

800 East 96th St., Indianapolis, Indiana, 46240 USA

Andrew Watt and Jonathan Watt
with Jinjer Simon and Jim O’Donnell

JavaScript™

in 21 Days

Teach Yourself

00 2978 FM 4/10/02 10:45 AM Page i

Sams Teach Yourself JavaScript™

in 21 Days
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32297-8

Library of Congress Catalog Card Number: 2001092863

Printed in the United States of America

First Printing: May 2002

04 03 02 6 5 4 3

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

ACQUISITIONS EDITOR

Betsy Brown

DEVELOPMENT EDITOR

Jonathan Steever

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Tony Reitz

COPY EDITOR

Karen Whitehouse

INDEXER

Larry Sweazy

PROOFREADER

Cindy Long

TECHNICAL EDITOR

Jim O’Donnell

TEAM COORDINATOR

Amy Patton

INTERIOR DESIGN

Gary Adair

COVER DESIGN

Aren Howell

PRODUCTION

Ayanna Lacey

00 2978 FM 4/10/02 10:45 AM Page ii

Contents at a Glance
Introduction 1

Week 1 7

1 Getting the Basics Right 9

2 Working with Data 47

3 Functions and Statements 79

4 JavaScript Is Object-Based 119

5 An Introduction to Arrays 161

6 HTML Forms and the String Object 201

7 Numbers and Math 249

Week 2 283

8 The Browser Issue 285

9 Date and Time Manipulation 307

10 Events and Event Handling 331

11 Dynamic HTML 357

12 Windows and Frames 383

13 Regular Expressions Make It Easier 415

14 Advanced Array Management 453

Week 3 493

15 Debugging and Error Handling 495

16 Cookies: Storing Persistent Data 531

17 Privacy and Security 565

18 Plugins and Applets 583

19 Creating Your Own Objects 603

20 JavaScript in E-Commerce 621

21 JavaScript and SVG 649

00 2978 FM 4/10/02 10:45 AM Page iii

Appendixes 687

A New Features in JavaScript 1.5 689

B Color Codes 693

C Functions Reference 699

D Resources Online 717

E A Short History of JavaScript 723

Index 729

00 2978 FM 4/10/02 10:45 AM Page iv

Contents
Introduction 1

WEEK 1 A Sound Foundation 7

DAY 1 Getting the Basics Right 9

Introducing JavaScript ..10
What Is JavaScript? ..10
What Does JavaScript Do? ..12

JavaScript in Context ..12
A Requirement for More Than Just HTML ..12
Server-Side or Client-Side?..13
Server-Side ..13
Client-Side ..14
Reality ..15

Selecting the Right Technology ..15
JavaScript, Jscript, and ECMAScript ..18

JavaScript..18
JScript ..18
ECMAScript ..18

Let’s Get Started ..19
Choosing a Text Editor and Web Browser ..19
Basic Things to Remember ..22
Where Does JavaScript Go? ..23
Reusing Code..32
Documenting Your Code ..33
Reserved Words ..34

Data Types ..36
Numbers..36
Boolean ..38
Strings ..38

Some Useful Tools ..41
The alert() Function ..41
The confirm() Function ..42
The prompt() Function ..43

Summary ..44
Workshop ..44

Q&A ..44
Quiz ..44
Quiz Answers..45
Exercises ..45

00 2978 FM 4/10/02 10:45 AM Page v

DAY 2 Working with Data 47

Simple Data Storage ..48
Variables ..48
Constants ..53

Operators..54
Understanding Operators..55

JavaScript Operators ..57
Arithmetic Operators ..57
Comparison Operators..60
Conditional Operator ..65
Logical Operators ..67
String Operators..70
Assignment Operators ..71
Bitwise Operators ..73
Operator Precedence ..75

Summary ..76
Workshop ..76

Q&A ..77
Quiz ..77
Quiz Answers..77
Exercises ..77

DAY 3 Functions and Statements 79

User Defined Functions ..80
What Is a Function?..80
Creating a Function ..80
Using Functions..82

Predefined Global Functions ..91
URI Encoding and Decoding ..92
Evaluating Strings as Code ..94
Arithmetic Functions ..95

What Is a Statement? ..102
Control Statements ..103

Conditional Statements ..103
Loop Statements ..110

The while Statement ..111
The do while Statement ..112
The for Statement ..113
The for in Statement ..116

Summary ..117
Workshop ..117

Q&A ..117
Quiz ..117

vi Sams Teach Yourself JavaScript in 21 Days

00 2978 FM 4/10/02 10:45 AM Page vi

Quiz Answers..118
Exercise ..118

DAY 4 JavaScript Is Object-Based 119

Understanding Objects ..120
What Are Objects?..120

Client-Side JavaScript Objects ..122
The window Object..122
The Dot Notation..122
Variable or Property? Function or Method? ..124
The window Object’s Children ..129

The document Object ..130
Properties ..131
Methods ..133
Child Objects ..137
The body Object..140

Environment Objects ..141
The location Object ..142
Loading a New Page ..143
Accessing the URL ..144
The history Object ..147
The navigator Object ..149
The screen Object..150

Core JavaScript Objects ..150
Exploring an Object ..154
Summary ..158
Workshop ..159

Q&A ..159
Quiz ..159
Quiz Answers..159
Exercises ..159

DAY 5 An Introduction to Arrays 161

What Is an Array? ..161
Creating an Array ..164

Providing Individual Arguments ..164
Creating an Empty Array and Populating It ..165
Array Literals..167

Accessing Arrays ..168
Parallel Arrays ..171

Array Properties ..174

Contents vii

00 2978 FM 4/10/02 10:45 AM Page vii

Array Methods ..179
The toString() Method ..180
The toLocaleString() Method ..180
The join() Method ..181
Adding and Removing Elements from an Array..182
The reverse() Method ..189
The toSource() Method ..193
The valueOf() Method ..193

Associative Arrays ..193
Storing Objects in Array Elements ..197
Summary ..199
Workshop ..199

Q&A ..199
Quiz ..199
Quiz Answers..200
Exercise ..200

DAY 6 HTML Forms and the String Object 201

Collecting Data from HTML Forms..202
Why Use JavaScript in Forms? ..205
Accessing Form Elements Using JavaScript..205
Properties of the <form> Element ..206
Methods of the Form Object ..211

Form Elements ..215
The elements Collection ..216
Properties Common to Several Form Elements ..219
The text Element ..221
The textarea Element ..223
Check Boxes ..226
Radio Buttons ..228
Select Boxes ..230
Buttons..233

The String Object ..233
String Properties ..235
String Methods ..236

Checking User Input ..242
Summary ..245
Workshop ..246

Q&A ..246
Quiz ..246
Quiz Answers..246
Exercises ..247

viii Sams Teach Yourself JavaScript in 21 Days

00 2978 FM 4/10/02 10:45 AM Page viii

DAY 7 Numbers and Math 249

The Number Object ..250
Numbers in JavaScript..250
Properties of the Number object ..255
Methods of the Number Object..258
The valueOf() method ..266

The Math Object ..267
Predefined Properties ..267
Methods of the Math Object ..270
Creating Your Own Math Functions ..278

Finding the Factorial of a Number ..278
Finding the nth Root ..279
Log to Base N ..280

Summary ..281
Workshop ..281

Q&A ..281
Quiz ..281
Quiz Answers..281
Exercises ..282

WEEK 2 Let’s Take It Further 283

DAY 8 The Browser Issue 285

Different Browsers, Different JavaScript ..286
JavaScript History ..286
ECMA Standards..287

Cross-Browser Compatible Scripting ..288
Browsers That Don’t Support JavaScript ..289
Browsers with JavaScript Support Turned Off ..290
Determining Browser Information ..292
Determining Browser Support for Specific Objects297

The W3C DOM ..298
Accessing Nodes ..300

Summary ..302
Workshop ..303

Q&A ..303
Quiz ..304
Quiz Answers..304
Exercises ..305

DAY 9 Date and Time Manipulation 307

JavaScript and Dates ..308
The Date Object ..309

Creating a Specific Date Object ..310

Contents ix

00 2978 FM 4/10/02 10:45 AM Page ix

x Sams Teach Yourself JavaScript in 21 Days

Date Formatting ..312
Converting the Numeric Day and Month Values ..314
Combining Date Values ..316

Time Formatting ..317
Converting to an AM/PM Time Frame ..319
Working with Time Zones..322

Converting Date and Time Formats ..323
Date Calculations..325
Converting Between Strings and Dates..327

Summary ..327
Workshop ..328

Q&A ..328
Quiz ..328
Quiz Answers..328
Exercises ..329

DAY 10 Events and Event Handling 331

Understanding Events ..332
Creating an Event Handler ..332

Handling an Event with a JavaScript Statement ..333
Handling Events with JavaScript Function Calls ..334
Capturing Events Directly Within JavaScript ..335

Types of Events..337
How to Handle Events ..339

Monitoring Form Changes ..339
Working with Keyboard Events ..342
Monitoring an Object’s Focus ..344
Monitoring Window and Document Events ..346
Capturing Mouse Actions ..346

Summary ..353
Workshop ..354

Q&A ..354
Quiz ..354
Quiz Answers..355
Exercises ..355

DAY 11 Dynamic HTML 357

What is DHTML?..358
Using Cascading Style Sheets ..358

Defining Styles ..359
Creating CSS Rules ..363
Creating Classes ..369

Working with Layers ..371
Changing Attributes of an HTML Element ..374

00 2978 FM 4/10/02 10:45 AM Page x

Contents xi

Moving Things ..377
Summary ..380
Workshop ..381

Q&A ..381
Quiz ..382
Quiz Answers..382
Exercises ..382

DAY 12 Windows and Frames 383

What Are Windows and Frames? ..384
Window Properties and Methods ..385

Determining Window Location ..390
Working with Window History..393
Working with the Status Line ..394
Using the Screen Object..397
Working with Frames ..399

Referencing Frame Locations ..403
Breaking Out of Frames ..406
Forcing Frames ..407

Working with Popups ..409
Summary ..411
Workshop ..412

Q&A ..412
Quiz ..412
Quiz Answers..413
Exercises ..413

DAY 13 Regular Expressions Make It Easier 415

Why Regular Expressions Are Useful ..416
What Is a Regular Expression?..417

Matching a Literal Character Sequence ..418
Some Simple Patterns ..422

Single Literal Character Choices..422
Choices Using Sequences of Literal Characters ..425
Patterns That Use Numbered Occurrences of Classes426
Patterns Using Variable Numbers of Occurrences ..430

Regular Expressions Overview..436
Defining Regular Expressions ..436

Creating a Regular Expression Using Literals ..436
Creating Regular Expressions Using a Constructor437
Special Characters ..440

Quantifiers ..444

00 2978 FM 4/10/02 10:45 AM Page xi

xii Sams Teach Yourself JavaScript in 21 Days

The Methods of the RegExp Object..446
Using the exec() Method ..446
Using the test() Method ..447

The Properties of the RegExp Object ..448
Scoping a Regular Expression Using the global Property............................448
Making a Regular Expression Case Insensitive Using the ignoreCase

Property..449
Summary ..449
Workshop ..449

Q&A ..449
Quiz ..450
Quiz Answers..450
Exercises ..450

DAY 14 Advanced Array Management 453

The Array Object’s Methods ..453
The concat() Method ..454
The slice() Method ..463
The splice() Method ..464
The sort() Method ..470

Multidimensional Arrays ..484
Summary ..491
Workshop ..491

Q&A ..491
Quiz ..491
Quiz Answers..492
Exercises ..492

WEEK 3 Advanced Topics 493

DAY 15 Debugging and Error Handling 495

Preventing and Classifying JavaScript Errors ..496
Commenting Code..496
Keeping Track of JavaScript Variables ..497
JavaScript Error Types..498

Finding Syntax Errors..498
Errors in Netscape Navigator ..499
Errors in Internet Explorer ..500

Debugging Load-Time Errors..501
Using the document.writeln() Method ..503
Using the Alternate Inputs..506

Debugging Run-Time Errors I: Discrete Events ..509
Using the alert() Method ..511
Using HTML Form Elements ..514

00 2978 FM 4/10/02 10:45 AM Page xii

Contents xiii

Debugging Run-Time Errors II: Continuous Events ..518
Advanced Debugging Techniques ..524

Creating a Run-Time JavaScript Interpreter ..524
Opening a Debug Browser Window ..527

Using JavaScript Debuggers ..527
Summary ..529
Workshop ..529

Q&A ..529
Quiz ..530
Quiz Answers..530
Exercise ..530

DAY 16 Cookies: Storing Persistent Data 531

Maintaining State ..532
Cookies: An Introduction ..533

Advantages of Cookies ..534
Limitations of Cookies ..534
Disadvantages of Cookies ..534
Cookie Myths ..535

Using Cookies..535
Retrieving Cookie Values ..536
Setting Cookie Values ..537
A Cookie Example ..542
Where Are Cookies Going?..557
Where to Find More Information About Cookies..557

Other State Maintenance Options..558
Using Query Strings to Send Information..558
How to Use Hidden Form Variables ..561

Summary ..562
Workshop ..562

Q&A ..562
Quiz ..562
Quiz Answers..563
Exercise ..563

DAY 17 Privacy and Security 565

Privacy for Web Users ..566
File Restrictions..566
Cookies ..568
Browser Window Access ..569
Computer Resource Limitations ..569

Privacy for Webmasters ..570
Same Origin Policy ..572

00 2978 FM 4/10/02 10:45 AM Page xiii

xiv Sams Teach Yourself JavaScript in 21 Days

Privacy Impact on JavaScript ..573
Password Protection ..573
Creating Signed Scripts in Netscape ..577

Summary ..580
Workshop ..580

Q&A ..580
Quiz ..581
Quiz Answers..581
Exercises ..582

DAY 18 Plugins and Applets 583

Plugins Versus Applets ..584
Detecting Plugin Installation ..585

Plugin Handling by Browsers ..586
Checking for a Plugin ..588
Determining Browser Support for a File Type ..592

Working with Plugin Objects ..594
Working with Applets ..595

Java Basics..596
Calling a Java Applet..597
Interfacing with Java Applets ..598

Summary ..599
Workshop ..599

Q&A ..599
Quiz ..600
Quiz Answers..600
Exercises ..601

DAY 19 Creating Your Own Objects 603

What Is a Custom Object? ..604
Different Data Types Within One Object ..605
Combine Multiple Data Elements into One Object605
Create Methods and Properties Specific for the Custom Object605

Use of the Constructor to Create Objects..606
Adding Properties to the Object ..606

Creating an Instance of a Custom Object..608
Accessing Properties of a Custom Object..610
Changing the Value of an Object Property ..611

Creating Object Methods ..613
Linking Objects Together ..616
Summary ..618

00 2978 FM 4/10/02 10:45 AM Page xiv

Workshop ..619
Q&A ..619
Quiz ..620
Quiz Answers..620
Exercises ..620

DAY 20 JavaScript in E-Commerce 621

Requirements for an E-Commerce Site ..622
Shop Structure..622
The Online Catalog..625

Creating the Custom Database ..625
Designing Your Catalog..627
The Bookstore Code ..629
Creation of the Books.js File ..631

Shopping Carts ..635
Solving Floating-Point Math Errors ..636
Deleting Orders ..638
Gathering User Information ..639
Coding for the Shopping Cart Page ..641
Issues to Consider ..645

Summary ..646
Workshop ..646

Q&A ..646
Quiz ..647
Quiz Answers..647
Exercises ..647

DAY 21 JavaScript and SVG 649

Overview of Scalable Vector Graphics ..650
Why SVG?..650
Why SVG and JavaScript? ..651
Basic SVG Tools ..651

Example SVG Code ..654
The SVG Document Object Model ..656

Batik DOM Viewer ..656
SVG DOM Basics ..658

Using JavaScript in SVG ..659
The <script> Element in SVG Documents ..659
Specifying the Scripting Language ..660
A Skeleton SVG Document with JavaScript..661
Adding a Title to an SVG Image..661
Creating a Simple Shape Using JavaScript ..664
Adding Text Using JavaScript ..666

Contents xv

00 2978 FM 4/10/02 10:45 AM Page xv

A Timed Animation Using JavaScript..668
Creating a Shape That Responds to Events ..670

JavaScript Beyond Declarative Animation ..676
Interaction Between the HTML and SVG DOM ..682
Finding Out More About SVG ..684
Summary ..684
Workshop ..684

Q&A ..685
Quiz ..685
Quiz Answers..685
Exercises ..686

Appendixes 687

A New Features in JavaScript 1.5 689

Number Formatting Additions ..689
toExponential Method ..689
toFixed Method..690
toPrecision Method ..690

Runtime Error Messages..690
Regular Expressions ..691

Greedy Quantifiers ..691
Non-Capturing Parentheses ..691
Support for Positive and Negative Lookahead Assertions691
The Multiple-Line Flag with RegExp ..691

Conditional Function Declarations ..691
Functions Can Be Declared Within an Expression ..692
Multiple Catch Clauses..692

B Color Codes 693

Color Names Specified as Plain-Language ..694
Hexadecimal Color Value ..695
RGB Color Values..698

C Functions Reference 699

abs() ..699
acos() ..700
asin() ..700
atan() ..700
atan2() ..701
atob() ..701
Boolean() ..701
btoa() ..702

xvi Sams Teach Yourself JavaScript in 21 Days

00 2978 FM 4/10/02 10:45 AM Page xvi

captureEvents() ..702
catch() ..703
ceil() ..703
cos() ..703
Date() ..704
decodeURI() ..704
decodeURIComponent() ..704
encodeURI() ..704
encodeURIComponent() ..705
Error() ..705
escape() ..705
eval() ..706
exp() ..706
floor() ..706
Function() ..707
GetObject() ..707
handleEvent() ..708
isFinite() ..708
isNaN() ..708
log() ..709
max() ..709
min() ..709
Number() ..710
Object() ..710
parseFloat() ..711
parseInt() ..711
pow() ..712
random() ..712
releaseEvents() ..712
rgb() ..713
round() ..713
routeEvents() ..713
ScriptEngine() ..714
sin() ..714
sqrt() ..714
tan() ..714
toString() ..715
unescape() ..715
unwatch() ..715
watch() ..716

Contents xvii

00 2978 FM 4/10/02 10:45 AM Page xvii

D Resources Online 717

JavaScript ..717
CNET Builder.COM ..717
Dynamic Drive ..718
JavaScript Kit ..718
The JavaScript Source ..718
JavaScript World ..718
Microsoft JScript Reference ..718
Netscape JavaScript Developer Central ..718
Netscape Plugin Guide ..718
W3C World Wide Web Consortium ..719
W3Schools.com..719
WebReference.com ..719

Java and Java Applets ..719
FreewareJava.com ..719
The Java Boutique ..719
Java Technology Tutorials ..719
Javalobby ..719
JavaWorld ..720
The Source for Java Technology ..720
ZDNet Developer ..720

HTML ..720
HTML Writers Guild..720
NCSA Beginners Guide to HTML ..720
Website Tips ..720

CGI ..721
CGI 101 ..721
CGI City ..721
The CGI Resource Index..721
The Common Gateway Interface..721

E A Short History of JavaScript 723

Evolution of the Internet ..723
Internet Programming Revolution ..724
JavaScript Introduction ..725
Browser Support of JavaScript Versions ..727

Index 729

00 2978 FM 4/10/02 10:45 AM Page xviii

About the Authors
Andrew Watt is an independent consultant and author with expertise in XML and Web
technologies including SVG. He is author of Designing SVG Web Graphics (New Riders)
and XPath Essentials (Wiley). He is co-author of XML Schema Essentials (Wiley) and
contributing author to XHTML, XML & Java 2 Platinum Edition (Que), Professional
XSL, Professional XML 2nd Edition, and Professional XML Meta Data (Wrox).

Jonathan Watt has been working with JavaScript for two years and has been Webmaster
of the Strathclyde University Skills Society Web site, as well as a number of his own
Web sites such as dsvg.com. His primary expertise is in the application of JavaScript in
the client-side environment, but he also has used ASP and PHP to create database-driven
Web sites. He is currently in the third year of a master’s degree in engineering at
Strathclyde.

Jinjer Simon has been actively involved in the computer industry for the past 17 years.
Her involvement in the industry has included programming, providing software technical
support, end-user training, developing written and online user documentation, creating
software tutorials, developing Internet Web sites, and writing technical books. Jinjer and
her husband currently live in Coppell, Texas, with their two children where she currently
works as a consultant for MillenniSoft Inc. by providing Web site development and
online documentation development.

Jim O’Donnell was born on October 17, 1963, in Pittsburgh, Pennsylvania (you may
forward birthday greetings to jim@odonnell.org). After a number of unproductive years,
he went to Rensselaer Polytechnic Institute for 11 years earning three degrees. He now
lives in Washington, DC, and spends most of his time building spacecraft. He has been
writing and editing books for eight years. When he isn’t working, he collects comic
books and PEZ dispensers and plays ice hockey for the DC Nationals. Go, Nats!

00 2978 FM 4/10/02 10:45 AM Page xix

Dedication
I would like to dedicate my contribution to this book to the memory
of my late father George Alec Watt—a very special human being.

—Andrew Watt

To my immediate and extended family, all of whom I love very much.
—Jonathan Watt

To Ryan Miller. Italy in 2006!
—Jim O’Donnell

Acknowledgments
Andrew Watt and Jonathan Watt

We would first like to thank Shelley Johnston, who assisted in getting this project off the
ground. We also would like to sincerely thank Betsy Brown whose ingenuity, practical
suggestions, and almost limitless patience steered this project to a successful conclusion.

We would also like to thank Jim O’Donnell, whose knowledge of JavaScript ideally fit-
ted him to be technical editor for the book and who helped pick up those small errors
that are so easy to overlook as an author.

Jon Steever did his usual thorough and perceptive editing job on the submitted manu-
script. Thanks, Jon.

Finally, thanks to our fellow authors Jinjer Simon and Jim O’Donnell, without whose
efforts the book would not have been completed.

Jinjer Simon
I would like to thank Betsy Brown for giving me the opportunity to work on this book. I
would also like to thank Karen Whitehouse, Tony Reitz, and Jon Steever—the editors at
Sams who pulled everything together on the book. I would also like to thank the
Technical Editor on this book, Jim O’Donnell. He did a great job of identifying changes
that needed to be made to enhance the content of the book. Finally I would like to thank
my husband and two children for their patience while I worked to meet the deadlines on
this book.

00 2978 FM 4/10/02 10:45 AM Page xx

Jim O’Donnell
I would like to acknowledge Betsy Brown, Jon Steever, and all of the other fine editors
I’ve worked with over the years.

00 2978 FM 4/10/02 10:45 AM Page xxi

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or e-mail address. I will carefully review your comments and share
them with the author and editors who worked on the book.

E-mail: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

00 2978 FM 4/10/02 10:45 AM Page xxii

Introduction
JavaScript has become the most important client-side scripting language on the Web. It
provides the Web developer with the functionality to create rollover effects, move objects
around the browser screen, check the validity of data entered into HTML and XHTML
forms, and much, much more. Sams Teach Yourself JavaScript in 21 Days will give you
an understanding of JavaScript that will help you carry out the day-to-day tasks that you
will use JavaScript to accomplish. As you master more and more of the important aspects
of JavaScript, you will be able to add functionality to your existing Web pages, improv-
ing their impact on the experience of your Web site visitors.

JavaScript has come a long way since it was first introduced in version 2 of the Netscape
browser. While JavaScript, currently at version 1.5, is still produced by Netscape, there is
an internationally recognized, standardized scripting language, ECMAScript, which is
made available to developers on a more open basis. Both Netscape’s JavaScript and
Microsoft’s JScript are based on ECMAScript, although both extend its functionality.

In the late 1990s, incompatibilities among JavaScript versions were a major problem for
Web developers. Many of those problems are disappearing as users upgrade to more
modern versions of browsers, which have been introduced since the ECMAScript stan-
dardization process started. With the advent of Netscape version 6, the Netscape browser
is making fuller use of standards such as the Document Object Model and Cascading
Style Sheets. Unfortunately the first release, Netscape 6.0, had a number of problems that
are being progressively ironed out as the Netscape browser transitions through versions
6.1 and later. As users discontinue use of browsers such as Netscape 3 and Internet
Explorer 3, the need to support outdated implementations of client-side scripting
becomes less. This makes writing cross-browser JavaScript code a much less frustrating
and demanding task than it was only a few years ago. Both Microsoft and Netscape gen-
uinely seem to attach importance to standards as they relate to JavaScript. Hopefully
many of the remaining problems will be ironed out in the near future.

The future for JavaScript is an exciting one.

How This Book Is Organized
Sams Teach Yourself JavaScript in 21 Days is organized into 21 chapters, and they are
written in such a way that you can work through one chapter a day and complete the
book in three weeks, if you have the time available to do so. The book has been written
so that you can work through chapters in the order in which they are presented. If you
decide to dip into a particular chapter that interests you, then you may need to refer back

01 2978 Intro 4/10/02 10:45 AM Page 1

to earlier chapters to fully understand the code and how you can further develop it for
your own use.

Week 1

Day 1, “Getting the Basics Right,” introduces you to JavaScript and helps you to under-
stand what kind of language JavaScript is. The tools you need to create and view
JavaScript are discussed, and how to correctly create a JavaScript script within an
HTML/XHTML file is covered.

Day 2, “Working with Data,” introduces you to how JavaScript handles data. Day 2 also
shows you how to store data in variables, and then how to change the value of that data,
as well as how to create constants that can be used unchanged throughout a script are
discussed.

In Day 3, “Functions and Statements,” you are shown how to create code, stored in func-
tions, which you can re-use as often as needed in your scripts. You also are shown how to
create code that executes depending on conditions you define, and how to create code
that loops through a process as often as you specify.

Day 4, “JavaScript Is Object-Based,” introduces you to the important topic of JavaScript
objects by discussing what an object is, and how you can use objects to write efficient
scripts.

Day 5, “An Introduction to Arrays,” teaches you what an array is, and how to create and
use them.

Collecting information from users is a hugely important part of the interactive Web.
Day 6, “HTML Forms and the String Object,” introduces you to using JavaScript with
HTML/XHTML forms to collect data from visitors to the Web sites you have created.
Strings of characters are commonly collected when using forms, and Day 6 will show
you how strings are handled in JavaScript.

Day 7, “Numbers and Math,” introduces the JavaScript Number and Math objects and
teaches you how numbers are handled in JavaScript as well as how to use the built-in
mathematical functions which the JavaScript interpreter makes available to a scripter.

Week 2

Day 8, “The Browser Issue,” tells you about the differences in the variety of browser ver-
sions and how they handle JavaScript. It also shows you how to produce JavaScript code
that will run on commonly used modern browsers.

Day 9, “Date and Time Manipulation,” introduces you to the JavaScript Date object and
shows you how to create code that will handle dates and times.

2 Sams Teach Yourself JavaScript in 21 Days

01 2978 Intro 4/10/02 10:45 AM Page 2

Day 10, “Events and Events Handling,” presents the important topic of events. You are
shown what an event is and how to create your code to run in response to appropriate
events, which take place within a Web browser.

Day 11, “Dynamic HTML,” introduces Dynamic HTML, often referred to as DHTML.
DHTML makes use of Cascading Style Sheets and layers, which allow interactive and
dynamic Web pages to be created, taking Web pages to a new level.

Day 12, “Windows and Frames,” tells you how JavaScript can be used in association
with Web pages which use multiple frames, and how JavaScript can be used to create
new windows.

Day 13, “Regular Expressions Make It Easier,” introduces the JavaScript regular expres-
sions that give the scripter enormous control over the patterns of string characters a user
is allowed to enter into an HTML/XHTML form, for example.

Day 14, “Advanced Array Management,” takes you deeper into the use of the JavaScript
Array object, building on the knowledge you gained in Day 5.

Week 3

Day 15, “Debugging and Error Handling,” shows you how to diagnose and correct errors
that you may create as you build longer and more complex JavaScript scripts.

Day 16, “Cookies: Storing Persistent Data,” introduces cookies, files JavaScript creates
and stores on a user’s machine that can be used from one browser session to another.

Day 17, “Privacy and Security,” introduces you to the important topic of security in
JavaScript, and then discusses how Web developers and users are affected by JavaScript’s
security model.

Day 18, “Plugins and Applets,” demonstrates how JavaScript can be used with browser
plugins and Java applets.

Day 19, “Creating Your Own Objects,” shows you how to create custom objects that can
be used with the built-in objects that JavaScript provides.

Day 20, “JavaScript in E-Commerce,” discusses the use of JavaScript in e-commerce and
shows you how to use JavaScript in the creation of an online shopping basket.

Day 21, “JavaScript and SVG,” takes you beyond the world of HTML/XHTML to show
you a little of how JavaScript will be used with the exciting new Web graphics format
SVG—Scalable Vector Graphics.

Introduction 3

01 2978 Intro 4/10/02 10:45 AM Page 3

Who Should Read This Book
This book is designed to meet the needs of Web developers who want to add intelligence
and interactivity to their Web pages using JavaScript.

What This Book Assumes
We assume that you are comfortable using the World Wide Web, and that you are famil-
iar with creating HTML and/or XHTML pages—so, there will not be an explanation of
the basics of HTML and XHTML as JavaScript is applied to the fairly straightforward
Web pages shown as examples in the book. If you are not confident that you are fully
comfortable creating HTML/XHTML, perhaps you might want to have an introductory
HTML or XHTML book at hand as you work through this book. Sams Teach Yourself
HTML and XHTML in 24 Hours by Michael Morrison is a book you might consider as a
reference to keep at hand.

We also assume that you are either new to JavaScript or have very limited experience try-
ing it out. As you are introduced to the individual parts of JavaScript, we won’t assume
that you already know that material, but we will assume that you are a fairly quick
learner and that you have seen many of JavaScript’s effects and know its capabilities.

Conventions Used in This Book
This book uses the following conventions:

Text that you type or see on screen appears in monospace.

4 Sams Teach Yourself JavaScript in 21 Days

A Note presents interesting information related to the discussion.Note

A Tip offers advice or shows you an easier way to accomplish a task.Tip

A Caution alerts you to a possible problem, and provides advice on how to
avoid it.

Caution

01 2978 Intro 4/10/02 10:45 AM Page 4

What’s on the Web Site?
On the Web site, you will find the code for all the full code listings that we will create in
the book. These will be useful to you if you receive error messages that you can’t solve
when you run code that you have typed in.

Great care has been taken to eliminate errors in the book but any reported errors will be
listed on the Web site too.

To get to the Web site, point your Web browser to http://www.samspublishing.com/.
In the Search box, type in javascript in 21. Find this book from the list presented,
and click on the link. On the book’s main page, find and click the link called Related
Materials to get to the files.

Introduction 5

01 2978 Intro 4/10/02 10:45 AM Page 5

01 2978 Intro 4/10/02 10:45 AM Page 6

A Sound Foundation
1 Getting the Basics Right

2 Working with Data

3 Functions and Statements

4 JavaScript Is Object-Based

5 An Introduction to Arrays

6 HTML Forms and the String
Object

7 Numbers and Math

WEEK 1

02 2978 Part 1 4/10/02 10:50 AM Page 7

02 2978 Part 1 4/10/02 10:50 AM Page 8

DAY 1

WEEK 1

Getting the Basics Right
JavaScript is a scripting language that allows you to add interactivity to HTML
or XHTML Web pages. XHTML, the Extensible HyperText Markup Language,
is HTML 4 rewritten in XML syntax. JavaScript is the scripting language of
choice when it comes to adding interactivity and functionality to your Web
pages that HTML or XHTML alone cannot provide.

This book will introduce you to many of the most useful characteristics and
features of JavaScript. At times, some of the topics may seem a bit abstract
when they are introduced. For now, know that JavaScript works most powerful-
ly when you use several of its aspects together. So initially you may need to
learn some features of JavaScript through step-by-step examples in order to
understand the explanation. As you get further into the book, you will gain the
confidence in your own ability to combine these techniques, and begin to create
JavaScript scripts that work and, with practice, perform exactly as you want on
a Web page. If you work through the examples you will, by the time you finish
this book, be a competent author of JavaScript scripts, applying its power to
bring your site to life.

03 2978 CH01 4/10/02 10:47 AM Page 9

In this introductory chapter, we will introduce you to both the applications and the basic
structure of the JavaScript language. This will provide you with a solid foundation on
which to build your knowledge of JavaScript throughout the rest of the book.

Today you will learn

• What JavaScript is

• The foundations of JavaScript syntax including datatypes and a number of
JavaScript functions

Introducing JavaScript
The primary questions you need to ask yourself when you start to learn something new is
“what is it?” and “what does it do?” So let’s begin there.

What Is JavaScript?
To state some commonly heard jargon, JavaScript is a cross-platform, object-based
scripting language that most commonly is used on the Web. If you are new to program-
ming, that definition may not mean too much to you. So let’s look at each of its features.

Cross-Platform
In computer terminology, the term platform is used as shorthand for operating system
platform. Examples of operating systems that commonly run on desktop computers today
include Windows (various flavors), Linux, and the MacOS. What we mean when we say
that JavaScript is cross-platform is that it will (for the most part) run happily and produce
the same results on a wide variety of different computer operating systems.

The cross-platform nature of JavaScript is a very important aspect of the language.
People use all sorts of different operating systems on the computers they use to connect
to the Internet. Without JavaScript’s ability to behave consistently across platforms, it
would be much more difficult for you to write scripts that would allow Internet users
who use a variety of platforms to benefit from the JavaScript-based enhancements you
might want to add to your Web pages.

One of the central aims of JavaScript’s inventors was to create a cross-platform scripting
language, which has been a key factor in its success. Without it, JavaScript wouldn’t have
been nearly so appealing to Web designers—most of whom want to reach the widest
audience possible.

10 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 10

Getting the Basics Right 11

1
Object-Based
Up until now, the language you most likely would have used was HTML—which means
you already know it is a markup language. Markup languages use tags to surround pieces
of text. The tags tell the browser how that text should be treated.

JavaScript is quite different. It requires that a data structure such as the structured infor-
mation on a Web page already exist. It then treats the data on a page as a series of hierar-
chically structured objects that it can use. If the phrase “hierarchically structured objects”
doesn’t mean too much to you, don’t worry, we will come back to that topic. In fact, we
will be dedicating the whole of Chapter 4, “JavaScript Is Object-Based,” to investigating
JavaScript’s object-based nature, as well as describing and using objects in many of the
later chapters. For the moment, it is enough that you appreciate that objects allow you to
more easily organize and manipulate Web pages.

Scripting Language
JavaScript is also a scripting language. It is important to note that there are significant
differences between scripting languages and standalone programming languages (for
example, C++ or Visual Basic). Among the differences between scripting languages such
as JavaScript and the many other computer languages are that scripting languages are
interpreted and they usually require significantly less code.

If a language is an interpreted language it simply means that the code you write does not
need to be compiled into binary computer code before it can be used. Instead scripting
languages are turned into instructions that a computer understands by parsing them with
an interpreter each time the code is run.

Another important difference is that a scripting language runs within another program or
application, such as a Web browser. A typical client-side JavaScript script is contained
within an HTML/XHTML Web page. Languages such as C++ and Java can be run
independently, although Java also allows programs (called applets) to run within Web
pages too.

The JavaScript interpreter is the software that is built into the browser, which then takes
your JavaScript code and follows the instructions within the code step by step.

All major browsers that are version 3.0 and higher, support JavaScript.

JavaScript can be run on the client side—within a Web browser—or it can be
run on a Web server or Web-application server. In this book we will be
covering client-side JavaScript only.

Note

03 2978 CH01 4/10/02 10:47 AM Page 11

An important practical difference you will notice when using a scripting language is that
when you write a JavaScript script you tend to write a lot less code than for a standalone
program. This is because the Web browser provides a lot of useful functionality that
supports JavaScript.

Scripts are easier to write but run more slowly than code which is compiled. The advan-
tage of the scripting code is that it is often easier to write and demands less complex and
expensive tools than some compiled languages.

What Does JavaScript Do?
JavaScript “does” a number of things. Its main use, however, is for the enhancement of
Web pages. It enables you to program a Web page so that it has motion or other interac-
tivity which HTML alone cannot provide. JavaScript also can provide error checking of
information collected from forms on your Web page.

JavaScript in Context
Before we begin our study of the JavaScript language for real, let’s take a brief look at
the need for JavaScript and how it fits in with other popular Web technologies.

