

Jane Calabria

Rob Kirkland

Dorothy Burke

201 W. 103rd Street

Indianapolis, Indiana 46290

Contents at a Glance
Foreword
Introduction

I Xcelsius 2008 Fundamentals
1 Motivation for Using Xcelsius 2008 11
2 Showcase of Xcelsius 2008 Dashboards 33
3 Getting Familiar with Xcelsius 2008 43
4 Embedded Spreadsheets: The Secret Sauce

of Xcelsius 2008 . 69
5 Using Charts and Graphs to Represent Data 127
6 Single Value Components: Dials, Gauges,

Speedometers, and the Like . 157

II Xcelsius 2008 Best Practices and Techniques
7 Using Multi-Layer Visibility in Your Dashboards and

Visualizations . 181
8 Managing Interactivity . 203
9 Xcelsius and Statistics . 229

10 Financial Analysis . 257
11 Maps in Xcelsius . 275
12 Smart Data and Alerts . 297
13 Working with Less-Than-Optimal Data 315
14 Other Dashboard Techniques and Practices 337

III Advanced Features
15 XML and Data Connectivity . 353
16 Creating Custom Components for Fun and

Profit . 371

IV Appendices
A Supported Spreadsheet Functions in

Xcelsius 2008 . 401
B Xcelsius Product Family Comparison 415
C Xcelsius Best Practice Techniques and Hip

Pocket Tips . 425

Index . 431Loren Abdulezer

800 East 96th Street

Indianapolis, Indiana 46240

Xcelsius®

2008
Dashboard

Best Practices

Xcelsius® 2008 Dashboard Best Practices
Copyright „ 2009 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information con-
tained herein.

ISBN-13: 978-0-672-32995-1
ISBN-10: 0-672-32995-6

Library of Congress Cataloging-in-Publication Data

Abdulezer, Loren.
Xcelsius 2008 dashboard best practices / Loren Abdulezer.

p. cm.
ISBN 978-0-672-32995-1

1. Xcelsius (Computer file) 2. Dashboards (Management information systems)
3. Business—Computer programs. I. Title.

HD30.213.A23 2009
005.5’8—dc22

2008046377

Printed in the United States of America

First Printing December 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as pos-
sible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The author and the publisher shall have neither liability nor responsibil-
ity to any person or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearson.com

Sams Publishing
Associate Publisher

Greg Wiegand

Acquisitions Editor
Michelle Newcomb

Development Editor
Todd Brakke

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Kitty Wilson

Indexer
Erika Millen

Proofreader
Dan Knott

Publishing Coordinator
Cindy Teeters

Book Designer
Anne Jones

Compositors
Nonie Ratcliff
Bronkella Publishing LLC

Business Objects
Business Objects Press
Editorial Board

Paul Clark
John McNaughton

Technical Editor
Javier Jimenez

Contents
Introduction .1
Getting What You Need from This Book .3

Locating Specific Techniques Quickly .3
How to Read This Book .3
Accessing Legacy Xcelsius Files .4
Best Practices Versus Shortcuts .4

What This Book Covers .5

Conventions Used in This Book .7

I Xcelsius 2008 Fundamentals

1 Motivation for Using Xcelsius 2008 .11
The Original Killer App .12

The Spreadsheet as an Open-Source Dashboard .13

From Excel to Xcelsius .16
A Walk-Through of Xcelsius .17

Where to Go from Here .27
Working the Xcelsius Dashboard .27
Dashboards: More Than Skin Deep .28
Dashboard Functionality Enhancements .29
Watching Out for Limits .29
Importing Spreadsheets into Xcelsius 2008 .30
Putting Some Computational Oomph into Your Dashboards .30

Closing Thoughts .31

2 Showcase of Xcelsius 2008 Dashboards .33
Embedding Spreadsheet Smarts in a Dashboard .34

Thinking Creatively with Colors and Visual Components .35

Putting Your Data on the Map .35

Rethinking Dashboard Interface Design .36

Choosing the Data You Want to View .36

Desktop Client Portals .37

Viewing Multiple Sources of Information in a Single View .37

Managing the Visibility of Components in Your Dashboards .38

Embedding Visual Analytics in a Dashboard .38

Interesting Approaches to Financial Analysis in Xcelsius .38

New Features in Xcelsius 2008 .39
Enhanced Spreadsheet Support .39
Improved Support in Existing Components .40

iiiContents

New Components in Xcelsius 2008 .40
Web Connectivity in Xcelsius 2008 .41

Closing Thoughts .41

3 Getting Familiar with Xcelsius 2008 .43
Learning to Build Dashboards .44

Organizing the Xcelsius Workspace .46
Elements of the Workspace .46
Customizing Your Workspace Layout .47
The Canvas .48
The Object Browser .48
Positioning the Components Pane, Object Browser, and Properties Panel51

Using the Dashboard Design Facilities of Xcelsius .52
Text-Based Components .53
Chart-Based Components .54
Container Components .58
Selectors .59
Maps .61
Art and Background Components .61

Achieving a Uniform Look and Feel in Dashboards and Visualizations .62
Simple Replication at the Component Level .62
Pasting Components Between XLF Files .63
Xcelsius 2008 Themes .64
Fonts in Xcelsius .66

Closing Thoughts .67

4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008 69
Spreadsheet Fundamentals .70

Formula Fundamentals .71

Building Spreadsheet Models in Xcelsius 2008 .73
Spreadsheet Cell References .73
Named Ranges .77

Using Excel Functions in Xcelsius 2008 .79
Understanding the Role of Spreadsheet Functions and Operators in Xcelsius 2008 . . .79

Mathematical and Statistical Functions in Xcelsius 2008 .82
Aggregation and Statistical Functions .82
Financially Oriented Functions .92
Mathematical Functions in Xcelsius 2008 .95
New Excel Functions Supported in Xcelsius 2008 .108

Making Dashboards Date and Time Aware .110
NOW and TODAY .110
Constructing Dates .110
Parsing Dates and Time: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND 111

Xcelsius® 2008 Dashboard Best Practicesiv

vContents

Keeping Track of Your Days at Work: NETWORKDAYS .111
Other Date Functions .112
Using Calendar Arithmetic .113

Manipulating Text in Spreadsheet Formulas .116
Making Text Conform to a Specific Appearance .116
Splicing and Restructuring Text .117

Using Selector-Style Spreadsheet Functions .119
OFFSET .119
INDEX .122
CHOOSE and MATCH .123
VLOOKUP and HLOOKUP .123

Closing Thoughts .125

5 Using Charts and Graphs to Represent Data .127
Choosing the Right Components for a Dashboard .128

Building on Your Visualizations .132
Putting Your Data onto a Timeline .132

Viewing Grouped Data with Stacked Charts .135
Avoiding Needless Data Series Congestion .137
Drilling Down with Pie Charts .139

Working with XY and Bubble Charts .141
Working with XY Charts .141
Extending Graphical Presentation with Bubble Charts .145

Working with Tree Maps .148

Issues and Techniques Related to Scaling .150
Exploring the Scaling Laboratory .150
Dealing with Vastly Different Values on the Same Chart .152

Putting Visual Data Analysis into Focus .154

Closing Thoughts .154

6 Single Value Components: Dials, Gauges, Speedometers, and the Like 157
Understanding the Single Value Components .158

Working with Sliders and Progress Bars .159
Simple Sliders .160
Exotic Sliders .161
Dual Sliders .164
Progress Bars .166

Working with Dials .166
Scaling Dials, Gauges, and Sliders .167
Enhancing Your Dials .168

Working with Gauges .171
Using Gauges .171
Constructing Wraparound Gauges .174

Working with Spinners .175

Closing Thoughts .176

II Xcelsius 2008 Best Practices and Techniques

7 Using Multi-Layer Visibility in Your Dashboards and Visualizations 181
Taming Complexity and Usability by Making Presentations Compact .182

Managing Complexity Through Containment .182
Using Context Switching to Contain Visualizations and Dashboards184

Controlling the Visibility of Individual Components in a Dashboard .188
Understanding Dynamic Visibility .188

Managing Multi-Layer Visibility .192
Designing a Dashboard with Multiple Screens Controlled by a Label-Based Menu . .192
The Logical Approach to Orchestrating Multi-Layer Visibility .193
Working with Multi-Layer Visibility the Right Way .199
The Practical Rationale for Multi-Layer Visibility .200

Closing Thoughts .200

8 Managing Interactivity .203
Interacting with Chart Data .204

Data Animation .206

Chart Label Size .206

Drill Down Behavior .207

Interacting with Selectors .209
The Accordion Menu .209
The Check Box Component .209
Traffic Light Alerts in Combo Boxes and List Boxes .210
The Ticker Interface .211
Picture Menus .211
Toggle Button and Icon Components .213
Filter Components .214

Interacting with Single Value Components, Maps, and Text Components 216

Labels and Input Text Areas .218

Art & Background Components: Using the Image Component .220
Rectangle, Ellipse, and Background Components .220
The Image Component .222

Interacting with Web Connectivity and Other Components .222
The Print Button and Reset Button Components .222
The Local Scenario Button Component .223
The Calendar Component .223
The Trend Icon Component .224
The Trend Analyzer .224

Xcelsius® 2008 Dashboard Best Practicesvi

Grid and Spreadsheet Table Components .224
The History Component .226

Closing Thoughts .226

9 Xcelsius and Statistics .229
Understanding Statistics .230

What Makes Statistical Measures So Special? .231
Elementary Statistics Concepts and Dashboard Tools .231
Measures of Dispersion Around a Central Value .235

Understanding Probabilities .237
Simple Rules for Combining Outcomes .237
Understanding Conditional Probability and Bayes’ Theorem .239

Probability Distributions .242
Discrete Probability Distributions .242
Continuous Probability Distributions .246
The Trend Analyzer Component and Trend Analysis .252

Closing Thoughts .255

10 Financial Analysis .257
Some Basic Ideas in Accounting and Their Importance in Financial Analysis 258

Value at Risk (VaR) .258

Bringing Accounting into the Dashboard Equation .261

Accounting for the Element of Time in a Financial Analysis .263
Preparing an Aging Report .264

Financial Ratio Analysis .266
The Buck Starts Here .267
Using Ratios and Metrics to Judge the Overall Health of a Business271

Closing Thoughts .272

11 Maps in Xcelsius .275
Basic Ideas About Maps in Xcelsius .276

The Parts of an Xcelsius Map .276
Using a Map to Obtain Further Information .278

An Augmented Map Framework .280

Colorizing Maps .283

Multiple-Region Map Selection and Tally Maps .286
Multi-Selection Maps .287
Tally Maps .288

International Map Types .289
The World by Continent Map Component .290
The Connected Maps Reference Implementation .291

Closing Thoughts .294

viiContents

12 Smart Data and Alerts .297
Understanding Alerts in Xcelsius .298

The Haves and Have-Nots of Alerts .298
Basic Alert Features in Xcelsius 2008 .299
Why You Should Use Multiple Data Series .301
Showing Multiple Shades in Charts Based on Values in a Cell Range 301

Unconventional Uses of Conventional Components .302
Using Smart Text in Visualizations and Dashboards .302
Using Spreadsheet Values to Set the Text Color .305
Smart Text Spinners .306
List Box and Other Inline Alerts .309

Going Beyond the Built-in Alerts in Xcelsius .310

Closing Thoughts .312

13 Working with Less-Than-Optimal Data .315
The Digitization of Data .316

Dealing with Category I Digitization Errors .317
Dealing with Category II Digitization Errors .317
Dealing with Category III Digitization Errors .318

Fixing Problematic Spreadsheets .318
Detecting the Presence of Transposed Digits .318
Dealing with Raw Data .319
Dealing with Unclean Data .320
Dealing with Rounding and Truncation Errors .322
Poorly Positioned Data on a Worksheet .324
Detecting and Fixing Formula Problems .325
Dealing with Scaling Issues .328
Repurposing Existing Spreadsheets .329

Dealing with Improperly Structured Data .331

Closing Thoughts .334

14 Other Dashboard Techniques and Practices .337
An Important Preliminary Issue .338

Simple Fixes in Visualizing Data .339
Charting Multiple Data Series That Have Similar Values .339
Filled Radar Charts with Alerts .341
Avoiding Occlusion with Area Charts .342
Viewing Line Chart Data .343

Constructing ABC (Actual Budget Comparison) Charts .344

Using a Candlestick Component as a Box Plot .347

Closing Thoughts .350

Xcelsius® 2008 Dashboard Best Practicesviii

III Advanced Features

15 XML and Data Connectivity .353
Strategies for Packaging Dashboard Information .354

Open-Ended Dashboards .355

The Xcelsius Data Manager .355

Adding XML Maps to Xcelsius 2008 .357
Setting Up XML for Xcelsius When You Are Using Excel 2007 .357
Setting Up XML for Xcelsius When You Are Using Excel 2003 .357
Setting Up Excel XML Maps .359

Connecting Your Dashboards to Web Services .364
Understanding Web Services .365
Using Web Services in Xcelsius 2008 .365

Setting Up Cross-Domain Policy Files .368

Closing Thoughts .369

16 Creating Custom Components for Fun and Profit .371
Understanding Custom Components .372

Installing Custom Components .372
Custom Component Construction Workflow .373

Programming with Flex Builder .373

Getting Ready to Build Custom Components .375
Software You Will Need for Constructing Custom Components .375
Initial Software Setup .376

Building Custom Components .378
Constructing a Basic Slider Component .378
Building a Component’s Source .378
Connecting Your ActionScript and MXML Code .385
Generating the SWF File for Your Custom Component .385

The Relationship Between a Custom Component and a Property Sheet 386

Packaging and Deploying Your Custom Components .387
Packaging Your Custom Component .387
Loading, Testing, and Enhancing Components .391

Where to Go from Here .394
Additional Features in the SDK .394
Avoiding Potential Landmines .395

Closing Thoughts .397

ixContents

IV Appendices

A Supported Spreadsheet Functions in Xcelsius 2008 .401
Supported Spreadsheet Functions in Xcelsius 2008 .402

Logical Values and Spreadsheet Operators in Xcelsius 2008 .411

B Xcelsius Product Family Comparison .415
Xcelsius Functionality .416

Xcelsius Components .419

C Xcelsius Best Practice Techniques and Hip Pocket Tips .425

Index . 431

Xcelsius® 2008 Dashboard Best Practicesx

Foreword
Have you ever experienced how data can change the world? How compelling presentations
can get CEOs out of their seats? How a business dashboard can turn a regular business
manager into an invaluable hero to a company? Or how a tool that simplifies data and
makes information informative, useful, and actually fun can transform a career?

I have. It happened for me a couple years ago. My team at Business Objects was looking for
a way to present a new business opportunity with key metrics, business drivers, and trends
to our CEO. We had about an hour to present everything and help make a key business
decision.

We had a lot of slides and spreadsheets and the usual information you’d expect. But then we
summarized the entire business opportunity and how we wanted to look at the opportunity
into a single dashboard. We combined all the key data that we were using to look at the
business decision. Within a few hours, we turned mountains of tabular, virtually incompre-
hensible data into a powerful business tool. And we added the key element that every CEO
wants: the power of “what-if.” What if sales didn’t meet expectations? What if we couldn’t
meet our cost-cutting objectives? And more importantly, what if it really worked!

As we were presenting, our CEO jumped out of his chair and started to “drive” the dash-
board: He put his own experience and assumptions to the model. What we showed was that
it was actually a bad idea to make the investment that many were asking for. The numbers
didn’t add up. By not making the decision, we saved the company potentially millions of
dollars, countless resources, and a lot of churn trying to make something work that just
didn’t make sense to us or the CEO.

On the bright side, by taking advantage of the power of Xcelsius to build the dashboard, my
team gained broad recognition for providing something that was simple enough, com-
pelling enough, and actually fun enough to change the course of the business, and in the
process, our careers. Having the right skills to build a business dashboard without over-
whelming the audience made all the difference.

Sure, we could have shown some data in a spreadsheet, but the only reason CEOs get out
of their chairs to look at a spreadsheet is because the font is too small to read. Put that data
into Xcelsius and you will quickly change the way you see and monitor your business and
completely change the decision-making experience.

Our challenge to you, the reader, is to go beyond the creation of a simple chart or graphic
you’ve built in a presentation or spreadsheet tool to a real business dashboard that can have
a major impact on your most important business aspects. Model your business. See how
decisions impact the environment. See how pricing, promotions, and marketing impact
consumer behavior. Liven up your dashboards by connecting your dashboard to real-time,
live data from within your company or any web service to get up-to-the-second monitoring.
Use your business data anywhere, and take your proposal from the shop floor all the way to
the board room.

In my experience, the key elements that you need to effectively build business dashboards
that will make a difference include the following:

■ Designing a spreadsheet that clearly identifies the inputs and results for use by the
dashboard. Of course, let the spreadsheet do the hard work of crunching the complex
calculations!

■ Mapping visual components on the dashboard to drive the inputs on the spreadsheet.
You have a wealth of components to choose from—everything from sliders to dials and
list boxes, and then some. You can also manage their properties so that they are truly
interactive.

■ Adding visual components to display spreadsheet results. Again, you have a wealth of
components to choose from. Every dial, gauge, chart, map, and table can be imbued
with complex properties and alerts.

■ Building dashboard interactivity and managing visibility of the various components so
that your dashboard keeps toe to toe with its embedded spreadsheet.

Loren’s book shows how to take advantage of these features in Xcelsius 2008 to build
astounding dashboards. Make sure you take some time to learn some best practices laid out
in this book. Try out the samples to get you started. And make sure you share your great
work with others.

Every day we see more great dashboards that are changing the world, one dashboard at a
time. And remember, just as a good dashboard can improve you and your company’s per-
formance, bad data, poor layout, excessive use of unnecessary bells and whistles, and irrele-
vant data and information can have the opposite effect.

Good luck. Have fun. And don’t be surprised when you get a welcome, yet unexpected,
reaction when you share your dashboards. Done right, you’ve truly never seen a spread-
sheet do this before!

James Thomas

Vice President, Product Management

Business Objects, an SAP company

Xcelsius® 2008 Dashboard Best Practicesxii

Preface
A broad and growing community of professionals regularly prepares or needs to prepare
dashboards and interactive visualizations and reports. Like many of those other profession-
als, I have used Excel to create useful reports and dashboards. The problem is that unless I
incorporated extensive amounts of one-off code, Excel lacked some essential features that I
was looking for:

■ The ability to design a dashboard interface by dragging and dropping components on a
canvas

■ The ability to map visual components to a “live” spreadsheet built using my Excel
models

■ The ability to deploy simple, self-contained dashboards that are suited for visual data
analysis by ordinary users

Those capabilities existed in Xcelsius 3.0. Two product generations later, Xcelsius 2008 has
undergone a metamorphosis; Xcelsius now includes a well-honed and highly integrated
spreadsheet and dashboard design environment, significantly greater spreadsheet functional-
ity, more visual components and interface options, a revamped and expanded framework for
data connectivity, and the ability to create entirely new custom-designed components on
equal footing with built-in components.

This is great stuff. It sounds like everybody ought to be using Xcelsius 2008, for anything
and everything. But Xcelsius 2008 isn’t intended to be a jack-of-all-trades. First and fore-
most, Xcelsius 2008 is a serious tool for building interactive dashboards and intelligent visu-
alizations. The secret to its power is how it is joined at the hip with spreadsheets.

Xcelsius 2008 is remarkably easy to use. From a dashboard layout perspective, everything is
point and click. You don’t need much in the way of spreadsheet prowess to start doing inter-
esting and useful things with Xcelsius. This quick bang for the buck is like kindling wood in
a furnace: It’s enough to get a flame started, but it won’t heat up the room. To get a roaring
and self-sustaining fire, you need to take things to the next level.

So what is stopping you from building better dashboards? The biggest challenge holding
most people back is lack of time. If you are busy worrying about monitoring and meeting
production quotas, or allocating budgets among competing projects, you are probably not
going to spend a lot of time improving on a dashboard design once you get it working.
Maybe for an occasional dashboard, that’s smart thinking. If your dashboard serves you well,
you will no doubt use it to do more things. Who knows? Maybe you need to enable weekly
or daily analysis in addition to monthly analysis.

Say that you want to add a second product line, monitored by a dashboard. You start with
your already working dashboard design as your template and add more features. As you
keep cloning, you are stepping up your maintenance responsibilities and possibly bloating
your dashboard. At some point not far down the road, the dashboard capabilities plateau. It
is not nearly agile enough to keep up with changing requirements or expectations. This is

where best practices come into play. I know that time is premium for you. It is for every-
one. To save you valuable time, I have worked out a wealth of best practices and techniques
so that you don’t need to reinvent the wheel.

In this book, I do a few other things:

■ Introduce you to the features you need to know. I get you started with setting up your
Xcelsius workspace. I introduce you to essential components and show you how to use
them. I help you build up your spreadsheet skills in an Xcelsius-centric way.

■ Show you how to use the new and important features of Xcelsius 2008 so that you can
quickly transition to this newer technology.

■ Cover the essential components you will regularly be using in dashboards, from charts
to dials, gauges, sliders, and maps. I cover the standard features such as drill down and
alerts.

■ Show how to turbo-charge the various dashboard components so that they do things
you wouldn’t ordinarily expect. For instance, you’ll learn how to use a single dial on a
dashboard to set the values of dozens or hundreds of variables.

■ Show how to design simple and effective dashboard interfaces. When these need to be
scaled up to do complex things, the designs don’t change, and they don’t break down.

■ Describe how the preparation and processing of data, including techniques for validat-
ing and structuring of data, play a central role in dashboard best practices.

■ Devote whole chapters to constructing spreadsheet formulas embedded in dashboards,
statistical analysis, financial analysis, and working with less–than-optimal data.

■ Show how to utilize features of Xcelsius 2008 for remote data connectivity, such as
XML maps and Web Services.

■ Explain how to construct custom components.

The undercurrent that runs through this book is empowerment. Every step of the way, I
show how you can work smarter by using best practices.

Loren Abdulezer

December 2008

About the Author
Loren Abdulezer is CEO and president of Evolving Technologies Corporation, a New
York–based technology consulting firm that specializes in visual data analysis. He has a
long-standing record in the Xcelsius community and has been a staunch proponent of the
technology since its early days.

Loren is the editor-in-chief of Xcelsius Journal (www.XcelsiusJournal.com), an online maga-
zine dedicated to users in the Xcelsius user community. Loren also started the website
Xcelsius Best Practices (www.XcelsiusBestPractices.com).

Loren is the author of Excel Best Practices for Business and Escape from Excel Hell. He served
as the technical editor of Crystal Xcelsius For Dummies. He can be reached at
dashboards@evolvingtech.com.

Dedication
To my wife, Susan, for inspiring me to achieve and exceed my expectations.

www.XcelsiusJournal.com
www.XcelsiusBestPractices.com

Acknowledgments
In writing this book, I’ve been afforded extraordinary access to many talented people at
Business Objects and early access to Xcelsius 2008 as it evolved. From the outset, Saskia
Battersby and John McNaughton clearly perceived the need for an Xcelsius-centric book
on dashboard best practices. They were tireless in opening up doors and making extensive
resources available. You would not be reading this book were it not for their involvement.
Andy Brathwaite and Matt Lloyd played a critical role in opening up key technical aspects
of Xcelsius. They, too, saw the value in this book and worked closely with me to address all
sorts of Xcelsius technical issues. They went above and beyond the call of duty. Their
involvement helped me to produce a far better book.

Those of you who know me know that Xcelsius 2008 Dashboard Best Practices is a book of
personal significance to me. The writing of a book on best practices can hardly be under-
taken in a vacuum. In writing this book, I have drawn heavily on my discussions and inter-
actions with countless individuals and companies, and I wish to acknowledge the benefits I
have received, both direct and indirect.

Mike Alexander, a colleague whom I have had the good fortune of working closely with,
has played an important role on this book and on Xcelsius Journal.

I also wish to thank the following individuals (in alphabetical order by first name): Andrew
Bentnick, Ashton Holt, Bill Good, Blair Wheadon, Caryn Brannen, Charles
Sampankanpanich, Chris McMahon, Chuck Vietrogoski, Claire Maytum, Connie Sevillo,
Danny Ficetola, David Harper, David Lopez, Denise Baker, Dennis Blasius, Gerrit Neve,
Howard Dammond, Jim Shields, John Picard, Jon Teopaco, Kalyan Verma, Katy Zarty,
Kirk Cunningham, Mico Yuk, Nick Tenzing, Nicko Martadinata, Paul Clark, Philip
Campbell, Ryan Goodman, Sean Bolte, Steve Newberg, Takin Babaei, and Yvonne Jones.

The team from Business Objects Press is an exceptional group to work with. I am grateful
to my acquisitions and project editor, Michelle Newcomb, for doing an extraordinary job
of shepherding this book from its inception. Todd Brakke, my development editor, and
Kitty Wilson, my copy editor, have helped to turn my text into an enjoyable read. Betsy
Harris, my project editor, added the finishing touches and turned this into a polished book.
Javier Jimenez is a superb technical editor; his probing questions and feedback helped to
keep my subject matter in sharp focus.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you’re willing to pass our
way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone or email address. I will carefully review your comments and share them with the
author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Greg Wiegand
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

In this introduction

Getting What You Need from This Book 3

What This Book Covers 5

Conventions Used in This Book 7

INTRODUCTION

2 Introduction

One of the first things that caught my attention about Xcelsius is that it is fundamentally a
paradigm-shifting technology. Xcelsius intentionally blurs the distinction between spread-
sheets and presentation-layer dashboards.

Back in 2005, when the product first started getting traction, it was ahead of its time. Most of
all, Xcelsius needed to catch up to its own revolutionary ideas. Back then, the spreadsheet
portion and the canvas lived in parallel but disjointed universes. They could be tethered by
statically linking component properties to fixed cell coordinates. This was a great proof of
concept and prototype but wasn’t always practical.

From time to time, spreadsheet models do need to get updated. With early versions of
Xcelsius, if you inserted or deleted a row or column, it sometimes completely derailed the
Xcelsius component-to-spreadsheet-cell mapping. At the cost of increased spreadsheet design
complexity, I developed a solution to this problem. This opened the floodgates so that I
could redesign imported spreadsheets with impunity and not have to worry about upsetting
the mapping between components and spreadsheets. In effect, it gave me a three-year head
start in developing effective techniques and best practices that are applicable to Xcelsius
2008.

Xcelsius 2008 supports some new spreadsheet functions. One of them is an amazing and
often-overlooked function called OFFSET. In earlier versions of Xcelsius, you could use INDEX
to redirect data from any column or row of your choosing and pipe it into a chart or other
visual component in your dashboards—a technique I call context switching. Thanks to OFFSET,
this functionality can now be truly turbocharged using Xcelsius 2008.

Over the years I developed a wealth of techniques and best practices so that the data and
computational side of the Xcelsius dashboards could be on par with the stunning visualiza-
tions so often associated with Xcelsius.

As Xcelsius 2008 moved past the drawing board, I reworked and substantially extended those
techniques for the new Xcelsius. I often found myself more on the bleeding edge than cut-
ting edge of this new technology.

After Service Pack 1 for Xcelsius 2008 solidified, the techniques, methodologies, and
approaches to dashboard design with Xcelsius 2008 all fell into place rather naturally.

Xcelsius 2008 as a product and technology has caught up with its revolutionary ideas and is
ready for primetime. That is half the battle. The task ahead of you is to use Xcelsius 2008 to
catapult your dashboards and visualizations beyond toy demonstrations.

Using Xcelsius is easy when you understand the ins and outs of building and designing dash-
boards.

The first lesson you are going to learn in this book is that if you really want your Xcelsius
dashboard to shine, you have to take responsibility for managing the data that feeds into your
visualizations. This means you have to control the data, juggle it with formulas, and do what
is necessary so that it is on rock-solid footing by the time it appears visually.

3Getting What You Need from This Book

Why is all this really necessary? Dashboards are interactive, and Xcelsius dashboards per-
form live computations. The data in a dashboard is generally not static and is subject to
ongoing updates and revisions. To complicate matters, the drivers and inputs in visualiza-
tions are subject to the whims of your dashboard users.

There are things you can do to keep your dashboards out of hot water. For example, say that
you have three companies vying for market share—your company and two competitors. You
know that 100% of the market share will never be exceeded. How can you build a dashboard
to assess your competitive positioning, assign market share, and never have to worry about
overallocating percentages? Best practices provide a structured methodology for dealing
with issues of this kind and for taking what might be inefficient or unmanageable and keep-
ing the process sane and contained.

N O T E
You can find a dashboard of this kind in Chapter 2, “Showcase of Xcelsius 2008
Dashboards,” and its implementation is covered in Chapter 12, “Smart Data and Alerts.”

Getting What You Need from This Book
My goal in this book is to help you quickly learn specific techniques and practices, provide
information in a sensible order, and help you understand some practical matters about work-
ing with examples and your own files.

Locating Specific Techniques Quickly
This book covers a broad range of topics in 16 chapters. The chapters are chock full of valu-
able techniques, tips, and strategies. The chapters are organized by subject matter rather than
by best practice. To help you locate best practices, I’ve cataloged more than 100 best practice
techniques and tips in Appendix C, “Xcelsius Best Practice Techniques and Hip Pocket
Tips,” which lists topics and where to find them in the book. To help you locate the details
within the chapters, a best practices icon appears in the margin next to each best practice.

N O T E
You can find the dashboard files that accompany this book on www.XcelsiusBestPractices.
com.

How to Read This Book
This book will be valuable to you whether you are new to Xcelsius or already have some
experience under your belt. You may want to approach the text differently, depending on
your familiarity with creating dashboards and using Xcelsius.

www.XcelsiusBestPractices.com
www.XcelsiusBestPractices.com

4 Introduction

For New Xcelsius Users

If you are entirely new to Xcelsius, first skim Chapter 2, which quickly introduces you to
various kinds of Xcelsius dashboards. Then read through Chapter 1, “Motivation for Using
Xcelsius 2008,” so that you have an idea of how your spreadsheets and dashboards work
together in Xcelsius. Move on to Chapter 3, “Getting Familiar with Xcelsius 2008,” to get a
foundation for working with Xcelsius. Think of Chapter 3 as your first day of on-the-job
training.

If you want, you can skim through Chapter 4, “Embedded Spreadsheets: The Secret Sauce
of Xcelsius 2008,” but you may be better off immediately jumping to Chapters 5, “Using
Charts and Graphs to Represent Data,” and 6, “Single Value Components: Dials, Gauges,
Speedometers, and the Like.” Don’t worry about the details; concentrate on the basics. Now
you can jump to pretty much any other chapter in the book. As you need, refer to Chapter 4
when the spreadsheet stuff gets too heady.

For Veteran Dashboard Designers with Prior Xcelsius Experience

If you are a veteran user of Crystal Xcelsius, you can initially concentrate on Chapter 3 to set
up your Xcelsius 2008 environment. The Xcelsius 2008 workspace may take some getting
used to, but you will definitely find the tight Xcelsius/Excel integration to be liberating.

Then spend some time reading through Chapter 4 but don’t worry about reading it from
beginning to end. Instead, pick a spreadsheet topic of interest to you—the text functions or
date and time functions, for example. Read through that section thoroughly to learn how to
set up and use those functions in a dashboard setting.

Make sure you go through Chapters 5 and 6, which describe valuable dashboard designs and
constructions. They may give you ideas on how to redesign some of your own. From there
on, feel free to read any of the chapters in any order you please.

Accessing Legacy Xcelsius Files
Xcelsius 2008 can read and convert Crystal Xcelsius files (that is, Xcelsius version 4.5). If you
have files built with Xcelsius 4.0 or earlier, you will first need to open them by using Crystal
Xcelsius and save them as Xcelsius 4.5 files. Then you may be able to open them by using
Xcelsius 2008.

The process of converting legacy files to Xcelsius 2008 may not be so easy. Instead of trying
to retrofit a legacy Xcelsius file, you may be better off building a new dashboard from
scratch, using the best practices described in this book.

Best Practices Versus Shortcuts
Some quick solutions to vexing problems cut corners and work, and some are hacks. For
example, the common practice of overlaying charts one on top of another can work and can
be effective, and with the previous versions of Xcelsius, it may have been the only way to do
certain things. I do not view such strategies as best practices, so I generally steer away from

5What This Book Covers

talking about practices of this kind. However, I do make some exceptions, discussing such
techniques and explicitly citing them as not being best practices but being practical short-
cuts. For example, Chapter 14, “Other Dashboard Techniques and Practices,” discusses a
filled radar chart with alerts. I point out in the chapter that this is not a best practice. I also
list this as an item in Appendix C.

In summary, while I try to keep the discussions pure and focused on best practices, I balance
this with practical techniques.

What This Book Covers
The purpose of Part I, “Xcelsius 2008 Fundamentals,” is to color your impressions about
Xcelsius 2008 and Xcelsius dashboards and lay a foundation for how to approach the use of
Xcelsius 2008.

Chapter 1, “Motivation for Using Xcelsius 2008,” gives you a backdrop for Xcelsius and
spreadsheets and reveals how the two are heavily intertwined.

Chapter 2, “Showcase of Xcelsius 2008 Dashboards,” is like a wine tasting party. You’ll get a
sampling of different kinds of dashboards and have a chance to think about what’s important
for you and what might be interesting to pursue when you start building dashboards. In this
chapter, I point out where you can find more about specific dashboards or dashboard fea-
tures.

Chapter 3, “Getting Familiar with Xcelsius 2008,” helps you set up your Xcelsius workspace
so you can quickly begin to build rudimentary dashboards. It also sets the stage for building
full-featured dashboards. It’s important that you think clearly about using the features of the
Designer environment and tapping into the unique dashboard capabilities for which Xcelsius
is known.

The powerhouse behind Xcelsius is the underlying spreadsheet. If you want to do really
powerful and astounding things with Xcelsius, you need to know how to use spreadsheet for-
mulas and functions. Chapter 4, “Embedded Spreadsheets: The Secret Sauce of Xcelsius
2008,” is a skill-building chapter that works from the ground up on how to construct spread-
sheet formulas in Xcelsius. This chapter is a comprehensive reference guide that covers
essential spreadsheet functions, replete with examples and pragmatic constructions, and
identifies some important differences between Excel functions and their handling within
Xcelsius.

Chapter 5, “Using Charts and Graphs to Represent Data,” introduces you to charting com-
ponents and how to use them. You’ll learn about the major kinds of charts and how to work
with them; you’ll end up with a better understanding of practical matters such as chart scal-
ing. You’ll learn about some new kinds of components introduced in Xcelsius 2008, such as
Tree Map components. I also show some techniques for handling known charting problems,
such as displaying negative values in bubble charts.

6 Introduction

Chapter 6, “Single Value Components: Dials, Gauges, Speedometers, and the Like,” pro-
vides information on sliders, dials, and gauges. In this chapter, I cover Xcelsius themes to
show how you can alter the appearance of your dashboards. A common criticism of dash-
board dials and gauges is that they consume large swaths of screen space. I show a technique
that allows you to share a single component, such as a dial, with a virtually limitless number
of dashboard variables.

Part II, “Xcelsius 2008 Best Practices and Techniques,” is a comprehensive guide to Xcelsius
components and best practice techniques.

When you discover that you can pack a lot of punch in your dashboards with the wide array
of components, you’ll find your visualizations becoming quickly crowded. Chapter 7, “Using
Multi-Layer Visibility in Your Dashboards and Visualizations,” shows you how to avoid
needless complexity by using best practice techniques for managing visibility.

Chapter 8, “Managing Interactivity,” gives you more control in managing interactivity. You’ll
learn about putting to use drill down features and interacting with various kinds of inter-
faces.

Chapter 9, “Xcelsius and Statistics,” is an Xcelsius-centric foray into statistics and statistical
analysis. This chapter shows how to meaningfully integrate statistical techniques with
Xcelsius. For example, histograms are commonplace, but is it commonplace to have a his-
togram where you can use a slider to set the boundaries between categories appearing in the
histogram?

Chapter 10, “Financial Analysis,” shows how you can use the power of an underlying spread-
sheet to build dashboards for converting between accrual and cash accounting, Value at Risk
dashboards, and ratio analysis.

Chapter 11, “Maps in Xcelsius,” shows you best practices on using Xcelsius Map compo-
nents for traditional and nontraditional applications, including augmented maps, colorized
maps, multi-selection maps, international maps, and connected maps.

Chapter 12, “Smart Data and Alerts,” shows you how to utilize alerts in Xcelsius and how to
create smart data.

Chapter 13, “Working with Less-Than-Optimal Data,” shows practical spreadsheet tech-
niques for detecting the presence of transposed digits, dealing with raw and unclean data,
working with rounding and truncation errors, fixing faulty formulas, and dealing with scaling
issues.

Chapter 14, “Other Dashboard Techniques and Practices,” addresses a variety of dashboard
design solutions, including filled radar charts with alerts and avoiding occlusion with area
chars. This chapter introduces a dashboard technique I call an “ABC” chart that flows two
data sources into a combined chart. This chapter also addresses an interesting technique
involving box plots.

7Conventions Used in This Book

Part III, “Advanced Features,” introduces advanced features of Xcelsius 2008.

Chapter 15, “XML and Data Connectivity,” explains how the Xcelsius Data Manager unifies
data connectivity and outlines basic techniques for defining data connections and managing
data refreshing. These principles are illustrated with XML Map components and Web
Services.

Chapter 16, “Creating Custom Components for Fun and Profit,” opens the door to doing
something with Xcelsius not previously possible—constructing custom components. In this
chapter, I spell out the essential setup needed for designing custom components, outline the
workflow involved in building components, illustrate how to build a component, and outline
important and expanded next steps.

This book includes three helpful appendixes.

Appendix A, “Supported Spreadsheet Functions in Xcelsius 2008,” outlines the full range
of Excel spreadsheet functions that are supported in Xcelsius 2008. This complements
Chapter 4.

Appendix B, “Xcelsius Product Family Comparison,” outlines the differences among the var-
ious editions of Xcelsius 2008: Xcelsius Present, Engage, Engage Server, and Enterprise.
This appendix describes each edition’s general features, built-in assistance, font support, data
connectivity support, export and snapshot options, themes and styles, and back-end server
support. I also run through a comprehensive list of component types, organized by Chart
components, Contain components, Single Value components, Selector components, Map
components, Art & Background components, Text components, Web Connectivity compo-
nents, and Other components (such as the Interactive Calendar, Trend Analyzer, and other
miscellaneous components).

Appendix C, “Xcelsius Best Practice Techniques and Hip Pocket Tips,” is a guide that helps
you immediately locate specific best practice techniques. It identifies valuable techniques and
where to find each in the book.

Conventions Used in This Book
This book uses several special elements:

T I P
Tips provide advice or describe a different way of accomplishing a task.

N O T E
Notes present extra information about a topic.

C A U T I O N
Cautions pull out critical information about fixing or avoiding problems.

8 Introduction

Code-continuation arrows are used when a line of code won’t fit on one printed line. The
code is wrapped to the next line and the continuation is preceded with a code-continuation
arrow, like this:

-(B7*(EXP(B8*C12*(-1)))*(NORMDIST(((LN(B6/B7))+((B8+(B13*B13/2))*C12))/(B13
➥*(SQRT(C12)))-(B13*SQRT(C12)),0,1,TRUE)))

Xcelsius 2008 Fundamentals

1 Motivation for Using Xcelsius 2008 11

2 Showcase of Xcelsius 2008 Dashboards 33

3 Getting Familiar with Xcelsius 2008 43

4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008 69

5 Using Charts and Graphs to Represent Data 127

6 Single Value Components: Dials, Gauges, Speedometers, and the Like 157

IPART

This page intentionally left blank

1CHAPTER

In this chapter

Motivation for Using
Xcelsius 2008

In this chapter

The Original Killer App 12

The Spreadsheet as an Open-Source Dashboard 13

From Excel to Xcelsius 16

Where to Go from Here 27

Closing Thoughts 31

12 Chapter 1 Motivation for Using Xcelsius 2008

1

The topic of dashboards and dashboard techniques is fairly broad. Looming over this topic
are two questions: Why should you use dashboards at all? What benefits are conferred by
using Xcelsius 2008?

If there isn’t clarity on these issues, then the purpose and significance of the rest of the book
could be cloudy. So, my objective in this chapter is to get you to think a little differently
about how to approach visual data analysis.

The Original Killer App
The spreadsheet could arguably be called the killer application from the 1980s through the
mid-1990s. Spreadsheets personified a newfound freedom that wonderfully complemented
the advent of the personal computer. Until the start of the PC revolution, computers were
widely perceived as large, clunky machines that required specialized facilities, a small army
of technicians and scientists in white coats, and a hefty budget. Doing anything new and
useful almost always required substantial expertise in any of a number of often-terse pro-
gramming languages. Along came the PC, which promised to revolutionize the world of
computing. Like an apple pie without the cinnamon, the PC by itself was incomplete. It
needed that spice to deliver on its promise and make the user want more.

Early spreadsheet programs such as VisiCalc, Multiplan (the forerunner of Excel), and
Lotus 1-2-3 provided a wonderful way to do number crunching. You could spread out your
numbers in rows and columns as you would on an accountant’s ledger sheet. You could spec-
ify formulas such as sums and averages. With a modicum of skills, you could also enter in
any spreadsheet cell intuitive algebraic-like formulas like this:

=1.08*SUM(A1:A12)+35

It was also easy to replicate formulas by simply copying and pasting. All this capability was at
your fingertips without requiring you to learn a stitch of programming! In short, spread-
sheets opened the door to programming without programming. The paradigm was brilliant.

There were a couple of kickers that really slammed the ball out of the ballpark—enough to
turn the spreadsheet into a killer app. The subtlety of these kickers is really quite
remarkable.

With a spreadsheet, if you update a number in, say, cell A1, everything dependent on that
revision is automatically recalculated. Before the advent of spreadsheets, you had to rerun an
entire program or script just to retrieve the revised calculation. There were a few things that
intensified the value of this instant gratification. For one thing, there was no need to be
chained to a printer; everything could be done with a keyboard and monitor. The virtual
paper was much larger than the screen. Back in those days, a 256-column ledger sheet was
virtually unheard of. In addition, spreadsheets are incredibly portable. The ability to save a
spreadsheet to a floppy disk and mail it to a colleague sewed the seeds of electronic
collaboration.

13The Spreadsheet as an Open-Source Dashboard

1

When you look back, you get a feel how much we take for granted those liberating baby
steps. During the 1980s, the spreadsheet was the killer app, and because it was so successful,
there was little or no need to fundamentally revise the spreadsheet paradigm. The only driv-
ers that forced spreadsheet technology to change were the continual improvements in com-
puting technology—those allowing for more disk space, larger RAM, and faster speeds. As a
result, spreadsheets grew to have a myriad of features, including their own programming
language, PivotTables, a wide assortment of esoteric mathematic functions, spell checking,
multiple language support, and many others.

The spreadsheet has proven to be a very successful Swiss Army knife. Among the many pur-
poses spreadsheets serve, it is well suited for visual analytics.

N O T E
Although there are numerous spreadsheet programs, some of which are web based and
some of which are increasingly popular direct competitors, such as the OpenOffice suite,
this book specifically addresses Microsoft Excel for two reasons:

■ Excel is the most prevalent spreadsheet program in the world and is regarded as
the de facto standard for spreadsheet software.

■ Xcelsius 2008, as you shall soon see, is intimately intertwined with Excel.

So unless the text explicitly states otherwise, you can safely infer that the term spread-
sheet refers to an Excel spreadsheet. Further, when the text uses the terms underlying
spreadsheet or virtual spreadsheet, it refers to an Excel spreadsheet that is embedded in
the Xcelsius 2008 environment.

The Spreadsheet as an Open-Source Dashboard
One of the remarkable features of a spreadsheet is its ability to present numeric data in
graphical form. For example, the chart in Figure 1.1 is constructed by using spreadsheet
formulas to count the number of cells in the gray shaded region that fall in a range of val-
ues. In this example, there are five such ranges and, correspondingly, five vertical columns.

Getting this rather tidy-looking histogram to work requires a bit of elbow grease. Let’s peel
some of the layers off the onion and get a look at what’s going on behind the scenes. It’s
amazing how complex things can be when on the surface they look simple.

As Figure 1.2 shows, behind the chart is a set of hidden computations.

The numbers in column D are all separated by 6 (the value in cell B4). Adding 6 to 26 results
in 32 (the value in cell D9). Adding another 6 results in 38 (the value in cell D10).

If you carefully examine all the numbers in the gray region, you see that the lowest-value
number is 27 (which is computed in cell B1). Column C shows the count of the numbers in
the gray region that are greater than the value in column D. (Interestingly, the numbers in
column D need to start from a value of 1 fewer than the minimum value.) To get the correct
count, it is necessary to take the difference between the adjacent cell to the immediate right

14 Chapter 1 Motivation for Using Xcelsius 2008

1

Figure 1.1
Histogram chart in a
typical spreadsheet.

and the one immediately below it. For instance, the value 4 in cell B9 is computed using this
spreadsheet formula:

=C8-C9

or this:

=30-26

Figure 1.2
Hidden computations
needed for the his-
togram in Figure 1.1.

15The Spreadsheet as an Open-Source Dashboard

1

I haven’t even gotten to how the range labels in cells A8 through A12 are computed. Is your
head spinning?

While many of the steps may seem arbitrary, I can assure you that all the steps are purpose-
ful. Unless you are armed for advance knowledge, or happen to know how I think, you may
have a hard time figuring out what’s going on, even if the steps are carefully and thoroughly
documented.

This spreadsheet with the histogram in some ways qualifies as a dashboard. It may not be a
dashboard connected to a practical application, but it is a dashboard nonetheless. If you start
changing the numbers in the gray region, the histogram is automatically updated. The num-
bers in the gray region don’t even have to be modified by hand. You could have formulas
that use some kind of lookup to retrieve values from a table, based on any criteria you care
to construct in a spreadsheet formula—even the time of day or whether the current year
happens to be a leap year. There’s more complexity here than meets the eye, and there could
be more formulas than you care to know about or have any clear idea of what to do with.

This is a contrived example of a most rudimentary dashboard in a spreadsheet. By many
people’s criteria, it may not even qualify as a dashboard. The key, though, is to understand
that if you want to create sophisticated and fancy dashboards in a spreadsheet, you could.
Excel has plenty of graphical features. It provides spreadsheet functions and formulas galore.
If you’re an ace at VBA programming or have a budget to hire a dedicated programmer, or
the luxury of the time to figure it out by yourself, then you may turn up a nice spreadsheet
dashboard. Given the choice, however, you would probably opt to have quick turnaround
time for dashboard preparation, while simultaneously lowering the skill threshold needed to
crank out high-quality dashboards. Unfortunately, although you could use conventional
spreadsheets to build dashboards, dashboards created that way will likely fall short of your
goals, especially if you want to cost-effectively produce professional-quality dashboards.

The problem is that spreadsheets used to build dashboards are effectively open-source dash-
boards. The notion of open-source software can connote different things, depending on
your perspective:

■ On the positive side, your spreadsheet formulas are exposed for the world to see.

■ On the negative side, your spreadsheet formulas are exposed for the world to see.

If you are preparing a dashboard, it may not be in your interest to have all the innards
exposed. The chances are that the CEO of your company will not respond well to having all
the formulas exposed. And that CEO will certainly not be happy if he or she accidentally
clobbers a complicated formula. Even if users of a deployed dashboard respect the spread-
sheet enough to avoid tinkering with its structure, there is the nagging issue of protecting
intellectual property. A spreadsheet loaded with complicated formulas and conditional logic
is just teeming with proprietary knowledge in its purest form. It would surely spell disaster if
your dashboard based on an open-source spreadsheet got into the wrong hands. Giving away
a sliver of your analyzed data is one thing, but giving away your analytical reasoning is
entirely another.

16 Chapter 1 Motivation for Using Xcelsius 2008

1

To be fair, Excel does provide a basis for safeguarding deployed spreadsheets. You could
make use of Microsoft’s Information Rights Management, an enterprise-centric framework
for establishing policies and roles that you can assign to all the employees of a company. As
you might guess, this could entail a fair amount of IT infrastructure, staffing, and budget.
Based on your company’s needs, such an initiative might be warranted and cost justified. But
it’s a fair bet that this framework is not going to fit every company’s needs. There are other
Microsoft options, too, but that is not the focus of this book.

It sure would be nice to have some of the computational features of spreadsheets without the
drawbacks cited in the past few pages. The good news is that Xcelsius makes this possible.

From Excel to Xcelsius
Pretend that there doesn’t exist a product called Xcelsius. As product development director
in a software company, you want to create some kind of a dashboard tool that confers the
benefits of Excel to create dashboards without its drawbacks. What features do you think
you would choose to incorporate?

Of course, before developing the product, you would do your market research to determine
what paying customers want. You might ask them the following questions:

■ Would you like to import any of your Excel spreadsheets into this dashboard creation
tool to make use of its data?

■ Would you like the ability to retain the spreadsheet formulas in the imported file so that
the spreadsheet continues to work inside the dashboard?

■ Would you like to overlay the internal spreadsheet with a visual interface or canvas
composed of fully interactive components, such as dials, gauges, pick lists, sliders, and
charts?

■ Would you like to be able to map these components on the canvas so that they interact
with the underlying spreadsheet?

■ Would you like the ability to invent your own custom components if none of the avail-
able visual components suits your needs?

■ As you refine your dashboard, would you like the ability to continue to make changes to
your underlying spreadsheet, such as inserting rows or entering and revising formulas,
and not have to re-import the spreadsheet?

■ Would you like to be able to create a dashboard that you can run from your website by
simply exporting it as a file?

■ Would you like to be able to export your dashboard to alternative formats, such as a
PowerPoint slide, PDF file, or Word document—or even post the dashboard to a
web server?

■ If you could export the dashboard to one of these alternative formats, would you want it
to retain its full interactivity?

17From Excel to Xcelsius

1

■ If you want to run the dashboard in any of these alternative formats, would you like to
eliminate the need to install any special software (including Excel) to run it?

■ Would you like to be able to endow your dashboard with the ability to send and receive
data to and from remote data sources, such as a database server?

I am guessing that the answer to each, or at least most, of these questions is a resounding
yes. This scenario—being in charge of a software development group on a mission to
develop a software application to meet these requirements—sounds like a tall order.
Fortunately, it’s already been created, and it’s called Xcelsius 2008.

A Walk-Through of Xcelsius
The purpose of this chapter is to familiarize you with some of the features of Xcelsius 2008.
By the time you’re done reading it, you should be conversant about some basic features and
concepts, enough to be able to wrap your arms around the process of building Xcelsius
dashboards.

Chapter 2, “Showcase of Xcelsius 2008 Dashboards,” is a window into some of the kinds of
dashboards you can create with Xcelsius 2008, both from the standpoint of dashboard inter-
face ideas and the kind of applications you can build. Seeing what you like and what you
don’t can help you crystallize what you want to create for yourself.

When you have a sense of what’s possible and how the possibilities apply to your goals,
you’ll have a meaningful context to think about building your own dashboards and visualiza-
tions in Xcelsius. Chapter 3, “Getting Familiar with Xcelsius 2008,” gives you some hands-
on experience using Xcelsius. So without further ado, let’s begin.

Getting Started with Xcelsius 2008

To build dashboards using Xcelsius, you need two and a half software applications. That is
not a typo. The fractional piece is Flash Player. Chances are, you already have Flash capabil-
ities embedded in your browser, but if you don’t, you need to install Adobe’s Flash Player.

Besides Flash Player, you need Microsoft Excel (by itself or as part of the Office bundle) and
Xcelsius 2008. In terms of an operating system, you need Windows 2000, XP, or Vista. If
you want, you can run all the software on the Macintosh platform, using Apple’s Boot
Camp, VMWare Fusion, or Parallels Desktop for Mac.

T I P
VMWare Fusion allows you to install an optional module called VMWare Tools—a set of
keyboard, mouse, and device utilities that enhance device behavior. I highly recommend
that you install the VMWare Tools onto the guest operating system. It allows your mouse
and keyboard to work correctly with Xcelsius 2008.

18 Chapter 1 Motivation for Using Xcelsius 2008

1

The first software application you need to install is Microsoft Excel (or Microsoft Office).
You can work with either Excel 2007 or Excel 2003. Xcelsius needs Excel, and Excel needs
to already be installed on your computer before you install Xcelsius 2008.

If you don’t already have Excel installed on your computer, you should do it now.

T I P
If you don’t have either Excel or Xcelsius 2008, you can install trial versions of these
packages. If you are installing the trial version of Excel, you need to activate it the very
first time you run the program, or it will not function correctly.

The trialware versions of Excel and Xcelsius have a timeout period. If you are installing
both trialware packages, pay attention to their timeout periods. For instance, if Excel has
60-day timeout and Xcelsius has a 30-day timeout, be sure to get Excel installed and
working the way you need it to before installing Xcelsius. This way, you can maximize
the time to use the trialware version of Xcelsius.

There’s another good reason to ensure that Excel is installed and working the way you
need it to first. The customized features of your Excel environment, such as toolbar icons
that you can set, get carried over into the Xcelsius Designer environment. It doesn’t make
sense to fiddle with those while you’re trying the trial version of Xcelsius with a timeout
potentially looming.

When Excel is installed and working, you can go ahead and install Xcelsius 2008. There are
different editions of Xcelsius 2008 which are outlined in Appendix B, “Xcelsius Product
Family Comparison.” This book principally covers the Engage product.

During the Xcelsius 2008 installation, the program may attempt to install Adobe’s Flash
Player. If you encounter difficulties, you might need to uninstall and reinstall Flash Player.
If at a later point you need to install an updated version of Flash Player for your browser, be
sure to install it on your Internet Explorer web browser. Xcelsius looks to your Internet
Explorer configuration to determine where Flash is installed, even if you use Firefox or
another application as your default web browser.

If all goes well, when you launch Xcelsius 2008, you should end up with a screen like the
one shown in Figure 1.3. The environment where you create dashboards is known as the
Xcelsius workspace. The first time you start using Xcelsius, you see a Quick Start pane on
the right side of the workspace. The Quick Start pane is kind of like training wheels you
might have with your first bicycle. If the Quick Start pane is closed, you can find it in the
Xcelsius Help menu.

Notice that the top half of the screen is principally occupied by a blank canvas and the
bottom half is occupied by what appears to be an Excel spreadsheet. When you create and
export your dashboard, your users will only see and interact with the visual components
on the canvas. Right now, no components have been placed on the canvas; it’s blank.
Eventually, you’ll populate it with all sorts of goodies, such as menu components, corporate
logos and artwork, fancy charts, and interactive maps.

19From Excel to Xcelsius

1

A First Look at the Canvas

Getting goodies onto the canvas is rather easy. As shown in Figure 1.3, you go to the
Xcelsius View menu and select Components. The Components pane appears (see
Figure 1.4).

Figure 1.3
The typical layout
in the Xcelsius
workspace.

Figure 1.4
The various visual
components from the
Components pane
can be dragged onto
the canvas.

20 Chapter 1 Motivation for Using Xcelsius 2008

1

The Components pane can be viewed in any of three views: Accordion view (as shown on
the left side of Figure 1.4), the hierarchical Tree view, and the alphabetically sorted List
view. Using the Accordion view for viewing and depositing components onto the canvas has
a number of advantages. First, the appearance of the various icons closely matches what you
see after you drag them onto the canvas; in Tree and List views, the icons are far smaller.
Second, the Accordion view makes it easy to sift through the catalog of components by
category.

To place a component onto the canvas, you simply click it on the Components pane and
drag it onto the canvas. When you drag the component, a ghost outline appears adjacent to
the mouse (as shown on the left side of the canvas in Figure 1.4). When you release the
mouse button, the ghost outline disappears and is replaced by the component. From there
on, you can nudge the component with your mouse and position it anywhere you want on
the canvas.

N O T E
You can resize most of the components you place on the canvas. Don’t worry about the
details at this stage.

If you are following along on your computer and have Xcelsius 2008 running, place a hori-
zontal slider on the canvas, as shown in Figure 1.5. To find this slider, look in the Single
Value category within your catalog of components.

Figure 1.5
As you position the
components on the
canvas, notice the
resize handles on the
selected component.

21From Excel to Xcelsius

1

Laying out your components on a canvas and setting the overall look and feel is just one
aspect of preparing a dashboard. Without a clear set of marching orders of where to find the
dashboard data and how to interact with it, the visual components on the canvas will not be
terribly useful. The key to invigorating your dashboard and bringing the components to life
is to tap into a spreadsheet.

Tapping into the Virtual Spreadsheet

Now it’s time to take a look at the virtual spreadsheet. In the spreadsheet portion of your
Xcelsius workspace, you see the familiar grid of spreadsheet cells, the edit line for your for-
mulas, and various toolbar icons. For all intents and purposes, your virtual spreadsheet looks
and works according to the way you have Excel configured for your computer; it’s just oper-
ating inside Xcelsius 2008.

Is the virtual spreadsheet real? To convince yourself, go ahead and enter the following
values: cell B2 enter 25, in B3 enter 10, and in B4 enter the formula =B2+B3.

The behavior in the virtual spreadsheet is very much the same as it is when you run Excel on
its own. The obvious difference with Xcelsius is that Excel is running live inside the Xcelsius
environment. It is, however, a bit cramped.

T I P
Although the Accordion view is easy to use, it can be a maddening place to locate a spe-
cific type of component if you are not sure in which category to find it. If you switch to
List view, you can see all the components in alphabetic order. Also, over time, the cata-
log of different types of components to choose from is only going to grow. Ultimately,
List view may prove more practical to use than Accordion view, even though it is not as
esthetically pleasing to view.

T I P
When you are designing dashboards, Xcelsius 2008 can display many things at one time.
Sometimes the screen can get too crowded. Xcelsius gives you the ability to exclude
everything but the portion of the dashboard you want to concentrate on. If, for instance,
you want to see only the canvas, go to the Xcelsius application menu and select View,
Quick Views, Canvas Only. At any time, you can revert to your original workspace from
the Xcelsius application menu by selecting View, Quick Views, My Workspace.

To view the virtual spreadsheet by itself, you can select View, Quick Views, Spreadsheet
Only.

There are some differences between the virtual spreadsheet and your standalone Excel
environment:

■ The virtual Excel environment inside Xcelsius is designed to support the use of a single
spreadsheet or workbook. Your workbook can have as many worksheets as you need.
The spreadsheet formulas in your virtual workbook cannot reference any remote work-
books or external data sources, such as a database server located halfway around the

22 Chapter 1 Motivation for Using Xcelsius 2008

1

world. Because Xcelsius supports remote connectivity through alternative means, this
should not be a show stopper.

■ The traditional menu options that reside in your standalone Excel application are not
generally available when you’re running the virtual spreadsheet inside Xcelsius 2008.

■ Not every Excel function is supported or fully supported in Xcelsius 2008. While Excel
does have esoteric functions such as the BESSEL function, which is used for engineering
applications, you shouldn’t expect them all to be supported in Xcelsius 2008. Altogether,
Xcelsius 2008 supports about 160 Excel functions. Many of the functions you use (such
as SUM, AVERAGE, MIN, MAX, MEDIAN, SQRT, STANDEV, MID, VLOOKUP, and INDEX) are likely to be
in this list of supported functions.

■ Your VBA code and macros will not work in your deployed Xcelsius dashboards.
However, while you are in the workspace, you can run your VBA code and macros. For
example, you could have a macro that lets you interactively clean up data in a range of
cells, such as removing multiple spaces separating the first and last name in a list of
names. That macro could run in the virtual spreadsheet at design time, but that macro
could not make its way into the dashboard as a runtime executable.

Xcelsius: The Whole Is Greater Than the Sum of Its Parts

So far, you have been designing with two halves of the Xcelsius dashboard. One of the halves
is the canvas. It’s the pretty face with which dashboard users will see and interact. The other
half is the virtual spreadsheet, which allows you to construct formulas and do typical spread-
sheet tasks, such as inserting rows and columns and copying, cutting, and pasting spread-
sheet cells. It’s time to connect the two halves together.

The concept is simple: The visual components in your dashboard need to be able to com-
municate with the underlying spreadsheet. By communicating, I mean that the visual com-
ponents, such as the horizontal slider, need to be able to push a value onto one of the
spreadsheet’s cells, such as cell B2, and the results of computations (for example, cell B4,
which has the formula =B2+B3) need to be read back to other components on the dashboard.

To see how this works, set up your Xcelsius environment as shown in Figure 1.6. Right-click
the Horizontal Slider component on the dashboard to open up its Properties panel (see
Figure 1.7).

The left vertical panel is the Properties panel, and it is currently labeled Horizontal Slider 1.
It contains a variety of attributes, such as the component’s title, data, and minimum and
maximum limits.

T I P
There are a number of ways to open the Properties panel of a component. One way is to
double-click the component. Another is to right-click it. Also, from the Xcelsius applica-
tion menu, you can select View, Properties to open up the Properties panel. Alternatively,
you can select the component in question and press Alt+Enter to view the component’s
properties.

23From Excel to Xcelsius

1

The Properties panel always displays the attributes of the component that has focus. In
Figure 1.7, you can see that the horizontal slider has focus because the handle and sizing
bars surround the component.

Figure 1.6
Label your input
and output cells in
the underlying
spreadsheet.

Figure 1.7
The Properties panel
lets you bind compo-
nent attributes to
underlying spread-
sheet cells.

24 Chapter 1 Motivation for Using Xcelsius 2008

1

Immediately underneath the title bar of the Properties panel, you can see one or more tabs.
There will always be a General tab in the Properties panel for any single selected compo-
nent on the canvas. Depending on the kind of component, the Properties panel may also
contain additional tabs, such as the Behavior tab, the Appearance tab, and the Alerts tab.
You click the desired tab to display and set the appropriate attributes.

The Behavior tab allows you to set things such as when to make a particular component visi-
ble or invisible and to tell the component how to behave; for instance, you could tell a
Column Chart component to ignore blank data cells when displaying data in graphical form.

With the Appearance tab, you can typically control factors such as text font style and size or
color attributes of icons displayed in the component. For example, you could use the
Appearance tab to change the appearance of the data points in a line chart.

The Alerts tab works much like conditional formatting in Excel. Say that you are displaying
the production efficiency of various manufacturing plants. If some of the reported figures
are dangerously low, you might want a visual alert, such as showing the specific data points
in bold red so they stand out.

Binding the Attributes of Components to the Underlying Spreadsheet

The Properties panel exposes the attributes of your components. For instance, in a hori-
zontal slider, you might want to control settings such as the following:

■ The title you want displayed next to the slider on your canvas (the Title text box)

■ The value of the slider itself (the Data text box)

■ The lowest and highest values allowed on the scale of your slider (Minimum Limit and
Maximum Limit text boxes)

As shown in Figure 1.7, the minimum and maximum limits for the horizontal slider are 0
and 100. You can change these values by simply typing in numbers of your choosing in the
corresponding attribute input fields for the components. This gives lots of flexibility as you
can pick pretty much any range you want.

With this slider, you want to set a value somewhere between the minimum and maximum
limits and push that value onto one of the spreadsheet cells. Notice, as shown in Figure 1.7,
that the Data text box is empty. To the immediate right of the Data text box is a small cell
selector box with a red pointer. If you click this box, the Select a Range dialog box appears
(see Figure 1.8), prompting you to specify a cell reference on your spreadsheet that maps

T I P
To shift the view of the Properties panel to a different component on the canvas, it is not
necessary to close the Properties panel and reopen it. You can simply click the desired
component, and the Properties panel automatically shifts its context to the component
that has focus.

25From Excel to Xcelsius

1

back to the component. Sometimes you might want to map a single spreadsheet cell; other
times you might need to specify a range of cells. In this particular case, it makes sense to
associate a single cell with the slider’s Data field; in this example, the cell would be B2.

Figure 1.8
Specify the cell range
by clicking the respec-
tive cells in the under-
lying spreadsheet
and then clicking the
OK button on the
Select a Range
dialog box.

Typing in a cell range could be error prone. Fortunately, you don’t have to. You can just
click the cell you want, and the cell references are instantly populated in the empty field.
You can then click the OK button on the Select a Range dialog box to complete the
mapping.

If you click the Gauge component and map its data field to cell B4 of the spreadsheet, the
gauge displays the value computed by adding cells B2 and B3. You can optionally map the
Gauge component’s title to the cell C4, as shown in Figure 1.9.

Figure 1.9
The Gauge compo-
nent is set to read
the calculation result
in cell B4.

Now comes the moment of gratification. Running along the top of the Xcelsius workspace
are a bunch of toolbar icons, buttons, and controls. Click the one labeled Preview. Your
computer might pop up a brief message, saying that it is generating SWF (that is, an Adobe
Flash file), and then your dashboard is alive and running (see Figure 1.10).

26 Chapter 1 Motivation for Using Xcelsius 2008

1

As you move the marker along the slider, the Gauge component keeps up with it. Not only
does it move in sync, it bumps up the number by the amount in cell B3.

To get back to your workspace, click the Preview button once more.

If you haven’t already done so, it would be a wise idea to save your dashboard file. Such files
are called XLF files because that is the suffix used in their filenames.

There is one more step you need to take to complete the process of dashboard production:
You need to create a deployable dashboard. In the world of Xcelsius, this process is called
exporting a dashboard. You have the option of exporting your dashboard into a number of
different file formats, such as a PowerPoint slide, a PDF file, a Word document, or even a
Flash file for posting on a web server.

The steps for exporting a dashboard are ridiculously simple. From the application menu,
you select File, Export, PowerPoint Slide. A dialog box appears, prompting you for a file-
name and the directory where you want the file saved. After you click the OK button in the
dialog box, the file is generated, and your PowerPoint application is launched.

Your dashboard appears as a PowerPoint slide, which you can copy and paste into a full
presentation. You can email this PowerPoint presentation to a colleague. When he or she
opens the file and presses the F5 key for the slide show, the dashboard comes to life. The
sliders and gauges all work for your colleague as they do on your computer. When you
export an Xcelsius dashboard, there is no software installation required. Your colleague only
needs to have his or her PowerPoint software and be Flash enabled. If you can view Flash-
based videos on YouTube or see Flash animations in your browser as you surf the web,
you’re already Flash enabled.

Figure 1.10
The live dashboard,
where you can try
moving the marker
on the horizontal
slider.

27Where to Go from Here

1

Where to Go from Here
Think about what you’ve accomplished in this chapter. You created a dashboard by starting
with a spreadsheet, added formulas to do some computation, dropped visual components
onto a canvas, mapped the components so that you could push values onto the spreadsheet
to drive the spreadsheet formulas, and displayed the results back onto the dashboard!

Before resting on your laurels, think about a couple more things that are related to getting
more out of your dashboard. One of these relates to enhancing the look and feel of your
dashboards and the other relates to getting more from your spreadsheets that power the
dashboard.

Working the Xcelsius Dashboard
An important part of being successful in working with Xcelsius 2008 is to know how to work
the tool. In this section, you’ll go through the steps of enhancing the visual appearance of
the dashboard you just created. In doing so, you’ll learn how to approach making changes
and enhancements to your Xcelsius dashboards.

The dashboard as displayed in Figure 1.10 works, but it’s far from polished. First of all, look
at the gauge. It displays a value under the needle, but the small font size makes it hard to
read. In addition, the numeric value is not at all well positioned on the face of the gauge.
You can easily remedy this by opening the Properties panel for the Gauge component and
clicking its Appearance tab.

Notice that there are three subtabs: Layout, Text, and Color. Click the Text subtab and
highlight Value (see Figure 1.11).

Figure 1.11
You can adjust the
text appearance of
the value displayed
in the Gauge
component.

28 Chapter 1 Motivation for Using Xcelsius 2008

1

Try making the number boldface by clicking the B icon. This makes the text a little more
readable, but you could do better. Instead of using a font size of 12 points, try something
larger, like 18- or 24-point text. In picking a size, you need to think a little about what you
expect your data to be like. You could also reposition the value on the face of the gauge by
tweaking the X and Y offsets. After you make a few adjustments, the Gauge component is
easier to read (see Figure 1.12).

Figure 1.12
The tweaked Gauge
component is easier
to read.

Dashboards: More Than Skin Deep
Now that your Gauge component is easier to read, how about improving the rest of the
dashboard? There are a number of things you could do to give the dashboard a more pro-
fessional appearance. Here are some quick and simple thoughts:

■ You could improve the screen background.

■ You could adjust the dashboard size so that it better frames the components.

■ You could set up the gauge so that it alerts you when the gauge value enters a specific
range of values or percentage of some target value.

T I P
Not only can you set up dynamic alerts for readout components such as a gauge, you
can also set up alerts for input drivers, such as the horizontal slider.

■ You could alter the appearance of the horizontal slider to better match that of the
gauge.

These points may seem mundane, but consider the idea that you may want to incorporate a
colorized alert in your slider, which is normally used as an input device. (For more on slid-
ers, dials, and gauges, go to Chapters 3 and 6, “Single Value Components: Dials, Gauges,
Speedometers, and the Like.”) Why would you want to place an alert there? Presumably,
you or your dashboard user fully controls the input, which is a value that is always known.
There’s nothing to compute. But just because the input (such as an amount to be invested)
doesn’t involve a computation, you shouldn’t assume that the alert is fixed. The alert could
be a dynamically changing value. If the slider represents the purchase price for a property
you are investing in, you may be willing to invest the maximum amount or at least a large
amount by pushing the slider close to its limit. The alert could signify that you’ve crossed

29Where to Go from Here

1

the threshold for a mortgage you qualify for based on your income, prevailing interest rates,
and a host of other factors.

In the case of the horizontal slider you’ve created, your input is serving a dual purpose as
both an input device and an output device.

Dashboard Functionality Enhancements
Further empowering your dashboard should be easy. Even with simple dashboards, there’s a
lot to think about, and many of the considerations carry over to complex dashboards. Let’s
look at one such example.

In the main dashboard example for this chapter, there is a “secret” number embedded in the
spreadsheet in cell B3. Depending on what you are doing with your dashboard, you might
want to keep this value hidden, or you might want to make it available for the user to
manipulate. This value could be, for example, a numeric coefficient used in a calculation or a
password. As far as Xcelsius is concerned, only two things can occupy a spreadsheet cell: a
value such as a number or text or a formula.

N O T E
If a spreadsheet cell contains a formula, you cannot use any component to directly set its
computed value. The only way a computed value can change is through whatever is
defined in the spreadsheet formula.

So you can see that it’s important to develop a clear understanding of who your users are
and how you want them interacting with your dashboards and visualizations.

Watching Out for Limits
Dashboards have their equivalents of potholes. For example, you may have noticed that the
limits on this chapter’s dashboard slider and gauge are 1 to 100. If the value in cell B3 (the
secret number you add to cell B2) is 10, then the gauge will be trying to display numbers
between 10 and 110. The gauge dial will not be able to display numbers above 100 because
that is presently a hardwired limit.

You need to think about how you want to handle situations of this kind. A number of strate-
gies are available to you:

■ Do you want to dynamically shift the gauge limits so they match the minimum set of all
possible calculation results? For example, do you want to make the limits 10 and 110 if
cell B3 is fixed at 10? In this case, as long as the B3 cell is 10 or more, the dial will
never extend into the single-digit range.

■ Regardless of the value of cell B3, would you want the gauge dial to start at 0 and go all
the way up to 110? (This would be the maximum value of the slider plus the value of B3
=100+10.) This scenario would make sense if B3 were visible and could be manipulated
by the dashboard user. Keep in mind that the angular sweep of the needle increasingly
gets restricted as the value of B3 increases. Although the needle angle is an accurate

30 Chapter 1 Motivation for Using Xcelsius 2008

1

representation of absolute value, the restriction of angular sweep is accompanied by a
reduction of visual satisfaction associated with dashboard animation or perceived inter-
activity.

■ You could leave the gauge dial limits as 0 and 100 and allow the gauge needle to “hit the
wall” and stop moving when the numeric value exceeds the limit of 100. Because it is
not always possible to predict the maximum or minimum computed value to be dis-
played on a gauge, you need to think about this kind of scenario as a realistic possibility.
You could, for example, create an alert to signal that the gauge dial is saturated. For
now, I leave you to ponder how you might accomplish this. This topic is addressed in
greater detail in Chapter 6.

Importing Spreadsheets into Xcelsius 2008
In the example presented in this chapter, the spreadsheet model with the single formula for
adding B2 and B3 was created from scratch. As a practical matter, if you have a spreadsheet
model you want to use for a dashboard, be it some net present value analysis of cash flows or
presenting financial ratios, you are not going to be building the spreadsheet from scratch in
Xcelsius 2008.

You can take your already built spreadsheets and import them into Xcelsius. From there, it’s a
very short step to drop components onto the canvas and map them to the underlying
spreadsheet.

It is good to know that if you need to modify a formula or insert a few rows here or there,
you can do so right from Xcelsius, without having to re-import the spreadsheet.

Putting Some Computational Oomph into Your Dashboards
The spreadsheet used in this chapter is just about as simple as a spreadsheet can be.
However, you can use much more complicated formulas in your spreadsheets. If you care to
dive into the deep end of the pool and dabble with options pricing, for example, you could
specify parameters such as stock price, strike price, risk free rate of interest, time till expira-
tion, and volatility in cells B6, B7, B8, C13, and B13, respectively, and then compute the
option price with a formula like this:

=(B6*(NORMDIST(((LN(B6/B7))+((B8+(B13*B13/2))*C12))/(B13*(SQRT(C12))),0,1,TRUE)))
-(B7*(EXP(B8*C12*(-1)))*(NORMDIST(((LN(B6/B7))+((B8+(B13*B13/2))*C12))/(B13
➥*(SQRT(C12)))-(B13*SQRT(C12)),0,1,TRUE)))

All the parameters could be set using components such as Horizontal Slider components,
Vertical Slider components, Grid components, Input Field components, and List Box com-
ponents, just to name a few. You could display the results as a single number—in a table if
you are doing a bunch of calculations, in a chart or graph, or whatever you choose.

This chapter is not the place to delve into complicated computations of this kind, but you
should know that from a dashboard design point of view, there is very little you need to do
differently to incorporate a powerful spreadsheet into an Xcelsius dashboard than you’ve
already done in this chapter.

31Closing Thoughts

1

Closing Thoughts
Dashboards are often associated with graphically intensive, highly interactive, and informa-
tion-rich interfaces. But dashboards are more than skin deep. Getting data organized for
easy consumption and comprehension requires a considerable amount of forethought and
effort to prepare the data for the dashboard. Organizing predigested data simply doesn’t cut
it. Data is far too fluid to keep it rigid or unchanging. Even in cases in which data is
unchanging and rigid, people’s lines of inquiry and the types of analyses they want to subject
their data to are not unchanging and rigid.

The needs imposed on a dashboard you might use or want to build could be open ended.
You therefore need a facility that can structure data the way you need it prepared and pre-
sented.

A major thrust of Xcelsius 2008 as a dashboard technology is that it directly attempts to
integrate on-the-fly data manipulation with the dashboard presentation facility. This just-in-
time computational facility embedded within a portable dashboard is rather unique.

In this chapter, you have had a glimpse into the mechanics of meshing the presentation layer
of a dashboard with a computational brain. It is rather remarkable that the metaphor chosen
for handling the computational side is the spreadsheet and even more remarkable that its
integration with Microsoft Excel is seamless.

In Chapter 2, you’ll see a mini-gallery of Xcelsius dashboards. You’ll start thinking about the
kinds of things you could be doing with dashboards as well as the kinds of features you
would want to use in your own.

This page intentionally left blank

2CHAPTER

In this chapter

Showcase of Xcelsius 2008
Dashboards

Embedding Spreadsheet Smarts in a Dashboard 34

Thinking Creatively with Colors and Visual Components 35

Putting Your Data on the Map 35

Rethinking Dashboard Interface Design 36

Choosing the Data You Want to View 36

Desktop Client Portals 37

Viewing Multiple Sources of Information in a Single View 37

Managing the Visibility of Components in Your Dashboards 38

Embedding Visual Analytics in a Dashboard 38

Interesting Approaches to Financial Analysis in Xcelsius 38

New Features in Xcelsius 2008 39

Closing Thoughts 41

34 Chapter 2 Showcase of Xcelsius 2008 Dashboards

2

Before delving into the mechanics and strategies of building Xcelsius 2008 dashboards and
visualizations, it is worth spending some time getting a feel for various kinds of dashboards.
To help give you some perspective, this chapter provides a sampling of what’s possible with
Xcelsius 2008. In many instances, I point out where you can find further information.

All the examples in this chapter can be found as live working examples on the book’s web-
site, www.XcelsiusBestPractices.com.

With this chapter, you can sit back and try out some fun dashboards. Just think about the
ideas. Don’t worry about how to implement each dashboard. You’ll learn the nuts and bolts
in the next 14 chapters.

N O T E
I decided early on in the process of writing this book that it was important for the figures
in this chapter to be in color, so that you could get the best possible picture of what a
variety of professionally done dashboards look like. With that in mind, the figures for this
chapter have been placed together in the special color insert.

Embedding Spreadsheet Smarts in a Dashboard
Dashboards enjoy a reputation for being adept at representing information visually.
Dashboards also make it easy to get at information through mechanisms such as drill down
and various kinds of navigation aids. With the assistance of remote data sources such as
databases, a dashboard can provide access to a staggering amount of data.

There’s a difference between accessing data through queries and quantitatively analyzing
information. In addition to retrieving data from remote sources, Xcelsius 2008 lets you per-
form a wide variety of computations—quite literally as if you had a whole spreadsheet
embedded inside your dashboard. This opens up interesting capabilities that wouldn’t be
easily achievable if you didn’t have a computation engine embedded within the dashboard.

Figure 2.1 shows an example of a matrix-style calculator involving the Black-Scholes
Options Pricing model. The spreadsheet formula that powers this dashboard is actually
shown at the end of Chapter 1, “Motivation for Using Xcelsius 2008.” Rather than compute
the result for a single cell, it calculates the results across an array of input values. The basic
technique of setting up a matrix-style calculator is described in Chapter 13, “Working with
Less-Than-Optimal Data.” I don’t want you to get the idea that complicated formulas are
required. I just want to make the point that Xcelsius 2008 won’t stand in your way if and
when you need your dashboards to get mathematical.

One of the interesting features of the visualization shown in Figure 2.1 is the use of col-
orized alerts. In this particular case, the dashboard values are split into colorized bands,
based on their numeric values.

www.XcelsiusBestPractices.com

35Putting Your Data on the Map

2

Colorized alerts are straightforward to set up in Xcelsius 2008. Figure 2.2 shows the behind-
the-scenes setup of colorized alerts for another dashboard. In this example, the color of the
vertical bars in a column chart can be red, yellow, or green, and the color is based on the bar
height. The color threshold is actually tunable: Adjusting the vertical slider changes the
color threshold value. This is an interesting concept. Not only can you construct a dash-
board with meaningful alerts, you can, if you wish, empower dashboard users to set the col-
orization thresholds. You’ll find out more about colorized alerts in Chapter 12, “Smart Data
and Alerts.”

Thinking Creatively with Colors and Visual
Components

Colorized alerts offer a great way to convey numeric information. Imagine three competi-
tors vying for market share in a very limited market. As any one competitor increases its
share, what’s up for grabs shrinks. You need a way to show not only what is available but also
how close each company is to what it can ultimately obtain. Figure 2.3 shows one way of
addressing this. In this dashboard, you can click each of the three vertical progress bars that
vaguely resemble grain bins and adjust their height. As you resize any of the bars, three
things happen:

■ Based on the percentage of market share, the color of the bar changes

■ The proportion of market share is adjusted immediately

■ The height of the vertical bars for the competitors is adjusted

This last behavior is revealing. As available market share dries up, what remains for the tak-
ing relative to what has been taken is automatically adjusted. You’ll find out more about this
type of dashboard in Chapter 12.

Putting Your Data on the Map
The business environment today is not only fast paced, it spans a broad geographic range. In
many cases, you can learn a lot by monitoring activities geographically. Figure 2.4 shows a
connected map dashboard. This dashboard provides a 24-hour snapshot of worldwide down-
loads of the Firefox web browser on a continent-by-continent and country-by-country basis.
Click a continent, and you simultaneously see the total downloads by the hour for the conti-
nent and a corresponding map that highlights the countries in that continent. Clicking any
country reveals a 24-hour timeline of downloads for just that country.

The framework for setting up a connected map dashboard is provided in Chapter 11, “Maps
in Xcelsius.”

In the example shown in Figure 2.4, the Map component is relegated to serving as a readout
or navigation aid. That is, clicking a map gives you access to additional information. But you

36 Chapter 2 Showcase of Xcelsius 2008 Dashboards

2

can also use Map components as input devices. Doing so requires the ability to click more
than one map region at a time. Out of the box, Map components do not directly support the
selection of multiple regions. However, Xcelsius 2008 does permit the construction of
multi-selection maps. Figure 2.5 shows one such implementation, called a tally map, that
allows dashboard users to classify states into colors and tally values associated with those
states. In this example, the states can be classified into red, neutral, or blue states, and the
value for each state is the number of electoral votes.

The tally map shown in Figure 2.5 works by allowing you to switch from red to neutral to
blue, using a text-based spinner button. (Text-based spinners are described in Chapter 12.)
You can click on a succession of states. Each one takes on the color associated with the spin-
ner button at the time the state is clicked. As you click the states, a tally or count is made for
the red states and the blue states. This is displayed in a pair of colorized horizontal bars
immediately below the map. Once either side achieves more than half the number of elec-
toral votes, the winner is announced. At any time after a state is colorized, you can change
the color, so the tally map is a great tool for what-if analysis.

Rethinking Dashboard Interface Design
Dashboard components such as dials and gauges have a reputation for consuming valuable
screen space. If you used a separate dial for each variable you could tweak, you would
quickly run out of space. Fortunately, through the Shared Component Framework, Xcelsius
2008 gives you the ability to structure your interfaces so that an individual component such
as a dial can be used to adjust as many variables as you require. For example, in Figure 2.6,
you can click the radio button to dynamically remap the dial to adjust values for any of the
designated regions. In this example, you can use one dial to set the values for four geo-
graphic regions.

This framework is applicable to any kind of component, not just dials. You are not restricted
to using radio buttons to set the context. You can use just about any component—list boxes,
combo boxes, check boxes, label-based menus, or text input fields. Basically, if you can
define it, you can use it. There is no fixed limit on how many variables you can adjust from
a single component. You could manage several dozen or even hundreds of variables from a
single component. You will find out more about the Shared Component Framework in
Chapter 6, “Single Value Components: Dials, Gauges, Speedometers, and the Like.”

Choosing the Data You Want to View
One of the nice features of Xcelsius 2008 dashboards is that they enable you to easily specify
what data you want to graphically view. Figure 2.7 shows a graphical viewer that displays
budget versus actual values across multiple geographic regions for any month. You can find
the details of how to set up this type of dashboard in Chapter 6.

37Viewing Multiple Sources of Information in a Single View

2

Sometimes the data you want to view stretches across an extended timeline. You may be
looking at daily data over the course of a whole month but want to advance forward or back-
ward in time over the course of several years. Figure 2.8 shows a timeline viewer that lets
you advance forward or go backward in time by clicking a spinner button. This has the
advantage of creating an animation effect. Chapter 5, “Using Charts and Graphs to
Represent Data,” describes how to set up a timeline viewer.

Desktop Client Portals
Sometimes the data you want to analyze requires an on-the-spot merge of data from several
sources. Xcelsius 2008 Engage lets you create dashboards that can connect to remote data
sources and retrieve XML data. Server-based portals can retrieve data from multiple sources.
A “desktop client portal” can do the same, running entirely from a dashboard on your com-
puter (see Figure 2.9).

Consider retrieving financial data for various subsidiaries of a company, with each subsidiary
located in a different country, each of which has a different currency. If you want to compare
revenue for any two subsidiaries over a timeline, you have to incorporate some currency
conversion. And when you merge the revenue from subsidiaries in multiple countries, you
need to consider the fact that the spot exchange rate varies daily. Fortunately, Xcelsius 2008
Engage lets you connect to several remote data sources with a single click and harness the
computational facilities of a spreadsheet to dynamically merge the data. You’ll find out more
about client portals and remote connectivity in Chapter 15, “XML and Data Connectivity.”

Viewing Multiple Sources of Information in a
Single View

The term dashboard conjures an image of an instrument panel that at a glance gives a picture
of what’s happening across multiple departments and initiatives.

Consider a company that identifies potential customers. That company is able to turn these
new contacts into customers. It would be helpful to track across departments the progression
from new contacts to new customers and the sales from these customers. Figure 2.10 shows
one such design.

The objective of this kind of dashboard is to display an across-the-board, all-in-one view of
information. Because the treatment of information by department is uniform, a tabular lay-
out serves the purpose of representing information, even though the indicators are in the
form of visual components.

38 Chapter 2 Showcase of Xcelsius 2008 Dashboards

2

Managing the Visibility of Components in Your
Dashboards

Xcelsius 2008 allows you to control the visibility of individual dashboard components on
demand. An alert message can automatically appear when some combination of dashboard
data or variables falls out of bounds from what is expected. The criteria can literally be any
spreadsheet formula you care to create. This gives you an awful lot of freedom to control
the behavior and visual appearance of your dashboards.

The freedom Xcelsius 2008 gives you to design arbitrarily complex interfaces and behaviors
is not completely free: You are responsible for managing all those components.

Fortunately, a number of frameworks allow you to manage the visibility of components
without creating maintenance bottlenecks. Figure 2.11 shows one such approach. In this
framework, the visibility logic of components is decoupled from the components. This
framework lets you quickly and effortlessly remap component behavior. Creating sophisti-
cated and complex dashboards or scorecards need not be accompanied by a hefty amount of
overhead or design complexity. Chapter 7, “Using Multi-Layer Visibility in Your
Dashboards and Visualizations,” is devoted to the topic of managing the visibility of compo-
nents.

Embedding Visual Analytics in a Dashboard
Because Xcelsius dashboards incorporate spreadsheet capabilities, you can use computational
facilities to gain a tangible feel of the quantitative and mathematical relationships. It is not
uncommon to speak about normal or Gaussian curves. But when someone speaks about a
curve whose mean value has doubled and standard deviation has decreased by 32%, will you
have an intuitive feel for how the curve compares to a standard normal distribution? Even if
you are comfortable thinking mathematically, having a dashboard like the kind shown in
Figure 2.12 helps to make the quantitative relationships intuitive. You can find out more
about this dashboard and using statistical techniques and reasoning in Xcelsius in Chapter 9,
“Xcelsius and Statistics.”

You can get fairly sophisticated and employ mathematical techniques in sensitivity analysis
in your mathematical models. Figure 2.13 shows the use of tornado and spider charts, both
sensitivity analysis tools, within Xcelsius. You can find information about these tools in
Article 17 of Xcelsius Journal (www.XcelsiusJournal.com).

Interesting Approaches to Financial Analysis in
Xcelsius

With Xcelsius 2008, you are free to invent your own kind of visualizations. Let’s look at two
examples.

www.XcelsiusJournal.com

39New Features in Xcelsius 2008

2

Ratio analysis is regularly used in analyzing financial statements. Instead of simply publish-
ing ratios by themselves, you can show the underlying numbers that contribute to the
numerator and denominator of a ratio. Figure 2.14 shows a ratio analyzer dashboard on
which the dashboard user clicks an accounting period and a ratio. In this example, return on
assets (ROA) is selected. ROA is defined as net income divided by total assets. The ratio
analyzer dashboard addresses questions such as, “What makes up net income?” and “What
makes up total assets?” You’ll learn more about this type of dashboard in Chapter 10,
“Financial Analysis.”

You can use Xcelsius dashboards for financial projections. You can do more than simply
project a point estimate; you can even incorporate “fuzzy” reasoning. For example, your car
dealership might expect to sell 3,100 hybrid automobiles at the wonderfully low price of
$12,500 each. In reality, you can’t be certain how many units will be sold until the season
comes to pass. For all you know, you may exceed your expectations and sell 3,400 units, or
you may fall short and sell only 2,800 units. Each scenario is equally likely. In addition, cus-
tomers can purchase cars with more options or trim down the options to a bare minimum.
Operating expenses can also vary. When you take into account the range of different factors
that can vary independently of one another, it becomes a complicated affair to arrive at an
objective estimate—unless you use specific techniques for reasoning with uncertainty. One
such technique that has been adapted for spreadsheets is called adding in quadrature
(described in my book Excel Best Practices for Business, ISBN 076454120X), and you can easily
use this technique in an Xcelsius dashboard.

