Developing

Web Applications
with Apache, MySQL,
memcached, and Perl

Patrick Galbraith

Updates, source code, and Wrox technical support at WWW.Wrox.com

Developing Web Applications with Perl,
memcached, MySQL® and Apache

Forewordcociiiiinnncennncnnsnnnnnncsnsansnsnnsnsasnsnannsnnnns XXV
Introduction ...ttt i i i st s i s s s s rraaa s XXVii
Chapter 1: LAMMP, Now withanExtraMcccciiiiiiiiiiiiiinnnns 1
Chapter 2: MySQL.......cciiiiiiiiiiiinreaassnnnnnnanssnnnssnnnnnnnsnnnnnnns 15
Chapter3: Advanced MySQLcciiiriinnrcnnrrcnnsonnnsnnnsnnnnnnns 85
Chapter4:PerlPrimer.........ccviiiiireennrennnsennnsnsnsnnsnsnnnnsnnnsnns 163
Chapter 5: Object-OrientedPerl..........cccciiiiiiiiiiiiiiiiiiisinnnnnnns 211
Chapter6: MySQLandPerlccoiiiiiiiiiennsinnrnnnnsnnssnnnnnnns 245
Chapter 7: Simple Database Applicationcccvviiinniinnnrennnns 285
Chapter8:memcachedcciiiiiiiiiiiiiiiiiiiissssssannnnnnas 313
Chapter9:libmemcachedccciiiiiiiiiiiiiiiiiiisssssssnnnnnas 359
Chapter 10: Memcached FunctionsforMySQLccciviinnnrnnnns 383
Chapter1l: Apacheciviiinnneennronnnrensnsasnsnnsnsnnsnsnnnnns 417
Chapter 12: Contact List Applicationccciiiiiiiiiiinnnnnnnnnns 503
Chapterd3:mod_perlcciiiiiiiiiieiisnrnnassnnnsnnnsnnnnnnnnnnns 565
Chapter14: Usingmod_perlHandlers............ccciiiiiiiiiiinnnnnnnnns 601
Chapter15:Moremod_perlccovvivnrennnrennnrnsnrnnsnnnnsnsnnnnns 633
Chapter16:Perland AjaXccuvvvreeennnnnnnnnnssnnsnnnnsnnssnnnnnnns 707
Chapter 17: Search Engine Applicationccciiiiiiiiiiiieannns 739
Appendix A: Installing MySQLcciiiiiiiiiiiiirtiacsssnnnnnnnnnnnnns 793
Appendix B: Configuring MySQLccvvviirvnnnnrnrsnssnsssnnsnnnnnnns 811

INAEX + o ni it it it e ieeeaeenanasasnnnasasasasassnsanannsnsnnnnnnnnnnnnsnnss 831

Developing Web Applications with Perl,
memcached, MySQL® and Apache

Patrick Galbraith

WILEY
Wiley Publishing, Inc.

Developing Web Applications with Perl, memcached, MySQL® and Apache

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-41464-4

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or Web site may provide or recommendations
it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2009927343

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. MySQL is a registered trademark of MySQL AB.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

To my wonderful wife, Ruth, whom I have known for 27 years and who has stood by me while writing
this book, even when I couldn’t give her the time she deserved. Also, to my dear friend Krishna,
who gave me inspiration every day.

Acquisitions Editor
Jenny Watson

Project Editor
Maureen Spears

Technical Editor
John Bokma

Production Editor
Rebecca Coleman

Copy Editor
Sara E. Wilson

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Corina Copp, Word One

Indexer
Robert Swanson

About the Author

Patrick Galbraith lives up in the sticks of southwestern New Hampshire near Mt. Monadnock with
his wife, Ruth. Since 1993, he has been using and developing open source software. He has worked on
various open source projects, including MySQL, Federated storage engine, Memcached Functions for
MySQL, Drizzle, and Slashcode, and is the maintainer of DBD::mysql. He has worked at a number of
companies throughout his career, including MySQL AB, Classmates.com, OSDN/Slashdot. He currently
works for Lycos. He is also part owner of a wireless broadband company, Radius North, which provides
Internet service to underserved rural areas of New Hampshire. His web site, which comes by way of a
5.8GHz Alvarion access unit up in a pine tree, is http: //patg.net.

About the Technical Editor

John Bokma is a self-employed Perl programmer and consultant from the Netherlands. He has been
working professionally in software development since 1994, moving his primary focus more and
more toward the Perl programming language. John and his wife, Esmeralda, currently live in the
state of Veracruz, Mexico, with their daughter Alice. John’s other two children, Jim and Laurinda,
live with their mother in New Zealand. For more information or to contact John, visit his web site at
http://johnbokma.com/.

Acknowledgments

One weekend in 1993, I had the chance to go on a getaway to San Diego. Instead, I opted to stay home
and download, onto 26 floppies, Slackware Linux, which I promptly installed onto my Packard Bell 386.
I could never get the built-in video card to work with X, so I ended up buying a separate video card and
had to edit my XConfig file to get it to work. How much more interesting this was to do than editing a
config.sys and an autoexec.bat! From then on, I was hooked. I worked at Siemens Ultrasound Group in
Issaquah, Washington, at the time. An engineer there named Debra, when asked what was a good thing
to learn, said something I'll never forget: “Learn Perl.” Debra — you were right!

I always wanted to be a C++ graphics programmer. That didn’t happen because of this thing called the
World Wide Web. I remember Ray Jones and Randy Bentson of Celestial Software showing me a program
called Mosaic, which allowed you to view text over the Internet. Images would be launched using XV.
Everywhere I worked, I had to write programs that ran on the Web, which required me to write CGI in
Perl. So much for my goal of being a C++ programmer — but I consider this a great trade for a great
career. (I did eventually get to write C++ for MySQL!)

I would first like to thank my editor, Maureen Spears, who is not only a great editor, but also a friend.
She gave me much-needed encouragement throughout the writing of this book.

A special thanks goes to John Bokma for his meticulous attention to detail and great knowledge of
Per] — particularly with regard to Perl programming style and convention that I didn’t realize had
changed over the last several years. I was somewhat set in my ways!

Thank you to Jenny Watson, who gave me the opportunity to write this book in the first place!

Thanks to Monty Widenius for creating MySQL and for being a mentor as well as a good friend, and
thanks, Monty, for looking over Chapters 1, 2, and 3! Thanks also to Brian Aker for being another great
mentor and friend, as well as being a software-producing machine with a scrolling page full of open
source software projects that he’s created, including Drizzle and libmemcached. Thanks to Sheeri Kritzer
for her encouragement and for listening to me — she finished her book not too long before I finished
mine, so she understood completely what I was going through.

Id like to thank my friend, Wes Moran, head of design for Sourceforge, for providing the nice, clean,
simple HTML design I used for many of the examples in this book.

Thanks to Eric Day for his excellent input and review of chapters pertaining to Gearman.

A special thanks to Joaquin Ruiz of Gear 6, who provided a lot of input on Chapter 1, as well as Jeff
Freund of Clickability and Edwin Desouza and Jimmy Guerrero of Sun, who put me in touch with others
and were great sources of memcached information.

I would like to thank my current colleagues at Lycos, and former colleagues at Grazr and MySQL, as
well as the team members of Drizzle, for their part in my professional development, which gave me the
ability to write this book. Thanks also to anyone I forgot to mention!

Acknowledgments

Finally, I would like to thank the entire Open Source community. My life would not be the same without
open source software.

There’s a verse in an ancient book, the Bhagavad Gita, that aptly describes how people like Monty
Widenius, Linus Torvalds, Larry Wall, Brian Aker and other leaders within the Open Source community
inspire the rest of us:

““Whatever action a great man performs, common men follow. And whatever standards he sets by exemplary acts,
all the world pursues.”

Contents

Foreword XXV
Introduction XXVii
Chapter 1: LAMMP, Now with an Extra M 1
Linux 2
Apache 3
MySQL 4
memcached 5
Gear6 6
Clickability 6
GaiaOnline 7

How memcached Can Work for You 7

Perl 8
Other Technologies 10
Sphinx 10
Gearman 11

The New Picture 11
The Future of Open-Source Web Development and Databases 12
Projects to Watch! 13
Summary 13
Chapter 2: MySQL 15
How CGI and PHP Changed the Web Dramatically 15
About MySQL 16
MySQL Programs 19
Client Programs 20
Utility Programs 25
MySQL Daemon and Startup Utilities 27
Working with Data 28
Creating a Schema and Tables 29
Inserting Data 35
Querying Data 38
Updating Data 50
Deleting Data 52

Contents

Replacing Data 56
INSERT ... ON DUPLICATE KEY UPDATE 57
Operators 58
Functions 59
Using Help 70
User-Defined Variables in MySQL 72
MySQL Privileges 74
MySQL Access Control Privilege System 75
MySQL Global System User 75
MySQL System Schema Grant Tables 76
Account Management 80
Summary 84
Chapter 3: Advanced MySQL 85
SQL Features 85
Stored Procedures and Functions 86
Triggers 94
Views 102
User Defined Functions 105
Storage Engines 111
Commonly Used Storage Engines 112
Storage Engine Abilities 113
Using Storage Engines 113
MyISAM 115
InnoDB 118
Archive 123
The Federated Storage Engine 125
Tina/CSV Storage Engine 130
Blackhole Storage Engine 132
Replication 133
Replication Overview 133
Replication schemes 134
Replication Command Options 137
Setting Up Replication 139
Searching Text 148
When to Use Sphinx 161
Summary 162
Chapter 4: Perl Primer 163
What Exactly Is Perl? 163
Perl Primer 165

Xii

Contents

Perl Data Types 165
Scalars 165
Arrays 167
Hashes 167
File Handles 168
Type Globs 168
Subroutines 168

Variable Usage 168
References 169
Scalar Usage 173
Array Usage and Iteration 174
Working with Hashes 179
Writing to Files 184
STDOUT and STDERR 184
File Handles to Processes 185
Subroutines 186
Variable Scope 189

Packages 192
Perl Modules 193
Writing a Perl Module 194
@ISA array 197
Documenting Your Module 197
Making Your Module Installable 201
Testing 201
Adding a MANIFEST file 204
CPAN 205

Regex One-Liners 206
Storing Regular Expressions in Variables 207
Regex Optimizations 208

Perl 6 Tidbits 208

Summary 210

Chapter 5: Object-Oriented Perl 211

About Object Orientation 212

Object Orientation in Perl 213
Writing a Perl Class 213
Adding Methods 217
On-Demand Method Manifestation Using AUTOLOAD 221
Other Methods 231
Making Life Easier: Moose 240

Summary 244

Xiii

Contents

Chapter 6: MySQL and Perl 245
Perl DBI 245
DBI and DBD 246
Installation 247
DBI API 247
Connect 249
$dsn 249
$username and $password 253
$attributes 253
connect_cached 254
Statement Handles 255
Writing Data 256
Reading Data 258
Fetch Methods, One Row at a Time 258
Fetch Methods — the Whole Shebang 259
Binding Methods 261
Binding Input Parameters 262
Binding Output Parameters 263
Other Statement Handle Methods 264
rows 264
dump_results 265
Statement Handle Attributes 265
MySQL-Specific Statement Handle Attributes 267
Multistep Utility Methods 269
do 270
selectall_arrayref 270
selectall_hashref 272
selectcol_arrayref 273
selectrow_array 273
selectrow_arrayref 274
selectrow_hashref 274
Other Database Handle Methods 274
last_insert_id 275
ping 275
clone 276
Transactional Methods — begin_work, commit, rollback 276
Stored Procedures 277
Error Handling 279
Server Admin 281
Summary 283

Xiv

Contents

Chapter 7: Simple Database Application 285
Planning Application Functionality 285
Schema Design 286
Writing Up a Wire-Frame 286
Declarations, Initializations 287
Program Entry Point 290
Table Creation Subroutine 292
Using information_schema 293
Listing Contacts 294
Editing a Contact 297
Inserting a Contact 301
Updating a Contact 302
Deleting a Contact 303
Testing update_contact, insert_contact, and delete_contact 304
Editing a Contact 304
Adding a Contact 305
Deleting a Contact 306
Lookup of a Contact 309
Testing Lookup of a Contact 310
Summary 312
Chapter 8: memcached 313
What Is memcached? 313
How memcached Is Used 315
What Is Gearman? 317
Caching Strategies 318
Installing memcached 318
Starting memcached 321
Startup Scripts 322
Installing the Cache::Memcached Perl Module 323
Using Cache::Memcached 323
Connecting, Instantiation 324
Memcached Operations 325
Cache::Memcached API 325
Simple Examples 328
Storing a Scalar 328
Complex Data Types 329
Add and Replace 330

A More Practical Example 331
User Application 331
Data Design 332

XV

Contents

UserApp Package 334
Instantiation 334
Database Connector Method 334
Data Retrieval Methods 335
Simple Accessor Methods 338
Data Modification Methods 339
Using UserApp 342
Memcached Connector Method 344
Caching Implementation Plan 345
Where to Add Caching? 345
Caching Key Scheme 346
Precaching 346
Precaching Cities 347
Precaching States 347
Using Instantiation for Precaching Method Calls 348
Modifying Accessor Methods to Use Cache 348
User Data Caching — Set Method Modifications 350
User Data Caching — Get Method Modifications 351
UserApp Now Has Caching! 352
Other Caching Issues 352
Summary 357
Chapter 9: libmemcached 359
What Is libmemcached? 359
libomemcached Features 360
Libmemcache Utility Programs 360
Installing liomemcached 360
libmemcached Utility Programs 361
memcat 361
memflush 362
memcp 362
memstat 362
memrm 363
memslap 363
memerror 364
libmemcached Perl Driver 364
Installation 365
Memcached::libmemcached and libmemcached APl using Memcached::liomemcached 365
Connection Functions 366
libomemcached Behavioral Functions 366
Functions for Setting Values 369

XVvi

Contents

Data Retrieval (get) Functions 370
Increment, Decrement, and Delete 371
Informational and Utility Functions 372
Object-Oriented Interface 373
Procedure Memcached::libmemcached Program Example 373
Object-Oriented Memcached::libmemcached Program Example 374
Cache::memcached::libmemcached 375
Performance Comparisons 376
Writing Your Own Comparison Script 377
Summary 380
Chapter 10: Memcached Functions for MySQL 383
What Are Memcached Functions for MySQL? 383
How Do the Memcached Functions for MySQL Work? 384
Install the Memcached Functions for MySQL 385
Prerequisites 385
Configure the Source 385
Build the Source 386
Install the UDF 386
Checking Installation 387
Using the Memcached Functions for MySQL 388
Establishing a Connection to the memcached Server 388
Setting Values 389
Fetching, Incrementing, and Decrementing Functions 395
Behavioral Functions 397
Statistical Functions 400
Version Functions 401
Using memcached UDFs 402
Single Database Handle Example 403
Fun with Triggers (and UDFs) 409
Read-Through Caching with Simple Select Statements 412
Updates, Too! 415
Summary 416
Chapter 11: Apache 417
Understanding Apache: An Overview 417
Understanding the Apache Modules API 419
Apache 2.2 Changes Since Apache 1.3 420
Apache 2.2 Request Phases 421
New and Modified Modules 423

XVii

Contents

Installing Apache

Installing Apache on Windows

Installing Apache and mod_perl on a Working UNIX System
Installing Apache on Apple OS X (10.5)

Apache Source Install on UNIX

Installing mod_perl from Source
Installing libapreq2 from Source
Apache Configuration

Configuration Section Container Directives
Basic Directives

Server Tuning Directives

Logging Directives

Error Directives

Access Control, Authentication, and Authorization
.htaccess File Directives

Indexing Directives

CGl Directives

VirtualHost Directives

Handler and Filter Directives

Client Handling

SSL Directives

Clickstream Analysis

Rewriting URLs

Conditional Pattern

Apache Reverse Proxying

Enabling mod_proxy

mod_proxy Directives

Apache Server Control

Apache Configuration Schemes

Source Install
Ubuntu/Debian
Centos/Redhat Variants
SUSE

Windows

Common Apache Tasks

Xviii

Configuring a Name-Based Virtual Host
Setting Up HTTP Basic Authentication
Setting Up Digest Authentication

424
425
427
429
429
433
434
435
436
440
444
446
448
449
453
454
457
459
460
462
463
466
468
471
478
480
481
483
483
484
484
486
487
489
492
493
495
496

Contents

Configuring a Secure Server 497
Settin Up a Secure Server with a Valid Secure Certificate 498
Setting up a Reverse Proxy with Two Virtual Hosts 499
Summary 501
Chapter 12: Contact List Application 503
Using MySQL and memcached Together 503
A CGI Program 504
CGl Apache Setup 504
Your Basic CGI Program, and Then Some 504
User Interface 506
Database Storage Requirements 513
Program Flow 515
First Things First 515
Program Implementation 516
WebApp Class Methods 529
Instantiation with the new() Method 531
Connection to MySQL 532
Connection to memcached 533
The getUsers() Method 534
The getUser() Method 537
The saveUser() Method 538
Database Methods 542
The insertUser() Method 542
The updateUser() Method 543
The deleteUsers() Method 545
The userExists() Method 547
Caching Methods 549
The saveUserToCache() Method 549
The cacheUsers() Method 550
The getUsersFromCache() Method 552
The userExistsInCache() Method 553
The deleteUserFromCache Method 554
The setMemcUIDList() Method 556
The updateMemcUIDList Method 556
The deleteMemcUIDList() Method 558
The getMemcUIDList Method 559

Xix

Contents

Other Methods 560
The getStates() Method 560
The getState() Method 561
The encodeUserData() Method 562

Testing 563

Summary 564

Chapter 13: mod_perl 565

New mod_perl 2.0 Features 566

Configuring mod_perl 566

mod_perl Configuration Directives 569
<Perl> Sections 569
PerIModule 570
PerlLoadModule 571
SetHandler perl-script 571
SetHandler modperl 571
PerlSetEnv 571
PerlPassEnv 572
PerlSetVar 572
PerlAddVar 572
PerlPostConfigRequire 573
PerlRequire 573
PerlOptions 573
PerlSwitches 574
POD 574

mod_perl Handler Directives 575
Handler Scope 575
Handler Type 575
Handler Category 576

Apache Life Cycle Overview 577
Server Life Cycle Phase Handlers 578
Connection Cycle Phase Handlers 578
Filter Handlers 579

Perl Apache2 Modules 585
Apache2 Constants and Request Record Perl Modules 586
Apache2 Connection and Filter Record Modules 590
Apache2 Server Record Modules 591
Apache2 Configuration Modules 592
Apache2 Resource/Performance, Status, and Other Modules 594

Summary 598

XX

Contents

Chapter 14: Using mod_perl Handlers 601
PerlResponseHandler Example 601
Initial Handler Setup 602
Log Messages Using the Server Object and Form Parsing 602
Setting the Log Level and Printing the HTTP Header 603
Redirection 603
Print the Document Header 604
Connection mod_perl Handlers 607
PerlPreConnectionHandler Example 608
Other HTTP Request Cycle Phase Handlers 612
PerlAccessHandler Example 612
PerlAuthenHandler Example 615
PerlAuthzHandler Example 619
PerlLogHandler Example 622
Perl Filter Handler Example 627
Summary 630
Chapter 15: More mod_perl 633
mod_perl Handlers or ModPerl::Registry? 633
Using ModPerl::RegistryLoader 634
Converting a ModPerl::Registry Script to a mod_perl Handler 635
Converting a mod_perl Handler to a ModPerl::Registry Script 641
Dealing with Cookies 643
CookieTestHandler 643
Tools for Testing Cookies and Headers 649
Generic Database Methods 651
dbGetRef() 652
dblnsert() 653
dbUpdate() 654
dbDelete() 655
whereClause() 656
buildUpdate() 658
buildinsert () 659
Other Changes to WebApp 660
Session Management 662
Implementing the mod_perl Handler LoginHandler 663
Understanding the WebApp Class 667
Storing Session Data 670

Contents

File Upload mod_perl Handler 675
Storing Files in the Database or Not? 675
Database Table 676
mod_perl Handler Implementation 676
Methods That Need to be Added to WebApp 682
Using the mod_perl Upload Handler 685

Templating 686
Template Toolkit 686
Features 687
Plug-Ins to Template Toolkit 687
Template Toolkit Syntax 687
A mod_perl Handler Example Using Template Toolkit 690
Caching Templates 693

HTML::Template 694
Tags 694
A mod_perl Handler Example Using HTML::Template 695
HTML::Template template 697

HTML::Mason (Mason) 698
Mason Syntax 698
In-Line Perl Sections 699
Mason Objects 700
Mason Components 700
Initialization and Cleanup 702
Userlisting Page in Mason 703

Summary 704

Chapter 16: Perl and Ajax 707

What Is Ajax? 707

mod_perl Applications and Ajax 708
Basic Ajax Examples 708
More Examples Using the JSON Perl Module 713

Summary 738

Chapter 17: Search Engine Application 739

Using Gearman to Put the Search Engine Application Together 740
Gearman 740
Installing and Running Gearman 741
Using the Gearman MySQL UDFs 744
Perl and Gearman 746

xXii

Contents

The Search Engine Application 747
Database Tables for the Search Engine Application 749
Database Triggers 751
Sphinx Setup 752
Gearman Workers 756
Running the Workers 764

mod_perl Handler Web Applications 766
Search Application 766
Using the Search Application 777
URL Queue Application 778
URLHandler — AJAX Application 779
URLQueueHandler mod_perl Handler 787
URLQueueHandler handler() Subroutine 787
URLQueue Interface 790

Summary 792

Appendix A: Installing MySQL 793

Choosing a MySQL Version 793

Choosing a MySQL Package Type 794

Installing MySQL on Windows 795

Installing MySQL on RPM-based Linux Systems 804

Installing MySQL on Ubuntu 804

Installing MySQL from Source on UNIX Systems 807

Unix Post Install 809

Appendix B: Configuring MySQL 811

Running MySQL for the First Time 811

Setting Up Privileges and Creating a Schema 812

MySQL Server Configuration File 812
Basic Command Options 813
InnoDB Path and Tablespace Command Options 815

Backups 817
Replication Backup Slave 817
mysqgldump 818
Scripting mysqgldump Backups with Perl 818
Creating a Backup by Copying Data Files 820
mysqlhotcopy 821
Snapshots Using LVM 821
InnoDB Hotbackup, ibbackup 822

XXiii

Contents

Monitoring

Nagios

Cacti

MySQL Enterprise Monitor
my.cnf Sample File
Sample sphinx.conf

Index

XXiv

823
823
824
825
825
827

831

Foreword

Over a decade ago I walked into an office in Seattle on a Saturday to do an interview. The day before I
had had the worst interview of my life. I had spent an entire day wandering through the halls of a large
Seattle-based company answering asinine questions. I was not in a particularly good mood and doing an
interview on a Saturday was not really what I wanted to be doing.

The interview was not done in the normal one-on-one fashion, but instead it was being done with me
talking to about seven developers at once. I was being asked all sorts of questions about databases, web
servers, and more general stuff about how programming languages work. There was this one particular
guy who kept asking me these oddball questions that just seemed to come out of nowhere. For a while
I kept thinking to myself, “Where is this stuff coming from?” It all seemed random at first, and then I
figured out why he was asking the questions.

He was putting together a bigger picture in his head and was asking questions in order to learn how to
put together entire systems. The questions had nothing to do with the trivial corners of any particular
technology but instead dealt with how to build systems. He was using the opportunity to learn.

Patrick is an amazing fellow. Of all of the people I have worked with over the years, he has been the
one who has always been the person who asked the questions. He is obsessed with learning and, unlike
most engineers, he has no fear of divulging that he doesn’t know something about a particular topic. He
will ask any question and read any book that he must in order to learn how something works. He asks
questions in the most humble of manners and I have never seen him shy away from even the most heated
of personalities in his quest for answers.

The book you hold in your hands is the result of that curiosity. There is no web related system you could

not build given the tools this book provides. Queues, webservers, caching, and databases. You can build
the world we have created in the Internet with these tools.

Brian Aker

Introduction

Web Application development has changed a lot in the past ten years. Now there are so many new
technologies to choose from when implementing a web application, and so many ways to architect an
application to get the most optimal performance.

One of those technologies is memcached, a high-performance, distributed memory object caching system
that you can use as a front-end cache for your applications to store data you would otherwise have to
access from a database. This has been a great boon to numerous companies looking for ways to gain
performance without having to spend a king’s ransom — now affordable commodity hardware can be
used to run memcached to simply provide more memory for application caching. Before, the focus would
have been on how to get more power (hardware) for database servers.

Then there is MySQL, the world’s most popular open source database and a full-fledged relational
database management system. MySQL has advanced greatly in the past ten years, providing many fine
features that you, as a web developer, can take advantage of. MySQL came into being during the advent
of the World Wide Web and, in fact, was the database of choice for many web applications. Thus, it was
a major factor in the very growth of the World Wide Web. Both MySQL and Linux evolved and became
popular because of the Internet and were innately well suited for web application development.

A technology that isn’t so new but is still very pertinent is Perl. Perl is an incredibly versatile program-
ming language that doesn’t get the fanfare of many of the new languages now available; Perl quietly and
dutifully provides the functionality that powers many web sites and applications. Such is the burden of
a mature and stable technology. However, Perl has much to be excited about. There is a legacy of more
than two decades of developers solving many problems, and a plethora of CPAN modules for just about
everything you could ever need to do programmatically. There are also new features and frameworks
for Perl, such as Moose, and the eventual release of Perl 6. It has been long coming, but that’s probably
because Perl 5 works so well. Also, writing Perl programs is incredibly enjoyable!

Other new technologies include:

Q Ajax, which has made it possible to create rich and interactive web applications that are on par
with traditional desktop applications. This will continue to transform the Web in a fundamental
way.

QO Gearman, a system to farm out work to other machines. This is a new system that makes it
possible to implement distributed computing/MapReduce.

Q Sphinx, a powerful, full-text search engine that integrates well with MySQL.

The goal of this book is to cover each of these technologies separately to help you gain an in-depth
understanding of each of them, and then to put the pieces together to show you how you can use these
technologies to create web applications. This book will also introduce you to new technologies that no
other book has yet covered in such detail, as well as the idea of the LAMMP stack — Linux, Apache,
memcached, MySQL, and Perl.

Introduction

Who This Book Is For

To understand much of what is shown in this book, you should have at least an intermediate level of Perl
or another programming language, the ability to perform some common system administrative tasks,
and a basic understanding of what a database is.

The target of this book is the intermediate programmer, though this can be a broad group. There are some
Perl application developers who are Perl experts but who might avoid becoming intimately acquainted
with the database, and then there are others who are database administrators who can write some Perl
utilities but who have not made the leap to writing web applications in Perl. This book is intended as a
bridge between the two skill sets, to help either of the “intermediate”” groups to learn something new.

What This Book Covers

This book will cover each component in the LAMMP stack separately, so you can gain an understanding
of each in isolation. It will then put all the pieces together to show how you can effectively use them for
developing web applications. This isn’t the typical web application programming book! It’s written by
an author who has had to fulfill many different roles in (usually) small organizations, where necessity
dictated that he wear the various hats of a database administrator, systems administrator, and even a
Perl application coder! This is also not a web application design book. The web applications presented in
this book use as simple a design as possible to get the point across.

How This Book Is Structured

This book covers the following topics:

0 Chapter 1: How web application development has changed over the years and an overview of
the new technologies this book will cover.

O

Chapters 2-3: Basic and then more advanced MySQL usage and concepts, including introduc-
tions to writing MySQL User Defined Functions and to the Sphinx full-text search engine.

Chapter 4: A refresher on Perl programming.

Chapter 5: A refresher on object-oriented Perl.

Chapter 6: Programming with Perl and MySQL, covering DBI.

Chapter 7: A simple command-line Perl contact list application using MySQL.

O 000 o

Chapter 8: An introduction to memcached and writing Perl database applications using mem-
cached as a caching layer.

(]

Chapter 9: A discussion of libmemcached, a memcached client library written in C that offers
more features and performance as well as a Perl interface.

Chapter 10: An introduction to the Memcached Functions for MySQL (UDFs).

U 0O

Chapter 11: A complete guide to Apache installation and configuration.

0 Chapter 12: A simple contact list CGI application written in Perl that shows the use of MySQL
and memcached together.

XXviii

Introduction

Chapter 13: A mod_perl overview.

Chapter 14: Using mod_perl handlers, this chapter shows you some basic mod_perl handlers
and demonstrates the power of mod_perl.

Chapter 15: More mod_perl, showing you how to convert the application from Chapter 12 to a
mod_perl application, as well as some other mod_perl application examples, such as handling
cookies, sessions, and templating systems.

Chapter 16: How to write Ajax mod_perl web applications.

Chapter 17: The crown jewel of this book puts all previous technologies together, presenting a
search engine application using mod_perl, memcached, MySQL, Gearman, and Sphinx!

Appendix A: MySQL installation.
Appendix B: MySQL configuration, backups, and monitoring.

What You Need to Use This Book

This book is targeted for Unix operating systems, but also makes a good attempt at showing you how
to install MySQL, Apache, and mod_perl on Windows. So it’s entirely possible to use Windows for the
examples presented in this book.

The code examples in this book were tested to make sure they work. Some things were changed, though
verified, during the editing phase.

The components you will need for this book are:

Qa

U0 U000

MySQL version 5.1 or higher, though 5.0 should work
Apache 2.2

Modperl 2.0

Perl 5.8 or higher, though earlier versions should work
memcached 1.2.6 or higher

Sphinx 0.9.8 or higher

libmemcached 0.25 or higher

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

XXiX

Introduction

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

We highlight new terms and important words when we introduce them.
We show keyboard strokes like this: Ctrl+A.

We show file names, URLs, and code within the text like so: persistence.properties.

U 00 OC

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that's particularly important
in the present context.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-41464-4.

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.comand locate the title using the Search box
or one of the title lists. Then, on the book’s details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” discovered error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We'll check
the information and, if appropriate, post a message to the Book’s Errata page and fix the problem in
subsequent editions of the book.

XXX

Introduction

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an email with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing,.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as for many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

LAMMP, Now with
an Extra M

How things have changed in the last decade! The Internet is no longer a luxury. It is now a neces-
sity. Every day, more and more commerce is conducted over the Internet, more businesses are
built around the Internet, and more people use the Internet for their primary source of entertain-
ment, communication, and social networking. To provide all this functionality, more and more web
applications and services are available and required. These applications and services are replac-
ing traditional desktop applications and legacy ways of doing things; the local computer focus is
now Internet-centric. Sun Microsystems” motto, “The network is the computer,” truly has become
a reality.

The way today’s web sites are developed and how the underlying architecture is implemented have
also changed. With Web 2.0, web applications are much more dynamic than ever and offer rich,
desktop-like functionality. Web applications that once ran exclusively on servers and produced
HTML output for web browser clients are now multitiered, distributed applications that have both
client components like AJAX (Asynchronous JavaScript and XML), JavaScript, and Flash, as well
as server components like mod_perl, PHP, Rails, Java servlets, etc. These new web applications are
much richer in features, and users now expect them to behave like desktop applications. The result
is a satisfying and productive user experience.