A Requirement for More Than Just HTML
Over the past decade a typical computer user has experienced a vast increase in the qual-
ity and functionality of the programs they use. Advances in software and hardware have
contributed to improvements in both functionality and appearance. Computer users have
grown accustomed to colorful, dynamic, and engaging programs. And they are now far
less willing to settle for information presented in a bland and non-interactive format.
Adding JavaScript to the Web browser makes Web pages more immediately interactive
than was possible using interactivity that depended on server-side processing.

Things are no different on the Web. Although originally intended as a way to make static
text without any graphics accessible over a network, the Web has changed considerably
over the years since its conception. Advances in HTML and the addition of CSS
(Cascading Style Sheets) have come a long way in enabling the addition of color and
images to Web pages to make them more visually pleasing. However, by itself HTML is
still very much a static presentation format. The most it can offer in terms of user inter-
action is the use of hyperlinks or perhaps some form elements for a user to fill out. Even
then, HTML can’t perform these useful tasks (such as checking the validity of informa-
tion entered into a form) without the aid of another technology.

12 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 12

Getting the Basics Right 13

1
Competition among a growing number of Web sites puts increasing pressure on Web
developers to find ways of attracting people to their sites, and keeping them coming back
for further visits. This has led to the development of a wide variety of new and some-
times exciting technologies being developed to augment the simple but useful functional-
ity provided by HTML. Some of these new technologies are intended to enhance the user
experience with dynamic and interactive pages, and others are aimed at enabling the
development of useful business functionality and other services.

The JavaScript language is one of the key Web-enhancing technologies available. Its
difference is underscored by its ability to bring otherwise static HTML pages to life.

Server-Side or Client-Side?
Broadly speaking, Web-enhancing technologies can be split into two camps: server-side
technologies and client-side technologies. Server-side and client-side simply describe
where a technology runs—that is, which computer is used to do the processing.

Confused? Okay, in a computer network, whether it is the Internet or a company intranet,
there are two types of computers: clients and servers. A server’s job is to store documents
(in our case Web documents) and send them to any other computers that ask for them. A
computer that makes a request to a server (asks for a file which is held on the server) is
called a client. Therefore if a technology is a “server-side” technology, it simply means
that it uses the server to run and process data. Similarly, if a technology is a “client-side”
technology, then it processes data on the client machine, most often within or in associa-
tion with Web-browser software. This is an important distinction to make as it can make
a big difference to the way things work.

Server-Side
Technologies such as CGI (Common Gateway Interface), ASP (Active Server Pages),
and JSP (JavaServer Pages) are examples of server-side technologies with which you
might be familiar. When you use a Web site you may see fairly frequently within a URL
(Uniform Resource Locator) the letters “cgi” or the filename endings “.asp” or “.jsp”.
Quite likely you regularly make use of their functionality for a variety of different pur-
poses. For example, every time you submit a search to a search engine you’re making
use of server-side processes. In the case of search engines, an HMTL form is used to col-
lect your search criteria, which are then sent to the server for processing. After the pro-
grams or scripts on the server have finished doing their job, the results are turned into
HTML and returned by the Web server to your browser.

03 2978 CH01 4/10/02 10:47 AM Page 13

The problem with server-side processing is the time it takes for the desired results to
appear. The reasons for this are twofold. First there is the submit-and-wait aspect of the
Internet. It takes time for data to reach the server and be processed, and for the results to
be passed back. This can be especially frustrating for the many users who are connected
to the Internet by means of a dial-up connection.

A second reason for possible delays is the fact that server-side technologies load the
server with the job of processing. This isn’t too much of a problem if the server is
required to handle only a limited number of requests at a time. However, all computers
have limited processing power. On busy servers handling perhaps many thousands of
requests an hour and coping with dozens if not hundreds of requests at once, everything
can very noticeably slow down, and in some cases can stop altogether. If you have used
the Web frequently, you will almost certainly have seen those error messages in the
browser which indicate that a Web site isn’t responding at that time and suggesting you
try again later. Very likely at the time you made your request the capacity of the server
was stretched and it simply couldn’t accept a further request for information.

The wait for pages to load due to network transit time and server processing time inher-
ent in server-side technologies is undesirable. It also makes running the scripts on the
server side for some applications (such as DHTML, Dynamic HTML) simply unfeasible,
since the whole process would become too slow and unresponsive to allow real-time
interaction between the user and the Web page. Dynamic HTML, by the way, is a term
used to describe various combinations of HTML, JavaScript, and CSS which allow
additional interactivity or animation within Web pages.

You should carefully weigh the pros and cons of using the server to do the processing.
The original objective of improving interactivity and providing new applications should
not be negated by excessive waiting times.

Client-Side
When using server-side technologies the client computer—and often the human user—
sits idle waiting for pages to arrive, while at the other end the server may be struggling to
keep up with its workload. An obvious solution to this problem is to carry out at least
some of the processing on the client computer.

The first benefit of moving some of the load to the client-side is that it reduces the num-
ber of times the user has to load a page and thereby incur the inevitable time penalty of
data traveling the Internet. When, for example, the validation of data entered on a form
on an HTML Web page is conducted client-side using JavaScript, network delays are
avoided altogether, at least until the point where the data has been validated and is ready
to be sent to the server for definitive processing.

14 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 14

Getting the Basics Right 15

1
An important advantage of client-side scripting is that it enables the Web page itself to be
programmed. In effect, this enables dynamic Web pages which can respond to user
actions as they view and interact with the page.

In addition to the direct benefit of removing a load from the server, whenever a new page
must be requested the server can respond to requests a lot faster because it isn’t bearing
the load of processing multiple scripts. Consequently, requests aren’t queued at all or for
such a long time. By reducing the time spent waiting for pages to download from the
server, this approach can greatly enhance a user’s browsing experience.

Reality
Of course, in reality, a client computer cannot do everything. All sorts of Web-based ser-
vices require that data be sent to the server to be stored or processed. For example plac-
ing an order on an e-commerce site simply wouldn’t be possible if the order never left
your computer. At the same time, there’s no point using up server resources (its process-
ing power) and incurring the inevitable time lag of sending data to the server when a task
can be done perfectly adequately, or maybe even better on the client-side.

In practice both client- and server-side technologies are used. Both are important for the
diverse functioning of modern Web pages.

When a task requires that information be sent to the server, for example for permanent
storage, then it should be sent. Though, if possible, the load of processing data and
ensuring its validity should be carried out on the client-side using scripts. By spreading
the load between client and server computers, it is more likely that the best results can be
obtained.

Selecting the Right Technology
There are other client-side technologies, for example Flash, which are used mainly to
enhance the look and feel of the user experience. Typically there is no built-in support in
mainstream browsers simply because it is practical to support only a limited number of
data formats so a Flash plug-in has to be used. The major browsers have a JavaScript
interpreter built in, but to add a whole range of additional functionality would make the
browser even larger (and they are already pretty bloated).

To solve this problem, software plug-ins were developed and they first appeared in
Netscape Navigator 2. By allowing users to choose which plug-ins they needed for the
data they wanted to access, part of the bloated-browser problem could be removed. Plug-
ins also allow the data to be blended into the document seamlessly rather than the brows-
er opening up an application to display it. Animation also can be integrated into part of a
page; and audio or video can be downloaded and played or streamed for live content.

03 2978 CH01 4/10/02 10:47 AM Page 15

The downside of Web technologies that use plug-ins is that not everyone who views your
Web page will have the necessary plug-in installed. For Flash this isn’t too great a prob-
lem now since the plug-in is widely distributed. For the newer Scalable Vector Graphics
format (which we will look at in Chapter 21, “JavaScript and SVG”), fewer users will
have an SVG plug-in and therefore care has to be taken to provide an alternate viewing
experience for users who can’t yet view SVG. A link to a download can be provided, but
some users may prefer, for whatever reason, not to bother. JavaScript support on the
other hand has been provided in all the major browsers for a number of years now.

JavaScripts can be very compact although you can make them as long and complex as
you choose. However, keep in mind that the large file size often associated with Flash
data is off-putting to many users, especially if they use a dial-up Internet connection. So,
strive to keep your JavaScript as succinct as possible.

There are occasions when a developer will require more power on the client-side than
HTML and the other “popular” Web technologies can provide. Java in the form of Java
applets was designed to address this problem. Applets are small Java applications (hence
the name) written specifically for use within the context of a Web browser. Java is a full
programming language that can run cross-platform and which can, for example, delete or
overwrite files, therefore Java applets are designed to be limited (so as not to be used to
create a security risk). Java is often a logical choice in environments (such as in some
intranets) where you can be sure all visitors will have Java capabilities in their browsers.
However, it can be problematic using Java applets on the Internet since not everyone
chooses to allow Java applets to function in their browser.

Java applets can be integrated seamlessly into a Web page. For example Java applets are
commonly used as Web-based chat clients because Java can maintain a connection to a
server listening for any new messages, unlike most scripting technologies. Java’s stream-
ing ability also makes it popular with sites providing instant updates on news and stock
prices.

The downside of Java applets is similar to that for plug-ins in that they can take longer to
download than some users are willing to wait. Not all browsers are able to handle Java,
and some users also decide to turn it off. Java also has the problem of complexity, at
least for those unfamiliar with using a full programming language. It is a full program-
ming language in its own right. This prevents it from being a viable option for many
casual or part-time developers. A language with Java’s power but a simpler syntax, and
that made fewer demands on programmers, could offer many advantages.

16 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 16

Getting the Basics Right 17

1
In 1995, Brendan Eich, inspired by Apple’s HyperCard, was developing just such a lan-
guage. Netscape originally released the language under the name LiveScript, which was
intended to run on both the client and server-sides. At the time, Netscape’s browser had
the major share of the browser market and so LiveScript—with its ability to move some
of the work previously done by the server to the client—caught on very quickly.

By the time Navigator 2 was released in early 1996, LiveScript had been renamed
JavaScript. Unfortunately this association with Java has caused, and still causes, a lot of
confusion to those who are new to the Web development community. JavaScript is not
Java! JavaScript is not a cut-down version of Java. Despite syntactic and structural simi-
larities there are also some significant differences between the two.

Java was developed as a full programming language capable of creating its own GUI
(Graphical User Interface). JavaScript on the other hand was designed simply to work
within a Web browser with HTML elements already in existence.

In JavaScript there is a lot to learn about, but it is still simpler to learn than a full pro-
gramming language, and it can be used productively almost from the word go. It also can
be just about as complex or as simple as you want it to be. For some applications, you
may only want to use it to place the cursor in the first element of a form so the user can
start typing when the page loads. For another, you might use it to create a complex and
dynamic image-based navigation menu. As you acquire JavaScript skills working through
this book, you will be able to make your own choices about how you want to use
JavaScript.

As we said earlier, JavaScript can be used server-side and for a number of other applica-
tions. However, its most common use is on the client-side in HMTL pages where it is
downloaded and run on the client (on the computer of the person viewing the Web page).
It is here where it has the ability to turn static HMTL and images into a lively interactive
user experience that has made it the widely used phenomenon it is today.

JavaScript allows you to move objects around on a Web page and respond to various user
actions.

JavaScript isn’t the solution to every Web project. It is, however, the natural choice for
checking forms, detecting user input (even down to detecting the position of the mouse
on the screen), manipulating the Web page, and processing data that doesn’t need to be
sent to the server.

JavaScript doesn’t have any inherent graphics capabilities, but it is increasingly being
used to script vector graphic formats such as Flash and Scalable Vector Graphics (SVG).
You will be introduced to the use of JavaScript with SVG in Chapter 21, “JavaScript and
SVG.”

03 2978 CH01 4/10/02 10:47 AM Page 17

JavaScript, Jscript, and ECMAScript
JavaScript has several “flavors” so when you begin learning JavaScript certain terms may
confuse you. More experienced developers often will refer to JavaScript, Jscript, and
ECMAScript. So what exactly are these scripting languages? And what are the
differences?

JavaScript
JavaScript, as mentioned earlier, was the term Netscape, who invented JavaScript, chose
to use for what was originally a proprietary scripting language. In fact, Netscape owned
the name JavaScript. Version 1.0 of JavaScript originated in the Netscape browser
version 2.0. In Netscape 3, JavaScript version 1.1 followed.

JScript
It wasn’t long before Microsoft acknowledged the potential of JavaScript and integrated
its implementation into Microsoft Internet Explorer 3. Microsoft then created JScript,
since using the term JavaScript would have acknowledged Netscape’s ownership of the
technology. Although it uses its own interpreter and varies from JavaScript, in some ways
JScript has many similarities to JavaScript. From the developer’s perspective, once you
have learned one, you know most of the other. Although Microsoft might at one time
have preferred that VBScript be used in preference to JavaScript, JavaScript has
remained the client-side scripter’s language of choice—partly because the Netscape
browser was more popular initially, but even more so because JavaScript is available on a
larger range of browsers than JScript. VBScript is now uncommonly found in main-
stream Web pages because only Microsoft browsers support it. Strangely enough as
JavaScript’s popularity with the server-side scripter waned, VBScript became ever more
popular in the server-side scripting technology ASP.

On the client side, however, there were sufficient differences between JavaScript and
JScript so that writing cross-platform scripts was far from easy. The JavaScript standard
was passed to the European Computer Manufacturers Association, ECMA, in order to
create a “standard” version of what had been JavaScript. Enter ECMAScript.

ECMAScript
With the advent of version 4 of Netscape Navigator and Internet Explorer both browsers
attempted to implement a standards-based version of JavaScript, ECMAScript. Arguably
Internet Explorer did a better job of implementation than Netscape, and this may have
been one minor factor in Internet Explorer’s expansion to become the dominant force in
the Web browser market.

18 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 18

Getting the Basics Right 19

1
ECMA (European Computer Manufacturers Association) is an international industry
association. It has developed a number of standards for the computer industry, most of
which can be downloaded free from their Web site at http://www.ecma.ch. ECMAScript
is the name that has been adopted for the ECMA-262 standard that came about after
Netscape proposed JavaScript 1.1 as a standard. ECMAScript is the de facto international
standard for JavaScript. At the time of writing, it was in its third iteration, which is
roughly equivalent to JavaScript 1.5 and JScript 5.5.

It is important to realize that ECMAScript is a standard for the core JavaScript language.
By “core” we mean the language features that exist independent of which environment
JavaScript is being used in (Web browser, PDF, and so on). This includes features such
as those used for doing math or handling dates. These parts of the language do not
interact with or depend on the presence of a browser.

The parts that enable JavaScript to communicate with and manipulate its host environ-
ment are covered by a different standard known as the World Wide Web Consortium
Document Object Model (or W3C DOM for short). This standard is important to HTML
so you already may have come across it. As well as describing how HTML should be
written, it specifies how JavaScript can access and manipulate parts of HTML
documents. We will be looking at that aspect of the language later in the book.

In practice, ECMAScript is not a language for JavaScript scripters to learn from. It is
intended for browser developers so that their implementation of JavaScript will have the
same functionality as other browser developers.

ECMAScript has done a good job of bringing more uniformity to the JavaScript lan-
guage. JavaScript will always include features that are not part of the ECMAScript speci-
fication, partly in order to provide backwards compatibility for older versions of
browsers. JavaScript is compatible with ECMAScript, while providing additional
features.

We have spent quite a bit of time describing JavaScript’s background; now let’s begin to
look at how to use the language itself.

Let’s Get Started
To become a JavaScript author you are going to need two tools: a text editor and a
browser.

Choosing a Text Editor and Web Browser
You may well be used to using a WYSIWYG (What You See Is What You Get) editor
such as Adobe GoLive, Microsoft FrontPage, or NetObjects Fusion for creating your

03 2978 CH01 4/10/02 10:47 AM Page 19

Web pages. However, when it comes to scripting you will have to get used to typing code
out by hand, although HTML editors such as Adobe GoLive and Macromedia
DreamWeaver provide some pre-packaged JavaScripts, which you can use without neces-
sarily understanding the code that such programs produce. Typically WYSIWYG editors
will produce some nice effects but if you don’t understand the JavaScript that underlies
those effects, you won’t be able to modify the effects to produce exactly the effect you
want.

The examples throughout this book have been included on the CD-ROM for your conve-
nience. You will remember a lot more if you type out the scripts yourself, so we would
encourage you to do so. Even the times when you make mistakes in typing will help you
really grasp the details you need to master to become an efficient scripter.

Whatever you decide, you will still need a means of writing scripts when it’s time to
write your own. To do this you will need a text editor.

When you save text in a word processor it is saved in files that include many formatting
codes, which browsers aren’t designed to handle. It is possible to use a word processor
but you must remember to save a file as plain (ASCII) text, and often it’s really more
trouble than it’s worth. A text editor on the other hand saves files in ASCII format with-
out adding proprietary codes that browsers cannot read. It is also relatively simple to get
text editors to save files with an .htm or .html extension.

20 Day 1

In this book we will consistently use the .htm file extension. A browser on a
32-bit Windows platform will treat a file with .htm the same as a file with
.html. Some platforms only allow three-letter file extensions. If you are
using such a platform, then you will be able to use only the .htm file
extension.

Note

For the Windows user, you likely have a version of Notepad already installed. Look for
Notepad in the Start menu, under Programs, Accessories. Notepad will be adequate for
creating many JavaScript scripts, but once your files start to get large you may want to
use WordPad or download a version of a more fully featured shareware editor such as
TextPad. For MacOS users, SimpleText will be adequate to begin with, but an editor with
more features, such as BBEdit, will be useful as you advance to creating longer and
more complex scripts.

Most of the screen shots in this book have been taken using Notepad and Netscape 6 on
the Windows platform. You may be working on a different operating system such as the
MacOS or one of the flavors of Unix so the output to your screen may look slightly

03 2978 CH01 4/10/02 10:47 AM Page 20

Getting the Basics Right 21

1
different. If it does look a little different, don’t worry too much about it. Different
browsers on different platforms do display things slightly differently but the underlying
data is the same.

Once you have created your scripts you will, of course, need to view them to make sure
that they work, and also that they work as you intended them to work. If you are interest-
ed in learning JavaScript, you are more than likely already familiar with using a Web
browser such as Microsoft Internet Explorer or Netscape Navigator. As long as your
browser is able to understand JavaScript and has JavaScript turned on, then, for the
moment, it doesn’t matter which browser you choose. Either Netscape 6 or any recent
version of Internet Explorer will enable you to view the results of your scripts.

When learning JavaScript it is useful to have access to several Web browsers so you can
test your code on all of them. It is often useful to know the differences in the visual
appearance of a Web page and the behavior of its interactive parts when viewed in differ-
ent browsers. Being aware of those differences will give you an insight into what some
of your users are seeing when they visit your Web pages.

Here is a list of some of the more important Web browsers currently available, together
with a URL where you can download them from if you don’t already have them on your
machine.

• Internet Explorer is currently at version 6.0 and can be downloaded from
http://www.microsoft.com/windows/ie/. If you have an earlier version of
Internet Explorer and want to update, then open Internet Explorer, go to the Tools
menu, and choose Windows Update to begin upgrading your version of Internet
Explorer. If you have never done this before, it can be a slow process as you will
be required to download various “critical” updates, quite possibly before you can
download the new version of Internet Explorer.

• Netscape Navigator 4.7 can be downloaded from
http://home.netscape.com/browsers/. A variety of Netscape browser versions
can be accessed from that page.

• Netscape Navigator 6.2 can be found at http://home.netscape.com/browsers/.

• The Mozilla browser can be downloaded from http://mozilla.org/releases/.

• Opera 6 can be downloaded from http://www.opera.com/download/.

You do not need an Internet connection to use a browser. Web pages stored
on your computer can be loaded for viewing locally.

Note

03 2978 CH01 4/10/02 10:47 AM Page 21

Basic Things to Remember
In this section we will cover some basic rules which you will need to keep in mind when
you write any JavaScript. In time they will become second nature, but at first you may
need to consciously think of them as you are writing your scripts.

Case Sensitivity
JavaScript is case sensitive. So you have to be very careful to be consistent when using
upper and lower case for any name of a JavaScript variable or constant which you create.
It is a very common error among those just starting out to find that they have given a
variable or function a name and then later write it out again using one or more characters
with a different case. In a short script that can be easy to spot but in long scripts it can be
very difficult to pin down from where the error is coming. Therefore if you give some-
thing the name “myElement” you must always refer to it with exactly the same case—
not using the same case can produce either an error or cause unexpected effects.

Semicolons
It is good practice to routinely use a semicolon at the end of each JavaScript statement.
However, JavaScript doesn’t actually require that lines be finished with a semicolon.
When you do need a semicolon is when two or more JavaScript statements need to be
written on the same line. This is often used when you are creating a looping construct in
JavaScript using a FOR loop, which will be described in a later chapter.

Line Breaks
Line breaks can be used to help make your code more readable. The longer your scripts
become the more important readability of code becomes.

Whitespace
Whitespace characters (tabs, spaces, and new lines) are given their name due to the fact
that they aren’t seen except in the way they create space within your code. Apart from
the spaces necessary to separate certain elements of JavaScript code, the JavaScript
interpreter will ignore extraneous whitespace. Therefore

x = y + z

can also be written as

x = y + z

Although writing code like this is acceptable to the JavaScript interpreter, it makes it
more awkward for most people to read and understand the code. The idea behind
JavaScript ignoring extraneous whitespace is to allow us to write out code in a way that

22 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 22

Getting the Basics Right 23

1
makes it easy to see the major parts of its structure. By using whitespace to structure our
code, we can make it far more readable. For example if we have some code written
between a pair of curly brackets:

{code
code
code}

we are able to use whitespace to make this easier to read:

{
code
code
code

}

The fact that the opening and closing curly braces are written on their own line and at the
beginning of a line makes it easy to see where such a block of code starts and ends. This
helps our eyes recognize what belongs to what as we scan through a large piece of
JavaScript code.

Where Does JavaScript Go?
JavaScript, like HTML, is simply text that can be typed directly into a text editor such as
Notepad. However, for the JavaScript interpreter to recognize and correctly process your
code, you must place your JavaScript code in a place where the JavaScript interpreter in
the Web browser is expecting to find it.

There are three places where you can put JavaScript code when you are using JavaScript
in your HTML pages. Each of these will be explained in more detail below:

• In a script block typed into the HMTL

• In its own JavaScript file

• Inside the opening tag of many HMTL elements

Script Blocks
Typing your JavaScript into the HTML of your Web page using a script block is the
simplest way to insert JavaScript. But what is a script block?

A script block simply put is a piece of JavaScript code surrounded by a pair of HTML
<script> tags—an opening <script> tag before the JavaScript and a closing </script>
tag after the end of the JavaScript. The <script> tag can be used in HTML to mark up
an area of JavaScript just as the <p> tag can be used to mark up a paragraph or the
<form> tag can be used to mark up a form. Listing 1.1 shows an example of how it could
be used.

03 2978 CH01 4/10/02 10:47 AM Page 23

LISTING 1.1 A Skeleton for JavaScript Code (skeleton.htm)

<html>
<head>
<title>Title of Document</title>

<script>

// ALL YOUR JAVASCRIPT CODE
// GOES IN HERE BETWEEN THE
// OPENING AND CLOSING
// SCRIPT TAGS.

</script>

</head>
<body>

The content of
your page here.

</body>
</html>

You can place script blocks almost anywhere between the opening and closing HTML
tags of your Web page. However, unless it is necessary to place it at a particular place in
the body of the HTML page, it is best to put the script block between the opening and
closing <head> tags and after the title and any meta tags you may be using. This ensures
that your scripts are fully downloaded into the browser before the page is displayed. By
doing so, you avoid all sorts of errors that can occur when user actions call scripts that
haven’t loaded yet.

Lets take a look at the effect different placement of your script can have on the way your
page runs. Type the following code from Listing 1.2 into the text editor you have chosen
to use.

LISTING 1.2 Creating an Alert Box Using JavaScript (firstAlert.htm)

<html>
<head>

<script>

alert(“Do you see the page heading?”);

24 Day 1

INPUT

INPUT

03 2978 CH01 4/10/02 10:47 AM Page 24

Getting the Basics Right 25

1</script>

</head>
<body>

<h1>Page heading</h1>

</body>
</html>

This should produce an appearance on screen like that in Figure 1.1.

LISTING 1.2 continued

FIGURE 1.1
A JavaScript alert
displayed by a script
block in the head of
the page.

OUTPUT

Now try shifting the script block to a point after the page heading, as in Listing 1.3.

LISTING 1.3 An Alert Box Created by JavaScript Within the HTML Body
(secondAlert.htm)

<html>
<head>

</head>
<body>

<h1>Page heading</h1>

<script>

alert(“Do you see the page heading?”);

INPUT

03 2978 CH01 4/10/02 10:47 AM Page 25

</script>

</body>
</html>

Now you should see something like Figure 1.2:

26 Day 1

LISTING 1.3 continued

FIGURE 1.2
The alert box dis-
played by a script
block in the body of
the HTML page.

OUTPUT

Notice the difference the placement of the script block made. When the script
block was in the document head it brought up the alert box before the words

“Page heading” had loaded into the browser window. By moving the script block within
the body of the HTML page, below the <h1> tags, the words “Page heading” had loaded
into the browser and was displayed on the page by the time the JavaScript alert box was
shown.

ANALYSIS

The lines of an HTML document are loaded from top to bottom, and each
line is loaded from left to right. Therefore whatever you put first will be
loaded first.

Note

Always remember that the <script> tags are an HTML or XHTML tag pair.
You should always remember to include the closing </script> tag.

Caution

03 2978 CH01 4/10/02 10:47 AM Page 26

Getting the Basics Right 27

1
External JavaScript Files
Any JavaScript code placed between the <script> tags also can be stored in a separate
text file. However, although it is a text file, you must avoid giving it a .txt file exten-
sion. It needs to have a .js file extension to be correctly recognized by the JavaScript
interpreter. As long as it is given a .js extension the whole script then can be used in an
HTML page, as if it was actually typed into the page itself, by including the external
JavaScript file.

To include a JavaScript file you simply add a src attribute to the opening <script> tag.

So the opening <script> tag would look something like this:

<script src=”MyFirstExternalScript.js”>

Nothing should be written between the opening and closing tag, so it is best to place the
closing </script> tag immediately after the opening tag, like this:

<script src”MyFirstExternalScript.js”></script>

In XHTML you have the option of writing an empty script tag like this:
<script/>. Unfortunately this can cause errors in some browsers, so it is
safer to use a <script></script> tag pair.

Caution

Listing 1.4 is an example. There isn’t an external file to link at present. The code is
simply to demonstrate the syntax in place.

LISTING 1.4 An HTML Page That Accesses an External JavaScript File
(external.htm)

<html>
<head>
<title>Title of Document</title>

<script src=”path/to/file/fileName.js”></script>

</head>
<body>

The content of
your page goes here.

</body>
</html>

INPUT

03 2978 CH01 4/10/02 10:47 AM Page 27

Most of the code in this book will be shown in script blocks—since that is easier when
teaching a new topic. In practice, however, there are good reasons for using external files
for storing your scripts once you get to the stage of writing serious code. We’ll talk about
those reasons shortly in the “Reusing Code” section, but for the moment we need to
cover a few more things you need to know about using the <script> tags.

Within an HTML Start Tag
Placing JavaScript inside the opening tag of an HTML element is a special case. The
only part of the JavaScript language ever used in this way is event handlers. Event han-
dlers are quite an advanced topic, which we will look at in Chapter 10, “Events and
Events Handling.” For the moment, we will just ignore this aspect until later in the book
after you have become more familiar with JavaScript.

Specify the Script Language
Currently, JavaScript is the default script language for all browsers so HTML desktop
Web browsers will understand your code without you telling the browser that it’s being
given JavaScript. However, there is good reason to specify the language that you are
using. The default script language could change in the future. In fact, there could be pro-
found changes in browsers over the next few years as the Extensible Markup Language,
XML, becomes more widely used, and as mobile browsers become more common too.
For the moment at least, it looks unlikely that the default will change for any of the
browsers.

To cover the possibility of the default scripting language changing, for at least some
browsers, you should routinely specify two attributes in your opening <script> tag: the
language attribute and the type attribute.

Until recently, the language attribute has been the recognized way of telling a browser
that a script is JavaScript. Although it is no longer the approved way of doing so, it is the
only method which version 4 browsers and below will understand. Therefore, for back-
ward compatibility, it is still necessary to use the language attribute in an opening
<script> tag whenever you begin a piece of script.

The language attribute is written in the same way you would write other HMTL
attributes such as the bgColor attribute. For JavaScript it is simply given the word
“javascript” as its value.

In this case the J and S of JavaScript are not capitalized. This will allow you to use your
scripts in XHMTL documents. XHTML, like JavaScript, is case sensitive and therefore
“javascript” (all lowercase) is the only version acceptable for use in XHTML.

28 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 28

Getting the Basics Right 29

1

Assuming you used all lowercase, this is how your opening script tags should now look:

<script language=”javascript”>

Or in the case of including an external file:

<script src=”path/to/file/fileName.js” language=”javascript”>

New browsers, such as Microsoft Internet Explorer version 5 and above and Netscape
Navigator version 6 and above, will continue to support the language attribute for some
time, but eventually it is likely that it will fade out.

The Type Attribute

The specifications for HTML 4.0 and XHTML 1.0 use a different attribute within the
opening <script> tag, called the type attribute. The reason for changing to this attribute
is to standardize the way of describing the type of content contained in a variety of files
accessible across the Web. The types of files are called “media types” and each has its
own standard way of being described. When the media type is “text/javascript” a
browser, or other Web application, knows that it is dealing with JavaScript, and then
can work out whether or not it knows how to process the content of the file by simply
accessing the type attribute.

When using JavaScript, the type attribute for the script tag takes the value
“text/javascript”.

To achieve maximum cross-browser version acceptance, it is best to use both the
language and type attributes. This ensures not only that your scripts will be understood
by old browsers but also that you won’t need to go back and add the type attribute at
some future time.

If we go back to the example code for a script block, it now should look like this:

<script language=”javascript” type=”text/javascript”>
// ALL YOUR JAVASCRIPT CODE
// GOES IN HERE BETWEEN THE
// OPENING AND CLOSING
// SCRIPT TAGS.
</script>

XHTML stands for eXtensible HyperText Markup Language. XHTML 1.0 is
HTML 4.0, which has been rewritten in XML rather than in SGML syntax (in
which all HTML is actually written).

Note

03 2978 CH01 4/10/02 10:47 AM Page 29

Old Browsers
To achieve compatibility with very old browsers, we still have one last thing we probably
should add, especially when we use script blocks in Web pages that may be viewed
using such old browsers. We need to add comments to the JavaScript code to prevent
really old browsers that don’t understand the code from displaying the code in your Web
page—which, almost certainly, isn’t what you want.

The problem stems from the fact that some very old browsers don’t understand the
<script> tag. Take a quick look at what happens when a browser doesn’t understand a
tag. Type the HTML shown in Listing 1.5 and after you’ve saved it, take a look at it in
your browser.

LISTING 1.5 A Listing Illustrating What Happens When a Browser Doesn’t
Recognize a Tag (nonExistentTag.htm)

<html>
<head>
<title>Title of Document</title>

<nonExistentTag>

TYPE OUT LOTS AND LOTS OF TEXT HERE. IT DOESN’T MATTER WHAT IT IS AS LONG AS
THERE IS PLENTY OF IT.

AS YOU WILL NOTICE THIS TEXT IS IN THE HEAD OF THE DOCUMENT. YOU WOULDN’T REALLY
WANT THIS STUFF SHOWING UP ON YOUR PAGE WOULD YOU?

</nonExistentTag>

</head>
<body>

<h1>Title of Document</h1>

<p>Maybe write some more stuff in here.</p>

</body>
</html>

If you ran this script you would see an appearance like the one shown in Figure 1.3.

30 Day 1

INPUT

03 2978 CH01 4/10/02 10:47 AM Page 30

Getting the Basics Right 31

1

As you can see, the browser displayed the text that was between the unrecog-
nized start and end tags. The same thing happens in older browsers that don’t

understand the <script> tag. The <script> tags are ignored, and the browser renders the
script on the Web page in the browser. Clearly, this could make a mess of a page that
would otherwise have looked fine—even if the scripts hadn’t run.

Luckily, there is a little trick involving HTML comments which you can use to make
sure this doesn’t happen. Take a look at the following code in Listing 1.6:

LISTING 1.6 Using HTML Comments to Avoid Errors in Older Browsers
(hideScript.htm)

<html>
<head>
<title>Hide scripts using comments.</title>
<script language=”javascript” type=”text/javascript”>

<!--

lines of JavaScript code here
...

//-->

</script>

</head>
<body>

FIGURE 1.3
The content of
unrecognizable tags
displayed in a Web
page.

OUTPUT

ANALYSIS

INPUT

03 2978 CH01 4/10/02 10:47 AM Page 31

Page content here...

</body>
</html>

If you look closely you will notice that there are a pair of HTML comments
nested inside the script tags. This means that if the script tags are ignored (by

browsers that don’t understand them), then all the code between them will be hidden by
the comment just as a browser knows not to display an HTML comment. This seems
quite clever, but what about the JavaScript being interpreted by a more modern browser
that does understand how <script> tags are used? Is there the possibility that the HTML
comments could cause errors if they were inside the script block? The answer is no. The
JavaScript interpreter knows that it is not to try and render the “open comment” mark,
and the two forward slashes before the HTML “close comment” mark prevent it from
being interpreted (and you’ll see why shortly).

So if you include HTML comments inside <script> and </script> tags, your code will
work normally and be prevented from displaying on the page.

Reusing Code
Before we go on to look at some example JavaScript, let’s take a quick look at the
reasons why you might want to store your JavaScript code in an external .js file and
include it into your page.

For small pieces of code that are specific to an individual Web page, it is likely best to
keep the JavaScript code inside the page itself. By keeping everything together in one
file, when your code listings are short, it makes finding and maintaining your scripts
simpler.

However, when the same piece of code possibly could be used in more than one
document it is better to store the JavaScript code in an external file.

The first benefit of doing this is that if you need to modify the script (as is almost bound
to happen at some time); then you don’t need to make repeated changes on every page
that uses the script. This can save you a lot of time opening, pasting, saving, and then
uploading every file. It also avoids the necessity of making exactly the same changes in
each version.

32 Day 1

LISTING 1.6 continued

ANALYSIS

03 2978 CH01 4/10/02 10:47 AM Page 32

Getting the Basics Right 33

1
The second benefit is not as immediately obvious. Because some browsers cache external
.js files for the duration of a browser session, then by placing the code in an external
JavaScript file your visitors only have to download it once for that browser session. So,
for example, if you have several files in a directory that use the same JavaScript naviga-
tion menu, then you only need to download the code once but can use it on several
pages. While the majority of users are still using modems to connect to the Internet this
cuts down the time it takes them to download your pages.

Documenting Your Code
Once you start to develop more involved JavaScript applications you will find that your
code can become large and complex.

If you don’t document your code, this can make it very difficult for someone else to
understand how the code works without spending a great deal of time analyzing it line by
line. You may even find that you don’t understand it yourself if you need to go back to it
and make changes some time after it was written. Writing comments at key places in the
code can go a long way to making the code more easily understood, possibly saving you
a lot of frustration and wasted time.

JavaScript provides two methods to insert comments into your code in order to document
what it does: One method comments out a single line and the other method comments
out multiple lines.

To comment out an individual line, you simply need to type two consecutive forward
slashes (//). The JavaScript interpreter will ignore everything that follows the forward
slashes to the end of the line. The forward slashes can be placed at the beginning of a
line or later in the line after some code. Examples of this style of commenting are below:

// This entire line has been commented out!
var dynMenuWidth = 10 // This comment follows some code.

There are times when you will need more than just a line or two of text to adequately
comment a section of your code. You could, of course, place a couple of forward slashes
at the beginning of each line, but that can become pretty tedious. JavaScript has another
method to save us the trouble.

To begin comments which span several lines we type a forward slash followed by an
asterisk (/*). This time the comment does not end with the end of the line. The
JavaScript interpreter treats everything on the page as a comment until it comes to an
asterisk followed by a forward slash (*/). The following code demonstrates this for you:

/* All of the text in
a comment block like
this is ignored. */

03 2978 CH01 4/10/02 10:47 AM Page 33

To make it easier to see where these comments start and end, you may find it useful to
add a row of characters such as the hyphen at the top and bottom of the comment. As
long as they are within the comment marks, the JavaScript interpreter will ignore
them too.

/* ------------------------------------
All of the text in a comment block
like this as well as the lines
above and below are ignored.

*/

Although you shouldn’t skimp on your comments, try to keep them concise. Remember
that they’re downloaded with the rest of the script every time someone requests one of
your pages.

Reserved Words
JavaScript has a number of words that are set aside for giving instructions to the
JavaScript interpreter. These are listed here:

34 Day 1

This method is also very useful when you need to temporarily comment out
large sections of your code. Much easier than typing and later removing two
forward slashes from the beginning of every line!

