>
<td><% $users->{$uid}{surname} |h %></td>

</tr>
% }

</tbody>
</table>

The Apache configuration settings for this example are the following:

PerlModule HTML::Mason::ApacheHandler
<LocationMatch "\.html">

SetHandler perl-script
PerlResponseHandler HTML::Mason::ApacheHandler
PerlAddVar MasonAllowGlobals $url
PerlAddVar MasonAllowGlobals $msg
PerlAddVar MasonAllowGlobals $webapp
PerlAddVar MasonCompRoot "main => /var/www/apache2-default"
PerlAddVar MasonCompRoot "datadir => /etc/apache2/mason"

</LocationMatch>
<Location /mason>

SetHandler perl-script
PerlInitHandler Apache2::Const::NOT_FOUND

</Location>

Any file on this web server ending in either .html or text will be processed by Mason. The setting
MasonAllowGlobals is required to pass the variables specified to the components. MasonCompRoot defines
the top-level directory of your component hierarchy, and it must be a directory that is readable by the
user that the web server process runs as. In this case, it’s the document root of the site. The parameter
datadir specifies a writable directory that Mason uses for various features and optimizations.

The second <Location> sectional directive is used to prevent your component directory from
being accessible. You could alternatively set up an alias to a directory outside the document root to
avoid this.

Summary
This chapter covered various common functionalities that a web developer will want to be familiar
with — cookies, sessions, file uploads, and templating. The discussion included the following:

❑ Whether to write mod_perl apps using ModPerl::Registry. This chapter covered how it works
internally, and showed you that there are more steps required to run a mod_perl registry script
than a mod_perl handler.

704

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 705

Chapter 15: More mod_perl

❑ How to convert the contact list/user list application to a mod_perl handler. The primary
changes were to use the Apache request object instead of CGI for parsing form variables and
also to print out the HTTP content-type header and the document content. You then saw that
ModPerl::Registry scripts, since they are essentially mod_perl handlers, have access to all the
same variables mod_perl handlers have, namely the Apache request object. To demonstrate this,
you were shown how a mod_perl handler could be used with ModPerl::Registry.

❑ How to handle cookies. You learned what a cookie is, and then how to process cookies using the
Apache2::Cookie Perl module, via a simple mod_perl handler example that let you set and delete
a cookie assigned to your browser. You also saw tools you can use with web development for
debugging cookies such as Firebug and Live HTTP Headers. These show you everything you’d
want to know about the cookies your browser has stored.

❑ An entire session management application that uses MySQL and memcached for storing ses-
sion data. To make this application easier to implement, simple generic database methods were
added to WebApp.pm. You saw how each works internally and how to use these new methods to
make data storage and retrieval much easier for web applications, removing the need for calling
SQL statements in the higher-level application code.

❑ The session application was shown in detail — everything from the new cookie creation and
processing methods, a sessions database table, new database and memcached data storage
methods, and how to use this new session code, which will provide user session functionality
for the remainder of the book.

❑ How to implement file uploads. A mod_perl application that handled file uploads and stored the
file upload information in MySQL was shown in detail, providing you with a good understand-
ing of how to implement applications that perform file uploads, as well as a skeletal concept that
could be extended to have more features such as a photo upload system.

❑ Three templating systems: Template Toolkit, HTML::Template, and Mason. Numerous
code examples were provided, including two mod_perl handlers for Template Toolkit and
HTML::Mason. Both implement the same functionality as shown in a previous non-template
mod_perl handler, which prints out the list of users. Then Mason was explained in detail, and a
Mason component was demonstrated that also implemented the user listing functionality.

705

Galbraith c15.tex V3 - 06/02/2009 10:54am Page 706

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 707

Perl and Ajax

Web development has changed a lot since 2000. Web applications used to work in such a way that
a user would enter information and submit the form. The server would check the form, and then
create a reply of success or error, which required loading a new page, thus sending the entire page
contents as a reply. Now things are different. Now web developers not only eliminate the need for
requiring an entire page submission, but they also reduce the amount of data between client and
server. This is a phenomenal development in that it allows web applications to behave more like
traditional desktop applications.

This chapter gives an overview of how you can develop applications with Apache/mod_perl using
Ajax. This book covers so many topics, and it should be noted that Ajax and JavaScript program-
ming are entire worlds in and of themselves, in terms of information. Therefore, this chapter is
meant to at least pique your interest, so you may dig deeper. For those of you who want to delve
deeper, there are some excellent books on the topic, including Professional Ajax, by Nicholas C. Zaka,
Jeremy McPeak, and Joe Fawcett (Wiley Publishing, 2007).

What Is Ajax?
Most of you who are reading this book probably know what Ajax is. But some developers, par-
ticularly those who focus more on the ‘‘back-end’’ of web development, may still think of web
applications in terms of how they were implemented in the past. The author is one such person.
But with many late nights studying, coding, pulling out hair, and cursing at JavaScript and cross-
browser Hades, he has come to really appreciate what Ajax and JavaScript add to the arsenal of
tools a web developer can use to make really useful and feature-rich applications.

Ajax, or AJAX, is an acronym for Asynchronous JavaScript and XML, although it is now more com-
monly referred to as Ajax because it doesn’t necessarily comprise the components that the acronym
stands for. Ajax provides the ability for your web application — the page itself, which is the client,
to asynchronously send and retrieve information to and from the web server, without having the
page itself reload. This functionality is a fundamental change in web application development
because now web applications can be implemented in such a way that they behave like a desktop
application. It also reduces the amount of information that has to be passed back and forth between
client and server.

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 708

Chapter 16: Perl and Ajax

The core of Ajax functionality is implemented using an XMLHttpRequest object. This XMLHttpRequest
object is what serves to transfer data back and forth between the web page and the server. It is a DOM
(Document Object Model) API object that is responsible for sending XML or other data such as JSON
(JavaScript Object Notation), HTML, or plain text.

Since Ajax allows web applications to behave more like desktop applications, companies such as Google
(with both Gmail and Google Maps), Google Suggest, Writely.com, Amazon’s A9, and others are
aggressively pushing the idea of replacing desktop applications with Ajax web applications. This will
dramatically change the way we compute. For example, there used to be a concern of what desktop
mail client to use. Now with web applications like Gmail and Hotmail, a mail application is more often
thought of as a web application versus some application you download to your PC.

mod_perl Applications and Ajax
Perl, as usual, has a number of ways for developing web server applications that can work with Ajax web
clients. This section will show you a number of examples of how you can write your own mod_perl web
applications for serving Ajax clients.

Basic Ajax Examples
The following section introduces you to some very simple Ajax web applications that use mod_perl
handlers to exchange information between the client and server, as well as how to instantiate a simple
Ajax request. The first several examples show specific details of how an Ajax request object is created
without using any of the newer JavaScript libraries (such as the Prototype JavaScript Framework, which
hides many of the details and makes using Ajax much easier). The assumption is that you are a Perl
programmer and you like to dig into the details and guts of the code, and want a more in-depth idea
of how an Ajax request is created. The example will also help you appreciate the convenience newer
libraries give you.

Example 1
Here is an example: You are introduced to the instantiation of an XMLHttpRequest object. This is the object
you will issue Ajax requests through. This example is a simple application that reads a message from
the server application — the mod_perl handler — and then displays what it reads from the server in a
<div> tag.

The first JavaScript function listed, doMsg(), instantiates an XMLHttpRequest object based on the type
of browser being used. The first try block tries to instantiate using XMLHttpRequest(), which is for all
browsers other than Microsoft’s. The catch block attempts instantiation of Microsoft’s XMLHttpRequest
object, which is an ActiveX control and has a number of versions that need to be tested.

<html>
<head><title>Ajax test</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script type="text/javascript">

function doMsg()
{

var xmlHttp;

708

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 709

Chapter 16: Perl and Ajax

try
{
// Firefox, etc
xmlHttp = new XMLHttpRequest();

}
catch (e)
{
// Microsoft IE Latest
try
{

xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");
}
// IE 5.0
catch (e)
{

try
{
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

}
catch (e)
{
alert("No Ajax for YOU!");
return false;

}
}

}

In the following lines of code, onreadystatuschange is an xmlHTTPRequest object property that sets or
retrieves the event handler used for the Ajax request. This means that when the request is completed, this
is the function that will be called, resulting in the code of this anonymous function, listed as function(),
being executed. In this case, a status message is set in the msg <div> tag having the id msg, which will
appear to the user. In the old days, to see a message, you would have had to wait for the server to display
it; the server had to generate it. In contrast, now the client generates it.

The other property, readyState, is an integer value indicating the state of the xmlHTTPRequest object.
The values are:

❑ 0 (Uninitialized): The object has been created but not initialized.

❑ 1 (Open): The object is opened though no data sent.

❑ 2 (Send): Data has been sent but not yet received. Neither the body (responseText) nor the
response header (responseData) data is yet available.

❑ 3 (Receiving): Data is in the process of being received, though still neither reponseText nor
responseData is available.

❑ 4 (Loaded): All data has been received and both responseText and responseData are now
available.

xmlHttp.onreadystatechange = function()
{
document.getElementById("msg").innerHTML="processing...";

if (xmlHttp.readyState == 4)

709

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 710

Chapter 16: Perl and Ajax

{
document.getElementById("msg").innerHTML=xmlHttp.responseText;

}
}

Here, you see that the HTTP GET request is made to the mod_perl /ajax_handler URL, which is a mod-
_perl handler that prints out a message that the Ajax client reads. Nothing is sent, hence null is passed
to the send() method.

xmlHttp.open("GET", "/ajax_handler", true);
xmlHttp.send(null);

}
</script>

</head>

In the body of the HTML page, an onclick() event is set to call doMsg(). Clicking this button will result
in doMsg() being called and the Ajax GET request being made to the mod_perl handler.

<body>
<form name="myForm">
<input type="button" onclick="doMsg();" value="Message"/>

</form>

<p class="msg" id="msg">Message</p>

</body>
</html>

This example was very simple, but it gives you a foot in the door of Ajax.

mod_perl Handler for Example 1
The mod_perl handler for the first example is a very short piece of code. All it does is print out a random
string value using WebApp::randomString(). You’ll also notice one line that performs a 7-second sleep.
This is to simulate a load on the remote server, or provide a delay so you can see the Ajax functionality
and just what it means to say it is asynchronous.

package WroxHandlers::Ajax;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK);
use WebApp;

sub handler {
my ($r)= @_;
sleep 7;

$r->content_type(’text/html’);
print "Ajax Reply: " . WebApp::randomString();
return Apache2::Const::OK;

}

1;

710

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 711

Chapter 16: Perl and Ajax

Ajax Example 2: Display Returned HTML Table
This Ajax example builds on the previous example and displays in a <div> tag a preformatted HTML
table returned from the mod_perl handler. Also shown here is the previous implementation of an
xmlHTTPRequest object instantiation being moved to an external JavaScript file, xmlhttp.js with a sin-
gle function, getXmlHttp(). This function simply performs all the aforementioned steps and returns the
instantiated xmlHTTPRequest object to the caller. This also reduces how many trees are required for this
book you are reading!

In this example, the <div> tag that is written to has the id userlist within the DOM.

<html>
<head><title>Ajax test</title></head>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script language="javascript" type="text/javascript"

src="/javascript/xmlhttp.js"></script>

<script type="text/javascript">
<! —

function userList()
{

var xmlHttp = getXmlHttp();

xmlHttp.onreadystatechange = function()
{
document.getElementById("msg").innerHTML="processing...";

if (xmlHttp.readyState == 4)
{

document.getElementById("userlist").innerHTML=xmlHttp.responseText;
}

}
xmlHttp.open("GET", "/ajax_handler", true);
xmlHttp.send(null);

}
</script>

</head>

<body>
<form name="myForm">
<input type="button" onclick="userList();" value="Userlist"/>

</form>

<div id="userlist" name="userlist"></div>

</body>
</html>

mod_perl Handler for Example 2
The mod_perl handler in this example will use Template Toolkit to print out the table. The data required
for the list of users to be printed out is obtained with the WebApp method getUsers() that you have

711

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 712

Chapter 16: Perl and Ajax

seen in several chapters now. This hash reference, $userlist, is passed to the template, which will then
print it out in a table.

WroxHandlers::AjaxExample2

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT SERVER_ERROR);
use Template;
use WebApp;

sub handler {
my ($r)= @_;
my $template_path;

sleep 7;

$r->content_type(’text/html’);

my $webapp= new WebApp({r => $r});
my $userlist= $webapp->getUsers();

$template_path= $r->dir_config(’TEMPLATE_PATH’),

my $template = Template->new({
INCLUDE_PATH => $template_path,
POST_CHOMP => 1,

});

set up template parameters
my $tparams = {

msg => "User list",
url => $r->uri,
userlist => $userlist

};

$template->process(’userlist_ajax.tt2’, $tparams) ||
do {

$r->server->warn($template->error());
return Apache2::Const::SERVER_ERROR;

};

return Apache2::Const::OK;

}

1;

712

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 713

Chapter 16: Perl and Ajax

Example 2: Template Code
The Template Toolkit template, userlist_ajax2.tt2, is a very short template, since it only has to build
a table. The only argument passed to it, as shown in the previous template example, was the $userlist
hash reference.

<table class="userlist">
<thead>

<tr>
<th>UID</th>
<th>Username</th>
<th>First Name</th>
<th>Surname</th>

</tr>
</thead>
<tbody>

[% FOREACH uid = userlist.keys %]
<tr>

<td>[% userlist.$uid.uid %]</td>
<td>[% userlist.$uid.username %]</td>
<td>[% userlist.$uid.firstname %]</td>
<td>[% userlist.$uid.surname %]</td>

</tr>
[% END %]

</tbody>
</table>

More Examples Using the JSON Perl Module
The Perl modules, JSON, JSON::XS and JSON::PP all work the same way, and are different only in how
they are implemented internally. JSON::XS is written in C, whereas JSON::PP is a pure Perl implementa-
tion. The modules essentially provide a way to display JSON, encoding a Perl hash reference into JSON
(JavaScript Object Notation) and from JSON to Perl. You can, for instance, convert a database result set
to a JSON object that you return to the client via Ajax. Then you can utilize it like any other JavaScript
variable in your JavaScript functions. This will be shown in the next example.

You should use the JSON::XS Perl module if at all possible. By simply using JSON, it should by default
use JSON::XS. The method overview is in the following blocks of code.

Perl to JSON:
$json_text = to_json($perl_obj);

JSON::XS will require:

$json_text = encode_json($perl_obj);

JSON to Perl:
$perlvar = from_json($json_text);

713

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 714

Chapter 16: Perl and Ajax

JSON::XS will require:

$perlvar = decode_json($json_text);

It’s not enough that you just read the JSON text value. You will have to eval it as well within your
JavaScript code for it to be brought to life.

Ajax Example 3: Building the Table on the Client
You can also build a table using JavaScript from the JSON response from the server provided by the
mod_perl handler. In this example, it is introduced as a new Perl module, JSON::XS. All the same setup
is performed.

This example also introduces another JavaScript concept, which is disabling the button that was pressed
to activate the Ajax request, thus preventing the user from resubmitting the button multiple times. The
button is disabled in the calling function, userList(), and in the onreadystatechange function, re-
enabled. Thus the button is disabled for the duration of the Ajax requests. In this case, since the mod_perl
handler emulates a load with a 7-second sleep, the button will be disabled for that amount of time.

You can also employ this idea to keep abusive resubmission, for instance on a blob, from occurring.
You just wouldn’t re-enable the button. Just keep in mind that when the page is reloaded, the button is
enabled again.

<html> <head><title>Ajax test</title></head>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script language="javascript" type="text/javascript"

src="/javascript/xmlhttp.js"></script>

<script type="text/javascript">

function userList()
{

var xmlHttp = getXmlHttp();

document.getElementById(’ajaxtest’).setAttribute("disabled", "disabled");
button.setAttribute("disabled","disabled");

The onreadystatechange event handler function is where all the display logic is implemented. It takes
the JSON object string returned from the mod_perl handler that was returned from the xmlHTTPRequest
object and performs a JavaScript eval on this string, making this JSON object response an actual object
that can be utilized in the page:

xmlHttp.onreadystatechange = function()
{
document.getElementById("msg").innerHTML="processing...";

if (xmlHttp.readyState == 4)
{

// deserialize the JSON text
var response = eval("(" + xmlHttp.responseText + ")");

// obtain the userlist
var ulist = response.userlist;

714

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 715

Chapter 16: Perl and Ajax

Next, the message is set, and a table element usertable is created. This table is built by looping over the
result set. The outer loop builds the rows and inserts them into usertable, while the inner loop builds
the table cells and inserts them into each row. The array, cols, is used to control exactly which columns
are displayed:

// set the message
document.getElementById("msg").innerHTML="Userlist: " + response.msg;

// start constructing a table
var usertable= document.createElement(’table’);
usertable.className = ‘userlist’;
document.body.appendChild(usertable);
usertable.setAttribute(’id’,’userlist’);
usertable.setAttribute(’name’, ‘userlist’);

// this is so we iterate trough only the columns we want
cols = new Array(’uid’, ‘username’, ‘firstname’, ‘surname’);
var i= 0;
for (var uid in ulist)
{

var urow = usertable.insertRow(i);

for (var j = 0; j < cols.length; j++)
{

var ucell = urow.insertCell(j);

ucell.innerHTML = ulist[uid][cols[j]];
}
i++;

}

The following block of code builds the table header. By inserting the row at zero with insertRow(0), this
table row is placed at the top of the table and is used for the column names.

// build the table header
var urow = usertable.insertRow(0);
var uidcell= urow.insertCell(0);
uidcell.innerHTML = ‘UID’;
var unamecell = urow.insertCell(1);
unamecell.innerHTML = ‘Usernamae’;
var fnamecell = urow.insertCell(2);
fnamecell.innerHTML = ‘Firstname’;
var snamecell = urow.insertCell(3);
snamecell.innerHTML = ‘Surname’;

}

document.getElementById(’ajaxtest’).removeAttribute("disabled");
}

xmlHttp.open("GET", "/ajax_handler", true);
xmlHttp.send(null);

}
</script>

715

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 716

Chapter 16: Perl and Ajax

</head>

<body>
<form name="myForm">
<input type="button" id="ajaxtest" name="ajaxtest"
onclick="userList();" value="Userlist"/>

</form>

<p class="msg" id="msg">Status</p>
<div id="userlist" name="userlist"></div>

</body>
</html>

Example 3: mod_perl Handler
The mod_perl handler example, repeated in this section, uses the JSON::XS Perl module to encode the
Perl database result set, which was created by the retrieval of the list of users into a JSON data string
using the JSON::XS method encode_json().

package WroxHandlers::Ajax;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK);
use JSON::XS;
use WebApp;

sub handler {
my ($r)= @_;

load emulation
sleep 7;

$r->content_type(’text/html’);

my $webapp= new WebApp({r => $r});
my $userlist= $webapp->getUsers();
my $num_users= keys %$userlist;
$r->print(encode_json({ ‘msg’ => "Returned $num_users users" ,

‘userlist’ => $userlist}));

return Apache2::Const::OK;

}

The JSON is printed, which the xmlHTTPRequest object reads and then displays as shown above.

Example 4: MySQL Ajax Client
The example in this section takes the previous example a step further. It adds a text field to the form for
entering SQL queries.

716

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 717

Chapter 16: Perl and Ajax

Major caveat! This example uses a database query text field in the form and allows
any query to be run on the database, which, normally, is not a good idea unless you
really lock this application down. This is only being shown as a nifty example of
what you can do with Ajax! You must always control what queries are executed on
your database server, which means you should not run raw queries to the database.
Likewise, you should always use placeholders in your SQL to prevent things such
as SQL injection attacks.

With that said, this is a nifty example! It shows how the Perl JSON module can take a Perl array reference,
as returned by DBI fetchtall_arrayref() and converts it into a JSON data structure that you can
then access from the Ajax response. You use this returned JSON data structure to build an HTML table,
displaying the results.

In this example, it should also be noted that there is no limitation of which columns are printed.

<html>
<head><title>Ajax test</title></head>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script language="javascript" type="text/javascript" src="/javascript/xmlhttp.js">
</script>
<script type="text/javascript">
<!--

function dbList()
{

var xmlHttp = getXmlHttp();
document.getElementById(’ajaxtest’).setAttribute("disabled", "disabled");

xmlHttp.onreadystatechange = function()
{
document.getElementById("msg").innerHTML="processing...";

The following lines of code check to see if there is an existing result set prior to creating a new one.
(Otherwise it would keep adding tables to the page.) If the result set exists, it removes it.

if (xmlHttp.readyState == 4)
{

// deserialize the JSON text
var response = eval("(" + xmlHttp.responseText + ")");

// obtain the result
var result = response.result;

// set the message
document.getElementById("msg").innerHTML="MySQL result set: " + response.msg;

var existing_result = document.getElementById(’result’);
if (existing_result) {
existing_result.parentNode.removeChild(existing_result);

}

717

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 718

Chapter 16: Perl and Ajax

// start constructing a table
var result_table= document.createElement(’table’);
result_table.className = ‘userlist’;
document.getElementById(’result_div’).appendChild(result_table);
result_table.setAttribute(’id’,’result’);
result_table.setAttribute(’name’, ‘result’);

The same mechanism used with the previous example is employed to print out the table. Then a loop is
made over the JSON object, adding rows and cells iteratively.

for (var i = 0; i < result.length; i++)
{
var j = 0;
var urow = result_table.insertRow(i);
for (var colname in result[i])
{

var ucell = urow.insertCell(j);
if (i == -1) {
ucell.innerHTML = colname;

}
else {
ucell.innerHTML = "<pre>" + result[i][colname] + "</pre>";

}
j++;

}
}
var j = 0;
var urow = result_table.insertRow(0);
for (var colname in result[0])
{
var ucell = urow.insertCell(j);
ucell.innerHTML = colname;
j++;

}
document.getElementById(’ajaxtest’).removeAttribute("disabled");

}
}

For this request, a POST is used. To do this, you need to set the Content-type request header to indicate
that it is indeed a POST, in addition to setting the form content. The xmlHttpRequest method send() takes
the value of the form, which causes a submission of those form values to occur.

xmlHttp.open("POST", "/ajax_db", true);
xmlHttp.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded; charset=UTF-8");

var post = "dbquery=" + document.getElementById("dbquery").value;
xmlHttp.send(post);

}
// -->

</script>

</head>

718

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 719

Chapter 16: Perl and Ajax

<body>
<form name="myForm">
<fieldset>
<label>Query</label> <input type="text" id="dbquery" name="dbquery">
<input type="button" id="ajaxtest" name="ajaxtest"

onclick="dbList();" value="Query"/>
</fieldset>

</form>

<p class="msg" id="msg">Status</p>
<div id="result_div" name="result_div"></div>

</body>
</html>

Example 4: mod_perl Handler
First and foremost, you want to add a read-only user to your database for the schema that this application
will use, so that only read-only queries can be run using this application. In the SQL statement that
follows, only the SELECT privilege is granted to ‘webuser_ro’.

mysql> GRANT SELECT ON webapp.* TO ‘webuser_ro’@’localhost’ IDENTIFIED BY ‘s3kr1t

Then the user is then added to DBIx::Password.(/usr/local/share/perl/5.8.8/DBIx/Password.pm):

’webuser-ro’ => {
‘port’ => ‘’,
‘username’ => ‘webuser_ro’,
‘host’ => ‘localhost’,
‘database’ => ‘webapp’,
‘password’ => ‘s3kr1t’,
‘attributes’ => {},
‘connect’ => ‘DBI:mysql:database=webapp;host=localhost’,
‘driver’ => ‘mysql’

},

This new virtual db user, ‘webuser-ro’, is the user the application will connect as so that you can sleep
at night!

The mod_perl handler for the example reads in the submitted form value query from the Ajax
request.

When the WebApp object is instantiated, the database read-only virtual user is passed as the
db_virtual_user parameter to ensure that the database connection is a read-only connection.

The form value query is passed to the selectall_arrayref() to produce a result set of an array of hash
references for each record returned from the query. If there is an error, there is no result set. But you need
to return one for the calling page’s JavaScript to work properly. Therefore a dummy result set is created.
Finally, encode_json() is called in $r->print(), which prints the JSON result back to the Ajax client.
This result includes various data members, including the result set from MySQL, which is now in JSON
format.

719

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 720

Chapter 16: Perl and Ajax

use Apache2::Const -compile => qw(OK);
use JSON::XS;
use WebApp;

sub handler {
my ($r)= @_;

sleep 1;

$r->content_type(’text/html’);

my $webapp = WebApp->new(
‘r’ => $r,
‘db_virtual_user’ => ‘webuser-ro’,
});

my $form= $webapp->getForm();
$webapp->{dbh}{RaiseError}= 0;
warn Dumper $form;

my $result= $webapp->{dbh}->selectall_arrayref(
$form->{dbquery},
{ Slice => {} });

if ($webapp->{dbh}->errstr){
$result= [{’errstr’ => $webapp->{dbh}->errstr}];

}

my $num_results = scalar @$result;
$r->print(encode_json({ ‘msg’ => "Returned $num_results rows" ,

‘result’=> $result}));

return Apache2::Const::OK;

}

1;

Example 4 in Action
Now to see this MySQL Ajax client in action! Seeing several queries run using this application will give
you an idea of how interesting this application is.

Figure 16-1 shows using this page to select the first ten rows from the states table.

Figure 16-2 shows this being used to run the MySQL SHOW PROCESSLIST SQL statement, displaying the
processes running in MySQL. This is something any MySQL database administrator would appreciate!

720

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 721

Chapter 16: Perl and Ajax

Figure 16-1

Figure 16-2

721

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 722

Chapter 16: Perl and Ajax

Figure 16-3 displays the status of the memcached server using the UDF call memc_stats().

Figure 16-3

This example shows some of the really clever things you can do with Ajax, JavaScript, and mod_perl
handlers using the JSON Perl module.

Example 5: Reading the Raw Post Data
The example in this section shows how Ajax can send raw POST from the Request Record to JSON, which
the mod_perl handler reads and then converts to a Perl data structure (a hash reference). The example
still uses the same data — which in fact will be passed back and forth between the client and server. This
application may not be practical, but it demonstrates how convenient it is to go between Perl and JSON,
and how you can simply pass JSON back and forth, rather using form POST data.

<html>
<head><title>Ajax test</title></head>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">

<script language="javascript"
type="text/javascript" src="/javascript/xmlhttp.js">

</script>

<script type="text/javascript">

function userList()

722

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 723

Chapter 16: Perl and Ajax

{
var xmlHttp = getXmlHttp();

document.getElementById(’ajaxtest’).setAttribute("disabled", "disabled");
}
xmlHttp.onreadystatechange = function()
{
document.getElementById("msg").innerHTML="processing...";

The previous code is where the response from the server is read. The server sends the JSON response
that has the userlist. That is the JSON data structure that eval will evaluate, making it available as a
JavaScript variable userlist. Using the JavaScript variable userlist, a table can be constructed in an
iterative loop, as was done in the previous examples (3 and 4).

if (xmlHttp.readyState == 4)
{

// deserialize the JSON text
var response = eval("(" + xmlHttp.responseText + ")");

// obtain the userlist
var ulist = response.userlist;

// set the message
document.getElementById("msg").innerHTML="Userlist." + response.msg;

// start constructing a table
var usertable= document.createElement(’table’);
usertable.className = ‘userlist’;
document.body.appendChild(usertable);
usertable.setAttribute(’id’,’userlist’);
usertable.setAttribute(’name’, ‘userlist’);

// this is so we iterate trough only the columns we want
cols = new Array(’uid’, ‘username’, ‘firstname’, ‘surname’);
var i= 0;
for (var uid in ulist)
{

var urow = usertable.insertRow(i);

for (var j = 0; j < cols.length; j++)
{

var ucell = urow.insertCell(j);

ucell.innerHTML = ulist[uid][cols[j]];

}
i++;

}

// build the table header
var urow = usertable.insertRow(0);
var uidcell= urow.insertCell(0);
uidcell.innerHTML = ‘UID’;

723

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 724

Chapter 16: Perl and Ajax

var unamecell = urow.insertCell(1);
unamecell.innerHTML = ‘Usernamae’;
var fnamecell = urow.insertCell(2);
fnamecell.innerHTML = ‘Firstname’;
var snamecell = urow.insertCell(3);
snamecell.innerHTML = ‘Surname’;

}

document.getElementById(’ajaxtest’).removeAttribute("disabled");
}

The following JSON string shows what will be sent to the server as a POST and decoded to a Perl data
structure:

// This is the json string that will be sent to the server
var json_userlist= ‘{"userlist":{"27":{"firstname":"Patrick","admin":"1",

"uid":"27","phone":"2828282822","username":"CaptTofu","surname":"Galbraith",
"state":"NH","email":"capttofu@example.net","password":
"acbd18db4cc2f85cedef654fccc4a4d8","city":"Stoddard","address":"11122GraniteSt."},
"28":{"firstname":"Wes","admin":"1",
"uid":"28","phone":"2324448888","username":"wes","surname":"Moran","state":"NH",
"email":"wes@somesite.com","password":"acbd18db4cc2f85cedef654fccc4a4d8",
"city":"Happy Corner","address":"18182 Moosehaven St."},"29":{"firstname":
"Jim","admin":"0","uid":"29","phone":"2929888",
"username":"Jimbob","surname":"Bob","state":"NH","email":"jimbob@unix.com",
"password":"","city":"Des Moines","address":"222 Elm St."}},
"msg":"Test Post from JSON."}’;

xmlHttp.open("POST", "/ajax_handler", true);
xmlHttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

xmlHttp.send(json_userlist);

}
</script>

</head>

<body>
<form name="myForm">
<input type="button" id="ajaxtest" name="ajaxtest"

onclick="userList();" value="Userlist">
</form>

<p class="msg" id="msg">Status</p>
<div id="userlist" name="userlist"></div>

</body>
</html>

Example 5: mod_perl Handler
Instead of reading individual parameters of POST data, the example in this section sets the variable $json
to the entire POST request header by the amount specified in the request header Content-Length. The

724

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 725

Chapter 16: Perl and Ajax

value of $json is then decoded using from_json() — this is where you could make use of the decoded
JSON data as a Perl data structure. In this case, it’s encoded back to a JSON string that the client will read
in the request.

package WroxHandlers::AjaxPost;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK);
use Apache2::RequestRec ();
use Apache2::RequestIO ();

use JSON;

sub handler {
my ($r)= @_;
my $template_path;

simulate a load
sleep 7;

my $json;
if ($r->method() eq ‘POST’) {

if ($r->can(’read’)){
$r->read($json, $r->headers_in->{’Content-length’});

}
}

my $jref = from_json($json);

my $num_users= keys %{$jref->{userlist}};
$r->content_type(’text/html’);
$r->print(to_json({ ‘msg’ => "Returned $num_users users" ,

‘userlist’ => $jref->{userlist}}));

return Apache2::Const::OK;

}

1;

Example 6: Using the Prototype JavaScript Framework
The JavaScript Prototype library is a JavaScript framework that is intended to ease web development
of dynamic applications. You can download this framework from http://www.prototypejs.org/. This
framework provides a lot of very useful functionality for easy Ajax and DOM manipulation. The follow-
ing are the author’s two favorite things about it:

❑ It features an Ajax.Request object that is much easier to use because you don’t have to imple-
ment code to check the type of client in try/catch blocks.

❑ The prototype library provides a shorthand way to access DOM elements.

725

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 726

Chapter 16: Perl and Ajax

For making an Ajax request, it’s very simple. This:

var myajax = new Ajax.Request(’/perl_handler’, { method: ‘GET’});

. . . would create a request object to the URL /perl_handler using a GET. You can also set response
callbacks for various events such as success and failure, similar to what was shown previously as
onreadystatechange events, but with greater ease and enhanced ability to set the events that a particular
event function will handle. In the following code snippet, the onMsg() function (which is a function you
have coded) is set to handle a successful request, whereas the onError() function (which you have also
coded) would be run upon an error condition.

var myajax = new Ajax.Request(’/perl_handler’,
{

method: ‘GET’},
onSuccess: function(transport) {

onMsg (transport.responseText);
},
onFailure: function() {

onError ("Errors encountered!");
}

});

There are other events that are available for setting functions to handle as well, per the documentation
available from the Prototype JavaScript Framework web site.

To see how the Prototype JavaScript Framework extends the DOM, look at the next simple example. It
shows how to provide a ‘‘shorthand’’ way of accessing DOM objects when you have an element in a form
with the id of userform that is also within a <fieldset> called someelement:

var myelement = document.userform.userfieldset.someelement;

. . . or this:

var myelement = document.getElementById("someelement") ;

Can be written as:

var myelement = $("somelement");

The following example will give you a better sense of how useful the Prototype JavaScript Frame-
work is. This example will reuse the first example, Example 1, using the Prototype JavaScript
Framework:

Make sure that whatever templating system you are using, or if you are printing out
the HTML in your mod_perl handler, that you don’t interpolate the sigils ($)
characters in the JavaScript! This will give you hours of debugging enjoyment if
you are not careful.

726

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 727

Chapter 16: Perl and Ajax

1. Download the library file from http://www.prototypejs.org and include it in your docu-
ment using the script element.

2. As you can see, instead of having to reference the element ‘‘msg’’ by using document
.getElementById("msg"), you can now simply use $("msg").

Also, you can see the Ajax request object is instantiated to create a request to the mod_perl handler
/ajax_handler, setting the function onMsg() as the event handler for a successful request — which will
inevitably result in the value of the response being writing to the div element, msg.

<html>
<head><title>Ajax test</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script language="javascript" type="text/javascript"

src="/javascript/prototype-1.6.0.3.js">
</script>

<script type="text/javascript">

function onMsg(resptext) {

var obj = resptext.evalJSON(true);
$("msg").innerHTML = obj.msg;

}

function doMsg()
{

$("msg").innerHTML="processing...";
var ajax = new Ajax.Request(’/ajax_handler’,

{ method:’GET’,
onSuccess: function(transport) {

onMsg(transport.responseText);
}

});

}
</script>

</head>

<body>
<form name="myForm">
<input type="button" onclick="doMsg();" value="Message"/>

</form>

<p class="msg" id="msg">Message</p>

</body>
</html>

The mod_perl handler for this will function the same way as Example 1; it returns a random string value
using WebApp::randomString().

727

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 728

Chapter 16: Perl and Ajax

Example 7: Account Creation with Ajax
Example 7 will show you a full-fledged application that creates an account for a user. The application
will create an account that is then used in setting a session, using the application that was demonstrated
in Chapter 15. This application will also show you how this application is implemented to send email to
the user’s email address specified during account creation.

This example will use two mod_perl handlers: one to display the account creation page, containing the
account creation form; and the other to handle Ajax requests. For the Ajax and JavaScript, this example
will use the JavaScript Prototype library.

Account Page mod_perl Handler
The first handler is the account page handler. This handler uses a template containing JavaScript func-
tions to implement user interface functionality. It also has Ajax code that will send the account request to
the other mod_perl handler that creates the user account.

It’s important to note that the parameter INTERPOLATE is set to 0 upon instantiation of a Template Toolkit
object. This is very important because you want to ensure that the Template Toolkit does not interpolate
the sigils (located in the template and used by the JavaScript Prototype library) as Perl variables. You
could, alternatively, omit it because INTERPOLATE will default to 0 if it is not set. The author can attest to
this being an issue; he spent three hours trying to figure out why the JavaScript would not work properly!

In the following application example, a pull-down menu is required to display the list of states. The data
for the states is obtained using the WebApp method getStates(). And the actual pull-down option
menu is provided by the CGI popup_menu() method.

package WroxHandlers::AccountHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT SERVER_ERROR);
use Apache2::Request;
use Template;
use CGI qw(:standard);
use WebApp;

sub handler {
my ($r)= @_;
my $msg;
my $url= $r->uri;
my $template_path;

my $webapp = WebApp->new({ r => $r});

get the submitted form values
my $form= $webapp->getForm();

my $sessionref= $webapp->getSession(\$msg);

obtain the template path

728

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 729

Chapter 16: Perl and Ajax

$template_path= $r->dir_config(’TEMPLATE_PATH’),

instantiate a new Template object
my $template = Template->new({

INCLUDE_PATH => $template_path,
INTERPOLATE => 0, # or simply leave out

POST_CHOMP => 1,
});

my $states= $webapp->getStates();

$states->{default}= ‘Select a state’;
my $states_select= popup_menu(

-name => ‘state’,
-id => ‘state’,
-values => [sort keys %$states],
-default => $form->{state} ? $form->{state} : ‘default’,
-labels => $states);

my $tparams = {
msg => "Create an account",
url => $r->uri,
states_select => $states_select,

};

$url =∼ s/ ˆ \///;
my $tname= $url . ‘.tt2’;

$r->content_type(’text/html’);

$template->process($tname, $tparams) ||
do {

$r->server->warn($template->error());
return Apache2::Const::SERVER_ERROR;

};

return Apache2::Const::OK;
}

Account Page Template
The template, account.tt2, contains all the JavaScript functionality. You’ll notice a trend here — that
functionality is moved out of the server code and now is contained on the client in the page with the
various JavaScript functions.