For example, the dashboard shown in Figure 2.15 is divided into three main panels. The
top-left panel is for all the inputs of the pro forma income statement projection. The top-
right panel is for the uncertainty in each of these inputs. The bottom panel displays the
financial projection. The input variables include quantities such as the number of units sold,
their selling price, general and administrative expenses, other operating expenses, and other
sundry items. You can adjust these inputs by moving horizontal sliders. As they are varied,
the relevant items for the financial projection (such as total revenue, cost of sales, selling
expenses, and net income) are presented in the bottom panel. Notice that these estimates
appear as a set of horizontal sliders but are flanked on the left and right by green and red
markers to indicate uncertainty in each of these estimates. This type of tool makes it very
easy to incorporate uncertainty in visual data models and dashboards.

New Features in Xcelsius 2008
Crystal Xcelsius has been characterized by some as a groundbreaking technology. As good as
Crystal Xcelsius was, its successor Xcelsius 2008 provides even greater advances in dash-
board design and technology.

Enhanced Spreadsheet Support
The integration of Xcelsius 2008 and Excel is virtually seamless. Without ever having to
leave Xcelsius 2008, you can build very full-featured spreadsheets, map visual components to
them, and export dashboards with made-to-order spreadsheets tucked neatly inside.

40 Chapter 2 Showcase of Xcelsius 2008 Dashboards

2

Xcelsius 2008 has brought in support for eight additional spreadsheet functions, including
OFFSET and ISERROR. Chapter 4, “Embedded Spreadsheets: The Secret Sauce of Xcelsius
2008,” provides more information about Excel-supported spreadsheet functions.

Improved Support in Existing Components
In addition to enhancing integration of spreadsheet design within the workspace, Xcelsius
2008 has enhanced many of its existing components. Many chart types support the use of
dual axes. You can find information about this in Chapter 5. Many components, such as list
boxes, enable inline alerts. In-depth coverage of alerts is provided in Chapter 12.

Nice touches have been added to existing components in Xcelsius. In the Interactive
Calendar component, you can now easily navigate to any of the calendar dates in a month
by using your keyboard’s arrow keys. You’ll be pleased to find that you can now include
Alaska and Hawaii in a map of the United States. You now have a choice of two U.S. map
components—one that has the complete map of all 50 states and the District of Columbia
and one that shows the continental United States (without Alaska and Hawaii).

Xcelsius 2008 greatly enhances text representation within your dashboards. Specifically,
Xcelsius dashboards now support the use of multiple fonts. Label and Input Text Area com-
ponents now support the use of HTML formatting.

Xcelsius 2008 improves visualization of your dashboards. In addition to supporting JPG and
SWF file formats, the Image component can support BMP, GIF, and PNG files. The
Rectangle component, which has been greatly enhanced, lets you create a wide range of gra-
dient fills (see Chapter 8, “Managing Interactivity”). Another nice touch is the ability to
print in high resolution directly from the dashboard and avoid pixelization from screen
dumps. In addition, Xcelsius 2008 has expanded the array of themes and colors.

Xcelsius 2008 Engage has a variety of new features worth noting:

■ The Add-on Manager enables you to incorporate custom-built components.

■ You can deploy dashboards to Adobe Air.

■ A unified data manager provides a universal framework for accessing remote data. (The
Professional Edition of Crystal Xcelsius had no support for remote data connectivity.)

New Components in Xcelsius 2008
Xcelsius 2008 provides a number of new components. For example, Figure 2.16 shows a
Tree Map component. (You’ll learn more about tree maps in Chapter 5.)

Here is a brief list of some of the other new components in Xcelsius 2008 that are worth
exploring:

■ Panel Container and Tab Set (see Chapter 7)

■ half gauge

■ Ticker (not found in Crystal Xcelsius Professional)

41Closing Thoughts

2

■ Europe maps

■ Asia-Pacific maps

■ Canada by Province

■ History

■ Trend Analyzer

■ Print Button

■ Reset Button

Web Connectivity in Xcelsius 2008
The range of web connectivity features previously found in the Workgroup version of
Crystal Xcelsius is now bundled in the Xcelsius 2008 Engage product. Chapter 15 gives you
the lowdown on how to tap into remote data sources.

Closing Thoughts
There is a tendency when working with many software applications to create files that all
look the same. A PowerPoint presentation (that is, one that doesn’t incorporate Xcelsius
dashboards) can be spotted from a million miles away. The same is true of many other types
of visualization and data analysis tools. Products created from a single application typically
look like clones of one another.

In stark contrast, all the Xcelsius dashboard examples in this chapter are fundamentally dif-
ferent from one another. The software doesn’t fight you when you want to think outside the
box and invent an entirely new kind of visualization. It is indeed liberating to build a dash-
board using little more than pointing and clicking with your mouse and incorporating a
spreadsheet behind the scenes.

Creating marvelous dashboards and visualizations does require some forethought, ingenuity,
and discipline. This book introduces you to the basic and advanced techniques and practices
of dashboard design with Xcelsius.

Best practices entail more than simply useful techniques. If you are going to be regularly
building dashboards, you want to carry your experiences from one project to the next. It
would be nice if you could manage visibility of components in your deployed dashboards so
that your users won’t have to face a cluttered screen. Less clutter translates to simpler and
more elegant layouts, with shorter design time. If you can reuse a visual chart component
for multiple kinds of data (using a technique called context switching), you will have an easier
time maintaining dashboards.

This book describes more than 100 best practice techniques, indicated with the best prac-
tices icon. They are summarized in Appendix C, “Xcelsius Best Practice Techniques and Hip
Pocket Tips.”

42 Chapter 2 Showcase of Xcelsius 2008 Dashboards

2

Chapter 3, “Getting Familiar with Xcelsius 2008,” gets you started with Xcelsius 2008, and
Chapter 4 addresses how to incorporate spreadsheet formulas in your Xcelsius dashboards.
When you master this material, you will be able to incorporate all sorts of computations in
your dashboards. Chapters 5 and 6 address charts and selectors, giving you a basic ground-
ing in Xcelsius 2008. The rest of the book, which can largely be read in any order, will ele-
vate your skill beyond the intermediate level.

3CHAPTER

In this chapter

Getting Familiar with
Xcelsius 2008

In this chapter

Learning to Build Dashboards 44

Organizing the Xcelsius Workspace 46

Using the Dashboard Design Facilities of Xcelsius 52

Achieving a Uniform Look and Feel in Dashboards and Visualizations 62

Closing Thoughts 67

44 Chapter 3 Getting Familiar with Xcelsius 2008

3

As with many other technologies and products, a demonstration of building an Xcelsius
dashboard makes it look like child’s play. There’s a wonderful sense of simplicity when you
can just import a spreadsheet, drop visual components onto a canvas, map them to actual
spreadsheet formulas and data, and click a button to export the dashboard to a fully interac-
tive Flash or PowerPoint slide.

My goal in this chapter is to quickly get you familiar with the things you need to know when
working with Xcelsius and to arm you with practical information to help you put oomph
into your dashboards and visualizations.

The emphasis of this chapter is on Xcelsius 2008 features. Chapter 4, “Embedded
Spreadsheets: The Secret Sauce of Xcelsius 2008,” focuses on the underlying spreadsheet.

Learning to Build Dashboards
There are two things that separate me from you: I have textbook knowledge of Xcelsius,
which is something that anyone should be able to pick up by simply reading the product
documentation, and I have years of experience designing Xcelsius dashboards and know
what works and doesn’t work.

I could easily write an encyclopedic chapter, systematically detailing the broad array of
Xcelsius product features. It would get you familiar with the product, but I’m not convinced
that such an approach would give you a clear sense of what to do when faced with building
dashboards on your own. Instead, in this book, I show you how to go about building dash-
boards, and in the process, I cover the many product features I might have covered using
the encyclopedic approach.

Starting with this chapter, I want you to be hands-on. By hands-on, I don’t simply mean
opening a file on your computer and passively looking at ready-made file samples as you
read. I want you to be working with the files and examples as you would in the workplace
and tackle the same kinds of challenges you would face when working with Xcelsius for real.
Think of this chapter as your first day of on-the-job training with Xcelsius 2008. Along the
way in this and later chapters, you’ll gradually fill in the gaps in the product features and
capabilities.

To begin, imagine that you need to analyze and present both historical sales and projected
sales for four regional divisions in your company (see Figure 3.1)

Your objective is to turn this into a dashboard that outlines corporate sales both nationally
and regionally. You can open the sample spreadsheet file ch03_01SampleSpreadsheet.xls in
either Excel 2003 or Excel 2007.

When you launch Xcelsius 2008 for the first time, it may look similar to Figure 3.2. It may
look somewhat different from Figure 3.2, depending on which edition of Xcelsius you have
and how you have configured your Xcelsius workspace.

45Learning to Build Dashboards

3

You don’t want to be distracted by your software configuration, setup, and layout when you
need to put to use your creative and analytical skills. So before diving into the dashboard
design, let’s digress a bit and customize the workspace.

Figure 3.1
Sample spreadsheet
data.

Xcelsius toolbars

Canvas Properties panel

Components panel

Object browser

Underlying spreadsheet Quick Start menu

Figure 3.2
The Xcelsius work-
space, before a
spreadsheet has been
imported.

46 Chapter 3 Getting Familiar with Xcelsius 2008

3

Organizing the Xcelsius Workspace
As you can see, even without any file open, the Xcelsius screen is pretty busy. When you
start opening files, it will get even busier and more cluttered. Fortunately, you can customize
your workspace to suit your needs.

Elements of the Workspace
Your workspace environment is composed of the following:

■ The canvas: The canvas is the visual representation of the dashboard that your users
see. On the canvas, you can place various components. Users can interact with the com-
ponents, such as clicking a button, typing in a phrase, or moving a slider. The compo-
nents, in turn, interact with an underlying spreadsheet, and through the spreadsheet,
indirectly interact with one another.

■ The Components pane: This is a virtual catalog or gallery of available components
you can drag and drop onto the canvas.

■ The Properties panel: You use this panel for displaying and setting the attributes of
components placed on the canvas.

■ The Object Browser pane: As you add components to the canvas, it quickly becomes
cluttered. You need some way of managing them, and the Object Browser is the tool for
this purpose. This pane contains a list of named components that match exactly what’s
on the canvas. From the Object Browser, you can make the components you want hid-
den, or you can lock them into place after carefully positioning them. Also, you can
adjust the “depth” of a component within the canvas.

■ Underlying spreadsheet: This is the spreadsheet that you work with to create your
dashboards.

While you are designing your dashboard, Xcelsius closely watches all your formulas,
data, and binding of component attributes to spreadsheet cells.

Simultaneously, Xcelsius builds a virtual spreadsheet that very closely mimics the
spreadsheet you are working on.

When Xcelsius generates your dashboard file, it embeds the virtual worksheet into the
dashboard file so it can run alongside the dashboard visual components. Because the vir-
tual spreadsheet runs in Flash, there is no need for the dashboard user to install Excel.

■ Toolbars: Similarly to applications such as Microsoft Office, Xcelsius provides an
assortment of toolbars to facilitate dashboard building. From a toolbar, for instance, you
can specify themes and color combinations for your dashboard.

■ Quick Start pane: This pane provides some information that may be useful the very
first time you try using Xcelsius. It gives you a quick tour of Xcelsius, and when you’re
done with this tour, you’ll no longer need this pane. You can close it to free up some
screen space in your workspace.

47Organizing the Xcelsius Workspace

3

Customizing Your Workspace Layout
Xcelsius provides a number of different options for customizing your workspace layout. I
explain here some of the options and choices, but in truth, there is no single best way to cus-
tomize your workspace. You need to choose what works for you.

For those of you used to Crystal Xcelsius, the Components pane is typically positioned
along the upper-left edge of the screen, and the Object Browser is underneath it. Xcelsius
2008 allows you to customize the default locations and behaviors of these panes.

The Components Pane

The Components pane displays a gallery or catalog of available components for your dash-
board. You can view components in any of three views (see Figure 3.3).

Figure 3.3
The Components
pane has an
Accordion view, a
Tree view, and a List
view.

It is easy to sift through the components by using the Accordion view. The icons showing
each component are easy to view. You can also jump to a specific category. The Tree view
offers much the same functionality as the Accordion view, using a tree folder interface. The
component icons in Tree view are smaller than the icons in Accordion view. The List view
provides an alphabetic list of all available components, without regard to category.

Although the Accordion view of components may be aesthetically pleasing, the number of
components directly visible and selectable at a glance is comparatively small. In addition,
with Accordion view, if you are looking for a specific component, you need to know which
component category to click on to find it. It’s not obvious that a Dual Slider component
would be grouped with Single Value components, even though it adjusts two values.
There is nothing really wrong with the classification; it’s just that when you are using the
Accordion view, you may need to tax your memory more than if you use the alphabetic
List view.

So which of these views—Accordion, Tree, or List—is the best to work with? Fortunately,
you don’t have to choose. You can switch from one to another by clicking the appropriate
tab. Personally, I find it most expedient to work in the List view: I get what I want right
away, and there is no guesswork to figure out if there’s a component that matches my needs.

48 Chapter 3 Getting Familiar with Xcelsius 2008

3

The Canvas
The canvas frames your dashboard and visualizations. It is the place where components are
positioned. There are a number of intriguing parallels between a canvas for an oil painting
and the Xcelsius canvas. Paint on an oil painting is deposited in layers, and objects painted in
the background are obscured by those in the foreground. Similarly, components placed on
the Xcelsius canvas are arranged in layers. Those in the foreground obscure those that are
behind. Unlike with an oil painting, however, with the Xcelsius canvas, the order of compo-
nents can be rearranged. You do this with the aid of the Object Browser.

You can set the canvas size a number of ways. First, from the File menu, you can select
Document Properties and set the width and height. You can use one of the preset options or
use any pixel width and height of your choosing.

T I P
While you are not locked into a specific size for the canvas, it is generally good practice
to standardize on a fixed size for your dashboards and visualizations. It is far easier to
reuse previously prepared dashboards or dashboard components if they are uniformly
sized.

Another way to set the canvas size is to have the canvas hug your components by using the
Fit Canvas to Components button. This works well if your outermost component happens
to be a rectangle or one of the other Art and Background components. In addition, you can
incrementally expand or decrease the canvas size by using the toolbar buttons Increase
Canvas and Decrease Canvas. In this way, you can create an invisible border to frame your
components.

N O T E
The canvas is normally a generic white background. You can change the background to a
solid colorized background or a gradient-filled colorized background, or you can embed
an image file that is any of the following file types: JPG, PNG, GIF, BMP, or SWF.

Technically speaking, the canvas is not a layer in your dashboard, and as such, it is not
accessible within the Object Browser, which I talk about next.

The Object Browser
The Object Browser allows you to manage the components placed on the canvas. You can
do things like select them; hide and show them; lock them in place; cut, copy, and paste
them; and give them descriptive names.

As you drop or place components onto the canvas foreground, new component items are
added to the bottom of the list in the Object Browser (see Figure 3.4). The foremost com-
ponent on the canvas is a combination chart, which corresponds to the item at the bottom
of the Object Browser pane.

49Organizing the Xcelsius Workspace

3

Notice that when a component on the canvas is selected, the corresponding object is high-
lighted in the Object Browser.

Note that double-clicking the title bar of the Object Browser, Components pane, or proper-
ties panel pops out the panel into a free-floating window that can be resized and moved
about on the screen (see Figure 3.5). Double-clicking the title bar of the free-floating
window parks the window back to its original location and size.

Figure 3.4
Components in the
canvas and items in
the Object Browser
correspond to one
another.

Figure 3.5
The Object Browser
as a free-floating
window.

Notice near the upper-right corner (see Figure 3.5) of the Object Browser that there are
two icons and a corresponding column of dots under each of the icons. One of these icons
is an eye, and the other is a padlock. A checkmark under these icons signifies that the

50 Chapter 3 Getting Familiar with Xcelsius 2008

3

component is hidden or locked down. To make the component hidden or locked, click the
dot underneath the icon. In Figure 3.5, the checkmark next to Combination Chart 1 means
that the chart is hidden.

Invisible Versus Hidden
Note the difference between the terms invisible and hidden in this book. They appear similar but are used dif-
ferently. When you are working with Xcelsius, you are said to be in Designer mode. If you have a lot of com-
ponents on the canvas, the canvas easily becomes cluttered with overlapping components. While you are in
Designer mode, it helps to make all components other than the one being edited hidden. This has nothing to
do with how the components appear when the dashboard is exported and deployed. Xcelsius also supports a
capability called dynamic visibility. This is more of a programmable feature to tell a component in a deployed
dashboard whether to be visible or invisible. Dynamic visibility has nothing to do with the Designer mode of
Xcelsius. To help avoid confusion, it’s important to associate hidden with the Designer mode of Xcelsius and
invisible with the dynamic visibility feature of deployed dashboards. (The topic of dynamic visibility is covered
in detail in Chapter 7, “Using Multi-Layer Visibility in Your Dashboards and Visualizations.”)

Grouping Components

Sometimes it is useful to group together various components. Xcelsius 2008 supports group-
ing and ungrouping. There are several ways of selecting the components you want. One way
is to successively Ctrl+click components on the canvas, just as you would when selecting
multiple nonconsecutive files in the Windows file browser. You can also select multiple
elements with Ctrl+click within the Object Browser.

When the components you want are selected, you can group them together by pressing
Ctrl+G; you can ungroup them by pressing Shift+Ctrl+G. There are also toolbar equivalents
for grouping and ungrouping.

Grouping serves a number of purposes. It may be easier and less error prone to position a
group of components in the center of the canvas or somewhere off to the side. In addition,
you can hide or unhide all the components that are grouped together.

When you are designing a dashboard with a large number of components, it may be ineffi-
cient to click on each and every component one at a time. If all the components are next to
one another on the Object Browser, you can select one of the components and, in the
Object Browser, Shift+click another component. Every component in the Object Browser
that falls in the intervening range becomes selected and eligible for grouping.

As shown in Figure 3.5, it is possible to have nested groupings (that is, a group within a
group).

Changing the order of items listed in the Object Browser changes the depth of the corre-
sponding component on the canvas. If you want to move a component closer to the fore-
ground, you select the component in question and then in the Object Browser, click the +
key. You can click and drag the item in the Object Browser to reposition it in the list of
items. To make a selected component recede toward the back (in terms of the layer depth),
you click the - key in the Object Browser. Clicking and dragging items (including grouped
items) on the Object Browser list accomplishes the same thing as clicking the + and – keys.

51Organizing the Xcelsius Workspace

3

Positioning the Components Pane, Object Browser, and Properties Panel
Customizing the layout of your workspace can get a little complex. You have a variety of
options available to you, and they are not necessarily evident.

When you have a free-floating panel, you can “park” it at the left, right, top, or bottom
edges of your application. You do this by clicking the title bar of the panel and dragging it
toward one of the sides. As you move the panel, a compass-like icon appears (see Figure 3.6).

Figure 3.6
Parking the Object
Browser to the left
edge and directly
underneath the
Components pane.

Notice that on each of the four sides is a tiny rectangle. When your mouse moves over a
rectangle, a larger shaded region appears, outlining where the panel will be parked. In the
case of Figure 3.6, the Object Browser is going to be positioned on the left side, directly
under the Components pane.

Xcelsius 2008 incorporates an interesting and useful space-saving feature. You can turn
parked panels into sliding drawers so that they remain tidy when not in use. To take advan-
tage of this feature, you park your panel to one of the sides, as previously illustrated. Then
you click the pushpin icon (see Figure 3.7). This collapses the panel so that it is neatly
tucked to the edge. Notice in Figure 3.7 that the Components pane has already been
collapsed in this fashion.

The sliding drawer interface frees up a lot of space on your screen, but it takes a little
getting used to.

At this point, I leave you to consult the Xcelsius product documentation for more informa-
tion and experiment on your own to determine what kind of layout works best for you.

52 Chapter 3 Getting Familiar with Xcelsius 2008

3

Using the Dashboard Design Facilities of Xcelsius
Perhaps the best way to get acquainted with Xcelsius 2008 is to explore and tinker with it.
So fire up Xcelsius and, from the download set (available on
www.XcelsiusBestPractices.com), import the ch03_01SampleSpreadsheet.xls file. The data
in this spreadsheet depicts monthly projected and historical sales for four regional divisions
in a company (refer to Figure 3.1).

Figure 3.7
Clicking the pushpin
icon changes the
panel to a sliding
drawer.

N O T E
As of the time of this writing, Xcelsius 2008 supports Excel 2007 files in Compatibility
Mode. That is, although you can save a spreadsheet as an .XLSX file, Xcelsius treats it as
if its features are restricted to Excel 2003. When preparing spreadsheet files that are
going to be imported into Xcelsius 2008, be sure to save them using Excel 2003
Compatibility Mode.

Note that the Xcelsius 2008 designer environment actually runs an instance of Excel in the
background. The instance of Excel, if it is Excel 2003, retains whatever toolbars you have
open when Excel normally launches. If you want certain toolbars to show, you need to con-
figure this in Excel and then quit Excel. Thereafter, Xcelsius 2008 retains these characteris-
tics in the embedded Excel.

Regardless, from this default view you can transform this dashboard in a wide variety of
ways. Rather than charging you with a narrowly focused mission, this book explores various
ways you can go about constructing dashboards. The goal at this point is not to be compre-
hensive but to give you a flavor for how to use various components.

T I P
If you are using Excel 2007, you might want to set the Excel Ribbon in minimized mode
and then quit Excel 2007. This will cause Xcelsius 2008 to automatically display the
Ribbon in the embedded spreadsheet in minimized mode.

www.XcelsiusBestPractices.com

53Using the Dashboard Design Facilities of Xcelsius

3

Regardless of the kinds of dashboards you tend to build, you’ll likely have common ele-
ments, such as identifying information, charts and/or tabular information, and possibly some
navigational controls (for example, menus, list boxes, and other selectors).

Text-Based Components
Xcelsius 2008 has various text-related components, including labels, text areas, and input
text. You’ll be using labels all over the place, and I want to explain a few things about this. If
you’re used to using Crystal Xcelsius, you’re going to be in for a few surprises. Í

A label can be a static piece of text, such as the title of a report or the name of a company.
There’s nothing very exciting about that. What if you could extract text from the underlying
spreadsheet? What if that text were the result of some spreadsheet formula? For instance, in
the spreadsheet example, there’s a bunch of sales-related information. Say that you want
your text to display the total projected sales for the North region, which is the sum of cells
B9 through B20. In your spreadsheet, place the following formula in cell B24:

=SUM(B9:B20)

Next, try dragging a Label component onto the canvas. Link it to cell B24 (see Figure 3.8).

Figure 3.8
Linking a text label
to a spreadsheet cell
that contains a
formula.

As the numbers in the underlying spreadsheet change, so does the computed sum, and this
gets picked up by the Label component. This is good, but an isolated number by itself is
not very informative. This column of numbers refers to the total projected sales for the
North region. So why not try stuffing this information into the formula? The word “North”
is contained in cell B8. Revise cell B24 to the following formula:

=”The total projected sales for the “&B8&” region is “&SUM(B9:B20)

54 Chapter 3 Getting Familiar with Xcelsius 2008

3

Now the label says “The total projected sales for the North region is 180300.” This
is definitely more informative, but you could improve on readability. Inserting a comma to
separate the thousands would aid in clarity. It might help to include a currency symbol as
well. Conveniently, Excel has a function called TEXT that does just this. Instead of using
SUM(B9:B20), you could use TEXT(SUM(B9:B20),”$#,###”). The formula then looks like this:

=”The total projected sales for the “&B8&” region is “&TEXT(SUM(B9:B20),”$#,###”)

Now the label says “The total projected sales for the North region is $180,300.” (If
you feel lost when it comes to spreadsheet formulas, don’t worry; I cover them in Chapter 4.)

Notice how I approach building components in the dashboard using successive baby steps.
This technique of incrementally enhancing your dashboard components is instrumental to
the overall dashboard construction process and constitutes a best practice. If nothing else,
pick up this skill of incremental refinement.

How far can you carry the incremental improvement approach? Suppose the projected sales
for the region of $180,300 is below the required sales quota of $250,000. It might be helpful
to alert the dashboard user; maybe you could display the message in red. If you are used to
using Crystal Xcelsius, you might know that the Label component doesn’t support alerts. In
Xcelsius 2008, the Label component has General, Behavior, and Appearance tabs, but there
is no Alerts tab. The situation is not as bleak as you might think. If you look back at Figure
3.8, you see the check box Enable HTML Formatting. When you select this check box, you
can incorporate HTML-formatted text in your dashboard labels. Instead of using
TEXT(SUM(B9:B20),”$#,###”), for example, you could use ”&TEXT(SUM(B9:B20),
”$#,###”)&” to make the value appear in boldface. If you want the text to be both the
color red and in boldface, you could use a formula like this:

=”The total projected sales for the “&B8&” region is
➥”&TEXT(SUM(B9:B20),”$#,###”)
➥&””

At this point, don’t get mired in the details of spreadsheet formulas. In Chapter 4—and,
indeed, throughout the book—I provide a more systematic approach to building spreadsheet
formulas. What you need to know now is that with a little bit of insight and elbow grease,
you can get Xcelsius and Excel to work together very effectively.

N O T E
HTML formatting is also supported in the Input Text Area component.

Chart-Based Components
Xcelsius 2008 charts are in many ways similar to Excel charts, but there are some differ-
ences. One facility worth noting is the ability of Xcelsius charts to recognize mouse events
and drill down. In this section, we’ll look at how to set up a chart like a pie chart and drill
down to a column chart.

55Using the Dashboard Design Facilities of Xcelsius

3

Pie charts are good for providing broad summary information (such as sales totals by each of
four regions) but not highly granular detail. The finer detail (such as month-by-month sales)
might be better left for a column chart or line chart.

You should begin this example with exactly the same dataset used throughout this chapter.
Somewhere below the bottom of the data, tabulate the total sales for the 12 months for each
of the regions. You could place the totals in cells B24 through E24.

Drop a Pie Chart component on the canvas and map it to the region totals (see Figure 3.9).

Figure 3.9
Pie chart is linked to
the North, South,
East, and West totals.

Next, you need to enable drill down. In the properties panel for the pie chart, select the
Drill Down tab and click the Enable Drill Down check box. When drill down is enabled,
you can specify how you want the drill down to work. Five different ways, or insertion
types, are available:

■ Position

■ Value

■ Row

■ Column

■ Status list

While your pie chart data stretches across a row (B24:E24), the monthly detail for each
region runs down individual columns. That is, the monthly data for the North region is
located in column B. The monthly data for the South region is located in column C.

56 Chapter 3 Getting Familiar with Xcelsius 2008

3

Columns D and E hold the East and West sales data, respectively. If you want to drill down
to the monthly detail for a given region, you need to look for the data in columns. For the
insertion type, select Column (see Figure 3.10). The source data that’s needed for the
monthly estimates has to come from columns B, C, D, and E, spanning rows 9 through 20,
or cell coordinates B9:E20.

Figure 3.10
Drill down settings
within a pie chart.

The objective here is that when the user clicks or moves the mouse over a specific region in
the pie chart, an event should be triggered that retrieves one of the columns in the source
data and pushes the selected column of data onto a destination. When the needed data has
arrived at a destination, it can be used by other charts, such as a column or line chart.

The destination can be a range of cells elsewhere on the spreadsheet. In order for the pie
chart drill down feature to work correctly, it needs to be told where the destination is. For
the time being, you can designate cells B27 through B38—basically one cell for each of the
12 months.

The next step is to drop a Column Chart component onto the canvas, perhaps placing it
immediately to the right of the pie chart. This chart doesn’t need to do any fancy footwork.
The pie chart has done all the hard work setting up the drill down information. The col-
umn chart only needs to read the contents straight off the destination cells (B27:B38).

There are just a couple problems here. You have the numeric data for a particular region in
the destination cells. How do you know which region the data refers to? All that has been
transferred are the 12 monthly sales estimates. It certainly would be nice to have the region
name displayed in the column chart. Was column the correct insertion type?

57Using the Dashboard Design Facilities of Xcelsius

3

It turns out that more than one kind of insertion type can work (for instance, in this exam-
ple, position could also be used). However, column is a perfectly appropriate choice. It’s just
that we didn’t do a good enough job of specifying the source data and destination.

Part of the information needed is the region name. The source of this resides on row 8. So,
really, the source data should start from row 8 instead of 9 and continue through row 20.
(The source data cells should be B8:E20, and the destination cells should be B26:B38.)

When pushing the data, there is no reason not to combine non-numeric and numeric data.
However, when they are read, they need to be read separately.

Now you can create a completed dashboard with drill down (see Figure 3.11). The monthly
data is picked up in the column chart. The chart subtitle is linked to cell B26 so it correctly
reads the region name. Still, there’s something possibly wrong with this chart. Can you guess
what it is?

Figure 3.11
Drill down is working,
but something is
wrong. Can you guess
what it is?

Although the chart is not super polished, there’s nothing that outwardly appears out of
alignment. It would be nice to have commas in the numbers. And the months running along
the X-axis are a bit scrunched up, but so what? There is something else that weighs in much
more heavily. Look at the vertical bars in the chart. Is it reasonable that in every successive
month, the monthly sales is always greater than in the prior month?

The data graphed in the dashboard only reflects the projected sales. It is possible that the
person who prepared the projection was overly zealous. Look carefully at all the data in the
spreadsheet. There is historical sales data as well. The historical data also has the same
anomaly. It turns out that the data you have been looking at is cumulative sales data.
Calculating how much cumulative sales jump from one month to the next reveals the cor-
rect level of sales and is what you should be using in your dashboards.

There’s an important lesson to be learned from this: The data provided in this example hap-
pens to be cumulative sales but is, nonetheless, valid. The dashboard for the drill down is
correctly set up to take monthly data, aggregate it for a pie chart, and interactively drill
down to the appropriate monthly detail. There is nothing fundamentally wrong with the
dashboard design or, for that matter, the data collected and generated. What’s wrong is that
that there is a grand disconnect between the world in which the data gets captured and
assembled and the world where the data is presented and relied on by interested parties (for
example, the CEO, investors, whoever uses the dashboard).

58 Chapter 3 Getting Familiar with Xcelsius 2008

3

Container Components
Container components, as the name suggests, are used to hold things. Xcelsius containers
include Panel Container, Panel Container 2, and Tab Set components. I elaborate on each of
these types in the following sections.

Panel Container Components

A Panel Container component is kind of a mini-canvas with a surrounding border and place
to designate the Panel Container component’s title. You can drop components into the inte-
rior of the Panel Container component. As you are designing your dashboard and position a
Panel Container component, its interior components move with it. In a way, it is like having
grouped components inside a window.

There is one reason to consider using a Panel Container component: If the components
inside it are larger than the Panel Container component, it auto-scrolls. This affords the
option of cramming a lot of information with interactive capability into a restricted portion
of the screen.

In some but not all of the Xcelsius themes (discussed later in this chapter), you see listed
within the Components gallery a Panel Container 2 component. A Panel Container 2 com-
ponent is the same as a Panel Container component, except that the surrounding border has
different artwork.

N O T E
If you use a Panel Container 2 component within a dashboard and later decide to
change the theme to one that does not have a Panel Container 2 component, your
component will be converted to a Panel Container component, and this process is
irreversible.

Tab Set Components

The Tab Set component is a welcome addition to Xcelsius 2008. It allows you to click
through the “tabs” and interact with different sets of components. It is relatively easy to use
a Tab Set component. First, you drag a Tab Set component onto your canvas. Notice in
Figure 3.12 that there are + and - icons at the top of the component. You click the + icon to
add an additional tab to your set. As you add each one, you are prompted for a tab label.

You can rearrange the tab order by using the Object Browser (see Figure 3.13). Each tab of
the Tab Set component has a mini-canvas within the Object Browser. You select the one
you’re interested in and reposition it in the Object Browser. Within the Object Browser,
you can select one of the tabs in your Tab Set and use the + and - keys on your keyboard to
rearrange the order of the tab within the Tab Set. Pressing the + key shifts the tab to the
right and pressing the - key shifts it to the left.

59Using the Dashboard Design Facilities of Xcelsius

3

Selectors
Xcelsius 2008 has a broad array of selectors, including Accordion Menu, Check Box, Combo
Box, Filter, Horizontal Fisheye Menu, Horizontal Sliding Menu, Icon, Label Menu, List
Box, List View, List Builder, Radio Button, Ticker, Toggle Button, Spreadsheet Table, and
Play. You’ll use many of these throughout the book, so I don’t go into great detail about
them here. The ones you might want to learn about first are Accordion Menu, Check Box,
Label Menu, List Box, Radio Button, Toggle Button, and Spreadsheet Table. They are easy
to learn and you’ll find common uses for these.

Incidentally, the Spreadsheet Table component in Xcelsius 2008 is the same thing as the
Table component in Crystal Xcelsius. Spreadsheet Table component and List view are simi-
lar to one another, except that List view permits sorting and allows the user to adjust column
width. Like many of the other list- and table-based components in Xcelsius, List view is
interactive and can respond to your mouse clicks or movements.

I need to explain something that may not be self-evident, especially among selectors. While
you may not find a drill down feature for a given component, you may still be able to
accomplish the equivalent. Selectors allow you to pick an item from many members or a list.
Once you’ve chosen an item, you can place its row, position, value, label, or whatever is

Figure 3.12
You click the + icon
to add a tab.

Figure 3.13
Tab order can be
reassigned in the
Object Browser.

60 Chapter 3 Getting Familiar with Xcelsius 2008

3

available and then place that reference on a spreadsheet cell. From that point on, other com-
ponents can retrieve that reference and perform a lookup or other needed task. Isn’t that
what drill down accomplishes? To see this in action, open the ch03_ListViewMap.xlf file
from the download set, available from www.XcelsiusBestPractices.com (see Figure 3.14).

Figure 3.14
The List View compo-
nent punts selected
data over to the Map
component.

When previewing or exporting the dashboard, you can click on any person in the list.
Instantly, the state corresponding to the selected list item is highlighted in a different color.
Also note that all the states associated with any member in the list are also highlighted.

You can simplify much of your work with dashboards if you can get the various components in
your visualizations to tag team. Not only will this make it easier for you to design and build
dashboards, it will reduce the degree to which dashboards are perceived as disconnected.

Single Value Components

A Single Value component generally targets a single cell of the underlying spreadsheet.
Oddly, a Dual Slider is treated as a Single Value component, but let’s look at what you can
do with it. In the ch03_DualSliderExample.xlf file, a Dual Slider is used to control the
range of values plotted on a line chart (see Figure 3.15).

The slider is allowed to vary between the range of 0 and 3600 (see Figure 3.16), but the high
and low values of the slider are read from cells B2 and B3.

What is happening in this dashboard is that the minimum and maximum X values in the plot
are being set by the user via the Dual Slider. When the extremes are updated, the increment
size between successive plot points is recalculated, and all the plot points are regenerated.

Dials and gauges are discussed in Chapter 6, “Single Value Components: Dials, Gauges,
Speedometers, and the Like.”

www.XcelsiusBestPractices.com

61Using the Dashboard Design Facilities of Xcelsius

3

Maps
As shown earlier in this chapter, Xcelsius 2008 supports the use of maps. For more informa-
tion about maps, see Chapter 11, “Maps in Xcelsius.”

Art and Background Components
Aside from the overall approach of varying the color fills and gradients in various com-
ponents, Xcelsius 2008 provides a number of specially-designed components to build the

Figure 3.15
A Dual Slider controls
a plot.

Figure 3.16
Slider values control
the plot parameters.

62 Chapter 3 Getting Familiar with Xcelsius 2008

3

backdrop for your dashboards and visualizations. The components include the Background,
Image, Rectangle, Ellipse, Horizontal Line, and Vertical Line components.

Horizontal and vertical lines can be useful to serve as visual separators, making it easier to
read what might otherwise be a dense and noisy visualization.

The Rectangle component is also very useful in conjunction with other components. Some
components, like the Line Chart component, offer online basic colorization features. For
instance, you can set the plot area to a solid color, but you can’t apply a gradient fill rotated
at, say, a 45-degree angle. What you can do is turn off the Line Chart component’s back-
ground so it is transparent and then place a Rectangle component immediately behind it and
apply the fancy colorization in the Rectangle component.

Some new features in Xcelsius 2008 are cause for celebration. In addition to the previously
supported JPG and SWF file formats, the Image component also supports BMP, GIF, and
PNG file formats. If you are new to Xcelsius, you might think “So what?” Well, lack of sup-
port for those file formats has been a thorn in the side for many who have built dashboards
and visualizations with Crystal Xcelsius.

Web Connectivity and Other Components

An important change in Xcelsius 2008 Engage (whose predecessor is Crystal Xcelsius
Professional) is that web and remote data connectivity are now built in to the product, and
the licensing restrictions have been significantly relaxed. If you want to seamlessly connect
your dashboards to back-end data sources, you can now do so. Look in Chapter 15, “XML
and Data Connectivity,” for detailed information on web and remote data connectivity.

Achieving a Uniform Look and Feel in
Dashboards and Visualizations

An important feature for any visualization or dashboard is the visual clarity with which
information is conveyed. As has been demonstrated in the various dashboards in this book,
you can fine-tune the appearance of just about any component placed on the canvas. As your
dashboards get more elaborate, they are bound to have more components. This means you
could be spending more time repetitively fine-tuning components, even if they all have the
same kind of branding.

There are some strategies for achieving uniform look and feel while reducing the “electronic
pencil pushing” nature of dashboard construction.

Simple Replication at the Component Level
The simplest step you can take, if you have multiple components, is to build a base compo-
nent the way you want and then copy and paste it. The advantage of this approach is that
there is zero skill involved. But it also has some clear disadvantages: You may still end up
doing a lot of replicating, and if you need to uniformly tweak the appearance of components
of a similar type, you must hand edit each and every one of them.

63Achieving a Uniform Look and Feel in Dashboards and Visualizations

3

This is not a good solution, but you’ll learn about a design approach called context switching.
There are numerous examples of this throughout the book. In a nutshell, the idea is that you
may set up a chart or other component that reads data from a designated range of cells in
your spreadsheet. For example, it could be quarterly sales in cells B3 through E3. The chart
title could be read from cell A3.

You pour a lot of effort into creating this awesome looking chart. Your font selection and
chart color choices and shading effects are superb. Now that you’ve gone through designing
this chart, it would be great if you could repurpose it, on the spot, for other quarterly data.
To extend this example, let’s say the other data you are interested in are the quarterly cost of
goods sold, which are located in row 4, and gross profit, which is in row 5.

Here is the crux: Create a set of conduit cells, perhaps cells A2 through E2. Set these con-
duit cells to retrieve the values of the spreadsheet data in row 3 when you want sales info,
row 4 when you want cost of goods sold, and row 5 when you want the gross profit informa-
tion. Instead of mapping your chart to the cells in row 3, map them to the conduit cells in
row 2.

Your next step is to place a value into a context cell (maybe use cell A1 for this). The conduit
cells in the second row watch the value of the context cell A1. You can use components like a
List Box or Radio Button to monitor the value of the context cell. So by clicking an item
inside a list box, you can instantly have a chart change the data it displays.

The spreadsheet functions for picking up the data based on the context are discussed in
Chapter 4 (in particular, the OFFSET function serves this purpose well).

In this example, I speak about context switching for three different sets of data—sales, cost
of goods sold, and gross profit. In principle, you could just as easily set up context switching
for many hundreds of sets of data. This certainly seems like a good strategy to inhibit the
proliferation of almost identical visual components.

For now, focus on the concept of context switching. The formulas come later. There are
plenty of examples throughout the book that use context switching.

Pasting Components Between XLF Files
Xcelsius 2008 allows you to copy and paste components between dashboard files. This was
not possible with Crystal Xcelsius.

In order to copy and paste components across multiple XLF files, you need to launch a sec-
ond instance of Xcelsius 2008. Whenever you’re running more than one instance of
Xcelsius, be prepared for your computer to consume a lot of memory.

When you copy and paste across dashboards (as opposed to within a dashboard), the links to
the underlying spreadsheet are erased.

Xcelsius 2008 Templates

Xcelsius supports templates, which consist of saved XLF files and saved SWF files. A tem-
plate offers the ability to organize starter files that are easy for you to build on. You might,

64 Chapter 3 Getting Familiar with Xcelsius 2008

3

for instance, have a standard set of corporate logos, confidentiality notices, or label-based
menus. You can place all these in a template, and the template will save you some time and
help establish a uniform appearance for your dashboards.

Assuming that your files are on the C: drive, you can create a template by saving your XLF
file to C:\Program Files\Business Objects\Xcelsius 2008\assets\template. You also need
to save your dashboards as SWF files to the same directory.

Optionally, you can create categories of templates by creating new directories inside the
template directory and saving your files in them. The next time you want to start with a
template file, you select File, Templates from the Xcelsius application menu, and the dialog
box shown in Figure 3.17 appears.

Figure 3.17
You can easily
preview custom
templates.

Xcelsius 2008 Themes
Similarly to templates, themes give you another way to control the look and feel of your
dashboards. There are two ways to preview and select Themes. One of them is through the
application Format menu, and the other is through the Xcelsius toolbars. Notice in the pre-
view in Figure 3.18 that the currently selected theme is highlighted.

I recommend that you use the toolbar to preview the themes for two reasons. First, you get
to compare them all in a single view. When previewing themes from the menu, you are
forced to cycle through the themes one at a time. Second, you will notice that with each
theme in the toolbar-based preview, there is a horizontal swatch of colors. This corresponds
to the coloring scheme for the theme. When you preview themes by navigating through the
application menu, the swatch of colors is totally absent.

Try experimenting with different themes to see what you like. There are two key factors to
keep in mind with themes. One of them relates to data protection of open dashboards. The
other relates to a strategy for choosing some themes over others.

65Achieving a Uniform Look and Feel in Dashboards and Visualizations

3

One practical issue may influence your choosing of one theme over another. You may have
noticed that bar charts and column charts use shading to give an embossed look. This makes
a chart look fancy but sometimes can get in the way. For example, suppose you want to cre-
ate a Gantt chart, a graphical representation for tracking the timeline of various tasks that is
typically used as a project management tool. While Xcelsius doesn’t have a Gantt chart com-
ponent, it is not difficult to construct such a chart (see Figure 3.19). The key is to use a
Stacked Bar Chart component and make one of the data series the same color as the back-
ground. This allows the second series to appear as if it is floating.

This Stacked Bar Chart component has two data series. The first one pertains to the start
time of a task. It is colored black, the same as the background. Unfortunately, bar charts in
most of the themes do not use solid-color bars. Thankfully, the theme called iTheme does
have solid-color bars.

Figure 3.18
You can easily
preview themes.

C A U T I O N
If you have a dashboard open and, while it is open, change the theme, the coloration
settings and many of the components’ attributes will be irrevocably altered. Unless you
previously saved your dashboard, you will not be able to restore any of your custom set-
tings. Going back to the original theme will force your dashboard to use the default
settings. Any custom settings you made will be lost.

66 Chapter 3 Getting Familiar with Xcelsius 2008

3

Fonts in Xcelsius
With Xcelsius 2008, you can pick and choose from a wide variety of fonts in a dashboard. As
you can see in Figure 3.20, you can specify multiple fonts, even within a single component.

Figure 3.19
A simple Gantt chart
based on a camou-
flaged data series.

Figure 3.20
Using multiple fonts
in an Xcelsius
component.

By default, Xcelsius makes use of device fonts, and your exported dashboards rely on Flash
Player to render device fonts. As long as the computer on which you are running a dash-
board has the matching TrueType font, it will render correctly. If the font is missing, Flash
Player will substitute the closest available font. Before you start having conniptions about
missing fonts and ugly font substitutions, you should realize that the situation is really no
different than when font substitution is done with a word processing document. When was
the last time you received a word processing file that was rendered unusable because of a
font substitution? You have two options to guard against this happening:

67Closing Thoughts

3

■ You can use fonts that are common in usage, such as Verdana, Times New Roman, and
Courier New.

■ You can use an embedded font.

Embedded fonts travel with exported dashboard, thus increasing the file size. Because of the
large number of characters, Asian character sets are not supported with embedded fonts.

Don’t worry about how to configure for device fonts. Xcelsius 2008 is already configured to
take advantage of device fonts, so you generally don’t need to bother finagling with device
versus embedded fonts.

Closing Thoughts
This chapter, almost more than any other, is written with two audiences in mind: those
entirely new to Xcelsius and those who have experience working with its predecessor prod-
uct, Crystal Xcelsius. Regardless of which of these two camps you associate yourself with,
the basic premise of giving a spreadsheet a dashboard interface is a simple concept to grasp.
To make effective use of this framework, you have to figure out how to make things work
the way you want in Xcelsius 2008.

This chapter is basically a first-day on-the-job training. While the chapter exposes you to
many Xcelsius 2008 features, emphasis is given to skill acquisition so that you know compo-
nents can be made to work together. The practice of building dashboards and visualizations
with successive refinements is strongly encouraged. One of the chapter examples illustrates
how easy it is to get ensnared if you don’t consciously connect data preparation and analysis
with the dashboard or visual presentation.

The skills of knowing how to work with data and moving it to the dashboard realm are just
as essential as composing an aesthetically pleasing and functional dashboard layout.

This chapter is focused on getting you comfortable and familiar enough with Xcelsius 2008
that you can begin using the tool productively. To really put to use the empowering features
of Xcelsius, you need to be armed with specific knowledge and techniques about how to
incorporate spreadsheets in Xcelsius 2008, and that is the subject of Chapter 4.

This page intentionally left blank

4CHAPTER

In this chapter

Embedded Spreadsheets: The
Secret Sauce of Xcelsius 2008

In this chapter

Spreadsheet Fundamentals 70

Building Spreadsheet Models in Xcelsius 2008 73

Using Excel Functions in Xcelsius 2008 79

Mathematical and Statistical Functions in Xcelsius 2008 82

Making Dashboards Date and Time Aware 110

Manipulating Text in Spreadsheet Formulas 116

Using Selector-Style Spreadsheet Functions 119

Closing Thoughts 125

70 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

It doesn’t take much to realize that Xcelsius 2008 is distinctive. First, there’s the ability to
deploy dashboards to a variety of formats, such as PowerPoint, Word, or PDF, while retain-
ing full interactivity. But while important, this alone is not enough to distinguish the soft-
ware. Xcelsius 2008 uses scalable vector graphics to render text, shapes, backgrounds, and
charts. This ability to avoid pixilation is another nice feature, but again, this is not what
makes Xcelsius so remarkable. What really makes the software so distinctive is that it
embeds spreadsheets within the Xcelsius environment, both during design and deployment.

This chapter is about how Excel partners with Xcelsius 2008 and how you can empower
your dashboards and visualizations with Excel. Chiefly, this chapter serves the needs of two
audiences:

■ Those who consider themselves relatively new to Excel and the mechanics of handling
spreadsheets

■ Those who consider themselves seasoned spreadsheet users and are looking for new
approaches and techniques to enhance their Xcelsius dashboards

Even if you are fluent with spreadsheets, don’t be too hasty in reading through the spread-
sheet fundamentals section of this chapter; there may be an insight or two you have yet to
absorb that are worth knowing. In addition to spreadsheet fundamentals, this chapter covers
specific spreadsheet techniques that are sure to energize your dashboards. An example of this
is the ability to use named ranges in your formulas, whose boundaries are determined by
dashboard inputs rather than being set at design time.

Spreadsheet Fundamentals
Spreadsheets offer a wide range of capabilities, with everything from formulas to macros,
charting, conditional formatting, data validation, worksheet protection, and remote data
access. Principally, when working with Excel in Xcelsius 2008, you only need to be con-
cerned about two Excel-specific things: the spreadsheet formulas and, to some extent, the
formatting of cells that are linked to the Xcelsius canvas.

Many of the features of Excel already exist or can be implemented in Xcelsius:

■ Xcelsius 2008 has its own charting capabilities, so you don’t have to rely on the ones
built in Excel.

■ You can incorporate data validation facilities. Later in the chapter, I show some
techniques you can use.

■ Conditional alerts, discussed throughout this book, are also available.

■ Spreadsheet formulas and content are automatically protected. All that is exposed is
what you allow to show in the canvas.

■ Xcelsius 2008 Engage, Engage Server, and BusinessObjects Xcelsius Enterprise provide
built-in support for accessing remote data, so you don’t have to rely on Excel-based
facilities for this.

71Spreadsheet Fundamentals

4

However, several functions are missing from an Excel spreadsheet embedded in Xcelsius:

■ Approximately 160 Excel functions are supported in Xcelsius 2008. Some of the most
important functions are outlined in this chapter. For a complete list of Excel-supported
functions, see Appendix A, “Supported Spreadsheet Functions in Xcelsius 2008.”

■ You do not have access to the Excel application menus (although I show some
workarounds that enable you to regain much of this functionality).

■ Only a single Excel workbook can be embedded in an Xcelsius dashboard. In addition,
you cannot deploy dashboards that incorporate references to remote workbooks.

Formula Fundamentals
Spreadsheet formulas can be quite elaborate. It pays to start off by keeping things simple
and gently and progressively layer in more sophistication.

Building on Simple Formulas

Even if you are not comfortable with spreadsheet formulas, you shouldn’t have difficulty
figuring out what would result from the following spreadsheet formula:

=AVERAGE(30,40,50)

This is the average of the numbers 30, 40, and 50. Of course, the average of these three
numbers is (30+40+50)/3 = 40.

Notice the structure of an Excel formula: It starts off with an equal symbol (=) and is fol-
lowed by some algebraic expression, which typically results in a number, text, or a true/false
value. There are other possible results, such as an expression that returns an error. But for
now, apply the KISS principle: “Keep it simple, stupid.”

N O T E
If you need a refresher on spreadsheets, feel free to consult my book Escape from Excel
Hell (0471773182). (In particular, Chapter 2 provides a good review of Excel functions.) If
you are in need of a comprehensive reference on Excel, look at Special Edition Using
Microsoft Office Excel 2007 (078973611X) or Special Edition Using Microsoft Office Excel
2003 (0789729539).

In Excel, you could get the same result by using a formula like this:

=(30+40+50)/3

So far, all this amounts to is that Excel can be used as a glorified calculator. To get beyond
the mindless calculation stage, you can incorporate spreadsheet cell references and more
complicated expressions in your formulas. Let’s work through an example.

Launch Xcelsius 2008 and enter the number 30 in cell A1 (that is, the cell in row 1 and
column A) and 40 in cell A2. In cell B1, enter the following formula:

=(A1+A2+50)/3

72 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Because A1 is 30 and A2 is 40, the spreadsheet computes the expression in cell B2 as
(30+40+50)/3, which once again results in 40. By now, you should be tiring of this example,
but let’s stay with it a few moments longer. In your Xcelsius 2008 environment, try placing a
slider on the canvas and link its Data value to cell A1. Also place a gauge on the canvas and
link it to the result in cell B1. For good measure, you can throw in a Spreadsheet Table
component and link its display to cells A1 though B3 (see Figure 4.1).

Figure 4.1
Cell A1 can be set
from the dashboard.

As a rule, you should highlight all input cells that can be driven by the Xcelsius dashboard
from the canvas. The common practice is to shade such spreadsheet cells with a noticeable
but easy-to-read color, such as bright yellow. These cells might be easier to read if you also
give their text a boldface appearance and apply a centered justification, as is done for cell A1
in Figure 4.1.

Formula Chaining in Spreadsheets

Let’s extend what can be done with spreadsheet formulas. Suppose that you give cell A2 the
following formula:

=(A1-150)*A1/50

What happens to cell B2? Cell B2 is (A1+A2+50)/3, but A2 is (A1-150)*A1/50. Fortunately,
Excel knows how to chain these formulas so that everything gets computed automatically.

Formula chaining lets you easily build sophisticated mathematical models and incorporate
them into your Xcelsius dashboards.

73Building Spreadsheet Models in Xcelsius 2008

4

Building Spreadsheet Models in Xcelsius 2008
One of the advantages of working with Xcelsius 2008 is that you can build your spreadsheet
and dashboard in tandem. There is no requirement to have a complete spreadsheet before
you begin the dashboard design.

Of course, it is advantageous to have a readymade spreadsheet with absolutely no changes
required. All you would have to do is import the spreadsheet into Xcelsius, throw the
needed components onto the canvas, link them to the underlying spreadsheets, set some of
the properties in the components, and export a polished dashboard. The only time it works
this way, though, is in a sales demonstration.

The motivating factor is that you should be able to take a preexisting spreadsheet that was
built without any knowledge that it could eventually be used with Xcelsius and directly
incorporate into an Xcelsius dashboard or visualization. This, too, is a wonderful thought,
but the chances are that some spreadsheet modifications will be necessary to make it well
suited for use with Xcelsius 2008.

The great advantage with Xcelsius 2008 is that you can make changes directly in the
imported spreadsheet as you are building your dashboards and visualizations. As you make
changes, you can test and validate that they work the way you expect them to. The changes
can include things like inserting rows and columns, as well as revising formulas.

Spreadsheet Cell References
There are four ways to reference spreadsheet cells: using relative references, absolute refer-
ences, hybrid references, and named references.

The first three of these methods are related to the physical cell coordinates of column letter
and row number. The distinction between relative, absolute, and hybrid references has to do
with how cell references get adjusted when a cell formula is copied and pasted to other cells.

For example, within the spreadsheet for a dashboard, you may have some quantity (say, in
column A) that is increased by a surcharge factor. The final amount could be computed in
column C (see Figure 4.2).

Figure 4.2
Cell referencing
affects how formulas
get cloned.

74 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

For your convenience, Figure 4.2 shows the formulas used in Column C. As you can see,
this is the formula in cell C2:

=A2*(100%+B2)

If you copy and paste this formula into cell C3, this is the resulting formula:

=A3*(100%+B3)

If you were to paste this formula into, say, cell C47, this would be the resulting formula:

=A47*(100%+B47)

This formula is logical enough. It requires that you supply a value for the amount and sur-
charge factor in every row where you are computing the total amount. But what if you have
a single surcharge you would like to apply across the board? You could replicate that sur-
charge in column B for every row. That would be inefficient and potentially prone to error.
Every time you needed to update the surcharge, you would have to replicate it into each and
every instance where it occurs. It would be simpler to lock the cell reference of the sur-
charge to a single cell. In this manner, when you replicate the spreadsheet formula for total
cost, there would be a single master surcharge rate. This buys you simplicity of design and
peace of mind. You won’t have to worry about your formulas going awry.

Locking in a cell reference does come at a slight cost, however: You have to identify what is
being locked when you replicate your formulas. This is done by prepending a dollar ($) sym-
bol to either or both the column letter and row number of the cell reference. If you want to
lock both the column letter and the row number, so that the cell reference is absolute, you
would therefore have to use the dollar symbol twice—once in front of the column letter
and once in front of the row number. In the current example, you might designate the
“master” surcharge rate to be located in cell B2. This could be the formula for the total
result in cell C4:

=A4*(100%+B2)

Notice that there is no need to populate a surcharge factor in cell B4 because the reference
is locked to cell B2. If you replicate the formula in cell C4 to C5, the formula becomes the
following:

=A5*(100%+B2)

What was A4 is now A5 because it is a relative reference. The surcharge factor is locked in
column B and row 2 because the absolute reference, B2, is used in the formula.

All this may seem like an undue amount of complication just to replicate a handful of formu-
las. But when you’re working with a spreadsheet that has dozens or hundreds of formulas,
you’ll appreciate that you can lock cell reference with a high degree of control.

So far, you’ve seen relative references and absolute references. What if you want to lock in
the column but not the row, or lock the row but not the column? These are known as hybrid
cell references. Sometimes a formula can involve both kinds of hybrid cell references—where
one of the terms locks the row and not the column and the other locks the column and not
the row. You will typically encounter this when you try building a table in a spreadsheet
(see Figure 4.3).

75Building Spreadsheet Models in Xcelsius 2008

4
The contents of the spreadsheet table are computed by using the amount that is in column
A and the surcharge rate, which is in row 2. You could have a formula like the following in
cell B3:

=A3*(100%+B2)

If you try copying and pasting this formula across the table, the formula will not replicate
correctly. You need to lock the column so the amount is always associated with column A. In
this case, you would change A3 to $A3. You also need to lock the surcharge rate to row 2, so
you would change B2 to B$2. This would be the resulting formula for cell B3:

=$A3*(100%+B$2)

Figure 4.3
A spreadsheet table
driven by two cells
(A3 and B2).

T I P
There is a very easy way to cycle through the various permutations of relative, absolute,
and hybrid cell references in your spreadsheet formulas. While you are entering or edit-
ing a formula, you highlight the portion of the formula you want to change and then
repeatedly press the F4 key. Each time you do so, the locking $ symbols will be inserted
and/or deleted, thus allowing you to cycle through the various reference modes.

To make the Spreadsheet Table component on the canvas a little more useful, I have placed
two sliders, one vertical and one horizontal (refer to Figure 4.3). The vertical slider is
bound or linked to cell A3.

In cell A4 I have the following formula:

=A3+25

Because this is a relative reference, I can replicate the formula down to cell A7.

76 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

This is the surcharge factor in cell C2:

=B2+1%

This formula can be replicated to the right so that cell D2 is as follows:

=C2+1%

There are several things you should notice here. Because of the way the cells are arranged, it
is not necessary to insert $ symbols in the expressions. If you chose to do so, however, your
formulas would have looked like this:

=$A3+25

and this:

=B$2+1%

Both ways in this particular example are equally valid, so you should choose the set of
formulas that’s easier to read.

The idea of building a table is based on having to supply only two numbers—in this exam-
ple, the amount in cell A3 and the factor in cell B2. Formula chaining drives the whole table,
so that as A3 and B2 are adjusted, so is the rest of the table. Conveniently, the vertical and
horizontal sliders on the dashboard canvas can be used to affect the values of the two input
cells A3 and B2.

Notice also that Excel allows you to embed percentage symbols in a formula, as in the
following example:

=B2+1%

Alternatively, you could use a decimal representation, such as the following:

=B2+0.01

While either way is valid, I recommend that you generally opt for the decimal representa-
tion. Suppose you need to add the value 1234.073 to cell B2 and you used percentages. You
would have a formula like this:

=B2+123407.3%

Very large and very small percentages tend to be difficult to read. I suggest that you use per-
centages only when you are formatting a cell (that is, for presentation purposes) and avoid
the use of percentage representation in actual spreadsheet formulas.

In addition, generally speaking, you should avoid using hardwired values in your spreadsheet
formulas. As an example, you could place the 0.01 (or 1%) value in cell B1 and then use a
formula like this:

=B2+B1

There are several very good reasons to isolate hardwired values:

■ If a hardwired value is embedded inside a formula, it is impossible to change it without
hand editing your formula.

77Building Spreadsheet Models in Xcelsius 2008

4

■ If you need to update a hardwired value in a formula, you might have a difficult time
finding all your needles in the haystack. For example, say that you have several formulas
in your spreadsheet that incorporate the sales tax rate for New York City. Say that the
rate changes, and you change it in 12 places, but you miss an unlucky 13th place. Such
potential spreadsheet errors are avoidable.

■ When you have an isolated hardwired value, it can be used as an input cell in your
Xcelsius dashboard.

Named Ranges
Xcelsius 2008 allows the use of named ranges in spreadsheet formulas. However, there are
some strict limitations regarding their usage. In Xcelsius 2008, named ranges must either
point to single cells or use functions that return single values over the range of cells.

If you are familiar with Excel, you may recall that you can associate a name of your choos-
ing, such as NYC_SalesTaxRate, with a single spreadsheet cell or range of cells. After you
make such a definition, you can use the defined name instead of physical cell coordinates
within your spreadsheet formulas. For instance, you could define NYC_SalesTaxRate to be
the contents of cell B1. After you make this definition, you could write a formula like this:

=B2+NYC_SalesTaxRate

Computationally, this formula would return exactly the same result as the following:

=B2+B1

Named ranges can make formulas easier to read. But can you use them in Xcelsius 2008?
The answer is, in a limited manner, yes. It turns out that named ranges work inside Xcelsius
in two situations:

■ A defined name range can apply to only a single cell. For instance, NYC_SalesTaxRate
can be defined or associated with only one spreadsheet cell and not a group of cells.

■ A group of cells can be associated with a named range, but the only valid usage of the
named range involves returning a single result from the group of cells. For example, you
can have a named range such as MonthlySales that is composed of 12 numbers in a row
or column, 1 for each month. In this case, you could incorporate functions that return a
single value from the group of cells that make up the defined named range. For
instance, you could use formulas like these:

=SUM(MonthlySales)
=AVERAGE(MonthlySales)
=MAX(MonthlySales)-MIN(MonthlySales)
=STDEV(MonthlySales)
=SUM(MonthlySales)-SUM(MonthlyExpenses)

But you should not incorporate expressions like this:
=MonthlySales-MonthlyExpenses

unless both MonthlySales and MonthlyExpenses point to single cell references and not to
a group of cells. For instance, if MonthlySales is defined as cell A1 having a value of
243000, and MonthlyExpenses is defined as cell A2 having a value of 203000, then
Xcelsius 2008 would compute the value of MonthlySales-MonthlyExpenses as 40000.

78 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

To define a named range in the underlying spreadsheet, you can press Ctrl+F3. Within
Excel 2003, a Define dialog window appears, asking you to identify a name and range of
cells. If you are using Excel 2007, pressing Ctrl+F3 opens the Name Manager window
(see Figure 4.4).

Figure 4.4
Pressing Ctrl+F3 in
Excel 2007 opens the
Name Manager, and
clicking New allows
you to define a new
name.

You click the New button to open the New Name window (see Figure 4.5), which is very
much like the Define Name window in Excel 2003.

Figure 4.5
Identifying the name
and cell reference for
a named range.

T I P
If you run Xcelsius 2008 on a Macintosh using VMWare, Parallels, or Bootcamp to run
Windows or Vista, you will need to adjust the keyboard preferences so that Ctrl+F3 does-
n’t move focus to the Dock. You can find this setting in the Keyboard Shortcuts section of
the OS X Keyboard & Mouse System Preferences tab.

79Using Excel Functions in Xcelsius 2008

4

Within Xcelsius 2008, if you want to use a named range that occupies more than a single cell,
you must apply a function that returns a single value. For instance, if Expenses is associated
with cells C3 through C14, you can use a formula like the following for your dashboard:

=SUM(Expenses)

If you want to retrieve individual values (such as the expenses for the month of March) from
a named range, you have to use a function like OFFSET, which is described later in this
chapter.

Using Excel Functions in Xcelsius 2008
You can use a variety of Excel functions and formula constructs in Xcelsius 2008; it supports
roughly 160 Excel functions. This section introduces you to some of the salient features of
functions that you might want to know.

Functions can be grouped into a variety of categories:

■ Mathematical and statistical functions are useful for numeric computations.

■ Text-related functions allow you to control what is displayed in your dashboards.
Interestingly, text-related functions can tag team nicely with other spreadsheet compu-
tations, such as dynamic lookups.

■ Your spreadsheet formulas will be further enhanced as you incorporate conditional logic
and Boolean functions, which are invaluable for controlling dynamic visibility of your
dashboard components.

■ It is not uncommon for dashboards to present data that is date or time specific. There
are a number of date and time specific functions you can use in Xcelsius.

■ There is a category of Excel functions that I like to refer to as selectors, similar to the
concept of selectors in Xcelsius. These spreadsheet functions allow you to pick the data
that you want. If you are already familiar with Crystal Xcelsius or are a spreadsheet vet-
eran, you may have already come across functions such as VLOOKUP and INDEX. This
chapter covers these functions, as well as some other selector-style functions you should
know about, such as OFFSET.

Understanding the Role of Spreadsheet Functions and Operators
in Xcelsius 2008

In order to precisely nail down how things get computed in Xcelsius, it’s important to delin-
eate what kinds of entities an Xcelsius spreadsheet uses and how things fit together. It really
boils down to evaluation of expressions. This section is a little bit technical, so feel free to
skim through it on a first read.

Evaluating Spreadsheet Cells

If a spreadsheet cell is not blank, it must be occupied by a either a literal value or a formula.
A literal is something that does not require any calculation. A literal is its own value. Literals

80 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

include TRUE, FALSE, special constants such as #N/A, numbers, strings of text, and any expres-
sion whose first character is a single apostrophe.

All computations in any spreadsheet cell must be in the form of a formula, which starts with
an equal symbol followed by an expression that gets evaluated by the spreadsheet engine.

An expression can be a combination of operators, literals, references (such as a range of
cells), and Excel functions (which start with a function name followed by an opening paren-
thesis, followed immediately by a closing parenthesis, or an expression immediately followed
by a closing parenthesis).

Operators in Xcelsius Spreadsheets

Spreadsheet formulas in Xcelsius can evaluate compound expressions. A compound expres-
sion could be something like this:

=SQRT(3*3+4*4)

The SQRT function, which returns the square root of an expression returns the value 5 in this
example. The Xcelsius 2008 spreadsheet environment makes use of various mathematical
operators, including the colon operator, the comma operator, negation, percentage, expo-
nentiation, multiplication, division, addition, subtraction, concatenation, and comparison
operations (including =, <, >, <=, >=, and <>). At this time, Xcelsius 2008 does not support the
Excel intersection operation (denoted by a space).

The colon operator specifies a range of cells and can be incorporated in an expression used
by a function. For example, this:

=AVERAGE(A1:A5)

is the equivalent of this:

=AVERAGE(A1,A2,A3,A4,A5)

which is computed as follows:

=(A1+A2+A3+A4+A5)/5

A range doesn’t necessarily need to be a single row or column of cells, as illustrated in the
following formula:

=SUM(B2:C4)

which is the equivalent of the following:

=B2+B3+B4+C2+C3+C4

The comma is referred to as the “union” operator. It effectively unites cell ranges when
you’re evaluating expressions supplied to a function. For instance, the following:

=SUM(D3,A1:A4,C1:C3)

is the same as this:

=D3+A1+A2+A3+A4+C1+C2+C3

81Using Excel Functions in Xcelsius 2008

4

Understanding Operator Precedence
Spreadsheets allow you to create all sorts of complicated algebraic formulas by using operators. There are dif-
ferent kinds of operators. Infix operators, like those for addition and multiplication, are sandwiched between
two expressions. The following is a good example of this:

3+4

The numeric computation of 3+4 is easy to evaluate because there is no ambiguity.

A postfix operator appears immediately after the value it operates on. An example of this is the percentage
operator. When a spreadsheet encounters 20% inside a formula, it converts this to the decimal value 0.2.

A prefix operator immediately precedes the value it acts on. The negation operator is a good example of this.
You could have a formula like this:

=-3

Sometimes, there can be ambiguity. Suppose you have the following formula:
=-3^2

There are two ways of interpreting this formula. Should the -3 be squared? Or should the 3 squared be multi-
plied by -1? Without any precedence rules, you wouldn’t know what Excel would do and how your spread-
sheet formulas would behave inside Xcelsius 2008. It turns out that the negation operator has the higher
precedence and is called into action before the exponentiation operator gets computed. So the preceding for-
mula is computed as if it were written like this:

=(-3)^2

and returns the value 9 (because a negative number times a negative number is a positive number).

When formulas involving operators are evaluated and have competing operators that are vying for the same
expression, operator precedence determines who gets first dibs. The hierarchy is as follows:

1. Reference operators: Examples include the Colon operator, such as A1:A12, and the Comma
operator, such as SUMPRODUCT(A1:A2,B1:B12).

2. Negation: An example would be -24.

3. Percentage: An example would be 25%.

4. Exponentiation: 2^3 is 2 raised to the third power, which would result in the value 8.

5. Multiplication and division: Examples include 8*1.2345678 which results in the value
9.8765432, and 9/4 which results in 2.25.

6. Addition and subtraction: Examples include 92+3, which results in 95, and 18-32, which results
in -14.

7. Concatenation: For example, for “Xcelsius “&(1998+10), the resulting expression is
“Xcelsius 2008”.

8. Comparison operations: Examples include the following:

0=1 results in a FALSE value

4>2 results in a TRUE value

4<2 results in a FALSE value

4<=2*2 results in a TRUE value

4>=2*2 results in a TRUE value

0<>1 results in a TRUE value (because zero is not equal to one)

When operators on the same level of precedence (such as addition and subtraction) are acting on the same
expression, the order of evaluation is from left to right.

82 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Mathematical and Statistical Functions in
Xcelsius 2008

Xcelsius 2008 supports a great many mathematical and statistical functions. They are classi-
fied into three principal groups: aggregation and statistical functions, financial functions, and
math functions.

N O T E
To help make examples concrete, I tend to use explicit values rather than ranges of
spreadsheet cells. If I tell you that the following:

=MAX(A1:A6) returns 13

it may not be clear what the function MAX is doing. There will be more clarity if I state
the following:

=MAX(1,2,3,13,7,9) returns 13

There are times when it’s appropriate to use cell references by themselves or cell refer-
ences combined with explicit values. A good example of this is as follows:

=MAX(0,A1:A100)

A formula of this kind ensures that no negative value will be returned, because 0 is
always greater than any negative value.

Aggregation and Statistical Functions
There are many functions that aggregate or summarize information in terms of single
measures, such as average values. The most common of these are detailed in the following
sections.

MAX, MIN, AVERAGE, AVERAGEA, MEDIAN, and MODE
MAX(number1,number2,...)
MIN(number1,number2,...)
AVERAGE(number1,number2,...)
AVERAGEA(Value1,Value2,...)
MEDIAN(number1,number2,...)
MODE(number1,number2,...)

MAX returns the largest value found in a list of numbers or ranges of cells.

MIN returns the lowest value found in a list of numbers or ranges of cells. It is important to
note that negative values are always lower than any positive value, no matter how small they
are. Positive values are always greater than any negative value.

Here are some sample calculations:

=MAX(10,20,45) returns 45
=MAX(10,20,SQRT(10000)) returns 100
=MIN(-986,0.002,1200,0) returns -986
=MIN(986,-0.002,1200,0) returns -0.002

83Mathematical and Statistical Functions in Xcelsius 2008

4

AVERAGE returns the statistical mean or average value over a set of numbers or range of cells.
Here is a sample calculation:

=AVERAGE(240, 180) returns 210

There are some important subtleties to keep in mind when using AVERAGE and the similar
function AVERAGEA. AVERAGE tries to be intelligent about how values are computed. Suppose
you are tracking average monthly sales for the year. You just finished the month of July and
have seven months of data in cells A1:A7. Of course, you can use a formula like this:

=AVERAGE(A1:A7)

It would be time-consuming and error prone if you rewrote this formula every time an addi-
tional month’s worth of data were added. It would be a whole lot simpler if you could write
a formula that accommodates all 12 months in a year and intelligently ignores the blank
cells or cells with text labels. Fortunately, AVERAGE does precisely that. For example, the
following formula:

=AVERAGE(A1:A12)

sensibly computes averages based on the non-blank cells. There are times when you want to
take into account the blank cells in a range.

The function AVERAGEA is a little more literal in its computation of averages. It treats empty
cells, cells with text labels, and cells with a FALSE value as if they are zero values. It treats
TRUE values as if they are the value 1, and it treats numeric values as whatever the numeric
value happens to be.

Understanding the MEDIAN function is fairly straightforward. For a dataset, it arranges the
data points from lowest to highest. Then it removes both the highest and lowest data points.
Your dataset shrinks a bit. The function repeats this process of removing the highest and
lowest data points until there is only one member or data point left standing. That member
is the value returned by MEDIAN. If there is an even number of data points, MEDIAN returns an
appropriate interpolated value. The order of the data members doesn’t change the outcome
of the computed median. The following is an example:

MEDIAN(15,12,13) = MEDIAN(12,13,15).

The following are sample calculations:

=MEDIAN(1,9,5,6,8) returns 6
=MEDIAN(1,3,99,2,3) returns 3
=MEDIAN(1,2,976,977,978) returns 976
=MEDIAN(1,3,11,11) returns 7

MODE returns the most common value in a dataset. MODE tends to be most useful for coarse-
grained classification. Chapter 9, “Xcelsius and Statistics,” addresses some practical issues to
keep in mind when working with MODE.

=MODE(1,2,3,3,3,2,1,2,3) returns 3

84 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

COUNT, COUNTA, and COUNTIF
COUNT(value1,value2,...)
COUNTA(value1,value2,...)
COUNTIF(range,criteria)

COUNT returns the number of cells that contain numbers and also numbers within a list of
arguments.

COUNTA indicates how many values are in a list of arguments.

COUNTIF counts the number of cells that meet the criteria specified in the argument.

COUNT tallies the number of numeric entries found in the arguments supplied to COUNT.

For example, if there are 13 cells populated with numeric values, and the cell D29 contains
the value 1.239, then the following results would be returned:

=COUNT(A1:B3,G1:K4) returns 13
=COUNT(A1:B3,D29,G1:K4) returns 14
=COUNT(A1:B3,D29,G1:K4)+2+78-65 returns 15

COUNTA is similar to COUNT except that non-blank cells are also counted. With COUNTA,
non-blank cells can be text, numeric, or any kind of formula.

For example, open a new spreadsheet and enter the following in cells A1, A2, and A3:

99 (cell B1)
=IF(B1<23,”B1 is smaller than 23”,””) (cell B2)
B3 has text in it (cell B3)

Leave the cell B4 blank, and you will find the following:

=COUNTA(B1:B4) returns 3
=COUNT(B1:B4) returns 1

COUNTIF tells you how many cells match a specific criterion for a range of cells that’s identi-
fied. For example, you may want to see how many of your 40 sales reps have reached their
quota of $50,000. If you have this data in cells A1:A40, then your count of how many
achieved their target would be computed using this formula:

=COUNTIF(A1:A40,”>=50000”)

This formula works but it is a bit restrictive because it is hardwired to the threshold of
$50,000. That may be the target for this month, but next month, you might want to up it to
$53,000. A better construction would be to remove the hardwired dependency by placing
the threshold in a separate cell, such as B1. Your formula could then look like this:

=COUNTIF(A1:A40,”>=”&B1)

If you define a named range for the threshold (cell B1) as SalesQuota and your sales data
(cells A1:A40) as SalesTeamData, you could write your formula as follows:

=COUNTIF(SalesTeamData,”>=”&SalesQuota)

This formula is a lot easier to understand than the first COUNTIF example given a few lines
earlier. It is also more flexible because you can control the formula’s behavior externally. For
example, because the threshold is isolated to a single cell, you could set the threshold value
from a slider or dial on the Xcelsius canvas.

85Mathematical and Statistical Functions in Xcelsius 2008

4

If you want to start getting creative at the spreadsheet level, you can come up with all sorts
of interesting metrics or measures for your dashboards. For example, you could find the
number of sales reps who performed above average by using either of the following
formulas:

=COUNTIF(A1:A40,”>=”&AVERAGE(A1:A40))
=COUNTIF(SalesTeamData,”>=”&AVERAGE(SalesTeamData))

SUM, SUMIF, SUMPRODUCT, and SUMSQ
SUM(number1,number2,...)
SUMIF(range,criteria[,sum_range])
SUMPRODUCT(array1,array2,array3,...)
SUMSQ(number1,number2,...)

If you are accustomed to working with Excel, you are already familiar with SUM. SUM can
accept a range of cells as its “arguments.” You can have formulas like these:

=SUM(A1:B12)
=SUM(A1:C19)

SUM can also accept multiple arguments separated by commas:

=SUM(DailyExpensesForJanuary,DailyExpensesForFebruary)

Like essentially all other Xcelsius-supported Excel functions, SUM evaluates its arguments
before passing them to the function. Therefore, if you encounter a formula like this:

=SUM(3.14,12,1+2+3)

1+2+3 is evaluated and converted to 6 so that the formula is effectively treated as
SUM(3.14,12,6).

C A U T I O N
There are some differences between the way Xcelsius computes with SUM and the way
Excel computes with SUM. In Excel, SUM treats text that resembles a number as a number.
In Xcelsius 2008, SUM blissfully ignores text that resembles numbers. The same holds true
for true/false values and also for dates that appear as text. The following Xcelsius 2008
examples make this clear:

=SUM(50,25,”35”) returns 75
=SUM(3.14,TRUE) returns 3.14
=SUM(3.14,6=3*2) returns 3.14
=SUM(“12/31/2009”) returns 0

If you were to compute these in Excel, the results would be 110, 4.14, 4.14, and
40178, respectively.

One of the reasons the spreadsheet metaphor is popular is because it is easy to work with
numeric data in rows and columns. It is easy to think about multiplying all the numbers in
one column (such as price) by the corresponding numbers (such as units sold) in a second
column, to arrive at a combined quantity in a third column (such as sales). While you can
get all this detail on a line-by-line basis, sometimes all you need is the total result. The

86 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

SUMPRODUCT function exists for such circumstances. If you didn’t have a third column, you
could write a formula like either of the following:

=SUMPRODUCT(A1:A99,B1:B99)
=SUMPRODUCT(Price,Units)

In one fell swoop, you could calculate the aggregate sales. This is a powerful method for
directly and efficiently computing numbers you may need. You can make SUMPRODUCT even
more versatile, as shown in the following example.

Assume that you are tracking the changes in price and quantity sold for a single product over
time. For the sake of simplicity, consider only 12 lines of such data, 1 for each month of the
year. The formula SUMPRODUCT(Price,Units) results in a single number for the whole year.
What if you want to calculate cumulative sales as of any month and graph only the relevant
data? Say that a reportable period includes all months on or before some point in time of
interest, as set by clicking a visual control on a dashboard. It might be convenient to tag
these in a third column, alongside price and units (as in column H in Figure 4.6).

Figure 4.6
SUMPRODUCT of price,
units, and reportable
period calculates
cumulative sales.

The month number (input cell J6) is set by a Spinner component on the canvas. In column
H, the cells are set to either 1 or 0, depending on whether the month number in column A
is less than or equal to the value in cell J6. The following formula appears in cell H3:

=IF($A3<>$J$6,1,0)

J6 is an absolute reference, so its cell coordinate won’t change as you replicate the formula. A3
is referenced as $A3, so only the column is fixed. This way, you can freely replicate the for-
mula down the column. If you want to replicate the formula to other columns, you want the
formula to reference column A. That’s why you see the $ symbol in front of the column letter.

87Mathematical and Statistical Functions in Xcelsius 2008

4

If you define Price as cells F3:F14, Units as cells G3:G14, and ReportableMonths as cells
H3:H14, you can compute the cumulative sales with this formula:

=SUMPRODUCT(Price,Units,ReportableMonths)

Needless to say, there are plenty of other ways to calculate the cumulative sales, but this is
one idea of how you can use SUMPRODUCT.

There is one thing you must keep in mind with SUMPRODUCT: All the arguments supplied to it
have to be identically sized. For example, if Price is 12 cells stacked up in a vertical column,
Units and ReportableMonths must also each be 12 cells stacked up in a vertical column. You
cannot combine different-sized cell ranges in SUMPRODUCT. The following formula, for exam-
ple, will not work:

=SUMPRODUCT(1.5,A1:A12,B1:B12)

Because 1.5 is a single number, you can pull it out of the function and apply it correctly by
using this formula:

=1.5*SUMPRODUCT(A1:A12,B1:B12)

N O T E
In Figure 4.6 and the ch04_ContextSwitchingExample.xlf file, the Radio Button
component allows you to switch between displaying price and units. Effectively, this gives
you two views from a single chart. I call this context switching. I explain context switching
in detail in Chapter 5, “Using Charts and Graphs to Represent Data.”

SUMIF is a very useful facility for gathering certain kinds of information. SUMIF works a little
like COUNTIF, except that it performs a sum of the range that matches a criterion rather than
counting the number of times a match is found. You could have a list of numbers in, say,
cells A1:A100. These numbers could be insurance claims. Perhaps there might be some
deductible, possibly $500. If you want to find the sum of these claims for which there would
be no reimbursement, you could use a formula like this:

=SUMIF(A1:A100,”<=500”)

Of course, it would be better to remove the hardwired reference to the $500 deductible and
park it in another cell, such as B1. Your formula would then look like this:

=SUMIF(A1:A100,”<=”&B1)

Notice that the range (cells A1:A100) is the same cells used for the testing and the summa-
tion. There may be circumstances in which the test for inclusion in the conditional sum
doesn’t directly involve the value being summed. For such situations, there is a second form
of SUMIF that incorporates three arguments: a range of cells for testing against some criteria,
the test criteria, and a corresponding set of cells that would be summed when matches are
found. A formula for estimating potential exposure if customers having a lower credit rating
than a given threshold default on their loans could be something like this:

=SUMIF(CustomerCreditRating,”<=”&CreditThreshold,OutstandingLoans)

88 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Figure 4.7 shows how this might be applied in a dashboard. The SUMIF formula is now
incorporated into a more full-featured formula, as you can see here:

=”Potential exposure is
➥”&DOLLAR(SUMIF(CustRating,”<”&(Alert_Threshold_Pct*(MAX(CustRating)
➥-MIN(CustRating))+MIN(CustRating)),LoanAmt),0)

Notice in the dashboard shown in Figure 4.7 that the radio button controls context switch-
ing and that conditional formatting is applied by using the vertical slider.

Figure 4.7
SUMIF is used to
compute potential
exposure of out-
standing loans to
customers.

SUMSQ returns the sum of the squares of a series or range of numbers. It looks like an eso-
teric function that would be used infrequently. Actually, it is very practical. The concept is
simple: The square of a number, whether positive or negative, always results in a positive
value, and you can use this to your advantage. You may be populating a range of cells with
some values. How can you determine whether the range is non-empty? You could try a
formula like this:

=IF(SUM(C3:L3)<>0,”The cells are non-empty”,”The cells are empty”)

The <> is a “Not Equals” comparison operator. The formula almost works, but it is not
guaranteed to always work correctly. Suppose there are precisely five values of +1 and five
values of -1? The sum would result in the value zero, and the formula would fail. The fol-
lowing would be a better formula:

=IF(SUMSQ(C3:L3)>0,”The cells are non-empty”,”The cells are empty”)

89Mathematical and Statistical Functions in Xcelsius 2008

4

LARGE, SMALL, and RANK
LARGE(array,k)
SMALL(array,k)
RANK(number,ref,order)

LARGE returns the kth largest value in a dataset.

SMALL returns the kth smallest value in a dataset.

RANK returns the rank of a number in a list of numbers.

Displaying information in a horizontal bar chart can quickly become dizzying if you don’t
organize the sequence of data for the chart. You could, of course, sort the data from largest
to smallest or vice versa. Hand sorting doesn’t work very well, though, because you would
have to manually sort the data every time it changes. There is a way you can actually sort the
data, sort of. The technique doesn’t really involve sorting the data but rather picking items
from an array of cells, by largest to smallest or smallest to largest, one at a time.

You could have a series of formulas in a column of cells like the following:

=LARGE(A1:A10,1)
=LARGE(A1:A10,2)
=LARGE(A1:A10,3)
...
=LARGE(A1:A10,10)

For all intents and purposes, this list of cells is automatically sorted, even as the values of the
chart data (cells A1:A10) change. Plotting this sorted data on a bar chart works well, but
there is one minor detail: Bar charts stack their data in reverse order of the way it appears on
the spreadsheet. Consequently, instead of having a chart resembling a tornado (with the
largest items appearing at the top and the smallest at the bottom), you would get a chart
resembling a pyramid. There’s an easy way around this problem. Instead of ordering your
sequence from largest to smallest, you do it the other way around:

=LARGE(A1:A10,10)
=LARGE(A1:A10,9)
=LARGE(A1:A10,8)
...
=LARGE(A1:A10,1)

Figure 4.8 shows an illustration of this. As in previous examples in this chapter, you can
switch the data series by using context switching.

Alternatively, you could use the SMALL function and reverse the lookup index to achieve the
same effect as you get with LARGE.

RANK is kind of complementary to SMALL and LARGE. Instead of plucking out values from a
range of cells, it lets you know how high up the food chain the value of a specific cell is.

N O T E
Duplicate items in a range of cells are given exactly the same rank. This can cause some
complications if you need to uniquely distinguish each and every item on a list (that is,
keep track of all the individual duplicates).

90 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4
STDEV and VAR

STDEV(number1,number2,...)
VAR(number1,number2,...)

STDEV estimates standard deviation based on a sample, ignoring text and logical values.

VAR estimates variance based on a sample, ignoring logical values and text.

Data can be voluminous. You might be collecting data for, say, insurance claim amounts, the
real cost of installing fiber-optic cable on a property-by-property basis, or profit on product
sales. If you want to analyze the overall import of such data to your business, it would make
sense to aggregate these quantities and compute total expenses or whatever item you are
measuring.

There are times, however, when it is more appropriate to characterize a statistical profile in
terms of individual transactions or events. At its most rudimentary level, the AVERAGE function
gives you this kind of measure. It may not be informative enough. To help prove the point,
let’s look at some specifics. Supposed you have the following sales data for six transactions:

120, 75, 86, 128, 92, 102

The average sale here is 100.5. You can verify this by entering values in your spreadsheet
and using the AVERAGE function. It may be that for the next 100 or so transactions, you’ll
really average just a tad over $100 per transaction. Assuming that the data you have is repre-
sentative of future transactions, what would you guess the seventh transaction would be?
Lacking any additional information, your probable best guess would be $100.50. How cer-
tain are you that you will get the value correct? If all the numbers in your sample were
pretty close to the average, you’d be more certain than if they were all over the place.

Figure 4.8
Auto-sorted tornado-
style bar charts can
be created using
LARGE(ChartData,
ReverseRank
Index).

91Mathematical and Statistical Functions in Xcelsius 2008

4

Consider another dataset:

98, 110, 97, 102, 95, 101

Here, the average sale is also 100.5. If you are projecting the seventh transaction, you could
use the same $100.50 estimate. Assuming that this data is representative of future transac-
tions, how far off do you think your estimate would be? There is a measure known as stan-
dard deviation that gives you a handle on this:

=STDEV(120, 75, 86, 128, 92, 102) returns approx 20.3
=STDEV(98, 110, 97, 102, 95, 101) returns approx 5.3

Notice in the first dataset that four of the six transactions fall between 100.5-20.3 and
100.5+20.3. In the second dataset, four of the six transactions fall between 100.5-5.3 and
100.5+5.3. Perhaps standard deviation could be a good measure to characterize your histo-
rical data in quantitative terms. It turns out that as your sample size grows, the reliability of
standard deviation as a way to characterize your data increases.

As a rule of thumb, roughly two-thirds of your data will fall between your average plus or
minus the standard deviation, and close to 95 percent of your data will fall between your
average plus or minus two times the standard deviation.

Variance and standard deviation are closely related measures. The choice between the usage
of one metric and the other is largely a matter of industry practice and convenience. In the
world of risk management and the actuarial sciences, variance is more popular than standard
deviation:

=VAR(120, 75, 86, 128, 92, 102) returns approx 414.3
=VAR(98, 110, 97, 102, 95, 101) returns approx 28.3

N O T E
The variance is approximately the square of the standard deviation.

RAND, NORMINV, and NORMDIST
RAND()
NORMDIST(x,mean,standard_dev,cumulative)
NORMINV(probability[,mean=0,standard_dev=1])

RAND is a pseudo-random number generator. It returns a decimal number between 0 and 1.
Every time the RAND function is recalculated, it is virtually guaranteed to return a different
number between 0 and 1. What that number will be is as good as anybody’s guess, and this
is what makes RAND suitable for simple probability analysis.

One of the characteristics of the RAND function is that the values it returns are pretty much
uniformly distributed between 0 and 1. This kind of probability distribution, called a uni-
form distribution, has some precise mathematical properties. Statistical and probability
analysis in Xcelsius is covered in detail in Chapter 9, so I don’t cover this in detail here.
However, I do want to provide two techniques here that relate to generating other kinds of
distributions.

92 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

One of the Excel functions (found in the Excel Analysis ToolPak) that is nice to have but is
not supported in Xcelsius 2008 is RANDBETWEEN, which takes two arguments: a minimum inte-
ger and a maximum integer. It returns a whole number in that range. If I say to you: “Pick a
number, any number, between 1 and 10,” you could use the following formula to provide
such a number:

=RANDBETWEEN(1,10)

Although Xcelsius 2008 doesn’t have such a function, you can effectively simulate it by using
RAND. Here is an example:

=ROUND(RAND()*(10-1),0)+1

A more generalized form would be as follows:

=ROUND(RAND()*(TopValue-BottomValue),0)+BottomValue

Basically, this formula simulates a discrete uniform distribution.