Tip

Be careful to avoid nesting comments. If you have comments like this:

/*

x = 1;

y = 2; /* this comment will close the outer comment */

z = 3;

*/

then the */ that ends the second comment will also end the first comment.
So when the JavaScript interpreter finds the */ on the final line an error can
be expected.

Caution

03 2978 CH01 4/10/02 10:47 AM Page 34

Getting the Basics Right 35

1
abstract

boolean

break

byte

case

catch

char

class

const

continue

debugger

default

delete

do

double

else

enum

export

extends

false

final

finally

float

for

function

goto

if

implements

import

in

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

super

switch

synchronized

this

throw

throws

transient

true

try

typeof

var

void

volatile

while

with

At the moment don’t worry about how these keywords are used. As we progress through
the book, they will be introduced when we need them. The point in giving the list to you
now is to make you aware from the start that some words are reserved and can’t be used
in your code except in the ways prescribed in JavaScript.

JavaScript is case sensitive. In theory, by capitalizing one of the letters of a
reserved word you could use it to name something. However, this is very bad
practice, creating all sorts of potential confusion.

Caution

03 2978 CH01 4/10/02 10:47 AM Page 35

Data Types
This final part of the chapter will conclude with coverage of the different types of valid
JavaScript data, and the requirement for data type conversion in JavaScript.

Data, the name given to information, which is used by a computer, can come in several
different forms. For example, numbers, dates, and text readily spring to mind. Depending
on the computer language used to process the data, data that contains different types of
information is likely to be treated differently. It is important to know just how the
language you are using will treat the data you will use in it.

Some programming languages are strongly typed, which means that when a piece of data
is included in the program being written its data type must be declared first. The data
then must be treated according to strict rules which apply to that particular data type if
an error is not to be caused. For example, if you tried to add a number to the end of a
statement while using a strongly typed language, the computer wouldn’t know what to
do. Most conventional programming languages such as C or C++ are strongly typed.

JavaScript is what’s called a dynamically typed language. JavaScript is also weakly
typed. You might guess, correctly, that when data is given to a JavaScript script you don’t
need to specify its data type. The other aspect of a dynamically typed language is that it
allows pieces of data to change types during run time (from the time when the script
starts up to when it finishes).

However, this doesn’t mean that we can just ignore data types, but JavaScript is more
flexible than some other languages. Unless you understand how JavaScript treats data
types, things can still turn out to have unexpected results. For example,

10 + 0

is treated by JavaScript as the number 10

but

10 + “0”

is processed by JavaScript as “100”. We will discuss why later.

Numbers
Fully featured languages such as Java and C++ have several different data types for
numbers that are used depending on its size and nature. The program then knows how
much memory to set aside for it.

36 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 36

Getting the Basics Right 37

1
In JavaScript the priority is on ease of writing code. Therefore distinctions between dif-
ferent types of numbers are not made, which removes one source of possible coding
errors.

JavaScript understands numbers in two forms: integers (whole numbers such as the num-
ber 10), and floating point numbers (numbers with a fractional part, such as 1.55). Our
lives are made easier by the fact that most of the time JavaScript treats all numbers as
floating point numbers so we don’t need to worry about number types. Because
JavaScript applications are usually small, the difference in performance is not noticeable.

JavaScript can handle positive and negative numbers between – 21024 and 21024 (approx. -
10307 to 10307).

As well as understanding the decimal (base 10) numbers we use, JavaScript also under-
stands octal (base 8) and hexadecimal (base 16) numbers. This can be useful when you
want to manipulate an object’s color for example, as colors are commonly expressed in
hexadecimal in HTML and XHTML.

Unless you specifically tell JavaScript that the number you are giving it is an octal or
hexadecimal number it will assume it is a decimal number. To designate a number as
octal, you simply start with a zero. To designate a hexadecimal number, it needs to start
with a zero and an “x”. Note that while you can give JavaScript octal and hexadecimal
numbers to work with, it will always give back the result in decimal form. For example,
the following code

alert(10 + 10);

returns 20 as you would expect. But

alert(010 + 010);

will alert as 16. This is because octal 10 is equivalent to decimal 8, and eight plus eight
is 16 (remember it returns numbers in decimal form). For the same reason the following,
which adds hexadecimal 10 to hexadecimal 10 (decimal 16 to decimal 16) will alert
as 32.

alert(0x10 + 0x10);

Whenever you collect decimal numbers from a user you must strip out any
leading zeros otherwise JavaScript will assume it is an octal number.

Caution

03 2978 CH01 4/10/02 10:47 AM Page 37

There are three special values that can occur when using numbers. These are as follows:

Infinity

-Infinity

NaN

Positive and negative infinity can result from either of two conditions: if the numbers you
are working with exceed the maximum amount that JavaScript can handle, or if you
divide a number by 0. In the case of dividing by 0, Infinity (positive infinity) is produced
if the number was positive, and –Infinity (negative infinity) if the number was negative.

NaN is short for “Not a Number.” NaN can be produced if you attempt to do something
inappropriate with a number, such as divide it by a string of characters. If, for example,
you tried to divide 100 by “kangaroo”

100 / “kangaroo”

the result would be NaN.

Boolean
Often when writing your scripts you will make decisions as to whether JavaScript should
do something or not. For example, say you have a Web page that allows a user to fill out
an online form to send you an e-mail. Before the user is allowed to submit the form, you
may want to check that the return e-mail address that was entered is valid. For the
moment, let’s ignore the script you would create in order to accomplish this (it will be
dealt with later in the book). The outcome from your test would be either “yes, it is a
valid e-mail address” and the form would be sent, or “no, that isn’t an e-mail address”
and you would ask again for a valid one.

In this case you have been looking for a true or false condition. This scenario is so
common in coding that the Boolean data type was created. Boolean data has two and
only two possible values: true or false. There is no “maybe,” “perhaps,” or “could be.”
JavaScript can only make decisions when given a decisive “yes” or “no” in the form of
Boolean logic.

Strings
A more obvious data type we might want to use in our scripts is the string data type.
However, because JavaScript code itself is written in text, without some means of distin-
guishing between the text, which is code, and the text that is a string things could
become confusing. To solve this problem quote marks can be used to surround a line of
text or sequence of characters to indicate it is “not code.” This makes sure that when the

38 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 38

Getting the Basics Right 39

1
JavaScript interpreter is run the text is treated just as a series of characters strung
together and not as a piece of code.

The name given to data when it is put into the form where it is to be treated as a series of
characters “strung” together one after another is, naturally, a “string.” Strings are not lim-
ited to only storing letters of the alphabet; you also can store any other characters simply
by enclosing them in quote marks.

JavaScript is happy for you to use either double quotes or single quotes. Hence “I am a
string” and ‘I am also a string’ are equally acceptable ways of turning data into a
string. Care should be taken however that you do not mark the beginning of a string with
one type of quote marks and then end it with the other. If you write “I am a string’ or
‘I am also a string”, you will cause an error. So, remember, whichever type of quote
mark you use to begin the string must also end the string.

You might think that if both double and single quotes can be used to indicate the begin-
ning and end of a string, then it really shouldn’t matter if you start with one and then end
with the other. However, if you stop a moment to think, you might wonder how you
would then put quote marks into a string. The solution is that when you start a string
with one of the quote marks the JavaScript interpreter waits until it finds one of the same
type before says to itself “okay, that’s the end of the string, what follows now is code.”
With this setup, if you want to put one type of quote marks into a string all you need to
do is surround the quotation with the other type of quote marks.

You likely will need to include—sooner rather than later—both types of quotes within a
string. This is usually required for coding itself, but for the moment we will demonstrate
it by imagining we need to make a string out of the following sentence:

Ian called out “Hey, pass me Andrew’s football!”.

If you were to enclose the sentence with double quotes

“Ian called out “Hey, pass me Andrew’s football!”.”

JavaScript would think that the string was merely “Ian called out.” After it passed this
point to “Hey,” which doesn’t mean anything to it, an error would occur. The same thing
would happen if you enclosed it in single quotes. As soon as JavaScript got as far as
“Andrew’” it would fail because the apostrophe in Andrew’s would be interpreted as the
closing single quote mark for the string.

JavaScript has set aside the backslash character (\)to solve this problem. Whenever you
use a backslash in JavaScript it means that the next character is special. For the quote
marks, preceding them with a backslash simply means that they do not indicate the end
of a string. For example you could write:

03 2978 CH01 4/10/02 10:47 AM Page 39

‘That is Andrew\’s football’

Or if you want to store five double quote marks in a string you would write:

“\”\”\”\”\””

And for single quotes you would write:

‘\’\’\’\’\’’

When a character has a backslash placed in front of it, it is referred to as being
“escaped.” There are several other characters that can be escaped to produce special
characters. These are shown below:

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\’ Single quote

\” Double quote

\\ Backslash

\xNN A character in the Latin-1 character set (x is just an “x” and NN is a
hexadecimal number)

\uNNNN A character in the Unicode character set (u is just a “u” and NNNN is a
hexadecimal number)

Suppose you wanted to include the copyright symbol in a string. In Latin-1 and Unicode
respectively you would write:

“Copyright \xA9 2002 by Sams Publishing”

“Copyright \x00A9 2002 by Sams Publishing”

Both of the above strings will give you the following:

Copyright 2002 by Sams Publishing

As you may have noticed, Unicode seems to use the same hexadecimal number with a
couple of extra zeros in front. In fact it is the same, but the extra two characters give it
many extra possible characters. To see the full range of Unicode characters visit the
Unicode Web site at http://www.unicode.org.

40 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 40

Getting the Basics Right 41

1

Some Useful Tools
In the next couple of chapters, you will learn how to use three JavaScript tools that will
enable you to show output, make decisions, and collect input respectively. The proper
names for these tools are “functions,” but for the moment, if you don’t know what func-
tions are, don’t worry about it. We will be taking a closer look at functions in Chapter 3,
“Functions and Statements.”

The alert() Function
We have already used the alert() function several times in this chapter to bring up
what’s called an alert box. You have probably seen these small boxes that pop up many
times before on Web sites to warn you, or “alert” you, to the consequences of an action.

To bring up an alert box on your Web page, you need to use the JavaScript alert()
function. When you use this function you only need to provide the function with a mes-
sage in order for it to display. The JavaScript interpreter does all the construction of the
alert box behind the scenes. Here is an example:

alert(“Hello all!”);

This alert function could be placed on a line of code anywhere in a script block and it
would bring up an alert box.

There are two things to notice about the alert() function. The first is that the message
to show on the page has to be enclosed within a pair of parentheses. In addition to that,
because the contents are a string, they have to be enclosed within quote marks. If, for
example, the message had been simply a number, then we would have written it
without the quote marks (but still within the parentheses) like this:

alert(55);

We will use the alert() function quite extensively in the next couple of chapters to
show the results of some of our scripts. For example if we wanted to check what
JavaScript would do with the sum 5+5, we might write:

alert(5+5);

Although Unicode gives you far more characters to work with, it is a more
recent character set that isn’t supported by version 4 browsers and below. In
fact, some of the characters aren’t supported by even the latest browsers.

Caution

03 2978 CH01 4/10/02 10:47 AM Page 41

The result, 10, would then be shown in the alert box so that we could be sure that 10 was
indeed what JavaScript would return.

The confirm() Function
The confirm() function is a bit more advanced than the alert() function. Rather than
simply providing a user with information, it allows a user to make a choice between two
options. Again, you already may have seen the small box that this function brings up in
visits to Web sites. It is similar to the alert box, but in addition to a message and an
“OK” button, it also has a “Cancel” button.

For the moment we won’t take too close a look at the confirm() function. This is
because, to be of any use, we need to use it in conjunction with pieces of code called
“control statements” that allow us to make decisions. In simple terms, the button that the
user clicks determines which of the two values is sent back to the script. These two val-
ues are the values true and false, which we have already seen. They can be thought of
as the computer equivalent of “yes” and “no.” Whichever value is sent back by the user
enables the script to determine whether or not to take a particular action.

The confirm() function is written in a way that is similar to the alert box, and it also can
be placed on a line of code anywhere in a script block. Here is an example:

confirm(“Are you sure you want to reset the form?”);

When this confirm function is executed, it will display the confirm box shown in
Figure 1.4.

42 Day 1

INPUT

FIGURE 1.4
Our first confirm
box.

OUTPUT

To see the true or false values that are returned from confirm boxes we can actually place
the confirm() function inside an alert() function. Whichever value the confirm box
sends back will be shown in the alert box that pops up. Here is how we would write this:

alert(confirm(“Are you sure?”));

The part of this line that will be evaluated first is the confirm function. Once the confirm
box displays and the user clicks “OK” or “Cancel,” then the value true or false will be
given back and placed inside the parentheses of the alert function. The alert() function
then will bring up an alert showing this value. Try it out and see for yourself.

03 2978 CH01 4/10/02 10:47 AM Page 42

Getting the Basics Right 43

1
In the following chapters you will see how to use the value returned by a confirm()
function to make decisions in your scripts.

The prompt() Function
The prompt() function is the last of the three functions we will look at for the present.
This is the function that pops up a box that “prompts” you to enter some text for a script
to use. For example you could be asked to enter your name and then the script could
write your name into the HTML of the Web page to personalize it for you.

The prompt() function is a little bit more complex than the previous two functions, but it
is still fairly straightforward. It requires two strings to be written between the parentheses
of the function. The first of these is the message that is shown in the prompt() box, and
the second is used to pre-fill the area where you type in your input (pre-fill works in
Internet Explorer only). To separate these strings, a comma is used, as shown in the
following line of code:

prompt(“Please enter your name.”, “Write it here.”);

This will bring up the prompt box in Figure 1.5.

INPUT

FIGURE 1.5
Our first prompt box.

OUTPUT

The text that the user enters into the box is returned in the same way as a true
or false value is given back from a confirm box.

Note that if you don’t want to fill out the input area of the prompt box, you don’t leave
out the second string in the function. You have to use what is called an “empty string”
instead, which is simply an opening and closing quote mark that doesn’t surround any
characters at all.

prompt(“Please enter your name.”, “”);

These three functions enable us to take three actions that we will need over the next few
chapters as we work our way through various parts of the fundamentals of JavaScript.
Using alert functions we can find out the results of a piece of code we have written; with
confirm boxes we can make decisions; and with a prompt box we can provide external
input for some of our scripts.

ANALYSIS

03 2978 CH01 4/10/02 10:47 AM Page 43

Summary
This chapter introduced you to what JavaScript is, and it discussed a little about its place
among other Web technologies. You have learned how the desire of Web authors to inter-
act with their users led to the development of many new technologies, and how the cross-
platform nature of JavaScript made it ideal for use on the Web. After learning how to
insert JavaScript into your pages using script blocks or external files, you also learned
some basic features of the language itself, such as that we can, and should, use white-
space to make our code more readable. You also learned about more key topics such as
the five data types that JavaScript understands: numbers, boolean values, strings, null,
and undefined.

You also were introduced to some basic JavaScript and shown some simple code.

Workshop
In the workshops, you will find a quiz and exercises that will conclude each chapter. We
will ask some questions that you might ask yourself, together with possible answers to
each question, as well as exercises to help you further explore chapter material for
yourself.

Q&A
Q. I created code that looked like this:

Alert(“Hello I am learning JavaScript”);

but it didn’t work. Why?

A. JavaScript is case sensitive. To get the code to work you would need to write,

alert(“Hello I am learning JavaScript”);

Q. How would I ask the user for their location?

A. You could use a prompt box, which uses the JavaScript prompt() function. For
example, you could write

prompt(“Where do you live?”, “Enter your location here.”);

Quiz
1. The JavaScript entities alert(), confirm(), and prompt() are all functions or

statements?

2. Is JavaScript that follows “Hello World!” called a data type or a string?

3. What does NaN mean? Does it mean “not a number” or “nearly a number”?

44 Day 1

03 2978 CH01 4/10/02 10:47 AM Page 44

Getting the Basics Right 45

1
Quiz Answers

1. The alert(), confirm(), and prompt() entities are all JavaScript functions.

2. “Hello World!” is a string. In JavaScript strings must be enclosed in pairs of either
single or double quotes.

3. NaN means “Not a Number” and is returned by, for example, a function when
something is wrong with a mathematical operation you have attempted.

Exercises
1. Create an alert box that tells the user, “This is Teach Yourself JavaScript in 21

Days.”

2. Create a confirm box that asks the user, “Are you enjoying learning about
JavaScript?”.

3. Create a prompt box that asks the user, “What is your name?” and then gives the
user the prompt, “Enter your name here.”

03 2978 CH01 4/10/02 10:47 AM Page 45

03 2978 CH01 4/10/02 10:47 AM Page 46

DAY 2

WEEK 1

Working with Data
After reading Chapter 1, “Getting the Basics Right,” you should be clear about
what JavaScript is and have a general idea of how it fits into the range of tech-
nologies available for use on the Web. Today, after having looked at the data
types recognized by JavaScript, you will see how the data that you define as a
Web-page author or collect from a user can be stored and processed.

First, we are going to take a look at some simple methods of data storage fol-
lowed by a study of operators, JavaScript’s basic data manipulation tools.

This chapter will teach you

• What variables are

• How variables are created and used

• What constants are

• How constants are created and used

• What operators are

• How JavaScript’s operators are used

04 2978 CH02 4/10/02 10:44 AM Page 47

Simple Data Storage
In most JavaScript applications some data is used more than once or it is used at some
time after the page has loaded. In these situations it is useful to have some means to tem-
porarily store data. To allow you to do so, JavaScript provides several facilities that can
be used to store data for re-use.

Variables
The JavaScript storage facility for an individual piece of data is called a variable.
Variables are effectively small containers which are given a name, and then filled with a
piece of data that is in the form of one of the data types discussed in Chapter 1, “Getting
the Basics Right.”

Variables will be your primary method of data storage in JavaScript programs, although
there are other containers (such as arrays), which are used for data storage. Arrays, which
can be used for storing lists of information, will be covered in later chapters.

Creating Variables
To create a variable, the first thing you must do is “declare” it. This simply lets the com-
puter know that it has to set aside some memory for the storage of a new variable and,
optionally, tells the computer about the data it will store. To declare a variable, simply
write the var keyword followed by the name you wish to give to the variable. So, for
example, to declare a variable called myFirstVar, without defining the value to be stored
in it, you would write the following:

var myFirstVar;

The next step is to give the variable some data to store. When a variable initially is given
some data to store, the variable is referred to as “initialized.” More generally—that is,
after the first time—this process of giving the variable a (new) value is known as
“assigning” data to the variable. To do this, the variable name is written on a new line
followed by the equal sign and the data to be stored. In the following code the first line
declares the variable myFirstVar and the second line assigns a particular string to
myFirstVar:

var myFirstVar;
myFirstVar = “I’m a string stored in a variable.”;

48 Day 2

Note that the var keyword is only used once for each variable at the time
you first declare it. Once a variable has been declared, don’t use the var
keyword again with the same variable.

Caution

04 2978 CH02 4/10/02 10:44 AM Page 48

Working with Data 49

2

Every time you use the variable myFirstVar you will actually be using the data it con-
tains. To demonstrate this, write the two lines of code above into the template which you
saw earlier in Listing 1.6 and add a third line to bring up an alert box containing the
value of the variable, as shown below in Listing 2.1.

LISTING 2.1 Variable Demo (variableDemo.htm)

<html>
<head>
<title>Variable Demo</title>

<script language=”javascript” type=”text/javascript”>
<!--

var myFirstVar;
myFirstVar = “I’m a string stored in a variable.”;
alert(myFirstVar);

//-->
</script>

</head>
<body>

<h1>Variable Demo</h1>

</body>
</html>

Save the file and load it into your browser. The alert box brought up by the third line of
code will contain the value of myFirstVar, as shown in Figure 2.1.

INPUT

FIGURE 2.1
Displaying the value
of myFirstVariable.

OUTPUT

Congratulations! You have just stored data in your very first JavaScript variable.

The way the variable myFirstVar was created and assigned a value is actually
longer than it needs to be. It was created in two steps simply to demonstrate the

difference between setting aside some memory for a variable and actually filling the
memory with data. There is a shortcut that allows you to use a single line of code for the

ANALYSIS

04 2978 CH02 4/10/02 10:44 AM Page 49

declaration of a variable and the assignment of data to it. To do that for the above
example you would write the following:

var myFirstVar = “I’m a string stored in a variable.”;

There is no difference between the two in terms of the way your scripts will run so you
can use either method. Although it is sometimes useful to declare your variables before
you assign data to them, the second method commonly is used simply because it is
shorter.

Omitting the var Keyword
If you have ever looked at scripts created by other people, you may have noticed in some
scripts that the var keyword was not used to create variables. As long as you assign some
data to a variable on the same line as you write the variable name, the JavaScript inter-
preter will accept this (if you omit the var keyword and also fail to assign it a value that
will cause an error).

The syntax you can use to declare and assign a value to a variable without using the var
keyword is

myFirstVar = “I’m a string stored in a variable.”;

and it works correctly.

However, as we will see later in the book, once you start using variables in functions and
omit the var keyword, it can have a very undesirable effect. The omission of the var
keyword should be a deliberate choice, and until we have taken a closer look at the rea-
sons for using or omitting it, it is best to get into the habit of using it every time you
declare a new variable.

Naming Variables
JavaScript has naming rules so variables can’t always be given the first name that comes
to mind. It is important that certain simple naming rules be followed if errors are not to
occur in your scripts. The rules for naming your JavaScript variables are the same as
those for naming HTML elements. Names may only consist of alphanumeric characters
(letters and numbers), the underscore character (_) and the dollar sign ($). There is a fur-
ther rule that the first character of a name is not permitted to be a number. As we will see
throughout the book, these rules are the same no matter what the item is you’re naming
in JavaScript.

50 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 50

Working with Data 51

2
Version 1.5 of JavaScript now allows variable names to include letters from the ISO-
8859-1 and Unicode character sets, such as å and ü in addition to the letters of the
English alphabet. Just remember that some of the users of your Web pages still may be
using version 4 browsers or below, which don’t support the use of such characters. Also,
note that Internet Explorer 5.5 will not accept these new characters as the first character
of a variable name.

Acceptable variable names include:

myFirstVar, bob, max_width, total_$s, _1st_answer_

However, the following variable names will cause JavaScript errors and, depending on
where they are used, they could possibly prevent your entire script from running at all.

var // It uses a key word as a variable name
2nd_var // It begins with a number
101_dalmatians // It begins with a number
@home // The ‘@’ character is not allowed in a name
first# // The ‘#’ character is not allowed in a name

The reason var will cause an error is because it is a keyword. 1st_var and 101_

dalmatians are unacceptable because they start with a numeric character, and @home and
first# will fail because they use characters which aren’t allowed in JavaScript names.

Remember that the JavaScript keywords listed in Chapter 1 can be used only
for their designated purpose. They can’t be used for naming variables or
other names. Remember too that JavaScript, unlike HTML, is case sensitive.

Caution

Give your variables names that indicate their purpose. When multiple vari-
ables with nondescript names are used in a complex piece of code things
can become very confusing. Using meaningful names helps you to follow
the flow of code, particularly if you wrote it some time ago.

Tip

To adequately describe the purpose of a variable, it may be necessary to use more than
one word in its name. Because a space character isn’t allowed in variable names there
are two conventions which are commonly used to make the words within multiword vari-
able names more readable. One method strings the words together and capitalizes the
first letter of all but the first word; the second method separates the words with under-
scores. For example you might write the following:

04 2978 CH02 4/10/02 10:44 AM Page 51

multiWordVariable

phoneNumber

faxNumber

or,

multi_word_variable

phone_number

fax_number

The method you choose is completely up to you. The JavaScript interpreter accepts both
methods just described. In this book we will usually use the first method purely because
of personal preference. If you prefer the latter, feel free to use it instead. When looking at
JavaScript code on the Web you will probably see both naming conventions used.

52 Day 2

In theory you can use non-alphabetic characters in JavaScript names, such as
* and +, or a period, but it is wiser to avoid these since they may cause
confusion with JavaScript operators or object-related syntax that uses the
period character.

Caution

Changing a Variable’s Contents
As is implied by the name variable, the contents of variables can change. To change the
data contained in a variable all you have to do is write the variable name followed by an
equal sign and the new data. This process “reassigns” to the variable a new value. For
example:

var myVariable = 10; //Creates myVariable and assigns it the value 10
myVariable = 5; //Reassigns myVariable the value 5

To see this process working, try running the following code shown in Listing 2.2.

LISTING 2.2 Reassigning Variables (reassignVariables.htm)

<html>
<head>
<title>Reassigning Variables</title>

<script language=”javascript” type=”text/javascript”>
<!--

04 2978 CH02 4/10/02 10:44 AM Page 52

Working with Data 53

2

var myNum = 3;
alert(“Variable myNum contains the value: “ + myNum);
myNum = 2;
alert(“Variable myNum contains the value: “ + myNum);
myNum = 1;
alert(“Variable myNum contains the value: “ + myNum);
myNum = “Go!”;
alert(“Variable myNum contains the value: “ + myNum);

//-->
</script>

</head>
<body>

<h1>Reassigning Variables</h1>

</body>
</html>

Not only does the data change in value, but for the final assignment, it also changes data
type from number to string.

Constants
Constants are a new type of data container, which were introduced with JavaScript 1.5.
They are declared in the same way as JavaScript variables but with the const keyword.

As their name suggests, once you’ve given a constant a value it doesn’t change. In fact it
cannot be changed. This rule is stricter than you might think. It is not possible to declare
a constant and then assign it some data later, as we initially did to create a variable. If
you were to try to do that the constant would simply take the value undefined at the
time of the declaration, and then remain unchanged by any subsequent attempt made to
assign it a value. For example, try the following three lines:

const TEST_CONST;
TEST_CONST = 10;

alert(TEST_CONST);

This displays the following alert box, which shows that the value of constant testConst
has remained undefined, even after attempting to assign it the value 10 (see Figure 2.2).

LISTING 2.2 continued

INPUT

04 2978 CH02 4/10/02 10:44 AM Page 53

To assign testConst the value 10, you have to make the assignment on the same
line as the declaration of the variable. Therefore we would have to change the

previous lines of code as follows:

const TEST_CONST = 10;
alert(TEST_CONST);

Also note that you can’t re-declare a constant as a variable in an attempt to change its
value. The following will produce an error:

const TEST_CONST = 10;
var TEST_CONST = 20;

When you declare constants the const keyword must be used. It is not an option in the
way that the var keyword is optional. The default data container is the variable, so if the
const keyword is omitted, then a variable will be created, which may not be what you
intended.

54 Day 2

FIGURE 2.2
The value of
TEST_CONST.

OUTPUT

ANALYSIS

At the time of writing, Internet Explorer, version 5.5, does not support
constants.

Caution

It is traditional, although not required, in JavaScript to name constants with all uppercase
letters, using an underscore to create any spaces between words. As you will see later in
the book, this is also how the predefined JavaScript constants are written. It simply
reminds us not to try to change the data they contain later in a script.

Operators
You have learned about the types of data JavaScript understands, and you are able to use
variables as a simple means of data storage. The next step is to learn about some of the
different methods available to you for working with your data.

04 2978 CH02 4/10/02 10:44 AM Page 54

Working with Data 55

2

To begin with, we will examine operators, which are JavaScript’s basic data manipulation
tools, many of which you will use regularly. JavaScript also has several other ways of
processing data, including some built-in functions and powerful regular expressions
(which we will look at in later chapters).

Understanding Operators
“Operators” may sound a bit abstract, but you shouldn’t let their name put you off. You
will find that you are already familiar with some of them, and many of them are intuitive
to use.

The term “operator” came about because in programming when you perform a simple
action on a piece of data you are said to perform an “operation” on it. It is quite logical
then that the JavaScript tools provided to perform this task—an operation—are called
operators.

Operators can operate on all of the data types that JavaScript understands. Take a look at
an example of an arithmetic (mathematical) operation, with which you will undoubtedly
be familiar:

1 + 2

In the simple arithmetic calculation above, a very common operation (addition) is per-
formed using the numbers 1 and 2 and an operator (the plus sign). The plus sign is an
operator you will have seen many times before, but quite possibly didn’t realize it could
be called an operator. As you can see, this really is very simple. The thing most likely to
cause confusion in this chapter is the terminology, so let’s quickly review some of the
terms we will be using.

Terminology
In addition to “operator” and “operation,” there are three other words that will come up
regularly as we look at JavaScript operators: operands, expressions, and evaluation. Let’s
clarify what each means in the context of JavaScript.

Operands

Okay, so the plus sign was called an operator, but what about the other parts of the calcu-
lation—the numbers 1 and 2? Because the types of data used with operators will not
always be numerical data, we can’t always call the data numbers. Instead, data in this
context is given the general term “operand.” Therefore the numbers 1 and 2 in the above
addition are called the + operator’s “operands.” So, if we want to add two numbers, we
could, in tech-speak, say that we want to add the operand 1 to the operand 2 using the +
operator.

04 2978 CH02 4/10/02 10:44 AM Page 55

For many of the operators, operands can be any of the JavaScript data types or they can
be a data container containing some valid data.

Expressions

For the same reason (that is, not all operations are arithmetical), we don’t use the word
“calculation” to describe a typed-out sequence of operators and operands. Instead we call
this an “expression.”

So, the code

1 + 2

could be described as an expression in which we use the + operator on the operand 1 and
the operand 2. The process is simple, although the terminology may not be. So don’t let
terminology that is unfamiliar make you uncomfortable.

In JavaScript as with other languages, an expression is any combination of data, data
containers, and operators that will evaluate to a single value. For example 1 + 2 evalu-
ates to (it becomes) 3. In this expression there are two pieces of data and a mathematical
operator, but expressions can consist of many more than two operands and one operator.

You can use such expressions to assign a value to a variable. Thus, the following code
adds the operand 1 to the operand 2, and assigns the resulting value to the variable
mySecondVariable.

mySecondVariable = 1 + 2

Evaluation

Finally, we need a word that expresses what happens to an expression when the
JavaScript interpreter processes it. For this process we use the words “evaluation” or
“evaluates.” For example we would say that 1 + 2 evaluates to the value 3.

Although this example simply evaluates to a value (and therefore would need to be used
immediately), expressions can also assign a value to a data container such as a variable
or constant when they are evaluated. For example, the following is an expression, which
in this case will assign the value 3 to a variable called myVar on evaluation:

var myVar = 3;

Most of the time your JavaScript expressions will evaluate to one of the three data types
shown in Table 2.1.

56 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 56

Working with Data 57

2

TABLE 2.1 Data Types to Which Expressions Commonly Evaluate

Data type Example

Number For example, 15 or 3.14

String For example, “Alan” or “3.14”

Logical true or false only

They can also evaluate to something called an “object,” but we’ll leave the explanation of
what an object is and how you use it for a later chapter.

JavaScript Operators
With the terminology out of the way, let’s get down to business. JavaScript has a very
wide range of operators that can be broken up into the types shown below:

• Arithmetic operators

• Comparison operators

• Logical operators

• String operators

• Assignment operators

• Bitwise operators

• Special operators

We will examine all of the operators in each of the types except for the special operators,
which we will only look at briefly. The special operators will be discussed later in the
book at the points when they are most relevant.

Arithmetic Operators
Arithmetic operators (also called mathematical operators) can be used to perform
calculations with numbers or data containers that hold numerical values. In addition to
the operators for the four basic mathematical processes (addition, subtraction, multiplica-
tion, and division), and an operator to reverse the sign of a number, there are three opera-
tors provided as shortcuts for some commonly used processes.

Table 2.2 lists the mathematical operators along with a brief description of what they do.

04 2978 CH02 4/10/02 10:44 AM Page 57

TABLE 2.2 Arithmetic Operators in JavaScript

Operator Name Description

+ Addition Adds two operands together

- Subtraction Subtracts the second operand from the first operand

* Multiplication Multiplies two operands together

/ Division Divides the first operand by the second operand

% Modulo (or Remainder) Returns the remainder of dividing the first operand
by the second operand

++ Increment Adds 1 to its operand

-- Decrement Subtracts 1 from its operand

- Negation Reverses the sign of its operand

It is worth mentioning that the last three operators in Table 2.2 are commonly termed
“unary” operators. This simply means that they only operate on one operand. Operators
which operate on two operands, such as the simple addition calculations you saw earlier
are called “binary” operators.

58 Day 2

Note that the division operator (/) returns a floating-point value (a number
with a decimal point and a fractional part after the decimal point), and the
modulo operator (%) returns an integer (whole number).

Caution

The first four arithmetic operators behave as you would expect:

4 + 8 // evaluates to 12
4 - 8 // evaluates to -4
4 * 8 // evaluates to 32
4 / 8 // evaluates to 0.5

As does the negation operator:

-5 // evaluates to -5
-(-5) // evaluates to 5

In other words, the negation operator turns positive values negative and negative values
positive. However, the use of the remaining three operators—Modulo, Increment, and
Decrement—may not be immediately apparent to you at this point.

04 2978 CH02 4/10/02 10:44 AM Page 58

Working with Data 59

2

The Modulo Operator
The modulo operator finds the remainder after dividing its first operand by its second
operand and it is written like this:

7 % 3

In this example, the expression would evaluate to 1 (7 divides by 3 twice before it leaves
a number less than 3; for example, the remainder 1).

At first the modulo operator may seem strange. Surely you don’t need to find the remain-
der of a division so often that a special operator had to be made to do the job. Well,
maybe that is true, but it saves a lot of work for the times that we do need to find out
what the remainder is.

The modulo operator is sometimes referred to as the “modulus” operator.
The two terms mean the same.

Note

The Increment and Decrement Operators
The increment and decrement operators are used extensively with variables in looping
control statements (such statements will be dealt with more fully in the next chapter).

The increment operator x++ is simply a shorthand. The following two lines of code
mean the same thing:

x++;
x = x + 1;

Basically, when you need to repeatedly go through a piece of code a set number of
times, a variable is set at a value and then each time the code is run the variable is incre-
mented (increased in value by 1) or decremented (decreased in value by 1). The value of
the variable, after it has been incremented (or decremented), then can be tested to deter-
mine at what stage the code is running, and whether the loop should be run again.

You should note that one of the characteristics of these operators is that prefixing and
postfixing the increment or decrement operator has different effects. The following code
shows the prefix and postfix increment and decrement operators:

++x // the prefixed increment operator
x++ // the postfixed increment operator
--x // the prefixed decrement operator
x-- // the postfixed decrement operator

Let’s look at an example to see just what we mean.

04 2978 CH02 4/10/02 10:44 AM Page 59

Assume that a variable x has the value 3. If the increment operator is prefixed to it
(applied to its left-hand side), then ++x sets x to 4 and returns 4. This is demonstrated by
the following code:

var x = 3;
alert(++x); // alerts 4
alert(x); // alerts 4

On the other hand if we postfix the increment operator to x, then x is not incremented to
4 until the next line of code. This can be shown with a similar piece of code using the
postfix increment operator rather than the prefix increment operator:

var x = 3;
alert(x++); // alerts 3
alert(x); // alerts 4

At the moment we don’t expect you to see why these techniques might be useful. Just
bear it in mind for when we come to control statements later.

With the exception of the increment or decrement operators, boolean values and the null
value can be used as the operands of arithmetic operators in JavaScript. The values false
and null are treated as 0, whereas the value true is treated as 1.

Comparison Operators
Comparison operators are regularly used in JavaScript to test whether a condition is true
or not. Although we may not consciously think in terms of comparison operators, we use
this sort of evaluating process all the time in our day-to-day lives. For example, if you
were to pass a shop and see something in the window that you liked, the first thing you
might do is check in your purse or wallet to see if you have enough money (assuming
you haven’t brought your credit card). Effectively you are making a comparison by ask-
ing yourself, “is the money I have greater than the money I need to buy that item.” These
types of questions or comparisons always will result in a “yes” or “no” answer and are
the basis of many decisions that we make. In this case, if the money you have is less than
the money you need then you cannot buy the item.

Just as we make comparisons in our lives to help us make decisions, JavaScript provides
comparison operators so that we can compare data in order to make decisions in our
scripts. Comparison operators take two operands and compare them to see if a certain
condition is true. If it is, the expression evaluates to the value true, but if it’s not true,
the expression evaluates to false. The values true and false are the JavaScript equiva-
lent of “yes” and “no,” and they are the only values a comparison expression will evalu-
ate to. Comparison expressions always evaluate to one or other of these two logical val-
ues. A condition is either true or false and nothing in between. Comparisons, in
JavaScript at least, cannot evaluate to “maybe.”