The architecture that is required to support these applications has also changed. What used to be
a simple database-to-web-application topography now comprises more layers and components.
Functionalities that were formerly implemented in the web application code are now spread out
among various services or servers, such as full-text search, caching, data collection, and storage. The
concept of “’scale-out versus scale-up’” has become a given in web development and architecture.
This is the case now more than ever before with cloud computing, which offers dynamically scalable
services, either virtualized or real, over the Internet.

One component in all of these changes is caching. In terms of web applications, caching provides a
means of storing data that would otherwise have to be retrieved from the database or repeatedly

regenerated by the application server. Caching can significantly reduce the load on these back-end
databases, allowing for better web application performance overall. Also, a database isn’t the only

Chapter 1: LAMMP, Now with an Extra M

point of origin for information. Other sources of information could include remote service calls,
search index results, and even files on disk — all of which can benefit greatly by caching.

Originally, there really was no easy way to provide good caching. There was a kind of caching using
tricks like IPC::Sharable, global/package variables, database session tables, even simply files, but nothing
offered real, centralized caching of the type that is available now.

This is where the extra M in this chapter’s title comes in. It stands for memcached. memcached is a high-
performance, distributed memory object caching system that provides caching for web applications.
Along with covering the other letters of the LAMMP acronym — Linux, Apache, MySQL, and Perl — this
book will also cover how you can leverage memcached in your web application development.

The object of this book is to show you everything you would need to know about MySQL, memcached,
Perl, and Apache, as well as many other great technologies including Gearman, Sphinx, AJAX, and
JavaScript, in order to take advantage of each for writing feature-rich, useful, and interesting web appli-
cations. This book also covers a lot of material that will expand your skill set to help you become a
well-rounded web developer.

Linux

Linux is the world’s most popular open-source operating system and the operating system on which a
significant percentage of web servers run. Linux, originally created by Linus Torvalds starting in 1991,
is itself a term given to the operating system, which includes numerous programs, utilities, and libraries
around the core Linux kernel.

Linux was developed on and freely distributed over the Internet by a growing group of developers. It
matured along with the Internet, emerging with the same principle of open development and commu-
nication that the Internet is known for. This open development concept, known as open source, or free
software, is a model that allows developers to see the source code of a program and make modifications
such as bug fixes and enhancements to the code. This model allowed for developers all over the world
to contribute to Linux. This even included development to the kernel itself, as well as to the utilities and
programs bundled along with the Linux kernel. Programs included compilers, interpreters, web servers,
databases, desktop environments, mail servers, and many other tools that meant people could install an
operating system that had everything they needed for implementing a web server, along with dynamic
web applications.

Many programs that were available (and still are available) were made possible by the GNU Project.
Initiated by Richard Stallman in 1984 along with the Free Software Foundation, GNU had the goal of cre-
ating a UNIX-like operating system with the philosophy that ““people should be free to use software in all the
ways that are socially useful.”” These tools, particularly the compiler GCC, were crucial to the development
of Linux. Also crucial to Linux’s adoption was the GPL (GNU Public License), which also came from the
GNU Project. This license allowed developers to contribute to projects, knowing that their work would
remain open and free to the benefit of the world.

Apache, Perl, PHP, and MySQL were developed to run on a number of operating systems. They also ran
well on Linux, and with the same concept of open development, they allowed developer contributions to
their advancement and maturation.

Originally, Linux was dismissed by many a pundit as being a “toy”” operating system, or at best a “’hob-
byist”” operating system. Nevertheless, system administrators, who quickly became Linux enthusiasts,

Chapter 1: LAMMP, Now with an Extra M

quietly deployed Linux to run an increasing number of services across the tech world. Ironically, many
of the critical articles written by these skeptical pundits were probably being served at the time on web
servers running Linux.

Today, Linux is considered a serious operating system. You can now buy hardware with Linux pre-
installed from all major server vendors. Most interestingly, even big vendors who sell their own Unix
variants also sell and support Linux on their servers — Sun, IBM, and HP are examples.

Without question, when a web server is installed and launched today, there isn’t much thought as to
whether Linux should be used — just as a desktop operating system is most of the time assumed to be
Windows, a web server operating system can often now be assumed to be Linux. For several years now,
even personal computers have been available with Linux preinstalled.

Although this book’s target operating system is Linux (the L in LAMP), the author has attempted not to
leave Windows Apache MySQL Perl (WAMP) developers out in the cold. Where possible, installation
instructions and other configuration parameters are made available for Windows.

Apache

Another open-source project that had its genesis around the same time as Linux is the Apache HTTP Web
Server. Developed by the Apache Software Foundation, the Apache HTTP Web Server is the world’s
most popular web server. Therefore it is also the web server that this book covers. Apache was originally
released in 1994, around the same time that Linux was coming into popularity. Apache was most often
bundled along with Linux in various Linux distributions, so setting up a Linux server usually meant you
were also setting up Apache.

The pie chart in Figure 1-1 shows the market share of the Apache web server as used by the million
busiest web sites, as of March 2009.

Lighttpd, 0.99%

SunONE, 0.59%
Zeus, 0.26%

Google, 1.56%
nginx, 3.06%

other, 8.20%

Apache, 66.65%

Figure 1-1
Netcraft, http://news.netcraft.com/

Chapter 1: LAMMP, Now with an Extra M

With a running Apache server, you had at your disposal a full-fledged web server that allowed you
to build web sites — both static pages and dynamic web applications using CGI (Common Gateway
Interface). Since then, Apache has evolved even further, becoming much more modular. The number
of programming languages available for building web applications with Apache has also increased:
You now have a choice of using CGI, mod_perl, PHP, Ruby, Python, C/C++, and others. For Java web
application development, the Apache Software Foundation has developed Apache Tomcat, a JSP and
Java servlet engine that can talk HTTP. So there are many choices for developing web sites, depending
on what you prefer and where your expertise lies.

This book will focus on Apache web development using Perl, and in particular, mod_perl. Since Apache
is very modular, it allows for developing various modules to extend its functionality, as well as providing
access to the server to run various interpreted languages such as Perl, PHP, Python, ASP, and Ruby. This
is in contrast to how CGI worked, which was running programs externally to the web server.

MySQL

Another of the open-source hatchlings is the MySQL database. MySQL was originally developed on
Solaris but soon switched to be developed under Linux as Linux became more stable and more popular.
MySQL grew, along with Linux, to become the default database of choice for web application develop-
ment on Apache. This was because MySQL is fast, reliable, easy to install and administer. Also, it didn’t
cost a fortune (whether free or at the various support level pricings), and had various client application
APIs and drivers, including Perl.

As far as web applications go, one change made during the last decade was MySQL’s prevalence as
the de facto database for open-source database development. Already quite popular a decade ago,
MySQL has since advanced greatly in capacity, features, and stability to become the world’s most popu-
lar open-source database. Most Linux distributions make it extremely easy to install MySQL (as well as
PostgreSQL) during operating system installation, so you can have a fully functioning relational database
system (RDBMS) that you can readily use for your web applications in no time.

Many popular web sites and customers use MySQL for a number of purposes. Figure 1-2, shows a list of
the 20 most popular web sites that run MySQL.

Other sites and organizations that run MySQL include:

Q Slashdot.org
LiveJournal
Craig’s List
Associated Press
Digg.com
NASA -JPL

U 00U 00U D0

U.S. Census Bureau

This book shows you much more than previous web application development books. You will see just
how powerful, yet how easy, it is to use MySQL. The author hopes this will give you a reason for making
MySQL your database of choice, if it isn’t already so. In this book, you will see:

Chapter 1: LAMMP, Now with an Extra M

0O How to install and configure MySQL

(]

How to use MySQL’s various utility and client programs

0O How to use MySQL. This book starts out with simple usage examples for those who aren’t famil-
iar with databases and progresses to more advanced usage examples, showing you how to write
useful triggers and stored procedures.

QO How to use MySQL storage engines and what each engine is designed and best suited for

0O How to set up dual-master replication — something you’ll want to know if you are a web
developer at a smaller start-up company. You can trust the author that this is a possibility in this
industry!

O How to write a user defined function (UDF). Yes, this will be implemented in the C program-
ming language, even though this book is targeted to Perl developers. Even if you are a true Perl
geek, you'll probably find this interesting — possibly even enough to make you want to write
your own. It’s always good to expand your horizons a bit!

The Top 20 most popular Websites

wes1. Yahoo went 11.Baidu
mes:2. Google west 12.Google.co.in
mect3., Youtube mest 13.Google.de
4. WIN Live 14.Microsoft
meie5, Facebook mes: 15.Rapidshare
6. MSN me 16.QQ.com
mas 7. Wikipedia waeie 17.Google. fr
wes8. Blogger mei 18.Sina.com.cn
9. MySpace wmea 19.EBay
weer10.Yahoo.cojp mei20.Fc2.com

...and many more: Flickr, Second Life, Craigslist, Slashdot, LiveJournal, Digg,
Del.icio.us, Pricegrabber.com, Weather.com etc.

Figure 1-2
Sun Microsystems

memcached

memcached is a newer project, the new kid on the block, that came into being later than Linux, Apache,
MySQL, or Perl. However, memcached has become just as much an integral component to the overall
LAMP stack — which is the reason LAMP should now be referred to as LAMMP! Perhaps no one has
thought of this yet because memcached is so simple to run and just works, or because it’s so ubiquitously
used that it almost goes without saying that it’s now the de facto caching solution for horizontal web
application development. That being said, memcached deserves some focus and appreciation for how it
can benefit your web application platform, and likewise deserves a letter up on the LAMMP sign on the
mountaintop above Hollywood.

Chapter 1: LAMMP, Now with an Extra M

memcached is a high-performance, distributed memory object caching system developed by Danga
Interactive to reduce the database load for the extremely busy web site LiveJournal.com, which was at
the time handling over 20 million dynamic page views per day for 1 million users. memcached solved
for LiveJournal.com the problem that many other sites also have — how to reduce read access to the
database.

A typical way to improve the throughput of a site is to store all query results from the database into
memcached. Then, before fetching new data from the database, first check to see if it exists in memcached.

Using memcached, LiveJournal.com reduced their database load to literally nothing, allowing them
to improve user experience. Because memcached was developed and released to the world as open-
source software, Danga’s creation has benefited thousands upon thousands of web developers, system
administrators, and the wallets of numerous organizations due to hardware cost savings. Now it has
become possible to utilize commodity hardware to act as simple memory servers. Some memcached
success stories are discussed in the following sections.

Gear6

Gear6 is a company that built a business around scalable memcached solutions for superior site scaling,
enabling their customers to scale their dynamic sites. Gear6 allowed these sites to increase their use of
memcached (in some cases growing from about 100 gigabytes to 3 terabytes in only six months!) without
using more rack space. memcached also helped Gear6 grow its customer base because of its wide use, as
shown in the following table:

Type of Site memcached Function

Social networking sites To store profile information

Content aggregation sites To store HTML page components

Ad placement networks To manage server-side cookies
Location-based services To update content based on customer location
Gaming sites To store session information

Clickability

Clickability is a company that provides SaaS (Software-as-a-Service) web content management platform
products. Their services include content management, web site publishing and delivery, search, web
analytics, and newsletter delivery. They use memcached as a layer-2 cache for application servers to
store content objects as serialized Java objects. They now run multiple instances of memcached, which
are regularly cleared and versioned for cache consistency. They also use multicast messaging to cache
objects across multiple memcached servers, as well as a messaging queue used for sending a clearing
message to application servers. They originally did not use memcached, but were able to implement it
into their architecture within a couple of days after deciding to take advantage of memcached’s benefits.
Because of memcached, particularly how it provides a caching layer to web applications to prevent
excessive hits to the database, they now serve 400 million page-views a month!

Chapter 1: LAMMP, Now with an Extra M

GaiaOnline

GaiaOnline is the leading online hangout web site (with seven million visitors per month and a billion
posts), geared toward young people for making friends, playing games, trading virtual goods, watching
movies and interacting in an online community. A user can also create a virtual personality, referred to
as an avatar. memcached has been a crucial tool in allowing GaiaOnline to grow their site from serving
originally 15,000 to 20,000 users at a time to now being able to serve 100,000 users simultaneously.

How memcached Can Work for You

Gear6, Clickability, and GaiaOnline aren’t the only memcached success stories. Some other sites that also
use memcached extensively include: LiveJournal, Slashdot, Craigslist, Facebook, Wikipedia, Fotolog,
Flickr, and numerous others.

In fact, Figure 1-3 shows that 80 percent of the top sites use memcached.

("1.Yahoo 11.0rkut
= LiveJournal 2.Google 12.Rapidshare
= 20M dynamic page views/day 3.Youtube 13.Baidu
= Facebook 4.live 14.Microsoft
* 80S memcached 5.MSN 15.Google.in
= Fotolog
« 40 memcached vs. 140 DS Serv. and 70 Web Serv. | 6-MySpace 16.Google.de
= Flickr 7.Wikipedia 17.QQ.com
= 14 memcached vs. 144 DS Serv. and 244 Web Serv. | 8.Facebook 18.eBay 80% Qtf these web
= Wikipedia 9.Blogger 19.Hi5 Sites use
"7 hed vs. 30 D . : : Memcached!!!
9 memeached vs. 30 DS Serv 10.Yahoo.co.jp 20.Google.fr

g Source: Alexa Top Sites - 08.05.16

Figure 1-3

Sun Microsystems

Indeed, memcached is a now primary component to the LAMMP stack. This book will attempt to show
you why. Things you will learn in this book include:

Q

U0 U 00

(W]

How memcached works

What read-through and write-through caches are and can do
Caching issues you should be aware of

How to set up and configure memcached

How to write Perl programs that use memcached

The new libmemcached client library, which gives you even more performance for writing Perl
programs that use memcached

The Memcached Functions for MySQL, which are user-defined functions (UDFs) written by the
author. These functions allow you to interface with memcached from within MySQL. You will
see how you can use these convenient functions with MySQL:

Q From within your Perl code

QO With triggers

Chapter 1: LAMMP, Now with an Extra M

Q With handy SQL queries that perform a simple read-through cache

0 How you can modify your Perl applications to use these functions instead of using the Perl client
to memcached

0 Some simple caching strategies with memcached

Perl

The Perl programming language is the eldest of all the open-source siblings in the LAMMP stack. Cre-
ated by Larry Wall — a linguist, musician, programmer, and all-around nice guy — in 1987, Perl was first
developed for report processing and text manipulation. With the advent of the World Wide Web, Perl
became a natural choice for developing web applications because of its innate ability to process and parse
data. Implementing the functional equivalent of regular expressions or other Perl string manipulations,
which are easy using Perl, takes many more lines of code and longer development time if implemented
in other programming languages. This, as well as not having to worry about things like memory manage-
ment, means relatively rapid development in Perl. You could write a fully functional Perl web application
in a fraction of the time it would have taken to implement the equivalent application in the other pro-
gramming languages available at the beginning of the World Wide Web. This is one of the many reasons
Perl became popular for web development.

Originally, Perl web applications were written as CGI programs, which meant Perl programs were run
by an external Perl interpreter. Drawbacks to this included a lack of persistence with running web appli-
cations; and running external programs could also adversely affect performance.

Then, in 1996, Gisle Aas developed and released the first version of mod_perl, which is a Perl interpreter
embedded into Apache. Doug MacEachern, Andreas Koenig, and many contributors soon took the lead
in developing mod_perl and released subsequent versions, such as version 1.0.

mod_perl now made it possible for Perl web applications to have persistence that was previously unavail-
able using CGI. Additionally, mod_perl gave Perl developers the ability to write Apache modules in Perl,
because mod_perl is much more than CGI with persistence — it provides the Perl developer access to the
entire Apache life cycle, including all phases of the HTTP request cycle.

A decade later we find that mod_perl is still being used extensively. The buzz and excitement may be
over several new web development technologies and languages — and some would say Perl web devel-
opment is passé — however, Perl is a more mature technology and it just works well — as is usually case
with something that’s been around a while. People are always excited about newer things, but there’s
still a lot to be excited about when you use Perl for web applications and development!

mod_perl 2.0, released in May 2005, provided many new and exciting changes, including support for
threads, integration into Apache 2.0 (which itself had attractive new features and enhancements), the
same great ability to write mod_perl handlers for any part of the Apache life cycle, and the added feature
of writing mod_perl filter handlers for Apache 2.0’s filter interface.

Certainly, other languages and web application development paradigms have some features over
mod_perl. PHP has an application deployment model that has facilitated a bonanza of PHP web
applications, such as Wordpress, Drupal, Joomla, Mediawiki, and many others, and particularly those
with the APS (Application Packaging Standard) used in applications such as Plesk for web site hosting

Chapter 1: LAMMP, Now with an Extra M

services. This makes PHP application installation and deployment even simpler. Why has Perl/mod_perl
not developed an equivalent of this? Perhaps it is because mod_perl already does give you as much
control over the Apache life cycle and because it has a higher level of complexity (it’s not solely focused
on the HTTP response phase).

Also, you do have to have some ability to modify the Apache configuration if you use mod_perl handlers
as your method of web application development. The answer is to use ModPerl::Registry, with which
you can run CGI programs in mod_perl with very little modification to the application and still have
all the benefits that a mod_perl handler has. Configuring Apache to run ModPerl::Registry is no more
difficult for a web site administrator than loading mod_php to run PHP applications. So, where are all
the applications? Well, we, as Perl web application developers, need to write them.

Here are some other reasons you might want to develop web and other applications using Perl:

0 Code is fun to write and free-flowing. You can solve any number of problems in infinite ways
while focusing on application development and implementation (the problem you're trying to
solve) rather than on the language itself.

O The Perl data structures work. Both hashes and arrays are very easy when you go to organize
data, navigate, and iterate. Try the equivalent in C, and you will see!

0O CPAN (Comprehensive Perl Archive Network). You have a choice of modules for anything you
could ever possibly want. So much functionality already exists that you don’t have to reinvent
the wheel. Every other day, the author finds an existing module that already does something he
spent hours implementing!

Q Perl is a dynamically typed language. For those who don’t like to feel constrained, it’s per-
fect. You can just write your program without referencing a document or web site to know how
objects interface. Just code it!

Q Perl supports object-oriented programming.

O Perl clients exist for just about any type of server. To name a few: MySQL, memcached,
Apache, Sphinx, Gearman, and numerous others.

Q Perl has an XS (eXternal Subroutine) interface. This allows you to write glue code and to use
C code, if you need something to run faster than it would if it were written purely in Perl. This is
what the MySQL Perl driver DBD::mysql uses for working with MySQL’s client library.

0 Perl supports all the new exciting technologies, such as AJAX.

0 There are numerous templating options. You have various ways to tackle the site content
versus application functionality.

O You can even write Perl stored procedures for MySQL. You do this using external language
stored procedures, developed by Antony Curtis and Eric Herman.

Now, one claim you may have heard needs to be addressed: ““Perl is great for prototyping, but you
should develop the implementation in another ‘real’ language.” This is a nonsensical statement that
enthusiasts of other languages, having no experience in Perl development, have often said. Millions of
dollars have been wasted completely reimplementing a perfectly good Perl web application to run in
another language. Consider that many extremely busy web sites are running in Perl — Slashdot and
LiveJournal are two such sites. The irony is that you will often see similar untrue statements ignorantly
posted on the Slashdot forum — a forum that Perl provides so that opinions can be heard!

Chapter 1: LAMMP, Now with an Extra M

This book shows you numerous things you can do in Perl, including:

Q A Perl primer for those of you who might be rusty

Q A Perl object-oriented programming refresher

0 Notjust Perl web applications, but also writing utilities and command line programs

0 Useful snippets of code that you can integrate into your Perl lexicon
You will also see how easy it is to use Perl to work with the other components of the LAMMP stack, for
example:

0 MySQL and memcached for data storage

QO Apache mod_perl handlers

O Sphinx for full-text search (including the implementation of a simple search engine application)

0O Gearman, which allows you to farm out work to other machines

It’s the author’s hope that this book will reinvigorate your fondness for Perl, or give you even more
justification and enthusiasm for wanting to develop web and other applications using Perl.

Other Technologies

This book will also introduce you to other new technologies, namely Sphinx and Gearman. It will show
you how to use these as additional components in the LAMMP stack to build truly useful and interesting
applications.

Sphinx

10

Sphinx is a full-text search engine developed by Andrew Aksyonoff in 2001. It is an acronym for SQL
Phrase Index. It is a standalone search engine, although it integrates nicely with MySQL and other
databases for fetching the data that it then indexes. Sphinx is intended to provide fast, efficient, and
relevant search functions to other applications. It even has a storage engine for MySQL so that you can
utilize MySQL alone to perform all your searches. Sphinx also has various client libraries for numerous
languages, including a Perl client library written by Jon Schutz, Sphinx::Search.

Sphinx also allows you to have multiple Sphinx search engines to provide distributed indexing func-
tionality. This is where you would have an index defined that actually comprises a number of indexes
running on other servers.

This book will not only introduce you to Sphinx, it will also show you a simple search engine application
implemented using Sphinx, as well as a basic Sphinx configuration with a delta index that you could use
for any number of applications that require a full-text search engine. You will also be shown how you
can replace MySQL’s full-text search with Sphinx for a better full-text searching functionality.

Chapter 1: LAMMP, Now with an Extra M

Gearman

Gearman is a project originally created (in Perl) by Brad Fitzpatrick of Danga, who is also known for
creating both memcached and the social web site LiveJournal. Gearman is a system that provides a

job server that assigns jobs requested by clients to various named worker processes. A worker process is
basically a program that runs as a client and awaits an assignment from the Gearman job server, which
it then performs. You split up your processing over various machines tasked for whatever requirements
your applications need. This spreads out functionality, which is implemented in programs known as
workers that might otherwise have been implemented in application code. This can also be used for
MapReduce: distributing the processing of large data sets across numerous machines (for a great descrip-
tion of the MapReduce framework, see http://labs.google.com/papers/mapreduce.html).

This new functionality means web application developers and system architects can completely rethink
how things have traditionally been done, using commodity machines to run some of these tasks.

Eric Day recently rewrote the Gearman job server, referred to as gearmand, in C for performance reasons,
along with client and worker libraries in C. He has also written a package of new Gearman MySQL
user defined functions based on the C library, and is working other developers for new and improved
language interfaces. Another feature being developed is persistence and replication for jobs, which is one
of the main things people ask about when first looking at Gearman for reliable job delivery.

This book will cover these new projects and you will see how to use them to implement automated data
retrieval and storage, as well as Sphinx indexing through Gearman workers. This book also gives you
one idea of how you can use Gearman to pique interest in Gearman.

The New Picture

Yes, things have changed in the last decade. And they probably will change more in the future.

Figure 1-4 represents how it is architecturally possible to implement the various tools and technologies
that are discussed in this book. The architecture includes:

0 memcached and MySQL, where a web application would retrieve its data: either durable data
not cached from MySQL, or anything that needs to be cached within memcached.

0 memcached objects, which are kept up to date to represent the state of the durable data in
MySQL. This is done either by the application code or from within MySQL using the Mem-
cached Functions for MySQL (UDFs), which would provide read-through and/or write-through
caching.

Q Sphinx, which can be run on a number of servers, provides the full-text indexing to the web
application using the Sphinx::Search Sphinx Perl client module or through MySQL using the
Sphinx storage engine. Sphinx has as its data source a query that returns a result set from MySQL
that it in turn uses to create its full-text indexes.

QO Gearman, which in this case is shown running on two different Gearman job servers (although
it can run on any number of servers). Gearman is a job server for the Gearman clients — either

11

Chapter 1: LAMMP, Now with an Extra M

clients implemented within the application code, cron jobs, or clients in the form of the Gear-
man MySQL UDFs — to assign jobs to the Gearman workers. In turn, the workers can perform
any number of tasks on all the other components, such as storing and retrieving data to and
from memcached to MySQL, indexing Sphinx, or any other functional requirement for the web
applications.

Gearman Job _ < Gearman Job
Server Server

CClient > Client_> C Client > Client >
Web Applications

= = =) =
Gearman UDF Gearman UDF
= =] =] L=
A

Memcached
A
- 1a | | _
= L=l (=] =]l
MySQL servers

Figure 1-4

Variations on the theme that Figure 1-4 shows are infinite and limited only by your imagination. And this
book hopes to provide some fodder for your imagination in this regard! Depending on your application
or architecture requirements, your own version of Figure 1-4 will differ.

The Future of Open-Source Web Development
and Databases

What does the next ten years hold for web development and the Internet in general? What features will
MySQL, Perl, memcached, and Apache have implemented by then? Some things now are showing trends
that are sure to continue:

O Open source is a proven development model and will continue to be the one of the major sources
of innovation of new technology.

0O MySQL has proven itself as a great back-end database for web applications and will continue
to increase its market share, particularly because of its power, ease of use, and low or free cost,
especially important given current economic conditions.

0O Web applications will continue to evolve, developing more in number and variety of features.
People will use many of these new applications in place of desktop applications.

12

Chapter 1: LAMMP, Now with an Extra M

Q Cloud computing will increasingly become a preferred method on which businesses develop
and deploy their web applications. This will depend on economic conditions, which may cause
businesses to seek ways of cutting costs — hardware and hosting service costs traditionally
being one of the largest expenses.

0 SaaS (Software-as-a-Service), a new way of deploying software to customers as an on-demand
service, will continue to grow. SaaS goes hand in hand with cloud computing.

Q Multitenancy — users using the database at the same time — will work better and there may be
development in this as a shared environment.

Projects to Watch!

The following are particular projects worth mentioning. These are projects that you will want to keep
an eye on!

Q Drizzle: Drizzle is a fork of MySQL version 6.0 that has the goal to become ““A Light-weight SQL
Database for Cloud and Web.” The idea of Drizzle is to create a very efficient, lightweight, mod-
ular database that is specifically targeted toward the Web and cloud computing. Many features
of MySQL have been removed for efficiency’s sake, although some will eventually be reimple-
mented as long as their reintroduction doesn’t affect Drizzle’s goal of remaining lightweight and
efficient.

0O MariaDB and Maria Storage Engine: Maria is the next-generation storage engine based on
MyISAM that provides transactional support, crash recovery, and the benefit of the speed for
which MyISAM is known. MariaDB is a branch of the MySQL server that Monty Widenius
and his team have released. It uses the Maria Storage Engine as the default storage engine. The
goal of MariaDB is to keep up with MySQL development and maintain user compatibility, but
also to keep improving the database and adding more features while engaging the open-source
community in this effort.

O Gearman: With MapReduce becoming a household word, Gearman will increasingly play a
significant role in distributed computing.

0 Apache Hadoop: Similar to Gearman, this is a Java-based framework for distributed computing.
Q Perl: Perl 6 will be released!

Q Percona: Watch out for the great efforts of Percona. They are focused on providing their own
high-performance branch of MySQL.

0 Hypertable: A high-performance distributed data storage system, modeled after Google’s
BigTable project.

Summary

This chapter introduced you to the topics and recent technological developments that this book will
cover and it offered some observations about how much things have changed within the last decade. The
suggestion was made that the LAMP stack needs to have an extra M added to it (to become LAMMP)
because memcached has both benefited horizontal web application development and become a major
component for so many web application deployments throughout the Internet — it is just as important
a component as Linux, Apache, MySQL, and Perl. Also, this chapter offered some thoughts on what the
next ten years may hold for open-source databases and web application development.

The author hopes you have fun reading this book. He had fun writing it.
13

_

MySQL

The purpose of this chapter is to give web developers the necessary knowledge to understand and
use MySQL for developing dynamic web applications. It contains the following discussions:

Q The “About MySQL” section is a MySQL primer, and provides a brief overview, descrip-
tion and history of MySQL.

Q The “Installing and Configuring MySQL"" section guides you through installation and
configuration to get a MySQL server running and includes database creation, setting up
privileges, and setting up replication.

0 The “Database Planning” section gives information on how to design an optimal database
schema, set database server settings for performance, and provides simple tips to remem-
ber when developing the database architecture of a web application.

Q The “Using MySQL Functionality”” section covers some of the most useful components
of MySQL such as triggers, functions and procedures, storage engine types, user defined
functions (UDFs), as well as external language stored procedures.

How CGIl and PHP Changed the Web
Dramatically

In the beginning of the World Wide Web, all web site content was static. To allow for web servers
to provide search functionality, the original web server code was modified. This was cumbersome
and it proved difficult to provide the ability to add new functionality.

Then two specifications came into being; CGI and PHP changed the world wide web dramatically.
The CGI (Common Gateway Interface) is a standard protocol specification that was developed by

a group of developers who included Rob McCool, John Franks, Air Lutonen, Tony Sanders, and
George Phillips in 1993. Shortly, thereafter, PHP followed. PHP is a scripting language originally

Chapter 2: MySQL

A

16

developed by Rasmus Lerdorf, which originally stood for Personal Home Page because he devel-
oped PHP to replace Perl scripts he used to manage his home page; PHP then became an entire
scripting language.

Both CGI/Perl and PHP now allowed web site developers to write dynamic web applications without
having to modify the web server. At that time, developers who wrote CGI programs often depended
on flat files for data storage, making storage difficult to maintain and resulting in performance issues.
There were databases available for use with web applications. However, these were too expensive for
the average web developer to afford, as well as being much too difficult to set up and administer, requir-
ing a DBA (database administrator). These database also ran only on expensive server hardware. Most
importantly, they were not designed for the web because they were often slow to connect to.

With the release of mSQL (Mini SQL), which although not free, was inexpensive, there was finally a
choice for web development that wasn’t cost-prohibitive and was also easy to use.

With the release of databases such as MySQL (in 1995) and PostgreSQL (in 1996, though evolving from
Postgres and before that Ingres, which came about in the 1980s), along came even more choices of
databases for web developers to use that were easy to install and administer, did most of everything that
they needed, ran on inexpensive hardware and operating systems, and were free. Commodity database
systems such as MySQL and PostgreSQL allowed web development to take off and for dynamic data to
easily be put online and maintained.

Not only that, these databases used SQL which is easy to embed or run from within web applications.
It’s also easier to read what data is being written to or read from the database, which further added to
these databases gaining in popularity. In fact, Monty Widenius at the time had written a program called
“htmlgenerator” that parsed SQL out of HTML files and ran embedded queries from those HTML files
in MySQL, results in the HTML being generated at HTML tables.

Today, databases are the main source of data for web applications. This can include page content, user
information, application meta-data, and any data that allows for a dynamic web application to have full,
useful functionality. Without data, there’s not much that an application can do.

bout MySQL

Since May 23, 1995, MySQL has been a popular, open-source relational database system (RDBMS)
that millions of users and developers have downloaded. It’s also one of the core components of
this book.

MySQL’s basic functionality can be explained as this:

1. A queryis entered via a client program such as the MySQL command line tool mysql.

2. The parser parses this query into a data structure internally, known as an item tree, which
represents the query fragments.

w

The tables that are used by the query are opened through the table handler interface.

4. For the SELECT statement only, the optimizer examines this item /parse tree, determining in
which order the query fragments will be executed, and computes the execution path.

Chapter 2: MySQL

o

The execution path is essentially how the server will retrieve the data.

6. The main server coder makes read, write, update, or delete calls to the table handler interface
depending on the query type.

7. The storage engine, through inheritance (from the table handler), runs the appropriate meth-

ods to act upon the read or write of the data from the underlying data source.