Uniform distributions are not the only kind of probability distribution you might want to
simulate. Another commonly encountered distribution is the normal distribution, sometimes
referred to as a bell-shaped curve. You can simulate values in a normal distribution by using
the NORMINV function in conjunction with RAND. For example, if you want to simulate a
distribution with an average value of 100 and a standard deviation of 15, you would use
this formula:

=NORMINV(RAND(),100,15)

In general, this would be the formula:

=NORMINV(RAND(),MeanValue,StandardDeviationValue)

While we’re on the topic of the normal distribution, there’s a function called NORMDIST that
tells you the probability of some event occurring if you know the expected value and stan-
dard deviation. For example, if you are projecting sales of $6,500,000 next quarter and the
standard deviation is $750,000, you could calculate the probability of actually achieving sales
in excess of $7,500,000 by using the following formula:

=1-NORMDIST(7500000,6500000,750000,TRUE)

This would be about a 9.1% chance. Hopefully, you’ll beat the odds!

Financially Oriented Functions
Xcelsius supports a number of financially oriented functions relating to depreciations, inter-
est type calculations, return on investment, and the like.

DB, DDB, SLN, SYD, and VDB
DB(cost,salvage,life,period,month)
DDB(cost,salvage,life,period,factor)
SLN(cost,salvage,life)
SYD(cost,salvage,life,period)
VDB(cost,salvage,life,start_period,end_period,factor,no_switch)

93Mathematical and Statistical Functions in Xcelsius 2008

4

Depreciation is a way to allocate the use of an asset over its lifetime. There are different
methods of depreciation, which take into account things like the cost of an asset, its lifespan,
and a salvage value at the end of its useful life.

The best way to gain familiarity with the wide diversity of depreciation methods and their
calculations is to use them interactively so that you can examine their behavior “in the wild”
and, more importantly, learn how to construct a spreadsheet and dashboard that puts their
features to use. Open the file ch04_Depreciation.xlf (see Figure 4.9) and try out combina-
tions of parameters.

Figure 4.9
A depreciation
exploratorium for
comparing a variety
of methods, options,
and values.

This dashboard allows you to choose two depreciation methods from any of a number of dif-
ferent possible methods; the four that are used here are declining balance, sum of the year’s
digits, double declining balance, and straight-line depreciation. To accomplish this, you use
context switching. To spice things up a bit, you can add an additional construction—the
ability to display depreciation expense, year by year, or to show the cumulative depreciation.

Here is how it works. You don’t bother creating a calculation for year-by-year expense and
then another one for cumulative expenses. Instead, you can use a multiplication factor (cell
B4), which is either going to be a 0 or a 1, depending on whether the data to be charted is
yearly or cumulative. If it is yearly, B4 is set to 0, and if it is cumulative, B4 is set to 1.

N O T E
Chapter 5 discusses the graphical features and enhancements of spreadsheet
construction.

94 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

You just add the current year’s depreciation expense, B4, multiplied by whatever was
reported in the prior year. So if the depreciation toggle is set to 1, the tally is automatically
cumulative. The following is the simplified version of the formula for cell C6:

=E6+B4*C5

where the current year’s depreciation expense relevant to the data series in column C is in
column E.

To make the calculation results a little easier to handle, you do some rounding. To make this
formula a bit more robust, you can turn off the formula by sensing when the current year is
beyond the maximum lifespan of the asset. The final formula is then as follows:

=IF($B6=””,””,ROUND(E6+$B$4*C5,0))

All sorts of visual refinements can be made to this dashboard, as you’ll learn in later
chapters.

FV, IPMT, IRR, MIRR, NPER, NPV, PMT, PPMT, PV, and RATE

FV(rate,nper,pmt,pv,type)
IPMT(rate,per,nper,pv,fv,type)
IRR(values,guess)
MIRR(values,finance_rate,reinvest_rate)
NPER(rate,pmt,pv,fv,type)

NPV(rate,value1,value2,...)
PMT(rate,nper,pv,fv,type)
PPMT(rate,per,nper,pv,fv,type)
PV(rate,nper,pmt,fv,type)
RATE(nper,pmt,pv,fv,type,guess)

In this section, we’ll focus on the NPV function, which deals with net present value.

Like physical assets that depreciate over time, the value of money can diminish over time.
Given the choice of having a hundred thousand dollars today or waiting 10 years to receive
a hundred thousand dollars, which option would you choose? Most people would correctly
choose to have the money now. There are several good reasons for this. In 10 years from
now, you may not be around to enjoy the money. Also, inflation is likely to kick in during
the intervening time, so a hundred thousand dollars will buy you less wealth then than it
can today. Most importantly, you can invest that money today and generate greater wealth
over the next 10 years.

Any way you look at it, there’s a time value of money that tends to deflate at a certain rate if
you do nothing with it. In effect, net present value analysis answers the question, “What is
my investment paid out today really worth if I get an income stream down the road?” The
“really worth” is not only dependent on future cash flows but also the rate at which money
changes value over time.

You can easily set up net present value calculations on a spreadsheet in Xcelsius 2008. The
NPV function basically has two arguments: a rate and a range of cells to tabulate the cash
flow. Figure 4.10 shows how this might be set up.

The essential idea is that cash flows are represented on a timeline. In Figure 4.10, the cash
flow can be found on row 7. The rate at which the value of money dissipates over time is set
in the input cell A4 and can be controlled using a horizontal slider.

95Mathematical and Statistical Functions in Xcelsius 2008

4

Figure 4.10
Net present value
analysis lends itself
to interactive
visualization.

In addition, the initial investment or cost (input cell A3) is set by using a second slider on
the canvas. Notice that the initial cost or investment (cell A3) is automatically converted into
a negative number in the cash flow.

Net present value is computed on row 8, using the following formula in cell C8:

=NPV(Rate,B7:C7)

Notice that B7 is an absolute or fixed location, but C7 is a relative reference. As the formula
is replicated to the right, the number of cells evaluated for the net present value increases.

On the combination chart shown in Figure 4.10, the cash flow is displayed as a column
chart, and the net present value is rendered in the form of a line chart.

N O T E
It is easy to visually find the internal rate of return. You simply adjust the rate on the
dashboard slider so that the NPV at the end of the projected timeline is 0. When the net
present value reaches 0 at the end of the timeline, the rate shown on the slider will
match the internal rate of return.

Mathematical Functions in Xcelsius 2008
There are, of course, numerous mathematical functions in Xcelsius 2008. Some of them are
relatively common, and others are used less frequently, but you’ll be glad you have them
here for ready reference.

96 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

ABS and SIGN

ABS(number)
SIGN(number)

SIGN returns 1 for positive numbers, 0 if the number is 0, and -1 if the number is negative:

=SIGN(-10.793) returns -1
=SIGN(250) returns 1
=SIGN(0) returns 0
=SIGN(2*3-100) returns -1

The idea of an absolute number is rather simple. The following examples make it easy to
understand what ABS does:

=ABS(-10.793) returns 10.793
=ABS(250) returns 250
=ABS(0) returns 0
=ABS(2*3-100) returns 94

Functions like these, although simple, can be powerful when combined with other functions.
The following example shows a practical example of ABS. The problem is simple: You have
an XY chart for which you want to designate a particular point of data to be the very center
of the chart, and you want the chart to be scaled appropriately to frame all the data points.
Oh, and you want to have the option of choosing which point is to be designated the
“center” data point (see Figure 4.11 and the file ch04_MovableChart.xlf).

Figure 4.11
Absolute value com-
putations aid in posi-
tioning a designated
point at the center of
the chart.

The logic is simple: Start by selecting any data point in the chart. For the sake of illustra-
tion, let’s use the fourth data point, whose x and y values are (22, 35). Right now, just think
about the X-axis. You want the X position of 22 to be smack in the middle of the X-axis. If

97Mathematical and Statistical Functions in Xcelsius 2008

4

you look at all the X values, you will find that the minimum X value is -12. This means the
farthest-away data point to the left of 22 is 34 units to the left (=ABS(22-(-12))). The dis-
tance along the X-axis from the maximum X value of 49 to the midpoint of 22 happens to be
ABS(34-49)=15. If you really want 22 to be the midpoint of the chart along the X-axis, it
would be necessary to extend the right edge of the chart by another 19 units, so that the
midpoint of 22 is equally centered between the left edge and right edge of the chart. The
computation of distance to the edge for cell B6 is as follows:

=MAX(ABS(B5-B4),ABS(B5-B4))
=MAX(ABS(xCenterValue-xDataMin), ABS(xCenterValue-xDataMax))

After this value is computed, simply add this maximum absolute distance to the X midpoint
to get the X position of the right edge and subtract it from the midpoint to obtain the dis-
tance to the left edge.

Performing these steps for the Y-axis is basically the same.

Trigonometry Functions: SIN, COS, TAN, ACOS, ASIN, ATAN, RADIANS, DEGREES, and PI

SIN(number)
COS(number)
TAN(number)
ACOS(number)
ASIN(number)

ATAN(number)
RADIANS(angle)
DEGREES(angle)
PI()

You may have noticed that Xcelsius supports a variety of trigonometry functions, such as
SIN and COS. And I’ll bet you thought trig would never be useful for your dashboards, that
all this trig stuff is a bit too abstract and would only be of value for an engineer or a scien-
tist. If you believe this to be true, part of your thinking is right, but part of it is dead wrong.

There is a level of abstraction involved in things like trigonometric functions. Because you
may not have reason to use such things everyday, they can be difficult to understand and
even more difficult to commit to memory. Fortunately, you don’t have to struggle with
complicated formulas. You can just put them in your dashboards, validate their correctness,
and use them.

Suppose you have a dashboard that provides the distance between city pairs of any two
cities, from a long list of cities. The list could include major cities such as New York,
Chicago, and San Diego. It could also include locations of the manufacturing plants and
supplies for your business operations. The list of locations could be on the order of hun-
dreds or more. If you were to create a table of every possible combination of distance
between city pairs, it would quickly become far too voluminous to handle in a dashboard.
A simple way around this could be to use a formula that calculates an approximate distance
based on longitude and latitude. Here is one such formula that calculates the greatest circle
between two pairs of longitude and latitude:

=3963*ACOS(SIN(RADIANS(Lat1))*SIN(RADIANS(Lat2))
➥+COS(RADIANS(Lat1))*COS(RADIANS(Lat2))*COS(RADIANS(Lon2-Lon1)))

How, exactly, could you put this to use in a dashboard? The ch04_TrigLonLat.xlf file (see
Figure 4.12) shows how this could be done.

98 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

It’s a simple matter of performing a lookup of cities and their longitudes and latitudes. To
make explicit what is happening, Figure 4.12 displays the actual formula populated with the
input values.

Now that you have a formula that does things that are tangible, it might be worth knowing a
few things about these trig functions.

There are a variety of trigonometric functions. The principal ones are sine, cosine, and tan-
gent. In your spreadsheet, these functions are called SIN, COS, and TAN, and each of them
operates on an angle. The angular measure needs to be in terms of radians. If you are used
to measuring angles in terms of degrees, you will need to convert it to radians. To convert a
number from degrees to radians, you have to multiply it by pi and then divide the result by
180. For example, you could convert 45 degrees to radians by using this formula:

=45*PI()/180

PI is a function that returns the value 3.14159265358979.

All this seems rather messy. Thankfully, there is a function called RADIANS that does all this
work for you. This is the formula for computing 45 degrees in radians:

=RADIANS(45)

You may have noticed in the formula for computing the distance between cities that there is
a function called ACOS. It’s not a typo. ACOS refers to arc cosine, or the inverse cosine func-
tion. If the cosine of some angle is 0.5, what is the angle that would produce it? Here’s the
formula to determine this:

=ACOS(0.5)

Figure 4.12
Using trigonometry to
calculate distance
between city pairs
selected from a list
of cities.

99Mathematical and Statistical Functions in Xcelsius 2008

4

The angle returned would be in radians, which is great for computing things such as dis-
tances between cities. To make the result more palpable, though, it would be nice to be able
to convert the radians into degrees. Conveniently, there’s a DEGREES function for this. You
could write the formula as follows:

=DEGREES(ACOS(0.5)) returns 60

Finally, the ATAN2 function is similar to the ATAN function. It returns the angle that would be
made if you were to make a triangle with width x and height y. Its form would be as follows:

=ATAN2(x_num,y_num)

ATAN2 returns the angle in radians. To get the value in degrees, you would use this:

=DEGREES(ATAN2(x_num,y_num))

Precision: ROUND, ROUNDDOWN, ROUNDUP, CEILING, FLOOR, EVEN, INT, TRUNC, and DOLLAR

ROUND(number,num_digits)
ROUNDDOWN(number,num_digits)
ROUNDUP(number,num_digits)
CEILING(number,significance)
FLOOR(number,significance)

EVEN(number)
INT(number)
TRUNC(number,num_digits)
DOLLAR(number,decimals)

Dashboards allow people to acquire lots of information visually, without contracting a case
of “digit-itis.” An appealing chart is much easier to read when size, color, and position of
graphical elements meaningfully convey information. Dashboard components also convey
numeric information, be it in the hover text of a chart, the chart legend, text labels, the
Grid component, the List component, the Spreadsheet Table component…the list goes on
and on.

It is quite possible for full numeric precision to “leak” through onto the visual display and
make a dashboard or visualization feel like a spreadsheet that’s dense with numbers. There
are ways to combat this tendency. One approach is to format numbers so the visual informa-
tion is dumbed down, while the underlying precision is retained. This is an attempt to have
the best of both worlds, to show numbers that are easy to read. Instead of displaying the
numbers like this:

99987.65
93472.16
79234.81
103399.78
107339.26
95353.22
97349.67
107384.63
217477.25

You could keep the internal precision but display them in thousands, like this:

100,000
93,000
79,000
103,000
107.000

100 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

95,000
97,000
107,000
217,000

Clearly, the second list is a lot easier to read. There’s just one problem: When you add up
these displayed numbers, they total 998,000, but the true total is 1,000,998.43. If you round
the true total to the nearest thousand, it would be 1,001,000.

You need to be aware that if the precision of numbers in your dashboard display doesn’t
match the underlying precision, you may have to account for the discrepancies.

ROUND adjusts a number to a specified number of digits to the left (-) or right (+) of the
decimal point:

=ROUND(5146.283,2) returns 5146.28
=ROUND(5146.283,1) returns 5146.3
=ROUND(5146.283,0) returns 5146
=ROUND(5146.283,-1) returns 5150
=ROUND(5146.283,-2) returns 5100
=ROUND(5146.283,-3) returns 5000
=ROUND(5146.283,-4) returns 10000

ROUNDDOWN rounds a number toward 0 to a specified number of digits to the left (-) or right
(+) of the decimal point.

ROUNDUP rounds a number away from 0 to a specified number of digits to the left (-) or right
(+) of the decimal point.

CEILING rounds a number (away from zero) to the nearest multiple of significance.

FLOOR rounds a number down toward 0 to the nearest multiple of significance. Here are
some examples of CEILING and FLOOR:

=CEILING(942,15) returns 945
=CEILING(945,15) returns 945
=CEILING(948,15) returns 960
=FLOOR(942,15) returns 930
=FLOOR (945,15) returns 945
=FLOOR (948,15) returns 945

EVEN rounds a number to the nearest even integer. Xcelsius does not support a matching ODD
function. However, the following computation returns what the ODD function would return
in Excel:

=EVEN(number)-1

INT simply chops off the decimal portion of a number for positive numbers, but it doesn’t
quite work the same for negative numbers:

=INT(50.01) returns 50
=INT(50) returns 50
=INT(50.9999999) returns 50
=INT(-50.01) returns -51
=INT(-50) returns -50
=INT(-50.9999999) returns -51

101Mathematical and Statistical Functions in Xcelsius 2008

4

TRUNC truncates a number to specified precision by removing the fractional part of the
number:

=TRUNC(1.9,0) returns 1
=TRUNC(-1.9,0) returns -1

DOLLAR converts a number to text, using currency format. This function works well with the
Xcelsius Label component.

MOD and QUOTIENT

MOD(number,divisor)
QUOTIENT(numerator,denominator)

MOD returns the remainder from division, with the result having the same sign as the divisor.

QUOTIENT returns the integer portion of a division. Computationally, QUOTIENT is identical to
ROUNDDOWN taken to zero decimal places. Here are some examples:

=QUOTIENT(6.5,3) returns 2
=QUOTIENT(-6.5,3) returns -2
=ROUNDDOWN(6.5/3,0) returns 2
=ROUNDDOWN(-6.5/3,0) returns -2

Modulo is something that harkens back to my days in elementary school, where we were
taught to think about clocks in 12- and 24-hour cycles. Back in those days, there were no
such things as digital clocks. The clock faces were all analog dials, which made the modulo,
or MOD, function easy to understand. If you start at midnight and allow a clock to advance 34
hours, the clock face would be showing 10 AM. Although the concept was easy to grasp, the
range of practical applications presented by my school teachers were limited. It seemed that
we were forever trapped in intervals of 12 or 24 hours. If you can’t vary the interval, you are
not going to find many practical applications.

Figure 4.13 shows an interesting example.

Here is the basic setup: You have a start date, which can be pretty much any date you want.
You can adjust this data forward or backward by using the Spinner component. Or you can
pick a date by using the Calendar component. Wouldn’t it be nice if relative to your start
date, you could be given a reminder, say, every fourth day? This is where the MOD function
steps in. If your start date is in cell A1, the selected date in the calendar sets A2, and the
reminder interval in A3, you could construct the following formula:

=MOD(A2-A1,A3)

If you define named ranges, your formula might look like this:

=MOD(MySelectedCalendarDate-MyStartDate,ReminderInterval)

Whenever this MOD function returns the value 0, a reminder note appears. Because you can
set both the start date and the reminder interval, you have a lot of flexibility.

C A U T I O N
Using INT on negative values may work differently than you expect. For negative num-
bers, it returns the next lower number. For example, INT(-1.9) returns -2, not -1.

102 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4
EXP, LN, LOG, and LOG10
EXP(number)
LN(number)
LOG(number,base)
LOG10(number)
POWER(number,power)

Xcelsius supports a variety of functions related to exponents and logarithms. Before getting
into concepts about these, I want to illustrate some examples of the POWER function and the
^ exponentiation operator.

Here are three ways to calculate 2 raised to the third power:

=2*2*2 returns 8
=POWER(2,3) returns 8
=2^3 returns 8

It is easy to understand exponents involving whole numbers, but what about exponents
involving factional or decimal quantities? For instance, what is POWER(36,0.5)? Try it:

=POWER(36,0.5) returns 6
=36^0.5 returns 6
=36^(1/2) returns 6
=SQRT(36) returns 6

A logarithm sounds complicated, but it’s really not. Logarithms are the exponent parts of a
number raised to a power. Here is an example:

POWER(10,2) is 100
POWER(10,3) is 1000
=LOG(100) returns 2
=LOG(1000) returns 3

Figure 4.13
Setting up a flexible
reminder tool with
the MOD function and
Calendar and Spinner
components.

103Mathematical and Statistical Functions in Xcelsius 2008

4

What’s the benefit of all this? The logarithm of 100000 is as follows:

=LOG(100000) returns 5

100000 is 100*1000, and in logarithmic form this is the following:

=LOG(100*1000) returns 5

But it is also the following:

=LOG(100)+LOG(1000) which is 2+3

So if C=A*B, then LOG(C)=LOG(A)+LOG(B). In effect, logarithms turn multiplication into
addition.

Whether explicit or implicit, all logarithmic functions are calculated using a “base” much as
with arithmetic in base 10. Several versions of logarithms are supported in the Xcelsius
spreadsheet environment. The LOG function normally has two arguments, a number and
its base:

=LOG(3,9) returns 0.5
=LOG(9,9) returns 1
=LOG(27,9) returns 1.5
=LOG(16,2) returns 4
=LOG(22.62472,2) returns 4.5
=LOG(32,2) returns 5
=LOG(100,10) returns 2
=LOG(100) returns 2

The LOG10 function works like LOG with no base supplied. There is a natural logarithm func-
tion called LN, which is premised on the base of the logarithm being 2.71828182845905. The
use of natural logarithms and the inverse function EXP often simplify mathematical and
statistical equations in science and finance.

Logarithms and exponents arise naturally in business and finance applications and dash-
boards, as in the example shown in Figure 4.14. Many industrial operations, such as in
manufacturing, improve over time and with experience. This incremental improvement
can be mathematically projected by using a learning curve.

Mathematically, the cost per unit for producing a specific number of units can be computed
by using an equation like this:

=CostOfInitialProductinRun*NumberOfUnits^(-1*LOG10(1-ImprovementFactor)
➥/LOG10(ExpansionFactor))

For example, if your production run costs go down by 5% when you double your product
output and the initial cost is 100, this would be your cost equation:

=100*NumberOfUnits^(-1*LOG10(1-0.05)/LOG10(2))

or approximately this:

=100*NumberOfUnits^(-0.07)

104 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

FORECAST and INTERCEPT

FORECAST(x,known_y’s,known_x’s)
INTERCEPT(known_y’s,known_x’s)

When you plot X and Y data on a chart, the data might be representative of a continuous
trend. If the trend is linear (that is, if it forms a fairly straight line), it can be projected using
the FORECAST function (see Figure 4.15).

Figure 4.14
A dashboard that
uses logarithms to
project a learning
curve.

Figure 4.15
Forecasting a Y value,
given a hypothetical X
value and known Y
values and X values.

In this example, the horizontal slider sets some hypothetical X value. The corresponding
forecasted Y value is projected based on X value and the known Y values as well as known
X values. This would be the formula:

=FORECAST(HypotheticalXValue,KnownYValues,KnownXValues)

105Mathematical and Statistical Functions in Xcelsius 2008

4

If HypotheticalXValue is in cell E1, KnownYValues are in cells C3:C8, and KnownXValues are
in cells B3:B8, the formula would be as follows:

=FORECAST(E1,C3:C8,B3:B8)

In this case, the projected curve would intersect the Y-axis at the following:

=INTERCEPT(C3:C8,B3:B8)

FORECAST is a wonderful function for projecting curves when they are linear or straight lines.
It is not designed to work with nonlinear curves. Often, you can “linearize” your data by
using logarithms of your X and/or Y values instead of the actual X and Y values.

N, VALUE, and PRODUCT
N(value)
VALUE(text)
PRODUCT(number1,number2,...)

VALUE converts a string of text into its numbered equivalent:

=VALUE(“2”&”3”) returns 23
=VALUE(“2”&”3”)+4 returns 27
=VALUE(“12/31/2009”) returns the

serial number 40178

VALUE does not operate on TRUE or FALSE values.

N is a function that returns the numeric representation of its argument. Here are some
examples:

=N(“2”&”3”) returns 0
=N(“23”) returns 0
=N(23) returns 23
=N(“12/31/2009”) returns 0

If you use the Xcelsius Calendar component to set a date in cell A1 to, say, December 31,
2009, then you get the following:

=N(A1) returns the
serial number 40178

=N(TRUE()) returns 1
=N(TRUE) returns 1
=N(2=1+1) returns 1

Incidentally, you can coerce a TRUE/FALSE value into numeric representation by using a
-- trick:

=--(TRUE) returns 1
=--(2=2) returns 1
=--(FALSE) returns 0

PRODUCT simply multiplies up to 30 or so cell ranges together:

=PRODUCT(1,2,3,4) returns 24
=PRODUCT(13,A1:C1) returns 13*A1*B1*C1

106 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Using Conditional Logic and Boolean Functions

One of the objectives in using Xcelsius 2008 to build dashboards and visualizations is to give
them some sophisticated ability. For instance, say that you’re creating a pricing calculator
that is smart enough to detect weekends and holidays from selected data in a Calendar com-
ponent and automatically use the appropriate pricing table. Constructing such a dashboard
requires the use of conditional logic and date arithmetic (discussed later in this chapter).

TRUE and FALSE

FALSE()
TRUE()

The Xcelsius spreadsheet environment has two functions for generating TRUE and FALSE
values. The functions have basically the same names as their values:

=TRUE() returns TRUE
=FALSE() returns FALSE

Excel also has TRUE and FALSE functions.

In general, there is no real need to use a TRUE() or FALSE() function, as you can just use the
TRUE and FALSE values and not waste a computing cycle to compute TRUE() or FALSE().

TRUE and FALSE are not quite the same as 1 and 0. If you want the number 1 instead of a TRUE
value (or 0 instead of a FALSE value), you can just shroud it with the function N:

=N(TRUE) returns 1
=N(6=3+2+1) returns 1
=N(SUMSQ(A1:A100)+1>0) returns 1
=N(FALSE) returns 0

The first formula here should be obvious. In the second formula, 3+2+1 does add up to 6, so
the propositional expression 6=3+2+1 evaluates to TRUE. In the third formula, the sum of the
squares of any range of cells should return a non-negative result (that is, zero or larger).
Because 1 is being added to something non-negative, the total must necessarily be greater
than zero. Hence, this relationship evaluates to TRUE (and N(TRUE) returns the value 1). The
fourth formula should be obvious.

Conditional Operators You can use the following conditional operators in spreadsheet
formulas:

>
<
>=
<=
<>
=

Unless the cells you are comparing have errors, such as a formula that attempts to divide a
number by zero, the result of the operation will either be a TRUE or a FALSE value.

The operator <> stands for “not equal.”

Notice that there are no =>, =<, or >< operators, as these are meaningless.

107Mathematical and Statistical Functions in Xcelsius 2008

4

Logic Combiners: AND and OR

AND(logical1,logical2,...)
OR(logical1,logical2,...)

The AND function returns TRUE if every logical test it is fed returns TRUE, as in these examples:

=AND(2+3>1,10=5+5,MID(“Xcelsius”,1,4)=”Xcel”) returns TRUE
=AND(2+3>1,10=5+59,MID(“Xcelsius”,1,4)=”Xcel”) returns FALSE

The OR function returns TRUE if at least one of the tests results in TRUE, as in these examples:

=OR(10=5+5,MID(“Xcelsius”,1,4)=”Xc”) returns TRUE
=OR(10<>5+5,MID(“Xcelsius”,1,4)=”Xc”) returns FALSE

Logic Switches: NOT
NOT(expression)

Excel has a NOT function that reverses the conditional logic of the expression it evaluates. If
an expression would normally result in a TRUE value, NOT(expression) returns a FALSE
value and vice versa. Here are some examples:

=NOT(TRUE) returns FALSE
=NOT(10=5+5) returns FALSE

If-Then-Else Logic Having an expression that evaluates to TRUE or FALSE is the starting
point for conditional logic. For example, the following is classic if-then-else logic: If
requested loan amount plus outstanding loans exceeds maximum borrowing power, then
deny loan application; otherwise, continue processing loan application. The spreadsheet
environment readily accommodates this kind of logic with the IF function. You might have
a formula that calculates the size of the loan approved, like this:

=IF(LoanAmt+OutstandingLoans>CreditLimit,0,LoanAmt)

The general form of an IF function is as follows:

=IF(logical_test,value_if_true,value_if_false)

logical_test is an expression that evaluates to either TRUE or FALSE. The logical test could
be something like A1-A2>0 or Assets=Liabilities+OwnersEquity. Incidentally, if the logical
test results in a number instead of a TRUE or FALSE value, your IF function will treat the
numeric value as FALSE if the value equals zero; otherwise, it will treat it as TRUE. This is the
case even if the value is a negative number:

=IF(99,21,3) returns 21
=IF(0,21,3) returns 3
=IF(-99,21,3) returns 21

Other Conditional Formulas There are three more conditional formulas to think about
here. They apply to single cells and not cell ranges.

ISBLANK(Value) returns TRUE if the referenced cell value is blank. Sometimes a spreadsheet
cell can appear empty, but it is not. The cell may have a non-visible space or a formula
like this:

=””

108 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

If cell A1 has such non-visible but non-empty contents, then you could prove it is non-blank
with the following:

=ISBLANK(A1) returns FALSE

Another function that could prove useful is ISNA. This function returns TRUE if the value is
the #N/A error value. This can arise from formulas involving lookups where no value is
found. In situations where this occurs, you might want to split the computations into two
or more cells.

For example, let cell A1 be an input cell that is set by user input from the dashboard; a user
could be prompted to enter something like his or her age. Let cell A2 be the following:

=VLOOKUP(A1,Table1,2,FALSE)

If nothing is found in Table1, the #N/A value is returned. You might have an alternate table
called Table2. Then you could have a formula like this:

=IF(ISNA(A2),VLOOKUP(A1,Table2,2,FALSE),A2)

ISNUMBER is similar to ISBLANK and ISNA. It returns TRUE if the value is a number.

New Excel Functions Supported in Xcelsius 2008
ISERR(value)
ISERROR(value)
ISEVEN(value)
ISLOGICAL(value)
ISNONTEXT(value)
ISSODD(value)
ISTEXT(value)
TYPE(value)

Service Pack 1 of Xcelsius introduces support for several Excel functions.

ISERR(value)

ISERR returns TRUE if evaluating value returns an error other than the #N/A error.

=ISERR(3/0) returns TRUE

If VLOOKUP(A1,B1:C10,2,FALSE) fails to find a value it returns a #N/A value. ISERR doesn’t
acknowledge this kind of error, as is shown in the following example:

=ISERR(VLOOKUP(A1,B1:C10,2,FALSE)) returns FALSE

ISERROR(value)

ISERROR returns TRUE if evaluating value returns any kind of error including #N/A, #VALUE!,
#REF!, #DIV/0!, #NUM!, #NAME?, or #NULL!.

=ISERR(3/(2-2*1)) returns TRUE
=ISERROR(LOG10(-91)) returns TRUE
=ISERROR(VLOOKUP(A1,B1:C10,2,FALSE)) returns TRUE

109Mathematical and Statistical Functions in Xcelsius 2008

4

ISEVEN(value)

ISEVEN returns TRUE if value is a whole number divisible by 2 having no remainders.

=ISEVEN(2) returns TRUE
=ISEVEN(3) returns FALSE

On the functions ISEVEN and ISODD, be very careful if value is not an exact whole number, as
the following indicates:

=ISEVEN(2.00001) returns TRUE
=ISEVEN(1.99998) returns FALSE

ISLOGICAL(value)

ISLOGICAL returns TRUE if value is a TRUE or FALSE value.

=ISLOGICAL(2>300-1097.23) returns TRUE
=ISLOGICAL(2<300-1097.23) returns TRUE
=ISLOGICAL(2) returns FALSE

ISNONTEXT(value)

ISNONTEXT returns TRUE if value is any item that is not text. ISNONTEXT returns TRUE when a
cell is blank, but if a cell equates to an empty string, it returns FALSE.

=ISNONTEXT(3.14159) returns TRUE
=ISNONTEXT(“Pi is “&3.14159) returns TRUE
=ISNONTEXT(IF(2>0,””,0.5) returns FALSE

ISODD(value)

ISODD returns FALSE if value is a whole number divisible by 2 having no remainders.

=ISODD(3) returns TRUE

ISTEXT(value)

ISTEXT returns TRUE if the value is the form of text.

=ISTEXT(“Hello”) returns TRUE

TYPE(value)

TYPE returns a numeric value that corresponds to the data type of value. The specific val-
ues returned are as follows:

Data Type Example Value Returns

Number 23+5 1

Text “Pi is approximately “&3.14159 2

Logical value 2>3 4

Error value 2/0 16

Array {1,2,3} 64

110 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Making Dashboards Date and Time Aware
Much of the information you work with involves dates and time. This presents an interest-
ing challenge to spreadsheet software and data analysis in a spreadsheet environment. A date
such as December 31, 2009, appears as text, yet it’s fundamentally numeric information. The
solution developed and used in spreadsheets is to keep the visual representation of the date
as text but to “serialize” it under the hood so it can be treated numerically. The chief benefit
of this approach is that it enables “calendar arithmetic.” This section presents a brief
overview of the date and time functions that Xcelsius 2008 supports.

NOW and TODAY

NOW()
TODAY()

NOW returns the date/time serial number of the current date and time.

TODAY returns the date/time serial number of today’s date.

Say that the current date and time is 4/8/2009 5:13:26 PM:

=N(NOW()) returns 39911.7176620370
=N(TODAY()) returns 39911

Constructing Dates

DATE

DATE(year,month,day)

DATE returns the serial number that represents a particular date. The following are examples:

=DATE(2009,7,4) returns 7/4/2009 in the display
internally represented as
39998

=N(DATE(2009,7,4)) returns 39998

DATEVALUE

DATEVALUE(date_text)

DATEVALUE converts a date text form to a date serial number:

=DATEVALUE(“7/4/2009”) returns 39998

TIME

TIME(hour,minute,second)

TIME generates, in decimal form, the time serial number for a particular time based on the
number of hours, minutes, and seconds:

=TIME(17,13,26) returns 0.717662037037037

111Making Dashboards Date and Time Aware

4

TIMEVALUE

TIMEVALUE(time_text)

TIMEVALUE converts a time represented as narrative text to the decimal portion of a date/time
serial number:

TIMEVALUE(“5:13:26 PM”) returns 0.717662037037037

Parsing Dates and Time: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND
YEAR(serial_number)
MONTH(serial_number)
DAY(serial_number)

HOUR(serial_number)
MINUTE(serial_number)
SECOND(serial_number)

YEAR converts a date/time serial number to a year.

MONTH converts a date/time serial number to a month number.

DAY converts a date/time serial number to the day of a month.

HOUR converts a date/time serial number to an hour.

MINUTE converts a date/time serial number to a minute.

SECOND converts a date/time serial number to a second.

Say that the date and time displayed in cell A1 is 4/8/2009 5:13:26 PM:

=YEAR(A1) returns 2009
=YEAR(39911.7176620370) returns 2009
=MONTH(A1) returns 4
=MONTH(39911.7176620370) returns 4
=DAY(A1) returns 8
=DAY(39911.7176620370) returns 8
=HOUR(A1) returns 17
=HOUR(39911.7176620370) returns 17
=MINUTE(A1) returns 13
=MINUTE(39911.7176620370) returns 13
=SECOND(A1) returns 26
=SECOND(39911.7176620370) returns 26

Keeping Track of Your Days at Work: NETWORKDAYS
NETWORKDAYS(start_date,end_date,holidays)

If you have a project with a fixed end date, you may need to figure out how many
workdays (excluding weekends and holidays) you have available to complete your task. The
NETWORKDAYS function addresses this question.

NETWORKDAYS returns the number of whole working days between two dates, excluding speci-
fied holidays and other specifically identified dates.

Holidays can be any designation of dates. For instance, 11/26/2009 is a federal holiday
(Thanksgiving, and it falls on a Thursday). You may also elect to give your employees the
day off on the following day, which is also a weekday. If cell B1 is set to 11/20/2009, cell B2
is set to 12/1/2009, cell C10 is set to 11/26/2009, and cell C11 is set to 11/27/2009, then

112 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

the net number of working days from 11/20/2009 to 12/1/2009 would be calculated as
follows:

=NETWORKDAYS(B1,B2,C10:C11) returns 6 (days)

The flip side of that question: Given a set number of days available to complete a project or
task, when will it get done if you exclude weekends and holidays?

Assuming that the project start date in cell B1 is set to 11/20/2009, the duration is 6 days,
and C10:C11 contain the exclusion dates (cell C10 is set to 11/26/2009, and cell C11 is set
to 11/27/2009), then the formula is as follows:

=WORKDAY(B1,6,C10:C11) returns 40149

This is the serial number for the completion date. You can convert this to a more readable
form by using the following:

=TEXT(WORKDAY(B1,6,C10:C11),”m/d/yyyy”) returns 12/2/2009

Other Date Functions
In addition to the date and time functions discussed so far, a number of other useful date and
time functions are supported in Xcelsius 2008. The following are brief descriptions of some
of them.

DAYS360

DAYS360(start_date,end_date)

Some accounting systems and financial calculations, such as interest calculations involving
daily compounding, are based on a 360-day year with 12 equal months of 30 days. DAYS360
calculates the number of days between two dates, using a specified 30-day month, 360-day
year method.

EDATE

EDATE(start_date,months)

EDATE returns the date/time serial number of the date that is the indicated number of months
before or after the specified number of months from start_date.

EOMONTH

EOMONTH(start_date,months)

EOMONTH returns the date/time serial number of the last day of the month before or after a
specified number of months from start_date:

=N(DATE(2009,1,1)) returns 39814

The end of the month of 1/1/2009 should be 39914+30 = 39844:

=EOMONTH(DATE(2009,1,1),0) returns 39844

113Making Dashboards Date and Time Aware

4

WEEKDAY

WEEKDAY(serial_number)

WEEKDAY converts a date/time serial number to the number of the day of the week.

WEEKNUM

WEEKNUM(serial_num)

WEEKNUM returns the week number in the year.

YEARFRAC

YEARFRAC(start_date,end_date,basis)

YEARFRAC returns the difference between start_date and end_date, expressed as a number of
years, including the decimal fraction of a year.

Using Calendar Arithmetic
In order to make effective use of calendar arithmetic, you need to think about it at two
levels: managing formulas on the spreadsheet and integrating those formulas with the visual
components on the dashboard.

Setting Up Calendar Arithmetic on a Spreadsheet

This section poses an interesting problem and its solution. Instead of focusing on the prob-
lem itself, we focus on how the problem is structured in a spreadsheet setting.

Think about how many days there are between today and New Year’s Day. The problem is
not difficult to set up on a spreadsheet when you know you can specify dates (and their serial
numbers) for both the present day and the upcoming New Year’s Day. If you specify the
problem correctly, you can write a formula that doesn’t hardwire the year the question is
being asked.

If the current day is 2/21/2008, the subsequent New Year’s Day is 1/1/2009. If the current
day is 2/21/2009, the subsequent New Year’s Day is 1/1/2010. At first glance, it would
appear that the number of days for both these scenarios would be identical, but they’re not
because 2008 is a leap year. You could take into account calculations with leap years, but
that’s not really putting calendar arithmetic to use.

To begin looking at the problem, determine the date of today, which you can get with
this function:

=TODAY()

Determine the date of the upcoming New Year’s Day, which is on the first day of January of
next year. Next year can be calculated using the following:

=YEAR(TODAY())+1

So the date for New Year’s Day for next year is found as follows:

=DATE(YEAR(TODAY())+1,1,1)

114 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

All you need to do is subtract the day number of the “today” date from the upcoming New
Year’s Day date, and you’re done! Here is a formula that gives it to you:

=N(DATE(YEAR(TODAY())+1,1,1)-TODAY())

Alternatively, you could split this out into two formulas:

=N(DATE(YEAR(A1)+1,1,1)-A1)

where A1 has this formula:

=TODAY()

Splitting up complicated formulas is a good practice for the following reasons:

■ The shorter formulas are easier to follow and less prone to accidental errors when
you’re typing in the formulas.

■ You can potentially eliminate otherwise repeated computations. Notice in the original
formula that TODAY has to be computed twice. When it is split from the original for-
mula, the computation is done only once.

■ The split-out portions are accessible to formulas in other spreadsheet cells.

Calendar Arithmetic at the Dashboard Level

To get a better handle on calendar arithmetic at the dashboard level, think about how you
get a dashboard and a spreadsheet to mesh with one another.

Here’s an interesting problem: Say that you’re running a call center or help desk operation,
and you’re creating a dashboard with a Calendar component that provides a specific phone
number, based on whether the day is a weekday, weekend, or holiday. If it is a holiday, you
could assign a specific phone number to each of the holidays (see Figure 4.16).

Figure 4.16
Conditional matching
of dates with the
Calendar component.

115Making Dashboards Date and Time Aware

4

In the file ch04_ConditionalMatching.xlf, the Spreadsheet Table component shows the
underlying computations while the dashboard is running live. When you select a date in
the Calendar component with your mouse or arrow keys, the corresponding message is dis-
played to the right of the calendar. As you select a date from the Calendar component, the
date is placed onto the input cell C1.

The date in cell C1 can match with one or more of seven possible scenarios (five are holi-
days, and the remaining two are weekdays or weekends). If there is a match, the correspon-
ding scenario number appears in column G. The formula (starting with cell G4 through G8)
used for this matching is as follows:

=IF(E4=C1,A4,””)

Effectively, the formula says the following:

=IF(HolidayDateInColE=SelectedCalendarDate,ScenarioNumber,””)

The formulas for scenarios six and seven are slightly different. They determine whether the
date in the Calendar components is a weekday or weekend. Notice that 1/1/2009 is both a
holiday (New Year’s Day) and a weekday, so two conditions simultaneously match. Assuming
that holidays are given greater priority, you can take advantage of the scenario numbers for
holidays being smaller than the numbers for a weekday or weekend. Cell G1 identifies the
appropriate scenario number, using the following formula:

=MIN(G4:G10)

When you have identified the scenario number, you can retrieve the appropriate text
message for display. This is done in cell H1, using the following formula:

=OFFSET(H3,G1,0)

The OFFSET function is discussed later in this chapter. Other functions, such as INDEX, could
also perform this lookup.

The contents of cell H1 are displayed in the Label component on the dashboard.

N O T E
So far, I have not concentrated on the aesthetics of the dashboard design; that is left for
later chapters. I haven’t placed an emphasis on the details of the spreadsheet formulas.
Instead, I’ve focused on the overall setup.

In columns B, C, and D, you place numeric values for the year, month, and date, and you
construct a date in column E from these values. You could have hardwired the dates in col-
umn E and omitted the information in B4:D8. By hardwiring the dates, though, you would
lose the advantage of being able to dynamically set the date at runtime. This could be set
from either a formula or by a user interaction with a visual component on the canvas.

You are also taking advantage of positional arrangements so that if more then one match is
detected, the one with the highest priority prevails.

116 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Manipulating Text in Spreadsheet Formulas
Within a dashboard, it is important to stay on message. This means that you must have the
ability to control the content of your text labels, titles, and legends. We’ll quickly review the
functions available to manage text at the spreadsheet level. Some of these functions adjust
how text appears when it is displayed. Others involve surgery on text—literally cleaving,
changing, and gluing strings of text.

Making Text Conform to a Specific Appearance
Text, especially if it is coming from a remote source, such as a database, or a hand-typed
entry from an input component on the canvas, may be not be well behaved. To keep the
appearance of text in check, you can make use of a number of functions, such as LOWER,
UPPER, and TEXT.

LOWER and UPPER

LOWER(text)
UPPER(text)

LOWER and UPPER adjust the capitalization of text. Here are a couple of examples:

=LOWER(“Xcelsius Engage”) returns xcelsius engage
=UPPER(“Xcelsius Engage”) returns XCELSIUS ENGAGE

Adjusting capitalization is important because it can aid in doing things like searches and
matching.

TEXT

TEXT(value,format_text)

TEXT is a rather dexterous and versatile function. Here are some examples of using TEXT for
formatting dates.

You have flexibility in choosing your format. Here are some examples (with A1 set to the
date 7/4/2009):

=TEXT(A1,”m/d/yy”) returns 7/4/09
=TEXT(A1,”m/d/yyyy”) returns 7/4/2009
=TEXT(A1,”mm/md/yyyy”) returns 07/04/2009
=TEXT(A1,”dd-mmm-yyyy”) returns 04-Jul-2009
=TEXT(A1,”ddd”) returns Sat
=TEXT(A1,”dddd”) returns Saturday
=TEXT(A1,”m”) returns 7
=TEXT(A1,”mm”) returns 07
=TEXT(A1,”mmm”) returns Jul
=TEXT(A1,”mmmm”) returns July
=TEXT(A1,”mmmmm”) returns J

Note that all these are returned as text, including the 7 and 07.

Don’t get the impression that TEXT is restricted to formatting date and time. You can also use
it to adjust text to conform to specific patterns for numbers (specifying decimal places and

117Manipulating Text in Spreadsheet Formulas

4

1000 separators), currency symbols, accounting, and percentage, to name a few. Here’s an
example to give you a taste:

=TEXT(0.0375,”0.00%”) returns 3.75%

In addition, if cell A1 has the value as either of the following:

($* #,##0.00);_($* (#,##0.00);_($* “-”??_);_(@_)
=”_($* #,##0.00_);_($* (#,##0.00);_($* “”-””??_);_(@_)”

then this occurs:

=TEXT(-123456,A1) returns $(1,234.56)

Why are there two ways of setting the value in cell A1? The first is a literal value that can be
set by the end user of the dashboard with components such as drop-down menus, list boxes,
and the like. The second version is a formula that could be modified so that the format pat-
tern is set by a computation. That computation could be anything you want it to be, includ-
ing some kind of a lookup formula, the time of day, or the day of week. You get the picture.

You can experiment to see how best to use the TEXT function.

Splicing and Restructuring Text
It is often necessary to modify text by pulling it apart or gluing it together. The following
functions help with such procedures.

LEFT

LEFT(text,num_chars)

LEFT returns the leftmost characters from a text value. The following formula returns the
text string “535.25”, which is not a number:

=LEFT(“535.25|639|123”,6) returns 535.25 as a
string of text

If cell A1 is set to this value:

535.25|639|123

then you can search for a delimiter and excise the remainder of the text in cell A1:

=LEFT(A1,FIND(“|”,A1)-1) returns 535.25 as a
string of text

To turn this into the number 535.25, you could use the following:

=VALUE(LEFT(A1,FIND(“|”,A1)-1)) returns 535.25

The RIGHT function is identical to LEFT, except that it keeps the specified number of charac-
ters and cleaves the leftmost characters.

118 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

MID

MID(text,start_num,num_chars)

MID returns a specific number of characters from a string, starting at a specified position:

=MID(“Xcelsius Engage Server”,10,6) returns Engage

REPLACE

REPLACE(old_text,start_num,num_chars,new_text)

REPLACE replaces characters within text. Here’s an example of how it can be used:

=REPLACE(“1/1/YEAR”,5,4,”2009”) returns 1/1/2009

A better construction would be to place 1/1/YEAR in cell A1 and 2009 in cell A2 and use the
following formula:

=REPLACE(A1,5,4,A2) returns 1/1/2009

Incidentally, either the value 2009 or the string “2009” can be used.

You can use a FIND function to locate where YEAR begins and incorporate it in the REPLACE
formula:

=REPLACE(A1,FIND(“YEAR”,A1),4,A2) returns 1/1/2009

You can convert this to an actual date value by using the following:

=DATEVALUE(REPLACE(A1,FIND(“YEAR”,A1),4,A2)) returns 49814

Keep in mind that there is no overriding need to write your formulas by using compound
expressions. You can chain them across multiple cells.

FIND

FIND(find_text,within_text[,start_num])

As just shown, FIND allows you to locate a string of text within another. Keep in mind that
FIND is case-sensitive. If you are worried about case-sensitivity, then combine FIND with the
UPPER or LOWER function, as in the following:

=FIND(“YEAR”,UPPER(“1/1/Year”)) returns 5

REPT

REPT(text,number_times)

REPT allows you to repeat a string of text. This can be effective if you need to indent a label,
as in the following example:

=REPT(“*”,4)&”Text Title” returns ****Text Title

LEN

LEN(text)

LEN returns the number of characters in a text string.

119Using Selector-Style Spreadsheet Functions

4

On occasion, whether set by formulas or modified by components on the canvas, the con-
tents of a cell (for example, cell A1) may be set to an empty string. A formula might be set
to this value:

=””

When you run the function ISBLANK on cell A1, you get a FALSE value returned. You can test
to see whether it is an empty string by using either of these two formulas:

=IF(A1=””,”Empty”,”Not Empty”)
=IF(LEN(A1)=0, “Empty”,”Not Empty”)

EXACT

EXACT(text1,text2)

EXACT checks whether two text values are identical:

=EXACT(“United States”,”UNITED STATES”) returns FALSE
=”United States”=”UNITED STATES” returns TRUE

CONCATENATE

CONCATENATE(text1,text2,...)

The CONCATENATE function and the & operator join strings of text together. Here are a couple
examples:

=”Xcelsius “&2008 returns ‘Xcelsius 2008’
=CONCATENATE(“Xcelsius “,2008) returns ‘Xcelsius 2008’

Using Selector-Style Spreadsheet Functions
One of the powerful features of Xcelsius 2008 is the ability to reference or retrieve specific
pieces of information that could reside pretty much anywhere on the underlying spread-
sheet. While the visual components possess capabilities of this kind, so do a number of
spreadsheet functions. This section covers them.

OFFSET

Entirely new to Xcelsius 2008 is a function called OFFSET. If you are already used to using its
cousin, the INDEX function, you may feel right at home with OFFSET. There are clear distinc-
tions between OFFSET and INDEX. The main one is that OFFSET returns a reference to a single
cell or a range of cells.

Retrieving a Single Cell with OFFSET
OFFSET(reference,rows,cols)

To retrieve a single cell, OFFSET needs three arguments: an initial cell location, a row offset,
and a column offset.

For example, if you want the cell that’s four rows below cell A1 and one column to the right,
it would be cell B5. To perform this in a spreadsheet cell, you could use a formula like this:

=OFFSET(A1,4,1) returns the cell reference to B5

120 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

If you want a formula that’s the equivalent of B5+1, you could use this:

=OFFSET(A1,4,1)+1

So why not simply use the following:

=B5+1

Both of these two formulas perform exactly the same computation (returning the value of
B5+1), but the second formula is already hardwired to cell B5. Think a moment about what
is being said: The second formula is hardwired to a cell reference. When you create your
Xcelsius dashboard and export it to a SWF file, a PowerPoint slide, or whatever format is
appropriate, there will be no ability to change the hardwired B5 cell reference in the
exported file.

In this example, the offsets of 4 and 1 are static values, but they don’t have to be. You could
construct a formula like this:

=OFFSET(A1,WEEKDAY(TODAY()),B1)

Cell B1 could be set by using a drop-down menu on the dashboard. This sets the column
offset. The row offset is determined by the day of the week. Each of the cells that OFFSET
may reference could have an entirely different kind of formula or value. Obviously, this is a
contrived example, but it points to the fact that OFFSET can fundamentally change the way a
spreadsheet behaves.

Retrieving a Range of Cells with OFFSET
OFFSET(reference,rows,cols,height,width)

OFFSET is not limited to returning a reference to a single cell. It can also return a reference
to a range of cells. Suppose you have data stretching across a row, say, starting from cell B7.
If this were data such as sales for each month, a year’s worth of sales would take you out
through column M. If you wanted cumulative sales for the first six months of data, you
could construct a formula like this:

=SUM(OFFSET(A7,0,1,1,6))

Basically, this formula is saying “Starting from cell B7, draw a box occupying just one row
but six cells wide, and give me the sum of what’s inside the box.”

If the data stretched over multiple years and you want cumulative sales spanning two years,
you’d use this formula:

=SUM(OFFSET(A7,0,1,1,24))

Hardwiring the number 24 in the formula is not a good practice. You could park that value
in another cell, such as A1, and use a formula like this:

=SUM(OFFSET(A7,0,1,1,D2))

The advantage of this approach is that D2 could be set using a dashboard component on the
canvas.

You could make such a dashboard more dynamic. Imagine that cells B7:M37 contains daily
transaction data. All the sales data for the first day of the month are placed on row 7. Sales

121Using Selector-Style Spreadsheet Functions

4

for the second day of the month are placed on row 8, and so forth. Column B could hold
January’s data, column C could hold February’s data, and so forth (see Figure 4.17 or the file
ch04_DynamicRangedSums.xlf).

Figure 4.17
Using OFFSET to per-
form computations on
a dynamically chosen
range.

You compute the cumulative sales for the first six months with this formula:

=SUM(OFFSET(A7,0,1,31,6)) returns 6600

What if you want cumulative sales for just the second quarter? One easy but computation-
ally inefficient way to do this is to subtract the first quarter’s sales from the first six months
of sales:

=SUM(OFFSET(A7,0,1,31,6))-SUM(OFFSET(A7,0,1,31,)) returns 3299

A better way would be to combine the formula elements into a single expression:

=SUM(OFFSET(A7,0,4,31,3)) returns 3299

Because you have the OFFSET locked down, it would be nice to compute the second quarter
MAX, AVERAGE, and MIN:

=MAX(OFFSET(A7,0,4,31,3)) returns 96
=AVERAGE(OFFSET(A7,0,4,31,3)) returns 36.25 (approx)
=MIN(OFFSET(A7,0,4,31,3)) returns 0

Rather than marring a formula with a complicated OFFSET expression, it would be nice to
have a named range, such as SelectedRange, that is determined from the visual components
on a dashboard and just ask Xcelsius to compute something like this:

=STDEV(SelectedRange) returns 27.79 (2nd Qtr)

122 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

Basically, you can do this. You can create a dynamically defined named range as follows:

1. Press Ctrl+F3.

If you are using Excel 2007, this opens the Name Manager window, where you click the
New button to open the New Name window.

If you are using Excel 2003, the Define Name window appears.

2. In the Name field, type in SelectedRange or whatever name you want to give to the
named range.

3. In the Refers To field, type in the following formula:
=OFFSET(A7,0,B1,31,1+B2-B1)

Click the OK button. The worksheet references are automatically inserted, so the
formula associated with SelectedRange would become this:
=OFFSET(Sheet1!A7,0,Sheet1!B1,31,1+Sheet1!B2-Sheet1!B1)

There are a few more points I want to add about this example. You may have noticed in the
hardwired example that it was necessary to do some mental jockeying to get from
OFFSET(A7,0,1,31,6) to OFFSET(A7,0,4,31,3). When you have the formula, you can just
read the From Month and To Month values in cells B1 and B2, respectively. With a little
setup, you can keep your spreadsheet structure and formulas simple.

Notice another little preparatory step. The formulas for cells B1 and B2 are as follows:

=MIN(D1:D2)
=MAX(D1:D2)

Cells D1 and D2 are input cells set from the dashboard. There’s a reason for this kind of
design. If you were to make cells B1 and B2 the input cells, there would be no provision to
ensure that the values placed into cell B2 would never be less than the value in cell B1. If
what is supposed to be the maximum of two ranges turns out to be less than the minimum,
your formulas could get awfully confused. This extra layer of formulas is really a safety
feature.

Notice that this dashboard example makes use of a Dual Slider component, which is excel-
lent for applications where lower and higher values for a variable can be chosen.

INDEX

INDEX(RangeOneColumnWide,RowPosition)
INDEX(Range,RowPosition,ColumnPosition)

INDEX is similar to OFFSET in that it can pluck a value from a vertical list of cells or from a
row-and-column position in a rectangular array of cells.

In Xcelsius 2008, if you want to retrieve the value of a specific cell residing in a single row,
you cannot use a construction like this:

=INDEX(B1:G1,5) returns an error

123Using Selector-Style Spreadsheet Functions

4

Although this construction is well behaved in Excel, it does not work in Xcelsius 2008. You
must use a construction that specifies the row, even though it is the only row:

=INDEX(B1:G1,1,5) returns contents of cell F1

There are some distinguishing features when comparing INDEX and OFFSET:

■ INDEX requires that you prespecify an array (think of it as a bounded box). If you try to
use an INDEX lookup beyond the edges of the “bounded box,” you get an error. Because
OFFSET requires only the starting point, there is no need to worry about searching
beyond a fixed-size array.

■ You cannot search above or to the left of the range of cells specified in INDEX. With
OFFSET, you can search above and/or to the left of the reference cell. You just need to
use negative-value offsets to reverse the direction, and you need to make sure you are
not trying to retrieve a cell above row 1 or to the left of column A.

■ INDEX returns the contents of only a single cell and cannot return a reference to a range
of cells, such as SUM(SelectedRange).

■ INDEX computes positions starting with the value 1, whereas OFFSET starts counting
from 0.

Admittedly, the syntax of INDEX is easier to understand, but the versatility of OFFSET easily
outstrips that of INDEX. Use whichever function serves your purpose.

CHOOSE and MATCH

CHOOSE(index_num,value1,value2,...)
MATCH(lookup_value,lookup_array)

Say that somewhere in a spreadsheet or database, you have a set of projects that is assigned
numeric ratings. If the project’s rating is 90 or higher, it is deemed safe. If the rating is 60 or
higher but less than 90, it is deemed to be of moderate risk. If the rating is 0 or higher but
less than 60, it is considered very risky.

Here is how you can set up a way to look up the ratings, based on a numeric score in cell
A1. Assume that cells B1, B2, and B3 contain the threshold values 0, 60, and 90. In cell C1,
type the word Risky, in cell C2, type the word Moderate, and in cell C3 type the word Safe.
You could use a formula construction like this:

=CHOOSE(MATCH(A1,0,60,90),”Risky”,”Moderate”,”Safe”)

or this:

=CHOOSE(MATCH(A1,B1:B3),C1,C2,C3)

In some ways, the combination of CHOOSE and MATCH works much like the VLOOKUP function.

VLOOKUP and HLOOKUP

HLOOKUP(lookup_value,table_array,row_index_num[,range_lookup])
VLOOKUP(lookup_value,table_array,col_index_num[,range_lookup])

124 Chapter 4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008

4

VLOOKUP searches for a lookup value in the first column of a table array. When it finds the
closest match, it retrieves the item from a specific column of that data range.

To construct the equivalent formula that was developed in the CHOOSE/MATCH example of the
previous section, you could write this:

=VLOOKUP(A1,B1:C3,2)

In the cell range B1:C3, the terms you want to retrieve (Risky, Moderate, and Safer) all
reside in the second column. Notice that the table range B1:C3 is specified using
absolute cell reference coordinates. This is done on purpose because there is a reasonably
good chance you would want to copy and paste the VLOOKUP formula to other cells. (You
might, for instance, be rating several projects at one time.) When you paste the formula, you
don’t want the table array to change.

VLOOKUP is a little more versatile than the CHOOSE/MATCH combination. You might want to aug-
ment the original table with some supplementary data. Instead of limiting yourself to only
two columns, you could make use of dozens or, in principle, well over 100 columns. Of
course, you have to take into account the sheer volume of data and its organization, as well
as computation performance.

There are several other things you may need to factor in; one of these relates to Excel, and
the others are specific to Xcelsius.

If the first column in your table array is unordered, you need to add a FALSE parameter to
the formula to tell VLOOKUP that the data is unordered. In this regard, VLOOKUP works identi-
cally in Excel and Xcelsius 2008:

=VLOOKUP(A1,B1:C3,2,FALSE)

In Xcelsius 2008, the values in the index column (in the current example, cells B1:B3) are
frozen when the dashboard is loaded, and they are never refreshed. In Excel 2003 and Excel
2007, the index column does get refreshed.

In addition, in Xcelsius 2008, VLOOKUP returns a value based on the first match found. In
Excel, VLOOKUP returns a value based on the last match found. For example, if you set cell B1
to 0 and cell B2 to 60 but change B3 to 60 and keep the rest of the table array unchanged
(cell C1 is set to the word Risky, cell C2 is set to the word Moderate, and C3 is set to the
word Safe), then your Xcelsius 2008 dashboard does the following:

=VLOOKUP(60,B1:C3,2) returns Moderate (in Xcelsius 2008)
=VLOOKUP(60,B1:C3,2) returns Safe (in Excel)

You need to be aware of how VLOOKUP behaves.

HLOOKUP is similar to VLOOKUP. Instead of searching in a downward direction along the left-
most column and then returning the item in the column number, however, HLOOKUP searches
the topmost row in a left-to-right direction. When the match is found, HLOOKUP returns the
value of the cell in the same column of the match but on the nth row of the table array.

125Closing Thoughts

4

Say that cells B1, C1, and D1 are 0, 60, and 90, and cells B2, C2, and D2 are Risky,
Moderate, and Safe:

=HLOOKUP(90,B1:D2,2) returns Safe

In searching along the top row (B1:D1), a match is found in column D. Within column D,
the cell in the second row of the lookup table is cell D2, which has the value Safe. This is
what HLOOKUP returns.

Closing Thoughts
It’s no secret that the “secret” sauce behind Xcelsius 2008 is how it embeds spreadsheet
capabilities. Much of the emphasis of this chapter has been to reveal the flavor of how
spreadsheet formulas empower the dashboard.

This chapter covers spreadsheet fundamentals from the simplest baby steps all the way
through esoteric topics such as dynamic name ranges. All the while, the focus is on how you
go about constructing and building formulas.

When you realize that you can control the input cells from the dashboard, you can approach
spreadsheet design in a whole new light. If this is not immediately clear, it will be by the
time you finish reading the next chapter.

Sprinkled throughout the chapter are examples of how formula chaining makes the process
of building complicated spreadsheets much more manageable.

As you build dashboards and visualizations, you can make changes to, test, validate, and
tweak your spreadsheet in tandem with the visual dashboard design. This is a whole new
experience that’s not really present in Crystal Xcelsius.

Although the experience of building spreadsheets in Xcelsius 2008 works quite the same way
as it does in Excel by itself, we needed to go through the various features and Excel func-
tions to explain how to work the spreadsheet side of Xcelsius.

This chapter covers the broad classes of functions you will need to know about. It shows you
some of the potential pitfalls and outlines best practices in the construction of spreadsheet
formulas. It also introduces examples of how to apply context switching, a technique you’ll
repeatedly see in later chapters.

Now that you’ve seen the spreadsheet side of things, in Chapter 5, you’ll see the flip side:
the visual components.

This page intentionally left blank

5CHAPTER

In this chapter

Using Charts and Graphs to
Represent Data

In this chapter

Choosing the Right Components for a Dashboard 128

Building on Your Visualizations 132

Viewing Grouped Data with Stacked Charts 135

Working with XY and Bubble Charts 141

Working with Tree Maps 148

Issues and Techniques Related to Scaling 150

Putting Visual Data Analysis into Focus 154

Closing Thoughts 154

128 Chapter 5 Using Charts and Graphs to Represent Data

5

One of the reasons dashboards are popular and successful is that they help you show infor-
mation and relationships that would otherwise be difficult to see. It should come as no
surprise that charts and graphs play a key—or even central—role in the preparation of
dashboards.

The goal of this chapter is to introduce you to using charting components in Xcelsius 2008.
While many of the features of charting or graphing components are outlined, the emphasis
is on how to use charting and graphing components to better convey information.
Sometimes, important information is buried in the rows and columns of data. Visualizing
data the right way can help to reveal insights.

Choosing the Right Components for a
Dashboard

Every dashboard has a story to tell. As you create a dashboard, your choice of components
and the way you set your chart attributes can either bring out that story or bury it.

Say that you want to incorporate the following snippet of data, which represents the number
of daily visitors to a website, in your dashboard:

Date Visitors Date Visitors

1/1/2009 4667 1/12/2009 4648
1/2/2009 4349 1/13/2009 5154
1/3/2009 3678 1/14/2009 5281
1/4/2009 3094 1/15/2009 5088
1/5/2009 4326 1/16/2009 4709
1/6/2009 4627 1/17/2009 3477
1/7/2009 4615 1/18/2009 3078
1/8/2009 4743 1/19/2009 4617
1/9/2009 4888 1/20/2009 5357
1/10/2009 3321 1/21/2009 5421
1/11/2009 2955 1/22/2009 4902

What is printed here is just a snippet. The full data can easily span a year or more. You can
find the full spreadsheet for this example in the file ch05_SampleData.xls.

Your first hurdle is to determine how much data you want to display. Figure 5.1 shows two
alternative views of the data. The top-left graph represents a 22-day snippet of data. The
lower-right graph represents data over the full range of dates, roughly spanning a full year.

A quick glance reveals an increasing progression in the data over time, but there is a lot of
variation throughout the course of a week. It would be nice to be able to choose an arbitrary
point in the timeline and show all the data over, say, a 30-day period. You can do this by
using the OFFSET function (see Figure 5.2 or the ch05_SampleDataEnhanced.xls file).

129Choosing the Right Components for a Dashboard

5

It’s not difficult to turn this into a rudimentary dashboard (see Figure 5.3).

Here are some quick steps to take:

1. Launch Xcelsius 2008 and import the ch05_SampleDataEnhanced.xlf file.

2. Drag a Column Chart component onto the canvas. If you prefer, you can instead use a
Line Chart component or a Combination Chart component.

Figure 5.1
Two ways to repre-
sent the data on a
dashboard.

Figure 5.2
OFFSET allows you to
choose data from any
point in the timeline.

130 Chapter 5 Using Charts and Graphs to Represent Data

5

3. Map the component to the underlying spreadsheet data.

Click the chart and in the General tab of the chart’s properties panel, click the By Series
radio button and then click the + button to add a data series.

Within the added data series, link the Y values to the data to be displayed. If you are
following this example, this would be cells H7:H37 of the SourceData worksheet.

If for some reason you want the Y-axis to appear on the right side of the chart, choose
Secondary Axis instead of Primary Axis.

Link the category labels to the cells G7:G37.

4. Drag a Spinner component onto the canvas and link the data field to the day number
(in this example, it is cell H1).

Figure 5.3
A very basic timeline
dashboard.

When you open the dashboard in preview mode or export the dashboard, you should be
able to move along the timeline by clicking the up and down arrows in the Spinner control
or jump to a day number by typing in the number.

There are a number of things you need to fix in the dashboard you’ve created so far. As you
use the Spinner control to advance in the timeline, the column chart is a bit jittery between
clicks. This is because the data animation feature of the Column Chart component is
enabled. In general, data animation is a good thing; however, when you are trying to incre-
mentally advance along a timeline, this feature becomes distracting.

In your Xcelsius workspace, select the Column Chart component. In the Behaviors tab of its
properties panel, click the Animations and Effects tab and deselect Enable Data Animation
(see Figure 5.4).

131Choosing the Right Components for a Dashboard

5

Eliminating the jitters is easy enough. Unfortunately, the Spinner component still doesn’t
behave exactly as you need it to because you haven’t given it minimum and maximum limits.
Unless you specify otherwise, the Spinner component automatically defaults to a minimum
of 0 and a maximum of 100. In this example, you should set the minimum to 1 instead of 0.
The maximum limit should be a number well above 100. You have a choice of typing your
own value or linking to some value on the underlying spreadsheet.

The Column Chart component in Figure 5.4 is set to display 31 vertical bars. They appear a
little cramped. You can improve the appearance by setting the marker size for the data series
to a value smaller than its default of 17 (see Figure 5.5).

Figure 5.4
Turning off data
animation can
remove the “jitters”
from a chart.

Figure 5.5
Adjusting the vertical
bar width in a column
chart.

N O T E
Xcelsius 2008 allows you to specify a theme such as Nova, Halo, Elan, or Microsoft
Classic. If you plan on trying out different Xcelsius themes on your dashboard, I strongly
recommend that you do so before making custom formatting changes to your canvas
components.

132 Chapter 5 Using Charts and Graphs to Represent Data

5

Building on Your Visualizations
The Spinner component is not the only component that’s suitable for setting a point in a
timeline. You could instead use Slider, Dial, or Calendar components, to name a few.

The data becomes more interesting when it is not set in a vacuum. You might, for instance,
want to compare the number of unique daily visitors to a website to the number of page
views. To do this, you would need to add a second data series to the chart. Because compar-
ing unique visitors and page views is really like comparing apples and oranges, a column or
bar chart is not suited for this task, even if they were both plotted over the same range of
dates. Line charts and combination charts work better for this purpose. As long as you don’t
need to make use of the Xcelsius Alerts feature, the Combination Chart component is the
best choice in this situation.

Putting Your Data onto a Timeline
Figure 5.6 shows how a combination chart can be used to present two data series: The verti-
cal bars represent visitor count, and the line graph represents page views. Because visitor
count and page views are not exactly the same kind of quantity, you need to make use of a
dual-axis facility.

Figure 5.6
A combination chart
is well suited for
simultaneously dis-
playing different kinds
of information along
a common axis.

The following are important design features of this combination chart:

■ You can make the chart title and/or subtitle dependent on the underlying spreadsheet
content. In this example, the subtitle is pegged to cell C5, which changes every time the
day number in the Spinner control is changed.

133Building on Your Visualizations

5

■ The Spinner control title and rectangular background are purposely similar in appear-
ance to the Combination Chart legend. This allows the dashboard user to perceive the
Spinner control as an actual part of the combination chart.

■ The plot area of the chart is a distinctly different color or shading than the area imme-
diately behind the chart. This helps the visual data to stand out. The horizontal grid-
lines are visible, but they don’t compete for attention with the chart data. In particular,
only the major gridlines are enabled. If minor gridlines were enabled, the chart might
be a little too busy.

■ The labels along the axes and in the legend appear in boldface, making the chart easier
to read. Using contrasting colors or shades between the chart labels and their back-
ground also helps the readability.

There are some hidden wrinkles that you need to be aware of related to combination charts.
Figure 5.6 shows one of them. The primary axis ranges from a value of 1000 (a nonzero
number) to 6000. The secondary axis ranges from a value of 0 to 120K. As you cycle through
the days, as shown in Figure 5.7, notice that the scaling is not exactly proportional.

Figure 5.7
The scaling in this
chart is not always
proportional.

On day 147, the maximum value of both axes jumps up 50% (from 6000 to 9000 and from
120K to 180K), but the minimum values do not change uniformly. The primary axis originally
starts at 1000, and on day 147, it grows to 3000. The secondary axis originally starts at 0, and
it remains unchanged when the timeline advances to day 147. Clearly, the scales do not
remain proportional as you advance the timeline.

You can force these scales to be proportional, but to do so, you must have complete control
over the scaling, and you may not always be happy with the chart appearance. You can
experiment with the file ch05_DataViewer.xlf, which provides a solution.

You may need to be aware of a couple other things. Dual-axis charts are generally supported
in Xcelsius 2008. If you plan on displaying three or more data series in a chart, at least two
of the series will have to share either the primary axis or the secondary axis. If your data
series contains similarly valued items (such as percentage of efficiency or market penetra-
tion), this would not be a problem. If the values between data series vary significantly, this

134 Chapter 5 Using Charts and Graphs to Represent Data

5

could be problematic. Consider the example of unique visitor counts and total page views. If
you want to plot the ratio of page views per visitor, you might find numbers typically varying
between 10 and 25. When you try including these as an additional data series in the combi-
nation chart, the data becomes flatlined, as the numbers are too small for either of the pri-
mary or secondary scales. To cope with this issue, you have several strategies available.

■ You could put the page views on the same axis as the visitors and place the page views
per visitor on the other axis. Unless the data series sharing a common axis have similar
values, this is not going to be a very effective solution. In this particular case, the page
views dominate. The visitor count is visible but too small, resulting in loss of meaning-
ful information.

A common technique for dealing with quantities that are vastly different in order of
magnitude is to apply logarithmic scaling instead of linear scaling.

■ You could apply context switching so that only one data series is displayed at any time,
but the user would have complete freedom to choose which two data series you want
to view.

■ You could overlay a line chart on top of the combination chart. The line chart would
need to be precisely positioned. Its background would have to be disabled so it is fully
transparent. You would not display the line chart axis labels. The line chart axes could
be hidden as well.

■ Instead of overlaying a chart, you could make a separate chart that is pegged to the
same timeline as the main chart. If you are going to follow this strategy, and the time-
line shifts the displayed data to the left or right, you should place the separate chart
directly below or above the main chart, not to its left or right (see Figure 5.8).

Figure 5.8
A possible layout for
two charts on the
same timeline.

135Viewing Grouped Data with Stacked Charts

5

Viewing Grouped Data with Stacked Charts
Stacked charts—whether column, bar, or area charts—have features similar to their
unstacked counterparts. An obvious difference is that the data displayed in a stacked chart is
shown cumulatively.

With stacked charts, you can set the transparency of the data series. The transparency slider
shown in Figure 5.9 applies to all the data series. The series cannot be individually set.

T I P
In order to create a unified appearance when displaying more than one chart in a dash-
board, you can enclose the charts in a single rectangular shaded region, as is done in
Figure 5.8.

Figure 5.9
Adjusting the trans-
parency for your
data series.

Transparency plays a more important role with a regular area chart than it does with a
stacked chart because valuable data can be easily obscured with a regular area chart (see the
lower-left corner of Figure 5.10).

Xcelsius 2008 has the Stacked Area Chart component, but there is no option to automati-
cally represent data based on its relative contribution, as shown in the top-right corner of
Figure 5.10. To do this, you need to prepare your spreadsheet data so that the data is repre-
sented in terms of its relative contribution. Mathematically, this is straightforward. In the
current example, you simply divide each of the values for the department by the total quan-
tity for the quarter. Because the quantities for the quarters add up to 100%, the maximum
limit for all the quarters is the fixed value 1. This is what gives this kind of stacked area
chart a horizontal plateau.

136 Chapter 5 Using Charts and Graphs to Represent Data

5

You still need to make a further adjustment to the scaling for your Y-axis. Use of auto-
scaling will push the maximum value on the Y-axis to a number greater than 1, to something
like 1.2. To regain control, you need to set your scale to manual and peg the minimum and
maximum values to 0 and 1, respectively (see Figure 5.11). In addition, you have the choice
of setting the number of divisions along the Y-axis or the size of the division. Both of these
approaches are equally suited because your scale is fixed.

Figure 5.10
Various ways to rep-
resent data by using
the Area Chart and
Stacked Area Chart
components.

Figure 5.11
Setting the chart
scaling for displaying
relative contribution.

137Viewing Grouped Data with Stacked Charts

5

Avoiding Needless Data Series Congestion
One of the challenges of presenting information in a dashboard setting is that graphical dis-
plays can easily get overcrowded with data. The List Builder component allows a dashboard
user to cope with this situation by enabling him or her to select which data series to display
and in which order.

The Stacked Area Chart component is useful, but it is even more useful when combined
with other components, such as the List Builder component (see Figure 5.12).

Figure 5.12
A List Builder compo-
nent lets you choose
which data series to
plot on a display.

In the bottom-right corner of Figure 5.12, the data is displayed in tabular form, using the
List View component. List View components have several benefits:

■ They are scrollable.

■ The column widths are individually adjustable.

■ You can sort the data on any column by clicking the appropriate column header. You
can toggle between sorting in ascending order and sorting in descending order.

List Builder components are great for when you want to cherry-pick certain pieces of infor-
mation. Say, for instance, that you want to compare the sales performance of two managers.

C A U T I O N
There is one thing you need to consider if you are thinking about using a List Builder
component. This component works by copying values, so the values displayed in the des-
tination cells are “frozen” when the List Builder component update button is pressed.

138 Chapter 5 Using Charts and Graphs to Represent Data

5

There are circumstances in which you may want to see the totality of all the data but want
to lump the smaller data values into one big group. You might, for example, be analyzing
sales and want to see the detail for your four or five biggest customers and also see the com-
bined total of all the remaining customers. Having a slider to magically set the dividing line
between showing details and grouping the remainder would be very convenient.

Dynamically grouping or lumping data is especially important when it comes to Pie Chart
components. Figure 5.13 shows an example of this.

Figure 5.13
Dynamic data group-
ing lets you control
how much detail you
want to see.

The framework for implementing dynamic data grouping is straightforward. In your under-
lying spreadsheet, start by having your data sorted from largest to smallest (see column C in
Figure 5.14).

Place an input cell (see cell C4 in Figure 5.14) whose value is set by a slider or some other
selector-style component, such as a Dial or Spinner control.

Calculate the total amount of sales or whatever you are displaying for the top-tier customers
or items displayed in your Pie Chart component (see cell C2 in Figure 5.14). This is based
on the value in the input cell, as set by your slider- or selector-style component. In this
example, subtract the top-tier sales from the total sales to get the sales for “all others.”

Populate a portion of the spreadsheet (such as columns F and G) with information needed
for the Pie Chart component. You can use a formula like this:

=IF(A10<=C4,C10,””)

where cell C4 is the location of the input cell that is set by the slider.

139Viewing Grouped Data with Stacked Charts

5

Drilling Down with Pie Charts
What good is having lots of data if you can’t get to the underlying details? The quantity of
sales in the previous example may be annual sales, which is composed of monthly data. It
would be convenient to examine the breakdown of sales on a month-by-month basis. This is
accomplished using the drill down feature that is built into many of the Xcelsius 2008 visual
components.

In your Pie Chart component’s properties panel, go to the Drill Down subtab of the
Behaviors tab. Click the Enable Drill Down check box (see Figure 5.15). You need to specify
whether you want to drill down based on position, value, row, column, or status list. You
need to specify a destination range and, depending on the type of drill down, a source range.
For this example, you want to choose the position—that is, which slice of the pie you want
to examine—so it is not necessary to specify the source range.

You also need to tell Xcelsius whether you want to drill down whenever the mouse passes
over a slice in the Pie Chart component or when the slice is clicked.

Because you only need to find out which slice is selected for drill down, the destination
range is a single cell, namely the position. It would be a good idea to set the location for this
nearby the input cell set by the slider (in this example, cell C5).

To get the drill down data, it’s just a matter of extracting the particular row from the
monthly data based on the input cell (C5 in this example). You could display the retrieved
data on a Bar Chart component.

Figure 5.14
Populate columns F
and G with only the
data needed based
on the input cell.

N O T E
Remember to set your Pie Chart component’s behavior properties to ignore blank values.

140 Chapter 5 Using Charts and Graphs to Represent Data

5

There’s just one problem: If your tabular data follows a left-to-right chronologic sequence
(such as January, February, March, and so on), the bar chart displays the most recent month
at the top. The result is a sequence of dates that reads downward as December, November,
October, and so on. To have the bar chart show a January, February, March, and so on
sequence, you need to reverse the retrieved data (see Figure 5.16).

Figure 5.15
Setting drill down
options.

Figure 5.16
Notice that the
extracted data needs
to go from right
to left.

When this is corrected, the dashboard renders as expected (see Figure 5.17).

As a little extra added touch, you can create a miniature isolated slice, as shown in the
upper-right inset of the bar chart in Figure 5.18. This helps provide feedback on what slice
of the pie chart is being revealed in detail within the bar chart.

141Working with XY and Bubble Charts

5

Working with XY and Bubble Charts
Bar charts, column charts, combination charts, line charts, and a few other variants are
charts that are continuous on one axis and discrete on the other. This is fine for histograms
and the like, but it offers little benefit when you need both the horizontal and vertical axes
to be continuous. Xcelsius 2008 provides two kinds of continuous charts: XY and bubble
charts.

Each data series in an XY chart houses data for a range of values along the X-axis and a cor-
responding range of values along the Y-axis. This affords a lot of interesting possibilities.

Working with XY Charts
Suppose you have some raw data on individuals’ years of education and age (see Figure 5.18).

Figure 5.17
A Pie Chart compo-
nent with drill down
to the monthly data.

Figure 5.18
XY charts displaying
representative demo-
graphic data.

142 Chapter 5 Using Charts and Graphs to Represent Data

5

The tabular data to the right of the chart is just a small segment of the full dataset. An XY
chart gives you the ability to specify a number of features of your data series, including the
series shape, fill color, marker size, and transparency (see Figure 5.19).

Figure 5.19
Customizing the data
series appearance in
an XY chart.

XY charts can display only two sets of values at any time—one on the X-axis and the other
on the Y-axis. However, you might have a multitude of factors from which to select. It
would be great to start from a list of parameters—such as age, income, and education—and
choose which two go onto the XY chart. There are three ways to do this:

■ Using a List Builder component

■ Using naive lists

■ Using intelligent lists

At first glance, using List Builder would appear to be the natural way to do this. You may
have 10 or 20 kinds of parameters that you want to make available for plotting on an XY
chart. With List Builder, it is easy to choose more parameters than an XY chart can accom-
modate (see Figure 5.20). In such a case, the extra parameters are ignored. One thing you
don’t want to do is to surprise a dashboard user by inadvertently withholding information
he or she expects to see.

N O T E
If you are displaying more than one data series, you cannot individually set the marker
size and transparency for each series.

143Working with XY and Bubble Charts

5

There are a couple other reasons to avoid using List Builder to create an XY chart. List
Builder copies data to a location. If the original data changes, the changes are not reflected
in the chart until the List Builder is updated. In addition, any time the user wants to switch
which items appear in a chart, he or she must go back to the List Builder chart and recon-
struct the list. List Builder may be indispensable for constructing reports, but it does not
always provide the fluid interactivity needed for dashboards.

Another approach would be to supply for each axis a list-like selector such as a List Box or
Radio Button component and, based on the parameter selected, look up the respective
dataset. This technique overcomes the primary challenges of using List Builder: It is not
possible to oversaturate the XY chart with too many parameters, and there is no wait time;
as soon as an item is selected from the list, the data appears on the plot. There is one
wrinkle with using a List Box or Radio Button component, though: It is possible to select
the same item in each of the independent lists. For instance, it is possible to plot income on
both the X-axis and Y-axis. Although this is not problematic, it isn’t very elegant.

You can use a strategy that automatically eliminates the item chosen from the list (see
Figure 5.21). This strategy involves what I call correlated lists. There is a list for the X-axis
and one for the Y-axis. Notice in Figure 5.21 that the X-axis list box has three items, and the
Y-axis list box has two items. Also notice that the item selected in the X-axis box is conspicu-
ously absent from the Y-axis box. This is by design. No matter which item is chosen in the
X-axis box, it is automatically eliminated from the Y-axis box.

Figure 5.20
List Builder doesn’t
stop you if you select
more than two
parameters.

Figure 5.21
You can select param-
eters in the XY chart
by using correlated
list boxes.

144 Chapter 5 Using Charts and Graphs to Represent Data

5

Let’s look at some implementation details. Your List Box component should be based on
inserting values, not position (see Figure 5.22).

Figure 5.22
List box properties
for the X-axis.

In cells C3, C4, and C5, you need to place the value 1, 2, and 3 (see Figure 5.23). In cells
C6, C7, and C8, you need to place the labels Yrs education, Age, and Income.

Figure 5.23
Spreadsheet setup for
correlated list boxes.

Your list boxes for the X-axis and Y-axis should be reading the labels from your underlying
spreadsheet (cells C6:C8 and D6:D7).

The formulas for cells D3 through D7 get a little complicated. I leave you to explore these
on your own in the file ch05_XYChart.xlf. Essentially, the logic behind them is that if an
item was already selected for the X-axis omit this item for the Y-axis and go to the next item
in the list.

N O T E
Depending on the quantity of data, XY charts and bubble charts can consume a fair
amount of time and CPU resources in opening the XLF file and adding data to the
components.

To complete the picture, the datasets that are chosen (the shaded cells on the right side of
Figure 5.24) are retrieved for display in the XY chart (the left side of Figure 5.24).

145Working with XY and Bubble Charts

5

In this example, you can choose any 2 of 3 data sets. There is nothing to stop you from set-
ting up your dashboard to select from, say, 20 possible datasets. Unlike using the List
Builder approach, with this method, the retrieved data is still live. Changes to source data
for the values plotted are instantly reflected in the chart.

Extending Graphical Presentation with Bubble Charts
The bubble chart can be regarded as the sibling of the XY chart. The essential differences
between the two are that in a bubble chart, the marker size is variable, based on the value of
some data, and the marker shape is round. Bubble charts offer a convenient way to pack
more information into a chart. Rather than being forced to choose two of three parameters,
you can simultaneously display all three in a single chart. With a bubble chart, you need to
decide which parameter is associated with the X-axis, which parameter is associated with the
Y-axis, and the bubble size (see Figure 5.25).

Figure 5.24
Datasets are chosen
for graphical display.

Figure 5.25
You can choose bub-
ble chart parameters
from the list boxes.

146 Chapter 5 Using Charts and Graphs to Represent Data

5

Bubble charts use size to represent a quantity. So how would you represent a negative quan-
tity with size? Does a circle implode in on itself and invert its color? Xcelsius 2008 does not
provide a particularly elegant solution for negative values. Basically, it shrugs its shoulders
and gives you a little dot that is non-changing in size.

Fortunately, there’s a workaround that allows for a relatively clean implementation. The
setup is quite simple. You position your data to display your X coordinates, Y coordinates,
and bubble size (see columns B, C, and D in Figure 5.26).

Figure 5.26
Setting up a bubble
chart to support
negative values.

The next step is to separate positive and negative sizes (columns E and F of Figure 5.26).
The respective formulas in columns E and F could be something like this:

=IF(D2>=0,D2,””) positive values in column E
=IF(D2<0,D2,””) negative values in column F

Next, create a data series for the positive and negative values (see Figure 5.27). (You’ll learn
the details behind the halo sensors shortly.)

In the Appearance tab, set the color of the positive data series to something like green and
set negative values to red. Choose whatever colors suit your needs.

In this particular example, all the data is static except for a single data point, whose size can
be adjusted with a slider to both positive and negative values. The X and Y coordinates for
this data point use formulas that incorporate the size. Consequently, the data point moves as
you adjust the slider, and the chart automatically rescales. This example is a little contrived,
but it helps to make the essential concepts and their implementation clear.

147Working with XY and Bubble Charts

5

Displaying Values of Individual Data Points
At this time, Xcelsius 2008 does not natively support the display of negative sizes. Negative values for bubble
size are rendered as tiny dots that never change size. In the preceding section, you used a little trick to fool
Xcelsius into treating negative size bubbles as if they are positive and at the same time, change their colors. This
size/color combination renders correctly, but Xcelsius still thinks the bubble size is a positive value. When your
mouse hovers over the “negative” size bubble, the hover text displays the correct X and Y coordinates, but the
negative value for size shows up as a positive number.

Rather than deliver a broken dashboard, it is better to turn off the mouse over text. But don’t despair. I know
another useful trick. By using the drill down capability of the bubble chart, it is easy to extract which point the
mouse is positioned over and push relevant data about the point, including the negative bubble size, to a table
that’s suitable for displaying the data. I call this technique the halo sensor. With this method, you surround
each data point with a thin ring, or “halo,” that is capable of sensing when the mouse is positioned over it. It
uses the drill down feature of the chart to identify which data point has focus. When the data point is identified,
its related information can be easily retrieved.

The halo is set up as a separate data series. It visually appears behind the positive and “negative” size circles. If
a halo were smaller than or the same size as these positive or negative circles, it would be eclipsed.
Consequently, the halo needs to be a larger size than the circle size for the data points. Doubling the size
seems to work well.

When you enable drill down, you may want to set the interaction options to mouse over instead of mouse click.
Incidentally, you can drill down with each of the series as long the insertion points do not overlap.

Figure 5.27
Properties of the data
series detailing nega-
tive values.

148 Chapter 5 Using Charts and Graphs to Represent Data

5

Working with Tree Maps
New to Xcelsius 2008 is the Tree Map component. Tree Map components simultaneously
use color and size to represent data pairs, such as median income level and employee
turnover. A Tree Map component is a collection of non-overlapping colored tiles that com-
pletely fill up a large rectangle (see Figure 5.28).

Figure 5.28
Tree Map compo-
nents display data by
size and color and
support drill down.

Each tile represents a row of data. Its size corresponds to the relative contribution of a spe-
cific measure, such as sales volume. The color of each rectangle can represent a different
kind of measure, such as profitability.

A Tree Map component automatically arranges the tiles based on size and then by color
or shading.

Tree maps are pretty, but unless you can easily connect them to data they use, their benefits
are limited. In a world where there are lots of different kinds of data to examine, it would be
nice to be able to choose datasets as easily as you can with the XY chart examples outlined a
few pages ago.

Figure 5.29 shows the spreadsheet used to create the dashboard shown in Figure 5.28. The
dataset in column C determines the tile size on the tree map. The dataset in column C is
used to set the shading of colors for each of the tiles. When you start thinking about placing
your data in two columns, one of which shows up as tile size and the other as tile color, the
setup of a tree map becomes particularly easy to envision. The greater complexity comes
about by shuttling data so that it is conveniently easy for a tree map to use.

Rather than reinvent the wheel, it makes sense to reuse spreadsheet designs already devel-
oped and vetted. You can use one of the spreadsheets already prepared in this chapter (refer
to Figure 5.23) for the tree map.

149Working with Tree Maps

5

In fact, the spreadsheet of Figure 5.25 was actually used to build this dashboard. Basically,
the data was swapped, and a few formulas were tweaked. There is also a little extra work
involved in drilling down to detailed information based on the selected tile.

Before we leave the topic of tree maps, I need to mention a few things about them:

■ The hover text in a tree map typically consumes a fair amount of screen space. It can
easily obscure other relevant data. For this reason, the drill down data is placed below
the tree map and not to the right of it.

■ When selecting colors for high and low values, try to stay in the same color family and
vary the brightness.

■ Each data series in a tree map consists of a pair of correlated datasets—one column for
the size and the other for color. If you want to add a second series, place the data imme-
diately to the right of the first data series.

■ The tile area, and not the tile length or width, is proportional to its underlying data. If
sales increased by a factor of 9, the relative length and width of the tile would increase
by a factor of 3. This is both a good and bad thing. Because the total area for the whole
tree map remains conserved, the other tile sizes get scaled down by a lesser amount.
Small values don’t get diminished so quickly. It is also more difficult to interpret
because we are used to linear proportionality, but in a tree map, tile size is proportional
to the square root of its underlying data.