60 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 60

Working with Data 61

2

Shortly we will look at how comparison expressions are used to make decisions, but for
now let’s take a look at a simple example to show expressions at work.

Imagine you have a variable called myVar and you want to check whether the number it
contains is less than three. The less than and greater than operators in JavaScript are the
same as they are in standard mathematical notation. Therefore to check this condition
you would write the following:

myVar < 3

Try it out by adding some lines of code to the template as shown in Listing 2.3:

LISTING 2.3 A Comparison Operator Demo (operatorDemo.htm)

<html>
<head>
<title>A Comparison Operator Demo</title>

<script language=”javascript” type=”text/javascript”>
<!--

var myVar = 2.5; // test different values
alert(myVar < 3);

//-->
</script>

</head>
<body>

<h1>A Comparison Operator Demo</h1>

</body>
</html>

If you change the value assigned to myVar you will see that when it contains a
value less than three the expression evaluates to true, and when three or greater

it evaluates to false.

A complete list of the comparison operators is shown in Table 2.3.

INPUT

OUTPUT

04 2978 CH02 4/10/02 10:44 AM Page 61

TABLE 2.3 Comparison Operators in JavaScript

Operator Name Description

> Greater than Checks whether the first operand is greater than the
second operand

< Less than Checks whether the first operand is less than the
second operand

>= Greater than or equal to Asks if the first operand is greater than or equal to
the second operand

<= Less than or equal to Checks whether the first operand is less than or
equal to the second operand

== Equal to Checks whether both operands are equal

!= Not equal to Checks whether both operands are unequal

=== Strict equal to Asks if both operands are equal and of the same
data type

!== Strict not equal to Checks whether both operands are unequal and/or
not of the same data type

The first four operators are most likely to immediately make sense to you. There is a
slight difference between the greater than (>) and greater than or equal to (>=) operators,
and between the less than (<) and less than or equal to (<=) operators, as you most likely
know. However, just in case math wasn’t your favorite class, here are a couple of exam-
ples that show the difference:

3 < 3 // evaluates to false
3 <= 3 // evaluates to true
3 > 3 // evaluates to false
3 >= 3 // evaluates to true

As you can see, they act just as their names imply. With the greater than or less than
operators, the first operand has to actually be greater than or less than the second
operand for the expression to evaluate to true. The greater than or equal to and the less
than or equal to operators on the other hand will also evaluate to true if the operands are
equal.

The differences among some of the four equality comparison operators may not be quite
so obvious however. The key to understanding how they work is to know that two of the
comparison operators pay attention to data types and two of them don’t. Let’s look at
some examples to demonstrate just what this means.

62 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 62

Working with Data 63

2
3 == 3 // evaluates to true
3 == “3” // evaluates to true

but:

3 === 3 // evaluates to true
3 === “3” // evaluates to false

Why have the second and fourth examples above not evaluated to the same logical value?
The answer is that if the operands of the equal to (==) operator (and the not equal to
operator) are of different data types, the JavaScript interpreter will try to convert one of
them to the data type of the other to make a comparison. Therefore in the comparison 3
== “3” the second operand, a string containing the character 3, is converted to the num-
ber three which is equal to the first operand. Effectively the data types of the two
operands have been ignored.

On the other hand in the fourth comparison which uses the strictly equal to comparison
operator, the data type of the operands is also taken into account. Therefore, as the first
operand is a number and the second operand is a string, the expression immediately eval-
uates to false. It doesn’t matter that the character in the string is the character 3. The
two operands aren’t strictly equal because they are not of the same data type.

The problems with mistakenly using the assignment operator (=) instead of the equality
operator (==) can arise when you have an expression like if (x==3). If, in error, you
write if (x=3), then you have changed the value of the variable x to 3. Instead of check-
ing whether the value of the variable x matches a certain value (the integer 3) you have,
instead, changed its value to that numerical value. This won’t cause an error but it may
cause problems later in your script, depending on whether or not the code depends on the
value of x.

These rules apply in the same way to the not equal to (!=) and the strictly not equal to
(!==) comparison operators. Hence,

3 != 3 // evaluates to false
3 != “3” // evaluates to false

It is a very common mistake to forget that there is a difference between the
single equal sign that assigns a value to a variable and the double equal
signs that compare its operands. If a comparison which checks for equality is
causing errors check whether you have remembered to use a second equal
sign.

Caution

04 2978 CH02 4/10/02 10:44 AM Page 63

but:

3 !== 3 // evaluates to false
3 !== “3” // evaluates to true

64 Day 2

Notice that the negation of the equal operator, ==, is !=, which has one less
“=” than the operator it negates. Similarly, the negation of the strictly equal
operator, ===, is !==, which again has one less “=” than the operator it
negates.

Caution

The most obvious and frequently used application of comparison operators is to compare
numeric values. However operands can also be string and logical values. If a logical
value is used as an operand, the rule is very simple: true evaluates to 1 and false

evaluates to 0.

Therefore:

true > 0.5 // evaluates to true

and

false > 0.5 // evaluates to false

Be careful when comparing boolean (logical) values with numbers or strings,
since different languages observe different rules for such comparisons, and
it is easy to introduce a subtle error which could cause symptoms
somewhere else in your code.

Caution

String comparisons are a bit more exciting and probably a lot more useful. The outcome
of a string comparison is based on lexicographical ordering using the Unicode standard.
That probably sounds pretty complicated but effectively it means that we can use the
comparison operators to see if one string comes before another in the alphabet.
Unfortunately this is not as simple as you might first think as Unicode separates upper-
case letters from lowercase letters. The full set of uppercase letters, ABC…XYZ, comes
before the lowercase letters, abc…xyz. For the moment, let’s just see how the operators
work when the strings aren’t altered.

04 2978 CH02 4/10/02 10:44 AM Page 64

Working with Data 65

2

If one of the operands of a comparison expression is a string, then JavaScript compares
the operands lexicographically. The less than operator checks whether the first operand
comes before the second operand according to alphabetical ordering. If it does, then the
expression evaluates to true. Let’s take a look at a couple of examples:

“a” < “b” // evaluates to true

“James” < “Alison” // evaluates to false

The greater than comparison operator acts in the opposite way, so it asks if a string
comes after another string according to alphabetical ordering. Therefore:

“a” > “b” // evaluates to false

“James” > “Alison” // evaluates to true

It is important to remember that the ordering is based on Unicode values. Therefore,
uppercase letters come before lowercase letters:

“James” < “andrew” // evaluates to true

and

“James” > “andrew” // evaluates to false

To get around this when we want to put strings in alphabetical order, you can temporarily
change all the letters in both strings to either uppercase or lowercase; then the compar-
isons work alphabetically in the way that you would expect. Don’t worry about this for
the moment though. For now let’s continue our examination of JavaScript’s comparison
operators.

Conditional Operator
The conditional operator is the only special operator that we will cover in depth at this
point in the book. We are going to examine it now so that we are better able to demon-
strate the logical operators in the next section of this chapter.

The conditional operator is also the only JavaScript operator to take three operands. The
operator consists of a question mark and a colon, which separate the three operands as
shown below:

operand1? operand2: operand3

Any of the three operands can be just a simple value or an expression in its own right.
Therefore you could use the conditional operator to create the following expressions:

true? 1: 0
myVariable? 5+5: 5-5
6>7? “it’s greater”: “it’s less”

04 2978 CH02 4/10/02 10:44 AM Page 65

How the operator works is unlikely to immediately be apparent, so let’s first look at a
simple example where the operands are simple values. Type the following line into the
template, and open it with your browser.

alert(true? 1: 0);

On opening the page, you should see an alert box with the value 1 in it. Now try chang-
ing the logical value true in the code to the value false. Save and refresh the page. This
time you should see an alert box with the value 0.

What the operator is doing is this: The whole expression evaluates to the second or third
operand depending on whether the first is (or evaluates to) true or false. If the first
operand evaluates to true, then the whole conditional operator expression evaluates to
the second operand. If, however, the first operand evaluates to false, then the whole
expression evaluates to the third operand. In the case above, the whole operand evaluates
to the value 1 or 0. The resulting value, in this case it is 1, is then taken by the alert
function and displayed in an alert box.

The second and third operands can evaluate to any of the five data types, but the first
operand will always evaluate to a logical value based on the following rules:

• Numbers are treated as true if they are not equal to 0.

• Strings are treated as true if they are greater than 0 characters in length.

• undefined is treated as false.

• null is treated as false.

Hopefully these rules should be fairly easy to remember. Think of it in these terms: Any
number with a value of 0 is not positive, so it won’t evaluate as true. In a similar sense,
the empty string “” which contains no characters doesn’t have any length, so it evaluates
to false. The undefined and null values mean that something does not yet contain any
useful data, so they also evaluate to false.

Let’s now take a look at an example where the first operand is an expression:

alert(2<4 ? “The expression was true”: “The expression was false”);

As 2 is less than 4, the conditional operator will evaluate to the string “The expression
was true”. Try it and see for yourself.

The conditional operator is a very useful shortcut for passing one of two possible values
to a variable. For example, let’s take a look at an example with the help of the confirm()
function. Type out, save, and view the following code from Listing 2.4:

66 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 66

Working with Data 67

2

LISTING 2.4 Conditional Operator Demo (conditionalOp.htm)

<html>
<head>
<title>Conditional Operator Demo</title>

<script language=”javascript” type=”text/javascript”>
<!--

confirmVal = confirm(“You will be told which button you click”);
alertStr = confirmVal? “You clicked OK”: “You clicked Cancel”;
alert(alertStr);

//-->
</script>

</head>
<body>

<h1>JavaScript Test Page</h1>

</body>
</html>

This should bring up a confirm box followed by an alert. The value of the alert
box depends on whether you click OK or Cancel. But how does it work?

Well, first, the confirm box is displayed. The confirm function will evaluate to
true if you click OK, or false if you click Cancel. This value is then stored in

the variable confirmVal. The JavaScript interpreter then proceeds to the second line of
code where it first evaluates the first operand of the conditional operator, which is the
variable confirmVal. If it contains the value true, the whole expression evaluates to
“You clicked OK”, and if it is false it evaluates to “You clicked Cancel”. The value
of either the second or third operand (depending on what you clicked) is then assigned to
the variable alertStr (before it is alerted by the third line of the script).

Logical Operators
Logical (boolean) values are a very important part of JavaScript. As we saw when we
looked at conditional operators, they are the basis of JavaScript decisions. This was fur-
ther demonstrated by the example of their use with the conditional operator. So far the
examples you have seen demonstrated making decisions based on only one condition.
There are some times when you want to make a decision based on more than just one
condition, or you may want to reverse a condition. To do this JavaScript provides us with
the three logical operators shown in Table 2.4.

INPUT

OUTPUT

ANALYSIS

04 2978 CH02 4/10/02 10:44 AM Page 67

TABLE 2.4 JavaScript Logical Operators

Operator Name Description

! Logical NOT Reverses a logical value.

&& Logical AND Asks if both of two conditions are true.

|| Logical OR Asks if one or both of two conditions are true.

Let’s look at three examples for each of these operators. Hopefully you will find them
fairly easy to grasp. First, let’s look at the ! (logical NOT) operator:

!false // evaluates to true
!true // evaluates to false
!(3<4) // evaluates to false

As you can see, this operator simply reverses the boolean value that would otherwise
have been returned. If the value would have been true, the logical NOT operator would
have changed the value to false; and if the value would have been false, the logical
NOT operator would have changed the value to true.

The following examples will use boolean values for simplicity. This is because the &&
and || operators actually can have a behavior when used with other data types that need
some explanation. (We will look at that later in this chapter.)

For the && (the logical AND) operator:

false && false // evaluates to false
true && false // evaluates to false
true && true // evaluates to true

And for the || (logical OR) operator:

false || false // evaluates to false
true || false // evaluates to true
true || true // evaluates to true

As you can see, if both operands are logical values then logical values of the type you
would expect are returned. An expression with the && operator will only evaluate to true
if both its operands are true. But an expression using the || operator will evaluate to
true even if only one of its operands is true.

However, in a similar way to how the first operand of the conditional operator need not
be a logical data type, the logical operators can accept values other than boolean values.
The rules are also the same as for the conditional operator. Numbers with the value zero,
zero length strings, the null value, and the undefined value all evaluate as false, and
everything else evaluates as true.

68 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 68

Working with Data 69

2

When we use non-boolean data types with the && and || operators something called
short-circuit evaluation can cause some unexpected results. You may find yourself at a
future time frequently using logical operators with non-boolean operands, so it is good to
understand what happens, and why.

“Short-Circuit” Evaluation
The ! operator will always return a logical value no matter what type of data it is used
on. However, the && and || operators will return the value of one of their operands—
only if this operand happens to actually be a logical value will a logical value be
returned. As we’ll see, the operand that is returned depends on whether the first operand
is equivalent to true (non-zero numbers and strings greater than zero characters in
length) or equivalent to false (zero, zero length strings, undefined, and null).

In a logical expression the first operand is evaluated before the second. For certain values
of the first operand with some logical operators the second operand does not need to be
evaluated to know what the expression will return. For example, if the left-hand operand
of the && operator is equivalent to false, it doesn’t matter whether the right-hand
operand is false or true—the expression will still evaluate to false. Similarly, if we
use the || operator and its first operand is equivalent to true, it doesn’t matter what the
value of the righthand operand is—the expression will always evaluate to true.

This may seem pretty abstract and opaque to you, so let’s look in the following examples
at how this works in practice.

If, in the following examples, one of the above conditions is met then the first operand is
returned, but if it isn’t met, then the second operand is returned. Here are some lines of
code to illustrate this. Let’s look at the && operator first:

“water” && “fire” // returns “fire”
1 && “fire” // returns “fire”
true && “fire” // returns “fire”
“” && “fire” // returns “”
0 && “fire” // returns 0
false && “fire” // returns false
null && “fire” // returns null
undefined && “fire” // returns undefined

Notice that when the first operand is equivalent to true the second operand is returned,
but when it is equivalent to false the first operand is returned. The rule is that the last
operand to be checked is the one returned. Therefore, when the && operator has to check
the second operand, as is the case in the first three examples, then it is the second
operand which is returned. However, if the JavaScript interpreter knows that the

04 2978 CH02 4/10/02 10:44 AM Page 69

expression will evaluate to the equivalent of false regardless of the value of the second
operator, it doesn’t even bother checking it. It short-circuits and simply returns the first
operand.

Hopefully you have the idea, but let’s look at some examples of using the || operator
just to make sure:

“water” || “fire” // returns “water”
1 || “fire” // returns 1
true || “fire” // returns true
“” || “fire” // returns “fire”
0 || “fire” // returns “fire”
false || “fire” // returns “fire”
null || “fire” // returns “fire”
undefined || “fire” // returns “fire”

If, as in the first three examples, the first operand of the || operator is equivalent to
true, then there is no need to evaluate the second. The expression is short-circuited and
only the first operand is checked. Therefore, it is the one returned. However, in the other
five the first operand is equivalent to false. Therefore, the second operand needs to be
checked and it is the one returned.

Most of the time these effects won’t be of any consequence to your scripts. The operators
are usually used in conditional expressions to make decisions. Therefore, the action
based on the decision is either taken or it isn’t. The one time you may need to know
about these effects is if one of your operands has a side effect such as incrementing a
variable. If this is the case, then you should be very careful because as we have seen
sometimes one of the operands of these expressions is not evaluated and the increment-
ing of the variable would never take place.

String Operators
There is only one operator for working with strings. It is called the concatenation opera-
tor. If you aren’t familiar with this term, it simply refers to the action of joining some-
thing to the end of something else. In the case of the string operator, it enables us to join
one string to the end of another to make a longer string. The symbol that is used for the
concatenation operator is exactly the same as the one used for the addition operator: it’s
the plus sign (+).

To concatenate two strings, the operator is just placed between them as you might
expect:

var concatStr = “string 1 “ + “string 2”;
alert(concatStr);

This code would bring up an alert box with the value “string 1 string 2”.

70 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 70

Working with Data 71

2

The only way to distinguish the concatenation operator from the addition operator is to
examine whether one or both of its operands is a string. If one or both of the operands is
a string, then the + sign acts as the concatenation operator, but if neither is a string then it
acts as the addition operator. This is important when you have an expression that con-
tains a mixture of numbers, strings, and plus signs. To know which + sign will act as the
addition operator and which will act as the concatenation operator, it is important to
know that evaluation in JavaScript is generally processed from left to right.

Let’s look at some examples to demonstrate this:

1 + 2 + “string” // evaluates to “3string”
1 + “string” + 2 // evaluates to “1string2”
“string” + 1 + 2 // evaluates to “string12”

In the first example, the first thing to be evaluated is the 1 + 2. The two numbers are
added together. Only then does the result of that addition have the string “string” con-
catenated to it. In the second example, the number 1 and the string “string” are concate-
nated by the first expression evaluated. As “string” is a string, they are concatenated to
produce the result in the string “1string”. Because “1string” is a string, the final
operand, 2, also is concatenated to produce another string, “1string2”. In the third
example, the leftmost operation is evaluated first. As one of the first two operands is a
string, the + sign concatenates them. The result of the first operation is a string—so 2 is
also concatenated to give the string “string12”.

Note that the plus operator also will convert any of the other data types to a string for
concatenation if one of the operands is a string. Therefore, in the following examples,
since the first operand is a string, the second operand is converted to a string value and
concatenated to the first string operand:

“Operand 2 = “ + 1 // returns “Operand 2 = 1”
“Operand 2 = “ + true // returns “Operand 2 = true”
“Operand 2 = “ + null // returns “Operand 2 = null”
“Operand 2 = “ + undefined // returns “Operand 2 = undefined”

Each of the operands that were of the data types other than string—1 which is a number,
true which is boolean, and null and undefined—is converted to string values, then
concatenated to the string “Operand 2 =”.

Assignment Operators
Assignment operators are used to tell the JavaScript interpreter to store a piece of data in
a variable or some other data container, hence they “assign” data to something.

You already have come across the simplest JavaScript assignment operator, which is the
equal sign. It simply does a straightforward assignment with no additional processes.

04 2978 CH02 4/10/02 10:44 AM Page 71

Everything to its right is evaluated and assigned to the data container on its left. Hence,
as you know to store the number 2002 in a variable called presentYear, you would
simply write:

var presentYear = 2002;

Frequently, you will want to add or subtract a number from the number contained within
a variable. One way to do this is to recursively assign data to a variable using the
variable name:

someVar = someVar + 10;

You will find yourself frequently using this kind of operation. To save yourself from typ-
ing out the variable name twice, as in the above example, JavaScript provides several
shortcut assignment operators. These shortcut assignment operators are not only for
addition and subtraction, but for many other operations as well.

Shortcut assignment operators require that the variable name isn’t written a second time
and that the operator in the right-hand expression is moved in front of the equal sign.
Hence the shortcut for adding 10 to the variable someVar would look like this:

someVar += 10;

Both methods have exactly the same effect so you can forget about these shortcuts if you
find them unintuitive or confusing. However, we would encourage you to get used to
using the shortcuts as they can be useful time or space savers in large scripts. Table 2.5
shows the shortcut assignment operators you will most likely use.

TABLE 2.5 JavaScript Shortcut Assignment Operators

Operator Equivalent To

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

These shortcut assignment operators usually act on numbers, but if one of the operands
of the += operator is a string, it will act as a string operator. In other words, it will
concatenate the two operands as if both were strings.

There are also shorthand operators for the bitwise operators that are discussed next, but
you are far less likely to use them. They are listed in Table 2.6 for completeness.

72 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 72

Working with Data 73

2

TABLE 2.6 Shortcut JavaScript Bitwise Operators

Operator Equivalent To

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

Bitwise Operators
Bitwise operators have been left to last in this chapter because—unless you already use
them in another programming language—it is very unlikely that you will make use of
them in JavaScript. This is because they take numeric operands (in the form of octal and
hexadecimal as well as decimal numbers) and work on them at the binary level. This
means that when bitwise expressions are evaluated they convert their operands to binary
numbers (1’s and 0’s) to perform their operation. After they have finished, they then
convert the result to a decimal value.

Manipulation of bits is used in such processes as encryption routines and data conversion
to other programming languages. In client-side JavaScript, it is most commonly used
with a bit of ingenuity to optimize scripts by making them work faster and more effi-
ciently. It can be a very complex topic so if you don’t already know of any reason why
you really need them then feel free to skip this section.

In JavaScript bitwise operators accept operands as a set of 32 bits (zeros and ones). If
one of the operands is larger than 32 bits when converted to binary form, then the addi-
tional bits are removed before the calculation proceeds. Of course, you need to make
sure that the data you want to manipulate is not among the data that will be discarded.

Bitwise Logical Operators
Conceptually, the bitwise logical operators work as follows: The operands are converted
to 32-bit binary integers. Each bit in the first operand is paired with the corresponding bit
in the second operand; first bit to first bit, then second bit to second bit, and so on. The
operator is applied to each pair of bits in turn, and the result is constructed bitwise.

Table 2.7 summarizes JavaScript’s logical bitwise operators.

04 2978 CH02 4/10/02 10:44 AM Page 73

TABLE 2.7 JavaScript Bitwise Logical Operators

Operator Name Description

& Bitwise AND Returns 1 for each bit position where the corresponding
operand bits are both ones

| Bitwise OR Returns 1 for each bit position where either of the
corresponding operand bits is one

^ Bitwise XOR Returns 1 for each bit position where only one of the
corresponding operand bits is one

~ Bitwise NOT Returns its operand bits inverted

For example, the binary representation of nine is 1001, and the binary representation of
fifteen is 1111. So, when the bitwise operators are applied to these values, the results are
as follows:

15 & 9 // evaluates to 9 (1111 & 1001 = 1001)
15 | 9 // evaluates to 15 (1111 | 1001 = 1111)
15 ^ 9 // evaluates to 6 (1111 ^ 1001 = 0110)

Or for bitwise NOT:

~9 // evaluates to -10

Bitwise Shift Operators
The bitwise shift operators take two operands. The first is converted to binary for shift-
ing, and the second specifies the number of bit positions by which the first operand is to
be shifted.

The shift operators are listed in Table 2.8.

TABLE 2.8 JavaScript Bitwise Shift Operators

Operator Name Description

<< Left shift Shifts to the left discarding bits shifted off to the left
and moving zero bits in from the right

>> Sign-propagating Shifts to the right discarding bits shifted off to the right.
right shift Moves in bits from the left with the value of the original

left-most bit

>>> Zero-fill right shift Shifts to the right discarding bits shifted off to the right
and moving zero bits in from the left

74 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 74

Working with Data 75

2

Operator Precedence
Until now, we have mostly ignored which parts of expressions that contain several opera-
tors are evaluated first. However, once you start to use larger and more complex expres-
sions, it becomes increasingly important to know the order of evaluation. To help us
describe this, we will refer to operators as having precedence over each other. The higher
the precedence, the sooner it is evaluated. For example, you probably already know that
in a sum, multiplication and division are carried out before addition and subtraction.
Hence the sum

1 + 2 * 3

results in 7, even though the 1 + 2 came first reading from left to right. This is because
multiplication has a higher operator precedence than addition.

Table 2.9 shows the operators from highest precedence to lowest (i.e., from the operators
that evaluate first to the operators that evaluate last).

TABLE 2.9 Operator Precedence in JavaScript

Operator(s) Operator Type(s)

. [] Member

() new Call / create instance

! ~ - + ++ -- typeof void delete Negation / increment / special

* / % Multiply / divide / modulo

+ - Addition / subtraction

<< >> >>> Bitwise shift

< <= > >= in instanceof Relational / special

== != === !== Equality

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

?: Conditional

= += -= *= /= %= <<= >>= >>>= &= ^= |= assignment

, comma

04 2978 CH02 4/10/02 10:44 AM Page 75

Special operators are included in this table, so if you don’t recognize some of the
operators shown in Table 2.9, don’t worry about it. (They haven’t been covered yet.)

If you find it difficult to remember even the simpler precedence rules within this table,
you can override operator precedence by using parentheses. Hence in the expression

1 + 2 * 3

if you weren’t sure which came first, multiplication or addition, you could use
parentheses just to make sure:

1 + (2 * 3)

Alternatively, parentheses can be used to override operator precedence. For example, if
you intended to add 1 and 2 before multiplying by 3, you would write:

(1 + 2) * 3

As you may have noticed in the table, some operators have the same precedence level.
When this is the case the operators are evaluated as normal from left to right. For
example

13 % 5 * 2

will evaluate to 6 because the remainder of 13 divided by 5 is 3, which multiplied by 2
equals 6.

Summary
In this chapter we have covered a lot of ground. We have seen how data can be stored in
variables and constants, and how these are subsequently used. In addition, we have cov-
ered all the JavaScript operators, with the exception of a few of the special operators.
This will enable us to work with data far more effectively in the coming chapters.

Don’t be too concerned if you feel we have covered more rules than you can remember.
When appropriate, we will remind you as we continue through the book. Gradually, as
you work through the examples and exercises, you will pick up the rules for yourself and
they will become second nature to you.

Workshop
This workshop asks only a few questions to test whether you are comfortable with the
chapter material. Also, this workshop contains two exercises for you to try.

76 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 76

Working with Data 77

2

Q&A
Q. When will it be safe to use constants?

A. This varies depending on your audience. It will likely be years before all browsers
in common use support them. Therefore it is up to you to decide when the number
of visitors to your site using browsers that don’t support constants has fallen below
an acceptable level. If possible, use site logs to help you make this decision. If you
don’t have access to site logs, you can try to make an educated guess from the
browser statistics published by other sites. In fact, if you create a variable and
never change its value, it can function as a constant for your script.

Q. Will I need to use bitwise operators often?

A. Unless you need to carry out binary arithmetic, it is unlikely that you will need to
know about the bitwise operators.

Quiz
1. How do you declare a variable called Temp and assign to it a value of 5?

2. How do you declare a constant called MY_FIVE that has the numeric value of 5?

3. Will the following expression evaluate to true or false?

true && true || false

Quiz Answers
1. You can use the following code to declare the variable Temp and assign it a

value of 5:

var Temp = 5;

2. You can declare the constant MY_FIVE with a numeric value of 5 using the
following code:

const MY_FIVE = 5;

3. The expression

true && true || false

will evaluate to true.

Exercises
1. Create a constant called MY_CONST and give it a value of 12 and a variable called

myVariable and assign it a value of 10. Alter the value of myVariable by adding to
the value of myVariable the value of MY_CONST. Then display the new value of
myVariable in an alert box.

04 2978 CH02 4/10/02 10:44 AM Page 77

2. Create two variables firstVariable and secondVariable. Assign the value of 10
to firstVariable and assign the value of 12 to secondVariable. Create an alert
box that outputs the comparison of the two variables.

78 Day 2

04 2978 CH02 4/10/02 10:44 AM Page 78

DAY 3

WEEK 1

Functions and Statements
This chapter begins by looking at how you can store code by creating your own
functions, and how you can control the flow of a script. This will provide the
other “half” of the basics you will need to create useful scripts (in addition to
what you learned about variables in Chapter 2, “Working with Data”). You will
also find out about some of the conveniently built-in pieces of code found in
JavaScript.

In this chapter you will learn the following:

• What functions are

• How to create a function

• How to use a function

• About predefined global functions

• What statements are

• Conditional statements

• Loop statements

05 2978 CH03 4/10/02 10:51 AM Page 79

User Defined Functions
A user-defined function is a function that you create, as opposed to one of the built-in
JavaScript functions. JavaScript provides both built-in functions and the tools to create
your own. Both have their place, but for the moment, let’s concentrate on learning what
functions are and how we can build and use our own.

What Is a Function?
Chapter 2 started by looking at how variables and constants can be used to store data
until it is needed or it can be used again. Although this is an essential part of program-
ming, to create truly useful scripts you also need to be able to store code (as opposed to
data). So far, the code we have worked with runs as soon as the page loads or is
reloaded. Frequently, though, you may want to use the same piece of code multiple times
or run it some time after the page has loaded in response to a user action. To do this, a
function is used. Just as you can think of variables as data containers that can be used to
store data, think of functions as code containers used to store pieces of code. Let’s take a
look at how they work.

Creating a Function
In much the same way as variables are declared with the var keyword, functions are
declared using the function keyword followed by the name you wish to give to the func-
tion. However, when you declare a function you are required to include two additional
items: a pair of parentheses and a pair of curly braces, as shown in the example below:

function functionName(){}

80 Day 3

JavaScript functions are named according to the same rules that are used for
naming variables. They can contain alphanumeric characters, the underscore
character, and the dollar sign as long as you do not use a JavaScript key-
word. The first character cannot be a number. Remember also to give your
functions meaningful names.

Tip

We will discuss the function of the parentheses shortly, so let’s concentrate on the curly
braces for now. The curly braces (or “curly brackets” as they are sometimes called) act
as code containers. All the code that is to be contained by the function (termed the func-
tion body) has to be placed between them. Essentially, the curly braces tell the JavaScript
interpreter where the function body starts and where it ends. Here is an example of a
function with some code:

function myFirstFunction(){ alert(“I’m in a function!”) }

05 2978 CH03 4/10/02 10:51 AM Page 80

Functions and Statements 81

3

As functions usually contain more than a single line of code, it is usual to break the curly
braces over more than one line, as shown below:

function myFunction(){
.
code
.

}

or sometimes the code is written like this:

function myFunction()
{

.
code
.

}

Do not put a semi-colon (;) after the parentheses or after the curly braces.
This will cause an error.

Caution

The JavaScript interpreter will treat both methods of code layout the same way. The
JavaScript interpreter knows that functions aren’t finished until it has reached a closing
curly brace so it ignores the extraneous white space. The aim of spreading code across
several lines and indenting statements is to make the start and end of your function stand
out so that when you scan large sections of code you can immediately pick out function
names and where their code begins and ends. Which method you use is up to you.

Let’s create a page that contains a function that will greet a visitor by name. Use the
template in Listing 1.6 and add to it the function in the following code. After you have
created the page, save it, and load it into your browser. See Listing 3.1.

LISTING 3.1 Creating a Function (storedGreeting.htm)

<html>
<head>
<title>Function Demo</title>

<script language=”javascript” type=”text/javascript”>
<!--

function greetVisitor()
{

INPUT

05 2978 CH03 4/10/02 10:51 AM Page 81

var myName = prompt(“Please enter your name.”, “”);
alert(“Welcome “ + myName + “!”)

}

//-->
</script>

</head>
<body>

<h1>Function Demo</h1>

</body>
</html>

As you will see, the page loads without an error but the JavaScript contained
within the function body doesn’t run. Hopefully this was what you expected.

Remember, functions store code—we have yet to learn how to evaluate the code.

Using Functions
To evaluate the function’s code (or as we are going to refer to it from now on, “to call the
function”), we need to write out something termed a function call. To do this, simply
write the function’s name followed by opening and closing parentheses. The parentheses
tell the JavaScript interpreter to call the function immediately and to run its code before
it does anything else. Therefore to call the function in your page, simply write the
following line under the function declaration:

greetVisitor();

If you load your page with these changes, the function should be called, and you then
will be prompted for your name and greeted.

82 Day 3

LISTING 3.1 continued

ANALYSIS

As with the var keyword for variables, the function keyword is only used
one time—the first time you declare a function. It is not used when you
call it.

Caution

Function calls can be placed anywhere in a script block (and can be placed in event han-
dlers, as you will learn later in the book). For the moment, though, to call our functions,
we are going to use the ability of anchor tags to execute JavaScript using their href

05 2978 CH03 4/10/02 10:51 AM Page 82

Functions and Statements 83

3

attribute. To do this, simply write “javascript” followed by a colon and a JavaScript
statement between the href’s quote marks. To see this at work, add the following line to
the body of an HTML document and click on the hyperlink it produces.

Click Here!

This can be used to call functions simply by replacing the alert function with a function
call to one of your own functions.

Go back to your page for greeting a visitor and add a hyperlink that calls the function as
shown in Listing 3.2. Resave the page, and then open it with your browser.

LISTING 3.2 Creating a Function (storedGreeting2.htm)

<html>
<head>
<title>Calling a Function</title>

<script language=”javascript” type=”text/javascript”>
<!--

function greetVisitor()
{

var myName = prompt(“Please enter your name.”, “”);
alert(“Welcome “ + myName + “!”)

}

//-->
</script>

</head>
<body>

<h1>Please click below and enter your name when prompted.</h1>

<p>Click for a greeting</p>

</body>
</html>

As you will see, the page loads without the alert box displaying. Now try clicking on the
hyperlink. This will call the function, and the prompt for your name should appear as
shown in Figure 3.1.

INPUT

05 2978 CH03 4/10/02 10:51 AM Page 83

Fill in your name and an alert box will appear to greet you. You will see later in the
chapter how to handle situations when someone may not fill in the prompt or they may
click Cancel.

Hopefully you now see how simple functions are created and used, and you understand
why they are so essential. Without functions JavaScript couldn’t do anything after the
page had loaded. With them, you can create countless interactive or useful enhancements.

Sending Data to Functions
Frequently, when creating a function you will want to give it some data on which to
work. This allows you to perform the same process repeatedly on different sets of data.
The process of sending data to a function is termed passing data to a function, which
means that the data to be passed is written into the parentheses of the function call. For
example, to send the numeric value 10 to a function called squareNum() you would
write:

squareNum(10);

Sometimes you will need to extend this process so that more than one piece of data can
be passed to a function. This can be accomplished by placing each piece of data to be
passed to the function within the parentheses, and separating each of them with a
comma. For example, if you wanted to send two different strings followed by the number
3 and the Boolean value true to a function called processThis(), you would write:

processThis(“1st string”, “2nd string”, 3, true);

84 Day 3

FIGURE 3.1
A prompt box
requests your name.

OUTPUT

05 2978 CH03 4/10/02 10:51 AM Page 84

Functions and Statements 85

3

As you will see later, the order in which these pieces of data are written between the
parentheses is important to the correct functioning of a function.

All these pieces of data that are sent to a function for use in the code that the function
contains are known as arguments (or parameters) of the function. Now that you can pass
arguments to a function, let’s see how you can use them in the function body.

Using Arguments
There are two ways of grabbing the arguments that are passed to functions. For the
moment, we will deal with the simpler and more popular of the two.

The usual method of accessing arguments is to write names into the parentheses of the
function declaration that correspond to the arguments written into the function call. For
example, say you have a function called numOddOrEven() that calculates whether the sin-
gle numeric argument that is passed to it is odd or even. To call the function and send it
the number 9, you would write the following:

numOddOrEven(9);

To use this number in the function, a name must have been written in the parentheses
when the function was defined. For example, if the name theNum was used, it might look
like this:

function numOddOrEven(theNum)
{

numType = (theNum % 2)? “odd”: “even”;
alert(“The number “ +theNum+ “ is an “ +numType+ “ number.”);

}

For the moment, you don’t need to worry about how the function works. The important
thing to note is the way that theNum is used repeatedly throughout the function block.
Effectively, the name (or names) contained within the parentheses acts exactly like a
variable. Wherever it is used in the function body, the theNum is replaced by the data that
was sent to the function as an argument (in this case the number 9).

The method of separating arguments with commas is also used to separate the argument
names in the function declaration’s parentheses. To use two arguments in the function,
you would declare it as shown below:

function numsOddOrEven(num1, num2)
{

numType1 = (num1 % 2)? “odd”: “even”;
numType2 = (num2 % 2)? “odd”: “even”;
alert(“The number “ +num1+ “ is an “ +numType1+ “ number.”);
alert(“The number “ +num2+ “ is an “ +numType2+ “ number.”);

}

INPUT

05 2978 CH03 4/10/02 10:51 AM Page 85

To call this function and send it the numbers 5 and 10, you would write the function call
as shown below:

numsOddOrEven(5, 10);

This would result in the two alert boxes shown in Figures 3.2 and 3.3.

86 Day 3

FIGURE 3.2
Alert showing the
type of the first argu-
ment passed to the
numsOddOrEven()

function.

OUTPUT

FIGURE 3.3
Alert showing the
type of the second
argument passed to
the numsOddOrEven()

function.

Note the order in which the alert boxes appear. The argument name num1, which
comes first in the parentheses of the function declaration, takes the value 5,

which was given first in the function call. Likewise num2, which came second in the
function declaration, takes the value 10, which came second in the function call.

ANALYSIS

Always be careful to provide data in the correct order. If you confuse the
order in which you provide the arguments to a function, you will likely get
an unexpected result or an error.