<html>
<head>
<title>Session Example</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script language="javascript" type="text/javascript"

src="/javascript/prototype-1.6.0.3.js">

729

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 730

Chapter 16: Perl and Ajax

</script>
<script type="text/javascript">
<! —

The first function shown, createAccount(), is an onSuccess event handler. This is the function that
handles what to display in the account page once the Ajax request creates an account. First, the function
checks the state of the response. If no error is known to have occurred, it must re-enable the Submit
button.

function createAccount(responseText) {
var obj = responseText.evalJSON(true);
var msg = obj.msg;

if (obj == null) {
// no message from response, so set one
$("msg").innerHTML = "No response for user create " + $("username");
// re-enable the submit button
$("create_account").removeAttribute("disabled");
return;

}

// set message from response
$("msg").innerHTML = obj.msg;

If the error code is -1, this indicates that the user already has a session and is logged in, in which case,
the window.location will cause a redirect to the site’s base URL.

/*
if user is logged in - don’t want them to create an account!
redirect them to main site, or wherever you like

*/
if (obj.err == -1) {
window.location = "/";

}

If there is a noncritical error, then it simply re-enables the Submit button and returns a false:

// if there was any non-critical error, re-enable the submit button
if (obj.err == 1) {
// re-enable the submit button, failure
$("create_account").removeAttribute("disabled");
return false;

}

If no errors are returned from the account creation mod_perl handler, then it will proceed. It re-enables
the Submit button, and then hides the account form, which is contained in a div DOM element having
the id of accountform. You then want to make another element containing a successful id message. Now,
once the user’s account is created, the user can’t resubmit another account creation request.

// Re-enable submit button, success
$("create_account").removeAttribute("disabled");

730

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 731

Chapter 16: Perl and Ajax

// Hide the form
$("accountform").style.visibility = ‘hidden’;

// make visible the message
$("success").style.visibility = ‘visible’;

}

The next function demonstrated, processForm(), takes care of two primary tasks:

❑ Form validation

❑ Creation of the Ajax request to create the user account

The form elements are checked to make sure they are all set using a loop over all the element ID names,
provided by the array fields. If any of them are empty, then the div element msg is set to contain a
message to the user indicating the problem, and the function returns to allow the user to correct the
error.

/*
this function is used to validate the form as well as initiate
the Ajax request

*/
function processForm()
{

var retval = true;

fields = new Array(
"password", "verify", "email", "username", "firstname", "surname");

for (var i = 0; i < fields.length; i++) {

if ($(fields[i]).value == ‘’) {
console.log("field " + fields[i] + " value " + $(fields[i]).value);

$("msg").innerHTML = "The " + fields[i] + " field is empty";
return false;

}
}

Next, a check is made to compare the string value of the password form element to the string value of
the verify form element. If they don’t match, then the msg div element is set, telling the user. Then the
function returns.

if ($("password").value != $("verify").value)
{
$("msg").innerHTML="Passwords do not match.";
return false;

}

Finally, when all form validation has been passed, the Ajax request can be issued. The Submit button ele-
ment create_account is disabled, and the msg div element is set to indicate the processing is occurring.

731

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 732

Chapter 16: Perl and Ajax

$("msg").innerHTML = "processing...";

// disable the submit button so they can’t resubmit
$("create_account").setAttribute("disabled","disabled");

For the Ajax request, this will be a POST. In order to post, you will need to build up your post data for each
form element. This is trivial using the Prototype JavaScript Framework. Just append the text parameter
names with the values provided. The request is made and the form values are posted to the mod_perl
handler. The onSuccess event handler is the createAccount() function already shown above.

var ajax = new Ajax.Request(’/ajax_handler’,
{ method:’POST’,
parameters:
‘password=’ + $("password").value + ‘&verify=’
+ $("verify").value
+ ‘&email=’ + $("email").value + ‘&username=’
+ $("username").value
+ ‘&firstname=’ + $("firstname").value + ‘&surname=’
+ $("surname").value
+ ‘&address=’ + $("address").value + ‘&phone=’ + $("phone").value
+ ‘&city=’ + $("city").value + ‘&state=’ + $("state").value,

onSuccess: function(transport)
{ createAccount(transport.responseText); }

});

}

// -->
</script>

</head>
<body>
<!-- end of header() content -->

Account Handler
Next, let’s look at the mod_perl account creation Ajax handler, AjaxAccountHandler. This handler has
quite a bit of functionality contained within it. It has two primary tasks to create the user’s account, and
to send the new user an email indicating that his or her account has been created.

package WroxHandlers::AjaxAccountHandler;

use strict;
use warnings;
use JSON::XS;

use Apache2::Const -compile => qw(OK);
use Digest::MD5 qw(md5_hex);
use WebApp;

The handler() Subroutine
First, the session is checked. If the user is logged in, he or she should not be creating an account,
so set the variable, $err, which indicates the error code, to -1. This will result in the JavaScript

732

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 733

Chapter 16: Perl and Ajax

function createAccount(), shown previously in the account page template code, to issue a redirect of
the page.

sub handler {
my ($r)= @_;
my $msg = ‘’;
my $err = 0;

my $webapp = WebApp->new({ r => $r});
my $form = $webapp->getForm();

obtain the session
my $sessionref= $webapp->getSession();

if the user is logged in, they do not need to create an account
if ($sessionref->{uid}) {

$err = -1;
}

Next, if the user is not logged in, it performs a check on the form element password and verify to make
sure they match. The JavaScript in the form already should have caught this, but it can’t hurt to have
another check at the server level. The message being set here in the server code will result in the same
thing that the JavaScript function processForm() does, which is to set the message indicating an error in
the msg div.

else {

if ($r->method() eq ‘POST’) {
if ($form->{password} ne $form->{verify}) {

$msg= "Password and password verify do not match";
$err= 1;

}

Next, the WebApp method userExists() is used to check if the user already exists. If he or she does
exist, the error message and error code are set with $msg and $err.

my $uid= $webapp->userExists({
username => $form->{username},
email => $form->{email}});

warn "uid $uid" if $uid;

if ($uid) {
$msg = <<EOMSG;

The user $form->{username} or email $form->{email} already exist.
Please try another value.";
EOMSG

$err= 1;
}

If the user doesn’t exist, the WebApp method saveUser() is used to save the user. As you will recall, all
the functionality to make sure the user is inserted (as well as cached) is implemented in saveUser(); it is
very convenient to include it here in this mod_perl handler.

733

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 734

Chapter 16: Perl and Ajax

else {

my $saved = $webapp->saveUser({
username => $form->{username},
email => $form->{email},
password => md5_hex($form->{password}),
firstname => $form->{firstname},
surname => $form->{surname},
phone => $form->{phone},
state => $form->{state},
city => $form->{city},
address => $form->{address} });

Set a success message that will be displayed in the msg div. Also, call the notifyUser() subroutine,
which is a subroutine that calls a WebApp method to send mail:

if ($saved) {
notifyUser($form);
$msg = <<EOMSG;

The account for $form->{username} has been created
and information sent to $form->{email}
EOMSG

}
else {

$msg =
"There was a problem creating the account for $form->{username}";

}
}

}
}

Just as with the other handlers previously shown in this chapter, a sleep period is added to simulate
a loaded server so you can verify things, such as the Submit button being disabled during processing.
Finally, it prints out the encoded JSON, which is read as the Ajax request object and provides the calling
JavaScript function createAccount(). The members err and msg are used for decision making and
message display, respectively.

simulate a load
sleep 7;

$r->content_type(’text/html’);
$r->print(encode_json({

msg => $msg,
err => $err }));

return Apache2::Const::OK;

}

734

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 735

Chapter 16: Perl and Ajax

The notifyUser() Subroutine
Next comes the subroutine notifyUser(). This subroutine prepares the message, and sets some values
in the message, such as the login URL, the user’s new password, and the subject of the email the user
will receive.

You may not want to send the user their password. This is a very simple example, and you would prob-
ably want to have some mechanism that would require them to change their password right away. You
could alternatively send them a link that activates their account completely. It all depends on what your
security requirements are.

Finally, the WebApp method sendEmail() is called, sending the message to the user’s email address,
from accounts@example.com.

sub notifyUser {
my ($form) = @_;
my $username = $form->{username};
my $email = $form->{email};
my $password = $form->{password};
my $login_url = ‘http://example.com/login’;

warn "sending mail for $username $email";
my $subject= "New Account and Password information";
my $msg = <<EOMSG;

A new account has been set up for $form->{username}
with the email address $form->{email}

Username: $username
Password: $password

Now you can log in at: $login_url.

EOMSG

sendEmail($email, ‘accounts@example.com’, $subject, $msg, ‘example.com’);
}

1;

New WebApp Method sendEmail()
The sendEmail() method, which the account mod_perl handler requires, is added to the WebApp class.
This is how you can send email to a user, although you can also use it for a number of purposes other
than new account creation.

This new method (or subroutine) is included in the EXPORT list so that it doesn’t require instantiation or
an object handle.

735

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 736

Chapter 16: Perl and Ajax

Required for this method is the importation of both Mail::SendMail and Email::Valid modules, which
you can obtain from CPAN.

use Mail::Sendmail;
use Email::Valid;
code body
our @EXPORT = qw(randomString buildRange sendEmail);

The sendEmail() method takes five arguments, as will be shown. It uses Email::Valid to test the
address of the new user. If the address is invalid, it will not permit the email to be sent. It then
organizes a Perl hash %data, which contains the email parameters. It then uses the hash in the
method Mail::Sendmail::sendmail() to send the email to the user. If there is any error, 0 is
returned.

sub sendEmail {
my ($addr, $from, $subject, $content, $emailhost) = @_;
$from= ‘accounts@patg.net’;
$emailhost ||= ‘patg.net’;

unless (Email::Valid->rfc822($addr)) {
warn "Can’t send mail ‘$subject’ to $addr: Invalid address\n";
return 0;

}

my %data = (
From => $from,
Smtp => $emailhost,
Subject => $subject,
Message => $content,
To => $addr,
‘Content-type’ => ‘text/plain; charset="us-ascii"’,
‘Content-transfer-encoding’ => ‘8bit’
);

if (Mail::Sendmail::sendmail(%data)) {
return 1;

}
warn "Can’t send mail ‘$subject’ to $addr: $Mail::Sendmail::error\n";
return 0;

}

Ajax Account Creation in Action
Now, let’s see a demonstration of account creation! Figure 16-4 shows the initial form that the user has
filled out, just before hitting the Submit button.

Figure 16-5 shows the message that is displayed while the account is being created. Because the page in
Figure 16-5 is too long to capture in full, you can’t see that the Submit button is grayed out.

Finally, the user’s account is created and the success message is displayed (see Figure 16-6). At this point,
the user will have an email waiting in their mailbox, informing them of their new account.

736

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 737

Chapter 16: Perl and Ajax

Figure 16-4

Figure 16-5

737

Galbraith c16.tex V3 - 06/02/2009 10:55am Page 738

Chapter 16: Perl and Ajax

Figure 16-6

Summary
In this chapter, you were introduced to using Ajax and mod_perl together. You may want to remember
the following as you progress through the rest of the book:

❑ Ajax allows you to write applications that provide a better user experience because data is
exchanged asynchronously with the web server. A page submission to the server is not required
for information exchange, allowing the display of the page to remain unaffected. In this case, it
means mod_perl handlers read data from a request and send responses back to the Ajax client.
With Ajax and JavaScript together, it is possible to generate display content on the web client
instead of having to generate it on the server.

❑ You can write both Ajax client applications and mod_perl handlers that process the information
from the Ajax client using the JSON Perl module. You were shown how you can manipulate the
DOM (Document Object Model) of the web page, for example, to set a response message from
the server and enable or disable the Submit button.

❑ You were also shown the other piece of the session management system from Chapter 15. This
new application, shown in detail, uses Ajax to provide a front-end application that creates a
user account. Additionally, you saw how to send email by means of a new method added to the
WebApp module.

You should now have a good understanding of how you can use mod_perl and Ajax together to develop
some really useful applications.

738

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 739

Search Engine Application

In the beginning of the World Wide Web, search engine applications were one of the first types
of applications implemented. Being able to collect and store data from various sources across the
web and provide an interface to make that data searchable for users is a common functionality
that has been implemented in a number of ways throughout the history of computing and, more
recently, the Web. There are a lot of requirements for this functionality: a means of storing the data,
a means of full-text indexing the data so terms or queries can be used to perform searches against
that data and retrieve results, having hits that are quickly returned, and a user interface for the
person performing the search.

This chapter shows you a search engine application — one that’s probably implemented differ-
ently than other search engine applications you have seen before. This chapter shows you the
following:

❑ How to implement a search engine from top to bottom!

❑ How to use Sphinx for a real-life application.

❑ How to use Gearman to distribute work and how to use both the Perl client and worker
API for Gearman, as well as the Gearman MySQL UDFs, which you can use with triggers
to further automate job assignments.

❑ A simple web client crawler implemented in Perl that is a worker to which the Gearman
job server will assign work.

❑ Yet another application that takes advantage of memcached and MySQL together, and
even more practical examples of using the Memcached Functions for MySQL.

This chapter will put together all the pieces of everything you’ve learned throughout this book into
a really interesting and useful application. This is the icing on the cake!

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 740

Chapter 17: Search Engine Application

Using Gearman to Put the Search Engine
Application Together

Chapter 16 discussed all the great tools that are available for building Web Applications. Some of those
discussions focused solely on a particular tool — such as MySQL, memcached, Memcached Functions
for MySQL, Sphinx, Apache, or Perl itself. This section shows you how to use all of them together with
an additional, incredibly useful project: Gearman.

Gearman
Gearman is a server that assigns jobs requested by clients. It was developed by the same people who
brought you memcached: Danga. Gearman is ‘‘used to farm out work to other machines, dispatching
function calls to machines that are better suited to do work, to do work in parallel, to load balance lots
of function calls, or to call functions between languages,’’ according to the project site. At several points
in this book, the idea of splitting up functionality of the web application into other processes has been
mentioned. Gearman is the ultimate tool for making this a reality.

Originally written in Perl, but recently rewritten in C by Eric Day for better performance, Gearman is
at heart a job server — it receives requests for jobs and then assigns them. The basic Gearman setup
consists of a client, a worker, and a job server. The client creates a job and requests that it be done. The
job server delegates the job to an appropriate worker for the given job. These workers can do anything
that you want them to do — fetch documents off the Web, store data in memcached, stop and restart
other servers — for anything that you can code, Gearman can have that job run.

The essential idea of Gearman is shown in Figure 17-1.

Worker

Worker
Worker

Worker

Worker
File system

Gearman Server API

MySQL

Gearman UDFs Gearman::Client
Gearman Client API

Apache/
Application

code

Sphinx

Gearman
Server

Gearman::Worker

Internet

Memcached

Figure 17-1

740

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 741

Chapter 17: Search Engine Application

The idea here is simple: In your development using Perl and MySQL, you would issue requests for jobs
through the client API either using the Perl module Gearman::Client or using the Gearman MySQL user
defined functions (UDF). You would issue a particular job request that would then be assigned by the job
server to the appropriate worker. This job could be anything — copying data to and from memcached
to MySQL or any other data source, building Sphinx indices, fetching remote content off of a web site,
or running thumbnail generation in a directory containing uploaded images. Note in Figure 17-1 that
only one Gearman job server is shown. However, you could have any number of Gearman job servers,
running on different hosts and dispatching workers in a distributed scheme.

Installing and Running Gearman
Installing the latest version of Gearman is a very straightforward task. You can obtain the latest source
at http://www.gearman.org/doku.php?id=download. This site includes links to every component you
would need to run Gearman, including the job server itself and the Gearman MySQL UDFs.

gearmand Job Server Install
To install the Gearman job server, follow these steps:

1. Download the latest source distribution for gearmand into a directory where you usually
compile source code, such as /usr/local/src. The first thing is to unpack the source
distribution:

tar xvzf gearmand-0.3.tar.gz

2. Enter the gearmand source distribution directory:

cd gearmand-0.3
./configure

3. Now build and install gearmand:

make
make install

At this point, gearmand will be installed and ready to use.

Gearman MySQL UDF Install
Also available for use with Gearman are the Gearman MySQL user defined functions or UDFs. Eric Day
also wrote these UDFs (as well as the new C-based job server) and the UDFs offer even more power when
you use Gearman than with just using external programs. The UDFs are themselves client programs and
run internally within the MySQL server. With these UDFs, you can add jobs to the Gearman job server
just as you do regular client programs, however you do so from within MySQL, rather than using an
external program or from within your application code. This may sound confusing at first — running
a client within a server. However, if you will recall from earlier chapters, both the example Curl UDF
http_get() and the memcached UDFs are also clients.

741

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 742

Chapter 17: Search Engine Application

The Gearman MySQL UDFs offer the ability to request jobs of the Gearman job server from within
MySQL. This means you can have triggers on tables, so that when an UPDATE, DELETE, or INSERT occurs,
a job can also be added. Think of the power this gives you!

To begin installation of the Gearman MySQL UDFs, follow these steps:

1. Download the latest UDF source into the same directory where you downloaded the
Gearman job server source code:

tar xvzf gearman-mysql-udf-0.2.tar.gz

2. Enter the Gearman MySQL UDF source directory:

cd gearman-mysql-udf-0.2

3. Configure the package for compiling. The path you use depends on what distribution of
MySQL you have, whether it’s source or binary, etc. You will need to locate the path where
mysql_config exists. You will probably have to install whatever MySQL development or
community development package (yum search mysql, apt-cache search mysql, yast . . .)
is required.

On an Ubuntu system, it would be:

./configure --with-mysql=/usr/bin/mysql_config --libdir=/usr/lib/mysql/lib

--with-mysql is the argument that tells the configuration program where to find
mysql_config, --libdir is where the shared UDF libraries will be installed and this will
have to be a directory that MySQL can load the libraries from. You may have to add or edit
/etc/ld.so.conf.d/mysql.conf to make sure that the path is listed, then run ldconfig.

4. Next, build and install the UDF source code:

make
make install

5. To load the UDFs, you will need to do so from within MySQL:

CREATE FUNCTION gman_do RETURNS STRING SONAME "libgearman_mysql_udf.so";
CREATE FUNCTION gman_do_high RETURNS STRING SONAME
"libgearman_mysql_udf.so";
CREATE FUNCTION gman_do_background RETURNS STRING SONAME
"libgearman_mysql_udf.so";
CREATE AGGREGATE FUNCTION gman_sum RETURNS INTEGER SONAME
"libgearman_mysql_udf.so";
CREATE FUNCTION gman_servers_set RETURNS STRING SONAME
"libgearman_mysql_udf.so";

At this point, the Gearman MySQL UDFs are installed.

742

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 743

Chapter 17: Search Engine Application

Running the Gearman Job Server
Running gearmand, the Gearman job server, is the next thing you must do to use it.

To start gearmand:

1. Run (whatever path it is installed in):

/usr/local/bin/gearmand –d

This tells gearmand to run detached in the background.

2. Now, run a worker. The gearmand distribution includes both some sample worker and
client programs in the directory examples/ of the source directory. To really do something,
you need to run a worker program. For testing out gearmand (as well as both the workers
and client to get a concept of how Gearman works as a whole), use two windows to see
what exactly it does. In one window, start up the reverse worker. Do not background it by
using ‘&’:

./reverse_worker

3. Run a client program. With the Gearman job server (gearmand), you have two ways of
requesting a job:

❑ Attached/callback, which will wait until the job that the job server delegates is com-
pleted and then will return a return value of that worker.

❑ Detached/backgrounded, which will let the process run at its own volition, without
waiting for a return value of the worker.

For this example, the callback/attached client will run.

4. In another window, run the reverse_client_cb program:

./reverse_client_cb "This is a test"

Created: H:hanuman:929
Created: H:hanuman:930
Created: H:hanuman:931
Created: H:hanuman:932
Created: H:hanuman:933
Created: H:hanuman:934
Created: H:hanuman:935
Created: H:hanuman:936
Created: H:hanuman:937
Created: H:hanuman:938
Completed: H:hanuman:929 tset a si sihT
Completed: H:hanuman:930 tset a si sihT
Completed: H:hanuman:931 tset a si sihT
Completed: H:hanuman:932 tset a si sihT
Completed: H:hanuman:933 tset a si sihT
Completed: H:hanuman:934 tset a si sihT

743

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 744

Chapter 17: Search Engine Application

Completed: H:hanuman:935 tset a si sihT
Completed: H:hanuman:936 tset a si sihT
Completed: H:hanuman:937 tset a si sihT
Completed: H:hanuman:938 tset a si sihT

If you look in the window there the worker is running, you’ll see:

Job=H:hanuman:929 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:930 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:931 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:932 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:933 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:934 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:935 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:936 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:937 Workload=This is a test Result=tset a si sihT
Job=H:hanuman:938 Workload=This is a test Result=tset a si sihT

As you can see, the client requests a job from the job server, gearmand, to the reverse worker, which was
dispatched via the job server to the workers, which in turn reversed the text and returned the result of
that reversal.

Using the Gearman MySQL UDFs
Another way to make job requests to the Gearman job server is to use the Gearman MySQL UDFs. The
UDFs that are offered are discussed in detail in the following sections.

gman_severs_set()
This UDF, which you must call before calling any of the other Gearman MySQL UDFs, sets the server
that will be used for any UDF call within the client session. It takes as its first argument one or more
comma-separated servers, port optional — it will default to port 4730. The second argument can be used
to set a particular server to run a specific job!

gman_servers_set("<server list>", "<optional: job>")

Here is an example of a single server:

SELECT gman_servers_set("192.168.1.33:7004")

Here is an example of assigning 192.168.1.33 to run the reverse worker:

SELECT gman_servers_set("192.168.1.33:4730", "reverse");

And here is a example of assigning two servers to run the indexer worker:

SELECT gman_servers_set("192.168.1.88:4730,192.168.1.99:7004", "indexer");

Once your servers are set up, you can then request jobs from your UDF queries using the Gearman
MySQL UDFs.

744

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 745

Chapter 17: Search Engine Application

gman_do()
These UDFs send job requests to the Gearman job server, gearmand.

gman_do("<job name>", "<input value>")
gman_do_high("<job name>", "<input value>")
gman_do_background("<job name>", "<input value>")

gman_do() runs a normal job, and waits for the job to finish before returning a result. If there is
one, gman_do_high() is a high-priority job, which waits as well, and gman_do_background() runs the
job in the background at a lower priority, returning the host and job number.

If you want a job request to be made through a Gearman MySQL UDF using a
trigger, you need to call gman_do_background(). Otherwise, the INSERT statement
for the data being inserted into the table will not complete until the job is done.

gman_sum()
This is an aggregate function used to run jobs in parallel:

SELECT gman_sum("wc", Host) AS test FROM mysql.user;

Usage Examples
Here are some examples of using the UDFs to submit a job to the reverse worker you already started:

mysql> select gman_servers_set(’127.0.0.1’);
+-------------------------------+
| gman_servers_set(’127.0.0.1’) |
+-------------------------------+
| NULL |
+-------------------------------+

mysql> select gman_do(’reverse’, ‘This is a test’);
+--------------------------------------+
| gman_do(’reverse’, ‘This is a test’) |
+--------------------------------------+
| tset a si sihT |
+--------------------------------------+

mysql> select gman_do_background(’reverse’, ‘This is a test’);
+---+
| gman_do_background(’reverse’, ‘This is a test’) |
+---+
| H:hanuman:940 |
+---+

mysql> set @a = gman_do_background(’reverse’, "XYZ");

mysql> select @a;
+---------------+
| @a |

745

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 746

Chapter 17: Search Engine Application

+---------------+
| H:hanuman:945 |
+---------------+

mysql> set @a = gman_do(’reverse’, "XYZ");

mysql> select @a;
+------+
| @a |
+------+
| ZYX |
+------+

As you can see from the output of gman_do_background(), it returns the name of the host and job
number.

Perl and Gearman
Since Gearman was originally written in Perl, it of course has a well-supported client library. The mod-
ules you will need are Gearman::Client and Gearman::Worker, installed as one CPAN module, Gearman.
The POD documentation provides information on the usage for these modules.

Perl Gearman Worker
This is a basic Perl worker that performs that same job functionality as the C-binary worker you ran
earlier. It would be implemented as:

#!/usr/bin/perl

use strict;
use warnings

use Gearman::Worker;

sub my_reverse_fn {
reverse $_[0]->arg;

}

my $worker= Gearman::Worker->new();
$worker->job_servers(’127.0.0.1:4730’);
$worker->register_function(’reverse’,

\&my_reverse_fn);
$worker->work() while 1;

Regarding usage, you will implement the following:

❑ Instantiate a Gearman::Worker object.

❑ Set the job server to use using the method job_servers().

❑ Register the function to a job name — in this case ‘‘reverse.’’

746

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 747

Chapter 17: Search Engine Application

❑ Register the function to a subroutine name — in this case my_reverse() — that contains the
body of code that will implement the worker. This name that you register is the name of the job
you will refer to when requesting what job to run.

❑ The method work() will run the worker in a while loop, just as you would run a server. In this
case, the subroutine my_reverse_fn() is the function registered. It takes as its first argument
whatever was supplied by the client program. In this case, it will be a string that it reverses.

Perl Gearman Client
A basic Perl Gearman client requires even fewer lines than the worker:

#!/usr/bin/perl

use strict;
use warnings;

use Gearman::Client;
my $client = Gearman::Client->new();
$client->job_servers(’127.0.0.1:4730’);
$ref = $client->do_task(’reverse’, ‘This is a test’);
print "$$ref\n";

You implement this client using similar steps to the Perl worker implementation:

1. Instantiate a Gearman::Client object.

2. The servers are set with job_servers().

3. The method do_task() calls the job, which in this case is ‘reverse’, to run with the argument
‘‘This is a test.’’ This inevitably results in the worker running its subroutine registered as
‘reverse’, shown in the worker example as my_reverse_fn().

The Search Engine Application
Your curiosity should be sparked by what you just have read about regarding Gearman. Now you will
really see Gearman, along with MySQL, memcached, memcached UDFs, Sphinx, Apache and Perl in
action!

Search engines are applications that are most likely to have a lot of moving parts and functionality. This
is required to dispense information. The search engine application for discussion in this section has a few
moving parts of its own — perhaps it will seem like a Rube Goldberg contraption, but in a good way!
This application will show you just how useful all these new technologies are in implementing something
in a wholly different way. It is a prototype, and there may be ways of implementing it other than what
is shown. The main point is to demonstrate how processing can be spread out to various jobs and across
various servers, alleviating the work that a web application has to perform.

This search engine application has two major components:

❑ A data gathering system for data retrieval, storage, and creating full-text indices

❑ A search engine user application

The entire application consists of the components listed in the following table:

747

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 748

Chapter 17: Search Engine Application

Component Description

A mod_perl search
handler application

Displays the search page, allowing you to enter a search term and the
number of searches per page.

A mod_perl URL
entry interface
application

Where you enter URLs of web sites that you want to place in a queue.
These are fetched from the Internet, stored in MySQL, and indexed with
the full-text search engine Sphinx.

A Perl web client
worker application

Given a URL, this will retrieve the page at that URL as well as a recursion
of one level deep through the document at that URL, parsing any links and
subsequently fetching the page content of the web page at those links. It
stores content in memcached keyed by the MD5-hexed value of the URL
that yet another worker retrieves from memcached and stores in MySQL to
the appropriate tables. This web client worker is initiated by a database
trigger on a simple table that stores the URLs and receives its URL
argument from the trigger.

A Perl data storage
worker

This is trigger activated. It fetches a batch of web pages from memcached if
a counter object, also in memcached, is of a given value. The web pages
stored in memcached are identified by the MD5 hex of the URL value. This
worker both retrieves and stores these cached web pages from memcached
into MySQL using the memcached UDFs. Finally, this data storage worker
resets the URL storage counter object in memcached.

A Perl Sphinx indexer
worker

Also trigger-activated. If a counter object in memcached has reached a
given value, meaning a certain number of web pages have been stored and
therefore it needs to have the index rebuilt, the index worker calls the
Sphinx indexer program to re-index the Sphinx index for the table
containing the retrieved web pages. It also resets the indexer counter object
in memcached.

MySQL Four database tables, two triggers.

A meta-data table For storing information about the web page such as its URL, unique ID,
date, title, status, etc.

A BLOB/text table Has a 1:1 relation to the meta-data table that stores the actual content of the
web page for the particular URL in a TEXT column.

A URL queue table Stores the URLs of the web pages that need to be fetched from the Internet.
This is the table that has a trigger on it and initiates all the other actions.

A URL inventory
table

Stores the URLs of web pages that were stored in memcached by the web
client worker.

Two triggers on the
URL queue table

One trigger is on an INSERT; another is on an UPDATE. Both use the
Gearman MySQL UDF to call gman_do_background() to call the web client
worker. The other trigger will be on the URL inventory table that checks
values of both URL storage counter and indexer counter. If either is
exceeded, the job for whatever check is exceeded is requested to be run.

Sphinx full-text index This is built from database table containing the web pages.

memcached Stores the web pages retrieved as a somewhat temporary storage.

748

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 749

Chapter 17: Search Engine Application

The flow of how content is fetched from a web page, parsed, stored, and then indexed follows:

1. A user enters a URL value into the URL entry page and the URL value is stored in the URL
queue table.

2. The trigger on the URL queue table makes a job request to the Gearman job server for the
web client worker using the Gearman MySQL UDF gman_do_background().

3. The web client worker fetches the web pages’ contents from the web site for the given
URL provided to it from the client UDF. In addition to the content of the initial page,
which through recursion at one level deep, the web client worker also fetches any URLs in
the page. All retrieved web content pages are stored in memcached per columns of data
(columns that will inevitably be stored in MySQL). The ID of each stored page is based off
the md5 of the URL. With this, an entry is made to the URL inventory table.

4. The entry into the URL inventory table results in the activation of an INSERT trigger. This
trigger will use the memcached UDF memc_increment() to access and increment the value
of both counter objects in memcached.

5. The stored URL counter indicates the number of URLs stored to MySQL since the last
retrieval and subsequent storage. If the value of the data storage counter is greater than a
predetermined value (set to 5 in this example), then this trigger calls gman_do_background()
to request the data storage worker and sets the data storage counter object back to 0.

6. The indexer counter also indicates the number of URLs stored to MySQL since
the last retrieval. However, the value that the counter has to exceed in order for
gman_do_task_background() to request the Sphinx indexer worker to run is greater than
the value that needs to be exceeded for the data storage worker. This is because you don’t
want to be re-indexing as often as you would be storing data from memcached to MySQL.
The example in this book is 20, which is really low for real-life situations but it is set to this
value for demonstration purposes.

7. The data storage worker is triggered. This worker simply retrieves and deletes all the URLs
from the URL inventory table. The URL values it retrieves are used to build up an MD5
value that’s then used to retrieve the data from memcached. This retrieval and storage is
done in a single query that provides values in either an UPDATE or INSERT statement using
the memcached UDF memc_get().

8. The indexer worker is triggered. This runs the Sphinx indexer program, making it so the new
data in the database is indexed into the Sphinx full-text index.

As users request the search page, they can run search queries via the web search user interface that this
mod_perl application provides.

Database Tables for the Search Engine Application
When building a search engine, the first thing to think about is how the data is stored. For this application,
as shown in the previous section’s table, there will be four database tables.

CREATE TABLE urls (
id int(8) NOT NULL auto_increment,
url_md5 char(32) not null default ‘’,
url varchar(128) not null default ‘’,

749

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 750

Chapter 17: Search Engine Application

title varchar(64) not null default ‘’,
created date,
last_updated timestamp,
last_modified varchar(40) not null default ‘’,
status varchar(32) not null default ‘’,
primary key (id),
unique url_md5 (url_md5)

);

The four database tables are as follows:

❑ The urls table will store the meta-data information for a web page retrieved. This includes fields
such as title, last updated, the created date, the status of the web request, but not the actual web
page content. It’s good practice to keep your BLOB or text data in a separate table so that any
queries for meta-data type values don’t have to be retrieved from a table containing TEXT or
BLOBs; combining tables would make these queries perform slower and would require more
memory.

CREATE TABLE urls_blob (
id int(8) NOT NULL default 0,
content mediumtext,
primary key (id)

);

❑ The urls_blob table stores the actual web page contents. It also has a primary key id which is a
direct relation to the urls table id column:

create table urls_queue (
url_md5 char(32) NOT NULL default ‘’,
url varchar(128) NOT NULL default ‘’,
last_updated timestamp,
primary key url_md5 (url_md5)

) ENGINE=InnoDB;

❑ The urls_queue table is a simple, searchable table that stores a list of URLs you want Sphinx
to index. The urls_queue could be compared to the process of priming something. In this case
you’re priming the search engine. Its modification — either initial INSERT or UPDATE, results in
job requests for the web client worker to fetch the value of the row being inserted or modified.

create table urls_stored (
url_md5 char(32) NOT NULL default ‘’,
url varchar(128) NOT NULL default ‘’,
primary key url_md5 (url_md5)

) ENGINE=InnoDB;

❑ The urls_stored is a URL inventory table of the URLs of web pages that have been stored
temporarily in memcached to be subsequently stored in MySQL. This table provides a way to
account for the URLs as well as a means to activate a trigger to store these web pages for the
specified URLs. The trigger is set to call the data storage worker only if a certain number of
URLs have been stored, which is determined by checking a counter value stored in memcached
that’s incremented for every row inserted into the table. For the example in this chapter, this

750

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 751

Chapter 17: Search Engine Application

is set to 5. If there are five or more URLs in this table, then the data storage worker updates or
inserts into both the urls and urls_blob tables the values that were stored in memcached.

Database Triggers
There are three database triggers that are used for calling each of the workers, depending on whether a
row is inserted or updated:

❑ The trigger urls_queue_insert starts the whole process into action. When a URL is inserted
into this table, it sets the MD5 of the URL for the url_md5 column and then calls the Gearman
MySQL UDF gman_do_background(’url_fetch’, NEW.url). This results in the url_fetch job
being dispatched by the Gearman job server. This, in turn, fetches the web page of that URL, as
well as any links in that web page, and stores them in memcached.

DELIMITER |
CREATE TRIGGER urls_queue_insert
BEFORE INSERT ON urls_queue
FOR EACH ROW BEGIN

SET NEW.url_md5 = md5(NEW.url);
SET @gd= gman_do_background(’url_fetch’, NEW.url);

END |

❑ The trigger urls_queue_update, performs the same action as the previously mentioned trigger,
urls_queue_insert, but this time it happens when an UPDATE statement is run against the table
urls. You would activate this by running a query, such as:

update urls_queue set last_updated=now()
where url_md5 = ‘57fb6e137fed0e9d60ec31a93a5ca427’;

This would cause this trigger to run, updating the stored web page in memcached and inserting
a URL into the table urls_stored.

CREATE TRIGGER urls_queue_update
BEFORE UPDATE ON urls_queue
FOR EACH ROW BEGIN

SET @gd= gman_do_background(’url_fetch’, OLD.url);
END |

❑ The trigger urls_queue_update first checks and increments (memc_increment(), returning the
value it increments) the value of the urls_stored and indexer values in memcached using
the memcached UDF memc_increment(). These values, if exceeding 5 and 20, respectively, will
result in gman_do_background() running for either the url_process or indexer jobs, as well as
resetting the counter variables in memcached to 0 using memc_set().

CREATE TRIGGER urls_stored_insert
BEFORE INSERT ON urls_stored
FOR EACH ROW BEGIN

SET @count = memc_increment(’urls_stored’);
SET @index_count = memc_increment(’index_counter’);
IF @count > 5 THEN

751

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 752

Chapter 17: Search Engine Application

SET @gd = gman_do_background(’url_process’, NEW.url);
SET @reset = memc_set(’urls_stored’, 0);

END IF;
IF @index_count > 20 THEN

SET @gd = gman_do_background(’indexer’, NEW.url);
SET @reset = memc_set(’index_counter’, 0);

END IF;
END |

DELIMITER ;

Sphinx Setup
To index web pages stored in MySQL using the Sphinx full-text index, Sphinx also has to be set up. For
this example, we will use a simple Sphinx setup with a single distributed index that uses two Sphinx
agents — one for the main index, urls, and one for the delta index, urls_delta.

You have two indexes — one main, large index and a smaller delta index — for good reason: you don’t
want to re-index in its entirety a continually growing data set too often and have changes, or deltas,
added to it. Because Sphinx has distributed index functionality, you can have two indexes — the main,
large index and a smaller delta index work together as if they were a single index, while you only update
the smaller delta index. Then at some interval, you merge the delta index into the main index.

The first thing to review is the MySQL table that will contain the positions of both the main and delta
indices. The indexer uses this positional information in the table, sphinx_counter, to obtain the limits,
or extents, of what the records the indices will comprise. The indexer uses this to determine what data
should be selected when indexing.