While a tree map may be pretty to look at, it doesn’t do anything that an XY chart doesn’t.
Actually, an XY chart can be easier to interpret than a tree map. If you stop and think about
it, the data points in an XY chart are, by definition, already sorted.

Figure 5.29
The spreadsheet
setup for a tree map.

150 Chapter 5 Using Charts and Graphs to Represent Data

5

Issues and Techniques Related to Scaling
Xcelsius 2008 provides for auto-scaling of charts. This relieves you of the burden and drudg-
ery of manually setting a chart scale. Most of the time, auto-scaling works well, but if your
living is based on presentations and dashboards, you might want more fine-tuned control
than auto-scaling allows.

Consider the following data regarding estimates of manufacturing efficiency:

day production efficiency
7 59%
14 88%
21 91%
28 99%

Depending on real-world circumstances, the data scale that auto-scaling chooses may or may
not be appropriate (see Figure 5.30). In this example, the scale reaches 120%. In terms of
manufacturing efficiency, 120% is a physically meaningless quantity. Except for reporting or
rounding errors and incorrectly calculated estimates, manufacturing efficiency would not
exceed 100%.

Figure 5.30
Auto-scaling can go
well beyond the data
extremes.

The point here is that there will be times you will want to take charge of how Xcelsius
scales the data in your charts. With the aid of spreadsheet formulas you can design, you may
be able to create the scaling behavior you are looking for.

Exploring the Scaling Laboratory
Rather than try to explain the intricacies of the various permutations and combinations of
scaling settings, in this section I provide you with a scaling laboratory dashboard (see
Figure 5.31 or have a go at it with ch05_ScalingLab.xlf).

In the scaling lab dashboard, you have the option of specifying how minimum and maxi-
mum scales are handled.

151Issues and Techniques Related to Scaling

5

This dashboard has two data series, which are displayed in a combination chart. The data
used for the chart is displayed in a table (on the right side of Figure 5.31). Notice that two
of the data points in this table are shaded. You can adjust the values for the two data points
by using the vertical sliders immediately above the data table. The vertical sliders allow you
to dynamically adjust values plotted on the chart, so you can see what happens based on the
prevailing scaling behavior.

You set the scaling behavior by clicking the various options in the two list boxes near the
upper-left portion of the dashboard.

Here is a brief description of the various terms in the Minimum list box:

■ Use Minimum Value: This is the minimum value of all the data points displayed in the
data table. It includes the values from both series.

■ minValue - x%: This is the minimum value reduced by an extension factor. You can
adjust this extension factor by using the horizontal slider labeled Extension Factor near
the top-right side of the dashboard.

■ Min - x% of Delta: This takes the minimum value of all data points and sets the lower
limit of the scale to be a set percentage of the difference between the maximum and
minimum values of both data series. If all your data is concentrated over a narrow range
of values, this type of scaling would be appropriate.

■ Fixed Min of x: This hardwires the lower limit of the scale to a fixed number. You have
the option of setting this value by using a slider. Once you set it, the value is unchang-
ing until you decide to manually revise it.

■ Zero based: This option hardwires the scale’s lower limit to 0.

Figure 5.31
Chart scaling dash-
board for which you
can adjust the data
extremes.

152 Chapter 5 Using Charts and Graphs to Represent Data

5

The Maximum list box options are largely the equivalent of those in the Minimum list box,
except that they apply to the scale’s upper limit and tend to add rather than subtract values.
In addition, there is no zero-based equivalent for the Maximum list box.

N O T E
Keep in mind that if you don’t like the way Xcelsius is handling scaling—for example, if it
is creating scaling limits clearly beyond 100%—you need to be able to handle both the
upper and lower limits of the scale. You can’t get away with addressing only one side of
the spectrum.

Dealing with Vastly Different Values on the Same Chart
Sometimes you can get caught with having quantities such as 10, 100, and 60,000 in the
same chart. If you place these on a linear plot, the small values will virtually disappear. If
you are tabulating information such as loss or impairment of an asset and frequency of
occurrence, then you definitely don’t want to forgo treating the infrequent but very expen-
sive events in your data analysis.

Figure 5.32 shows government-published data on number of oil pipeline accidents versus
barrels lost in the United States during 2006. There is a remarkable level of linearity on the
upper limit for the number of accidents.

Figure 5.32
A LogLog scale (that
is, logarithmic scaling
on both the X- and
Y-axes) reveals struc-
tured relationship
over many orders of
magnitude.

Setting up logarithmic scaling is rather straightforward. You simply open the Scale subtab of
the chart’s Behavior tab and select Logarithmic for both Horizontal and Vertical Axis Scale
(see Figure 5.33). You can also experiment with applying logarithmic scaling for only one of
the axes.

153Issues and Techniques Related to Scaling

5

What happens if you keep both axes linear? The details for the smaller values are almost
completely lost because they are too small to be seen (see Figure 5.34).

Figure 5.33
Specifying logarithmic
scaling on an XY
chart.

Figure 5.34
The smaller values for
barrels lost are too
small to discern in
linear scaling.

154 Chapter 5 Using Charts and Graphs to Represent Data

5

Putting Visual Data Analysis into Focus
Before leaving this chapter on charting, I want to address a key point that has been nagging
at me ever since I started doing work with visual data analysis and dashboards. Many people
who work on dashboard design are literally consumed with cramming as much as they can
onto a single screen. They revel in the aesthetics of interface design and are quick to criti-
cize a dashboard layout without offering alternatives or workarounds.

Understandably, it is very easy to get consumed with the visual interface and its aesthetics.
One of the major premises of the dashboard is that an executive or a decision maker who
uses it may have a limited opportunity to closely examine details, so the dashboard has to
bring together all the information in one place. The information has to be easy to consume.

Focusing on the interface design without taking into account the mechanics, tasks, and prac-
tical challenges of building the visual interface is like coming up with a requirements docu-
ment: It is a starting point but not a solution.

One of the alluring features of Xcelsius is that you can use it to harness a spreadsheet engine
to intelligently and dynamically feed the dashboard visual display with appropriate informa-
tion when and where it is needed. When information moves in such a fluid fashion, you can
begin relaxing the all-consuming need to cram data onto a single screen. This, in turn, helps
you sensibly design your dashboards and visualizations with greater simplicity and clarity.

Closing Thoughts
The goal of visual data analysis is to make obvious implicit and otherwise difficult-to-discern
relationships. I started out this chapter by saying that every dashboard should have a story to
tell. Sometimes, it’s the dashboard designer who knows exactly what has to be said and is in
need of a way to masterfully present the message. Other times, the dashboard lets the data
speak for itself, by making it easy for the end user to examine and explore the data with ease
and turn over stones that would otherwise be left untouched. I refer to the latter as “planned
serendipity.”

This chapter presents key issues, possible strategies, useful techniques, and hidden gotchas
that tend to come up when presenting data visually. Along the way, many of the principles
and techniques are shown in action.

The best place to begin is to ask, which components do I use? Then you can tackle, how do
I tame the data? One answer is to put the data on a timeline. In this manner, you can see
trends but not be overwhelmed by a dizzying array of distracting information competing for
your attention.

In some cases a dashboard may be otherwise well designed, but the cosmetics get in the way.
Xcelsius automatically enables data animation, which gives the dashboard a certain coolness
and is designed to “wow” the audience. Unfortunately, when you are trying to analyze pat-
terns and trends, the jittery behavior of this feature can be downright distracting!

155Closing Thoughts

5

As you get more sophisticated in your dashboard skills, you are bound to combine several
components so they work as one. People often forget to make components visually blend
together as if they are one larger component. Sometimes all it takes to glue them together is
a single visual background. Sometimes it makes sense to stack data together so you can see
all the data together at one time. Stacked data and its components become further empow-
ered when you can drill down to get at the underlying details.

A common perceived limitation of pie charts is that they are only well suited to situations in
which the various slices of the pie are roughly similar in size, and there are not too many of
them. However, by dynamically grouping the smallest slices, you can use pie charts in many
other situations as well.

Many of the Xcelsius charting components, such as column charts, are designed to handle
histogram-like data where one of the axes is continuous, and the other varies in discrete
measures or categories. There are times when it is necessary to get more quantitative and
display two or more measures. This is where XY charts, bubble charts, and tree maps come
into play. Standing behind these charts can be a variety of different kinds of datasets, waiting
to be visually mixed and matched. I introduce a technique of using correlated list boxes to
seamlessly select the datasets to be displayed. This technique takes context switching to an
extreme.

In this chapter, you saw a solution for rendering bubble charts when the bubble sizes have
negative values. You also learned how to set up tree maps. In addition, you learned about
chart scaling because it is important to be able to fully control a dashboard’s visual elements.

The theme of visual elements continues into Chapter 6, “Single Value Components: Dials,
Gauges, Speedometers, and the Like.”

This page intentionally left blank

6CHAPTER

In this chapter

Single Value Components:
Dials, Gauges, Speedometers,
and the Like
In this chapter

Understanding the Single Value Components 158

Working with Sliders and Progress Bars 159

Working with Dials 166

Working with Gauges 171

Working with Spinners 175

Closing Thoughts 176

158 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

Some of the favorite Xcelsius features among many dashboard users are gauges and dials.
There is also a community of dashboard users who look at the very same gauges and dials
with disdain because they quickly gobble up valuable screen real estate. It is true that they
can consume a significant portion of your screen, but there is no need for this to be prob-
lematic. There are things you can do to from an interface design perspective to ameliorate
such concerns. This chapter explores a number of strategies. Before embarking on this
mission, though, I want to introduce you to the feature sets of these components.

Understanding the Single Value Components
One of the key features of Xcelsius is the ability to tap into and control an underlying
spreadsheet by using visual components on the canvas. One of the categories of components
is referred to as Single Value components. Interestingly, Dual Sliders are lumped together
with Single Value components, even though they drive two values on the spreadsheet, not
just one.

In the Xcelsius Nova theme, there are eight visually distinct kinds of dials and gauges. There
are also horizontal, vertical, and dual sliders (see Figure 6.1). Not all Xcelsius themes have
this variety of components. Table 6.1 shows the number of Single Value components, by
type, for each of the various themes.

Figure 6.1
Single Value compo-
nents in the Xcelsius
2008 Nova theme.

159Working with Sliders and Progress Bars

6

Table 6.1 Single Value Components for Various Xcelsius Themes

Admiral 1 2 2 1 2 1 1 1 1 2

Aero 1 1 2 1 1 1 1 1 1 1

Aqua 4 2 6 2 2 1 2 2 2 2

Elan 1 1 2 1 1 1 1 1 1 1

Graphite 1 1 2 1 1 1 1 1 1 1

Halo 1 2 1 1 1 1 1 1 1 1

Nova 8 2 8 1 2 1 1 1 1 2

Windows Classic 1 1 2 1 1 1 2 1 1 1

Th
em

e

D
ia

l

D
ua

l
Sl

id
er

G
au

ge

H
or

iz
on

ta
l

Pr
og

re
ss

B
ar

H
or

iz
on

ta
l

Sl
id

er

Pl
ay

Co
nt

ro
l

Sp
in

ne
r

Ve
rt

ic
al

Pr
og

re
ss

B
ar

Va
lu

e

Ve
rt

ic
al

Sl
id

er

C A U T I O N
When you switch themes, you need to pay close attention to whether the components
translate correctly. As you switch themes, the components do not uniformly translate to
similar counterparts in the respective theme. For instance, the Nova theme has eight dis-
tinct types of dials, and the Aqua theme has four. For example, if you render a dash-
board with the Nova theme, using all eight types of dials, and then switch to the Aqua
theme, your dials will translate to only four distinct types of dials.

The Single Value components category includes sliders, progress bars, dials, gauges, spin-
ners, values, and play controls.

Working with Sliders and Progress Bars
The concept of a slider is really simple. You use it to adjust the value of a single data or
input cell on the underlying spreadsheet. The data or input cell must be a numeric value
and cannot contain a spreadsheet formula.

A slider is composed of a slider line, which may be decorated with tick marks, and a slider
bead or marker. In addition, a slider can display a slider title, limits, and a value, which can
be individually formatted and positioned.

When the user moves the bead on a slider or clicks the slider line, the value of the data cell
is replaced with the slider value where the mouse button is released. In practice, sliders
behave simply and intuitively.

160 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

Simple Sliders
In essence, there are two types of sliders: horizontal and vertical. The primary difference
between the two is the layout. Horizontal sliders allow the bead of a slider to move back and
forth along a horizontal line. Vertical sliders allow movement of the bead up and down
along a vertical column.

When thinking about sliders, progress bars, dials, and gauges, remember that multiple
Single Value components can target a common data cell in the underlying spreadsheet. For
example, you could have a horizontal slider setting the value of cell A1. Meanwhile, you
could place a vertical slider that also sets the value of cell A1. If your dashboard user sets the
value of the horizontal slider from 20 to 50, the bead on the corresponding slider automati-
cally moves from 20 to 50. Visually, this is cool. However, if you are not careful, this can
have some unexpected behavior. Say that your horizontal slider has limits set to the values of
0 and 100, and your vertical slider has lower and upper limits of 0 and 500. As long as the
value of either slider stays between 0 and 100, everything behaves normally. What do you
suppose will happen if you position the value of the vertical slider to 394? The vertical slider
behaves normally, but the horizontal slider appears to hit a virtual wall when the slider value
exceeds 100 (see Figure 6.2).

Figure 6.2
Problems can arise
when two or more
components target
the same cell.

Although the cosmetic appearance of the dashboard is a bit askew, the behavior of the
underlying spreadsheet is not in jeopardy. In this example, the vertical slider sets the value
of cell B1 to 394. However, when the value of cell B1 exceeds 100, the horizontal slider isn’t
equipped to visually render this value, even if the value is 100.000000002. The significance
of this issue could be an almost trivial issue. On the other hand, it could point to a critical
flaw in the dashboard design.

Needless to say, you are not going to carelessly set up your dashboard if you can help it.
Some dashboards can have many visual components and moving parts, which can make it
difficult to see when something is out of alignment. For example, the value of cell A1, when
set by a slider or another component, could be 100.02. You’re going to have a problem on
your hands if you have a formula in your spreadsheet like this:

=SQRT(100-A1)

161Working with Sliders and Progress Bars

6

The spreadsheet will not handle the square root of a negative number.

There are a couple ways to guard against these kinds of problems. When you know for cer-
tain that some quantity should not exceed or fall below a threshold, you can build in some
alerts. One way is to build an implicit, or “inline,” alert within the slider component (see
Figure 6.3).

Figure 6.3
Setting up a value-
based alert within a
visual component.

You can also set up an explicit alert through an independent computation. In this example, a
message alert is computed with the following formula:

=IF(B1>B3,”You are over the limit by “&(B1-B3)&”!!!”,””)

In addition to building in alerts, you can proactively keep things in sync by linking the lim-
its to spreadsheet cells. In this example, the upper limit for both the horizontal and vertical
slider could be set to cell B3. This would prevent the sliders from being misaligned should
the need arise to change the limit from 100 to some other value.

Exotic Sliders
On occasion, you may need to create what can be legitimately called an exotic slider—a
slider that exhibits a more complex behavior than is normally expected of a generic slider.
Let’s look at the essential construction for negatively directed sliders and smart sliders.

162 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

Negatively Directed Sliders

The basic behavior of a slider is relatively straightforward. In a horizontal slider, the slider
value increases as the marker bead moves from left to right. But what if you want the slider
value to increase when the bead moves in the opposite direction? Although a generic slider
cannot support this type of functionality, you can easily set up a negatively directed slider.
Here’s how you do it:

1. Place a horizontal (or vertical) slider on the canvas. In the Text subpanel of its
Appearance tab, uncheck Values and Limits.

2. Map the slider data value to one of the spreadsheet cells (for example, cell A1).

Type in the values for the lower limit and the upper limit in the spreadsheet cells of
your choosing. In this example, I use the cells A2 and A3, respectively. Do not map the
slider limits to these cells.

3. Shift the slider limits so that they start from the value 0 up through A3 minus A2. For
convenience in this example, place the 0 in cell A4 and set the formula in cell A5 to this:
=A3-A2

In the slider properties, map the lower limit to cell A4 and the upper limit to cell A5.
You could hardwire the value 0 to the lower limit, but it is better to map it to a spread-
sheet cell so that you have the option of changing the slider limits through a computa-
tion later on, if needed.

4. In a cell of your choice (cell A6 in this example) type in the following formula:
=A3-A1

Place a Label component next to the horizontal slider where a slider value would be
typically positioned, as shown in Figure 6.4, and map the label’s text to cell A6.

Figure 6.4
Setup of a negatively
directed slider.

As the slider bead shown in Figure 6.4 is moved all the way to the right, the value slides
down to 100.

Smart Sliders

There’s an interesting problem that is not easily handled in Excel but is almost trivial to set
up in Xcelsius 2008. From time to time, you may have several quantities whose values are
mutually interdependent on one another. Let’s look at an example.

163Working with Sliders and Progress Bars

6

Say that you have four projects. You are expected to set up and allocate a budget for each of
the projects so that the aggregate is $10 million—nothing over, nothing under. How do you
set this up in a spreadsheet so that you are guaranteed not to exceed 100% of the available
funds? Oh, and you have to do this without using macros, as Xcelsius 2008 doesn’t support
them.

Tackling this problem is not exactly simple. If you think about it for a moment, an “If over
the budget then alert” strategy isn’t going to be a terribly effective way to allocate a budget.
The difficulty in Excel stems from the fact that there is no easy way to restrict how much is
still available to spend. Managing user interaction with the underlying spreadsheet model is
precisely what Xcelsius 2008 excels in (no pun intended).

Perhaps the simplest way to think of this is in terms of percentages. You have four projects,
A, B, C, and D. The total available budget for the four cannot exceed 100%. If Project A is
allocated 5%, B is 12%, C is 34%, and D is 17%, you have used up 68% of the budget. You
still have another 32% to go. If you choose to put all this remaining amount into Project A,
then you can have, at most, 37% (= 5% + 32%). If you choose to put all this remaining
amount into Project B, then you can have at most 44% (= 12% + 32%). With Project C, it
would be 66% (= 34% + 32%), and with D it would be 49% (= 17% + 32%).

If you translate this into sliders, Project A would be allowed to vary between 0 and 37%,
Project B between 0 and 44%, and so forth (see Figure 6.5).

Figure 6.5
A smart sliders setup.

In the example shown in Figure 6.5, the sliders for Projects A through D vary between 0
and some value under 100%. For Project A, the maximum slider value is as follows:

=B3+B8
=PercentageForProjectA+TotalUnallocatedPercentage

164 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

For Project B, it is as follows:

=B4+B8
=PercentageForProjectB+TotalUnallocatedPercentage

The maximum slider values for Projects C and D follow a similar pattern.

Because the maximum slider values for each of the four projects are refreshed as any of the
slider values are revised, there is never any chance that the values will fall out of sync. That
is, as you allocate more for Project A, it dries up what is available for Projects B, C, and D.

Because the sliders in this example are pegged to percentages, the budget amount for each
project is calculated separately and concatenated to the project name.

The whole idea behind smart sliders is that you can use them to make a bunch of compo-
nents cooperate in satisfying simultaneous constraints.

Dual Sliders
Dual sliders are like horizontal sliders except that they can select two values over an interval.
One of the nice features of a dual slider is that the values of the marker beads are displayed
next to the markers and travel with them as they move along the slider. There is no vertical
dual slider, only a horizontal one.

Spend a moment reflecting on the kinds of applications a dual slider could facilitate:

■ A dual slider could be used as a kind of magnifying glass to examine data over an
interval (see Figure 6.6 or open the ch06_DualSlider.xlf file)

■ You might be projecting sales for two scenarios, one optimistic and the other conserva-
tive.

■ You might have a pie chart of customer sales and want to characterize the top-tier,
middle, and bottom-tier customers.

Notice in Figure 6.6 that the minimum and maximum values along the X-axis match the
slider values.

In situations involving sliders and dials, you may want to run an animation over a range of
values. You can use the Play Control component for this purpose. For example, the file
ch06_PlayControl.xlf provides an example that targets the plot start cell B2 and “plays”
values set within the General tab of the Play Control component. In this case, the values
have been set to vary between 950 and 1010. Notice in Figure 6.7 that Play Time is set to
60 seconds. (Note that the Play Time setting controls the total animation time, not the time
between increments.)

In you want to achieve a smooth animation between frames, you set Increment to a small
value. In this example, Increment is set to 0.1. If you want your animation to feel more like
a slide show, you set Increment to a larger value.

165Working with Sliders and Progress Bars

6

Before moving on to the next topic, let’s look at one more example of how you can use a
dual slider. Say you have sales information for 50 customers, sorted from highest to lowest.
If you tried to place this information on a pie chart, it would appear a bit busy. It might be

Figure 6.6
Using a dual slider as
a data inspector.

Figure 6.7
Setting the behavior
in a Play Control
component.

166 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

simpler to aggregate sales into three categories: top-tier customers, middle-tier customers,
and bottom-tier customers. And what might you use to split sales into the three groups? A
dual slider would be a natural for this.

You could set your dual slider to choose values from 2 to 49. (You wouldn’t use 1 to 50
because you want to ensure that you always have a customer in the top tier and in the
bottom tier.) You could use a SUMIF function to determine sales for the top and bottom
tiers. The formula for the top-tier customers would be something like:

=SUMIF(ColumnOFSalesRank,”<”&SliderVal1,SalesData)
=SUMIF(A10:A59,”<”&E10,C10:C59)

The middle-tier sales would be computed by subtracting the top and bottom tiers from the
total sales. These values could be presented in a pie chart, as shown in Figure 6.8.

Figure 6.8
Using a dual slider to
aggregate customer
sales based on
sales rank.

Progress Bars
Progress bars are just about the functional equivalent of sliders. While you could use
progress bars as a meter or thermometer, you could also use them for data entry because
progress bars have a Data field, much as sliders do.

Working with Dials
A dial is essentially a slider wrapped around a circle, with the marker converted into a
needle or dial pointer. If you are planning on heavily using dials in your dashboards, you
should spend a little time experimenting with the different dial appearances available in the

167Working with Dials

6

dashboard themes. For example, the Nova theme has eight kinds of dials, and the Aqua
theme has four. Because a dashboard bound to a spreadsheet can render only one theme at a
time, it is not possible to mix and match visual components across themes.

Like a slider, a dial has a title, a value, lower and upper limits, and an increment size. There
is no horizontal or vertical nature to dials; however, they do have something called mouse
tracking. There are two types of tracking: vertical and radial. In vertical tracking, the dial
responds to a straight up/down motion. In radial tracking, the dial responds as if you were
physically rotating the dial knob. You should experiment with both types of settings to
determine which kind is best for your dashboard. As a dashboard user turns a dial knob, a
visual icon is displayed next to the mouse pointer, indicating whether the dial is set to radial
or vertical tracking. In radial tracking, the dial needle always points toward the mouse, and
the mouse pointer changes to a circular arc with an arrowhead (see Figure 6.9).

Figure 6.9
A dial with radial
tracking enabled.

Scaling Dials, Gauges, and Sliders
You may have noticed that the scaling options for your dials, gauges, and sliders are set to
manual. You can set the dial minimum and maximum limits to numbers of your choosing.
You can also have a dial read the limit directly from your spreadsheet. Having the ability to
dynamically set the dial limits offers tremendous flexibility.

If the benefit is not immediately evident, consider the following. Your dial could be used to
allocate funds you might invest in some financial venture. The amount of money you might
invest would likely be capped based on liquid assets, your personal credit limit, your margin
requirements, or some other factor. The point is, the maximum limit for the dial could be
different for each person. It might require some complex computation based on a wide vari-
ety of factors that could change as the user enters information in the dashboard. (For exam-
ple, if you start allocating funds for other ventures, the amount available for new ones
would be diminished.) It is in precisely these kinds of situations that tapping into the rather
hidden spreadsheet capabilities makes your dashboards and visualizations shine.

Auto-Scaling

In addition to manual scaling, which really should be thought of as customizable scaling,
you can use auto-scaling (see Figure 6.10).

168 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

You want to use auto-scaling when you may have to vary a value with your dial or slider but
have not established a maximum or minimum limit. Auto-scaling computes limits so that
you can vary values of your dial or slider in a meaningful and useful fashion. The same holds
true of gauges, but the focus on gauges is on establishing the displayed minimum and maxi-
mum values.

Figure 6.11 gives you a sense of auto-scaling based on the same initialization value.

Figure 6.10
Auto-scaling options
for dials, gauges, and
sliders.

Figure 6.11
Comparison of how
different auto-scaling
options render.

Enhancing Your Dials
The following sections outline a couple quick points about incorporating dials in your dash-
boards and then describe an important strategy that remedies a major criticism commonly
leveled against dials, gauges, and similar components.

Getting a Little More Mileage from Your Dials

Notice that Figure 6.11 includes a reset button. A reset button is very handy as a develop-
ment tool in calculator-type dashboards and simulation analysis. It gives you the ability to
return your dashboard to exactly the state it was in when it was first opened.

The visual appearance of a dial is enhanced when it is framed. In Figure 6.11, I placed
lightly shaded rectangles behind the dials. Having a heavily dark or black border for the
shaded rectangle can be distracting and turn attention away from the dial and dial values.
A discernable but not overwhelming gray, on the other hand, helps create a sleek and

169Working with Dials

6

professional appearance. In addition, the tick marks that surround the dial can sometimes
lack sufficient contrast against its background. Don’t be afraid to tweak the dial’s appearance
to achieve better visual clarity.

Dial Sharing: A Best Practice Strategy
There’s no denying that dials and gauges, as pretty as they are, gobble up a significant amount of screen space.
It would be difficult to prepare a serious dashboard if you attempted to display a dozen dials at one time.
Problems like this are unsolvable unless you are willing to be a little imaginative.

If you have several dials on a dashboard or visualization, you are only going to turn the knobs of these dials
one at a time. This means that while one of them is actively being turned, the others are sitting around waiting.
In reality, you should only need one dial if it can be made to control more than one parameter. Basically, you
need only a single dial to control a range of spreadsheet cells.

The Details Behind the Shared Component Framework

This section provides an example of the Evolving Technologies Corporation (ETC) Shared
Component Framework. This section is intended for those who want to understand the
technical details of the framework. If you just want to apply the framework without the gory
details, you can skip to the next section.

A Dial component (or any other component that is to be shared) wants to target or set
the value in a single spreadsheet cell. In the example used here (and provided in the
ch06_SharedDial.xlf file), the target or data cell is C3. The dial isn’t concerned with what’s
going on in the rest of the dashboard or underlying spreadsheet. All it knows is C3’s value
and that, when you turn the knob, the value in that cell is going to be adjusted. The dial, of
course, can read the contents of other spreadsheet cells to retrieve the dial’s title, upper
limit, lower limit, and increment. For now, you can focus on the dial’s value in cell C3.

The key to using just one dial to set values across multiple cells lies in context switching.
Because a dial operates on one cell, why not fetch data for a particular context, make note of
it, and modify the original source? Figure 6.12 illustrates this setup. The input cells for the
dial are all in column C. Columns E through H hold the bank of values waiting to be
fetched for use by the dial.

When the user clicks one of the radio buttons below the dial, cell C1 is refreshed with the
current radio button position.

If you click the first radio button (labeled North), the value 1 is placed in cell C1. If you
click the second radio button, East, the value 2 is placed in cell C1. Clicking the third radio
button places the value 3 in cell C1, and clicking the fourth radio button places the value 4
in cell C1.

This clicking triggers the fetching process. The fetch is accomplished using the following
OFFSET formula:

=OFFSET(D3,0,C1) formula for cell D3

170 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

If the value of C1 is 1, then the data in the first column of E through H is pulled into
column C. At this point, the dial is able to read and change the values in cells C2:C6.

Each of the cells in E7:H7 checks whether the current context number matches the value in
row 1. This formula is in cell E7:

=IF(E$1=$C$1,$C3,E3)

Basically, the formula says “If my column is the same kind of data that the dial is working
on, then retrieve the latest value set by the dial; otherwise, keep the data I already have.”

Finally, the Source Data component copies the row data in cells E7:H7 and places it into
E3:H3.

Using the Shared Component Framework in Your Dashboards There are basically
four elements to the Shared Component Framework:

■ The context switcher: The example shown in Figure 6.12 accomplishes context
switching through the use of radio buttons. You can instead use other components, such
as list boxes, menus, spinner controls, and even other dials.

■ The shared component: The shared component does not need to be restricted to a
dial or gauge. It could be a slider, an input field, or just about any selector or Single
Value component.

■ The data bank: This is the list of values that is retrieved when the context of the
shared component is switched. It is important to have an identifiable ID or context
number. In the example, this corresponds to cells E1:H1.

Figure 6.12
Setup of the Shared
Component
Framework. (Printed
with permission of
Evolving Technologies
Corporation.)

171Working with Gauges

6

■ The updater facility: This consists of a row of formulas that keeps the most up-to-date
values around and uses the Source Data component to update the data held by the
data bank.

Take a look at the example in file ch06_SharedDial.xlf to check all the individual settings.

The ETC Shared Component Framework provides a number of advantages:

■ It can significantly reduce component redundancy, which simplifies the design, deploy-
ment, and maintenance phases for your dashboard. This also reduces the life cycle cost
associated with dashboard production.

Design and maintenance are simplified because you’re not toiling with an overabun-
dance of components. The reduction in the number of components on your dashboard
canvas leads to a simpler, sleeker design. Updating the look and feel is simpler, as you
need to make changes in only one place.

Deployment of your dashboards should be simpler to manage. File size gets reduced as
you can replace many dozens of components with a handful. Because the number of
components could be drastically reduced, the dashboard computation speed could
improve.

■ The settings in each of the contexts have memory. That is, when the shared component
switches from one context to another and back again, it doesn’t forget the most recent
settings.

■ The construction of a shared component is relatively easy to do. It involves remarkably
few formulas.

Working with Gauges
Gauges are similar to dials, but they are essentially intended to be readout devices rather
than input devices. Actually, gauges can also be used as input devices because you can “grab”
an indicator needle of a gauge and move it, forcing the value in the underlying spreadsheet
to be changed.

There’s a new feature in Xcelsius 2008 that you won’t find in its predecessors. If the data cell
that’s targeted by a gauge happens to have a formula in it, what do you suppose will happen
if you grab and drag the indicator needle of the gauge? The value gets overwritten, but the
formula in the spreadsheet cell is left intact. The very next moment, the formula computa-
tion is refreshed, and the result of the formula computation overwrites the previous data
value. This is kind of an amazing feature. It allows for all sorts of imaginative dashboard
designs.

Using Gauges
Although you can apply a shared component framework with gauges, it may not be neces-
sary to get so elaborate. Figure 6.13 and the file ch06_GaugeViewer.xlf shows how you can

172 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

punt information over to a single Gauge component. The dashboard user can click any
month in the list box or select a row in the spreadsheet table. Based on the region selected
from the radio buttons across the top, the gauge depicts the percentage increase or decrease
of actual sales versus projected.

Figure 6.13
Gauge Viewer gets
data for any chosen
month and geo-
graphic region.

There are some features you may want to harvest from this dashboard. For example, the
gauge provides a conditional alert (see Figure 6.14).

In this case, the alert is based on a value. Notice that automatic colors are not enabled. The
radio button High Values Are Good is selected, and the only alert location is the gauge
background. You can change the marker (the gauge needle) as well as the value displayed in
the gauge.

As an added touch, there is a Trend Icon component in an empty space on the gauge. The
Trend Icon component conveys information using both color and arrow direction.

With this dashboard, you can click a row in the spreadsheet table and have the regional data
for the corresponding month placed in both the combination chart and the gauge. The
monthly data only begins in the third row of the spreadsheet table. The first two rows are
headers. In the component’s Behavior tab, you can tell the component to start selecting
from the third row (see Figure 6.15).

There’s a little wrinkle here. When you push the position of the selected row, the position
starts with the value 3 for January! This is because the spreadsheet table has two header
rows. You need to convert this to an offset. If the cell coordinates to which the position is
pushed is A7, you can create a formula like this in a neighboring cell:

=A7-2

173Working with Gauges

6You can then use the Source Data component to punt this over to where it would be used by
the chart and gauge. I leave you to explore the details in the ch06_GaugeViewer.xlf file.

Figure 6.14
Setting a value-based
alert for a gauge.

Figure 6.15
Setting a spreadsheet
table to allow selec-
tion starting in the
third row.

N O T E
Let’s talk a little about strategy. You could design a dashboard with the spreadsheet table
pushing out a spreadsheet row instead of the select row position. Both of these
approaches work. If you opt for the row contents, you are working directly on the table
data. If you reference a position, you are using metadata. Because the source data is
actually shown in the table, neither strategy is better than the other. If the data shown in
the spreadsheet table is not laid out the way you need it for further analysis, or if you
need to retrieve corroborating information not displayed in the spreadsheet table, then
the metadata approach may better serve your needs.

174 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

Constructing Wraparound Gauges
One of the perceived disadvantages of gauges is that you hit a barrier when you try to reach
or exceed 360 degrees. But you actually can exceed 360 degrees, and it’s not at all difficult
(see Figure 6.16).

Figure 6.16
A wraparound gauge
lets you break the
360-degree barrier.

Here is the basic idea: Most gauges are set to a maximum and minimum angle of plus or
minus 130 degrees. (And for dials, it is generally plus or minus 140 degrees.) You can find
this setting in the Layout subtab of the gauge’s Appearance tab. You can simply change the
minimum angle to 0 and the maximum angle to 360.

In the Gauge component’s General tab, you set the minimum and maximum limits to 0 and
359, respectively. Because you are starting from 0 and need to adjust your needle up by 360
positions, the maximum value winds up being 359. Don’t worry about 360 being missing in
this case; when you hit 360, the needle would be pointing to 0.

You need to map the data field of your gauge to a spreadsheet cell. In this example, it is set
to cell B4. Cell B4 needs to take some value conceivably greater than 360 and map it to a
360-degree measure for the gauge. If the starting value is 405, you would have a formula
like this:

=MOD(405,360) returns 45

The needle on your gauge would be pointing at a 45-degree angle.

175Working with Spinners

6

Of course, you don’t want to hardwire the value 405 in the formula; you would set it to the
value of another cell in your spreadsheet, perhaps B3. Now your formula looks like this:

=MOD(B3,360)

You can set the value of cell B3 by using any standard component, such as a slider. In this
example, I have a slider that can change the value of cell B3 from 0 to 1800, a value well
beyond 360.

That’s all there is to creating the wraparound gauge. If you want a little more functionality,
you can make use of dynamic visibility so you can see how many times you’ve gone around
the gauge. You’ll learn more about dynamic visibility in Chapter 7, “Using Multi-Layer
Visibility in Your Dashboards and Visualizations.”

You should be aware that although the wraparound gauge is fixated on a value between 0 and
359, the true value (cell B3 in the current value) is always available to the rest of the spread-
sheet and dashboard.

Working with Spinners
Before leaving the topic of Single Value components, I want to show you a way to get a little
more mileage out of a spinner. The technique is a hack and doesn’t really constitute a best
practice. But because it is elegant and it works, I include it.

If you read through Chapter 3, “Getting Familiar with Xcelsius 2008,” you’ll be familiar
with date arithmetic. To quickly recap, Excel is able to calculate with dates by automatically
converting them into numbers. If July 7, 2009, gets converted to the number 40001, then
July 14, 2009, has a serialized day number of 40008. So if you want to advance your calendar
by 7 days, you need only nudge the value 40001 by seven increments of 1.

Although it may be easy for a computer to work with numbers and date arithmetic, it is defi-
nitely not so easy for the majority of people. A Spinner component can increment a number
such as 40001 and at the same time show a text representation of the day number in its title
field. When you use a spinner in a dashboard to advance a date, the only one who needs to
know the day number is the computer. You can hide the spinner’s Value field by changing its
font color to the same as its background, white. In the text properties of the spinner’s Title
field, you adjust the X- and Y-offset so that the spinner’s title is positioned inside the control
(see Figure 6.17).

When the dashboard is run, the spinner appears to be text based. Having the title positioned
inside the Spinner doesn’t prevent you from selecting the numeric value and changing it.
You have to know that there is a number in the value field that can be selected and edited.

176 Chapter 6 Single Value Components: Dials, Gauges, Speedometers, and the Like

6

Closing Thoughts
This chapter covers a broad subcategory of components in Xcelsius 2008 called Single Value
components, including sliders, progress bars, dials, gauges, spinners, values, and play
controls.

Rather than trying to explain the full feature set, this chapter outlines key features you will
likely need to know and then explores how to incorporate those components.

Because sliders, dials, and similar components are hooked into spreadsheets and dynamically
changing data sources, not everything plays out in a fixed or restricted set of values. Unless
you build some smarts into a slider, it is not going to know how to automatically adjust its
limits so that, say, 100% of some budget or other quantity is never exceeded. This is where
such design considerations are critical. It is here where the visual elegance of the dashboard
and the analytical prowess of the spreadsheet engine come together. And this is where I
make explicit the techniques, strategies, and best practices for building effective dashboards.

In particular, I provide an example of highly efficient component reuse: You can use a single
dial or slider to set the values of many dozens of parameters in a dashboard or visualization.
The technique lends itself to many situations and is not locked into sliders and dials.

Xcelsius 2008 gives you license to be creative with your dashboards and visualizations. The
negatively directed slider is an excellent example of this. It is an almost trivial variation of a
regular slider. In the horizontal version of this slider, increasing the value of the slider’s data
is done by moving the marker from right to left instead of left to right. For example, in a
business setting you might be simulating two competitors vying for the customers’ business.

Figure 6.17
Setup of a text-based
spinner.

177Closing Thoughts

6

For a fixed-size market, it’s a tug of war between the two competitors who want to capture
the market share. Having two sliders, one positively directed and the other negatively
directed, sandwiching a finite and depletable customer pool or resource is a wonderful visual
representation of this problem. Using two positively directed horizontal sliders is not nearly
as exciting or intuitive in this situation.

The component construction techniques and practices outlined in this chapter and through-
out the rest of this book are vehicles to help make your data, your analyses, their characteri-
zation, and conclusions crystal clear.

Chapter 7 deals with multi-layer visibility. You’ll learn how to orchestrate the visibility of an
ensemble of components with precision.

This page intentionally left blank

Xcelsius 2008 Best Practices and
Techniques

7 Using Multi-Layer Visibility in Your Dashboards and Visualizations 181

8 Managing Interactivity 203

9 Xcelsius and Statistics 229

10 Financial Analysis 257

11 Maps in Xcelsius 275

12 Smart Data and Alerts 297

13 Working with Less-Than-Optimal Data 315

14 Other Dashboard Techniques and Practices 337

IIPART

This page intentionally left blank

7CHAPTER

In this chapter

Using Multi-Layer Visibility in
Your Dashboards and
Visualizations
In this chapter

Taming Complexity and Usability by Making Presentations Compact 182

Controlling the Visibility of Individual Components in a Dashboard 188

Managing Multi-Layer Visibility 192

Closing Thoughts 200

182 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

Dashboards are tools for conveying and analyzing information visually. As a dashboard gets
more sophisticated, there is an increasing tendency to wind up with more moving parts and
more visual components to manage. Xcelsius 2008 compounds the picture by incorporating
an underlying spreadsheet, and the components seem to have a mind of their own.

This chapter is all about handling complexity in dashboard design so that your dashboards
and visualizations behave with simplicity. There are simple strategies for managing complex-
ity. One approach involves containment through tab sets. Another is context switching.
Xcelsius 2008 offers another feature that gives you great precision in your dashboard’s
behavior: dynamic visibility for each individual component. This fine-grained control is
amazingly powerful. Unless you have a methodology for managing complex behavior,
controlling visibility quickly becomes unwieldy. The framework outlined here is called
multi-layer visibility.

Taming Complexity and Usability by Making
Presentations Compact

At some point, you might want to beef up the complexity and capabilities of your dash-
boards, scorecards, and visualizations. Xcelsius 2008 allows you to add as many components
to a dashboard as you like, and each can be performing a different task. Using more moving
parts in your dashboards and visualizations enables greater capabilities, but you don’t want it
happening at the cost of needless clutter.

Managing Complexity Through Containment
The Tab Set component introduced in Chapter 3, “Getting Familiar with Xcelsius 2008,” is
one of the easiest-to-use facilities for helping manage complexity. It allows you to create
multiple views in a footprint. Working with a Tab Set component requires very little skill:
You simply place a Tab Set component onto the canvas, position and size it, and then drop
visual components inside each of the tab views.

While working with a Tab Set component in the workspace, the component can be in one
of two visual states: Its visual context can be set to the exterior visual rim or the interior con-
tents of a selected tab. When you first place a Tab Set component onto the canvas, its focus
is set to the exterior mode. The telltale sign is that you see a + and - pair of icons hovering
just above the tabs (see Figure 7.1).

Initially, there is only one label, Tab 1. (Don’t worry about changing its name right now;
I’ll show how to do that shortly.)

If you want to add more tabs, you just click the + icon, and you are prompted for a tab
name. The tab label gets appended to the immediate right of whatever tab label currently
has focus. When you become familiar with Tab Set components, you’ll find that working
with tabs is easy.

183Taming Complexity and Usability by Making Presentations Compact

7

You can name tab labels as you add them. At first glance, it appears that the first tab label
is hardwired to the name Tab 1, and it is not immediately evident that the name can be
changed. To change the name, you just click the “interior” canvas of the first tab to open its
properties panel. You can change the tab’s Label field by typing in a name or by linking it to
an underlying spreadsheet cell.

You can rearrange the tab order by reordering components within the Object Browser.
Simply select the reference to the appropriate tab canvas in the Object Browser and use the
+ and - keys on your keyboard to rearrange the order of the tab within the Tab Set. Pressing
the + key shifts the tab to the right and pressing the - key shifts it to the left.

The individual tabs can only be placed along the top of the Tab Set component, but they can
all be left-, center-, or right-aligned. You can set the tabs so that they are in boldface, italics,
or any other format you desire.

Creating all these tabs is wonderful, but what you want to do is place different content into
each tabbed panel. To move a component into one of the tabbed panels, just click the tab
label so that it has focus. Next, click or select the components you want to move into the
Tab Set component and drag the selected components inside the Tab Set component.

Moving a component from one tab to another involves dragging the component inside the
Tab Set component to some location on the “master” canvas that contains the Tab Set com-
ponent. Click the tab label where the components are expected to go, so that it has focus.
Next, click the component you want to move and drag it to the interior of the Tab Set com-
ponent. All this may sound complicated, but if you’re at all used to dragging and dropping
components with any other software program, you should find this easy.

One of the nice benefits of working with tab sets both during the design stage and when the
dashboard is exported to SWF or another format is that tab sets eliminate a lot of visual
clutter.

Figure 7.1
Clicking the outer
edge of a Tab Set
component allows
you to add or remove
tab views.

N O T E
If you really want to, you can place a Tab Set component inside another Tab Set
component.

184 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

Tab sets are useful when you want to do entirely different kinds of information inside each
tab. Let’s look at some situations in which you might want to use Tab Set components and
some things you can do to prepare to use them. Consider using tab sets for the following:

■ A welcome screen, possibly with some instructions

■ Basic profile information

■ Customer pricing packages and options that the user can select

■ A summary of results

You may run into other situations in which supplied information is updated on a regularly
recurring basis. For example, today the dashboard with a Tab Set component may have a
March Sales label. Next month, “March” would need to be replaced with “April.” It would
not be very convenient if you had to hand edit the tab labels simply because you swap in new
data. Fortunately, you can map a tab label to an underlying spreadsheet cell of your choos-
ing. If the tab label is mapped to a cell containing the current month or other appropriate
information, the tab label is automatically kept up to date.

Each of the interior panels in a tab set can have its own private canvas and can be set to a
unique background. Using backgrounds of different colors can be helpful when you make
different information visibly different; for example, you could subtly tint the panels associ-
ated with revenue production with green and those associated with expenses with red.

Remember that each of the panels in a tab set as well as the rest of the components used in a
dashboard all map to the same underlying spreadsheet. Therefore, changes made to the
spreadsheet from one of the panels can affect all the others. To see this in action, try setting
up a tab set with two or more tabs. In the inside of the first panel, set up a horizontal slider
and map its data field to cell A1. Copy this slider and then go to the second panel of the tab
set and paste it there. Switch to Preview mode or export the dashboard and launch it. Your
dashboard should have two horizontal sliders, one on each of the tabs. Move the slider on
one of the tabs and make note of the slider value. Now click the alternate tab. Notice that
the slider in the second tab has the same value as the slider in the first tab. The two always
remain in sync, no matter what you do. Although the panels in a tab set can appear inde-
pendent, the underlying data can be readily connected.

As you have seen, tab sets are good for constructing dashboards and visualizations with
multiple views that are each fundamentally different.

Tab sets with replicated views but different datasets are not so easy to maintain. If you try
setting up a tab set that displays monthly sales analysis for a whole year, you could have
12 tabs, all of which are nearly identical. That’s a lot of setup work. Every time you make a
change to the dashboard, you might have to make changes in 12 places and would need
to validate each of those changes. Your interests could be better served if you made use of
context switching to combine the context of 12 tabs into 1.

Using Context Switching to Contain Visualizations and Dashboards
When you set up a dashboard, you may go through a lot of effort to nail down your presen-
tation so it does exactly what you want. You may have a chart that makes use of alerts or

185Taming Complexity and Usability by Making Presentations Compact

7

conditional formatting. The axes on your chart, the scaling, and the gridlines may be set in a
very specific way.

The dashboard might fulfill your needs for monitoring and presenting your sales data during
the month of March. On each subsequent month, you add a little nip and tuck to the chart,
so that it keeps getting refined. By the time you reach December, your chart layout is exactly
the way you want it.

There may be good reason to prepare a dashboard with the data for the whole year as well
as month-by-month analysis. There are a couple ways you could go about this. One way is
to create a tab set with a tab for each of the months (see Figure 7.2).

Figure 7.2
A visually appealing
but not very effective
way to utilize a
tab set.

The tab views for the months of January through December are effectively identical. All
that really changes is the data. There is really no need to keep a separate tab for each month
if you can instead use just one and dynamically swap in the data for the desired month.

Dynamically swapping data in and out can be accomplished through a variety of mecha-
nisms in Xcelsius 2008. You can choose interfaces such as label-based menus, radio buttons,
list boxes, or tickers (see Figure 7.3).

The basic idea is that you allow the user to choose from a set of labels. The labels can
either be a fixed list or can be read from the underlying spreadsheet. Based on whether the
user chooses the first, second, third, or nth item from the set of labels, a corresponding
response is placed in one or more destination cells. In the Insertion Type pull-down list,
you can specify the kind of response you want (as shown in Figure 7.3). These are the avail-
able choices:

■ Position: This option identifies the location of the item in the list of labels, starting
from the value 1, for the first position. As you shall soon see, position and OFFSET
become a potent combination for doing context switching.

186 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

■ Label: This option places the label of the chosen item in the destination cell. This is
useful when labels can change at runtime and the labels carry further relevance, such as
a subsequent data search.

■ Value: This option places a copy of the value of the nth cell of a source data range into
a destination cell when the nth item is selected from the component. The number of
cells specified in the source data range needs to match the number of labels displayed in
the component.

You should think of Value as an association list of labels with their underlying values.
You might have a list of labels such as “Sales for January,” “Sales for February,” and so
forth. The values in cells E12 and F12 could be 141736.9 and 147476.2 for January and
February, respectively. When you click Sales for February, the value 147476.2 is placed
in the destination cell.

■ Row, Column, and Filtered Rows: These options make use of a range of source data
cells. When you specify Row, the contents of the nth row are placed into the destination
cells. When you specify Column, the contents of the nth column are placed into the
destination cells. Filtered Rows can grab multiple rows based on the selection you make.

■ Status List: This option pushes a solid block of 0s across a range of destination cells,
with the lone exception of a single cell in the range. Where that 1 is placed is dependent
on which item you select in the list-based component.

The Position, Label, and Status List options only have destination cells and do not make use
of source data cells.

Figure 7.3
You can use different
component types to
accomplish context
switching.

187Taming Complexity and Usability by Making Presentations Compact

7

In the example of Figure 7.3, Insertion Type is set to Column. This means that the content
from a specific column is copied to the destination cells. If the underlying cells that are being
“copied” happen to change, there is no automatic mechanism for reflecting this change
without forcing a manual refresh. This poses an interesting challenge, and I have an inter-
esting solution for it. The solution involves building a dynamically routed conduit. Instead
of copying the actual value, you place in a destination cell a pointer that identifies which
cells you want to retrieve. Then you use OFFSET to retrieve the contents of the cells you are
interested in (see Figure 7.4).

N O T E
When you use these mechanisms, whether for context switching or simple menu-type
selections, static values are written to the destination cells, and they do not change until
the destination cells are subsequently overwritten.

Figure 7.4
Cells C5:C12 read the
offset value in cell
C4 to dynamically
grab data from the
appropriate column
on the right.

The advantage with this approach is that if the underlying cells change during the dash-
board session, they will be automatically reflected here. If the data you are accessing is static
data from a database and you do not imbue your dashboard with any intelligence, then
there isn’t much point of going though this exercise. But you are using Xcelsius, which is
endowed with spreadsheet capabilities, so you can make use of these dynamic conduits to do
things you couldn’t attempt in other software.

In the example shown in Figure 7.4, I use a horizontal slider to allow the user to move
across a timeline. The slider’s value is mapped to cell C4. The OFFSET formulas below it use

188 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

that value to retrieve data from the corresponding column on the right. This formula is in
cell C6:

=OFFSET($D6,0,$C$4)

In addition to grabbing numeric data, you can also retrieve header information, such as the
month label. Specifically, the tab label is reading the contents of cell C5, which also uses the
same kind of OFFSET formula that is used to retrieve the values in cells C6 through C12.
Consequently, as the slider value changes, so does the tab label. Also notice that I enable
animation on the slider. This allows the user to run a little “movie” spanning the whole year.

Keep in mind that the values in this example are of historically recorded information, which
is not going to change for any given month. Xcelsius 2008 allows you to retrieve values
directly from spreadsheet formulas. Those retrieved values don’t have to be static. They can
change based on user interaction with a visual component or a real-time data feed.

When you use these conduits and the underlying values change, you get to see the impact of
the changes. You can click the play button on the slider to see an animated sequence, much
like a movie.

Controlling the Visibility of Individual
Components in a Dashboard

Depending on your needs, your dashboards, scorecards, or other types of visualization can
have many visual components. If you designate a specific location for each visual element in
a dashboard, you are bound to run into design and layout challenges if you have too many
visual elements. Even if you manage to arrange all the visual components, the last thing you
want to do is distract the dashboard user with too many pieces of information.

One option is to create a dashboard with multiple screens. Many dashboard designers are
reluctant to create dashboards with multiple screens because it goes against the grain of
telling a complete story at a glance.

So how do you go about creating a dashboard with just the right blend of visual elements?
You can individually control the visibility of components placed on the dashboard canvas.

Understanding Dynamic Visibility
Whenever a visual component is placed on the canvas, it is visible by default, unless, of
course, if it is obscured by other visual components positioned in front of it.

You can customize a component to switch its visibility state on or off. Not surprisingly, this
is accomplished by specifying spreadsheet cells that the component reads. You set the cells
for dynamic visibility in the Behavior tab of the component’s properties panel (see Figure
7.5). There are two elements for setting a component’s visibility: one that watches a status
cell on the spreadsheet and one that is a key.

189Controlling the Visibility of Individual Components in a Dashboard

7

Both the visibility status and key fields can read spreadsheet cells. Unless you are looking to
manage visibility in a very specialized way, it suffices to use a fixed value for the key field.
In Figure 7.5, the visibility key is set to the value 1. The visibility status field is set to read
the contents of cell E5. Whenever cell E5 of the underlying spreadsheet has the value 1,
the component is made visible when the dashboard is running; otherwise, it is rendered
invisible.

Pause a moment to contemplate the implications of what you’ve just learned: You have a
dashboard with potentially many complicated spreadsheet formulas, possessing a high degree
of interdependencies for computing the value of cell E1. Whenever this cell has the value 1,
your component lights up like a Christmas tree. Your component could be a label with an
important message. It could be a trend icon signaling a critical change in the financial viabil-
ity of a business venture. It could be a URL button that allows you to forward information
to a remote server after the user has answered the essential questions in a questionnaire. In
all these situations and many more, you can use dynamic visibility to enable follow-on
action. Don’t limit yourself to only thinking about the mechanics of making things visible
or invisible.

Toggling Visibility

There are a wide variety of ways to manage visibility. One simple way is to toggle it. Con-
veniently, Xcelsius 2008 has both a Check Box component and a Toggle Button component
for such purposes. These aren’t the only components available, but they serve their purpose
well.

A Check Box component has a single text field for a label. It also lets you specify source data
cells and a destination cell. If you don’t specify values for the source data cells, Xcelsius
assumes that you want to use the values 0 and 1 for unchecked and checked states, respec-
tively. When the check box is unchecked, the value 0 is placed in the destination cell; when
the check box is checked, 1 is placed in the destination cell.

Within the Check Box component’s Behavior tab you can set the initial state of the check
box to be either unchecked or checked.

Figure 7.5
Dynamic visibility can
be specified for each
component.

T I P
The check box’s title can either be a hand-typed entry that does not change, or it can be
read from a spreadsheet cell. In the latter case, the spreadsheet cell can contain a for-
mula that is context sensitive, and this allows you to adjust the text label of the check
box, based on the user’s actions.

190 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

The Toggle Button component, which is similar to the Check Box component, has some
interesting features to explore. For example, the Labels field lets you specify two adjacent
spreadsheet cells instead of one (see Figure 7.6)

Figure 7.6
For the Labels field of
a Toggle Button com-
ponent, you specify
two spreadsheet
cells—one for the “off”
label and the other
for the “on” label.

You also have the option of hand editing values by clicking the pencil icon next to the
Labels field. If you have already specified cells but switch to hand-edited values, Xcelsius
automatically lifts the values from spreadsheet cells previously specified (see Figure 7.7).

Figure 7.7
Setting up a check
box and a toggle
button for controlling
visibility of other
components.

Mutually Exclusive Visibility

Figure 7.7 shows two charts. Each of these charts can be independently made visible or
invisible. If you look carefully at this figure, you see that both the column chart and the pie
chart represent the same data.

Chances are, when you’re creating a real-world dashboard, you are not going to have the lux-
ury of spacing out all your charts and leaving large voids when they are rendered invisible.
You almost certainly wouldn’t want to do this if the charts were different representations of
the same data. A better strategy might be to show alternative views of the same data, one at a
time. The Radio Button component is ideally suited for this situation (see Figure 7.8).

191Controlling the Visibility of Individual Components in a Dashboard

7

Figure 7.8
Using a Radio Button
component to man-
age visibility of vari-
ous charts, all
mutually exclusive of
one another.

In this example, the Radio Button component places the value 1, 2, or 3 into cell E1. The
Pie Chart, Column Chart, and Spreadsheet Table components set their visibility status to
cell E1. The Pie Chart component has the visibility key set to the value 1. The Column
Chart component has its visibility key set to the value 2, and the Spreadsheet Table com-
ponent’s visibility key is set to the value 3.

Although the three visual components—the pie chart, column chart, and spreadsheet
table—are physically positioned in the same part of the dashboard, they never interfere with
one another because no more than one of them is ever visible at any instant.

Notice in Figure 7.8 that you can retrieve data from any of a number of months through
context switching and allow the user to switch viewing modes by controlling visibility
through the use of the radio buttons.

T I P
Sometimes you’ll set up a visual component that is useful during the design of the dash-
board but not for deployment. For example, I sometimes like to use a spreadsheet table
to diagnose how computations in the underlying spreadsheet are handled. This is good
for me, the dashboard designer, but the end user doesn’t need it.

It is not necessary to throw away such a component. If you want to save it for a rainy
day, you can set the visibility key of the diagnostic component to some value that will
never match the status cell. This renders the component invisible but allows you to save
the component as part of the XLF file. When you export the dashboard, the component is
embedded but invisible. When you need the component again, simply adjust the visibility
key to allow the component to be visible while in Preview mode.

192 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

Managing Multi-Layer Visibility
Getting multiple components to visually turn themselves on and off in unison is easy. You
simply have them watch a single cell and use a common key value to set visibility. A simple
example of this is a label-based menu that inserts the menu position in a single watched cell.

You could use a label-based menu with options such as Welcome, Instructions, Sales
Performance, Operating Expenses, and Competitor Analysis. When the user clicks
Welcome, the value of the destination cell (say, in this example, that it is cell E1) is set to the
value 1. When the user clicks Instructions, it is set to the value 2, and so forth.

Aside from the label-based menu, your dashboard could have something like 25 or so other
visual components. By using dynamic visibility, you can set related components to turn on
and off in unison. For instance, the components related to operating expenses could be set to
be visible only when the value of cell E1 is 4. The components related to competitor analysis
could be visible only when the value of cell E1 is 5. To do this, you need a system to be man-
ageable because you could easily construct a dashboard with 100 or more components.

Designing a Dashboard with Multiple Screens Controlled
by a Label-Based Menu

When you think about constructing a dashboard, there are some obvious challenges and
some workarounds. Here’s one challenge: You have a dashboard with five modes or states,
corresponding to each of the five menu options. You may find it appropriate to have your
corporate logo always visible, no matter which of the five menu options the user clicks.

There’s a trivial response to this challenge. Because the logo is going to be present no matter
what happens, you shouldn’t bother trying to set its visibility. So far, so good. The situation
could get a little more complex, however. It may be that you have two corporate logos. One
of them is well suited for the Welcome screen and for when the user is presented with
instructions. The other, smaller, logo is neatly tucked in the top-right corner of the screens
related to sales, expenses, and competition.

There are a number of ways to handle this. One way is to apply brute force. You could have
two copies of the larger logo and three copies of the smaller logo. Each one would make
itself visible when the menu destination cell matches the key value assigned to each of the
five logos. Obviously, this is not the way to design dashboards.

An alternative approach would be to have one copy of the large logo and one copy of the
small logo. Instead of directly watching the cell E1, you could create more sophisticated
visibility logic in, say, cell F1 with a formula like this:

=IF(E1<2,1,0)

The visibility status of your large logo could be set to cell F1, and its key field could be set
to the value 1. Likewise, the visibility status of your smaller logo could also be set to cell F1,
but its key field could be set to the value 0. The conditional logic is sure to work. You can be
confident that visibility of all the components behaves correctly. There are no redundantly
used components. But what’s wrong with this picture? If the answer is not already evident, it
will soon be clear that you are standing on a very dangerous and slippery slope.

193Managing Multi-Layer Visibility

7

Here is what is happening:

■ To accommodate the two logos, it is necessary to create a secondary logic rule for visi-
bility. If you decide at a later point in time to add a sixth or seventh item to the main
menu, you are going to have to rewrite your logic rules. This creates extra work for you.

■ Your rule for the secondary logic is not so robust. Suppose you want the big logo to
appear with the first and third menu items and the small logo to appear with the sec-
ond, fourth, and fifth menu items. How would you revise your formula for cell F1?

■ Notice that your visibility criterion for the logos is based on a test for the values 0 and 1
in cell F1. For all the other components, the cells are looking at the value of cell E1 to
determine whether it contains a value of 1, 2, 3, 4, or 5.

In this situation, the burden is on you, the dashboard designer, to keep track of what
cells are watched and what the numeric values signify in terms of visibility criteria. For
instance, it would be nice in the case of the logos to use 0 for invisible and 1 for visible.
This works for the large logo, but it’s the exact opposite logic for the smaller one!

So far, this case involving the isolated use of corporate logos is a bit contrived. So let me
inject an ounce of reality here to highlight how untenable a strategy of this kind is. If you
truly want to take advantage of component reuse, you might find that through context
switching, you could use a suitably set up pie chart for both the competitive analysis and the
sales performance analysis. Component reuse comes at the cost of unwanted conditional
logic to support dynamic visibility. You may have some components that would normally not
appear together in some circumstances but appear together in others. With all the compli-
cated rules for managing visibility, it would be quite a chore to maintain the dashboard
design as it evolves.

The Logical Approach to Orchestrating Multi-Layer Visibility
Think about how you would want to handle managing multi-layer visibility. To keep things
simple, start with creating structure around a main menu.

To avoid getting academic or theoretical, I’ll introduce the multi-layer visibility framework I
developed a number of years ago. To help in outlining the framework, I use a dashboard
application that contains some real data. The sample dashboard that is used incorporates
some government data related to transportation. Keep in mind that the emphasis here is on
managing visibility, so I don’t spend much effort implementing a full-featured dashboard.
I’m also keeping the dashboard barebones so that it will be easier for you to harvest for your
own needs.

Designing by Specification

It would be nice to specify your requirements in the form of a table or matrix. On the rows
of such a table, you might want to identify all the visual groups that need to behave similarly.
Consider the following:

■ There may be some visual components that you want to always be displayed. You might
want the same background for both the Welcome screen and any reports. Your main

194 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

menu should always be visible. You may have a copyright or confidentiality notice that
needs to be displayed. Whatever your needs, you can call this a background group because
such elements are always visible.

■ You may have a Welcome or splash screen that contains components that are visible when
the dashboard is first launched or when the main menu item is set to the initial screen.

■ You may have some branding visual elements such as corporate logos that appear on some
screens but not others.

■ You may have some dashboard components that you want to reuse for different data sets
and for different screens.

■ You may have a slew of visual components to artfully present data visually.

■ You shouldn’t forget about supplying some documentation or instructions for the dashboard
user. I am sure there are critics who think that if a dashboard needs documentation, it’s
not correctly designed. Yes, dashboards should be intuitive, but users are always grateful
when there’s additional documentation. At the very least, the documentation portion of
a dashboard could include notes on the data.

Each of these groups needs to have a defined behavior for any given menu state. In this
example, there are five menu states that correspond to the five possible menu selections (see
Figure 7.9).

Figure 7.9
Each selection from
the menu constitutes
a unique menu state.

The selected menu position is mapped to an underlying spreadsheet cell A8 (see Figure
7.10). This menu value or position is the menu state.

Figure 7.10
Menu options and the
current menu value
or position (cell A8).

195Managing Multi-Layer Visibility

7

Now comes the first critical step: specifying the visibility logic through a switch map (see
Figure 7.11).

Figure 7.11
Switch map
specification.

Take a little time to study this map. There are nine groups or classes of components plus
one TBD, or to be determined, group. They more or less follow the sequence of the bullet
points outlined a few paragraphs earlier.

N O T E
There are 9 groups in this example, but there’s no reason you couldn’t specify a switch
map with 99 groups. You just need to know what you’re doing and keep track of things.

The switch map in this example has five columns, one for each menu state. If you later need
to extend your main menu to seven items, you will need to add another two columns to the
switch map.

To better appreciate how the switch map designates the visibility logic, it is worth looking at
what happens for a couple of the menu states—menu states 1 and 4.

When the user starts the dashboard or clicks the Welcome button, the visual components
associated with Group 0, Group 1, and Group 2 are all made visible. Group 0 includes the
various “background” components, such as a shaded rectangle, a copyright notice, a spread-
sheet table that is used to show the visibility logic in action while the dashboard is running,
and the main menu. Group 1 consists of an input text area that serves as intro text. Group 2
consists of a large logo. Figure 7.12 shows how the dashboard appears when the menu is in
state 1.

Only the elements in Group 0, Group 1, and Group 2 are visible. Also notice the spread-
sheet table at the bottom of the dashboard. It lays out what is happening in the underlying
spreadsheet while the dashboard is in menu state 1.

196 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

When the dashboard is in menu state 4, the components associated with Group 0, Group 5,
Group 6, and Group 8 are visible (see Figure 7.13).

Group 2

Group 1

Everything else visible belongs to Group 0.

Figure 7.12
The dashboard menu
in state 1.

Group 6

Group 8

Group 5

Everything else visible belongs to Group 0.

Figure 7.13
The dashboard in
menu state 4.

197Managing Multi-Layer Visibility

7

In this figure, the fourth menu item is highlighted. All the visible items when the dashboard
is in menu state 4 correspond to the 1s of the switch map in the column labeled 4. Also
notice that the spreadsheet table at the bottom of the dashboard differs slightly from the way
it appears in Figure 7.12. This is because the visibility states have been altered.

Activating Visibility Patterns with the Switch Circuit

The switch map is a blueprint. If you look carefully in the ch07_MultiLayerVisibility.xlf
file, you see that there is not a formula to be found anywhere inside the switch map (cells
D5 though I16). Quite literally, it’s a specification in the form of a static table; yet the dash-
board follows the visibility logic laid out in this table. This happens because there is a switch
circuit to the immediate right that watches the values on the switch map as well as the cur-
rent menu state (see Figure 7.14).

Figure 7.14
The switch map and
switch circuit in menu
state 1. (Printed with
permission of
Evolving Technologies
Corporation.)

The basic idea of the switch circuit is that it lights up whenever the switch map elements
and the current menu state match. Each of the cells in the interior of the switch circuit
compares a switch map logic element with the menu state. For example, this formula is used
in cell 07:

=IF(O$6=$A$8,1*E7,0)

Basically, this formula is saying “If the current menu state (in cell A8) matches the state ID
in the column I belong to, then return 1 times whatever is in the matching column of the
switch map; otherwise, return a 0.” This formula is essentially the same in cells O7
through S16.

The left edge of the switch circuit (column N, highlighted in gray in Figure 7.14) aggre-
gates all the cells across to the right. This formula is in cell N7:

=IF(SUM(O7:S7)>0,1,0)

Essentially, this formula says “If any match is found on my row, then send a signal to the
dashboard components watching me that it’s okay to light up, or become visible.” So all the
components associated with Group 0 are watching cell N7. The components associated
with Group 1 are watching cell N8, and so forth.

198 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

Group Management

A dashboard can have many components floating on the canvas. How do you know which
ones belong to which group? The Object Browser allows you to organize and name compo-
nents (see Figure 7.15).

Figure 7.15
The Object Browser
allows you to name
and organize your
components by group
and position and
adjust their depth.

Notice that I created and applied a naming convention. Each component is prepended with
a group ID label followed by a text description. Although this labeling is purely cosmetic, it
serves a number of purposes:

■ At a glance, you can figure out how a component is expected to behave because you
know what group number it belongs to (and the group behavior is spelled out in the
switch map).

■ It is easy to aggregate in the Object Browser components that have the same kind of
visibility.

■ This kind of naming makes it easier to work with many components in a dashboard.

Having built dashboards with several hundred components, I can personally attest to the
value of adhering to a naming convention of this kind.

Controlling Group Behavior

Just because all the items belonging to a group become invisible and visible in unison
doesn’t guarantee that they will be well behaved. There are many Group 5 items in this

199Managing Multi-Layer Visibility

7

example. If they are not sequenced correctly in the Object Browser, some items, such as
those in the background, could obscure items that should otherwise be in the foreground.
If all the components belonging to a group appear in one place on the Object Browser, they
will be easier to manage and arrange.

What exactly constitutes a group? The answer is simple: Any set of components that use a
common watched cell to set the component’s visibility status belong to the same group. In
the example, the two pie charts along with the legend, labels appearing above the pie charts,
the vertical slider, and a background rectangle all set their visibility status based on the con-
tents of cell N12. All these components are grouped together because their visibility patterns
are identical.

In case it is not obvious, you can achieve another kind of simplicity in your dashboard
design. All the visual components of the dashboard can be uniformly keyed to the value 1 in
the visibility status cell. This makes it possible to create a uniform criterion for setting visi-
bility across all visual components in a dashboard. Having less to think about and less to go
wrong, this approach helps keep potential errors at bay.

N O T E
The managing of groups of components as discussed here applies to the controlling of
behavior and visibility of components when your dashboard is deployed. This should not
be confused with Xcelsius grouping functionality that allows you to group components
and center them on the canvas.

Working with Multi-Layer Visibility the Right Way
Multi-layer visibility is not always the best solution for managing visibility. For one thing,
this framework requires a certain level of abstraction. If you are designing a quick-and-dirty
one-off dashboard, going though the level of effort required for basic visibility control may
be overkill.

In the example presented, I outlined a simple scenario involving a menu with five options
and a handful of components. But my experience shows that you’ll likely end up specifying
considerably more groups than menu items. Fortunately, adding more groups entails only
having to add more rows to the switch map and switch circuit and mapping to the appro-
priate cells in the switch circuit.

As a practical matter, you will find yourself frequently creating new groups that are hybrids
of existing groups. Creating the new groups is easy. The more difficult and tedious part is
that you may need to change the names of some of the components in the Object Browser.
Keeping the names in order requires a certain level of self-discipline. This helps to keep
you from becoming embroiled micromanaging your dashboard design.

The good news about multi-layer visibility is that it is very scalable from both performance
and organizational management perspectives.

200 Chapter 7 Using Multi-Layer Visibility in Your Dashboards and Visualizations

7

The Practical Rationale for Multi-Layer Visibility
There are many good reasons for using multi-layer visibility, but there is one reason that
trumps all the others. You can dynamically reroute the visibility characteristics and behaviors
of armies of components by directly editing the values on a tiny table called a switch map.

There’s no need to do surgery on components. All the handiwork and complex logic can be
confined to the switch map. If you don’t like the way the logic works, or if you want to
experiment as you build your dashboard, you can simply mark up the table with 1s and 0s
(or empty cells).

Closing Thoughts
As you’ve learned in this chapter, there are a variety of ways to tame dashboard complexity.
Complexity takes many shapes and forms. Sometimes you need a way to visually “contain”
dashboard content. Tab sets offer a way to create multiple views in a small footprint so that
the dashboard user feels like he or she is looking at a single screen. The chief benefits of tab
sets are that they are easy to set up and easy for the end user to use.

Another form of containment is context switching, which facilitates component reuse.
Context switching allows you to direct different streams, or pipelines, of data into a chart or
other graphical component. There are a number of distinct benefits to this approach. It
reduces the file size of the dashboard because one component can be used for many data
streams. In addition, you need to make a change to the visual component in only one place,
and eliminating the need for multiple copies also eliminates a potential source of error.

There are a number of mechanisms for managing context switching. Some of them only pass
static copies of data to the visual components. This chapter introduces a solution to this
challenge, through the use of dynamic conduits.

Because the needs of users and dashboard capabilities have evolved over the years, there is a
drive to keep pushing dashboards to more advanced uses. Xcelsius 2008, with its spreadsheet
capabilities, extends this reach even further.

Even with containment and context switching, there comes a point at which a dashboard can
become crowded with too many components. Xcelsius provides facilities for dynamic visibil-
ity of components on an individual component-by-component level. This chapter explores
different ways to manage visibility, including toggling visibility and cycling though alterna-
tive views, one at a time.

Visibility is more than just flipping a switch to make a component invisible or visible.
Dashboards can be designed to monitor data and automatically signal critical information or
identify implications of some activity, and this may entail complex logic and formulas. You
can harness dynamic visibility as a mechanism for enabling “gatekeeper” elements in a dash-
board application. If you think creatively, you’ll find all sorts of practical applications.

201Closing Thoughts

7

Dynamic visibility on a component-by-component basis is easy to handle. Simple, from-
the–ground-up techniques do not scale particularly well when you need to mix and match
views with multiple groups of components.

The multi-layer visibility framework is explained in detail in this chapter. This approach
revolves around specifying a switch map as a simple table that can be read and used to
instruct components on how to behave visually. Because with multi-layer visibility the mech-
anism for specifying behavior is centralized in a table external to the components, it is sur-
prisingly easy to make significant changes to dashboard behavior. Another pleasant benefit is
that the multi-layer visibility framework scales very well.

Chapter 8, “Managing Interactivity,” shows you how to use some of the approaches intro-
duced in this chapter to better manage interactivity.

This page intentionally left blank

8CHAPTER

In this chapter

Managing Interactivity

Interacting with Chart Data 204

Data Animation 206

Chart Label Size 206

Drill Down Behavior 207

Interacting with Selectors 209

Interacting with Single Value Components, Maps, and Text Components 216

Labels and Input Text Areas 218

Art & Background Components: Using the Image Component 220

Interacting with Web Connectivity and Other Components 222

Closing Thoughts 226

204 Chapter 8 Managing Interactivity

8

Every modern-day program involves some form of interaction. Xcelsius dashboards allow
user interaction to play a prominent, if not central, role in dashboard design, so it should
not be surprising that a chapter is devoted to this topic.

There are two approaches to consider. First, you can pay close attention to understanding
and utilizing interaction at the component level. When you use your mouse to drill down to
the details of a data element displayed in a chart, do you explicitly want the user to click the
data point, or would you rather have the user pass the mouse over, like a magic wand?

Second, you might want to think about designing your dashboards and visualizations so that
they behave more like full-fledged applications. They could have splash screens, provide
context-sensitive help, and have different panels or screens for data entry and analysis. In
other words, you can use them to provide some kind of navigational structure.

When a person interacts with components on a dashboard, there are two kinds of interac-
tions happening. On one level, there is direct interaction with a component, such as a mouse
click. On another level, there is the interaction of the component with other components,
mediated through the underlying spreadsheet.

Xcelsius offers a wide array of visual components. Some of the noteworthy features are dis-
cussed in the following sections.

Interacting with Chart Data
There are different ways of interacting with charts. A key point to recognize is that a great
deal of chart behavior depends on the data that populates the chart. What is placed on a
chart is not going to always be 100% under your control. You may, for example, scale some
charts to display values between zero and $10 million for the cost of some initiative. You
may feel that such a range is reasonable and hardwire the vertical axis of your chart to this
range. After you produce the dashboard, there may be some extraordinary expenses that
bring the project total beyond the $10 million mark. What should you do now? Consider
the following three possibilities:

■ Don’t do anything at all. In this case, your chart will visually plateau at the hardwired
limit you set. The underlying values can exceed the limits. Indeed, if you hover your
mouse over the “maxed out” data point, you will see the correct values displayed in the
hover text.

With this scenario, there’s no loss of data integrity. However, because there is no warn-
ing that the data value exceeds the chart limits, just looking at the chart can be mislead-
ing. If you are really maxing out a lot of data points, visualizing the plateau would be
helpful in clueing the user that the visual representation requires further scrutiny.

■ You can set the scale of a chart to be sensitive to the values displayed as the values
change. (The topic of custom scaling is discussed at length in Chapter 5, “Using Charts
and Graphs to Represent Data.” There’s a scaling lab dashboard in that chapter for you
to explore.) Although this approach ultimately offers the greatest flexibility, it is also
accompanied by some other features and obligations. When you choose custom scaling,

205Interacting with Chart Data

8

you are responsible for managing all the scaling limits so that the dashboard or visuali-
zation behaves the way you expect it to, even though the underlying data varies.

■ You might want to provide the end user with the ability to custom scale at runtime but
not get mired in the mechanics or mathematics of custom scaling. For such cases,
Xcelsius gives you the ability to enable run-time tools (see Figure 8.1).

Results in additional controls on the chart

Selecting Enable Run-Time Tools

Figure 8.1
Selecting Enable Run-
Time Tools in the
Properties panel of a
chart.

When you deploy the enabled run-time tools, clicking the control in the upper-left corner
of the chart displays a number of additional options: Grow, Off, Auto, Focus Chart Data,
and Reset Chart Scale (see Figure 8.2).

N O T E
The visual appearance of the five buttons for run-time tools (shown in Figure 8.2) varies,
depending on the theme specified for the Xcelsius dashboard.

Figure 8.2
A variety of chart scal-
ing options are avail-
able for dashboard
users.

206 Chapter 8 Managing Interactivity

8

The Grow option is useful for situations in which the user is trying a number of different
options that may push, or “grow,” the scale limits and does not want to reset the scale.

The Off option sets the chart limits so that the chart hugs the outermost points of data. The
minimum and maximum limits for the axes remain anchored at these values, regardless of
how the data points change value.

The Auto option controls auto-scaling, which is the default scaling option on a chart. In
auto-scaling mode, the minimum and maximum limits on the chart axes automatically scale
or adjust up or down so that all data points are reasonably positioned in the chart.

The Focus Chart Data option forces the chart axes of a chart in Off mode to rescale so that
all data in the first data series is displayed as if the chart were in auto-scaling mode. As data
values change, the chart limits remain fixed on the values that were set when the Focus
Chart Data button was pressed.

The Reset Chart Scale button resets the axes to the values that were in place when the dash-
board was originally launched, regardless of the current data values.

Data Animation
As pointed out in a number of instances throughout the book, whenever you place a new
chart onto the canvas, it is data animation enabled by default.

With data animation, data points smoothly transition from their old data values to their new
ones rather than instantaneously jumping across the chart.

For some situations, having data animation enabled is wonderful. In other cases, it just sim-
ply doesn’t help a dashboard or visualization. Fortunately you have the option of enabling or
disabling this feature on any chart within the Animation and Effects tab of the chart’s behav-
ior properties.

Chart Label Size
In displaying values along the chart axes, you have the option of setting a constant width,
using abbreviations for large quantities. Instead of displaying 125,000, you could instead
show 125K. Instead of showing 125,000,000, you could display 125M. You can customize
these abbreviations, as shown in Figure 8.3.

207Drill Down Behavior

8

Drill Down Behavior
With Xcelsius 2008, you can decide how you want drill down to work with your mouse
pointer. You have the option of explicitly clicking a data point on a chart to drill down to
underlying data. Alternatively, you can set the drill down mode to mouse over, in which case
you can use your mouse as a magic wand to reveal underlying information.

If all you want to do is quickly reveal some underlying or correlated information, then the
mouse over mode works well. If you need to analyze or scrutinize the drilled down data, the
mouse-click behavior works better.

Previous versions of Xcelsius (4.5 and earlier) did not permit the drill down of multiple data
series. Xcelsius 2008 now allows you to do this (see Figure 8.4).

When you drill down with multiple data series, the destination cells for each of the data
series must be separately specified. So if you have three data series, as depicted in Figure 8.4,
you would wind up with three sets of destination cells, one for each series.

You need to be aware of an important subtlety. None of the destination cells are allowed to
overlap with the destination cells of another series. This makes it difficult to figure out
which series is being clicked or drilled into. Fortunately, you can tell Xcelsius to write the
name of the data series that’s being drilled into (see Figure 8.5).

Figure 8.3
You can customize
label abbreviations
when Fixed Label Size
is enabled.

208 Chapter 8 Managing Interactivity

8

If you know the name of the data series that currently has focus, you can determine which
destination data cells to use.

Figure 8.4
You can drill down to
points on a data series
on a chart.

Figure 8.5
Setting up drill down
for multiple data
series.

209Interacting with Selectors

8

Interacting with Selectors
Many of the Xcelsius selector components are covered throughout the book, so I outline
only a few characteristics and observations in the following sections.

The Accordion Menu
The Accordion Menu interface provides support for drill down of multiple data series. The
sample file ch08ExampleAccordion.xlf provides a sample of how it can be set up (see Figure
8.6).

Figure 8.6
Using the Accordion
Menu component to
drill down data.

Notice in this example that as you choose a sales rep, you are retrieving a copy of the row of
data that corresponds to that sales rep. Notice further that embedded in each of the rows is
the name of the geographic region to which the sales rep belongs. Therefore, when the
drilled down data is displayed in the column chart on the right, the geographic region is
clearly identified.

The Check Box Component
You can easily customize the behavior of the Check Box component. In the sample file
ch08_ExampleCheckBox.xlf you can customize the Check Box component to apply specific val-
ues to a destination cell. The values can be read from a spreadsheet or, as in the case illus-
trated here, hardwired to specific values, such as 0 and 1.

210 Chapter 8 Managing Interactivity

8

You can customize the text label next to the Check Box component, based on the checkmark
state. You can place all the logic in a single cell, like this:

=IF(B3=0,”Click me to place a checkmark here”,”Click me to erase the checkmark”)

In this example, cell B3 is the checkmark state.

Alternatively, you can place each of the messages in a separate cell (for example, B5 and B6)
and then retrieve the appropriate message, based on the prevailing checkmark state, using a
formula such as the following in cell B4 (see Figure 8.7):

=OFFSET(B5,B3,0)

Figure 8.7
Setup for customizing
a Check Box compo-
nent title.

In this example, if the checkmark state in B3 is 0, the contents of B5 (“Click me to place a
checkmark here”) is displayed in cell B4. If the checkmark state in B3 is 1, the contents of
B6 (“Click me to erase the checkmark”) is displayed in cell B4.

N O T E
Between these two approaches, I personally prefer the second. When you separate the
alternative titles for the Check Box control, it becomes easy to update the labels and
even add some context-sensitive information in them.

Traffic Light Alerts in Combo Boxes and List Boxes
A Combo Box component is very similar to a List Box component. The main difference
between the two is that a Combo Box component remains in a collapsed state until the user
clicks it. A List Box component is always in an expanded state.

211Interacting with Selectors

8

A Combo Box component is useful for situations in which the display screen real estate is
precious or you want as few things as possible to visually distract the user.

New to Xcelsius 2008 is the ability to add traffic light–style alerts for Combo Box and List
Box components (see Figure 8.8). The details of the alert features can be found in Chapter
12, “Smart Data and Alerts.”

Figure 8.8
Comparison between
List Box and Combo
Box components (in
unexpanded and
expanded states).

The Ticker Interface
Like the List Box and Combo Box components, Ticker components have traffic light–style
alerts. They have another useful feature as well: the ability to display values for each of the
ticker symbols as the symbols stream by. Figure 8.9 shows a comparison of the various ways
a Ticker component can be set up.

Figure 8.9
Comparison of Ticker
components with
plain labels, value
labels, alerts, and both
value labels and
alerts.

Picture Menus
Both the Fisheye and Sliding Picture Menu components offer an easy way to select options
in a menu (see Figure 8.10). As with many of the other selector components in Xcelsius, you
have the option of specifying the menu position, label, value, row, column, or status list.

212 Chapter 8 Managing Interactivity

8

These menus give you the ability to embed thumbnail images in the generated SWFs (that
is, Flash files) or reference images from a URL over the Internet. There are several advan-
tages to retrieving images over the Internet:

■ Not embedding the images helps prevent the dashboard from becoming bloated. If you
have many dozens of images, your dashboard file size would quickly become large if the
images were embedded.

■ By using a URL reference instead of embedding images, you have the ability to update
images without having to redesign the dashboard.

■ You can construct formulas in the underlying spreadsheet to dynamically generate the
URL reference. You might, for instance, have hundreds or thousands of images stored
on a database server. You could dynamically build the URL string based on the user’s
ID or other values known by the dashboard.

You can fine-tune the Sliding Picture Menu component by using its interaction options:

■ Setting the Insert On option to Mouse Over can enhance the dashboard’s responsive-
ness.

■ As you scroll through a large number of pictures, you can set Slider Amount to scroll
forward one image at a time or a whole page at a time.

■ The Slider Method option allows you to choose either Buttons or Mouse. You should
experiment with these options to see what works best for your needs.

■ The Fisheye Picture Menu option also allows for some tweaking. Again, the best way to
determine which settings you want is to try them out for yourself.

Figure 8.10
Fisheye and Sliding
Picture Menu compo-
nents.

213Interacting with Selectors

8

Toggle Button and Icon Components
Toggle Button and Icon components are discussed throughout the book, so I won’t delve
into detail here. But I do want to mention something about Icon components. Frequently, it
is helpful to overlay an Icon component over some “hotspot,” such as over selected portions
of an Image component. The file ch08_ExampleHotspot.xlf (see Figure 8.11) shows how to
create such a hotspot map.

Figure 8.11
Setting up a hotspot
map, using Icon com-
ponents.

Basically, you position and size the Icon component over each hotspot. In Figure 8.11, there
are seven such regions. Ultimately, you need to bring the transparency of each region to
0%. For the sake of illustration, I have left the transparency in Figure 8.11 at 25%. In this
example, for region, a region number appears in a shared destination cell. In this example,
they all update cell D1. The values in D1 will range from 1 to 7, depending on which
hotspot was most recently activated. Cell E1 contains the following formula:

=”This is the: “&”OFFSET(B1,D1,0)

Cells D2:D8 contain the appropriate label. When D1 is 7, the formula generates the follow-
ing label for the seventh item:

This is the canvas

To make this work, you can set both the checked and unchecked parameters to the same
value (see Figure 8.12).

214 Chapter 8 Managing Interactivity

8

Normally, the Icon component allows for two different states. Because all you need to do is
sense when a mouse is positioned over a hotspot, there is no need to track alternating
checked and unchecked states.

Filter Components
Filter components allow users to take multiple combinations of large lists and identify a
specific unique row that matches all the criteria (see Figure 8.13 or open the file
ch08_ExampleFilter.xlf).

The essential item to understand with Xcelsius Filter components is that they must result in
a single item. There is no provision to retrieve, say, multiple rows of data that satisfy the fil-
ter criteria.

Figure 8.12
Instead of using differ-
ent values for checked
and unchecked state,
use the same amount.

Figure 8.13
Filtering multiple crite-
ria to find a single
item.

The setup involving Filter components is subtle, but when you understand the setup, it is
rather straightforward. The first thing you need to do is to have your data (row 5 and below
in Figure 8.14) flanked on the left by the Filter criteria. In this example, the first filter for

215Interacting with Selectors

8

geographic region is in column A, and the second (for the sales rep) is in column B. Notice
in the Properties panel that the number of filters is set to 2. That accounts for columns A
and B. The source data (cells A5:C81) spans three columns. Column C holds a lookup value,
identifying which row matches the filter criteria. Notice that the destination cell (cell C2 in
this example) is a single cell.

Figure 8.14
Setting up a Filter
component.

In this framework, each of the cells retrieved for the region, sales rep number, and sales for
each of the 12 months can be accomplished using the following lookup formula in cell A2:

=OFFSET(A$4,$C$2,0)

This formula can be copied (from cell A2) and pasted to B2 and E2 through O2.

There is an alternative approach (found in the file ch08_ExampleAlternateFilter.xlf) that
copies the whole row of monthly data. Instead of selecting 3 columns for the source data,
you need to dredge up 15 columns, and the destination range is 13 columns (that is, 15
minus the 2 filters). While this works, there are some reasons to opt for the first of these
two strategies:

■ Although you can retrieve the monthly data for the sales rep, you need to identify the
region and the sales rep name (columns A and B of the source data). You will still need
to use a lookup formula with functions such as OFFSET, INDEX, and VLOOKUP. You’re not
going to altogether escape the use of a lookup mechanism unless you resort to some
kludgey tactic.

■ The second strategy involves copying the source data. If the individual column data
changes between filter selections, you are not going to know about it because you are
only retrieving frozen copies.

216 Chapter 8 Managing Interactivity

8

■ There is no opportunity for context switching. In the sample data, you are selecting a
region and the corresponding sales rep. The data you get back is the monthly sales data.
While monthly sales data for sales rep number 25 (in the east region) is displayed,
wouldn’t it be nice if you could also reveal the number of new customers brought in
each month for this rep?

With the first strategy, you could use context switching to swap in the appropriate data in
cells D5 through O81. With the second strategy, doing this would be a lot more compli-
cated.

Interacting with Single Value Components, Maps,
and Text Components

N O T E
Single Value components, such as dials, gauges, and sliders, are covered at length in
Chapter 6, “Single Value Components: Dials, Gauges, Speedometers, and the Like.” Maps
are discussed at length in Chapter 11, “Maps in Xcelsius.”

Text components may seem innocuous. When you realize that text fields and labels can be
bound to spreadsheet cells, and those cells change as you do things with your dashboard,
then it is pretty clear that text components can play a significant role in your dashboards.

The Input Text component has a number of different options available. These relate to the
“link to cell,” the data insertion destination, and the Insert Data OnLoad feature.

Consider the following different scenarios:

■ A text field can be static. In this situation, it is not linked to any underlying spreadsheet
cell. That is, it can only get its value by someone hand-typing an entry into the text
field and pressing the Enter or Tab key.

Whatever is specified as the destination cell gets the value just entered into the text
field. There’s an interesting twist. Suppose the destination cell already has a formula in
it. Then what happens? A couple things happen. The destination cell acquires the new
value, but the formula is not wiped out. It’s just dormant. If the formula needs to be
recalculated, it is wiping out the value inserted by hand, and the formula reasserts its
status of “owning” the destination cell. This “formula pushback” feature is unexpected
but can turn out to be a handy feature.

■ A text field can be linked to an underlying cell that also happens to be the same cell as
the destination cell. If the underlying cell has no formula, everything is pretty conven-
tional. You make a change by hand in the input text field, and the value is written to the
destination cell.