Caution

Another thing to note is that if you have declared your function with argument names in
the parentheses, you do not necessarily have to send them data with the function call. If
arguments aren’t sent, then the argument names will simply have the value undefined.
For example, try calling the following function both with and without an argument:

05 2978 CH03 4/10/02 10:51 AM Page 86

Functions and Statements 87

3

function checkForArg(myArg)
{

var msg = “The function argument was “; // Start message
// Add ending based on whether an argument has been sent

msg += myArg? myArg: “not sent!”;
alert(msg);

}
checkForArg();

The conditional operator concatenates the argument passed to the function to the
variable msg, if an argument has been passed to the function. If no argument has

been passed to the function, then the string “not sent!” is concatenated to the msg
variable.

This feature can be useful if for some reason you want to code your function so
it does not rely on being sent arguments. But that would be an unusual situation.

INPUT

OUTPUT

ANALYSIS

Be careful about passing the correct number of arguments to a function,
since most of your functions will only operate correctly if the correct number
of parameters is passed to the function. With no parameters or an incorrect
number passed to the function an unexpected result or an error may occur.

Caution

Returning Data from a Function
Very often you will want functions to give back data after they have processed the data
that was sent to them. To do this we use the return statement. Take a look at this
example before we walk through it:

function getModulus(theNum)
{

var theModulus = (theNum>=0)? theNum: -theNum;
return theModulus;

}

var myNum = -12;
myNum = getModulus(myNum);

alert(myNum);

Notice that the function call is on the right-hand side of an assignment to a variable
called myNum, and that the function is sent the original value of myNum as an argument.
The first line of the function processes the number to find its modulus (the number 12)
prior to storing it in the variable theModulus.

INPUT

05 2978 CH03 4/10/02 10:51 AM Page 87

It is the next line that is really of interest here. It uses the return keyword to return the
value of the variable theModulus to the point in the code where the function call is
situated. In this case, the function call was to the right of the = assignment operator.
Therefore the value 12 is assigned to the variable myNum replacing its original value of
-12. This is shown when the alert box displays myNum’s value (see Figure 3.4).

88 Day 3

The modulus of a number is the same as the number if the number is
greater than zero. If the number is less than zero, then its modulus is the
negation of the number—that is, the modulus of -5 is 5. The modulus is
sometimes referred to as the absolute value of the number.

Note

FIGURE 3.4
An alert showing the
value of myNum,
which is the value
returned by the
getModulus ()

function.

OUTPUT

The return statement does indeed return data from the function to wherever the
function call was located. However, there is another characteristic of the return

statement that the above example doesn’t clearly demonstrate. When the return state-
ment is evaluated it stops any further evaluation of the function body. Enter the following
into the template from Listing 1.6 and try it out:

function returnTest()
{

alert(“This will alert.”);
return;
alert(“This won’t alert.”);
alert(“Neither will this.”);
alert(“Or this.”);

}
returnTest();

In this example, the first alert would be the only one to be evaluated, and there-
fore displayed, because the return statement stops the function from continuing

to the end of the function body.

ANALYSIS

INPUT

OUTPUT

05 2978 CH03 4/10/02 10:51 AM Page 88

Functions and Statements 89

3

A return statement can have two effects. When a return keyword is encoun-
tered it always stops a function from further evaluation. If provided with some

data, the return statement will return the data to the place in the code where the function
call is situated. If the return statement is not provided with data, it will simply return
undefined—just as a function without a return statement would.

Variable Scope
As promised in Chapter 2, let’s now look more closely at the differences that including
or omitting the var keyword during declaration of a variable would make on the vari-
ables in your JavaScript code. The reason for putting this examination off until now is
because it is in functions that your choice of including or omitting the var keyword has
the most significant effect.

Before we go on to find out more about the scope of a function, let’s first take a look at
the meaning of the word scope.

The word scope refers to the limits inside which something is applicable. For
example, in the United States there are two types of law: federal law and state

law. State law is only applicable in individual states and therefore due to its geographical
limitation, it might be referred to as having “local” scope. Federal law, on the other hand,
isn’t limited by state boundaries. It governs the whole country, so it might be said that, as
far as the United States is concerned, it has “global” scope.

The idea of local and global scopes also exists for JavaScript variables. When a variable
is termed a global variable it means that it can be accessed and used by any part of any
of the scripts in the same HTML document. In addition, you also can use global vari-
ables in scripts that are in a different frame or browser window (although we haven’t
covered that yet). All variables declared in the script block, but outside of functions, have
global scope.

Variables defined inside a function are different. Their scope depends on whether you do
or do not declare them with the var keyword. If a variable is declared within a function
without the var keyword, then its scope is global. If a variable is declared within a func-
tion using the var keyword, then its scope is local.

The problem with creating global variables from inside a function may not be immedi-
ately apparent. What tends to happen is that functions use temporary variables that are of
use only while the function is evaluating. Outside the function they aren’t needed. It is
easy in a long piece of code to forget some of the global variable names and give one or
more of the variables inside a function the same name as a global variable which already
exists. If you have not included the var keyword when a variable is declared within a
function, then the variable is global in scope and the data in the global variable with the

ANALYSIS

NEW TERM

05 2978 CH03 4/10/02 10:51 AM Page 89

same name outside the function is overwritten. This can play havoc with your scripts,
and it can be very hard to track down the problem, as error messages that may be gener-
ated won’t tell you from where the problem stems. The JavaScript interpreter is doing
what you told it to do, but it is doing something that you may well not have expected it
to do.

Creating local variables enables you to eliminate the possibility that this type of problem
will ever arise. If you happen to unintentionally use the same name for a variable in a
function and a variable in the main script block, then as long as you used the var key-
word an entirely different local variable is created inside the function.

90 Day 3

Local variables are not only limited to the function in which they were
defined, but they also only exist for the time it takes for the function to exe-
cute. As soon as the function body has been evaluated, local variables cease
to exist and the data they contained is discarded.

Note

Here is an example that will show you the effect of declaring a variable within a func-
tion. Run it both with and without the var keyword in front of the variable
testVariable in the function.

First, if you run it with the var keyword within the function, the value of the global vari-
able will not be overwritten.

var testVariable = “Global variable was NOT overwritten!”;
function someFunction()
{

var testVariable = “Global variable WAS overwritten!”;
}
someFunction();
alert(testVariable);

However, if you run the following code with the var keyword omitted in the declaration
of the variable within the function, then the global variable will be overwritten.

var testVariable = “Global variable was NOT overwritten!”;
function someFunction()
{

testVariable = “Global variable WAS overwritten!”;
}
someFunction();
alert(testVariable);

In summary, unless you specifically want the function to change the value of a global
variable you should always declare variables inside of functions with the var keyword.

INPUT

INPUT

05 2978 CH03 4/10/02 10:51 AM Page 90

Functions and Statements 91

3

It may seem tedious, but if you get into this good habit of using the var keyword all the
time, you will ensure that you don’t accidentally overwrite an important global variable
in a long complex script.

JavaScript’s predefined functions use native code (binary computer code) so
you can call them but the code they contain cannot actually be seen. They
are not written in JavaScript in the way that we write functions.

Note

We have already come across and used some predefined functions such as the alert(),
confirm(), and prompt() functions which bring up small dialog boxes to enable basic
user interaction. These functions have been around for so long that the majority of
browsers support them, although they are not actually part of core JavaScript. This
means that in an environment other than a Web browser they may or may not be
available. For the moment let’s concentrate on the core JavaScript functions.

The predefined core JavaScript functions are listed below.

• decodeURI()

• decodeURIComponent()

• encodeURI()

• encodeURIComponent()

If you are using publicly available JavaScript code written by someone else
with your own code, you need to be particularly careful. The way the other
script author uses variables could be similar to your own, and one of your
local variables could overwrite one of his global variables, causing problems
that could be very difficult to track down.

Caution

Predefined Global Functions
JavaScript provides many predefined functions. Some of these functions, termed global
functions, can be called from any part of a script—just as you can call the functions you
have written. However, many predefined functions need to be treated as belonging to
objects. This means that they can’t be called in the same way that functions have been
called so far (as you will learn later in the book). For the moment, let’s look at global
functions.

05 2978 CH03 4/10/02 10:52 AM Page 91

• escape()

• unescape()

• eval()

• isFinite()

• isNaN()

• Number()

• parseFloat()

• parseInt()

• toString()

• watch()

• unwatch()

With the exception of watch() and unwatch(), you have already learned enough to be
able to make use of all these functions. The watch() and unwatch() functions work with
things called “object properties” to help in debugging. (As object properties are quite an
advanced topic, and we haven’t yet covered objects; those functions will be discussed
later in the book.)

All these built-in functions either check or modify data in some way or another. Let’s
take a look at them now, one by one, and see what they do and how they can make our
lives easier.

URI Encoding and Decoding
URIs (Uniform Resource Identifiers) is the most general name for the addresses
used to access files on the Web. A “resource” is a unit of information that can be

addressed. Not only can URIs be used to specify the address of a Web page, but they also
can be used to send it information. You have probably seen Web sites where the address
bar contains a question mark and lots of % symbols that are each followed by two num-
bers or letters. These are query strings used by sites, such as search engines, to send data
from you to the server. The reason that much of the data is converted to what is called
hex form, also called “escaped form”—when a character is converted to a % and the two
characters of its hexadecimal value—is that some characters such as the space character
can’t be carried as they are in a URI.

When a form is used to submit data as a query string using the HTTP GET method, the
browser automatically converts the characters that aren’t allowed within a URI to their
encoded hex values. To do this using JavaScript, you need to use built-in functions.

92 Day 3

NEW TERM

05 2978 CH03 4/10/02 10:52 AM Page 92

Functions and Statements 93

3

The original JavaScript functions for encoding and decoding URIs were the escape()
and unescape() functions respectively. Let’s look at an example to clarify just what
they do:

var priceRange = “$4 - $6”;
var escapedRange = escape(priceRange);
alert(escapedRange);

Figure 3.5 shows the output from the code.

INPUT

FIGURE 3.5
Contents of the
escapedRange vari-
able after the
escape() function
has been applied to
the priceRange

variable.

OUTPUT

The escape() function has replaced the $ and space characters with their
escaped values, which are %24 and %20 respectively. The unescape() function

acts in exactly the opposite way. When applied to the variable escapedRange the
unescape() function will turn it back into text again.

Unfortunately the escape() and unescape() functions encode characters that do not
need to be encoded. They are also slightly inconsistent from browser to browser in which
characters they will encode. To remedy this, ECMAScript Edition 3 defined four new
functions which are intended to replace the escape() and unescape() functions. These
are the encodeURI(), decodeURI(), encodeURIComponent(), and
decodeURIComponent() functions.

ANALYSIS

encodeURI(), decodeURI(), encodeURIComponent(), and
decodeURIComponent() are only supported by Netscape 6+ and Internet
Explorer 5.5+.

Caution

The encodeURI() function will encode all characters except for alphanumerical charac-
ters and the following characters which it leaves intact:

! # $ & ‘ () * + , - . / : ; = ? @ _ ~

05 2978 CH03 4/10/02 10:52 AM Page 93

The encodeURIComponent() function is slightly different. It will encode all the charac-
ters that the encodeURI() function encodes but will also encode these characters:

$ & + , / : ; = ? @

Therefore, it only leaves alphanumeric and the following characters intact.

! ‘ () * - . _ ~

The reason for having two different encoding functions is that sometimes you may want
to encode a whole URI including the http:// etc., and at other times you may want to
only encode some data to be attached as a query string. Clearly, if you were to encode a
complete URI with the encodeURIComponent() function, you would end up encoding the
:// part of http:// too. Therefore, two different functions were created: One for
thoroughly encoding URI components to be added as a query string; and another func-
tion for encoding the address before the query string.

The counterparts of these functions are the decodeURI() and decodeURIComponent()

functions. The decodeURIComponent() function is similar to the unescape() function. It
will decode all encoded characters. The decodeURI() function on the other hand will
leave the following characters encoded:

$ & + , / : ; = ? @

Evaluating Strings as Code
The eval() function is unusual in that it takes a string and processes it as code. Clearly,
if this is not to cause an error, the string must be recognizable as JavaScript. To demon-
strate this, try the code in Listing 3.3.

LISTING 3.3 eval() Demo (evalDemo.htm)

<html>
<head>
<title>eval() Demo</title>

<script language=”javascript” type=”text/javascript”>
<!--

var myCode = “alert(‘I was a string!’)”;

//-->
</script>

</head>
<body>

94 Day 3

INPUT

05 2978 CH03 4/10/02 10:52 AM Page 94

Functions and Statements 95

3

<h1>eval() Demo</h1>

</body>
</html>

In the single line of JavaScript code, a string is stored in the variable myCode. Although
you can see it is a piece of JavaScript, JavaScript itself doesn’t realize this. As far as it is
concerned, it is just a series of characters strung together that it has been asked to store
in a variable. Now try adding the following line after the variable declaration:

eval(myCode);

The eval() function will force the string to be evaluated as JavaScript and the
alert box should appear.

For the moment we haven’t covered enough to make practical use of the eval() func-
tion, but take note of it as it comes in very useful as you will see in later chapters.

Arithmetic Functions
Often programming is about manipulating numbers. It is no surprise then that JavaScript
has a number of built-in functions designed to complement the arithmetic operators you
learned about in Chapter 2.

JavaScript provides functions that check whether a piece of data is a number or what
type of number it is, as well as functions which enable the manipulation of the numbers.

Numerical Checks on Data
There are two conditions that commonly cause arithmetic scripts to fail in JavaScript.
One is that a number is, or becomes, infinite (or too large for JavaScript to handle, in
which case the JavaScript interpreter treats the number as having the value Infinity).
The other is that one of the pieces of data in an arithmetic operation is not a number. To
check for these conditions where they are likely to occur, JavaScript provides two func-
tions: isFinite() and isNaN().

Before examining these functions, it should be mentioned that there are three special
values which have the data type number. These are Infinity, –Infinity, and NaN.
Infinity and –Infinity represent, respectively, positive and negative numbers that have
become too large for the JavaScript interpreter to handle or are genuinely infinite. They
aren’t of much practical use in an operation except to indicate that a number is too large

LISTING 3.3 continued

INPUT

OUTPUT

05 2978 CH03 4/10/02 10:52 AM Page 95

for the JavaScript interpreter to reliably process. The other special value NaN, which
stands for “Not a Number,” indicates that an arithmetic operation could not be
carried out:

alert(“a” - 10); //alerts NaN

As you already may have guessed, the isFinite() function checks to make sure that a
number is not one of the special values Infinity or –Infinity. If the number is finite
and calculations can be carried out, then the function returns true, otherwise false.

It is rare that numbers to be entered directly into JavaScript are too big for it to process.
It usually occurs when numbers are raised to excessive powers or divided by zero or a
number very close to zero. Special care must be taken when accepting user input that
might be used in these ways.

The isNaN() function is a little more tricky. It checks that a value is not a number. This
allows us to check for numbers without checking for all of the other four data types in
turn. Unfortunately, the function can cause some confusion at first because it returns
false if a value is a number and true otherwise (after all it is checking that a value is
not a number). See for example, the following:

alert(isNaN(“a”)); // alerts true
alert(isNaN(2)); // alerts false

If you really want it to return true for numbers, the logical NOT operator can be placed
in front of the function thereby reversing the result.

96 Day 3

Rather surprisingly NaN does not even evaluate as being equivalent to itself.
Therefore:

NaN == NaN // evaluates to false
NaN === NaN // evaluates to false

To check for the value NaN, you must use the function isNaN():

isNaN(NaN) // evaluates to true

Caution

The isNaN() function is especially useful when you collect numerical data from a visitor
who is viewing your Web page. If the user enters non-numerical data either accidentally
or intentionally then, without some appropriate error checking, your script will fail. It is
always a good idea to use the isNaN() function to check any data you collect when you
process it in any scripts. Let’s look at Listing 3.4, where the getModulus() function we
wrote earlier is improved:

05 2978 CH03 4/10/02 10:52 AM Page 96

Functions and Statements 97

3

LISTING 3.4 Safely Finding the Modulus (getModulus.htm)

<html>
<head>
<title>Finding the Modulus</title>

<script language=”javascript” type=”text/javascript”>
<!--

function getModulus()
{

var theNum = prompt(“Please enter a number”, “”);
var theModulus = (theNum>=0)? theNum: -theNum;
var msg = (isNaN(theModulus))? “Numbers only please.”:

“The modulus of “ + theNum + “ is “ + theModulus;
alert(msg);

}

//-->
</script>

</head>
<body>

<h1>Finding the Modulus</h1>

Get Modulus

</body>
</html>

When the link is clicked the function getModulus() is called. It prompts the user
for a number and stores the input in the variable called theNum. The conditional

operator is used on the following line to try to find the modulus (or absolute value) of the
input. If this input is not numeric, then the result will be the value NaN. On the next line,
the conditional operator is used again. This time the condition is the result from the
function isNaN().

If the result of finding the modulus was NaN, then the isNaN() function will return true
and the conditional operator will evaluate to its second operand which is the string
“Numbers only please.”. Note that the end of this line is a colon and not a semicolon.
A new line for the third operand was started because it is quite long. If the result of the
function was false, then the conditional operator will evaluate to its third operand, which
is an expression. This expression combines the values of theNum and theModulus. It gen-
erates a string that tells the user, in a user-friendly way, the modulus of the number that
was entered. Whichever operand the conditional operator evaluates to is assigned to the

INPUT

ANALYSIS

05 2978 CH03 4/10/02 10:52 AM Page 97

variable called msg. This message is then alerted to the user using the code on the final
line of the function body.

The isNaN() function enabled you to output a result that has some intelligence to the
user. In combination with the powerful control statements that you will learn about later
in the chapter, the isNaN() function can be a very useful tool. Try to get used to using
the function to check the data you collect with HTML forms or prompt boxes when this
data should be numerical. It will help you make more professional scripts and allow you
to avoid a significant number of potential errors.

Conversion Between String and Number

There are good reasons for converting strings to numbers and vice versa. For example,
numbers collected from user input are always in the form of a string. Most times if you
perform an arithmetic operation with this data it will automatically be converted to the
number data type, but sometimes it is necessary to do it manually. Most notably is when
you wish to add two numbers that are stored as strings. If you try to do this without
converting their data types, then the two strings will simply be concatenated.

Conversely, in other settings, if you do want to concatenate two numbers which are of
the data type number, you will need to convert their data type to string first. If you
don’t, they will simply be added.

The Number() and parseFloat() functions both take a single argument (or parameter if
you prefer) and treat it in a very similar way. If the argument is a number they will return
it unaltered, but if it is a string they will convert its data type to number (if possible) so
that it can be used in arithmetic operations. They also both leave the number’s floating
point intact (unless all the digits are zeros in which case they are removed). They differ
in two respects: how they treat other data types, and how they treat strings starting with
numerical characters followed by non-numeric characters.

The parseFloat() function will always evaluate to NaN if used on a data type other than
number or on a string, except when it contains only arithmetic characters. The Number()
function, on the other hand, is a bit more flexible about the data with which it will work.
As you might expect, it will convert false and null to 0, true to 1, and only undefined
will be converted to NaN. Most of the time your choice of either of these two functions
won’t make a difference, but sometimes you may need one effect rather than the other—
depending on how you want the function to treat non-numeric or string data. As you
progress through the book and learn more, you will become better equipped to make that
decision.

98 Day 3

05 2978 CH03 4/10/02 10:52 AM Page 98

Functions and Statements 99

3

If a string starts with numbers and they are followed by other characters, the Number()
function will realize it is not a number and return the value NaN. The parseFloat() func-
tion, on the other hand, exhibits a special behavior. It removes the non-numeric charac-
ters from the end of the numbers and returns the numeric characters as a number. For
example, the following code shows how the Number() and parseFloat() functions
handle strings passed to them as arguments:

Number(“1.12 is a number”); // returns NaN
parseFloat(“1.12 is a number”); // returns 1.12

Sometimes you may want to round off a number to get rid of its fractional part. The
parseInt() function allows you to do exactly that. It converts a value’s data type to
number and rounds it down to an integer in a single step. Here is an example:

parseInt(“2.1”); // returns 2
parseInt(“2.5”); // returns 2
parseInt(“2.99999”); // returns 2

This is useful, but the parseInt() function also has another less well known ability. It
can convert numbers with a base between 2 and 36 to a decimal number (base 10). It
does this by taking the number as its first argument, and then it allows you to specify the
number’s base as a second argument. The values can be either the string or number data
type. For example, see the following:

parseInt(“1111”, 2); // returns 15

In this case, the number is the value “1111”, and the base was specified as 2, which is
binary. Therefore the first argument is converted from binary to its decimal equivalent,
which is 15. Here are another few examples:

parseInt(20, 16); // returns 32
parseInt(“10”, 8); // returns 8
parseInt(“30”, 4); // returns 12

Note that parseInt() still rounds down numbers before conversion:

parseInt(“1111.1111”, 2); // still returns 15
parseInt(“ff.ffff”, 16); // returns 255

The value you give to parseInt() must be a string if it is above base 10. This
is because numbers above base 10 may include alphabetical characters.

Caution

If numerical data is collected from a user and the numbers after the decimal point are not
required, it is a good idea to use the parseInt() function and specify the number’s base
as 10. This will prevent it being interpreted as an octal number if the user began the

05 2978 CH03 4/10/02 10:52 AM Page 99

number with a 0. The parseInt() function behaves in the same way as the
parseFloat() function if a string starts with a number but continues with other
characters; it will return only the number.

The final function for string-number conversion is the toString() function. It behaves
exactly opposite of the Number(), parseFloat(), and parseInt() functions. Instead of
converting strings containing numeric characters to numbers, it converts numbers to
strings. If you want to add one set of digits to another without them being summed, it
can be done with this function.

The syntax for the toString() function is different from that used for the Number(),
parseFloat(), and parseInt() functions. Instead of taking a value as an argument
typed into its parentheses, it uses something called the dot notation. In this case, the
value must be stored in a data container such as a variable. The variable is then joined to
the function call with a dot. Here is an example:

var myVar = 2;
myVar.toString(); // returns the string “2”

The dot tells the JavaScript interpreter to apply the toString() function to the contents
of the variable myVar, which causes its data type to be changed to the data type string.
You will learn more about dot notation as it applies to objects and their functions
(methods) later. Let’s have a look at the effect this has on a few examples:

var num1 = 12;
var num2 = 34;
alert(num1 + num2);
alert(num1 + num2.toString());
alert(num1.toString() + num2);

As you would expect, the expression on the third line sums the contents of the two
variables num1 and num2. The toString() function causes the next two expressions to
behave very differently though. Both functions would display the following alert box (see
Figure 3.6).

100 Day 3

INPUT

FIGURE 3.6
After the toString()
function is applied
the numbers
concatenate!

OUTPUT

05 2978 CH03 4/10/02 10:52 AM Page 100

Functions and Statements 101

3

The toString() function has caused the operands of the + operator to concate-
nate rather than sum. Remember that in Chapter 2 you learned that if one of the

operands of the + sign is a string, then it concatenates the two operands regardless of the
data type of the other. Therefore there is no need to apply the toString() function to
both operands. Applying it to one of them is enough.

It is probably the last thing you would expect, but the toString() function is also able to
convert numbers between bases. It does exactly the opposite of the action taken by the
parseInt() function. The difference is that rather than converting a number from a base
between 2 and 36 to a decimal value, the toString() function takes decimal numbers
and converts them to a base between 2 and 36. Of course JavaScript only outputs num-
bers as decimal values so the “numbers” the toString() function returns aren’t of the
data type number, but rather of the data type string. However, as they look like numbers
to all intents and purposes, this doesn’t usually matter.

To use toString() in this way, you simply give it the base you want to convert to as an
argument:

var y = 10;
y.toString(8); // returns 12 (10 decimal expressed to base 8)
var x = 0.5;
x.toString(16); // returns 0.8 (0.5 decimal expressed to base 16)

Note that as JavaScript accepts numbers in octal, decimal, or hexadecimal format, the
toString() function converts from octal and hexadecimal numbers to the base you
chose as well as from decimal.

By combining the parseInt() and toString() functions, it is possible to convert a num-
ber from any base between 2 and 36, to any other base between 2 and 36. As shown
below, this can be written into a function so it can be used multiple times on the same
page. Just remember that because the parseInt() function removes floating points the
function won’t be accurate with non-integers:

function convertNum(theNum, fromBase, toBase)
{

var numBase10 = parseInt(theNum, fromBase);
alert(numBase10.toString(toBase));

}

convertNum(1100, 2, 16);

In this example, the first line takes the 1100 from the argument theNum, and the
argument fromBase specifies it as binary. The parseInt() function then converts

it to decimal before it is stored in the variable numBase10. On the second line, the deci-
mal value is converted using the argument toBase to specify the base as hexadecimal.

ANALYSIS

INPUT

INPUT

ANALYSIS

05 2978 CH03 4/10/02 10:52 AM Page 101

This then alerts the value c, which is the hexadecimal equivalent of the binary value
1100. Note that the alert could just as easily be replaced with a return keyword for more
practical use.

What Is a Statement?
All JavaScript scripts are essentially a series of commands that are passed to the
interpreter to be carried out sequentially. JavaScript usually requires that each

one be placed on a separate line. So far, we have been referring to these lines simply as
lines of code. It is more accurate to call them statements.

Already, you have come across several statements. For example, the method for adding
comments into your code, which you learned in Chapter 1, uses the comment statements
/* and */ or //. The // characters instruct the JavaScript interpreter to ignore all charac-
ters until the end of the line of code. Other examples include the following keywords:
var, const, and function, which tell the interpreter to create a variable, constant, and
function respectively. These are all statements.

It is important to realize that although the words “expression” and “statement” can occa-
sionally be used interchangeably, there is a difference between the two. As you have
seen, expressions use operators to manipulate data before they evaluate to a single value
(with the possible exception of the assignment expressions that also assigns its value).
This is great and an essential part of a programming or scripting language, but expres-
sions can’t do anything productive by themselves. Statements are the commands that
decide what is done with the data that expressions return and, as you will see shortly,
what is done with other statements. Expressions, on the other hand, are usually only a
part of a statement, as shown in the example:

const MY_CONST = 72/9;

The 72/9 is a sub-expression of the assignment expression, which assigns the outcome of
dividing 72 by 9 (the value 8) to the constant MY_CONST. However, the line, as a whole, is
considered to be a const statement. It is the const keyword that causes the constant to
be created, thereby doing something useful with the data that the expression to its right
evaluates to.

Usually statements end with a line break, but if two statements are placed on the same
line a semicolon must be used to separate each one. The semicolon tells the JavaScript
interpreter that it has reached the end of a statement and should finish processing the
code in front of the semicolon before it proceeds. In any case, it is helpful for the
readability of your code to put no more than one statement on a line.

Let’s study the type of statement that controls other statements.

102 Day 3

NEW TERM

05 2978 CH03 4/10/02 10:52 AM Page 102

Functions and Statements 103

3

Control Statements
Control statements are designed to allow you to create scripts that can decide which lines
of code are evaluated, or how many times to evaluate them. There are two different types
of control statements: conditional statements and loop statements.

Control statements make their decisions based on an expression that evaluates to the logi-
cal values true or false or their equivalents in other data types. As we will be using
non-boolean data types extensively for the remainder of the chapter, here is a reminder of
how the other data types are treated in logical conditions:

• Numbers are treated as true if not equal to 0, otherwise they are treated as false

• Strings are treated as true if greater than 0 characters in length, otherwise they are
treated as false

• undefined is treated as false

• null is treated as false

Conditional Statements
Conditional statements are used to make decisions. In real life, we make all sorts
of decisions based on criteria such as “am I being offered enough money to take

this job?” If the answer is “yes,” then the result is “take the job.” If the answer is “no,”
then “don’t take the job.” In JavaScript, you need to make decisions about which sections
of code to evaluate. For example, if you asked a user for input so you could perform a
calculation, you will want to carry out the calculation if the input is numeric, but not if it
isn’t.

You already have come across a simple means of making a decision in the form of the
conditional operator, ?:. The conditional operator checks to determine if a condition is
true or false, and uses the result to decide whether to evaluate to its second or third
operand. Although this is a quick method of assigning one of two values to a variable, it
is also very limited. If you want to choose between more than two options, the
conditional operator is inadequate to do what you want.

The if, else, and else if Statements
The if, else, and else if statements allow you to make a choice among
several options. First let’s look at how to use the if statement to make a choice

between two alternatives.

NEW TERM

NEW TERM

05 2978 CH03 4/10/02 10:52 AM Page 103

The if statement is the most frequently used decision-making statement. It checks a con-
dition and if it evaluates to true, then the statement(s) that it governs are evaluated, but
if it evaluates to false then the statement(s) are passed over. The syntax is as follows:

if (condition) statement

or

if (condition)
statement

The condition is always surrounded by parentheses but the statement it governs can be
on the same line or the following line. The JavaScript interpreter always associates the if
statement with whatever statement follows it. Both code layouts work but some people
prefer using separate lines because it makes their if statements easier to read. Here is an
example that uses two if statements so you can get a feel for how the if statement
works:

var myVar1 = true;
var myVar2 = false;
if (myVar1 == true) alert(“myVar1 is true”);
if (myVar2 == true) alert(“myVar2 is true”);

This will display only one alert box. The final line in the code will not cause an alert box
to be displayed because the variable myVar2 has the value of false. See Figure 3.7.

104 Day 3

INPUT

FIGURE 3.7
The first if statement
evaluates to true so
the first alert box
displays.

OUTPUT

Remember that the comparison operator, ==, checks to see if the operands to its right and
left are equal. If they are equal it returns true, and if they are not equal it returns false.
In the above example, the condition for the first if statement evaluates to true because
the value of myVar1 is true. The condition for the second statement evaluates to false
because myVar2 does not equal true. As you can see, the if statement makes the
decision as to whether the alert() function is called based on the evaluation of the
condition.

05 2978 CH03 4/10/02 10:52 AM Page 104

Functions and Statements 105

3

Frequently, you will want the if statement (and the other conditional statements
for that matter) to govern more than just one other statement. To do this, you

need to use what is known as a statement block. The statement block consists of a pair of
curly braces that surround the if statement’s statements in the same way that curly
braces surround the statements in the function body. For example:

if (condition) {
statement1
statement2
...
statementN

}

Hopefully this feels familiar. If the condition in parentheses evaluates to true, then the
statements within the curly braces are evaluated. If the condition in parentheses evaluates
to false, then none of those statements is evaluated.

NEW TERM

It is useful to use curly braces even when the if statement has only one
statement associated with it. Then if you later need to add other state-
ments, you won’t encounter errors caused by forgetting to add the curly
braces.

Tip

Remember that conditional statements allow you to take one action if a condition is true
and another if it isn’t. This is where the else statement comes in. By placing the else
statement after the if statement, it is linked to the if statement so that the statement(s) it
governs is evaluated if the condition in the parentheses of the if statement turns out to
be false. This saves writing out the condition again. In this way, either the statements the
if statement governs will be evaluated, or the statements the else statement governs
will be evaluated. After all a condition in JavaScript can only evaluate to true or false.
Here are a couple of examples to demonstrate how you would write this:

if (4 < 3)
alert(“4 is less than 3”);

else
alert(“4 is greater than 3”);

Since 4 is greater than 3, the alert after the if statement is ignored; therefore, the
alert() function after the else statement is evaluated. The else statement can

also be used with a function block so you could write:

INPUT

ANALYSIS

05 2978 CH03 4/10/02 10:52 AM Page 105

if (4 < 3) {
alert(“The if statement’s statement block was evaluated”);
alert(“because 4 is less than 3”);

}
else {
alert(“The else statement’s statement block was evaluated”)
alert(“because 4 is greater than 3”)

}

Finally, when you need even more flexibility to check multiple conditions there is the
else if statement. It is inserted between the if and else statements. Here’s an example:

var promptVal = prompt(“Please enter a number”, “”);

if (promptVal > 0)
alert(“The number you entered was positive”);

else if (promptVal == 0)
alert(“The number you entered was zero”);

else
alert(“The number you entered was negative”);

In this example, the script accepts an inputted number and uses it along with the
if ... else if ... else statements to choose among three possible alerts

to evaluate. Note that only one of the control statements will be used. If the if state-
ment’s condition evaluates to true, then the else if statement and the else statement
will be ignored. If the if statement evaluates to false, then the condition of the else if
statement is checked. Likewise if the condition of the else if statement evaluated to
true, then the else statement would be ignored. The else statement acts as the default if
all the previous conditions evaluated to false. Sometimes you will not want anything to
happen if none of your conditions evaluates to true, in which case you would not use an
else statement.

Multiple else if statements can be placed between the if statement and else statement
if you want to check for more than three conditions.

If you remember the discussion about the isNaN() function earlier, you may have real-
ized that there is a problem with the example above—it doesn’t allow for the fact that the
user may enter a non-numeric value. To accommodate this situation, you would want to
move the condition checking for a number greater than 0 to an else if statement and
use the if statement to first check if the value entered is numeric. To do this you would
use the isNaN(). Here’s an example:

var promptVal = prompt(“Please enter a number”, “”);

if (isNaN(promptVal))
alert(“That wasn’t a number!”);

else if (promptVal > 0)

106 Day 3

INPUT

INPUT

ANALYSIS

INPUT

05 2978 CH03 4/10/02 10:52 AM Page 106

Functions and Statements 107

3

alert(“The number you entered was positive”);
else if (promptVal == 0)

alert(“The number you entered was zero”);
else

alert(“The number you entered was negative”);

Note that statement blocks also can be used with the else if statement to control more
than just one statement, such as the alerts in the earlier example.

Let’s look next at an alternative control statement, the switch statement, that could have
been used instead of the if...else statements in the above example.

The switch Statement
The switch statement allows you to choose one of several options. It has functionality
which resembles that provided by the if, else if, and else statements. Let’s look at
how the switch statement works.

The switch statement has markedly different syntax from the if...else statements, but
it works in a similar way. Its structure is shown below. Note that the lines that begin with
case must end in a colon.

switch (expression){
case value:
statements

case value:
statements

case value:
statements

}

INPUT

Case values in JavaScript do not need to be constants or the same data type. Note

The first thing a switch statement does is evaluate the expression contained within its
parentheses to a single value. It then works its way down through the case statements
checking if the value returned by the expression in parentheses after the switch keyword
is matched by any of the values that follow the case keywords. If it finds a match, then it
evaluates all the following statements that belong to that case statement.

Try the example in Listing 3.5, and see for yourself.

05 2978 CH03 4/10/02 10:52 AM Page 107

LISTING 3.5 Switch Statement Demo (switchDemo.htm)

<html>
<head>
<title>Switch Statement Demo</title>

<script language=”javascript” type=”text/javascript”>
<!--

switch (1+1){
case “a”:
alert(1);

case 2:
alert(2);

case true:
alert(3);

}

//-->
</script>

</head>
<body>

<h1>Switch Statement Demo</h1>

</body>
</html>

This page will result in the alert boxes shown in Figure 3.8.

108 Day 3

INPUT

FIGURE 3.8
Two alert boxes are
brought up because
the second and third
case statements each
evaluate as true.

OUTPUT

This is because the 1+1 evaluates to 2. Therefore it should come as no surprise
that the first case, the string “a”, does not cause the associated alert() function

to be evaluated. But the next case is the number 2, which is a match. As you can see
from the screenshots in Figure 3.8, this causes not only the alert containing the number 2

ANALYSIS

05 2978 CH03 4/10/02 10:52 AM Page 108

Functions and Statements 109

3

to be evaluated, but, perhaps surprisingly, the alert containing the number 3 is also dis-
played. However, this may come as no surprise. We did say that if a match was found all
the following statements would be evaluated up to the closing curly brace of the switch
statement. Although this feature can occasionally be of use, generally you will want to
evaluate only the statements between the matching case and the following one. To do
this, you need to use the break statement. Replace the switch statement in Listing 3.5
with the following code:

switch (1+1){
case “a”:
alert(1);
break;

case 2:
alert(2);
break;

case 3:
alert(3);
break;

}

INPUT

The statements following each case are not enclosed in curly braces as in a
statement block even if there are lots of them on multiple lines. Therefore,
it is helpful to lay out your code as shown in the example above, to help you
or someone else decipher your code.

Note

As you will see, using the break statement as the last statement in a case state-
ment block breaks off evaluation of the switch statement, and execution of the

script continues after the closing curly brace of the switch statement. This has the
desired effect of preventing the statements belonging to the other case statements from
being evaluated.