The main urls index will contain all records having an id value less than the value of column, max_id,
in the table sphinx_counter. The delete index, urls_delta, will contain records having their id value
starting from the value of the column sphinx_counter.max_id with no upward limit.

Where the main index ends and the delta index starts is set only when the main index is re-indexed. The
delta index grows over time, and at some point, you merge the two of them. The break point will be set
to the maximum of the main index, which now contains what was previously in the delta, and the delta
is rebuilt with a starting point equal to the maximum of the newly merged index.

Each index has exactly one entry in this table and the position data is updated during indexing:

CREATE TABLE ‘sphinx_counter’ (
‘id’ int(11) NOT NULL,
‘max_id’ bigint(20) unsigned NOT NULL,
‘index_name’ varchar(32) NOT NULL default ‘’,
‘last_updated’ timestamp,
PRIMARY KEY (`id`),
KEY ‘index_name’ (`index_name`)

) ENGINE=InnoDB;ed

Here is an example showing the positional data of a running setup:

mysql> select * from sphinx_counter;

752

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 753

Chapter 17: Search Engine Application

+----+--------+------------+---------------------+
| id | max_id | index_name | last_updated |
+----+--------+------------+---------------------+
| 1 | 1133 | urls | 2009-03-02 11:05:30 |
| 2 | 1181 | urls_delta | 2009-03-02 11:12:12 |
+----+--------+------------+---------------------+

To use this to explain the topic further, the main index, urls, will contain records with the url.id value
of 0 through 1133, and the delta index, urls_delta, will contain records with the url.id value of 1134
through 1181.

The entry in the sphinx_counter counter table for the delta index is not necessary really, but it has
an added informational benefit to show you the state of what records your indices represent. The sin-
gle entry for the main index is sufficient to delineate the extents of the main and the delta indices for
indexing.

To set up Sphinx, follow these steps:

1. Define the data sources that will be used. The first source, urls, is set to use the MySQL
server running on localhost on port 3306. The sql_query_pre directive defines the query
that is run prior to the main document fetching query. In this case, the sphinx_counter table
is updated with the max (id) value from the urls table, moving the positional information
up to represent the index that is about to be regenerated.

2. The sql_query directive specifies the main query that will be run. The primary key or other
unique identifier must always be the first column specified in this query. In this instance, it is
the id column of the urls table. This makes it so when you perform a search against Sphinx,
you will obtain one or more values of the primary key id that you will subsequently use to
retrieve the actual data from MySQL, making for a fast lookup.

About this query: it performs a join of urls with urls_blob to obtain the actual content
from the BLOB table, as well as the other columns specified after the primary key value.
These columns are used to create a full text index and are therefore searchable. Sphinx
has a very flexible language, allowing you to specify which columns to search on. Also,
this query uses a WHERE clause to select records less than or equal to the value in the
sphinx_counter table for the main index. This is the mechanism that applies an extent to
the data being gathered.

3. The directive, sql_query_info, provides a query to the search command-line program,
which is good for running test queries against your index. Do note that search does not
search against Sphinx through the Sphinx search daemon, searchd — rather, it searches on
the index itself, so it will not work with distributed indices.

source urls
{

type = mysql

sql_host = localhost
sql_user = webuser
sql_pass = webpass
sql_db = webapp

753

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 754

Chapter 17: Search Engine Application

sql_port = 3306 # optional, default is 3306

sql_query_pre = UPDATE sphinx_counter \
SET max_id = (SELECT MAX(id) FROM urls) \
WHERE index_name = ‘urls’

main document fetch query
mandatory, integer document ID field MUST be the first selected

column
sql_query = SELECT id, url_md5, url, title, \

UNIX_TIMESTAMP(last_updated) as ulast_updated,
content \

FROM urls join urls_blob using (id) \
WHERE id <= \

(SELECT max_id FROM sphinx_counter \
WHERE index_name = ‘urls’)

document info query, ONLY for CLI search (ie. testing and
debugging)

must contain $id macro and must fetch the document by that id
sql_query_info = SELECT * FROM urls JOIN urls_blob USING (id) \

WHERE id = $id
}

4. The source for the delta index, urls_delta, is defined. The notation ‘‘urls_delta : urls’’
means that urls_delta will inherit every option/directive from the data source urls,
unless otherwise overridden. In this case, the directive sql_query_pre and sql_query are
overridden to specify a different range than what is used with the urls data source. For the
urls_delta data source, all records greater than the max_id value for the data source urls
are specified.

source urls_delta : urls
{

sql_query_pre = UPDATE sphinx_counter SET max_id = (SELECT MAX(id) \
FROM urls) WHERE index_name = ‘urls_delta’

sql_query = SELECT id, url_md5, url, title, \
UNIX_TIMESTAMP(last_updated) as ulast_updated, \
content \
FROM urls join urls_blob using (id) \
WHERE id >

(SELECT max_id FROM sphinx_counter
WHERE index_name = ‘urls’)

}

5. The indices are defined. The directives shown here are the most important. The directive
source defines the data source that is used to build this index; in this case the source urls
is used. The directive path is used to specify path and base name of the actual index files.
docinfo just specifies the storage mode. min_word_length specifies the minimum size
of a word that is indexed. The value of ‘1’ specifies all words. It’s important to point out
that MySQL full-text indices have a limit of three, so this is yet another improvement over
MySQL full-text indices.

index urls
{

document source(s) to index

754

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 755

Chapter 17: Search Engine Application

multi-value, mandatory
document IDs must be globally unique across all sources
source = urls

index files path and file name, without extension
mandatory, path must be writable, extensions will be auto-

appended
path = /usr/local/sphinx/var/data/urls

document attribute values (docinfo) storage mode
optional, default is ‘extern’
known values are ‘none’, ‘extern’ and ‘inline’
docinfo = extern

minimum indexed word length
default is 1 (index everything)
min_word_len = 1

‘sbcs’ (Single Byte CharSet)
charset_type = sbcs

}

6. The delta index, urls_delta, inherits everything from the index urls, except path and
source, which it overrides. Since the source for urls_delta is urls_delta — this is the data
source that has a different range than urls, hence urls_delta is a smaller index comprised
of a smaller range (the topmost records) of the database table urls.

index urls_delta : urls
{

path = /usr/local/sphinx/var/data/urls_delta
source = urls_delta

}

7. Next, the distributed index, dist_urls, is defined. This is the glue that makes the delta index
and main index work together as one index. Queries run against this distributed index; the
user never knows that the index is made up of parts.

index dist_urls
{

type = distributed

agent = localhost:3312:urls
agent = localhost:3312:urls_delta

agent_connect_timeout = 1000
agent_query_timeout = 3000

}

8. The indexer configuration is simple enough, and the directive mem_limit species how much
memory is used for the indexer, when it runs, to generate indices.

indexer
{

755

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 756

Chapter 17: Search Engine Application

memory limit, in bytes, kiloytes (16384K) or megabytes (256M)
optional, default is 32M, max is 2047M, recommended is 256M to

1024M
mem_limit = 32M

}

9. The searchd daemon is configured in the following section. The listen directive specifies
which port or socket the daemon will bind to. In this case, none is specified, so all interfaces
are used. The log directive specifies the log for the searchd daemon — this log will log the
status of the searchd daemon. The query_log directive specifies a log used to log the search
queries that are run against searchd.

The other directives set timeout values, max number of children to run, a pid file, maximum number
of matches returned, and whether the searchd daemon can be restarted seamlessly after running the
indexer.

Also listed is the directive seamless_rotate. This makes it so that when you run the indexer, searchd is
seamlessly restarted once the indexer completes.

searchd
{

hostname, port, or hostname:port, or /unix/socket/path to listen on
multi-value, multiple listen points are allowed
optional, default is 0.0.0.0:3312 (listen on all interfaces, port 3312)
#
listen = 127.0.0.1
listen = 192.168.0.1:3312
listen = 3312
log file, searchd run info is logged here

log = /usr/local/sphinx/var/log/searchd.log

query log file, all search queries are logged here
query_log = /usr/local/sphinx/var/log/query.log

client read timeout, seconds
optional, default is 5
read_timeout = 5
max_children = 30
pid_file = /usr/local/sphinx/var/log/searchd.pid

max amount of matches the daemon ever keeps in RAM, per-index
default is 1000 (just like Google)
max_matches = 1000
seamless_rotate = 1

}

Gearman Workers
In this application, three workers are used and they take care of various parts of the data retrieval,
caching, storage and indexing of web pages. The following sections discuss each one.

756

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 757

Chapter 17: Search Engine Application

Web Client Worker
This worker accesses the URL specified, parsing through the requested document for other links, for
which it fetches the pages, storing both the originally requested web page’s content as well as the web
page content of the URLs parsed into memcached:

url_fetcher_worker.pl

It stores the title, URL, last_modified, status, and content columns of the fetched pages — these are
columns that correspond to the database table columns. Each value is stored with a key that is a compos-
ite of the md5 of the URL, separated by a ‘;’ and the column name. After storing the data in memcached,
it enters a record into urls_stored for that URL. Please note the following about this worker:

❑ The body of the worker begins with the various Perl module imports. For this worker, you need
LWP and HTTP::Request for the web client functionality, and HTML::Strip for stripping the
HTML from what you store in MySQL that will inevitably be indexed by Sphinx.

Sphinx also has the ability to strip HTML.

❑ Digest::MD5 will be used for calling md5_hex to create a url_md5 value. Encode provides the
encode_utf8() method for encoding values that will be stored in memcached, which would oth-
erwise give an error. Gearman::Worker, of course, provides the methods for this program to be a
Gearman worker program.

#!/usr/bin/perl

use strict;
use warnings;

use LWP;
use HTTP::Request;
use HTML::Strip;
use Digest::MD5 qw(md5_hex);
use Gearman::Worker;
use Encode qw(encode_utf8);
use LWP::UserAgent;

use lib qw(/etc/apache2/perl-lib);
use WebApp;
my $webapp= new WebApp();

❑ The entry point into this worker, and the subroutine registered to the job url_fetch is
url_fetch(), which then calls fetch_remote_doc(), is as follows:

sub url_fetch {
fetch_remote_doc($_[0]->arg, 1);

}

❑ The fetch_remote_doc() subroutine does all the work of fetching the remote document. It takes
as its first argument a URL and as the second argument a flag that determines if links within the
web page fetched will need to be parsed and subsequently fetched. The way the worker is set up

757

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 758

Chapter 17: Search Engine Application

for this example is to use only one level of recursion. If there was no limit on recursion, it would
end up running for a very long time!

sub fetch_remote_doc {
my ($local_url, $recurse)= @_;

my $last_modified;

❑ The next check that follows is here to obtain a Last-Modified response value if the web page has
already been stored and to use this in the web page request. This will save having to fetch and
store the web page if there has been no modification to the page since it was stored.

my $if_modified = get_if_modified($local_url);

❑ Next, the User-Agent request header is set up. This creates a web client; this one will have the
user agent string ‘WroxClient/0.1’

Create a user agent object

my $ua = LWP::UserAgent->new;

$ua->agent("WroxClient/0.1 ");

❑ An HTTP request is created for the URL.

Create a request
my $req = HTTP::Request->new(GET => $local_url);

my $res = $ua->request($req); #, ‘If-Modified-Since’ => $if_modified);

❑ If the request is successful, then processing continues. The content is obtained and stored in the
variable $html. This currently includes the entire content of the web page, including HTML tags,
style sheets, and any sort of information.

if ($res->is_success) {
my $html = $res->content;

❑ The title of the web page is parsed. This will be the value for the title column.

my $title= parse_title($html);
$title ||= $local_url;

❑ Any links in the web page are parsed and stored in the array reference $urls. Then the web page
content in $html is stripped of HTML tags, as well as any occurrences of two or more spaces
being replaced with one space. The tags are not needed because Sphinx only needs to only index
the actual text values of the web page, as well as reduce the data storage requirements.

my $urls = parse_links($html);

my $hs = HTML::Strip->new();
my $plain_text = $res->content ? $hs->parse($res->content) : ‘’;

758

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 759

Chapter 17: Search Engine Application

$hs->eof;
$plain_text =∼ s/\s{2,}/ /g;
$plain_text =∼ s/\W/ /g;

$last_modified = defined $res->header(’Last-Modified’) ? ‘’;

❑ The Content-Type response header value is checked. For this worker, only HTML, plain text, or
XML is allowed. If the web page is this type, then a hash reference is used to organize the data
into a structure that will be stored in memcached using store_page():

my $content_type= $res->header(’Content-type’);
if ($content_type =∼ / ˆ text\//) {

my $pageref = {
‘last_modified’ => $last_modified,
‘title’ => $title,
‘url’ => $local_url,
‘content’ => $plain_text,
‘status’ => $res->status_line,

};

store_page($pageref);
}

❑ If the recursion flag $recurse is set, then the list of URLs obtained in the previous code block is
used in an iterative loop to call fetch_remote_doc() from within itself, however with the recur-
sion flag set to false. This worker could be modified to allow deeper levels of recursion using
a global/package-scoped variable that is decremented for every time fetch_remote_doc() is
called.

if ($recurse) {
for my $murl (keys %$urls) {

fetch_remote_doc($murl, 0);
}

}
}

}

❑ The store_page() subroutine stores the web page in memcached, with each member of the
$pageref hash reference being stored as a separate memcached value, keyed by the value of
$url_md5 prepended to ‘‘:<column name>’’. You might wonder why the whole $pageref hash
reference isn’t simply stored. This is so it’s possible to obtain the actual values and not a serial-
ized object using the memcached UDFs, which are used in other parts of the code.

❑ The memcached UDF memc_servers_set(), and the Gearman MySQL UDF are called. This is
to ensure that the insert trigger, urls_stored_insert, on the urls_stored table, reads counter
values from memcached to determine if it should either request from Gearman the data storage
worker or the Sphinx indexer worker.

sub store_page {
my ($pageref)= @_;

759

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 760

Chapter 17: Search Engine Application

my $url_md5 = md5_hex(encode_utf8($pageref->{url}));

$webapp->{dbh}->do("SELECT memc_servers_set(’127.0.0.1:11211’)");
$webapp->{dbh}->do("SELECT gman_servers_set(’127.0.0.1:4730’)");

❑ The URL being stored is checked to see if it already exists in urls_stored because there is no
reason to store it again since the urls_stored table is also a queuing table that is simply there
to provide a list of URLs for the data storage worker to know what to retrieve from memcached
and store in MySQL.

my $exists= $webapp->dbGetRef(’urls_stored’, ‘url_md5’,
{ url_md5 => $url_md5});

unless (scalar @$exists) {
$webapp->{memc}->set("$url_md5:url", encode_utf8($pageref->{url}));
$webapp->{memc}->set("$url_md5:status", encode_utf8($pageref-

>{status}));
$webapp->{memc}->set("$url_md5:title", encode_utf8($pageref-

>{title}));
$webapp->{memc}->set("$url_md5:last_modified",

encode_utf8($pageref->{last_modified}));
$webapp->{memc}->set("$url_md5:content",

encode_utf8($pageref->{content}));

❑ After setting the web page in memcached, a row is inserted into the urls_stored table. This
will result in the trigger, urls_stored_insert, being activated. It increments and checks two
counter values in memcached: one for determining if the urls_stored job should run, and the
other for determining if the indexer job should run. If these counters have values greater than 5
and 20 respectively (these can be increased), then either the data storage worker or the indexer
worker are requested with the Gearman MySQL UDF, gman_do_background(’urls_process’),
or gman_do_background(’indexer’), respectively.

$webapp->dbInsert(’urls_stored’, {
url => $pageref->{url},
url_md5 => $url_md5,
});

}

}

❑ The subroutine get_if_modified() obtains the Last-Modified value from the urls table, if set.
This in turn will be used in the web client request to return the document only if it has changed
since that value.

sub get_if_modified {
my ($url)= @_;

my $uref= $webapp->dbGetRef(’urls’, ‘last_modified’, {url => $url});
return $uref->[0]{last_modified};

}

❑ This very short subroutine, is_junk(), is used to filter out URLs that are most likely nonsense.
The author created this subroutine because he noticed that there were a ton of Viagra links!

760

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 761

Chapter 17: Search Engine Application

Though a very sparse subroutine, this can be fleshed out to use values from a table from the
database that supply a list of keywords to filter on to avoid acquiring nonsense, spam, or
rubbish web pages.

sub is_junk {
my ($url)= @_;
return 1 if $url =∼ /viagra/i;
return 0;

}

❑ The subroutine parse_title() parses from the web page content URL links into an array
reference that are then returned to the calling method. This provides a list of more URLs
to fetch.

sub parse_title {
my ($html)= @_;

my ($title) = $html =∼ /\<title\>([\w\W\r\n]+)\<\/title\>/gi;
$title =∼ s/\r|\n|//g;
$title =∼ s/\s{2,}/ /g;

return $title;
}

❑ The parse_links() subroutine splits the web page into an array for each line of the web page,
then loops through each line, parsing any links and storing any found in the regular expression
into an array @url_list. An iterative loop of @url_list is then used to check if the URL should
be rejected using the subroutine is_junk(), and then it is keyed into the hash reference $urls,
which is simply used to collect all the URLs parsed. Incrementing the keyed value of this hash
reference simply avoids collecting duplicate URL values. Note: You could also parse links using
the convenient CPAN module HTML::LinkExtor.

sub parse_links {
my ($html)= @_;
my $urls;
my @doc= split("\n", $html);
for my $line(@doc) {

my @url_list= $line =∼ /href=\"([ˆ "]+)\"/gi;
for my $url(@url_list) {

is_junk($url) or $urls->{$1}++
}

}
return $urls;

}

❑ The bottom of url_fetcher_worker.pl has the necessary code to implement the Gearman
worker part of this program. A Gearman::Worker object is instantiated, then the Gearman job
server is set with the subroutine job_servers(), and the subroutine url_fetch() is registered
as the job url_fetch. Last but not least, the method work() is run in a while loop that is always
set to true, making this worker run until it is stopped.

761

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 762

Chapter 17: Search Engine Application

my $worker= Gearman::Worker->new();
$worker->job_servers(’127.0.0.1:4730’);
$worker->register_function(’url_fetch’,

\&url_fetch);
$worker->work() while 1;

Data Storage Worker
The data storage worker, url_store_worker.pl, when requested by the action of the trigger
url_queue_insert or url_queue_update, selects the url and url_md5 columns from the urls_stored
table for all records currently stored, and then deletes those records, within a transaction. With the list of
URLs it now has, it either inserts or updates the urls and urls_blob tables with the contents of what is
stored in memcached in a single SQL statement that sets the values of the tables with the output of the
memcached UDF memc_get().

❑ The url_process() subroutine is the entry point for this worker and the subroutine that is reg-
istered with the job url_process.

sub url_process {
$webapp->{dbh}->do("SELECT memc_servers_set(’127.0.0.1:11211’)");
$webapp->{dbh}->do("SELECT gman_servers_set(’127.0.0.1:4730’)");

my $count= $webapp->{memc}->get(’urls_stored’);

store_urls();
}

❑ The subroutine, store_urls(), is where all the work happens. The first thing it does within a
transaction is to select all the URLs from urls_stored. Then it immediately deletes them, using
the SQL statement WHERE IN clause, which is built from the list of URLs it obtained.

sub store_urls {
my $pageref;

$webapp->{dbh}->do(’BEGIN WORK’);
my $urls = $webapp->dbGetRef(’urls_stored’, ‘url, url_md5’);
unless (scalar @$urls) {

$webapp->{dbh}->do(’COMMIT’);
return;

}

build up SQL statement WHERE url_mdt IN (id1, id2, idN...)
my $where_in = ‘ WHERE url_md5 IN (‘;
$where_in .= join(’,’, map { $webapp->{dbh}->quote($_->{url_md5}) } @$urls);
$where_in .= ‘) ‘;

$webapp->dbDelete(’urls_stored’, $where_in);

$webapp->{dbh}->do(’COMMIT’);

762

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 763

Chapter 17: Search Engine Application

❑ Using the list of URLs it obtained in parse_links(), it then checks to see if each URL currently
exists in the urls table. The where clause that was utilized for the deletion is now used to obtain
a result set of id and url_md5 values from the urls table. This result set is mapped to another
hash reference to provide a quick lookup to see if the ID for the url_md5 exists, and if so signifies
an UPDATE.

my $pages_exist = {};

my $pref= $webapp->dbGetRef(’urls’, ‘url_md5,id’, $where_in);
$pages_exist->{$_->{url_md5}}= $_->{id} for @$pref;

for my $url (@$urls) {
my $url_md5 = $url->{url_md5};

my $file_id= $pages_exists->{id};

❑ Both the UPDATE and INSERT statements use the memcached UDF function memc_get() to
provide the values being inserted from memcached. This may seem simplistic in its approach
because there is no checking to ensure the value for each column exists in the first place.
However, the point here is to show the concept of using it in a single statement to both obtain
values from memcached and insert or update those values.

if the file id exists, perform an update
if ($file_id) {

$webapp->dbUpdate(’urls, urls_blob’, {
‘-status’ => "memc_get(’$url_md5:status’)",
‘-title’ => "memc_get(’$url_md5:title’)",
‘-last_modified’ =>

"memc_get(’$url_md5:last_modified’)" ?
"memc_get(’$url_md5:last_modified’)"
: ‘’,

‘-content’ => "memc_get(’$url_md5:content’)" },
{ ‘-urls.id’ => ‘urls_blob.id’,
‘urls.id’ => $file_id });

}
otherwise insert
else {

my $id= $webapp->dbInsert(’urls’, {
url_md5 => $url_md5,
‘-title’ => "memc_get(’$url_md5:title’)",
‘-url’ => "memc_get(’$url_md5:url’)",
‘-status’ => "memc_get(’$url_md5:status’)",
-last_modified’ => "memc_get(’$url_md5:last_modified’)" ?

"memc_get(’$url_md5:last_modified’)"
: ‘’,

‘-created’ => ‘now()’
});

$webapp->dbInsert(’urls_blob’, {
id => $id,
‘-content’ => "memc_get(’$url_md5:content’)"
});

763

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 764

Chapter 17: Search Engine Application

}
}

}

❑ At the bottom of url_worker.pl is the standard declaration for the job servers to use. It registers
the job url_process with the url_process() subroutine, then the while loop has the program
wait.

my $worker= Gearman::Worker->new();
$worker->job_servers(’127.0.0.1:4730’);
$worker->register_function(’url_process’,

\&url_process);
$worker->work() while 1;

Indexer Worker
The indexer worker, index.pl, has a very simple implementation when triggered in that it needs only to
run the Sphinx indexer program. This worker runs as the Sphinx user, which gives it the ability to run
the indexer in the first place — since the Sphinx indexes are owned by the Sphinx system user (for this
particular Sphinx setup). There is a little extra debugging shown in this example so when the worker
is run, it prints out the count of the indexer counter to verify that it’s correctly being run on the count
specified in the trigger:

#!/usr/bin/perl

use strict;
use warnings;
use Gearman::Worker;

use lib qw(/etc/apache2/perl-lib);
use WebApp;
my $webapp= new WebApp();

sub indexer {
my $count= $webapp->{memc}->get(’index_counter’);
warn "Count $count";
warn "indexing!";
my $retval = system(’/usr/local/sphinx/bin/indexer --rotate –all’);

return $retval;
}

my $worker= Gearman::Worker->new();
$worker->job_servers(’127.0.0.1:4730’);
$worker->register_function(’indexer’,

\&indexer);
$worker->work() while 1;

Running the Workers
For the Gearman job server, gearmand, to assign jobs to specific workers, you need to run these workers.
You can run them backgrounded or not, depending if you are testing them — once you know they are

764

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 765

Chapter 17: Search Engine Application

working properly, you would probably want to run them backgrounded. In the following example,
you will see that if they are run without backgrounding them, you can observe that they are working
properly. Follow these steps:

1. Run the url_fetch job, which will cause all other jobs to run:

mysql> select gman_do_background(’url_fetch’, ‘http://timesofindia.com’);
+--+
| gman_do_background(’url_fetch’, ‘http://timesofindia.com’) |
+--+
| H:hanuman:14 |
+--+

2. Start each of the workers, non-backgrounded, and you’ll see the following output for each:

❑ URL fetching worker:

root@hanuman:/etc/apache2/perl-lib/gearman# ./url_fetcher_worker.pl
[Thu Mar 5 14:57:53 2009] url_fetcher_worker.pl: processing url
http://timesofindia.com

[Thu Mar 5 14:57:59 2009] url_fetcher_worker.pl: processing url
http://timesofindia.com

[Thu Mar 5 14:58:00 2009] url_fetcher_worker.pl: trying to store
72f3babec2c8a24779088b2dab9addf2 http://timesofindia.com

[Thu Mar 5 14:58:00 2009] url_fetcher_worker.pl: storing
72f3babec2c8a24779088b2dab9addf2:title

[Thu Mar 5 14:58:00 2009] url_fetcher_worker.pl: processing url
http://ecoomictimes.indiatimes.com/quickieslist/4113930.cms

[Thu Mar 5 14:58:00 2009] url_fetcher_worker.pl: trying to store
b5a61ade1bfcedf55846ecfa9436255f

http://economictimes.indiatimes.com/quickieslist/4113930.cms
[Thu Mar 5
14:58:00
2009] url_fetcher_worker.pl: storing
b5a61ade1bfcedf55846ecfa9436255f:title
...

❑ URL storage worker:

root@hanuman:/etc/apache2/perl-lib/gearman# ./url_store_worker.pl
update 015d674703f19ec8fa363a41d045cd4a
update 02a691d73124d48df446d87df9e96e2e
insert 034a6f0160a80723fcdc176f33635dca
update 035420c9c4dc689f10a6cfe6c145fea8
insert 03f6d3d7072608e733b79d47f7dd0123
insert 0436220c092fd3fded9422267778ec5b
update 04dd23d3b35c5e4e01b793d45fc6e064
update 062b292265b5b1003532edde3fb3052c
...

❑ Indexer worker:

sphinx@hanuman:∼$./bin/index_worker.pl
[Fri Mar 6 09:23:44 2009] index_worker.pl: Count at

765

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 766

Chapter 17: Search Engine Application

./bin/index_worker.pl
line 16.
[Fri Mar 6 09:23:44 2009] index_worker.pl: indexing! at
./bin/index_worker.pl
line 17.
Sphinx 0.9.9-rc1 (r1566)
Copyright (c) 2001-2008, Andrew Aksyonoff

using config file ‘/usr/local/sphinx/etc/sphinx.conf’...
indexing index ‘urls_delta’...
collected 227 docs, 1.8 MB
sorted 0.3 Mhits, 100.0% done
total 227 docs, 1796327 bytes
total 0.178 sec, 10071751.00 bytes/sec, 1272.76 docs/sec
total 7 reads, 0.0 sec, 150.8 kb/read avg, 0.2 msec/read avg
total 13 writes, 0.0 sec, 188.8 kb/write avg, 0.7 msec/write avg
rotating indices: succesfully sent SIGHUP to searchd (pid=26238).
...

mod_perl Handler Web Applications
There are two mod_perl handlers used in this application:

❑ The search engine application page and the URL queue page. This is where searches are per-
formed and results are displayed.

❑ URL queue administrative page. This is where a user, most likely an administrative user, would
enter URLs that results in the urls_queue table being inserted into that starts the entire content-
fetching phase.

The following sections delve into each handler in more detail.

Search Application
This application provides the interface for performing searches and viewing results, so you would first
want a design for how you want the page to appear. For this application, Template Toolkit is used for
the display functionality, so this is where all the design interface features will be implemented.

Search Template
From Chapter 15, you are familiar with Template Toolkit enough to understand how this template works.
The following template provides the actual form for the URL queue:

[% INCLUDE dtd %]
[% SET title = "Search Page" %]
<html>

<head>
<title>[% title %]</title>
<link type="text/css" href="/css/search.css" rel="stylesheet">

</head>
<div id="header">
<h1 id="resume-title">Search Page</h1>

766

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 767

Chapter 17: Search Engine Application

<p id="description">
Sphinx-Memcached-MySQL-Memcached-UDF-Gearman-Perl-Apache Powered!

</p>
</div>

[% IF msg %]
<!-- [% msg %] -->

[% END %]

<div id="content">
<div id="main">
<div id="main2">

<form action="/search" method="POST" name="searchform">
<fieldset>

<label for="query">Search term</label>
<input type="text" id="query" name="query" value="">
<input type="submit" id="search" name="search" value="Search">

❑ The template variable res_pp_select is a popup menu/select box that is created in the
mod_perl handler by using the CGI method popup_menu. This pull-down select will use an
onChange() JavaScript event to resubmit the page. It will select how many results to display
per page, and when selected, the page will be resubmitted. It will contain the number of results
selected to be displayed.

<label for="results_per_page">Results per page</label> [%
res_pp_select %]

[% IF sinfo.sresults %]

❑ The following part of the page will provide useful query information about a search result set,
such as how many searches there were, the amount of time it took for the search to complete, as
well as pagination.

<p>Total Found : [% sinfo.total_found %] Time: [% sinfo.time %]

This condition checks for the existence of sinfo.range, a Perl array reference containing a list
of sets with beginning and end values for the record limits of the given page — the subscript of
this array reference corresponding to the search result set page number. For instance, if there are
100 results, and the value for results-per-page is 10, then the first set/array will contain 1–10, the
second 11–20, and so on.

❑ The sets are looped over, and the links to the search page with this start and stop values are spec-
ified in a query string of the URL. Note: for print display, this had to be broken, but it is a single
line starting from <a>... to in the actual template.

[% IF sinfo.ranges.max > 1 %]
Pages:

[% FOREACH i = [1 .. sinfo.ranges.max] %]
[% page = i + 1 %]

<a
href=

767

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 768

Chapter 17: Search Engine Application

"/search?start=[% sinfo.ranges.$i.0 %];
stop=[% sinfo.ranges.$i.1 %];query=[% form.query %]"

>
[% page %]

[% END %]
[% END %]

[% END %]

❑ The following hidden field provides the query value to the mod_perl search handler when
the form is resubmitted if the JavaScript action changes when the results-per-page select box
(res_pp_select) is selected.

<input type="hidden" name="hquery" value="[% form.query | html %]">
</fieldset>
</form>

❑ If there are any results, contained in the hash reference sinfo.sresults, these results are iter-
ated over, resulting in their being printed on the page.

[% IF sinfo.sresults %]
[% FOREACH item = sinfo.sresults %]

<div class="post" id="[% item.id %]">
<h3 class="post-title">
<a href="[% item.url | html%]" alt="[% item.url %]
target="_new">[% item.title | html %]

</h3>
<div class="post-body">[% item.excerpt %]</div>
<h2 class="date-header">Last updated: [% item.last_updated

%]</h2>
</div>

[% END %]
[% END %]

</div>
</div>
</body>

</html>

The mod_perl Search Handler
The mod_perl Search handler implementation is called WroxHandlers::SearchHandler. In addition to
Perl modules with which you are already familiar, it will use Sphinx::Search, which is the Perl client
library for Sphinx, specifically a Perl client API for the searchd server.

Main Handler Method
First, of course, is the importation of various modules as well as the implementation of the main handler
method:

package WroxHandlers::SearchHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT SERVER_ERROR);

768

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 769

Chapter 17: Search Engine Application

use Apache2::Request;
use Template;
use Sphinx::Search;
use lib qw(/etc/apache2/perl-lib);
use WebApp;
use CGI qw(:standard);

sub handler {
my ($r)= @_;
my $msg;
my $url= $r->uri;

my $sinfo;

instantiate a WebApp object
my $webapp = WebApp->new({ r => $r});

get the submitted form values
my $form = $webapp->getForm();

Note the following concerning the previous code:

❑ Some defaults are set up. If the form value results_per_page is not set, then a default of 10
results per page is set. This is hard-coded to ‘10’ here, but you could set this in your Apache con-
figuration file with PerlSetVar/dir_config. The start form result value is set to 1 if not set; the
end form value is set to 10.

Note that the $form members are being overwritten since $form is going to be passed to the
template. It makes a convenient way to set default values prior to the display of the page.

defaults
$form->{results_per_page} = $form->{results_per_page} ?

$form->{results_per_page} : 10;

$form->{start} ||= 1;
$form->{end} ||= 10;

❑ The CGI popup_menu() method is used to construct the results_per_page select pull-down.
The default selections are set with the array reference being passed to the popup_menu() attribute
–values and are 10, 25, 50, and 100 results per page.

my $res_pp_select = popup_menu(
-name => ‘results_per_page’,
-values => [10, 25, 50, 100],
-onchange => ‘this.form.submit();’,
-default => $form->{results_per_page} ?

$form->{results_per_page} : 10);

❑ The session is obtained and checked to see if the user is allowed to use this page. If this is a public
search engine, you will probably not need this, or you could at least modify the session code
to create automatically an ‘‘anonymous’’ session for user tracking or allowing the user to save
search results — the sky is the limit!

769

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 770

Chapter 17: Search Engine Application

my $sessionref = $webapp->getSession(\$msg);
if no session, redirect to login page
unless ($sessionref && $sessionref->{uid}) {

$r->headers_out->add(’Location’ => "/login?returnto=$url");
return Apache2::Const::REDIRECT;

}

obtain the template path
my $template_path= $r->dir_config(’TEMPLATE_PATH’);

❑ The following is the functionality that allows the results_per_page select pull-down to resub-
mit the form without the user having supplied a search term to the query text field of the search
form. This line simply ensures that the value of $form->{query}, which will be passed to the
search() subroutine (which will be explained next), is set so that the search is re-run with
the new results per page setting.

allow select box to resubmit when results per set changes
$form->{query} = $form->{hquery}

unless defined $form->{query} && length $form->{query};

❑ A check is made for whether the method is a POST or a GET. If it is a POST, the user submitted a
search either by search term or by selecting the results_per_page select menu. If it is a GET, the
user clicked on the URL containing the query string to access a page from the pagination links.
In either case, a GET or POST means that a search must be performed and therefore the subroutine
search() is called, passing in the Apache request object, the WebApp object handle, as well as
the submitted form values hash reference $form.

❑ The value returned from search(), $sinfo, is a reference to a hash containing various other
data structures, including the search result set, as well as values pertaining to the search
result set.

if the user has submitted a search, get the results
if ($r->method() eq ‘POST’

|| $r->method() eq ‘GET’
&& length($form->{query})) {
$sinfo = search($r, $webapp, $form);

}

❑ A check is made to first determine if the hash result set reference $sinfo is set at all, then if the
result sets $sinfo->{results} is set, and finally if it contains any results. If so, then the WebApp
method buildRange() is called and it supplies an array reference of begin and end sets (each
also an array reference, the first subscript the being value of the range, the second value the end
of the range).

if (defined $sinfo &&
defined $sinfo->{sresults} &&
scalar @{$sinfo->{sresults}}) {

$sinfo->{ranges}= buildRange(
$form->{results_per_page},
$sinfo->{total_found});

}

770

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 771

Chapter 17: Search Engine Application

❑ Next, the Template Toolkit object is instantiated.

instantiate a new Template object
my $template = Template->new({

INCLUDE_PATH => $template_path, # where to look for templates
POST_CHOMP => 1, # removal of whitespace

});

❑ The template parameters that will be passed to the template are set up. This includes the search
result set hash reference $sinfo, the submitted form values hash reference $form, and the select
box that was built with the CGI method popup_menu().

set up template parameters
my $tparams = {

msg => "Session " . $sessionref->{sessionid} . "
logged in",

url => $r->uri,
sinfo => $sinfo,
form => $form,
res_pp_select => $res_pp_select,

};

❑ Finally, the content is generated, displaying the search form and results, if any!

set up the template name
$url =∼ s/ ˆ \///;
my $tname= $url . ‘.tt2’;

$r->content_type(’text/html’);

$template->process($tname, $tparams) ||
do {

$r->server->warn($template->error());
return Apache2::Const::SERVER_ERROR;

};

return Apache2::Const::OK;
}

The search() Subroutine
The search() subroutine implements the actual search functionality using the Perl module
Sphinx::Search methods. This is a fairly straightforward API that this subroutine will give you a basic
idea of how to use.

sub search {
my ($r, $webapp, $form)= @_;
my $sinfo;
my $cref;
my $docs = [];

Regarding this subroutine, note the following:

771

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 772

Chapter 17: Search Engine Application

❑ First, some Sphinx server information values set in the Apache configuration file are obtained.
These include which host, search index, port, and excerpt index to use.

What Is an Excerpt?
An excerpt is a smaller fragment of the entire raw text of the document found in a
search and retrieved from the database given the ID returned from the original search
result. The raw text is reprocessed through Sphinx in order to highlight the search term
within the text with predefined HTML elements such as or . The highlighting
points out the term being searched, which is what you end up seeing on the search
results page.

It’s important to realize that excerpts cannot be generated against a distributed index,
which is the reason for specifying a separate index for excerpts. It can be any index. You
only need to supply a construct for building excerpts against. Excerpt building doesn’t
use the index itself other than to search on the key word you want highlighted in the
excerpt.