217Interacting with Single Value Components, Maps, and Text Components

8

In this scenario, only two things can possibly change the value. The first is hand-typing
something new in the field. The second is some other part of your dashboard sponta-
neously deciding to overwrite the value in the destination cell. It could be, for example,
that a Radio Button or List Box component targets that cell. The moment the cell is
updated, the text in the input field is accordingly revised.

■ A text field can be linked to an underlying cell that is different from the destination cell.
At first, this may not seem very logical. Why would you want to read from one location
but never write back to it? The reason actually turns out to be very practical. Imagine
having one underlying source data cell (let’s say it’s cell A1) that holds a value between 0
and 10 (see Figure 8.15). That value could signify anything, such as the price at the
pump for a gallon of gasoline (maybe I am being too conservative on the upper limit!).
Cell A1 could be varied at the turn of a knob from the Dial component. Instead of one
Text Input field, you now have three placed on the Canvas, and each of them uses cell
A1 as its underlying cell or source data. The first of the three fields can write to cell B1,
the second to B2, and the third to B3. You could now use the Dial component to set
your price to, say, $5 per gallon.

Figure 8.15
A set of correlated
input text fields that
can be individually
tweaked.

When you update your base price, you could individually adjust the value for each of
the text fields. There’s an important subtlety here. Just because the values in the text
fields are updated by turning the Dial component doesn’t mean that the destination
fields are automatically updated. To push the values of the text fields to their destination
cells, you actually have to press the Enter or Tab key within each field.

To overcome this obstacle and automatically push the values to their destination cells,
you could enlist the aid of Source Data components. You would need one for each of

218 Chapter 8 Managing Interactivity

8

the input text fields. Alternatively, you could rearrange some of your formulas so that
only one Source Data component needs to be used.

N O T E
Note that with input text fields, you have the option of specifying the text field behavior.
Specifically, you can enable password protection and limit the maximum number of
characters allowed in the text entry.

Labels and Input Text Areas
Labels and input text areas are powerful for two reasons:

■ They can retrieve the text content computed from the spreadsheet at runtime.

■ They support HTML editing.

This combination is incredibly potent, as illustrated in Figure 8.16.

Figure 8.16
A dynamic alert that
changes with text size
and color, changing
continuously with
underlying value.

In this example (see the file ch08_ExampleHTMLMessage.xlf), you can adjust the vertical slider.
In a real-world example, you won’t be using a slider to adjust some underlying value.
Instead, you would likely get real-time data feeds or retrieve information stored in a data-
base, and you would use such values for presenting performance metrics.

As the slider value changes, the message under the data bar in the chart also changes. For
one thing, the text message changes based on the values in a lookup chart from Status OK

219Labels and Input Text Areas

8

to Start Alert to Major Panic. This just uses VLOOKUP to retrieve the appropriate message
from a table. There is nothing really new here.

What is new, however, is that both the text font size and color continuously change with the
underlying data value. The key to this is to enable HTML formatting in the text label’s
Behavior property. After you enable this property, it is just a matter providing some text with
simple HTML coding.

You could hand-type the following static text in the Enter Text area of the text’s Properties
panel:

Hello World

Alternatively you could link the text content to a spreadsheet cell, such as cell A1. Within
cell A1, you could have a formula like this:

=”Hello World”

There wouldn’t be much purpose if you hardwire the values in the formula. If your text size
is in cell E5 and the message is in cell F5, then your formula would be as follows:

=””&F5&””

Specifying color is a matter of converting three sets of decimal values into their hexadecimal
equivalents for red, green, and blue.

Understanding Hexadecimal Numbers
Decimal counting uses 10 digits—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9—for specifying numbers. When people first started
counting, they probably chose 10 digits because that’s how many fingers (and toes) we have.

For modern-day computers, the natural counting system is based on 16 digits, referred to as hexadecimal. (I
guess if computers were given fingers, they would have 16 of them.)

A computer system needs 16 unique digits. The first 10 of them are the same as our regular decimals (0
through 9). To get the values 10 through 15, we can use the letters A through F. A would have the value 10, B
would have the value 11, and so forth, up through the letter F.

It is commonplace to begin a hexadecimal number with a # symbol to signify that the digits that follow are
hexadecimal. Here are some examples:

#0 is equivalent to the decimal number 0

#9 is equivalent to the decimal number 9

#A is equivalent to the decimal number 10

#E is equivalent to the decimal number 14

#F is equivalent to the decimal number 15

#10 is equivalent to the decimal number 16

#11 is equivalent to the decimal number 17

#20 is equivalent to the decimal number 32

#C4 is equivalent to the decimal number 196

#FF is equivalent to the decimal number 255

#FFFFFF is equivalent to the decimal number 16777215

Hexadecimal codes are generally case insensitive. For example, #C4 is treated the same as #c4.

220 Chapter 8 Managing Interactivity

8

When specifying color in HTML, you can use a hexadecimal representation. The format
follows the pattern #RRGGBB. The first two hexadecimal digits, RR, specify the red compo-
nent, ranging from 0 through FF. The second pair of hexadecimal digits, GG, does the
equivalent for the green component. The third pair of hexadecimal digits, BB, corresponds
to the blue component. For example, #C40000 has a red component of C4 (or, in decimal
form, 196 on a scale of 0 through 255) and no blue or green component.

The file ch08_ExampleHTMLMessage.xlf (see the spreadsheet portion of Figure 8.16) converts
the decimal numbers for the red, green, and blue components (cells A2, B2, C3) into their
hexadecimal equivalent (cell F1).

Once you have generated a hexadecimal color (cell F1 in this example), you can use it
directly in your HTML-formatted text:

=””&F5&””

If E5 is set to the value 38, the color in cell F1 is #c40000, and the message in cell F5 is
“Major Panic,” then the resulting text becomes this:

Major Panic

Three more things need to be said about HTML support:

■ HTML formatting is supported for Input Text Area components.

■ The supported HTML formatting applies to many kinds of codes, but not every type of
encoding is supported.

■ You can overlay Xcelsius formatting on top of HTML formatting. For example, notice
that the HTML message displayed in Figure 8.16 is center-aligned, so it is directly
underneath the vertical bar. This is set in the Properties panel for the Label component
and is not encoded anywhere in the HTML text string.

Art & Background Components: Using the Image
Component

There are three principal types of components in the Art & Backgrounds category:

■ Rectangle, Ellipse, and Background components

■ Image Component

■ Horizontal Line and Vertical Line components

Rectangle, Ellipse, and Background Components
Depending on the particular Xcelsius theme you apply to a dashboard, you may have a
choice of between from two to six different types of textured backgrounds.

221Art & Background Components: Using the Image Component

8

The Rectangle component is a good component to use for a number of reasons:

■ You can make it a border with a transparent interior or fill.

■ You can make it a solid color of your choosing.

■ You can specify a gradient fill that is linear or radial. If it is linear, you can rotate the
angle of the gradient.

■ Both linear and gradient fills can be multi-staged.

■ A Rectangle component can be made fully opaque or partially transparent.

N O T E
If you are in need of graphical options, you should consider using an industrial-strength
graphics program such as Photoshop to create your background and then import it
through the Image Component.

T I P
If you are preparing dashboards and visualizations for printed publications, you might
want to consider using Rectangle components that are solid and avoid using gradient
fills. If the printed document is published in black and white, be sure to achieve sufficient
contrast between texts, chart contents, and their backgrounds.

Figure 8.17 illustrates various ways in which a rectangle component can be set up. To fully
appreciate transparency in action, a visual block ranging from black to white is placed
immediately behind various swatches.

Figure 8.17
Sampling of various
backgrounds with dif-
fering transparencies
and gradients.

222 Chapter 8 Managing Interactivity

8

To layer additional gradients in a rectangle, you click inside the Gradient Preview block in
the Properties panel. Xcelsius adds a new gradient handle point immediately underneath the
point you click. You can adjust the color and transparency for each of the handle points. You
can also click and drag the handle points to adjust the position on your Rectangle compo-
nent.

The Image Component
You can use an Image Component to display an image in your dashboards and visualiza-
tions. There are several things you need to know:

■ Xcelsius 2008 now supports various file formats, including JPG, SWF, PNG, GIF, and
PNG. Previous versions of Xcelsius supported only JPG and SWF. This is a welcome
and long-awaited addition.

■ An Image Component embeds the file within the dashboard and increases the dash-
board file size.

■ SWF files are Flash files that can incorporate animation effects. When an SWF file is
imported to your Xcelsius dashboard using the Image Component, it retains its interac-
tive features.

■ Like the other backgrounds, Image Components placed on the canvas can be made par-
tially transparent.

Horizontal Line and Vertical Line Components

You can use Horizontal Line and Vertical Line components as visual separators when dis-
playing data and for constructing simple line diagrams. You can control their line thickness
and color.

Interacting with Web Connectivity and Other
Components

N O T E
Information on web connectivity components can be found in Chapter 15, “XML and
Data Connectivity.”

Xcelsius 2008 has an “Other” category that contains components that don’t belong in other
groups. This group contains a rather eclectic bunch of components. The following sections
detail specifics on some of them.

The Print Button and Reset Button Components
Xcelsius 2008 now has a Print Button component. In previous versions of Xcelsius, there
was no easy way to generate a high-quality printout by giving the user a “print” button

223Interacting with Web Connectivity and Other Components

8

embedded in the dashboard. This new feature is a welcomed addition. Another nice feature
of the Print Button component is that the button itself doesn’t show up in the printout.

The Reset Button component, another handy addition to Xcelsius 2008, restores the dash-
board to the exact same state it was in the moment it was launched. This includes state
information that is generally volatile, such as date and time, using the NOW spreadsheet func-
tion and forever-changing values such as the RAND function. If you are using such functions to
set initialization values on load, you will be able to repeat initializing to the identical state.
In certain situations, this could be useful. It could also pose a potential security concern.

N O T E
Bear in mind that when these volatile functions are forced to recalculate, they take on
new values, even though the initial state can be repeatedly restored.

You can use the Reset Button component in Preview mode, when you are designing your
dashboard. This way, you can return the dashboard to its original state and rerun it with
new parameters and never have to leave the Preview mode of Xcelsius. When it comes time
to deploy your dashboard, you can throw away the Reset Button component.

The Local Scenario Button Component
The Local Scenario Button component saves the dashboard state to the Windows Registry.
When you run the dashboard at a later time, you can access the earlier saved state.

N O T E
Your visualization has to be exported for the Local Scenario Button component to work.
It will not work while you are in Preview mode.

N O T E
The Local Scenario Button component saves state information to the local machine on
which it is running. Do not try to use the Local Scenario Button component to save the
state of a dashboard or visualization on your office computer and then expect to retrieve
it on your home computer.

The Calendar Component
The Calendar component is discussed in Chapter 4, “Embedded Spreadsheets: The Secret
Sauce of Xcelsius 2008.” One of the improvements made to Xcelsius 2008 is better support
for using the left, right, up, and down arrow keys to move from one selected date to
another.

224 Chapter 8 Managing Interactivity

8

The Trend Icon Component
A Trend Icon component is useful for displaying a particular performance metric. A Trend
Icon component needs to be mapped to an underlying spreadsheet cell. If the cell value is
positive, an up arrow icon is displayed. If it is negative, a down arrow icon is displayed. A -
symbol is displayed if the value is zero. You can adjust the color and size of the Trend Icon
component for each of the three states.

The Trend Analyzer
The Trend Analyzer, a new feature in Xcelsius 2008, is discussed in Chapter 9, “Xcelsius
and Statistics.”

Grid and Spreadsheet Table Components
The Grid and Spreadsheet Table components are similar to one another in that they use
rows and columns to present spreadsheet information in tabular form.

You can use the Spreadsheet Table component to display data and to click or select individ-
ual rows and have the component show a reference to the row. That reference could be the
position or actual data from the selected row.

When working with the Spreadsheet Table component, it’s important to understand that the
formatting of the individual cells displayed is inherited from the underlying spreadsheet cells
at design time. Suppose you want to display information like that shown in Figure 8.18 (or
open the file ch08_ExampleSpreadsheetTableFormat.xlf).

Figure 8.18
Design-time format-
ting affects dashboard
presentation.

225Interacting with Web Connectivity and Other Components

8

Notice that there is a Spreadsheet Table component on the right side of the dashboard can-
vas. Pay particular attention to the fact that the value for Project X is the word “Unknown,”
which is automatically left-aligned. Also, the value for Project Y is the number 250, and
numbers are automatically right-aligned. When this dashboard is run in Preview mode or
exported, the cells in the Spreadsheet Table component keep their left- or right-alignment,
no matter how the values in the cells of the table change. That is, when the user clicks the
various radio buttons for the different scenarios, the value for Project X is always left-
aligned, and for Project Y, it is always right-aligned, even if both are numbers or both are
text.

You can use two strategies to avoid this difficulty:

■ Populate the cells with data before launching so that formatting behaves the way you
want and expect it to.

■ Format the cells in the underlying spreadsheet cells so that they lock in the behavior
(that is, at the specific time you map the display data to the underlying spreadsheet cells).
Any further formatting of cells read and displayed in the Spreadsheet Table component is
not mimicked in the component until the component is rebounded to the cells.

T I P
The second of these two strategies is more controllable and is the approach I advocate.

The Grid component is similar to the Spreadsheet Table component in that it displays data
in tabular form. While it is not as pretty as the Spreadsheet Table component, it allows you
to do two things:

■ You can change the value of the underlying spreadsheet cells.

■ You can make use of cell-by-cell colorized alerts.

The file ch08_ExampleGrid.xlf (see Figure 8.19) shows how you can set up a color grid dash-
board that highlights manufacturing productivity for three product lines across four geo-
graphic regions. Notice that the colorized alerts are automatically based on the minimum
and maximum data values. For more information on alerts, see Chapter 12.

Grid components normally have fixed upper and lower limits. You can remove these limits
by changing Minimum and Maximum Limit in the Behavior tab from Fixed to Open. In
addition, when you change values (by clicking a grid cell and dragging the mouse up or
down), the jump occurs in fixed increments. You can also tweak these characteristics within
the Grid component’s Behavior tab.

226 Chapter 8 Managing Interactivity

8

The History Component
You can use the History component to “watch” designated spreadsheet cells and track their
changes. The watching can occur at fixed time intervals or can be recorded whenever the
watched cell changes values.

Closing Thoughts
Enhancing interaction is a key feature of dashboards. The better handle you have on some
of the many kinds of available components, the more effective you can make your dash-
boards and visualizations. This chapter walks you through a range of components and fea-
tures to think about.

A component really interacts with two entities—the underlying spreadsheet and the dash-
board user. So components are really mediators between people and the underlying data and
their business models.

There are many specific strategies and techniques for enhancing interactivity in your dash-
board. Here are some key points to keep in mind:

■ To make a visualization appropriately interactive, you can enable or turn off data anima-
tion.

■ The use of label size in the chart axis can facilitate the readability of a chart.

Figure 8.19
Color grid alert.

227Closing Thoughts

8

■ Xcelsius 2008 gives you the ability to drill down with greater ease and control. You now
have better options for drill down when multiple data series are involved.

■ Although charts play a central role, don’t forget the importance of managing selectors.
The Accordion view makes it easy to organize and sift through large swaths of informa-
tion in order to get at the underlying details.

■ Check boxes do not have to be static entities with fixed titles and only alternating 0 and
1 values. I show strategies for making Check Box components dynamic.

■ One of the new features in Xcelsius is the ability to display traffic light alerts. I show
how this can be done with Combo Box and List Box components. The Ticker interface
has some of these options.

■ Let’s not ignore the ability to embed pictures in menus. Both the Fisheye and Sliding
Picture Menu components offer interesting options. I outline some of the configuration
options and strategies for these components.

■ Toggle Button and Icon components are easy to set up and use. I point out some non-
traditional ways to approach these components. In particular, I show how to create a
hotspot map to provide users with instant help. The key feature to making this work is
recognizing that you don’t need to toggle alternating values.

■ I outline how to set up filters to retrieve specific information. I compare and contrast
two alternative ways to accomplish the equivalent task.

■ Text components are surprisingly potent entities. Input Text Field components are sur-
prisingly flexible. But the ability to combine HTML formatting with dynamically gen-
erated text (from spreadsheet formulas) is over the top. It gives Xcelsius unprecedented
levels of agility in terms of text size, color, and messages that can quickly respond to
every mouse move, click, or data value.

■ Data and visualizations are greatly enhanced when a backdrop appropriately colors and
frames the dashboard content. Xcelsius 2008 introduces some new and powerful fea-
tures for both Rectangle components and Image Components. In the former, they relate
to multistage gradient and transparency control. In the latter, they relate to new sup-
ported image formats.

■ Xcelsius 2008 includes Print Button and Reset Button components, which make work-
ing with dashboards and visualization even easier than in previous editions of Xcelsius.

■ In this chapter, I outline some features of the Grid and Spreadsheet Table components
that will help you more productively use them.

Put simply, dashboards and visualization are a lot more effective when you manage interac-
tivity with greater agility. This helps you learn more about components and how to work
with them.

Chapter 9 walks through statistics from an Xcelsius-centric perspective. Viewing metrics and
Key Performance Indicators (KPIs) is one thing, but analyzing them with the help of statis-
tical tools is another.

This page intentionally left blank

9CHAPTER

In this chapter

Xcelsius and Statistics

Understanding Statistics 230

Understanding Probabilities 237

Probability Distributions 242

Closing Thoughts 255

230 Chapter 9 Xcelsius and Statistics

9

This chapter introduces statistics and statistical analysis from an Xcelsius-centric point of
view. The overall goal is to have statistical tools at your disposal for the dashboards and
visualizations you develop.

Understanding Statistics
Statistics is a vast subject that encompasses a sizable chunk of mathematics. Although statis-
tical analysis covers a tremendous amount of ground, the basic idea of statistical reasoning is
rather easy to bottle, package, and consume.

Most people who work with dashboards are likely sitting on a mound (or perhaps a moun-
tain) of data. How can you make heads or tails out of it? Data is complex, but decisions
based on it are often simple. Has your company achieved better market penetration in the
last quarter? Is the overall level of customer satisfaction acceptable? Questions like these
need digital yes/no answers that can be tacked to a Trend Icon component or other visual
components used to display key performance indicators (KPIs).

Although you need mountains of data, a single bit (0 or 1, or a yes/no response) can be very
informative. The reality is that a binary KPI is revealing but not sufficient. You really need
to characterize your response in a more suitable way. To arrive at the answer to a yes/no
question, you have to quantify some information. You need to think of a way to measure the
degree of market penetration. Customer satisfaction might be measured by how many cus-
tomer service complaints were received for every 10,000 units sold from your high-defini-
tion TV product line.

Instead of single yes/no, you replace it with a quantitative measure (a number such as 0.003)
and some decision criteria for how to interpret the metric (maybe any number less than
0.005 is good).

You can achieve a phenomenal level of data compression. Instead of wading though masses
of data, you can aggregate information in a meaningful way so that the bulk of the data,
without the details, can be reasonably characterized by a small group of numbers. Of course,
the finer the level of granularity, the more numbers you will likely need. The mean value or
average of some measure could be meaningful, but when accompanied with the standard
deviation, it gets even more revealing.

The ability to achieve this extraordinary level of data compression is one of the most power-
ful features of statistics. Perhaps the term data compression sounds a bit austere. What statis-
tics provides is a way to characterize large swaths of information so that the aggregate can
be treated as if it is a single point or a few data points. If you can profile all your customers
with just one or a few representative kinds of customers or measures, then your business
analysis becomes vastly simplified. So not only are you compressing your data, you are
simultaneously streamlining your decision analysis methodologies and criteria.

If you carefully examine every single piece of data to answer some question, you are bound
to arrive at some conclusion related to the question. If you have a sure-fire way of arriving
at the same answer without having to look at every iota of information, you achieve some

231Understanding Statistics

9

real compression. This so-called compression could allow you to simplify your analysis
because you need to deal with fewer variables. The ability to discern the important charac-
teristics, to apply simple and verifiable analyses, is very closely aligned with what we think of
as business intelligence.

What Makes Statistical Measures So Special?
You don’t necessarily need statistical analysis to characterize some quantities. The total sales
of a product line is a single number that characterizes your sales data. There’s no statistical
analysis going on.

Statistical analysis comes into play in situations in which you can treat the measure of some
statistical variable as if it relates to a single item or transaction. If you divide the total rev-
enue by the number of products sold or hours of servicing provided, you arrive at an esti-
mate that characterizes a single transaction.

Analyzing a single transaction or a very small number of distinct kinds of transactions is eas-
ier than doing this for each and every data point. The key behind statistical analysis is that it
helps you to find the right representation of an idealized transaction you can extrapolate to
the population as a whole or some major segment of it.

Statistical analysis allows you to arrive at metrics to let you know how closely your estimate
matches the other data points. Measures such as standard deviation and variance provide
estimates of this kind. Aside from measures, you have an armory of methodologies for ana-
lyzing data, making decisions, and estimating your ability to rely on your conclusions.

Elementary Statistics Concepts and Dashboard Tools
A key concept of statistical analysis is the ability to characterize collected information. Even
without measures such as mean and standard deviation, you characterize your data. A his-
togram provides a good example of this. The concept of histograms is straightforward: It
allows you to visually display the distribution of values in a collection of data points (see
Figure 9.1).

The setup shown in Figure 9.1 has a collection of data points (see the gray region of the
underlying spreadsheet in Figure 9.1 or open the file ch09_Histogram.xlf).

You set up this histogram as follows:

1. Determine the minimum and maximum values of your data points. If you want to dis-
play the distributions of values, you need to know the minimum and maximum values.
You can easily figure this out by using spreadsheet formulas. In this example, the mini-
mum value is 20, and the maximum is 99.

2. Divide your data into distinct groups. One way to do this is to apply constant spacing
between groups and then adjust it. If you start with the minimum value of 20 and use a
spacing of 5, your first group begins with 20 and ends with 24. Your second group starts
with 25 and ends with 29. This progression of groups continues until your maximum
data value is included in your group.

232 Chapter 9 Xcelsius and Statistics

9

3. Count how many data points fall in the range of each group. There are two ways of
approaching this. One way is to ask how many points that fall between are less than or
equal to the upper limit of each group and are greater than or equal to the low limit of
each group. Bundling this logic makes the computations more complicated than they
need to be.

Another way to approach this is to look at only one side of each of the groups (such as
the lower limit) and determine the difference between that value and the one derived
for the neighboring group. Using the current example (with a minimum value of 20 and
a spacing of 5), the lower limits for each of the groups are 20, 25, 30, 35, . . . 90, 95. If
the total number of data points that are greater than or equal to 20 is 180 and the num-
ber of data points that are greater than or equal to 25 is 164, then the number of points
in the interval [20, 24] must be 16 (= 180 – 164).

4. When you have computed how many data points fall into each of the groups, display
the information using a Column Chart component or another appropriate visual com-
ponent.

In this example, you can dynamically adjust the spacing or the group size with the spinner
button. Notice that as you adjust the spacing, the number of groups displayed on the
Column Chart component increases or decreases. If you set your spacing to be too small a
value, there won’t be enough space on the chart to fit all the vertical columns. Also, too fine
a granularity can make the data difficult to visually interpret.

While fixed spacing is generally appropriate for histograms, you might want to have the
freedom to pick and choose the boundaries of your groups. Figure 9.2 (or open file

Figure 9.1
Setup of a histogram
with adjustable spac-
ing.

233Understanding Statistics

9

ch09_LowMidHighHistogram.xlf) shows how you can use a dual slider to reset the boundaries of
a histogram.

Figure 9.2
This dual slider allows
you to alter the
boundaries used in a
histogram.

Altering the boundaries of a histogram with Dual Slider components and the like gives
tremendous benefits to the dashboard user. Specifically, the user can classify data on-the-fly
by setting what constitutes low, middle, and high and can then further determine the impli-
cations of the data, based on the classification criteria.

Your classification can have a tremendous impact on how your data gets interpreted. Let’s
look at an example. If you run a dashboard from the ch09_Histogram.xlf file and set the
spacing to a value of 10, as in Figure 9.3, you will see that the most populous collection of
data points occurs in the range [40, 49]. This point of highest frequency is often referred to
as the mode. If you adjust the spacing to a finer level of granularity, say 5, you will find that
the highest frequency (which is visible in Figure 9.1) in the histogram occurs in the range
[35, 39]. These two sets of ranges don’t even coincide!

Figure 9.3
When spacing size is
set to 10, the highest
frequency of data
points occurs at [40,
49].

234 Chapter 9 Xcelsius and Statistics

9

Histograms are great when you want to visually get a snapshot of data. But sometimes you
might want to use more quantitative measures. The most prevalent of measures is the mean
value, defined as the mathematical average value of a collection of points.

The median identifies the value for which the numbers of data points with higher values
match the number of data points with lower values.

The mode identifies the value that occurs most frequently in a dataset. It is possible to have
multiple modes (see Figure 9.4 or open the file ch09_Descriptive.xlf). In Figure 9.4, there
are actually four values or modes. Rather than attempt to display every mode value, the
dashboard signals how many modes are present when there are more than three modes.

Figure 9.4
Descriptive statistics
example.

In this example, the data has a mean value of about 157. Visually, you can see the bulk of the
data hovering around 151. The reason for the shift is a spike in the data that occurs on the
right side of the chart. It skews the results of the average and of the standard deviation.

Understanding and interpreting anomalous data is an important part of statistical analysis
and data analysis in general. Anomalies might indicate that your data has random noise in it.
There are ways to discern such problems by using statistical methods. As a quick rule of
thumb, random noise tends to degrade meaningful correlations and patterns in your data.
Random noise will not likely conspire to aggregate all the anomalous values to the extreme
right or extreme left.

You have to think about how you want to treat the data. One strategy could be to simply
excise anomalous data. Look again at the data in Figure 9.4. There is a big empty space
between the group of apparent outliers and the main sequence of data. It may be that the
high values in the apparent spike are real, and you are actually missing data in the range of
about 206 through 230.

The bottom line is that you need to carefully scrutinize and understand the nature of your
data.

235Understanding Statistics

9

Measures of Dispersion Around a Central Value
It is easy to use an average or mean value when describing historical or future events. This is
because the notion of an average value is intuitive. It is easier to use a single number to
describe a collection of information than it is to present all the numbers at one time or to
serially sift through them a chunk at a time.

Consider the following three collections of data points:

Scenario A Scenario B Scenario C

10,054 9,909 10,561
10,283 11,439 10,257
10,308 9,528 11,517
10,083 9,988 8,959
10,216 9,921 8,797
10,099 9,381 9,053
10,352 10,213 12,120
10,160 10,113 10,196
10,224 10,399 8,029
10,191 11,079 12,481

If you add up the numbers in Scenario C and divide it by the number of items, you find that
the average is 10,197. The same goes for Scenario B and for Scenario A.

In all three scenarios, the numbers average 10,197. The numbers in Scenario A are closely
coalesced around the number 10,197. On the other hand, the numbers in Scenario C are all
over the place.

You can estimate how tight or loosely fit the numbers are relative to the average value by
using the standard deviation. It turns out that there are two versions—one called the sample
standard deviation (usually denoted by the letter s) and the other called the population stan-
dard deviation (usually denoted by the Greek letter sigma s). Mathematically, they are
defined as follows:

s = SQRT(S[(X[i] – X_Avg)^2] / (n – 1))

s = SQRT(S[(X[i] – X_Avg)^2] / n)

In this definition, n is the number of items being counted, X_Avg is the mean value of data
points 1 through n, X[i] is the value of the ith data point, and the Greek symbol S is the sum
of all the data points 1 through n of the expression enclosed in the square brackets.

Don’t worry too much about the formal mathematical definitions for these standard devia-
tions. You can use the STDEV spreadsheet function to carry out the calculation for the sample
standard deviation (see Chapter 4, “Embedded Spreadsheets: The Secret Sauce of Xcelsius
2008,” for more details on using STDEV). The population standard deviation is a slightly dif-
ferent story. In Excel, the population standard deviation is carried out by the STDEVP func-
tion. Unfortunately, STDEVP is not supported by Xcelsius. The good news is that there is an
easy workaround. Here it is in mathematical form:

s = s * SQRT((n – 1) / n)

236 Chapter 9 Xcelsius and Statistics

9

If your data is contained in cells A1:A30 and B1 is as follows:

=COUNT(A1:A30)

then your population standard deviation (s) would be computed using the following:

=STDEV(A1:A30)*SQRT(B1-1)/B1)

N O T E
Of course, you can substitute whatever range of cells is appropriate in place of A1:A30
and B1.

The difference between the sample standard deviation and the population standard devia-
tion is minor. As the number of sample points increases, the separation between these two
measures narrows.

In this preceding example, the sample standard deviation of the values in Scenario A is 99.6.
If you examine all the values in Scenario A, you will find that 6 of the 10 values fall within
10,097.6 (= 10,197 – 99.6) and 10,296.6 (= 10,197 + 99.6).

In Scenario B, the standard deviation is 640. Here, 6 of the 10 values fall between 9,557
(=10,197 – 640) and 10,837 (= 10,197 + 640).

The situation is almost the same in Scenario C, which has a standard deviation of 1,502.
Here, 7 of the 10 values of the data points in Scenario C fall between 8,695 (= 10,197 –
1,502) and 11,699 (= 10,197 + 1,502).

There seems to be an interesting pattern here. Roughly two-thirds of the data points that
make up the mean value fall within plus or minus one standard deviation of the mean.
Because there are very few points in the sample (10 in this case), this relationship is approxi-
mate. As the number of points that make up the mean increases, the accuracy of this rela-
tionship improves. It turns out that 68.26% of the data points in a large sample fall within
plus or minus one standard deviation, 95.44% fall within plus or minus two standard devia-
tions, and 99.74% fall within plus or minus three standard deviations of the mean.

N O T E
For practical purposes, a “large” collection of data points is about 50 or more items.

Where do the numbers 68.26%, 95.44%, and 99.74% come from? This has something to
do with the normal, or Gaussian, probability distribution, which is discussed a little later in
the chapter. Before we get into probability distributions, it makes sense to say a few words
about probability.

237Understanding Probabilities

9

Understanding Probabilities
Probability and statistics are, figuratively speaking, two sides of the same coin. Statistics pro-
duces various measures, such as mean and standard deviation, about historical information.
The mathematics of probability can help to assess possible outcomes and expectations.

Probability, P(X), is defined as the number of outcomes having condition X divided by the
total number of all possible outcomes. P(X) varies between the values 0 and 1. A probability
of 0 implies that X will not happen, and a probability of 1 implies that it is certain to hap-
pen. If you try computing a probability and find that the value is greater than 1 or is nega-
tive, then you can be sure that there is an error in the computation or that the assumptions
the computations are premised on have to be revised.

Simple Rules for Combining Outcomes
The example in this section illustrates how to account for various possible outcomes by
using probabilistic reasoning.

A standard deck of playing cards consists of 52 cards. There are 13 distinct kinds of cards; 2,
3,…10, jack, queen, king, and ace. For each kind of card, there are four suits: clubs, dia-
monds, hearts, and spades. Each playing card has a unique kind and suit.

To better speak about probabilistic reasoning is this example, it helps to introduce a playing
card alphabet. The 13 distinct kinds of cards can be represented by these symbols:

2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

The suits can be represented as follows:

C, D, H, S

You can juxtapose kinds and suits together to represent any playing card from the deck. For
example, KD would represent a king of diamonds, and 4H would represent a 4 of hearts.
We can use a mathematical set to represent the sample space of possible outcomes of cards
matching some criteria that could be picked from the universe of possibilities. For instance,
there are four possible members or outcomes if the card chosen is a king:

{KC, KD, KH, KS}

There are four members in the set. So the probability of randomly picking a king from a full
deck on the first try is as follows:

P(K) = 4 / 52 = 1 / 13

Or approximately 0.0769

If the card turns out to be either a 9 or a king, the sample space of outcomes is as follows:

{9C, 9D, 9H, 9S, KC, KD, KH, KS}

and this is the probability:

P(9 or K) = 8 / 52 = 2 / 13

or approximately 0.1538.

238 Chapter 9 Xcelsius and Statistics

9

Retrieving a 9 or a king in a single trial is twice as likely compared to just picking a 9 (or
just picking a king). This is because 9 and king are mutually exclusive. There is no card in a
standard deck that is both a 9 and a king. Notice that probabilities of mutually exclusive
outcomes are additive:

P(9 or K) = P(9) + P(K)

Similarly, the probability of picking an ace, or a queen, or a 7 is as follows:

P(A or Q or 7) = P(A) + P(Q) +P(7) = 12 / 52 = 3 / 13

or approximately 0.2308. The combining or union of mutually exclusive events is additive.

Consider probabilities of satisfying two or more criteria in a single trial. The probability of
selecting a card that is both a king and a diamond is as follows:

P(KD) = P(K and D) = P(K) * P(D) = (4 / 52) * (13 / 52)

= 52 / 2704 = 1 / 52

or approximately 0.0769. So the intersection of independent outcomes is multiplicative.

Consider complementary outcomes. What would be the probability of picking a card that is
not a king of diamonds? While it is possible to enumerate all the different card combina-
tions, it is simpler to compute the compliment:

P(not DK) = 1 – P(KD) = 1 – 1 / 52 = 51 / 52

or approximately 0.981.

The rules presented so far for combining outcomes are relatively simple. What about com-
binations of outcomes that are not independent? Consider selecting a single card from a
deck that can be either a king or a diamond. The sample space for this is as follows:

{KD, KC, KH, KS, 2D, 3D, 4D, 5D, 6D, 7D, 8D, 9D, 10D, JD, QD, AD}

Pictorially, this is represented in Figure 9.5 (also in the file ch09_PlayingCards.swf). The
probability of randomly picking a card from a full deck that matches any of the cards shown
here as face up is calculated and displayed at the top of the dashboard.

Figure 9.5
Sample space of cards
that are either a king,
or a diamond, or
both.

239Understanding Probabilities

9

Obviously, the outcome of a card being a king or a diamond is more likely than only being a
king (or only being a diamond). Adding up the probabilities of each P(K) + P(D) could be
used to compute P(K or D) if K and D are mutually exclusive of one another. However, they
are not mutually exclusive. They occur independently of one another. A straightforward
addition of probabilities would wind up in a double counting. The way out of this conun-
drum is to remove the double counting where K and D intersect. Here is how it is com-
puted:

P(K or D) = P(K) + P(D) – P(K and D)

= P(K) + P(D) – P(K) * P(D)

= (4 / 52) + (13 / 52) – (4 / 52) * (13 / 52)

= (4 + 13 – 1) / 52 = 16 / 52

or approximately 0.308.

Understanding Conditional Probability and Bayes’ Theorem
Conditional probability is something that is basically intuitive, but because it is so subtle, it
is easy to overlook how its essential features can be put to use.

If you randomly select a month from the 12 months of the year, what are the odds that the
month chosen is July? That’s easy. There are 12 months in the year, each with an equal
chance of being selected. The probability is therefore 1 / 12, or a little over 8%. Now, given
that the month you select happens to be a summer month, what are the odds that the month
chosen is July? Let’s say the summer months consist of this set:

{June, July, August}

It should be reasonably evident that the correct answer is 1 / 3. This can be represented with
the following notation:

P(July | Summer) = 1 / 3

The way this reads is “The probability that the month chosen given that the month is a sum-
mer month, is one-third.”

The form P(Outcome | Condition) is what’s commonly referred to as a conditional proba-
bility.

T I P
You can substitute the word given when you see the vertical bar in a conditional expres-
sion.

I’m about to throw several mental curve balls at you. I assure you it is not intended to con-
fuse you. A conditional probability is defined as follows:

P(A | B) = P(A and B) / P(B)

240 Chapter 9 Xcelsius and Statistics

9

In the example of randomly picking July, given that the month is a summer month, you can
apply the following:

P(July | Summer) = P(July and Summer) / P(Summer)

= (1 / 12) / (1 / 4) = 4 / 12 = 1 / 3

At first glance, it looks like everything is being needlessly complicated. You already know
the answer is going to be one-third. In addition, there’s P(July and Summer). How do you
get that to be 1 / 12? It’s simple:

P(July and Summer) = P(July and {June, July, August})

= P(July and June) + P(July and July) + P(July and August)

= 0 + P(July and July) + 0

= 0 + P(July) + 0 = 0 + (1 / 12) + 0 = 1 / 12

If you superimpose June over July, you will find that there is no common intersection. This
is why P(July and June) is zero. The same goes for July and August. When you superimpose
July over July, the intersection is just July. So P(July and July) is the same as P(July) and is
calculated as 1 / 12.

Now for the second curve ball: A probability P(B) can be computed from other sets of
mutually exclusive outcomes with the following formula:

P(B) = P(B | A) * P(A) + P(B | Not A) * P(Not A)

This is often referred to as the probability decomposition formula.

In keeping with this example, if you treat Summer as B and July as A, you have the follow-
ing:

P(Summer) = P(Summer | July) * P(July) + P(Summer | Not July) * P(Not July)

The probability that the month is a summer month, given that it is July, is 1 (that is, 100%).
P(July) is 1/12. This formula gets simplified to the following:

P(Summer) = 1 * (1 / 12) + P(Summer | Not July) * P(Not July)

Figuring out P(Summer | Not July) is rather subtle. If July is excluded from the outcome,
you have only 2 possible outcomes for the summer months: June and August. If July is not a
permitted outcome, you have only 11 months to choose from (January through June and
August through December). So P(Summer | July) is 2 / 11.

P(Not July) is 11 / 12 because any month other than July is a possible outcome. P(Summer)
can now be computed as follows:

P(Summer) = 1 * (1 / 12) + (2 / 11) * (11 / 12)

= (1 / 12) + (2 / 12) = 3 / 12 = 1 / 4 = 0.25

Because Summer is one of four seasons of equal duration, P(Summer) computes to 0.25.

The reason for going through the computation of P(Summer) using the probability decom-
position formula is to help make it tangible. Notice that the denominator used in defining

241Understanding Probabilities

9

conditional probability is P(B). Also notice that P(B) is the expression computed using the
probability decomposition formula. These two formulas can be combined into the following
a single formula, a simplified form of Bayes’ Theorem:

P(A | B) = P(A and B) / (P(B | A) * P(A) + P(B | Not A) * P(Not A))

Bayes’ Theorem, whether in its simplified form or more general form, is a very powerful
analytical tool. This becomes evident when you look at some real-world applications. For
example, say that you have three suppliers providing a 4GB memory module for a USB flash
drive you distribute as a promotional giveaway.

You obtain 2,500 units from Supplier 1 at a price of $2 per unit. You obtain 8,000 units from
Supplier 2 at a price of $2.25 per unit, and you obtain 4,000 units from Supplier 3 at a price
of $2.10 per unit. In addition, you obtain 600 units of surplus stock at the bargain basement
price of $0.75 per unit. The units are all warehoused in a single bin, as they are all suppos-
edly identical. There is no easy way to tell which unit came from which supplier.

At some point down the road, you obtain additional information about the rate at which
these units have defects. The defect rate of units from Supplier 1 is 3.8%. For Supplier 2,
Supplier 3, and the surplus stock, the rates are 1.3%, 2.5%, and 21.5%, respectively. The
incremental cost of replacing a flash drive after it is already delivered to the customer is $10
per unit.

The rates of defective units are a tad high, especially for the surplus stock (but at $0.75 per
unit, is this really an issue?). If you could examine all this quantitatively, one of your first
questions might be, given that unit delivered to the customer is defective, what is the likeli-
hood that the unit originated from a specific supplier of interest? You might, for instance, be
negotiating additional purchase from Supplier 2. It would help you to know the following:

P(unit originated from Supplier 2 | unit is defective)

This is exactly the conditional probability that can be computed with Bayes’ Theorem. As
should be plainly evident, this problem is a little more detailed and involved than the earlier
example involving months and seasons. It requires the use of a more general form of Bayes’
Theorem. Rather than bore you with a complicated mathematical equation, I can provide
you with a ready-made dashboard that works out all the details and makes it easy for you to
insert in the numbers (see Figure 9.6 or open the file ch09_Bayes.xlf).

Figure 9.6
Bayesian analysis in a
dashboard.

242 Chapter 9 Xcelsius and Statistics

9

In this particular case, there’s a 24.4% likelihood that that if a defective unit is found, it
originated from Supplier 2. Although Supplier 2 provides units with the lowest rate of
defects, the sheer volume of purchases contributes heavily to the overall number of defects
encountered.

This is just one scenario with a specific set of assumptions. You would want to be able to
tweak a lot of the parameters, and this dashboard provides the means to do so. This dash-
board makes use of the Grid component to allow you to individually adjust the quantities of
units for each supplier and also revise the defect rate. With the Grid component, you can
use your mouse to click and drag each quantity you want to revise. You can adjust the
replacement cost per item by using the dial.

Notice that the dashboard makes use of context switching, so that one Pie Chart component
can be used to alternatively display by supply source the total units, defect rate, expected
defects, conditional (Bayesian) probability of defect for each of the supply sources, unit
price, purchase cost, replacement cost, total cost, and net cost per unit.

N O T E
In the dashboard shown in Figure 9.6, I purposely keep the interface embellishments to
a minimum so that we can concentrate on the spreadsheet structure and setup.

Probability Distributions
A principal reason for using probability distributions is to characterize likely outcomes that
have not transpired. This characterization takes the form of a probability distribution—a
profile of likely outcomes. Probability distributions generally fall into two groups: discrete
or continuous.

Discrete Probability Distributions
Probability distributions provide succinct ways of characterizing and working with large
quantities of information. This section briefly highlights why and how it can be beneficial to
work with probability distributions rather than raw data.

In working with dashboards, you may be connecting to back-end data sources that contain a
lot of transactional data. If you are analyzing sales, you might have something like a half
million tiny transactions. It really doesn’t matter how many data points are needed for a
composite picture. The key factor is you don’t want to be downloading all that data into a
dashboard in one gulp. It is much easier to set up an SQL query like this:

SELECT COUNT(commission_amount), commission_amount FROM TransactionRegisterTable
➥GROUP BY commission_amount

243Probability Distributions

9

This might return a result set like the following:

COUNT(commission_amount) commission_amount
62234 0.02
121139 0.03
186948 0.04
172556 0.05
49204 0.06
12112 0.07

The raw data in this result set is composed of 605,393 data points. Obviously, it would not
be feasible to throw this raw data into a spreadsheet and use STDEV to compute the standard
deviation.

You can, however, use the definition for a standard deviation of a discrete probability distri-
bution for this. The general form for mean and standard deviation is:

m = S[X * P(X)]

Variance = s^2 = S[(X – m)^2 * P(X)]

The Greek symbol mu (m) is the mean value of the population. The setup for calculating
these quantities can be found in the ch09_DiscreteProbDist.xlf file (see Figure 9.7).

Figure 9.7
Basic setup for gener-
ating and displaying a
generic discrete prob-
ability distribution.

There are probably some critics who would say that you could do all the computations, such
as computing the standard deviation, on the back-end server and just send the final results
to be displayed on the dashboard. Although you could do this, it would mean forgoing some
of the chief benefits of Xcelsius—primarily designing your own spreadsheet formulas to

244 Chapter 9 Xcelsius and Statistics

9

build whatever you want, the way you want. Let the database server do what it does best—
warehouse and disburse the requested data as needed. Let the dashboard do what it does
best—work out the computational formulas and place them onto an interactive presentation
layer.

Keep in mind that in this example, the source data (cells A6 through B11) that drives the
dashboard is static. (Chapter 15, “XML and Data Connectivity,” describes interacting with
remote data sources, so I don’t embellish on connectivity issues here.)

A number of discrete probability distributions are frequently encountered and therefore
worth mentioning here.

Binomial Distribution

Just about anywhere you go, you’re bound to run into a binomial distribution without even
knowing it. Pull a coin out of your pocket and toss it onto a table or flat surface. If your
coin is a fair coin (that is, not unevenly balanced), there’s a roughly 50% chance that it will
land with heads facing up. Toss the coin again. There’s a 50% chance that the coin will land
with heads facing up again. If you go for a third try, the chances are still 50% that the coin
will land with heads facing up. This hints at some fundamental properties of the binomial
distribution:

■ The outcomes of prior trials have no influence on future trials.

■ For any given trial, there are only two possible outcomes: a success or a failure.

■ The probability of success for each trial remains unchanged, as does the probability of
failure.

■ If the probability of success on a single trial is determined to have the value p, then the
probability of failure has the value 1 – p.

These properties make the binomial distribution easy to apply quantitatively. They come
into play when you want to evaluate a collection of individual trials.

A business planner knows that her sales team typically makes a sale to one out of every five
prospects. Let’s assume that this success rate is pretty well established. An upcoming indus-
try convention could result in 200 sales leads. While it can be reasonably guessed that 40
new customers (= 200 * 0.2) would result, there would be only a 26.5% percent chance that
the planner’s department would gain more than 43 new customers.

How can she be sure of this? The answer is based on the mathematics of the binomial distri-
bution. The first step is to recognize the number of combinations that can make up a suc-
cess and mesh this with the probability of success for an individual trial. In this example,
each customer lead is considered an individual trial.

To keep things easy and intuitive, let’s go with just six trials. Let N stand for the total num-
ber of trials (6 in this case) and x stand for the number of successes in gaining new cus-
tomers. The values of x can be 0 for no new customers, 1 for one new customer out of the
six sales leads, all the way up through 6.

245Probability Distributions

9

The general formula for the binomial probability P(x) is as follows:

P(x) = COMBIN(N,x) * p^x * (1 – p)^(N – x)

COMBIN is a spreadsheet function that computes the number of combinations of x successes in
N trials. Let’s now work through three examples. Each customer lead can result in a success,
S, or a failure, F.

COMBIN(6,1) results in the value 6 as these are the possible outcomes:

{S, F, F, F, F, F}

{F, S, F, F, F, F}

{F, F, S, F, F, F}

{F, F, F, S, F, F}

{F, F, F, F, S, F}

{F, F, F, F, F, S}

COMBIN(6,2) results in the value 15 as these are the possible outcomes:

{S, S, F, F, F, F} {F, S, S, F, F, F} {F, F, S, S, F, F}

{F, F, F, S, S, F} {F, F, F, F, S, S} {S, F, S, F, F, F}

{F, S, F, S, F, F} {F, F, S, F, S, F} {F, F, F, S, F, S}

{S, F, F, S, F, F} {F, S, F, F, S, F} {F, F, S, F, F, S}

{S, F, F, F, S, F} {F, S, F, F, F, S} {S, F, F, F, F, S}

The number of combinations is just the first part. Remember, there are successes and fail-
ures, based on 20% and 80% likelihood, respectively:

P(2) = COMBIN(6,2) * 0.2^2 * (1 – 0.2)^(6 – 2)

= 15 * 0.2^2 * 0.8^4

= 15 * 0.04 * 0.32768

= 0.39322

That is, there’s a roughly 39% chance of succeeding with exactly two of the six customer
leads.

Now that you’re indoctrinated in the formulas and computations, take a look at Figure 9.8
(or open the file ch09_Binomial.xlf) to see how this is set up in a dashboard.

There are several key features to look at here:

■ You can change the probability of success for a given trial and its complementary proba-
bility of failure by turning the dial.

■ The value of the mean m is computed as follows:

m = N * P(x)

246 Chapter 9 Xcelsius and Statistics

9

■ The variance is computed as follows:

Variance = m * (1 – p)

The lowercase p is used in this computation.

In addition to computing the probability of getting exactly x number of successes, you may
also want to know the probability of getting at least x successes, or the probability of getting
no more than x successes out of N trials. For this, you need to make use of the cumulative dis-
tributions function (CDF). The CDF is simply a running total of the individual probabilities.
This is almost trivial to set up in the underlying spreadsheet of an Xcelsius dashboard. The
notion of a CDF is generic to all probability distributions.

Continuous Probability Distributions
One of the features of a discrete probability distribution is that the kinds of outcomes
allowed to happen is finite. You could have a success or failure (two outcomes). As a real
estate agent, you might sell 0, 1, 2, 3, or more properties in the next month. You are not
going to close on 3.1179 properties.

In contrast, continuous probability distributions can take on any set of values. If you are a
manufacturer that bottles soft drinks, you may be concerned with whether you are putting
too much or too little liquid in the bottles. Your sample measurements are not going to be
quantified into discrete units.

Continuous probability distributions overcome the limitation of a finite pool of outcomes.
Continuous distributions such as the normal distribution offer interesting and useful ways to
characterize datasets.

Figure 9.8
Basic setup for gener-
ating and displaying
the binomial probabil-
ity distribution.

N O T E
P(x) should not be confused with lowercase p.

247Probability Distributions

9

The Normal Distribution

The normal distribution is well suited for situations in which there may be many measure-
ments centered on some expected or average value. Basically, two parameters determine the
size, shape, and position of a normal distribution. These are the mean value, m, and the stan-
dard deviation, s. You can open the file ch09_NormalCurves.xlf (see Figure 9.9) to try out dif-
ferent variations.

Figure 9.9
Comparison of stan-
dard normal distribu-
tion with second
normal curve that you
can tweak with the
dials.

This dashboard contains two normal curves. One of them is called a standard normal distri-
bution because its mean value is set to 0, and its standard deviation is set to 1. There is a
second normal curve whose properties can be adjusted by turning the knobs on the dials for
mean value and standard deviation. This gives you a tactile sense of how the normal distri-
bution varies, based on the mean and standard deviation.

There are a few interesting properties associated with the normal distribution. No matter
what the values are for the mean and standard deviation, the total area under the whole
curve is equal to 1. Further, the area spanning any range of values of x is the probability that
a measurement will fall in that range. A Dual Slider component is the perfect kind of com-
ponent to use for setting these ranges. As you can see in Figure 9.10 (open the file
ch09_Normal.xlf), 84% of the area under the curve lies to the left of the value 1.

Let’s take a closer look at how this kind of a dashboard is set up.

To begin with, the kind of chart that’s used to portray the normal distribution is an area
chart. If you prefer, you could use a line chart in place of the area chart.

You compute the values for the probability density function (PDF). You will need to do this
for each value of x that you want to display on the chart. So what range of values would you
need? If you start with the mean value and extend your range by plus or minus three stan-
dard deviations, the curve will span 99.74% of the total visual area. This means that if the
average is 100 and the standard deviation is 15, a chart with x ranging from 55 through 145
will capture 99.74% of the possible outcomes.

248 Chapter 9 Xcelsius and Statistics

9

To keep things simple, I use a standard normal distribution, which by definition has a mean
of 0 and a standard deviation of 1. You can transform your data to this standard normal
form. Why deal with all the multiplicities of normal curves when there is a unique standard
normal distribution? This simplifies a lot of statistical analysis.

It is not difficult to convert your data values that conform to the standard normal distribu-
tion. The operation involves subtracting the mean value from each of the data points and
scaling it down by the standard deviation. Mathematically, this is done as follows:

z = (x – m) / s

Whenever z is a positive value, without looking at anything else, you can be sure that the
underlying x value has to be greater than the mean value. You can also be certain that the
likelihood of achieving a value having z greater than 1 has to be 16% or less. When you
convert your raw data to z values, the data is already partly statistically analyzed.

I want to recap where we are in the process: The goal is to generate some nice-looking nor-
mal distribution curves based on a mean and standard deviation. At a later point in the chap-
ter, I walk you through automatically generating the curve from your raw data.

Right now, you need to pick all the z values to appear in the chart and their corresponding
PDF values. I said before that selecting a range spanning from m – 3s to m + 3s would be
adequate. For a standard normal curve, m is 0, and s is 1. So you only need to look at values
from –3 to +3. Working with z values is already easier than dealing with the x value—you
don’t have to think about mean and standard deviation values!

To get the chart to appear smooth, you need to choose a sufficient number of points
between –3 and +3. If you increment by 0.025, you will plot 241 points (241 = (6 / 0.025)
+1).

For each of these points, you need to calculate the PDF value for the normal distribution.
The spreadsheet function for this purpose is NORMDIST. It is used in the following manner:

=NORMDIST(X,m,s,cumulative)

Figure 9.10
By using a Dual Slider
component, you can
determine the proba-
bility that x will fall
within a specified
range.

249Probability Distributions

9

The cumulative parameter tells the underlying spreadsheet whether you want to compute the
PDF value (which is what you want in this case) or the CDF. Set the cumulative parameter
to 0. Also, m = 0 and s = 1. If the first z value of –3 is placed in cell D2, your formula for cell
E2 would be:

=NORMDIST(D2,0,1,0)

Assuming that all the subsequent z values in the sequence from –3 through +3 are immedi-
ately below, you can replicate your NORMDIST formula down. Now it’s just a matter of plotting
the PDF values on the area chart.

Area charts and line charts accommodate multiple data series. This means you can superim-
pose a second normal distribution curve. This second curve is identical to the first, except
that you are going to nip off the left and right tails of the curve, based on whatever z values
are set by your dual slider.

You set your dual slider to have a minimum and maximum value of –3 and +3, respectively.
Then you link the low and upper data values of the dual slider to specific cells in your
spreadsheet (see Figure 9.11).

Figure 9.11
Set the truncation
point of the overlaid
normal curve by link-
ing the points from
your dual slider.

Assume for a moment that these points are cells B5 for the left truncation point and B6 for
the right truncation point. Starting from cell F2, the formula for the normal curve with the
truncation points would be as follows:

=IF(OR(D2<B5,D2>=B6),0,E2)

250 Chapter 9 Xcelsius and Statistics

9

Basically, this formula says, “If the z value for the point about to be plotted is outside the
data values set by the dual slider, then set the plot point to 0; otherwise, use the value that
was already computed for the un-truncated normal curve.”

If you overlay a normal distribution curve on top of a histogram, you can see how well the
curve approximates the histogram bars (see Figure 9.12). ch09_NormalHistogram.xlf is a sam-
ple file for you to explore.

For the most part, I am not enthusiastic about overlaying separate charts. This approach is
not terribly clean, as the position and alignment of chart axes is subject to change, depend-
ing on run-time data. Further, you are better off using the Trend Analyzer component,
described later in this chapter.

Figure 9.12
Combining a his-
togram and a normal
distribution.

Extrapolating from a Sample to the Population

To give you a true sense that statistical analysis is powerful, I want to briefly mention the
topic of sampling. I would like to do it by way of an example.

Imagine that you run a bottling operation for a major soft drink supplier. One of the opera-
tions involves filling 64-ounce bottles with a carbonated beverage.

Approximately 8,000 bottles are filled in an eight-hour shift. Because the beverage fizzes, it
is hard to fill precisely 64 ounces. Historically, the filled amounts vary with a 0.125-ounce
standard deviation. Achieving this level of precision requires some machine calibration, tak-
ing into account temperature and atmospheric pressure.

If bottles are not filled with enough of the beverage, customers complain, and the company
eventually loses business. If the bottles are overfilled, your company is spending more
money than necessary. There are all sorts of incidental costs. The increased weight per bot-
tle multiplied by some 8,000 bottles adds to the cost of purchased supplies and to the cost of
transportation. These days, the costs of gasoline and diesel are factors that need to be
reduced. In addition, overflowing bottles could interfere with production runs, and that
could be expensive.

251Probability Distributions

9

Before each production run, 15 bottles are tested to determine, among other things, whether
the amount of fluid per bottle is accurate. The plant manager determines that the average of
the sample is 64.78 ounces. Is recalibration necessary?

There are several issues to consider here:

■ The only way to be certain about the average is to produce the bottles and measure
them after the fact. Doing so would be prohibitively expensive.

■ Increasing sample size (say, from 15 to 50 or 100 bottles) would improve the accuracy of
sampling. The testing of larger samples requires additional time that cuts into the pro-
duction run time.

■ Fluid quantity is not the only test being run. The testing of each bottle is destructive,
and it adds to the overall bottling costs.

If you can, you’re going to make do with the information you already have (namely, the test
results from the sample of 15 bottles).

There are two pieces of information I haven’t supplied:

1. The plant manager wants to be 99% certain that bottles are not being underfilled. (The
company management measures everything on dashboards—including unneeded testing
and accurately filled bottles!)

2. The value of z on the normal curve needs to be adjusted from sample size to the popu-
lation universe, using the following general formula:

z = (X_Avg – m) * SQRT(n) / s

The following values would be used:

X_Avg = 64.78 ounces

m = 64.0 ounces

n = 15 bottles

s = 1.25 ounces

When you insert these numbers, you get the following:

z = (64.78 – 64.0) * SQRT(15) / 1.25

= 0.78 * 3.873 / 1.25

= 2.4167

If you run your generated SWF file generated from the ch09_Normal.xlf dashboard and
move the right pointer on the dual slider to 2.4, you see that over 99% of the curve is
shaded. So the plant manager can be at least 99% certain that the bottles are not being
underfilled.

Even with relatively small and incomplete information, you can make inferences that are not
immediately evident. More importantly, you can attach levels of reliability to your decisions

252 Chapter 9 Xcelsius and Statistics

9

even when there is uncertainty in the information you have available. This underscores the
power of statistical analysis.

The Trend Analyzer Component and Trend Analysis
Much of statistics deals with unstructured and unordered data. Sometimes the order in
which data is read does matter. That is, the data exhibits a specific trend. You may be track-
ing a trend in growth of sales or monitoring the average temperature of a major city for the
month of July over the course of a century.

There may be a trend that is linear, exponential, or logarithmic, or there may be one that
follows some polynomial equation. If the data conforms to a linear pattern that can be quan-
titatively measured, then determining two numbers, the slope and the Y-intercept, quantifies
the trend. You can then use this as a forecasting tool or simply interpolate values for a range
of data your already have.

There are three types of trend analysis tools that I briefly outline here. One of them
involves specific spreadsheet functions built into Xcelsius for forecasting. Another, the
Trend Analyzer component, is new to Xcelsius 2008. Finally, if you want to veer off the
smooth pavement and drive on a dirt road, you can use well-established regression tech-
niques such as the method of least squares. Behind the scenes, the first two tools use regres-
sion techniques; they’re just packaged differently.

Embedding FORECAST and INTERCEPT Functions in Xcelsius Spreadsheets

As with Excel, Xcelsius 2008 provides two spreadsheet functions that take X and Y data and
forecasts a Y value for a given X value, based on the assumption that the trend is linear.
These are the two functions:

FORECAST(xValue,known_Y_values,known_X_values)
INTERCEPT(known_Y_values,known_X_values)

Figure 9.13 (see the file ch09_Forecast.xlf) shows how you can use these functions in con-
junction with an XY Chart component and a slider.

The objective is to adjust the slider value (cell C3) and perform a forecast (cell B3) by using
this formula:

=FORECAST(C3,B6:B14,C6:C14)

There are a couple things worth noting here:

■ There can be breaks or holes in the data.

■ Wherever data exists, the X and Y values need to be paired up.

The Trend Analyzer Component

The Trend Analyzer component is a new addition to the suite of analytical tools introduced
with Xcelsius 2008. This handy little component works a little differently than the FORECAST
function:

253Probability Distributions

9

■ It is not restricted to only linear trends. You can explicitly fit a curve for logarithmic,
polynomial, power, and exponential trends.

■ The Trend Analyzer component offers a “best fit” option, which automatically selects
the curve type that best fits the data.

■ Rather than project a single value for a single point at a time, the tool generates pro-
jected values over a range and places them into the spreadsheet cells that you designate.

■ As your underlying spreadsheet values used for the projection change, so does the pro-
jected trend produced with the Trend Analyzer component. This makes the tool very
interactive.

■ The Trend Analyzer component can produce additional metrics, such as regression
coefficients, on the reliability of a trend.

■ The Trend Analyzer component is strictly one dimensional. That is, if you have a set of
X and Y values, the Trend Analyzer component can only look at the progression of X
values or the progression of Y values, but not the two taken together.

■ The Trend Analyzer component works best with contiguous data.

The Trend Analyzer component lets you create charts like the one shown in Figure 9.14.

Figure 9.13
Forecasting on an XY
Chart component.

254 Chapter 9 Xcelsius and Statistics

9

Notice that the mathematical equation and the numeric coefficients and statistical measure
of correlation are automatically generated.

The setup of this is rather straightforward (see Figure 9.15 or open the file
ch09_TrendAnalyzer.xlf):

Figure 9.14
An exponential trend
is generated.

Figure 9.15
Setup involving the
Trend Analyzer com-
ponent.

1. Identify the data you want to analyze. In this example, these are the cells B4:B15.

2. Choose the regression type. You can choose linear, logarithmic, polynomial, power, or
exponential. If you are not certain what type to use, or your data may at times reflect
different kinds of trends, choose Best Fit.

3. Identify the analyzed data cells. In this example, they are mapped to cells C4:C15.

255Closing Thoughts

9

Because your data for the column chart resides in cells B4:B15 and your data for the trend
line resides in cells C4:C15, you can use a combination chart to display both the data series.

You can generate and display additional information about the projected trend, such as the
equation type, the actual mathematical equation with the numeric coefficients, and statistical
measures associated with things like correlation coefficient.

Method of Least Squares

If you want, you can unleash the full fury of mathematical tools for doing things like least
squares curve fitting. The mathematics gets a little hairy. The slope of a “simple” linear
curve, its Y intercept, and correlation coefficients are given as follows:

b = (n * S[XY] – S[X] S[Y]) / (n * S[X^2] – S[X]^2)

a = (S[Y]/n) – b *(S[X] / n)

r = n * (S[XY] – S[X] S[Y]) / SQRT((n* S[X^2] – S[X]^2) (n* S[Y^2] – S[Y]^2))

Is your head spinning already? If you have a degree in mathematics, you probably don’t need
me to explain all this. Otherwise, the previous two sections of trend analysis should be
enough for you to get by.

Closing Thoughts
Probability and statistics span a very broad range of mathematics. This chapter gives you a
flavor for probability and statistics as well as some information on how to apply statistical
analysis with Xcelsius 2008.

The chief value of using statistical techniques and probabilistic reasoning is that doing so
allows you to analyze your data and make decisions when the information is voluminous,
possibly disorganized, or incomplete. The overwhelming abundance or paucity of data rep-
resents the two ends of the spectrum, and statistics gives you ways to systematically address
both.

In practice, you’ll find that using statistical methods will serve you well in two phases. In the
first phase, you may be looking at a daunting amount of data and saying to yourself: “What
is going on here? I have all this data, and I’m not sure what to make of it.” In this phase, you
can use statistical measures to characterize what is happening. The goal isn’t to get all the
answers; the goal is to understand your data.

In the second phase, you can use statistical techniques and tools to present your findings and
allow users to critically and objectively address key decisions and walk away with answers
that have reliability measures tethered to them. You may, for example, conclude that there is
a loss of operating efficiency below a certain threshold, but with it, you know that you are
95% sure of your convictions. The ability to couple an estimate of reliability with the deci-
sion capacity is a pretty strong added value of dashboards.

Chapter 10, “Financial Analysis,” introduces practical techniques for presenting financial
information in a dashboard setting.

This page intentionally left blank

10CHAPTER

In this chapter

Financial Analysis

Some Basic Ideas in Accounting and Their Importance in Financial Analysis 258

Value at Risk (VaR) 258

Bringing Accounting into the Dashboard Equation 261

Accounting for the Element of Time in a Financial Analysis 263

Financial Ratio Analysis 266

Closing Thoughts 272

258 Chapter 10 Financial Analysis

10

There are few places where having a grasp on the numbers can count more than it does in
financial analysis. It is incumbent on both a dashboard preparer and a dashboard user to
have a firm understanding of the numbers and the dynamics behind the scenes of the inter-
play between the different kinds of financially reported information.

This chapter stitches together a broad array of topics. Some are of a conceptual nature (for
example, the distinction between cash versus accrual-based accounting), and some are of a
practical nature (such as applying Value at Risk [VaR] methodologies in a dashboard).

Some Basic Ideas in Accounting and Their
Importance in Financial Analysis

Dashboards are frequently used to monitor trends of ongoing business operations.
Sometimes you can focus on a specific isolated metric. For instance, you can ask “Is manu-
facturing production maintained at nominal levels?” The moment there is a drop signaled
by a trend icon or another alert component, management can marshal their forces and take
corrective action.

A dashboard used in this manner is easy to understand. It is very literal. Either production is
running nominally, or it is not. Either server uptime in the company’s network infrastruc-
ture exceeded 99.5%, or it did not.

Although this type of dashboard is easy to use, its usefulness is limited. The fact that the
measure is isolated contributes to its limitation.

Financial analysis entails the interplay of a whole host of factors. Say that a company is seek-
ing to expand operations by opening a plant in Asia and is looking for a bank loan. Is the
company overextending itself? A look at the company’s financial statements and doing analy-
sis using financial ratios could quickly answer this question.

It may not even be necessary to delve deeply into financial statement analysis. A dashboard
armed with a few sliders to adjust the timing and amounts in a financial projection could be
very revealing. You could further couple the timing of events with probability distributions
to address business risk.

Value at Risk (VaR)
Value at Risk, although a bit more specific in scope than the majority of topics covered in
this chapter, drives home how interpretive analysis can play a role in historical patterns,
future events over a time horizon, and financial risk.

VaR is a powerful technique for assessing risk and potential losses. Rather than giving a for-
mal definition and getting into some heady math, I think it’s better to just dive into a simple
example that shows the essential concepts and the implementation. The example that fol-
lows focuses on a business operation. It does not use precise terminology.

259Value at Risk (VaR)

10

Your company, a supermarket, is looking to establish a line of credit with a bank so that
overdraft protection is in place to support its ongoing operations. There is a general expec-
tation that your business in the future will be similar to your business in the past. Although
the profit margin is slim, merchandise doesn’t sit on the shelves too long. You don’t have any
reason to expect a sudden change in local demographics or buying patterns.

How much credit is really needed to keep operations afloat? It is in the interest of your
company to not overshoot the amount needed, as you will have to set aside collateral.

Basically, you want a cash reserve capacity you can use if you need it at some point down the
road. Logically speaking, there are three sets of numbers to quantify the problem:

■ You might need to specify a duration for which your business operation could require
additional capital reserves. In the next 30 days, you might not need a substantial spare
reserve. Over the course of a full year, something unanticipated could easily happen, in
which case you’d be happy you opted for a larger cash reserve.

■ In deciding how much you might potentially need, you want to have a confidence level
that you haven’t understated your requirements. For instance, you might want to be
99% sure you won’t be exceeding your line of credit.

■ You will want to profile how things have changed and extrapolate how things could
change.

Considering these factors allows you to project how much value is at risk, given a time hori-
zon and level of certainty.

Here is the problem, specifically: You have daily cash inflows and outflows. For a 30-day
period, cash is kept in an account from which payments are made. After this point, the
money is moved to another account. For practical purposes, you can treat this as working
capital. There’s just one problem: There are times when the balance can be negative. One of
several things must happen:

■ Overdraft privileges will be needed.

■ A cash reserve needs to be deposited.

■ The period of time money is left in the account needs to be longer than 30 days.

If either of the first two options is pursued, how much reserve or overdraft privileges will be
needed? This is the kind of question that a VaR methodology handles.

If you open the file ch10_VaR.xlf (see Figure 10.1), you will see data spanning 120 days
(columns O and P). It doesn’t matter how much comes in on a particular day or goes out on
that day. All that matters is the running account balance (column Q in Figure 10.1). As you
can see in the figure, there is a negative balance over several of the days. Actually, much ear-
lier in the timeline, there is a much larger negative balance.

260 Chapter 10 Financial Analysis

10

Assuming that the data reasonably follows a Normal distribution, you can quickly and easily
determine the mean and sample standard deviation. (See Chapter 9, “Xcelsius and
Statistics,” to get the lowdown on statistical analysis.)

In this example, the average balance is about $6,500, and the standard deviation is $8,800
over a 91-day interval. Given that kind of a variation, it should not be surprising that the
balance dips into the red rather frequently. How far it will go into the red is determined by
a couple factors: the certainty you require and a time horizon. Let’s take these two factors
one at a time.

Because the pattern follows a Normal distribution, the yardsticks used for measuring uncer-
tainty and variation are mean and standard deviation. There is a 95% chance that during
any 90- or 91-day stretch, the dip will not go below m-1.65*s, which is approximately
$8,000 into the red.

This calculation works well for a time horizon of 90 or 91 days. Is a reserve of $8,000 a
good estimate for how much would be needed, say, over the course of a whole year?
Intuitively, it should be evident that the longer you run your operation, the more likely you
are to exceed the requirement of an $8,000 reserve.

N O T E
The files identified in this and other chapters can be downloaded from the book website,
www.XcelsiusBestPractices.com.

Figure 10.1
Historical data for
establishing a statisti-
cal trend used for a
VaR-inspired method-
ology.

www.XcelsiusBestPractices.com

261Bringing Accounting into the Dashboard Equation

10

There is a quantitative adjustment for the duration. It turns out that the standard deviation
for a normally distributed sample grows in proportion to the square root of the time factor.
The standard deviation of $8,800 is based on a sample of 91 days.

If you were to take a sample of similar data but stretching out over the course of a whole
year, you would have about four times the amount of data. The standard deviation of this
larger sample would increase by a factor of two (the square root of the fourfold increase in
the time horizon), making the standard deviation approximately $17,600.

The reserve requirement for a whole year is now based on the larger standard deviation of
$17,600. There is a 95% chance that during the course of a whole year, the dip will not go
below m-1.65*s, which is approximately 6500-1.65*17600, or about $22,500 into the red.

Rather than go through these zany computations, you can just use the ch10_VaR.xlf dash-
board shown in Figure 10.2, which does all the hard work for you.

Figure 10.2
A reserve require-
ments dashboard
based on VaR method-
ology.

VaR is just one of many different methodologies for addressing financial analysis. This
method, as just illustrated, gives you a flavor for how it can be applied.

Bringing Accounting into the Dashboard
Equation

The use of dashboards and visualizations for presenting management and financial informa-
tion reaches company management at all levels in the organization. Managers are likely to
want to utilize financial statements such as income statements and balance sheets, but there
is an important obstacle to their day-to-day use: Financial statements are largely historical.
A balance sheet or an income statement for the prior fiscal year may not always be helpful in
making decisions related to circumstances of the past 2 weeks or the past 48 hours.

Managers face yet another challenge with current financial information: Much of the infor-
mation may not be stated in a form that is consistent with generally accepted accounting
principles (GAAP). Sometimes there can be a real “gap” between raw, unaudited financial
information and the audited financial statements that are produced in subsequent quarters
or years.

262 Chapter 10 Financial Analysis

10

You can take a few steps to bring the raw financial data in closer alignment with its eventual
audited counterparts.

Accounting 099
Accounting has its own jargon, most of which is intuitive, but some fundamental concepts elude people. You
may have heard terms such as cash-basis accounting and accrual-based accounting. With cash basis account-
ing, a sale is recorded when you are paid for the merchandise or item. In contrast, accrual-based accounting
recognizes revenue when the product or service is delivered.

A cost is something incurred that does not result in making money. An expense is something incurred in the
process of making money or earning a profit. The distinction between an expense and a cost is a subtle but
critical one. The idea of coupling expenses with revenue so that they are appropriately correlated is called
matching. In matching, you want to associate the money you spend in selling a product with revenue you gain
from sales.

Matching is a central idea of accrual-based accounting. For example, say that you take a short-term loan or
note to purchase goods for an order in July. The customer purchases the goods on credit in August and pays
you in September. You repay the loan in October. In accrual-based accounting, revenue is recognized when the
goods or services are delivered. In this case, it is August, even though the customer pays you in September.
The matching principle also ties your purchases of products with the products sold. This allows you to think
and interpret without a whole bunch of disconnected activities. You can therefore assess the full sales cycle
without having pieces missing in the business cycle.

There are three main financial statements you’ll run across when examining a company’s financials: the income
statement, the balance sheet, and the statement of cash flows.

A balance sheet provides a snapshot of a company at a particular moment in time. In essence, it shows what
your company has (assets), what it owes (liabilities), and what is left over (the net worth, or owner’s equity).
There’s a mathematical relationship between the various balance sheet items:

Total assets = Total liabilities + Owner’s equity

An income statement measures profitability or income that is gained (or lost) over a duration of time. An
income statement identifies revenue and their associated selling expenses to show gross profits. During this
time, the company needs to stay afloat. It will incur various operating expenses, whether they be rent, salaries,
insurance, or even unexpected losses or windfall gains. If you tally this up, you get income before taxes. Take
away your tax expense, and you have net income.

A statement of cash flows shows where cash came from or went over a duration of time. There are three
places cash can come from or go to: operating activities, investing activities, and financing activities.

If you own a chain of retail stores, the proceeds from the selling activities are associated with operating activi-
ties. To economize on your operations, you may use cash by setting up a central warehouse. Down the road,
that warehouse will allow you to cut a major chunk out of your operating expenses. It is a capital investment in
your business, so cash spent here is used in investing activities. If you are successful with your regional chain of
stores, you may decide to expand your operations nationwide. To accelerate the expansion, you hit up your
investors for funding; in this case, you are getting cash from financing activities.

263Accounting for the Element of Time in a Financial Analysis

10

Accounting for the Element of Time in a
Financial Analysis

We often get more data than can be easily handled at a glance. Call it a form of digital indi-
gestion. Consider the transactional data (columns B and C) in Figure 10.3. There is no
immediate discernable pattern or easy way to interpret the data just by looking at the data
itself. Along with each transaction amount is a data. This data can be classified by month
(column D). For cell D4, you use this formula:

=Month(C4)

From here, it’s an easy process to tally the transaction amounts for each of the 12 months. In
cell H5, you use this formula:

=SUMIF(D4:D203,F5,B4:B203)

Cells D4:D203 are the month numbers for each of the 200 data points. Cell F5 is the month
number you are testing against, which can range from 1 to 12. If the month number of any
data point in D4:D203 matches the value of cell F5, you need to tally up the corresponding
receipt amount in column B.

Figure 10.3
Classifying and aggre-
gating transactional
data using SUMIF.

This process of tallying the amounts is very much like the preparation of a histogram.
However, instead of counting frequencies, you are summing up the actual values.

Tabular data is useful, bit it’s much easier to understand when it is turned into a visualization.
The left side of the visualization shown in Figure 10.4 displays monthly totals and year-to-

264 Chapter 10 Financial Analysis

10

date totals by month. The right side of the visualization is the equivalent by calendar quarter.
Even without further embellishments in the dashboard presentation, it is clear that you are
looking at a seasonal business with peak activity in the second and third quarters.

Figure 10.4
Visualizing tabular
data by month and by
calendar quarter.

There’s not much financial analysis going on here. The key take-away here is figuring out
how to translate a mass of numbers (or, more appropriately, a “mess” of numbers) into a
meaningful visualization. Classifying and totaling the dollar amounts by time is the key to
simplifying the analysis of data.

Preparing an Aging Report
Plenty of accounting programs produce what’s commonly referred to as an aging report—
that is, a report that spreads out a schedule by, say, 30, 60, and 90 days. There’s no sense in
trying to re-create this functionality for the data you already get from your accounting
applications. However, in many situations, you will be working with data that is not part of
an accounting application and that will not be easy to shoehorn into a ready-made account-
ing application. Two such situations immediately come to mind: analyzing data about your
company’s competitors and projecting, in a what-if style, possible outcomes on the timing of
receivables.

It would be nice to take data for an amount and a date and automatically place the amount
into an appropriate column (see Figure 10.5).

Figure 10.5
Allocating values to
the appropriate col-
umn(s) by month
number.

265Accounting for the Element of Time in a Financial Analysis

10

In this example, the $100 item shows up in the column labeled Month 1, the $200 item
shows up in the column labeled Month 3. The month number next to the $500 item is 1.5,
so half of the $500 falls in Month 1 and the other half in Month 2. Similarly, because the
month number next to the $600 item is 1.9, 90% of it ($540) falls in Month 2, and 10%
($60) falls in Month 1. The allocation scheme follows whatever value happens to be the
value next to the dollar amount.

This framework is very flexible and can be applied in a wide variety of circumstances that
have nothing to do with this receivables aging example. You could, for instance, create a
financial projection involving, say, individual projects or engagements you expect to get but
for which the timing of contracts being awarded is subject to change.

In the context of receivables aging, you already have a schedule of payment due dates. The
reality is that historically, maybe only 23% of all vendors pay immediately, 30% wait a
month before paying, 23% wait two months, and 10% pay three months late. The remain-
der take 120 days or more to pay, and half of those are uncollectible. You can tweak your
dashboard to reflect this reality by using sliders (see Figure 10.6).

Figure 10.6
Using sliders to “age”
the scheduled receiv-
ables in 30, 60, 90,
and 120 days and to
provide for write-offs.

When you put this all together, you have a very flexible framework for projecting what the
cash flow picture could look like (see Figure 10.7 or open the file ch10_Aging.xlf).

266 Chapter 10 Financial Analysis

10

This dashboard is divided into three panels:

■ The top-left panel has a Grid component that allows you, on a line-by-line basis, to
adjust the dollar amounts and the timing by clicking and dragging the mouse.

■ The five sliders in the bottom-left panel allow you to identify what proportion of
receivables are paid immediately and what proportion are paid 30, 60, 90, and 120 days
late. Notice that the collective sum of the percentages for the sliders never exceeds
100%. You can use the bottom slider to adjust the proportion that is written off for pay-
ment delays exceeding 120 days.

■ The panel on the right contains a chart that shows both scheduled receivables and pro-
jected receivables, based on timing delays. As you adjust the values in the Grid compo-
nent for amounts and month numbers and as you adjust the slider values, the chart
values are instantly recalculated and displayed.

Because of the nature of its interactiveness, this dashboard gives a very real sense of how
timing delays can play out.

Financial Ratio Analysis
Financial ratios are great indicators of how a business is doing. Sometimes, it is important to
know where the numbers are coming from. For example, the current ratio is defined as cur-
rent assets divided by current liabilities. If your current assets are $700,000 and current lia-
bilities are $300,000, then the current ratio is approximately 2.33. Retrieving numbers such
as those for current assets and current liabilities could be straightforward, as this is the kind
of information that is readily available from accounting applications. But what numbers
make up the current assets? How much is in cash versus inventory or short-term receiv-
ables? Getting at the underlying information is not necessarily easy.

Figure 10.7
An interactive receiv-
ables aging dash-
board.

267Financial Ratio Analysis

10

To assist in this kind of analysis, I provide a ratio analyzer dashboard that displays specific
kinds of financial ratios and deconstructs how the numbers are derived (see Figure 10.8 or
open ch10_RatioAnalyzer.xlf).

Figure 10.8
Deconstructing finan-
cial ratios.

In this example, the dashboard starts with a list box that identifies various kinds of financial
ratios. The one selected in Figure 10.8 is ROA (return on assets). When you click ROA, the
ratio and its constituent components are displayed, along with the underlying calculations.

The Buck Starts Here
Constructing a dashboard like this requires a series of steps. Typically, data originating from
some source—whether a database server, a connection over the Internet using Web Services,
an XML file, or a spreadsheet—may not be in the specific accounting form you want. For
instance, you might only have data that conforms to the chart of accounts. The calculations
you may be interested in could involve having to combine information from various items.
You might want to do all the mixing and matching using formulas in the underlying spread-
sheet of your dashboard. In this case, you could start by designating a contiguous range of
spreadsheet cells where you can place your raw data (see Figure 10.9).

In this example, there are 60 kinds of financial quantities—principally income statement and
balance sheet data, sprinkled with supplementary financial data. With the exception of the
initial retained earnings, there are three sets of data, one for each of three years.

The data elements shown in Figure 10.9 do not conform to a properly stated set of financial
statements. There are many subtotals and totals missing. It is not difficult to pull the raw
numbers into a prestructured financial statement template (see Figure 10.10).

268 Chapter 10 Financial Analysis

10

Notice that the data of Figure 10.9 populates the shaded cells of Figure 10.10. You could
directly map each of the shaded cells to the source data with a simple “equals” formula. For
example, the revenue figure $2,850 for the year 2006 could be directly mapped using this
formula:

=Q2

I would advise against this kind of direct mapping because it is hardwired. Today, the source
location of the revenue figure may reside in cell Q2. If your data is coming from a remote
source, though, the data could easily be moved to a different cell coordinate. You don’t want
to have to manually perform surgery on each of the individual spreadsheet formulas.

Figure 10.9
Designating a starting
location in your
spreadsheet where
raw accounting data
originates.

Figure 10.10
Retrieving and incor-
porating source data
into financial state-
ment templates.

269Financial Ratio Analysis

10

In the underlying spreadsheet for this example, an OFFSET function reads a row number in
column A. This tells the OFFSET function where to find the desired value. If the mapping
changes, or if you discover that your row offset should be a different number, you can simply
adjust the number, and you’re done.

There are two benefits to converting your source data into financial statement format:

■ You can incorporate ready-made financial statements at the presentation layer of your
dashboard.

■ Information presented in financial statement form may be easier to work with and ana-
lyze (for example, in calculating financial ratios).

The shaded cells in Figure 10.11 show a variety of financial ratio calculations.

Figure 10.11
Calculating financial
ratios directly from the
financial statements.

You could use a spreadsheet table component to display the ratios in tabular form on a dash-
board. Such a table is a bit dense and is not easy to read. You could instead display one ratio
at a time and show both the numerator and denominator directly in the spreadsheet (see
Figure 10.12).

Figure 10.12
Spreadsheet cells can
be used to depict the
financial ratio and its
constituent elements.

270 Chapter 10 Financial Analysis

10

You could have individual diagrams like those shown in Figure 10.12 for each financial ratio,
but that would be wasteful. A better strategy would be to apply context switching so you can
swap in and out the appropriate financial ratio information.

Figure 10.13 shows a split view of an underlying spreadsheet and related components on the
canvas. Column AJ (the leftmost column of the spreadsheet in Figure 10.13) lists the finan-
cial ratios. These are the same ratios that appear in the list box in the middle of Figure
10.13. To the immediate right of column AJ are the respective ratio values and their con-
stituent elements. When the dashboard is deployed, clicking the various items on the list
box has the effect of retrieving the appropriate values that are displayed in the organiza-
tional chart–style diagram near the top of Figure 10.13. Using the OFFSET or INDEX function
lets you retrieve the selected ratio information.

Figure 10.13
Retrieving the appro-
priate data lets you
populate the diagram-
matic chart.

Having a diagrammatic representation of any of the financial ratios is nice, but having the
ability to deconstruct the numerator and denominator from information in the income
statement and balance sheet is much better. Figure 10.14 shows how this is done.

The numerator for the current ratio is Current Assets, which happens to live in rows 41
through 53 of the spreadsheet. By specifying the row numbers, you can actually retrieve the
contents of those cells.

The key here is to map the range of rows that corresponds to the prevailing numerator and
denominator of each ratio.

271Financial Ratio Analysis

10

Using Ratios and Metrics to Judge the Overall Health of a Business
When you invest in a company, you are likely to be concerned about the safety of your
investment. The marketplace is volatile. It would be nice to get assurances that your portfo-
lio company isn’t shooting itself in the foot. A company could be sitting on its inventory and
not effectively moving its merchandise to generate revenue. A company could be danger-
ously overextending its obligations. Then again, a company may be doing all the right things
it needs to keep its operations running smoothly.

It would be nice to have a metric to use for a dashboard that would be a reliable indicator of
whether a company is likely to be in business or go belly-up a year from now. Such a metric
exists. Actually, there are many such metrics. Among the better-known metrics and one that
is well suited to dashboards and financial ratios is the Z score, pioneered by Ed Altman dur-
ing the 1960s. The original formula, which is still in use today, is as follows:

Z = 1.2*WC/TA + 1.4*RE/TA + 3.3*EBIT/TA + 0.6*MKT/TL + 0.999*SALES/TA
TA is Total Assets
WC is Working Capital (Current Assets less Current Liabilities)
RE is Retained Earnings
EBIT is Earnings before interest and taxes
MKT is Market Value of Equity
TL is Book Value of Debt
SALES is just Sales

If a company’s Z score is 1.8 or less, you shouldn’t expect the company to be in business a
year from now. If the score is 3 or higher, the company is likely healthy and not immediately
headed on a collision course. Between the two ranges is a gray area where it is difficult to say
if the company is on shaky ground. Obviously, the closer the Z score is to either of these
thresholds, the more certain the outcome.

Figure 10.14
By identifying row
numbers, you can
retrieve the appropri-
ate detailed informa-
tion.

272 Chapter 10 Financial Analysis

10

To better visualize this, I provide a Z score calculator (see Figure 10.15 or open the file
ch10_ZScore.xlf).

Figure 10.15
This Z score calculator
allows you to assess
the health of compa-
nies.

Notice that current and total assets are set using a dual slider and that the upper limit has
been made adjustable. The pie chart shows the relative contributions from each of the ratios
to the Z score. To give a better visual feel of how adjusting the sliders affects the Z score,
the dashboard includes a vertical progress bar with color-coded alerts.

Closing Thoughts
Much of the focus of this chapter is on preparing dashboards used for financial analysis.
These dashboards are quite different from metric-oriented “just show me the latest values”
dashboards.

Financial analysis goes hand in hand with the need to make insightful judgments, often
under uncertainty. Let’s return to the example from earlier in the chapter: You need to
determine how large a line of credit you will need. Of course, no one can precisely know
how much they will need until the future becomes history. If hindsight has 20:20 vision, why
not make use of historical patterns to project future requirements? While you’re at it, why
not take advantage of quantitative methodologies such as VaR?

Accountants go through a lot of effort to audit an organization’s records and present the
financials of the company in terms of GAAP. This involves establishing that accounting con-
trols are in place and adequate. It also involves assessing materiality and having a reasonable

273Closing Thoughts

10

assurance that information is not materially misstated. It involves careful judgments about
how information is classified. An item being capitalized as a fixed asset when it should be
expensed can dramatically alter the reported profitability shown on an income statement.
Accountants expend considerable effort to consistently and objectively apply accounting
principles to deal with these issues and document their assumptions. One of the first things I
dive into after reading an auditor’s opinion is the footnotes. After that, I proceed to the
numbers.

Auditors have done the hard work of verifying the basis for relying on reported information.
If you have audited financials and accounting data, you can incorporate that information into
your dashboards and visualizations with a minimal amount of rework. In this chapter, I show
how to use financial information in financial statement templates. Having information in a
suitable form makes it easy to generate financial ratios, whether standard ratios such as a
current ratio or ratios of your own concoction.

In this chapter, I also show how to deconstruct ratios—that is, how the numbers are calcu-
lated—by tracing them back to the source data.

What is all this ratio information good for? At the very least, you can answer obvious ques-
tions, such as “Will the business I am about to invest in likely go belly up in a year or two?”
In this chapter, I provide a Z score calculator that lets you explore the dynamics of how vari-
ous factors feed into the scoring process. Ratio analysis is not an exact science. However, if a
metric such as a Z score indicated that a company is on shaky grounds, you owe it to your-
self to investigate further. Regardless of any metric, you always need to be diligent. It is
especially important to critically examine a company’s financials and outlook when you spot
potential trouble.

This chapter provides some food for thought in financial analysis. Even if you are a financial
professional who knows analysis backward and forward, you can harvest a number of useful
dashboard construction techniques from this chapter. Chapter 11, “Maps in Xcelsius,” cov-
ers the topic of maps in Xcelsius, offering plenty of dashboard techniques.

This page intentionally left blank

11CHAPTER

In this chapter

Maps in Xcelsius

Basic Ideas About Maps in Xcelsius 276

An Augmented Map Framework 280

Colorizing Maps 283

Multiple-Region Map Selection and Tally Maps 286

International Map Types 289

Closing Thoughts 294

276 Chapter 11 Maps in Xcelsius

11

Actively used business information is not only centered on what, how much, and when but
is also concerned with where things take place. The geospatial significance of information
and its role in dashboards is the focus of this chapter. Although geographic information sys-
tems and digital cartography are interesting, they are not the topic of this chapter. This
chapter is about understanding and using Xcelsius Map components.

Basic Ideas About Maps in Xcelsius
Trying to set up an Xcelsius Map component without any guidance can be a bit flummox-
ing. If you see a basic setup and get some explanation of some of its subtleties, using a Map
component is rather easy.

A variety of different Map components are available. They all follow the same structure but
differ in the geographic territory covered.

Xcelsius maps are divided into separate clickable geographic outlines (see Figure 11.1).

Figure 11.1
Xcelsius Map compo-
nents let you select
distinct clickable geo-
graphic regions.

The Parts of an Xcelsius Map
To help you get familiar with Xcelsius Map components, the following sections discuss the
various parts you need to know about, including regions and region keys, display data, and
how data insertion is handled.