The switch statement is able, optionally, to run some code in the event that there are no
matches—just as a concluding else statement works at the end of an if...else state-
ment. To do this, you would include, following the case statements, the keyword default
followed by a colon, as shown in the example below:

switch (“Match this string.”){
case “This doesn’t match.”:
alert(“This would have alerted if it had!”);
break;

case “Nor does this.”:
alert(“This would have alerted if it had!”);
break;

ANALYSIS

INPUT

05 2978 CH03 4/10/02 10:52 AM Page 109

case “Or this.”:
alert(“This would have alerted if it had!”);
break;

default:
alert(“None of the cases matched so the default evaluated.”);
break;

}

As none of the cases above are the string “Match this string”, their statements are
ignored and the statements under the default are evaluated. See Figure 3.9.

110 Day 3

FIGURE 3.9
The default

statement is evaluated
when none of the
case statements
match.

OUTPUT

So which should be used: the if...else statement or the switch statement?
The answer is that often either will do. The switch statement checks for a match

to a single expression, and therefore is useful when you need to evaluate different state-
ments based on the value of a single variable. It is also more efficient, so try to become
accustomed to using it when possible. The if...else statement, on the other hand, can
be given a new condition to check with each else if statement. This gives the if state-
ment (and its associated else if statements) more flexibility, so the if statement tends
to be used more than the switch statement.

Loop Statements
Sometimes you will need to repeat an operation multiple times until a certain
condition is true. As you will see in Chapter 5, “An Introduction to Arrays,” this

is especially important when you need to work with data stored in arrays. The types of
statements used to accomplish repetitive loops are called loop statements. An integral
part of these statements is comparison and increment operators discussed in Chapter 2.

There are three types of loop statements: the while statement, the do while statement,
and the for statement. Let’s look at the while statement first.

ANALYSIS

NEW TERM

05 2978 CH03 4/10/02 10:52 AM Page 110

Functions and Statements 111

3

The while Statement
The while statement is the easiest of the looping statements to understand and use.
Although it performs a different task, its structure is similar to the if statement:

while (expression) statement

or

while (expression)
statement

Like all the looping statements, the first thing the while statement does is evaluate the
expression contained within its parentheses to see whether the expression evaluates to
true or false. If the expression evaluates to true, the while statement evaluates its
statement(s). Where it differs from the statements that you have seen before is that it then
goes back to recheck its expression. If the expression is true, then the JavaScript inter-
preter will execute the statement(s) in the statement block and it will evaluate the expres-
sion in parentheses again. The JavaScript interpreter will continue to loop in this way
until the expression evaluates to false.

Clearly, if the while statement isn’t to loop infinitely something in the expression has to
change. This is achieved by including a variable in the expression that is changed by one
of the statements evaluated by the loop during each evaluation. For example take a look
at the following code:

var loopCounter = 0;

while (loopCounter <= 3)
alert(loopCounter++);

This causes the display of four alert boxes in succession with the numbers 0, 1, 2
and 3 respectively. After the fourth alert has been displayed the variable

loopCounter will contain a value of 4, so when the expression loopCounter <= 3 is
evaluated, it returns false. Therefore, the while loop is not executed again and control
passes to the statement that follows the while statement.

In Chapter 2 you learned that increment and decrement operators (++ and -- respective-
ly) can be used to increment or decrement the value of their operand by 1. As you can
see, this is especially useful in loops such as the one above. Every time the above alert is
evaluated the value of the variable loopCounter is increased by 1. Therefore, after four
loops the value of loopCounter is no longer less than or equal to three. Hence the
expression evaluates to false, causing the while statement to stop looping, at which
point evaluation will continue at the code following the while statement.

INPUT

ANALYSIS

05 2978 CH03 4/10/02 10:52 AM Page 111

It is uncommon to actually use a long variable name such as loopCounter because they
are extensively used in the statements belonging to the loop statement. It is standard
practice to give counter variables the names i, j, and k so as to keep the code as unclut-
tered as possible. But note this is the only time that it is considered acceptable to give
variables such nondescript names.

112 Day 3

You must be careful that the variable in the expression changes each time so
eventually it will cause the expression to evaluate to false. If you don’t
change the variable in the expression, the while statement will loop infinite-
ly preventing any other scripts from running and, in some older browsers,
will cause the browser to crash. This can happen if you forget to include a
statement that increments/decrements the variable, or if you
increment/decrement it in the wrong direction!

Caution

Generally, when you use the while statement you will want it to loop through more than
just one line of code. To do this, include the curly braces as usual to create a statement
block belonging to the while statement. For example, you could have written the above
example like this:

var loopCounter = 0;
while (loopCounter <= 3) {
alert(loopCounter);
loopCounter++;

}

The do while Statement
The do while statement is very similar to the while statement. The difference is that the
expression is evaluated at the end of the statement. In other words, the statement block is
always evaluated once before the expression is evaluated. The structure of a do while
statement is shown below:

do
statement

while (expression);

The major effect of having the expression at the end of the loop is that the state-
ments contained by the do while statement will be evaluated at least once before

the expression is evaluated to decide whether it should loop again. For example try out
the following code:

do
alert(“Statement evaluated!”);

while (false);

INPUT

ANALYSIS

INPUT

05 2978 CH03 4/10/02 10:52 AM Page 112

Functions and Statements 113

3

As you will see, the alert box displays once regardless of the fact that the expres-
sion is simply the value false. Other than this, there is no difference between

the way the while statement and the do while statement work.

If you want a do while statement to control multiple statements use a statement block,
like this:

do {
statement1
statement2
...
statement5

} while(condition);

ANALYSIS

INPUT

Because the do while statement does not end with a closing curly brace, it
requires a semicolon after the closing parenthesis. Forgetting to include the
semicolon may cause an error.

Caution

The for Statement
The while and do...while statements have three essential elements: a statement that
sets the initial value of a counter; an expression that tests a condition; and an expression
that increments the counter. It can be easy to forget one or other of these when you are
quickly typing out a piece of code, and you could end up with problems such as infinite
loops. Fortunately, there is an alternative in the form of the for statement, which can
contain all these elements in one place. It is written with the following structure:

for (setInitialCounterValue; testCondition; changeCounterValue)
statement

Because all three of the essential parts of a loop statement are located between the
parentheses, the for loop is much more popular than the other two methods because it is
easier to follow the logic that controls the looping.

The for statement can govern multiple statements by enclosing them in a
statement block.

Note

Here’s a simple example that would display three alert boxes:

for (var i=0; i<3; i++) {
alert(i);

}

INPUT

05 2978 CH03 4/10/02 10:52 AM Page 113

The first statement in the parentheses declares and assigns to the variable i an
initial value. It is this variable that then acts as the loop counter. Note that it is

only evaluated at the beginning of the first loop. The second statement is the condition
for the loop. Each time a loop finishes it is checked again to determine whether another
loop should be made. Finally there is the third statement. It declares how the loop
counter should be incremented (or decremented).

114 Day 3

ANALYSIS

Note that the three elements inside the parentheses are statements.
Therefore, semicolons separate them and not commas. Remember this is
how more than one statement can be placed on a single line.

Note

The variable used for the loop counter in a for statement is inside the
parentheses so it can only be incremented using the increment and decre-
ment operators ++ and -- or the full syntax equivalent to increase the value
of the loop counter.

Caution

To get some experience using the for statement, let’s try to use it to create a page that
will generate a simple multiplication table. First, we will ask a user which multiplication
table he wants to see; then we will output the first 12 lines of that multiplication table in
an alert box.

The first thing we will need to do is ask the user to enter the multiplication table that he
wants. This can be done using a prompt box that assigns the value to a variable we will
call multTable. See the following example:

var multTable = prompt(“Please enter the table.”, “”);

What about generating the table? We could write out each of the 12 lines concatenating
each one to a variable. But this would be very inefficient. A better way would be to use a
loop statement. To do that let’s choose the for statement.

For the moment, let’s ignore the statement needed for the statement block and concen-
trate on the for statement itself. We probably want to start at 1 so this can be the initial
value of our counter i, and we know when we want to stop once we get to 12. With this
in mind our for loop will need to look something like this:

for (var i=1; i<=12; i++) {
statement;

}

05 2978 CH03 4/10/02 10:52 AM Page 114

Functions and Statements 115

3

Okay, that’s fairly easy so far, but what about the statement the for loop controls? Well,
to help decide what it should look like, it is useful to take a look initially at the first few
lines of a multiplication table. Let’s take the 2 times table as an example:

1 x 2 = 2
2 x 2 = 4
3 x 2 = 6

Looking at the table, you can see that the first element of each line increments by 1. To
recreate this with each iteration of the loop, you could quite easily use the counter i.

The next three characters are always the same. The x and the equal sign could be created
simply by using two strings, but the number in between depends on which table the user
asks for. It’s not much of a problem though as that value can simply be found in the
variable multTable. Let’s take a look at how our statement looks so far:

i + “ x “ + multTable + “ = “

We are just concatenating all the components of the line together. But how do we actual-
ly add the answer to the end? Well actually it isn’t too hard if you think about it. What
we have on the left-hand side of the equal sign is exactly what generates the answer: i
multiplied by the variable multTable. This is all that is needed to finish the statement.
Well, almost. We will also want to include a new line character to make sure each line of
the table is actually displayed on a new line. This is done with the escaped character \n.
Our statement now looks like this:

i+ “ x “ +multTable+ “ = “ +(i*multTable)+ “\n”;

During each iteration through the for loop, you will need to concatenate the line to a
variable, which builds up the table. Call this variable theTable and your completed
statement will look like this:

theTable += i+ “ x “ +multTable+ “ = “ +(i*multTable)+ “\n”;

With this statement in place within the loop, and an alert for theTable after the loop, a
multiplication table will be generated. If you also store the entire piece of code within a
function, it will allow users to request a different table as many times as they like. If you
use a hyperlink to call the function, Listing 3.6 shows how your finished page might
look:

LISTING 3.6 Multiplication Table Generator (multTableGenerator.htm)

<html>
<head>
<title>Multiplication Table Generator</title>

INPUT

05 2978 CH03 4/10/02 10:52 AM Page 115

<script language=”javascript” type=”text/javascript”>
<!--

function generateTable()
{

var multTable = prompt(“Please enter the table.”, “”);
var theTable = “”;
for (i=1; i<=12; i++) {
theTable += i+ “ x “ +multTable+ “ = “ +(i*multTable)+ “\n”;

}
alert(theTable);

}

//-->
</script>

</head>
<body>

<h1>Multiplication Table Generator</h1>

Create New Table

</body>
</html>

Try it yourself.

Before you finish, it is worth mentioning that a statement that is related to the loop
statements is the break statement. Remember that the break statement allows you to pre-
maturely break out of conditional statements. There is a similar statement for the loop
statements called the continue statement. However, rather than breaking out of the loop
altogether and carrying on evaluation further down the page, it simply prevents evalua-
tion of any remaining statements in the statement block. The loop continues to check the
condition at the top of the loop to see whether it should loop again. Later in the book you
will learn just how this can be useful.

The for in Statement
A second use of the for loop is to loop through the properties and child objects of an
object. Objects are the JavaScript entities that allow you to apply these tools to making a
difference to your Web pages, and to a certain extent the browser. (Objects will be
covered in the next chapter.)

116 Day 3

LISTING 3.6 continued

05 2978 CH03 4/10/02 10:52 AM Page 116

Functions and Statements 117

3

Summary
In this chapter you have learned “the other half” of the basics for creating useful scripts.
You have learned how to create your own functions and you have learned about most of
JavaScript’s built-in functions. You also have looked at how to control the flow of scripts
through the use of control and loop statements. This prepares us to explore objects in
Chapter 4, “JavaScript Is Object-Based.”

Workshop
The workshop will test how much you have grasped of the topics discussed in this
chapter.

Q&A
Q. I want to repeat a piece of code an exact number of times. Which JavaScript

statement should I use?

A. The for statement is ideal to achieve that. You could achieve the same thing using
a while loop, for example, but it is less convenient to use it.

Q. I want to be able to check the length of several strings of characters in my
code. How can I do that?

A. You could create a short function which takes a single argument—the string you
want to check. You may want to use array techniques within the function. Those
will be described in Chapter 5.

Q. I want to check if more than one thing is true. Can I use a switch statement to
do that?

A. You could use a switch statement, but not on its own. You could nest another func-
tion which uses a switch statement within a case statement. Often it will be at
least as easy to use an if statement with a number of else if statements.
Whichever technique you choose you need to be clear about the process of logic
and which statements will be evaluated and which statements won’t.

Quiz
1. List the looping statements that are present in JavaScript.

2. Is it possible to include multiple statements in my own functions?

05 2978 CH03 4/10/02 10:52 AM Page 117

Quiz Answers
1. The looping statements in JavaScript are the while statement, the do while

statement, and the for statement.

2. Yes. You can include multiple statements in a function by enclosing them in curly
braces, like this:

function myFunction()
{

statement
statement
...
statement

}

Exercise
Modify the multiplication table generator so that it will respond appropriately if the user
clicks Cancel or enters a non-numeric value.

118 Day 3

05 2978 CH03 4/10/02 10:52 AM Page 118

DAY 4

WEEK 1

JavaScript Is Object-Based
In Chapter 1, “Getting the Basics Right,” you learned that JavaScript is an
object-based scripting language. At the time, we didn’t look too deeply at what
the term object-based meant. In this chapter, we are going to take a discovery
tour of JavaScript objects and find out just what they mean for us as scripters.
You then will be better placed to understand objects and their place in the
scheme of things as they are explored in more detail in later chapters.

Now that you have been introduced to topics such as data types, variables, and
functions you will be able to make more efficient use of JavaScript objects. By
creatively combining objects with the basic techniques you have already
learned, you will find yourself better able to make a real a difference to your
Web pages.

This chapter will teach you the following:

• What objects are

• What object properties are

• What object methods are

• About the Global object and its children

• How to use objects, their methods, and properties

06 2978 CH04 4/10/02 10:50 AM Page 119

Understanding Objects
All of the elements of an HTML document and some parts of the browser are made
available to JavaScript in the form of something called “software objects,” or more sim-
ply “objects.” In practical terms, objects enable you to get (find out about) and set
(change) characteristics of a document. For example, you can use JavaScript to get (find
out) something about an image object, such as its width; you also can set (change) things
about the same object, such as assign an image a new width and thereby change its size.

Although the notion of objects can initially take a little time to grasp, once you under-
stand what they are and how they’re used it will enable you to use JavaScript consider-
ably more effectively and efficiently. Objects really are the crux of almost everything
done in JavaScript.

What Are Objects?
So what exactly are objects, and why are they helpful?

Before we get technical about what an object is it might help to look at the idea of an
object simply as a thing. A car is an object. It has several properties. It may have red
paint. It may have four wheels. Properties are individual pieces of information that
describe a characteristic of the car. A car can do things. It can move forward. It can
accelerate. It can brake. The things that a car does could be called its “methods.”

So a JavaScript object has many similarities to real-world objects (such as a car).
It has one or more properties. For example, a browser window object in

JavaScript has a width property. JavaScript objects also frequently have methods, which
are pieces of code that enable the object to do things. For example, the window object
has a moveTo() method which can be used to move the browser window to another part
of the screen. Of course JavaScript objects and their properties and methods are much
more abstract than the properties and methods of a motor car, but the analogy is a helpful
one.

In technical terms, objects are a collection of properties and methods. Very often
a JavaScript object represents something—such as an HTML form or a link—

which is to be displayed on a Web page. Properties of JavaScript objects contain infor-
mation, or values, which tell you about some characteristic of the object. For example,
the document object has a title property. You may be familiar with the following
HTML/XHTML tag:

<title>Untitled</title>

120 Day 4

NEW TERM

NEW TERM

06 2978 CH04 4/10/02 10:50 AM Page 120

JavaScript Is Object-Based 121

4

The <title> tag defines what is to be displayed in the title bar of the browser window
displaying a Web page. Using JavaScript you could access the value of this tag by using
the expression window.document.title. The notation window.document.title indicates
that the title property of the document object is being referenced. For the moment,
though, don’t worry about the syntax. It will be covered in detail soon.

As well as accessing information, you can change the value of properties. So, taking the
image object as an example you could assign its width property, image.width, a new
value so its display width on an HTML page would change.

Similarly, you can change the value of the text contained in the <title> element using
the code in Listing 4.1.

LISTING 4.1 Changing the Document Title (changeTitle.htm)

<html>
<head>
<title>Untitled</title>

<script language=”javascript” type=”text/javascript”>

function changeTitle()
{

var newTitle = prompt(“Please enter a new title.”, “”);
window.document.title = newTitle;

}

</script>
</head>

<body>

<p>You can change
the <title> element on this page</p>

</body>
</html>

The methods of an object are very like functions. Methods provide tools to carry out a
task on the object to which they belong.

Although you probably weren’t aware of it at the time, you already have been using
properties and methods in earlier chapters. However, when calling these properties and
methods, we have been using variables and functions. When you have created a data con-
tainer, such as a variable, it also has been the property of an object. Whenever you
created a function it also has been a method of an object.

06 2978 CH04 4/10/02 10:50 AM Page 121

For the moment, don’t worry too much about which object owns which variables and
functions; it will be discussed a little later in the chapter. What is important is that you
realize that properties are simply a special case of data containers; and, similarly,
methods are simply a special case of functions.

Client-Side JavaScript Objects
All objects in JavaScript belong to an object called the Global object. When a document
containing JavaScript is loaded or downloaded into an environment where JavaScript is
understood, all subsequent objects, properties, and methods are built upon it.

The window Object
In the client-side browser environment, the Global object is called the window object.
Whenever any other JavaScript object is accessed, it is done through the window object.
This includes all objects that represent parts of the document, browser objects, and the
Core JavaScript objects that you will learn about later. It is essential then that you know
how to access the window object. Thankfully this is very simple. To access the window
object, simply write the keyword window. The following alert demonstrates this:

alert(window);

See Figure 4.1.

122 Day 4

FIGURE 4.1
The alert box shows
that the window
object is a
JavaScript object.

As you can see, JavaScript recognizes the keyword window and responds by telling you
that it is an object. By itself this isn’t very useful, but once you know how to use the
window object to get to its properties and methods, and the properties and methods of the
objects that belong to it, then you will be well on your way to producing real and useful
scripts. To learn how to think about these objects, properties, and methods, let’s consider
an analogy.

The Dot Notation
Imagine for a moment that you are at home and you want a friend to fetch you a soda.
Also imagine that your home is all that exists in the whole universe—it is the Global
object. Assuming the person you ask doesn’t know where the soda is located, you will

06 2978 CH04 4/10/02 10:50 AM Page 122

JavaScript Is Object-Based 123

4

have to give him instructions. You might describe the route in these terms: “in this house,
go to the first floor, into the kitchen, then open the fridge, look in the top shelf and you
find the soda.” This route to the soda also could be written in any of the following ways:

house - first floor – kitchen – fridge – top shelf - coke

house : first floor : kitchen : fridge : top shelf : coke

house > first floor > kitchen > fridge > top shelf > coke

The symbols between each location separate each step of the route. If you think about it,
you might note that they describe a hierarchical route. The first floor belongs to the
house; the kitchen belongs to the first floor; the fridge belongs to the kitchen; the top
shelf belongs to the fridge; and the soda belongs on the top shelf.

JavaScript’s structure is very similar to this. Objects own properties and methods, but
they also own (and are owned by) other objects—just as the above example shows what
real-world objects are. All JavaScript objects are structured hierarchically within the
Global object, which in Web browsers is the window object. Although in the situation
above you would most likely just say something like “grab me a soda from the fridge,”
object-based computing languages such as JavaScript usually need each step of the route
spelled out.

To describe the path to the object, property, or method you want, you need to use the dot
notation or the dot syntax, which requires that each successive object in the route be
joined to a following object, property, or method with a period. This is similar to the way
you might separate a route with hyphens, colons, or angled brackets as done above.
Therefore, if you were telling JavaScript to fetch you a soda, you would write it like this:

house.groundFloor.kitchen.fridge.topShelf.coke.get()

This syntax must not contain spaces, so the names of each object have been joined
together. Otherwise it is remarkably similar to the three possible ways to describe the
path to the soda used earlier.

Hopefully this helps to make the syntax used in our first example slightly clearer. We
wrote window.document.title to change the title of the document. The document
(object) is an object belonging to the window object; and, as it happens, the title
(property) is a property of the document object.

You will learn more shortly about how the dot notation can be used to access objects and
their properties and methods, but for the moment let’s consider just what properties and
methods are.

06 2978 CH04 4/10/02 10:50 AM Page 123

Variable or Property? Function or Method?
Earlier it was hinted that there is a strong similarity between data containers (such as
variables) and object properties, and between functions and object methods. The link is
so strong in fact, that one is really just a special case of the other.

Properties are a special type of data containers. They are data containers that not only
belong to an object, they give us information about the object. For example, there is a
property of the window object called status. This property contains the value that is
being shown in the status bar of the window at the time it is accessed. By default, once
the page has loaded, the status bar doesn’t contain a value, so if you were to write

alert(window.status);

you would get simply an empty alert box—or at least it would look like an empty alert
box. In fact, it would contain an empty string.

Properties of the window object can also be changed using JavaScript. For example, you
could write:

window.status = “JavaScript was used to place this text here!”;

So the window’s status bar would contain the message: “JavaScript was used to place
this text here!”

Listing 4.2 shows a fuller example where a prompt box in a function is used to allow a
user to enter text that will be shown in the status bar:

LISTING 4.2 Placing Text in the Status Bar (changeStatus.htm)

<html>
<head>
<title>Status Bar Changer</title>

<script language=”javascript” type=”text/javascript”>
<!--

function changeStatus()
{

window.status=prompt(“Enter some text for the status bar”,””);
}

//-->
</script>

</head>
<body>

124 Day 4

INPUT

06 2978 CH04 4/10/02 10:50 AM Page 124

JavaScript Is Object-Based 125

4

<h1>Status Bar Changer</h1>

<p>Change Status</p>

</body>
</html>

Figure 4.2 shows an example of what the status bar might look like after the function has
been called, and the user has entered some text into the textbox.

LISTING 4.2 continued

FIGURE 4.2
The status bar in
Internet Explorer has
changed to show the
text entered in the
prompt box.

OUTPUT

Unfortunately, Netscape 6.0 replaces the text when a link is clicked to call the function.
Because the link takes back focus when the prompt box closes, then the contents of the
href attribute immediately overwrite the text that our function writes to the status bar.

Methods are another special case. Method is the name given to functions that belong to
an object, and (frequently) acts on that same object. One of the methods that belongs to
the window object is the scrollBy() method. Assuming the document is large enough
that the scrollbars have been activated, then this method will scroll the window by the
number of pixels that have been specified (if the scrollbars haven’t been activated, it will
do nothing).

Methods are written with parentheses, just like functions. Because
window.scrollBy() uses parentheses (as the final part of the dot notation),
you can assume that scrollBy() is a method.

Note

The scrollBy() method belongs to and acts on the window object. Listing 4.3 shows an
example page which uses the scrollBy() method.

06 2978 CH04 4/10/02 10:51 AM Page 125

LISTING 4.3 Scrolling the Window (scrollWindow.htm)

<html>
<head>
<title>Window Scroller</title>

<script language=”javascript” type=”text/javascript”>
<!--

function scrollWin()
{

var y = prompt(“How many pixels should the window be scrolled?”,””);
if (isNaN(y)) return alert(“Numbers only please”);
window.scrollBy(0, y);

}

//-->
</script>

</head>
<body>

<h1>Window Scroller</h1>

<p>Scroll Window</p>

<p>
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

</p>

<p>THE END</p>

</body>
</html>

When you click on the link the function scrollWin() will be called and you will
be prompted to enter the number of pixels by which the window should be

scrolled. Notice that because you are asking for numeric input from a user, the isNaN()
function has been used to stop errors from occurring should the value the user enters
have non-numeric characters. Assuming the input is accepted, then it is passed to the
scrollBy() method. This method accepts two parameters. The first is the number of
pixels that the window should be scrolled across, and the second is the number of pixels
it should be scrolled down. Because we only want the window to scroll down, 0 has been
specified for the first parameter, and the variable y for the second.

126 Day 4

INPUT

ANALYSIS

06 2978 CH04 4/10/02 10:51 AM Page 126

JavaScript Is Object-Based 127

4

If the number entered into the prompt box is larger than the number of pixels the window
can be scrolled, then the scrollBy() method doesn’t scroll the window beyond the end
of the document. It simply stops at the end. Therefore if you were to enter the value 1000
into the prompt box, the window should scroll to the end of the document and you
should see an appearance like that shown in Figure 4.3.

FIGURE 4.3
Window will scroll to
the end after entering
a large value in the
prompt box.

OUTPUT

The code contained in the predefined object methods is native code, so you can’t actually
see it. However, you still can test to see if a method exists by alerting the method’s
name. Note that you do not include the call operators (the opening and closing parenthe-
ses), only the path to and the name of the method itself. For example, to check whether
the scrollBy() method exists you would write the following:

alert(window.scrollBy);

This would display an alert box like the one shown in Figure 4.4.

FIGURE 4.4
An alert box allows a
check for the exis-
tence of the
window.scrollBy()

method.

As you can see, the alert shows that the scrollBy() function is supported, and also that
the function body consists of native code.

As stated earlier, JavaScript objects can own other objects as well as have their own
properties and methods. Shortly, you will learn about the objects that belong to the
window object, but in the meantime, it is worth mentioning something about the variables
and functions you have been writing and using so far.

06 2978 CH04 4/10/02 10:51 AM Page 127

You may have wondered where the variables and functions you created in previous chap-
ters have been stored. Well, because they weren’t assigned to any particular object, they
were assigned to the Global object. Whenever you created a new data container, such as
a variable or constant, it was assigned to the window object. This is true for your func-
tions as well. Whenever you created a new function, it was assigned to the window object.

To demonstrate this, type the following lines of code into a page and load it:

var myVar = “Variable myVar’s value.”;

function alertMyVar()
{

alert(window.myVar);
}

window.alertMyVar();

Notice that you have used the window object both to call the function and to get to the
value of the variable myVar. If the variable myVar and the function alertMyVar didn’t
belong to the window object, then this will cause an error. When you load the page, you
should see an alert box something like the one in Figure 4.5.

128 Day 4

INPUT

FIGURE 4.5
An alert box demon-
strates that the myVar
variable is a proper-
ty of the window
object.

OUTPUT

It works! The variable myVar was owned by the window object, which is the
Global JavaScript object in a browser, as was the function alertMyVar().

Other functions that you have been using, such as the alert(), confirm(), and
prompt() functions, also belong to the window object, as do the predefined global func-
tions discussed in the previous chapter (yes, the word “global,” meaning they belong to
the Global object—the window object).

This, of course, raises the question as to why, if the variables and functions created and
used belong to the window object, you have not always had to access them by writing the
following:

ANALYSIS

06 2978 CH04 4/10/02 10:51 AM Page 128

JavaScript Is Object-Based 129

4

window.variableName

and

window.functionName()

Everything to which client-side JavaScript has access is encompassed in the window
object. It is the default. Therefore, if you omit the keyword window (and haven’t used the
name of some other object), the JavaScript interpreter knows to put it in for you. This
means that you can start object paths with the objects next to the window object in the
object hierarchy, and the JavaScript interpreter still will know what to do. This saves you
from needlessly writing the word window at the beginning of the directions to an object.

Before we finish, note that we haven’t, nor will we later, refer to our variables and func-
tions as properties and methods of the window object. There are two reasons for this. One
is that, in the case of properties, they do not give us information about the window object,
and in the case of functions, they do not act on the window object. The second is that,
because we can miss out the reference to the window object, we don’t have to consciously
treat our variables and functions as belonging to the window object.

For the rest of this chapter, when objects are accessed, properties and methods will
include the window object in the object path. Although this isn’t necessary (as you’ve just
seen), it will help you get used to the syntax for accessing objects and remind you that
the window object is the object at the top of the tree.

The window Object’s Children
When one object belongs to another, it is said that it is a child of that object. Conversely,
the object that owns the child object is said to be its parent object. The window object has
several child objects, but in general they can be split into three types:

• The document object

• Environment objects

• Core JavaScript objects

It is important to distinguish between the three types of objects as they enable us to per-
form different tasks. The document object is the object by which you gain access to your
HTML documents. Without the document object, no matter how many processes were
performed behind the scenes, you would never be able to affect the Web page itself. All
interactions with page elements such as forms, images, and layers must take place
through the document object.

The environment objects enable you to find out details about such things as the browser
and the user’s screen. This enables you to accomplish such tasks as loading a different
page or finding out whether one of your scripts is supported and can be run.

06 2978 CH04 4/10/02 10:51 AM Page 129

Finally, the Core JavaScript objects are the objects that are actually built into JavaScript
itself. These always exist regardless of where JavaScript is used, whether it is in a Web
browser, a PDF (Portable Document Format) file, or any other environment. These Core
JavaScript objects provide a powerful means to create, sort, and otherwise manipulate
data and data structures in your documents.

This chapter will take an overview of the objects in all three groups.

The document Object
Not too surprisingly, the document object provides access to the document that is
currently loaded in the browser window. This means that it includes not only the
elements contained between the body tags that are displayed in the window, but
everything between the <html> and </html> tags.

Before going any further, if you need to convince yourself that the document object
really does belong to the window object, type the following line into the HTML for a
Web page and view it with your browser:

alert(window.document);

This will display the following alert box which shows that the document object does
indeed exist as a child object of the window object. See Figure 4.6.

130 Day 4

INPUT

FIGURE 4.6
A check for the docu-
ment object as a
child of the window
object.

OUTPUT

The document object has many properties and methods as well as containing all the
objects that make up the model that represents the document: the “Document Object
Model.” The document object model is so large that we will spend many chapters
exploring its different parts. For the present, though, let’s take a cursory look at the
document object model to get a preliminary feel for what is there.

06 2978 CH04 4/10/02 10:51 AM Page 130

JavaScript Is Object-Based 131

4

Properties
The standard set forth by the W3C Document Object Model (or DOM for short)
describes a logical association of properties and methods to objects. This chapter will
focus only on the properties that have been included in either the W3C DOM or browser-
specific properties that have equivalent properties in other browsers.

Several of the properties that previously belonged to the document object
are no longer approved for use. This is due to the fact that many of the
properties that originally belonged to the document object should have been
associated with other objects. It will be noted when this is the case.

Caution

A list of the properties of the document object in the W3C Document Object Model is
given below:

charset

characterSet

cookie

domain

height

lastModified

referrer

title

URL

width

You already know about the title property of the document object and how you can use
JavaScript to change the title displayed in the browser’s title bar, so let’s move on.

The charset and characterSet properties are browser-specific properties of Internet
Explorer 4+ and Netscape 6+ respectively. They can be used to find out the character set
that has been associated with the document. For example if the document contains the
following meta tag:

<meta http-equiv=”Content-Type” content=”text/html; charset=iso- 8859-1”>

Then in Internet Explorer the document object’s charset property will have the value
“iso-8859-1”, and in Netscape the characterSet property will have the value “ISO-
8859-1”. The case of the letters in the meta tag doesn’t make any difference to the case

06 2978 CH04 4/10/02 10:51 AM Page 131

of the string returned by these properties. Internet Explorer will return it in lowercase,
and Netscape will return it in uppercase, whichever way you happen to have written it.

The document object’s cookie property gives you the ability to set a cookie using
JavaScript. We will take a detailed look at this property later in the book.

The domain property is another property that we will leave until later for a detailed
analysis. In brief, however, it allows you to access documents in other frames or win-
dows that have been loaded from the same domain as the document in which the script
resides, but from a different server. By default this is not possible for security reasons.

The height and width properties of the document object are both Netscape-specific.
They contain an integer that represents in pixels the total height and width of the docu-
ment at the point in time that they are checked. This includes the parts of the page that
are out of sight due to page scrolling. These properties enable you to know how far a
document can be scrolled. You can then use the scrollBy() method used earlier to create
custom scrollbars, for example.

Internet Explorer has two equivalent properties to the Netscape height and width prop-
erties but they belong to the body object, so they will be discussed slightly later in the
chapter.

The lastModified property of each document contains a string with the date and time
that the document was last changed. It can be used to do such things as add an automatic
“Last Updated” line to our pages, but also for more advanced things such as checking
whether the document has been changed since the last time a user visited. This script
would also require the use of cookies however, so we will discuss that later.

There are times that you will need to check that a visitor has only come from a designat-
ed page using the correct link. For example, you may require a user of your Web site to
have checked a news page before entering another area. The document object’s referrer
property allows you to check exactly from where a visitor has come—but, only if the
user clicked on a link to get to the present page. If a link was clicked to navigate to the
present page, then the referrer property will contain the URI of the document in which
that link was contained. If a link wasn’t clicked, say the user entered the location directly
into the location bar of her browser, then the property will simply contain an empty
string. You can check for a certain URI and redirect the user, if she hasn’t been there yet.

The document object’s URL property provides the URI that was used to download the
document as a string value. However, there are two other ways of finding this informa-
tion. There is a location object that will provide this string and a lot more information.
You will learn about the location object shortly.

132 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 132

JavaScript Is Object-Based 133

4

Let’s now continue our study of the document object by investigating some of its
methods.

Methods
The document object has many methods, but for the moment we will only look at the
methods that are most useful to us. A list of these is given below:

close()

getElementById()

getElementsByName()

getElementsByTagName()

open()

write()

writeln()

When a document begins to load into a browser the first thing that happens is that the
browser opens a data stream to accept the data that makes up the file. After all the data
has arrived, the data stream is closed.

The document object’s open(), write(), writeln(), and close() methods are all close-
ly related. These methods enable you to construct entirely new documents using
JavaScript. What they do not do is enable you to add to an existing document that has
already loaded into a browser window. You will see how to do that later.

The open() method allows you to open a new data stream to a browser window or frame.
To construct a document in this window or frame, you then can use the write() or
writeln() methods to add data to the data stream. After you have created a file and the
data that makes up the file has been sent, you finish by using the close() method to
close the data stream, indicating that the document content has ended.

You may have seen the properties bgColor, fgColor, alinkColor, linkColor,
and vlinkColor used with the document object. These properties are now
deprecated and should no longer be used. Because the document includes
everything from the HTML tags down, and not just the displayed body, it is
more appropriate to use either the style attribute, or the property equiva-
lents that belong to the body object. You will see how to do that shortly.

Caution

06 2978 CH04 4/10/02 10:51 AM Page 133

As soon as the open() method is used, one of two things can happen. If the document in
a window has already finished downloading, then it will be removed to make way for a
new document. But if the method is written into a script block (rather than a function’s
body) so that it is called while a page is loading, then the open() method is ignored.
After all, the data stream for that page is already open. Therefore the open() method is
only of use when you need to create a new document.

Once a data stream to a window is opened, the next step is to send some data to the win-
dow concerned. Use either the write() method or the writeln() method. The two meth-
ods are identical except for the fact that the writeln() method adds a line break to the
end of the string it is given. In client-side JavaScript, the difference is not noticeable
because—even after the document has been constructed—you can’t view the code that
was used to make it by doing a view-source on the window in which it is contained.
When you are constructing a document using server-side JavaScript the situation is dif-
ferent. Because the document is constructed on the server before being sent to the brows-
er the source can be viewed and line breaks after each line of the page becomes useful.
Because we are working client-side, we will only use the write() method in this book.
Here is an example of how you might start constructing a new document:

document.open();
document.write(“<html><head><title>Generated</title></head>...”);

With the exception of Netscape 4, you can use as many calls to the write() method as
needed to construct a document. In Netscape 4 there is a bug that prevents you from
using more than one write() method per document. To get around that, you need to
build up your page in a variable, and then write it all at once into the data stream. If you
need to script for Netscape 4, then the existence of the bug isn’t too much of a problem.

134 Day 4

If images are to be included in the document that you generate, then you
will need to set either their src attributes with absolute URIs or the <base>
element. Without setting the <base> element, relative URIs will not be rec-
ognized by some browsers. In order to locate the image its absolute address
must be known, either directly using an absolute URI or relative to a stated
base URI.

Caution

Finally, finish constructing the document by using the document object’s close()
method to close the data stream:

document.close();

06 2978 CH04 4/10/02 10:51 AM Page 134

JavaScript Is Object-Based 135

4

If the write() or writeln() methods are applied to a document that has finished loading
without first using the open() method, then the browsers will automatically implement
the open() method. Therefore, to a certain extent, the open() method is actually option-
al. However, you do need to use it if the document you are constructing is not an HTML
document. This is because the default MIME type for the document that is created is
“text/html”. If, say, for example, you wanted to create a page made purely from SVG,
then you would have to specify the MIME type as “image/svg+xml”. To specify the
MIME type of the document to be created, you need to declare it as a parameter of the
open() method. For example, if your document is pure SVG then you would start with
the following:

document.open(“image/svg+xml”);

Other commonly used MIME types include those listed here:

text/html // the default
text/plain
image/gif
image/jpeg

SVG images are created from markup so using the document object’s write() method is
feasible, but it is less likely that you would want to write a GIF or JPEG (MIME type
“image/jpeg”), which are pure binary. To generate a chart from user input would be rel-
atively simple using SVG, but creating it from binary would be impractical.