❑ Next, several variables specifying the name of the main search index, excerpts index, search host,
and port are set:

my $search_index = $r->dir_config(’SEARCH_INDEX’);
my $excerpts_index = $r->dir_config(’EXCERPT_INDEX’);
my $search_host = $r->dir_config(’SEARCH_HOST’);
my $search_port = $r->dir_config(’SEARCH_PORT’);

❑ A Sphinx::Search object is instantiated.

my $sphinx = Sphinx::Search->new();type="general"

Some Sphinx::Search Methods
The following table provides a brief listing and description of some of the methods you
will use when setting up a search using Sphinx::Search:

Method Description

SetServer($host,
$port)

Sets the Sphinx server $host and $port (where searchd
is running).

SetRankingMode($mode) Sets how results will be ranked. The ranking modes
available are set with the following constants for $mode:

❑ SPH_RANK_PROXIMITY_BM25: Default, phrase
proximity the major factor and Okapi BM25
the minor factor (sorting by relevance to
given search query)

❑ SPH_RANK_BM25: BM25 ranking only.

772

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 773

Chapter 17: Search Engine Application

Method Description

❑ SPH_RANK_NONE: No ranking at all. All
matches given a weight of 1.

❑ SPH_RANK_WORDCOUNT: The ranking is done
using a weighted sum of per-field keyword
occurrence counts.

SetLimits($offset,
$limit)

Allows you to set a LIMIT just as you would in
MySQL — and this is where the values of the pagi-
nation URLs are used.

SetMatchMode($mode) Sets what types of matches are used. The search modes
you can set are set using the following constants, for the
argument $mode:

❑ SPH_MATCH_ALL: Matches all words.

❑ SPH_MATCH_ANY: Matches any words.

❑ SPH_MATCH_PHRASE: Exact phrase match.

❑ SPH_MATCH_BOOLEAN: Matches using AND (&),
OR (|), NOT (!,-) and grouping with paren-
theses.

❑ SPH_MATCH_EXTENDED: An extended match
that includes Boolean syntax as well as
including field, phrase, and proximity
operators.

SetSortMode($mode,
$sortby)

Sets the way results are sorted such as by relevance of
time. The $mode can be one of the constants available:

❑ SPH_SORT_RELEVANCE: Sort by relevance.

❑ SPH_SORT_ATTR_DESC: Sort by attribute
descending order; $sortby specifies the sort-
ing attribute.

❑ SPH_SORT_ATTR_ASC: Sort by attribute ascend-
ing order; $sortby specifies the sorting
attribute.

❑ SPH_SORT_EXTENDED: Sort using SQL-like
syntax; $sortby specifies the sorting
attribute.

❑ SPH_SORT_TIME_SEGMENTS: Sort by time
segments (last hour, day, week, or month)
in descending order, then by relevance in
descending order; $sortby specifies the sort-
ing attribute.

❑ SPH_SORT_EXPR: Sort expression.

773

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 774

Chapter 17: Search Engine Application

❑ Next, the host and search port of the Sphinx search server to connect to is set, as well as the rank-
ing mode, the limits (start and stop range) of the IDs of the records to return, the match mode,
and sort mode (not used in this handler, but shown for an example).

set search directives
$sphinx->SetServer($search_host, $search_port);
$sphinx->SetRankingMode(SPH_RANK_PROXIMITY_BM25);
$sphinx->SetLimits($form->{start}, $form->{end});

other options for extending functinality, shown for posterity ;)
$sphinx->SetMatchMode(match_mode);
$sphinx->SetSortMode(sort_mode,sortby)

❑ Finally, the Query() method is called, passing the search term and index_name to run the query
against. This returns a comprehensive Perl data structure hash reference, $hits, that contains all
the information about the result set.

my $hits= $sphinx->Query($form->{query}, $search_index);

❑ One of the $hits members is total_found, which is the value of the total number of results
found. In the conditional that follows, if there are no results found, then an empty hash reference
is returned to the caller, in this case back to the mod_perl search handler.

$hits->{total_found}) or return {};

❑ If there is a result set, then the hash reference that is being used to return the values that are
needed for the search handler is set:

1. First, $sinfo->{hits} and $sinfo->{time} are obtained from $hits — these are values
printed on the search interface after a successful search.

2. The results are obtained from the subroutine get_results_from_db(), which uses the pri-
mary key values from the results in $hits to retrieve the actual data from MySQL.

$sinfo->{$_} = $hits->{$_} for qw (total_found time);

$sinfo->{sresults} = get_results_from_db($webapp, $hits);

my $warning = $sphinx->GetLastWarning;
$r->server->warn($warning) if $warning;

❑ The search term is ‘‘cleaned up,’’ stripping any Sphinx-specific search syntax. This cleaned-up
term will be used for obtaining excerpts. The ∼1 in particular is a Sphinx proximity search oper-
ator, in this case, meaning the term is found within one word of each other.

my $term= $form->{query};
$term =∼ s/[|()"]/ /g;
$term=∼s/\∼1//g;
$term =∼ s/\s{2,}/ /g;

❑ The result set of content from the database is looped through in order to build up the excerpts.
This is where you set various parameters to BuildExcerpts() to control how the excerpt is gen-
erated. Since the content column is the only data we are concerned with generating content for

774

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 775

Chapter 17: Search Engine Application

excerpts, a quick mapping of the database results is used to generate an array reference contain-
ing the content that will then be passed to build excerpts as the first argument.

❑ The second argument to BuildExcerpts() is the index that will be used to construct the excerpt
against, providing lexing, stemming, and case folding. Important to note is that this has to be a
physical and not a distributed index.

❑ The third argument is the actual search term (this is the needle, and the content, the haystack!).

❑ The fourth argument to BuildExcerpts() is a hash reference containing various parameters:

❑ before_match and after_match specify the HTML tag that is placed before and after the
search term within the excerpt.

❑ around specifies how many words will be highlighted around each match, in this case four.

❑ single_passage specifies if the single best passage is used for the excerpt or not. In this
case it is set to false.

if (scalar @{$sinfo->{sresults}}) {
only want content to generate excerpts
push(@$cref, $_->{content}) for @{$sinfo->{sresults}};
my $excerpts = $sphinx->BuildExcerpts(

$cref,
$excerpts_index,
$term,{
before_match => ‘’,
after_match => ‘’,
around => 4,
single_passage => 0,
limit => 180}

);

❑ At this point, there are now excerpts, so these need to be added to the result set in
$sinfo->{sresults} as $sinfo->{sresults}[$i]{excerpt}, which will inevitably be
passed to the search template.

❑ After the excerpts are generated and set into $sinfo, $sinfo is returned to the handler.

add in the results
for my $i (0 .. $#{$sinfo->{sresults}}) {

$sinfo->{sresults}[$i]{excerpt}= $excerpts->[$i];
delete $sinfo->{sresults}[$i]{content};

}
stash the search results
#$sinfo->{results} = $sresults

}
return $sinfo;

}

The get_results_from_db() Subroutine
The subroutine get_results_from_db() simply ‘‘glues’’ the search result ID values to results from the
database. Sphinx has kindly provided a list of primary key values for use to construct a WHERE IN clause.
This is then used to obtain the results from MySQL.

775

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 776

Chapter 17: Search Engine Application

sub get_results_from_db {
my ($webapp, $hits)= @_;

build up WHERE .. IN
my $where = ‘WHERE id IN (’;
$where .= join(’,’, map { $_->{doc} } @{$hits->{matches}});
$where.= ‘)’;

Here, a formatted string is set for the date function date_format(). It will be used in the query to provide
a data string that will inevitably be printed in the search results for every result.

my $time_format=
q(date_format(last_updated, ‘%W, %m/%d/%y %H:%i:%s’) as last_updated);

my $sresults= $webapp->dbGetRef(’urls join urls_blob using (id)’,
"urls.id as id, title, $time_format, url, content", $where);

return $sresults;
}

1;

Before proceeding further, it should be noted that get_results_from_db() could in fact be extended to
try to obtain the content from memcached before checking MySQL, especially considering that the data
has been stored there by the url_fetcher Gearman worker. This would make your searches even faster!
The key to doing this is to ensure that the data stored in memcached has the same IDs as the database.

Paginating the Search Application
There is one new method added to WebApp.pm: buildRange(). This is a common problem to be solved
with any web application that produces an arbitrary number of results — pagination.

As already mentioned, this method constructs sets of ranges based on the total number of results found
and the user-selected results_per_page. It uses a simple algorithm to loop through the total number of
results, adding each range to the @ranges array until the last range is found.

sub buildRange {
my ($results_per_page, $total) = @_;
my @ranges;
my $start = 1;
while ($start + $results_per_page < $total) {

push @ranges, [$start, $start + $results_per_page - 1];
$start += $results_per_page;

}

this handles the last range
$start > $total or push @ranges, [$start, $total];

return \@ranges;
}

776

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 777

Chapter 17: Search Engine Application

Taking this snippet of code and printing the output of the $ranges array can help to explain this. In the
printout that follows, the test shows a result set total of 47, with results per page at 10. You can see
the ranges are correctly set for each page set:

Total 47, results_per_page 10
$VAR1 = [

[
1,
10

],
[
11,
20

],
[
21,
30

],
[
31,
40

]
];

Using the Search Application
Finally, you can see the end result of all of this work! The search, empty, before a search is submitted
appears in Figure 17-2.

Figure 17-2
777

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 778

Chapter 17: Search Engine Application

Then, you see it performing a search using the term ‘Perl Programming’ (see Figure 17-3).

Figure 17-3

URL Queue Application
The URL queue application is a fairly simple application. All it does is INSERT, UPDATE, or DELETE URLs
from the urls_queue table. These values control what the entire data gathering process is going to do.
They are listed as follows:

❑ INSERT: An insert of a URL causes data retrieval to occur using the INSERT trigger on
urls_queue, urls_queue_insert, which is executed. In turn, this causes all the other actions
using Gearman and its workers to gather, store, and then index the data retrieved. If the user
attempts an insertion of an already existing URL, it will instead update the timestamp of that

778

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 779

Chapter 17: Search Engine Application

URL. This is one behavior this application can have, although you could also issue an error if
that was your choice.

❑ UPDATE: Updates the last_updated column on urls_queue, causing the urls_queue_update
trigger to execute, which in turn causes the same process to occur in the same manner that occurs
upon an INSERT.

❑ DELETE: The URL is deleted from the urls_queue table.

This URL queuing application will consist of two mod_perl handlers:

❑ URLHandler: For displaying the URL queue page, an Ajax application page, containing all the
JavaScript and Ajax code for processing user input and displaying of data.

❑ URLQueueHandler: For processing requests from the Ajax client to insert, delete, or update a URL
from the urls_queue table.

URLHandler — AJAX Application
The URLHandler mod_perl handler will provide user interface functionality for the user to manage their
URLs. It is an Ajax application that will make calls to another mod_perl handler, URLQueueHandler, at
the URL of /url_queue. URLHandler will utilize Template Toolkit to display the user interface.

The Main handler() Subroutine
As with other mod_perl handlers shown previously, the handler() subroutine is implemented:

package WroxHandlers::URLHandler;

use strict;
use warnings;

use Apache2::Const -compile => qw(OK REDIRECT SERVER_ERROR);
use Apache2::Request;
use Template;
use Digest::MD5 qw(md5_hex);
use WebApp;

❑ As with other handlers shown in this book, this handler will use the WebApp object.

sub handler {
my ($r)= @_;
my $msg;
my $url= $r->uri;
my $template_path;
my $sresults;

my $webapp= new WebApp({ r => $r});

my $form= $webapp->getForm();

779

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 780

Chapter 17: Search Engine Application

❑ For this application, a session will be required. If there is no session, then the user is redirected
to the login page.

my $sessionref = $webapp->getSession(\$msg);

if no session, redirect to login page
unless ($sessionref && $sessionref->{uid}) {

$r->headers_out->add(’Location’ => "/login?returnto=$url");
return Apache2::Const::REDIRECT;

}

$template_path= $r->dir_config(’TEMPLATE_PATH’);

❑ Next, a list of the URLs is obtained from the urls_queue table. This will be displayed in tabular
form in the template page with an iterative loop over the result set.

obtain the list of urls in urls_queue
my $urls = $webapp->dbGetRef(’urls_queue’, ‘url,url_md5’);

instantiate a new Template object
my $template = Template->new({

INCLUDE_PATH => $template_path,
POST_CHOMP => 1,

});

set up template parameters
my $tparams = {

msg => "Session " . $sessionref->{sessionid} . " logged in",
url => $r->uri,
urls => $urls,

};

$url =∼ s/ ˆ \///;
my $tname= $url . ‘.tt2’;

$r->content_type(’text/html’);

$template->process($tname, $tparams) ||
do {

$r->server->warn($template->error());
return Apache2::Const::SERVER_ERROR;

};

return Apache2::Const::OK;
}

1;

URLHandler JavaScript
The URLHandler application will require JavaScript to implement the Ajax functionality. For this, a new
file will be created that the template will end up using: url_queue.js.

780

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 781

Chapter 17: Search Engine Application

The JavaScript functions required for URLHandler include the following:

❑ onChange(): This is the Ajax onSuccess event handler for updating and deleting URLs. It takes
care of removing the rows for a given URL from the table for the URL being deleted.

❑ onQueue(): This is the Ajax onSuccess event handler for inserting URLs. It takes care of inserting
into the existing table the new rows for the newly inserted URL.

❑ processUrl(): This is a function that that is activated from an onClick() event from a link
within the table rows of each URL for either UPDATE or DELETE. It takes a single argument, op,
which determines which of those two operations it will perform.

❑ saveUrl(): This is a function that is activated by an onSubmit() event from the Submit button
to save a URL. It will then be inserted by the Ajax request, which will use its onSuccess event
handler onQueue().

JavaScript Functions
The following shows the implementation of the JavaScript functions listed previously.

❑ First listed is the onChange() function. It takes a single argument, op, which determines if the
operation being performed is either deletion or an update. All the usual steps of checking
the Ajax response are made. In this example, a -1 for the obj.err value indicates that the user
did not have a session, so it redirects to the front page of the site.

function onChange(responseText, op) {
var obj = responseText.evalJSON(true);
var msg = obj.msg;
var url_md5 = obj.url_md5;

if (obj == null) {
// no message from response, so set one
$("msg").innerHTML = "No response from server for url process";

// re-enable the submit button
$("addurl").removeAttribute("disabled");

return;
}

/*
if user is not logged in
redirect them to main site, or wherever you like

*/
if (obj.err == -1) {
window.location = "/";

}
// set message from response
$("msg").innerHTML = obj.msg;

❑ If the operation being performed is a deletion, remove the row with the document ID of the
url_md5 value that was deleted. This will result in the row being removed from the table — all
without reloading the page! Also, it will re-enable the Submit button.

781

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 782

Chapter 17: Search Engine Application

if (op == ‘delete’) {
// remove the row
$(url_md5).parentNode.removeChild($(url_md5));

}
// re-enable the submit button
$("addurl").removeAttribute("disabled");

}

❑ The onQueue() function handles a URL insertion. This function has to do a bit more work than
the previous function. It has to insert into the table the row representing the URL that was
inserted into the urls_queue table. It does this all through DOM manipulation, as you will see.

function onQueue(responseText) {
var obj = responseText.evalJSON(true);
var msg = obj.msg;
var url_md5 = obj.url_md5;
var url = obj.url;
var updated = obj.updated;

❑ The same error checks that were made in the onChange() function are also made in onQueue().

if (obj == null) {
// no message from response, so set one
$("msg").innerHTML = "No response from server for url process";

// re-enable the submit button
$("addurl").removeAttribute("disabled");

return;
}
/*

if user is not logged in redirect them to main site,
or wherever you like

*/
if (obj.err == -1) {

window.location = "/";
}

// set message from response
$("msg").innerHTML = obj.msg;

/*
if there was any non-critical error, re-enable the submit button

*/
if (obj.err == 1) {

// re-enable the submit button, failure
$("addurl").removeAttribute("disabled");
return;

}

// Re-enable submit button, success
$("addurl").removeAttribute("disabled");

782

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 783

Chapter 17: Search Engine Application

❑ The mod_perl handler is intelligent such that if you try to insert an existing URL, it will instead
simply update that URL, and then return in the JSON response to Ajax a parameter called
updated. This may seem a little bit odd, but it is just a choice to use what would otherwise be an
error to instead trigger the update of the data for this URL. As shown in this conditional check,
if updated is zero, then the row for that URL will be inserted into the table.

if (updated == 0) {

❑ A <tr> element, a row, is created. This row is given the id of the url_md5 for the row that
was inserted. It then creates a <td> element, the cell for that row — the cells displaying the
URL — update link, and delete link. For the update and delete link, these cells each have their
own <a> element. For each, this <a> element has to be built to have onClick attributes set to the
JavaScript function processUrl(). processUrl() needs to be called with the correct value for
the op argument in order to handle either an update or deletion. Also, for each <a> element, the
href attribute is set to load to ‘#’.

var urow = document.createElement(’tr’);
urow.setAttribute(’id’, url_md5);

var url_td = document.createElement(’td’);

// Cell node containing the the URL value
url_td.innerHTML= url;

// append to the row
urow.appendChild(url_td);

// Cell containing updater link
var up_td = document.createElement(’td’);

// create the link node
var up_aref = document.createElement(’a’);

// set the value
up_aref.setAttribute(’href’, ‘#’);

// create an onclick value
up_aref.onclick= function () {

processUrl(url_md5,’update’); return false;
}

// create the text
var update_txt = document.createTextNode(’[Update]’);

// now append the text
up_aref.appendChild(update_txt);

❑ Once the <a> link element is created, it is then appended to the cell. Then each <td> element (the
actual table cells) is appended to the row.

up_td.appendChild(up_aref);

urow.appendChild(up_td);

783

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 784

Chapter 17: Search Engine Application

var del_td = document.createElement(’td’);

var del_aref = document.createElement(’a’);
del_aref.setAttribute(’href’, ‘#’);
del_aref.onclick= function () {
processUrl(url_md5, ‘delete’); return false;

}
var delete_txt = document.createTextNode(’[Delete]’);
del_aref.appendChild(delete_txt);
del_td.appendChild(del_aref);
urow.appendChild(del_td);

❑ The <tr> element, the row, is then appended to the table. This will result in it being displayed to
the user dynamically!

$("urllist_body").appendChild(urow);
}

}

The processUrl() function, which is executed on an onClick() event on both the ‘‘Update’’ and
‘‘Delete’’ links in the URL queue listing table, performs form validation, and creates the Ajax
request to post either a deletion or an update to the mod_perl handler. It takes two arguments:
url_md5, a variable containing the MD5 value of the URL that is being updated or deleted, and
the string variable op, which is either ‘delete’ or ‘update’.

/*
this function is used to validate the form as well
as initiate the Ajax request

*/
function processUrl(url_md5, op)
{
// set message
$("msg").innerHTML = "processing...";

// disable the submit button so they can’t submit
$("addurl").setAttribute("disabled","disabled");

❑ Here, the Ajax request object is instantiated. This will be a POST to the mod_perl handler
/url_handler. The POST data is set as well, and it is constructed using the variables op and
url_md5 concatenated with the string values to create a valid POST. The onSuccess event handler
is set to be the function onChange(). The request is made, posting the data to the mod_perl
handler. onChange() will then be executed.

// create Ajax request
var ajax = new Ajax.Request(’/url_handler’,

{ method:’POST’,
parameters:
op + ‘=1&url_md5=’ + url_md5,
onSuccess: function(transport)
{ onChange(transport.responseText, op); }

784

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 785

Chapter 17: Search Engine Application

});

}

❑ The saveUrl() function is run on an onSubmit() event — the submission of the add url Submit
button. It performs form validation and creates the Ajax request object to post the action for the
insertion of a URL into the urls_queue table via the mod_perl handler.

/*
this function is used to validate the form as well
as initiate the Ajax request

*/
function saveUrl()
{

var url = $("url").getValue();
if (url == "")
{
$("msg").innerHTML ="You need to supply a URL.";
return false;

}

❑ As with other Ajax applications previously shown, the Submit button is disabled once the form
is submitted, during the sending of the POST data and response, and will be re-enabled when
there is a response. Also shown here is that the text field for the URL is cleared. This makes it so
the text field is clear after submitting the form, otherwise the same URL value that was already
submitted will remain.

// disable the submit button so they can’t resubmit
$("addurl").setAttribute("disabled","disabled");

// set message
$("msg").innerHTML = "processing...";

// Empty the text field
$("url").setValue("");

// create Ajax request
var ajax = new Ajax.Request(’/url_handler’,

{ method:’POST’,
parameters:
‘create=1&url=’ + url,
onSuccess: function(transport)
{ onQueue(transport.responseText); }

});

}

URLHandler Template
Next, you see the template implementation that this handler requires, url_queue.tt2. This template uses
the JavaScript file shown in the previous section: url_queue.js.

785

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 786

Chapter 17: Search Engine Application

The main template body is shown. You’ll see the iterative loop where the table is built, and within each
row, a tr DOM element having an element ID of the MD5 hex of the URL listed. This is the very thing
that makes it possible to perform the removal or addition of rows, which you saw above, using JavaScript
DOM manipulation.

[% INCLUDE dtd %]
[% SET title = "URL Queue Admin Page" %]
<html>

<head>
<title>[% title %]</title>
<link type="text/css" href="/css/webapp.css" rel="stylesheet">
<script language="javascript" type="text/javascript"

src="/javascript/prototype-1.6.0.3.js">
</script>
<script language="javascript" type="text/javascript"

src="/javascript/url_queue.js">
</script>

</head>
<body>
<p class="msg" id="msg">[% msg %]</p>

<form action="#" method="post" id="urlform" name="urlform"
onsubmit="saveUrl(); return false;" />

<fieldset>
<label>Add a URL to the queue</label>
<input type="text" length="50" id="url" name="url"/>

<input type="submit" id="addurl" name="addurl" value="addurl" />
</fieldset>

</form>

[% IF urls %]
<table class="userlist" id="urllist" name="urllist">

<thead id="urllist_head">
<tr>
<th>URL</th>
<th>Update</th>
<th>Delete</th>

</tr>
</thead>
<tbody id="urllist_body">

[% FOREACH url = urls %]
<tr id="[% url.url_md5 %]">

<td>[% url.url %]</td>
<td><a href="#"

onclick="processUrl(’[% url.url_md5 %]’, ‘update’);
return false;">[Update]</td>

<td><a href="#"
onclick="processUrl(’[% url.url_md5 %]’, ‘delete’);
return false;">[Delete]</td>

</tr>
[% END %]

</tbody>
</table>

786

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 787

Chapter 17: Search Engine Application

[% END %]
</body>

</html>

URLQueueHandler mod_perl Handler
The URLQueueHandler is the mod_perl handler that will handle Ajax requests for the URLHandler appli-
cation. Depending on the message from the Ajax client, it will either insert, update, or delete a URL in
the urls_queue table. It will be able to determine what action to take based on the POST data it parses.
As you recall, a variable called op was used in the Ajax request that had the value of CREATE, DELETE, or
UPDATE. URLQueueHandler will test for these values in the POST data.

URLQueueHandler will use the perl module JSON::XS to create a JSON response using the method
json_encode(). Also, the module Digest::MD5 will be used run md5_hex() to MD5-encode the URL.
This is the unique identifier for every URL in this system and it is the primary key for the urls_queue
table. As you’ve seen, it is also used in the client JavaScript code for DOM manipulation to be able to
remove and insert rows dynamically into an HTML table.

package WroxHandlers::URLQueueHandler;

use strict;
use warnings;
use JSON::XS;

list of return values you want to use
use Apache2::Const -compile => qw(OK);
use Digest::MD5 qw(md5_hex);
use WebApp;

URLQueueHandler handler() Subroutine
The handler body for URLQueuHandler will be implemented as shown in the following code and steps:

sub handler {
my ($r)= @_;
my $msg = ‘’;
my $err = 0;

1. The variable $updated is set to 0 initially. Because the application works in such a way that if
you try to insert an already existing URL, it automatically updates that URL’s timestamp,
this variable (which is inevitably returned to the Ajax client in JSON) is then used in the
JavaScript function Ajax onSuccess event handler onQueue()(as shown in the template code
above) to determine if the submission of what was intended to be an insert was actually an
update.

my $updated = 0;

my $webapp = new WebApp({ r => $r});
my $form = $webapp->getForm();

787

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 788

Chapter 17: Search Engine Application

2. The URL is MD5 hex encoded. Next, the hexadecimal representation of the MD5 digest
of the URL is calculated.

3. The session is obtained and checked to see if the user is logged in. This is where you might
also add a check for an admin flag for the session, considering this is an administrative inter-
face for this application and you would probably not want to make it available to regular
users.

4. If the user is not logged in, set $err to -1. This will result in a redirection to the main site
URL.

my $url_md5 = $form->{url_md5};
$url_md5 ||= $form->{url} ? md5_hex($form->{url}) : ‘’;

obtain the session
my $sessionref= $webapp->getSession();

if the user is logged in, the JavaScript function will redirect them
to log in
$sessionref->{uid} or $err = -1;

5. The request method is checked to see if it was a POST, and if it was, then a query is made to
the urls_queue table to obtain the list of URLs. This list will be passed to the template to be
displayed in a table.

6. There are checks made to see what operation was requested. First, the form parameter
create is checked to see if it exists. If so, then a check is made to see if it already exists. If the
URL already exists, then its timestamp is updated. If the URL does not yet exist, then
the URL is inserted.

else {
if ($r->method() eq ‘POST’) {

if ($form->{create}) {
if ($form->{url}) {

my $urls = $webapp->dbGetRef(’urls_queue’,
‘url,url_md5’, { url_md5 => $url_md5});

if (scalar @$urls) {
$updated= $webapp->dbUpdate(’urls_queue’,

{ ‘-last_updated’ => ‘now()’},
{ url_md5 => $url_md5 });

$msg = "Updated $form->{url}";
$updated = 1;

}
else {

$webapp->dbInsert(’urls_queue’,{
url => $form->{url},
url_md5 => $url_md5});

$msg = "Inserted $form->{url} into the queue";

788

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 789

Chapter 17: Search Engine Application

}
}
else {

$msg = "Missing URL value";
return 1;

}
}

7. The form parameter delete is checked. If set, then the record for the specified URL is deleted
using the variable of $url_md5 as the value for the primary key. Also, the message that will
be returned to the client is set.

elsif ($form->{’delete’}) {
my $deleted= $webapp->dbDelete(’urls_queue’,

{ url_md5 => $url_md5});
$msg = "Deleted $url_md5 from the queue";

}

8. The form element update is checked. If set, then the last_updated column of the record for
the specified URL is updated using the variable of $url_md5 as the value for the primary
key. Also, the message is set.

elsif ($form->{’update’}) {
my $updated= $webapp->dbUpdate(’urls_queue’,

{ ‘-last_updated’ => ‘now()’},
{ url_md5 => $url_md5 });

$msg = "Updated $form->{url}";
$updated = 1;

}
}

}

9. Finally, the result is sent back to the Ajax client, as shown in the following code snippet:

$r->content_type(’text/html’);
$r->print(encode_json({

url_md5 => $url_md5,
msg => $msg,
url => $form->{url},
updated => $updated,
err => $err }));

return Apache2::Const::OK;

}

1;

10. The JSON that is sent contains several members shown in the following table:

789

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 790

Chapter 17: Search Engine Application

Member Description

url_md5 The MD5 hex value of the URL being acted upon; it passes back to the
calling JavaScript function.

url The actual URL that was submitted and is passed back in this response so
the JavaScript function onQueue() has access to this value. onQueue() will
be used to display the URL in the row that is inserted.

Msg The message that is displayed in the msg div element.

Updated The updated variable used to determine if an update occurred or not in the
function onQueue().

Err Err is used for printing an error message.

URLQueue Interface
The following three figures (17-4, 17-5, and 17-6) show this URLQueue interface in action — the addition
of a single URL. Figure 17-4 shows the interface before any user input.

Figure 17-4

In Figure 17-5, http://timesofindia.com is submitted. The form indicates processing is occurring.

In Figure 17-6, you can see the row is added for http://timesofindia.com. This all happened without a
page reload! This is where the utility of Ajax is made obvious.

790

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 791

Chapter 17: Search Engine Application

Figure 17-5

Figure 17-6

791

Galbraith c17.tex V3 - 06/02/2009 11:08am Page 792

Chapter 17: Search Engine Application

If all your triggers shown earlier are set up properly, whenever you add or update a URL, a data-
gathering process is triggered to gather the content for that URL. You will probably want to set up
a cron job to run also, because user-triggered events aren’t sufficient enough to keep a site up-to-date.
The cron job would only have to update the last_updated column of urls_queue to do this. You might
also want to modify the URL fetching worker to allow more recursion. It all depends on how much data
you want to gather.

The important thing to know is that with Gearman, MySQL, memcached, and the code shown, plus a
little ingenuity, you have just the right tools for spreading out the processing of data retrieval!

Summary
This chapter showed you an entire search engine application. This example put together all of the
examples you have read about throughout the book — Apache, mod_perl/Perl, memcached, Memcached
Functions for MySQL, the MySQL server itself, Sphinx, and a new system called Gearman. Gearman
includes a job server, known as gearmand, and a client/worker library that is used by clients to request
jobs through the job server. The jobs are then assigned to workers. In this case, both clients and workers
are written in Perl.

This search engine example was chosen to demonstrate data retrieval and storage, as well as full-text
indexing jobs. The application showed you the following:

❑ How to install and set up the new C-based Gearman job server, gearmand, as well as how to
write three different gearman Perl workers.

❑ How to set up the Gearman MySQL UDFs, which allow you to request jobs from Gearman from
within MySQL. In the case of this application, these were run via database triggers.

❑ How to setup Sphinx to utilize a delta index to provide full-text search capability for data it
indexes from a MySQL table. The MySQL table was where the web pages were retrieved and
stored by the Perl workers.

❑ An Ajax application that is used with this example search engine application to insert, update, or
delete the URLs stored in a table that are used to trigger the data retrieval process.

792

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 793

Installing MySQL

The ease of installing MySQL is one of the primary reasons for its adoption among web developers.
Regardless of platform or OS versions, getting MySQL up and running and ready for use is one of
the easiest installations of any database available.

This appendix explains how to install and configure MySQL for various operating systems and
package formats.

The basic steps of installing MySQL involve determining what package you need to download for
your particular operating system type, version, and hardware platform, as well as determining
what version of MySQL you need to support the features your web application requires.

You also want to determine the minimum system requirements to run a particular version and
configuration of MySQL.

Choosing a MySQL Version
Product-wise, MySQL offers a ‘‘community’’ server that is under the GPL (General Public License)
and MySQL Enterprise — a commercial license. Businesses who want support and add-ons for
things such as monitoring and backup may want to choose the commercial product. Individuals
or businesses willing to take on the responsibility of maintaining their own database installation,
administration, and monitoring can use the community server.

The next question is which version of MySQL to use. This depends on what features are needed and
the level of acceptance (or aversion) you have for the possibility that some features might still need
maturation. The versions available are summarized in the following table:

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 794

Appendix A: Installing MySQL

Version Description

MySQL 5.1 Currently a release candidate, meaning that it is almost at the stage of being
generally available with the caveat that it should not be installed on production
level systems or systems with critical data.

MySQL 5.0 The version considered generally available, meaning production ready, that a
business can depend on.

MySQL 4.1 Also commonly used, but no longer supported by MySQL.

MySQL 4.0 There are even some who still use this version, just as there are some people still
using old Linux distributions because what they are using is ‘‘good enough.’’

Because MySQL 5.1 is due to release when this book prints, this will be the version used in the following
installation demonstrations, as well as throughout this book.

Choosing a MySQL Package Type
You choose the package type depending on which OS, OS distribution, or platform you’re installing
MySQL on, and on the level of MySQL knowledge the person performing the installation has:

❑ Advanced users often prefer source installations because they can determine exactly how to
tailor the MySQL build to suit their needs — such as what storage engines to include, what fea-
tures to support or disable, operating system-specific settings, MySQL server variable default
overrides, etc.

❑ Other users may want a standard installation, the configuration of which is determined by the
operating system packager (as is the case with Linux distributions like Debian, Ubuntu, CentOS,
Redhat, and SUSE). Packaged installations of MySQL can be installed during the time of oper-
ating system installation, or after through software package management utilities such as Yast,
Yum, and apt-get.

The thing to keep in mind is that with older Linux distributions, depending on default package, instal-
lations of MySQL can contain bugs that have since been fixed. Please refer to your operating system’s
documentation, particularly regarding which software packages are included in the distribution.

There is a balance between bleeding edge versus stability. With open source software, bugs are
fixed sooner rather than later, particularly with MySQL. So it is a good practice to determine ahead
of time which version of MySQL will be installed if you’re using an operating system distribution
packaged MySQL (see the previous section for a description of the various versions). The release
notes for the various versions of MySQL can be found at http://dev.mysql.com/doc and they are a
good source of information about what features, enhancements, and fixed bugs a particular version
contains.

The following sections will first detail a Windows installation, followed by both RPM-based and Debian-
based (apt-get) Linux installations, and will finally detail a MySQL source installation.

794

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 795

Appendix A: Installing MySQL

Installing MySQL on Windows
Installation of MySQL on Windows is a very simple, guided process. The steps are essentially:

1. Determine what installation package to use.

2. Download that package.

3. Start the install program.

4. Give input to a number of dialogs.

The installation program is called the Setup Wizard. It will take care of all the underlying details of
installing the MySQL server where it needs to be and ensuring it will run properly after installation.

The very first thing you’ll do is navigate the download page to the list of download package types at
http://dev.mysql.com/downloads/mysql/5.1.html. You will see in that list Community Server.

Depending on release of 5.1, you may have to explicitly select 5.1 download.

On the following page, select Windows (as opposed to Windows 64-bit).

Figure A-1 shows the three Windows download options. These options are:

❑ Windows Essentials: This file contains the essential files needed to run MySQL on windows
with the Installation Wizard.

❑ Windows ZIP/Setup.EXE (x86): This is the full installation package, including the Installation
Wizard. It is also a ZIP file, so the unzip utility is required. Unzipping comes standard with
Windows XP and higher.

❑ Without Installer (unzip in C:\): This download is the MySQL package for windows without
the installer. For this book, the first file is the one that should be chosen. The Windows installer
(with .msi extension) is the installer for Windows 2000 and newer versions. Written using
WIX (Windows Installer XML), it makes Windows installations a lot simpler than in previous
versions.

Figure A-1

The following steps show how to install MySQL on Windows:

1. Download the first of these files (.msi) into the folder of choice, usually defaulting to the
Desktop.

795

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 796

Appendix A: Installing MySQL

2. Log in with an account that has Administrator rights.

3. Click the downloaded file, named mysql-essential-5.1.x-win32.msi. Figure A-2 shows
the MySQL Installation Wizard, which will guide you through the installation, prompting
input for various questions.

Figure A-2

4. Click Next. Figure A-3 shows an Installation Wizard dialog for installation types.

❑ Typical installs the basic options required for having a working MySQL installation
and this is the choice that this book will use.

❑ Complete installs all program features.

❑ Custom allows the custom selection of specific server components and other settings.

Figure A-3

796

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 797

Appendix A: Installing MySQL

5. Chose Typical, and click Next. The Summary dialog appears as shown in Figure A-4. This
dialog displays the settings that will be used for the installation. At this point, it is possible
to go back and change any installation settings if needed.

Figure A-4

6. Click Install. A screen appears showing the installation status dialog, after which the
Installation dialog presents information about MySQL Enterprise, the commercial version of
MySQL.

7. Click Next to continue. Finally, the dialog shown in Figure A-5 appears. It states that the
installation is complete, with the Configure the Server Now check box.

Figure A-5

8. Leave this ‘‘Configure the Server Now’’ box checked, and click Finish. After the installation
dialogs are completed, another dialog appears, as shown in Figure A-6. This dialog is for the

797

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 798

Appendix A: Installing MySQL

MySQL Server Instance Configuration Wizard. This is the start of various steps to configure
the newly installed server.

Figure A-6

9. Click Next. Figure A-7 shows a choice between Detailed and Standard Configuration. The
default is Detailed Configuration.

Figure A-7

10. Leave the default checked and click Next. Figure A-8 shows a dialog for selecting what type
of server is going to be run. The choices displayed are for Developer, Server, or Dedicated
MySQL Server Machine. Developer Machine is selected by default.

798

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 799

Appendix A: Installing MySQL

Figure A-8

11. Leave the default checked and click Next. Figure A-9 gives the selection of what type of
database will be used. The choices are for Multifunctional Database, Transactional Database
Only, or Non-Transactional Database Only. This means that the first includes MyISAM
and InnoDB, the second InnoDB by default (while still including MyISAM), and the third
MyISAM only. (Chapter 3 of this book covers the differences between MyISAM and
InnoDB.)