8. MySQL sends the results back to the client. In case of a SELECT, this is the result data. For
other queries, such as INSERT, it's an OK packet that contains, among other things, how
many rows were affected by the query.

Netbas begat REG800 begat Unireg begat MySQL

In 1980, a then 17-year-old Monty Widenius and Kaj Arno took the Red Viking Line
ferry from Finland to Sweden (tax-free Vodka!) to buy 16KB of memory for their Z80-
based processor, the ABC 80 processor (manufactured by DIAB, a Swedish hardware
company), from Allan Larsson’s computer store in Stockholm and eventually formed
a relationship with Allan. At that meeting Monty also met Lars Karsson, founder of
DIAB, which manufactured the ABC 80. Three years later, Allan convinced Monty
to write a generic database for the ABC microcomputers. Only weeks later, Monty
delivered a working prototype. Around this time Monty developed a friendship and
working relationship with David Axmark, with whom he later founded MySQL.
Later, Monty worked for Tapio Laakso Oy, a Finnish company where he converted
COBOL programs to TRS80 Basic and from TRS80 Basic to ABC Basic. While doing
this, Monty found redundancies that he discussed with Allan. They considered the
market for developing a system to manage data more efficiently. Hence came Netbas,
which begat REG800, which begat DataNET, which begat Unireg, which finally begat
MySQL.

MySQL’s genesis from Unireg was the result of Monty and David’s realization that the
SQL language was well suited, in terms of being used with web application technolo-
gies such as CGI programs written in Perl, for the task of web development (as well as
for non-web Perl programs). One primary reason for Monty to develop MySQL was
how cumbersome it was to use Unireg for Web development. It took Monty about nine
months to code the upper layer of MySQL and it released in October 1996. Thirteen
years and millions of downloads later, MySQL is now the world’s most popular open
source database. Thousands upon thousands of web sites use MySQL.

David had tried to convince Monty for years to write an SQL layer on top of Unireg. It
was, however, when Allan Larsson started to use Unireg’s report generator to generate
web pages that Monty was convinced something had to be done; he thought what Allan
did was a creative hack and he didn’t want to ever have to maintain the resulting web
page code.

It’s important to reflect on Monty’s genius: His ability to develop copious lines of code
that are amazingly efficient. It’s been observed that he can look at numerous lines of
code and find a way to reduce them to a tenth their original size! The core developers

Continued

17

Chapter 2: MySQL

18

of MySQL are of the same caliber and possess the same dedication that Monty is
known for.

Monty adheres to the philosophy that having a good code base is a prerequisite to
succeed. He feels the major reason for MySQL'’s popularity is that MySQL was free to
use for most people and that he and his team spent a major part of their time helping
MySQL users. As way of example, for the first 6 years, Monty personally sent out more
than 30,000 emails helping people with MySQL-related issues. This attitude of selfless-
ness and charity, together with a good documentation, was what made MySQL stand
out among the all the other databases.

MySQL is written in C and C++, and some of the core API functions are written in assembly language for
speed, again lending to MySQL'’s efficiency. For the curious observer, because MySQL is open-sourced,
the source is entirely viewable and a great way to see the inner workings of a complex and powerful
system. Also, because the source is freely available, anyone can contribute enhancements, bug fixes, or
add new functionality to MySQL.

So what are MySQL'’s important features? They are as follows:

a

MySQL is very fast, easy to use, and reliable. One of the primary reasons MySQL was adopted
for web applications was that it is easy to install and “just works.” Originally, MySQL’s simplic-
ity contributed to quick processing of the type of data that web sites commonly required. It’s
more complex now, but still retains its fast nature.

MySQL has documentation. Documentation is available online in various formats and in its
entirety. Gratis. You don’t have to pay for MySQL’s manuals like other RDBMS (or for the sys-
tem itself, unless you want support!).

MySQL is multi-threaded. This allows more connections with less memory because with
threading, you have each thread sharing the same memory versus a model such as forking,
where each child is a copy of the parent, including the memory of the parent.

MySQL supports features such as replication and clustering. Its robust replication supports a
number of replication schemes depending on the application requirements. One example might
be where you have a read /write master that handles all the DML (data-modification language)
statements such as INSERTS, UPDATES, DELETES, etc., and a read-only slave that handles all the
read queries.

MySOQL supports transactions and has ACID-compliant Storage Engines (InnoDB, Maria, Fal-
con). In addition to the commonly used InnoDB storage engine, MySQL is also developing two
other transactional storage engines: Maria, which is based on MyISAM, and Falcon, which was
developed from Jim Starkey’s Netfrastructure database. There is also a publicly available, trans-
actional storage engine developed by PrimeBase called PBXT. ACID compliance is implemented
by the storage engine itself. ACID stands for Atomicity, Consistency, Isolation, Durability.

Q Atomicity: The transaction is atomic and none of the SQL statements within the transaction
should fail, and if they do, the entire transaction fails.

0 Consistency: The execution of a transaction must occur without violating the consistency
of the database.

Chapter 2: MySQL

Q Isolation: When multiple transactions are executed simultaneously, they must not
affect any of the other transactions, meaning that a transaction should complete before
another one is started, and the data that a transaction may depend on is not affected by
another.

Q Durability: Once a transaction is committed, the data is not lost. A good example of dura-
bility is a recent test at a MySQL developer meeting against Maria where the server was
unplugged in the middle of executing various statements, and when it was turned back on,
the statements were completed and no data were lost.

0O MySQL has various client APIs for Perl, PHP, C/C++, Java, C#, ODBC, Rubyj, etc.

(]

MySQL runs on numerous operating systems and hardware platforms.

O MySQL has numerous installation options ranging from source compilation to various binary
package formats.

QO MySQL offers a number of storage engines depending on application requirements as well as
a pluggable storage engine interface for anyone wanting to implement his or her own storage
engine.

MySQL can be broken down into some core components, as shown in the following table:

Component Description

Parser/Command Executor ~ This is the part of MySQL that processes a query that has been
entered into a data structure known as an item tree.

Optimizer The SELECT optimizer uses the item tree that was built by the parser
to determine the least expensive execution plan for the query.

Table Handler This is an abstract interface between the storage engines and the
database server.

Now that MySQL is installed on your system (if it isn’t, see Appendix A for instructions), you are prob-

ably anxious to get your feet wet and actually start using MySQL. The following sections show you how
to use MySQL. This includes explaining what programs are packaged with MySQL, how to work with
data — inserting, reading, updating, deleting, and other basic operations as well as showing how to use
views, triggers, functions, and procedures. This section also covers what the different storage engines are
and how you can write User Defined Functions (UDFs) and external-language stored procedures.

MySQL Programs

MySQL, in addition to the server itself, has many programs that are included with the MySQL installa-
tion. These programs include the MySQL server program, server manager programs, and scripts, clients,
and various utilities. Some of these programs may or may not be included in every installation, depend-
ing on the operating system or the way the MySQL installation is packaged. For instance, the Windows
MySQL installation doesn’t include UNIX startup scripts, whereas RPM divides MySQL install packages
between client and server.

19

Chapter 2: MySQL

Depending on the installation type, these programs are usually found in a directory with other executable
files, or in some cases only the executable files that come with MySQL. The following table shows the
directory structure that MySQL uses for various operating systems and platforms:

With the Installation Type The Files Are Found in This Folder

Source installation of MySQL /usr/local/mysql/bin
RPM and Ubuntu/Debian installs /usr/bin
Windows C:\Program Files\MySQL\MySQL Server 5.1\bin

UNIX, MySQL server program /usr/sbin, /usr/local/mysqgl/libexec, or /usr/libexec
(depends on distribution)

MySQL programs all have various flags or options, specified with a single hyphen (-) and a single letter
(short options) or double hyphens (--) and a word. For instance, the MySQL client monitor program
mysql has the hyphen question mark (-?) or the hyphen help (--help) options to print command-line
option information for a given command. Some of the options are flags with no value, while some take
values with the option. With the short options, the value is followed by the option. With long options
there must be an equal sign and then a value. As an example, the user argument to the MySQL client
program is either -u username or --user=username.

As mentioned above, if you need to know all available command-line arguments that any one of the
MySQL programs accept, enter the name of the program followed by -? or --help. In addition to all the
command-line options that are available, the current defaults for the given program will also be printed.
Examples are:
mysgl --help
. and for version:
mysgl --version
. and for a full listing of options:

mysqgld --help --verbose

This section covers some of the more common of these programs that you will use most often. Other
sections in this chapter will cover some less commonly used programs.

Client Programs

There are several MySQL client programs that you will use to interact with the MySQL server and
perform common tasks, such as an interactive shell where you enter SQL statements, create database
backups, restore database backups, and perform administrative tasks. This section covers each of these.

mysql

This is the most common program you will use with MySQL. It is the MySQL client monitor as well
as essentially an SQL shell. It’s where you interactively type in SQL commands to manipulate both

20

Chapter 2: MySQL

data and data definitions within the database, and it has history functionality built into it (stored in
.mysgl_history on UNIX systems). You can also use it to pipe the output of a query from a file into
an output file in tabbed or XML format. It can alternatively be used to load data from a file such as a
database dump into the database.

A simple example to use it as an interactive shell is:
shell> mysgl --user root --password rootpass test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.1.20-beta-debug-log Source distribution
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

The command line above used to run the client program mysql connects to the test schema as the user
dbuser. The mysgl> prompt is where you interact with the database.

To load a data file produced from a dump to load into the test schema, the usage is:
shell> mysgl --user webuser --password=mypass webapp < backup.sqgl

mysqldump
You use this command to create backups of your database. mysgldump has many options allowing you to
specify all or specific schemas and tables, output format, locking options, replication information, data
and table creation information, data only, or table creation information only.
An example of using mysgldump to dump your webapps data and schema creation is:

mysgldump --user webuser --password=mypass webapps > webapps_dump.sqgl

This dumps everything in webapps and produces a file you can use to reload the webapps schema in its
entirety — to its state at the time when the dump was performed.

If you want only the data of your webapps schema, and no CREATE TABLE statements (schema creation),
use this:

shell> mysgldump --user webuser --no-create-info --password=mypass
webapps > webapps_data.sqgl

A common means of producing a nightly backup is to run as a cron job (UNIX) or Scheduled Tasks using
taskmanager with Windows.

mysqladmin

This is a MySQL command-line administrative tool that performs a number of tasks such as creating
and dropping databases and tables, displaying database system status, replicating slave control, granting

21

Chapter 2: MySQL

table reloading, flushing of various components such as disks and system caches, shutting down the
database, and other tasks.

An example of creating a new database and then dropping a database is:

shell> mysgladmin --user=root --password=-rootpass create webapps

shell> mysgladmin --user=root --password=rootpass drop pariahdb

. or chained:

shell> mysgladmin -user=root --password=rootpass create webapps drop parahdb

Another really useful thing you can do with mysqladmin to continually observe the status
of MySQL:

shell> mysgladmin --sleep=1 processlist

. which will display the process list every second until you type Ctrl+C. Also:
shell> mysgladmin --sleep=1 --relative extended-status
mysqlimport
This utility is for importing data into MySQL from a text file. For example, you could have tab-delimited
or comma-delimited data from another data source that you want to import into MySQL. This utility
makes it simple and fast to import that data.
One example is if you have a text file with the following three entries:
1,Monty Widenius

2,David Axmark
3,Allan Larsson

And the table you intend to load this data into is:

mysgl> CREATE TABLE tl (id INT(3), name VARCHAR(32));

Then you issue the command.

shell> mysglimport --fields-terminated-by=, -u webuser -p mypass webapps /tmp/tl.dat

The text file must be named the same as the table you intend to load the data into. Also, it must be
available on the file system in a location that the MySQL server, which runs usually as the mysql user,
can read it. Though it should also be noted that if you can connect to a remote server and the file you
want to load is only available from the client host you are connecting from, you can have the server
read the data file using the --1local option on the client, as well as requiring you to set the option
--local-infile when you start the server.

22

Chapter 2: MySQL

Now the data is imported:

mysgl> select * from tl;

R e +
| id | name |
e T +
1	Monty Widenius
2	David Axmark
3	Allan Larsson
e T +

mysqishow

This is a simple utility to display schemas of a database, the tables in those schemas, and columns and
indexes of those tables. This utility is a convenient way to drill down and see what the organization of
your database is. An example of this is:

shell> mysglshow --user=username --password=pass rootpass

| information_schema |
| federated |
| federated_odbc |
| mysql
| remote |
| test |
| uc_2008 |
| webapps |
+

shell> mysglshow -user=username --password=pass webapps
Database: webapps

T +
| Tables |
SR +
| history |
| €1 |
| users |
SR +

shell> mysglshow --user=username --password=pass webapps tl
Database: webapps Table: tl

R Hmmm e e e e e e
e A +

| Field | Type | collation | Null | Key | Default | Extra
Privileges | Comment |

e Hmmm e e 4 e e Hmmmm e
e A +

| id | int(3) | | NO | PRI | | auto_increment |
select, insert,update, references |

| name | varchar(32) | latinl_swedish ci | NO | | | |
select, insert,update, references |

4 Hmmm e e R e I oo
e e tmmmm +

23

Chapter 2: MySQL

Other useful examples of mysqlshow:

shell> mysglshow --verbose mysqgl
Database: mysqgl

—————————— +
Columns |

|
|
|
|
|
|
|
|
|
|
+

N
|
N

columns_priv
db |
func |
help_category |
help_keyword |
help_relation |
help_topic |
|
|
|
|
|
|
|
|
|
|
N

o)

N U1 W NDNDNDOWOGDO WO B B OJ

host

|
|
|
|
|
|
|
|
| proc
|
|
|
|
|
|
|
|

s

procs_priv

tables_priv

time_zone
time_zone_leap_second
time_zone_name
time_zone_transition
time_zone_transition_type
user

|
|
|
|
|
|
|
1 W
|
|
+

. which shows a basic listing of each table in the mysgl schema and now how many columns each
table has:

shell> mysglshow -vv mysqgl
database: mysqgl

o Hmmm e Hmmmm e +
| Tables | Columns | Total Rows |
o B Hmmmm e +
columns_priv	7 0	
db	20	22
func	4	30
help_category	4	36
help_keyword	2	395
help_relation	2	809
help_topic	6	466
host	19	0
proc	16	73
procs_priv	8	0
tables_priv	8	3
time_zone	2	0
time_zone_leap_second	2	0

| time_zone_name | 2| 0 |
| time_zone_transition | 3| 0

| time_zone_transition_type | 5 | 0

| user | 37 | 29 |
o Hmmm e e +

17 rows in set.

24

Chapter 2: MySQL

Additionally showing you the total number of rows for each table:
shell> mysglshow --status mysqgl

The last example displaying a full status of each table in the mysqgl schema (not shown for brevity).

Utility Programs

This section covers various utility programs that you use to perform tasks such as repairing tables and
accessing replication logging information. It will also provide compilation information for building client
programs for MySQL.

myisamchk

The myisamchk utility is for checking, repairing, optimizing, and describing tables created with the
MyISAM storage engine. Because myisamchk acts upon the table files directly, you must either shut
down MySQL or have the tables being checked locked. A simple example of checking the table t1 is to
issue a FLUSH TABLES command to flush any modifications to the table that are still in memory and to
lock the tables as shown below:

mysqgl> FLUSH TABLES WITH READ LOCK;
Then enter the directory containing the actual data files for the table:

shell> 1s
db.opt
history.ARZ
history.frm
t1l.MYD
tl1.MYI
tl.frm
users. frm

shell> myisamchk tl

Checking MyISAM file: tl

Data records: 0 Deleted blocks: 0
- check file-size

- check record delete-chain

- check key delete-chain

- check index reference

- check record links

Then unlock the tables:
mysgl> UNLOCK TABLES;

In the unlikely case you have serious data corruption, you can use myisamchk (or for the Maria storage
engine, maria_chk) to fix the problem using the following steps:

1. Make a backup of your data using mysqldump. If the fault is with the hard disk, copy the
actual data files to another hard disk from which you'll run the repair.

2. Shut down MySQL.

25

Chapter 2: MySQL

3. Execute the following code:
cd mysgl-data-directory

myisamchk --check --force --key_buffer_size=1G --sort-buffer-
size=512M */* . MYI

If using Maria, execute the following code:

maria_chk --check --force --page_buffer_size=1G --sort-
buffer-size=512M */* . MAI

The --force option will automatically repair any tables that were corrupted.

You can also use the --recover option instead of the --check option to optimize data usage in a table.
One thing to keep in mind — if you have a lot of data in your table, this can take a long time!

mysqlbinlog

26

The mysglbinlog utility is for reading the contents (SQL statements or events) of the binary log as text.
The binary log is a log where all write statements — DML, or data modification language, statements
(INSERT, UPDATE, DELETE, TRUNCATE) and DDL, data definition language, statements (DROP TABLE, ALTER
TABLE, etc.) — are written. The master writes these statements to this binary log so that a slave can read
and execute these statements. In addition to using mysglbinlog to read events in the master’s binary
log, it can also read statements from the slave’s relay log. The relay log is where the slave writes state-
ments read from the master’s binary log to then be executed. This will be covered in more detail in the
“Replication” section of Chapter 3.

The binary log doesn’t have to be used for replication or even be run on a master. It can also be used as a
means of providing incremental backups to be used for recovery from a crash.

The output of this program provides information, such as the SQL statements that were executed and
when they were executed.

An example of running mysglbinlog to see what statements were executed from 11:52:00 to 12:00:00
would be:

shell> mysglbinlog --start-datetime='2008-06-28 11:52:00"\
--stop-datetime='2008-06-28 12:00:00' bin.000067

/*140019 SET @E@session.max_insert_delayed_threads=0*/;

/*150003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE, COMPLETION_TYPE=0%*/;
DELIMITER /*!*/;

at 4

#8628 11:51:5 server id 1 end_log_pos 106 Start: binlog v 4,
server v 5.1.20- # Warning: this binlog was not closed properly.
ROLLBACK/*!*/;

at 212

#8628 11:53:14 server id 1 end_log_pos 318 Query

thread_id=4 exec_time=0

use webapps/*!*/;

SET TIMESTAMP=1214668394/*!*/;

Chapter 2: MySQL

SET @@session.foreign_key checks=1, @@session.sgl_auto_is_null=1,
@@session.unique_checks=1/*1%/;

SET @@session.sgl_mode=0/*!%*/;

SET @@session.auto_increment_increment=10,
@@session.auto_increment_offset=1/*!%*/;

/*I\C latinl *//*1%*/;

SET @@session.character_set_client=8,@@session.collation_connection=8
insert into tl values (5, 'Sakila')/*!*/;

DELIMITER ;

End of log file

ROLLBACK /* added by mysglbinlog */;

/*150003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

mysql_config

The mysql_config utility prints out the options with which MySQL was compiled. This is used to auto-
matically produce compile flags when compiling programs for MySQL. For example, when you build
the Perl driver for MySQL, DBD::mysql, the configuration for the driver uses mysql_config to derive the
flags it needs to build the driver.

Here is an example of using mysql_config to obtain the library compile flags:

shell> mysqgl_config --1libs
-L/usr/local/mysql/lib/mysqgl -lmysglclient -1z -1m

MySQL Daemon and Startup Utilities

Finally, the MySQL distribution includes the actual server binary file, mysqld, as well as shell scripts for
running this server — it can run a single server or multiple servers and can start and stop the server.

mysqld
The mysqgld daemon is the server. It’s a multi-threaded server that provides the functionality that makes
MySQL a relational database. It can be issued with command-line options, or more often uses a config-
uration file for these options, my.cnf (my.ini for windows). It’s also usually run using a utility such as
mysqgld_safe or mysglmanager.

mysqld_safe

The mysqld_safe utility is a shell script to run mysgld on UNIX and Netware systems. It is the preferred
means of running MySQL because it provides functionality to restart the server in case of a system error
and logs any mysgld daemon errors to an error log.

mysql.server
The mysql.server is a shell script for System-V UNIX variants, used to start and stop mysqld using
mysqgld_multi. Using System-V run directories, this script starts or stops MySQL according to the run
level being set.

An example of starting MySQL with mysqgl.server is:

/etc/init.d/mysql.server start

27

Chapter 2: MySQL

mysqld_multi

mysqgld_multi is a utility to control the running state of multiple MySQL instances. In order to run
multiple instances, the my.cnf file has to have each listed in a separate section named with the con-
vention mysqgldl, mysqld2, mysqldN. mysgld_multi can run mysgld or mysgld_safe to start MySQL. An
example of a my . cnf file that can be used with mysgld_multi would be:

[mysgld_multi]

mysqgld = /usr/local/mysqgl/bin/mysqgld_safe
mysgladmin = /usr/local/mysql/bin/mysgladmin

user = root

[mysgldl]

datadir = /usr/local/mysql/var/datal
mysqgld = /usr/local/mysqgl/bin/mysqgld_safe
user = mysqgl

port = 3306

socket = /tmp/mysqgll.sock

[mysgld2]

datadir = /usr/local/mysqgl/var/data2
mysqgld = /usr/local/mysql/bin/mysqgld_safe
user = mysqgl

port = 3307

socket = /tmp/mysqgl2.sock

This specifies that there are two servers, one as mysqgldl and the other as mysqgld2, running each on their
own ports and sockets, using different data directories.

In the example, the actual servers run as the mysql user, compared to mysqld_multi, which runs as
root. This is so mysqld_multi will have the necessary privileges to start and stop both servers.

Using mysgld_multi to start both servers, the command would be:
shell> mysgld_multi start 1,2

To stop server 2:
shell> mysgld multi stop 2

Running multiple servers with mysqld_multi will be covered in more detail in the ““Replication’ section.

Working with Data

28

Now that post-installation tasks have been performed and the various programs that come with a MySQL
distribution have been explained, you should be ready to start delving into database functionality.

This section guides you through creating a schema that will contain your database objects, creating
tables, inserting, querying, modifying, and deleting data. After these basic concepts are demonstrated,
more advanced database functionality will be explained.

Chapter 2: MySQL

Creating a Schema and Tables

In the section in Appendix A, “Post Installation,” you created a webuser database user with privileges to
the webapps schema. This is the schema, a container of database objects, that will be referred to through-
out the course of this book. To create this schema, the mysqladmin command can be used, run as the root
database user:

shell> mysgladmin --user=root --password=pass create webapps
With the webapps schema created, tables and other database objects can be created within this schema:
You could alternatively use the MySQL command-line client to do this as well:

mysgl> CREATE DATABASE webapps;

Now you can connect to the new schema:

shell> mysgl --user=webuser --password=pass webapps
shell> mysgl -u webuser -ppassword webapps

This connects you to the MySQL server as the webuser account on the webapps schema. If you want to see
a list of all the schemas within a database to which you have access rights, the command SHOW DATABASES
gives this information, showing other schemas as well as the schema you just created:

mysql> SHOW DATABASES;

o +
| Database |
e +
| information_schema |
| test |
| webapps |
e +

Now that you are connected, you can create two new tables. The following code snippet shows the
creation of two tables:

mysgl> CREATE TABLE users (
-> uid INT(3) NOT NULL AUTO_INCREMENT,
-> username VARCHAR(32) NOT NULL DEFAULT '"',
-> score DECIMAL(5,2) NOT NULL DEFAULT 000.00,
-> age INT(3) NOT NULL DEFAULT O,
-> state_id INT(3) NOT NULL DEFAULT O,
-> PRIMARY KEY (uid),
-> UNIQUE KEY username (username),
-> KEY state_id (state_id));
Query OK, 0 rows affected (0.05 sec)

mysgl> CREATE TABLE states (
-> state_id INT(3) NOT NULL DEFAULT O,
-> state_name VARCHAR(25) NOT NULL DEFAULT ''
-> PRIMARY KEY (state_id));

Query OK, 0 rows affected (0.02 sec)

’

29

Chapter 2: MySQL

The -> is printed by the command-line client when it needs more data. It will send the data once it gets
a line that contains a semicolon (;).

Two tables now exist named users and states.

What Exactly Is (or Is Not) NULL?

30

NULL is something that you probably want to get a grip on when you work with databases — that is, if
you can grip something that is missing and unknown!

If you've ever tried to use Roman numerals, they are pretty tedious and cumbersome for performing
calculations. This is because there is no placeholder digit or zero. The Romans had no concept of zero or
nothingness, nor did much of the West at that time. How could nothing be quantified?

The concept of zero is really key to modern mathematics and a prerequisite to computers ever having
been invented. This concept of nothingness came from India, where Vedic and later Buddhist philoso-
phies had an innate understanding of nothingness. Along with this philosophy there was also a system
of mathematics at the time, rules for the use of zero in Indian philosopher Brahmagupta’s book Brah-
masputha Siddhanta (6th century). The Sanskrit word for nothingness or emptiness is Sunya, and this
useful concept made its way to the West through use by the Arabs, from whom, in turn, the West
adopted it.

This concept of nothingness or emptiness would seem to describe NULL, but in SQL NULL is not zero, nor
is it an empty string. There’s another Sanskrit word that might better describe NULL, Maya, which means
“that which not is.”

With MySQL, NULL means a missing, unknown value. NULL can also be described by its relation to those
values that are NOT NULL. The table that follows shows the result of a value with a given operator, and
NULL.

Value Operator with NULL Result value
1 = NULL NULL
1 <> NULL NULL
1 < NULL NULL
1 > NULL NULL
1 IS NULL 0

1 IS NOT NULL 1

0 IS NULL 0

0 IS NOT NULL 1

" IS NULL 0

" IS NOT NULL 1

Chapter 2: MySQL

As you can see, NULL compared, using any operator to any value in SQL is always NULL. Also, 1, 0, and
empty strings are not NULLs. So there is some distinction between zero and NULL, and empty strings and
NULL: both zero and empty strings are known values.

Column Data Types

The first table was created with five columns: uid, username, ranking, age, state_id. The first column,
uid, is an INT(3) (synonym for INTEGER). The specification of (3) is for left-padding when printing
from within the client and does not affect the range of this column. The NOT NULL flag was set to guar-
antee that NULL values cannot be inserted into this column (more about not allowing NULLs in a table
for performance reasons is found in the ““Performance” section). Also, the AUTO_INCREMENT flag was set.
AUTO_INCREMENT is a unique feature of MySQL which automatically increments the value of the column
for subsequent insertions into the table. This provides a convenient means of guaranteeing uniqueness of
that column’s value for each record inserted into the table.

The second column, username, is created as a VARCHAR (32) column. This means that the column is able
to store up to 32 characters of text. A VARCHAR is named such because at the storage-engine level, only the
space needed to store that column’s value for a given record is allocated in the data file. There is a CHAR
data type that will allocate exactly what is specified.

The third column, ranking, is a DECIMAL type column. The specification of (5,2) signifies precision
and scale. This means that a number must have five digits and two decimals and that the range for
score is -999.99 to 999.99. In other words, if you were to insert 1000.0 into this column, it would
convert the number to 999.99 and if you inserted 998.999 it would convert the number to 999.00
(rounded).

Then there are the fourth and fifth columns, age and state_id, INT (3) types respectively.

Indexes

The indexes on users are on the columns uid, username and state_id. When you design your schema
and determine which tables you will use for the data you need to store, you have to consider what
columns you’ll be using to find a given record. In this case, it’s easy to imagine that you would want to
look up a user by the user id or uid, his or her username, as well as what state he or she is from.

The index on uid (user id) is the PRIMARY KEY index. A primary key is a unique index — there can be no
two identical values for this column in the table — and it is used to uniquely identify each row in a table.
Because AUTO_INCREMENT is being specified, this will automatically provide the values for this column, so
you don’t have to worry about providing unique numeric values when inserting rows. Also, a table can
have only one PRIMARY KEY index, hence the name PRIMARY.

The index on username is a UNIQUE index. Similar to a PRIMARY KEY index, there can be no two identical
values for this column in the table, except with unique UNIQUE index, many NULL values are permitted.

This is how you can guarantee that there is only one user with a given name in your user table. Unlike

PRIMARY KEY indexes, a table can have more than one UNIQUE index.

The second table, states, is a simple table containing a state_id INTEGER column and a state_name
VARCHAR column. The only index on this table is the PRIMARY KEY index on state_id.

31

Chapter 2: MySQL

You'll notice that users and states both have a state_id. This is done to indicate that there is a rela-
tionship between users and states, the state_id column being the common column between the two.
You'll see after some data is inserted what the relationship means in terms of using an SQL query to
return data.

Schema Information

One way to verify the definition of how you created your table is to use the command
SHOW CREATE TABLE:

mysgl> SHOW CREATE TABLE users\G
LR RS E SRR EEEEEEEEEEEEEEEEEEE] 1' row LR R SRS EEEEEEEEEEEEEEEEEEEEE]
Table: users
Create Table: CREATE TABLE ‘users (
‘uid’ int(3) NOT NULL auto_increment,
‘username' varchar (32) NOT NULL default '',
‘score’ decimal(5,2) NOT NULL default '0.00',
‘age’ int(3) NOT NULL default '0',
‘state_id" int(5) NOT NULL default '0',
PRIMARY KEY (‘uid‘),
UNIQUE KEY ‘username (username'),
KEY ‘state_id' ('state_id")
) ENGINE=MyISAM AUTO_INCREMENT=5 DEFAULT CHARSET=latinl

The output of some commands can contain a lot of formatting characters that make the output “stretch”
far to the right. To view the output of a command without this formatting, use \G instead of a

semicolon.

Another way to view the definition of a table is the DESCRIBE command:

mysqgl> DESCRIBE users;

e - Hmmmmmm e T T +
| Field | Type | Null | Key | Default | Extra |
e dmm e tmm—mm- - Hm - T R +
uid	int(3)	NO	PRI	NULL	auto_increment
username	varchar(32)	NO	UNI		
score	decimal(5,2)	NO		0.00	

| age | int(3) | NOo | | 0 | |
| state_id | int(5) | No | MUL | 0 | |
e dmm e T - Hmm e T e +

5 rows in set (0.00 sec)

To see what tables exist in a schema, you can issue the command SHOW TABLES:

mysqgl> SHOW TABLES;

B +
| Tables_in_webapps |
B +
| states |
| users |
Hmmm e +

32

Chapter 2: MySQL

SHOW has a numerous options. You can use HELP SHOW in the command line client to get an extensive list
of the different options available:

mysqgl> HELP SHOW;

Yet one more tool in your arsenal is the information schema which you can use to view all manner

of information (refer to the MySQL reference manual). The information schema, which is named
INFORMATION_SCHEMA, works just like any other database in MySQL, except it doesn’t contain real tables.
All the tables that provide information are views with the information generated when needed. An
example of using INFORMATION_SCHEMA to give the equivalent of SHOW TABLES is:

mysqgl> SELECT TABLE_NAME, TABLE_TYPE, ENGINE FROM TABLES
-> WHERE TABLE_SCHEMA = 'webapps';

Fom - +-———— +
| TABLE_NAME | TABLE_TYPE | ENGINE |
Fom - - +
| states | BASE TABLE | MyISAM |
| users | BASE TABLE | InnoDB |
e e L L E L e Fmmm—————— +

Schema Modification

You will sometimes need to modify your schema, either adding or dropping a column to or from a table,
changing the data type or definition of a column, adding an index to a table, or renaming a table. The
ALTER TABLE statement is the means of doing this. The syntax for ALTER TABLE has numerous options
described in full in the MySQL reference manual. The basic syntax for ALTER TABLE is:

ALTER TABLE [ONLINE | OFFLINE] [IGNORE] tbl_name alter_specification
[,alter_specification]

0 OFFLINE | ONLINE pertain to how ALTER TABLE is performed on NDB Cluster tables.

0 IGNORE pertains to how the ALTER statement will deal with duplicate values in columns that have
a newly added constraint of unique. If IGNORE is not specified, the ALTER will fail and not be
applied. If IGNORE is specified, the first row of all duplicate rows is kept, the reset deleted, and
the ALTER applied.