If the image you were generating were to be part of an HTML document,
the MIME type would be “text/html”. The MIME type specified is for the
MIME type of the main document.

Note

We will make extensive use of the write() method to construct parts of a document as it
loads. Remember that the write() method will clear a document from the window if
used after it has finished loading, but if the document is still in the process of loading
(therefore the data stream is still open), then the write() method can be used to add
HTML to the page without destroying the HTML that has already arrived. In general, we
will not make a great deal of use of the open(), write(), and close() methods to create
new documents. Although they can be invaluable in this respect on some occasions, this
use is not very common.

By now, you probably would like a bit of variety from using alert boxes to display the
output from JavaScript code. Although we won’t banish alert boxes entirely, you’ll be
happy to know that this aspect of the write() method will now enable you to output the

06 2978 CH04 4/10/02 10:51 AM Page 135

results from your scripts into the HTML of the document. Listing 4.4 is an example
page.

LISTING 4.4 Writing HTML to the Page Using document.write
(writingHTML.htm)

<html>
<head>
<title>Writing HTML</title>

</head>
<body>

<script language=”javascript” type=”text/javascript”>
<!--

document.write(“<h1>Writing HTML</h1>”);

var myPara = “<p>This page was written using the “;
myPara += “document object’s write() method!</p>”;

window.document.write(myPara);

//-->
</script>

</body>
</html>

The result from loading the page in Listing 4.4 is shown in Figure 4.7.

136 Day 4

INPUT

FIGURE 4.7
Writing to an HTML
page using docu-
ment.write().

OUTPUT

As you can see, by applying the write() method of the document object as the
document was loading, you were able to add HTML to the data stream and,

therefore, to the page itself. The first time the write() method was used the argument it
was given was the document header as a plain string, but for the longer paragraph it was

ANALYSIS

06 2978 CH04 4/10/02 10:51 AM Page 136

JavaScript Is Object-Based 137

4

built up in a variable first. By using control statements you will be able to selectively
write different things into an HTML page rather than alerting it in alert boxes. Note that
a document.close() call is not used after the script because there is still more HTML to
come.

Let’s now look at the other methods of the document object that were listed earlier.

The document object’s methods that start with the word “get” are new and as such are
only supported by Internet Explorer 5+ and Netscape 6+. These methods provide a cross-
browser means of accessing any element or group of elements in the document.

The getElementById() method is our means of accessing any element in the document
that has been assigned an id attribute in its opening tag. The getElementById() method
returns a reference to the object which has the id attribute so that you are effectively
taken straight to it without navigating the document tree. Note that the value assigned to
an id attribute must be unique in the whole document. Assigning the same id to more
than one element will simply mean that all duplicate ids after the first are ignored, and
you won’t be able to access those elements using the value of the id attribute.

The getElementsByName() and getElementsByTagName() methods play a similar role.
Unlike the getElementById() method, they can return a collection of more than one
object. In the case of the getElementByName() method, the element objects returned are
only those elements that have the name attribute set to the value that was specified. The
getElementsByTagName() method is similar but it returns the elements with the tag name
that was specified.

You will learn more about collections in the next chapter on arrays. In JavaScript, col-
lections are a type of array—so let’s wait until after arrays have been discussed before
exploring these methods in more detail.

Child Objects
You have learned about reaching objects through a hierarchically structured path of
objects belonging to the window object. Therefore, you may expect that to access the con-
tents of a textarea belonging to a form contained within a table, you would write some-
thing like this:

window.document.html.body.form.table.tr.td.textarea.contents

In the most recent browsers, it is indeed possible to access objects in a way similar to
(although not exactly like) this. However, originally JavaScript didn’t enable access and
manipulation of all document parts.

06 2978 CH04 4/10/02 10:51 AM Page 137

Up until the release of Internet Explorer 4, the elements of a page that could be accessed
were very limited. In earlier browsers, the document object was still the route to the doc-
ument, but an HTML element could only be accessed if it belonged to a certain group of
elements, or was a child element of one of these elements. As long as it was among this
group, then it was possible to refer to it through a “collection.” The accessible HTML
elements were split into these collection groups by tag name. For example, all the forms
on a page could be accessed through a collection known as the “forms collection.” It did-
n’t matter how far down the tree they were found, the collections made access to them
only one step away.

Because the shortcuts provided by collections are such a useful feature, they
have been included in the W3C DOM specifications. In fact, the W3C have

added to the collections and provided methods that enable the creation of your own col-
lections. However, collections don’t give access to every part of the document. To enable
this the structure of the document object has been changed so that you can traverse every
part of it using nodes. Nodes not only give access to the objects representing document
elements, they also give access to their attributes and the text contained within them.

There are pros and cons to both methods. Collections give quick and easy access
to the elements you are most likely to want to access, but for the times you need

more power to access other objects, then you will need to traverse the Document Object
Model’s treelike structure of nodes. The Document Object Model, or DOM for short,
maps out and describes how a document is constructed in terms of the hierarchical struc-
ture of its objects. It also requires certain methods and event handlers to be present.

This chapter will take a quick look at the collections that are available to access the main
parts of the document. We will cover the DOM way of doing things later in the book.
Here is a list of the widely supported HTML collections and an important object that is
the body object, which belongs to the document object:

all

applets

anchors

body

embeds

forms

frames

images

layers

138 Day 4

NEW TERM

NEW TERM

06 2978 CH04 4/10/02 10:51 AM Page 138

JavaScript Is Object-Based 139

4

links

plugins == embeds; seems to be being phased out

styleSheets

Before examining the body object, let’s take a quick look at the collections so that you
can get a feel for these objects, which will be examined in more detail at appropriate
points later in the book.

Let’s use the forms collection first. Once you have learned what arrays are and how they
are used in the next chapter, you will see how the forms collection (a type of array) can
be used to access the HTML forms on a Web page. In general, there are two way to do
this: Use the name you give to the form, or use an integer representing the form’s place
among any other forms on the page. For example, if the first form on one of our Web
pages is called myForm, you could access it using either of the following lines of code:

window.document.forms.myForm

or

window.document.forms[0]

Either will take you straight to the object representing that form.

The individual parts of an array are numbered from zero—not from one.Note

Don’t worry if you don’t understand those lines—especially the second one. Once arrays
have been covered, it should be a lot clearer.

The all and layers collections are specific to Internet Explorer and Netscape 4 respec-
tively. Note that when we say Netscape 4, we really do mean only version 4. The layers
object was removed in Netscape 6 and replaced by the W3C DOM way of doing things.
These collections provide a shortcut to objects on the page if the objects possess a partic-
ular name or id attribute. In the case of the all object, you can access any object on a
page, but with the layers object you can only access layer objects or div objects. To do
this you usually would write the following:

window.document.all.nameOrId

or

window.document.layers.nameOrId

or use the same integer notation that was used for the forms collection.

06 2978 CH04 4/10/02 10:51 AM Page 139

The applets, embeds, and plugins collections can all be used to access the objects and
information needed to insert other technologies into your pages. Collections will be
covered in detail in Chapter 18, “Plugins and Applets.”

When we do look at the anchors and links collections it is important to make clear the
distinction between the two. Anchors are <a> tags that have been given a name attribute;
whereas links are <a> tags that have been given an href attribute. As <a> tags can be
given both, it is possible that some of the objects in the anchors and links collections
will be present in both collections. Not that this is a problem, but is something of which
you might want to be aware.

When looking at scripting between windows and frames in detail in a later chapter, you
will learn how to make use of the frames collection.

As you may expect by now, the images collection gives access to all the images on a
page. Again you can access the individual images by specifying a name or index using
the syntax used for the forms collection. For example, if you have an image on your
page and you specified the name attribute in its opening tag to be “myImage”, then you
can change the image that is being shown by writing something similar to the following:

window.document.images.myImage.src = “path/to/new/image.gif”;

The image being displayed on the page would now be replaced with the image you spec-
ified. This is because by changing the src property that corresponds to the src attribute
of the tag you force the image to change.

The final entry in the above list is the styleSheets collection, which provides access to
the style sheets in the page. This object gives access to all the <style> tags on the page.
Note that it does not give access to any external style sheets loaded using the <link> tag.
Again, you will learn much more about the styleSheets collection later in the book.

There are other interesting objects belonging to the document object. Especially worth
mentioning is the documentElement object, which gives access to the corresponding
node of a document. The document object provides access to selected objects on the page
mainly through the collections just mentioned. However with the documentElement
object, you can get access to everything, as you shall see later.

The body Object
The body object, which is a child object of the document object, is available in both
Internet Explorer 4+ and Netscape 6+. Surprisingly, it usually isn’t used as a gateway to
the elements of a page, but rather as a means to set the main colors of the Web page and
the background image, if there is one. By changing properties of the body object, you

140 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 140

JavaScript Is Object-Based 141

4

can change these corresponding attributes that can be added to the opening <body> tag.
The properties of the body object are listed below:

aLink

background

bgColor

link

text

vLink

These properties all have the same names as the attributes that can be added to the body
tag, so if you are already fluent in HTML, hopefully it should be fairly easy for you to
see how they are used. For example, you can change the background image of a page by
writing this:

window.document.body.background = “path/to/new/image.gif”;

Or you can change the color of links that have been visited by writing this:

window.document.body.vLink = “#4488ff”;

The colors assigned also can be color names, just as they can be for the corresponding
body tag attributes.

Remember that although the attribute names in HTML use the same letters
as the JavaScript properties mentioned, you must use the correct case in
JavaScript—whereas in HTML, attribute names are case-insensitive.

Caution

Internet Explorer also provides several properties that allow things such as the margin
widths to be set. However, these properties are available in Internet Explorer only and
are done better by using the style attribute or by adding style sheet rules, which you
will learn about later.

Environment Objects
As well as working with the document, you also may want to know some things about
the browser and where it has been. There are four objects that belong to the window
object that provide this information. They are the following objects:

06 2978 CH04 4/10/02 10:51 AM Page 141

• The location object

• The history object

• The navigator object

• The screen object

The location and history objects provide access to the present URL and the browser
history respectively. The navigator and screen objects provide information about the
browser that is being used to view the document and the browser’s position in the user’s
screen respectively.

The location Object
The location object gives you access to and control over the URL that the current docu-
ment was downloaded from. Initially, this may not seem all that useful. After all, you
know the URL of the site where your Web pages are kept. But what if you want to make
the browser load another page? Or what if you want to access data from the URL query
string? For these sorts of tasks, you will need the location object.

The location object has eight properties:

hash

host

hostname

href

pathname

port

protocol

search

The location object also has three methods:

assign()

reload()

replace()

You will use the location object most often for loading a new document, so first let’s
look at how this is done.

142 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 142

JavaScript Is Object-Based 143

4

Loading a New Page
The usual way to load a new page into a window is to assign to its href property a string
containing the new URL. To do this, you simply write something like the following:

window.location.href = “http://www.xmml.com/path/to/file.htm”;

The assign() method enables you to assign a new URL to a window’s or frame’s loca-
tion, and thereby load into the window or frame the Web page located at that URL.
Although the assign() method still works in browsers, it is now deprecated—meaning it
is no longer the approved way to do it. In any case, it is almost never used.

In some old browsers, the location object originally belonged to the
document object rather than the window object. This is now deprecated, so
if you ever see

window.document.location

or

document.location

don’t be tempted to copy. At present, browsers support the location object
as belonging to the window or document objects. However, in the future that
may no longer be the case.

Caution

There are many times when it is beneficial to use JavaScript to load a new page. For
example, you may wish to use an HTML select box as a way of navigating to different
sections of your site.

It is very important to note that there are times when you should not load a new page
using the location object’s href property. One example is when filter pages are used to
redirect a visitor to a different page based on which browser he is using. Frequently, you
will see the href property being used to do the redirecting. This means that when a visi-
tor hits the back button he is immediately bounced forward again. You may well have
come across pages that act like this yourself. The problem is that the filter page is still in
the browser’s history, so when the back button is hit, it is reloaded and once again redi-
rects to the page the user has come from. To solve this, you need to get the filter page to
overwrite itself so that it isn’t included in the browser history. This is accomplished by
using the second of the location object’s methods.

The location object’s replace() method is an important alternative to assigning its
href property with a new location. It replaces the page where it is used with a new URL,
thereby preventing the browser from storing that page in the browser’s history. This

06 2978 CH04 4/10/02 10:51 AM Page 143

means that when a visitor hits the back button, the page the replace method was on effec-
tively doesn’t exist, and the browser loads the previous page. This prevents the nasty
bounce effect associated with filter pages.

Note that relative URLs can also be used with the location object’s href property and
the replace() method. To demonstrate, assume the document being navigated from is
located at the following URL:

http://www.xmml.com/path/to/file.htm

If you wanted to move to a Web page called index.htm located in the directory /path/,
you could write this:

location.href = “http://www.xmml.com/path/index.htm”;

But you also could use a relative URL path to do the same thing. Therefore you could
just write:

location.href = “../index.htm”;

Both are acceptable. Similarly, if you wanted to go to the page index.htm in the root
directory, instead of writing this:

location.href = “http://www.xmml.com/index.htm”;

You could just write:

location.href = “/index.htm”;

Both absolute and relative URLs can be used in the href attribute of an anchor tag to
make it a link, so you can use absolute and relative URLs with the href properties and
replace() method of the location object.

Accessing the URL
As well as using the location object’s properties and methods to load a new page, you
may sometimes want to just find the URL of the document currently loaded in a window.
This could be the URL of the page the script is running on, or the URL of a page in
another frame or browser window. The simplest way to use a script to find out a page’s
URL is to swap the location.href to the other side of an assignment statement to
assign the value of the href property to a variable. For example, by writing this:

var pageURL = location.href;
alert(pageURL);

144 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 144

JavaScript Is Object-Based 145

4

The location object’s href property contains the whole URL. So in the variable
pageURL, you now will have everything including the protocol, hostname, and path to the
file as well as the port number, query string, and hash, if they are present. Often, though,
you will want one, or only some part of the URL. To make it easy for you to get this
selectively, the location object has a number of other properties.

To demonstrate these properties, let’s assume that the present URI of the page where the
script can be found is the following:

http://www.xmml.com:80/path/to/file.htm?myVar=val#anchorName

The following show the values that would then be contained within the other properties
of the location object for the page:

alert(location.hash) // alerts “#anchorName”
alert(location.host) // alerts “www.xmml.com:80”
alert(location.hostname) // alerts “www.xmml.com”
alert(location.pathname) // alerts “/path/to/file.htm”
alert(location.port) // alerts “80”
alert(location.protocol) // alerts “http:”
alert(location.search) // alerts “?myVar=val”

Most of the time URIs do not contain many components, in which case some of these
properties will contain just empty strings.

It can be helpful to use these properties instead of the href property. For example, when
a hash (#) is used in a URL it is followed by the name of an anchor tag in the document.
This causes the page to load prescrolled to the point in the document that the anchor tag
is located. This is very useful for linking directly to a certain part of a long document.

If you use anchor tags like this, you may want to find out which part of a document a
page has loaded. For example, if there is some important information at the top
of a page, you might want to check for a hash and if it exists alert the reader to the
information.

To find the name of an internal link, simply use the hash property of the location
object. It contains the hash character itself followed by the name of the anchor to which
it has been linked. Therefore, if we were on the page with the URL given earlier, and we
wrote:

var myHash = location.hash;
alert(myHash);

We would get the following alert box seen in Figure 4.8.

INPUT

06 2978 CH04 4/10/02 10:51 AM Page 145

If you wanted to test whether an internal document link had been used, then this
would be all you needed. If one wasn’t used, then the hash property returns a

zero length string. As the zero length string “” evaluates as false in a logical context, you
could simply write:

var myHash = location.hash;

if (myHash) {
alert(“Please read the important information at the top.”);

}

If on the other hand, you wanted to actually find out the name of the anchor that had
been linked to then you would need to remove the hash character. You will find out later
how to do this when we examine the String object and its properties and methods.

Reloading the Page
There are a few circumstances that will require reloading a page. For example, some uses
of <div> tags send the browser haywire if they are being viewed using Netscape 4, and
then the page is resized. The only solution is to detect when the browser is resized, and
then refresh the page to clean it up. There are other reasons you may want to reload the
page. For example, you may want to create your own navigation buttons. Regardless of
the reasons, the location object provides a method with which to do it.

To reload the current page, simply use the reload() method as shown below:

location.reload();

Note that the reload() method is similar to holding down the Shift key and hitting the
reload button. Simply clicking on refresh will leave data that has been entered into any
HTML form elements intact, but the Shift+Refresh key combination clears everything.
This is exactly what the reload() method of the location object does. It does a com-
plete reload of the page, which normally should be from the browser’s cache. We say
“should” because browser implementations frequently don’t implement the reload()
method as they are supposed to do. For an even fuller refresh, add the logical value true
as an argument to the reload() method:

location.reload(true);

146 Day 4

FIGURE 4.8
The hash property of
the location object
is displayed.

OUTPUT

ANALYSIS

06 2978 CH04 4/10/02 10:51 AM Page 146

JavaScript Is Object-Based 147

4

This should not only refresh the page but also go to the server to collect the most up-to-
date version. Again, however, we say “should” because this isn’t always what happens.

Hopefully in the future browsers will behave a bit more consistently, but for the moment
there is a workaround for the times when you really need the newest version of a page to
load. This involves adding a timestamp to the end of the page as a query string. We will
look at how to generate a timestamp later when we deal with the Core JavaScript Date
object in Chapter 9, “Date and Time Manipulation,” but for the moment let’s continue
with our overview of JavaScript objects.

There is also a method that is designed to reload the page from the cache and leave form
elements filled out. It belongs to the window object’s history object.

The history Object
You likely are aware that Web browsers store a list of the pages you have visited in what
is called the browser’s history. This enables the browser to supply back and forward but-
tons to allow users to go backward and forward through the sites they have recently visit-
ed. You already have limited access to the browser’s history through the window object’s
history object. Under normal conditions, it isn’t possible to discover the URLs of the
sites where a user has been; however, the history object allows you to do simple things
such as move backward and forward within the browser’s history.

The history object has the length property and the following methods:

back()

forward()

go()

Netscape provides an additional three properties—current, next, and previous—that
provide the URIs of the current, next, and previous history entries respectively. They all
require signed scripts, which we will cover in detail later in the book.

The history object’s length property stores the number of history events in the brows-
er’s history. In reality, this is only of use in conjunction with signed scripts when history
entries can be obtained. Without that information, you can’t determine where you are in
the history events and, thus, which of the other entries you may wish to move to.

It is really the methods of the history object that are the most useful. The back and for-
ward buttons are fairly self-explanatory. They allow you to force the browser back to the
last page that was loaded or forward to the next. If you wanted to create your own back
and forward buttons, you could use hyperlinks with these methods to achieve the effect.

06 2978 CH04 4/10/02 10:51 AM Page 147

Just remember that there will need to be history entries for before and after the current
page for the buttons to work! See Listing 4.5.

LISTING 4.5 Simulated Back and Forward Buttons (backAndForward.htm)

<html>
<head>
<title>Simulated Back and Forward Buttons</title>

</head>
<body>

<h1>Simulated Back and Forward Buttons</h1>

<p>Back |
Forward</p>

</body>
</html>

To create more attractive buttons, simply wrap the <a> tags around some images instead
of the text.

When moving forward or backward by one is not enough you can use the go() method.
This allows you to specify how many steps backward or forward in the history the
browser should go. For example to go back to the previous page, write this:

window.history.go(-1);

Or to go forward by two you would write this:

window.history.go(2);

If you overshoot the entries, even by one, then the go() method is ignored.

Using the go() method in this way is problematic as you most likely will need to have
access to the history entries for your scripts to determine where to go. However, what the
go() method is very useful for is refreshing a page without removing any data that a user
may have entered into an HMTL form. This is opposed to the fuller refreshes provided
by the location object’s reload() method. To do this more limited type of refresh, you
would write this:

window.history.go(0)

The 0 just means that it is the present history entry—that is, the present document—that
should be loaded. Just “soft” refresh.

148 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 148

JavaScript Is Object-Based 149

4

The navigator Object
Netscape was the first company to provide a mechanism for finding out information
about the browser being used to view a Web page. It was quite logical then that the
object that was introduced to provide scripts with information about Netscape Navigator
was given the name navigator. At the time, Netscape was king in the browser world and
so other browser manufacturers gave the object in their browsers the same name so the
JavaScript being used on the Web also would work in their browsers.

In Internet Explorer, the navigator object can also be accessed using the name
clientInformation. However in Internet Explorer both names point (refer) to the same
object. Because clientInformation works only in Internet Explorer but navigator
works in both main browsers, the norm is to use the name navigator to access the
navigator object. This ensures that your scripts will work on all browsers.

The navigator object has many properties. Because several of the navigator object’s
properties are specific to individual browsers, only cross-browser properties and some of
the more useful proprietary properties are listed:

appCodeName

appName

appVersion

browserLanguage

cookieEnabled

language

platform

systemLanguage

userAgent

userLanguage

The main use of these properties is to provide our scripts with information that will
enable them to determine whether the browser a visitor to our site is using will support

Note that it is the history object that is used to effect a soft refresh, and it is
the location object that is used to do a hard refresh. Since the back() and
forward(), and go() methods belong to the history object it is easy to for-
get that the reload() method belongs to the location object and thus make
mistakes in your scripts.

Caution

06 2978 CH04 4/10/02 10:51 AM Page 149

certain pieces of code we may want to use. This information can be used in conjunction
with the control statements that we saw in the previous chapter to control whether the
code is executed or not. Unfortunately the information that some of these properties pro-
vide can be quite misleading and difficult to understand. We will discover how to use
them later in Chapter 8, “The Browser Issue.”

The screen Object
The screen object provides our scripts with useful information about the size and set-
tings of the monitor that a visitor to our site is using. This can be useful when we want to
move an existing or new window to a certain place on the screen, or when we need to
know whether the screen has high enough resolution or color depth to support something
we want to use. The properties that are widely supported are:

availHeight

availWidth

colorDepth

height

pixelDepth

width

There are also two other very useful properties, availLeft and availTop, which
surprisingly are not supported by Internet Explorer.

A more in-depth study of the screen object will be discussed in Chapter 12, “Windows
and Frames,” where it is more applicable.

Core JavaScript Objects
Core JavaScript, the parts of JavaScript that exist in every environment in which it is
used, is made up of several language elements. You have already learned about most of
the operators and statements that are available, but just as important are the Core
JavaScript objects. Without these objects, what you can do is severely limited.

There are 11 Core JavaScript objects, which have been listed below:

Array

Boolean

Date

Error

Function

150 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 150

JavaScript Is Object-Based 151

4

Global

Math

Number

Object

RegExp

String

In the client-side environment the Global object is, of course, the window object. You
have already used the window object to discover how objects are accessed and in so doing
have seen some of its properties and methods. However, learning about the window object
is a important topic, so we will take a closer look at it later, mostly in Chapter 12.

All the other Core JavaScript objects (which in the client-side browser environment
belong to the window object) are also important topics in their own right, and much of the
rest of this book will be spent discovering more about them. The remainder of this chap-
ter will take an introductory look at what these objects are and how to make use of them.

The Core JavaScript objects are very different to the other objects that belong to the
window object. For one thing, the majority of the time you will not use the Core
JavaScript objects directly in the way you have used the other objects. More frequently,
you will be using copies, or clones, of these objects that JavaScript has automatically
created or that you have created for yourself.

In general, you can create a copy of one of the Core JavaScript objects using one of two
ways. You can create it either by using literal notation or by using constructor function
notation. You already have used literal notation on many occasions. For example, when-
ever you have created a string, it has been based on the String object. You didn’t have to
do anything special; you simply surrounded the characters for the string with quote
marks and, seeing the quote marks, JavaScript automatically created a string literal. The
same happens for boolean and numerical values. JavaScript recognizes them as keywords
or values and knows automatically what object on which to base them (the Boolean and
Number objects respectively).

When you use literal notation the result is usually a true literal, which means that it is not
an object in and of itself. It simply gains access to the properties and methods of the
object on which it was based. You can’t give it any properties or methods of your own.

When you create an instance of an object using the constructor function notation it is
quite different. Instances are full objects in their own right. They not only inherit the
properties and methods of the object on which they were based, but your own properties
or methods and, if you want, even your own child objects can be added.

06 2978 CH04 4/10/02 10:51 AM Page 151

So far you have learned how to create your own data (which as just discussed also can be
called “literals”) and some ways of working with that data in the form of operators and
statements. What you haven’t learned yet are ways of structuring or ordering your data.
This is one of the useful purposes of creating instances of Core JavaScript objects.

It is possible to create your own objects from scratch, along with the properties and
methods that will be needed for them. However this can be quite involved. To make the
job a lot easier, use the Core JavaScript objects as prototypes or blueprints. They provide
a way to easily make your own data structures that will have many useful management
tools (methods) and properties already built in.

So what is constructor function notation, and how is it used to create instances of the
Core JavaScript objects? Well, to understand this, you have to understand that all of the
Core JavaScript objects are also functions. At first this may seem very strange. You prob-
ably have functions and objects as totally separate entities in your mind. Actually,
though, it isn’t too hard to understand. Functions can take on properties and methods
(additional functions if you like) as belonging to them, as well as child objects of their
own. You just haven’t seen them used in that way yet. For example you can write this:

function myFunc()
{

alert(“hello”);
}

and then write:

myFunc.myProp = “another hello”;

If the function myFunc didn’t already have the property called myProp, then it would
immediately be created and assigned the string literal “another hello”.

Functions are objects, and although they weren’t signified by writing the call operators
after their names in the list of Core JavaScript objects above, all those objects except the
Math object are function objects (even the function object itself). In fact if you alert
the names of these objects in an alert box, you will be told that they are functions. For
example if you were to write the following:

alert(Boolean);

you will see the alert box shown in Figure 4.9.

152 Day 4

INPUT

06 2978 CH04 4/10/02 10:51 AM Page 152

JavaScript Is Object-Based 153

4

This is significant because you can call the Core JavaScript objects as functions
and, when you do, they will create a copy of themselves. For example you could

write this:

var myNum = Number();

This only creates a number literal; it doesn’t create an instance of the Number object (a
full copy that is a number object) and so isn’t proper constructor function notation. To
create an instance of one of the Core JavaScript objects, you have to use another of the
operators, the new operator. Here is how to use it with the Number() function.

var myNum = new Number();

When a Core JavaScript object is called as a function like this using the new operator it is
true constructor function notation and a new copy of the object is automatically created.
That’s it! You don’t have to write any methods for it or assign it any properties of your
own. Most of what you usually will need is already there. You simply have to add the
data and you are ready to go.

FIGURE 4.9
The alert() function
showing the charac-
ter of Boolean.

OUTPUT

ANALYSIS

Note that the Math object is the exception to this rule. You cannot make
copies of the Math object at all, either literals or instances! The Math object is
used directly.

Note

Admittedly, you don’t often have a reason to create an instance of the Number object so
that you can add properties and methods to it (although sometimes it can be useful). The
Core JavaScript object that you most often will want to make copies of is the Array
object. The Array object is an extremely powerful way of creating a data structure, and
its methods provide some extremely powerful tools for managing the data it contains.
For this reason, it will be investigated in Chapter 5.

It is worth mentioning that when a page loads, the Core JavaScript objects are all con-
structed themselves. The original object is the Function object. It is then used as a con-
structor function to create all the Core objects except the Math object. The Object object,

06 2978 CH04 4/10/02 10:51 AM Page 153

which has been created from the Function object, is used to construct the Math object.
This helps to explain why some of the Core objects own some of the properties and
methods that they do. Some don’t seem applicable to the object they belong to, but it is
because they inherit them from the Function object. Another thing to note from this is
that you can use the Function object to create your own object constructor functions,
which will be discussed in detail much later in the book.

As a final note on the Core JavaScript objects, each core object has its own notations for
creating literals and full instances. Using constructor function notation will always result
in a full instance, but literal notation will not always result in a literal. For example,
when you use literal notation to create an Array or Object object, it will create a full
instance anyway. This is because it is the nature of some of these objects that they can
only create objects.

Exploring an Object
Before this chapter ends, let’s look at two of the JavaScript operators that weren’t dis-
cussed in Chapter 2. Both of these operators are useful once you start working with
objects. One, the in operator, allows you to check whether a property or child of an
object exists, and the other, the typeof operator, allows you to discover the type of data
or object with which you are dealing.

When you use the in operator you are checking for the existence of a property, method,
or child object in another object by name. For example, if you wanted to discover if there
was a child object of the window object called “document” you could write this:

alert(“document” in window); // alerts true

Because the document object does contain an object with the name document the
alert() function would display an alert box with the value true. Note that the name of
the item we are checking for is written as a string. If we were to write its name as code,
the result will simply be false.

As it happens, this use of the in operator is not supported in browser versions before
Internet Explorer 5 and Netscape 6. Originally, it was limited to use in a for loop. To
demonstrate how it can be used in this way, let’s look at an example. For this example
assume that an object called bike was created, and you assigned it two properties. One
of the properties has the name color and the value green and the other has the name age
and the value 5. If you wanted to show all of the bike’s properties and their values, you
could use the for loop with the in operator as shown here:

154 Day 4

06 2978 CH04 4/10/02 10:51 AM Page 154

JavaScript Is Object-Based 155

4

var props = “”;
for (var prop in bike) {
props += “The bike’s “ + prop + “ is “ + bike[prop] + “\n”;

}
alert(props);

This would bring up an alert box with the result shown in Figure 4.10.

INPUT

FIGURE 4.10
Using a for loop to
display all the prop-
erties of the bike
object.

OUTPUT

At first how this form of the for loop works may seem hard to understand. There
is no counter variable, no increment of a loop counter, and no condition.

However, it isn’t actually too complicated. Basically when you use a for in loop like
this, during each loop that is made the variable called prop contained within the for loop
parentheses is assigned the name of a new property belonging to the object to the right of
the in operator. The for statement will continue to loop until the variable prop has been
assigned the names of all the properties once. Then it will stop. JavaScript manages
internally the assigning of the variable names and the ending of the loop.

In the one statement that the for loop governs in our example above, the variable prop is
used to build up a string containing information about the bike object. This string starts
out with the value “The bike’s “ to which the property name contained in the variable
prop is concatenated. To this, you then concatenate the string “ is “ before finally con-
catenating the value of the property to the string and a line break. The method used to
obtain the value of the property is not one you have come across yet. You will learn more
about this use of square brackets in the next chapter, but for now just accept that it
retrieves the value of the property.

As the for loop loops through the properties of the bike object, it builds up a string
stored in the props variable before that string finally is alerted when the loop ends.

Of course you could change the statements in the for loop so that it cycles through the
properties of an object performing any process you want. Now let’s find out about our
second operator.

ANALYSIS

06 2978 CH04 4/10/02 10:51 AM Page 155

The typeof operator is another useful operator. It is invaluable when you need to take
different actions on a piece of data depending on its data type. When applied to a piece
of data this operator will return one of six strings. The possible values of these strings are
listed below:

boolean

function

number

object

string

undefined

Notice that, even though functions are a type of object, the typeof operator will distin-
guish functions from other types of objects that may exist. Here are some examples of
the typeof operator applied to some objects and literals:

alert(typeof window.document); // alerts “object”
alert(typeof 3); // alerts “number”
alert(typeof document.scrollBy); // alerts “function”
alert(typeof true); // alerts “boolean”

All these alerts return the string that you would hopefully expect them to. The only result
that may surprise you is that if applied to the value null, then the typeof operator will
return the string “object”. Although it is not often that that you will need to know this,
it is worth bearing in mind.

To see both the in and typeof operators in action in a real script, let’s look at a full
example. In Listing 4.6, the for in loop and the typeof operators were used to expose
the properties of the navigator object and to discover the values and types of these
properties.

LISTING 4.6 The navigator Object Exposed (objectExplorer.htm)

<html>
<head>
<title>Object Explorer</title>

<style type=”text/css”>
td {padding: 0.05em 1em}
</style>

</head>
<body>

156 Day 4

INPUT

06 2978 CH04 4/10/02 10:51 AM Page 156

JavaScript Is Object-Based 157

4

<h1>Object Explorer</h1>

<table>
<tr>
<th>Property</th><th>Data Type</th><th>Value</th>

</tr>

<script language=”javascript” type=”text/javascript”>
<!--

var obj = window.navigator;

for (var prop in obj) {
document.write(“<tr>”);
document.write(“ <td>” + prop + “</td>”);
document.write(“ <td>” + typeof obj[prop] + “</td>”);
document.write(“ <td>” + obj[prop] + “</td>”);
document.write(“</tr>”);

}

//-->
</script>

</table>

</body>
</html>

The first thing we have done in this example is to start a table and give it three
headings. This has been done outside the script block because we will not be

repeating this process.

In the first line of script, a reference to the navigator object to a variable called obj
was assigned. This saves you from writing out window.navigator three times in the for
loop that follows the variable. The for loop was set up like the previous example, but
this time the variable called obj was placed to the right of the in operator so that it is the
navigator object that the for loop will loop through. In the statement block of the for
loop, write out a new row for each loop. The first of the cells is given the name of the
property that is stored in the variable prop. The second cell is a little more complex. The
typeof operator was applied to the value contained within the property referred to by the
variable prop. This will tell you the type of data or if it is an object contained within the
property. Finally, the value of the property itself was assigned to the third cell. When
loaded the page should contain a table similar to the one shown in Figure 4.11.

LISTING 4.6 continued

ANALYSIS

06 2978 CH04 4/10/02 10:51 AM Page 157

Note that the properties that belong to the navigator object vary from browser to
browser so when you run the code you may be missing some of the properties shown in
Figure 4.11 or have additional ones.

By changing the object assigned to the variable obj you can use this page to discover the
properties belonging to other objects. However when a for in loop is used to explore an
object it will reveal the names of all child objects, properties, and event handlers.
Therefore, if you change the above example to explore other objects, you may see names
that you don’t expect. Event handlers always start with the word “on”. So for example, if
you see the name onclick, what you are seeing is the name of an event handler. We will
discover what event handlers are used for and how they are used in Chapter 10, “Events
and Event Handling.”

Note that using the for in loop will only reveal the methods of an object if it is an object
that you have created yourself. When used to explore a predefined object such as the
window object they will not show up.

Summary
This chapter took a big step toward giving you the tools you will need to make a real dif-
ference to your Web pages. You have learned how JavaScript models everything it can
work with as objects with properties and methods, as well as providing you with Core
objects of its own. When used in the client-side browser environment you gain access to
some of the browser and all of the document through the DOM.

158 Day 4

FIGURE 4.11
Using a for in loop
to explore the
properties of the
navigator object.

OUTPUT

06 2978 CH04 4/10/02 10:51 AM Page 158

JavaScript Is Object-Based 159

4

Workshop
In this workshop, questions and exercises will be used to review what you have learned
in this chapter about objects.

Q&A
Q. In object terminology, what is equivalent to a function?

A. An object has methods, which are equivalent to a function.

Q. Does the window object always need to be used in the object path when we
navigate to one of its child objects?

A. No. From this chapter forward, you will cease to explicitly navigate to objects
through the window object. Remember that because it is the default it does not need
to be included in our object paths. It was used in this chapter simply to help famil-
iarize you with navigating to objects through the hierarchy tree.

Quiz
1. Which Core JavaScript object can you not create a copy of?

2. What is the Global object called in client-side JavaScript?

3. The document object is a child of which object?

Quiz Answers
1. You can’t create a new copy of the Math object. It must be used directly.

2. The window object is the Global object on the client side.

3. The document object is a child of the window object.

Exercises
1. Display a message such as “Welcome to the world of JavaScript” in the status bar

of the browser window.

2. Create an HTML page which contains JavaScript, which uses the
document.write() method to write the values of the properties of the document
object to the Web page.

06 2978 CH04 4/10/02 10:51 AM Page 159

06 2978 CH04 4/10/02 10:51 AM Page 160

DAY 5

WEEK 1

An Introduction to Arrays
Arrays are the first JavaScript objects that we will look at in detail. This chapter
will introduce the concept of arrays in JavaScript and how arrays are used, and
it will show you how they are useful both in terms of structured data storage
and in accessing document objects.