Figure A-9

12. Leave the default (Multifunctional Database) selected, and click Next. Figure A-10 allows for
selecting the choices of where to set up InnoDB tablespace file(s).

799

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 800

Appendix A: Installing MySQL

Figure A-10

13. Some database administrators choose to have their tablespace files in a different directory
than default, or even on a separate disk for performance benefits. Choose a different location
if you wish or the default, which is Installation Path, and then click Next. Figure A-11 shows
the dialog that appears for selecting the number of concurrent connections the database
installation will support. The default is the first check box. Depending on what the plans
are and what this server installation will require, the selection can be made here.

For example, if the server is for a busy web site, the Online Transaction Processing (OLTP)
option may be appropriate. If this server is for testing development of web applications
for MySQL, Decision Support (DSS/OLAP) will work well. If the administrator is familiar
enough with MySQL to know the appropriate number of connections to allow for the appli-
cation in question, the Manual Settings option allows for whatever value is desired.

Figure A-11

800

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 801

Appendix A: Installing MySQL

14. After making the appropriate selection, click Next. Figure A-12 is a dialog for choosing TCP
options.

Figure A-12

The TCP choices are:

❑ Enable TCP/IP networking, including what port to run MySQL, with a check box
labeled ‘‘Add firewall exception for this port.’’

❑ Enable Strict Mode

The defaults should suffice. You may want to also enable the firewall exception, depending
on your firewall settings on your Windows server. Click Next.

15. Select a default character set (Figure A-13). Your choice will depend on your locale, or if the
web application using this database needs to be able to work internationally. For instance, if
the application needs to support numerous character sets, UTF8 would be the appropriate
choice. Choose the character set and then click the Next button.

Figure A-13
801

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 802

Appendix A: Installing MySQL

16. Select how MySQL will start up (Figure A-14). The choices are Install As Windows Service
or Include Bin Directory in Windows PATH. Most users find it convenient for MySQL to be
started as a service, so leave the defaults set, and click the Next button.

Figure A-14

17. Select the root password (Figure A-15). Enter a root password of your choice. It’s recom-
mended that you not check the (default) box labeled ‘‘Enable root access from remote
machines’’; also leave ‘‘Create An Anonymous Account’’ unchecked (default). Click the
Next button. Also, readers might want to check the box labeled ‘‘Include Bin Directory in
Windows PATH’’ in order for the various utilities such as the MySQL command-line client,
mysqldump, and others to work from a command prompt.

Figure A-15

802

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 803

Appendix A: Installing MySQL

18. The Summary dialog, shown in figure A-16, appears. It shows that the Configuration Wizard
is about to execute the final steps of the configuration. Click Execute to complete.

Figure A-16

19. Figure A-17 is the final dialog. It says everything is completed. Click Finish.

Figure A-17

MySQL is now installed on your Windows box!

803

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 804

Appendix A: Installing MySQL

Installing MySQL on RPM-based
Linux Systems

Various RPM-based Linux distributions — SUSE, Redhat Enterprise, Centos, Fedora Core, etc. — allow
for you to install MySQL during OS installation and each have installation instructions available. For
these systems, it is also possible to install MySQL at any time after installation.

The various system management tools you can install MySQL from are:

❑ Yast: SUSE’s system management utility allows you to select software installation sources as
well as packages. You can do this either via the command line as Yast, or from the windowed
environment under Administrator Settings.

❑ Yum: Available on various RPM-based Linux systems such as Redhat, Centos, Fedora Core,
Yellow Dog Linux, and others. Yum, invoked as yum from the comment line, works similarly to
apt-get on Debian-based systems, and is essentially a means of installing the appropriate RPMs
for a package, taking care of dependencies. An example of running yum to get a list of packages
having to do with MySQL is this:

yum search mysql

In this case, you would get a pretty big list of packages. The ones that would most likely install
the server and other packages that you would list (among a big list of others) are as follows:

mysql-devel.i386 : Files for development of MySQL applications.
mysql-server.x86_64 : The MySQL server and related files.
innotop.noarch : A MySQL and InnoDB monitor program
mysql-bench.x86_64 : MySQL benchmark scripts and data.
mysql.x86_64 : MySQL client programs and shared libraries.
mysql-connector-odbc.x86_64 : ODBC driver for MySQL
mysql.x86_64 : MySQL client programs and shared libraries.
mysql-connector-odbc.x86_64 : ODBC driver for MySQL
perl-DBD-MySQL.x86_64 : A MySQL interface for perl
mysql-proxy.x86_64 : A proxy for the MySQL Client/Server protocol
perl-DBIx-DBSchema.noarch : Database-independent schema objects

❑ RPM: This involves simply obtaining the RPM from MySQL’s download site and installing the
package. There are various RPM packages for MySQL: server, client, shared libraries, shared
compatibility packages, etc. In most cases, server and client (and perhaps shared libraries)
should suffice. An example of installing an RPM is:

[root@localhost ∼]# rpm -ihv MySQL-server-community-5.1.26-0.rhel5.ia64.rpm

❑ The RPM installations usually install MySQL binaries in /usr/bin, and data files in
/var/lib/mysql.

Installing MySQL on Ubuntu
If MySQL wasn’t installed during the Ubuntu installation, it’s easy enough to install using the apt-* tools
commonly available on Debian-derived Linux distributions. Follow these steps:

804

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 805

Appendix A: Installing MySQL

1. Update the package list. Run the command:

sudo apt-get update

All the sources will be fetched from an update list and displayed when this command is run.

2. Run this as follows:

sudo apt-cache search mysql|grep ˆ mysql-

mysql-admin - GUI tool for intuitive MySQL administration
mysql-gui-tools-common - Architecture independent files for MySQL GUI Tools
mysql-navigator - GUI client program for MySQL database server
mysql-proxy - proxy for high availability, load balancing and query
modification
mysql-query-browser - Official GUI tool to query MySQL database
mysql-doc-5.0 - MySQL database documentation
mysql-client - MySQL database client (meta package depending on the latest
version)
mysql-client-5.0 - MySQL database client binaries
mysql-common - MySQL database common files
mysql-server - MySQL database server (meta package depending on the latest
version)
mysql-server-5.0 - MySQL database server binaries

You want to use grep to filter out only the primary MySQL installation packages. Without
grep, apt-cache returns any package with the string mysql included.

3. The packages that are needed are mysql-server, mysql-common, and mysql-client. Install
each by entering these commands:

sudo apt-get install mysql-common
sudo apt-get install mysql-client
sudo apt-get install mysql-server

4. When the mysql-client package is installed, there will be a message prompt for the inclusion
of more packages:

sudo apt-get install mysql-client
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

libdbd-mysql-perl libdbi-perl libmysqlclient15off libnet-daemon-perl
libplrpc-perl

mysql-client-5.0
Suggested packages:

dbishell libcompress-zlib-perl mysql-doc-5.0
The following NEW packages will be installed:

libdbd-mysql-perl libdbi-perl libmysqlclient15off libnet-daemon-perl
libplrpc-perl

mysql-client mysql-client-5.0

805

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 806

Appendix A: Installing MySQL

0 upgraded, 7 newly installed, 0 to remove and 191 not upgraded.
Need to get 11.2MB of archives.
After this operation, 27.3MB of additional disk space will be used.
Do you want to continue [Y/n]? Y

5. ’Y’ is the default, as shown. Press Enter. These are all packages that will be needed for the
examples of this book, so the more the merrier.

sudo apt-get install mysql-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

mysql-server-5.0
Suggested packages:

mysql-doc-5.0 tinyca
Recommended packages:

libhtml-template-perl mailx
The following NEW packages will be installed:

mysql-server mysql-server-5.0
0 upgraded, 2 newly installed, 0 to remove and 191 not upgraded.
Need to get 0B/28.1MB of archives.
After this operation, 89.3MB of additional disk space will be used.
Do you want to continue [Y/n]?

6. Likewise with the installation of mysql-server: ‘Y’ is the default again. Press Enter.

Figure A-18 shows the prompt asking for a password for the MySQL root user. This prompt is to set the
password for the root database user. The root user is the default administrative user for the database.
Even though the name is the same as the operating system root user, this user is only for MySQL and any
changes you make to this user are only within the database. Enter a password (make sure to remember
this password!) and press Enter. Another prompt will ask the password to be repeated; enter the pass-
word again and press Enter. When this is completed, MySQL will be installed, running, and ready to use.

Figure A-18

806

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 807

Appendix A: Installing MySQL

Installing MySQL from Source
on UNIX Systems

Many developers and database administrators prefer to install MySQL from source. This gives them the
ability to compile MySQL with exactly the features they want. If you are comfortable with compiling
source code on a UNIX system, the following instructions will guide you through this process.

The steps of installing MySQL from source on UNIX systems are pretty much the same regardless of
UNIX variant. Before you attempt compilation of the MySQL source code, you should ensure that the
prerequisite tools are installed. These tools are the following:

❑ gcc/g++ or commercial compiler

❑ gnu make or commercial make

❑ lexx/yacc

❑ automake

❑ autoconf

❑ libtool

❑ libncurses

To install, you follow these steps:

1. In working with MySQL source code, it can be very helpful to create a directory from within
the home directory.

cd ∼
mkdir mysql-build

2. Of course, you want to download the source distribution. This can be obtained from the URL
http://dev.mysql.com/downloads/.

3. From there, navigate to the appropriate source package and download it via the web
browser, saving the tar.gz file to the directory listed above, or wherever is convenient.

4. Next, as root or using the program sudo, create the mysql group and user:

sudo groupadd mysql
sudo useradd –d /usr/local/mysql –g mysql –m mysql

5. Then use the tar program to unarchive and decompress the downloaded file:

tar xvzf mysql-5.1.x.tar.gz

6. Enter the directory of the MySQL source to build:

cd mysql-5.1.x

807

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 808

Appendix A: Installing MySQL

7. There are two ways to build MySQL.

❑ The configure script can be used to specify default options to include or exclude from
the server:

/configure –prefix=/usr/local/mysql –with-this –without-that

You can find out what all the various options configure affords you by typing:

/configure –help | less

Once you run configure with the options you chose, you can now run the build: make.

❑ Optionally, and lesser-known but also very convenient, there are build scripts found in
the BUILD directory that are named according to architecture, inclusiveness of features,
compiler, debug or not, etc., of the build:

/BUILD/compile-pentium-debug-max
/BUILD/compile-solaris-sparc
/BUILD/compile-amd64-valgrind-max

The build scripts with debug or valgrind are built specifically for debug purposes
and are not good choices for performance, but are good for using debuggers to trace
how the server runs for the inquisitive mind.

8. Once a build script has been chosen, all that needs to be done is to run the script. It runs
everything to perform the build — both configure with the options specified (defaulting
to prefix=/usr/local/mysql) and make.

9. Should there be a problem with the build process, useful information on how to deal
with a variety of issues can be found at http://dev.mysql.com/doc/refman/5.1/en/
compilation-problems.html.

10. Once the compilation is complete, the next step is to install MySQL from the compiled
source:

sudo make install

Once this command is completed, all the files are installed in the directory specified, in this
case /usr/local/mysql.

11. To begin setting up MySQL as root user:

sudo su –

12. Change to this directory:

cd /usr/local/mysql

13. Set up permissions for this directory and its subdirectories:

chown –r mysql .*

808

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 809

Appendix A: Installing MySQL

14. Install the system database tables:

/mysql_install_db –user=mysql

This script creates the data directory and mysql schema containing system tables. The data
directory is the directory where database schemas are found, including the new mysql
schema. The mysql schema contains tables required for system functionality such as user
database, tables, column privileges, time zones, general logging, slow queries log, and help
information. Also, whenever you create a new schema, a new directory with the same name
as the schema will be created in the data directory. In each schema’s directory, MySQL will
store all files and actual data (except for InnoDB, which stores one or more tablespace files in
the data directory directly).

15. Change the data directory to have user permissions to both mysql user and group:

chown –R mysql:mysql ./var

16. To make it so the newly installed MySQL binary programs are readily executable and do
not need to be explicitly run with the full path, add the directory to the PATH variable so it
contains these programs in /etc/profile by adding this line:

export PATH=$PATH:/usr/local/mysql/bin

Another option is for this line to be added to each individual’s .bash_profile if it’s not
necessary for every user to be able to run MySQL binary programs. With it added to
/etc/profile, the next time the system is restarted, all logins to the system will have
this directory in their path. For this session, this same command will set the PATH variable
correctly.

17. MySQL can now be started with the command:

/usr/local/mysql/bin/mysqld_safe –user=mysql &

Unix Post Install
If the UNIX variant being used is the System 5 (SYSV) variant, there is a MySQL daemon start/stop script
available in the source directory where MySQL was compiled:

support/mysql.server

This script most likely will need to be edited for the specific system settings. Once it’s ready to use, it can
be set up in /etc/init.d/ and linked to the appropriate run-level directories so that the MySQL daemon
is started and stopped according to the system’s running state, either when the system is being started or
shut down.

Also included in the support directory are different MySQL my.cnf configuration files. With the source
build of MySQL, there is no my.cnf installed and the running MySQL server uses default settings. The
various my.cnf configuration files in this directory are provided with settings for installations of several
sizes and are named accordingly:

809

Galbraith bapp01.tex V3 - 06/02/2009 11:15am Page 810

Appendix A: Installing MySQL

my-huge.cnf
my-medium.cnf
my-small.cnf

Whichever type of MySQL deployment is being planned, one of these files can be chosen and edited
according to any system specifics and copied as /etc/my.cnf. The next time MySQL is restarted, it will
use the settings of this new configuration file.

810

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 811

Configuring MySQL

Now that you have a running MySQL installation, as an administrator, you can make some
configuration setting changes and perform some administrative tasks. The first thing to do is
set up a schema and privileges to allow web applications to access that schema. Other tasks
are to set various MySQL command options for optimal performance.

Running MySQL for the First Time
The first thing to do is to change the password for the root user. The root user is the default admin-
istrative user for the database. Even though the name is the same as the operating system root user,
this root user is only a MySQL user, and any changes you make to this user are only made within
the database. By default, this user has no password, though you can only connect to the database
from the same host that the database is running on. Despite this, it is still a good idea to change
it so the root user has an actual password. To change the root user’s password, start the MySQL
command line client:

mysql –user=root

Then set the user password with the following SQL statements:

mysql> SET PASSWORD FOR root@localhost=PASSWORD(’rootpass’);
mysql> SET PASSWORD FOR root@127.0.0.1=PASSWORD(’rootpass’);
mysql> SET PASSWORD FOR root@myhost=PASSWORD(’rootpass’);

Of course, replace the word rootpass in the previous code with the desired password. The reason
for running this three times for the same user but different hosts is because database users are
specified with user@host; in order for the root user to connect to MySQL running on the local
server, you must have an entry for root@localhost, root@127.0.0.1, and root@myhost (with
‘‘myhost’’ being the name of your server). All of these are possible host values of the local server
that MySQL is running on.

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 812

Appendix B: Configuring MySQL

Setting Up Privileges and Creating a Schema
The second administrative task that should be performed is to create the user that will connect to the
schema where the web application database objects will be located.

mysql> GRANT ALL PRIVILEGES ON webapps.* TO ‘webuser’@’localhost’
-> IDENTIFIED BY ‘mypass’;

Again, replace "mypass" in your code with the password of your choice.

This entry is just for the WebApp user to connect to the local database. There may be other database hosts
from where this user will need the privileges to connect from:

mysql> GRANT ALL PRIVILEGES ON webapps.* TO ‘webuser’@’www.example.com’
-> IDENTIFIED BY ‘mypass’;

Whatever the hostname is, or IP address that the webuser user will be connecting from, the name of that
host will replace www.example.com, which is a database schema that contains all database objects that
the web application requires. For this book, the name webapp is used. To create a database schema, the
following command is run:

mysql> CREATE DATABASE webapp

Alternatively, the command mysqladmin –u root –p create webapp can also be used. MySQL client
programs, including the mysqladmin client program, are explained in Chapter 2.

MySQL Server Configuration File
After installing MySQL, there are some server command options that can be set, depending on what
hardware you have available and what your application may require.

The file, my.cnf, or on Windows, my.ini, is a file containing various MySQL server command options
that the server reads upon starting up. It usually resides in /etc on UNIX systems, although some
GNU/Linux distributions such as Debian and Ubuntu place it in /etc/mysql. Individual users can also
have their own specific settings stored in a file .my.cnf, located in the user’s home directory. The my.cnf
file has a general format for sections, indicated like such:

[client]

The [client] option group would be used to specify command options for MySQL client programs.

[mysqld]

The [mysqld] option group would be used to specify command options for the main server.

There are several sections that can be contained within my.cnf: mysqld, mysqld_safe, mysqld_multi,
client, mysql, mysqldump, etc. Within each of those sections are the different server command options
"name = value". These are the values for the program of that section, such as this:

812

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 813

Appendix B: Configuring MySQL

[client]

port = 3306

[mysqld]

datadir = /usr/local/mysql/var

In the previous example, this means that MySQL client programs such as mysql command line client,
mysqldump and mysqladmin will expect to connect to the server on port 3306 and mysqld, the MySQL
server itself, uses the directory /usr/local/mysql/var as the place where schemas are located.

To see all the different command options that MySQL uses, issue the following command (the path to
mysqld may vary according to installation):

shell> /usr/local/mysql/libexec/mysqld --verbose --help

This will print not only mysqld options that can be specified, but the also the values of the settings it is
using.

There are some basic command options that are worth setting immediately after installing MySQL, before
the database populates with application data and is used as a production server. The following types of
command options are those that specify where data is stored on the filesystem (datadir) as well as
InnoDB tablespace configuration. These command options are easier to set prior to populating your
database with application data because you don’t yet have to concern yourself with losing any crucial
data. Also, data files are relatively small at this time — so if you wanted to set your data directory variable
to a separate disk and you needed to move your data files to that disk, it would be much easier to do with
small data files.

Basic Command Options
This section covers the basic command options for configuring MySQL. These options are used for setting
MySQL system values, such as where to store the database data and index files, network settings, where
temporary tables will be created, as well as the user id that MySQL will run as.

datadir
As mentioned before, this setting specifies the base directory where MySQL schemas are located. A
schema in MySQL is stored in its own directory. Each table created has a set of one or more files, depend-
ing upon the type of storage engine set. For instance, say you have a schema named webapps, and there
are three tables t1 (MyISAM), users (InnoDB), and history (Archive), and the datadir is defined as
/usr/local/mysql/var. The files that you would see are the following:

ls -l /usr/local/mysql/
total 112
-rw-rw---- 1 mysql mysql 65 Jun 23 09:17 db.opt
-rw-rw---- 1 mysql mysql 8642 Jun 23 09:18 history.ARZ
-rw-rw---- 1 mysql mysql 8554 Jun 23 09:18 history.frm
-rw-rw---- 1 mysql mysql 0 Jun 23 09:18 t1.MYD
-rw-rw---- 1 mysql mysql 1024 Jun 23 09:18 t1.MYI

813

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 814

Appendix B: Configuring MySQL

-rw-rw---- 1 mysql mysql 8554 Jun 23 09:18 t1.frm
-rw-rw---- 1 mysql mysql 8554 Jun 23 09:18 users.frm

For every table, regardless of storage engine type, there will always be an .frm file. This is the table
definition file. Then, with t1, which uses the MyISAM storage engine, it has two additional files: t1.MYD
and t1.MYI. The first is the data file where actual data is stored, and the second is the index file, which
contains the indexes for t1. The history table, on the other hand, has just one other file: history.ARZ.
This is a gzip-compressed data file. The Archive storage engine doesn’t support indexes, so there is no
index file for the history table. The users table has its sole .frm file, but its actual data and indexes are
stored in an InnoDB tablespace file. Chapter 4 explains in more detail the specifics of each storage engine.

As mentioned in Appendix A, some administrators choose to set the datadir value to a separate disk
than the operating system disk, having all IO for the database on its own disk partition. An example of
this would be to have a separate disk partition that is mounted on /data, and to set datadir to this value:

datadir = /data

tmpdir
MySQL has a feature known as temporary tables. These are tables that can be used to temporarily store
the results of one query for use in a subsequent query. Temporary tables are also used internally by
MySQL for sorting and other operations when using system memory isn’t possible due to the amount of
data being processed. This value defaults to the directory /tmp but can also be set to a separate disk or
even set to RAM disk, making it so temporary tables are created in memory instead of on disk.

Examples of setting tmpdir are as follows:

tmpdir = /tmp

tmpdir = /disk2/tmp

user
This command option is used to set the system user (UID) the MySQL daemon mysqld will run as. The
default is ‘‘mysql,’’ but this can be set to any value the administrator chooses. An example is:

user = mysql

port
The port setting is to specify what port MySQL will run on. The default is 3306, but in some situations,
another port may be used. It’s possible to run multiple instances of MySQL on a single system. (The
section ‘‘Replication’’ that appears later in this appendix explains this in more detail.) In order to run
multiple instances of MySQL on a single system, you would have in your my.cnf multiple [mysqld]
sections such as the following:

[mysqld1]

datadir = /usr/local/mysql/var/data1

814

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 815

Appendix B: Configuring MySQL

port = 3306

[mysqld2]

datadir = /usr/local/mysql/var/data2

port = 3307

socket
The socket setting is to specify what socket MySQL will use. The default can depend on whether it was
specified during compilation, or what the package for MySQL was set to by the operating system vendor.
As with the port setting, the socket setting can also be used to accommodate running multiple MySQL
instances on the same system. An example of this setting would be:

socket = /tmp/mysqld.sock

InnoDB Path and Tablespace Command Options
The InnoDB storage engine has its own particular command options that pertain specifically to the per-
formance and data file configuration. The tablespace settings can be changed at any time, even after you
have a full data set loaded, but they’re much easier to change in the beginning. If you plan on using the
InnoDB storage engine, and have included in your plan some of the requirements for your application, it
can certainly help to configure the InnoDB settings from the start. The settings listed here are those types
of settings.

innodb_data_home_dir

This is similar to the datadir command option except it only pertains to the InnoDB storage engine.
InnoDB employs for its storage what is known as a tablespace file. This file contains both the data and
indexes for tables. This tablespace file can be configured to contain all tables, or one tablespace per table.
Like datadir, administrators can define this to be any location, or even a separate disk. Moreover, the
InnoDB storage engine can even use a raw partition of an entire disk.

innodb_data_home_dir = /usr/local/mysql/var
innodb_data_home_dir = /innodata

innodb_data_file_path
This command option specifies the tablespace file configuration. It specifies the initial size of the
tablespace file or files, whether the tablespace file can autoextend, and can be used to set the actual path
of the tablespace. The basic usage is this:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

Here is a simple example of a single tablespace file that automatically grows when the initial size is
exceeded:

innodb_data_file_path=ibdata1:10M:autoextend

815

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 816

Appendix B: Configuring MySQL

The autoextend attribute allows for the tablespace file to grow when the initial size of the tablespace
is exceeded. It will grow by 8MB increments by default. Another example that would allow for good
capacity and growth is to use two tablespace files:

innodb_data_file_path = ibdata1:100M;ibdata2:100M:autoextend

Explicitly defining the path is done by leaving the previous innodb_data_home_dir an empty string and
specifying the actual path:

innodb_data_home_dir =
innodb_data_file_path=/innodata/ibdata1:100M;/innodata/ibdata2:100M:autoextend

As already mentioned, it’s possible even to use a raw partition. This means the tablespace is not a file but
an entire disk partition and that the disk partition is not using an operating system filesystem format,
but rather InnoDB’s own format. Another feature of using raw disk partitions is that you can perform
non-buffered I/O on Windows and on some UNIX variants. To use raw partitions, this can be achieved
with the settings:

innodb_data_home_dir =
innodb_data_file_path = /dev/sdb1:3Gnewraw;/dev/sdb2:2Gnewraw

The previous example means that two partitions will be used: One is 3 gigabytes, and the second is
2 gigabytes. It’s important to note that the keyword in the example, newraw, should only be used the first
time that MySQL is started after adding the new configuration using raw partitions. MySQL processes
this newraw keyword and initializes the new partitions. After you start and run MySQL, these keywords
should be removed.

innodb_file_per_table
This setting allows each InnoDB table to have its own tablespace file (<tablename>.ibd) versus one or
more tablespaces for all tables. This makes it convenient to move tables from one disk to another, and also
has some performance benefits. Another benefit using innodb_table_per_file: using single tablespace
files for each table (multiple tablespaces) allows for disk space to be freed up when OPTIMIZE TABLE is
performed on the given table, whereas with single tablespace files for multiple tables, the tablespace
file will not decrease even when running OPTIMIZE TABLE. Multiple tablespace files are by default auto-
extending, meaning they will automatically grow according to data storage needs. Single tablespace
files have a given size as specified in the parameter innodb_data_file_path, which can also specify the
single tablespace file as being auto-extending. innodb_file_per_table is definitely one setting you want
to make sooner rather than later, before you have a lot of data in your database. The process to switch to
using this setting is to simply add this to the my.cnf:

[mysqld]
innodb_file_per_table

Existing InnoDB tables will remain in the single tablespace(s). One way to switch existing tables to using
file-per-table is to simply run ALTER TABLE:

ALTER TABLE t1 ENGINE=InnoDB;

The existing InnoDB table will be recreated with its own .ibd tablespace file. The one problem with this
is if the existing single tablespace(s) are large. Once you convert to using innodb_file_per_table, it’s
unnecessarily a large size since it will no longer contain the table data.

816

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 817

Appendix B: Configuring MySQL

Note that the previous statement assumes you’re converting every single table.

The one way to change InnoDB to use a smaller tablespace file is this:

1. Convert every InnoDB table to temporarily use MyISAM, making sure no clients are allowed
to connect to the database before this step because there will be no ACID compliance after
the ALTER has completed:

ALTER TABLE t1 ENGINE=MyISAM

2. Stop the MySQL server.

3. Move (back up) the existing tablespace file(s).

4. Change settings for innodb_data_file_path to the desired reduced size.

5. Start the MySQL server.

6. Convert every table you converted to MyISAM back to InnoDB:

ALTER TABLE t1 ENGINE=InnoDB

There are many other command options pertaining to InnoDB (and MySQL in general) that
are beyond the scope of this appendix. More information about these options can be found at
http://dev.mysql.com/doc/, MySQL’s documentation web site.

Backups
Backing up your database is one of the most important administrative tasks you need to perform. Doing
so will give you assurance that your data won’t be lost — and that you can sleep at night! Also, being
able to quickly restore your database from a backup is crucial in an effective backup and restoration
procedure.

With MySQL, there are a number of tools and strategies for backing up and restoring your data. This
section will cover some of the more common ones.

Replication Backup Slave
One common strategy is to use a slave that is used solely for running backups. This allows you to run
backups on a live database, regardless of how large it is, without affecting any applications using the
main database. You can even use features such as the MySQL global variable slave_replication_delay
(see http://bugs.mysql.com/bug.php?id=28760) to make it so the backup slave is lagging the master by
a given amount of time so you can have ‘‘lagged’’ backups of your data. This might be useful in the case
where you want backups that represent your system’s data state at a time somewhat in the past — say,
for instance, there was some catastrophic data loss (God forbid) at a particular time near the time of your
backups. This might result in your backup process adversely being affected. This would give you both a
live server to use (you would immediately shut down replication), as well as create a backup from it.

817

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 818

Appendix B: Configuring MySQL

mysqldump
The MySQL client tool, mysqldump, is the most commonly used method to create backups. To see how to
use mysqldump, as well as a list of options available, you can run this:

mysqldump --help

To produce a simple backup of a schema, in this case called webapp, connect as the user username, which
should be whatever user has access to the webapp schema. The output of mysqldump contains SQL state-
ments that recreate the tables in webapp and insert the data. These statements are outputted to the file
webapp.sql.

mysqldump --user=username --password=pass webapp > webapp.sql

If you wanted to dump only the schema files (create tables), you could use the flag -d or --no-data.

mysqldump --user=username --password=pass --no-data webapp > webapp_schema.sql

One way to produce backups of your database is to produce a separate schema creation file and data file.
For specifying that you want to exclude schema creation information — no CREATE TABLE statements —
you use the following:

mysqldump --user=username --no-create-info webapp > webapp_data.sql

To restore your database from a backup created by mysqldump, you simply need to run that backup file
with the MySQL command line client, mysql. The following would reload the entire dump file of the
webapp schema:

mysql --user=root webapp < webapp.sql

Scripting mysqldump Backups with Perl
You can also automate your backups, as well as perform your backups from a MySQL slave dedicated
to providing backups. The following Perl script, which would be automated as a cron job, does this by
making sure the slave is up-to-date before performing the dump, and attempts to let the slave catch up
within a defined number of tries (seconds in this case due to using a sleep).

This script timestamps the dump and removes any dumps older than a week. This script also obtains
the current position of the slave (the data that has been read from the master) and writes it to a file that
contains the CHANGE MASTER statement that would be run if you were to restore a database with a dump
produced from this script.

!/usr/bin/perl

use strict;
use warnings;

use Carp qw(croak);
use DBI;
use Getopt::Long;

818

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 819

Appendix B: Configuring MySQL

our $dbh;
our $dump_dir = ‘/var/backups/mysql’;
our $mysqldump = ‘/usr/local/mysql/bin/mysqldump’;

our $opt_schema;

always connect
sub BEGIN {

$dbh= DBI->connect(’DBI:mysql:webapp’, ‘root’, ‘’);
}

make sure to start the slave io_thread even if failure
sub END {

$dbh->do(’start slave io_thread’);
}

GetOptions(
"s|schema=s" => \$opt_schema

);

always assume ‘webapp’ unless otherwise specified
$opt_schema = ‘webapp’ unless defined $opt_schema;

clear out anything older than a week
`find . -name ‘*.sql’ -mtime +7 -exec rm -f \{\} \\;`;

get a data stamp
my $dump= ‘date +%d%m%y`;
chomp($dump);
$dump= ‘webapp-’ . $dump . ‘.sql’;
chdir($dump_dir) or croak "Unable to chdir $!\n";

stop the slave from being updated
$dbh->do(’stop slave io_thread’);
my $up_to_date = 0;
my $sth = $dbh->prepare(’SHOW SLAVE STATUS’);

my $row;

total number of attempts (seconds) to see if slave is up to date
my $max_tries = 100;
my $tries= 1;
while (!$up_to_date && $tries < $max_tries) {

$sth->execute();
$row= $sth->fetchrow_arrayref();
if the columns are equal, then this means the slave has caught up
if ($row->[6] == $row->[21]) {
$up_to_date= 1;

}
sleep 1;
$tries++;

}

if ($tries == $max_tries) {

819

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 820

Appendix B: Configuring MySQL

$dbh->do(’start slave io_thread’);
warn "slave too far behind, exiting.";
exit;

}
create change master string
my $change= ‘CHANGE MASTER TO MASTER_HOST=\" . $row->[1] .

‘\’, MASTER_LOG_FILE=\" . $row->[5] .
‘\’, MASTER_LOG_POS=’ . $row->[6] . ‘;’;

my $fh;
open($fh, ‘>’, ‘change_master.txt’) or die "unable to open change_master_txt" ;
print $fh $change;
close($fh);

run the backup
my $retval = system("$mysqldump -u root --master-data=2 $opt_schema > $dump");

restart the slave IO thread
$dbh->do(’start slave io_thread’);

1;

Creating a Backup by Copying Data Files
If you are using only MyISAM as the storage engine for a given schema or tables, you can simply copy
data from the data directory to a backup directory. Of course, you have to issue LOCK TABLES to ensure
these tables aren’t being written to while copying. You will need two terminal windows for this.

1. In one terminal window, as a user with the proper privileges, connect to the schema you
want to back up, in this case, webapp:

mysql --user=root --password=pass webapp

2. Then in another terminal window (this is important), issue a write lock on the tables. Don’t
leave this screen until you’re done with the file copying in the next step!

mysql> FLUSH TABLES WITH READ LOCK;

3. Then, from within the data directory, copy the files to the backup directory:

cd /var/lib/mysql/webapps

cp *.MYD *.MYI *.frm /var/backups/mysql/

4. Now you can unlock the schema in the other terminal window.

mysql> UNLOCK TABLES;

To restore the database with these files, or even create a slave with this data, you would want to shut
down the database you are restoring and simply copy these files to the appropriate data directory. Then
restart the database.

820

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 821

Appendix B: Configuring MySQL

mysqlhotcopy
mysqlhotcopy is a Perl backup utility originally written by Tim Bunce (creator of DBI) for backing up
MyISAM and Archive tables only. It automatically performs a backup using the file copy method, as just
shown in the previous section. It is a standard client utility that is part of the MySQL distribution. An
example of performing a backup of the webapps schema is shown in the snippet below:

mysqlhotcopy --user=root webapp /var/backups/mysql/

After running this, you would find all of the MYD, MYI and .frm files for the webapp schema located in
/var/backups/mysql/webapp. You could use these to either restore a database or build a new one.

Snapshots Using LVM
LVM, or Logical Volume Manager, is a logical volume manager available for Linux for managing disk
drives or partitions. LVM offers the ability to create snapshots, which are images or blocks devices, that
represent an exact copy of the logical volume at the point in time when the snapshot was taken. It gives
a pointer to the data at that time, and once created, it accrues a delta (of sorts) that provides a path of
restoration back to the state of the logical volume the moment the snapshot was made. Over time, this
delta grows, so it’s important to mount the snapshot as soon as possible after its having been made, copy
all the data of that mounted snapshot to a backup disk, unmount the snapshot, and then destroy it.

Some commands for seeing your logical volume setup are:

❑ pvs: This shows physical volumes that comprise an LVM volume:

root@vidya:∼# pvs
PV VG Fmt Attr PSize PFree
/dev/sdb1 data lvm2 a- 372.54G 0
/dev/sdb2 data lvm2 a- 326.09G 296.80G

❑ vgs: This lists logical LVM volume groups:

root@vidya:∼# vgs
VG #PV #LV #SN Attr VSize VFree
data 2 1 1 wz--n- 698.63G 296.80G

❑ lvs: This lists logical volumes:

root@vidya:∼# lvs
LV VG Attr LSize Origin Snap% Move Log Copy%
dbbackup_2008-09-22 data swi-a- 29.30G mysql_data 40.84
mysql_data data owi-ao 372.54G

The commands used for creating and removing snapshots are:

❑ lvcreate: Creates a snapshot.

❑ lvremove: Removes an existing snapshot.

821

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 822

Appendix B: Configuring MySQL

An example of removing a snapshot using lvremove is shown here:

root@vidya:∼# lvremove /dev/data/dbbackup_2008-09-22
Do you really want to remove active logical volume "dbbackup_2008-09-22"? [y/n]: y

Logical volume "dbbackup_2008-09-22" successfully removed

Also important to know is that when you create the snapshot, you must lock the database with this:

FLUSH TABLES WITH READ LOCK;

Locking it prevents writes, but allows reads, which was discussed in the previous section on data file
copying for backups. The snapshot is created very quickly, so the database doesn’t have to be locked for
any more than a minute at most. Then issue:

UNLOCK TABLES;

The following sample Perl code snippet shows how this could be scripted:

connect to the database
my $dbh = DBI->connect(’DBI:mysql:webapp’, ‘root’, ‘root’);
$dbh->do(’flush tables with read lock’);

obtain a date string for yesterday and today
my $query = ‘select date(date_sub(now(), interval 1 day)),date(now()) from dual’;
my $dref = $dbh->selectall_arrayref($query);
my ($yesterday,$today)= @{$dref->[0]};

remove previous day snapshot
print "removing old backp yesterday $yesterday\n";
my $remove= ‘/sbin/lvremove -f /dev/data/dbbackup_$yesterday`;
print "output of /sbin/lvremove -f /dev/data/dbbackup_$yesterday : $remove\n";

create new snapshot
print "creating today’s ($today) backup\n";
my $create= ‘/sbin/lvcreate -L30000M -s -n dbbackup_$today /dev/data/mysql_data`;
print "output lvcreate -L30000M -s -n dbbackup_$today /dev/data/mysql_data:$create\n"
;
print "created backup, unlock tables\n";
$dbh->do(’unlock tables’);

An even better solution is to use Lenz Grimmler’s excellent LVM backup utility, mylvmbackup, which you
can find out about at http://www.lenzg.org/mylvmbackup/.

InnoDB Hotbackup, ibbackup
InnoDB Hotbackup, ibbackup, is a commercial tool available from InnoBase Oy, a subsidiary of Oracle.
ibbackup allows you to back up a live database that is using InnoDB as the storage engine, without
requiring any locks or affecting normal database operation. It provides you with a consistent copy of
your database for a given point in time. It can also be used to create snapshots of data for creating slaves.

Also available is a Perl backup utility for creating hot backups of both InnoDB (using ibbackup) and
MyISAM tables.

ibbackup is a commercial product, so you will have to purchase it from the InnoBase. For more informa-
tion, visit InnoBase’s web site at http://www.innodb.com/hot-backup/.