Regions and Region Keys

All Xcelsius Map components come with prebuilt regions. If you’re working with a map of
the United States, the regions could be the various states. To be able to unambiguously
retrieve the underlying spreadsheet data, you need to understand the following restrictions
governing the behavior of regions:

277Basic Ideas About Maps in Xcelsius

11

■ Your data for the various regions has to follow a specific order, which is generally alpha-
betical. You cannot switch the sequence of data. For example, with a map of the United
States, you may receive data on an alphabetical state-by-state basis.

If the data is listed in order of population, you could have California on the first row, Texas
on the second, and New York on the third. Xcelsius will not take kindly to this order. It
wants to see the data in terms of a strict alphabetic sequence. Xcelsius expects Alabama to
appear first, Alaska second, Arizona third, all the way down to Wyoming as the last state
listed. (Do not fret. I’ll show you a workaround for this a little later in the chapter.)

■ The region information cannot have missing or extra rows of data. As much as you or I
might want, we cannot arbitrarily decide to throw in an additional region, such as
Puerto Rico, into the Xcelsius United States Map component.

Fortunately, Xcelsius allows you to further customize regions for a map. To do so, you use a
region key—a translation mechanism that tells Xcelsius to associate a name appearing in the
data with a name it would not otherwise expect. While it is not likely, your data could be
labeled with a state’s nickname. Texas is often referred to as the Lone Star State. Your data
for Texas might appear with the following label:

TX (aka Lone Star State)

You can provide Xcelsius with your own custom region keys (see Figure 11.2).

Figure 11.2
Custom region keys
can be mapped to
spreadsheet cells and
then tweaked by
hand.

Display Data

As you pass your mouse over a clickable region of an Xcelsius Map component, informative
text can be displayed. You can define what is displayed in this hover text by filling in the
Display Data setting in the Properties panel (refer to the right side of Figure 11.2).

278 Chapter 11 Maps in Xcelsius

11

In addition to displaying a label, you can also display a value associated with each map
region (see Figure 11.3).

Figure 11.3
In addition to specify-
ing labels, you can
display data in a map.

Display data can represent any kind of value you care to incorporate in the hover text, as
long as it’s one value per region. For instance, your code might represent the total sales for
any state over, say, an eight-year period, but you would not display the sales for each of the
eight years for a given state in the hover text. To get at the detailed information, you would
use the Data Insertion features of the map.

Using a Map to Obtain Further Information
Although you can just display a map by itself, Xcelsius Map components tend to be used like
selectors to get further information. The Data Insertion feature of a map allows you to pop-
ulate a designated row or column with information associated with a specific map region.

The general idea is to click a map region and display the corresponding details (see Figure
11.4 or open the file ch11_SimpleMap.xlf).

N O T E
The files identified in this and other chapters can be downloaded from the book website,
www.XcelsiusBestPractices.com.

www.XcelsiusBestPractices.com

279Basic Ideas About Maps in Xcelsius

11

At the spreadsheet level, you identify a row (or, if you desire, a column) that you can popu-
late with detailed data extracted from an Xcelsius Map component. This is your destination
row (see the top spreadsheet row of Figure 11.5).

Figure 11.4
Maps can be used to
retrieve detailed infor-
mation.

T I P
The destination row can be placed anywhere on your underlying spreadsheet. Typically,
people creating dashboards place the destination row above or below the source data. I
strongly suggest that you place the destination row above the source data and not below
it because at some point down the road, you might need to add more rows to your data.
Placing the destination data above potentially prevents your having to do significant
spreadsheet redesign to accommodate your growing data.

Figure 11.5
Layout of spreadsheet
data to accommodate
Map and Column
Chart components.

280 Chapter 11 Maps in Xcelsius

11

An Augmented Map Framework
The data you want to use with an Xcelsius Map component could come from a remote data
source such as a database or over the Internet. In such situations, you might not have com-
plete control over how the data is streamed to your dashboard. You might, for instance, not
get data for every region. Then again, you might get data for regions that don’t correspond
to the map. Even if you manage to get this right, the data may not be arranged in the order
Xcelsius expects. By itself, Xcelsius would figuratively throw its hands up in the air and
deliver an empty, un-clickable map. You can easily fix this problem by using the Augmented
Map Framework, which enables dynamic rearrangement of data and incorporates a data
overpass.

Consider the following scenario. You are receiving demographic data, which may need some
on-the-fly fixing to work with Xcelsius 2008. The data contains population statistics for all
50 states as well as the District of Columbia and Puerto Rico. The data appears in sequence
of population size and not in alphabetical order. To complicate matters, the data uses a two-
letter abbreviation in place of the state name (see Figure 11.6 or open the file
ch11_AugmentedMap.xlf).

Figure 11.6
Layout of spreadsheet
data that doesn’t con-
form to an Xcelsius
Map component.

There are several things you need to do. The first is to map where everything is coming
from and needs to go (see Figure 11.7). A simple VLOOKUP accomplishes this task. Notice that
at the same time, the region key data is automatically switched from the two-letter designa-
tion to the full state name.

281An Augmented Map Framework

11
The next step is a little more complicated, as there are several moving parts working at one
time. Before delving into those details, I want to explain how the augmented map dashboard
works.

This dashboard is similar to the ch11_SimpleMap.xlf dashboard, as it displays specific detailed
information on a state-by-state basis within a column chart (see Figure 11.8). There are,
however, some important differences between this dashboard and ch11_SimpleMap.xlf.
Specifically, we need to be able to represent the information for Puerto Rico. That informa-
tion gets to piggyback with a state of our choosing.

Figure 11.7
Finding where data is
positioned.

Figure 11.8
Augmented map
dashboard.

282 Chapter 11 Maps in Xcelsius

11

In Figure 11.8, the Puerto Rico data is combined with the figures for Florida. As you move
your mouse over the various states, the only state that is paired up with Puerto Rico is
Florida. Suppose you would rather pair it up with a different state—maybe Texas or New
York. This is easy to do. You simply click the arrow keys on the spinner button to reassign
the state that gets paired up with Puerto Rico. If you don’t want to incorporate the figures
for Puerto Rico or any extra data using this framework, you simply click the Don’t Include
Puerto Rico button. (You can turn it back on anytime.) This framework could be readily
extended to accommodate The Bahamas, Bermuda, Jamaica, the Virgin Islands, or anyplace
else. Actually, the “extra” data need not even correspond to a separate geographic region. It
could be any kind of data that you might want to be able to allocate to any region of your
choosing within the map.

Augmented maps are not very flashy. In fact, they are rather understated. The chief benefit
of their use is derived from improving your ability to nimbly manage and control data to
suit your needs.

Now that you have an idea of what the dashboard does, it’s time to peek under the hood.
There are a number of interesting things going on here, as you can see in Figure 11.9. If
you are already used to working with Xcelsius Map components, you might think that a lot
of data is missing. People tend to think that Xcelsius Map components have a ton of source
data, and when a region is clicked, the whole row or column is populated with the corre-
sponding data from the source. That is happening here. Rather than dredge and replicate all
the data, you only need to get the reference to the data. So the source data (and destination
cells) need only include columns D (the name of the region) and E (the location of the
data).

Figure 11.9
The main worksheet
for an augmented
map dashboard.

283Colorizing Maps

11

The destination cells are D3:E3. Cell E3 identifies the location of all the data that will make
its way into the column chart. The data is retrieved using OFFSET.

There’s another subtlety quietly at play. If you look carefully at the worksheet displayed in
Figure 11.9 (or simply go to the DashboardView worksheet of ch11_AugmentedMap.xlf), you’ll
find that the extra data (that is, the population figures for Puerto Rico) is never combined
with more than one region. (In Figure 11.9, it happens to be Florida.)

Cell A4 identifies which state in the list of regions would be paired up with the extra data. It
has the value 10, and the 10th state in the list is Florida. If cell A4 were 11, the state to be
paired up would be Georgia. If it were 12, it would be Hawaii. The Spinner Button for
selecting the state is linked to cell A4.

The toggle button is linked to cell A3. It determines whether the state displayed in the spin-
ner button gets paired with the supplementary data. The spinner button’s visibility is deter-
mined by the toggle button’s on/off state. Conveniently, when there is no need to
incorporate the supplementary data, the spinner button is rendered invisible.

The spinner button is not the only element that makes use of the toggle button’s state (in
cell A3). All the data that is displayed in the column chart makes use of it, too. Don’t worry
too much about the details of the underlying formulas; you can just use them.

Colorizing Maps
It’s time to liven up maps a bit and enable them to convey additional information through
the use of colors and shades.

If you take a look at the augmented map example, you will see that the only times any shad-
ing is applied to the map are when your mouse moves over a state and when you click the
state. To colorize the data, you need to use the Display Data setting to associate a value with
each region.

Open the file ch11_ColorMap.xlf. This file is very similar to the augmented map example
(ch11_AugmentedMap.xlf). In fact, it is a direct modification of that file. (There’s no sense in
reinventing the wheel.)

If you look at the SourceData worksheet, you will find data on population density on a state-
by-state basis. You can incorporate this date into the display data and use it for colorization.

The first step is to insert next to the region key the display data you want used for coloriza-
tion. This data is highlighted in column E of Figure 11.10. The formula (for cell E7 in the
DashboardView worksheet) that retrieves the population density, which resides immediately
below cell D10 of the SourceData worksheet, is as follows:

=OFFSET(SourceData!D10,DashboardView!F7,0)

The value of cell F7 is 23: The population for Alabama can be found on the 23rd row below
D10 in the SourceData worksheet. The formula for cell E7 can get replicated in column E

284 Chapter 11 Maps in Xcelsius

11

for all 51 regions. To keep things easier to manage at the display level, it’s a good idea to
round the population density to two decimal places.

If you look at the population density estimates, you can see that it spans a broad range—
from 1.2 people per square mile (Alaska) up to through 9,644 (District of Columbia). You
need to think about an appropriate set of values to shade your map. As you can see in Figure
11.10, this is already done for you in cells I7:I16 on the DashboardView worksheet. Of course,
you can change the scale values to numbers of your own choosing.

Figure 11.10
Spreadsheet setup for
map colorization.

Make sure your display data encompasses the region keys and the data you want to use for
the shading or colorization. In this example, it is cells D7:E57.

Next, you need to enable alerts by value for your map and then set a range that is mapped
to cells I7:I16 of the DashboardView worksheet (see Figure 11.11).

Notice that Enable Auto Colors is checked. Most likely, you will want the option to adjust
or create your own color schemes. If you do, click the rainbow icon to the right of the
Enable Auto Colors check box. A panel pops up, allowing you to choose a color scheme or
build one of your own (see Figure 11.12).

285Colorizing Maps

11

If you click the Create New Gradient option, you will get a Color panel like the one shown
in Figure 11.13 that allows you to set the range or choose a color to indicate where there is
no data. It’s a good idea to use a significantly different color to signify no data (for example,
a strong red). It’s also a good idea to start with grayscales for the gradient when working
with different values, such as population density. If you first concentrate on getting the scale
thresholds correct, you can then play around with the colors.

Figure 11.11
Initial dashboard
setup for map col-
orization.

Figure 11.12
Custom color scheme
selector.

286 Chapter 11 Maps in Xcelsius

11

By working with the color gradients, you can create custom shading and colors for your
maps (see Figure 11.14 or the file ch11_ColorMap.xlf).

Figure 11.13
Customizing the color
gradients for a map.

Figure 11.14
Map with custom col-
ors based on popula-
tion density. (Darkest
states have highest
per capita population
density.)

Multiple-Region Map Selection and Tally Maps
Generally, when you work with Xcelsius maps, clicking a region on a map selects data but
doesn’t affect its condition. It seems natural that if you click a region in a map, the map
region should be “aware” that it was clicked, even after you go on to click other map
regions. Unfortunately, there is no automatic provision for this kind of functionality. I
therefore designed such a facility, called a multi-selection map, by using the ETC Shared
Component Framework (described in Chapter 6, “Single Value Components: Dials, Gauges,
Speedometers, and the Like”).

287Multiple-Region Map Selection and Tally Maps

11

Multi-Selection Maps
The basic premise of a multi-selection map is that as you click a region, the region needs to
retain the fact that it has been clicked, even as you go on to click other regions on the map.

Say that you are doing some fundraising and want to tally pledges by state. As you click each
state or region on a map, the region is selected, and a table is populated with pledged
amounts. Each state has its own spot on the table (see Figure 11.15 or open the file
ch11_MultiSelectionMap.xlf).

Figure 11.15
A multi-selection map
that populates a table.

Notice there is also a vertical progress bar to the right of the table, showing the total
pledges. The progress bar is color-coded so that when totals exceed a certain threshold, the
color of the progress bar changes.

The Technical Details Behind a Multi-Selection Map

Creating a multi-selection map doesn’t require much skill. All you really need to do is popu-
late selected regions of such a map with the data values you want and rearrange the visual
components to your liking.

To build a multi-selection map, you work through two steps:

1. Set Display Data so that color tracks the state of something being clicked (instead of
using the Display Data to render, for example, population density).

2. Preserve the selection state so that it can be used in other spreadsheet computations.

288 Chapter 11 Maps in Xcelsius

11

The information that the map manages includes the region (for example, Alabama, Alaska),
the old value of whether that region was selected, a row reference (to identify a region of
interest), a new value for the selection state, and a corresponding data value (in this example,
the specific pledge amounts that populate the table when a region is selected). Figure 11.16
shows how this is laid out at the spreadsheet level.

Figure 11.16
Spreadsheet layout for
a multi-selection map.

A Source Data component watches whenever you place a value on the destination cells
A2:E2. When you click on a state (for example, Texas, New York), the cells A2:E2 get
updated. This triggers the Source Data component to replicate the cells in the new value
column onto the old value column. As you click various regions, the old values change from
0 to 1, and they stay there—until you click the Initialize to State button to reset the values.

Tally Maps
A tally map is very similar to a multi-selection map, but it goes further:

■ Tally maps can assign more than one value to each region. In the simple multi-selection
map, each region is either selected or not. In a tally map, you can do things like create a
red state, a blue state, and a neutral state.

■ You can easily switch the state of each region (and, hence, its color) by using compo-
nents like spinner buttons.

Figure 11.17 shows a tally map (open the file ch11_TallyMap.swf). Notice that clicking the
text-based spinner button sets the color of a highlighted state to red, neutral, or blue.

289International Map Types

11
Near the bottom of the tally map are two colored bands—one on each side—with numeric
scores. As each state is assigned a color, the respective band grows and inches toward the
center. The first to get past the halfway point is announced the winner. Incidentally, the
value associated with each state corresponds to the number of electoral votes.

From a design standpoint, the main difference between a tally map and a multi-selection
map is that a tally map provides some extra structures for managing multiple color states.
Instead of having only a 0 and 1 for unselected and selected, you have -1, 0, and 1 for the
colors red, gray (or neutral), and blue, respectively. Of course, you can create tally maps with
more than three color options.

International Map Types
Xcelsius 2008 offers a broader array of maps than were available with earlier editions of
Xcelsius. They are far too numerous to cover in detail, and they essentially work identically
to those of the U.S. map examples already shown. The only real differences are the shapes
and region names.

One of the great things you can do with Xcelsius 2008 Map components is connect two or
more of them together. If you start with the World by Continent Map component and click,
say, South America, it would be nice to have a South American map appear and to be able to
get detailed data for Venezuela or Argentina.

Xcelsius 2008 comes with a spreadsheet file that contains a relatively comprehensive list of
regions associated with the map components. If you have Service Pack 1 of Xcelsius 2008

Figure 11.17
A tally map.

290 Chapter 11 Maps in Xcelsius

11

(which contains some changes and enhancements to the original Xcelsius 2008 release), you
will find the MapRegions.xls file in the following directory:

C:\Program Files\Business Objects\Xcelsius\assets\samples\User Guide Samples

N O T E
The original release of Xcelsius 2008 does not contain the MapRegion.xls file. If you
want access to it, you must upgrade to Service Pack 1 or later.

The World by Continent Map Component
The base map or starting point for a world at your “clickertips” is the World by Continent
Map component (see Figure 11.18).

Figure 11.18
The World by
Continent Map com-
ponent.

The following regions of this Map component are clickable:

■ Africa

■ Antarctica

■ Asia

■ Australia

■ Europe

■ North America

■ Oceania

■ South America

For each of these “continents,” Xcelsius provides one or more Map components. Creating a
hierarchical multi-map visualization can pose some challenges. The best way to examine the
design issues is to examine the Connected Maps reference implementation.

291International Map Types

11

The Connected Maps Reference Implementation
A reference implementation is a deliberately barebones design that exposes the essential
logic, has enough features to be non-trivial, and allows room for enhancements and exten-
sions.

This section walks you through the basic setup of a connected set of maps: a world map that
links to two sub-maps—Europe and South America. The dataset used in this implementa-
tion tracks the number of cell phone subscribers worldwide over a 10-year period (see
Figure 11.19).

Figure 11.19
Connected Maps ref-
erence implementa-
tion.

The basic capabilities of the Connected Maps reference implementation are as follows.

■ The left panel of the dashboard contains a map of the world and an accompanying area
chart that shows a count of cell phone subscribers, by continent, over a 10-year period.
While an Area Chart component works well for visual display of the quantitative infor-
mation, it does not support features such as drill down. You might want to use different
charting components here. In any case, the drill down is really accomplished by clicking
any of the continents in the world map.

■ Each of the continents has a color based on the usage amounts as of the year 2003 (the
last year of data appearing in the dashboard). This feature is implemented using alerts.

■ When a dashboard user clicks one of the continents, the corresponding detailed map
for that continent appears in the right panel of the dashboard. Again, this detailed sub-
map is a colorized country or region based on the cell phone subscriber count as of the
year 2003.

292 Chapter 11 Maps in Xcelsius

11

■ Year-by-year information for any of the regions in the detailed map is only a click away.
Simply click any of the colorized regions to reveal the details in the column chart
below.

■ Because this is a reference implementation, it is not populated with a vast storehouse of
information. Detailed information by individual countries is provided only for Europe
and South America. When you click one of the continents in the world map for which
there is no detailed data, an appropriate message is displayed (see Figure 11.20).

Figure 11.20
Context-sensitive alert
message.

Details of the Connected Maps Reference Implementation

Multi-layer visibility is an important and integral part of the design of the Connected Maps
reference implementation. When a person clicks a continent, the appropriate sub-map
should be made visible and automatically render other components invisible if their pres-
ence is no longer relevant in the current context. For example, if you click the South
America map (in the left panel) while the sub-map currently shown is Europe, then the map
and data for Europe should disappear, and the relevant visual components, data, and context
for South America should become visible. This is handled using the multi-layer visibility
framework introduced in Chapter 7, “Using Multi-Layer Visibility in Your Dashboards and
Visualizations” (see Figure 11.21 or open the file ch11_ConnectedMapsRefImplementation.xlf).

N O T E
Notice that an alert message, such as the one shown in Figure 11.20, is set to the “on”
state whenever the sub-continent chart is turned off.

293International Map Types

11

Figure 11.22 shows the guts of the spreadsheet design. Columns AD through AM hold the
year-by-year data. Each row contains data for a specific country or region.

Figure 11.21
You set the visibility
switching logic by
entering values in a
table in the embedded
spreadsheet.

Figure 11.22
Principal data for the
dashboard is swapped
in and out using con-
text switching.

The data that makes its way onto the dashboard area chart and column chart is always in
rows 5 and 6 of the spreadsheet, respectively. These two rows are constantly swapping data
in and out, based on what the dashboard user clicks.

All the worldwide summary data (for each of the eight continents) is housed in rows 18
though 28. Notice that there’s a category called Doesn’t Fit Xcelsius Region Keys. This sup-
plementary category contains data for countries that are generally regarded as Europe but
are not specifically listed in the region key for the Europe by Country map component (for
example, Romania).

To maintain the integrity of the worldwide totals and at the same time use the visual compo-
nent that doesn’t completely accommodate the standard countries, we need to create a sup-
plementary category for the extra countries. Because the size of the data identified in the

294 Chapter 11 Maps in Xcelsius

11

supplementary category may be comparatively small, the summary information, with or
without the extra countries, is numerically very similar. As convenient as it might be to
sweep details under the proverbial rug, I would advise against hiding information for a num-
ber of reasons:

■ The need for adequate disclosure is playing an increasingly important role in business
and finance.

■ If you start chiseling a tiny bit here and a tiny bit there, so that things look nice, you
lose objectivity in knowing exactly how good (or bad) the quality of your information is.
In the long run, the loss of objectivity (in this case, the inability to estimate uncertainty)
will cost you.

■ The “extra little countries” are not so little. During 2003, there were some 7 million
cell phone subscribers in these countries. This number may not seem large compared to
1.4 billion subscribers, but 7 million phone customers is nothing to sneeze at. Besides,
how would you like to be figuratively and literally wiped off the map because of an
inconvenience in data classification? The fallout of being politically incorrect because of
an inconvenience is just not worth it.

■ Finally, having the data disclosed and appearing (as a sliver) in the dashboard area chart
does not complicate the dashboard design. It only requires diligence in thinking
through the exception-handling process.

N O T E
Although the smaller countries such as Romania are not listed in the Europe by Country
component, they are listed in the Europe (Large) by Country, Europe (Large) by Country
Mercator, and Europe (Small) by Country Map components. I could have used one of
these three components. That would have been cutting corners by ignoring the problem
of how to account for countries not listed in a component.

Starting in row 30 and working your way down through the worksheet, is all the detail on a
country–by-country and year-by-year basis. The alert messages for when you click Africa,
Antarctica, Asia, Australia, North America, and Oceania are all really one message, based on
a single formula and adjusted for each region. You can find this formula in cell AA1:

=IF(L18=1,”Sorry, there is no detail for “&AA5)

Cell AA5 holds the name of the continent currently selected, and L18 is a cell that deter-
mines whether the message should be displayed.

Closing Thoughts
Without the use of Map components, the Xcelsius world of dashboards and visualizations
would figuratively be two-dimensional. Dashboards generally provide information on how
much (one of the pseudo-dimensions) and the element of time, or when (the other dimen-
sions). Xcelsius Map components chime in with a third kind of dimensionality: where.

295Closing Thoughts

11

Interactive maps not only give a geospatial or regional awareness, they also alter the nature
of interaction by providing visualizations. Maps are very effective communicators of infor-
mation. Xcelsius Map components can reflect the “mood” of underlying data through the
use of colorization and alert settings. Xcelsius Map components are also great for retrieving
large amounts of underlying information and passing it off to their visual components, such
as the wide variety of charts.

For all their expressive capabilities and expansive features, the setup and dashboard design
process for incorporating Xcelsius Map components stands in stark contrast to their elegant
look and feel. There’s nothing fundamentally difficult or confusing about Xcelsius maps; to
use them, you must follow certain ground rules, but when you understand how to work with
them, you can turn them into dashboard workhorses, summoning data at the click of a
mouse (as I like to say “Power at your clickertips”).

The first goal of this chapter is to get you proficient in the mechanics of using maps. You
need to understand them and some of their subtle features. First, you need to understand
the standard features of Xcelsius Map components, such as display data, data insertion (the
act of passing data elsewhere in the dashboard), and region keys (a cosmetic convenience to
help bridge data, the way you have it, with predefined regions for a map). This chapter also
shows how to deal with certain kinds of challenges in getting your data to mesh smoothly
with an Xcelsius Map component. You can use the Augmented Map Framework to elegantly
align your data with an Xcelsius Map component and at the same time give dashboard users
flexibility in how the data is treated. This chapter also addresses the pragmatic issues of con-
necting maps so that clicking on one opens others, allowing you to effectively drill down
several layers. This is most relevant in an international perspective. This chapter describes a
reference implementation to help organize your data and addresses some challenges you are
bound to encounter.

The second goal of this chapter is to introduce entirely new paradigms for Xcelsius Map
components. There is no out-of-the-box provision for selecting a combination of regions in
an Xcelsius map. But the need for such functionality is obvious. Wouldn’t you want to spon-
taneously find the sales for Colorado, Illinois, Kentucky, Utah, and Washington just by
clicking on those states in succession? This is a very powerful and alluring paradigm.
Fortunately, the setup for multiple-region selection is not terribly difficult.

Some of the topics introduced in this chapter spill over to the next, which is all about smart
data and alerts.

This page intentionally left blank

12CHAPTER

In this chapter

Smart Data and Alerts

Understanding Alerts in Xcelsius 298

Unconventional Uses of Conventional Components 302

Going Beyond the Built-in Alerts in Xcelsius 310

Closing Thoughts 312

298 Chapter 12 Smart Data and Alerts

12

Prior to the advent of Xcelsius dashboards, some characterized dashboards as structured col-
lections of reported information within a fixed-size footprint on the screen.

Of course, dashboards do more than just simply serve as an “at a glance” reporting and
monitoring tool. Like many other dashboard systems, Xcelsius features colorized alerts, drill
down, and information-on-demand capabilities.

Xcelsius 2008 enables you to use on-the-spot computations to manage the behavior of visual
components, allowing you to take visual communication and interactivity to a new level.
This ability is embodied in alerts and smart data and is the focus of this chapter.

Alerts are facilities for signaling information that may be out of the ordinary. Smart Data
components typically have lots of tricks up their sleeves. They can position or colorize data,
based on classification, and they can do things like dynamically adjust scaling, based on the
settings of other components. There is a lot of overlap between alerts and smart data.

Understanding Alerts in Xcelsius
Xcelsius 2008 provides built-in alert facilities for many of the available components. The
following section outlines which components have alerts and which do not.

The Haves and Have-Nots of Alerts
Although many Xcelsius 2008 components provide built-in alerts, a good many do not. To
eliminate the guesswork, this section provides a list of the components that have and do not
have built-in alerts. Interestingly enough, several of the related components do not uni-
formly support alerts. For instance, the RadarChart component supports alerts, but the
FilledRadarChart component does not.

The following Xcelsius 2008 components have built-in alerts:

■ Charts: Bar Chart, Bubble Chart, Column Chart, Combo Chart, Line Chart, Radar
Chart, Stacked Bar Chart, Stacked Column Chart, XY Chart

■ Selectors: Combo Box, Icon, Label Menu, List Box, List Builder, Ticker

■ Single Value: Dial, Dual Slider, Gauge, Horizontal Progress Bar, Horizontal Slider,
Spinner, Value, Vertical Progress Bar, Vertical Slider

■ Maps: All Map components

■ Other: Grid

N O T E
Alerts are automatically disabled with charts that display more than one data series.
There are workarounds for this. The technique involves splitting your data into multiple
series that are pre-colored.

This technique is applied in Chapter 5, “Using Charts and Graphs to Represent Data”
(see the section entitled, “Extending Graphical Presentation with Bubble Charts”). Positive

299Understanding Alerts in Xcelsius

12

The following Xcelsius 2008 components do not have built-in alerts:

■ Charts: Area Chart, Candlestick Chart, Filled Radar Chart, OHLC Chart, Pie Chart,
Stacked Area Chart, Tree Map

■ Containers: Panel, Tab Set

■ Selectors: Accordion Menu, Check Box, Filter, Horizontal Fisheye Menu, Horizontal
Sliding Menu, List View, Play Selector, Radio Button, Spreadsheet Table, Toggle
Button

■ Single Value: Play Control

■ Text: Input Text, Input Text Area, Label

■ Other: Calendar, History, Local Scenario Button, Panel Set, Print Button, Reset
Button, Source Data, Trend Analyzer, Trend Icon

■ Art and Backgrounds: Background Component, Ellipse Component, Horizontal Line
Component, Image Component, Rectangle Component, Vertical Line Component

■ Web Connectivity: Connection Refresh Button, Reporting Services Button, Slide
Show, URL Button

values in a bubble chart populate one data series (colored green), and negative values
populate a second data series (colored red). The technique is easily extended so you can
have as many data series as you want, each with their own specific color.

N O T E
Although the Label and Input Text Area components lack the built-in alert feature, they
support HTML formatting. This is important. The HTML rendering, taken in conjunction
with the ability to read the contents of the underlying spreadsheet, opens the door to
creating very powerful alerts.

Basic Alert Features in Xcelsius 2008
You can use conditional alerts to convey extra information within visualization. Consider the
chart in Figure 12.1 (or open the file ch12_AlertPctTargetValue.xlf). It is a simple column
chart that is colorized based on a set percentage of a target value, pegged at 30% and 70%
of the value in cell C2.

N O T E
The files identified in this and other chapters can be downloaded from the book website,
www.XcelsiusBestPractices.com.

www.XcelsiusBestPractices.com

300 Chapter 12 Smart Data and Alerts

12

There are several things to notice here:

■ When you enable alerts, you have the option of basing the alerts on either percentages
of a value (which I often refer to as a “target value”) or a range of threshold values.

■ The target value can be hardwired into the dashboard or read from a spreadsheet cell. I
recommend reading from the spreadsheet cell because the target value might be some-
thing you want to change down the road. In fact, you can set the target value by using a
vertical slider.

■ You have the option to auto-enable colors. This is useful when you want to show simple
colorized alerts with colors such as red and green.

■ When alerts are enabled in Xcelsius, certain colors are assigned to the high values (such
as green) and others to the low values (such as red). Xcelsius lets you swap the assign-
ment of colors associated with numeric value of the data. You can instruct Xcelsius to
treat the low values as good or, alternatively, the high values as good. If you are using
percentage-based alerts, you can also specify the midrange values as good.

■ If you specify value-based alerts (instead of percentage-based alerts), you need to pro-
vide the range of threshold values from your spreadsheet (rather than a single target
value). The number of threshold values you need is n–1. That is, if you intend to show
three alert colors, you need to specify two threshold values to associate your data with
three color ranges.

In the example shown in Figure 12.1, the Vertical Slider component for the target value is
allowed to span a range between 0 and 100. In order to keep the column chart in visual par-
ity, you can fix its scale to match the same range of 0 through 100.

Figure 12.1
Simple alert-based
column chart based
on a set percentage of
target value.

301Understanding Alerts in Xcelsius

12

Why You Should Use Multiple Data Series
Although Xcelsius provides built-in alerts for many components, the alert features are dis-
abled when you attempt to place more than one data series on a chart. Say that you have
data for multiple corporate divisions. You might want to compare product sales by division
and by month. It would be nice to place them on a bubble chart so you can easily see how
the different groups stack up against one another over time.

There are a number of ways to address this issue. The easiest is to incorporate what might
be separate data series into a single, unified data series. Figure 12.2 (or open the file
ch12_BubbleAlert.xlf) uses a bubble chart to show product sales (the bubble size) across
three regions and six divisions.

Figure 12.2
Exploiting positional
arrangement and
alerts in a bubble
chart.

In this dashboard, the XY coordinates are used to uniformly spread out data by division and
region. The sales or Key Performance Indicator (KPI) you want to present sets the bubble
size. In addition, the bubble color can be used to classify the sales size into three categories.
As in Figure 12.1, you have the ability to change the target value by adjusting the slider.

Showing Multiple Shades in Charts Based on Values in a Cell Range
At some point, you will probably want to obtain a series of colorized alerts based on values
designated in your spreadsheet (see the lower portion of Figure 12.3). The colors could span
from red to green, or cyan to magenta, or they could be shades of gray.

302 Chapter 12 Smart Data and Alerts

12

Here are the basic steps for showing multiple shades in charts based on values in a cell
range:

1. Enable alerts for your chart by selecting the Enable Alerts check box at the top of the
Properties panel.

2. Select the Enable Auto Colors check box at the bottom of the Properties panel (see the
right side of Figure 12.3).

3. Click the rainbow icon to the immediate right of the Enable Auto Colors check box. A
color gradient window appears (see the center of Figure 12.3). You can choose from one
of the existing gradients or create a new gradient of your choosing (see Chapter 8,
“Managing Interactivity”).

Unconventional Uses of Conventional
Components

Some Xcelsius 2008 components do not have an Alert icon in their Properties panel, yet
they have some very powerful alert capabilities. The Label and Input Text Area components
are examples of this.

Using Smart Text in Visualizations and Dashboards
New to Xcelsius 2008 is the ability to format text with HTML encoding (see Figure 12.4).

Figure 12.3
Designating a
sequence of custom
alert shades.

303Unconventional Uses of Conventional Components

12

HTML Basics
As you undoubtedly already know, using Hypertext Markup Language (HTML) is the standard way of encoding
text for most of the web pages you see on the Internet.

When you open a page in a web browser, you may notice that some text appears bold and other text is in ital-
ics. Some of the text is large, and some may have hyperlinks to other web pages. If you peek under the hood
(by using your web browser’s View Source or Page Source option), you will find that the text has a whole
bunch of angle brackets (< >) and text codes surrounding pieces of text. Although the source code might
appear too complicated to understand, a lot of it is comprehensible and actually easy to use. The following
snippet of HTML code should give you a sense of how text content can be marked up:

<i>Xcelsius 2008</i> is great!

This HTML text is rendered as follows:

Xcelsius 2008 is great!

Notice that the text Xcelsius 2008 is surrounded by a pair of <i> tags. They tell a web browser (or Xcelsius
software) to make the enclosed expression appear in italics. Your HTML-aware software knows that any text
immediately following the <i> tag is to be rendered in italic-style text. The </i> tells your software to stop the
italicized rendering. The and tags work the same way but instruct your software to apply boldface.

What if you want some of your text to appear in both boldface and italics? That’s no problem. Here is an
example:

<i>Xcelsius 2008 is really great!</i>

This HTML text is rendered like this:

Xcelsius 2008 is really great!

As long as your text is surrounded by the appropriate pairs of HTML tags, you can combine formatting.
Although there’s plenty more to HTML, you now have the basic gist of how it works.

Figure 12.4
Embedding HTML tags
in your text labels.

304 Chapter 12 Smart Data and Alerts

12

Xcelsius 2008’s Label and Input Text Area components are able to render many of the com-
mon HTML tags. If you can encode your text labels with HTML, Xcelsius 2008 can render
it. That’s a big if. The basic idea of HTML tagging is easy to understand, but encoding text
by hand is difficult and error prone. That’s why the HTML code for pages found on most
websites is typically generated by computer and not by hand.

Xcelsius 2008 enables you to encode text labels by using HTML snippets. While you can
write it out by hand, as shown in Figure 12.4, it’s a lot easier and more purposeful to use
your underlying spreadsheet to generate the HTML text.

Figure 12.4 plainly shows that Xcelsius 2008 is capable of rendering HTML. A magical
thing happens when you combine HTML rendering with the ability to link the text content
to a spreadsheet cell: You get smart text (see Figure 12.5 or open the file
ch12_SmartText.xlf).

Figure 12.5
A Label component
formatted based on a
spreadsheet formula.

Both the label content and formatting are driven by the following spreadsheet formula in
cell B5:

=””&B2&””

N O T E
Normally, quotation marks don’t appear in the middle of text strings within a spread-
sheet formula. To get your spreadsheet to embed a quotation mark inside the text string,
you need to use an extra quote mark. This is why these formulas appear with triple
quote marks.

305Unconventional Uses of Conventional Components

12

This formula generates the following HTML snippet:

➥SmartText
Color is #000080
Size is 33

The formula is a little complicated. Cell C1 is the font size that is set by a Vertical Slider
component. The text message (SmartText
Color is #000080
Size is 33) is retrieved
from cell B2. The text message contains a little formula:

=”SmartText
Color is “&D2&”
Size is “&$C1

The text message is rendered with HTML formatting enabled and retrieves the color from
cell D2 using the formula:

=VLOOKUP(C2,C4:D67,2,FALSE)

The VLOOKUP formula gets hexadecimal color values from a table in cells C4:D67. You may
notice that some of the color codes have redundant values. This is because this list is based
on index colors established by Microsoft. The values 0 through 8 are provided for compati-
bility with legacy systems. You are, of course, free to choose any color combinations you
want. The colors need to be specified in hexadecimal form, with a # followed by two hex
digits for the red component, two hex digits for the green component, and two hex digits for
the blue component. For instance, #ff0000 is a pure red. Hexadecimal notation is explained
in detail in the sidebar “Understanding Hexadecimal Numbers” in Chapter 8 (p. 219).

N O T E
If you only look at the formulas, you’ll get lost—quickly. Instead, concentrate on what’s
happening in Figure 12.5. You have text content in cell C2 that you want displayed and
formatted using HTML. You shroud it with some extra HTML tags in cell B5, and it’s ren-
dered with the proper HTML formatting in the Label component appearing on the right
side of this dashboard example.

Using Spreadsheet Values to Set the Text Color
You can adjust the dial to choose a color value that is used for the HTML-rendered text.
You don’t have to choose from 64 colors; you might need only 2 colors, such as black
(#000000) for normal circumstances and red (#ff0000) when you want to alert the dashboard
user to take action. For example, you might have a KPI value in cell A1. If the value
dropped below 85, you might want to change the color. In this case, you would use the fol-
lowing formula:

=IF(A1<85,”#ff0000”,”#000000)

It’s a better idea not to hardwire the threshold value in the formula. Instead, place the value
in another cell, such as A2. In this case, you use the following formula:

=IF(A1<A2,”#ff0000”,”#000000)

306 Chapter 12 Smart Data and Alerts

12

Now if you really want to be clever, you could adjust the alert color incrementally by doing
some hexadecimal computations, as shown in Figure 12.6 (or open the file
ch12_SmartText2.xlf).

Figure 12.6
Setting text color by
computing hex value
from a spreadsheet
formula.

In this example, I adjust only the red component of the HTML-enabled label. If you are
adventurous, you can do the same for the green and blue color elements in the label.

The formula for the hex value in cell C2 is as follows:

=TEXT(VLOOKUP(INT(B2/16),B4:C19,2,FALSE)&
➥VLOOKUP(B$2-16*INT(B2/16),B4:C19,2,FALSE),”00”)

With this formula, you can use a Dial component or another component to set exactly how
much red you want to appear in the text.

N O T E
Everything about HTML rendering that applies to Label components applies equally to
Input Text Area components.

Smart Text Spinners
Xcelsius 2008 has a Spinner component for incrementing values on a spreadsheet. This is a
great little facility for nudging the value of a spreadsheet cell. Other spreadsheet formulas
can use a Spinner component to look up data or compute some numeric coefficient in a
complicated formula. Whatever the case may be, using a Spinner component is simple:

307Unconventional Uses of Conventional Components

12

■ You map its value to a spreadsheet cell.

■ You can set its title.

■ You can also set the lower and upper limits of the spinner’s value.

However, a Spinner component has some drawbacks:

■ It consumes a lot of screen space. If you have a lot of spreadsheet cells you want to con-
trol using Spinner components, you’ll quickly run out of screen space. (I have a solution
for this, which is covered later in this chapter.)

■ You may only want to use the up/down arrows and not want to display the numeric
value in a Spinner component. You might, for instance, want to use a Spinner compo-
nent to adjust a calendar date in one of the cells of your underlying spreadsheet.
Calendar dates are represented using numeric values. You might see the value 39993 in a
spinner. Most dashboard users would fail to associate this as the serialized date value for
June 29, 2009. It would be much easier to display only the date represented and hide
the numeric value, even though it is the numeric value that is being adjusted.

To tackle the second issue, you can create a text-based spinner (see Figure 12.7 or open the
file ch12_TextSpinner.xlf).

Figure 12.7
Replacing the numeric
value of a Spinner
component with its
text representation.

Here is the basic idea:

■ Keep the numeric value set by the Spinner component, but shrink its font size down to
zero.

308 Chapter 12 Smart Data and Alerts

12

■ Reposition the Spinner component’s title so that it sits where the Spinner component’s
numeric value would have appeared.

■ Use the title to display some descriptive text that is directly associated with the Spinner
component value or some follow-on computation based on it.

The example shown in Figure 12.7 uses the text representations of dates in place of their
serialized values. You may recall from Chapter 3, “Getting Familiar with Xcelsius 2008,”
that calendar dates are kept in your spreadsheet as numeric values. This opens the door for
date arithmetic: You can easily compute what day of the week it would be 30 days from
today (refer to Chapter 3).

Converting a date to the serialized day number is great, but this numeric value is of little
benefit to a CEO clicking a Spinner component to change the date for values retrieved from
a database. Displaying the numeric value only creates visual clutter. By replacing a conven-
tional spinner with a text-based spinner, you accomplish the following:

■ You reduce the visual footprint of the spinner because the title is now inside the spinner
button instead of hovering over it.

■ You eliminate the visual display of information that would not be wanted or used.

■ You lose no capability whatsoever. Just because the font size for the numeric value is
zero doesn’t mean you can’t select it and type in a new value as you would with a regu-
lar Spinner component. (As with a regular Spinner component, you need to press the
Enter key for the override value to take effect.)

If you think this is all there is to text-based spinners, you’re mistaken. You can also make
them smarter by adding alerts. Adding alerts is straightforward (see Figure 12.8 or open the
file ch12_AlertBasedTextSpinner.xlf).

Figure 12.8
This text-based spin-
ner can display appro-
priate colorized alerts
based on the hidden
value.

309Unconventional Uses of Conventional Components

12

As in the previous example, the spinner value in Figure 12.8 is replaced with the spinner
text. The spinner text for cell B3 uses the following OFFSET formula:

=OFFSET(B5,B2,0)

When the spinner value is set to 1, the text message White Shade is produced. When it is set
to the value 2, the message Orange Shade appears. Otherwise, the text message Red Shade
(Max) is produced.

List Box and Other Inline Alerts
One of the new and interesting features of Xcelsius 2008 is the addition of embedded, or
inline, alerts. With these alerts, a component can display an alert alongside the various click-
able options within the component. The benefit of this should be obvious: Navigation com-
ponents within a dashboard also double as conveyors of information. This helps to
streamline the assimilation of information within an already high-density footprint.

Figure 12.9 shows the setup (see also the file ch12_InlinedAlerts.xlf). In this example, col-
orized alerts are adjacent to the List Box component options North, South, East, and West.
The colors are based on the context. In this case, there are two possible contexts: Sales and
Gross Profit.

Figure 12.9
You can set up inline
alerts for components
such as List Box com-
ponents or Label
Based Menu compo-
nents.

The idea here is to get two for the price of one. You have one List Box component that lets
you select (in this example) a geographic region. The regions are going to be the same,
regardless of whether you want to view sales revenue or gross profit. There is no reason to
peg the colorization based on sales only or gross profit only.

310 Chapter 12 Smart Data and Alerts

12

To summarize, the dashboard design strategy is as follows:

■ You have two or more datasets (in this case, quarterly sales and gross profit). Using the
radio buttons, you can choose which dataset you want and retrieve it. In this example,
the quarterly data for sales resides in cells I7:L10, and quarterly data for gross profit
resides in N7:Q10. When you click the Sales or Gross Profit radio button, the respec-
tive data gets pulled into cells D7:G10.

■ While you are pulling in the detailed dataset, you can also pull the specific threshold
values from cells C2:D3 into cells B2:B3.

■ The List Box component only knows about the regions mapped in cells A7:A10 (for
North, South, East, and West). For the inline colorized alert, it is going to look at the
values of the cells in B7:B10 and compare them to the threshold values in cells B2:B3.
The List Box component doesn’t know where or how the numbers in cells B7:B10 (and,
for that matter, the cells B2:B3) originated. Frankly, it doesn’t care. It just uses the
numbers it has.

Incidentally, the numbers in cells B7:B10 are computed using the sum of the quarterly
data. For example, the formula for B7 is as follows:
=SUM(D7:G7)

■ When you select one of the regions in the List Box component, the appropriate data is
pushed onto cells B5:G5. The Line Chart component simply plots the data for the
region you select. Because context switching is being used here, only one chart is
needed for both sales and gross profit.

Because you need only a single Line Chart component, one List Box component, and a
Radio Button component, your dashboard is easy to design and maintain. Later, if you
decide to add another 4 or 14 datasets, you might be able to get away with just one
Line Chart component, one List Box component, and one Radio Button component.
Not bad for a day’s work.

N O T E
The overall framework for architecting this type of design is known as the Layered
Approach Design Pattern. You can find plenty of material about this framework in my
books Excel Best Practices for Business (ISBN: 076454120X) and Escape from Excel Hell
(ISBN: 0741773182).

Going Beyond the Built-in Alerts in Xcelsius
Alerts are a powerful facility in Xcelsius, but alerts are not the only feature that can make
data appear smart. Chapter 6, “Single Value Components: Dials, Gauges, Speedometers,
and the Like,” describes the Shared Component Framework, and Chapter 7, “Using Multi-
Layer Visibility in Your Dashboards and Visualizations,” describes dynamic visibility.

While I cover some aspects of smart sliders in Chapter 6, I want to discuss some more
aspects of these components here.

311Going Beyond the Built-in Alerts in Xcelsius

12

Smart sliders solve a very interesting problem, and they are easy to set up and accomplish
with Xcelsius but considerably more difficult to use with Excel by itself. Let’s look at an
example of 3 companies that are competing for a fixed amount of business. It could be con-
tracts awarded by a government agency, or it could be a projection regarding a fixed-size
market. It doesn’t need to be 3 companies; it could just as easily be 13 or 130 companies. To
keep thing simple, though, let’s stick with 3 companies (Company A, Company B, and
Company C) and only address the issue of how to split up the pie.

If one company succeeds in getting a large portion of the business, what’s up for grabs
shrinks accordingly. How can you allocate the business among the three companies so that it
is impossible for all three companies to collectively have more than 100% of the business
market? Think a moment about how you would do this. Specifically, how could you do it
without applying any kind of trial-and-error methodology? This is one of those problems
where the answer is not obvious until you see the solution, and then the solution is very
obvious.

Try reasoning out the problem by using numbers. Assume for the moment that Company A
has 10% of the total business, Company B has 25%, and Company C has 12%. Collectively,
between three companies, 47% (= 10% + 25% + 12%) is already allocated. This means that
what’s up for grabs is 53% (= 100% – 47%). Therefore, under the prevailing circumstances,
the most that Company A can hope to achieve is the 10% it already has plus the 53% of
what’s up for grabs. So Company A can’t go above 63%. Similarly, Company B only has the
potential to get up to a 78% market share, as it can’t push the market share more than 53%
beyond the 25% share it already has. The most Company C can achieve is 65%.

As any of these companies gain in market share, the amount that’s up for grabs diminishes.
Figure 12.10 shows this within a dashboard (see also the file ch12_SmartSlider.xlf).

Figure 12.10
You can use smart
sliders and progress
bars to decide who
ultimately controls the
largest segment of the
market.

312 Chapter 12 Smart Data and Alerts

12

Here is the setup for this dashboard:

■ The market share for each of the three companies can be found in three input cells—
one each for Companies A, B, and C. They are located in cells B2 through B4. If you
have more companies, you simply expand the number of input cells.

■ Cell B6 calculates the unallocated portion:
=100%-SUM(B2:B4)

■ The upper limit for each of the smart sliders or progress bars is the sum of the current
market share for the company plus the amount up for grabs (cell B6). For Company A,
this is computed in cell D2, using the following formula:
=B2+B6

■ For each of the companies, there is a vertical progress bar. If you want, you can use a
slider or dial.

■ A column chart on the right side of the dashboard shows how much market share
remains unallocated. In this chart I’ve stripped away the chart axes and labels for easier
visualization.

When a dashboard user clicks and drags any of the progress bars, all the other bars and the
column chart are automatically resized. A dashboard user can click and drag each of the
company progress bars in both up and down directions.

Notice that each of the vertical progress bars is colorized based on the level of market share
achieved. If 100% of market share is allocated approximately evenly among the three com-
panies, they all get a yellow coloration or rating. If one of the companies winds up with a
significantly smaller market share, then it gets tagged with a red color.

Because of the way these smart progress bars are used, they double as input devices (for
adjusting market share of a specific company) and output devices (that is, their color auto-
matically changes to reveal their status).

Closing Thoughts
Alerts can convey extra information that wouldn’t necessarily be shown in an otherwise con-
ventional dashboard or visualization. The basic premise is that alerts show themselves when
they are needed, and when they are not needed, they get out of the way.

Alerts are handy in all sorts of situations. If you are doing fundraising or monitoring how
your company’s division economized on expenses, it would be nice to have an alert that sig-
nals when you have achieved your goal. It may be more important to signal that you are not
achieving a critical goal or milestone on a timely basis.

It’s important to draw a distinction between alerts that colorize already present components
and ones that suddenly pop up onscreen. The latter category not only provides a visual cue
but can also provide a new navigation pathway in your dashboard. You might, for instance,
accompany an alert text message with a URL button.

313Closing Thoughts

12

This chapter explores both the basic functionality of visual alerts built into Xcelsius 2008
and creative uses of alerts. What constitutes an alert is relative. The threshold that a dash-
board user might want to apply is something that can and should be tunable. This chapter
shows how to set up sliders so that dashboard users can interactively “try on” different alert
thresholds.

In addition to alerts, Xcelsius 2008 enables you to use smart text. Something magical
happens when you combine a Label component capable of HTML rendering with text con-
tent that is dynamically generated from a spreadsheet formula. Instantly, you can have text
that can change its size, color, and other attributes. This chameleon-like capability shifts the
landscape of dashboard functionality, giving you sophisticated capabilities with inexpensive
spreadsheet formulas.

Label and Input Text Area components are not the only components that are smart. You can
also get creative with spinner buttons by, for example, making them text based.

There’s a whole range of interesting new features to explore in Xcelsius 2008. For example,
inline alerts are visible and adjacent to clickable options of a component, such as a List Box
component or a Label Based Menu component. This chapter shows how to exploit these
capabilities by combining them with context switching. This approach is premised on a
framework known as the Layered Approach Design Pattern.

This chapter concludes by looking at the anatomy of smart sliders. Smart sliders are compo-
nents that work with other components to create complex behavior within dashboards and
visualizations. A simple and easy-to-follow example involves multiple agents vying for a lim-
ited resource. By using smart sliders, you can dynamically allocate resources with simplicity
and elegance.

Enabling alerts in traditional input components such as sliders, progress bars, and dials
allows them to serve as capable readout devices. The idea of dashboard components possess-
ing both input and readout capabilities is likely to gain traction.

Chapter 13, “Working with Less-Than-Optimal Data,” addresses the problems and issues of
dealing with less–than-ideal data in your dashboards.

This page intentionally left blank

13CHAPTER

In this chapter

Working with Less-Than-Optimal
Data

The Digitization of Data 316

Fixing Problematic Spreadsheets 318

Dealing with Improperly Structured Data 331

Closing Thoughts 334

316 Chapter 13 Working with Less-Than-Optimal Data

13

We all want dashboards to be stunning. The “wow” factor frequently overshadows the
process of preparing underlying numbers for use with dashboard visualization. But a dash-
board based on less-than-optimal data can suffer from a number of problems. Consider the
following:

■ In some cases, data is incomplete.

■ You might at some point need to deftly disclose the fact that the numbers in your dash-
board differ from those of accounting by $5 million.

■ You may have two different sources of data that conflict on reported amounts.

■ You might need to transform data that is not geared toward use within a dashboard.

The focus of this chapter is getting data in usable form and establishing the integrity of data
and formulas. As you can tell, this chapter is spreadsheet centric. The reason should be
clear: For all the sizzle and pizzazz that a dashboard can bring, it’s the integrity of the
underlying data and the way it’s portrayed that brings value to a dashboard. If you don’t get
the numbers correct and work in a manner suited for the dashboard, the resulting dashboard
may look pretty on the outside, but underneath it could be seriously limping or faltering. If
you are going to tackle such problems, you need to trace them back to their roots—the digi-
tization of data.

The Digitization of Data
It is not out of the ordinary to be engulfed in a sea of data. During the twentieth century,
there was a point in time when very little information was digitized. Today, it seems the
tables have turned; there is relatively little that is not already digitized or digitizable.

The digitization of information can introduce errors. Errors and problems that plague your
datasets have the potential to compromise your dashboards. For this reason, I briefly outline
some of the vagaries related to the digitization of data.

There are three ways of digitizing data:

■ Category I digitization: You can simply record data that is already digital. This type of
digitization is typical of transaction processing and supply chain management systems,
where the data that is created is generated by computer programs.

■ Category II digitization: Non-digital data can be digitized automatically. An example
of this might be the use of optical character recognition (OCR) in the scanning of text
documents. If a document is being scanned, an OCR system could easily mistake the
letter o for the number 0 or vice versa.

■ Category III digitization: You can digitize data by directly entering it yourself.

Category I digitized data can be thought of as data that is born digital. Category II digitized
data goes through a structured or automated conversion. Category III digitized data entails

317The Digitization of Data

13

a more manual conversion process, where the primary driver of quality of the digitized data
is the human doing the data entry. From a pragmatic standpoint, the real distinction
between the last two categories is that the process and results of converting information
tends to be repeatable for Category II digitized data. If, for instance, you scan a document
and then scan it a second time with the same equipment and software, the result should be
identical or nearly identical.

Each of these three categories has unique classes of errors and methodologies for dealing
with them.

Dealing with Category I Digitization Errors
With Category I digitization, the big bugaboo is atomicity of transactions. When you have
thousands or millions of transactions, or even billions of transactions, there’s bound to be a
hiccup somewhere at some point in time. Given the speed and sheer volume of transactions,
errors can quickly compound and are hard to eradicate.

One of the ways to prevent errors from creeping in is to make transactions atomic. That is,
ensure that there is no such thing as a half-complete transaction. If the system of processing
involves journal entries in an accounting system, a journal entry where the total debits don’t
match the total credits could not be considered atomic. If the recorded transaction is not
atomic, the transaction is rejected and rolled back to its state just before the transaction was
attempted.

In transaction processing, it is better to have some missing information or complete infor-
mation that takes slightly longer to process than it is to have a snappy system whose validity
lacks integrity. This is the way of life for large database systems.

Dealing with Category II Digitization Errors
With Category II, automated digitization of inherently non-digital data can be plagued by
two kinds of issues—systematic and random errors.

Systematic errors are the easy ones to fix. If you scan a 100-page printed document, you may
find that the same mistake is consistently repeated. You could clean up the document using
global search and replace. By the time you fix all the errors in the first 15 or so pages of a
100-page document, there may be very few uncaught errors in the remaining 85 pages.

You might think issues such as scanning are not so significant because most important docu-
ments are already in digital form, but this is not always the case. There are times when there
is a need to digitize documents. For example, a business may come across a printed docu-
ment from a competitor and want to prove copyright infringement. As another example, say
that new economic data is printed, and you need to incorporate those numbers in your
analyses and projections.

Scanning is not the only form for automating the digitization of non-digital data, but it is a
common mechanism, and it is easy to understand. Other forms involve screen scraping and
graphical data digitizers.

318 Chapter 13 Working with Less-Than-Optimal Data

13

Dealing with Category III Digitization Errors
Category III involves challenges associated with the creation of digital data. There are many
kinds of issues that arise because of human error. Here are some examples you may be able
to guard against:

■ Transposition of digits

■ Removal of extraneous spaces in a list of names

■ Rounding and truncation errors

■ Poorly positioned data on a worksheet

Fixing Problematic Spreadsheets
Many problems can get in between your data and a superlative dashboard. Often, it’s the
tiny little gotchas that are problematic. The key is to know how to deal with them. This sec-
tion walks you through a bunch of them.

Detecting the Presence of Transposed Digits
Every now and then, someone may supply you with detailed data that’s basically correct, but
something is wrong with it. Say that you are given a list of 100 numbers that have been
hand entered into a spreadsheet. The total of all your numbers is 1691472. It should be
1628472 (see the spreadsheet file ch13_TransposedDigitsTest.xls). If you have such a discrep-
ancy, you either need to go to the source to chase down the differences or explain why or
how they are different. It would help if you could limit the initial scope of your search. In
this particular example, your discrepancy is exactly 63000. None of the other numbers in
your dataset have such nicely rounded digits. They’re all numbers like 23023 and 27051.

It’s a good guess that the error resides in the data you already have and is not based on a
missing entry. If you’re an accountant or a bookkeeper, you would likely surmise that a pair
of digits may have accidentally been transposed. It is generally common knowledge within
the accounting community that if you have two sets of totals that should be the same and
differ by an exact multiple of 9, chances are that a pair of digits within the sub-elements of
the total have been transposed. The number 63,000 happens to be an exact multiple of 9.

If you rummage through the list of numbers in Figure 13.1 (or open the file
ch13_TransposedDigitsTest.xls), you will quickly see that the size of this discrepancy is larger
than any of the detailed numbers, save one. Within the list there is an entry in the amount
of 81347. It is much larger than the other entries; all the others are under 38000. This
spreadsheet not only includes a tool that determines whether there is a possible transposi-
tion of digits, it deftly flags which of the numbers may have been transposed.

319Fixing Problematic Spreadsheets

13

Dealing with Raw Data
I would like to draw a distinction between raw and unclean data, even though the treatment
of the two types of data can be dealt with using similar techniques. Raw data is data that may
be valid but may require some kind of processing before it takes a useful form.

For example, you might download some economic or demographic information from a gov-
ernment agency. You can’t count on government agencies always providing direct file com-
patibility with Excel or, for that matter, any of your other favorite software products.
Frequently, however, these agencies provide files that are generic and transparent enough
that they can be made to work with Excel.

The following snippet of text is typical of data you might get from a government agency:

AL35004 6998 2815 49387881 259146 19.068768 0.100057
AL3500 8985 3690 92158183 14126 35.582475 0.005454
AL35006 3109 1488 339241043 1012342 130.981705 0.390867
AL35007 20157 7762 128235102 752940 49.511852 0.290712
AL35010 21732 10033 616923491 1904553 238.195502 0.735352
AL35014 4480 1725 245144985 1878618 94.651012 0.725338

Although the text is human readable, it does not lend itself to analysis. Each line of text is a
continuous stream of characters, and there is no hard segmenting of data into individual

Figure 13.1
Spreadsheet tool for
testing and detecting
digit transposition.

N O T E
There are several limitations of this tool. Numbers must be whole numbers in the range
of 0 through 99999. In addition, the tool can only handle a transposition of an adjacent
pair of digits in a single entry.

320 Chapter 13 Working with Less-Than-Optimal Data

13

columns. You might get this data in a text file and need to separate the data into individual
columns. You might be given a specification like this:

Columns 1-2: United States Postal Service State Abbreviation
Columns 3-4: State Federal Information Processing Standard (FIPS) code
Columns 5-7: FIPS county code
Columns 9-15: Total Population (2000)
Columns 17-24: Total Housing Units (2000)
Columns 26-38: Land Area (square meters) - Created for statistical purposes only.
Columns 40-52: Water Area(square meters) - Created for statistical purposes only.
Columns 54-64: Land Area (square miles) - Created for statistical purposes only.
Columns 66-77: Water Area (square miles) - Created for statistical purposes only.

You can use a couple strategies to get a dataset of this kind into a usable form. One of them
is to have Excel convert the data for you (see Figure 13.2).

Figure 13.2
Using an Excel wizard
to import and convert
text.

If you need to import data, using an Excel wizard to convert text to columns is expedient
and reliable. In certain situations, you might want to repeatedly tweak the processing of
your source data to match different kinds of criteria. In such cases, a splitter tool like the
one shown in Figure 13.3 might work for you.

Dealing with Unclean Data
When you first receive data from a third-party source, it may contain irregularities that are
purely cosmetic. These could be problematic in your dashboard. For instance, having two
spaces between the first and last names in a list of names could cause your lookups to work
improperly.

A data scrubber can help make your data conform to a uniform structure by helping with
the following:

■ You might want to remove extra spaces between names.

■ Occasionally, you might see some unusual symbols appearing in a spreadsheet cell.
Excel may render them as hollow rectangular boxes.

321Fixing Problematic Spreadsheets

13

■ It may be important to ensure that all names in a list are properly and uniformly capital-
ized. For example, “Loren Abdulezer” is the same person as “LOREN ABDULEZER”.

■ Inconsistent use of periods with middle initial can cause problems. I think you would
agree that “John Q Adams” and “John Q. Adams” refer to the same person.

■ Depending on your needs, you might want to flag the names in your list for redundan-
cies.

The spreadsheet file ch13_DataScrubberToolset.xls (see Figure 13.4) shows how you can use
a data scrubber to fix such problems. The basic approach is to start with a list of names in
the left column; zap or clean the gremlins; trim the excess spaces; convert to upper, proper,
or lowercase form; and eliminate period symbols. The spreadsheet performs each of these
steps in succession. You can, of course, modify the spreadsheet to add your own housekeep-
ing tasks.

There are several things to note here:

■ When working with lists and names, I recommend using a monospace font, such as
Courier or Courier New, to view your data. That way, every letter takes up the same
amount of horizontal space, and it’s easier to see discrepancies.

■ You want to scrub your data before it reaches Xcelsius 2008. One reason for this is that
you can make use of spreadsheet functions that are not supported by Xcelsius 2008. For
instance, the Excel functions CLEAN and PROPER help you clean up data, but they are not
supported in Xcelsius 2008.

Figure 13.3
Spreadsheet formulas
can read parsing crite-
ria from a table and
extract column data.

322 Chapter 13 Working with Less-Than-Optimal Data

13

When you have your final list of names all squeaky clean and pristine, you can copy it and
use Paste Special, Values to paste it onto a new workbook that Xcelsius can use. Because it is
all text, there is no lingering memory of the exotic formulas used to prepare the data.

Figure 13.4
Data scrubbing tools
can help you fix prob-
lematic data before it
gets to Xcelsius.

N O T E
Keep in mind that the use of spreadsheet tools like the data scrubber in this example is
for the purpose of preparing data that will eventually be used by Xcelsius. When you
import data to Xcelsius, you only need to import the finalized data. There is no need to
import all the complicated formulas used to clean the data.

N O T E
When using the PROPER function, be aware that it capitalizes the first letter of every word
in a phrase. For example, SOUTH CAROLINA is converted to South Carolina, and DIS-
TRICT OF COLUMBIA is converted to District Of Columbia. If you want the latter
phrase to appear as District of Columbia, you need to be prepared to do some
additional processing or hand editing.

Dealing with Rounding and Truncation Errors
It can be very frustrating trying to get rounded numbers and their totals to work the way
you want. The main challenge occurs when you try rounding numbers that then need to be
added together. Figure 13.5 (or open the file ch13_rounding.xls) shows a set of 15 numbers
that add up to 56,175,478.88. You tell your boss that the revenue for this quarter is

323Fixing Problematic Spreadsheets

13

$56,175,000. If you round the 15 numbers to the nearest thousand and then add them
together, they total $56,174,000. I know it sounds strange that a list of numbers above 56
million 175 thousand gets rounded down to 56 million 174 thousand. These things can and
do frequently happen.

Figure 13.5
Discrepancies can
arise when you round
numbers.

T I P
Incidentally, the tool shown in Figure 13.5 allows you to set the number of decimal digits
used for rounding (the colorized cell D2). If you want the numbers rounded to the near-
est penny, you set the precision to 2 (for two decimal places). If you want the numbers
rounded to the nearest dollar, you set the precision to 0 (for zero decimal places). To
round to the nearest hundred, you set the precision to –2, and for rounding to the near-
est thousand, you set it to –3.

With a minimal amount of adjusting to the raw numbers, you can tweak the rounded totals.
An adjustment of $3.33 in cell C9 is enough to get the numbers rounded so that they total
$56,175,000 (see Figure 13.6). The value of 7,005,496.67 gets bumped up to 7,005,500.
When rounded to the nearest thousand it is 7,006,000.

Figure 13.6
Adding a tiny adjust-
ment of $3.33 bumps
up the rounding so
that the total is 1,000
higher.

324 Chapter 13 Working with Less-Than-Optimal Data

13

You can fix the apparent discrepancy by adjusting numbers very close to the borderline for
rounding up or down. It suffices to add $3.33 to the fifth item in the list of numbers to
increase the totals of the rounded numbers to $56,175,000.

C A U T I O N
It is very easy to go overboard with tweaking numbers that get rounded. In this example,
an adjustment of $62.93 ($17.67, $11.72, $3.33, and $30.21 for items 1, 2, 5, and 6,
respectively) drives the total to $56,178,000. Getting creative and adjusting numbers to
suit your needs is misleading and will most surely come back to haunt you. Whenever
you make adjustments for rounding purposes, be sure to properly disclose the adjust-
ments you are making and why you are making them.

Poorly Positioned Data on a Worksheet
In the following example (see Figure 13.7 or open the file ch13_PoorSpreadsheetLayout.xlf),
the List Box component pushes the row of data for the selected product onto cells B10:F10.
This dashboard is well behaved but can wreak havoc when you expand the number of
products.

Figure 13.7
The layout of this
spreadsheet cramps
future spreadsheet
changes.

This sample dashboard is a classic example of poor spreadsheet layout. It is almost literally
set to fall on its own sword. When spreadsheets and dashboards are as simple as this exam-
ple, they are easy to fix. Instead of having the destination cells (the highlighted yellow cells,
B10:F10) immediately below the source data (cells B2:F8), you should position the destina-
tion cells above the source data. Doing so gives the source data freedom to grow, in case you
need to select from more than six products.

325Fixing Problematic Spreadsheets

13

When your dashboards and visualizations become large and complex, with many moving
parts, making such changes can be problematic.

Detecting and Fixing Formula Problems
Small spreadsheets are easy to handle, validate, and, where necessary, fix. When dashboards
and underlying spreadsheets become large and complex, the once-easy-to-fix problems are
suddenly not so simple to deal with. The key is to eliminate spreadsheet formula problems
as you go along. Two problems commonly get people into hot water:

■ Embedded hardwired values within spreadsheet formulas

■ Absolute, relative, and hybrid cell references

Issues with Hardwired Values and What to Do with Them

Spreadsheets are plagued with small and easy-to-correct spreadsheet formula errors and
deficiencies. If these annoyances are not weeded out early, they can blossom into big prob-
lems. One important type of problem to tackle is hardwired values embedded in spreadsheet
formulas. You might have a formula like this:

=A2*1.025^B1

In this example, cell A2 is the principal, the interest rate is 2.5%, and the time period is in
cell B1. It’s a simple enough calculation. On the face of it, nothing really looks wrong. But
hardwiring the interest rate with the formula is a ticking time bomb. Today, you have this
one formula that’s a cinch to validate and modify. What’s going to happen when you have a
spreadsheet with 200 formulas? Let me revise that a bit. In Excel and most any spreadsheet,
it is exceedingly easy to replicate formulas, so maybe there could be a couple thousand for-
mulas floating around, some on different worksheets. Many of them may be easy, like this
simple formula involving interest. Or a spreadsheet could have a half dozen complicated for-
mulas. It is easy to see how an innocuous formula (such as =A2*1.025^B1) could get lost in the
shuffle.

The basic solution for embedded hardwired values is to quarantine them. By this, I mean
place the hardwired value in an isolated cell and have all formulas that previously embedded
that value reference the quarantined cell. Then, if you need to make a change to the value,
you only need to do the following:

■ Make that change in just one place, without worrying about updating multiple formulas.

■ Because that isolated value is just a value and not a formula, use Xcelsius to change the
value directly from the dashboard. To do so, you might be able to use a slider or similar
component.

In this example, you could alter the formula in either of two ways. First, you could place the
value 1.025 in an isolated cell, such as cell A1, and use a formula like this:

=A2*A1^B1

326 Chapter 13 Working with Less-Than-Optimal Data

13

Alternatively, you could place the rate 0.025 in a cell such as A1 and use the following for-
mula:

=A2*(1+A1)^B1

I know the value 1 in this formula is hardwired. This kind of hardwiring is definitional in
nature; it is not going to change. Similarly, the number of months in a year won’t change, so
it is fair to use the factor 12 to convert months to years and vice versa.

Either of these two approaches to handling the hardwired value is equally valid. The choice
depends on your personal preference.

Using Absolute, Relative, and Hybrid Cell References in Formulas

The section “Spreadsheet Cell References” in Chapter 4, “Embedded Spreadsheets: The
Secret Sauce of Xcelsius 2008,” explains how absolute, relative, and hybrid cell references
work in spreadsheet formulas. To quickly recap, the dollar sign before the column letter or
row number keeps the respective column or row reference constant when the cell is repli-
cated.

The following sections provide some guidelines for deciding when to use each kind of refer-
encing in your formulas.

Setting Up Cell References in a VLOOKUP Formula Say that you need to perform a
lookup on three of your customers whose names appear in cells A1, A2, and A3. The infor-
mation is looked up against a comprehensive table of data in cells T1 through Z300. This
table has seven columns. The customer names are in column T, and the credit rating you
are interested in appears in the seventh column, Z.

To look up the rating for the customer in cell A1, you could use a formula like this:

=VLOOKUP(A1,T1:Z300,7,FALSE)

This formula is okay, but if you replicate the formula to the next cell down so it looks up the
value for cell A2, you might have this:

=VLOOKUP(A2,T2:Z301,7,FALSE)

This is not what you want. The lookup table should still be set to T1:Z300 and not
T2:Z301. If the value of A2 doesn’t appear in the very first row of your lookup table, the
problem in your formula may go unnoticed. You can guard against problems of this kind by
appropriately inserting dollar signs in the cell references. Here is one such formula:

=VLOOKUP(A1,T1:Z300,7,FALSE)

When you replicate this formula down to the two cells below, these are the formulas:

=VLOOKUP(A2,T1:Z300,7,FALSE)
=VLOOKUP(A3,T1:Z300,7,FALSE)

327Fixing Problematic Spreadsheets

13

This is basically what you want, but it can be improved. Notice that in these three formulas,
the lookup value is always in column A, and this doesn’t change. You might want to keep the
lookup column so that it is always set to column A. If so, you can use the following formula:

=VLOOKUP($A1,$T$1:$Z$300,7,FALSE)

When you replicate the formula using copy and paste, it should behave in the expected man-
ner.

It shouldn’t be surprising that I have yet another improvement to the formula. You may have
noticed that this formula contains a hardwired value—the number 7 for the seventh column
in the lookup table. Today you are interested in how much business you did with the cus-
tomer during the previous sales cycle, which might reside in column Y (or the sixth column)
of your lookup table. But it would be best to place the hardwired number 7 (or 6, if you are
interested in column Y) in an isolated cell such as C1. Your lookup formula then becomes
the following:

=VLOOKUP($A1,$T$1:$Z$300,$C$1,FALSE)

Admittedly, this formula looks more complicated than the original, but it doesn’t fall apart
when you copy and paste it to other cells.

Setting Up Cell References in a Multiplication Table At one point or another, we’ve
all worked with some kind of multiplication table, where numbers across a top row and
down a column, are multiplied. Creating such a table in a spreadsheet is straightforward.
Here is how you do it if your top row is in row 1, starting with cell B1, and the left column
is in column A, starting with cell A2. In cell B2, place the following formula:

=$A2*B$1

You can replicate this cell down and across to populate the cells in your multiplication table.
Of course, you can make a more complicated table. The key here is to know how to apply
the cell references, as described in the following section.

Setting Up Cell References in a More Complicated Table Using the earlier example
of the interest rate calculation, you could set up a table to calculate interest with various val-
ues for the principle and period and varying the interest rate by tweaking an isolated cell
from a dashboard slider.

Let’s assume that you have five different principal amounts in cells A2 through A6 (these
could be the values 100, 200, 300, 400, and 500, for example). The time period could be in
cells B1 through E1 (these could be the values 1, 2, 3, and 4, for example). The interest rate
0.025 could reside in cell A1. You can apply the following formula to cell B2:

=$A2*(1+$A$1)^B$1

You can then copy and paste this formula to all the cells in B2 through E6. Rather than copy
and paste one cell at a time, you could instead use the fill-down and fill-across features of
Excel (see Figure 13.8 or open the file ch13_FormulaReplication.xlf).

328 Chapter 13 Working with Less-Than-Optimal Data

13

Dealing with Scaling Issues
It is very easy to get in over your head with more data than you can handle. Spreadsheets
make it especially easy to drown in data. Some simple guidelines and strategies can help pre-
vent the sheer volume of data from growing out of control:

■ Eliminate redundancies in the data.

■ Freeze-dry cells that are not going to change and, where necessary, retain seed formula.

■ Avoid throwing in the kitchen sink, especially if the data doesn’t get used.

■ Use formulas where the options are combinatorially explosive.

The more formulas you have in an underlying spreadsheet, the more computational
resources are going to be required to run the dashboard. Consider the multiplication table
and interest rate table examples introduced earlier in the chapter. If such a table were 100
columns by 200 rows, it would have 20,000 formulas. Any dashboard relying on such a large
table is bound to have problems. Of course, you can forgo creating a table altogether,
replace it with a single formula, and allow the dashboard user to vary the inputs.

The key point here is that you can reduce spreadsheet overhead by eliminating formulas or
freezing the computed values that don’t change. To “freeze-dry” cells, you can copy the
spreadsheet cells and paste their values (using Paste Special, Values) onto the same cells.
Here’s a trivial example that shows what happens. Place the value 0 in cell A1. In cell A2,
enter the following formula:

=A1+10

Figure 13.8
Basic setup of calcu-
lated values within a
table.

329Fixing Problematic Spreadsheets

13

Replicate the formula in cell A2 down the column—say, some 500 rows. You will get a
sequence of numbers like 0, 10, 20, 30 . . . to some number such as 5,000, depending on
how many rows you replicate to. If all you need is the sequence 0, 10, 20, 30, and so on,
then you can safely dispose of all the formulas and simply copy and paste the values back
onto themselves to erase the formulas.

Although erasing the formulas is a good idea, you might want to keep a “seed formula”
around so you can regenerate a new set of computed values. In the preceding example, you
can freeze-dry cells A3 and below and leave the formula =A1+10 intact in cell A2. This way,
you can always generate a new set of values. Keeping one formula around involves a lot less
computational overhead than having 500 cascading formulas.

N O T E
A business associate asked me to enhance a dashboard and gave me an XLF file contain-
ing a bunch of data, most of which was not needed. Although it was nice to have the
extra data, most of it could be safely eliminated. Removing it cut down the file size by
over 80%.

Repurposing Existing Spreadsheets
The use of spreadsheets and the ability to make them do just about anything you want is a
double-edged sword. You have the freedom to make your spreadsheets as complex and elab-
orate as you need them to be. If you are less than diligent, no one will automatically warn
you that you may be improperly applying your spreadsheet design.

One of the best favors you can do for yourself is to make your spreadsheets modular and
artifact free. By modular, I mean organize your spreadsheet design so that all the source data
is cleanly isolated and structured. This makes it easy to swap out the old data and replace it
with a new set, even if the new data is something entirely different from what was previously
used.

Similarly, you can take all your heavy-duty computations and have them work only on the
data that is needed for the dashboard at the moment. You can use functions such as VLOOKUP
and OFFSET to retrieve only the pieces of data you need for the values specified in the dash-
board. The advantage of separating your computations is that it becomes a lot easier to
repurpose them. Today, you might be monitoring the average daily customer support cost
for the past week. After some major incident, company management may decide to closely
monitor the peak cost on any day during the week. Having a modular design in your spread-
sheet gives you the ability to make such changes with minimal effort.

If you have a whole year’s worth of sales and customer support data and you are monitoring
metrics for the month of March, there is no need for your spreadsheet to work out the
equivalent computations for January and February. You can let VLOOKUP and other similar
functions bring in the data for the month at hand.

330 Chapter 13 Working with Less-Than-Optimal Data

13

It pays to isolate the portions of a spreadsheet that are used for mapping and configuration
purposes or are driven by inputs from the dashboard user. To help make this concrete, I
provide a simplified reference implementation of the Layered Approach Design Pattern
demonstration dashboard (see Figure 13.9 or open ch13_LayeredApproachTemplate.xlf).

Figure 13.9
Simplified setup for
the Layered Approach
Design Pattern
demonstration dash-
board.

For the sake of clarity and illustration, I combine all the layers into a single worksheet. In a
real-world and full-featured application, the Source Data, MiddleWare, and Computation
Engine information would likely reside on separate worksheets.

Notice that the Source Data section is just plain data. There is not a single formula in this
section. There are 364 rows of data, but there could just as easily be 3,640 rows of data. Of
course, having more rows of data bloats the file size, and when you jump into Preview mode
or generate the SWF file, it will take longer to generate. Once the SWF file is generated, it
performs very smoothly. This is largely because there are 21 formulas in the whole spread-
sheet. Two of them are used for cosmetic purposes to aid in readability of the spreadsheet
and dashboard. The Computation Engine section is kept lean. It uses just five formulas
(cells D5:D9). Seven formulas (cells I10:I16) in the MiddleWare portion, one for each day
of the week, are used to retrieve the appropriate portions of data from the Source Data
region. There are seven helper formulas (cells H10:H16) that identify which rows in the
datasets should be retrieved.

If at some point you invent your own kind of metric, you can just write your new formula in
the Computation Engine section. There is no need to worry about how it affects your
source data; it doesn’t. Likewise, if you want to change your source data so that you can
examine 14 products instead of 4, you can. Your MiddleWare portion formulas don’t need to
be revised; neither do the Computation Engine section formulas.

331Dealing with Improperly Structured Data

13

So how do the life cycle costs and maintenance effort in managing this kind of dashboard
stack up against a monolithic design? I’ll let you be the judge of that.

Dealing with Improperly Structured Data
Often there is the need to convert digital data that’s not quite structured the way you want it
to a form suitable for use in Xcelsius. In such a situation, challenges can occur on multiple
levels.

One of the dashboards used in Chapter 11, “Maps in Xcelsius” (ch11_AugmentedMap.xlf), uses
a spreadsheet whose original form is not at all suited for a dashboard. Figure 13.10 shows a
spreadsheet that contains state-by-state population data for various age groups:

■ Total (all age groups combined)

■ Under 5 years

■ 5 to 13 years

■ 14 to 17 years

■ 18 to 24 years

■ 16 years and over

■ 18 years and over

■ 15 to 44 years

■ 45 to 64 years

■ 65 years and over

■ 85 years and over

There is nothing wrong with this data, but it may not be organized in a way that is useful
for your needs. In a histogram, it is not very meaningful to show a side-by-side comparison
of the number of people 16 years and over with those who are 18 to 24 years and the num-
ber of people ages 14 to 17 years. This data, published by the U.S. Census Bureau, may pro-
vide data useful for specific age groups, but it is difficult to use for other purposes.

The spreadsheet as it now stands is not well suited for a uniform range of ages. But all is not
lost. You can back into certain numbers. For instance, it would be nice to compare the tally
of people in the following age ranges:

■ 45 to 64 years

■ 65 to 84 years

■ 85 to 104 years

These are precise 20-year intervals. The number of people who are 85 and over is virtually
identical to the number of people who are 85 to 104 years.

332 Chapter 13 Working with Less-Than-Optimal Data

13

The source data in the Census Bureau spreadsheet (see the file SC-EST2007-01.xls) does not
contain data for 65 to 84 years, but it does contain data for 65 years and over and 85 years
and over. If you subtract the counts for 85 years and over from the counts for 65 years and
over, you will arrive at accurate counts for 65 to 84 years (see Figure 13.11).

Extracting the data for ages 65 to 84 years was easy. Getting the age group 25 to 44 years
represents more of a challenge. Basically, you start with the total population among all age
categories and chip away the ages you don’t need. That is, you remove the population
counts for ages 24 and lower as well as 45 and higher:

= Total population for all ages
➥ - (Under 5 years + 5 to 13 years + 14 to 17 years
➥ + 18 to 24 years + 45 to 64 years + 65 and over)

For example, for the state of Alabama, the number of people between 25 and 44 years is cal-
culated as follows:

= 4627851 – (308234 + 552768 + 262535 + 446948 + 1195948 + 625756)
= 1235662

Figure 13.10
Population statistics
broken out by non-
uniform categories.

N O T E
According to a government study conducted in 1990 and issued in 1999, the nationwide
total number of people in the United States who were 105 years and over was about
6,350. Today the counts are more likely double or triple this figure, and the number is
growing. For the purposes of a simple histogram-based dashboard, the differences
between counts for 85 years and over and 85 to 104 years are virtually indistinguishable.

333Dealing with Improperly Structured Data

13

Of course, this is tedious to do by hand, but with spreadsheets, it’s a straightforward formula
that can be applied to all 50 states and any other geographic region, such as the District of
Columbia or Puerto Rico.

At this point, you already have data for 15 to 44 years. What you need is data for 25 to 44
years. There are a number of ways to get at this number. Probably the simplest is to find out
how many people are over age 24 and subtract from that number the people who are over
age 44.

You calculate the number of people who are 45 or older as follows:

45 to 64 years + 65 to 84 years + 85 years and over

You calculate the number of people who are 25 years and over as follows:

= Total population for all ages – Population under 25 years
= Total population for all ages
➥ - (Under 5 years + 5 to 13 years + 14 to 17 years + 18 to 24 years)

The total number of people in the 25 to 44 years range is as follows:

= Total population for all ages
➥ - (Under 5 years + 5 to 13 years + 14 to 17 years
➥ + 18 to 24 years + 45 to 64 years + 65 and over)

Figure 13.11
Three of the age
groups are now com-
parable to one
another.

334 Chapter 13 Working with Less-Than-Optimal Data

13

Closing Thoughts
Dashboards are great presentation and analysis tools. Unless the numbers (and formulas)
behind a dashboard are rock solid, the dashboard will lack the integrity it aims to portray. A
silly thing like an extra space inserted between a first name and last name could mess up
lookups or counts associated with the name.

It makes no sense to pour your energy and resources into building an exquisite dashboard
that’s essentially correct but is deficient in a small but critical area. This chapter is about
getting data and spreadsheet formulas in good working order so that the flashy sizzle in a
dashboard is accompanied by spreadsheet integrity.

The longer faulty data is used, the more difficult and costly it is to eradicate. If faulty data
makes its way into a dashboard, it may lead to lost business and easily outweigh the cost of
fixing clerical errors.

It is interesting to note that while spreadsheets can contain problems, they can also be used
as effective tools to identify problems and find where errors may occur. An example of this is
the spreadsheet tool described in this chapter that detects the presence of transposed digits.

The bulk of data may be unusable simply because it is raw or not packaged in a usable form.
Fortunately, Excel provides some basic wizards to process raw data.

Things get a little trickier when data is unclean. Say that you have two names in a list,
“Julius A Caesar” and “Julius A. Caesar.” It is evident to you and me that the two names
should most likely be treated as the same name. Computers have a commonsense blind spot.
Unless you tell them to be specifically on the lookout for middle initials with and without
periods, they may treat the two names as distinct names, and this may go unnoticed—until a
costly mistake occurs.

The good news related to dealing with unclean data is that it can be systematically treated
and scrubbed. There’s a simple spreadsheet in this chapter for weeding out commonly
recurring problems. When cleaning and fixing data, there is no need to do it inside Xcelsius.
For that matter, there is no need to restrict yourself to Excel. You can use other tools, rang-
ing from UNIX shell scripts to Java, Action Script, SAS, C++, Python, Ruby, Visual Basic,
and even DOS batch scripts, to clean up your data. When your data is in good form, you
can bring into Xcelsius 2008.

Unfortunately, good form doesn’t take care of everything. Numbers that are accurate may
not be well behaved. You can have a list of numbers that, when rounded, don’t quite add up
the way you might expect, and miniscule tweaking can create comparatively wild swings in
the total.

Even when you get numeric data values the way they need to be, your spreadsheet formulas
could be problematic. Two common problems arise from hardwired values embedded inside
spreadsheet formulas and faulty cell referencing. The latter problem tends to crop up when
you’re replicating spreadsheet formulas.

335Closing Thoughts

13

When you get past these pitfalls, you have to start taking control. The underlying spread-
sheet for a dashboard may contain excess computations that are not needed or could be
streamlined. One approach to taming this beast is to architect your spreadsheet into logically
distinct layers. This greatly facilitates the ability of the dashboard to harness the heavy-duty
processing capabilities of the underlying spreadsheet, and that is very much the goal of
Xcelsius as a dashboard or visualization technology.

In the Chapter 14, “Other Dashboard Techniques and Practices,” I address the flip side of
the spreadsheet/dashboard problems and tackle commonly encountered interface design
issues.

This page intentionally left blank

14CHAPTER

In this chapter

Other Dashboard Techniques and
Practices

An Important Preliminary Issue 338

Simple Fixes in Visualizing Data 339

Constructing ABC (Actual Budget Comparison) Charts 344

Using a Candlestick Component as a Box Plot 347

Closing Thoughts 350

338 Chapter 14 Other Dashboard Techniques and Practices

14

This chapter outlines a variety of techniques and practices that are helpful in building
Xcelsius dashboards. There is no one particular theme; this is just a collection of techniques
and approaches you may find useful. There is, however, one undercurrent that runs
throughout many of the chapter’s examples: Rather than say that something cannot or
should not be done, I describe workarounds.

An Important Preliminary Issue
When you deploy a dashboard, a scorecard, or any other kind of visualization, you can give
the end user a lot or very little control over his or her environment. It is a judgment call you
need to make, and it behooves you to decide on this as early possible in the dashboard
design process.

The process of managing control is complicated by the fact that Xcelsius exerts some con-
trol over a dashboard’s behavior. For example, if you have a chart that displays percentages,
Xcelsius will take your data and automatically set the upper and lower limits on the vertical,
or Y scale.

If you have value that varies between the range of 0% and 100%, you might find that
Xcelsius sets the scale limits between say, 0% and 120%. This may or may not be what you
want. If you know that you will never have a percentage that exceeds 100%, then a signifi-
cant portion of your screen space would be consumed but never utilized. More importantly,
your dashboard users may not be thrilled about a chart scaling beyond 100% when, by defi-
nition, certain things should never exceed 100%.

If you need, you can wrestle control of this away from Xcelsius, but then you have to take
ownership over the process. This means you may have to competently handle exceptions,
such as these:

■ If your limits are set to 100%, what do you do if one or more of the values on the chart
actually exceed 100%?

■ What do you do about negative percentages?

■ How would you want information rendered on the chart?

There are plenty of other ways to handle this. Here is one solution that may prove useful. In
the chart’s Properties panel, you can set the Y-axis scale to manual and point the lower and
upper limits to spreadsheet cells that contain formulas for computing the limits.

If your chart data resides in cells A1:A10, you could use a spreadsheet formula like the fol-
lowing as the upper limit:

=MAX(100%,A1:A10)

Similarly, the lower limit on the chart could be mapped to a cell containing a formula like
this:

=MIN(0,A1:A10)

339Simple Fixes in Visualizing Data

14

In this manner, you can tell the chart limits to stay between the fixed bounds of 0% and
100%, unless some of the data misbehaves. The ch14_CustomScaling.xlf file shows this
implemented (see Figure 14.1). In this dashboard example, there is a vertical slider that lets
you adjust one of the data points to values that are negative or greater than 100%. The pur-
pose and effect of this slider is to show how the chart scaling behaves when your data falls
outside the expected data bounds of 0 and 1 (or 100%).

Figure 14.1
A chart with elastic
limits.

You can give the dashboard user additional control by enabling run-time tools (see the panel
on the right side of Figure 14.1).

Simple Fixes in Visualizing Data
Sometimes the data that appears in a chart is hard to view. This problem has nothing to do
with dashboard design; it is simply related to an unfortunate set of values that makes view-
ing the data difficult because it is hard to distinguish or interpret. In certain types of charts,
such as area charts, important data can be obscured.

The following sections outline a few strategies that address such challenges.

Charting Multiple Data Series That Have Similar Values
It frequently happens that dashboards are used to compare two or more data series whose
values may be similar to one another. If you have allocated a budget, the expectation is that
actual recorded values may closely match the budgeted estimates. You can easily display such
data on a chart. There’s just one problem: The values may match so closely that it might be
challenging to discern one dataset from the other (see Figure 14.2).

340 Chapter 14 Other Dashboard Techniques and Practices

14

You can use a couple strategies for dealing with this. One approach is to use a Combination
Chart component with one of the data series rendered as a column chart and the other as a
line chart. This works well up to a point, but if the values are relatively close, it is hard to
discern which one is larger.

Another approach may better serve your needs. It involves setting one of the data series as a
baseline and adjusting all the others accordingly.

The ch14_Baseline.xlf file provides a working example of how a baseline dashboard is set
up. In this sample file, shown in Figure 14.3, there are two data series represented on a line
chart (in this example, budget values and actual values). This dashboard provides three view-
ing modes: one for comparing the literal values of budget and actual recorded data, one that
sets the budget as a zero-based baseline, and one that sets the actual as the zero-based base-
line.

Figure 14.2
Chart values in multi-
ple data series may be
difficult to tell apart.

Figure 14.3
You can choose which
of your data series is
treated as a baseline.

341Simple Fixes in Visualizing Data

14

The overall design for this kind of dashboard is as follows:

1. Place your source data (in this example, budget and actual values) in columns G and H.

2. Set up a mechanism for selecting how you want to view the data. In this example, I use
a Label Based Menu component. The labels are read from cells A4:A6, and the compo-
nent inserts the position of the selected menu item in cell A3. This menu position is
used to choose among three different ways of viewing the data (no baseline, budget as
baseline, and actual as baseline).