QO The alter_specification would be what you are changing — what columns or indexes you
are adding, dropping, or modifying, or what constraints you are placing on columns.

This section offers a few examples to give the basic idea of how to use ALTER TABLE.

In the previous example you created the table users with several columns. If you now need to mod-
ify some of these columns — for example, if the username column isn’t large enough to store some
names and you want to change it from 32 characters maximum to 64 — the following ALTER TABLE would
achieve this:

mysgl> ALTER TABLE users MODIFY COLUMN username VARCHAR(64)
NOT NULL default '';

Query OK, 9 rows affected (0.01 sec)

Records: 9 Duplicates: 0 Warnings: 0

33

Chapter 2: MySQL

As the output shows, the nine existing records in the table are affected by this change, and the users
table should now have a modified definition for the username column:

mysqgl> DESC users;

Fommmmm e Fo—m— fo—m Fommmmm— fommm e +
| Field | Type | Null | Key | Default | Extra |
fommmmm - Fommmmm e Fo—m— fo—m Fommmmm B +
uid	int(3)	NOo	PRI	NULL	auto_increment
username	varchar(64)	NO	UNI		
ranking	decimal(5,2)	NO		0.00	
age	int(3)	NOo		0	
state_id	int(5)	NO	MUL	0	
Fomm - Fommmmmm e Fomm— fo— Fommm— B +

Next, you realize that the column score isn’t really the name you want for this column. What you really
want is ranking, so you issue another ALTER TABLE statement:

mysqgl> ALTER TABLE users CHANGE COLUMN score ranking DECIMAL(5,2)
NOT NULL default '0.00°';

Furthermore, you notice that both the age and ranking columns are columns that you will be either using
for sorting or retrieving data and that they need indexes.

mysgl> ALTER TABLE users ADD INDEX ranking (ranking) ;

mysqgl> ALTER TABLE users ADD INDEX age(age);

You can also perform multiple alterations in one statement (preferable, especially if your table
is huge!):

mysgl> ALTER TABLE users ADD INDEX ranking(ranking), ADD INDEX age (age) ;

Now, if you check to see what the users table definition is, you see that your changes have been made:

mysqgl> DESC users;

Hmm e e - Hmmmmmm e T T +
| Field | Type | Null | Key | Default | Extra |
e dmm e tmm—mm- - Hm - T R +
uid	int(3)	NO	PRI	NULL	auto_increment
username	varchar(64)	NO	UNI		
ranking	decimal(5,2)	NO	MUL	0.00	

| age | int(3) | NOo | MUL | 0 | |
| state_id | int(5) | No | MUL | 0 | |
e dmm e T - Hmm e T e +

For more information, the full syntax for ALTER TABLE can be found in two ways:

mysqgl> HELP ALTER TABLE;

. or MySQL'’s documentation at http: //dev.mysgl.com/doc/refman/5.1/en/alter-table.html.

34

Chapter 2: MySQL

Inserting Data

The next thing you probably want to do is to insert some data into the newly created tables. The SQL
STATEMENT for insertion is INSERT. The INSERT statement’s basic syntax is:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
INTO table name (col_name,...)
VALUES ({expr | DEFAULT}, ...), (...),

The syntax can be explained as:

0 LOW_PRIORITY means that the data will not be inserted until there are no clients reading from the
table. This option only works on tables that have table-level locking such as MyISAM, Memory,
Merge, etc.

0 DELAYED means that the data being inserted will be queued up and inserted into the table when
the table is not being read from, allowing the client issuing the INSERT DELAYED to continue.

0 HIGH_PRIORITY makes it so concurrent inserts are not utilized or overriding the low-priority-
updates server setting.

0 IGNORE makes it so errors with data insertion are treated as warnings. For instance, if there is
an error inserting data that contains a duplicate value on a PRIMARY KEY or UNIQUE column, that
row will not be inserted and a warning will be issued. If you are not using IGNORE, the INSERT
statement will end when the first error is encountered.

Basic Insert

To begin inserting data into the users table, the two INSERT statements are issued:

mysqgl> INSERT INTO users (username, ranking, age, state_id)
-> VALUES ('John Smith', 55.5, 33, 1);
Query OK, 1 row affected (0.00 sec)

mysqgl> INSERT INTO users (username, ranking, age, state_id)
-> VALUES ('Amy Carr', 66.55, 25, 1);
Query OK, 1 row affected (0.00 sec)

It is recommended to always specify the column names into which you are inserting data within your
application code. This will allow your application to continue working even if someone were to add extra
columns to the table.

These two queries insert two rows into the users table. As you can see by the output 1 row affected,
both INSERT statements succeeded. The first part of the query specifies what table to insert the data into,
then provides a list of columns that data will be inserted into. The VALUES part of the statement is the
list of the actual values you want to insert. These values have to match each column specified in the first
half of the query. If you notice that the uid column was not specified, that is because it’s not necessary to
specify the uid column’s value as the AUTO_INCREMENT attribute keyword was specified in the creation of
the users table. The first row being inserted will result in the value of uid being 1, and the second row
will result in item_id being 2. AUTO_INCREMENT will set the value of the uid column one more than the
previous value for each subsequent row inserted.

35

Chapter 2: MySQL

You can also specify a MySQL parameter AUTO_INCREMENT_INCREMENT, which sets the amount to
increment by for each row insertion, making it possible to increment by a value other than 1.

You can specify the value of an auto increment value if you choose to do so:

mysgl> INSERT INTO users (uid, username, ranking, age, state_id)
-> VALUES (4, 'Gertrude Asgaard',6 44.33, 65, 1);
Query OK, 1 row affected (0.00 sec)

Notice, here, the query inserting a predetermined value for uid. When data is inserted this way, you
must ensure that the values you are inserting match the columns of the table as defined when you created
the table. Also, the uid column was specified by the input, not relying on AUTO_INCREMENT to supply this
value. This is completely legitimate, but also requires that you ensure the value being inserted is unique
because it is a PRIMARY KEY. If it was just a regular index, KEY, you could use any value even if not unique
within the table. Also, the value inserted was 4 whereas if AUTO_INCREMENT had assigned the value it
would have been 3. This means that the next value, if set using AUTO_INCREMENT, will be one more than
the previous value, which means the value will be 5.

An alternate INSERT syntax is to set each column explicitly:

mysqgl> insert into users set uid = 4, username = 'Gertrude Asgaard',
-> ranking = '44.33', age = 65, state_id = '65';

Bulk Insert

36

Bulk inserts can be a convenient way to insert multiple rows of data without having to issue multiple
statements or connections to the database. In many cases, it’s best to try to accomplish as much as possible
within the database in as few statements as possible, and using bulk inserts is a way to do this. Another
benefit of bulk inserts is that they are the fastest way to insert multiple rows of data into a table. The
following example shows that four records are inserted.

You should try to use bulk inserts particularly when you find yourself using statements repeating the
same insert statements with different data. One of the easiest ways to obtain more performance in an
application is if you can cache your data in the client and then insert the cached data many rows at a
time — this is what bulk inserts enable you to do.

An example of using a bulk INSERT statement is:

mysgl> INSERT INTO users (username, ranking, age, state_id)
-> VALUES ('Sunya Vadi', 88.1, 30, 2),
-> ('Maya Vadi', 77.32, 31, 2),
-> ('Haranya Kashipu', 1.2, 99, 3),
-> ('Pralad Maharaj', 99.99, 8, 3);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

A detriment of bulk inserts is that if there is a problem with any of the data being inserted the entire
statement fails. For example, if you specified a value that violated a unique index in the statement in only
one of the rows being inserted in a statement inserting 100 records, all 100 of those records would fail
to be inserted even though 99 of them were bona fide statements that would otherwise successfully be
inserted.

Chapter 2: MySQL

mysgl> INSERT INTO users VALUES
-> (1, 'Jake Smith', 11.12, 40, 4),
-> (9, 'Franklin Pierce', 88.3, 60, 4),
-> (10, 'Daniel Webster', 87.33, 62, 4);
ERROR 1062 (23000): Duplicate entry 'l' for key 1

As you can see, the first set of values specified in the bulk insert violated the integrity of the primary key
on uid by trying to assign the value of 1 where there is already a record with that value. This causes the
whole statement to fail. The other two sets of data would have otherwise been successfully inserted.

INSERT IGNORE

There are two ways to get around the problem of having multiple records fail in a bulk insert due to
PRIMARY or UNIQUE key violations. You can either fix the data you're trying to insert, or employ the use
of INSERT IGNORE. INSERT IGNORE inserts the values that wouldn’t cause errors, while ignoring the ones
that do:

mysgl> INSERT IGNORE INTO users VALUES
-> (1, 'Jake Smith', 11.12, 40, 4),

-> (9, 'Franklin Pierce', 88.3, 60, 4),
-> (10, 'Daniel Webster', 87.33, 62, 4);

Query OK, 2 rows affected (0.01 sec)
Records: 3 Duplicates: 1 Warnings: 0

In this statement, INSERT IGNORE was used. As a result, the values that would have otherwise caused the
whole statement to fail are ignored and the two valid sets of data are inserted.

The states table also will need to be populated with data:

mysgl> INSERT INTO states VALUES

-> (1, 'Alaska'),

-> (2, 'Alabama'),

-> (3, 'New York'),

-> (4, 'New Hampshire'),
-> (5, 'Hawaii');

This table is a lookup table that will be used for the discussion of the examples in the following sections.

Delayed and Low Priority INSERTs

In some cases, you have data that you don’t need to be readily available and are more interested in
inserting for purposes such as logging and statistics gathering. You do need to save this data, but to be
able to save it “lazily’”” would be sufficient for your application’s purposes. MySQL has just the means
for accomplishing this using a delayed insert. An example of using delayed inserts to insert data into an
application log is as follows:

mysgl> INSERT DELAYED INTO weblog (ip_address, username, request_type, uri)
-> VALUES ('192.168.1.133', 'GnaeusPompey',6 'POST',
-> 'http://triumvirate.com/legion?ruler=pompey') ;

Delayed inserts cache the rows being inserted into a buffer, which are written to the table when the table
is not being used by any other thread. This can help overall performance because it batches writes.

37

Chapter 2: MySQL

Delayed inserts are only available for tables using the MyISAM storage engine.
Optionally, you could also use:

mysgl> INSERT LOW_PRIORITY INTO weblog (ip_address, username,
request_type, uri)

-> VALUES ('192.168.1.133', 'GnaeusPompey', 'POST',

-> 'http://triumvirate.com/legion?ruler=pompey') ;

Using LOW_PRIORITY is different than DELAYED in that LOW_PRIORITY causes the client to wait until no
other clients are reading from the table before it attempts insertion, whereas with DELAYED, the rows
being inserted are queued in a buffer while the client is freed up to run other statements. What you will
use depends on your application and what sort of behavior you require.

It should be noted that normally, you shouldn’t use DELAYED or LOW_PRIORITY. You would utilize these
if you using MyISAM tables and you desperately need some extra performance when all other options
have failed.

For more information on how to use INSERT, use:
mysqgl> HELP INSERT;

... or the MySQL online manual at the URL: http://dev.mysql.com/doc/refman/5.1/en/insert . html.

Querying Data
The way to retrieve data from a table in a database is to use the SELECT statement. The basic syntax of a

SELECT statement is:

SELECT select_expr FROM table_references
WHERE where_condition [GROUPING AND ORDERING]
[LIMIT {[offset,], row_count]

O select_expr indicates the column(s) you want to select.

Q table_references indicates a list of one or more tables.

O where_condition indicates a condition that must be satisfied to return rows of columns indi-
cated in select_expr.

0 GROUPING AND ORDERING indicates you can specify what column you want to order the results by
as well as what column you want to group by.

0 LIMITis a way of limiting the result by a given number of fset (optional), meaning what row to
begin from and row_count how many records in the result set to display (not optional).

Basic Queries

Using the SELECT statement, different queries can be performed against users and states to retrieve
various data.

38

Chapter 2: MySQL

To see all the records in users:

mysgl> SELECT * FROM users;

e o m e Hmmmm e e fmmmm e +
| uid | username | ranking | age | state_id |
e e Hmmmm e e fmmmm e +
| 1 | John Smith | 55.50 | 33 | 1|
| 2 | Amy carr | 66.55 | 25 | 1
4	Gertrude Asgaard	44.33	65	1
5	sunya vadi	88.10	30	2
6	Maya Vadi	77.32	31	2
7	Haranya Kashipu	1.20	99	3]
8	Pralad Maharaj	99.99	8	3]
9	Franklin Pierce	88.30	60	4
10	Daniel Webster	87.33	62	4
e o Hmmmm e e Hmmmm oo +

As you can see, all the data you inserted is now stored in users. In this example, **’ is a special marker
that stands for all columns, in this case meaning that all columns should be included in the rows returned
(result set) from the query. No WHERE clause was applied to the query, so all rows are returned. You could
also specify specific columns:

mysqgl> SELECT uid, username FROM users;

+
|

+

| John Smith |
| Amy Carr |
| Gertrude Asgaard |
| Sunya vadi |
| Maya Vadi |
| Haranya Kashipu |
| Pralad Maharaj |
| Franklin Pierce |
| Daniel Webster

+

Aliasing

Another convenient feature of SQL is that you can alias (i.e., temporarily rename) result columns and
table names. In the previous example, uid, username, and the table users all could be aliased:

mysgl> SELECT uid AS ‘User Identification Number',
-> username User Name'
-> FROM users U WHERE U.uid <= 9;

| 1 |
| 2 | Amy Carr |
| 4 | \

39

Chapter 2: MySQL

| Sunya vadi |
| Maya Vadi |
| Haranya Kashipu |
| Pralad Maharaj |
| Franklin Pierce |
+

If you notice, the first alias for uid, User Identification Number, was alias by the following uid with
AS, and the second column username was followed by User Name, without the use of AS. Either of these
is valid. The table name users is followed by U. Aliases are a convenient way to either have a more
canonical column name on the output, or they can be used to shorten table or column names throughout
the statement so the statement is easier to read. Also, the backtick character, known as the identifier quote
character, was used to quote the column aliases in this example. This allows the alias to contain spaces
or other character sets to be used. Other characters can also be used, such as single and double quotes,
but the backtick is MySQL’s default identifier quote character for quoting table names and columns.
Although you can also use double quotes if you do the following:

mysqgl> SET sqgl_mode='ANSI_QUOTES';

mysgl> CREATE TABLE t4 ("some column" int(8));
mysgl> SELECT "some column" FROM t4;

The output of database dumps from MySQL’s backup program mysqgldump includes the use of the back-
tick character as the identifier quote character by default.

Also, aliases are required for joining a table to itself (a self join) to ensure that the table name used in the
query is unique. For an example of this, see the later section “JOIN.”

Limiting Results

If you want to return only the first two rows in a result, you can use LIMIT in the query:

mysgl> SELECT * FROM users LIMIT 2;

o tmmmmmm e tmmmmm o o tmmmmmm o +
| uid | username | ranking | age | state_id |
o tmmmmmm e tmmmmm o o tmmmmmm o +
| 1| John Smith | 55.50 | 33 | 1
| 2 | amy Carr | 66.55 | 25 | 1|
- Hmmmmm e Hmmmmmm e - Hmmmmmmm e +

mmm e e tmmm = Hmmmm +
| uid | username | ranking | age | state_id |
mmm e o m e tmmm o - tmmmm +
| 5 | Sunya Vvadi | 88.10 30 | 2|
mmm e o m e tmmm - Hmmmm +
WHERE Clause

The WHERE clause is used to select which rows you want to return from the result set. What if you want
return a particular user’s uid? Say, for instance, you have a function in your web application code to

40

Chapter 2: MySQL

retrieve just a user’s uid based on supplying the user’s username. Just specify that in another WHERE
clause:

mysgl> SELECT uid FROM users WHERE username = 'Pralad Maharaj';

tmmm e +
| uid |
tmmm e +
I8
4mm——m +

In the WHERE clause, you can use a lot of different operators to select which data you are interested in
obtaining. This is described in the next several sections.

Operators

Numerous operators can be specified in a query:

mysgl> SELECT uid, username FROM users WHERE age < 40 AND state_id = 3;

The less-than operator < is used to restrict the rows found to any age less than 40 as well as AND, which
includes the restriction that the state_id be limited to 3.

The operator LIKE allows for specification of word patterns. The percentage character (%) is a
wildcard character in SQL, much like the asterisk (*) character is for file and directory names. You

use this to allow the word “Jack” immediately followed by zero or more characters to be what is
searched for:

mysgl> SELECT uid, username FROM users WHERE username LIKE 'Jack$%';

Ranges

You can specify ranges with the operators <, <=, =, <>, >, >= or BETWEEN.

mysgl> SELECT uid, username FROM users WHERE uid >= 6 AND uid <= 7;

Fommmmm e +
| uid | username |
to— Fmmmmm e +
| 6 | Maya Vadi |
| 7 | Haranya Kashipu |
e o mm e +

Or, the previous statement can also use the BETWEEN operator to obtain the same results:

mysgl> SELECT uid, username FROM users WHERE uid BETWEEN 6 AND 7;

41

Chapter 2: MySQL

mmm e o +
| uid | username |
mmm e o +
| 6 | Maya Vadi |
| 7 | Haranya Kashipu |
mmm e o mm e +

Ordering

Ordering, which is done using the ORDER BY clause, allows you to be able to sort the result of a query in a
number of ways. The following examples show how you can use ORDER BY.

For instance, if you want to order your results with the youngest age first (Asc means “ascending”’):

mysqgl> SELECT * FROM users ORDER BY age ASC;

mmm e e tmmm = Hmmmm +
| uid | username | ranking | age | state_id |
mmm e o m e tmmm o - tmmmm +
8	Pralad Maharaj	99.99	8	3
2	amy Carr	66.55	25	1
5	Sunya Vvadi	88.10	30	2
6	Maya Vadi	77.32	31	2
1	John Smith	55.50	33	1
9	Franklin Pierce	88.30	60	4
10	Daniel Webster	87.33	62	4
4	Gertrude Asgaard	44.33	65	1
7	Haranya Kashipu	1.20	99	3
U e T T o +

. or with the oldest age first (DESC means ““descending”’):

mysqgl> SELECT * FROM users ORDER BY age DESC LIMIT 3;

o o e +m—mm- tmmmmmmm +
| uid | username | ranking | age | state_id |
o o Hmmmmm +m—mm- tmmmmmmm +
| 4 | Gertrude Asgaard | 44.33 | 65 | 1
| 10 | Daniel Webster | 87.33 | 62 | 4 |
| 9 | Franklin Pierce | 88.30 | 60 | 4 |
o o mmmm e o +m—mm- tmmmmmmm +

You can also order by multiple columns:

mysqgl> SELECT * FROM users ORDER BY age DESC,state_id ASC LIMIT 3;

mmm e o mmm = Hmmmm +
| uid | username | ranking | age | state_id |
mmm e o Hmmm = Hmmmm +
4	Gertrude Asgaard	44.33	65	1
10	Daniel Webster	87.33	62	4
9	Franklin Pierce	88.30	60	4
e e T - Hmmmm o +

This would mean that the age is the first column that the ordering would use (descending), and then of
that result, state_id would be used to sort in ascending order.

42

Chapter 2: MySQL

Grouping

Grouping is yet another operation in retrieving data that is very useful. GROUP BY is the SQL clause that
provides grouping. With GROUP BY, the result of a query is grouped by one or more columns.

For instance, if you would like to have a count of users per state, this can be achieved by using COUNT ()
and GROUP BY, and is a very common query you will use in variations during the course of developing
web applications and producing reports of your site’s data.

mysqgl> SELECT COUNT (uid) AS ‘num users ,state_id, state_name
-> FROM users JOIN states USING (state_id) GROUP BY state_id;

Hmmmmm Hmmmmmm o Hmmmmm e +
| num users | state_id | state_name \
Hmmmmmm e Hmmmmmm o Hmmmmm e +
3 1	Alaska	
2	2	Alabama
2	3wy	
3	4	New Hampshire
Hmmmmm e Hmmmmmm oo Hmmmmm oo +

With GROUP BY, the data is grouped (or you could say “lumped’”” together) using the column or columns

you specify. By using the aggregate function COUNT, it counts how many are in each grouping — for each
grouping, which is then aliased to a column name such as num users in this example, then displayed in

state_id and state_name, giving you a simple output of users per state.

There are numerous grouping functions that you will find of great use when grouping data, which will
be shown in the later section on ““Aggregate Functions.”

JOIN

In the previous query, one of the columns in the result set is state_id. What would be more useful is
to also have the state name included. In the examples, data was inserted into the states table for both
state_id and state_name.

The states table contains:

mysgl> SELECT * FROM states;
fomm o e +
| state_id | state_name |
bl __

|

+

| Alaska

| Alabama

|

| New Hampshire
|

"

| 1
| 2
| 3
| 4
| 5 | Hawaii

|
|
New York |
|
|
e
The users table, as seen in previous SELECTS, contains users who have state_id values corresponding
to most of the values in states. To be able to include the state_name column with the result set from
users, a join will have to be employed.
An SQL join works by conceptually creating a result set that contains all row combinations from all

tables and then selecting, with the WHERE clause, which row combinations you are interested in. Normally,
you want to see the rows that have the same value in two columns.

43

Chapter 2: MySQL

44

There are several types of joins: CROSS, INNER, OUTER, LEFT, and RIGHT. Each join type will be discussion
in a later section. Also, a join can be used not just in SELECT statements but also in UPDATE and DELETE
statements (which will be discussed in the next section).

For instance, if you want to include state_name as one of the columns in the result set from the previous
query that sorted the results on the age, an inner join will accomplish this:

mysqgl> SELECT users.*,states.state_name
-> FROM users, states
-> WHERE users.state_id = states.state_id
-> ORDER BY age ASC;

tomm - B Fomm - o= Fommmm B T T +
| uid | username | ranking | age | state_id | state_name |
tomm - B Fomm - o= Fommmm B T T +
8	Pralad Maharaj	99.99	8	3	New York
2	Aamy Ccarr	66.55	25	1	Alaska
5	Sunya Vadi	88.10	30	2	Alabama
6	Maya Vadi	77.32	31	2	Alabama
1	John Smith	55.50	33	1	Alaska
9	Franklin Pierce	88.30	60	4	New Hampshire
10	Daniel Webster	87.33	62	4	New Hampshire
4	Gertrude Asgaard	44.33	65	1	Alaska
7	Haranya Kashipu	1.20	99	3	New York
o o fmmm 4o fmmm o +

This type of join is known as an implicit inner join — implicit because the term INNER JOIN isn’t explicitly
listed in the query. The part of the query that defines what columns must be equal to, users.state_id =
states.state_id, is known as a join predicate. In this example, the columns list is specified as users. *,

states.state_name. The first users. * specifies all columns of the users table and states.state_name

specifies only the state_name column from states. With a JOIN, if only a * had been used, all columns

from both tables would have been returned.

This same JOIN query could have been written in several ways. An explicit inner join:

SELECT users.*,states.state_name FROM users INNER JOIN states
ON (users.state_id = states.state_id) ORDER BY age ASC;

When you are doing a join between two tables only based on equality comparisons, called an equi-join,
you can use the following shorter:

SELECT users.*,states.state_name
FROM users JOIN states using (state_id)
ORDER BY age ASC;

A natural join:

mysqgl> SELECT * FROM states NATURAL JOIN users ORDER BY age ASC;

Hmmm o mm e - o m e Hmmmm o e +
| state_id | state_name | uid | username | ranking | age |
Hmmm tmmmm e = o m e Hmmmm o e +
3	New York	8	Pralad Maharaj	99.99	8
1	Alaska	2	Amy Carr	66.55	25
2	Alabama	5	Sunya Vadi	88.10	30

Chapter 2: MySQL

2	Alabama	6	Maya Vadi	77.32	31
1	Alaska	1	John Smith	55.50	33
4	New Hampshire	9	Franklin Pierce	88.30	60
4	New Hampshire	10	Daniel Webster	87.33	62
1	Alaska	4	Gertrude Asgaard	44.33	65
3	New York	7	Haranya Kashipu	1.20	99
Hmmmmmm o Hmmmmm e o R Hmmmmmm o +mmmm- +

You'll notice that in this example, no specific columns were specified in the column list or in the join
predicate. This is because a natural join implicitly joins the tables based on any columns that are named
the same, and only prints once columns are named the same. This query may look cleaner and easier to
read, but it is somewhat ambiguous. If a query like this was used in application code, and there were
changes to the schema, things might break. That might make for one of those bugs that take a long time
to find!

The other types of joins mentioned previously were LEFT and RIGHT joins. For instance, A LEFT join for
states and users will always contain records of states (the “left” table), even if there aren’t matching
records from users (the “right” table). To see the meaning of this:

mysgl> SELECT username, states.state_id, state_name
-> FROM states LEFT JOIN users
-> ON (users.state_id = states.state_id);

| username | state_id | state_name |
e Hmmm o mm e +
John Smith	1	Alaska
Amy Carr	1	Alaska
Gertrude Asgaard	1	Alaska
Sunya Vadi	2	Alabama
Maya Vadi	2	Alabama
Haranya Kashipu	3	New York
Pralad Maharaj	3	New York
Franklin Pierce	4	New Hampshire
Daniel Webster	4	New Hampshire
NULL	5	Hawaii
e 4o oo +

Because there are no users in the table users with a state_id of 5, which is the state_id of Hawaii, there
is no match from users, so NULL is displayed. If the LEFT keyword had been omitted, the row containing
the NULL would not have been displayed. LEFT and RIGHT joins are thus useful to find things that don’t
match!

A RIGHT join works the same way as a LEFT join, except the table on the right is the table that all
records will be returned for, and the table on the left, states, will only contain records that match
with users.

Because every user has a state_id value that exists in states, all records are returned and no NULLs
present in the result set. To see how a RIGHT JOIN works, a user is inserted into users that contain a

state_id that doesn’t exist in states.

mysgl> INSERT INTO users (username, ranking, age, state_id)
-> VALUES ('Jack Kerouac', 87.88, 40, 6);

45

Chapter 2: MySQL

Then you perform the RIGHT JOIN query:

mysqgl> SELECT username, states.state_id, state_name
FROM states RIGHT JOIN users

ON (users.state_id = states.state_id);
e Fommm——————— Fommm e +

| username | state_id | state_name |
B et Fommmm Fmmmmm +
John Smith	1	Alaska
Amy Carr	1	Alaska
Gertrude Asgaard	1	Alaska
Sunya vadi	2	Alabama
Maya Vadi	2	Alabama
Haranya Kashipu	3	New York

Pralad Maharaj	3	New York
Franklin Pierce	4	New Hampshire
Daniel Webster	4	New Hampshire
Jack Kerouac	NULL	NULL
o fommm e o +

And as you can see, then NULLs are displayed in the result set for the new entry in users that does not
yet have a state that exists. Adding another record with a state_id for a state not contained in states
helps to illustrate the concept of how, with RIGHT and LEFT joins, there won’t necessarily be a 1:1 match
in the result set.

This brings up another important point in schema design and how you tailor the queries you use in your
application. If you have a parent to child relationship in your schema, when retrieving the results of a
query to return a list of parents and their children, you need to use the correct query to give you the

desired result.

Consider the two simple tables, parent and children:

mysgl> SELECT * FROM parent;

|
+
| 1 | has kids |
2 |
+

2 rows in set (0.00 sec)

mysgl> SELECT * FROM children;

| child_id | parent_id | name |
Hmmm e fmmmm e fmmmm +
| 1 1| kid #1 |
| 2 | 1| kid #2 |
Hmmm tmmmm tmmmm +

If you use an INNER JOIN, the result set omits the record ““empty nester’” from users, because it doesn’t
have corresponding records in children:

mysgl> SELECT * FROM parent p JOIN children c ON
(p.parent_id = c.parent_id);

46

Chapter 2: MySQL

Hmmmmm Hmmmmmm o Hmmmmm e tmmmmmmm o oo +
| parent_id | name | child_id | parent_id | name |
Hmmmmm Hmmmmmm o Hmmmmm e tmmmmmmm o oo +
| 1 | has kids | 2 | 1| kid #2 |
| 1 | has kids | 1 1 | kid #1 |
Hmmmmm e Hmmmmmm o Hmmmmm e R T +

This could be a problem if you intend to display all parents, even those without child records. The way to
solve this issue is to use a LEFT JOIN. The parent table, the table for which you want the result to contain
every record, is the “left”” table. So you would need to specify this parent table first in the query:

mysgl> SELECT * FROM parent p LEFT JOIN children c ON
(p.parent_id = c.parent_id);

P —— P — T — - N +
| parent_id | name | child_id | parent_id | name |
T — P — T — - N +
1	has kids	2	1	kid #2
1	has kids	1 1	kid #1	
2	empty nester	NULL	NULL	NULL
Hmmm Hmmmm e Hmmm tmmmm tmmmm +

It all depends on what the relational organization of your data is and what data you want your appli-
cation to retrieve. For instance, say you had a database of XML feeds, each of these feeds has items, and
some of those items may or may not contain enclosures (enclosures are for media). If you wanted to dis-
play all the items of a feed and used an INNER JOIN between feeds and items, and an INNER JOIN between
items and enclosures, the result would only contain the items with enclosures. To be able to display all
the items for a feed you would need an INNER JOIN between feeds and items and a LEFT JOIN between
items and enclosures.

Another type of INNER join is a table joined with itself, known as a self-join. The example that follows
shows the table officials list of entries:

mysgl> SELECT * from officials;
e
| official_id
e

American People
Barack Obama
Joseph Biden
Rahm Emanuel
Ron Klain
Robert Gates
Jim Messina

SO0 U s W R
+—_—— — ¢

f—_ s — 4

As you can see, this is data that shows an organizational hierarchy of the President and some of his staff.
If you wanted to see a better view of who works for each other, you can use the following INNER JOIN
syntax:

mysgl> SELECT ol.name AS name, o2.name AS boss
-> FROM officials AS ol
-> INNER JOIN officials AS o2
-> ON ol.boss_id = o2.official_id;

47

Chapter 2: MySQL

Barack Obama

Rahm Emanuel
Ron Klain

Robert Gates
Jim Messina

+
|
+
|
Joseph Biden | Barack Obama
|
|
|
|
+

_________________ +
boss |
_________________ +
Anmerican People |

\
Barack Obama |
Joseph Biden |
Barack Obama |
Rahm Emanuel |
_________________ +

You'll notice this required the use of aliased table and column names. This is an extremely useful query
for presenting a flattened view of a normalized table.

This type of join only joins tables based on equality comparisons. The syntax is specific to MySQL, Oracle

and PostgreSQL.