822

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 823

Appendix B: Configuring MySQL

Monitoring
Knowing the status of your web application system, including the health of the database and operating
systems — both the running status as well as performance over a given period of time — can help you to
ensure maximum up-time and the best performance for the application as a whole. There are many tools
out there to give you this ability, two of which will be discussed here.

Nagios
Nagios is an industry standard, open source system and network monitoring software application. It
can be used to monitor a number of systems and services, including databases, web servers, SSH, and
virtually anything you want to keep an eye on. It can also send alerts via email — which can be set to dial
a pager (so you can be awakened from sleep at 3 A.M.!) when there are problems. Nagios also provides
you with a means of problem remediation, proactive planning (scheduling downtime, capacity planning),
and reporting.

Nagios can also be used in conjunction with nrpe, which is an add-on that allows for the execution of
plug-ins to return status of a remove server to the Nagios server.

Nagios has a web interface (CGI), as shown in figure B-1, that provides numerous overview and summary
pages organized by hosts and services, as well as a status map. This is also the interface you will use to
schedule downtime.

Figure B-1

823

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 824

Appendix B: Configuring MySQL

For more info on Nagios, visit the Nagios project web site. It has information and documentation about
everything you would ever want to know about Nagios at http://www.nagios.org/.

Cacti
Cacti, an extremely useful tool, gives you insight into numerous systems by providing a complete net-
work graphing solution that uses RRDTool (Round Robin Database). With Cacti, you can graph both
networking and database performance. With its web interface, an administrator can configure Cacti
itself, as well as devices, data sources, graphs, polling, and other components.

Figure B-2 shows one of many graphs that Cacti produces, in this case, system load average.

Figure B-2

Additionally, you can find some excellent templates, developed by Baron Schwartz of Percona, for
graphing MySQL performance — graphs for numerous InnoDB and general MySQL statistics, as well as
memcached and Apache. For more information, visit the site at http://www.xaprb.com/blog/
2008/05/25/screenshots-of-improved-mysql-cacti-templates/. The templates can be found at
http://code.google.com/p/mysql-cacti-templates/.

824

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 825

Appendix B: Configuring MySQL

MySQL Enterprise Monitor
The MySQL Enterprise Monitor is a commercial, distributed web application available from MySQL/Sun
that continually monitors your database systems, sending alerts when there are problems. It also provides
a consolidated view of your database system. Other features include auto-detection of your replication
topology, a replication monitor that provides a view of real-time master-slave performance, the MySQL
query analyzer that you can use to improve application performance, as well as many other features. The
Enterprise Monitor is available under MySQL Enterprise subscription levels Silver, Gold, and Platinum.
For more information, see http://www.mysql.com/products/enterprise/monitor.html.

my.cnf Sample File
Chapter 3 demonstrates how to set up replication, with each step explained. The following code is the
my.cnf file used for that demonstration, in its complete form. This my.cnf is set to run on a MacBook Pro,
with 2GB RAM.

#
Sample my.cnf for running with mysqld_multi
#
The path settings in this file pertain to a
MySQL source install where mysql is installed
in /usr/local/mysql
#

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
mysqld_multi runs as root so it can start up the servers
which will themselves run as the mysql user
user = root

[client]
port = 3306
socket = /tmp/mysql.sock

[mysqld1]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = mysql
port = 3306
socket = /tmp/mysql.sock
don’t leave this on for production, performance hit
log = /tmp/sql1.log
datadir = /usr/local/mysql/var/data1

server-id = 1
log-bin = /usr/local/mysql/var/data1/bin.log

825

Galbraith bapp02.tex V3 - 06/02/2009 2:35pm Page 826

Appendix B: Configuring MySQL

log-slave-updates
binlog-do-db = webapps

master-host = localhost
master-user = repl
master-password = repl
master-port = 3307

report-host = slave-3306
report-port = 3306
replicate-wild-do-table = webapps.%
relay-log = /usr/local/mysql/var/data1/relay.log
relay-log-info-file = /usr/local/mysql/var/data1/relay-log.info
relay-log-index = /usr/local/mysql/var/data1/relay-log.index

auto-increment-increment = 2
this will be the odd ID server
auto-increment-offset = 1

key_buffer = 64M
max_allowed_packet = 20M
table_cache = 64
sort_buffer_size = 1M
net_buffer_length = 16K
read_buffer_size = 512K
read_rnd_buffer_size = 1M
myisam_sort_buffer_size = 16M

innodb settings. Adjust according to your hardware
innodb_file_per_table
innodb_data_home_dir = /usr/local/mysql/var/data1
innodb_data_file_path = ibdata1:10M;ibdata2:10M:autoextend
innodb_buffer_pool_size = 64M
innodb_additional_mem_pool_size = 10M
innodb_log_file_size = 5M
innodb_log_buffer_size = 8M
innodb_flush_log_at_trx_commit = 1
innodb_lock_wait_timeout = 50

[mysqld2]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = mysql
port = 3307
socket = /tmp/mysql2.sock
don’t leave this on for production, performance hit
log = /tmp/sql2.log
datadir = /usr/local/mysql/var/data2

replication settings
server-id = 2
log-bin = /usr/local/mysql/var/data2/bin.log
binlog-do-db = webapps
log-slave-updates

826

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 827

Appendix B: Configuring MySQL

replication settings
master-host = localhost
master-user = repl
master-password = repl
master-port = 3306

report-host = slave-3307
report-port = 3307
replicate-wild-do-table = webapps.%
relay-log = /usr/local/mysql/var/data2/relay.log
relay-log-info-file = /usr/local/mysql/var/data2/relay-log.info
relay-log-index = /usr/local/mysql/var/data2/relay-log.index

auto-increment-increment = 2
This will be the even ID server
auto-increment-offset = 2

key_buffer = 64M
max_allowed_packet = 20M
table_cache = 64
sort_buffer_size = 1M
net_buffer_length = 16K
read_buffer_size = 512K
read_rnd_buffer_size = 1M
myisam_sort_buffer_size = 16M

innodb_file_per_table
innodb_data_home_dir = /usr/local/mysql/var/data2
innodb_data_file_path = ibdata1:10M;ibdata2:10M:autoextend
innodb_log_group_home_dir = /usr/local/mysql/var/data2
innodb_buffer_pool_size = 64M
innodb_additional_mem_pool_size = 10M
innodb_log_file_size = 5M
innodb_log_buffer_size = 8M
innodb_flush_log_at_trx_commit = 1
innodb_lock_wait_timeout = 50

Sample sphinx.conf
Chapter 3 also provides a demonstration of installing and configuring the Sphinx search engine. The
following is the sphinx.conf used in that demonstration, in its entirety:

#
Sphinx configuration file sample
#
WARNING! While this sample file mentions all available options,
it contains (very) short helper descriptions only. Please refer to
doc/sphinx.html for details.
#

###
data source definition
###

827

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 828

Appendix B: Configuring MySQL

source sakila_main
{

type = mysql
sql_host = localhost
sql_user = webuser
sql_pass = mypass
sql_db = sakila
sql_port = 3306 # optional, default is 3306
sql_sock = /tmp/mysql.sock

sql_query = SELECT film_id, title, description FROM film_text
sql_query_info = SELECT * FROM film_text WHERE film_id=$id

}

###
indices
###

index film_main
{

source = sakila_main
path = /usr/local/sphinx/var/data/film_main
charset_type = utf-8

}

index sakila_dist
{

type = distributed
agent = localhost::3312::film_main

}

###
indexer settings
###

indexer
{

mem_limit = 32M
}

###
searchd settings
###

searchd
{

address = 127.0.0.1
port = 3312
log = /usr/local/sphinx/var/log/searchd.log

828

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 829

Appendix B: Configuring MySQL

query_log = /usr/local/sphinx/var/log/query.log
read_timeout = 5
max_children = 30
pid_file = /usr/local/sphinx/var/log/searchd.pid
max_matches = 1000
seamless_rotate = 1

}

829

Galbraith bapp02.tex V3 - 06/02/2009 11:27am Page 830

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 831

In
de

x

Index

A
a2enmod, 428, 467, 480, 486
A9 (Amazon), 708
Aas, Gisle, 8
ABC 80, 17
ABC microcomputers, 17
abstraction, 212
access control

Apache, 449, 450
cookies and, 643
MySQL, 75, 84

AccessFileName, 454
accessor methods, 217–221, 338–339

modifying to use cache, 348–350
AccessTestHandler, 613, 614, 619, 621, 626, 630
account management statements (MySQL), 80–84
account−levels, 332, 333. See also user application
account.tt2, 729
ACID (atomicity, consistency, isolation, durability), 18, 113,

118, 119, 121, 122, 817
add(), 325, 350
AddHandler, 461
AddIcon, 456
AddIconByEncoding, 457
AddIconByType, 457
AddInputFilter, 461–462
addNumbers(), 202
AddOutputFilter, 462
AddType (directive), 443–444
aggregate functions, 60–62

Ajax (Asynchronous JavaScript and XML), 1, 707–738
AJAX v ., 707
asynchronous and, 710
core functionality, 708, 738
example 1, 708–710

instantiation of XMLHttpRequest object, 708, 709
mod−perl handler for, 710

example 2 (display returned HTML table), 711–713
mod−perl handler for, 711–712
template code, 713

example 3 (building table on client), 714–716
mod−perl handlers for, 716

example 4 (MySql Ajax client), 716–722
in action, 720–722
mod−perl handler for, 719–720

example 5 (reading raw POST data), 722–724
mod−perl handler for, 724–725

example 6 (using Prototype JavaScript Framework), 725–727
example 7 (account creation with Ajax), 728–738

account handler, 732–735
account page mod−perl handler, 728–729
account page template, 729–732
in action, 736–738
sendEmail(), 735–736

JavaScript and, 707, 738
mod−perl applications and, 707–738
overview of, 707–708

Professional Ajax, 707
XMLHttpRequest object and, 708, 709, 711, 714

AjaxAccountHandler, 732–735
/ajax−handler URL, 710, 711, 715, 724, 727,

732
Aker, Brian, 359, 383, 529. See also DBIx::Password;

libmemcached; Memcached Functions for MySQL
Aksyonoff, Andrew, 10, 152, 158, 160, 161, 766
aliasing, 39–40
AllowOverride, 454
ALTER TABLE, 33–34, 55
Amazon’s A9, 708
ANSI

read-only views, 293
SQL/MED, 125, 128
X3.135, 266

Apache, 417–501
access control, 449, 450
API, 417, 419–420
authentication, 450–451
authentication code refactoring, 421
authorization, 451
clickstream analysis, 466–467
configuration, 435–483. See also directives

online information, 435
uploads directory in, 676–677

configuration file, 420, 435–436
configuration schemes, 483–500

CentOS/Redhat variants, 486–487
source install, 484
SUSE, 487–489
Ubuntu/Debian install, 484–486
Windows, 489–492

directives
authorization, 451–453
basic, 440–444
CGI, 457–458
client handling, 462
Configuration Section Container Directives, 436–440
error, 448–449
filter, 461–462
handler, 460–461
.htaccess file, 453–454
indexing, 454–457
logging, 446–448
mod−proxy, 481–483
rewrite, 468–478
server tuning, 444–446
SSL, 463–466
User Directory, 458–459
virtual hosting, 459–460

extensibility, 417, 419–420
features, 419
filtering and, 420, 422, 423, 566
functions of, 417–419
history of, 418–419
hooks, 422, 423, 575, 601
HTTP and, 4, 8, 9, 106, 417–418

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 832

Apache (continued)

Apache (continued)
installation, 424–432

on Apple OS X, 429
components, 424–425
on Redhat-based systems, 428–429
on Ubuntu/Debian-based Linux, 427–428
on UNIX, 429–432
on Windows, 425–427

LAMMP and, 3–4
large file support, 421
Linux and, 419
market share of, 3
mod−rewrite and, 434, 454, 468–478, 501
modules, 419–420
overview, 417–419
popularity of, 417, 419, 501
regex and, 421
reverse proxying, 478–480
server control, 483
setup, CGI, 504. See also contact list application
source code, 422
tasks, 492–500, 501

configuring virtual host, 493–495
Digest authentication, 496
HTTP basic authentication, 495–496
reverse proxy with virtual hosts, 499–500
secure server configuration, 497–498
secure server configuration iwith certificate, 498–499

TLS and, 417, 423, 463
UNIX and, 417, 419
version 2.2 v . 1.3, 419

features, 420–421
module changes, 423–424
request phases, 421–423

WAMP and, 3
wildcards and, 436, 437, 485

Apache Hadoop, 13
Apache life cycle

mod−perl handlers and, 8, 9, 576, 601, 612
overview, 577
phase name, 577

Apache Portable Runtime (APR), 419, 491, 566
Apache Portable Runtime modules, 585
Apache request library. See libapreq2
Apache request phase cycle, 423, 461, 576, 584
Apache Software Foundation, 3, 4, 417, 489
Apache Tomcat, 4, 479
Apache2 Perl modules, 585–598

connection record, 586, 590
constants, 586–587
filter record, 586, 590–591
logging, 586, 592
performance, 586, 594, 595
request/request record, 586, 587–590
resource, 595
server configuration, 586, 592–594
server record, 586, 591
status, 586, 596–598

Apache2::Access, 589
Apache2::Connection, 590
Apache2::Const, 586–587, 636
Apache2::Cookie, 565, 644, 645, 647, 649, 667, 668, 705
Apache2::DBI, 595
Apache2::Directive, 592–594
Apache2::Filter, 590–591
Apache2::Log, 592
Apache2::MPM, 594
Apache2::PerlSections, 594
Apache2::Reload, 594–595

Apache2::Request, 587, 702
Apache2::RequestIO, 589, 636
Apache2::RequestRec, 588, 636
Apache2::RequestUtil, 588
Apache2::Resource, 595
Apache2::Response, 589
Apache2::ServerRec, 591
Apache2::ServerUtil, 591
Apache2::SizeLimit, 595–596
Apache2::Status, 596–598
Apache2::Upload, 565, 677, 681
Apache2::URI, 589
Apache2::Util, 590
apachectl graceful, 483
apachectl start, 483
apachectl stop, 483
API

Apache, 417, 419–420
Cache::Memcached, 325–328
DBI, 247
DOM object, 708
UDF, 105, 106

Apple OS X
Apache installation on, 429
include path and, 195

Application Packaging Standard (APS), 8
app.pl, 516
APR (Apache Portable Runtime), 419, 491, 566
APR modules, 585
APS (Application Packaging Standard), 8
apt-cache search, 247, 319, 427, 428, 742, 805
apt-get, 247, 319, 320, 427, 794, 804, 805
apxs, 433, 434, 435, 487
Arabs, 30
Archive (storage engine), 112, 123–125

characteristics, 123–124
under the hood, 124
table

creation, 125
maintenance, 125

Arno, Kaj, 17
array references, 170
@−array, 188
arrays, 167

adding, 175
@ISA, 197, 221, 234, 235, 237, 239, 244
functions and, 176–177
hashes as, 179–180
last subscript value of, 177–178
lists v ., 174
printing, 178
slices, 178
splicing, 175–176
usage, 174–178

arrow method call, 216
ASP, 4
asterisk (*), 41
asynchronous, Ajax functionality and, 710
Asynchronous JavaScript and XML. See Ajax
asynchronous replication, 133, 134
@−array, 188
Athen, 576
@ISA array, 197, 221, 234, 235, 237, 239, 244. See also

inheritance
atomicity, 18, 121, 122. See also ACID
attackPrey, 231, 233, 239
$attr−hashref, 270
−attrib−default(), 224
−attrib−exists(), 224

832

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 833

In
de

xCache::Memcached

$attrib−hashref, 271
−attrib−keys(), 224
$ATTRIBS, 224, 228, 229, 237
attribute accessor methods, 217–221
attributes

defined, 212
retrieving, 217–218
setting, 218–221
statement handle, 265–269

$attributes, 273
$attributes, 253–254
%attributes, 274
AuthBasicProvider, 452–453
AuthDBMType, 453
AuthDBMUserFile, 453
authentication, 450–451

Basic Digest Authentication, 452, 496
code refactoring, 421
Digest, setting up, 496
HTTP, setting up, 495–496

AuthGroupFile, 453
AuthName, 452
authorization, directives, 451–453
AuthType, 452
AuthUserFile, 453
Authz, 576
AuthZTestHandler, 619, 620, 621, 626, 631
AutoCommit, 254
autoconf, 807
AUTO−INCREMENT, 35, 36, 54, 55, 115
AUTOLOAD(), 221–231, 244

issues with, 225–226, 229
$AUTOLOAD, 221, 223, 224, 226, 227, 228, 231
automake, 807
automatic error handling, 280–281
auto−prepend−file, 483. See also ProxyPreserveHost
AutoReconnect, 254
available−drivers(), 248
AVG(), 60

B
back-references, 469–470
‘‘backronyms,’’ 164
backups, MySQL, 817–823. See also mysqldump
bar (|), 96, 97
base. See ’use base’
Basic Digest Authentication, 452, 496
basic directives (Apache), 440–444
BEGIN, 88
begin−work, 276, 277
behavioral functions, libmemcached, 366–369
BigTable project, 13
binary log, 134, 141. See also replication
bind−col(), 263–264
bind−columns(), 264
binding, 261

defined, 256
input parameters, 262–263
methods, 261–264
output parameters, 263–264

bind−param(), 261–263
bind−param−inout(), 261
$bind−vals, 336
@bind−values, 270, 271, 274
--binlog-do-db, 137
--binlog-ignore-db, 137
Bit operator, 58

Blackhole (storage engine), 112, 132–133
bless(), 211, 214, 215, 216, 219, 223, 227, 236, 238, 244,

334, 348, 404, 532, 661
bling query expansion, 150
BLOBS, 91, 113, 115, 124, 675, 748, 750
bomb alert, ModPerl::Registry scripts and, 643
BOOLEAN, 89
BOOLEAN MODE, 149, 150, 151
Boolean operator, 58
Boolean query syntax, 159
brackets

curly, 171, 190
square, 87, 687

Brahmagupta, 30
Brahmasputha Siddhanta, 30
brigades, bucket, 566, 579, 580, 599, 627, 629
BrowserMatch, 454, 462
b-tree indexes, 149
bucket brigades, 566, 579, 580, 599, 627, 629
Buddhist philosophy, 30
BuildExcerpts(), 774, 775
buildInsert(), 659–660
buildRange(), 776
buildUpdate(), 658–659
bulk inserts, 36–37
Bunce, Tim, 247, 365, 821

C
C++, 4, 18, 19, 105, 163, 216
C programming language, 4, 5, 9, 11. See also libmemcached

libmysql, 246, 252, 256
MySQL and, 18
UDFs and, 105

cache stampede, 352–355, 357
cache/caching, 1–2. See also memcached

apt-cache search, 247, 319, 427, 428, 742, 805
contact list application and, 506
deterministic, 318, 346, 352
file system, 318
issues, 352–357
JSON and, 316
lazy, 315, 316
methods, contact list application, 549–560
nondeterministic, 318, 346
page, 318
partial page, 318
proactive, 318
read-through, 315, 316, 357

with SELECT, 412–415
replication, 318
session, 318
state, 318
strategies, 318
templates, 693
user application (memcached example)

implementation plan, 345
key scheme, 346
strategies, 318
where to add, 345–346

user data
get method modifications, 351–352
set method modifications, 350–351

write-through, 315–317, 357
cacheCities(), 347, 349
Cache::Memcached, 205, 314, 323, 357. See also

libmemcached
API, 325–328

833

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 834

Cache::Memcached (continued)

Cache::Memcached (continued)
Cache::Memcached::libmemcached v ., 377–380
instantiation, 324–325
libmemcached v ., 359
methods, 325–328
performance comparison (test script/tool) and,

377–380
using, 323–328

Cache::Memcached::libmemcached, 375–380
Cache::Memcached v ., 377–380
contact list application and, 530, 534, 549, 553
installing, 365
Memcached::libmemcached v ., 365–366, 375
performance comparisons, 376, 381

test script/tool and, 377–380
purpose of, 376

cacheStates(), 347, 348, 349
cacheUsers(), 550–552
Cacti, 648, 823
CALL, 86, 89, 90, 93
caller(), 188
CamelCase, 221
carp(), 224, 225, 226, 228, 529
cas, 369, 392
cascade deletion, 55, 332
CASE(), 68–69
case operator, 68
CentOS, 428. See also Redhat-based systems

Apache configuration schemes on, 486–487
DBI/DBD::mysql on, 247
memcached on, 318–319

CGI (Common Gateway Interface), 4, 15–16
Apache setup, 504
contact list application and, 504–505. See also contact list

application
development of, 504
directives, 457–458
FastCGI and, 480, 482
Perl and, 8
PHP and, 15–16
Web and, 15

CGI program. See contact list application
CGI::Carp, 516, 529
CGI.pm, 503, 516, 587
$cgi->Vars(), 520, 568, 638, 640
CHANGE MASTER, 147, 148, 818, 820
CHAR, 31, 91, 115
CHECK TABLE, 117, 118
children, 46
ChopBlanks=1| 0, 267
cities, 332, 333. See also user application
class methods, 217
classes, 213. See also Felidea class

defined, 212
derived, 212
writing (in Perl), 214

constructor creation, 214–217
package creation, 214

Cleanup (mod−perl request phase handler), 576
Clickability, 6, 7
clickstream analysis, 466–467
client, in RDBMS, 245–246
client handling directives, 462
client library for memcached. See Cache::Memcached;

libmemcached
client programs (MySQL), 20–25
clone, 243
clone(), 276
Clone option, 573

closedir(), 185
cloud computing, 1, 13
clusters

clustered indexes, 118
memcached, 323

diagram, 314
replicating data to, 355–357

MySQL and, 18
cmp−ok, 202, 203
code reuse. See reusable code
colons, 250

double, 194, 235
semi, 30, 32, 88, 96, 97, 250

$cols, 336
column data types, 31
COLUMN−PRIVILEGES, 83
Columns (attribute), 271, 272
columns−priv, 76, 80
comma-delimited data, 22, 388
command executor, 19
command options

MySQL
basic, 813–815
InnoDB, 815–816
port setting, 814–815
socket setting, 815
tablespace, 815, 817
user, 814

replication, 137–139
adding, 141–143

command-line contact list application. See contact list
application

comma-separated values. See CSV
COMMENT, 88
commercial make, 807
commit(), 276, 277
Common Gateway Interface. See CGI
common.h, 107
Community Server, 793, 795
comparison operators, 71–72
compiler, GCC, 2, 807
complex data structures, Perl, 180–182
complex data types, memcached and, 329–330
components, Mason and, 698, 700–702
Comprehensive Perl Archive Network. See CPAN
computers. See also Internet; Web

ABC microcomputers, 17
Internet-centric, 1
Larsson’s computer store, 17
Linux and, 3
‘‘network is the computer,’’, 1
zero and, 30

computing, cloud, 1, 13
CONCAT(), 63
concurrent connections, 353, 800
concurrent inserts, 35, 115
conditional pattern, 471

RewriteRule and, 472–473
confess(), 529. See also carp()
configuration directives (mod−perl), 569–575. See also

directives
configuration file

Apache, 420, 435–436. See also Apache; directives
sphinx.conf. See also Sphinx

data sources, 153–154, 156
database connection options, 156
indexer section, 155
indexes, 154–155
searchd section, 156

834

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 835

In
de

xcurly brackets

configuration schemes, Apache, 483–500
CentOS/Redhat variants, 486–487
source install, 484
SUSE, 487–489
Ubuntu/Debian install, 484–486
Windows, 489–492

Configuration Section Container Directives, 436–440
configuring MySQL, 811–829. See also MySQL
connect(), 249–254

arguments, 249
$attributes, 253–254
$dsn, 249–253
$password, 253
$username, 253

connect−cached, 254–255
connectDB(), 334
−connectDB(), 532–533
connection cycle phase handlers (mod−perl), 578–579
connection functions (memcached), 366
connection mod−perl handlers, 607–612
connection record Apache2 Perl modules, 586, 590
−connectMemcached(), 533–534
consistency, 18, 122. See also ACID
consistent hashing, 360, 367
constants Apache2 Perl modules, 586–587
constructors, 213

creating, 214–217
purpose of, 214

contact edit page. See userform display function
contact list application (CGI program), 503–564

Apache setup, 504
Cache::Memcached::libmemcached and, 530, 534, 549, 553
caching and, 505
caching methods, 549–560
CGI and, 504–505
changes, to mod−perl application, 567–569. See also

mod−perl
connection

memcached, 533–534
MySQL, 532–534

database methods, 542–548
database storage requirements, 505, 513–515
DBIx::Password and, 503, 529–530, 532, 533
design, 505–513

conceptualizing, 505–506
contact view page, 513
HTML, 506–507
main user form, user listing, 507–510
program requirements, 506
user edit form, 510–513
user interface, 506–513

error handling and, 506
functionality of, 505
implementation, 516–517
MySql/memcached and, 503–504
program flow, 515–516
skeletal frame, 515–516
testing, 563–564
WebApp class methods, 529–542

contact list application (command-line interface), 285–312
contacts

deleting, 285, 303–304, 306–309
editing, 285, 297–301, 304–305
inserting, 285, 301–302, 305–306
listing, 285, 294–297
lookup of, 285, 309–312
updating, 285, 302–303

database connection, 287, 288
declarations, 287–290

entry point for, 290–292
information−schema, 293–294
initializations, 287–290
operations for, 285
program listing (online), 312
schema design, 286
table creation subroutine, 292–304
table for, 286
wire-frame for, 283–287, 288, 290

contact view page. See viewuser display function
contacts

deleting, 285, 303–304, 306–309
editing, 285, 297–301, 304–305
inserting, 285, 301–302, 305–306
listing, 285, 294–297
lookup of, 285, 309–312
updating, 285, 302–303

contacts table, 292
contacts.CSM file, 131
contacts.CSV file, 131, 132
contacts−table−exists(), 292
control flow functions, 68–70
CONV(), 93
conversion process

mod−perl handler to ModPerl::Registry script, 641–643
ModPerl::Registry script to mod−perl handler, 633–634,

635–641
CookieName, 454, 467
cookies, 643–651. See also session management

access control and, 643
Apache2::Cookie, 565, 644, 645, 647, 649, 667, 668, 705
defined, 643
Gear6 and, 6, 7
as hack, 419
libapreq2 and, 424, 565
purpose of, 643
session ids and, 643
session management and, 662–663, 662–670
tools for testing, 649–651
user tracking and, 643

Cookies tool, 649–650
CookieTestHandler, 643–649
corrupted tables, 25, 26, 117, 118, 125, 151
Cougar, 213, 235, 236
COUNT(), 60
COUNT, 43
COUNT DISTINCT, 61
CPAN (Comprehensive Perl Archive Network), 9, 205–206

DBI/DBD::mysql and, 247
modules and, 205–206
reusable code and, 164

Craig’s List, 4, 7
CREATE DATABASE, 281, 812
CREATE USER, 80
createAccount(), 730, 732
create−contacts−db(), 292
create−contacts−table(), 292, 294
createdb, 281
createUser(), 339
croak(), 222, 224, 228, 281
CSS, 508, 518, 650
CSV (comma-separated values), 130
CSV (storage engine), 112, 130–132

under the hood, 131–132
table creation, 130–131

curl. See libcurl
curl−easy−perform(), 109
curl−udf.c, 107
curly brackets, 171, 190

835

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 836

CURRENT−USER()

CURRENT−USER(), 60
CursorName, 266
Curtis, Antony, 9
CustomLog, 446–447

D
Danga Interactive, 6, 11, 317, 320, 740. See also

memcached
data. See also memcached; meta-data

deleting, 52–56
inserting, 35–38
querying, 38–50
replacing, 56–58
replicating, to multiple memcached servers, 355–357
updating, 50–52
web applications and, 313

data definition language (DDL), 26
data design (user application example), 332–333
data modification methods, user application and, 339–342
data retrieval

functions, memcached and, 370–371
methods, user application and, 335–337

data sources (sphinx.conf), 153–154, 156
data storage worker, 748, 749, 750, 751, 759, 762–764
data structures (Perl), complex, 180–182
data types (Perl), 165–168

arrays. See arrays
file handles, 168, 182
hashes, 49, 167, 172
scalars, 165–167
subroutines, 168, 186–188
type globs, 168
usage, 168–192

DATABASE(), 60
Database, Multifunctional, 799
Database (attribute), 266
database application. See contact list application
database connection options (sphinx.conf), 156
database handles, 281, 569, 599

methods, 274–277
single (example, Memcached Functions for MySQL),

403–409
database methods

contact list application, 542–548
generic, 651–662

database storage requirements (contact list application),
505, 513–515

databases. See also master; MySQL; slaves
Netfrastructure, 18
RDBMS, 4, 16, 18, 85, 148, 245, 246, 293, 294
storing files in, 675

datadir, 813–814
Data::Dumper, 268, 328, 516, 530, 592, 666
data-modification language (DML), 18, 26
data−sources(), 248, 283
DATE−ADD(), 67
DATE−FORMAT(), 68
DATE−SUB(), 67
date/time functions, 66–70
Day, Eric, 11, 740, 741. See also Gearman
db, 79
dbDelete(), 655–656
DBD::mysql, 9, 27, 50, 205, 245, 246–247

DBI and, 246–247
installation, 247

dbGetRef(), 652–653, 672

DBI (Database Independent Interface), 245–283. See also
contact list application

API, 247
connect(), 249–254

arguments, 249
$attributes, 253–254
$dsn, 249–253
$password, 253
$username, 253

connect−cached, 254–255
database handle methods, 274–277
DBD::mysql and, 246–247
driver methods, 248–249
fetch methods, 258–261
installation, 247
loading, 248
multi-step utility methods, 269–274
statement handles, 255–261
stored procedures, 277–279
transactional methods, 276–277

DBI::connect(). See connect()
dbInsert(), 653–654
DBIx::Password, 572, 719

contact list application and, 503, 529–530, 532, 533
dbUpdate(), 654–655, 671
$DB−VIRTUAL−USER, 530
db−virtual−user parameter, 719
DDL (data definition language), 26
Debian, 20, 247. See also apt-get

Apache configuration on, 484–486
Apache installation and, 427–428
memcached and, 322
mod−perl installation and, 427–428
startup scripts, 322

debug(), 232
−DEBUG, 231–232
debug option, 324
debugging

dump−results and, 265
Federated and, 130
search (utility program) and, 159

declarations, contact list and, 287–290
decr(), 326
decrement function (memcached), 371
DefaultIcon, 457
DEGREES(), 62
delayed inserts, 37–38
delete(), 326
DELETE, 52–56, 97, 125
DELETE FROM, 53, 54
delete function (memcached), 372
delete−contact(), 303–304

testing, 306–309
deleteMemcUIDList(), 558–559
deleteSession(), 673
deleteUser(), 342
deleteUserFromCache(), 554–555
deleteUsers(), 545–547
deleting contacts, 285, 303–304, 306–309
deleting data, 52–56
deletion, cascade, 55, 332
delimiters, 88, 96, 97, 194

bar (|), 96, 97
colons, 250

double, 194, 235
semi, 30, 32, 88, 96, 97, 250

comma-delimited data, 22, 388
ideographic languages and, 152
tab-delimited data, 22

836

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 837

In
de

x@EXPORT

DenierHandler, 608, 611, 612, 613, 614, 630
derived classes, 212
DESCRIBE, 32
design (contact list application), 505–513

conceptualizing, 505–506
contact view page, 513
main user form, user listing, 507–510
program requirements, 506
user edit form, 510–513
user interface, 506–513

desktop applications, web applications as, 707, 708.
See also Ajax

DESTROY(), 223, 224, 228
DETERMINISTIC, 88
deterministic caching, 318, 346, 352
DIAB, 17
die(), 224
Digest Authentication, 496
digestCookieValue(), 668, 670
Digest::MD5, 334, 616, 617, 732, 757, 779, 787
Digg.com, 4
directives. See also specific directives

Apache
authorization, 451–453
basic, 440–444
CGI, 457–458
client handling, 462
Configuration Section Container Directives, 436–440
error, 448–449
filter, 461–462
handler, 460–461
.htaccess file, 453–454
indexing, 454–457
logging, 446–448
mod−proxy, 481–483
rewrite, 468–478
server tuning, 444–446
SSL, 463–466
User Directory, 458–459
virtual hosting, 459–460

mod−perl
configuration, 569–575
handler, 575–585

directories, 186. See also files
<Directory>, 436
DirectoryIndex, 454
<DirectoryMatch>, 436
disconnect−all, 328
disk partitions, raw, 119, 816
dispatch(), 290, 291, 292
dispatch table, 172
dispatcher() subroutine, 519–522

modification, 638–641
display functions, 507–513. See also specific display

functions
display returned HTML table (Ajax example), 711–713
display−menu(), 290, 291, 292
distributed indexes, 10, 152, 154, 155, 157, 158, 160, 752,

753, 755, 772, 775
dist−urls, 755
div DOM element, 730
<div> tag, 708, 709, 711
DML (data-modification language), 18, 26
do(), 270
documentation

Felidea, 233–234
modules, 197–201
POD, 197–201, 233, 366, 518, 574–575, 746

DocumentRoot (directive), 441

dog-piling, 352–355, 357
dollar sign ($), in JavaScript, 726
DOM (Document Object Model), 738

Apache2::Directive and, 592
API object, 708
div, 730
firebug and, 650
JavaScript Prototype library and, 725, 726
objects, 316
onQueue() and, 782
tr, 786
userlist within, 711

Domestic Cat, 212, 213, 235, 236
doMsg(), 708, 710
do−task(), 747
double colon, 194, 235
driver, Perl, 246. See also Memcached::libmemcached
driver handle, 249
driver methods (DBI), 248–249
Drizzle, 13, 421
DROP DATABASE, 281
DROP USER, 80
drop−contacts−table(), 292
dropdb, 281
Drupal, 8, 479, 480
$dsn, 249–253
DSOs (Dynamically Shared Object files), 419, 433
dual master configuration, 135
duct tape, 164, 419
dump−results, 265
durability, 19, 121. See also ACID
dynamic scoping, 190
Dynamically Shared Object files (DSOs), 419, 433

E
edit−contact(), 297–301

testing, 300, 304–305
editing contacts, 285, 297–301, 304–305
emptiness, 30
empty strings, 30, 31. See also NULL
emulated prepared statements, 250, 256, 257
encapsulation, 212, 217, 218, 222, 224, 237
encodeCookieValue(), 670
encode−json(), 716
encodeUserData(), 562–563
END, 88
Enterprise Monitor, MySQL, 824
equi-join, 44
ErrCount, 254, 265
error directives, 448–449
error handling

automatic, 280–281
contact list application and, 506
HandleError, 254, 265
manual, 279–280
PrintError, 254, 265, 280
RaiseError, 254, 265, 280

ErrorDocument, 448–449
ErrorLog, 447
errstr(), 256, 279, 373
excerpt, 772
execute(), 255, 256, 257, 258
expiration, 313, 325, 330, 353
--expire-logs-days, 137
explicit inner join, 44
@EXPORT, 196, 198, 214, 235, 662, 736

837

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 838

Exporter

Exporter, 196, 197
@EXPORT−OK, 214, 235
extensibility, Apache, 417, 419–420
eXternal Subroutine. See XS

F
Facebook, 7
Falcon, 18, 85, 112
FastCGI, 480, 482
Fawcett, Joe, 707
feature pragma, 208
Federated (storage engine), 112, 125–130

characteristics of, 125–126
under the hood, 129–130
table creation, 126–128

Federated Servers, 128–129
FederatedX, 113
Fedora, 322, 428, 804. See also Redhat-based systems
feeds

RSS, 316
XML, 47, 67, 103, 316

Felidea class
attributes

retrieving, 217–218
setting, 218–221

AUTOLOAD() and, 221–231, 244
changes (summary) to, 224, 228, 230–231
constructor creation, 214–217
−DEBUG, 231–232
directory

creating, 236
structure, 235

documentation, 233–234
furColor(), 218
get−<attribute>, 226–227
hasFur(), 217
inheritance and, 234–240
methods

attackPrey, 231, 233, 239
attribute accessor, 217–221
makeSound, 231, 233, 239

Moose and, 240–243
object hierarchy, 213, 235
package creation, 214
set−<attribute>, 226–227
subclasses, 234–240