3. Pull the data the way you want it to be displayed in the chart in columns D and E. For
example, cell D3 (the first value in the first data series appearing in the chart) should
retrieve the value in cell G3 (the budget value) if the menu position is 1 (that is, No
baseline is selected). Cell D3 should be set to 0 if the menu position is 2 (Budget as
baseline is selected). Cell D3 should be set to G3-H3 if the menu position is set to 3
(Actual as baseline is selected). You therefore use the following formula:
=CHOOSE(A3,G3,0,G3-H3)

4. Similarly, you use the following formula for cell E3:
=CHOOSE(A3,H3,H3-G3,0)

The strategy here is to put into the hands of the dashboard user the choice of how to view
the chart data and to empower him or her by not restricting the options.

Step back a moment and look at what is happening here. The data that appears in the
Source Data section may be data retrieved from a remote repository such as a database.
Rather than accessing the repository every time the data needs to be viewed differently, you
can just get the data once; it’s not going to change each time it is viewed differently. Then
you can use the spreadsheet formulas and calculation capabilities to choose how you want
the data to be viewed. This underscores one of the reasons Xcelsius paradigm is so
compelling.

Filled Radar Charts with Alerts
In working with Xcelsius 2008, you may have noticed that Filled Radar Chart components
do not support alerts. Interestingly, plain radar charts do support alerts. You can have the
best of both worlds by overlaying two charts. You place in the foreground a standard radar
chart that supports alerts. Directly underneath it, you place a filled radar chart (see Figure
14.4 or open the file ch14_FilledRadarwithAlerts.xlf).

Here are some things to keep in mind when setting up this type of dashboard:

■ The chart is really a compound chart that overlays a radar chart in the foreground over
a filled radar chart in the background.

■ The foreground and background layers are identically sized and read the same data cells
for the chart values and category labels.

342 Chapter 14 Other Dashboard Techniques and Practices

14

■ Avoid using a chart title inside the Radar Chart component or the Filled Radar Chart
component. This maximizes the size of the chart content. Instead, you position a Label
component directly above the chart, and it serves as the chart title.

■ The marker size in the Radar Chart component is sized to be easily visible but not
overwhelming.

■ In the Radar Chart component, you enable alerts and have the alert thresholds read
directly from the spreadsheet cells (in this example, they are located in cells D3:D7).
Reading from the spreadsheet lets you easily revise your criteria for colorizing the
points on the radar chart.

This technique is more of a magician’s sleight of hand than a best practice. When you need
to get the job done, however, you do what works.

Avoiding Occlusion with Area Charts
In some data visualization programs, you may encounter a situation in which some of the
data in an area chart is hidden (see Figure 14.5).

One way around this problem is to avoid using solid colors in your area charts. Xcelsius
2008 gives you the option to set the level of transparency (see Figure 14.6).

Figure 14.4
A filled radar chart
with alerts can be
easy to read and inter-
pret.

N O T E
Note that by default Xcelsius 2008 area charts use translucent shading and not solid col-
ors. Also, minor and major gridlines are shown by default. You can tweak these to suit
your comfort level.

343Simple Fixes in Visualizing Data

14

Even with translucent shading, it may be difficult to view the data. In such instances, you
may be better off using a line chart instead of an area chart.

Viewing Line Chart Data
You can improve the readability of a chart by adjusting the appearance of the data series:

■ You can change marker size and fill color for the data series markers. You should be
aware that the marker size you set applies to all the data series displayed in the line
chart. The fill color applies to each individually selected data series.

■ You can adjust marker transparency. Like the marker size, the transparency value applies
to all the data series. It cannot be independently set for each individual data series.

■ You can independently set line thickness for each of the data series.

■ You can select the marker shape for each of the data series (see Figure 14.7).

Figure 14.5
Some of your data can
be obscured when
using an area chart
with solid colors.

Figure 14.6
You can adjust the
transparency of your
chart data.

344 Chapter 14 Other Dashboard Techniques and Practices

14

Keep in mind that the marker fill color does not have to be the same as the line color. You
might, for instance, want to darken the marker fill color shading to emphasize the data
points instead of using large markers.

If you want to streamline the appearance of a line chart, especially if only one data series is
displayed, you can remove the appearance of markers altogether. You can do this by setting
the transparency to 0% or by shrinking the marker size to 0.

In the example shown in Figure 14.7, there are 4 data series (North, South, East, and West)
and 12 data points for each of the series. As you display additional data series and more data
points, your chart quickly becomes saturated. You can avoid needless clutter by using the
List Builder component (which is covered in Chapter 5, “Using Charts and Graphs to
Represent Data”).

Constructing ABC (Actual Budget Comparison)
Charts

An ABC chart is a very simple dashboard that flows selected data from two independent
charts to a merged chart (see Figure 14.8 or open the file ch14_ABC_Chart.xlf).

The setup of an ABC-style charting dashboard involves the following:

1. Start with a set of data that conform to a certain structure, such as actual expenses by
geographic region, perhaps for a given quarter. You can call the actual data the A com-
ponent. This data is displayed in the top-left chart in Figure 14.8.

Figure 14.7
Customizing the
appearance of the
data series in a line
chart.

345Constructing ABC (Actual Budget Comparison) Charts

14

2. Add a corresponding dataset that matches the structure of the A component. You might
chose to display budget estimates for the same set of geographic regions and accounting
period. You can call this the B component. This data is displayed in the top-right por-
tion of Figure 14.8.

Although it is easy to see the A and B portions and understand that they are related, it is
difficult to compare the actual and budget for the same region (that is, actual to budget
for just the North, just the South, and so on). For this, you need to create a comparison
chart, or a C component. In Figure 14.8, this is the bottom chart.

When the dashboard user moves the mouse over any of the geographic regions in the
top two charts, a drill down mechanism automatically pushes the corresponding data
onto the comparison chart.

3. To let you know what data is being moved to the comparison chart, a set of flow lines
automatically highlights the path the data takes. Underneath the hood, this is handled
through dynamically controlling the visibility of horizontal and vertical lines.

Notice that all the charts are equivalently scaled so that visual proportions can be objec-
tively interpreted.

In addition to drill down, the dashboard user can choose the desired accounting period
or quarter from the list box.

Figure 14.8
An ABC-style dash-
board lets you merge
two data sources and
compare correspon-
ding points one at a
time.

Keep in mind that there is no restriction on the kind of data used in an ABC-style dash-
board. You might, for instance, compare revenue and expense items or degree of risk and
frequency of occurrence. This kind of dashboard offers one more way to view data.

346 Chapter 14 Other Dashboard Techniques and Practices

14

Now that you have an idea how the visual part of the dashboard is handled, let’s spend a few
moments examining the spreadsheet setup:

■ The underlying spreadsheet is divided into three colorized sections: one for the A com-
ponent, one for the B component, and one for the C component (see Figure 14.9).

■ The source data for each of the three colorized sections resides in rows 19 through 22.
The position of the selected item in the list box shown in Figure 14.8 is mapped to cell
A2. In this case, the position is 2. This pulls the Q2 data into row 12, and this data is
displayed in the top two column charts in Figure 14.8.

■ The top two column charts in Figure 14.8 have drill down enabled. For both of these
charts, the drill down destination cell is A3. The selected data value position is written
to that cell. Figure 14.8 shows the mouse hovering over the North region, which is the
first position, so the value 1 is placed in cell A3. This moves the data values for the
North region from the A and B components into cells O12 and P12.

■ There are four groups of vertical and horizontal line segments; in effect, there is one
for each region. Each group watches the value of cell A3 and uses that value as a switch
to make the line segments visible or invisible.

Figure 14.9
Spreadsheet design
for an ABC-style dash-
board.

The dashboard design, while not very sophisticated, works like a machine. The list box,
which sets the context for the accounting period data, is displayed. From the standpoint of
the list box, the dashboard user is pushing data onto the top two charts. Internally, the
spreadsheet formulas are pulling the data they require from the underlying source data. Cell
I12 uses this formula:

=OFFSET(I$18,$A$2,0)

The other cells in row 12 have similar formulas.

Similarly, as a dashboard user hovers the mouse over any of the vertical bars in the top two
column charts, the position value is pushed onto cell A3. Cells O12 and P12 watch the value
in A3 and use it to pull data from cells B12:E12 and I12:L12, respectively. This kind of
push-pull technique is a very powerful framework.

347Using a Candlestick Component as a Box Plot

14

Using a Candlestick Component as a Box Plot
Candlestick components, dual sliders, and percentile calculations can be combined to pro-
vide a dashboard user with a lot of data visualization dexterity. An example of this is shown
in Figure 14.10 (or open the file ch14_BoxPlotCandleStick.xlf). Simply adjusting a dual slider
allows the dashboard user to visually characterize and classify data.

Figure 14.10
A Candlestick compo-
nent is adapted to
work like a box plot.

The Candlestick component is a particular kind of charting component in Xcelsius 2008.
Like the OHLC component, the Candlestick component follows an Open-High-Low-
Closing convention (see Figure 14.11). That is, there are four separate data series for open,
high, low, and closing values. This naming convention makes sense for the stock market and
investment management. But candlestick charts do not have to be restricted to Wall
Street–type applications.

By using a dual slider and some percentile applications, you can set up a basic box plot in
Xcelsius 2008. To illustrate how this is done, let’s use the dynamically ranged sums spread-
sheet data from Chapter 4, “Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008.”

Data is captured daily over a period of months (see Figure 14.12). Each column represents a
separate month, and the rows correspond to the values recorded for the days of the month.
In this example, recorded data extends up to October 8.

348 Chapter 14 Other Dashboard Techniques and Practices

14

During any month, you can see that recorded amounts vary between a low number and a
high number. The majority of values fall within some in-between range. Is this starting to
sound familiar? It pretty much follows a candlestick or OHLC structure.

Figure 14.11
A Candlestick compo-
nent uses four data
series that correspond
to open, high, low,
and closing sets of val-
ues.

Figure 14.12
Daily data captured
over the better part of
a year that needs to
be analyzed.

349Using a Candlestick Component as a Box Plot

14

The data shown in Figure 14.12 is not quite set up to feed into the Candlestick component.
You need to add some processing to convert the data:

■ You need to retrieve the high and low values for each of the months. This means calcu-
lating maximum and minimum values.

■ In place of the open and close values that the Candlestick component or OHLC com-
ponent expects, you could supply percentile thresholds.

■ As a precursor to calculating percentiles or rank, you may need to know the count of
values in each of the columns.

Figure 14.13 shows how this is set up:

■ The counts in row 7 are needed to determine what rank corresponds to a specific per-
centile.

■ If there is a count of 31, then the 25 lowest values will be under the 80% mark. For
example, this is the formula for cell B8:
=ROUND(B7*A8,0)

In this example, the result is 25 (=ROUND(80%*31,0)).

■ When you can determine where the split occurs, you can find the value that corre-
sponds to that threshold. In keeping with this example, the value 67 in cell B2
(=SMALL(B16:B46,B8)) corresponds to the 80th percentile.

Figure 14.13
Counts, percentile
thresholds, and corre-
sponding values need
to be calculated for
the Candlestick com-
ponent.

If you look at the formulas in rows 2 and 3, you will see that they have a slightly more com-
plicated form. For instance, cell B2 has this formula:

=IF(ISERROR(SMALL(B$16:B$46,B8)),””, SMALL(B$16:B$46,B8))

There is a good reason for this formula logic: Some of the columns have no data. The fol-
lowing formula will return a #NUM! error if there is no data:

=SMALL(B$16:B$46,B8)

Normally, Xcelsius 2008 doesn’t complain about such errors when it charts data. However,
such errors are displayed as errors in the Spreadsheet Table component. Visually, it is
cleaner to force the errant cell to appear as blank. The IF ISERROR formula handles this.

350 Chapter 14 Other Dashboard Techniques and Practices

14

Finally, to allow a dashboard user to drive the data analysis visualization, you can include a
Dual Slider component that the user can use to set the values in cells A2 and A3.

Closing Thoughts
One of the lessons I have learned over the years is to, where possible, empower dashboard
users as much as possible but avoid giving them license to be dangerous. It is very easy to
create a dashboard with sliders that can tweak a wide variety of variables. If you are not
careful, your dashboard users could figuratively slide off a data cliff.

Setting limits in your visual components is only one kind of safety measure. You have to for-
ever be on guard that your formulas are calculating valid results. Some empty data can inad-
vertently create a visual eyesore. A subtraction of two numbers that should exactly equal 0
may turn out to be -0.00000001. If you attempt to take the square root or logarithm of such
a number, you will introduce errors in your calculations.

It is indeed challenging to empower users of dashboards and at the same time incorporate
features that make it safe to push dashboards to the limits.

A chief reason I wrote this chapter is to address situations that are too often brought in as
afterthoughts or addressed without seeking resolution. Deciding how much empowerment
your dashboard users should get is one such item. Another is that dashboard designers fre-
quently try to accomplish something, encounter some obstacle, and then give up too easily.
Sometimes data within a dashboard is hard to view. This should not come as a surprise.
Data is very fluid, so it can be difficult to tame. But Xcelsius is a visual data analysis tool,
and it’s designed to rework data after the fact. You saw in this chapter how this was accom-
plished with data values in separate data series that are very close to one another. The tech-
nique involved converting any desired data series to a zero-based baseline at will.

Another reason I wrote this chapter is to outline in detail how to set up cleanly designed
dashboards that do useful things. One of these involves a push-pull framework. You will see
this at work again in Chapter 15, “XML and Data Connectivity.”

Advanced Features

15 XML and Data Connectivity 353

16 Creating Custom Components for Fun and Profit 371

IIIPART

This page intentionally left blank

15CHAPTER

In this chapter

XML and Data Connectivity

Strategies for Packaging Dashboard Information 354

The Xcelsius Data Manager 355

Adding XML Maps to Xcelsius 2008 357

Connecting Your Dashboards to Web Services 364

Setting Up Cross-Domain Policy Files 368

Closing Thoughts 369

354 Chapter 15 XML and Data Connectivity

15

Most of the features of Xcelsius 2008 do not require a connection to remote data sources in
order to work. Let’s face it: A dashboard with interactivity and sophisticated spreadsheet for-
mulas but without connectivity is a fixed snapshot of some dataset. A key feature that distin-
guishes Xcelsius 2008 Engage from its earlier equivalent (Crystal Xcelsius Professional) is
the ability to make connected presentations. My goal in this chapter is to get you thinking
about extending your dashboards so that they can tap into external sources of information.

N O T E
While the product Xcelsius 2008 Present provides a great many of the features found in
Xcelsius 2008 Engage and Engage Server, it does not come with built-in support for con-
necting to remote data sources.

This chapter is really targeted to those who have the Engage or Engage Server products.
In the remainder of this chapter, when I refer to Xcelsius 2008, I am not including
Xcelsius 2008 Present.

If you are using Present and want to experiment with the remote connectivity features of
Xcelsius, you can download and install the trial version of Xcelsius Engage.

Strategies for Packaging Dashboard Information
Dashboards can be packaged in a number of different ways. One approach is to have every-
thing already contained the day the dashboard is deployed. The advantage of this approach
is that when the dashboard is created, it needs no further upkeep. You can email the dash-
board to a colleague, who saves the file to her laptop computer. She won’t need a connec-
tion to the Internet to open the dashboard file and use it.

If connectivity is so significant, why not introduce it earlier in the book, rather than wait
until near the end of the book to introduce the topic? There are several good reasons:

■ The principles and practices associated with dashboard design and preparation (includ-
ing the use of spreadsheet formulas, managing dynamic visibility, setting attributes of
visual components, and the like) do not require connectivity to remote data sources.

■ The moment you bring connectivity into a dashboard, you need to take into account
the infrastructure used to deploy the dashboard. Each company, organization, or indi-
vidual who deploys a connected presentation is bound to have a unique set of require-
ments and network environments.

Illustrating dashboard features in the context of a connected presentation introduces
excess baggage that is largely unrelated to the dashboard feature. For example, you
don’t need an Internet connection to illustrate the basic features of dynamic visibility of
a component.

■ Designing dashboards that are connected requires a network infrastructure be in place.
Not every reader will have at his or her disposal convenient access to a full-fledged net-
work infrastructure.

355The Xcelsius Data Manager

15

Open-Ended Dashboards
A dashboard that connects to a remote data source is referred to as open ended. This means
that the dashboard can continuously be refreshed with new and changing information.
There are really two kinds of open-ended dashboards:

■ Dashboards that rely on passive feeds: This kind of dashboard is used to monitor
trends or key performance indicators (KPIs). As necessary, computations can be per-
formed on the incoming data. Anything can be done to the data, including calculating
relevant statistical measures such as mean, standard deviation, minimum, maximum, or
moving averages. Also, data can be reclassified or numerically revised.

■ Dashboards that allow people or computations to dictate where the next piece of
information is going to come from or what it needs to be: This kind of dashboard
allows people or computations to dictate where the next parcel of information comes
from or what it needs to be.

The Xcelsius Data Manager
The WorkGroup version of Crystal Xcelsius (the high-end version of the older generation
of Xcelsius) supported various ways to connect to remote data, but it was not centralized. All
versions of Xcelsius 2008 except Xcelsius 2008 Present support remote connectivity and
include the Data Manager, which places all the connectivity options under one roof.

The idea of the Xcelsius Data Manager is simple. To add connectivity to a remote data
source, you add a connection and specify the type of connection you want. The following
connection types are available:

■ Query as a Web Service (QaaWS)

■ Web Services Connection

■ XML Data

■ Flash Variables

■ Portal Data

■ Crystal Report Data Consumer

■ FS Command

■ LCDS Connections

■ External Interface Connection

■ Excel XML Maps

■ Live Office Connections

The connectivity options in Xcelsius 2008 span a broad range. Rather than attempt a cur-
sory across-the-board discussion, this chapter outlines from a hands-on perspective prag-
matic issues and techniques for accessing XML data, particularly Excel XML maps.

356 Chapter 15 XML and Data Connectivity

15

XML: The Rosetta Stone of Machine- (and Human-) Readable Content
Every computer system and every software application has its own way of representing information. Unless
these systems agree in advance to use a predefined structure common to all of them, they are going to have a
hard time exchanging information or talking to one another.

XML was created as a platform-neutral way for computers (and people) to exchange information by using plain
text. At its core, XML is very simple. It simply packages text content with tags. These tags create a structure that
makes it easy to interpret information. Consider the following snippet of XML:
<invoice>
<invoice_number>15926</invoice_number>
<invoice_date>September 27, 2009</invoice_date>
<transactions>

<transaction>
<model_number>Model 100</model_number>
<unit_price>49.95</unit_price>
<units>89</units>

</transaction>
<transaction>

<model_number>Model 300</model_number>
<unit_price>89.25</unit_price>
<units>67</units>

</transaction>
</transactions>
</invoice>

Without really knowing anything about XML, you can interpret and extract meaningful information. In this
example, invoice number 15926, with an invoice date of September 27, 2009, has two transactions. One of
these is for 89 units of Model 100, at a price of 49.95, and the other is for 67 units of Model 300, at a price of
89.25.

One of the liberating features of XML is that it does not limit you to a fixed vocabulary of tags to identify your
content. You can create tags of your own choosing. This makes it easy to package and exchange meaningful
information for easy consumption by other computer systems.

What if the computer system receiving your custom-designed invoice is not familiar with the structure of your
invoice? That’s no problem. You can create a dictionary that defines how the XML is to be structured. This is
generally referred to as a schema, and you can incorporate the schema inside the XML content.

If the XML content is small, or if you are going to send a large number of XML documents that conform to the
same structure, packaging the schema definition inside each and every XML file would be wasteful. It would be
simpler to have the schema reside in a known location and use a link to that location in its place.

All this is very practical, but another challenge looms: In the earlier example, I defined a very specific type of
structure for the invoice tag. That might work for me, but you may have a different notion of how invoices
should be structured, and it may not be consistent with my precepts. XML avoids this naming collision by using
namespaces.

T I P
There are plenty of online resources and tutorials about XML. A simple search (such as
www.google.com/search?q=XML+online+tutorials) provides a wealth of resources.

www.google.com/search?q=XML+online+tutorials

357Adding XML Maps to Xcelsius 2008

15

Adding XML Maps to Xcelsius 2008
Xcelsius 2008 provides support for the Microsoft XML maps facility. Tapping into this capa-
bility may require some setup. You can forgo setting this up in your Xcelsius workspace and
define all your XML maps in Excel, save the spreadsheet, and then import it into Xcelsius.
This approach defeats the benefits of a tightly integrated Xcelsius/Excel design environ-
ment. I heartily recommend that you go through the steps of integrating XML support in
Excel so that the features can be tapped directly from the Xcelsius workspace.

N O T E
The Home and Student Editions of Excel and Microsoft Office do not support certain XML
features, such as XML maps. Make sure you are using the Professional Edition of Excel
2003 or Excel 2007. In the remainder of this chapter, any reference to Excel assumes the
use of the Professional Edition and not the Home or Student Editions of Excel.

Setting Up XML for Xcelsius When You Are Using Excel 2007
Although Excel is directly integrated in the Xcelsius 2008 workspace, it does not make avail-
able 100% of the features you get when you work with Excel as a standalone application. By
default, the Excel 2007 Ribbon displays Home, Insert, Page Layout, Formulas, Data,
Review, and View. The XML features of Excel 2007 live in another Ribbon tab called
Developer, which you need to add to your Ribbon. Here are the steps to do so:

1. If you have Xcelsius 2008 running, close it. If you have Excel 2007 running, close it as
well. To make sure there are no instances of either program, view the processes in the
Windows Task Manager. There should be nothing named Xcelsius or Excel in the list
of running processes.

2. Launch Excel 2007 so that it is the only instance of Excel running.

3. In the main application menu of Excel 2007, click the Excel Options button.

4. Under the Popular options, make sure there is a checkmark next to the Show
Developer tab in the Ribbon. Click the OK button, and close Excel. The next time you
start up Xcelsius 2008, the Developer tab should be present in the Ribbon.

N O T E
Depending on how you lay out the various elements of your Xcelsius workspace, the
Excel 2007 Ribbon may be hidden. You can either resize the spreadsheet portion of your
workspace or select Show Spreadsheet Only in the Quick Views menu to reveal the
Ribbon.

Setting Up XML for Xcelsius When You Are Using Excel 2003
To make use of the XML features of Excel 2003 within Xcelsius 2008, you need to have
these features visible in the Excel toolbar. Here are the basic steps to set this up:

358 Chapter 15 XML and Data Connectivity

15

1. If you have Xcelsius 2008 running, close it. If you have Excel 2003 running, close it as
well. To make sure there are no instances of either program running, view the processes
in the Windows Task Manager. There should be nothing named Xcelsius or Excel in
the list of running processes.

2. Launch Excel 2003 so that it is the only instance of Excel running.

3. In Excel, select Tools, Customize to open the Customize dialog box.

4. Add some toolbar icons. (Although you could add the icons to an existing toolbar, I rec-
ommend that you create a new one for the XML features you will be enabling in the
Xcelsius workspace.) Within the Toolbars tab of the Customize panel, click the New
button and give the toolbar an appropriate name, such as XML Toolbar, and then click
OK. This produces an empty floating toolbar that needs to be populated with the XML
toolbar icons.

5. In the Customize dialog box, click the Commands tab. Within the list of categories,
select Data. To the right of the list, you see a set of toolbar icons that is appropriate to
the selected category. Scroll down this list until you see XML Source, Import XML
Data, and XML Map Properties. Drag these icons to the floating toolbar you created in
step 4 (see Figure 15.1).

Figure 15.1
Locating the XML tool-
bar icons you will
need.

If you accidentally add a toolbar icon you don’t want, you can just drag it off the tool-
bar.

T I P
If there are other toolbar icons you want to enable in the Xcelsius workspace, you can
add them here. Keep in mind that as you add toolbar icons, your screen quickly gets
crowded.

359Adding XML Maps to Xcelsius 2008

15

6. When you are done adding icons, drag the floating toolbar and park it along the other
Excel toolbars at the top of your application window. Close Excel. The next time you
start up Xcelsius 2008, the new toolbars should be visible.

N O T E
Before proceeding to the next section, make sure you have completed the setup instruc-
tions for your version of Excel.

Setting Up Excel XML Maps
Excel supports XML maps, which can be used to translate XML content from a remote data
source to the rows and columns of a spreadsheet.

Creating an XML map and mapping elements to spreadsheet cells involves getting the
XML schema definition file or a representative sample of the XML. There are three ways to
build an Excel XML map:

■ Read in XML content that references a schema definition file. In this case, Excel will
build the XML map based on the schema definition.

■ Read in XML content that doesn’t reference any kind of schema definition. In this case,
the XML map is constructed using the sample file as the blueprint. If you rely on this
strategy, you need to make sure your sample file has all the bells and whistles built
into it.

■ Instead of depending on a physical file on your hard drive, connect to the remote data
source via a URL.

Let’s look more closely at the third approach. Follow these steps:

1. Set up a test harness so that you can sample data or a schema definition from which to
build your XML map. For purposes of illustration, try using a URL such as the follow-
ing (but one that points to your own data) to fetch some XML content:

http://www.evolvingtech.com:8080/ExcelDB/GetSpotExchRateServlet?
currency=RAND&date=2000-2-1&duration=7&country=SOUTH%20AFRICA

The query might return content like:
<?xml version=”1.0” encoding=”UTF-8”?>
<tables>
<tab>
<EXCH_DATE>2000-02-01</EXCH_DATE>
<EXCH_RATE>6.2800</EXCH_RATE>
</tab>
<tab>
<EXCH_DATE>2000-02-02</EXCH_DATE>
<EXCH_RATE>6.2825</EXCH_RATE>
</tab>
<tab>

http://www.evolvingtech.com:8080/ExcelDB/GetSpotExchRateServlet?currency=RAND&date=2000-2-1&duration=7&country=SOUTH%20AFRICA
http://www.evolvingtech.com:8080/ExcelDB/GetSpotExchRateServlet?currency=RAND&date=2000-2-1&duration=7&country=SOUTH%20AFRICA

360 Chapter 15 XML and Data Connectivity

15

<EXCH_DATE>2000-02-03</EXCH_DATE>
<EXCH_RATE>6.2575</EXCH_RATE>
</tab>
<tab>
<EXCH_DATE>2000-02-04</EXCH_DATE>
<EXCH_RATE>6.2860</EXCH_RATE>
</tab>
<tab>
<EXCH_DATE>2000-02-07</EXCH_DATE>
<EXCH_RATE>6.2905</EXCH_RATE>
</tab>
</tables>

N O T E
The URLs and the sample files used here are intended for illustration purposes. The URLs
and data values shown in this chapter should work as is but are subject to change. As
URLs change, I will place notices at www.XcelsiusBestPractices.com.

2. Create the XML map. If you have Excel 2007 integrated into your Xcelsius workspace,
click the Developer tab of your Excel Ribbon and then click the Import button. If you
have Excel 2003 integrated into your Xcelsius workspace, click the Import XML Data
icon on the XML toolbar created during the setup.

At this stage (regardless of whether you have Excel 2007 or Excel 2003 integrated into
your workspace), you will be presented with a dialog box to point to the XML content
(see Figure 15.2).

Figure 15.2
Instead of supplying a
file, you can supply a
URL that retrieves
XML content.

The XML content can be a file on your hard drive. It can, as shown in Figure 15.2, be a
URL reference. In the File Name field of the Import XML window, type your URL

www.XcelsiusBestPractices.com

361Adding XML Maps to Xcelsius 2008

15

reference and then click the Open button. In the current example, the URL reference
that would be typed would be:
http://www.evolvingtech.com:8080/ExcelDB/GetSpotExchRateServlet?
➥currency=RAND&date=2000-2-1&duration=7&country=SOUTH%20AFRICA

N O T E
It may seem unintuitive to type a URL when Excel is looking for a file, but it does work.

If the XML content you get back doesn’t incorporate a schema definition or refer to
such a definition, you will be prompted with a message like the one shown in Figure
15.3.

Figure 15.3
Your XML map can be
constructed from the
raw XML even if no
schema exists.

Click the OK button. You will be further prompted to identify where to put the XML
table (see Figure 15.4). For this example, designate cell A4 and click the OK button. If
all goes well, you’ll see a table populated with data.

Figure 15.4
Your XML map ele-
ments need to be
associated with
spreadsheet cells that
you designate.

3. Embed the URL that will be used to fetch your data in the underlying spreadsheet.
Enter the following static query in cell A1:
http://www.evolvingtech.com:8080/ExcelDB/GetSpotExchRateServlet?
➥currency=RAND&date=2000-2-1&duration=7&country=SOUTH%20AFRICA

This is the same URL you used in step 1.

4. Convert this static query into an interactive query by turning it into a formula that
reads values located in other spreadsheet cells. First, create input cells in your spread-
sheet to set the duration and day number. In cell E2 type Duration. In cell E3 type 7. In
cell D2 type Day. In cell D3 type 5.

Modify cell A1 so that it reads the day and duration values from cells D3 and E3,
respectively. Cell A1 should have a formula that looks like this:
=”http://www.evolvingtech.com:8080/ExcelDB/GetSpotExchRateServlet?
➥currency=RAND&date=2000-2-”&D3&”&duration=”&E3&”&country=SOUTH%20AFRICA”

362 Chapter 15 XML and Data Connectivity

15

5. Add two Spinner components to the canvas. Map one of them to the day number (cell
D3) and the other to the duration (cell E3). Add a Spreadsheet Table component and
map the Display Data field to cells A1:E9. This way, you will be able to see what is hap-
pening to the underlying spreadsheet as you adjust the spinner controls.

6. Create a connection from the mapped XML cells to the URL in cell A1. Click any-
where on the canvas and press Ctrl+M (alternatively, you can select Data, Connections
in Xcelsius). A Data Manager window appears. Click the Add button and select Excel
XML Maps (see Figure 15.5).

Figure 15.5
Select the type of data
connection you want
Xcelsius to create.

In the Definition tab, there are two fields—Name and XML Data URL. The Name
field is mapped to tables_Map that was created in step 2. Instead of getting the XML
data URL from the sample file, map it to cell A1 so it can dynamically pick up values
from the spreadsheet (see Figure 15.6).

7. You need to get the dashboard to retrieve data from the remote data source any time
either of the spinner buttons is clicked. The key to doing this is to identify a single trig-
ger cell to force such an action. Cell A1, the cell that is used to set the URL, is perfect
for this purpose.

In the Data Manager window, click the Usage tab. Map the trigger cell to A1. The
radio button options When Value Changes and When Value Becomes are enabled.
Select the When Value Changes radio button.

Select the Refresh on Load check box and click the Close button (see Figure 15.7).

363Adding XML Maps to Xcelsius 2008

15

If you haven’t already done so, save your file. It should look something like Figure 15.8
(see the file ch15_Excel_XML_Map.xlf). Notice the XML map that appears in the lower-
right corner.

Figure 15.6
Be sure to link the
XML data URL to the
spreadsheet formula
in cell A1.

Figure 15.7
Set your refresh
options so that the
dashboard updates
automatically.

364 Chapter 15 XML and Data Connectivity

15

8. Click the Preview button to test the dashboard.

There are a few things you need to be aware of:

■ The dataset used in this example is based on a non-production system for illustrative
purposes only and has not been reviewed for accuracy or correctness. Do not rely on
this information for any business decision whatsoever.

■ The spot exchange rates in this example are based on historical values over a six-month
period starting from the beginning of the year 2000.

■ Spot exchange rates are based on daily currency conversion rates occurring during busi-
ness days. There are no spot exchange rates for Saturdays or Sundays. This is why you
see at most only five daily rates when the duration is set to seven days.

These steps may seem complicated, but when you practice them a few times, you’ll quickly
get the hang of this process.

Connecting Your Dashboards to Web Services
XML provides a way to transfer complex and structured information. XML is concerned
only with the message content. If you want a sure-fire way of properly asking for the infor-
mation, you need to turn to Web Services.

Figure 15.8
The complete dash-
board file, based on
an XML map.

365Connecting Your Dashboards to Web Services

15

Understanding Web Services
Web Services is a communications framework for exchanging information that uses XML
content as the transport medium. The general idea is that you want to retrieve information
from a remote server. Do you know in advance what kinds of questions or services it is pre-
pared to answer? It would be nice if you could just ask it and it would tell you what you
want to know. That’s a tall order, but it is what actually happens with Web Services.

The server you need to connect to can publish a special type of XML file called a WSDL
(Web Services Definition Language) file that tells all about what the server is willing to do.

You can retrieve a WSDL file from a server just as you would pick up any web pages. You
can even read the contents of a WSDL file in your web browser. Although the information
may not be easy for you or me to read, it will make perfect sense to Xcelsius 2008. Basically,
this file identifies the following:

■ The list of methods or requests it will answer

■ What information it wants you to supply for a given method, including the data type for
each parameter that is needed

■ For each method, what exactly it will return to you (including the data type of each kind
of returned value)

If you are having trouble getting a handle on WSDL files, think about the following anal-
ogy. When you go to a restaurant, you may not know all the different kinds of foods and
beverages served, their prices, or even whether the restaurant accepts credit cards. All this
information can be obtained at a glance if you look at a menu. A WSDL file for Web
Services is the electronic equivalent of a menu for a restaurant.

Using Web Services in Xcelsius 2008
The Xcelsius 2008 Data Manager facilitates the process of asking for and receiving XML
data using a Web Services connection. The example that follows illustrates how to capture
some weather information that is available from a government agency using Web Services.

N O T E
Like any other data source on the Internet, the URL references and available datasets
used here are subject to change. This should not cause a problem, as you should be able
to apply the same steps for your URL references and corresponding datasets.

Here are the basic steps involved:

1. Set the URL of the WSDL file. In your dashboard, open the Data Manager and add a
Web Services connection. In this example, you are requesting some wind data from a
server at the National Oceanic and Atmospheric Administration. In the WSDL URL
field, add the following and then click the Import button:
http://opendap.co-ops.nos.noaa.gov/axis/services/Wind?wsdl

366 Chapter 15 XML and Data Connectivity

15

In a few moments, the Input Values and Output Values boxes will be populated for a
method called getWind (see Figure 15.9).

Figure 15.9
Setup of a Web
Services connection.

If there is more than one method available, you will be able to select among them by
using a pull-down list in the Method field. For this WSDL, getWind happens to be the
only method the service provides.

2. Map the input values and output values of the getWind method to spreadsheet cells in
your dashboard. The input values needed for getWind are stationId, beginDate, endDate,
and timeZone. Map this to cells of your choosing. Here is how to map them: Select
stationId in the Input Values pane. When this is selected, the Read From field becomes
enabled. In this example, I map it to cell B3. Map beginDate, endDate, and timeZone to
cells B4, B5, and B6, respectively.

3. Make sure you have suitable input values in the spreadsheet. Now that you know that
cells B3, B4, B5, and B6 are going to be used to supply data for your request, you have
to populate them with input values. You can temporarily close the Data Manager win-
dow. Enter the values 8454000, 20080910, 20080910, and 0 into cells B3, B4, B5, and B6,
respectively. In cells A3, A4, A5, and A6, enter appropriate labels, such as Station ID,
Begin date, End date, and Time zone, respectively. It also helps to place identifying head-
ers for this table of input values. In cell A1, type Input name, and in B1, type Value.

4. Create a trigger cell to automatically signal when to make a request. In cell B1, place
the following spreadsheet formula:
=B3&B4&B5&B6

Also type an identifying label, such as Trigger, in cell A1.

367Connecting Your Dashboards to Web Services

15

5. Map the output values of getWind to your spreadsheet. The results returned by getWind
are timeStamp, WS, WD, WG, X, and R. These are the date and time of the data, wind speed in
meters per second, wind direction in degrees, wind gust in meters per second, and flags
to indicate when maximum wind speed and rate of change tolerance limit are exceeded.

You can individually map each of these results, or you can do it in a single step. Click
the enclosing folder (called item) in the Output Values pane. Notice that when you do
this, the message “6 column(s) of data” appears, and the Insert In field becomes enabled.
Map the results to spreadsheet cells of your choosing. Of course, you will need to spec-
ify six columns for the six return parameters. The number of rows you will need is
dependent on your begin and end dates, as well as the number of values recorded each
day. If you are getting measurements every 6 minutes, you will need 10 rows per hour,
or 240 rows per day. For now, specify a grid of 240 rows by 6 columns.

6. In the Usage tab of your data connection, set Refresh Options to Refresh on Load and
refresh every time the trigger cell (B1 in this example) changes. The setup is virtually
identical to Figure 15.7 except that the trigger cell is B1 instead of A1.

7. You might want to place some input fields on the canvas so that you can interactively
change values. I’ve created a sample file (ch15_WebServiceExample.xlf) that you can
examine and extend.

8. Test your connection.

9. Close the Data Manager window and populate your canvas with components such as
Grid or Spreadsheet Table to view values returned. Click the Preview button. If all goes
well, you should see something like what is shown in Figure 15.10.

N O T E
For the sake of simplicity, Figure 15.10 displays only the first few rows of the data that is
returned. As a further simplification, I set the end date to always match the value of the
begin date. This is why you do not see an end date input text field in the dashboard.

Figure 15.10
A simple Web Services
connection dash-
board.

368 Chapter 15 XML and Data Connectivity

15

It is possible that you may get an error message, which is generally displayed as an alert
message with an error number. An error number 2032 means that something failed, and
the nature of the error is not determined. Perhaps you are supplying an invalid input
value, the URL for your Web Services query is incorrect, or something else equally
innocuous is going on. Check and recheck your setup for something you may have done
incorrectly.

T I P
In the Usage tab of your data connection, you can have Xcelsius 2008 write the load sta-
tus of your query to spreadsheet cells. You can do this to alert the dashboard user when
a web query is being made and when it is completed.

When you can successfully connect to remote data sources, there are steps you can take to
improve the dashboard. Here are some ideas to think about:

■ You can make input easier. In the sample file for the Web Services connection, the
begin date requires a hand-entered value. Why not use a Calendar component instead?

■ The website for this example (http://opendap.co-ops.nos.noaa.gov) has data for several
hundred weather stations. You need only pop in a different station ID to get data for
other locations. A simple list box will suffice for this purpose.

■ Depending on the duration of data, you could easily get back hundreds of rows of data
with each request. This data is just begging to be graphed on some kind of chart.

■ Be sure to place some safety covers on your web application. There is no sense trying to
retrieve data for nonexistent stations or invalid dates.

N O T E
Xcelsius Engage supports multiple connections in a single visualization, but only one con-
nection of each type of data connection. For instance, a visualization could have one
“Web Service” connection, one “XML Data” connection, and one “FS Command”; once
that connection type has been added to the visualization, no additional connections of
that type can be added to that visualization.

If you require more than one connection of a given type in your visualizations, you need
to upgrade to Xcelsius 2008 Engage Server.

Setting Up Cross-Domain Policy Files
Dashboard files generated by Xcelsius 2008 are based on Adobe Flash technology and are
subject its security protection rules. This can cause a number of problems. Some of them
you can fix, and others will have to be addressed by your dashboard users.

Consider the following scenario. You design a connected presentation dashboard in your
development environment. It is your first dashboard that connects to data on a back-end
server. It works like a charm. You place this dashboard on the web for your colleagues.

http://opendap.co-ops.nos.noaa.gov

369Closing Thoughts

15

Using their web browsers, they locate the dashboard. It looks beautiful. The moment the
dashboard attempts to connect to your remote data source, your dashboard users get secu-
rity violation errors.

This problem can occur if the dashboard is served from one server at a specific domain and
the data resides on another domain. To enable connectivity across domains, you must place a
cross-domain policy file called crossdomain.xml at the root of your server that serves up the
data.

To open up connectivity, you create a file like the following:

<!DOCTYPE cross-domain-policy SYSTEM
“http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
<allow-http-request-headers-from domain=”*” headers=”*” secure=”false” />
<allow-access-from domain=”*” secure=”false” />
</cross-domain-policy>

This crossdomain.xml file would be placed on the root directory of the application server that
serves up the content. You might, for instance, have a Tomcat servlet engine serving up con-
tent for data_repository.example.com. If the root directory for this server is the following:

C:\Program Files\Business Objects\Tomcat\webapps\ROOT

this is where you would place the cross-domain file.

Closing Thoughts
The purpose of this chapter and Chapter 16, “Creating Custom Components for Fun and
Profit,” is to give you the means to figuratively drive across unpaved roads. In this chapter,
the focus is on data connectivity. In Chapter 16, it is on building custom components.

Rather than attempt a whirlwind tour of all the Xcelsius 2008 connectivity features, this
chapter presents two hands-on examples. One of them relates to the XML map features of
Excel and the other to Web Services. You can use both of these features out of the box.
Because connectivity is centrally handled through the Xcelsius Data Manager, there is a high
degree of commonality among the various connection options. For instance, quite a few of
the connectivity options in the Data Manager let you specify data refresh options. You can
therefore apply your experiences here to other types of connection options.

Now that you can tap into remote data sources, you might find that your approach to
designing dashboards may be different. If you don’t access data remotely, you may be
tempted to “swallow” data in large gulps. When you have access to data as you need it, you
will find that it suffices to “sip” data. This is bound to have a significant impact on your
design approach. The good news is that everything you’ve learned in the earlier chapters
about things like constructing spreadsheet formulas, dynamic visibility, managing interactiv-
ity, and charting and graphing techniques, carries over into the connected realm.

Chapter 16 introduces the software development kit (SDK) and the design of custom-built
components that you can incorporate into dashboards.

This page intentionally left blank

16CHAPTER

In this chapter

Creating Custom Components for
Fun and Profit

Understanding Custom Components 372

Programming with Flex Builder 373

Getting Ready to Build Custom Components 375

Building Custom Components 378

The Relationship Between a Custom Component and a Property Sheet 386

Packaging and Deploying Your Custom Components 387

Where to Go from Here 394

Closing Thoughts 397

372 Chapter 16 Creating Custom Components for Fun and Profit

16

Xcelsius has a wealth of components to choose from. It should be clear from the previous 15
chapters that you can be endlessly inventive with Xcelsius components. As good as the com-
ponents in Xcelsius 2008 are, though, you might want to do things that simply cannot be
done with the built-in components. If you are willing to really roll up your sleeves, you can
construct your own components and incorporate them into your Xcelsius dashboards. That’s
what this chapter is about.

There are several things to keep in mind as you read this chapter:

■ Building custom components requires the use of third-party commercial software, such
as Adobe Flex Builder.

■ Creating custom components is a technically intense process and requires that you have
under your belt a substantial level of knowledge of the Flex Builder development envi-
ronment, as well as ActionScript programming.

■ The technology and framework for designing, building, and testing/deploying custom
components is continually and rapidly evolving.

The goal of this chapter is to introduce you to custom components in Xcelsius and get you
started producing custom components. This chapter walks you through the basic setup and
introduces you to various components.

C A U T I O N
Building custom components is not for the faint of heart.

Understanding Custom Components
In contrast to creating custom components, the process of installing them is comparatively
trivial. If someone supplies you with a custom component, you can just load it into Xcelsius
2008.

N O T E
Custom components are not limited to Xcelsius 2008 Engage. They can be used in all the
editions of Xcelsius 2008 Service Pack 1 (SP1), spanning all the way from the Enterprise
version down to Xcelsius 2008 Present.

Installing Custom Components
One of the things you may have noticed in Xcelsius 2008 that didn’t exist in its predecessors
is a new option in the File menu called Manage Add-Ons.

373Programming with Flex Builder

16

The process of installing custom components with the Add-On Manager is very easy. Simply
click the Install Add-On button, locate the desired component, and click the Open button.
Immediately after you install or remove components, you are prompted to restart Xcelsius.

Custom components are first-class citizens. After you install a component, it remains in your
Xcelsius workspace. You can then use the custom component just as you would any other
Xcelsius component. Custom components work in your dashboards just the same way as any
of your other components.

Custom Component Construction Workflow
The process of building custom components is a little involved. The overall steps are as fol-
lows:

1. Build a component using Flex Builder.

2. For the component, set up a property sheet so that the custom component’s attributes
can be specified. When your custom component is added to Xcelsius, those attributes
can be set from the component’s property sheet.

N O T E
Make sure you are running the SP1 version of Xcelsius 2008 and not any of the earlier
versions. To check this, in Xcelsius 2008, select Help, About Xcelsius. The build number
should be something like 12,1,0,247. If the last set of digits is lower than 247, you are not
using SP1.

N O T E
When you build the property sheet, you will be able to endow your custom component
with all sorts of capabilities. You could, for instance, allow the component to bind its title
attribute to a spreadsheet cell.

3. Package your component so that that it can be loaded from Xcelsius 2008.

4. Load your custom component with the Xcelsius Add-On Manager and test the
component.

Programming with Flex Builder
Flex Builder is a high-level development environment that generates Flash content (see
Figure 16.1). It is built on top of an Integrated Development Environment called Eclipse.
This development environment is full of features and supports all sorts of program develop-
ment facilities using plug-ins. Flex Builder is actually a plug-in that runs on top of Eclipse.
You can find out more about Eclipse at www.eclipse.org.

www.eclipse.org

374 Chapter 16 Creating Custom Components for Fun and Profit

16

The paradigm for programming with Flex Builder is innovative and unconventional. Flex
Builder lets you program in three modes:

■ You can program visually by dragging components onto a Flex Builder Design canvas
(see Figure 16.1). As you select the Flex Builder components on the canvas, you can
adjust the properties of the selected components. In some ways, this is reminiscent of
the Xcelsius workspace.

■ You can change the viewing mode from Design to Source and reveal the graphical rep-
resentation of your visual layout in XML. The XML code that is generated might look
something like this:
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”absolute”>

<mx:Text x=”40” y=”36” text=”Sample Label” fontSize=”18”
➥fontWeight=”bold”/>

<mx:TextInput x=”40” y=”72” text=”Enter your Name” id=”inputName”/>
</mx:Application>

This way of representing the visual elements on the Flex Builder canvas is called
MXML. MXML is actually a programming language. If you look at it for a moment,
you will see that all the programming statements in this sample code, and indeed in all
of MXML, are written as XML content.

One of the nice features of Flex Builder is that you can tweak the MXML, and the
visual presentation on the canvas is instantly changed. You can jump back and forth
between the Design and Source modes and make changes. Flex Builder automatically
keeps those changes in sync.

Figure 16.1
The Flex Builder envi-
ronment.

375Getting Ready to Build Custom Components

16

■ You can embed ActionScript code directly inside the MXML content. ActionScript, the
programming language used for creating Flash content, is an object-oriented program-
ming language. If you are already familiar with, say, the Java programming language,
you should have little trouble transitioning to writing programs using ActionScript.
Because Flex Builder provides support for things like code auto-complete, refactoring,
and debugging support, you can quickly and easily construct ActionScript code.

A great deal of the time you spend developing custom components for Xcelsius involves
working with ActionScript code. Fortunately, much of it is tweaking rather than writing
code from scratch.

You now have an overview of what Flex Builder is like. The process of building custom com-
ponents involves a rather steep learning curve.

Getting Ready to Build Custom Components
Before you begin building custom components, you need to procure specific software and do
some initial setup. In addition to Xcelsius 2008, you need the Xcelsius 2008 Component
SDK and Flex Builder. As part of the installation process, you need to configure your envi-
ronment and map library files.

Software You Will Need for Constructing Custom Components
To build custom components, you need to have the following in place:

■ Xcelsius 2008 SP1 (or later).

■ Xcelsius 2008 Component SDK SP1 or later (available from
https://boc.sdn.sap.com/xcelsius/sdk). The SDK (software development kit) is not bun-
dled with Xcelsius and is a separate (but free) download.

When you download the SDK, you get two sets of files. One of them is a set of docu-
ments that includes technical guides, tutorials, and API documents you can peruse from
your web browser. The other is an installer application that installs the Add-On
Packager application on your system. This application allows you to finalize your cus-
tom components for deployment. With the SDK, you also get a special set of files you
need for building custom components. Assuming that Xcelsius 2008 is installed on the
C drive in the default directory, you can find these files in the following path:
C:\Program Files\Business Objects\Xcelsius\SDK\bin

■ Flex Builder. Flex Builder is a commercial product of Adobe Systems, Incorporated. If
you do not yet have Flex Builder, you can download a trial version from
www.adobe.com.

https://boc.sdn.sap.com/xcelsius/sdk
www.adobe.com

376 Chapter 16 Creating Custom Components for Fun and Profit

16
Flex Builder is available in two different forms: as a full featured standalone application
and as a plug-in that you can load onto the Eclipse development environment.

Flex Builder makes use of the features built into Eclipse. The standalone version of Flex
Builder has Eclipse built into it. If you are already running Eclipse, there is no need to
download the standalone version of Flex Builder. Just get the Flex Builder plug-in and
install it in your Eclipse environment.

N O T E
The version of Flex Builder that is required for building custom components with Xcelsius
2008 SP1 is Flex Builder SDK 2.0.1 Hotfix 3. This is because Xcelsius 2008 is built using
Flex Builder 2 SDK. If you want to use a later Flex Builder version, such as Flex Builder 3,
you can, but you will have to tell Flex Builder to compile projects using the Flex Builder
2.0.1 SDK Hotfix 3 SDK.

T I P
The Flex Builder environment is a rather heavyweight piece of software. Be sure you
have a lot of RAM (think in terms of multiple gigabytes), disk space, and processor speed
at your disposal. In addition, having a large screen will help you work more productively.
A workstation class computer should fit the bill.

Initial Software Setup
Before you can go to work on building components, you need to install the Xcelsius SDK
and then install and configure Flex Builder.

Installing the Xcelsius SDK

Download the Xcelsius SDK (from https://boc.sdn.sap.com/xcelsius/sdk) and run the
installer named Xcelsius_ComponentSDK_Installer_XXXX.exe (where the XXXX identifies the ver-
sion of the SDK, such as 2.0.640). This installer does two things:

■ It installs the Add-On Packager application on your system.

■ It creates an SDK directory in the Xcelsius application path and inserts a bunch of files
there. Typically, these files are installed in C:\Program Files\Business Objects\Xcelsius\
SDK. For the moment, make note of the location.

N O T E
The instructions here are specific to SP1 of Xcelsius 2008. Be sure that Xcelsius and
Microsoft .NET Framework 2.0 are already installed before you install the Xcelsius SDK.

https://boc.sdn.sap.com/xcelsius/sdk

377Getting Ready to Build Custom Components

16

Installing and Setting Up Flex Builder

Before you can develop custom Xcelsius components for Xcelsius 2008 SP1, you need to
download and install Flex Builder SDK 2.0.1 Hotfix 3. At some point down the road, you
will be able to make full use of later versions of Flex Builder to create custom Xcelsius com-
ponents. Whether you use the standalone version of Flex Builder or the Flex Builder plug-in
and install it on top of Eclipse is entirely up to you.

T I P
If you don’t spend 75% of your professional life developing code and have no other rea-
son to work with Eclipse, you will probably find it easier to install the standalone version
of Flex Builder than to use the plug-in.

Place a copy of the file xcelsiusframework.swc in the library path of Flex Builder. Normally,
the xcelsiusframework.swc file can be found here:

C:\Program Files\Business Objects\Xcelsius\SDK\bin

The library path of Flex Builder 2 is generally found here:

C:\Program Files\Adobe\Flex Builder 2\Flex SDK 2\frameworks\libs

For Flex Builder 3, this is the path:

C:\Program Files\Adobe\Flex Builder 3\sdks\2.0.1\frameworks\libs

N O T E
There is an optional step of installing Apache Ant for Flex Builder. For further informa-
tion, refer to the Xcelsius2008_componentsdk_install_guide.pdf file supplied with
the Xcelsius SDK.

When you launch Flex Builder for the first time, you are prompted to select a directory
where you want to place your Flex Builder project files. This directory is referred to as the
Workspace.

T I P
Don’t confuse the Flex Builder Workspace with the Xcelsius workspace discussed in ear-
lier chapters. Flex Builder also uses the terms components and canvas, but they are not
exactly the same as the ones used in Xcelsius.

The examples in this chapter are all based on using C:\FlexBuilderFiles as the directory for
the Flex Builder workspace. You can map your Flex Builder workspace to a different direc-
tory by selecting Switch Workspace from the Flex Builder application menu.

378 Chapter 16 Creating Custom Components for Fun and Profit

16

Building Custom Components
The process of building custom components is multifaceted. Let’s begin by a simple exam-
ple. This “Hello, World”–style example involves a rudimentary horizontal slider. It’s not a
sophisticated example, but it shows the elements you need to address when building compo-
nents and how to go about building components. It should give you a fair idea of how things
fit together.

This example isn’t terribly complex, but it’s also not plain vanilla. There are two more
things you’ll do with this example:

■ Enhance some of the features of the rudimentary dashboard

■ Think about other kinds of components you can construct and deploy

Constructing a Basic Slider Component
Xcelsius provides a set of sample files for building custom components that are automati-
cally installed when the Add-On Packager is installed. You should carefully examine these
files, which are located in the following directory:

C:\Program Files\Business Objects\Xcelsius\SDK\samples

At first glance, it may not be evident how the various pieces of code fit together. Very
briefly, there are two sides to constructing a custom component:

■ There is the construction of the component itself. In effect, you need to create the
source of what is needed to make a component.

■ The flip side is the property sheet, a mapping that glues together the elements of a cus-
tom component to the Xcelsius component’s property sheet so that values can be
defined.

After you define these two sides, they can be fused or packaged together to create an instal-
lable component.

The following sections walk through the task of building a custom component and outline
some tips.

Building a Component’s Source
You need to begin by creating a Flex Builder project. You can give the project a name like
MyComponentSource. In Flex Builder, select File, New, Flex Builder Project. You are prompted
to select Basic, Cold Fusion Flash Remoting Serving, or Flex Data Services. Choose Basic
and click the Next button.

For the project name, enter MyComponentSource. Flex Builder automatically sets the location
where the project is saved. If you have been adhering to the settings in this chapter, this
location is C:\FlexBuilderFiles\MyComponentSource. (You are free to change it to a different
location, but this chapter assumes that you are following the settings listed in this chapter.)
Click the Next button.

379Building Custom Components

16

Before finishing the Flex Builder Create Project task, you need to hook in the xcelsius-
framework.swc file. Hopefully, you already copied this file to the libs directory, as outlined in
the setup steps earlier in the chapter. In Flex Builder 3, files placed in the frameworks\libs
folder are automatically available for use.

If you are using Flex Builder 2, you have to explicitly associate the xcelsiusframework.swc file
with the project’s library path. Click the Library Path tab, and you see a set of entries in the
Build Path Libraries box (see Figure 16.2). Check whether the file xcelsiusframework.swc is
present. If it is not present, you need to add it by clicking the Add SWC button and navigat-
ing to where the xcelsiusframework.swc file is located.

T I P
You can type ${FRAMEWORKS}\libs\xcelsiusframework.swc instead of manually
navigating to locate the file. Flex Builder 3 automatically knows to include files in the
libs directory as part of the library path.

After the xcelsiusframework.swc file is added to your project’s library path, click the Finish
button to complete the project creation.

Next, you need to adjust the project properties (see Figure 16.3). With your source project
selected in the Flex Compiler navigation pane, open the project properties from the Flex
Builder File menu (alternatively, you can press the Alt+Enter or right-click with the mouse)

Figure 16.2
The xcelsius-
framework.swc file
needs to be included
in your project’s
library path.

380 Chapter 16 Creating Custom Components for Fun and Profit

16

to open a properties window. On the left panel, select Flex Complier. In the Additional
Compiler Arguments field, change -locale en_US to:

-locale en_US -keep-as3-metadata+=Inspectable,Style,CxInspectableList

Figure 16.3
Setting compiler
options.

This setting tells the Flex Builder compiler that it is okay to access specified properties and
styles in the custom component and make them available in the Xcelsius Properties panel.

With this setup in place, you are ready to do some coding. At this point, you are looking at
an empty Flex Builder project with the following MXML code:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”absolute”>
</mx:Application>

To this barebones source component you need to add some ActionScript code for a custom
component. In this example, the component is a basic horizontal slider. Indeed, the name of
the ActionScript class you will create is going to be BasicHorizontalSlider.

An interesting issue looms here. Just as you might elect to use the name
BasicHorizontalSlider, so might an army of other independent developers. What would
happen if a dashboard practitioner were to load your slider component as well as a similarly
named component from another independent developer? There would be a naming colli-
sion.

To avoid such difficulties, you can “package” your ActionScript class by using a unique class-
path. The practice that professional programmers use for naming a classpath is to base it on
the company’s or organization’s network domain and tack on to the path appropriate subcat-
egories. For example, for Business Objects, whose domain is businessobjects.com, a suitable
classpath for code used in the Xcelsius SDK sample files might look like this:

com.businessobjects.xcelsius.sdk.samples

381Building Custom Components

16

Go ahead and create an ActionScript class called BasicHorizontalSlider with the appropriate
classpath. In Flex Builder, select File, New, ActionScript Class. Supply the appropriate pack-
age name and the name of the class and then click the Finish button (see Figure 16.4).

N O T E
By convention, classpaths in ActionScript (and in Java) are generally lowercase.

Figure 16.4
Package your files
based on your com-
pany’s network
domain and logical
organization.

A new editor window appears, and it contains the following code:

package com.businessobjects.xcelsius.sdk.samples
{

public class BasicHorizontalSlider
{
}

}

At this point, the code is really a placeholder. The first thing you want to do is incorporate
code already developed and built into Flex Builder. There is a built-in class called HSlider
that has features you might want to use in your custom component. There is no need to
reinvent the wheel.

To incorporate the code, you can declare the class you just created, BasicHorizontalSlider,
to be a subclass of HSlider so that it inherits all the HSlider’s properties and behavior.
(BasicHorizontalSlider extends the HSlider class.) In your subclass, you can add additional
properties and define new kinds of behaviors. You can also override the properties and
behaviors inherited from the superclass (in this example, HSlider).

382 Chapter 16 Creating Custom Components for Fun and Profit

16

HSlider lives in a package called mx.controls. So you have to import a reference to where the
HSlider class is defined. An import statement does not physically import a file; rather, it just
tells the ActionScript compiler that when it sees HSlider, it should automatically associate it
with the HSlider that resides in the mx.controls package.

To reflect all this, your ActionScript code should look something like the following:

package com.businessobjects.xcelsius.sdk.samples
{

import mx.controls.HSlider;

public class BasicHorizontalSlider extends HSlider
{
}

}

T I P
An interesting thing happens as you hand type your ActionScript code in the Flex Builder
editor window: The code auto-completed. If needed, you can also kick-start the auto-
complete process by pressing Ctrl+spacebar.

You need to add the following import statements directly underneath the import statement
for the HSlider:

import mx.controls.Label;
import mx.styles.CSSStyleDeclaration;
import mx.styles.StyleManager;

import flash.text.TextFieldAutoSize;
import flash.text.TextFormatAlign;

When you create an ActionScript class, you can endow it with properties and have it run
through an initialization process every time you create a new instance of the class. To under-
stand what is meant by instance, think of your custom components as classes and every cus-
tom component that is dropped onto the Xcelsius canvas as an instance. The properties
could include the following:

//----------------------------------
// Properties
//----------------------------------

private var _title:Label;
private var _titlesChanged:Boolean = true;
private var _titleText:String = “Title”;

private var _showTitle:Boolean = true;

When you construct instances of a class, you use a constructor. Constructors tell a class to
perform certain tasks before creating instances of that class. In many cases, it may not be
necessary to include a constructor if you don’t need to do any special initialization each time
an instance of a class is created. But what if the class you are inheriting from performs some
specialized task for initialization? In that case, it would be prudent to perform the same ini-

383Building Custom Components

16

tialization task for the inherited subclass. Because BasicHorizontalSlider inherits from
HSlider, it would be nice for each instance of BasicHorizontalSlider to say “Yeah, I’ll do
whatever my superclass does when its instances are initialized. You know what? Don’t even
bother telling me the gory programming details. I’ll just do it.”

You accomplish all this by embedding a super() construct within the constructor:

//----------------------------------
// Constructor
//----------------------------------

public function BasicHorizontalSlider()
{

super();
}

The next step is to make properties of the custom component available within the Xcelsius
Properties panel. To do this, you need to do the following:

■ Provide getter and/or setter methods. This allows the custom component to program-
matically respond to some sort of request.

■ Explicitly identify that the feature or attribute is Inspectable.

■ Control when the inspectable features or attributes will be shown in the property sheet.

Immediately following the import statements, but before the class definition for the
BasicHorizontalSlider, you need to enter the following line:

[CxInspectableList (“title”, “showTitle”)]

This lets the property sheet know that there will be entries for the slider’s title and
showTitle attributes. If you don’t include this line, every setting is exposed. The meaning of
title is obvious. showTitle lets you control whether a title should appear on the custom
slider component.

The next step is to create setter and getter methods so that the component knows how to
respond to requests, and the methods expose these attributes. After the constructor, add
code for this set of methods:

//----------------------------------
// titleText Property
//----------------------------------

[Inspectable(defaultValue=”Title”, type=”String”)]
public function get title():String
{

return _titleText;
}

public function set title(value:String):void
{

if (value == null) value = “”;
if (_titleText != value)
{

_titlesChanged = true;

384 Chapter 16 Creating Custom Components for Fun and Profit

16

_titleText = value;
invalidateProperties();

}
}

The code for showTitle is fairly equivalent to the code for title.

When a custom component is installed in Xcelsius, it becomes draggable onto the canvas.
When it is dragged onto the canvas, a new instance of the component (in this case, the cus-
tom slider) is created. Every time a new instance of the custom component installed in
Xcelsius is dragged onto the canvas, the createChildren function is called. The
super.createChildren function runs createChildren as it is defined in the superclass (in this
example, HSlider) and then does all these other things, as spelled out in the following code:

override protected function createChildren():void
{

super.createChildren();

// Allow the user to make this component very small.
this.minWidth = 0;
this.minHeight = 0;

//set snapInternal
this.snapInterval = 0.01;

// Title.
_title = new Label();
_title.setActualSize(152, 20);
_title.y = _title.y - 20;
_title.setStyle(“textAlign”, TextFormatAlign.LEFT);
_title.minWidth = 0;
_title.minHeight = 0;
_title.selectable = false;
_title.truncateToFit = true;
_title.percentWidth = 100;
this.addChild(_title);

}

When a property is changed on the component, invalidateProperties should be called. For
efficiency reasons, the changes are not handled as the property is changing but later, in
commitProperties, which is called by the Flex Builder framework to process the property
changes. These housekeeping tasks are handled by the following code:

override protected function commitProperties():void
{

super.commitProperties();

// Check if we need to update the title.
if (this._titlesChanged)
{

_title.text = _titleText;
_title.includeInLayout = true;
invalidateDisplayList(); // invalidate in case the titles

// require more or less room.
_titlesChanged = false;

385Building Custom Components

16

}

// Update title’s visibility
_title.visible = _showTitle;

}

override protected function updateDisplayList(unscaledWidth:Number,
➥unscaledHeight:Number):void
{

super.updateDisplayList(unscaledWidth, unscaledHeight);
// give the title Label more room based on the text width
_title.setActualSize(unscaledWidth, 20);

}

Connecting Your ActionScript and MXML Code
Now that you have created ActionScript code for the BasicHorizontalSlider, you need to
find a way to tie it into the Flex Builder MXML application. Replace the MXML code with
the following:

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml” layout=”absolute”

xmlns:ns=”com.businessobjects.xcelsius.sdk.samples.*”>
<ns:BasicHorizontalSlider width=”100%” height=”100%”/>
</mx:Application>

There are two significant changes here:

■ There’s a reference to the BasicHorizontalSlider calls, along with some initialization
information concerning width and height.

■ There’s a namespace reference to the com.businessobjects.xcelsius.sdk.samples
package.

Generating the SWF File for Your Custom Component
Before you generate the file that you will use for the custom component, you need to tell
the Flex Builder compiler that it needs to retain certain information about the component.
At the root level of your project, create a file that has the name of your project immediately
followed with -config.xml. In this example, select File, New, File in Flex Builder. Set the file
name to MyComponentSource-config.xml. In this file, place the following content:

<?xml version=”1.0”?>
<flex-config xmlns=”http://www.adobe.com/2006/flex-config”>

<compiler>

<!-- Add the Xcelsius 2008 Component SDK framework
to the Adobe Flex classpath.

-->
<library-path append=”true”>

<path-element>
${flexlib}\libs\xcelsiusframework.swc

</path-element>
</library-path>

386 Chapter 16 Creating Custom Components for Fun and Profit

16

<!-- Keep additional metadata needed for use with
the Xcelsius 2008 Default Property Sheet.

-->
<keep-as3-metadata>

<name>Inspectable</name>
<name>Style</name>
<name>CxInspectableList</name>

</keep-as3-metadata>
</compiler>

</flex-config>

This tells the Flex command-line compiler to retain the metadata for the tags in your code
that relate to Inspectable, Style, and CxInspectableList.

It is time to generate the SWF file that will be packaged in your custom component. This
entails invoking the Flex SDK directly from the command line. This is called mxmlc.exe and
is bundled with Flex Builder. The file might be located in C:\Program Files\Adobe\Flex
Builder 2\Flex SDK 2\bin.

From a command prompt (in Windows XP, run the cmd.exe file), you set the directory to the
project:

cd C:\FlexBuilderFiles\MyComponentSource

Then you compile the file:

“C:\Program Files\Adobe\Flex Builder 2\Flex SDK 2\bin\mxmlc.exe”
➥MyComponentSource.mxml -output BasicHorizontalSlider.swf

N O T E
If you have spaces in your path or file name, you must enclose the full path and file
name in quotes.

The Flex compiler generates a file called BasicHorizontalSlider.swf, which is placed in the
root directory of your Flex Builder project (in this example, the directory would be
C:\FlexBuilderFiles\MyComponentSource).

The Relationship Between a Custom Component
and a Property Sheet

One of the guiding principles behind the architectural design of the Xcelsius SDK is modu-
larity. In particular, the designer of a custom component shouldn’t have to know much of
anything about Xcelsius. In an ideal world, you would want the custom component to say
“When a custom component is dragged onto the Xcelsius canvas, I only want certain fea-
tures to be Inspectable.” Likewise, the Properties panel in the Xcelsius workspace doesn’t
really care about the inner workings of your custom components. All it wants to know is
what attributes and values of the custom components are readable and changeable.

387Packaging and Deploying Your Custom Components

16

This separation of responsibilities, much like the layered approach design pattern strategy
outlined earlier in the book, is very liberating. It allows you to build custom components
without having to worry about how everything works inside Xcelsius. The only things you
need to concern yourself with are the features you want to expose to Xcelsius.

With a custom component making itself accessible, you need to address how to tap into
those features within Xcelsius 2008. This is the role of the property sheet.

In an ideal world, it would be nice to have Xcelsius inspect a custom component and auto-
matically assemble the various attributes within the Properties panel of the Xcelsius work-
space. The good news is that it can do this. The Xcelsius SDK has a ready-made file called
PropertyInspector.swf, located in the following directory:

C:\Program Files\Business Objects\Xcelsius\SDK\bin

All you need to do is reference this file when packaging your component, and you’re done.
It’s simple.

N O T E
Of course, if you want more control and capabilities within the Properties panel for your
custom component, you need to create a custom property sheet, and that does entail
coding.

Packaging and Deploying Your Custom
Components

Packaging and deploying custom components involves the following steps:

1. Create and build a packaging project file, using the Xcelsius Add-On Packager applica-
tion.

2. Export the packaged component to an .xlx file and distribute the file to users running
Xcelsius 2008.

3. From the Xcelsius 2008 application, access the Add-On Manager from the File menu,
locate the .xlx file, and install it.

4. Close and restart Xcelsius 2008.

Packaging Your Custom Component
As indicated by its name, the Add-On Packager allows you to package add-on components
for Xcelsius 2008. Basically, you define a packaging project, including information about
your components, and build a loadable add-on for use with Xcelsius, which gets saved as a
.xlx file. A nice feature of the Add-On Packager is that it enables you to bundle multiple
custom components in a single build.

388 Chapter 16 Creating Custom Components for Fun and Profit

16

The Xcelsius Add-On Packager application (see Figure 16.5) contains a number of tabs:

■ Details: This is the basic tab that appears when a component is selected in the Xcelsius
Add-On Manager.

■ Visual Components: This tab tells the packager where the custom component and
property sheets are located. You can also specify the version number of the component
and upload bitmap icons for your custom components.

■ Connections: This tab is similar to the Visual Components tab except that the compo-
nents in this section target the Xcelsius 2008 Data Manager.

■ Functions: This tab allows you to identify the function name, SWF files, and version
numbers for simulated Excel functions that are not currently supported in Xcelsius
2008.

■ Build: Building is a very simple process: You save an .xlx file, and you’re done with
packaging.

The following sections quickly step though the process of packaging a custom component.
To help keep things concrete, we’ll principally stay with the BasicHorizontalSlider example.

Details Tab View

The information in the Details tab includes the name, publisher, website, publish date, ver-
sion, description, and license agreement (see Figure 16.5). All the fields except License
Agreement (EULA) are fill-ins. The license agreement is a text file that you can create sepa-
rately and incorporate into your component.

Figure 16.5
Add-On Packager.

Tab Views for Assembling Specific Information About Your Components

The Xcelsius 2008 Component SDK supports three different kinds of custom components.
Depending on the kind of component, you select one of the following three tab views:

389Packaging and Deploying Your Custom Components

16

■ Visual Components

■ Connections

■ Functions

Each tab view lists the collections of components for that type (see Figure 16.6) and displays
relevant information about each component. In each view, you can add additional compo-
nents and edit or remove components.

Figure 16.6
Tab view showing
existing components
with ability to add,
remove, or edit com-
ponents.

When you click the Add Component button or the edit link, you are prompted to supply
information about the component (see Figure 16.7).

Figure 16.7
When adding or edit-
ing a component, you
are prompted to sup-
ply specific informa-
tion about the
component.

390 Chapter 16 Creating Custom Components for Fun and Profit

16

The class name needs to be the fully qualified name with the classpath. In this example, it
would look like this:

com.businessobjects.xcelsius.sdk.samples.BasicHorizontalSlider

The location of the component’s SWF file needs to be identified. In this example it is as fol-
lows:

C:\FlexBuilderFiles\MyComponentSource\BasicHorizontalSlider.swf

C A U T I O N
I can’t overemphasize the importance of getting all the parameters correct. People con-
stantly trip over fields like this one; they often don’t enter the right class name, have
missing periods, or have just part of the fully qualified name. Getting such information
wrong leads to unexpected behavior in Xcelsius 2008.

You need to provide the location of the property sheet file. If you do not need to use a cus-
tom property sheet, you can use the PropertyInspector.swf file, which has the following full
path and file name:

C:\Program Files\Business Objects\Xcelsius\SDK\bin\PropertyInspector.swf

In the Xcelsius workspace, large and small icons for components that you can drag onto the
canvas are displayed in both the Components panel and the Object Browser. Similarly, icons
for the various kinds of connections in the Data Manager are displayed as you add connec-
tions.

You can create your own icons by using bitmap images and incorporate them into your cus-
tom visual and connection components. Your large icons should be 48-by-48 pixels for
visual components and 32-by-32 pixels for connection components. Small icons, regardless
of whether they are visual or connection components, should be 16-by-16 pixels. If you
don’t supply any image files, generic icons are used.

N O T E
Be sure your image files use 24-bit color depth.

The information needed to build a connection component matches the structure shown in
Figures 16.6 and 16.7.

Custom function components do not need a property sheet, nor do they need image icons,
as they do not appear in the Components panel or Object Browser (see Figure 16.8). In this
regard, custom function components are actually a little simpler than components built
using custom property sheets.

391Packaging and Deploying Your Custom Components

16

Component Project and Build Files

The Add-On Packager conveniently allows you to save/load all your settings so that it is not
necessary to re-enter all the information used to generate the custom components. Package
project files have the .xlp extension.

The Add-On Packager generates a loadable custom component that has an .xlx extension.
To generate the file, you follow these steps:

1. Select the Build tab in the Add-On Packager.

2. Click the Build Package button. You are prompted to give the generated file a name and
specify a drive location. For this example, save the generated file as BasicSlider.xlx. If
the build is successful, a notification is displayed in the Build tab.

3. When the file is generated, load it into Xcelsius 2008.

Figure 16.8
Function components
require comparatively
less information than
their visual and con-
nection component
counterparts.

N O T E
You can bundle more than one custom component in an XLX file.

Loading, Testing, and Enhancing Components
Now it is time to start getting some gratification for all your hard work. The following sec-
tions walk you through the steps of loading and removing components, giving your compo-
nents a test run, and enhancing your components.

Loading and Testing Components

Imagine that you are an Xcelsius dashboard practitioner who just got a new custom compo-
nent and is about to install it in Xcelsius 2008. For this example, you’ll use the
BasicSlider.xlx file.

Launch Xcelsius 2008 and select File, Add-On Manager. The Xcelsius Add-On Manager
window appears (see Figure 16.9).

392 Chapter 16 Creating Custom Components for Fun and Profit

16

The panel on the left side of the Add-On Manager window displays a list of component sets
that are loaded in the Xcelsius workspace. When you click one of these sets, the information
from the Details tab becomes visible. If a license agreement was packaged with the build,
there will be a link you can click.

To remove a loaded set of custom components, you select the set and click the Remove
Add-On button. If you want to remove more than one add-on, you just repeat the process.
When you’re done, you click the Close button.

Figure 16.9
Installing custom com-
ponents with the
Xcelsius Add-On
Manager.

N O T E
If you removed or installed any add-on components, Xcelsius will force you to quit the
application, as it is forced to register the component changes.

As you remove or install each component, you are forced to quit and restart Xcelsius so the
program can register the component changes. This is a little cumbersome. But because it’s
essentially a one time process, it’s not worth fretting over.

T I P
To save time and avoid needless quitting and restarting, you can remove a set of add-ons
and then install your add-on. You can also use the command-line version of the Add-On
Manager. This is especially helpful when you’re testing a component.

393Packaging and Deploying Your Custom Components

16

The Xcelsius 2008 Component SDK provides a fair amount of documentation related to
debugging and tracing. If you are the program developer type, you should read it.

N O T E
For Flex Builder 2, debug SWFs are separate from the production SWF. For Flex Builder 3,
the production SWF contains debug information as well.

Also, when testing, you can use the Flash debug player to see runtime ActionScript
errors, if any.

Another kind of testing can and should be done, and it doesn’t require any programming.
Simply take your custom component and put it through its paces:

■ Test to see that the component initializes to correct values when placed on the canvas in
Designer mode and then actually run it in Preview mode.

■ Don’t just settle for testing in Preview mode; export the dashboard with the custom
component as an SWF and run it outside Xcelsius.

■ When running the dashboard, try to see if you (or really, dashboard users) can break it
by putting in invalid or inappropriate values.

■ Drag a custom component onto the canvas. Bind the properties or attributes to some
spreadsheet cells. Copy and paste the components so that you have effectively cloned a
component on the dashboard. When the dashboard is run, does it behave as expected?
Does anything else go awry?

■ Test the interactions of your component with Xcelsius components on the canvas and in
Preview mode.

If you are going to distribute dashboards with custom components, you need to ensure that
your components have been tested.

Enhancing Your Components

One of the things you’ll find when you create custom components is that the process of
building them is cyclical: You design, build, test, repeat. You find out what is wrong or
determine how you want to improve something, and then you go back and tweak your
design.

If you followed along with the basic slider example earlier in this chapter, you created a
slider that works, but it isn’t very useful. You can move the slider, but the slider value can’t
be mapped to an underlying spreadsheet cell.

In the code, the BasicHorizontalSlider class is declared as a subclass of HSlider, a standard
component that is built into Flex Builder. It needs to support accessing values. You only

394 Chapter 16 Creating Custom Components for Fun and Profit

16

need to figure out how to unlock the desired features of the component so they will show up
in the Xcelsius Properties panel. To make it accessible, here are the steps you follow:

1. Change the line of code in the BasicHorizontalSlider.as file from this:
[CxInspectableList (“title”, “showTitle”)]

to this:
[CxInspectableList (“title”, “showTitle”, “value”)]

Then save the file.

2. Using the Flex Builder SDK command-line compiler, regenerate the SWF component:
“C:\Program Files\Adobe\Flex Builder 2\Flex SDK 2\bin\mxmlc.exe”
➥MyComponentSource.mxml -output BasicHorizontalSlider.swf

3. Rebuild your XLX file, using the Add-On Packager.

4. Remove the old component and install the new one, using the Add-On Manager.

When you follow these steps, you may notice that the title of the slider can be mapped to a
spreadsheet cell. You can even map it to the slider value. Therefore, the title that appears
with the slider is dynamic.

Notice that changing the slider value updates the title, but only after you release the mouse
button. The slider is not as interactive as you might like. You can quickly remedy this. In
the same ActionScript file you used earlier, add the line that appears in boldface in the code
snippet shown here:

//set snapInternal
this.snapInterval = 0.01;
this.liveDragging = true;

Now repeat steps 2 through 4. This time, you will find that the title that was mapped to the
slider value changes continually as you move the slider marker.

Where to Go from Here
I would be remiss if I didn’t touch on two topics of importance in this chapter. One of them
relates to additional features of the SDK, some of which are new since SP1 of Xcelsius 2008
was introduced. The other is a brief list of potential landmines to avoid when constructing
custom components.

Additional Features in the SDK
There are four items worth mentioning here: custom property sheets, connection compo-
nents, function components, and visual components centered around Flex MXML.

Property Sheets

The property sheet portion permits fine-grained control in setting the Properties panel.
The documentation set comes with a set of tutorial files. Tutorial 4 deals exclusively with
custom property sheets. It is worth spending some time going through this.

395Where to Go from Here

16

Connection Components

Connection components are a new feature of the Xcelsius 2008 Component SDK. They are
designed to work through the Xcelsius Data Manager (see Chapter 15, “XML and Data
Connectivity”). To build a connection component, you absolutely must use a custom prop-
erty sheet, which is why I suggested that you spend some time going through Tutorial 4.

Function Components

Another class of components that you can construct is called function components. Here’s the
deal: Out of the box, Xcelsius 2008 supports approximately 160 Excel functions. While you
are in Designer mode, building dashboards, Xcelsius 2008 is actually running Excel, and you
have full command of the Excel environment, which includes some 340 functions. When a
dashboard is exported into an SWF file, it runs a program that simulates your Excel spread-
sheet.

Xcelsius does a pretty good job of mimicking your spreadsheet’s behavior in Excel. But it
only really handles it for some 160 Excel functions. One day, Xcelsius may be able to sup-
port all of Excel’s functions, but that day is not here yet. So if there is a “must have” Excel
function that cannot wait until Business Objects makes it a standard part of Xcelsius, you can
write your own code to mimic the specific Excel function. The code that you write has to be
written in ActionScript.

One of the sample files provided with the Xcelsius 2008 Component SDK is an example of
how to construct such function components (illustrated using code examples based on
Excel’s TRIM and PROPER functions).

MXML-Based Components

When you use Flex Builder–based components, the traditional process has been to use the
top-level MXML to rope in ActionScript code, which basically winds up taking over the
show.

There’s nothing wrong with tapping into raw ActionScript, but doing so glosses over one of
the chief benefits of working with Flex Builder—the ability to design components visually
and then tweak the visual layout and behavior at the XML coding level or graphically.

New to the Xcelsius 2008 Component SDK is the ability to blend MXML and ActionScript.
The SDK comes with a sample MXML slider. Keep in mind that this technology is rapidly
evolving and morphing.

Avoiding Potential Landmines
In working with custom components, there are several things you need to keep in mind.
The technology is brand spanking new, so some of the wrinkles are being ironed out. Gaps
are being filled, and new features are being added.

396 Chapter 16 Creating Custom Components for Fun and Profit

16

Keep in mind the following as you develop components:

■ Add-on components do not work with the Local Scenario or Reset buttons. The Local
Scenario and Reset buttons work with regular components on a dashboard, but they
may not correctly save and restore the state of custom components.

■ When you create Flex Builder projects, be sure to utilize the correct Flex SDK version.
At the time of this writing, it is the Flex Builder 2.0.1 SDK Hotfix 3. It won’t be long
before everything moves to a Flex 3 SDK or later. The expectation is that even when it
does, there could be some changes to the setup and configuration involved in building
custom components, but the overall techniques outlined here should still be valid.

■ If you are trying to create a component based on mixing ActionScript 2 and
ActionScript 3, forget about it. Everything you do related to building custom compo-
nents is ActionScript 3 based.

■ When you build custom Xcelsius components, be sure to create unique classpaths to
avoid naming collisions if Xcelsius users install similarly named classes from compo-
nents created by another developer.

If everyone who reads this chapter develops and posts a sample slider with a fully quali-
fied name like this:
com.businessobjects.xcelsius.sdk.samples.BasicHorizontalSlider

a lot of potential name collisions could occur. The moment two XLX files are installed
on an Xcelsius user’s system, it’s going to wreak havoc.

Do yourself a favor and follow the Java naming convention for classpaths: premise it on
your own network domain instead of the one listed in the examples. Or take it a step
further by trying to create unique class names.

■ Avoid the having two or more components with the same class name in an add-on pack-
age.

■ The Add-On Packager creates XLP and XLX files. Do not copy an XLP file, change its
name, open the copied file, possibly tweak it, generate a new XLX, and install that new
XLX when you already have the original XLX file installed in Xcelsius.

■ If you are building a connection component, be sure to create the custom property
sheet. It will not suffice to use the generic PropertyInspector.swf file normally found
here:
C:\Program Files\Business Objects\Xcelsius\SDK\bin

■ At present, the Xcelsius 2008 Component SDK (SP1) is currently in English only.

These reminders may help keep you out of hot water. Hopefully, by the time you read this,
many of them will be obsolete.

397Closing Thoughts

16

Closing Thoughts
One of the basic goals of this book is to empower you to do more with Xcelsius 2008. You
can do more if you learn about the wealth of components and features of the product. You
can do more by applying best practices. You can do more by getting a real handle on the
data that makes its way into your dashboards.

Ultimately, there is a limit to what you can do if the building blocks of your dashboard
(namely, the components) are taken from a fixed selection of components. This chapter
changes all of that by showing you how to build components to your specification from the
ground up.

This page intentionally left blank

Appendices

A Supported Spreadsheet Functions in Xcelsius 2008 401

B Xcelsius Product Family Comparison 415

C Xcelsius Best Practice Techniques and Hip Pocket Tips 425

IVPART

This page intentionally left blank

AAPPENDIX

In this appendix

Supported Spreadsheet Functions
in Xcelsius 2008

Supported Spreadsheet Functions in Xcelsius 2008 402

Logical Values and Spreadsheet Operators in Xcelsius 2008 411

402 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Xcelsius 2008 supports a wide variety of spreadsheet functions. This appendix provides a
comprehensive list of supported functions, their arguments, and a brief description.

Supported Spreadsheet Functions in Xcelsius
2008

The functions in this section are organized into the following distinct groups for easy refer-
ence: date and time functions (Table A.1), financial functions (Table A.2), logical functions
(Table A.3), math functions (Table A.4), reference functions (Table A.5), statistical functions
(Table A.6), and text-related functions (Table A.7). This section also provides a brief descrip-
tion of the various operators used in spreadsheet formulas.

The use of square brackets in a spreadsheet function denotes optional arguments. For
instance, the following example:

SUMIF(range, criteria[, sum_range])

is the same as both of the following:

SUMIF(range, criteria)
SUMIF(range, criteria, sum_range)

Table A.1 Date and Time Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

DATE(year, month, day) Returns the sequential Excel date/time serial number
that represents a particular date.

DATEVALUE(date_text) Converts a date text form to an Excel date/time serial
number.

DAVERAGE(database, field, criteria) Returns the average of selected list or database entries
based on specified criteria.

DAY(serial_number) Converts an Excel date/time serial number to the day
of a month.

DAYS360(start_date, end_date, method) Calculates the number of days between two dates,
using a specified 30-day month/360-day year method.

EDATE(start_date, months) Returns the Excel date/time serial number of the date
that is the indicated number of months before or after
the start_date.

EOMONTH(start_date, months) Returns the Excel date/time serial number of the last
day of the month before or after a specified number of
months from start_date.

HOUR(serial_number) Converts an Excel date/time serial number to an hour.

MINUTE(serial_number) Converts an Excel date/time serial number to a
minute.

403Supported Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

MONTH(serial_number) Converts an Excel date/time serial number to a month
number.

NETWORKDAYS(start_date, end_date, Returns the number of whole working days between
holidays) two dates, excluding specified holidays.

NOW() Returns the Excel date/time serial number of the cur-
rent date and time. Volatile.

SECOND(serial_number) Converts an Excel date/time serial number to a
second.

TIME(hour, minute, second) Returns the decimal portion of an Excel date/time
serial number for a particular time.

TIMEVALUE(time_text) Converts the time in an acceptable form of text
enclosed in quotation marks to the decimal portion of
an Excel date/time serial number.

TODAY() Returns the Excel date/time serial number of today’s
date. Volatile.

WEEKDAY(serial_number, return_type) Converts an Excel date/time serial number to the
number of the day of the week, based on the counting
system return_type.

WEEKNUM(serial_num, return_type) Returns the week number in the year. The first week
starts January 1; the second week starts the following
Sunday (return_type = 1) or Monday (return_type
= 2).

WORKDAY(start_date, days, holidays) Returns the Excel date/time serial number of the date
before or after a specified number of workdays,
excluding holidays.

YEAR(serial_number) Converts an Excel date/time serial number to a year.

YEARFRAC(start_date, end_date, basis) Returns the difference between start_date and
end_date, expressed as a number of years, including
the decimal fraction of a year.

Table A.2 Financial Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

DB(cost, salvage, life, period, month) Returns the depreciation of an asset for a specified
period, using the fixed declining balance method.

DDB(cost, salvage, life, period, factor) Returns the depreciation of an asset for a specified
period, using the double-declining balance method
or some other method that is specified.

continues

404 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Table A.2 Continued

Spreadsheet Function Description

FV(rate, nper, pmt, pv, type) Returns the future value of an investment.

IPMT(rate, per, nper, pv, fv, type) Returns the amount of the interest element in a
payment for an investment for a given period.

IRR(values, guess) Returns the internal rate of return for a series of
cash flows.

MIRR(values, finance_rate, reinvest_rate) Returns the modified internal rate of return, based
on different finance and reinvestment rates for
negative and positive cash flows.

NPER(rate, pmt, pv, fv, type) Returns the number of periods for an investment.

NPV(rate, value1, value2, ...) Returns the net present value of an investment,
based on a series of periodic cash flows and a dis-
count rate, where the first cash flow is received at
the end of the first period.

PMT(rate, nper, pv, fv, type) Returns the periodic payment for an annuity.

PPMT(rate, per, nper, pv, fv, type) Returns the amount of principal element in a pay-
ment for an investment for a given period.

PV(rate, nper, pmt, fv, type) Returns the present value of an investment.

RATE(nper, pmt, pv, fv, type, guess) Returns the interest rate per period of an annuity.

SLN(cost, salvage, life) Returns the straight-line depreciation of an asset
for one period.

SYD(cost, salvage, life, per) Returns the sum of years’ digits depreciation of an
asset for a specified period.

VDB(cost, salvage, life, start_period, Returns the depreciation of an asset for a specified
end_period, factor, no_switch) or partial period, using a variable declining balance

method.

Table A.3 Logic Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

AND(logical1, logical2, ...) Returns TRUE if all its arguments are TRUE.

IF(logical_test, value_if_true, Returns logical_test if value_if_true evaluates to TRUE.
value_if_false) If logical_test evaluates to FALSE, IF returns
IF(logical_test, value_if_true) value_if_false, and if value_if_false is not supplied, it

simply returns FALSE.

ISBLANK(value) Returns TRUE if value is blank.

ISERR(value) Returns TRUE if evaluating value returns an error other
than the #N/A error.

405Supported Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

ISERROR(value) Returns TRUE if evaluating value returns any kind of error
including #N/A, #VALUE!, #REF!, #DIV/0!, #NUM!, #NAME?, or
#NULL!.

ISEVEN(value) Returns TRUE if value is a whole number divisible by 2 hav-
ing no remainders.

ISLOGICAL(value) Returns TRUE if value is a TRUE or FALSE value.

ISNA(value) Returns TRUE if value is the #N/A error value.