UNION

The SQL statement UNION is another means of combining rows. UNION combines the result sets of
multiple queries. Every result set must have the same number of columns in order for a UNION to

48

be used:
mysgl> SELECT uid,

-> UNION
-> SELECT null

+
|
;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;

’

;
|
;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.

state_id, username FROM users

state_id, state_name FROM states;
__________________ +

username |
__________________ +

John Smith |
Amy Carr |
Gertrude Asgaard |
Sunya Vadi |
Maya Vadi |
Haranya Kashipu |
Pralad Maharaj |
Franklin Pierce |
Daniel Webster |
Jack Kerouac |
Jake B. Smith
Alaska |
Alabama |
NY |
New Hampshire |
Hawaii |
__________________ ¥

UNION in conjunction with JOIN can be very useful for producing various result sets.

Take, for instance, a table of employees that has a parent-child relationship, an emp_id and
a boss_id. Viewed in its flat form, you have to mentally piece together the hierarchy of the

org chart.

Chapter 2: MySQL

Boss Hog |
Rosco P. Coaltrain |
Cleetus

Uncle Jesse |
Daisy Duke |
Bo Duke |

—_— — +
+—_——+ — +

With the right query using UNIONs and JOINs, it’s possible to have MySQL produce a result set that makes
it a lot more obvious what the org chart is, all without having to write Perl glue hash trickery — where you
use Per] hashes to map the results of children to the results of the parent. The example that follows shows
how a query utilizing JOIN and UNION can display a hierarchical relationship:

mysgl> SELECT org_chart FROM

-> (SELECT name AS org_chart FROM employees WHERE boss_id = 0
-> UNION

-> SELECT CONCAT(a.name, ' - ', b.name) FROM employees a

-> JOIN employees b ON (a.emp_id = b.boss_id)

-> WHERE a.boss_id = 0

-> UNION

-> SELECT CONCAT (a.name, ' - ', b.name, ' - ', c.name)

-> FROM employees a

-> JOIN employees b ON (a.emp_id = b.boss_id)

-> LEFT JOIN employees ¢ ON (b.emp_id=c.boss_id)) foo

-> WHERE org_chart IS NOT NULL ORDER BY 1.

| Boss Hog |
| Boss Hog - Rosco P. Coaltrain

| Boss Hog - Rosco P. Coaltrain - Cleetus |
| Uncle Jesse |
| Uncle Jesse - Bo Duke |
| Uncle Jesse - Daisy Duke |

This query essentially combines the results of three self joins — where a join is performed within the
same table — eliminating the NULL results, ordering by the first column, which is the only column. The
result is a hierarchical display, showing the top-level bosses with their subordinates and subordinates’
subordinates.

One other thing about UNION is worth mentioning: A UNION can deliver more information in a single
query since it is combining result sets, thus resulting in fewer database calls.

Ultimately, a good principle to keep in mind is simply to let the database do what it’s good at. So many

developers who still aren’t familiar with JOIN or UNION end up using Perl code to do what is simple using
a JOIN statement.

49

Chapter 2: MySQL

The MySQL client protocol supports sending multiple queries in one request, which can also help you to
avoid unnecessary database calls. More about this in Chapter 6, which discusses the DBD::mysql option
mysgl_multi_statements.

INSERT... SELECT

The INSERT ... SELECT SQL statement combines INSERT and SELECT, using the result set of a SELECT
statement to provide data to insert for the INSERT statement. It has the same basic syntax as INSERT does,
except it uses a SELECT SQL statement to provide the values to be inserted. So, for instance, say you have
a table with the same schema definition as users called users_copy:

mysgl> INSERT INTO users_copy SELECT * FROM users;
Query OK, 10 rows affected (0.00 sec)
Records: 10 Duplicates: 0 Warnings: 0

This is a very fast way of copying data from within the database. You can modify the SELECT statement
to provide any number or specific rows to be used in the INSERT as well.

Updating Data

In addition to inserting data and querying data, you'll also have to update data. The UPDATE SQL state-
ment is what is used to do this. The UPDATE statement can update one or more tables, unlike INSERTs
which are only one table at a time. The syntax for UPDATE is:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name(s)

SET col_namel=exprl [, col_name2=expr2]
[WHERE where_condition]
[ORDER BY ...]

[LIMIT row_count]

An example of an UPDATE against the users table can be shown in the example of where the ranking of a
user with the uid of 9 needs to be changed:

mysgl> UPDATE users SET ranking = 95.5 WHERE uid = 9;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

You will notice, as with INSERT, the client reports information on what actions on the table were per-
formed. In this instance, one row was matched and one row was changed. Note that MySQL only counts
rows that were actually changed. If the intent was to change all the score values, simply omitting the
WHERE clause accomplishes this:

mysgl> UPDATE users SET ranking = 96.5;
Query OK, 10 rows affected (0.00 sec)
Rows matched: 10 Changed: 10 Warnings: 0

In this case, 10 rows matched, 10 rows were changed. If you take this same query and apply a LIMIT as
well as an ORDER BY, it’s possible to update only the first two rows:

mysqgl> UPDATE users SET ranking = 97.5 ORDER BY uid LIMIT 2;
Query OK, 2 rows affected (0.00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

50

Chapter 2: MySQL

In this example, the query is using the result set limit as well as an ORDER BY to guarantee that the first
two rows are changed. This example is used to show that this can be done, but it is not necessarily the
best way to limit the result set that will be used by the INSERT statement. Also, this is not recommended
because there is no guaranteed order for rows in a database. The main reason you would use this is when
you have many identical rows in a database and you only want to update one of them, and in this case
using LIMIT 1 will allow you to do this!

An update of a particular range of rows can better be accomplished by using an index range:

mysgl> UPDATE users SET ranking = 95.5 WHERE uid <= 2;
Query OK, 2 rows affected (0.00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

This is much more efficient since this query is using an index to determine which rows to update.
MySQL in this case knows exactly what rows to update and is not using a result set to determine this.
You can also update multiple tables using a JOIN. The tables before the update:

mysgl> select * from users;

————— T et T T T
| uid | username | ranking | age | state_id |
Fm———— o o e e +
| 1 | John Smith | 95.50 | 33 | 1
2	Amy Carr	95.50	25	1
4	Gertrude Asgaard	96.50	65	1
5	Sunya Vadi	96.50	30	2
6	Maya Vadi	96.50	31	2
7	Haranya Kashipu	96.50	99	3]
8	Pralad Maharaj	96.50	8	3]
9	Franklin Pierce	96.50	60	4
10	Daniel Webster	96.50	62	4
11	Jack Kerouac	96.50	40	6

o Fommmm o Fmmm R Fommm +

Hmmmmmm e 4o +
| state_id |

Hmmmmmm e +

| Alaska |
| Alabama |
| New York |
| New Hampshire |
| Hawaii |
+

Now an UPDATE is executed against both users and states, being joined by the column state_id to

update any user to have an age of 20 (I wish I could do this for myself so easily!) who have state_id
matching “New York” in the states table as well as updating the values of state_name for the state
with a state_name of “New York” to “NY:”

mysgl> UPDATE users JOIN states USING (state_id)
->SET age = 20, state_name = 'NY'

51

Chapter 2: MySQL

->WHERE state_name = 'New York';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

And, of course, the client reports the number of rows updated in both tables as three. The tables after the
UPDATE:

mysgl> select * from users;

e e e fmmmmm o +
| uid | username | ranking | age | state_id |
e e e 4= Hmmmm e +
| 1| John Smith | 95.50 | 33 | 1
| 2 | Amy carr | 95.50 | 25 | 1
4	Gertrude Asgaard	96.50	65	1
5	Sunya Vadi	96.50	30	2
6	Maya Vadi	96.50	31	2
7	Haranya Kashipu	96.50	20	3
8	Pralad Maharaj	96.50	20	3
9	Franklin Pierce	96.50	60	4
10	Daniel Webster	96.50	62	4
11	Jack Kerouac	96.50	40	6

Hmm— e e T = Hmmmm e +

| state_id | state_name |
e S +
1	Alaska
2	Alabama
3	Ny
4	New Hampshire
5	Hawaii
e S +

Both users with the uid of 3 now have age set to 20, and state_name for “New York” is now “NY.”

Deleting Data

Deleting data from a table or tables is performed using the DELETE SQL statement. Its syntax for single-
table deletions is:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

. or for multiple-table deletions:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl_name[.*] [, tbl_name[.*]]

52

Chapter 2: MySQL

FROM table_references
[WHERE where_condition]

. or:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM tbl_name[.*] [, tbl_name[.*]]

USING table_references
[WHERE where_condition]

To delete a specific record for a given uid from the table users, you would execute the SQL statement:

mysgl> DELETE FROM users WHERE username = 'Amy Carr';
Query OK, 1 row affected (0.00 sec)

As with UPDATE, you can also apply a LIMIT to your statement:

mysqgl> DELETE FROM users LIMIT 1 WHERE username = 'Amy Carr';
Query OK, 1 row affected (0.00 sec)

This is particularly useful when you have identical rows in the table and only want to delete one of them.

Just as with UPDATE, you can also apply ranges:

mysgl> DELETE FROM users WHERE uid > 4;
Query OK, 7 rows affected (0.00 sec)

Of course, without any WHERE clause, all rows of the entire table are deleted:

mysgl> DELETE FROM users;
Query OK, 10 rows affected (0.00 sec)

The client reports 10 rows affected; all rows in this table are deleted. (This is a query that can often cause
you great grief!)

On way to avoid accidental deletion or updates to a table is to start the client with the --safe-updates
option. If you use this option, you are prevented from incurring these blunders and receive an error if
you try to run either an UPDATE or DELETE statement without either a LIMIT or WHERE clause.

This brings up a point worth discussing — that is, the question of what is the fastest way to delete all
rows from a table. In the previous query, DELETE FROM users, the same thing could have been achieved
with truncate users:

mysgl> truncate users;
Query OK, 0 rows affected (0.00 sec)

In this SQL statement, the client reports zero rows as having been affected. If this deletes all the rows of
a table, why does it report zero rows? That’s because TRUNCATE essentially drops and recreates the table
rather than deleting the data by rows. Thus, TRUNCATE is a much faster way to delete all data from a table
(as well as an even more efficient way to shoot yourself in the foot!).

53

Chapter 2: MySQL

Another point to consider when comparing DELETE FROM table versus TRUNCATE table is whether the
table has an auto_increment column. Consider the following table t1 with a column id, which is an
AUTO_INCREMENT column. It has three rows:

mysqgl> select * from tl;

ot
| id |
+o———t
| 1
| 2|
|3
+o———t

If the data in the table is deleted, and then reinserted:

mysql> DELETE FROM t1;
Query OK, 3 rows affected (0.00 sec)

mysgl> INSERT INTO tl VALUES (), (), ();
Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

mysqgl> select * from tl;

+-———+
| id |
+-———+
| 4]
| 5 |
| 6|
ot

If you don’t specify a value upon inserting into an AUTO_INCREMENT column, the value is assigned by
AUTO_INCREMENT.

As you can see, whatever the maximum value of the column with AUTO_INCREMENT prior to the deletion
of all rows was, the next row inserted will result in that column being assigned the value succeeding that
previous maximum value.

TRUNCATE is one way to avoid this:

mysgl> TRUNCATE tl;
Query OK, 0 rows affected (0.00 sec)

mysgl> INSERT INTO tl VALUES (), (), ();
Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: 0

mysgl> SELECT * FROM t1;

+o———t
| id |
+o———t
| 1
| 2|
|3
+o———+

54

Chapter 2: MySQL

Another way to solve this issue is to ALTER the table to set the initial value to start from 1.
ALTER TABLE tl AUTO_INCREMENT=1;
As with UPDATE, you can modify (delete) multiple tables in one query. Consider the following tables:

mysgl> SELECT * FROM parent;

Hmmmmm Hmmmmm e +
| parent_id | name |
Hmmmmmm e Hmmmmm e +
| 1 | has kids |
| 2 | empty nester |
e Hmm e +

Hmmmmmm o Hmmmmm Hmmmmm o +
| child_id | parent_id | name |
Hmmmmmm o Hmmmmm Hmmmmm o +
| 1 1| kid #1 |
| 2 | 1 | kid #2 |
Hmmmmmmm oo e Hmmmmmmm e +

o o o +
| child_id | parent_id | name \
o o o +
1] 1	kid #1 of kid #1	
2	1	kid #2 of kid #1
3 2	kid #1 of kid #2	
o o o +

It is possible to delete a given record from a parent so that it “cascade’ deletes — meaning that when
a particular row is deleted on the parent table for a given unique key value, the rows on the children
tables that refer to that row (having the same value as the parent’s UNIQUE key on the column with the
foreign key constraint) are deleted as well. Using a DELETE statement joining each table with a column
(parent_id) to ensure the proper relational hierarchy, you can delete an entire ““family”” from three tables:

mysgl> DELETE FROM parent, children, children_of_children
-> USING parent, children, children_of_children
-> WHERE parent.parent_id = children.parent_id
-> AND children.child_id = children_of_children.parent_id
-> AND parent.parent_id = 1;
Query OK, 6 rows affected (0.00 sec)

After which, it can be observed that the record in the parent table and all its child records have been
deleted:

mysgl> SELECT * FROM parent;

e e +
| parent_id | name |
e e +
| 2 | empty nester |
e e +

55

Chapter 2: MySQL

mysgl> SELECT * FROM children;
Empty set (0.00 sec)

mysqgl> SELECT * FROM children_of_children;
Empty set (0.00 sec)

Replacing Data

56

MySQL also supports REPLACE, a MySQL extension to the SQL standard. REPLACE performs either
an insert or an insert and delete, depending on whether the record being replaced already exists or
not. If it exists, it deletes that record and then reinserts it. If it doesn’t exist, it simply inserts that
record.

The syntax for REPLACE is like INSERT:
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
{VALUES | VALUE} ({expr | DEFAULT},...), (...),...
Or UPDATE:
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
SET col_name={expr | DEFAULT},
To see the full syntax of REPLACE:

mysgl> help REPLACE INTO;

To demonstrate how REPLACE works, a new user record is inserted with REPLACE because this record does
not yet exist:

mysgl> REPLACE INTO users VALUES (12, 'Jake Smith', 78, 50, 4);
Query OK, 1 row affected (0.00 sec)

Note in this example, MySQL indicates one row was affected. That is a good indicator that the row was
only inserted.

The same REPLACE statement is executed again:

mysgl> REPLACE INTO users VALUES (12, 'Jake Smith', 78, 50, 4);
Query OK, 2 rows affected (0.00 sec)

In this example, MySQL indicates two rows were affected. This is because the row was first deleted (one
row effected) and then reinserted (one more row affected) for a total of two rows affected. Also notice
that despite this being the same data, it is still replaced. This is something to consider when developing
applications. REPLACE may be convenient, but it’s not the most efficient method.

The next example shows an alternate syntax used for REPLACE that resembles UPDATE, except you cannot
specify a WHERE clause to update the record only if the data being replaced is different than what is already
existing.

Chapter 2: MySQL

mysgl> REPLACE INTO users

-> SET age = 50, uid = 12, ranking = 77, state_id = 5, username = 'Jake Smith';
Query OK, 2 rows affected (0.00 sec)

Another caveat with REPLACE can be seen in the following statement:

mysgl> REPLACE INTO users SET age = 50, uid = 12;
Query OK, 2 rows affected (0.00 sec)

mysgl> SELECT * FROM users WHERE uid = 12;

With this example, only age and uid were specified, and REPLACE promptly deleted the existing row and
then reinserted the row — but only with the value for uid and age. This is something to keep in mind

when using REPLACE. Also notice that username and state_id are set to their respective default values of
an empty string and zero.

As you can see, REPLACE is convenient in simple statements, but if efficiency is needed, REPLACE may
not be the best solution — particularly if you intend to replace many rows of data. The next statement,
INSERT ... ON DUPLICATE KEY UPDATE is better suited to update only if the row (or rows) has changed.

INSERT ... ON DUPLICATE KEY UPDATE

The previous section showed REPLACE, which inserts a row of data if the row doesn’t yet exist, or deletes
and then reinserts that row if it does exist. Instead of deleting and then reinserting the data, there is

another way of “replacing’” a row of data that will instead insert the data if it is a new row or update if it
is already existing.

If, in the previous example, you used INSERT ... ON DUPLICATE KEY UPDATE instead of REPLACE, the results
would be different.

If the row doesn’t yet exist, it is inserted:
mysgl> INSERT INTO users VALUES (12, 'Jake Smith', 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username='Jake Smith', ranking=78,

age=50, state_id =4 ;
Query OK, 1 row affected (0.00 sec)

As you can see, only one row is affected because the data with uid of 12 doesn’t yet exist.

If the row already exists, but the data is not different, no update occurs, as follows:
mysgl> INSERT INTO users VALUES (12, 'Jake Smith', 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username='Jake Smith', ranking=78,
age=50, state_id =4 ;
Query OK, 0 rows effected (0.00 sec)

It then reports that zero rows have been affected.

57

Chapter 2: MySQL

If the data is different, then whatever column is different is modified:

mysgl> INSERT INTO users VALUES (12, 'Jake Smith', 78, 50, 4)

-> ON DUPLICATE KEY UPDATE uid=12, username='Jake Smith', ranking=78,
age=49, state_id =4 ;
Query OK, 2 rows affected (0.00 sec)

This shows two rows have been affected.

Also, another benefit of INSERT ... ON DUPLICATE KEY UPDATE is that if not every column is listed, in this
case only uid and username, only the column that has a different value is updated.

mysgl> INSERT INTO users VALUES (12, 'Jake Smith', 78, 50, 4)
-> ON DUPLICATE KEY UPDATE uid=12, username='Jake B. Smith';
Query OK, 2 rows affected (0.00 sec)

mysgl> SELECT * FROM users WHERE uid = 12;

In this case, only the username column was modified, leaving all the others alone. This example shows
that the problem illustrated earlier with REPLACE isn’t a problem using INSERT ... ON DUPLICATE KEY
UPDATE.

It all depends on what you need in terms of behavior. REPLACE might work fine if you don’t care whether
the existing row is deleted or not, and is simple enough. However, if you want the statement to exhibit
more discrimination in whether it updates or inserts if it needs to, then INSERT ... ON DUPLICATE KEY
UPDATE is preferred.

Operators

MySQL supports the standard SQL operators you would expect in a database. Some examples of mathe-
matical operations you can use with MySQL are shown in the following table:

Operation Sample Query Result

Basic math SELECT ((234 * 34567) / 32) +1; 252772 .1875
Modulus SELECT 9 % 2; 1

Boolean SELECT !0; 1

Bit operators | (or), & and SELECT 1 | 0; SELECT 1 & 0 10

Right shift select 8 << 1; 16

Left shift select 8 >>1; 4

58

Chapter 2: MySQL

For a complete listing of all operators and their usage, run the following from the MySQL command-line
client:

mysgl> help Comparison operators;
mysqgl> help Logical operators;

See the section “Using Help”” for more information on how to use MySQL'’s help facility.

Functions

MySQL has numerous functions to take advantage of and give the developer yet more tools and tricks
to use in development. The various functions perform a variety of purposes and act on various types
of data including numeric, string, date, informational, binary data, as well as provide control flow
functionality.

For a complete listing of the numerous MySQL functions, you can run the following from the MySQL
command-line client:

mysqgl> help Numeric Functions;

mysgl> help Bit Functions;

mysqgl> help Date and Time Functions;

mysgl> help Encryption Functions;

mysqgl> help Information Functions;

mysgl> help Miscellaneous Functions;

mysqgl> help String Functions;

mysgl> help Functions and Modifiers for Use with GROUP BY;

Also, the MySQL online manual has a comprehensive listing at http: //dev.mysql.com/doc/refman/5.1
/en/functions.html.

This section explains several of these functions and provides some examples to help you under-
stand just how useful these functions can be. MySQL offers a wide variety of functions, depending
on your application requirements. Here we show you some of the more common ones. The
MySQL user’s manual covers all of them in much more detail than we can within the scope of
this book.

When you are designing and coding your application, you often try to determine whether it’s better to
process something in the application code or in the database. The question comes down to this: What it
is that you need to do? How much complexity do you want to allow in your application code on the one
hand, and do you want the database to take care of storing and retrieving data so that the application is
primarily displaying that data? The answer to the second question comes down to personal preference.
With MySQL functions, you are given even more ways to solve the usual problems that arise when
developing web applications.

Informational Functions

Informational functions are handy tools to provide you with information about the database as well as
the interaction between tables and the data you are modifying them with, as shown in the following
table:

59

Chapter 2: MySQL

Function Description Example
DATABASE() , This function provides you with mysql> SELECT DATABASE() ;
SCHEMA () the name of the schema you are Hmmm e +
connected to. This is very | DATABASE() |
convenient if you are like the Hoommmmmm o +
author of this book and | webapps |
sometimes forget what schema B *
you've connected to!
CURRENT_USER() , If you've forgotten what user mysqgl> SELECT CURRENT_USER() ;
CURRENT_USER you are currently connected to = +
(again, like the author is known | CURRENT_USER() |
to do), this MySQL command it +
will tell you what user and host | webuser@localhost |
you are connected to. FoTTTTTTTT T +
LAST_INSERT_ID(), This function returns the last mysqgl> INSERT INTO users
LAST_INSERT ID value automatically generated (username, ranking, age, state_id)
and assigned to a column -> VALUES ('Arthur Fiedler',
defined with the 99.99, 84, 9);

AUTO_INCREMENT attribute.
mysqgl> select LAST INSERT ID();

B it b +
| LAST_INSERT_ID() |
o +
| 12 |
o +

For more information on informational functions, simply run:

mysqgl> help Information Functions;

Aggregate Functions
There are aggregate functions in MySQL that you can use to print out common statistics about data.

Aggregate Function Description
MIN () Returns the minimum value of a column in a result set or expression
MAX () Returns the maximum value of a column in a result set or expression
AVG() Returns the average value of a column in a result set or expression
SUM () Returns the sum of all values of a column in a result set or expression
COUNT () Returns the count of rows of a column or columns in a result set

60

Chapter 2: MySQL

Aggregate Function Description

COUNT DISTINCT Returns a count of the number of different non-NULL values

GROUP_CONCAT () Returns a comma-separated string of the concatenated non-NULL values
from a group or NULL if there are no non-NULL values

STDDEV () or Returns the population standard deviation of a column in a result set or

STDDEV_POP () expression

VARIANCE () Returns the population standard variance of a column in a result set or
expression

For example, if you wanted to see the minimum, average, maximum, sum, and standard deviation and
variable for the ages of all users:

mysqgl> SELECT MIN(age), AVG(age), MAX(age), SUM(age), STDDEV (age),
-> VARIANCE (age) FROM users\G

ER R R R S kI 1 row kkhkkhkkhkkkkkkkhkkhkhkkhkhkkkkkkhk khkkkkk*x*%

MIN (age): 20
AVG(age) 40.5000

X (age): 65

SUM(age): 486
STDDEV (age) : 15.6605
VARIANCE (age): 245.2500

Or, if you wanted to count the number of users with the age greater than 40:

mysgl> SELECT COUNT (*) FROM users WHERE age > 40;

o +
| COUNT (*) |
e +
! 3
e +

You have a very useful modifier for GROUP BY, ROLLUP, which in addition to the grouping and summation
of ages per state, also shows you the total sum of ages for all states!

mysgl> SELECT SUM(age) AS age_total, state_name
-> FROM users
-> JOIN states
-> USING (state_id)
-> GROUP BY state_name WITH ROLLUP;

|
Alaska \
New Hampshire |
\
|

+
|
+
61 | Alabama
|
|
| nNv
|
+

61

Chapter 2: MySQL

For more information on aggregate functions, simply run:
mysgl> help Functions and Modifiers for Use with GROUP BY;

Numeric Functions

MySQL also has many numeric functions for various mathematical operations. A full listing of these
functions can be found on MySQL’s web site http://dev.mysql.com/doc/refman/5.1/en/numeric-
functions.html. Some of these functions include geometrical conversions, numbering system conver-
sions, logarithmic functions, as well as square root and raising a number to a power.

Here are examples of geometrical functions for sine, cosine tangent, cotangent:

mysgl> SELECT COS(90), SIN(90), TAN(90), COT(90);

o Fomm fom e fom - +
| cos(90) | SIN(90) | TAN(90) | coT(90) \
o Fomm o fom - +
| -0.44807361612917 | 0.89399666360056 | -1.9952004122082 | -0.50120278338015
o Fomm o fom - +

The function PI () generates an approximation to the number r that you can then convert from radians
to degrees with the DEGREES () function.

mysgl> SELECT DEGREES(PI()*1.5), DEGREES(PI()),
-> DEGREES (PI()/2), DEGREES(PI()/4);

= +
| DEGREES(PI()*1.5) | DEGREES(PI()) | DEGREES(PI()/2) | DEGREES(PI()/4) |
= F————————— - = +
| 270 | 180 | 90 | 45 |
= F——————————— - = +

This example shows raising a number to a power, and getting the square root of a number:

mysqgl> SELECT SQRT(4096), POWER(2,8);

o Fom +
| SQRT(4096) | POWER(2,8) |
Fom Fom +
| 64 | 256 |
Fom Fom +

mysgl> SELECT BIN(17), OCT(64), HEX(257), CONV('ABCDEF', 16, 10);
Fom— - o Fommm - e +
| BIN(17) | OCT(64) | HEX(257) | CONV('ABCDEF', 16, 10) |
Fo—— to——————— Fommm - e +
| 10001 100 | 101 | 11259375 |
Fo—— to——————— Fommm - e +
String Functions

MySQL has various string functions that can be found in detail in MySQL'’s online manual. Some of the
common ones that you'll end up using are functions that you would often use in web site development,
such as those that find patterns, concatenate strings, replace strings, etc.

62

Chapter 2: MySQL

The following example shows the use of CONCAT () and REPLACE () to achieve concatenation of three
strings: username, a spacer string, and the result of replacing any occurrence of state_name having the
value of “New Hampshire” with “NH.”

mysgl> SELECT CONCAT (username, ' : ', REPLACE(state_name, 'New
Hampshire', 'NH'))

-> FROM users JOIN states USING (state_id)

-> WHERE state_id = 4;

| concat(username, ' : ', replace(state_name, 'New Hampshire', 'NH')) |

| Franklin Pierce : NH |
| Daniel Webster : NH |
LENGTH () is also a very convenient function for web developers:

mysqgl> select username, length(username) from users where
length (username) > 10;

e e +

| username | length(username) |

e e +
Daniel Webster 14
Franklin Pierce 15
Gertrude Asgaard 16

| |
| |
| |
Haranya Kashipu 15
| |
| |
| |
| |

Jack Kerouac 12

Jake B. Smith 13

Pralad Maharaj 14
o o +

You can also use functions in INSERT and UPDATE statements, where you would normally have an actual
value being changed. For instance, if you had a table called Iengths, you could simply use the function
call in the previous SELECT statement:

mysgl> INSERT INTO lengths SELECT uid, LENGTH (username) FROM users;

There are also string comparison functions: LIKE, NOT LIKE, SOUNDS LIKE (SOUNDEX()), STRCMP (), and
REGEXP.

The function LIKE is a simple SQL regular expression pattern-matching function.

mysqgl> SELECT username FROM users WHERE username like 'Am$';

mysgl> SELECT 'Amy' LIKE '%my';

| 'Amy' LIKE '%my' |

63

Chapter 2: MySQL

o +

mysqgl> SELECT count (*) FROM states WHERE state_name NOT LIKE '%shire%';
Fommm = +

| count(*) |

Fmmmm +

| 4]

Fmmmm +

Note for this code:

0 1 (TRUE): Means that you have a match.
Q 0 (NULL): Means that there are no matches.
Q LIkE: Will return NULL if either argument is NULL.

It should be noted that SQL uses the % (percent) sign for wildcard matching of one or more. For single
wildcard, _ (underscore) is used.

SOUNDS LIKE is also a useful function for words that sound alike. This performs the same query as
SOUNDEX (stringl) = SOUNDEX (string2). Soundex is a phonetic algorithm for indexing names by sound,
as pronounced in English, so these functions primarily work with English words. For a complete
description of soundex, see the wiki page at http://en.wikipedia.org.wiki/Soundex.

mysgl> select 'aimee' sounds like 'amy';

e +

| 'aimee' sounds like 'amy' |
e +

| 1
e +

mysgl> select soundex('Jennifer') = soundex('amy');
T it TR +
| soundex('Jennifer') = soundex('amy') |
T it TR +
| 0 |
T it TR +

Another example for using soundex is to compare two words or names pronounced the same but with
different spellings. In this example, the return value of sound is the same for both “Patrick”” and “‘Patrik”
since when spoken, they are pronounced the same.

mysgl> select soundex('Patrik'), soundex("Patrick");
L L e +
soundex ("Patrick") |

Another way of comparing string values is to use regular expressions — a major part of life for a Perl
programmer. They are available to use in MySQL as well. Pattern matching, which you are familiar with
as a Perl programmer, works the pretty much the same as the REGEXP function.

64

Chapter 2: MySQL

amysgl> SELECT 'A road less traveled' REGEXP '.[var]ele.\s?';

e +
| 'A road less traveled' REGEXP '.[var]ele.\s?' |
e +
| 1
e +

mysgl> SELECT 'banana' REGEXP '(an){1,2}';

B e +
| 'banana' REGEXP '(an){l1,2}' |
B e +
! 1
B e +
The functions SUBSTR () — also named SUBSTRING () and STRCMP () — perform the same functionality as

their C and Perl counterparts. If the two strings are the same, the value returned is 0. The return values
is non-zero:

If the first string is smaller, then the result is 1; if the second string is smaller the result is -1.

mysgl> SELECT strcmp('same', 'same');

e +

| strcmp('same', 'same') |
e +

| 0 |
e +
mysql> SELECT strcmp('same', 'different');
o +
| strcmp('same', 'different') |
o +
| 1
e +

SUBSTRING () works as you’d expect, but can take a variety of arguments:

mysgl> SELECT SUBSTRING('foxtrot', 4);

e e e - +
| SUBSTRING('foxtrot', 4) |
e e e - +
| trot

e e e - +

mysgl> SELECT SUBSTRING ('foxtrot', 2, 2);

o +
| SUBSTRING ('foxtrot', 2, 2) |
o e +
| ox |
o e +

mysgl> SELECT SUBSTRING('foxtrot' from 3);

| SUBSTRING('foxtrot' from 3) |

65

Chapter 2: MySQL

For more information on string functions, run the following:

mysgl> help string functions;

Date Functions

66

For web developers, date functions are probably some of the most often-used database functions. Often
you have to produce data from a table sorted or grouped by date, limited to a time frame, and then
produce a date format that is more web-server friendly or compatible with the operating system time
format. Whatever type of date operation you need, MySQL has a date function that most likely fulfills
that requirement.

For the full listing of date functions, run the following:
mysgl> help date and time functions;

You can also find documentation covering date and time functions on MySQL’s developer web site at
http://dev.mysqgl.com/doc/refman/5.1/en/date-and-time-functions.html.

This section covers the ones that we find useful in web development.