Felidea.pm, 214, 217, 218, 230, 231, 233, 235
Felinae, 213
fetch(), 258, 273
fetch methods, 258–261
fetchall−arrayref, 259–260, 310, 717
fetchall−hashref, 260–261
fetch−remote−doc(), 757, 759
fetchrow−arrayref, 258
fetchrow−hashref, 258
$fields, 289, 290, 295, 299, 309
$field−separator, 265
file handles, 168, 182

directory, 185
functions and, 182–183
naming, 182
process, 185–186

file system caching, 318
file upload mod−perl handler, 675–685

database table, 676
handler() subroutine, 677–680
implementation, 676–682

saveUpload() subroutine, 680–682
storing files in database, 675
uploads directory in Apache configuration, 676–677
using, 685
WebApp methods and, 682–684

fileExists(), 683
$file−handle, 265
files. See also specific files

directories v ., 186
opening, 182–183
reading, 183–184
writing to, 184

<Files>, 437
<FilesMatch>, 437
film−main, 157, 158, 160, 161
film−text, 150, 151, 156, 157, 161
filter chain, 420, 423, 579, 586, 628
filter directives, 461–462
filter handlers (mod−perl), 579–580

example, 627–630
filter record Apache2 Perl modules, 586, 590–591
filtering

Apache and, 420, 422, 423, 566
mod−perl handlers and, 627–630
PHP and, 627
replication and, 136
Template Toolkit and, 687

find−contact(), 309–310
testing, 310–312

finish(), 261, 272, 277
Firebug, 650, 750
Firefox, 648, 649, 709
Fitzpatrick, Brad, 11, 315, 317. See also Danga Interactive;

Gearman; memcached
Fixup, 576
flags, 20

RewriteCond and, 471–472
substitution and, 473–477

Flash, 1
FLUSH TABLES, 25, 131, 132
FLUSH TABLES WITH READ LOCK, 820, 822
flush−all, 328
foo table, 415–416
footer display function, 507
foreign keys, 119
for/foreach loop, 174
forward slash, 129, 603, 604
Franks, John, 15
.frm files, 115, 116, 121, 129, 131, 813, 821
from−json(), 725
FULLTEXT indexes, 149–152

ideographic languages and, 152
issues, 151–152
Sphinx v ., 152
using, 150–151

full-text indexing
MySQL, 754
search engine application and, 739, 747, 748, 749, 752,

754, 792
Sphinx, 11, 152, 739, 747, 748, 749, 752, 754, 792

full-text searching, 148–161
func(), 281
functions, 59–70. See also Memcached Functions for MySQL;

subroutines; UDFs; specific functions
aggregate, 60–62
arrays and, 176–177
behavioral, libmemcached, 366–369
complete listing, 59, 71
connection, memcached, 366

838

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 839

In
de

xhandler() subroutine

control flow, 68–70
date, 66–68
date/time, 68–70
display, 507–513
file handles and, 182–183
geometrical, 62
get, memcached, 370–371
informational

libmemcached, 372
MySQL, 59–60

logarithmic, 62
memcached

data retrieval (get), 370–371
increment/decrement/delete, 371–372
informational, 372
setting values, 369–370
utility, 372

Memcached Functions for MySQL
behavioral, 397–400
decrementing, 396–397
establish connection to memcached Server, 388–389
fetching, 295
incrementing, 395–396
setting values, 389–394
statistical, 400–401
version, 401–402

numeric, 62
raising number to power and, 62
reusable code and, 86
stored procedures and, 86–94
string, 62–66
string comparison, 63–64

furColor(), 218

G
GaiaOnline, 7
Galbraith, Patrick, 383. See also Memcached Functions for

MySQL
Gallery, 482
GCC compiler, 2, 807
gcc/g++, 807
Gear6, 6, 7
Gearman, 11, 13, 317, 740–747. See also memcached;

search engine application
installation, 741–742
Perl and, 746–747
visual diagram, 740

Gearman job server. See gearmand
Gearman MySQL UDFs, 11, 12, 741

installation, 741–742
using, 744–746

Gearman workers (Perl), 746–747
data storage worker, 748, 749, 750, 751, 759, 762–764
indexer worker, 748, 749, 759, 760, 764, 765
running, 764–766
search engine application and, 756–766
web client worker, 748, 749, 750, 757–762

Gearman::Client, 721, 740, 741, 746, 747
gearmand (Gearman job server), 11, 12, 317, 739, 740
installation, 741
running, 743–744
Gearman::Worker, 721, 740, 746, 757, 761, 762, 764
generic database methods (mod−perl), 651–662
geographical information. See user application
geometrical functions, 62
get(), 325

get functions, memcached, 370–371
get−<attribute>, 226–227
getCities(), 345, 347, 348, 349
getCity(), 348, 349, 350
get−contacts(), 295, 296
getFiles(), 682–683
get−if−modified(), 760
getMemc(), 354, 355
getMemcUIDList(), 559–560
get−multi(), 325
GetOptions, 289
get−results−from−db(), 775–776
getSession(), 668
getSessionData(), 671–672
getState(), 337, 348, 349–350, 561–562
getStates(), 560–561, 728
getStatesFromDB(), 345, 348, 349, 350
getUser(), 335, 345, 350, 537–538

reusable code and, 537–538
getUserFromDB(), 354, 355
getUsers(), 534–537
getUsersFromCache(), 552–553
getXmlHttp(), 711, 714, 717, 723
global, 190
global system user, MySQL, 75–76
globbing, 184
glue code, XS as, 9, 246
glue hash trickery, 49
Gmail, 708
gman−do(), 745
gman−do−background(), 745, 749
gman−do−task−background(), 749
gman−severs−set(), 744
gman−sum(), 745
gnu make, 807
GNU Project, 2
GNU Public License (GPL), 2, 152, 793
Google Maps, 708
Google Suggest, 708
GPL (GNU Public License), 2, 152, 793
GRANT, 76, 81–83
GRANT OPTION, 81
grant tables, 76–80, 81, 84
greater than or equal (>=) operator, 72
Grimmler, Lenz, 822
GROUP BY, 43
GROUP BY, ROLLUP, 61
GROUP BY ‘creation date’ ORDER BY

‘creation date’, 103
GROUP−CONCAT(), 61
grouping, 43
grouping optimization, 208
gzip, 112, 123, 124, 152, 205, 385

H
hack, cookies as, 419
handle methods, database, 274–277
handle−cookies(), 645
HandleError, 254, 265
handler directives. See also mod−perl handlers

Apache, 460–461
mod−perl, 575–585

handler phase, 422, 576
handlers. See mod−perl handlers
handler() subroutine, 677–680, 732–734, 778–780,

787–790

839

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 840

handles

handles. See database handles; file handles
has, 242
hasFur(), 217
hash references, 171
hashes, 49, 167

as arrays, 179–180
dispatch table and, 172
glue hash trickery, 49
iteration, 179
keys and, 179, 180
using, 179–181

hashing, consistent, 360, 367
Header, 454, 462
header display function, 507, 508
Header Parser, 421
Header parser hook, 422
HeaderName, 455, 456
HeaderParser, 576
headers, tools for testing, 649–651
header() subroutine, 518
help facility (MySQL), 59, 70–72
HELP SHOW, 33
herd, thundering, 352–355, 357
Herman, Eric, 9
hooks, 422, 423, 575, 601
host, 76, 80
Hotbackup, ibbackup (InnoDB), 822–823
Hotmail, 708
.htaccess file, 453–454
HTML design (contact list application), 506–507. See also

contact list application
HTML::Entities, 530
HTML-esque tags, 694–695
HTML::Mason. See Mason
HTML::Template, 686, 694–698

mod−perl handler (example) and, 695–697
tags, 694–696
template for, 697–698

HTTP (Hypertext Transfer Protocol), 4, 8, 9, 106, 417–418.
See also Apache

authentication, setup for, 495–496
web applications and, 419

HTTP request cycle phase handlers, 580–585, 612–630
names, 582–584
template, 581

HTTP request phase cycle, 565, 580, 581, 584, 590, 599,
601, 626, 630, 631

visual diagram, 584–585
http−get(), 106, 108–109, 110, 111, 741
http−get−deinit(), 109–110
http−get−init(), 106, 108
Hypertable, 13
Hypertext Transfer Protocol. See HTTP

I
ibbackup, Hotbackup (InnoDB), 822–823
identifying references, 172–173
ideographic languages, 152
idx−delta, 154, 155
idx−dist, 154, 155
idx−part1, 154, 155
idx−part2, 154, 155
IF(), 68
<IfDefine>, 438
<IfModule>, 438
IFNULL(), 68
<IfVersion>, 438

illusion of state, 419
implementation (object orientation), 212
Include (directive), 441
include path, 194, 195, 636
incr(), 326
increment function (memcache), 371
Indexed Sequential Access Method (ISAM), 115. See also

MyISAM
indexer (program), 152

section, 155
indexer worker, 748, 749, 759, 760, 764, 765
indexes, 31–32. See also distributed indexes; full-text indexing

b-tree, 149
clustered, 118
FULLTEXT, 149–152

issues, 151–152
using, 150–151

64-bit, 153
sphinx.conf, 154–155

IndexIgnore, 457
indexing directives, 454–457
IndexOptions, 455–456
IndexOrderDefault, 456
index.pl, 764
India. See also NULL

Brahmasputha Siddhanta, 30
Buddhist philosophy, 30
cities (table), 278, 279
states (table), 278
Vedic philosophy, 30

information schema, 33, 83–84
informational functions

libmemcached, 372
MySQL, 59–60

INFORMATION−SCHEMA, 33, 83
information−schema, contact list and, 293–294
inheritance, 212–213

@ISA array and, 197, 221, 234, 235, 237, 239, 244
data sources and, 154
diagram, 213
Felidea subclassing and, 234–240
in Perl, 244
reusable code and, 240

initializations, contact list and, 287–290
initialize(), 288, 289, 290, 295
injection attacks, 256, 257, 717
in-line <Perl> Sections, 699–700
inner joins, 44, 47
Innobase Oy, 118, 822
InnoDB, 18, 112, 118–123. See also tablespace files

configuration, 119–120
features, 118–119
under the hood, 120–121
MyISAM v ., 118–119
table creation, 120
transactional methods, 276–277
transactions, 121–123

InnoDB Hotbackup, ibbackup, 822–823
input parameters, binding, 262–263
INSERT, 35–36, 97, 301–302
INSERT IGNORE, 37
insert−contact(), 286, 299, 300, 301, 302, 303, 310

testing, 305–306
inserting contacts, 285, 301–302, 305–306
inserting data, 35–38
INSERT...ON DUPLICATE KEY UPDATE, 57–58
insertRow(), 715
inserts

bulk, 36–37

840

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 841

In
de

xKovrin, Alexy

delayed, 37–38
low priority, 38

insertSession(), 671, 672
insertUser(), 542–543
Installation Wizard, MySQL, 116, 795, 796
installations

Apache, 424–432
on Apple OS X, 429
components, 424–425
on Redhat-based systems, 428–429
on Ubuntu/Debian-based Linux, 427–428
on UNIX, 429–432
on Windows, 425–427

Cache::Memcached::libmemcached, 365
DBD::mysql, 247
DBI, 247
Gearman, 741–742
Gearman MySQL UDFs, 741–742
gearmand, 741
libapreq2, 434–435
libmemcached, 360–361
memcached, 318–321

on CentOS, 318–319
from source, 320
on Ubuntu, 319–320

Memcached Functions for MySQL, 385–388
checking of, 387–388

Memcached::libmemcached, 365
mod−perl

on Redhat-based systems, 428–429
from source, 433–434
on Ubuntu/Debian-based Linux, 427–428
on Windows, 426–427

modules (Perl) and, 201
MySQL, 793–810

directory structure and, 20
MySQL version and, 793–794
package type, 794
on RPM-based Linux systems, 804
from source, 807–809
on Ubuntu, 804–806
on UNIX, 807–810
on Windows, 795–803

Sphinx, 152–153
UDFs (Memcached Functions for MySQL), 386–387
install.pl and, 386–387
SQL script and, 386

install−driver(), 281
install.pl, 386–387
instance methods, 214
instance variables, 215
instantiation, 213

Cache::Memcached and, 324–325
for precaching method calls, 348
user application, 334

interface, 212
object-oriented, 373

Internet. See also computers; Web
Internet-centric systems, 1
as necessity, 1
‘‘network is the computer’’, 1

INTERPOLATE, 691, 728, 729
IO threads, 134
IO::Prompt, 289, 291
IP-based virtual hosting, 460
IPC::Sharable, 2, 315. See also memcached
is-a relation, 197, 213, 244. See also @ISA array
@ISA array, 197, 221, 234, 235, 237, 239, 244. See also

inheritance

ISAM (Indexed Sequential Access Method), 115. See also
MyISAM

isAuthenticated(), 669
is−junk(), 760
isolation, 19, 122. See also ACID
is−young(), 89
items, 103
iteration

hash, 179
for loop, 207
references and, 181
sort() and, 177

J
Java servlets, 1
JavaScript, 1, 2. See also Ajax

Ajax and, 707, 738
functions, 781

implementation of, 781–785
templating systems and $ character in, 726
URLHandler and, 780–781

JavaScript Framework, Prototype, 708, 732
Ajax example, 725–727
purpose of, 725

JavaScript Object Notation. See JSON
job−servers(), 747, 761
join(), 176–177
join predicate, 44
joins, 43–44

equi-, 44
explicit inner, 44
inner, 44, 47
LEFT, 45, 46, 47
natural, 44, 45
RIGHT, 45, 46
self-, 40, 47, 49
types of, 44

Joomla, 8, 482
JSON (JavaScript Object Notation), 708

cache, 316
data structure, 717, 718, 719
Perl module, 713–717, 738, 787
search engine application and, 789–790

JSON to Perl, 713
JSON::XS, 713, 714, 716

K
Karsson, Lars, 17
KeepAlive (directive), 446
KeepAliveTimeout, 446
$key−field, 273
keys

foreign, 119
hashes and, 179, 180
K/n, 360
main, 353
primary, 31
stale, 353–355
statistics, 326

K/n keys, 360
Koenig, Andreas, 8
Kovrin, Alexy, 353. See also dog-piling

841

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 842

LAMMP (Linux, Apache, MySQL, memcached, Perl)

L
LAMMP (Linux, Apache, MySQL, memcached, Perl), 1–13.

See also Apache; Linux; memcached; mod−perl; MySQL;
Perl

Apache, 3–4
architectural implementation, 11–12
future of, 12–13
Gearman, 11, 13, 317
Linux, 2–3
memcached, 2, 5–8, 13
MySQL, 4–5
Perl, 8–10
Sphinx, 10

LAMP stack, 3, 5, 13
languages. See specific languages
large file support, Apache, 421
Larsson, Allan, 17
last subscript value, of array, 177–178
LAST−INSERT−ID(), 60
last−insert−id, 275
‘‘lazy’’ processing/caching, 315, 316
least recently used. See LRU
LEFT joins, 45, 46, 47
left shift operator, 58
LENGTH(), 63
Lerdorf, Rasmus, 16
less-than operator, 41
lexical scoping, 190
lexx, 807
libapreq2 (Apache request library), 424, 428, 486, 565, 566

a2enmod and, 428, 467, 480, 486
cookies and, 424, 565
enable, 428
installing, 434–435

libcurl, 106, 107, 109, 110, 162, 383
--libdir, 385
libevent, 318, 319, 320
libmemcached, 7, 198, 319, 359–381

behavioral functions, 366–369
Cache::Memcached v ., 359
features, 360
informational functions, 372
installing, 360–361
Perl support for, 359, 364–365
project page for, 361
utility programs, 361–364

list, 360
libmysql, 246, 252, 256
libncurses, 807
libtool, 807
life cycle. See Apache life cycle
LIKE operator, 41, 63
LIMIT, 40, 50, 53
<Limit>, 438–439
<LimitExcept>, 439
$line−separator, 265
Linux. See also CentOS; Debian; Redhat-based systems;

RPM; SUSE; Ubuntu; UNIX
Apache and, 419
DBI/DBD::mysql and, 247
LAMMP and, 2–3
MySQL and, 4
Perl modules and, 205
plug-ins, 419
RPM-based, MySQL install on, 804

Lion class, 212, 213, 235, 237, 238, 239, 240, 242, 244
list−contacts(), 294–297
Listen (directive), 441–442, 756

listing contacts, 285, 294–297
lists, arrays v., 174
LiveHTTPHeaders, 650–651, 705
LiveJournal.com, 4, 6, 7, 9, 11, 165, 315
LoadModule (directive), 442
localtime(), 670
<Location>, 437
<LocationMatch>, 437
locking, row-level, 113, 119
Log (mod−perl request phase handler), 576
logarithmic functions, 62
--log-bin, 137
--log-bin --logbin, 137
--log-bin-index, 137
LogFormat, 447–448
logging Apache2 Perl modules, 586, 592
logging directives, 446–448
Logical Volume Manager (LVM), 821–822
loginForm(), 666
LoginHandler

implementation, 663–667
testing, 673
WebApp class methods and, 667–670

login−user, 91
logs

binary, 134, 141
relay, 26, 134, 138

log-slave-updates, 137, 142
--log-slave-updates, 137
LogTestHandler, 623, 626, 628, 631
lookup, of contacts, 285, 309–312
low priority inserts, 38
LRU (least recently used), 313, 318, 353, 559. See also

memcached
Lutonen, Air, 15
LVM (Logical Volume Manager), 821–822
LWP, 205, 757
Lynx class, 212, 213, 235, 236

M
$m, 700, 701, 703
-m, 321
MacEachern, Doug, 8
main(), 191, 290, 517, 567, 635, 636, 637, 638, 641, 642
main key, 353
mainform display function, 507

interface for, 507–508
mainform() subroutine, 522–523, 641
main() subroutine, 517–518
make install, 110, 111
−makeInsertStatement(), 341
make−label(), 295
makeSessionId(), 670
makeSound, 231, 233, 239
−makeUpdateStatement(), 341
−makeWhereClause(), 336, 337
Maki, Daisuke, 365, 375
MANIFEST file, 204–205
manual error handling, 279–280
map operator, 175
MapReduce, 11, 13
MaptoStorage, 576
Maria (storage engine), 13, 18, 19, 25, 26, 85, 112, 149
MariaDB, 13
Mason (HTML::Mason), 686, 698–704

components and, 698, 700–702

842

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 843

In
de

xmemc−libmemcached−version()

initialization/cleanup, 702
objects, 700
reusable code and, 686
syntax, 698–700
underlisting page in, 703–704

master (database instance)
binary log, 134, 141
Blackhole storage engine and, 136
dual configuration, 135
replication

multiple, 139–141, 162
overview, 133–134
schemes, 134–137

ring configuration, 135, 136
--master-host, 138
--master-password, 138
--master-port, 138
--master-ssl --master-ssl-ca=file−name, 138
--master-ssl-capath=directory−name, 138
--master-ssl-cert=file−name, 138
--master-ssl-cipher=cipher−list, 138
--master-ssl-key=file−name, 138
--master-user, 138
MATCH() ... AGAINST, 149
math operator, 58
MAX(), 60
MaxClients (directive), 444
MAX−CONNECTIONS−PER−HOUR count, 82
MaxKeepAliveRequests (directive), 446
$maxlen, 265
MAX−QUERIES−PER−HOUR count, 81
MaxRequestsPerChild (directive), 445
MaxRows, 271, 272
MaxSpareServers (directive), 444
MAX−UPDATES−PER−HOUR count, 81
MAX−USER−CONNECTIONS count, 82
Maya, 30
McCool, Rob, 15, 418
McPeak, Jeremy, 707
MD(), 92
md5, 92, 93
Mediawiki, 8
MED/SQL specification, 125, 128
memcached, 313–357. See also libmemcached

basic concept, 313–315, 357
benefits of, 357
Cache::Memcached and, 323
complex data types and, 329–330
connection, contact list application and, 533–534
connection functions, 366
connector method, 344–345
decrement function, 371
delete function, 372
development of, 315
dog-piling and, 352–355, 357
examples, 328–331. See also user application
expiration and, 313, 325, 330, 353
Gearman and, 11, 13, 317
get functions, 370–371
increment function, 371
installing, 318–321

on CentOS, 318–319
from source, 320
on Ubuntu, 319–320

LAMMP and, 2, 5–8, 13
LRU, 313, 318, 353, 559
/MySQL, contact list application and, 503–504. See also

contact list application
NULL and, 393, 394, 412

operations, 325
options, 321
scalar example and, 328–329
starting, 321–323
startup scripts, 322–323

Debian-based, 322
Redhat-based, 322–323

UNIX and, 322
value setting functions, 369–370

memcached cluster, 323
diagram, 314
replicating data to, 355–357

memcached functions
data retrieval (get), 370–371
increment/decrement/delete, 371–372
informational, 372
setting values, 369–370
utility, 372

Memcached Functions for MySQL, 7, 11, 105, 383–416
features, 384
functionality of, 384
functions

behavioral, 397–400
decrementing, 396–397
establish connection to memcached Server, 388–389
fetching, 295
incrementing, 395–396
setting values, 389–394
statistical, 400–401
version, 401–402

installation, 385–388
checking of, 387–388

overview of, 383–384
prerequisites for, 385
read-through caching, SELECT and, 412–415
single database handle (example), 403–409

changes to connection, 403–405
changes to getUser(), 405–407

source
compiling of, 386
configuration of, 385–386

triggers and, 403, 409–412
UDF install, 386–387
install.pl and, 386–387
SQL script and, 386

usage
examples, 402–412
function descriptions and, 388–402

memcached UDFs, 383. See also Memcached Functions for
MySQL

Memcached::libmemcached, 359, 364
Cache::Memcached::libmemcached v ., 365–366, 375
examples

object-oriented approach, 374–375
procedural usage, 373–374

installing, 365
memc−add(), 391
memc−append(), 393–394
memcat, 360, 361–362
memc−behavior−get(), 398
memc−behavior−set(), 398–399
memc−cas(), 392
$MEMC−CATALOGUE−EXPIREY, 531
memc−decrement(), 396–397
$MEMC−DEFAULT−SERVERS, 530
memc−delete(), 394
memc−get(), 395, 749, 763
memc−increment(), 395–396, 749
memc−libmemcached−version(), 402

843

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 844

memc−list−behaviors()

memc−list−behaviors(), 397
memc−list−distribution−types(), 400
memc−list−hash−types(), 399–400
memcp, 360, 362
memc−prepend(), 393
memc−replace(), 391–392
memc−server−count(), 389
memc−servers−set(), 388–389, 759
memc−set(), 389–390
memc−set−by−key(), 390–391
memc−stat−get−keys(), 401
memc−stat−get−value(), 401
memc−stats(), 400–401
memc−udf−version(), 402
memerror, 364
memflush, 360, 362
Memory/Heap, 112
memrm, 360, 363
memslap, 360, 363–364
memstat, 360, 362–363
Merge, 112
meta-data, 16, 675

BrowserMatch and, 454, 462
comment−log.ARM, 124
contacts.CSM file, 131
CookieName, 454, 467
$dsn and, 249
Federated Servers and, 128

$method, 231, 254
methods. See also specific methods

accessor. See accessor methods
binding, 261–264
Cache::Memcached, 325–328
class, 217
contact list application

caching methods, 549–560
database methods, 542–548
WebApp class methods, 529–542

database (mod−perl), 651–662
database handle, 274–277
defined, 212, 214
fetch, 258–261
instance, 214
multi-step utility, 269–274
object, 214
Perl, 214
Sphinx::Search, 772–773
statement handle. See statement handles
static, 214, 215, 217
for storing session data, 670–675
transactional, 276–277
virtual, 217

mget, 370, 371
Microsoft Windows. See Windows
MIN(), 60
mini SQL (mSQL), 16, 246
MinSpareServers (directive), 445
mod−access, 424
mod−apreq2, 435, 566
mod−auth, 424
mod−auth−dbm, 424
mod−authn−alias, 421, 424
mod−authnz−ldap, 424
mod−authz, 424
mod−authz−host, 424
mod−autoindex, 424
mod−dav, 423
mod−deflate, 423
mod−headers, 424

mod−imap, 423
mod−include, 424
mod−info, 424
mod−perl, 1, 4, 8, 565–599, 633–705

Ajax and, 707–738
Apache2 Perl modules, 585–598
configuration, 566–569
contact list application and, 567–569
database methods, 651–662
development of, 8, 419
directives

configuration, 569–575
handler, 575–585

installation
on Redhat-based systems, 428–429
from source, 433–434
on Ubuntu/Debian-based Linux, 427–428
on Windows, 426–427

new features, 566
shared library, 566
templating and, 686–698

mod−perl handlers, 575, 601–631. See also WroxHandler
entries

for Ajax examples
example 1, 710
example 2 (display returned HTML table), 711–712
example 3 (building table on client), 716
example 4 (MySql Ajax client), 719–720
example 5 (reading raw POST data), 724–725

/ajax−handler URL, 710, 711, 715, 724, 727, 732
Apache life cycle and, 8, 9, 576, 601, 612
categorization, 576
connection, 607–612
connection cycle, 578–579
conversion process

mod−perl handler to ModPerl::Registry script, 641–643
ModPerl::Registry script to mod−perl handler, 633–634,

635–641
directives, 575–585
file upload, 675–685
filter, 579–580

example, 627–630
HTML::Template and, 695–697
HTTP request cycle, visual diagram, 584–585
LoginHandler, 663–667, 677
ModPerl::Registry v ., 633–634, 643
scope, 575
for search engine application, 766
server life cycle, 578

visual diagram, 584–585
stacked, 575
Template Toolkit and, 690–692
type, 575–576
using, 601–631

mod−perl Search handler, 768
ModPerl::Registry, 9, 566, 599

conversion process
mod−perl handler to ModPerl::Registry script, 641–643
ModPerl::Registry script to mod−perl handler, 633–634,

635–641
mod−perl handlers v ., 633–634, 643
scripts, bomb alert, 643

ModPerl::RegistryLoader, 634–635
mod−proxy, 423

directives, 481–483
enabling, 480
reverse proxying and, 478–480

mod−proxy−load−balancer, 423

844

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 845

In
de

xMySQL

mod−rewrite, 434, 454, 468–478, 501
regular expressions and, 468, 472, 473
transparency and, 468

mod−ssl, 423
modules

Apache, 419–420
version 1.3/2.2, 423–424

Apache2 Perl, 585–598
APR, 585
Perl, 193–206

CPAN and, 205–206
documenting, 197–201
Linux and, 205
making installable, 201
MANIFEST and, 204–205
reusable code and, 194, 197
tests added to, 201–204
writing, 194–197

modulus operator, 58
mod−version, 423
monitoring MySQL, 823–824

Cacti, 648, 823
MySQL Enterprise Monitor, 824
Nagios, 436, 823, 824

Moose, 240–243, 244
Perl and, 240
project website, 240, 243

more−results(), 277, 278, 279
MPM Event, 420
MPM NT, 420
MPM Prefork, 420
MPM Worker, 420
MPMs (Multi-threaded Processing Modules), 420
mSQL (mini SQL), 16, 246
Multifunctional Database, 799
multiple memcached servers, replicating data to,

355–357
multiple-key data fetch, 415
multiple-master replication, 139–141, 162
multi−set(), 356
multi-step utility methods, 269–274
multitenancy, 13
multi-threaded, 18, 27, 420
Multi-threaded Processing Modules. See MPMs
multi-version concurrency control (MVCC), 113
MVCC (multi-version concurrency control), 113
my.cnf, 122, 812

sample file, 824–827. See also replication
MYD file, 115, 116, 117, 813, 821
my−func(), 106
my−func−deinit(), 106
my−func−init(), 106
MYI file, 115, 116, 117, 813, 821
my.ini, 122, 812
MyISAM, 13, 18, 25, 35, 38, 85, 112, 115–118, 799

features, 115–116
FULLTEXT indexes and, 151
under the hood, 116–117
InnoDB v ., 118–119
table

creation of, 116
maintenance, 117–118

myisamchk, 25–26, 117, 118
mylvmbackup, 822
my−realloc(), 106, 107
my−reverse(), 747
my−reverse−fn(), 747
myschema, 134, 139

MySQL, 15–84, 85–162. See also Memcached Functions for
MySQL; Sphinx

access control, 75, 84
account management statements, 80–84
advanced features, 85–162
backups, 817–823. See also mysqldump
basic functionality, 16–17
C/C++ and, 18
clustering and, 18
command executor, 19
command options

basic, 813–815
InnoDB, 815–816
port setting, 814–815
socket setting, 815
tablespace, 815, 817
user, 814

configuration, 811–829
running for first time, 811
schema creation, 811, 812
server configuration file, 812–817
setting privileges, 812

connection, contact list application and, 532–534
core components, 19
database application. See contact list application
features of, 18–19
FULLTEXT indexes, 149–152
functions, 59–70. See also Memcached Functions for

MySQL; UDFs
aggregate, 60–62
complete listing, 59
control flow, 68–70
date, 66–68
date/time, 68–70
informational, 59–60
numeric, 62
string, 62–66

genesis of, 17–18
global system user, 75–76
help facility, 59, 70–72
InnoDB Hotbackup, ibbackup, 822–823
installation, 793–810

directory structure and, 20
MySQL version and, 793–794
package type, 794
on RPM-based Linux systems, 804
from source, 807–809
on Ubuntu, 804–806
on UNIX, 807–810
on Windows, 795–803

LAMMP and, 4–5
Linux and, 4
/memcached, contact list application and, 503–504.

See also contact list application
monitoring, 823–824

Cacti, 648, 823
MySQL Enterprise Monitor, 824
Nagios, 436, 823, 824

operators, 58–59
Bit, 58
Boolean, 58
comparison, 71–72
complete listing, 58
left shift, 58
less-than, 41
LIKE, 41
math, 58
modulus, 58

845

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 846

MySQL (continued)

MySQL, (continued)
ranges with, 41–42
right shift, 58

optimizer, 16, 19, 126, 250
parser, 16, 19
Perl and, 245–283
primer, 16–19
privileges, 74–84, 812
programs, 19–28

client, 20–25
utility, 25–27

RDBMS, 4, 16, 18, 148, 245, 246, 293, 294
reference manual, 33, 38, 59, 62, 78, 81
replication. See replication
SQL features and, 85–111
startup utilities, 27–28
SUSE and, 794, 804
table handler, 16, 17, 19
UNIX and, 19, 20, 21, 27
usage of, by websites, 4, 5
user account, 74–75
user manual, 68
user-defined variables, 72–74, 84, 85, 162
versions, 793–794

online information, 794
WAMP and, 3

mysql, 20–21
grant tables, 76–80, 81, 84

mysql>, 21
MySQL database-driven application. See contact list

application
MySQL Enterprise Monitor, 824
MySQL Installation Wizard, 116, 795, 796
MySQL Server Instance Configuration Wizard, 798
mysqladmin, 21–22, 246, 812, 813
mysqladmin shutdown, 282
mysqlbinlog, 26–27
mysql−config, 27
mysqld, 27
mysqld1, 28, 139, 140, 141, 814, 825
mysqld2, 28, 139, 140, 141, 815, 826
mysqld−multi, 28, 139–141. See also replication
mysqld−safe, 27
mysqldump, 21, 25, 40, 132, 133, 246, 803, 812,

818–819
mysqlhotcopy, 821
mysqlimport, 22–23
mysql−insertid, 267
mysql−is−autoincrement, 267
mysql−is−blob, 267
mysql−is−key, 267
mysql−is−num, 267
mysql−is−pri−key, 267
mysql−length, 267
mysql.server, 27
mysqlshow, 23–25
mysql−type, 267
mysql−type−name, 267
mysub(), 187, 190

N
Nagios, 436, 823, 824
NAME, 266
name-based virtual hosting, 460
NAME−hash, NAME− lc−hash, NAME−uc−hash, 266
NAME− lc, NAME−uc, 266
namespace, 192

NameVirtualHost, 460
naming convention (Perl), underscore and, 215, 217, 218,

220
naming file handles, 182
Narada Muni, 99, 100, 270
NASA –JPL, 4
National Center for Supercomputing Applications (NCSA),

418. See also Apache
Native switch(), 209
natural join, 44, 45
NATURAL LANGUAGE MODE, 149
NATURAL LANGUAGE MODE WITH QUERY

EXPANSION, 150
NCSA (National Center for Supercomputing Applications),

418. See also Apache
NDB Cluster, 33, 112
Netbas, 17
Netfrastructure database, 18
netmask, 82
‘‘network is the computer,’’ 1
new(), 215, 216, 217, 224, 531–532
NEW, 100, 101
$new−values, 298, 299, 302
nfreeze(), 403, 667, 671, 672
NONDETERMINISTIC, 88
nondeterministic caching, 318, 346
NOT LIKE, 63
nothingness, 30
notifyUser() subroutine, 735
NOW(), 66, 67
NULL, 30–31, 45, 64, 68, 93

concept of, 30–31
empty strings v ., 30, 31
memcached and, 393, 394, 412
MyISAM and, 115
zero v ., 30, 31

NULLABLE, 266
NULLIF(), 68
numeric functions, 62
NUM−OF−FIELDS, 266
NUM−OF−PARAMS, 266

O
object methods, 214
object-oriented interface, 373. See also

Memcached::libmemcached
object-oriented Perl, 9, 211–244. See also bless(); Perl

Moose and, 240–243
object-oriented programming, 212–213. See also classes;

encapsulation; inheritance; methods; reusable code
benefits of, 211
CamelCase and, 221
implementation and, 212
interface and, 212
Perl and, 9, 244
polymorphism, 213
references. See references
reusable code and, 212
virtual method and, 217

objects
defined, 212, 214
hierarchy, Feldiea class, 213, 235

ODBC, 19, 114, 246, 249, 250, 266
OLD, 100, 101
OLTP (Online Transaction Processing), 800
onChange(), 767, 781, 782, 784
onClick(), 784

846

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 847

In
de

xPerlAddVar

onclick(), 710
one-liner regular expressions, 206–207
Online Transaction Processing (OLTP), 800
onQueue(), 781, 782, 790
onreadystatechange, 714
onreadystatuschange, 709
onSuccess, 732, 784
open source model, 2, 12
open source web development, future of, 12–13
opendir(), 185
operators

map, 175
MySQL, 58–59. See also specific operators

Bit, 58
Boolean, 58
case, 68
comparison, 71–72
complete listing, 58, 71
greater than or equal, 72
left shift, 58
less-than, 41
LIKE, 41
math, 58
modulus, 58
ranges with, 41–42
right shift, 58

$ops, 288, 289, 291
optimizations (regex), 208

grouping optimization, 208
regex compilation, 208

optimizer, 16, 19, 126, 250
$OPTIONS, 221, 231, 237
$options, 215, 231
Options (directive), 442–443
$opt−xxx variables, 289
or operator, 209
Oracle, 48, 112, 118, 150, 246, 822

Innobase Oy and, 118, 822
Order (directive), 451–452
ORDER BY, 42, 44, 50, 51, 103, 124
ORDER BY ‘creation date’ GROUP BY

’creation date’, 103
ordering, 42
OS X. See Apple OS X
output parameters, binding, 263–264
overidden, 212, 213, 217

P
package scoping, 190
packages, 192–206. See also modules

creating, 193
reusable code and, 211

page caching, 318
Pantherinae, 213
Pantherinea, 212, 234, 235, 236, 237
ParamArrays, 266
ParamTypes, 266
ParamValues, 266
parent, 46, 47
parentheses, subroutines and, 187
parse−links(), 761, 763
parser, 16, 19
parse−title(), 761
partial page caching, 318
pass by reference, 169, 518
$password, 253

Password.pm, 532
‘‘patchy’’ server, 418. See also Apache
pattern matching, 63, 64, 206, 471, 473, 475
PBXT (Primebase XT), 18, 85, 113
PCRE (Perl Compatible Regular Expressions), 421
PEARL, 163
percentage sign (%), wildcards and, 41, 64, 139
Percona, 13, 823
performance Apache2 Perl modules, 586, 594, 595
performance comparisons

Cache::Memcached and, 377–380
Cache::Memcached::libmemcached and, 376, 381
test script/tool for, 377–380

Perl, 163–210. See also mod−perl; object-oriented Perl
Ajax and. See Ajax
Apache2 modules, 585–598
arrays. See arrays
benefits of, 9
bless(), 211, 214, 215, 216, 219, 223, 227, 236, 238,

244, 334, 348, 404, 532, 661
CGI programs and, 8
client library for memcached. See Cache::Memcached
complex data structures, 180–182
CPAN and. See CPAN
data types, 165–168

file handles, 168, 182
hashes, 49, 167, 172
scalars, 165–167
subroutines, 168, 186–188
type globs, 168
usage, 168–192

driver, MySQL and, 246
Gearman and, 746–747
global and, 190
glue hash trickery, 49
history of, 163–164
install utility (install.pl), 386–387
LAMMP and, 8–10
libmemcached and, 359, 364–365. See also libmemcached;

Memcached::libmemcached
modules. See modules
MySQL and, 245–283
primer, 163–210
prototypes and, 187
public/private and, 213, 217, 218
references. See references
scope and, 164
6.0, 13, 208–209
strengths of, 164
WAMP and, 3
writing classes in. See classes

Perl 6.0, 13, 208–209
Perl Compatible Regular Expressions (PCRE), 421
Perl Data Structures Cookbook, 180
Perl filter handlers. See filter handlers
Perl Gearman client, 747
Perl Gearman workers. See Gearman workers
Perl module, JSON, 713–717, 738, 787
<Perl> sections, 569–570

inline, 699–700
Perl to JSON, 713
PerlAccessHandler, 577, 583, 585, 588, 630

Apache life cycle overview and, 577
example, 612–614

PerlAddVar, 572

847

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 848

PerlAuthenHandler

PerlAuthenHandler, 573, 574, 577, 583, 585, 615, 619,
620, 621, 626, 630

Apache life cycle overview and, 577
example, 615–619

PerlAuthzHandler, 573, 577, 583, 585, 619, 621, 626, 631
Apache life cycle overview and, 577
example, 619–622