ISNONTEXT(value) Returns TRUE if value is any item that is not text. ISNONTEXT
returns TRUE when a cell is blank, but if a cell equates to an
empty string, it returns FALSE.

ISODD(value) Returns FALSE if value is a whole number divisible by 2
having no remainders.

ISNUMBER(value) Returns TRUE if value is a number.

ISTEXT(value) Returns TRUE if the value is in the form of text.

NOT(logical) Reverses the logic of the argument.

OR(logical1, logical2, ...) Returns TRUE if any argument is TRUE.

Table A.4 Math Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

ABS(number) Returns the absolute value of a number.

ACOS(number) Returns the arccosine of a number, in radians.

ACOSH(number) Returns the inverse hyperbolic cosine of a number.

ASIN(number) Returns the arcsine of a number, in radians.

ASINH(number) Returns the inverse hyperbolic sine of a number.

ATAN(number) Returns the arctangent of a number, in radians.

ATAN2(x_num, y_num) Returns the arctangent from X and Y coordinates, in
radians.

ATANH(number) Returns the inverse hyperbolic tangent of a number.

CEILING(number, significance) Rounds a number away from zero, to the nearest
multiple of significance.

COS(number) Returns the cosine of a given angle, given in radians.

COSH(number) Returns the hyperbolic cosine of a number.

DEGREES(angle) Converts radians to degrees.

continues

406 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Table A.4 Continued

Spreadsheet Function Description

DOLLAR(number, decimals) Converts a number to text, using currency format.

DPRODUCT(database, field, criteria) Multiplies the values in a particular field of records that
match the specified criteria in a database.

EVEN(number) Rounds a number away from zero, to the nearest even
integer.

EXP(number) Returns e (= 2.71828182845904) raised to the power of a
given number.

FIXED(number, decimals, no_commas) Formats a number as text, with a fixed number of
decimals.

FLOOR(number, significance) Rounds a number down toward zero, to the nearest mul-
tiple of significance.

FORECAST(x, known_y’s, known_x’s) Calculates a predicted value of y for a given x value
based on known values for x and y.

INT(number) Rounds a number to the left on a number line. (Positive
rounds toward zero. Negative rounds away from zero.).

INTERCEPT(known_y’s, known_x’s) Calculates from given x and y values the point at which a
line will intersect the Y-axis.

LN(number) Returns the natural logarithm (base e =
2.71828182845904) of a number.

LOG(number, base) Returns the logarithm of a number to a specified base.

LOG10(number) Returns the base-10 logarithm of a number.

MOD(number, divisor) Returns the remainder from division, with the result
having the same sign as the divisor.

N(value) Returns a value converted to a number.

PI() Returns the number 3.14159265358979, the
mathematical constant pi, accurate to 15 digits.

POWER(number, power) Returns the result of a number raised to a power.

PRODUCT(number1, number2, ...) Multiplies together 1–30 numbers.

QUOTIENT(numerator, denominator) Returns the integer portion of a division.

RADIANS(angle) Converts degrees to radians.

ROUND(number, num_digits) Rounds a number to a specified number of digits to the
left (-) or right (+) of the decimal point. The midway
digit 5 is rounded away from zero.

407Supported Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

ROUNDDOWN(number, num_digits) Rounds a number down toward zero, to a specified
number of digits to the left (-) or right (+) of the decimal
point.

ROUNDUP(number, num_digits) Round a number up away from zero, to a specified num-
ber of digits to the left (-) or right (+) of the decimal
point.

SIGN(number) Returns 1 for positive numbers, 0 if the number is zero,
and -1 if the number is negative.

SIN(number) Returns the sine of a given angle, in radians.

SINH(number) Returns the hyperbolic sine of a given angle.

SQRT(number) Returns a positive square root.

TAN(number) Returns the tangent of a given angle, in radians.

TANH(number) Returns the hyperbolic tangent of a number.

TRUNC(number, num_digits) Truncates a number to an integer or to specified
precision by removing the fractional part of the number.
(Serves to round down toward zero.)

VALUE(text) Converts a text argument to a number.

Table A.5 Reference Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

CHOOSE(index_num, value1, value2, ...) Uses a specified index number to select an index
from up to 29 specified values.

DGET(database, field, criteria) Extracts from a specified database a single value that
matches specified criteria.

HLOOKUP(lookup_value, table_array, Looks in the top row of a table or array and returns
row_index_num, range_lookup) the value of the indicated cell.

Note that HLOOKUP uses only the initial values of
table_array. That is, HLOOKUP ignores changes to
the cells associated with table_array anytime after
loading.

INDEX(array, row_num, column_num) Alternative forms. The array form returns a value
INDEX(reference, row_num, column_num, or an array of values. The reference form returns a
area_num) reference. Volatile pre-Excel 97.

continues

408 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Table A.5 Continued

Spreadsheet Function Description

LOOKUP(lookup_value, lookup_vector, Alternative forms. The vector form looks up values
result_vector) in a one-row or one-column range and returns a
LOOKUP(lookup_value, array) value in a second one-row or one-column range.

The array form looks in the first row or column of
an array for the specified value and returns a value
from the same position in the last row or column of
the array.

MATCH(lookup_value, lookup_array, Returns the relative position of an item in an array
match_type) that matches a specified value in a specified order.

OFFSET(reference, rows, cols, Returns a reference to a range that is a specified
height, width) number of rows and columns from a cell or range

of cells. Volatile.

TYPE(value) Returns a numeric value that corresponds to the
data type of value. (1 if it is a number, 2 if it is text,
4 if it is a logical value, 16 if it is an error value, and
64 if it is an array.)

VLOOKUP(lookup_value, table_array, Locates a specified value in the leftmost column of a
col_index_num, range_lookup) specified table and returns the value in the same

row from a specified column in the table.
Note that VLOOKUP uses only the initial values of
table_array. That is, VLOOKUP ignores changes to
the cells associated with table_array anytime after
loading.

Table A.6 Statistical Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

AVEDEV(number1, number2, …) Returns the average of the absolute deviations of data
points from their mean.

AVERAGE(number1, number2, …) Returns the average (arithmetic mean) of up to 30
numeric arguments.

AVERAGEA(value1, value2, …) Returns the average (arithmetic mean) of its
arguments and includes evaluation of text and logical
arguments.

BETADIST(x, alpha, beta, A, B) Returns the cumulative beta probability density func-
tion.

COMBIN(number, number_chosen) Returns the number of combinations for a given
number of objects.

409Supported Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

COUNT(value1, value2, ...) Counts the number of cells that contain numbers and
also numbers within the list of arguments.

COUNTA(value1, value2, ...) Counts how many values are in the list of arguments.

COUNTIF(range, criteria) Counts the number of cells that meet the criteria spec-
ified in the argument.

DCOUNT(database, field, criteria) Counts the cells containing numbers from a specified
database that match specified criteria.

DCOUNTA(database, field, criteria) Counts non-blank cells from a specified database that
match specified criteria.

DEVSQ(number1, number2, ...) Returns the sum of the squares of the deviations from
the sample mean.

DMAX(database, field, criteria) Extracts the maximum number in a column of a list or
database that matches specified conditions.

DMIN(database, field, criteria) Extracts the minimum number in a column of a list or
database that matches specified conditions.

DSTDEV(database, field, criteria) Estimates standard deviation of a population, based on
a sample, using numbers in a column of a list or data-
base that match specified conditions.

DSTDEVP(database, field, criteria) Calculates the standard deviation based on the entire
population, using numbers in a column of a list or
database that match specified conditions.

DSUM(database, field, criteria) Adds the numbers in the field column of records in
the database that match the specified criteria.

DVAR(database, field, criteria) Estimates the variance of a population, based on a
sample, by using the numbers in a column of a list or
database that match specified criteria.

DVARP(database, field, criteria) Calculates the variance of a population, based on the
entire population, by using the numbers in a column
of a list or database that match specified criteria.

EXPONDIST(x, lambda, cumulative) Returns the exponential distribution.

FACT(Number) Returns the factorial of a number.

FISHER(x) Returns the Fisher transformation at x.

FISHERINV(y) Returns the inverse of the Fisher transformation.

GEOMEAN(number1, number2, ...) Returns the geometric mean of an array or a range of
positive data.

HARMEAN(number1, number2, ...) Returns the harmonic mean of a dataset by calculating
the reciprocal of the arithmetic mean of reciprocals.

continues

410 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Table A.6 Continued

Spreadsheet Function Description

KURT(number1, number2, ...) Returns the kurtosis of a dataset, a measure that
compares the relative peakedness or flatness of a
distribution compared with the normal distribution.

LARGE(array, k) Returns the kth largest value in a dataset.

MAX(number1, number2, ...) Returns the maximum value in a list of arguments,
ignoring logical values and text.

MEDIAN(number1, number2, ...) Returns the median of the given numbers.

MIN(number1, number2, ...) Returns the minimum value in a list of arguments,
ignoring logical values and text.

MODE(number1, number2, ...) Returns the most common value in a dataset.

NORMDIST(x, mean, standard_dev, Returns the cumulative distribution function or
cumulative) probability mass function for the value x, with

specified mean and standard deviation.

NORMINV(probability, mean, Returns the inverse of the normal cumulative
standard_dev) distribution for the specified probability, mean, and

standard deviation.

NORMSINV(probability) Returns the inverse of the standard normal cumulative
distribution.

RAND() Returns an evenly distributed random number greater
than or equal to 0 and less than 1. RAND is a volatile
function; which means it cannot be used to generate
the same sequence of values as the function is repeat-
edly calculated.

RANK(number, ref, order) Returns the rank of a number in a list of numbers.

SMALL(array, k) Returns the kth smallest value in a dataset.

STANDARDIZE(x, mean, standard_dev) Returns a normalized value from a distribution with
known mean and standard_dev.

STDEV(number1, number2, ...) Estimates standard distribution based on a sample,
ignoring text and logical values.

SUM(number1, number2, ...) Adds its arguments.
Note that in contrast to Excel, the SUM function in
Xcelsius 2008 treats TRUE and FALSE values as if they
are zero. In addition, text values that appear as
numbers are treated as if they are zero.

SUMIF(range, criteria[, sum_range]) Adds the cells specified by the given criteria.

411Logical Values and Spreadsheet Operators in Xcelsius 2008

Spreadsheet Function Description

SUMPRODUCT(array1, array2, Returns the sum of the products of corresponding
array3, ...) array components.

SUMSQ(number1, number2, ...) Returns the sum of the squares of 1–30 numbers.

SUMX2MY2(array_x, array_y) Returns the sum of the difference of squares of
corresponding values in two arrays.

SUMX2PY2(array_x, array_y) Returns the sum of the sum of squares of correspon-
ding values in two arrays.

SUMXMY2(array_x, array_y) Returns the sum of squares of differences of
corresponding values in two array.

VAR(number1, number2, ...) Estimates variance based on a sample, ignoring logical

values and text.

Table A.7 Text-Related Spreadsheet Functions in Xcelsius 2008

Spreadsheet Function Description

CONCATENATE(text1, text2, ...) Joins several text items into one text item.

EXACT(text1, text2) Checks whether two text values are identical.

FIND(find_text, within_text Finds one text value within another (case-sensitive).
[, start_num])

LEFT(text, num_chars) Returns the leftmost characters from a text value.

LEN(text) Returns the number of characters in a text string.

LOWER(text) Converts text to lowercase.

MID(text, start_num, num_chars) Returns a specific number of characters from a string,
starting at a specified position.

REPLACE(old_text, start_num, Replaces characters within text.
num_chars, new_text)

REPT(text, number_times) Repeats text a given number of times.

RIGHT(text, num_chars) Returns the rightmost characters from a text value.

TEXT(value, format_text) Formats a number and converts it to text.

UPPER(text) Converts text to uppercase.

Logical Values and Spreadsheet Operators in
Xcelsius 2008

The use of operators in a spreadsheet is so fundamental and ingrained in our thinking that
we almost take operators for granted. It is helpful to enumerate them explicitly (see Tables
A.8 and A.9).

412 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Table A.8 Logical Values in Xcelsius 2008

Logical Value Description

TRUE TRUE is a Boolean literal value used to signify when some condition is satisfied.
For instance, the following two spreadsheet formulas return identical results:
=IF(99>58,”Test passes”,”Test fails”)

=IF(TRUE,”Test passes”,”Test fails”)

Both formulas return Test passes.
Note that when TRUE or an expression that evaluates to TRUE is coerced into a
numeric value in the underlying spreadsheet of an Xcelsius dashboard, it is
treated as 0 and not as 1.
For example:
=10*(1+TRUE) returns 10

=10*(1+(3>2) returns 10

In Excel, the value that would be returned for both of these formulas would be 20.

FALSE FALSE is a Boolean literal value used to signify when some condition is not satis-
fied. For instance, the following two spreadsheet formulas return identical
results:
=IF(43>58,”Test passes”,”Test fails”)

=IF(TRUE,”Test passes”,”Test fails”)

Both formulas return Test fails.

Table A.9 Spreadsheet Operators in Xcelsius 2008

Spreadsheet Operator Description

= (assignment operator) The assignment operator is used to identify a spreadsheet
formula with a cell. In this context, the = symbol must be the
very first character to appear in the spreadsheet formula.
For example,
=2+3

returns the value 5.

= (logical equality operator) The logical equality operator returns a Boolean TRUE or FALSE,
depending on whether two expressions evaluate to the same
value.
For example,
=IF(2=3,”2 equals 3”,”2 doesn’t equal 3”)

returns 2 doesn’t equal 3.

/ (division operator) The division operator returns the numeric ratio of two
expressions.
For example,
=6/2

returns 3.

413Logical Values and Spreadsheet Operators in Xcelsius 2008

Spreadsheet Operator Description

‘ (comment operator) The comment operator (signified by an apostrophe symbol
appearing as the very first character of the spreadsheet cell con-
tents) signifies that the remainder of the expression is to be
treated as literal text and cannot be evaluated as a conventional
spreadsheet formula.
For example,
‘=2*3

returns =2*3.

^ (exponentiation operator) The exponentiation operator raises an expression to a given
power.
For example,
=2^3

returns 8.

>= (greater-than-or-equal-to The >= operator tests whether the first expression is greater
operator) than or equal to the second expression.

For example,
=3>=3

returns TRUE.

> (greater-than operator) The > operator tests whether the first expression is strictly
greater than the second expression.
For example,
=3>3

returns FALSE.

<= (less-than-or-equal-to operator) The <= operator tests whether the first expression is less than
or equal to the second expression.
For example,
=2<=3

returns TRUE.

< (less-than operator) The < operator tests whether the first expression is strictly less
than the second expression.
For example,
=-30<5

returns TRUE.

- (minus operator) The minus operator reverses the sign of an expression from
positive to negative and vice versa. The minus operator
requires only one input. It also has a higher precedence than
the subtraction operation (see Chapter 4, “The Spreadsheet:
The Secret Sauce of Xcelsius 2008,” for details).
For example,
=-(3+5)

returns -8.

continues

414 Appendix A Supported Spreadsheet Functions in Xcelsius 2008

Table A.9 Continued

Spreadsheet Operator Description

- (subtraction operator) The subtraction operator requires two inputs. It multiplies the
second input by a negative 1 and then adds it to the first
operator.
For example,
=17-5

returns 12.

+ (addition operator) The addition operator returns the numeric sum of its two
inputs.
For example,
=13+5

returns 18.

* (multiplication operator) The multiplication operator returns the numeric product of its
two inputs.
For example,
=13*5

returns 65.

& (concatenation operator) The concatenation operator joins two text values.
For example,
=”4th”&”of July”

returns 4th of July.

<> (not-equal operator) The <> operator returns TRUE if two expressions do not
evaluate to the same value; otherwise, it returns FALSE.
For example,
=3<>2+1

returns FALSE.

: (range operator) The RANGE_COLON operator specifies a contiguous range of cells
between and including two cell references. The RANGE_COLON
operator is always used in conjunction with other spreadsheet
functions, such as SUM, AVERAGE, MIN, or MAX.
For example,
=SUM(A1:A3)

returns the values computed by adding the cell values of A1,
A2, and A3.

BAPPENDIX

In this appendix

Xcelsius Product Family
Comparison

Xcelsius Functionality 416

Xcelsius Components 419

416 Appendix B Xcelsius Product Family Comparison

Xcelsius 2008 encompasses a broad range of products, including Present, Engage, Engage
Server, and Enterprise editions. This book is largely centered on Xcelsius 2008 Engage.
Although most of the features described and the book examples pertaining to Xcelsius 2008
Engage apply equally well to the other Xcelsius editions, there are some differences between
the different editions.

Many of the components and functionality features of Xcelsius are covered in detail
throughout the book, so I do not embellish on them here. My chief aim here is to highlight
what is similar and different among the various Xcelsius editions.

To help you sort out these similarities and differences, this appendix includes tables that list
the various Xcelsius features and whether each feature is supported in the various Xcelsius
editions. A “Y” indicates that a feature is available, and an “N” means it is not.

The tables are organized in two broad categories: general functionality within Xcelsius and
specific components.

Xcelsius Functionality
The general functionality in Xcelsius includes features that do the following:

■ Are typically pervasive (such as scaling and drill down)

■ Are relevant to getting started

■ Are important for font support

■ Indicate available data update options

■ Indicate available export and snapshot options

■ Show the supported themes and styles.

Tables B.1 through B.8 provide information on the functionality of the various Xcelsius edi-
tions.

Table B.1 General Xcelsius Functionality

Feature Present Engage Engage Server Enterprise

Drill down charts Y Y Y Y

Logarithmic scale for charts Y Y Y Y

Dynamic chart scale Y Y Y Y

Dynamic data sources Y Y Y Y

Dynamic minimum and maximum limits Y Y Y Y
(charts and single values)

Add-on Manager Y Y Y Y

Animation (charts) Y Y Y Y

Alerts in selectors Y Y Y Y

417Xcelsius Functionality

Feature Present Engage Engage Server Enterprise

Insert filtered range Y Y Y Y

Dynamic selected item Y Y Y Y

Print from SWF Y Y Y Y

Secondary axis (charts) Y Y Y Y

Value-based alerts Y Y Y Y

Table B.2 Efficiency Features

Feature Present Engage Engage Server Enterprise

Templates Y Y Y Y

Samples Y Y Y Y

Quick Start pane Y Y Y Y

Table B.3 Font Support Options

Facility Present Engage Engage Server Enterprise

Support for non-embedded fonts Y Y Y Y

Support for Unicode Y Y Y Y

Table B.4 Data Update Options

Option Present Engage Engage Server Enterprise

Data Manager N Y Y Y

Use another Excel file Y Y Y Y

Use Web Services (via SOAP; new) N Y Y Y

Use Flash variables N Y Y Y

Enable collaboration N Y Y Y

Export model (to Excel) Y Y Y Y

Ignore end blanks Y Y Y Y

XML map options (Excel 2003) N Y Y Y

Live Office N N N Y

Query as a Web Service (QaaWS) N N N Y

Connection Manager N Y Y Y

FSCommand N Y Y Y

418 Appendix B Xcelsius Product Family Comparison

Table B.5 Export Options

Deployment Format Present Engage Engage Server Enterprise

Macromedia Flash N Y Y Y

HTML N Y Y Y

Power Point Y Y Y Y

Outlook N Y Y Y

PDF Y Y Y Y

Word Y Y Y Y

Portal N N Y Y

Business Objects Enterprise N N N Y

Crystal Report N Y Y Y

AIR N Y Y Y

Acrobat 9 Y Y Y Y

Table B.6 Snapshot Options

Format or Environment Present Engage Engage Server Enterprise

Macromedia Flash N Y Y Y

HTML N Y Y Y

PowerPoint Y Y Y Y

Outlook N Y Y Y

Export to Excel Y Y Y Y

PDF Y Y Y Y

AIR N Y Y Y

Acrobat 9 Y Y Y Y

Table B.7 Art Aids

Theme or Style Present Engage Engage Server Enterprise

Color schemes (global styles) Y Y Y Y

Élan skin Y Y Y Y

Aqua skin Y Y Y Y

Aero skin Y Y Y Y

Graphite skin Y Y Y Y

Halo skin Y Y Y Y

419Xcelsius Components

Theme or Style Present Engage Engage Server Enterprise

Windows Classic Y Y Y Y

Admiral Y Y Y Y

iTheme Y Y Y Y

Nova Y Y Y Y

Table B.8 Server Pieces

Backend Support Present Engage Engage Server Enterprise

SharePoint N N Y Y

WebSphere N N Y Y

Flynet N N Y N

Reporting Services N N Y Y

Xcelsius Components
Xcelsius components are organized into the following categories: Charts, Containers,
Single-Value Components, Selectors, Maps, Art & Backgrounds, Text, Web Connectivity,
and Other Components. These categories correspond to matching categories found on the
Components Panel of the Xcelsius Designer. Tables B.9 through B.17 identify which com-
ponents are available in the various Xcelsius editions.

Table B.9 Chart Components

Component Present Engage Engage Server Enterprise

Line Chart Y Y Y Y

Pie Chart Y Y Y Y

OHLC Chart Y Y Y Y

Candlestick Chart Y Y Y Y

Column Chart Y Y Y Y

Stacked Column Chart Y Y Y Y

Bar Chart Y Y Y Y

Stacked Bar Chart Y Y Y Y

Combination Chart Y Y Y Y

Bubble Chart Y Y Y Y

continues

420 Appendix B Xcelsius Product Family Comparison

Table B.9 Continued

Component Present Engage Engage Server Enterprise

XY Chart Y Y Y Y

Area Chart Y Y Y Y

Stacked Area Chart Y Y Y Y

Radar Chart Y Y Y Y

Filled Radar Chart Y Y Y Y

Tree Map Y Y Y Y

Table B.10 Container Components

Component Present Engage Engage Server Enterprise

Panel Y Y Y Y

Tab Set Y Y Y Y

Table B.11 Single-Value Components

Component Present Engage Engage Server Enterprise

Play Button N Y Y Y

Gauge Y Y Y Y

Half Gauge Y Y Y Y

Dial Y Y Y Y

Horizontal Slider Y Y Y Y

Vertical Slider Y Y Y Y

Horizontal Progress Bar Y Y Y Y

Vertical Progress Bar Y Y Y Y

Value Y Y Y Y

Dual Slider Y Y Y Y

Spinner Y Y Y Y

Table B.12 Selector Components

Component Present Engage Engage Server Enterprise

Radio Button Y Y Y Y

List Box Y Y Y Y

421Xcelsius Components

Component Present Engage Engage Server Enterprise

Check Box Y Y Y Y

Label Based Menu Y Y Y Y

Table Y Y Y Y

Play Selector N Y Y Y

Combo Box Y Y Y Y

Filter Y Y Y Y

Toggle Button Y Y Y Y

Icon Y Y Y Y

List Builder Y Y Y Y

Source Data Component N Y Y Y

Ticker Y Y Y Y

Accordion Menu N Y Y Y

Sliding Picture Menu Y Y Y Y

Fish-Eye Picture Menu Y Y Y Y

List View Y Y Y Y

Table B.13 Map Components

Component by Geographic Region Present Engage Engage Server Enterprise

United States by State Y Y Y Y

Europe Map by Country Y Y Y Y

World Map by Continent Y Y Y Y

Asia Map by Country Y Y Y Y

California Map by County Y Y Y Y

Africa Map by Country Y Y Y Y

North America Map by Country Y Y Y Y

Central America Map by Country Y Y Y Y

South America Map by Country Y Y Y Y

USA (50 states) Y Y Y Y

Europe Maps Y Y Y Y

Asia-Pacific Maps Y Y Y Y

Canada by Province Y Y Y Y

422 Appendix B Xcelsius Product Family Comparison

Table B.14 Art and Background Components

Component Present Engage Engage Server Enterprise

Horizontal Line Y Y Y Y

Vertical Line Y Y Y Y

Background Y Y Y Y

Rectangle Y Y Y Y

Ellipse Y Y Y Y

Image Component Y Y Y Y

Table B.15 Text Components

Component Present Engage Engage Server Enterprise

Label Y Y Y Y

Input Text Y Y Y Y

Input Text Area Y Y Y Y

Table B.16 Web Connectivity Components

Component Present Engage Engage Server Enterprise

XML Data Button N Y Y Y

XML Map Refresh N Y Y Y

Web Service Connector N Y Y Y

URL Link Button Y Y Y Y

External Slide Show N Y Y Y

Reporting Services Button N N Y Y

Portal Consumer N N Y Y

Portal Provider N N Y Y

Portal Param N N Y Y

Connection Refresh Button N Y Y Y

Table B.17 Other Components

Component Present Engage Engage Server Enterprise

Interactive Calendar N Y Y Y

Trend Icon Y Y Y Y

423Xcelsius Components

Component Present Engage Engage Server Enterprise

Local Scenario Buttons Y Y Y Y

Grid Y Y Y Y

Panel Set N Y Y Y

History Component N Y Y Y

Trend Analyzer N Y Y Y

Print Button Y Y Y Y

Reset Button Y Y Y Y

This page intentionally left blank

CAPPENDIX

Xcelsius Best Practice Techniques
and Hip Pocket Tips

This book is loaded with all sorts of valuable information. To make this information more
conveniently accessible, I’ve listed more than 100 of this book’s best practice techniques and
tips in this appendix. They are arranged by technique, chapter, and section. Within the
chapter text, a corresponding “Best Practice Tip” icon identifies each tip.

Best Practice Chapter Number—Section Title (Page Number)

1. ABC charts and merging data Chapter 14—“Constructing ABC (Actual Budget
Comparison) Charts” (page 344)

2. Adding features and interactivity Chapter 16—“Enhancing Your Components”
to your custom components (page 393)

3. Adjusting for headers when clicking rows Chapter 6—“Using Gauges” (page 172)

4. Aging a dashboard report Chapter 10—“Preparing an Aging Report”
(page 264)

5. Alerts in input devices such as sliders Chapter 6—“Simple Sliders” (page 161)

6. Avoiding using hardwired values in Chapter 13—“Issues with Hardwired Values and
spreadsheet formulas What to Do with Them” (page 325)

7. Avoiding potential pitfalls in designing Chapter 16—“Avoiding Potential Landmines”
custom components (page 396)

8. Baselining specific data series Chapter 14—“Charting Multiple Data Series That
Have Similar Values” (page 339)

9. Battlefield testing of a custom component Chapter 16—“Loading and Testing Components”
(page 393)

10. Benefits of statistics—data compression Chapter 9—“Understanding Statistics” (page 230)

11. Candlestick box plot design Chapter 14—“Using a Candlestick Component as
a Box Plot” (page 347)

12. Caption display technique Chapter 5—“Displaying Values of Individual Data
Points” (page 147)

426 Appendix C Xcelsius Best Practice Techniques

Best Practice Chapter Number—Section Title (Page Number)

13. Cell references and managing formula Chapter 4—“Spreadsheet Cell References”
replication (page 73)

14. Component attribute binding Chapter 1—“Xcelsius: The Whole Is Greater
Than the Sum of Its Parts” (page 23)

15. Components with built-in alerts Chapter 12—“The Haves and Have-Nots of
Alerts” (page 298)

16. Conditional probability and Bayes’ Theorem Chapter 9—“Understanding Conditional
Probability and Bayes’ Theorem” (page 239)

17. Connected maps Chapter 11—“The Connected Maps Reference
Implementation” (page 291)

18. Constructing wraparound gauges Chapter 6—“Constructing Wraparound Gauges”
(page 174)

19. Context switching Chapter 3—“Simple Replication at the
Component Level” (page 63)

20. Controlling precision Chapter 13—“Dealing with Rounding and
Truncation Errors” (page 322)

21. Correlated lists or smart list boxes Chapter 5—“Working with XY Charts” (page 143)

22. Creating density and color maps Chapter 11—“Colorizing Maps” (page 283)

23. Creating text-based spinners Chapter 12—“Smart Text Spinners” (page 306)

24. Cross-domain policy setup Chapter 15—“Setting Up Cross-Domain Policy
Files” (page 369)

25. Custom check box title Chapter 8—“The Check Box Component”
(page 209)

26. Cycling through cell references Chapter 4—“Spreadsheet Cell References”
(page 75)

27. Dashboard construction issues Chapter 3—“Chart-Based Components”
(page 57)

28. Data Manager triggering updates Chapter 15—“Setting Up Excel XML Maps”
(page 362)

29. Data scrubbing techniques Chapter 13—“Dealing with Unclean Data”
(page 320)

30. Displaying an alternate visualization Chapter 7—“Mutually Exclusive Visibility”
through mutually exclusive switches (page 190)

31. Drill down techniques Chapter 5—“Drilling Down with Pie Charts”
(page 139)

32. Drilling down in multiple data series Chapter 8—“Drill Down Behavior” (page 207)

427Xcelsius Best Practice Techniques

Best Practice Chapter Number—Section Title (Page Number)

33. Drilling down with selectors Chapter 3—“Selectors” (page 59)

34. Driving hypertext formatting and behavior Chapter 12—“Using Smart Text in Visualizations
from spreadsheet formulas and Dashboards” (page 304)

35. Dual cells for toggle button Chapter 7—“Toggling Visibility” (page 190)

36. Dynamic segmenting of data Chapter 14—“Using a Candlestick Component as
a Box Plot” (page 349)

37. Dynamic spacing in a histogram Chapter 9—“Elementary Statistics Concepts and
Dashboard Tools” (page 232)

38. Effective design and scalability Chapter 1—“Putting Some Computational
Oomph into Your Dashboards” (page 30)

39. Efficient tab sets Chapter 7—“Using Context Switching to Contain
Visualizations and Dashboards” (page 185)

40. Elastic chart limits Chapter 14—“An Important Preliminary Issue”
(page 338)

41. Eliminating animation distractions Chapter 5—“Choosing the Right Components for
a Dashboard” (page 130)

42. Embedded dashboard hotspot Chapter 8—“Toggle Button and Icon
Components” (page 213)

43. Embedding Z-score analysis in financial Chapter 10—“Using Ratios and Metrics to Judge
dashboards the Overall Health of a Business” (page 271)

44. Error handling Chapter 14—“Using a Candlestick Component as
a Box Plot” (page 349)

45. Exposing properties in a custom component Chapter 16—“Building a Component’s Source”
(page 383)

46. Filled radar charts with alerts Chapter 14—“Filled Radar Charts with Alerts”
(page 341)

47. Formula chaining Chapter 4—“Formula Chaining in Spreadsheets”
(page 72)

48. Generating a normal distribution Chapter 4—“RAND, NORMINV, and NORMDIST”
(page 92)

49. Generating trends with the Trend Chapter 9—“The Trend Analyzer Component”
Analyzer component (page 253)

50. Great circle formula Chapter 4—“Trigonometry Functions: SIN, COS,
TAN, ACOS, ASIN, ATAN, RADIANS, DEGREES, and
PI” (page 97)

51. Group behavior visibility Chapter 7—“Controlling Group Behavior”
(page 198)

52. Hardwired values in spreadsheet formulas Chapter 4—“Spreadsheet Cell References”
(page 76)

428 Appendix C Xcelsius Best Practice Techniques

Best Practice Chapter Number—Section Title (Page Number)

53. HTML coding for labels and input text Chapter 8—“Labels and Input Text Areas”
area components (page 219)

54. HTML encoding in dashboard text Chapter 12—“Using Smart Text in Visualizations
and Dashboards” (page 302)

55. HTML labels embedded in a dashboard Chapter 3—“Text-Based Components” (page 54)

56. Inline traffic light alerts Chapter 8—“Traffic Light Alerts in Combo Boxes
and List Boxes” (page 210)

57. Inline alerts Chapter 12—“List Box and Other Inline Alerts”
(page 309)

58. Inputs and outputs explicitly stated in the Chapter 1—“Xcelsius: The Whole Is Greater
underlying spreadsheet Than the Sum of Its Parts” (page 22)

59. Intelligently detecting transposed digits Chapter 13—“Detecting the Presence of
Transposed Digits” (page 318)

60. Layered approach design pattern Chapter 13—“Repurposing Existing
Spreadsheets” (page 329)

61. Layered design approach Chapter 12—“List Box and Other Inline Alerts”
(page 310)

62. Linking a text label to a spreadsheet cell Chapter 3—“Text-Based Components” (page 53)
that contains a formula

63. List Builder—general construction Chapter 5—“Avoiding Needless Data Series
technique Congestion” (page 137)

64. Logarithmic scaling Chapter 5—“Dealing with Vastly Different Values
on the Same Chart” (page 152)

65. Mathematics of the least-squares method Chapter 9—“Method of Least Squares” (page 255)

66. Matrix style calculator Chapter 2—“Embedding Spreadsheet Smarts in a
Dashboard” (page 34)

67. Multi-criteria filters Chapter 8—“Filter Components” (page 214)

68. Multi-selection maps Chapter 11—“The Technical Details Behind a
Multi-Selection Map” (page 287)

69. Negative values in bubble charts Chapter 5—“Extending Graphical Presentation
with Bubble Charts” (page 146)

70. Negatively directed sliders Chapter 6—“Negatively Directed Sliders”
(page 162)

71. Overcoming design-time formatting Chapter 8—“Grid and Spreadsheet Table
challenges Components” (page 225)

72. Parsing data into columns Chapter 13—“Dealing with Raw Data” (page 319)

429Xcelsius Best Practice Techniques

Best Practice Chapter Number—Section Title (Page Number)

73. Placing destination cells above spreadsheet Chapter 11—“Using a Map to Obtain Further
data Information” (page 279)

74. Pointer-based approach to filters Chapter 8—“Filter Components” (page 215)

75. Positioning destination cells above the Chapter 13—“Poorly Positioned Data on a
source data Worksheet” (page 324)

76. Properly setting up cell references in Chapter 13—“Setting Up Cell References in a
VLOOKUP formulas VLOOKUP Formula” (page 326)

77. Pushing with pointers versus pushing Chapter 6—“Using Gauges” (page 173)
with content

78. Recommended practices for line charts Chapter 14—“Viewing Line Chart Data”
(page 343)

79. Reconstructing data Chapter 13—“Dealing with Improperly Structured
Data” (page 331)

80. Retrieving a range of cells with offset Chapter 4—“Retrieving a Range of Cells with
OFFSET” (page 120)

81. Retrieving a single cell with offset Chapter 4—“Retrieving a Single Cell with
OFFSET” (page 119)

82. Setting up a continuous distribution Chapter 9—“The Normal Distribution”
(page 247)

83. Setting up a Web Services connection Chapter 15—“Using Web Services in Xcelsius
2008” (page 365)

84. Setting up matrix-style calculators Chapter 13—“Setting Up Cell References in a
Multiplication Table” (page 327)

85. Setup of the Trend Analyzer component Chapter 9—“The Trend Analyzer Component”
(page 252)

86. Shared Component Framework Chapter 6—“Dial Sharing: A Best Practice
Strategy” (page 169)

87. Simulating RANDBETWEEN Chapter 4—“RAND, NORMINV, and NORMDIST”
(page 92)

88. Smart sliders—general setup Chapter 6—“Smart Sliders” (page 162)

89. Smart sliders—interface design Chapter 12—“Going Beyond the Built-in Alerts in
Xcelsius” (page 311)

90. Smart triggers—using a single formula Chapter 15—“Using Web Services in Xcelsius
with multiple criteria 2008” (page 366)

91. Spreadsheet formulas: recommended Chapter 4—“Building on Simple Formulas”
techniques for constructing formulas (page 71)

92. Statistical sampling with Xcelsius Chapter 9—“Extrapolating from a Sample to the
Population” (page 250)

430 Appendix C Xcelsius Best Practice Techniques

Best Practice Chapter Number—Section Title (Page Number)

93. Streamlining the installation of custom Chapter 16—“Loading and Testing Components”
components (page 392)

94. Supporting debugging and simulations with Chapter 8—“The Print Button and Reset Button
the reset button Components” (page 223)

95. Switch logic and circuit approach to Chapter 7—“Managing Multi-Layer Visibility”
multi-layer visibility (page 192)

96. Technique for augmenting a map with Chapter 11—“An Augmented Map Framework”
additional data—applying a data overpass to (page 280)
a map component

97. Technique for incremental refinement Chapter 3—“Text-Based Components” (page 54)

98. Text-based spinners Chapter 6—“Working with Spinners” (page 175)

99. Timeline dashboard Chapter 5—“Choosing the Right Components for
a Dashboard” (page 129)

100. Transient components Chapter 7—“Mutually Exclusive Visibility”
(page 191)

101. Translucent shading Chapter 14—“Avoiding Occlusion with Area
Charts” (page 342)

102. Tunable alerts—threshold controlled in Chapter 12—“Showing Multiple Shades in Charts
spreadsheet formulas and values Based on Values in a Cell Range” (page 301)

103. Tweaking numeric rounding Chapter 13—“Dealing with Rounding and
Truncation Errors” (page 322)

104. Using visibility to control interaction Chapter 7—“Understanding Dynamic Visibility”
(page 189)

105. Value- and percentage-based conditional Chapter 12—“Basic Alert Features in Xcelsius
alerts 2008” (page 299)

106. Value at Risk dashboards Chapter 10—“Value at Risk (VaR)” (page 258)

107. Viewing data with monospace fonts Chapter 13—“Dealing with Unclean Data”
(page 321)

108. When to use solid backgrounds Chapter 8—“Rectangle, Ellipse, and Background
Components” (page 221)

109. Workspace configuration: choosing Chapter 3—“The Components Pane” (page 47)
between Accordion view and List view

110. Workspace configuration: choosing how Chapter 1—“A First Look at the Canvas”
to view components (page 21)

111. Workspace configuration: facilitating Chapter 3—“The Canvas” (page 48)
dashboard maintenance and reuse

112. Workspace setup: VBA in the Xcelsius Chapter 1—“Tapping into the Virtual
2008 workspace Spreadsheet” (page 22)

Symbols

+ (addition operator), 414

<> (angle brackets), 303

= (assignment operator), 412

’ (comment operator), 413

& (concatenation
operator), 414

/ (division operator), 412

$ (dollar symbol), 74

= (equal symbol), 71

^ (exponentiation
operator), 413

> (greater-than
operator), 413

>= (greater-than-or-equal-to
operator), 413

< (less-than operator), 413

<= (less-than-or-equal-to
operator), 413

= (logical equality
operator), 412

- (minus operator), 413

m (mu), 243

* (multiplication
operator), 414

- (negation operator), 81

<> (not-equal operator), 414

: (range operator), 80, 414

∑ (sigma), 235

- (subtraction operator), 414

, (union operator), 80

A

abbreviations for chart
labels, 206-207

ABC (Actual Budget
Comparison) charts,
344-346

ABS function, 96-97, 405

absolute numbers, 96

absolute references, 73-74

Accordion Menu
component, 209

Accordion view, 20-21, 47

accounting. See also
financial analysis

accrual-basis
accounting, 262

balance sheets, 262
cash-basis accounting, 262
costs, 262

generally accepted
accounting principles
(GAAP), 261

income statements, 262
matching, 262
statement of cash, 262

accrual-basis accounting, 262

ACOS function, 97-98, 405

ACOSH function, 405

activating visibility patterns
with switch circuit, 197

Actual Budget Comparison
(ABC) charts, 344-346

Add-On Packager, 387-388,
390-391

adding in quadrature
(uncertainty analysis), 39

addition operator (+), 414

aggregation functions, 82-84
AVERAGE, 83
AVERAGEA, 83
COUNT, 84
COUNTA, 84
COUNTIF, 84-85
LARGE, 89
MAX, 82
MEDIAN, 83
MIN, 82

index

432 aggregation functions

MODE, 83
RANK, 89
SMALL, 89
SUM, 85
SUMIF, 87-88
SUMPRODUCT, 86-87
SUMSQ, 88

aging reports, 264-266

alerts. See also smart text
advantages of, 312
built-in alerts, 298
colorized alerts, 34-35
colorizing, 301-302
components with built-in

alerts, 298
components without built-in

alerts, 299
enabling, 300
with filled radar charts,

341-342
inline alerts, 309-310
multiple data series and, 301
overview, 298
value-based alerts, 300

Alerts tab (Properties
panel), 24

Altman, Ed, 271

ampersand (&), 414

analysis
financial analysis

accrual-basis
accounting, 262

aging reports, 264-266
balance sheets, 262
cash-basis

accounting, 262

costs, 262
financial ratio analysis,

266-272
generally accepted

accounting principles
(GAAP), 261

income statements, 262
matching, 262
overview, 258
real-world judgments

and, 272-273
statement of cash, 262
time, accounting for,

263-264
Value at Risk (VaR),

258-261
statistical analysis.

See statistics

AND function, 107, 404

angle brackets, 303

animation, enabling/
disabling, 206

apostrophe (‘), 413

Appearance tab (Properties
panel), 24

art components, 61-62,
418-419, 422

ASIN function, 97, 405

ASINH function, 405

assignment operator (=), 412

asterisk (*), 414

ATAN function, 97, 405

ATAN2 function, 99, 405

ATANH function, 405

attributes, binding to
underlying spreadsheet,
24-26

Augmented Map Framework,
280-283

Auto option (chart
scaling), 206

auto-scaling, 150

AVEDEV function, 408

AVERAGE function, 83,
90, 408

AVERAGEA function,
83, 408

averages, calculating, 83, 235

avoiding
data series congestion,

137-138
occlusion, 342-343

B

Background component,
61-62, 220-222

background groups, 194

balance sheets, 262

BasicHorizontalSlider
connecting ActionScript and

MXML code, 385
creating ActionScript code

for, 378-384
generating SWF files for,

385-386

433CHOOSE function

Bayes’ Theorem, 241-242

Behavior tab (Properties
panel), 24

BETADIST function, 408

binding attributes to
underlying spreadsheet,
24-26

binomial distributions,
244-246

branding visual
elements, 194

bubble charts, 145-146

budgets, ABC (Actual
Budget Comparison)
charts, 344-346

built-in alerts, 298-299

buttons, toggle buttons, 190

C

calendar arithmetic
at dashboard level, 114-115
setting up on spreadsheets,

113-114

Calendar component, 223

Candlestick components,
347-350

canvas
adding components to,

19-21
definition of, 46
resizing, 48

capabilities of Xcelsius,
16-17

caret (^), 413

cash, statement of, 262

cash-basis accounting, 262

Category I digitization
errors, 317

Category II digitization
errors, 317

Category III digitization
errors, 318

CDF (cumulative
distributions function), 246

CEILING function, 100, 405

cells
evaluating, 79-80
formatting in Spreadsheet

Table component, 224-225
named ranges, 77-79
references, 73

absolute references,
73-74

in complex tables, 327
example, 75-76
hybrid cell references,

74-75
isolating hardwired

values, 76-77
in multiplication

tables, 327
percentage symbols

in, 76
relative references, 74
in VLOOKUP formula,

326-327

chaining formulas, 72

charts
ABC (Actual Budget

Comparison) charts,
344-346

avoiding occlusion, 342-343
bubble charts, 145-146
Candlestick components,

347-350
charting multiple data

series with similar values,
339-341

choosing for dashboards,
128-131

column charts, 56-57,
129-131

combination charts, 132-134
dynamic data grouping,

137-138
filled radar charts, 341-342
interface design, 154
label abbreviations, 206-207
line charts, 343-344
pie charts, 54-56, 139-140
scaling, 204-206

auto-scaling, 150
logarithmic scaling,

152-153
scaling laboratory

dashboard, 150-152
stacked charts, 135-136
tree maps, 148-149
Xcelsius product family

comparison, 419
XY charts, 141-145

Check Box component, 189,
209-210

CHOOSE function, 123, 407

How can we make this index more useful? Email us at indexes@samspublishing.com

434 client portals

client portals, 37

colon (:), 80, 414

color
adding to alerts, 301-302
adding to maps, 283-286
specifying in HTML, 220

colorized alerts, 34-35

Column Chart component,
56-57, 129-131

COMBIN function, 408

Combination Chart
component, 132-134

Combo Box component,
traffic light alerts in,
210-211

comma (,), 80

comment operator (‘), 413

Compatibility Mode, 52

complex tables, cell
references in, 327

complexity
containment through tab

sets, 182-184
managing with context

switching, 184-188

Component pane,
positioning, 51

component visibility,
managing, 38

components. See also
specific components

adding to canvas, 19-21
adding to dashboards,

128-131

attributes, binding to
underlying spreadsheet,
24-26

choosing for dashboards,
128-131

connection
components, 395

context switching, 62-63
custom components

connecting ActionScript
and MXML code, 385

construction
workflow, 373

creating ActionScript
code for, 378-385

enhancing, 393-394
Flex Builder

environment, 373-375
generating SWF files for,

385-386
installing, 372-373
loading, 391-393
overview, 372
packaging, 387-391
potential problems,

395-396
relationship with

property sheets,
386-387

software requirements,
375-376

testing, 391-393
function components, 395
grouping, 50
hidden components, 50
invisible components, 50
list of new components, 40

pasting between XLF
files, 63

visibility
dynamic visibility,

188-189
multi-layer visibility,

192-200
mutually exclusive

visibility, 190-191
overview, 188
toggling, 189-190

Web connectivity, 62, 422

Components command
(View menu), 19

Components pane, 19
definition of, 46
views, 20, 47

CONCATENATE
function, 119, 411

concatenation operator
(&), 414

conditional formulas,
107-108

conditional operators, 106

conditional probability,
239-242

configuring Flex Builder, 377

connected map
dashboards, 35

Connected Maps reference
implementation, 291-294

connection components, 395

connectivity. See
data connectivity

435dashboards

constructing dates, 110-111

containers
panel containers, 58
tab sets, 58
Xcelsius product family

comparison, 420

context switcher
(Shared Component
Framework), 170

context switching, 2, 41,
62-63, 184-188

continuous probability
distributions, 246-250

converting text to numbered
equivalent, 105

correlated lists, 143

COS function, 97-98, 405

COSH function, 405

costs, 262

COUNT function, 84, 409

COUNTA function, 84, 409

COUNTIF function,
84-85, 409

counting functions, 84-85

cross-domain policy files,
368-369

cumulative distributions
function (CDF), 246

custom components
Check Box component,

209-210
connecting ActionScript and

MXML code, 385

construction workflow, 373
creating ActionScript code

for, 378-385
enhancing, 393-394
Fisheye component,

211-212
Flex Builder environment,

373-375
generating SWF files for,

385-386
installing, 372-373
loading, 391-393
overview, 372
packaging, 387-391
potential problems, 395-396
relationship with property

sheets, 386-387
Sliding Picture Menu

component, 211-212
software requirements,

375-376
testing, 391-393
Ticker component, 211

customizing
components. See

custom components
dashboard appearance,

27-29
workspace layout, 47

canvas size, 48
Components Pane

views, 47
Object Browser, 48-50
pane layout, 51

D

dashboards. See also
specific components

building, 44-45, 52
colorized alerts, 34-35
complexity

containment through tab
sets, 182-184

managing with context
switching, 184-188

component visibility,
managing, 38

connecting to Web Services,
365-368

customizing appearance of,
27-29

desktop client portals, 37
embedded formulas in, 34
exporting, 26
financial analysis in, 38-39
graphical viewers in, 36
limits, 29-30
making date and time aware

calendar arithmetic,
113-115

DATE function, 110
DATEVALUE

function, 110
DAY function, 111
DAYS360 function, 112
EDATE function, 112
EOMONTH

function, 112
HOUR function, 111
MINUTE function, 111
MONTH function, 111

How can we make this index more useful? Email us at indexes@samspublishing.com

436 dashboards

NETWORKDAYS
function, 111-112

NOW function, 110
overview, 110
SECOND function, 111
TIME function, 110
TIMEVALUE

function, 111
TODAY function, 110
WEEKDAY

function, 113
WEEKNUM

function, 113
YEAR function, 111
YEARFRAC

function, 113
multiple information

sources in single view, 37
open-ended dashboards, 355
open-source dashboards,

spreadsheets as, 13-16
packaging, 354
ratio analysis in, 39
scaling laboratory

dashboard, 150-152
sensitivity analysis in, 38
Shared Component

Framework, 36
statistical analysis in, 38
timeline viewers in, 37
uncertainty analysis in, 39
uniform look and feel,

designing
context switching, 62-63
fonts, 66-67
pasting components

between XLF files, 63

templates, 63-64
themes, 64-65

data animation, enabling/
disabling, 206

data bank (Shared
Component
Framework), 170

data connectivity
cross-domain policy files,

368-369
open-ended dashboards, 355
packaging dashboard

information, 354
Web Services, 365-368
Xcelsius Data Manager, 355
XML

Excel XML maps,
359-364

overview, 356
setting up for Xcelsius,

357-359

data digitization
Category I digitization

errors, 317
Category II digitization

errors, 317
Category III digitization

errors, 318
overview, 316-317

Data Insertion feature
(maps), 278

Data Manager, 355

data series
congestion, avoiding,

137-138
drilling down, 207-208
multiple data series, 301

data updates, Xcelsius
product family
comparison, 417

data visualization
avoiding occlusion, 342-343
filled radar charts with

alerts, 341-342
line chart data, 343-344
multiple data series with

similar values, 339-341
overview, 339

date and time awareness,
adding to dashboards

calendar arithmetic
at dashboard level,

114-115
setting up on

spreadsheets, 113-114
DATE function, 110
DATEVALUE

function, 110
DAY function, 111
DAYS360 function, 112
EDATE function, 112
EOMONTH function, 112
HOUR function, 111
MINUTE function, 111
MONTH function, 111
NETWORKDAYS

function, 111-112
NOW function, 110
overview, 110
SECOND function, 111
TIME function, 110
TIMEVALUE

function, 111
TODAY function, 110
WEEKDAY function, 113

437enabling

WEEKNUM function, 113
YEAR function, 111
YEARFRAC function, 113

DATE function, 110, 402

date/time functions, 402-403

DATEVALUE function,
110, 402

DAVERAGE function, 402

DAY function, 111, 402

DAYS360 function, 112, 402

DB function, 92, 403

DCOUNT function, 409

DCOUNTA function, 409

DDB function, 92, 403

decimal numbers, 219

defining named ranges, 78

DEGREES function,
97-99, 405

depreciation methods, 93-94

design
uniform look and feel

context switching, 62-63
fonts, 66-67
pasting components

between XLF files, 63
templates, 63-64
themes, 64-65

visual data analysis, 154

desktop client portals, 37

Details tab (Add-On
Packager), 388

DEVSQ function, 409

DGET function, 407

dialog boxes. See specific
dialog boxes

dials
enhancing, 168-169
overview, 166-167
scaling, 167-168
Shared Component

Framework, 169-171
sharing, 169

digitization of data
Category I digitization

errors, 317
Category II digitization

errors, 317
Category III digitization

errors, 318
overview, 316-317

disabling data animation, 206

discrete probability
distributions, 242-246

display data (in maps),
277-278

displaying negative
values, 147

distribution (probability)
binomial distributions,

244-246
continuous probability

distributions, 246
discrete probability

distributions, 242-244
normal distribution,

247-250
uniform distribution, 92

division operator (/), 412

DMAX function, 409

DMIN function, 409

dollar ($) symbol, 74

DOLLAR function, 101, 406

DPRODUCT function, 406

drilling down
in data series, 207-208
with pie charts, 139-140

DSTDEV function, 409

DSTDEVP function, 409

DSUM function, 409

dual sliders, 164-166

DVAR function, 409

DVARP function, 409

dynamic data grouping,
137-138

dynamic visibility, 50,
188-189

E

EDATE function, 112, 402

efficiency features,
Xcelsius product family
comparison, 417

embedded alerts, 309-310

embedded formulas, 34

embedded spreadsheets.
See spreadsheets

enabling
alerts, 300
data animation, 206

How can we make this index more useful? Email us at indexes@samspublishing.com

438 enhancing

enhancing
custom components,

393-394
dials, 168-169

EOMONTH function,
112, 402

equal sign (=), 71, 412

errors. See troubleshooting

Escape from Excel Hell
(Abdulezer), 71, 310

ETC (Evolving Technologies
Corporation) Shared
Component Framework,
169-171

evaluating spreadsheet
cells, 79-80

EVEN function, 100, 406

Evolving Technologies
Corporation (ETC) Shared
Component Framework,
169-171

EXACT function, 119, 411

Excel
installing, 18
spreadsheets.

See spreadsheets
trialware package, 18
XML

setting up for Xcelsius,
357-359

XML maps, 359-364

Excel Best Practices for
Business (Abdulezer), 310

EXP function, 103, 406

EXPONDIST function, 409

exponentiation operator
(^), 413

exponents, calculating,
102-103

exporting data
dashboards, 26
Xcelsius product family

comparison, 418

Extensible Markup
Language. See XML

F

FACT function, 409

FALSE function, 106

FALSE value, 412

files
cross-domain policy files,

368-369
MapRegions.xls, 290
SWF files, generating

for custom components,
385-386

XLF files, pasting
components between, 63

filled radar charts, 341-342

Filter component, 214-216

financial analysis, 38-39
accrual-basis

accounting, 262
aging reports, 264-266
balance sheets, 262
cash-basis accounting, 262
costs, 262

financial ratio analysis,
266-267

ratio analyzer dashboard,
267-270

Z score, 271-272
generally accepted

accounting principles
(GAAP), 261

income statements, 262
matching, 262
overview, 258
real-world judgments and,

272-273
statement of cash, 262
time, accounting for,

263-264
Value at Risk (VaR),

258-261

financial functions, 92,
403-404

depreciation methods, 93-94
net present value, 94-95

FIND function, 118, 411

FISHER function, 409

FISHERINV function, 409

Fisheye component,
customizing, 211-212

FIXED function, 406

Flash Player, 17

Flex Builder, 373-377

FLOOR function, 100, 406

Focus Chart Data option
(chart scaling), 206

Folder view, 47

439functions

font support
overview, 66-67
Xcelsius product family

comparison, 417

FORECAST function,
104-105, 252, 406

forecasting trends, 104-105

formatting
cell formatting in

Spreadsheet Table
component, 224-225

HTML formatting
in Input Text Area

component, 218-220
in Label component,

218-220
text formatting

LOWER function, 116
new features, 40
TEXT function, 116-117
UPPER function, 116

formulas
adding to spreadsheets,

29-30
chaining, 72
conditional formulas,

107-108
embedded formulas, 34
simple formulas, 71-72
structure of, 71
troubleshooting, 325-327

functions, 395
ABS, 96-97, 405
ACOS, 97-98, 405
ACOSH, 405
AND, 107, 404

ASIN, 97, 405
ASINH, 405
ATAN, 97, 405
ATAN2, 99, 405
ATANH, 405
AVEDEV, 408
AVERAGE, 83, 90, 408
AVERAGEA, 83, 408
BETADIST, 408
CEILING, 100, 405
CHOOSE, 123, 407
COMBIN, 408
CONCATENATE,

119, 411
COS, 97-98, 405
COSH, 405
COUNT, 84, 409
COUNTA, 84, 409
COUNTIF, 84-85, 409
DATE, 110, 402
DATEVALUE, 110, 402
DAVERAGE, 402
DAY, 111, 402
DAYS360, 112, 402
DB, 92, 403
DCOUNT, 409
DCOUNTA, 409
DDB, 92, 403
DEGREES, 97-99, 405
DEVSQ, 409
DGET, 407
DMAX, 409
DMIN, 409
DOLLAR, 101, 406
DPRODUCT, 406
DSTDEV, 409
DSTDEVP, 409

DSUM, 409
DVAR, 409
DVARP, 409
EDATE, 112, 402
EOMONTH, 112, 402
evaluating spreadsheet cells

with, 79-80
EVEN, 100, 406
EXACT, 119, 411
EXP, 103, 406
EXPONDIST, 409
FACT, 409
FALSE, 106
FIND, 118, 411
FISHER, 409
FISHERINV, 409
FIXED, 406
FLOOR, 100, 406
FORECAST, 104-105,

252, 406
FV, 94, 404
GEOMEAN, 409
HARMEAN, 409
HLOOKUP, 124-125, 407
HOUR, 111
IF, 107, 404
INDEX, 122-123, 270, 407
INT, 100, 406
INTERCEPT, 105,

252, 406
IPMT, 94, 404
IRR, 94, 404
ISBLANK, 107, 404
ISERR, 108, 404
ISERROR, 108, 405
ISEVEN, 109, 405
ISLOGICAL, 109, 405

How can we make this index more useful? Email us at indexes@samspublishing.com

440 functions

ISNA, 108, 405
ISNONTEXT, 109, 405
ISNUMBER, 108, 405
ISODD, 109, 405
ISTEXT, 109, 405
KURT, 410
LARGE, 89, 410
LEFT, 117, 411
LEN, 118, 411
LN, 103, 406
LOG, 103, 406
LOG10, 103, 406
LOOKUP, 408
LOWER, 116, 411
MATCH, 123, 408
MAX, 82, 410
MEDIAN, 83, 410
MID, 118, 411
MIN, 82, 410
MINUTE, 111
MIRR, 94, 404
MOD, 101, 406
MODE, 83, 410
MONTH, 111, 403
N, 105, 406
NETWORKDAYS,

111-112, 403
NORMDIST, 92, 410
NORMINV, 92, 410
NORMSINV, 410
NOT, 107, 405
NOW, 110, 403
NPER, 94, 404
NPV, 94, 404
OFFSET, 2, 119-122,

269-270, 309, 408

operators, 80-81
OR, 107, 405
overview, 79
PI, 97-98, 406
PMT, 94, 404
POWER, 102, 406
PPMT, 94, 404
PRODUCT, 105, 406
PV, 94, 404
QUOTIENT, 101, 406
RADIANS, 97-98, 406
RAND, 91-92, 410
RANDBETWEEN, 92
RANK, 89, 410
RATE, 94, 404
REPLACE, 118
REPT, 118, 411
RIGHT, 411
ROUND, 100, 406
ROUNDDOWN, 100, 407
ROUNDUP, 100, 407
SECOND, 111, 403
SIGN, 96, 407
SIN, 97-98, 407
SINH, 407
SLN, 92, 404
SMALL, 89, 410
SQRT, 80, 407
STANDARDIZE, 410
STDEV, 90-91, 410
SUM, 85, 410
SUMIF, 87-88, 410
SUMPRODUCT,

86-87, 411
SUMSQ, 88, 411
SUMX2MY2, 411
SUMX2PY2, 411

SUMXMY2, 411
SYD, 92, 404
TAN, 97-98, 407
TANH, 407
TEXT, 116-117, 411
TIME, 110, 403
TIMEVALUE, 111, 403
TODAY, 110, 403
TRUE, 106
TRUNC, 101, 407
TYPE, 109, 408
UPPER, 116, 411
VALUE, 105, 407
VAR, 90-91, 411
VDB, 92, 404
VLOOKUP, 124-125, 305,

326-327, 408
WEEKDAY, 113, 403
WEEKNUM, 113, 403
WORKDAY, 403
Xcelsius support for, 22
YEAR, 111, 403
YEARFRAC, 113, 403

FV function, 94, 404

G

GAAP (generally accepted
accounting principles), 261

gauges
example, 171-173
overview, 171
wraparound gauges,

174-175

General tab (Properties
panel), 24

441Interactive Calendar component

generally accepted
accounting principles
(GAAP), 261

GEOMEAN function, 409

goals of Xcelsius, 16-17

gradients in Rectangle
component, 221

graphical viewers, 36

greater-than operator
(>), 413

greater-than-or-equal-to
operator (>=), 413

Grid component, 225-226

grouped data
background groups, 194
components, 50
dynamic data grouping,

137-138
multi-layer invisibility,

198-199
viewing with stacked charts,

135-136

Grow option (chart
scaling), 206

H

halo sensor technique, 147

hardwired values, isolating,
76-77

hardwired values,
troubleshooting, 325-326

HARMEAN function, 409

hexadecimal numbers, 219

hidden components, 50

histograms, 231-234

History component, 226

history of spreadsheets,
12-13

HLOOKUP function,
124-125, 407

Horizontal Line
component, 222

horizontal lines, 62

horizontal sliders, 160-161

hotspots for Icon
component, 213-214

HOUR function, 111

HTML (Hypertext Markup
Language)

formatting
in Input Text Area

component, 218-220
in Label component,

218-220
overview, 303
rendering in Xcelsius,

302-305
smart text, 304-305
text color, 305-306

hybrid cell references, 74-75

Hypertext Markup
Language. See HTML

hyphen (-)
minus operator, 413
subtraction operator, 414

I

Icon component, hotspots
for, 213-214

IF function, 107, 404

if-then-else logic, 107

Image component, 40, 222

importing spreadsheets into
Xcelsius, 30

improperly structured data,
troubleshooting, 331-333

income statements, 262

INDEX function, 122-123,
270, 407

individual data points, dis-
playing values of, 147

infix operators, 81

inline alerts, 309-310

Input Text Area
component, 218-220

Input Text component,
216-218

installing
custom components,

372-373
Excel, 18
Flex Builder, 377
Xcelsius 2008, 18
Xcelsius SDK, 376

INT function, 100, 406

Interactive Calendar
component, 40

How can we make this index more useful? Email us at indexes@samspublishing.com

442 interactivity

interactivity
Accordion Menu

component, 209
Background component,

220-222
Calendar component, 223
chart label abbreviations,

206-207
chart scaling, 204-206
Check Box component,

209-210
Combo Box component,

210-211
data animation, 206
drilling down in data series,

207-208
Filter component, 214-216
Fisheye component,

211-212
Grid component, 225-226
History component, 226
Horizontal Line

component, 222
Icon component, 213-214
Image component, 222
Input Text Area

component, 218-220
Label component, 218-220
List Box component,

210-211
Local Scenario Button

component, 223
Print Button

component, 222
Rectangle component,

220-222
Reset Button

component, 223

Sliding Picture Menu
component, 211-212

Spreadsheet Table
component, 224-225

text components, 216-218
Ticker component, 211
Trend Icon component, 224
Vertical Line

component, 222

INTERCEPT function, 105,
252, 406

interface design, 154

international maps
Connected Maps reference

implementation, 291-294
overview, 289
World by Continent Map

component, 290

invisible components, 50

IPMT function, 94, 404

IRR function, 94, 404

ISBLANK function, 107, 404

ISERR function, 108, 404

ISERROR function, 108, 405

ISEVEN function, 109, 405

ISLOGICAL function,
109, 405

ISNA function, 108, 405

ISNONTEXT function,
109, 405

ISNUMBER function,
108, 405

ISODD function, 405

isolating hardwired
values, 76-77

ISSODD function, 109

ISTEXT function, 109, 405

K-L

KURT function, 410

Label component, 53-54,
218-220

label-based menus,
controlling multiple screens
with, 192-193

labels, 53-54

LARGE function, 89, 410

largest values in dataset,
returning, 89

learning curves, 103

LEFT function, 117, 411

LEN function, 118, 411

less-than operator (<), 413

less-than-or-equal-to
operator (<=), 413

limits on dashboards, 29-30

line charts, viewing data in,
343-344

lines, 62

List Box component,
210-211, 309-310

List view, 20, 47, 137

lists, correlated, 143

LN function, 103, 406

loading custom components,
391-393

443MONTH function

Local Scenario Button
component, 223

LOG function, 103, 406

LOG10 function, 103, 406

logarithmic scaling, 152-153

logarithms, calculating,
102-103

logic functions, 404-405

logic operators, 107

logic switches, 107

logical equality
operator (=), 412

logical values, 411-412

LOOKUP function, 408

LOWER function, 116, 411

M

Macintosh platforms, 17

macros, Xcelsius support
for, 22

Map components, 35-36
Augmented Map

Framework, 280-283
colorizing, 283-286
Connected Maps reference

implementation, 291-294
Data Insertion feature, 278
display data, 277-278
Excel XML maps, 359-364
multi-selection maps,

287-288
new features, 40
obtaining further

information with, 278-279

overview, 61, 276
region keys, 277
regions, 276-277
tally maps, 288-289
World by Continent Map

component, 290
Xcelsius product family

comparison, 421

MapRegions.xls file, 290

maps. See Map components

MATCH function, 123, 408

matching, 262

mathematical functions, 95,
405-407. See also
aggregation functions;
financial functions;
statistical functions

ABS, 96-97
ACOS, 97-98
ASIN, 97
ATAN, 97
ATAN2, 99
CEILING, 100
COS, 97-98
DEGREES, 97, 99
DOLLAR, 101
EVEN, 100
EXP, 103
FALSE, 106
financial functions, 92
FLOOR, 100
FORECAST, 104-105
INT, 100
INTERCEPT, 105
LN, 103
LOG, 103
LOG10, 103

MOD, 101
N, 105
PI, 97-98
POWER, 102
PRODUCT, 105
QUOTIENT, 101
RADIANS, 97-98
ROUND, 100
ROUNDDOWN, 100
ROUNDUP, 100
SIGN, 96
SIN, 97-98
TAN, 97-98
TRUE, 106
TRUNC, 101
VALUE, 105

MAX function, 82, 410

maximum value,
returning, 82

mean values, 235

MEDIAN function, 83, 410

median, calculating, 83

method of least squares, 255

Microsoft Excel. See Excel

MID function, 118, 411

MIN function, 82, 410

minimum value,
returning, 82

minus operator (-), 413

MINUTE function, 111

MIRR function, 94, 404

MOD function, 101, 406

MODE function, 83, 410

MONTH function, 111, 403

How can we make this index more useful? Email us at indexes@samspublishing.com

444 most common value in dataset, returning

most common value in
dataset, returning, 83

mu (μ), 243

multi-layer visibility
activating visibility patterns

with switch circuit, 197
designing by specification,

193-197
group management,

198-199
multiple screens

controlled by label-based
menu, 192-193

overview, 192
when to use, 199-200

multi-selection maps, 36,
287-288

multiple data series, 301,
339-341

multiple information sources
in single view, 37

multiple screens, controlling
with label-based menus,
192-193

multiplication
operator (*), 414

multiplication tables, cell
references in, 327

mutually exclusive visibility,
190-192

activating visibility patterns
with switch circuit, 197

designing by specification,
193-197

group management,
198-199

multiple screens controlled
by label-based menu,
192-193

when to use, 199-200

MXML-based
components, 395

MXML code, connecting
ActionScript to, 385

N

N function, 105, 406

Name Manager window, 78

named ranges, 77-79

negation operator (-), 81

negative values,
displaying, 147

negatively directed
sliders, 162

net present value, 94-95

NETWORKDAYS function,
111-112, 403

new features of Xcelsius
2008, 39-41

existing component
improvements, 40

new components, list of, 40
spreadsheet support, 39
web connectivity, 41

normal distribution, 92,
247-250

NORMDIST function,
92, 410

NORMINV function,
92, 410

NORMSINV function, 410

NOT function, 107, 405

not-equal operator, 414

NOW function, 110, 403

NPER function, 94, 404

NPV function, 94, 404

numbers
absolute number, 96
converting text to numbered

equivalent, 105
random numbers,

generating, 91-92
rounding, 100
transposed digits,

detecting, 318-319
troubleshooting rounding

and truncation errors,
322-324

O

Object Browser pane
definition of, 46
grouping components, 50
overview, 48-50
positioning, 51

occlusion, avoiding, 342-343

Off option (chart
scaling), 206

OFFSET function, 2,
119-122, 269-270, 309, 408

open-ended dashboards, 355

open-source dashboards,
spreadsheets as, 13-16

445QUOTIENT function

operating systems,
compatibility with
Xcelsius, 17

operators, 80-81
conditional operators, 106
logic operators, 107
overview, 80
precedence, 81
table of, 412-414

OR function, 107, 405

P

packaging
custom components,

387-391
dashboards, 354

Panel Container
component, 58

panels
panel containers, 58
Properties

definition of, 46
positioning, 51

panes
Components, 19

definition of, 46
positioning, 51
views, 20, 47

Object Browser
definition of, 46
grouping

components, 50
overview, 48-50
positioning, 51

Quick Start, 18, 46

parsing dates/time, 111

pasting components
between XLF files, 63

percentage symbols in cell
references, 76

PI function, 97-98, 406

Pie Chart component, 54-56,
139-140

plus sign (+), 414

PMT function, 94, 404

policy, cross-domain policy
files, 368-369

poorly positioned data,
troubleshooting, 324-325

population standard
deviation, 235-236

positioning panes/panels, 51

postfix operators, 81

POWER function, 102, 406

PPMT function, 94, 404

precedence of operators, 81

precision functions, 99-101

prefix operators, 81

Print Button
component, 222

printing, 40

probability
binomial distributions,

244-246
conditional probability,

239-242
continuous probability

distributions, 246

discrete probability
distributions, 242-244

normal distribution, 92,
247-250

overview, 237
probabilistic reasoning,

237-239
uniform distribution, 92

PRODUCT function,
105, 406

progress bars, 166
smart progress bars,

310-313

projecting trends, 104-105

Properties panel
Alerts tab, 24
Appearance tab, 24
Behavior tab, 24
General tab, 24
positioning, 51
viewing, 22-24

property sheets,
386-387, 394

PV function, 94, 404

Q

Quick Start pane, 18, 46

QUOTIENT function,
101, 406

How can we make this index more useful? Email us at indexes@samspublishing.com

446 RADIANS function

R

RADIANS function,
97-98, 406

RAND function, 91-92, 410

RANDBETWEEN
function, 92

random numbers,
generating, 91-92

range operator (:), 414

ranges, named, 77-79

RANK function, 89, 410

rank of numbers,
returning, 89

RATE function, 94, 404

ratio analysis, 266-267
in dashboards, 39
ratio analyzer dashboard,

267-270
Z score, 271-272

ratio analyzer dashboard,
266-270

raw data, dealing with,
319-321

Rectangle component, 62
interactivity, 220-222
new features, 40

reference functions, 407-408

references (cell), 73
absolute references, 73-74
example, 75-76
hybrid cell references, 74-75
isolating hardwired

values, 76-77

percentage symbols in, 76
relative references, 74

region keys, 277

regions of maps, 276-277

relative references, 74

remote connectivity of
desktop client portals, 37

REPLACE function, 118

reports, aging, 264-266

REPT function, 118, 411

repurposing existing
spreadsheets, 329-331

Reset Button
component, 223

Reset Chart Scale option
(chart scaling), 206

resizing canvas, 48

restructuring text
CONCATENATE

function, 119
EXACT function, 119
FIND function, 118
LEFT function, 117
LEN function, 118
MID function, 118
REPLACE function, 118
REPT function, 118

RGB color, specifying in
HTML, 220

RIGHT function, 411

ROUND function, 100, 406

ROUNDDOWN
function, 100, 407

rounding errors, 322-324

rounding numbers, 100

ROUNDUP function,
100, 407

S

sample standard deviation,
235-236

sampling, 250-252

scaling
auto-scaling, 150
charts, 204-206
dials, 167-168
logarithmic scaling, 152-153
scaling laboratory

dashboard, 150-152
sliders, 167-168
troubleshooting, 328-329

scaling laboratory dashboard,
150-152

SDK, installing, 376

SECOND function, 111, 403

Select a Range dialog
box, 24-25

Selector components,
59-60, 420

selector-style
spreadsheet functions

CHOOSE, 123
HLOOKUP, 124-125
INDEX, 122-123
MATCH, 123
OFFSET, 119-122
VLOOKUP, 124-125

sensitivity analysis, 38

447spreadsheets

shared component
(Shared Component
Framework), 170

Shared Component
Framework, 36, 169-171

sharing dials, 169

sigma (∑), 235

SIGN function, 96, 407

SIN function, 97-98, 407

Single Value components
dials

enhancing, 168-169
overview, 166-167
scaling, 167-168
Shared Component

Framework, 169-171
sharing, 169

dual sliders, 164-166
gauges

example, 171-173
overview, 171
wraparound gauges,

174-175
horizontal sliders, 160-161
negatively directed

sliders, 162
overview, 60, 158
progress bars, 166
smart sliders, 162-164
spinners, 175
table of, 159
vertical sliders, 160-161
Xcelsius product family

comparison, 420

SINH function, 407

sizing canvas, 48

slash (/), 412

sliders
BasicHorizontalSlider

connecting ActionScript
and MXML code, 385

creating ActionScript
code for, 378-384

generating SWF files
for, 385-386

dual sliders, 164-166
horizontal sliders, 160-161
negatively directed

sliders, 162
overview, 159
scaling, 167-168
smart sliders, 162-164,

310-313
vertical sliders, 160-161

Sliding Picture Menu
component, 211-212

SLN function, 92, 404

SMALL function, 89, 410

smallest values in dataset,
returning, 89

smart sliders, 162-164,
310-313

smart text, 302, 304-305.
See also alerts

advantages of, 313
spinners, 306-309
text color, 305-306

snapshots, Xcelsius product
family comparison, 418

software. See specific software

Special Edition Using Excel
2003, 71

Special Edition Using Excel
2007, 71

spinners, 175, 306-309

splash screens, 194

splicing text
CONCATENATE

function, 119
EXACT function, 119
FIND function, 118
LEFT function, 117
LEN function, 118
MID function, 118
REPLACE function, 118
REPT function, 118

Spreadsheet Table
component, 59, 224-225

spreadsheets
capabilities, 70-71
cells

evaluating, 79-80
named ranges, 77-79
references, 73-77

embedded formulas, 34
formulas, 29-30

chaining, 72
conditional formulas,

107-108
simple formulas, 71-72
structure of, 71

functions. See functions
history of, 12-13
importing into Xcelsius, 30
logical values, 411-412

How can we make this index more useful? Email us at indexes@samspublishing.com

448 Spreadsheets

as open-source dashboards,
13-16

operators
conditional

operators, 106
logic operators, 107
overview, 80
precedence, 81
table of, 412-414

repurposing existing
spreadsheets, 329-331

support for, 39
text

formatting appearance
of, 116-117

splicing and
restructuring, 117-119

troubleshooting
formula problems,

325-327
improperly structured

data, 331-333
poorly positioned data,

324-325
raw data, 319-321
rounding and truncation

errors, 322-324
scaling issues, 328-329
transposed digits,

318-319
unclean data, 320-322

underlying spreadsheet
binding component

attributes to, 24-26
definition of, 13, 46
overview, 22

virtual spreadsheet
compared to standalone

Excel environment,
21-22

definition of, 13
overview, 21
viewing, 21

SQRT function, 80, 407

Stacked Area Chart
component, 135-136

stacked charts, 135-136

standard deviation, 90-91,
235-236

STANDARDIZE
function, 410

statement of cash, 262

statistical functions,
82-84, 408-411

AVERAGE, 90
NORMDIST, 92
NORMINV, 92
RAND, 91-92
RANDBETWEEN, 92
STDEV, 90-91
VAR, 90-91

statistics, 38. See
also probability

averages, 235
histograms, 231-234
importance of, 231
mean values, 235
overview, 230-231
sampling, 250-252
standard deviation, 235-236

statistical functions, 82-84,
408-411

AVERAGE, 90
NORMDIST, 92
NORMINV, 92
RAND, 91-92
RANDBETWEEN, 92
STDEV, 90-91
VAR, 90-91

trend analysis
FORECAST

function, 252
forecasting trends,

104-105
INTERCEPT

function, 252
method of least

squares, 255
overview, 252
Trend Analyzer

component, 252-255

STDEV function, 90-91, 410

subtraction operator (-), 414

SUM function, 85, 410

SUMIF function, 87-88, 410

SUMPRODUCT function,
86-87, 411

sums, calculating, 86-88
SUM function, 85
SUMIF function, 87-88
SUMPRODUCT

function, 86-87
SUMSQ function, 88

SUMSQ function, 88, 411

SUMX2MY2 function, 411

449Toggle Button component

SUMX2PY2 function, 411

SUMXMY2 function, 411

SWF files, generating
for custom components,
385-386

switch circuit, 197

switch map, 197

SYD function, 92, 404

T

Tab Set component, 58,
182-184

tables, 327

tally maps, 36, 288-289

TAN function, 97-98, 407

TANH function, 407

templates, 63-64

testing custom components,
391-393

text components
converting to numbered

equivalent, 105
fonts

overview, 66-67
Xcelsius product family

comparison, 417
formatting appearance of

LOWER function, 116
new features, 40
TEXT function, 116-117
UPPER function, 116

interactivity, 216-218

smart text, 302, 304-305.
See also alerts

advantages of, 313
spinners, 306-309
text color, 305-306

splicing and restructuring
CONCATENATE

function, 119
EXACT function, 119
FIND function, 118
LEFT function, 117
LEN function, 118
MID function, 118
REPLACE function, 118
REPT function, 118

Xcelsius product family
comparison, 422

text-based components
labels, 53-54
spinners, 306-309

TEXT function,
116-117, 411

text-related functions, 411

themes, 64-65, 131

Ticker component, 211

time
accounting for in financial

analysis, 263-264
aging reports, 264-266
time and date awareness,

adding to dashboards
calendar arithmetic,

113-115
DATE function, 110
DATEVALUE

function, 110

DAY function, 111
DAYS360 function, 112
EDATE function, 112
EOMONTH

function, 112
HOUR function, 111
MINUTE function, 111
MONTH function, 111
NETWORKDAYS

function, 111-112
NOW function, 110
overview, 110
SECOND function, 111
TIME function, 110
TIMEVALUE

function, 111
TODAY function, 110
WEEKDAY

function, 113
WEEKNUM

function, 113
YEAR function, 111
YEARFRAC

function, 113

TIME function, 110, 403

time/date functions, 402-403

timelines
adding data to, 132-134
timeline viewers, 37

TIMEVALUE function,
111, 403

TODAY function, 110, 403

Toggle Button
component, 190

How can we make this index more useful? Email us at indexes@samspublishing.com

450 toggling

toggling
mutually exclusive visibility,

190-191
visibility, 189-190

toolbars, 46

traffic light alerts, 210-211

transparency
adjusting, 342
in Rectangle

component, 221

transposed digits, detecting,
318-319

Tree Map component,
148-149

Tree view, 20

trend analysis
FORECAST function, 252
forecasting trends, 104-105
INTERCEPT function, 252
method of least squares, 255
overview, 252
Trend Analyzer component,

252-255

Trend Analyzer component,
252-255

Trend Icon component,
172, 224

trialware packages, 18

trigonometry functions,
97-99

troubleshooting
digitization of data

Category I digitization
errors, 317

Category II digitization
errors, 317

Category III digitization
errors, 318

overview, 316-317
spreadsheets

formula problems,
325-327

improperly structured
data, 331-333

poorly positioned data,
324-325

raw data, 319-321
repurposing existing

spreadsheets, 329-331
rounding and truncation

errors, 322-324
scaling issues, 328-329
transposed digits,

318-319
unclean data, 320-322

TRUE function, 106

TRUE value, 412

TRUNC function, 101, 407

truncation errors, 322-324

TYPE function, 109, 408

U

uncertainty analysis, 39

unclean data, dealing with,
320-322

underlying spreadsheet
binding component

attributes to, 24-26
definition of, 13, 46
overview, 22

uniform distribution, 92

uniform look and feel,
designing

context switching, 62-63
fonts, 66-67
pasting components

between XLF files, 63
templates, 63-64
themes, 64-65

union (,) operator, 80

updater facility
(Shared Component
Framework), 171

UPPER function, 116, 411

V

Value at Risk (VaR), 258-261

VALUE function, 105, 407

value-based alerts, 300

VaR (Value at Risk), 258-261

VAR function, 90-91, 411

variance, estimating, 90-91

VBA code, Xcelsius
support for, 22

VDB function, 92, 404

Vertical Line
component, 222

vertical lines, 62

vertical sliders, 160-161

View menu commands, 19

viewing
line chart data, 343-344
Properties panel, 22, 24
virtual spreadsheet, 21

451XLF files, pasting components between

views
Accordion view, 20-21, 47
Folder view, 47
List view, 20, 47
Tree view, 20

virtual spreadsheet
compared to standalone

Excel environment, 21-22
definition of, 13
overview, 21
viewing, 21

visibility
dynamic visibility, 50,

188-189
hidden components, 50
invisible components, 50
managing, 38
multi-layer visibility

activating visibility
patterns with switch
circuit, 197

designing by
specification, 193-197

group management,
198-199

multiple screens
controlled by label-
based menu, 192-193

overview, 192
when to use, 199-200

mutually exclusive visibility,
190-191

overview, 188
toggling, 189-190

visualizing data
avoiding occlusion, 342-343
filled radar charts with

alerts, 341-342

interface design, 154
line chart data, 343-344
multiple data series with

similar values, 339-341
overview, 339

VLOOKUP function,
124-125, 305, 326-327, 408

W

Web connectivity, 41, 62, 422

Web Services, 365-368

WEEKDAY function,
113, 403

WEEKNUM function,
113, 403

Welcome screens, 194

windows, Name Manager, 78

WORKDAY function, 403

workflows, custom
component construction
workflow, 373

workspace
customizing, 47
customizing layout

canvas size, 48
Components Pane

views, 47
Object Browser, 48-50
pane layout, 51

definition of, 18
elements of, 46

World by Continent Map
component, 290

wraparound gauges, 174-175

X

Xcelsius 2008
Engage, 37, 40
installation, 18
new features, 39-41

existing component
improvements, 40

new components,
list of, 40

spreadsheet support, 39
web connectivity, 41

Xcelsius Data Manager, 355

Xcelsius product family
comparison, 416

Art & Background
components, 422

art aids, 418-419
Chart components, 419
Container components, 420
data update options, 417
efficiency features, 417
export options, 418
font support options, 417
general functionality, 416
Map components, 421
other components, 422
Selector components, 420
Single-Value

components, 420
snapshot options, 418
Text components, 422
Web Connectivity

components, 422

Xcelsius SDK, installing, 376

XLF files, pasting
components between, 63

How can we make this index more useful? Email us at indexes@samspublishing.com

452 XML

XML
Excel XML maps, 359-364
overview, 356
setting up for Xcelsius

with Excel 2003, 357-359
with Excel 2007, 357

XY charts, 141-145

Y-Z

YEAR function, 111, 403

YEARFRAC function,
113, 403

Z score, 271-272

This page intentionally left blank

Crystal Reports 2008 Official Guide

By Neil Fitzgerald, et al.

ISBN13—9780672329890

ALSO AVAI LAB LE FROM B USI N ESS OBJ ECTS PR ESS!

This is the only book on Crystal Reports 2008 you’ll ever need. Through hands-on examples, you’ll

systematically master Crystal Reports 2008’s most powerful features for creating, distributing, or

delivering content. One step at a time, long-time Crystal Reports insiders take you from the basics

through advanced content creation and delivery using Crystal Reports Server, crystalreports.com,

and the offline Crystal Reports Viewer.

The authors cover every significant enhancement introduced in Crystal Reports 2008, including its

improved user and developer experience, new visualization options, and more robust Web services

capabilities. They conclude by showing how to use Crystal Reports’ powerful .NET and Java SDKs to

customize and extend enterprise reporting in virtually unlimited ways. Whether you’re a DBA, data

warehousing professional, business intelligence professional, reporting specialist, or developer, this

book has the answers you need.

For more information, including a free sample chapter, visit informit.com/title/9780672329890.

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

www.InformIT.com/learn

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of Xcelsius 2008 Dashboard Best Practices includes access to a free
online edition for 45 days through the Safari Books Online subscription service. Nearly
every Sams book is available online through Safari Books Online, along with more
than 5,000 other technical books and videos from publishers such as Addison-Wesley
Professional, Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, and Que.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: ZJFOSBI.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.6

Figure 2.5

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

	Contents
	Introduction
	Getting What You Need from This Book
	Locating Specific Techniques Quickly
	How to Read This Book
	Accessing Legacy Xcelsius Files
	Best Practices Versus Shortcuts

	What This Book Covers
	Conventions Used in This Book

	I: Xcelsius 2008 Fundamentals
	1 Motivation for Using Xcelsius 2008
	The Original Killer App
	The Spreadsheet as an Open-Source Dashboard
	From Excel to Xcelsius
	Where to Go from Here
	Closing Thoughts

	2 Showcase of Xcelsius 2008 Dashboards
	Embedding Spreadsheet Smarts in a Dashboard
	Thinking Creatively with Colors and Visual Components
	Putting Your Data on the Map
	Rethinking Dashboard Interface Design
	Choosing the Data You Want to View
	Desktop Client Portals
	Viewing Multiple Sources of Information in a Single View
	Managing the Visibility of Components in Your Dashboards
	Embedding Visual Analytics in a Dashboard
	Interesting Approaches to Financial Analysis in Xcelsius
	New Features in Xcelsius 2008
	Closing Thoughts

	3 Getting Familiar with Xcelsius 2008
	Learning to Build Dashboards
	Organizing the Xcelsius Workspace
	Using the Dashboard Design Facilities of Xcelsius
	Achieving a Uniform Look and Feel in Dashboards and Visualizations
	Closing Thoughts

	4 Embedded Spreadsheets: The Secret Sauce of Xcelsius 2008
	Spreadsheet Fundamentals
	Building Spreadsheet Models in Xcelsius 2008
	Using Excel Functions in Xcelsius 2008
	Mathematical and Statistical Functions in Xcelsius 2008
	Making Dashboards Date and Time Aware
	Manipulating Text in Spreadsheet Formulas
	Using Selector-Style Spreadsheet Functions
	Closing Thoughts

	5 Using Charts and Graphs to Represent Data
	Choosing the Right Components for a Dashboard
	Building on Your Visualizations
	Viewing Grouped Data with Stacked Charts
	Working with XY and Bubble Charts
	Working with Tree Maps
	Issues and Techniques Related to Scaling
	Putting Visual Data Analysis into Focus
	Closing Thoughts

	6 Single Value Components: Dials, Gauges, Speedometers, and the Like
	Understanding the Single Value Components
	Working with Sliders and Progress Bars
	Working with Dials
	Working with Gauges
	Working with Spinners
	Closing Thoughts

	II: Xcelsius 2008 Best Practices and Techniques
	7 Using Multi-Layer Visibility in Your Dashboards and Visualizations
	Taming Complexity and Usability by Making Presentations Compact
	Controlling the Visibility of Individual Components in a Dashboard
	Managing Multi-Layer Visibility
	Closing Thoughts

	8 Managing Interactivity
	Interacting with Chart Data
	Data Animation
	Chart Label Size
	Drill Down Behavior
	Interacting with Selectors
	Interacting with Single Value Components, Maps, and Text Components
	Labels and Input Text Areas
	Art & Background Components: Using the Image Component
	Interacting with Web Connectivity and Other Components
	Closing Thoughts

	9 Xcelsius and Statistics
	Understanding Statistics
	Understanding Probabilities
	Probability Distributions
	Closing Thoughts

	10 Financial Analysis
	Some Basic Ideas in Accounting and Their Importance in Financial Analysis
	Value at Risk (VaR)
	Bringing Accounting into the Dashboard Equation
	Accounting for the Element of Time in a Financial Analysis
	Financial Ratio Analysis
	Closing Thoughts

	11 Maps in Xcelsius
	Basic Ideas About Maps in Xcelsius
	An Augmented Map Framework
	Colorizing Maps
	Multiple-Region Map Selection and Tally Maps
	International Map Types
	Closing Thoughts

	12 Smart Data and Alerts
	Understanding Alerts in Xcelsius
	Unconventional Uses of Conventional Components
	Going Beyond the Built-in Alerts in Xcelsius
	Closing Thoughts

	13 Working with Less-Than-Optimal Data
	The Digitization of Data
	Fixing Problematic Spreadsheets
	Dealing with Improperly Structured Data
	Closing Thoughts

	14 Other Dashboard Techniques and Practices
	An Important Preliminary Issue
	Simple Fixes in Visualizing Data
	Constructing ABC (Actual Budget Comparison) Charts
	Using a Candlestick Component as a Box Plot
	Closing Thoughts

	III: Advanced Features
	15 XML and Data Connectivity
	Strategies for Packaging Dashboard Information
	The Xcelsius Data Manager
	Adding XML Maps to Xcelsius 2008
	Connecting Your Dashboards to Web Services
	Setting Up Cross-Domain Policy Files
	Closing Thoughts

	16 Creating Custom Components for Fun and Profit
	Understanding Custom Components
	Programming with Flex Builder
	Getting Ready to Build Custom Components
	Building Custom Components
	The Relationship Between a Custom Component and a Property Sheet
	Packaging and Deploying Your Custom Components
	Where to Go from Here
	Closing Thoughts

	IV: Appendices
	A: Supported Spreadsheet Functions in Xcelsius 2008
	Supported Spreadsheet Functions in Xcelsius 2008
	Logical Values and Spreadsheet Operators in Xcelsius 2008

	B: Xcelsius Product Family Comparison
	Xcelsius Functionality
	Xcelsius Components

	C: Xcelsius Best Practice Techniques and Hip Pocket Tips

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