The function NOW () is probably one of the most-used functions. The convenient thing about it is that you
can, in turn, pass it to other functions, as shown in this example:

mysgl> SELECT NOW(), DAY (NOW()), WEEK(NOW()), MONTH (NOW()),
QUARTER (NOW ()) ,
-> YEAR(NOW()), DATE(NOW()), TIME(NOW()), TO_DAYS (NOW()),

WEEKOFYEAR (NOW ()) \G

ERERE R SRS SRR SRS RS EEEEEEESEES] l Trow khkkhkkkhkkhkhkhkkhrxkdkhkhxdkhkhkrxdkhkhrkk*k

NOW(): 2008-07-08 21:28:22

DAY (NOW()): 8
WEEK (NOW ()) : 27
MONTH (NOW ()) : 7
QUARTER (NOW ()) : 3
YEAR (NOW ()) : 2008
DATE (NOW ()) : 2008-07-08
TIME (NOW()): 21:28:22
TO_DAYS (NOW ()) : 733596
WEEKOFYEAR (NOW ()) : 28

Now () provides the current time and date of the database. To make it so you have one source of determin-
ing what time it is on your server and to ensure you don’t have to worry if there’s a time zone difference
between your database and operating system, use Now (). Also, you'll see that NOW () is the argument to
various date functions in this SQL statement. Each one of these functions converts the value of now into
a different representation of the current time. You can begin to imagine what applications could use this
type of data!

Chapter 2: MySQL

UNIX_TIMESTAMP () is also another useful function that is often used as such:

mysqgl> SELECT UNIX_ TIMESTAMP () ;

e e e +
| UNIX_TIMESTAMP () |
e e e e +
| 1215567280 |
e e e e +

For example, UNIX_TIMESTAMP () returns the number of seconds since “Bridge Over Troubled Water”
was song of the year and you drove your VW Bus to Half Moon Bay (1970 January 01).

You can also convert back from UNIX_TIMESTAMP:

mysqgl> SELECT FROM_UNIXTIME (UNIX_TIMESTAMP()) ;

B et et +
| FROM_UNIXTIME (UNIX_TIMESTAMP()) |
Bt ettt e +
| 2008-07-08 21:47:58

e e +

And thus produce the same value that Now () would provide.
There are also data arithmetic functions such as DATE_ADD () and DATE_SUB () :

mysqgl> SELECT NOW(), DATE_ADD(NOW (), INTERVAL 2 DAY),
-> DATE_ADD('2007-07-01 12:00:00" ,
INTERVAL 1 WEEK),DATE_SUB(NOW(), INTERVAL 38 YEAR)\G
R N
NOw(): 2008-07-08 21:58:25
DATE_ADD (NOW (), INTERVAL 2 DAY): 2008-07-10 21:58:25
DATE_ADD('2007-07-01 12:00:00' , INTERVAL 1 WEEK): 2007-07-08 12:00:00
DATE_SUB(NOW (), INTERVAL 38 YEAR): 1970-07-08 21:58:25

In this example, you can see how you can obtain the time and date of the some interval specified added
to or subtracted from a date time value provided either explicitly or from the output of NOwW ().

You could also use functions like DATE_ADD () and DATE_SUB () to obtain records from a table within or
before a given period of time. In this example, there is a table i tems which stores items of an XML feed,

each having its own created date. This query is run in order to obtain a count of items that are older than
four weeks:

mysgl> SELECT COUNT (*) FROM items WHERE created < DATE_SUB (NOW(),
INTERVAL 4 WEEK) ;

e +
| count(*) |
tmmm +
| 322180 |
tmmm +

67

Chapter 2: MySQL

You might also want to use date functions to insert data that is older than a certain date from a source
table to either a queue for deletions or even a historical table. In this example, items older than four weeks
are inserted into a table that stores ids of the items that will later be deleted.

mysgl> INSERT INTO items_to_delete

-> SELECT item_id FROM items

-> WHERE created < DATE_SUB(NOW (), INTERVAL 4 WEEK) ;
Query OK, 322180 rows affected (3.94 sec)
Records: 322180 Duplicates: 0 Warnings: 0

Another commonly used date function is DATE_FORMAT (). This is a formatting function that allows you
to specify exactly how you want a date printed out. Its usage is:

DATE_FORMAT (date, format)

Depending on the formatting characters you choose as well as any other text in the format string, you
can have the date printed any way you want:

mysqgl> select date_format (now(), '%Y, %M the %D');
EE e] +
| date_format (now(), '%Y, %M the %D') |
L D e L e e +
| 2008, July the 8th |
L e e L e et +

For a more complete listing on how to use DATE_FORMAT, you can run the following:
mysqgl> help date_format;

. or visit the MySQL user manual page: http://dev.mysql.com/doc/refman/5.1/en
/date-and-time-functions.html#function_date-format.

For a listing of all date functions, run:

mysgl> help

Date and Time Functions; Control Flow Functions

68

Control flow functions allow you to write conditional SQL statements and the building blocks for writing
useful triggers, functions, and stored procedures. The control flow functions are CASE, IF, IFNULL () and
NULLIF ().

Values in MySQL conditional expressions are interpreted the following way:

Q 0Ois false.
0 NULLis NULL (but in most cases can be regarded as false).
Q 1 (or any integer value <> 0) is regarded as TRUE.

The function CASE works just like the case operator, just as you have in other programming languages. The
syntax for using CASE is essentially:

Chapter 2: MySQL

CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN
result ...] [ELSE result] END

or

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...]
[ELSE result] END

A usage example is as follows:

mysqgl> SELECT CASE WHEN NOW() > DATE_ADD(NOW(), INTERVAL 1 DAY)
-> THEN 'Later' ELSE 'Earlier' END;

- +
| CASE WHEN NOW()> DATE_ADD (NOW (), INTERVAL 1 DAY) THEN 'Later' ELSE 'Earlier' END |
- +
| Earlier |
- +

mysgl> SELECT CASE WHEN NOW()> DATE_SUB(NOW (), INTERVAL 1 DAY)
-> THEN 'Later' ELSE 'Earlier' END;

- +
| CASE WHEN NOW()> DATE_SUB(NOW(), INTERVAL 1 DAY) THEN 'Later' ELSE 'Earlier' END |
g +
| Later |
g +

This next example shows using CASE on a query against the states table from earlier examples. In this
example, state_name is checked for specific values and if there is a match, the value following THEN is
printed. Everything between CASE and END can then be treated as a return value in a result set and in this
case is aliased with a column name of slogan.

mysgl> SELECT state_name,

-> CASE WHEN state_name = 'Hawaii' THEN 'Aloha’
-> WHEN state_name = 'Alaska' THEN 'Denali’
-> WHEN state_name = 'Alabama' THEN 'Sweet Home'
-> WHEN state_name = 'New Hampshire' THEN 'Live Free or Die'
-> ELSE state_name END
-> AS slogan FROM states;

fmm e B e +

| state_name | slogan |

fmm e B e +

| Alaska | Denali |

| Alabama | Sweet Home |

| v | v |

| New Hampshire | Live Free or Die |

| Hawaii | Aloha |

fmm e B T +

In this example, every state except Ny is given a logo, NY defaulting to the state_name value. This
example could also have been written as:

mysgl> SELECT state_name,
-> CASE state_name WHEN 'Hawaii' THEN 'Aloha’

69

Chapter 2: MySQL

-> WHEN 'Alaska' THEN 'Denali’

-> WHEN 'Alabama' THEN 'Sweet Home'

-> WHEN 'New Hampshire' THEN 'Live Free or Die'
-> ELSE state_name END

-> AS slogan FROM states;

IF () is another conditional function that can be used to test a value and toggle to two possible outputs.
The syntax of the IF conditional function is:

IF (condition, exprl, expr2)

As in:
mysqgl> SELECT IF (1, 'valuel', 'value2');
B e +
| IF(1, 'valuel', 'value2') |
e +
| valuel |
e +
mysgl> SELECT IF(0, 'valuel', 'value2');
e +
| IF(0, 'valuel', 'value2') |
e +
| value2 |
B +

Using IF () with other functions, you can come up with all manner of convenient statements.

mysgl> SELECT TO_DAYS (NOW()), IF(TO_DAYS(NOW()) % 2, 'odd day',
'even day')

-> AS ‘Type of Day";
o fmm e +

| TO_DAYS (NOW())

Using Help

70

The section covered a portion of the total number of operators and functions available for MySQL. For
a complete listing of all the various operators and functions available, in addition to MySQL’s online
documentation at http://dev.mysgl.com/doc/, you can also use MySQL'’s help facility.

For a top-level listing of all the help categories available, run the following;:

mysgl> help contents;
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item>
is one of the following
categories:
Account Management

Chapter 2: MySQL

Administration
Data Definition
Data Manipulation
Data Types
Functions

Functions and Modifiers for Use with GROUP BY
Geographic Features
Language Structure
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers

To see a listing of the top-level function and operator categories into which you can drill down deeper
for more detailed information, run the following:

mysgl> help functions;
You asked for help about help category: "Functions"
For more information, type 'help <item>', where <item>
is one of the following
topics:

CREATE FUNCTION

DROP FUNCTION

PROCEDURE ANALYSE
categories:

Bit Functions

Comparison operators

Control flow functions

Date and Time Functions

Encryption Functions

Information Functions

Logical operators

Miscellaneous Functions

Numeric Functions

String Functions

To see a list of the various comparison operators that each have their own help pages:

mysql> help Comparison operators;

You asked for help about help category: "Comparison operators"
For more information, type 'help <item>', where <item>

is one of the following

topics:

BETWEEN AND
COALESCE
GREATEST

71

Chapter 2: MySQL

IN

INTERVAL

Is

IS NULL
ISNULL
LEAST

NOT BETWEEN
NOT IN

The help information for the operator >= (greater than or equal) in particular is displayed by running the
following:

mysgl> help >=;
Name: '>='
Description:
Syntax:

>=

Greater than or equal:

URL: http://dev.mysqgl.com/doc/refman/5.0/en/comparison-operators.html
Examples:

mysqgl> SELECT 2 >= 2;

-> 1

This is an extremely useful feature that is often overlooked but can work even when you are on a long
plane trip with no Internet connectivity!

User-Defined Variables in MySQL

Just as with Perl, MySQL/SQL gives you the ability to define variables. These variables are durable
during the particular connection being used. This means you can set them within a connection and refer
to them in subsequent statements while using that same connection, and are freed when the connection
is closed.

Using user-defined variables in MySQL is very simple. Variables are referenced as @variable, and are
set in the following two ways:

mysgl> SET @myvar = 'someval', @myothervar= 'someother val';

mysqgl> SELECT @myvar, @myothervar;

The = or := assignment operators can be used in SET. You can set one or more variables in one statement.

72

Chapter 2: MySQL

The other method to assign a variable is within any other statement not using SET, where only the :=
operator can be used, because within any other statement than SET, the = operator is treated as a com-
parison operator.

mysgl> SELECT @Qothervar := 'otherval';
B +

| @othervar := 'otherval'
e +

| otherval |
e +

Fmmm e +
| @othervar |
Fmmm e +
| otherval |
Fmmm e +

As you can see, assignment and display happen in the first statement, and the value is verified as still
being set in the second statement.

mysgl> SELECT @myvar := 'some new val', @myothervar := 'some other val';
o B e +
| @myvar := 'some new val' | @myothervar := 'some other val' |
B i B atatat e L e P +
| some new val | some other val |
o Bt atatat e LR P +

mysgl> SELECT @myvar, @myothervar;

Hmmmm e Hmmm e +
| emyvar | @myothervar |
Hmmmm e Hmmm e +
| some new val | some other val |
4o e +

You can also set variables within data modification statements such as INSERT and UPDATE.
mysgl> UPDATE tl SET name = @name := 'first' WHERE id = 1;
mysgl> INSERT INTO tl (name) VALUES (@newname := 'Jim Beam');

mysgl> select @name, @newname;

73

Chapter 2: MySQL

This makes a very convenient way of both modifying data and accessing the values you updated or
inserted. You can also use variables with func-
tions:

mysqgl> SET @a= 'Ab', @b= 'stract';

mysgl> SELECT concat (@a, @b) ;

R +
| concat(@a,@b) |
O +
| Abstract |
O +

Another nifty usage example with user-defined variables is to use the result sets of a query to increment
or sum its value:

mysqgl> select @a := @a * 33 from tl;

| \
\ \
\ 71874 |
\ 2371842 |
\ 78270786 |
| 2582935938 |
| 85236885954 |
| 2812817236482 |

With user-defined variables, as with functions, you have another choice to make: whether to use your

application code or database to store certain values between statements. It all depends on your develop-
ment style and preference. In some cases, using user-defined variables means you can avoid a call to the
database to retrieve a value that you then use in a subsequent statement, and therefore be more efficient.

MySQL Privileges

The MySQL privilege system is something that a web applications developer or database administrator
should be familiar with. In the course of managing a database for web applications, you will have to
be able to create and delete users as well as limit what resources the users have access to. The MySQL
privilege system offers a lot of control over what database objects a user has access to and what SQL state-
ments can be run against those objects, such as SELECT, INSERT, UPDATE, and DELETE, as well as control
over creating functions, procedures, triggers, accessing system status, and administrative functions.

A MySQL user account is made up of a username and host from which that user can connect, and has
a password. A MySQL account has no connection to any operating system user account. For instance,

74

Chapter 2: MySQL

MySQL comes installed with a root user as the default administrative user of the database, but the only
connection between MySQL'’s root user and the operating system’s root user is the name itself.

MySQL Access Control Privilege System

There are two stages to MySQL access control:

1. The server verifies if the given user can connect to the server.

2. If the user can connect, any statement issued by the user is checked by the server to deter-
mine if the user has privileges to execute that statement.

To connect to MySQL as a specific user with the MySQL client program mysql, the usage, as has been
shown in previous sections, is:

mysgl —--user=username --password schemaname
Also, you do not have to specify a password on the command line:
mysgl --user=username --password schemaname
With this last usage example, the mysqgl client program will prompt you for a password.

patg@hanuman:~$ mysqgl --user=webuser --password webapps
Enter password:

MySQL Global System User

The root user, which is the default administrative user for MySQL, has global privileges, meaning that
this user has all privileges to all schemas and tables within those schemas, as well as the ability to create
other users and grant those users privileges for the entire database server. By default (unless you later
change permissions for this user), the root user, as installed, can only connect from the same host the
database server has been installed on and requires no password (this can later be set to require one as
well). To connect as the root user, simply specify root on the command line:

mysgl -u root

Once connected, you can connect to any schema you need to by using the client command connect or
use (both accomplish the same thing):

patg@hanuman:~$ mysgl -u root

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1852

Server version: 5.0.45

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysqgl> connect mysqgl

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

75

Chapter 2: MySQL

Connection id: 1853
Current database: mysqgl

mysql>

MySQL System Schema Grant Tables

76

The mysql schema is the schema in which MySQL stores its system table, and in particular those pertain-
ing to the accounts system. The tables that exist in this schema can be displayed with the sHOwW TABLES
command:

mysqgl> show tables;

B et et et +
| Tables_in_mysql |
B e e e e +

columns_priv

db

func

help_category
help_keyword
help_relation
help_topic

host

proc

procs_priv
tables_priv

time_zone
time_zone_leap_second
time_zone_name
time_zone_transition
time_zone_transition_type
user

The various tables in the mysgl schema can be seen in the output above.

Of these tables, user, db, host, tables_priv, columns_priv and procs_priv are the grant tables, which
pertain to user privileges. These tables can be directly modified by normal SQL statements, but for the
scope of this book, it is recommended that you use the GRANT and REVOKE statements to control user
privileges.

If you ever want to see all the available privileges in MySQL, the statement SHOW PRIVILEGES will
display all of them.

There is a certain hierarchy of scope of permission of these tables. The user table is the top-most grant
table and is the first table checked to determine whether the user can connect to the MySQL instance (the
first stage of authentication), and is essentially the global table for privileges. If you look at this table you
will see entries for the default admin root system user as well as the user webuser that has been created
for demonstrating examples in this book:

mysqgl> SELECT * FROM user where host='localhost' and (user='root' or

Chapter 2: MySQL

user="webuser") \G
LR SRS SRS SRR R EEEEEEEEEEEE SRR 1. row LR R SRS SRS R EEEEEEEEEEEEEEE S
Host: localhost
User: root
Password: *81F5E21E35407D884A6CD4A731AEBFB6AF209ELB
Select_priv: Y
Insert_priv:
Update_priv:
Delete_priv:
Create_priv:
Drop_priv:
Reload_priv:
Shutdown_priv:
Process_priv:
File_priv:
Grant_priv:
References_priv:
Index_priv:
Alter_priv:
Show_db_priv:
Super_priv:
Create_tmp_table_priv:
Lock_tables_priv:
Execute_priv:
Repl_slave_priv:
Repl_client_priv:
Create_view_priv:
Show_view_priv:
Create_routine_priv:
Alter_routine_priv:
Create_user_priv:
Event_priv:
Trigger_priv:
ssl_type:
ssl_cipher:
x509_1issuer:
x509_subject:
max_questions:
max_updates:
max_connections:
max_user_connections: 0
PR EE S S S S S SRR SRR RS EEEEEEEEEE] 2. Trow LR R RS S SRS SRS SRR EEEEEEEEEEE
Host: localhost
User: webuser
Password: *E8FFA493478066901F07DC13F7E659283EFA30AB3
Select_priv: N
Insert_priv:
Update_priv:
Delete_priv:
Create_priv:
Drop_priv:
Reload_priv:
Shutdown_priv:
Process_priv:
File_priv:

KKK KKK KK KKK KRR KKK KKK

o O o

Z 22222222

7

Chapter 2: MySQL

78

Grant_priv:
References_priv:
Index_priv:
Alter_priv:
Show_db_priv:
Super_priv:
Create_tmp_table_priv:
Lock_tables_priv:
Execute_priv:
Repl_slave_priv:
Repl_client_priv:
Create_view_priv:
Show_view_priv:
Create_routine_priv:
Alter_routine_priv:
Create_user_priv:
Event_priv:
Trigger_priv:
ssl_type:
ssl_cipher:
x509_1issuer:
x509_subject:
max_questions:
max_updates:
max_connections:
max_user_connections:

Zzz2azz2z2222222222%32

o O O O

mysgl> SELECT host, user FROM user WHERE user = 'webapp' OR

user = 'root';

o I +
| host | user |
S I +
127.0.0.1	root
localhost	root
radha.local	root
fmmm e e +

Each of the grant tables contains both scope and privilege columns. As shown in the output of the user
table in the previous code, the columns User, Host and Password are the scope columns. The combina-
tion of User and Host is the unique combination used to determine if the given user at a specific host
is allowed to connect. The password column contains the scrambled password of a given user. When
authenticating, the server scrambles the password that the user has entered using the same scrambled
algorithm in which the original password was stored, and compares it to the stored encrypted pass-
word in the password column. Depending on whether there is a match, the user connects. Scrambled here
means that you cannot recover this password and that the original password cannot be deduced from
the scrambled string.

The various privilege columns in user are the privilege names that the user is granted, each a specific
database request he or she is allowed to perform. These privileges are granted or not granted depending
on the value of Y or N respectively. Each of these privileges is described in more detail in the MySQL
reference manual.

Chapter 2: MySQL

As you can see from the example, the global admin user root has three entries, each allowing root to
connect from localhost, 127.0.0.1 and the hostname of the machine, in this case haunuman. These are
all to allow root to connect from the same host the database server is running on. Notice, too, that root
initially has an empty password, making it so a password doesn’t need to be specified when connecting.
Also, root is granted every privilege as indicated with all privilege columns being set to “Y.” Since this
entry is in users, which is the global privilege table, this means root has these privileges on all schemas
and tables.

When the webuser user was created in Appendix A, the command issued was:

GRANT ALL PRIVILEGES ON webapps.* TO 'webuser'@'localhost'
IDENTIFIED BY 'mypass';

For the user table, this means that the user webuser was given an entry to connect and a password, but
since webuser is not a global admin user, no other privileges at the global level were given. Because
webuser is granted privileges to a specific schema, webapps, the privileges for webuser are granted in the
table db, where schema-specific privileges are granted to regular users.

The table db controls what schemas a regular non-global user has access to. The output of the db table for
the user webuser gives an idea of what exactly is meant by schema-level privileges:

mysgl> SELECT * FROM db WHERE user = 'webuser'\G

EEEEEE RS EEEEEEEEEEEEEEEE SRR 1' row R R R RS R EE S EEEEEEEEEEEEEEEEE]
Host: localhost
Db: webapps
User: webuser

Select_priv:
Insert_priv:
Update_priv:
Delete_priv:
Create_priv:
Drop_priv:
Grant_priv:
References_priv:
Index_priv:
Alter_priv:
Create_tmp_table_priv:
Lock_tables_priv:
Create_view priv:
Show_view_priv:
Create_routine_priv:
Alter_routine_priv:
Execute_priv:

KKK K Z KKK KKK

For the table db, the role columns are User, Host and DB; the various other “priv’’ columns are the
privileges. These columns of course mean what username and from which host a user can connect, and
to which schema that user can connect.

In the grant statement where webuser was created, shown previously, webuser was granted every privi-
lege on the webapps schema, which can be seen by this output showing ‘Y” as the value for all privileges,

79

Chapter 2: MySQL

with the exclusion of the Grant_priv column. The Grant_priv column indicates the grant privilege,
which merely gives the user the ability to also grant privileges to other users, and could have been given
to the webuser user by appending to the original statement

WITH GRANT OPTION

For this book, it’s not necessary for the webuser to have the grant privilege, but it was worth mentioning
why the Grant_priv column was the only column with an N value.

The host table is not used in most MySQL installations. It is used to give access to the user to connect
from multiple hosts and works when the value of the column Host for a given user in the db table is left
blank. Also, this table is not modified by the GRANT or REVOKE statements.

The tables_priv table provides table-level privileges, and controls a user’s privileges to a specific table.
And columns_priv controls a user’s privileges to specific columns of a table. The procs_priv table
controls privilege access to stored procedures and functions.

Account Management

As stated, the tables in the last section can be modified directly or by using specific account manage-
ment SQL statements. One of the purposes of this book is to give the web application developer a better
understanding of how to properly manage his or her database server. Using these account management
statements is preferable to direct modification of the system tables, and helps avoid shooting oneself in
the foot!

CREATE USER

The statement CREATE USER is used to create a user. This creates a user with no privileges, which you can
then assign to the user using the GRANT statement discussed next. CREATE USER results in the creation of a
new record in the user system privilege table with a password and no permissions assigned. The syntax
for CREATE USER is:

CREATE USER user [IDENTIFIED BY [PASSWORD] 'password']

For instance, to create a new user webuser, the following would be used:

CREATE USER webuser IDENTIFIED BY 's3krlt';

DROP USER

80

The statement DROP USER is used to delete a user. This results in the user being deleted from the user
system privilege table. The syntax for DROP USER is:

DROP USER user
In an example of deleting the user webuser, the statement would be:
DROP USER 'webuser'@'localhost';

Starting from MySQL version 5.0.2, DROP USER drops both the user and all the user’s privileges.

Chapter 2: MySQL

SET PASSWORD

The SET PASSWORD statement is used to set a password for an existing user. As a web developer you will
sometimes need to change the password of a user, and SET PASSWORD is a simple statement you use to do
that. The syntax is:

SET PASSWORD FOR user = PASSWORD('value')
For example, to change the password for the webuser account, you would use the following statement:

SET PASSWORD FOR 'webuser'@'localhost' = PASSWORD ('newpass');

GRANT

To be able to grant and revoke privileges to a user, as well as create users, the GRANT and REVOKE state-
ments can be used.

The GRANT statement is used to grant privileges. It has a number of options to control what user and which
host is allowed to connect, to which object and which privilege is being granted, connection number and
frequency, as well as assigning a password to the user. GRANT also has options for SSL connections, which
can be explained in more detail on MySQL’s documentation web site. As seen you have seen, there are
various privilege columns in each of the grant tables that correspond to each type of privilege a user is
allowed or prohibited from running, either set to “Y” or ‘N’ respectively. The GRANT statement is what
sets each of these privileges, and the scope of that permission determines into which grant table a record
specifying those privileges for that user is created. The syntax for the statement is:

GRANT privilege type [(column list)],

ON object name

TO user [IDENTIFIED BY [PASSWORD] 'password'],
[WITH with_option [with_option] ...]

The privilege type is one or more (comma separated) valid privileges as defined in the MySQL Reference
Manual.

The object name could be a schema name like webapps, all schemas as *. *, a specific table within webapps
listed as webapps .users, all tables in webapps as webapps . * or even just a table name which would give

access to the table in your current active database.

WITH option can be any of the items in the following table:

Option Description

GRANT OPTION Gives the user the privilege to create or delete users, grant
or revoke privileges

MAX_QUERIES_PER_HOUR count Maximum number of queries per hour a user is allowed to
perform

MAX_UPDATES_ PER_HOUR count Maximum number of INSERT, UPDATE, and DELETE

statements a user can execute in an hour

Continued

81

Chapter 2: MySQL

82

(continued)
Option Description
MAX_CONNECTIONS_PER_HOUR count Maximum number of logins a user is allowed per hour
MAX_USER_CONNECTIONS count Maximum number of simultaneous connections a user is
allowed

The next example shows giving the user fred the permissions to connect from 192.168.1.100 to the
accounts schema, using the password s3krit, and to perform any statement on any object in that
schema.

GRANT ALL on accounts.* to 'fred'@'192.168.1.100' IDENTIFIED BY 's3krlt';

The previous statement could have also used a netmask to give the user fred the ability to connect other
hosts on the 192.168.1.0 network. For instance, ' fred'@'192.168.1.100/24 " would have made it so
fred could connect from any host on the 192.168.1.0 network.

The second GRANT example shows giving the user sally the permissions to connect to the accounts
schema using the password hidden and being able to perform any statement only on the table users if
connecting from any host from the xyz domain. Also worth mentioning, the user sally will in fact only
be able to see the table user when issuing SHOwW TABLES and only the database accounts when issuing
SHOW DATABASES.

GRANT ALL PRIVILEGES on accounts.users to 'sally'@'$%$.example.com'
IDENTIFIED BY 'hidden';

The GRANT statement that follows granting the user guest the privilege to connect to the schema webapps
but only to perform a select against the table urls. The user guest will only be able to see the table urls
displayed when issuing SHOW TABLES:

GRANT SELECT on webapps.urls to 'guest'@'localhost'
identified by 'guest' ;

The final example shows granting the user webuser privileges to run the statements SELECT, UPDATE,
DELETE, and INSERT to any table in the schema webapps when connecting from wwwl .mysite.com:

GRANT SELECT, UPDATE, DELETE, INSERT on webapps.* to
'webuser'@'wwwl.mysite.com' IDENTIFIED BY 's3krlt';

The REVOKE statement does the opposite of the GRANT statement and is for removing the privileges of a
user. The revoke syntax is similar to GRANT:

REVOKE privilege type [(column_list)], ... ON object
name FROM user [,user]...
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user]

privilege type is the type of privilege, such as SELECT, UPDATE, INSERT, etc. The object name can be the
same as it was in GRANT — a schema name, a specific table of a schema, or just a table.

Chapter 2: MySQL

For instance, you could revoke the ability for the webuser@wwwl .mysite.com account to not be able to
insert, update, or delete from any of the tables in the webapps schema:

REVOKE UPDATE, DELETE, INSERT FROM 'webuser'@'wwwl.mysite.com';
Or, if you want to have a more sweeping revocation for the user webuser :

REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'webuser'@'wwwl.mysite.com';

SHOW GRANTS

It’s also possible to view a user’s privileges. The statement for this is SHOW GRANTS. The syntax is:

SHOW GRANTS [FOR user]

An example of the output of this statement for the webuser would be:

mysqgl> show grants for 'webuser'@'localhost'\G

EEEEE SRS R EEEEEEEEEEEEEESE S 1 Trow ERERE R SRS SRR EEEEEEEEEEEESEES]

Grants for webuser@localhost: GRANT USAGE ON *.* TO 'webuser'@'localhost'
IDENTIFIED BY PASSWORD '*6C8989366EAF75BB670AD8EA7ATFC1176A95CEF4"

kkhkkkkkkkkhkkhkkhkhkhkkhkkhkkhkkhkhkhkhxkkkk*x% 2 row kkhkkhkkhkkkkkkkhkkhkkhkhkhkkkhkhkkhkkhkhkhxkxkk*x*%

Grants for webuser@localhost: GRANT ALL PRIVILEGES ON ‘webapps' .* TO
'webuser'@'localhost’

INFORMATION SCHEMA

You can also refer to information schema, which is chock-full of information about your MySQL instance

to learn about your user privileges. You can get a list of all tables within the information schema by
running the following:

mysqgl> SHOW TABLES FROM INFORMATION_SCHEMA;
The information schema tables (views) you would refer to are:

0 COLUMN_PRIVILEGES: Privileges for users to given columns

0 SCHEMA_PRIVILEGES: Privileges for users to a given schema or database
0 TABLE_PRIVILEGES: Privileges for users to given tables

0 USER_PRIVILEGES: Global privileges for users

The following example shows what the global privileges are for the user webuser :

mysgl> connect INFORMATION_SCHEMA;
mysqgl> SELECT * FROM USER_PRIVILEGES WHERE GRANTEE LIKE '

83

Chapter 2: MySQL

The next example shows what schema tables the user webuser has access to for the schema webapp :

mysgl> SELECT * FROM SCHEMA_PRIVILEGES

+-

-> WHERE GRANTEE LIKE '\'webuser\'@%' AND TABLE_SCHEMA= 'webapp';

—————————————————————— B T e T
GRANTEE | TABLE CATALOG | TABLE_SCHEMA | PRIVILEGE_TYPE | IS_GRANTABLE |
—————————————————————— B T e T
'webuser'@'localhost' | NULL | webapp | SELECT | O |
'webuser'@'localhost' | NULL | webapp | INSERT | NO |
'webuser'@'localhost' | NULL | webapp | UPDATE | NO |
'webuser'@'localhost' | NULL | webapp | DELETE | NO |
'webuser'@'localhost' | NULL | webapp | CREATE | NO |
'webuser'@'localhost' | NULL | webapp | DROP | NO |
'webuser'@'localhost' | NULL | webapp | REFERENCES | NO |
'webuser'@'localhost' | NULL | webapp | INDEX | NO |
'webuser'@'localhost' | NULL | webapp | ALTER | NO |
'webuser'@'localhost' | NULL | webapp | CREATE

EMPORARY TABLES | NO |
'webuser'@'localhost' | NULL | webapp | LOCK TABLES | NO |
'webuser'@'localhost' | NULL | webapp | EXECUTE | NO |
'webuser'@'localhost' | NULL | webapp | CREATE VIEW | NO |
'webuser'@'localhost' | NULL | webapp | SHOW VIEW | NO |
'webuser'@'localhost' | NULL | webapp | CREATE ROUTINE | NO |
'webuser'@'localhost' | NULL | webapp | ALTER ROUTINE | NO |
—————————————————————— B T e Ter TR

Summary

You should now have a good sense of what MySQL is and what its capabilities are, and how to feel
comfortable interacting with a database. If you have used databases before and are familiar with MySQL
and fluent with SQL, then perhaps this chapter has served as a good refresher of MySQL, covering some
features and functionality you weren’t aware of or might not use every day. This chapter covered the
following:

84

Q

A basic explanation of what MySQL is including the section on how to use MySQL. You learned
about the various client and utility programs that come with MySQL, what they do, and some
basic usage examples of these programs.