PerlChildExitHandler, 577, 578
PerlChildInitHandler, 577, 578
PerlCleanupHandler, 577, 584, 585
PerlFixupHandler, 577, 583, 585
PerlHeaderParserHandler, 577, 582, 585
PerlInitHandler, 577, 582, 585, 594, 606, 704
PerlInputFilter, 577, 580, 585
PerlLoadModule, 571
PerlLogHandler, 574, 577, 584, 585

Apache life cycle overview and, 577
example, 622–627

PerlMapToStorageHandler, 577, 582
PerlModule, 570
PerlMyAdmin, 281
PerlOpenLogsHandler, 577
PerlOptions, 573–574
PerlOutputFilter, 577, 580, 585, 629, 631
PerlPassEnv, 572
PerlPostConfigHandler, 577, 578
PerlPostConfigRequire, 573
PerlPostRead, 582
PerlPostReadRequestFilter, 577
PerlPreConnectionHandler, 577, 579, 607, 613, 614, 630

example, 608–612
PerlProcessConnectionHandler, 577, 579, 607
PerlRequire, 573
PerlResponseHandler, 573, 575, 577, 584, 585

Apache life cycle overview and, 577
example, 601–607

initial setup, 602
log level setting, 603
log messages with, 602–603
printing document header, 604–607
printing HTTP header, 603
redirection and, 603–604

PerlSetEnv, 571–572
PerlSetVar, 572
PerlSwitches, 574
PerlTransHandler, 577, 582, 585
PerlTypeHandler, 577, 583, 585
Personal Home Page, 16. See also PHP
phases. See request phases
Phillips, George, 15
PHP, 1, 2, 4, 8, 9, 15–16

Apache and, 417
application deployment model, 8–9
CGI and, 15–16
filtering and, 627
ProxyPresereHost and, 482–483
Web and, 15

PI(), 62
ping(), 275
placeholders, 256, 717
Plain Old Documentation. See POD
Plesk, 8
plugin, 385
plug-ins

Linux, 419
to Template Toolkit, 687

.pm extension, 194
POD (Plain Old Documentation), 197–201, 233, 366, 518,

574–575, 746

pod2man, 198
polymorphism, 213
pop(), 176
popup−menu(), 728, 769
port setting (command option), 814–815
PostgreSQL, 4, 16, 48, 152, 427
PostReadRequest, 576
Power of the SELECT, 413
Practical Extraction and Reporting Language, 164
pragmatic module. See also ’use base’

strict, 192
warnings, 192

precaching, 346
cities, 347
method calls, 348
states, 347–348

PRECISION, 266
preparation phase, 422, 576
prepare(), 255, 256, 257, 264, 269, 270, 272, 273, 274,

301
prepare−cached(), 255
prepared statements

emulated, 250, 256, 257
server-side, 250, 252, 255, 256, 257

primary keys, 31
PrimeBase (PBXT), 18, 85, 113
PrintError, 254, 265, 280
printing arrays, 178
PrintWarn, 254, 265
private/public (Perl), 213, 217, 218
privilege columns, 78
privileges, MySQL, 74–84, 812
proactive caching, 318
procedures. See stored procedures
process file handles, 185–186
processForm(), 731
processing, lazy, 315, 316
processUrl(), 781, 783, 784
procs−priv, 76, 80
Professional Ajax (Zaka, McPeak & Fawcett), 707
program flow, contact list application, 515–516
protocol, stateless, 417, 419
Prototype JavaScript Framework, 708, 732

Ajax example, 725–727
purpose of, 725

prototypes, 187
<Proxy>, 439
proxying, reverse. See reverse proxying
<ProxyMatch>, 440
ProxyPass, 481
ProxyPassReverse, 481–482
ProxyPassReverseCookieDomain, 482
ProxyPassReverseCookiePath, 482
ProxyPreserveHost, 482

PHP and, 482–483
usefulness of, 482

ps command, 141, 431
pseudo-Data::Dumper, 181. See also Data::Dumper
public/private (Perl), 213, 217, 218
push(), 176
Python, 4, 152, 317, 360, 417, 480, 580, 687

Q
Query(), 774
$query, 336
query cache, 257
query expansion, bling, 150

848

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 849

In
de

xreverse proxying

query syntax, Boolean, 159
querying data, 38–50

R
$r, 699, 700
Rails, 1, 353
RaiseError, 254, 265, 280
raising number to power, function for, 62
RAND(), 92
random character generator, 92, 257
randomString(), 670, 710, 727
ranges, 41–42
raw disk partitions, 119, 816
RDBMS (Relational Database Management System), 4, 16,

18, 148, 245, 246, 293, 294. See also MySQL
MySQL and, 85
server in, 245–246

read statements, 258
readdir(), 185
reading, from process file handles, 185
read-through caching, 315, 316, 357

with SELECT, 412–415
readyState, 709
Redhat-based systems

Apache configuration schemes on, 486–487
Apache installation on, 428–429
DBI/DBD::mysql on, 247
memcached and, 322–323
mod−perl installation and, 428–429
startup scripts and, 322–323

Redirect (directive), 443
ref(), 172, 181
reference manual (MySQL), 33, 38, 59, 62, 78, 81
references, 169–173

array, 170
hash, 171
identifying, 172–173
importance of, 213, 216, 283
iteration and, 181
object-oriented programming and, 216. See also

object-oriented Perl
scalar, 169–170
subroutine, 171–172

ref−iterate(), 181
REG800, 17
regex. See regular expressions
REGEXP, 63, 64
regions, 332. See also user application
regular expressions (regex), 64–65, 206–208. See also

conditional pattern
Apache and, 421
compilation, 208
mod−rewrite and. See mod−rewrite
one-liner, 206–207
optimizations, 208
storing, in variables, 207–208

Relational Database Management System. See RDBMS
relay logs, 26, 134, 138
--relay-log, 138
--relay-log-index, 138
--relay-log-info-file, 138
reload, 282
remove(), 326
REPAIR TABLE, 118, 125
REPLACE(), 63
replace(), 326, 350
REPLACE, 56–57

replacing data, 56–58
replicate data, to multiple memcached servers, 355
--replicate-do-db, 138
--replicate-do-table = schemaname.tablename /, 139
--replicate-do-wild-table = schemaname.tablename%, 139
replicate-do-wild-table = webap%.%, 139
--replicate-ignore-db, 138
--replicate-ignore-table = schemaname.tablename, 139
--replicate-ignore-wild-table = schemaname.tablename%, 139
replicate-ignore-wild-table = webapps.t%, 139
--replicate-rewrite-db=from−name-> to−name, 139
replication, 18, 85, 133–148. See also backups, MySQL

asynchronous, 133, 134
binary log and, 134, 141
cache, 318
command options, 137–139

adding, 141–143
filtering rules, 136
manually setting master, 147–148
multiple-master, 139–141, 162
my.cnf sample file, 824–827
mysqld−multi and, 139–141
over SSL, 138
overview, 133–134
row-based, 133, 138
running, verification of, 144–147
schemes, 134–137
setting up, 139–148
statement-based, 133, 138, 139
uses of, 133

replication backup slave, 817
--report-host, 138
--report-port, 138
request parsing phase, 421–422, 576
request phase cycle. See also Apache life cycle

Apache, 423, 461, 576, 584
HTTP, 565, 580, 581, 584, 590, 599, 601, 626, 630, 631

request phases
Apache, 421–422, 576

handler, 422
preparation, 422
request parsing, 421–422
security, 422

mod−perl, 576
RequestHandler, 582
request/request record Apache2 Perl modules, 586,

587–590
Require (directive), 452
require statement, 195. See also use statement
$REQUIRED−COLS, 530
resource Apache2 Perl modules, 595
Response (mod−perl request phase handler), 576
result−cb(), 106, 107–108
reusable code

CPAN and, 164
functions and, 86
getUser() and, 537–538
inheritance and, 240
−makeWhereClause() and, 336, 337
Mason and, 686
object orientation and, 212
packages and, 211
Perl modules and, 194, 197
stored procedures and, 86

reverse(), 177
reverse proxying

Apache and, 478–480
mod−proxy and, 478–480
with two virtual hosts, 499–500

849

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 850

REVOKE

REVOKE, 76, 80, 81, 82, 83
rewinddir(), 185
rewrite directives, 468–478
RewriteCond, 468

flags and, 471–472
RewriteEngine, 468
RewriteLog, 477–478
RewriteLogLevel, 478
RewriteMap extensions, 470–471
RewriteRule, 472

conditional pattern and, 472–473
substitution and, 473

flags, 473–477
rewriting URLs, 468–478. See also mod−rewrite
RIGHT joins, 45, 46
right shift operator, 58
ring configuration, 135, 136
RitmarkFS, 113
roach motel, 132. See also Blackhole
rollback(), 276, 277
ROLLBACK, 121
ROLLBACK TO SAVEPOINT, 122, 123
ROLLUP, GROUP BY with, 61
Rolsky, Dave, 698
root user, 75, 205, 386, 431, 806, 811
Round Robin Database (RRDTool), 823
row-based replication, 133, 138
row-level locking, 113, 119
rows(), 258, 264–265
RowsInCache, 266
RPM, 19, 20, 247, 361, 428, 794, 804. See also Yum
RRDTool (Round Robin Database), 823
RSS feeds, 316. See also XML
Ruby, 4, 19, 152, 240, 317, 353, 360, 417, 584

S
SaaS (Software-as-a-Service), 6, 13
--safe-updates option, 53, 121, 122
sakila, 27, 150, 156, 161, 248, 828
Sanders, Tony, 15
Sanskrit, 30
saveFileInfo(), 684
SAVEPOINT, 122
saveUpload() subroutine, 680–682
saveUrl(), 781, 785
saveUser(), 538–542
saveUserToCache(), 549–550
say(), 209
scalar(), 177
scalar example, memcached and, 328–329
scalar references, 169–170
scalars, 165–167. See also references

addition, 173
concatenation, 174
usage, 173–174

SCALE, 266
scale-out v. scale-up, 1
SCHEMA(), 60
SCHEMA−PRIVILEGES, 83
schemas. See also information schema; specific schemas

creating, 29
information, 32–33
modification, 33–34
MySQL configuration and, 811, 812

schemes, replication. See replication

Schutz, Jon, 10
scope columns, 78
scope/scoping

dynamic, 190
lexical, 190
mod−perl handlers, 575
package, 190
Perl and, 164
variable, 189–192

adherence, forcing of, 192
example, 191–192
strict pragmatic module and, 192

scrambled, 78
ScriptAlias, 458
ScriptAliasMatch, 458
seamless−rotate, 756
search, apt-cache, 247, 319, 427, 428, 742, 805
search (utility program), 152, 159–161

debugging and, 159
options, 160

search engine application (example), 739–792
components, 747–748
database tables, 749–751
database triggers, 751
flow of content in, 749
Gearman workers, 756–766
mod−perl handlers for, 766
search application, 766–777

paginating, 776–777
search template, 766–768
using, 777, 778

Sphinx setup, 752–756
URL queue application, 777–778
URLHandler, 778–786
URLQueue interface, 790–792
URLQueueHandler, 778, 787–790

search engines, 739. See also Sphinx::Search
search template, 766–768
searchd, 152, 156, 756
searching text. See full-text searching
search() subroutine, 771–775
Secure Sockets Layer. See SSL
SECURITY, 88
security phase, 422, 576
seekdir(), 185
SELECT, 38–39

read-through caching with, 412–415
SELECT, Power of the, 413
selectall−arrayref(), 270–272

arguments, 271
attribute usage, 271
attributes, 271

selectall−hashref(), 272–273
selectcol−arrayref(), 273
selectrow−array(), 273–274
selectrow−arrayref(), 274
selectrow−hashref(), 274
$self, 215, 217
self-joins, 40, 47, 49
SELinux package, 319
semicolons, 30, 32, 88, 96, 97, 250
send(), 710, 718
sendEmail(), 735–736
SERVER, 128
server, in RDBMS, 245–246
server configuration Apache2 Perl modules, 586, 592–594
server control, Apache, 483
server life cycle phase handlers, 578

visual diagram, 584–585

850

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 851

In
de

xSSLMutex

server record Apache2 Perl modules, 586, 591
server tuning directives, 444–446
--server-id, 138
ServerLimit (directive), 445
ServerName (directive), 440
ServerRoot (directive), 440–441
server-side prepared statements, 250, 252, 255, 256, 257
ServerSignature, 449
session caching, 318
session management, 662–675. See also user account

creation with Ajax
cookies and, 662–670
LoginHandler

implementation, 663–667
WebApp class methods and, 667–670

storing session data, methods for, 670–675
sessionInfo(), 665
sessions ids, 93, 643
sessions table, 91, 92, 93, 94, 670–671
sessionVariablesTable(), 665, 666
SET, 72, 73
set(), 325, 330, 331, 350
SET NAMES, 129, 130
SET PASSWORD, 81
set−<attribute>, 226–227
setCookie(), 669
set−debug(), 324
SetHandler, 461
SetHandler modperl, 571
SetHandler perl-script, 571
SetLimits(), 773
SetMatchMode(), 773
setMemcUIDList(), 556
SetRankingMode(), 772–773
SetServer(), 772
SetSortMode(), 773
setUser(), 339, 345, 350, 351
setUserGeoParams(), 340, 345, 350
setWeight(), 229
sha1, 90, 91
shift(), 176, 188
shopping carts, 318, 643, 662, 663, 666
SHOW CREATE TABLE, 32, 103
SHOW ENGINES, 113, 114, 115
SHOW GRANTS, 83
SHOW MASTER STATUS, 144, 145
SHOW PRIVILEGES, 76
SHOW SLAVE STATUS, 144, 145
SHOW TABLE STATUS, 129, 130
SHOW TABLES, 32, 294
shutdown, 282
sigils, 164, 168, 170, 171, 177, 182, 726, 728
simple database application. See contact list application
single database handle (example), 403–409

changes to connection, 403–405
changes to getUser(), 405–407

64-bit
CPU, 318
indexes, 153
server, on 32-bit server, 403
‘x86−64’’ and, 429

skeletal frame, contact list application, 515–516
Slashdot.org, 4, 7, 9, 165, 207, 411, 412, 634
slaves (database instances)

Blackhole storage engine and, 136
dual master configuration and, 135
replication

overview, 133–134

schemes, 134–137
ring configuration and, 135, 136

Slice (attribute), 271, 272
slices, array, 178
social websites, 11, 315. See also LiveJournal.com
socket setting (command option), 815
Software-as-a-Service (SaaS), 6, 13
Solaris, 4
sort(), 177
SOUNDEX(), 63
SOUNDS LIKE, 63
source code, Apache, 424
Sphinx (SQL Phrase Index), 10, 152–162

configuration, 153–158
full-text search engine, 152
FULLTEXT v ., 152
installation, 152–153
main index, defining of, 157–158
search (utility program), 152, 159–161
search engine application and, 752–756
searching, 158–161
source code, 152
starting, 158
when to use, 161–162

sphinx.conf (configuration file), 827–829
data sources, 153–154, 156
database connection options, 156
entire code for, 827–829
indexer section, 155
indexes, 154–155
searchd section, 156

sphinx−counter, 752, 753
Sphinx::Search, 10, 11, 768, 769, 771, 772

methods, 772–773
SPH−MATCH−ALL, 158
SPH−MATCH−ANY, 158
SPH−MATCH−BOOLEAN, 158
SPH−MATCH−EXTENDED, 158
SPH−MATCH−PHRASE, 158
split(), 176–177
SQL. See also MySQL

features, MySQL and, 85–111
injection attacks, 256, 257, 717
/MED specification, 125, 128
storage engines and, 111. See also storage engines
stored procedures and, 87. See also stored procedures
threads, 134

SQL Phrase Index. See Sphinx
sql−db, 156
sql−host, 156
sql−pass, 156
sql−port, 156
sql−query, 156, 753
sql−query−info, 156, 753
sql−sock, 156
sql−user, 156
square brackets [], 87, 687
square root, 62
src directory, 107
SSL (Secure Sockets Layer)

Apache and, 417
directives, 463–466
GRANT and, 81
replication over, 138
virtual hosts and, 466

SSLCertificateFile, 464
SSLCertificateKeyFile, 464–465
SSLEngine, 463–464
SSLMutex, 465–466

851

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 852

SSLRequireSSL

SSLRequireSSL, 464
SSLSessionCache, 465
SSLSessionCacheTimeout, 465
stacked handlers (mod−perl), 575
stale key, 353–355
Stallman, Richard, 2
stampede, cache, 352–355, 357
Starkey, Jim, 18
StartServers (directive), 444
startup scripts, 322–323

Debian-based, 322
Redhat-based, 322–323

startup utilities (MySQL), 27–28
state, illusion of, 419
state caching, 318
stateless protocol, 417, 419
$statement, 270, 271, 273, 274
Statement (attribute), 266
statement handles, 250, 255–261, 283

attributes, 265–269
MySQL-specific, 267
outputs, 268–269

methods. See also prepare()
dump−results, 265
execute(), 255, 256, 257, 258
fetch methods, 258–261
rows(), 258, 264–265

statement-based replication, 133, 138, 139
statements, prepared. See prepared statements
states table, 30, 332, 515, 720. See also contact list

application; data; user application
indexes, 30–31

static methods, 214, 215, 217
statistics keys, 326
stats(), 326–328
stats, 96, 97, 98
status Apache2 Perl modules, 586, 596–598
STDDEV(), 61
STDDEV−POP(), 61
STDERR, 184–185
STDOUT, 184–185
Stein, Lincoln, 419, 516
Storable, 329, 403, 667, 671
storage engines, 85, 111–133. See also specific storage

engines
abilities, 113
ACID-compliant, 18. See also ACID
external, 113
internal, 112
SQL and, 111
using, 113–115

stored procedures, 5, 9, 15, 19, 68, 80, 86–94
benefits of, 86–87
DBI and, 277–279
examples, 88–94
functions and, 86–94
reusable code and, 86
SQL and, 87
syntax, 87–88

store−page(), 759
storeSession(), 671
store−urls(), 762
storing files, in databases, 675
storing session data, 670–675
STRCMP(), 63, 65
strict pragmatic module, 192
string comparison functions, 63–64
string functions, 62–66

subroutines, 168, 171–172, 186–187. See also functions;
specific subroutines

dispatcher(), 519–522
handler(), 677–680, 732–734
header(), 518
main(), 517–518
mainform(), 522–523
notifyUser(), 735
parentheses and, 187
Perl data types, 168, 186–188
references, 171–172
saveUpload(), 680–682
search(), 771–775
table creation, 292–304
userform(), 525–528
userlist(), 523–525
viewuser(), 528–529
XS, 9, 246

subscript, of last array member, 177–178
substitution

flags for, 473–474
special, 474–477

values for, 473
SUBSTR(), 65, 92
SUBSTRING(), 65
subtractNumbers(), 203
SUM(), 60
Sun Microsystems, 1, 5, 7
Sunya, 30
SUSE

Apache configuration on, 487–489
MySQL and, 794, 804

Swartz, Jonathan, 698
Swiss army knife, 164
switch(), 209
switch statement, 172
symbol table, 189–191, 229
System 5 (SYSV), 322, 466, 809
SYSV (System 5), 322, 466, 809

T
tab-delimited data, 22
table creation subroutine (contact list application), 292–304
table handler, 16, 17, 19
TABLE−PRIVILEGES, 83
tables. See also data; specific tables
ALTER TABLE, 33–34, 55
Archive, 125
BigTable project, 13
Blackhole, 112, 132–133
CHECK TABLE, 117, 118
contact list application and, 286
corrupted, 25, 26, 117, 118, 125, 151
creating, 29–30
CSV, 130–131
dispatch, 172
Federated, 126–128
FLUSH TABLES, 25, 131, 132
FLUSH TABLES WITH READ LOCK, 820, 822
foo, 415–416
.frm files, 115, 116, 121, 129, 131, 813, 821
grant, 76–80, 81, 84
India cities, 278, 279
India states, 278
InnoDB, 120
inserting multiple values in, 257

852

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 853

In
de

xurl−fetch()

MyISAM, 116, 117–118
REPAIR TABLE, 118, 125
sessions, 91, 92, 93, 94, 670–671
SHOW CREATE TABLE, 32, 103
SHOW TABLE STATUS, 129, 130
SHOW TABLES, 32
states. See states table
symbol table, 189–191, 229
users. See users table
virtual, 102

tablespace files, 118, 119–120, 125, 799, 800, 809, 813,
814, 815, 816, 817

tables−priv, 76, 80
tags, 694–695

HTML-esque, 694–695
Tcl, 417
telldir(), 185
Template Toolkit, 686–693

Ajax example 2 and, 711, 713
caching templates, 693
features, 687
mod−perl handler (example) with, 690–692
plug-ins to, 687
syntax, 687–689

templating systems, 686–698
$ characters in JavaScript, 726
approaches/philosophies, 686
HTML::Template, 686, 694–698
Mason, 686, 698–704
Template Toolkit, 686–693

TestFilter, 579, 628, 629, 631
testing

contact list application (CGI), 563–564
cookies, tools for, 649–651
delete−contact(), 306–309
edit−contact(), 300, 304–305
find−contact(), 310–312
headers, tools for, 649–651
insert−contact(), 305–306
LoginHandler, 673
modules (Perl) and, 201–204

Test::More, 202
TestReponseHandler, 607
TestString, 468–469
TEXT, 115, 124, 748, 750
thaw(), 403, 667
thingy, 215
this, 215
ThreadLimit (directive), 445
threads. See also multi-threaded

IO, 134
SQL, 134

ThreadsPerChild (directive), 445–446
thundering herd, 352–355, 357
Tiger class, 212, 213, 235
time/date functions. See date/time functions
Timeout (directive), 446
Tina, 85, 130
TLS (Transport Layer Security), 417, 423, 463
tmpdir, 814
Tomcat, Apache, 4, 479
Torvalds, Linus, 2
tr DOM element, 730, 786
TraceLevel, 254, 265
Trans, 576
transactional methods, 276–277
transactions, 121–123
TransferLog, 447
transparency

Federated storage engine and, 125
mod−proxy and, 478, 480, 481
mod−rewrite and, 468

Transport Layer Security (TLS), 417, 423, 463
trigger−fun.sql, 411
triggers, 5, 7, 15, 19, 68, 71, 74, 86, 94–102

database. See search engine application
examples, 95–102
limitations, 102
Memcached Functions for MySQL and, 403, 409–412
syntax, 95

Tripod project, 482–483. See also ProxyPreserveHost
TRUNCATE, 53, 54
TYPE, 266
Type (mod−perl request phase handler), 576
type globs, 165, 168, 189, 190, 230, 231, 244

U
-u, 321
Ubuntu

Apache configuration on, 484–486
Apache installation and, 427–428
DBI/DBD::mysql on, 247
memcached on, 319–320
mod−perl installation and, 427–428
MySQL installation on, 804–806

UDF API, 105, 106
UDFs (user defined functions), 5, 7, 86, 105–111. See also

Gearman MySQL UDFs; Memcached Functions for MySQL
calling, 388
memcached, 383
required functions for, 106
writing, 105–106

UID, 508
uid, 512
underlisting page, in Mason, 703–704
underscore(−)

make−label() and, 295
naming convention (Perl) and, 215, 217, 218, 220
wildcards and, 64, 139

UNION, 48–50
UNIQUE, 29, 31, 32, 35, 37, 55, 115, 332, 514, 615
Unireg, 17
UNIX. See also Linux

Apache and, 417, 419
Apache installation on, 429–432
directory, 186
domain socket, 366
manpages, 197
memcached and, 322
MySQL and, 19, 20, 21, 27
MySQL installation on, 807–810
SYSV, 322, 466, 809

UNIX−TIMESTAMP(), 67
unsetCookie(), 669
unshift(), 176
UPDATE, 50–52, 96
update−contact(), 302–303
updateMemcUIDList(), 556–558
updateUser(), 341, 543–545
updating contacts, 285, 302–303
updating data, 50–52
upload handler. See file upload mod−perl handler
uploads directory, in Apache configuration, 676–677
url(), 517
URL queue application, 777–778
url−fetch(), 761

853

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 854

url−fetch job

url−fetch job, 765
url−fetcher−worker.pl, 761
URLHandler, 778–786

JavaScript and, 780–781
template implementation, 785–787

url−memc−update, 410
url−mem−delete, 410
url−mem− insert, 410
url−process(), 762, 764
URLQueue interface, 790–792
URLQueueHandler, 778, 787–790
URLs, rewriting. See rewriting URLs
urls index, 752
urls table, 750
urls−blob table, 750
urls−delta index, 752, 755
urls−queue table, 750
urls−queue−insert, 751
urls−queue−update, 751
urls−stored table, 750
usage(), 289
’use base’, 236, 237, 238, 239, 244
use statement, 194, 195, 248
UseDir, 458–459
user (command option), 814
User (directive), 443
user account (MySQL), 74–75
user account creation with Ajax (example 7), 728–738

account handler, 732–735
account page mod−perl handler, 728–729
account page template, 729–732
in action, 736–738
sendEmail(), 735–736

user application (memcached example), 357
accessor methods, 338–339

modifying to use cache, 348–350
caching

implementation plan, 345
key scheme, 346
strategies, 318
where to add, 345–346

connectDB(), 334
data design, 332–333
data modification methods, 339–342
data retrieval methods, 335–337
instantiation, 334
Memcached Functions for MySQL and, 402–409, 416
precaching, 346

cities, 347
method calls, 348
states, 347–348

user data caching
get method modifications, 351–352
set method modifications, 350–351

UserApp
caching in, 352
implementation, 334
using, 342–344

user data caching
get method modifications, 351–352
set method modifications, 350–351

user defined functions. See UDFs
User Directory directives, 458–459
user manual (MySQL), 68
user tracking, cookies and, 643
UserApp

caching in, 352
implementation, 334
using, 342–344

$USER−COLS, 530
user-defined variables, 72–74, 84, 85, 162
userExists(), 547–548
userExistsInCache(), 553–554
userform display function, 507, 510–513
userform() subroutine, 525–528, 641
userList(), 714
userlist, 509, 510, 513
$userlist, 712, 713
userlist−ajax2.tt2, 713
userlist() subroutine, 523–525
$username, 253
USER−PRIVILEGES, 83
users table, 30, 332, 514, 671. See also contact list

application; data; session management; user application
column data types, 31
column modification, 33–34
indexes, 31–32
inserting data, 35–36
stored procedures example, 88–89

usertable, 715, 723
utility functions, libmemcached, 372
utility methods, multi-step, 269–274
utility programs

libmemcached, 360, 361–364
search (Sphinx), 152, 159–161

V
value setting functions (memcached), 369–370
VARCHAR, 31, 115
variable scope. See scope
variable types. See data types
variables. See also user-defined variables; specific variables

instance, 215
regular expressions stored in, 207–208

VARIANCE(), 61
Vedic philosophy, 30
$VERSION, 214
views, 86, 102–105

read-only, 293
viewuser display function, 507, 513
viewuser() subroutine, 528–529, 641
vim editor, 186
virtual hosting, 459–460

configuring (Apache task), 493–495
IP-based, 460
name-based, 460
reverse prox setup with, 499–500
SSL and, 466

virtual method, 217
virtual tables, 102. See also views
virtual user, 529, 530, 532
<VirtualHost>, 440, 459, 460
-vv, 321, 322, 329

W
Wall, Larry, 8, 163, 164. See also Perl
WAMP (Windows, Apache, MySQL, Perl), 3
warn(), 224, 529
warnings pragmatic module, 192
Web. See also CGI; Perl; PHP; search engine application

Drizzle and, 13, 421
Perl and, 8

854

Galbraith bindex.tex V2 - 06/03/2009 3:51pm Page 855

In
de

xzlib

PHP/CGI and, 15
search engine applications and, 739

Web 2.0, 1
web applications. See also search engine application

caching and, 1–2
data and, 313
as desktop applications, 707, 708. See also Ajax
future of, 12
HTTP and, 419
tools for building, 740

web client worker, 748, 749, 750, 757–762
web development, future of, 12–13. See also LAMMP
WebApp class methods

contact list application, 529–542
file upload mod−perl handler and, 682–684
LoginHandler and, 667–670

WebApp.pm, 516, 517, 568, 602, 608, 609, 616, 617, 620,
651, 705, 776

$WebApp::REQUIRED−COLS, 520, 530, 531
websites

MySQL usage and, 4, 5
social, 11, 315

webuser, 76, 77, 78, 79, 80
WHERE clause, 40–41
whereClause(), 656–658
Widenius, Monty, 13, 16, 17, 18, 22, 23
wildcards

Apache and, 436, 437, 485
percentage sign (%) and, 41, 64, 139
underscore(−) and, 64, 139

Williams, John, 698
Williams, Ken, 698
Windows

Apache installation on, 425–427
MySQL installation on, 795–803

Windows, Apache, MySQL, Perl (WAMP), 3. See also Apache;
LAMMP; MySQL; Perl

wire-frame, 286–287, 288, 290
--with-mysql, 385
Wordpress, 8, 482
work(), 747
Worker, MPM, 420
worker process, 11. See also Gearman workers

World Wide Web. See Web
Writely.com, 708
write-through caching, 315–317, 357
writing, to process file handles, 185
WroxHandlers::AccessTestHandler, 613, 614, 619, 621, 626,

630
WroxHandlers::AuthZTestHandler, 619, 620, 621, 626, 631
WroxHandlers::ContactHandler, 636, 642
WroxHandlers::ContactListHandler, 635, 636, 637
WroxHandlers::DenierHandler, 608, 611, 612, 613, 614, 630
WroxHandlers::LogTestHandler, 623, 626, 628, 631
WroxHandlers::SearchHandler, 768–771
WroxHandlers::TestFilter, 579, 628, 629, 631
WroxHandlers::TestReponseHandler, 607

X
XML, 1, 21. See also Ajax

DOM and, 316, 708
feeds, 47, 67, 103, 316
parsing library, 434
pipe, 152
SGML and, 436
WIX and, 795

XMLHttpRequest object, 708, 709, 711, 714
XS (eXternal Subroutine), 9, 246

Y
yacc, 807
Yast, 742, 794, 804
Yum, 247, 320, 360, 428, 794, 804

Z
Zaka, Nicholas C., 707
zero, 30. See also NULL
zlib, 123, 403, 408, 491

855

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 450
 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

Developing Web Applications
with Apache, MySQL®, memcached, and Perl

www.wrox.com

$49.99 USA
$59.99 CANADA

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Database Management

Web Applications

ISBN: 978-0-470-41464-4

Adding a cache layer to the popular LAMP stack is becoming
the common solution to significantly reduce the load on back-
end databases, and also allows for better web application
performance. This new caching component is represented by
another “m” in LAMMP, which stands for memcached—a high-
performance, distributed memory object caching system that
provides caching for web applications. The author walks you
through the process of using Perl to develop web applications
both in terms of the front-end display logic as well as the
back-end data retrieval from MySQL and memcached. You
also see how to configure the Apache web server to run these
mod_perl applications.

You’ll discover that MySQL and memcached are where the
data is stored, and Apache is the server that hosts this
functionality. You’ll also examine each system while you learn
how to install, set up, and administer it.

The book shows you how to put each of these systems
together so you can start building successful applications.
Helpful examples put in practice the information covered
throughout the book and a problem-solving chapter offers
real-world problems and the process of how you might go
about finding a solution to them.

What you will learn from this book
● How to install, configure, and work with MySQL particularly

basic concepts involving data, joins, and indexes as well as
advanced usage of triggers, stored procedures, user-defined
functions, storage engine usage, and more!

● A Perl refresher on basic concepts as well as how to work
with data from MySQL using various Perl data types

● A chapter on object-oriented Perl
● How to the use Sphinx storage engine for full-text searching

as well as Gearman to distribute tasks
● How to install and configure Apache 2.2 to work with

mod_perl 2.0
● How to use mod_perl handlers to develop web applications,

including working with Ajax
● A sample search engine application that puts together the

various technologies discussed in the book

Who this book is for
This book is for developers who want to write applications using
MySQL, memcached, Apache, and Perl, and are interested in
improving the development process and efficiency.

D
eveloping W

eb A
pplications

w
ith A

pache, M
yS

Q
L

®,
m

em
cached, and P

erl

Galbraith

est. spine=1.78"

Updates, source code, and Wrox technical support at www.wrox.com

Developing
Web Applications
with Apache, MySQL®,
memcached, and Perl
Patrick Galbraith

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	Developing Web Applications with Apache, MySQL, memcached, and Perl
	About the Author
	Acknowledgments
	Contents
	Foreword
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: LAMMP, Now with an Extra M
	Linux
	Apache
	MySQL
	memcached
	Perl
	Other Technologies
	The New Picture
	The Future of Open-Source Web Development and Databases
	Projects to Watch!
	Summary

	Chapter 2: MySQL
	How CGI and PHP Changed the Web Dramatically
	About MySQL
	MySQL Programs
	Working with Data
	MySQL Privileges
	Summary

	Chapter 3: Advanced MySQL
	SQL Features
	Storage Engines
	Using Storage Engines
	Replication
	Summary

	Chapter 4: Perl Primer
	What Exactly Is Perl?
	Perl Primer
	Perl Data Types
	Variable Usage
	Packages
	Regex One-Liners
	Perl 6 Tidbits
	Summary

	Chapter 5: Object-Oriented Perl
	About Object Orientation
	Object Orientation in Perl
	Summary

	Chapter 6: MySQL and Perl
	Perl DBI
	Connect
	Statement Handles
	Binding Methods
	Other Statement Handle Methods
	Statement Handle Attributes
	MySQL-Specific Statement Handle Attributes
	Multistep Utility Methods
	Other Database Handle Methods
	Stored Procedures
	Error Handling
	Server Admin
	Summary

	Chapter 7: Simple Database Application
	Planning Application Functionality
	Table Creation Subroutine
	Testing update_contact, insert_contact, and delete_contact
	Lookup of a Contact
	Testing Lookup of a Contact
	Summary

	Chapter 8: memcached
	What Is memcached?
	How memcached Is Used
	Installing memcached
	Starting memcached
	Using Cache::Memcached
	Simple Examples
	A More Practical Example
	Summary

	Chapter 9: libmemcached
	What Is libmemcached?
	libmemcached Utility Programs
	libmemcached Perl Driver
	Cache::memcached::libmemcached
	Summary

	Chapter 10: Memcached Functions for MySQL
	What Are Memcached Functions for MySQL?
	How Do the Memcached Functions for MySQL Work?
	Install the Memcached Functions for MySQL
	Using the Memcached Functions for MySQL
	Using memcached UDFs
	Summary

	Chapter 11: Apache
	Understanding Apache: An Overview
	Understanding the Apache Modules API
	Installing Apache
	Installing mod_perl from Source
	Installing libapreq2 from Source
	Apache Configuration
	Apache Configuration Schemes
	Common Apache Tasks
	Summary

	Chapter 12: Contact List Application
	Using MySQL and memcached Together
	A CGI Program
	Program Flow
	WebApp Class Methods
	Database Methods
	Caching Methods
	Other Methods
	Testing
	Summary

	Chapter 13: mod_perl
	New mod_perl 2.0 Features
	Configuring mod_perl
	mod_perl Configuration Directives
	mod_perl Handler Directives
	Apache Life Cycle Overview
	Perl Apache2 Modules
	Summary

	Chapter 14: Using mod_perl Handlers
	PerlResponseHandler Example
	Connection mod_perl Handlers
	PerlPreConnectionHandler Example
	Other HTTP Request Cycle Phase Handlers
	Summary

	Chapter 15: More mod_perl
	mod_perl Handlers or ModPerl::Registry?
	Dealing with Cookies
	Generic Database Methods
	Session Management
	File Upload mod_perl Handler
	Templating
	HTML::Template
	HTML::Mason (Mason)
	Summary

	Chapter 16: Perl and Ajax
	What Is Ajax?
	mod_perl Applications and Ajax
	Summary

	Chapter 17: Search Engine Application
	Using Gearman to Put the Search Engine Application Together
	The Search Engine Application
	mod_perl Handler Web Applications
	Summary

	Appendix A: Installing MySQL
	Choosing a MySQL Version
	Choosing a MySQL Package Type
	Installing MySQL on Windows
	Installing MySQL on RPM-based Linux Systems
	Installing MySQL on Ubuntu
	Installing MySQL from Source on UNIX Systems
	Unix Post Install

	Appendix B: Configuring MySQL
	Running MySQL for the First Time
	Setting Up Privileges and Creating a Schema
	MySQL Server Configuration File
	Backups
	Monitoring
	my.cnf Sample File
	Sample sphinx.conf

	Index