How to work with data within MySQL — schema and table creation and modification, inserting,
querying, updating, and deleting data

How to use SQL joins including examples (to spark your interest and creativity) and various
functions in MySQL — informational, aggregate, numeric, string, date and control flow func-
tions.

A discussion about user-defined variables and how you can use them to store temporary vari-
ables in between SQL statements on the database.

The MySQL access control and privilege system. You learned what the various system grant
tables are, the scope they cover, and the granularity of access control that is set through numer-
ous privilege columns. Numerous examples demonstrated how to create, drop, and modify
database users.

!
Advanced MySQL

Now that you have had the basics of MySQL explained in Chapter 2, it’s time to explore some of
MySQL’s more advanced features. There is so much more to MySQL than just having a database
you store data in and retrieve data from for your web application.

In the term Relational Database Management System, the words Management and System really do
mean something. It’s an entire system that goes beyond the simple purpose of a data store. Rather,
you have a system that actually has features to manage your data, and contains the functionality that
can be implemented in the database that you might otherwise have to develop into your application.
The purpose of this chapter is to explore the following functions:

Q First, we will cover the more advanced SQL features, including triggers, functions and
stored procedures, views, and User Defined Functions (UDF). This section gives you
an idea of how you might be able to use some of these features when developing web
applications.

0 Next, the various storage engines will be discussed. These include MyISAM, InnoDB,
Archive, Federated, Tina, MySQL'’s internal new storage engines Maria and Falcon, as well
as PBXT, a storage engine written by Primebase. Each of these storage engines has different
capabilities and performance features. You'll learn when you would use each, depending
on your needs.

Q The section following storage engines covers replication, including a functional overview
of replication, a description of different replication schemes, details of replication settings,
and detailed instructions on how to set up replication.

SQL Features

You have seen that beyond simple SELECT, INSERT, UPDATE, and DELETE, there are also functions
and user defined variables that can be used from within MySQL. There are yet more features within
SQL that MySQL supports, which allow even more functionality.

Chapter 3: Advanced MySQL

This section covers these particular additional features:

0 Triggers: As the name implies, these are used to write events on a table to fire into action (or
trigger) other SQL statements or processes.

O Functions and procedures: These give you the ability to create reusable code defined in the
database to perform often-needed tasks.

0 Views: These are queries stored in a database with a given name that are accessed just like a
table. You can use these to give the ability to query a single table that may in fact be made up
of a join of other tables.

0 User-Defined Functions (UDF): Not specifically SQL, this MySQL feature allows you to write
your own functions that can do pretty much anything you need. This section will show you how
to write a simple UDF.

Stored Procedures and Functions

MySQL supports stored procedures and stored functions.

A stored procedure is a subroutine that is stored in the database server that can be executed by client appli-
cations. Stored procedures and functions provide a means of having functionality that would otherwise
be implemented in application code and is instead implemented at the database level. One benefit of
stored procedures is that business logic can be “hidden” in the database from regular application devel-
opers that might provide access to sensitive data or algorithms; a second benefit is being able to simplify
application code.

Another advantage of using stored procedures is that clients, written in different programming languages
or running on different platforms that need to perform the same operations, can each use stored routines
instead of having the same SQL statements repeated in their code. This also makes it easier to make
modifications to those SQL statements.

Stored procedures can return a single value on one or more result sets, just like a SELECT statement would
return, and are evoked using CALL. On the other hand, a function returns a single value and can be used
in regular SQL statements just like any other standard function.

Why Would You (Not) Want to Use Stored Procedures or Functions?

86

The question then arises: Why would you want to use stored procedures or functions? Depending on
your organization and application, you may wish to have the database assume handling business logic
functionality instead of the web application code. This could be desirable for security purposes or to make
your web applications do less, therefore requiring fewer resources on the servers where the web applica-
tions run. Again, this depends on not only your application, but also the type of hardware you have.

Another benefit is to make it so your web applications are simply calling stored procedures, thereby
reducing the complexity of SQL statements in your application code to a minimum. If you design your
application correctly, ensuring that your stored procedures always take the same arguments, you could
make it feasible to change core functionality with your application without requiring many changes to
application code. Also, since stored procedures are stored in the database, the database also ends up
storing some of the business logic.

Chapter 3: Advanced MySQL

Lastly, one more benefit to using stored procedures is that if you have to execute several statements at
a time, a stored procedure is a lot faster than executing the statements separately from the client as you
don’t have any round trips on the wire for the data.

If you have developers who are not proficient with relational databases, or don’t have a database expert
available, that might be one primary reason to not use stored procedures. Also, if you have a busy
database, you may want to push off the business logic into your application.

Syntax

The syntax for creating a stored procedure is as follows. (Note: the square brackets [and] indicate that
what is contained within is optional.)

CREATE
[DEFINER = { user | CURRENT_USER }]
PROCEDURE <name> ([parameter(s)...])

[characteristic(s) ...] routine_body
The syntax for creating a function is:
CREATE

[DEFINER = { user | CURRENT_USER 1}]
FUNCTION sp_name ([parameter(s)...])
RETURNS type

[characteristic(s) ...] routine_body

CREATE is the first word, followed by the optional DEFINER or owner of the stored procedure or function.
If DEFINER is omitted, the default is used, in this case, the current user. Again, this is how access to the
stored procedure can be controlled.

Next comes PROCEDURE or FUNCTION <name>, which states that a procedure or function is being created as
well as what name that procedure will have. The parameters have the format of:

[IN | OUT | INOUT] <parameter name> type
Where:

0 1IN means that the parameter is an input argument only supplying a value to the procedure.

0 oUT means that the parameter is only used to store the return value.

0 INOUT means that the parameter is used for both an input argument and a return value.

0 Parameter name is the name of the Type, which is any valid MySQL data type.
For functions, there is also the RETURNS keyword, which simply states the type of data returned.
The characteristic part of the create statement is a non-mandatory, or advisory, listing about the data the
routine utilizes. These characteristics, being advisory, mean that MySQL does not enforce what state-

ments can be defined in the routine. These characteristics are listed as:

O LANGUAGE SQL: SQL is the language used in the routine body. More about this is discussed in the
section on external language stored procedures.

87

Chapter 3: Advanced MySQL

0 DETERMINISTIC/NOT DETERMINISTIC: If deterministic, the stored procedure or function always
produces the same result based on a specific set of input values and database state when called,
whereas NONDETERMINISTIC will return different result sets regardless of inputs and database
state when called. The default characteristic is NOT DETERMINISTIC.

One of the following characteristics can be listed:

O coNTAINS SQL: The default characteristic if none is defined. This simply means that the routine
body does not contain any statements that read or write data. These would be statements such as
SET @myval= 'foo';

0 No soL: This means that there are no SQL statements in the routine body.

O READS sQL DATA: This means that the routine body contains SQL statements that read but do not
write data (for example SELECT).

O MODIFIES SQL DATA: This means that the routine body contains SQL statements that could write
data (for example, INSERT or DELETE).

O The SECURITY characteristic: SQL SECURITY {DEFINER | INVOKER}: This determines what user
the stored procedure or function is executed as, whether it is the user who created the stored
procedure/function or the user who is executing the stored procedure/function.

0 comMENT: The comment is text that can be used to write information about the stored procedure
or function and display it upon running SHOW CREATE PROCEDURE Or SHOW CREATE FUNCTION.

Q Lastly, the routine body. This is a listing of SQL procedural code. Just as was shown in the
section on triggers, this begins with a BEGIN statement and ends with an END statement and has
one or more SQL statements in between. A really simple example would be:

BEGIN
SELECT 'my first routine body';
END

To help you get past the syntax concepts and gain a better idea of how to actually use stored procedures
and functions, as always, we find examples are the best way to illustrate ideas.

Example 1

88

The first example is a simple procedure that performs the same functionality as an SQL statement shown
earlier in this book — one that returns the average age of users stored in the table users:

mysql> DELIMITER |

mysgl> CREATE PROCEDURE user_avg (OUT average NUMERIC(5,2))
-> BEGIN
-> SELECT AVG (age) INTO average FROM users;
-> END ;
> |

As with triggers, you want to use a delimiter character other than the semicolons (;) that the routine
body contains, which you want to be ignored and not interpreted in creating the stored procedure. This
stored procedure has one parameter defined, oUT only, of the same data type as the age column of users.
The routine body has the BEGIN and END keywords, with the single query to obtain the average age in

Chapter 3: Advanced MySQL

the users table, into the parameter average. Also, notice in this example that none of the optional stored
procedure keywords were used because they aren’t needed.

To execute this stored procedure, the CALL statement is used:
Mysgl> DELIMITER ;
mysqgl> CALL user_avg(@a) ;

mysqgl> SELECT @a;

fomm - +
| ea |
fomm - +
| 38.70 |
fom - +

The user-defined variable @a is used as the OUT parameter when calling user_avg (as defined above) to
assume the value that user_avg obtains from the single statement is executed.

Example 2

The first example was a good start to see how a stored procedure is created and how it can return a value
when called. This same result could also have been implemented with a function. The next example
shows how a function can be used for simple tasks, particularly those that return single values. The
following function, is_young (), returns a simple Boolean value of 1 or 0, depending on whether the
supplied user’s name is a user with an age less than 40.

CREATE FUNCTION is_young (uname varchar (64))
RETURNS BOOLEAN
DETERMINISTIC
BEGIN
DECLARE age_check DECIMAL(5,2);
DECLARE is_young BOOLEAN;
SELECT age INTO age_check FROM users WHERE username = uname;

IF (age_check < 40) THEN
SET is_young = 1;

ELSE
SET is_young = 0;

END IF;

RETURN (is_young) ;
END;

A function is much the same as a procedure, except in a function one must state what type it will return,
in this example a BOOLEAN. Again, a function can only return a single value, whereas a procedure can
return result sets. A single argument of uname supplies the value of the user’s name as would be found
in the username column of users.

Two variables are declared, age_check, which is the same type as the age column in users, and
is_young, a BOOLEAN. This function will use age_check to store the value returned from the subsequent
query that selects the value of age into age_check for the given user supplied by uname. The variable
is_young is assigned a Boolean 1 or 0, depending on whether the value of age_check is less than 40 or
not, then returned.

89

Chapter 3: Advanced MySQL

Executing this function is the same as any other function. In this example, SELECT is used:

mysgl> SELECT is_young('Amy Carr');

o +
| is_young('Amy Carr') |
o +
| 1|
o +

e +
| is_young('Jack Kerouac') |
e +
| 0|
e +

Example 3

The next example shows how it’s possible with stored procedures to hide table details from the appli-
cation or user. It’s quite common in a web application to want to obtain a user’s user id when given a
username. This is normally done with an application function or method that calls an SQL query on the
database server, taking as its argument the user’s username and returning the user’s user id value from
the database. This can also be done using a stored procedure, hiding the details of the SELECT statement
to users. The following stored procedure demonstrates how this can be accomplished:

mysgl> CREATE PROCEDURE get_user_id(IN uname VARCHAR (64), OUT userid INT)
-> BEGIN
-> SELECT uid INTO userid FROM users WHERE username = uname;
-> END;
-

In this example of get_user_id(), two parameters are defined on an input-only variable uname and an
output-only variable userid. The routine body simply selects the uid for the given username supplied
by uname into the variable userid. To execute get_user_id(), the CALL statement is used, passing the
username in the first argument and a variable @uid as the second argument. @uid is read with a SELECT
statement:

mysgl> CALL get_user_id('Haranya Kashipu',6 @uid);

mysgl> SELECT @uid;

Example 4

90

The next example shows how application logic can be pushed down into the database. One of the most
important functionalities in a web application is to log a user into the database and create a session.
This usually involves some means of checking the password — comparing what has been input into
an HTML form, using the shal () cryptographic hash function to convert it to the value that the stored
password uses, and then comparing that to the stored password. If they match, that means that the login

Chapter 3: Advanced MySQL

was correct, in which case a session is generated. The id is commonly returned to the browser and stored
in a cookie. This can easily be done in the web application, but alternatively, this functionality can also
be implemented in the database using a stored procedure.

For this next example, a password column of type CHAR (40) (since the value from the shal () function
will always be 40) is added to the table users that was used in previous examples in this book:

mysgl> ALTER TABLE users ADD COLUMN password CHAR(40) NOT NULL DEFAULT '"';
Also, we will create a table named sessions with four columns: session_id to store the integer value
session id, uid to indicate the user id of the user the session belongs to, date_created to store the value
of when the session was created, and session_ref, a text/blob to store anything associated with the
session, including a serialized Perl object (which will be discussed later in this book).

CREATE TABLE sessions (
session_id bigint (20) unsigned NOT NULL,
uid int(3) NOT NULL default '0',
date_created datetime default NULL,
session_ref text,
PRIMARY KEY ('session_id"),
INDEX uid (uid)

The following stored procedure shows how this can be accomplished:
CREATE PROCEDURE login_user (uname VARCHAR(64),pass CHAR(32))
BEGIN

DECLARE user_exists INT(3) DEFAULT 0;
DECLARE password_equal BOOLEAN;
DECLARE sessionid bigint (20) DEFAULT 0;

SELECT uid INTO user_exists FROM users WHERE username = uname;

IF (user_exists != 0) THEN
SELECT password = shal (pass) INTO password_equal
FROM users

WHERE username = uname AND password = shal (pass);

IF (password_equal = 1) THEN
SET sessionid = CONV (SUBSTRING (MD5(RAND()) FROM 1 FOR 16), 16,10);
INSERT INTO sessions (session_id, uid, date_created)
VALUES (sessionid, user_exists, now());

ELSE
SET sessionid = 0;
END IF;
END IF;
SELECT user_exists, sessionid;

END

This stored procedure, login_user, takes two arguments: uname and pass. These two arguments will be
used to find out if a user uname exists in the users table (which now has a password column) and if the

91

Chapter 3: Advanced MySQL

92

value of the output of the shal () function with pass as its argument matches the stored password, which
is already in the form shal () converted it to when the user was created.

Three variables are declared. Just as with table definitions, variables can be defined in the same tables
columns would be defined. In this case, defaults for these variables are set. The variables declared are an
unsigned bigint session_id, an integer user_exists, and Boolean password_equal. The session_id
will store the session id that is created if both the user exists, and if the password that is supplied matches
that stored in the database. The user_exist variable is an integer that stores the uid of the user uname if
that user exists, or remains 0 if not. The password_equal is another Boolean variable used to indicate if
the password in pass matches the stored password for that user.

After variable declaration, the first statement sets the value of user_exists. This is to know whether the
user exists in the first place. If the user_exists is not equal to 0, this indicates that the user does exist
and the next statement to execute is to query if the value of pass returned from shal () equals the value
of the user’s password as stored. The part of the query password = shal (pass) evaluates to 1 or 0, which
is stored in password_equal.
Next, if password_equal is 1, true, the session_id is set to the output of the statement:

SET sessionid = CONV (SUBSTRING (MD5(RAND()) FROM 1 FOR 16), 16, 10);

This statement can be broken down thus:

Generate a random number with RAND () . The output of that would be something like:

S +
| rand() |
e +
| 0.13037938171102 |
e +

Take the output of the MD () function with this random number as the argument. The output of this
would be:

T +
| md5(0.13037938171102) |
T +
| 306e74fa57cc23al0lcdca830ddc8186 |
o +

Take the value of the characters from 1 through 16 of this md5 string, using SUBSTR () . The output of this
would be:

e +
| substr('306e74fa57cc23al0lcdcas830ddc8186', 1, 16) |
e +
| 306e74fa57cc23al |
e +

Chapter 3: Advanced MySQL

Convert this 16-character hex md5 string to decimal using conv (). The output is:

o +
| conv('306e74fa57cc23al’, 16, 10) |
o +
| 3489855379822355361 |
e +

This final integer value is the session id. The md5 could easily be used as a session id, but since there is an
index on the session_id column of the table sessions, using an integer requires less storage and makes
for a faster index. If you end up exceeding this number and having a collision, you either have a really
busy web site with an amazing amount of data, or you have other problems! Also, with sessions, you
don’t need to keep them stored in the sessions table for an amount of time longer than you set the user’s
session cookie for, which depending on the application could be a couple months at most, and certainly
won't be like saving historical user data. You could have easily used something such as uuid_short () or
evenuuid (), because these have their own issues such as possibly being guessable — not something you
want for a session id (see http://www.ietf.org/rfc/rfcdl22.txt).

Once this session id value is assigned, the next SQL statement is an INSERT statement to insert the session
id for the user into the sessions table.

Finally, the values for session_id and user_exists are issued via a SELECT statement. The various
outputs of CALL login_user () shows just how this will work.

If the user doesn’t exist or the password supplied doesn’t match, a 0 for user_exists and sessionidis
returned. This would mean that there is no user and they entered an invalid password. The web applica-
tion would have informed the non-user that their entry was invalid and they need to possibly register on
the site to obtain an account and password, or that they could enter their username to have their account
information emailed to them.

mysgl> CALL login_user('Tom Jones', 'xyz'):;
fomm e fommm - +
| user_exists | sessionid |
fomm e e ettt +
| 0| 0|
fomm o fommm - +

If the user does exist, but they entered an invalid password, the value for user_exists is that user’s uid.
But the value for sessionid is NULL. This would mean that web application would have to inform the
user that they entered the incorrect password and then give them the necessary interface to either reenter
their password or have their account information emailed to them.

mysgl> call login_user('Sunya Vadi', 'xyz');
N ——— e - +

93

Chapter 3: Advanced MySQL

Finally, if the user enters the correct credentials — both a username uname that exists in the users table
and password pass that matches their stored password, then both the user_exists and sessionid
values contain the user’s uid and newly created session id.

mysgl> call login_user ('Amy Carr', 's3krlt');
o B T +

| user_exists | sessionid |

tmm e o +

| 2 | 2497663145359116726

tmm e o +

Also, an entry is inserted into the sessions table for this user’s session:

mysgl> select * from sessions;

Hmmmmm e +m—mm- +
| session_id | date_created | session_ref | uid |
e o tmmmmm e +m—mm- +
| 2497663145359116726 | 2008-07-24 22:44:36 | NULL | 2|
e o tmmmmm e +m—mm- +

At this point, the web application would perform tasks such as issuing a cookie to the user’s browser and
displaying a message or page that indicates the user successfully logged in.

Example Summary

These examples have given you a basic idea of how to write stored procedures and functions and have
shown some of the basic functionality they can facilitate. In more complex stored procedures, other
functions or procedures can be called. For instance, the SQL statement to check if a user exists could have
been implemented as a function named get_userid, and used to assign the value user_exists.

The stored procedure statement:
SELECT uid INTO user_exists FROM users WHERE username = uname;
could instead have been written as the following function:

user_exists = get_userid(uname) ;

As you can see, functions and procedures can be extremely useful for performing common tasks, hiding
database schema details from application developers with an added layer of security, and making it
possible to implement business logic within the database. The several examples provided serve as a brief
demonstration of implementing some common tasks that just about every web application developer will
have to implement at one time or another. We hope this will give you one more box of tools to consider
in your development process.

Triggers

A trigger is a database object consisting of procedural code that is defined to activate upon an event
against a row in a MySQL table. Triggers can be defined to execute upon INSERT, UPDATE, or DELETE
events, either before or after the actual data of the row in the table is added, modified, or deleted.

94

Chapter 3: Advanced MySQL

Triggers are used to add even-driven functionality to a database, making it so that the application using
the database doesn’t have to implement functionality that would otherwise add complexity to the appli-
cation, thereby hiding the gory details of what the database does simply on an event against the table.

Triggers can do two things: First, they can run any valid statement that could be normally run on a
database, such as a query to obtain a value that, in turn, could be stored in a user-defined variable and
then acted upon in yet another statement. Second, triggers can call a function, stored procedure, or even
a UDF. It’s entirely possible to set up a trigger that also calls external programs, using a UDF, whenever
a row in a table is modified.

Creating a Trigger

The syntax for creating a trigger is quite simple:

CREATE
[DEFINER = { user | CURRENT_USER }]
TRIGGER <trigger name> <BEFORE|AFTER> <trigger event>
ON <table name> FOR EACH ROW <statement (s)>

Just as with any other create statement, a trigger begins with CREATE. The value DEFINER clause deter-
mines who the trigger is created by and can be used to control whether the trigger is executed, depending
on what user is issuing an SQL statement that results in a change to the table that the trigger is associated
with.

Following the DEFINER clause is the trigger name, followed by a trigger time BEFORE or AFTER. This means
that the trigger is executed before or after the row of data in the table that is actually acted upon. This
can be very important, especially if your trigger is dependent upon the data being modified (or not) by
the statement that results in the trigger being run. For instance, say you have a trigger that contains a
statement when executed that depends on that data not yet being deleted. If the value of the trigger time
is AFTER, your trigger most likely won’t work, or will at least give interesting results!

Next, a trigger event is either DELETE, INSERT, UPDATE or REPLACE, meaning that for whatever trigger event
is defined for that trigger, the execution of that type of statement on the table the trigger is associated with
will result in that trigger being executed for each row affected.

ON <table name> is the next part of the statement, which is the table the trigger is associated with. FOR
EACH ROW <statement (s) > is the meat of the trigger, meaning that for each row affected by whatever
type of event — DELETE, UPDATE, INSERT, REPLACE, it executes that trigger statement or statements. The
statements, of course, can be any valid SQL statement or function call.

First Trigger Example

To get a better idea of how idea of how a trigger works, consider the example we saw in the previous
chapter: the table users:

tmmm Hmmm e o = Hmmmm o Hmmmm e +
| Field | Type | Null | Key | Default | Extra |
tmmm Hmmm e o o Hmmmm o Hmmmm e +
| uiad | int(3) | NO | PRI | NULL | auto_increment |
| username | varchar(64) | NO | UNI | | |

95

Chapter 3: Advanced MySQL

96

| ranking | decimal(5,2) | NO | MUL | 0.00 |

| age | int(3) | NOo | MUL | 0 | |
| state_id | int(5) | NOo | MUL | 0 | |
e dmm e 4 - Hmm e T e +

What if there was another table that stored statistics, the average age and score of users, and you needed
it to have an up-to-date value for these statistics? A trigger would be just the thing to use to ensure the
stats table is automatically updated when there is a change to users.

The stats table would be defined as:

Hmmmmmmm e Hmmmmmmm e o = tmmmm o +
| Field | Type | Null | Key | Default | Extra |
Hmmmmmmm e tmmmmmmm o = tmmmm tmmmm +
| stat_name | varchar(32) | NO | PRI | | |
| stat_value | int(5) | Nno | | 0 | |
Hmmm oo Hmmm e 4 - T 4 +

Also, you would want to pre-populate it with placeholder rows where the averages will be stored. The
two statistics that are needed are the average age of users and the average ranking of these users. Since a
value for these stats is as yet unknown, stat_value isn’t specified in the field list.

INSERT INTO stats (stat_name) VALUES ('average age'), ('average ranking');

Now, the fun part is to finally create the trigger. Since this trigger executes upon an UPDATE to a row in
users, an appropriate name might be one that includes the table name that the trigger is associated with,
users, as well as the other table that the trigger then updates, stats, as well as the type of statement
that causes the trigger to execute, UPDATE. So, the name chosen in this example is users_stats_update.
Because this trigger will execute whenever there is a change to a column in the users table, in this case
an update, the statements the trigger executes won’t depend on data being in any state either prior to or
after the table modification. So, for this example the timing will be AFTER the update.

mysqgl> delimiter |

mysgl> CREATE TRIGGER users_stats_update
-> AFTER UPDATE ON users
-> FOR EACH ROW BEGIN

-> UPDATE stats SET stat_value = (SELECT AVG(age) FROM users)

-> WHERE stat_name = 'average age';

-> UPDATE stats SET stat_value = (SELECT AVG (ranking) FROM users)
-> WHERE stat_name = 'average ranking';

-> END |

Query OK, 0 rows affected (0.00 sec)

In this example, the command was issued to change the delimiter to a bar “|” (from the default semi-
colon ;’). The delimiter is the character that indicates the end of the statement in the command-line client,
mysql, and whatever precedes the semicolon is executed. If one creates the trigger from an application or
a graphical client, you don’t need to set the delimiter or end the trigger with “1”.

Since this particular trigger definition contains SQL statements (UPDATE) ending with semicolons, which
are required for each statement to properly run when the trigger executes but not at the time this trigger
is created, we set the delimiter to a “|”. You can use anything other than the semicolon, to ensure these

Chapter 3: Advanced MySQL

semicolons at the end of these statements are ignored when creating the trigger. Also, since the delimiter
is set to a bar ‘|, the trigger creation itself requires a bar ‘|’ to terminate the statement defining the
trigger creation.

Now that the trigger has been created, any update to records in users will result in this trigger being
executed. The stats table starts out with the values shown here:

e Hmmmm e +
| stat_name | stat_value |
e Hmmmm e +
| average age | 0 |
| average ranking | 0 |
Hmmm e tmmmm +

The users table contains:
e o Hmmmm e Hmmmm +
| uid | username | ranking | age | state_id |
e o Hmmmm e Hmmmm +
| 1 | John Smith | 55.50 | 33 | 1
| 2 | Amy Carr | 95.50 | 25 | 1|
| 3 | Gertrude Asgaard | 44.33 | 65 | 1
4	Sunya Vadi	88.10	30	2
5	Maya Vadi	77.32	31	2
6	Haranya Kashipu	1.20	20	3
7	pPralad Maharaj	96.50	20	3]
8	Franklin Pierce	88.30	60	4
9	Daniel Webster	87.33	62	4
10	Brahmagupta	0.00	70	0
e o Hmmmm oo e Hmmmm oo +

If users is updated, then the trigger should be executed:
mysgl> UPDATE users SET age = 41 WHERE UID = 11;
Just to verify:

mysgl> select * from stats;

————————————————— tmmmm
| stat_name | stat_value |
Hmmm e tmmmm +
| average age | 39 |
| average ranking | 63 |
e Hmmmm e +

And it worked! As is shown, the values for average age and average ranking now reflect the averages
of those values in the users table.

Because you would want to have any change on users recalculate these statistics, you would also need

to have a trigger executed on a DELETE as well as an INSERT to users. The timing of both INSERT and
DELETE is also very important. For INSERT, you would want the average to be calculated to include the

97

Chapter 3: Advanced MySQL

new row being inserted, so the trigger would have to run after the data is inserted into users. The first
part of trigger definition for the INSERT trigger would then read as this:

CREATE TRIGGER users_stats_insert AFTER UPDATE ON users

Also notice that the name users_stats_insert is used as a trigger name to reflect the statement that
causes the trigger to execute. For DELETE, you would also want the trigger to execute after the row being
deleted is actually deleted from users. The first part of the trigger definition for the DELETE trigger would
then read as this:

CREATE TRIGGER users_stats_delete AFTER DELETE ON users

Second Trigger Example

As a variation on the idea shown in the previous example, another way to implement summation and
averaging of values using a separate stats table is demonstrated in the following example, though
without using the functions AvG () and suM() .

In this example, only the age column of the users table will be of interest for the sake of the point being
made — not relying on suM () and AVG () . The stats table is different for this example:

CREATE TABLE 'stats' (
age_sum int(8) NOT NULL default O,
age_avg int(8) NOT NULL default 0,
records 1int(8) NOT NULL default O,
primary key (age_sum)

)

The idea of this table is to keep track of both the sum of all ages in users, age_sum, the average of those
ages, age_avg, and the number of records in users, records, which is used to obtain the average age,
age_avg, by dividing age_sum by records.

The stats table initially has no data, so you need one single record in the table for this example to work.
You can use the following INSERT statement to populate stats :

mysgl> INSERT INTO stats (age_sum, age_avg, records)
-> SELECT SUM(age), AVG(age), COUNT(*) FROM users;

Verify the stats table:

mysgl> select * from stats;

fommmm - Fommm Fmmmm - +
| age_sum | age_avg | records |
fommmm - Fommm Fomm - +
| 416 | 42 10 |
fommmm - Fommm Fomm - +

Now you need to create the triggers. In this example, all the triggers — UPDATE, INSERT and

DELETE — will be shown below. First is the UPDATE trigger: users_stats_update. It will set age_sum
equal to age_sum - OLD.age + NEW.age. Then age_avg will be assigned the average age value obtained
from dividing the sum of ages, age_sum, by the number of records in users, records.

98

Chapter 3: Advanced MySQL

DELIMITER |

CREATE TRIGGER 'users_stats_update' BEFORE UPDATE on users
FOR EACH ROW BEGIN

UPDATE stats SET age_sum = age_sum - OLD.age + NEW.age;

UPDATE stats SET age_avg = age_sum / records;
END |

The INSERT trigger, users_stats_insert, will set age_sum to the current value of age_sum added to the

value of the age column of the new row being inserted, NEW. age, into users and increment records by
1. The average age is recalculated.

CREATE TRIGGER 'users_stats_insert' BEFORE INSERT on users
FOR EACH ROW BEGIN

UPDATE stats SET age_sum = age_sum + NEW.age, records = records + 1;
UPDATE stats SET age_avg = age_sum / records;
END |

The DELETE trigger, users_stats_delete, will subtract from the current value of age_sum the value of

the age column of the row being deleted from users, OLD. age, and decrement records by 1. The average
age is recalculated.

CREATE TRIGGER 'users_stats_delete' BEFORE DELETE on users
FOR EACH ROW BEGIN

UPDATE stats SET age_sum = age_sum - OLD.age, records = records - 1;
UPDATE stats SET age_avg = age_sum / records;
END |

Now to verify that these new triggers work! First, delete an existing record from users. You'll notice that
all the values are correctly set — the value of age_sum decreases as do the number of records, records,
and if you break out a calculator you will see also the value of age_avg is correct!

mysgl> DELETE FROM users WHERE uid = 11;

mysgl> SELECT * FROM stats;

tmmm tmmmm tmmm o +
| age_sum | age_avg | records |
tmmm tmmmm tmmm +
| 346 | 38 | 9 |
Hmmm tmmmm Hmmm +

Then a new user is inserted into users. You will see that this trigger works as well. The number for
records increases by one, the value of age_sum is increased by 88 and age_avg is correctly recalculated.

mysqgl> INSERT INTO users (username, age) VALUES ('Narada Muni', '88');
mysgl> SELECT * FROM stats;

929

Chapter 3: Advanced MySQL

Also, verify the update trigger. The value being assigned this time to age is set to a really

high value, 1,000 (Narada Muni needs a lot of time to travel through the universe! see
http://en.wikipedia.org/wiki/Narada). You will also see that with this particular update, the
value of age_avg changes quite a bit because of the large value for age being used. This really affects the
overall average.

mysqgl> UPDATE users SET age = 1000 WHERE username = 'Narada Muni';

mysgl> SELECT * FROM stats;

tmm R tmm +
| age_sum | age_avg | records |
tmm R tmm +
| 1346 | 135 10 |
e o R +
Third Trigger Example

There are other aspects of creating triggers that can be illustrated with another example, namely, that you
have access to the values being modified when a trigger is executed. For INSERT obviously, there are only
new values. For DELETE and UPDATE, there are both the previous, or old, values as well as the new values
that the row’s columns will assume.

Using OLD. <column name>, the previous value of the named column of the row that’s being updated
or deleted can be read. For obvious reasons this value is read-only. Using NEW. <column name>, the new
value of the named column, as set by the query that initiated the trigger, can be read as well as written.

The following trigger shows just how you can use the NEw and 0LD keywords. Suppose you want a trigger
that records an action on one table. This trigger will update a logging table every time there is a change
on a table that contains user comments — for instance, when the user edits their comment. You also
would like to have a way to back up the user’s previous comment if they decide they would like to revert
their changes. Consider the comments table, with an entry:

mysqgl> SELECT * FROM comments\G
LR RS E SRR EEEEEEEEEEEEEEEEEEE] 1' row RS SRS EEEEEEEEEEEEEEEEEEEEE]
id: 1
uid: 9
current_comment: The weather today is hot and humid
o0ld_comment:

And a logging table, comment_log:

Hmmmmmmm e Hmmmmmmm e o = tmmmm o +
| Field | Type | Null | Key | Default | Extra |
Hmmmmmmm e tmmmmmmm o = tmmmm tmmmm +
id	int(3)	NO	MUL		
uid	int(3)	NO	MUL		
action	varchar(10)	NO	MUL		

| entry_time | datetime | YES | | NULL | |
fmmm Fmmmmmm et Fo—— Fommm Fomm +

A trigger that would perform the function of inserting an entry into comment_1log and saving the previous
value of the current_comment into old_comment would be defined like this:

100

Chapter 3: Advanced MySQL

mysqgl> DELIMITER |
mysqgl> CREATE TRIGGER comments_update BEFORE UPDATE ON comments
-> FOR EACH ROW BEGIN
-> SET NEW.old_ comment = OLD.current_comment;
-> INSERT INTO comment_log VALUES (OLD.id, OLD.uid, 'update', now());
-> END |

This trigger, comments_update, is created to be executed before the table itself is updated. The first action
it will perform is to set NEW. 01d_comment, which is the value to be inserted into o1d_comment, to the value
of OLD. current_comment, which is the value of current_comment, before it is updated. Then, a record
is inserted into comment_1log with the current value of the id column of comments, which is not being
changed, so OLD. id or NEW. id are both the same value and either could have been used.

Now, if there is an update to the existing comment with a new comment, you hope that your trigger will
perform the appropriate actions:

mysgl> UPDATE comments
-> SET current_comment = 'The weather today was hot, now it has cooled'
-> WHERE id = 1 AND uid = 9;

mysqgl> SELECT * FROM comments\G

LR RS SRS EE R SRS EEEEEESEEEE SRS 1. row LR R SRS SRR SR RS EEEEEEEEEEEE ST
id: 1
uid: 9
current_comment: The weather today was hot, now it has cooled
old_comment: The weather today is hot and humid

mysgl> SELECT * from comment_log;

As we can see, this worked as advertised! This is just a simple example, but shows that using the NEw and
oLD keywords can give you a lot of flexibility in what you can have a trigger do. This example could have
even used some logic in the trigger definition to test the values being updated:

IF NEW.current_comment != OLD.current_comment THEN

SET NEW.old_comment = OLD.current_comment;

INSERT INTO comment_log VALUES (OLD.id, OLD.uid, 'update', now()):;
END IF ;

In this example, the value of current_comment is checked to see if it has changed, and if so, then two
statements to back up the previous value of the current_comment into o1d_comment and inserting into

the comment_1log table are performed.

Another example of how this trigger can be extended would be a system where you only back up the
user’s current comment into o1d_comnent if they haven’t updated this comment more than ten times:

SET @max_comments = (SELECT COUNT(*) FROM comment_log
WHERE id = OLD.id

101

Chapter 3: Advanced MySQL

AND uid = OLD.uid AND ACTION = 'update') ;
IF @max_comments <= 10 THEN

SET NEW.old_comment = OLD.current_comment;

INSERT INTO comment_log VALUES (OLD.id, OLD.uid, 'update', now());
END IF ;

Trigger Limitations in MySQL
There are a few limitations of triggers, as implemented in MySQL, worth mentioning.
MySQL doesn’t have triggers on statements yet

MySQL can only have one trigger of each type (INSERT, UPDATE, DELETE) for a table

Views

Another useful feature that MySQL supports is a view. A view is a query stored in a database with a given
name that is accessed just like a table. It acts likes like a table, smells like a table, and displays like a table,
but is not a real table. It can be thought of as a virtual table, and behind the scenes it uses a temporary
table for its results. Unlike a table, however, it doesn’t permanently contain the data it accesses.

The query by which the view is defined can reference one or more tables, or can contain a subset or
aggregate data of the entire data set of the table or tables it references. A view, just as a procedure or
function, can also be used to hide details of the underlying schema, thereby providing a layer of security,
depending on how permissions of the view and its underlying tables are arranged.
For instance, you can create a view that displays users joined with states:
mysgl> CREATE VIEW v_users AS
-> SELECT uid, username, ranking, age, states.state_id,
-> states.state_name FROM users JOIN states USING (state_id);

If this view is described, the result appears as a single table with the rows specified in the view definition:

mysqgl> DESC v_users;

o o fmm——— 4 fmmm fmm——— +
| Field | Type | Null | Key | Default | Extra |
o o o fo—— fmmm fmm——— +
uid	int(3)	No		0	
username	varchar(64)	NO			
ranking	decimal(5,2)	NO		0.00	
age	int(3)	NO		0	
state_id	int(3)	NO		o	
state_name	varchar(25)	NO			
fmmm e Fmmmm tomm o= Fommmm e +					
And it is accessed as if it were a table:					
mysgl> SELECT * FROM v_users WHERE uid < 5;					
tomm - Fmmmmm o Fmmm - to—— = Fommmm fmmmmm +					
uid	username	ranking	age	state_id	state_name
tomm - B Fomm - o= Fommmm fmmmm +

102

Chapter 3: Advanced MySQL

| 1 | John Smith | 95.50 | 33 | 1 | Alaska
| 2 | Amy Carr | 95.50 | 25 | 1 | Alaska
| 3 | Gertrude Asgaard | 96.50 | 65 | 1 | Alaska
e e Hmmmm e e fmmmm e Hmmm e +

As you can see, this is a convenient means of having what is essentially a single table to access data of a
join of two tables. This simple example shows how a view hides the details of the SQL join statement and
of the underlying tables.

Views can also be created to display summary or aggregate information as if it, too, were a table. Con-
sider a table of XML feed items, each having a date column. The web application process feeds via feed
URL constantly, parsing items from the XML of the feed and storing those tables into a table called (inter-
estingly enough) items. What would be convenient to know is how many items were processed every
day over the last month. If, for instance, you needed a summary page to display this information, you
could rely on a view to produce this information.

mysgl> CREATE VIEW v_items_per_day
-> AS SELECT DISTINCT DATE (items.created) AS 'creation date’,
-> COUNT (*) AS 'items per day'
-> FROM items
-> GROUP BY 'creation date' ORDER BY 'creation date’;

Note in the above trigger example, the GROUP BY 'creation date' ORDER BY 'creation date' isa
MySQL feature that allows you to both SORT and GROUP BY on the name of an output column.

This view could then be queried as if it were an actual database table:

mysgl> SELECT * FROM v_items_per_day
-> WHERE 'creation date' > date_sub(now(), INTERVAL 1 WEEK) ;

\
Fom Fmm e +
2008-07-21	56577
2008-07-22	55239
2008-07-23	53612
2008-07-24	58178
2008-07-25	165746
2008-07-26	42269
2008-07-27	49175
Fom Fom +

What this gives you is the ability to have convenient tables for summary information as shown in this
example. Also, if you are like the author of this book, you sometimes forget the specific syntax of SQL
queries from time to time — views take care of remembering for you! As you can see, if you run the
SHOW CREATE TABLE on a view, you get the view definition, which includes the query that the view is
defined by:

mysqgl> show create table v_items_per_day\G
PR EE S S S S S SRR SRR RS EEEEEEEEEE] 1. Trow LR RS S SRS SRS SRR EEEEE SRR RS S
View: v_items_per_day
Create View: CREATE ALGORITHM=UNDEFINED DEFINER= webapps @ localhost’
SQL SECURITY DEFINER VIEW 'v_items_per_day' AS select distinct

103

Chapter 3: Advanced MySQL

cast(items'. 'created' as date) AS 'creation date',count(0) AS 'items per
day' from 'items' group by cast(items’ . created' as date) order by
cast(“items' . created' as date)

You will also notice that MySQL has changed the original query defining this view. This is to allow the
trigger to work in future MySQL versions with more reserved words.

The other benefit of views that has been mentioned is that they provide a layer of security. A view can be
used to provide a limited view of data, limiting by table, columns, etc. A good example of this is to create
a view of users with limitations — such as excluding the password and age columns (yes, hide users’
ages, too!) from the SQL query. The view can be of users, or for this example can in fact be run against
another view: v_users:

mysqgl> CREATE VIEW v_protected_users AS
-> SELECT uid, username, ranking, state_name FROM v_users;

Also, as root, create a user that has only SELECT privileges (read-only) of this view, v_protected_users:

mysgl> grant select on webapps.v_protected_users to 'webpub'@'localhost'
-> IDENTIFIED BY 'mypass';

To demonstrate how useful this is, reconnect to the database as this user, to the schema webapps. You
will see that this user can only see and has access to only one object, v_protected_users.

mysgl> SHOW TABLES;

o o o TR +
| uid | username | ranking | state_name
o o o o +
| 1 | John Smith | 95.50 | Alaska |
| 2 | amy Carr | 95.50 | Alaska

| 3 | Gertrude Asgaard | 96.50 | Alaska |
| 4 | Sunya Vadi | 96.50 | Alabama

| 5 | Maya Vadi | 96.50 | Alabama

6	Haranya Kashipu	96.50	NY
7	Pralad Maharaj	96.50	NY
8	Franklin Pierce	96.50	New Hampshire
9	Daniel Webster	96.50	New Hampshire
o o mm e Hmmmm e o +

Even if this user knows that the other database objects exist, they cannot access them. Any SQL statements
referencing anything other than v_protected_users will not be permitted.

mysqgl> SELECT * FROM users;
ERROR 1142 (42000): SELECT command denied to user 'webpub'@'localhost' for

104

Chapter 3: Advanced MySQL

table 'users'

mysgl> select * from v_users;

ERROR 1142 (42000): SELECT command denied to user 'webpub'@'localhost' for
table 'v_users'

mysqgl> SELECT * FROM v_protected_users;

User Defined Functions

MySQL also has available an API for writing user-defined functions, otherwise known as a user-defined
function (UDF). A UDF is a function that is written in C or C++ that can do whatever the user needs
it to do. Because a UDF is written in C or C++ and uses MySQL’s UDF AP], it runs within the server.
Therefore, it has to be designed within the confines of the MySQL server.

Like any other function, a UDF returns a single value, either a string or numeric, and is also executed
the same way as other functions. With UDFs, there are many possibilities for database functionality that
a web developer who feels able to work with C and C++ and become familiar with the UDF API can
implement. Some UDFs, such as the memcached Functions for MySQL, as you will see later in this book,
are useful enough to developers in general and are used by many people.

The first thing that you would do to develop a UDF is to decide what sort of functionality you would like
to be able to use from within MySQL. It could be something as simple as a conversion function, which
translates a string or number to some desired output, or something more complex that initiates some
external process when run.

For instance, the author of this book wrote a UDF that took as an argument an id of a column of a queuing
table, which in turn was written to a socket that a simple server read. It retrieved the row of that id and

then ran external perl processes with that id. Using triggers on the queuing table that called that UDF on
an INSERT event, any time a row was inserted, it resulted in a perl process handling the row just inserted.
This made it possible to implement an event-driven model of acting on the queue with perl programs, as
opposed to a constantly polling cron script. The benefit of this method is that the process ran only when
there was an insert to the queuing table. When the web site was experiencing little activity, the perl script
was not being called unnecessarily.

Writing a UDF

If you have experience writing C or C++ programs, you can write a UDF. You should become familiar
with the UDF APIL There are examples in the MySQL source code that show five functions. These code
examples are a good way to get started. (You can find them in the directory sql/udf_example.c.) If you
have a great idea that you want to implement, just cut and paste from those examples, rename, and then
you should be set! Seriously, though, there is a little more to learn before you write a UDF.

Things to know about writing a UDF:

Q It must be run on an operating system that supports dynamic loading of libraries.
Q It must be written in C or C++.

0 Functions return and accept a string, integer, and real values.

)

There are simple, single-row functions as well as multiple-row aggregate functions.

105

Chapter 3: Advanced MySQL

O You can have MySQL coerce arguments to a specific type. For instance, you may want to always
use a string as an argument, when internally the function expects an integer. You can force it to
accept a string, but internally convert it to an integer (atoi).

Q There is a standard functionality in the API that allows checking of argument types, number, as
well as argument names.

UDF Required Functions

To create a UDF, some standard, basic functions must be implemented. These standard functions corre-
spond to the name of the function as they are called in SQL. For the sake of illustration, let’s assume the
function name my_func. The three basic functions (the first of which, my_func (), is mandatory; the last
two, optional) that would be implemented are:

QO my_func(): This is the main function where all the real work happens. Whatever output or action
your function performs — be that calculations, connections to sockets, conversions, etc. — this is
where you implement it.

O my_func_init(): This is the first function called, and is a setup function. This is where basic
structures are initialized. Anything that is used throughout the UDF that requires allocation is
allocated, and checking the correctness of number and type of arguments passed and/or coerc-
ing one type to another happens here.

O my_func_deinit (): This function is a cleanup function. This is where you would free any mem-
ory you allocated in my_func_init ().

Simple User-Defined Function Example

A practical example of a UDF is one way to see how a user-defined function works. For this example, we
will look at a simple function to retrieve a web page using libcurl, a multiprotocol file transfer library.
Since curl is a popular, highly portable library that can be used to write handy programs to transfer files,
it makes an excellent choice for showcasing the MySQL UDF APIL

Here is a simple function that retrieves a web page using the HTTP protocol. This function will be named
http_get ().

As mentioned before, there are three primary functions that are defined for each UDF, as well as two
other functions — a callback function and a function for allocating memory. For this example, the func-
tions are as follows:

O http_get_init(): This is used for pre-allocating a structure for storing the results of a web
page fetch as well as for checking input arguments for type.

O http_get_deinit() : This is used for freeing any data allocated in either http_get_init () or
http_get ().

O http_get () : This is the actual function that performs the main operation of the UDF — to obtain
a web page.

O my_realloc(): This is for allocating a character array for the results http_get () obtains.

O result_cb(): This is a callback function required for specifying a character array where the
results will be stored.

106

Chapter 3: Advanced MySQL

When writing a UDF, it’s good to set up a basic package to contain source and header files, documenta-
tion, as well as autoconf files for making the build process easy:

radha:curludfs patg$ 1ls

AUTHORS Makefile.am aclocal.m4d docs utils
COPYING Makefile.in config sql

ChangeLog NEWS configure src

INSTALL README configure.ac tests

Even if at first not everything is fully completed or fleshed out, it’s a good practice to have this structure
in place to facilitate the start of a good project. The src directory contains source and header files. For this
project, one header file, common. h, is created. It contains the data types, constants, etc., needed for the one
or more UDF source files. This file can be included and will make it convenient for having all data types
available defined. Shown below is what is included in common.h, which defines several UDF constants as
well as a container structure for the results of a web page access.

#include <curl/curl.h>
/* Common definitions for all functions */
#define CURL_UDF_MAX_SIZE 256*256

#define VERSION_STRING "0.I1\n"
#define VERSION_STRING_LENGTH 4

typedef struct st_curl_results st_curl_results;
struct st_curl_results {

char *result;

size_t size;

Y

curl_udf.c is the next source file that is created. It contains all the functions for this example. When
creating other UDFs, they, too, can be included in this file. It is possible to create other UDFs in separate
source files, however, they require modifications to the autoconf configuration files (Makefile.am).

Q The first function in curl_udf.c is myrealloc (). This function is for correctly allocating or real-
locating a pointer to a character array (where the results of the web page access are stored).

static void *myrealloc(void *ptr, size_t size)
{
/* There might be a realloc() out there that doesn't like reallocating
NULL pointers, so we take care of it here */
if (ptr)
return realloc(ptr, size);
else
return malloc(size);

O Next, a callback function result_cb() is defined. This is a required function for the libcurl API
to handle the results from a web page access.

static size_t
result_cb(void *ptr, size_t size, size_t nmemb, void *data)

{

107

Chapter 3: Advanced MySQL

108

size_t realsize= size * nmemb;
struct st_curl_results *res= (struct st_curl_results *)data;

res->result= (char *)myrealloc(res->result, res->size + realsize + 1);
if (res->result)
{
memcpy (& (res->result[res->size]), ptr, realsize);
res->size += realsize;
res->result|[res->sizel= 0;
}

return realsize;

In this particular case, result_cb() sets up a st_curl_results structure pointer to properly be
allocated to the returned data from a web page access, using the previous function my_realloc.

The first UDF function shown is http_get_init ().

my_bool http_get_init (UDF_INIT *initid, UDF_ARGS *args, char *message)

st_curl_results *container;

if (args->»arg_count != 1)
{
strncpy (message,
"one argument must be supplied: http_get('<url>"')."
MYSQL_ERRMSG_SIZE) ;
return 1;

’

args->arg_type[0]= STRING_RESULT;

initid->max_length= CURL_UDF_MAX_SIZE;
container= calloc(l, sizeof(st_curl_results));

initid->ptr= (char *)container;

return 0;

The first thing http_get_init () does is to set up a results structure pointer. Then it checks
how many arguments were passed into the UDF, which in this case must be exactly one. Also,
http_get_init ()hard-sets the argument type passed into the UDF to be a string type. Next, it
sets the maximum length CURL_UDF_MAX_SIZE, allocates a results structure, and then sets the

UDF_INIT pointer to point to this newly allocated structure, thus making it available throughout
all stages of the UDF.

Next comes http_get (), the primary function that performs the main task of obtaining a web

char *http_get (UDF_INIT *initid, UDF_ARGS *args,

__attribute_ ((unused)) char *result,
unsigned long *length,

__attribute__ ((unused)) char *is_null,
__attribute_ ((unused)) char *error)

Chapter 3: Advanced MySQL

CURLcode retref;
CURL *curl;
st_curl_results *res= (st_curl_results *)initid->ptr;

curl_global_init (CURL_GLOBAL_ALL) ;
curl= curl_easy_init();

res->result= NULL;
res->size= 0;

if (curl)
{
curl_easy_setopt(curl, CURLOPT URL, args->argsl[0]);
curl_easy_setopt (curl, CURLOPT WRITEFUNCTION, result_cb);
curl_easy_setopt (curl, CURLOPT_WRITEDATA, (void *)res);
curl_easy_setopt (curl, CURLOPT_USERAGENT, "libcurl-agent/1.0");
retref= curl_easy perform(curl);
if (retref) {
strcpy (res->result, "");
*length= 0;
}
}

else
{
res->result[0]= 0;
*length= 0;
}
curl_easy_cleanup(curl);
*length= res->size;
return ((char *) res->result);

http_get () first defines a curl connection, then obtains the curl_results_st previously stored
in http_get_init () from initid->ptr. Next it performs curl initialization as well as curl con-
nection allocation. It then sets the curl_result_st pointer res members to initial values. Then it
sets various options for the curl connection handle, including the argument supplied to the UDF
(the URL) as the URL to access, and sets the callback function result_cb() as the callback func-
tion to be used and sets the curl_results_st structure pointer res as the place where the results
will be stored by the callback function. Also, a user agent string identifier is set.

Finally, curl_easy_perform() is called, which accesses the web page supplied by
args->args[0]. If there is a result of success, res->result contains the web page desired. If
there is a failure of any sort, either here or during the original check to see if the curl handle was
allocated, an empty string is copied to res->result. Then curl_easy_cleanup ()frees up the
curl handle. The next step (very important for any UDF you write!) is to set the length pointer.
This ensures the UDF has the proper length, matching the length of what was returned. Finally,
the string in res->result is returned, which inevitably displays back to the user.

http_get_deinit () is the final function for the http_get () UDF.
void http_get_deinit (UDF_INIT *initid)
{

/* if we allocated initid->ptr, free it here */
st_curl_results *res= (st_curl_results *)initid->ptr;

109

Chapter 3: Advanced MySQL

if (res->result)
free(res->result) ;

free(res);

return;

}

The whole purpose of http_get_deinit () is to free any remaining allocations or perform other
“cleanups” that were allocated during http_get_init() or http_get (). In http_get_init() a
curl_st_results structure was allocated and the address of which was pointed to by initid->ptr,
which is then dereferenced to a local st_curl_results pointer variable res. Also, the character
array (string) member of the curl_st_results structure pointer res, res->result was allocated in
result_cb() using mymalloc (). First res->result is freed, and finally res itself is freed, making it so
all memory allocated in the other functions is freed.

To build the UDF, if using autoconf/automake configuration, the configuration step from within the
top-level directory of the UDF package is:

./configure --with-mysgl --libdir=/usr/local/mysqgl/lib/mysqgl
Followed by:

make
sudo make install

These steps perform what would otherwise have to be done manually, that is, first to determine what
compile flags are needed, particularly for libcurl:

patg@dharma:~$ curl-config --cflags --libs

-lcurl -lgssapi_krb5
And also obtain any other flags needed to compile the UDFs. The end results are dynamically
loadable libraries, which make install places in the directory specified with -1ibdir, in this case:
/usr/local/mysqgl/lib/mysql. This is a directory that MySQL will be able to load the dynamic library
from. To then create the function, all that needs to be run is:

mysqgl> CREATE FUNCTION http_get RETURNS STRING SONAME "curl_functions_mysqgl.so";

This makes it so MySQL is able to call this function and know where the dynamic library for this function
can be found. If ever you need to see what functions are installed on MySQL, you can view the contents
of the func table by running this query:

mysqgl> SELECT * FROM mysql.func;

Hmmmmm e R o Hmmmmmm e +
| name | ret | 4l | type |
Hmmmmm e +m—mm- o Hmmmmmm o +
| http_get | 0 | curl_functions_mysqgl.so | function |
Hmmmmm e +m—mm- e e Hmmmmmm o +

As you can see, in this instance the query shows that only one function is installed.

110

Chapter 3: Advanced MySQL

While writing your UDF you release a new version and you compile and run make install for your new
function, as long as the shared library file is named the same and the function is named the same, you
don’t have to perform the above CREATE FUNCTION statement.

The next thing to do is to run the new UDF.

mysqgl> SELECT http_get ('http://patg.net/hello.html')\G

LR RS EEEEEEEEEEEEEEEEEEEEEESS 1. row LR RS E SRR RS EEEEEEEEEEEEEEEEE]
http_get ('http://patg.net/hello.html'): <html>
<head><title>Test Hello Page!</title></head>
<body>
This is a test to verify that the UDF written for MySQL, http_get(),
works.
</body>
</html>

1 row in set (0.03 sec)

It works! This test was run against a simple test page, and shows that the UDF fetches the full page. Some
other sites will give this output:

mysgl> SELECT http_get ('http://www.wiley.com')\G

EEEEEEEEEEEEEEEEEEEEEEEEE S 1 Trow ERERE R SR EEEEEE SRS EEEEEEESEES]

http_get ('http://www.wiley.com') :

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>302 Found</title>

</head><body>

<hl>Found</hl>

<p>The document has moved here.</p>
</body></html>

This looks as if there is some sort of failure, but this is because the UDF performs a bare-bones page
access. There needs to be more functionality built into the UDF to handle redirects, and /or anything else
the web server requires to display the page requested. The main idea here is to show that this can be
done in the first place!

As you can see, UDFs are a great way to extend MySQL and create functionality at the database level.

Storage Engines

One of the most useful features of MySQL is that it supports several storage engines. With MySQL 5.1,
we saw the emergence of a pluggable storage engine interface, which allows not only the ability to have
multiple storage engines (as was the case with earlier versions), but also to develop a storage engine
outside the MySQL server and be able to dynamically load that storage engine.

A storage engine is a low-level interface to the actual data storage, whether that resides on disk, in mem-
ory, or is accessed via a network connection. Because MySQL has a layer above the storage engine — the
handler level, which is very generic — it is possible to easily implement storage engines. So you have a
good variety of storage engines to choose from.

111

Chapter 3: Advanced MySQL

Commonly Used Storage Engines

There are several different storage engines commonly in use. Some are internally developed at MySQL
AB. Others are developed by different vendors. This section covers the well-known storage engines.

The various internal storage engines are:

Internal Storage Description

Engine

MyISAM

InnoDB

Maria

Falcon

Memory/Heap

Merge

Federated

Archive

NDB

csv

Blackhole

MySQL’s standard non-transactional storage engine. This is the default
storage engine in most MySQL installations unless otherwise specified
during installation or configuration. Known for being fast for reads.

InnoBase/Oracle’s standard transactional storage engine for MySQL. This is
the most commonly used storage engine for those wanting transactional
support with MySQL.

Maria is a new transactional storage engine for the MySQL relational
database management system. Its goal is to first make a crash-safe alternative
to MyISAM (now in beta) and then a full transactional storage engine.

Falcon is another new transactional storage engine being developed
internally.

A Memory storage engine; the data for the table exists in memory. These are
good for running queries on large data sets and getting good performance
since the data is in memory as opposed to disk. Data for Memory tables is
lost if the server restarts, though the table remains.

Merge is made of several identical (same columns and column order)
MyISAM (only) tables. Useful if you have multiple tables, for instance,
logging tables for a small time period. This allows you to access all of them as
one table.

A Network storage engine. A table is created that references a remote table
on another MySQL instance. Data resides at the remote location, and this
engine produces SQL that is used to either fetch that data source or update it.

Stores data in compact (gzip) format, being very well suited for storing and
retrieving large amounts of data that may not need to be accessed often.

The NDB Cluster storage engine is for supporting data clustering and high
performance, high availability.

Data stored in the comma-separated value format. Excellent for being able to
exchange data between MySQL and applications that use CSV, such as
spreadsheets.

No actual data is stored. The Blackhole storage engine is used in replication
setups where what’s desired is not to physically store data but rather to have
a means to replicate the queries against the table, so the only thing being
written are the replication binary logs, reducing disk I/0O.

Chapter 3: Advanced MySQL

There are also some externally developed storage engines:

External Storage Engine Description

Primebase XT (PBXT) Developed by Primebase, this external storage engine is ACID
compliant, supporting transactions, MVCC (multi-version
concurrency control), enabling reads without locking, offers
row-level locking for updates, uses a log-based architecture to avoid
double-writes (write-once) and supports BLOB streaming.

RitmarkFS This storage engine allows access and manipulation of filesystem
using SQL queries. RitmarkFS also supports filesystem replication
and directory change tracking.

FederatedX This is a fork of the Federated network storage engine allowing more
rapid development of the Federated engine, which includes fixing
bugs and adding enhancements.

Storage Engine Abilities

It’s important to know in advance what each storage engine supports, depending on your database needs
both for the entire schema, and each individual table, since you can use different storage engines for each
table. For instance, you may have user data that you need transactional support for. In this case, you
would use InnoDB as the storage engine. However, if you have a logging table that you don’t need to
access often, the Archive storage engine would be useful.

Using Storage Engines

Using a particular storage engine for a table is quite simple. You simply specify ENGINE=<storage
engine> in the create table statement. For instance, if you wanted to create a log table called site_log
that you wanted to use for logging web site actions that you decided the Archive storage engine would
be suitable for, you would issue a create table specifying the engine:

mysgl> CREATE TABLE site_log (
-> id INT(4) NOT NULL auto_increment,
-> ts TIMESTAMP,
-> action VARCHAR(32) NOT NULL DEFAULT '',
-> PRIMARY KEY (id)
->) ENGINE=ARCHIVE;

Another important thing you need to consider first is which storage engines are available on your MySQL
server. The command for this is SHOW ENGINES.

mysgl> SHOW ENGINES\G

R R R S Sk I R 1 row kkhkkhkkhkkkkkkkhkkhkhkhkkkkkkkhkhk kkkkk*x*%

Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys

113

Chapter 3: Advanced MySQL

Transactions: YES
XA: YES
Savepoints: YES
LR RS S SRS E S SRR EEEEEEERESE 2.
Engine: MRG_MYISAM
Support: YES
Comment :
Transactions: NO
XA: NO
Savepoints: NO
LR RS E R R EEEEEEEEEEEEEEEEEEEE] 3'
Engine: BLACKHOLE
Support: YES
Comment :
Transactions: NO
XA: NO
Savepoints: NO
LR R SRS SRR RS EEEEEEEEEEEE ST 4.
Engine: CSV
Support: YES
Comment :
Transactions: NO
XA: NO
Savepoints: NO

kkhkkkkkkkkkhkkhkhkhkkkkkkk kkhkkkkkk*x% 5

row LR RS R R R SRR E R RS EEEEEEE SRS

Collection of identical MyISAM tables

/dev/null storage engine

row kkkkhkkhkhkkkhkkkkhkkhkhkhkkhkhkhkkhkhkk kxkkk*x*%

(anything you write to it disappears)

Trow LR R RS SRR SRR R SRR EEEEEEEEEEE

CSV storage engine

Federated ODBC MySQL

row kkkkhkkhkkkkkkkhkhkkhkhkhkkhkkkhkkhkkhkk kkkk*x*%

storage engine

row khkkkhkkkkkkhhkhkhkhkhkkhkhxhhhkxkk*x%

Federated MySQL storage engine

row kkhkkhkkhkhkkkhkhkkhkkhkhkhkhkrxhxkhkhkhkhkkxxxk*x*%

Archive storage engine

row ERERE R SRS S EEE SRS EEEEEEEEES]

stored in memory, useful for temporary tables

row khkkhkhkhkhrkkhkhkhkhkhkhkhrrxhxkhkhkhkhkxxxk*x*

Engine: FEDERATED_ODBC
Support: YES
Comment :
Transactions: YES
XA: NO
Savepoints: NO
PR EE S S S S S SRR SRR RS EEEEEEEEEET 6.
Engine: FEDERATED
Support: YES
Comment :
Transactions: NO
XA: NO
Savepoints: NO
LR RS EEEEEEEEEEEEEEESEEEEEEES 7'
Engine: ARCHIVE
Support: YES
Comment :
Transactions: NO
XA: NO
Savepoints: NO
PR EEE S S S S SRR SRR RS EEEEEEEEEE] 8.
Engine: MEMORY
Support: YES
Comment: Hash based,
Transactions: NO
XA: NO
Savepoints: NO
LR E S SRS EEEEEEEEEEEESEEEE SRS 9'
Engine: MyISAM
Support: DEFAULT

114

Chapter 3: Advanced MySQL

Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
XA: NO
Savepoints: NO

The output of sHOW ENGINES lists all storage engines that were either compiled into the MySQL server
or were installed as a plug-in. Each row for each storage engine lists the engine name, Support, which
means it’s enabled (YES), not enabled (NO), or the default storage engine (DEFAULT). Of course, in order to
use a storage engine it must be enabled. If you create a table using a storage engine that is not enabled,
the table will be created using the default storage engine. Other fields listed are comments on what
the engine is (added by the developer of the engine), whether it supports transactions, the X/Open XA
standard for distributed transaction processing, and savepoints.

Once you know what storage engines are availab