This chapter will teach you

• What arrays are

• How arrays are created

• How arrays are used

• The difference between indexed and associative arrays

What Is an Array?
An array is a special type of object that uses numbers to access each character-
istic of the object—in much the same way as property names are used. If you
remember what has been said about naming rules in JavaScript, you are proba-
bly thinking that this goes fully against the naming conventions discussed
earlier, and you would be right. When saying the numbers are like property

07 2978 CH05 4/10/02 10:41 AM Page 161

names, we don’t mean that they are exactly the same. Each number does refer to a
unique piece of data belonging to the array object, but each number also is referred to as
an index of the array—not a property name. This comparison between property names
and indexes was made simply to help you grasp the concept of an array index. Indexes,
like property names, are simply the means of accessing an array’s data containers.

Since array indexes are not, technically speaking, the same as property names, you can’t
use the dot notation that you would use for property names. If JavaScript names are not
allowed to start with a number, then they certainly aren’t allowed to be only a number.
Because the indexes of an array are numerical they have to be written in a special way.
What you need to do is wrap the index (number) in square brackets. So, the code to
access three individual indexes of an array would look like the following:

myArray[2]

myArray[3]

myArray[4]

In the table of operator precedence in Chapter 2, “Working with Data,” you might
remember that the two operators at the top of the table were the period and a set of
square brackets. Each of those was referred to as being a “Member” operator. Hopefully
now you can see why.

One member operator is the pair of square brackets, [], and it is used to access the
indexes of an array.

The other member operator is the period (the full stop), and it is used to describe
properties of an object like this:

myObject.color

myObject.size

myObject.price

The period tells JavaScript to consider its right-hand operand as belonging to its
left-hand operand. So

document.title

tells JavaScript that the title property belongs to the document object. The square
brackets mean exactly the same thing. Similarly, when we write

myArray[2]

JavaScript is referred to the piece of data belonging to the array object myArray that has
the index 2.

162 Day 5

07 2978 CH05 4/10/02 10:41 AM Page 162

An Introduction to Arrays 163

5

By now you may be wondering why we would want to refer to the pieces of data belong-
ing to an object by number. Well, one of the benefits of doing so is that you can use loop
statements to loop through all the indexes of the array to perform the same process on
each piece of data.

Looping through the indexes of an array is possible because the indexes of an array are
ordered! For example, myArray[2] comes immediately before myArray[3] which comes
immediately before myArray[4]. The fact that array indexes are ordered makes looping
and other uses of arrays possible.

As you will see in the examples to follow, the numbering of an array starts from zero.
Thus the first index in an array is written as

myArray[0]

not, as you might expect:

myArray[1]

Arrays are numbered from zero. Forgetting that can cause errors because if
you refer to myArray[1] thinking it is the first member of an array (when it
is the second), the result you will get is not likely to be the result you want.

Caution

Arrays are primarily used to structure data in JavaScript. By grouping pieces of data
together under one object name, the data can be structured in a way that makes it much
easier to use. In addition to having the ability to refer to each piece of data by number
and therefore have the capability to use loop statements to get at the data, the Array
object also has some very powerful methods for data management.

If you find the concept of arrays difficult to grasp, then you might try think-
ing of them as a single column table or database. The column has a name
(the array name), and each of the cells in the column is referred to by row
number (the array’s index numbers).

Note

Okay, enough theory; let’s actually make and use some arrays.

07 2978 CH05 4/10/02 10:41 AM Page 163

Creating an Array
Usually arrays are created using one of JavaScript’s Core Objects which, as you
may have realized from Chapter 4, “JavaScript Is Object-Based,” is the Array

object. This object also is referred to as one of JavaScript’s constructor functions, so
called because they can be used to construct new objects.

164 Day 5

NEW TERM

The first letter of the name of an Array object is capitalized, as is the case
with all the other Core JavaScript objects. A common error is forgetting to
capitalize the first letter. That simple mistake can cause some puzzling
errors in your code.

Caution

When you use a constructor function to create a new object it is used in conjunction with
the new keyword, as you may remember from the end of Chapter 4. The new operator
acts on the Array() function (as it does when used with any other constructor function).
It ensures that the function returns an object and not just a piece of data (some of the
constructor functions always return an object, but some can return a piece of data or an
object). Here is an example of how you would create an array using this method:

var myArray = new Array();

The first thing you may notice about this example is that it uses the var statement to cre-
ate a variable, called myArray, and then assigns it the new Array object. This is because
arrays are stored in variables—or at least a reference is stored in the variable so that it
looks as if the array is stored in the variable. Arrays don’t actually have a name of their
own. They can only be accessed using data containers that store a reference to them. If
that doesn’t make sense at the moment don’t worry about it. For now just think of the
variable name as loosely being the name of the array. You will see how important the
distinction is later.

Providing Individual Arguments
Although the use of the constructor function above creates a new Array object, it has not
been given any data to store in the array elements (which, put simply, is what the data
containers are called that belong to an array and are accessed using index numbers).
When the Array() constructor function is used to create an array there are two methods
that can be used to create elements and store data in them. When only a small array is
needed, it is common to pass each piece of data as an argument to the Array() construc-
tor function. So, to create an array with three pieces of data “a”, “b”, and “c”, you
would write:

var myArray = new Array(“a”, “b”, “c”);

07 2978 CH05 4/10/02 10:41 AM Page 164

An Introduction to Arrays 165

5

When this method is used the function takes the data that is passed to it through the argu-
ments and places each piece of data into the first elements of the array it creates. Note
that the pieces of data are stored in the elements in the order that you write them.
Therefore the array declaration above will create an array where the value of element 0 is
“a”, the value of element 1 is “b” and the value of element 2 is “c”. Remember, the first
element of an array is given the index 0, and the index of each subsequent element
increases by 1.

The reason arrays begin at index 0 is that computers (and therefore pro-
grammers) commence their counting from zero. Although this can initially
take some time to become accustomed to, hopefully you will find it
becomes second nature as you progress through the book.

Note

Creating an Empty Array and Populating It
Another method involves creating the array, and then populating (filling) its elements
with data separately. To do this, you declare the array first, then on separate lines use the
assignment operator to assign each piece of data to an array element one by one. The
elements are written as you might expect. Just as you would use the property name of an
object’s property to assign data to that property, like so:

object.propertyName = “data”;

You can use an element’s index to assign data to array elements, like this:

arrayName[index] = “data”;

So, if you rewrote the previous example using this second method for creating an array,
you would write it like this:

var myArray = new Array();
myArray[0] = “a”; // remember the first element index is 0!
myArray[1] = “b”;
myArray[2] = “c”;

Listing 5.1 creates an array that writes each of its elements back to the screen using a
for loop.

LISTING 5.1 Creating an Array, Populating It, and Displaying the Contents
of Each Array Element (arrayContents.htm)

<html>
<head>
<title>Writing an Array</title>

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 165

</head>
<body>

<h1>Writing an Array</h1>

<p>

<script language=”javascript” type=”text/javascript”>
<!--

var myArray = new Array();
myArray[0] = “-- First Element --”;
myArray[1] = “-- Second Element --”;
myArray[2] = “-- Third Element --”;
for (var i=0; i<myArray.length; i++) {
document.write(“Element “ +i+ “ contains: “ +myArray[i]+ “
”);

}

//-->
</script>

</p>

</body>
</html>

Figure 5.1 shows the output when you run Listing 5.1.

166 Day 5

LISTING 5.1 continued

FIGURE 5.1
Displaying the ele-
ments that are con-
tained in a newly
created array.

OUTPUT

This method and the one shown earlier are simply different ways of doing the
same thing. When only a small number of short pieces of data are needed to fill

an array, the former is a quicker way to write it. But when you have a large number of
longer pieces of data the first method becomes cumbersome and difficult to read. It is

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 166

An Introduction to Arrays 167

5

then better to use the second method just presented to individually assign each piece of
data to an element after the array has been declared.

For example, when you created an array earlier using

var myArray = new Array()

the length of the new array was undefined. Sometimes you may want to create an array
of a particular length, say 10 elements, at a time when you don’t necessarily know the
data (or all of the data) with which the array is going to be populated. So, a new array of
a particular length can be declared like this:

var myArray = new Array(10);

The above code causes an array with 10 elements to be created, although each element is
presently empty. The number in parentheses tells the function how many elements the
array should be created with. It makes no perceivable difference to the speed with which
you can create the array, nor does it prevent you from adding more elements later. When
it comes in useful is if you need an array to be a certain size but don’t yet want to popu-
late its elements.

Remember that when the length is 10, the first element in the array is myArray[0], and
the final element in the array is myArray[9].

Just as you can assign and reassign different types of data to a variable, all
of the array elements need not have the same data type. Unlike more fully
featured programming languages, JavaScript allows you to change the data
type of array elements.

Note

Array Literals
As mentioned at the end of Chapter 2, in addition to using constructor function syntax,
you also can create copies of objects using a literal notation.

To achieve the same result as in the examples shown above, you could use array literals
to declare the array, like this:

var myArray = [“a”, “b”, “c”];

This third way of declaring an array hasn’t been commonly used until recently because
it was introduced with version 4 browsers. Now that the vast majority of browsers are
version 4 and above, it is fairly safe to use this method unless you know that you must
cater to earlier browser versions.

07 2978 CH05 4/10/02 10:41 AM Page 167

When you use literal notation to create an array you do not need to use the Array() con-
structor function. Simply list the pieces of data in the order that you want to place them
into the array’s elements, and then enclose this list within square brackets.

The JavaScript interpreter knows that the square brackets are indicating that it should
create a new array and use the list of data to fill the elements.

When using literal notation to create an array, the array that is created is no different than
the array that would have been created had the Array() constructor function been used.
Therefore you can use any of the three methods without worrying about the differences.

However, for the remainder of this chapter, let’s concentrate on using the constructor
function notation because it is the only general way of guaranteeing—with other Core
JavaScript objects—that the objects we want to create are actually objects. For arrays,
using the constructor notation is one of several useful forms of syntax. For other objects,
it will be essential for you to use the constructor function. So using the constructor func-
tion to create arrays will help you become accustomed to using the constructor function
notation.

Accessing Arrays
To use the data in the elements of the arrays shown above, simply reference them as you
would when accessing a variable, object property, or any other data container. Just be
careful to specify the index of the element whose data you want. For example, if you
wanted to obtain the data from the second element in the examples above, you would
write:

// Remember the second element has the index 1!
var myVal = myArray[1];
alert(myVal);// alerts “b”

Let’s look at something a bit more interesting, looping through the elements of an array.
By structuring data in arrays, you can use loop statements to loop through the elements.
Any time you have a repeated process where the only change is a piece of data, a combi-
nation of loop statement(s) and array(s) is ideal.

In the following example (Listing 5.2), let’s write out some phone numbers to an HTML
table. This could be done directly, but to demonstrate how we can combine arrays and
loop statements let’s use JavaScript. Note that because you will be writing HTML in the
body of the document, you will have to place the script block into the body of the page.

168 Day 5

07 2978 CH05 4/10/02 10:41 AM Page 168

An Introduction to Arrays 169

5

LISTING 5.2 Looping Through an Array (arrayLooping.htm)

<html>
<head>
<title>Table of Phone Numbers</title>

</head>
<body>

<h1>Table of Phone Numbers</h1>

<table border=”1”>

<script language=”javascript” type=”text/javascript”>
<!--

var phoneNos = new Array();
phoneNos[0] = “31 20 305355”;
phoneNos[1] = “49 30 20670 0”;
phoneNos[2] = “44 020 4562 2929”;
phoneNos[3] = “01 518 463 5622”;
phoneNos[4] = “02 9663 0551”;

for (var i=0; i<5; i++) {
document.write(“<tr><td>Phone Number “ + i + “ is:</td>”);
document.write(“<td>” + phoneNos[i] + “</td></tr>”);

}

//-->
</script>

</table>

</body>
</html>

As the for statement loops through the array plucking data from each element and writ-
ing it to the page into the table’s rows and cells, the table is populated, and when the
page loads you should see something like Figure 5.2.

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 169

As you can see, even before you begin the script block you have already written the
opening tag of the table. It shouldn’t be included in the script block because it is only
written once. However, the process used to produce each row needs to be repeated, and
so fits well within the functionality of a for loop.

So to recap, the first thing you have done in your script is to store the phone numbers in
an array called phoneNos. You then set up a loop statement. In this example, we used a
for loop.

The first thing you need to think about when designing the loop is what the three state-
ments will consist of (the three statements are contained within the parentheses of the
for statement). The index of the first element of the array is 0. So you will need to set
the initial value of the counter variable i to 0. As there are five pieces of data in the
array, the index of the array’s last element is 4. Therefore set the condition of the array so
that it will continue to loop while i is less than 5, which means that 4 will be the last
value of i that will be processed by the for loop. Lastly, of course, set i to be increment-
ed because you will want to iterate through the elements. Now let’s look at the statement
block.

The statements that the for loop governs clearly need to contain the document object’s
write() method if the contents of our array elements are to be written to the page. It is
the code contained within the parentheses of the write() methods that may be a little
more tricky to devise.

In the first line of the statement block, start a new table row and write out the first cell.
Concatenate the string “<tr><td>Phone Number “ with i and another string
“is:</td>”. With each loop the value of i will be different, so you will end up with a
different string in the first cell of each row of the table with the format:

Phone Number X is:

170 Day 5

FIGURE 5.2
Tabulated phone
numbers.

OUTPUT

07 2978 CH05 4/10/02 10:41 AM Page 170

An Introduction to Arrays 171

5

where X is the value of i during the loop that wrote the row in which the cell is
contained.

In the second line of the statement block, write out the table cell that will hold the appro-
priate phone number. Of course this time you will need to extract a phone number from
the array phoneNos.

The clever thing here is that you do not specify an index in the square brackets. Instead
you use the counter variable i. Since i is the looping variable the index for each loop is
different. On the first loop the value of i is zero, and so the phone number stored in
phoneNos’s first element, phoneNos[0], will be written to the page. The second time
through the value of i is 1 and the contents of phoneNos’s second element, phoneNos[1],
will be written to the page. The looping continues until the data contained in all of the
elements of the phoneNos array has been written to the HTML page.

Although in this example it would have been just as quick to write out the table as
HTML without the use of JavaScript, using arrays can often save space. The Array
object’s powerful methods also allow you to organize and change this data before it is
outputted.

Before looking at the Array object’s properties and methods, let’s first look at using
arrays in parallel.

Parallel Arrays
There are times when you may want to work with two or more related sets of data. The
most straightforward way to do this is to structure the data in parallel arrays. In this
instance, parallel means that the sets of data are stored in separate arrays, but an element
of any given index in one array is related to the element(s) at the same index in another
array(s). To illustrate this let’s look at an example.

Imagine that the phone numbers in the previous example are the numbers of our interna-
tional offices. If you want to output the phone numbers into an HTML table as you did in
the previous example, you probably will want to write them alongside the office loca-
tions. To do this you will need to store the office locations in an array as well as the
phone numbers. The key to success is making sure that the two arrays are parallel. But
what does this mean in practice?

Let’s assume that the array where the locations will be stored is called “offices”. If the
first of our phone numbers is the number of our Amsterdam office, then Amsterdam needs
to be written into the table in the element with the same index as the first phone number.
For this to happen, “Amsterdam” needs to be stored in the element of the array offices
with the index that corresponds to the index of the first phone number. In this case the

07 2978 CH05 4/10/02 10:41 AM Page 171

element index is 0. This means that in the loop when the counter variable i’s value is 0
and the first phone number is written, “Amsterdam” will also be written in the same loop
and therefore will be in the same table row.

For the same reason if the second number (stored in the element of phoneNos with the
index 1) is the number of the Berlin office, then “Berlin” needs to be stored in the array
offices with the index 1. Given that the next three telephone numbers are the numbers for
the London, New York and Sydney offices respectively, the logical progression is shown
in Table 5.1.

TABLE 5.1 Tabulation of offices and phoneNos Arrays

Element Index Office Phone Numbers

0 Amsterdam 31 20 305355

1 Berlin 49 30 20670 0

2 London 44 020 4562 2929

3 New York 01 518 463 5622

4 Sydney 02 9663 0551

Let’s implement this in a new HTML page. See Listing 5.3.

LISTING 5.3 Creating the Parallel Arrays—offices and phoneNos
(parallelArrays.htm)

<html>
<head>
<title>Office Phone Numbers</title>

</head>
<body>

<h1>Office Phone Numbers</h1>

<table border=”1”>

<script language=”javascript” type=”text/javascript”>
<!--

var offices = new Array();
offices[0] = “Amsterdam”;
offices[1] = “Berlin”;
offices[2] = “London”;
offices[3] = “New York”;
offices[4] = “Sydney”;

172 Day 5

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 172

An Introduction to Arrays 173

5

var phoneNos = new Array();
phoneNos[0] = “31 20 305355”;
phoneNos[1] = “49 30 20670 0”;
phoneNos[2] = “44 020 4562 2929”;
phoneNos[3] = “01 518 463 5622”;
phoneNos[4] = “02 9663 0551”;

for (var i=0; i<5; i++) {
document.write(“<tr><td>” + offices[i] + “</td>”);
document.write(“<td>” + phoneNos[i] + “</td></tr>”);

}

//-->
</script>

</table>

</body>
</html>

This script will write out the table and when the document is loaded, you should see the
following page in your browser window. See Figure 5.3.

LISTING 5.3 continued

FIGURE 5.3
International office
locations with their
telephone numbers.

OUTPUT

Of course you aren’t limited to just two arrays in parallel. You could also have an array
for street addresses, an array for e-mail addresses, and so on. It is important to remember
that the elements must line up so that the arrays are “parallel.”

Okay, now that you know how to create and use arrays, let’s find out more about the
properties and methods that the Array object makes available to you when working with
arrays.

07 2978 CH05 4/10/02 10:41 AM Page 173

Array Properties
The Array object has five properties. These have been listed below:

• The constructor property

• The index property

• The input property

• The length property

• The prototype property

This chapter will look at only one of the properties of the Array object in detail—the
length property. Although what it does is very simple, it can be an extremely useful tool.
Often when you use a loop statement to access an array you will use the length
property. Let’s see how it works so that you can understand why it is so useful.

The length property simply tells how many elements an array contains. This is
demonstrated in Listing 5.4.

LISTING 5.4 Using the length Property of the Array Object
(arrayLength.htm)

<html>
<head>
<title>Array Length</title>

<script language=”javascript” type=”text/javascript”>
<!--

var lengthTest = new Array();
lengthTest[0] = 0;
lengthTest[1] = 1;
lengthTest[2] = 2;

alert(lengthTest.length);

//-->
</script>

</head>
<body>

<h1>Array Length</h1>

</body>
</html>

174 Day 5

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 174

An Introduction to Arrays 175

5

If you were to run this piece of script you would see the following alert box. See
Figure 5.4.

FIGURE 5.4
Using the length
property of the Array
object to display the
length of the array
lengthTest.

OUTPUT

Note that even though the last element in the array has an index of 2, the alert
shows the length property has the value 3. This is because the indexing of arrays

starts at 0—but there are still three elements. This is a feature that can be confusing
initially, so be careful that you don’t trip up on that.

The index of the last element of an array is always one less than the value stored in the
array’s length property. So if you were to use the length property to retrieve the value
of the last element, you would have to subtract one from it as shown in the following
example:

var valueOfLastElement = myArray[myArray.length-1];

In the table of operator precedence, the square brackets were at the very top of the table,
which means that you can put expressions inside square brackets. The content of the
square brackets will evaluate to a single value before the rest of the statement is evaluat-
ed. In the example above the expression myArray.length returns the number of elements
in the array, and then 1 is taken off so that the result is the index of the last element in
the array. Therefore the contents of the last element of the array are assigned to the
variable called valueOfLastElement.

When you need to add a new element to the end of an array, you also can make use of
the length property. This time, however, let’s use the length property unaltered:

myArray[myArray.length] = “value for new last element”;

Again the value of the length property is returned before the rest of the statement is eval-
uated. The length of the array is one greater than the index of the last element of the
array because the first array index is zero. Therefore the index of myArray, which is one
past its last element, is assigned the string you see above. This effectively creates a new
element at the end of the array. Note also that after the statement has been evaluated the

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 175

length of the array is increased to reflect the addition of a new element. Therefore you
could use this statement in a loop to repeatedly add new elements to the end of an array.

Listing 5.5 shows the length of an array before and after new elements have been added
in the manner just discussed.

LISTING 5.5 Using the length Property of the Array Object to Add
Elements to the End of an Array (lengthUpdated.htm)

<html>
<head>
<title>Length Automatically Updates</title>

<script language=”javascript” type=”text/javascript”>
<!--

var someArray = new Array();
alert(someArray.length);
someArray[0] = “hi”;
alert(someArray.length);
someArray[1] = “there”;
alert(someArray.length);

//-->
</script>

</head>
<body>

<h1>Length Automatically Updates</h1>

</body>
</html>

When you load this page you will see three alert boxes in succession. These alert
boxes will contain the values 1, 2, and 3 respectively.

Both these examples are good uses of the length property, but where the length proper-
ty of the Array object can be most helpful is in looping statements. To demonstrate that
let’s look at another example.

In the two examples earlier with the telephone numbers and office locations, you had to
specify in the for loop statement exactly how many elements were in the array. If you
had used a number that was too large, the loop would have looped too many times, but if
you had used a number that was too small not all of the office locations and phone num-
bers would have been written into the table. Rather than counting the number of elements

176 Day 5

INPUT

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 176

An Introduction to Arrays 177

5

in the loop you could have used the array’s length property. Let’s see how to create the
page again with this modification. See Listing 5.6.

LISTING 5.6 Using the length Property to Control How Many Times a for
Loop Loops (lengthDemo.htm)

<html>
<head>
<title>Office Phone Numbers</title>

</head>
<body>

<h1>Office Phone Numbers</h1>

<table border=”1”>

<script language=”javascript” type=”text/javascript”>
<!--

var offices = new Array();
offices[0] = “Amsterdam”;
offices[1] = “Berlin”;
offices[2] = “London”;
offices[3] = “New York”;
offices[4] = “Sydney”;

var phoneNos = new Array();
phoneNos[0] = “31 20 305355”;
phoneNos[1] = “49 30 20670 0”;
phoneNos[2] = “44 020 4562 2929”;
phoneNos[3] = “01 518 463 5622”;
phoneNos[4] = “02 9663 0551”;

for (var i=0; i<offices.length; i++) {
document.write(“<tr><td>” + offices[i] + “</td>”);
document.write(“<td>” + phoneNos[i] + “</td></tr>”);

}

//-->
</script>

</table>

</body>
</html>

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 177

In the parentheses of the for loop we have told it to keep looping while i is less
than the length property of (number of elements in) the array offices. This

means that the last loop that will be made is with i set to one less than the length of the
array. This will always be the index of the last element of an array, which is exactly what
we want.

178 Day 5

ANALYSIS

In this example we have specified the length property of the array called
offices, but we could just as easily have used the phoneNos array because
both have the same length.

Note

For a short simple script like the one above, using the length property or writing in the
length doesn’t really make much difference. Either method is almost as easy as the other.
However, for many of our longer or more complex scripts this won’t be the case. Often
writing the length of an array into loop statements as a number can be inconvenient or
may even be impossible, since you can’t necessarily know in advance the length of a
particular array.

When you have an array that changes regularly and you have hardcoded its length into
loop statements as a number, you will need to change these numbers every time you
change the array. Tracking down hardcoded lengths in loop statements at various parts of
a script can be a real pain—especially in longer more complex scripts. And, of course, if
you accidentally miss making one correction or update your script, you will very likely
produce all sorts of unexpected and hard to track down errors.

You will also come across occasions when you don’t know how many elements an array
will contain. This can be because certain processes will alter the length of your arrays by
an unknown amount, the arrays are built up from a server-side database, or your site.
Regardless of the reason why you can’t predict the length of the array, using the length
property then becomes the practical way to write your code.

The length property should always be used in the condition of the loops
that are created to handle arrays. Getting into that habit will save both time
and effort in the long run, even if it makes the for statement just a little
longer.

Tip

Having already looked at the length property, let’s briefly touch on the other properties
of the Array object, which we will look at in more detail in later chapters.

07 2978 CH05 4/10/02 10:41 AM Page 178

An Introduction to Arrays 179

5

There are two properties that the Array object has that all JavaScript Core objects have in
common. These are the prototype and constructor properties. Both of these properties
are intended to enable you to do some advanced scripting, as you will see later in the
book. (We will not continue to mention them as we look at each of the other Core
objects, but you may wish to be aware that they exist.) Another two properties of the
Array object, index and input properties, are specific to the Array object and are some-
times generated by regular expressions. Regular expressions are a fairly advanced topic
that is discussed later in the book.

Array Methods
What the Array object lacks in terms of number of properties it more than makes up for
with the number of its methods. The methods that belong to JavaScript’s Array object
provide us with powerful tools that make managing arrays and the data they contain
much easier. Here is a list of the methods of the Array object:

• The concat() method

• The join() method

• The pop() method

• The push() method

• The reverse() method

• The slice() method

• The shift() method

• The sort() method

• The splice() method

• The toLocaleString() method

• The toSource() method

• The toString() method

• The unshift() method

• The valueOf() method

In this section we will examine most of these methods, but will leave the concat(),
slice(), sort(), and splice() methods until later in the book. Although those are the
most powerful of the Array object’s methods, they are also the most complicated to use,
so for now let’s satisfy ourselves with the others.

First, let’s look at the first three methods, which return the contents of the array they are
applied to as a string. There are occasions when this can be useful, but not often, so we

07 2978 CH05 4/10/02 10:41 AM Page 179

won’t spend too much time on them. The other methods that we will look at in this
chapter provide a means of organizing and using the data in our arrays, and as such are
worthy of careful attention.

The toString() Method
When you create an array and pass it by name as an argument to an alert() function
you see a list of the values in each element separated by commas. For example, as shown
in the following:

var x = new Array(1,2,3);
alert(x);

This brings up the alert box seen in Figure 5.5.

180 Day 5

INPUT

FIGURE 5.5
The content of a new
array shown in an
alert box.

OUTPUT

As you can see the contents appear as a comma-separated string, but in reality it
only exists in this form in the alert box—the array is still an object with all the

data in individual elements.

If you want to obtain a string list of the elements of an array as they appear in the alert
box, then you need to use the toString() method. As a global function that is applied
using the dot notation, the toString() function is also available to all objects (including
the Array object) as a method. When used on an array the toString() function creates a
string from the elements in the array separated by commas—exactly as you saw them in
the alert box.

It isn’t common to use the toString() method, but if, for example, you need to send
data you have collected and stored in an array to the server (or another page), then it can
make things a lot simpler to send the data as a comma-separated list. Later in the book
we will see how to pass data between pages, but for now let’s continue with our study of
the Array object’s methods.

The toLocaleString() Method
The toLocaleString() method has been introduced to JavaScript only recently and is
supported by only Internet Explorer 5.5+ and Netscape 6+. It too returns the contents of

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 180

An Introduction to Arrays 181

5

all the elements of an array strung together as a string, but with a fundamental difference
to the toString() method. The toLocaleString() method returns a string that contains
all the numerical elements of the array in local currency format, leaving other data types
unchanged, and so creates a single string from all the array’s elements modified to local
format.

As is the case for the toString() method, the toLocaleString() method is available as
a method of all the JavaScript Core objects. As formatting numbers is more appropriate
for discussion in Chapter 7, “Numbers and Math,” let’s leave a more detailed examina-
tion of this method until then. For the moment just note for the future that the
toLocaleString() method can be applied to arrays of numbers, as well as the numbers
we will see it applied to in Chapter 7.

The join() Method
The join() method is the third method for returning the contents of array elements that
are “joined” together as a string. Used just as it is, without a parameter, the join()
method will behave in exactly the same fashion as the toString() method. The join()
method will simply return a string of the elements of the array that it’s applied to
separated by commas. But when you pass it a value as a parameter, you can control the
separator used.

With the toString() method, the items contained within the elements of an array are
always returned separated by commas. Sometimes you may wish or even need to sepa-
rate the elements with some other character (or series of characters). By passing these
character(s) to the join() method as its sole argument, you can do exactly that. For
example:

var myArr = new Array(1,2,3);
var myStr = myArr.join(“---”);
alert(myStr);

This will bring up the alert box seen in Figure 5.6.

INPUT

FIGURE 5.6
Displaying the con-
tents of an array
using the join()
method.

OUTPUT

07 2978 CH05 4/10/02 10:41 AM Page 181

As you can see each element has been separated by the three dashes passed to
the join() method as its argument.

Of course this method can also be used for passing array data to the server or another
page, and you may choose it over the toString() method if there is a reason for separat-
ing the elements with characters other than commas. But, perhaps surprisingly, the
join() method also comes in very useful when you need to join the elements of an array
without a character separator. To do this, simply pass a zero length string as the method’s
parameter. To do this for the previous example, you would have written it like this:

var myStr = myArr.join(“”);

For the moment we won’t make much use of this method, but if you need to build up
parallel sets of data in small steps, a combination of arrays and the join() method is
invaluable.

Adding and Removing Elements from an Array
Netscape has had five methods for adding and removing elements from an array since
version 4. Two of these methods add and remove elements to and from the beginning of
the array, and the other two methods perform the same function at the end of the array.
The fifth method is used to add, remove, and edit elements at any point in an array; it is
the splice() method, which is one of the methods we will look at later in the book.

182 Day 5

ANALYSIS

Unfortunately these methods were not introduced to Internet Explorer until
version 5.5. In the future when the version 4 and 5.0 browsers have virtually
disappeared, you will be able to make full use of these methods. Note that
Internet Explorer 5.0 and under won’t recognize them.

Caution

Let’s look at the first two methods that work at the end of an array. Part of the work done
by these two methods can be (almost) as easily achieved by other means, but they also
have some helpful features that add to their usefulness.

The push() Method
You can make use of the length property (as discussed earlier) when you want to add an
item to the end of an array. For example, to append a new element to an array called
myArray you could simply write:

myArray[myArray.length] = “data”;

07 2978 CH05 4/10/02 10:41 AM Page 182

An Introduction to Arrays 183

5

The value contained in myArray’s length property will be one greater than the index of
myArray’s last element. Therefore when the statement between the square brackets evalu-
ates the string “data” is added to a new last element at the end of the array. After this
line of code is executed the length property is automatically updated to reflect the
change.

That is fairly concise but you also can use the push() method to achieve the same result.
Use the dot notation to apply the method to an array, while supplying the data for the
new element as a parameter. If you were to rewrite the previous example to make use of
the push() method, it would look like this:

myArray.push(“data”);

This is slightly shorter and slightly more readable—especially when the name of the
array is quite long. It also can be used to populate an array as shown in the following
example:

var countArray = new Array();
for (i=0; i<5; i++) {
countArray.push(i);

}
alert(countArray); // alerts “0,1,2,3,4”

However there is a little trick that the push() method has that the above examples don’t
show. The method also returns the new length of the array it has been applied to, as
shown in Listing 5.7:

LISTING 5.7 The New Length of an Array Is Returned by the push()
Method (lengthReturned.htm)

<html>
<head>
<title>New Length Returned</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array(1,2,3);
var newLength = x.push(4);
alert(x); // alerts 1,2,3,4
alert(newLength); // alerts 4

//-->
</script>

</head>
<body>

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 183

<h1>New Length Returned</h1>

</body>
</html>

The second line not only assigns the value 4 to the end of the array x, but it also
returns the new length of x which has been assigned to the variable newLength.

The pop() Method
The pop() method is similar to the push() method in that it works at the end of an array,
but exactly opposite in terms of the action it performs. The pop() method removes the
last element from the array it is applied to as you can see in Listing 5.8:

LISTING 5.8 Using the pop() Method to Return the Last Element of an
Array (lastElement.htm)

<html>
<head>
<title>Last Element Returned</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array(“a”,”b”,”c”,”d”);
var lastEl = x.pop();
alert(x.length); // alerts 3
alert(lastEl); // alerts “d”

//-->
</script>

</head>
<body>

<h1>Last Element Returned</h1>

</body>
</html>

A loop statement also can be used in conjunction with the pop() method to loop
through an array, removing all its elements one at a time and performing an

action on each one as it is removed.

184 Day 5

LISTING 5.7 continued

ANALYSIS

INPUT

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 184

An Introduction to Arrays 185

5

Let’s look at an example that uses a combination of the pop() and push() methods
together with a while loop to separate an array of ages into ages belonging to adults and
ages belonging to minors. For the purposes of this example, let’s assume that a minor is
less than 21 years of age. See Listing 5.9.

LISTING 5.9 Using the pop() and push() Methods of the Array Object to
Separate Ages (agesSeparated.htm)

<html>
<head>
<title>Separating an Array</title>

<script language=”javascript” type=”text/javascript”>
<!--

var ages = new Array(12,57,32,6,21,19);
var adults = new Array();
var minors = new Array();
while (ages.length) {
var tempAge = ages.pop();
if (tempAge < 21) minors.push(tempAge);
else adults.push(tempAge);

}

var msg = “There are “ + adults.length + “ adults “;
msg += “with the ages “ + adults.join(“, “) + “
”;
msg += “There are “ + minors.length + “ minors “;
msg += “with the ages “ + minors.join(“, “);

//-->
</script>

</head>
<body>

<h1>Separating an Array</h1>

<script language=”javascript” type=”text/javascript”>
<!--

document.write(“<p>” + msg + “</p>”);

//-->
</script>

</body>
</html>

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 185

This will generate an appearance on a page similar to that shown in Figure 5.7.

186 Day 5

FIGURE 5.7
Ages separated and
recombined using the
pop() and push()

methods of the Array
object.

OUTPUT

The first three lines of code create three arrays. The first one (ages) has six num-
bers in it, representing a group of people’s ages, and the other two arrays (called

adults and minors) start out empty. Let’s remove all the ages one by one from the array
ages and move them to one of the other arrays depending on the value of the array ele-
ments. In this way the ages of the minors can be separated out from the ages of the
adults.

Note that by using the length of the array called ages, you don’t even need to use a loop
counter or incrementer for your loop. Simply use a while loop to keep removing and
sorting elements until the length of the array ages is zero. Once this has happened (when
all the elements have been pulled off and sorted), then the loop will stop.

In the statement block of the while loop, first remove the last element from the array
called ages and store the value returned in a variable called tempAge. Then use
if...else statements to choose to which array to add the age that was removed. The
loop continues until all the ages have been assigned to the correct arrays.

After the while loop a message is built up to show the contents of the two arrays:
adults and minors. In the first line of this code, you will find the number of adult ages
that have been found by using the length property of the adults array. In the next line,
the join() method is used to join up these ages to display individual ages separated by a
comma and space. After adding a
 tag, proceed to do the same with the minors
array. In the body of the document, we finally output the separated array in a paragraph.

You may have noticed that the order of the individual ages was reversed by the method
used in Listing 5.9. If we had used the reverse() method within the code, to be
described later, we could have maintained the ordering of the data.

If we had other arrays that were parallel with the array called ages, such as an array for
names or contact details, we could also have separated them as well. We would just have
had to create two new arrays for each original one.

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 186

An Introduction to Arrays 187

5

The shift() and unshift() Methods
The names of the methods used to add and remove elements from the front of an array
are not quite so vivid as the names push() and pop(). The shift() method is the
method that does the same thing to the beginning of an array as the pop() method does
to the end. It removes and returns the first element of the array to which it is applied. For
example, see Listing 5.10.

LISTING 5.10 Using the shift()Method to Remove the First Element
(firstElement.htm)

<html>
<head>
<title>Removing the first Element</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array(1,2,3,4);
var firstElement = x.shift();
alert(firstElement); // alerts 1
alert(x.length); // alerts 3
alert(x); // alerts 2,3,4

//-->
</script>

</head>
<body>

<h1>Removing the first Element</h1>

</body>
</html>

There are several things to note about this example. The first alert tells us that
the shift() method has removed the first element as we said it would, and the

second alert shows that the length property of array x has been reduced to 3. But it is the
third alert that is really important to note. It shows that the data in the rest of x’s ele-
ments have all been moved back by 1. If this was not the case, then the first element
would have been left empty, and the next time we tried to use the shift() method it
would simply have returned the value undefined.

The unshift() method, as you may have guessed, is the method to add a new piece of
data to the beginning of an array. Listing 5.11 shows an example of the unshift()
method at work.

INPUT

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 187

LISTING 5.11 Using the unshift() Method to Add an Element to the
Beginning of an Array (unshift.htm)

<html>
<head>
<title>Adding to the Beginning</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array(1,2,3,4);
var newLength = x.unshift(0);
alert(x.length); // alerts 5
alert(x); // alerts 0,1,2,3,4

//-->
</script>

</head>
<body>

<h1>Adding to the Beginning</h1>

</body>
</html>

As you can see above, it has pushed the number 0 onto the front of the array x
and moved all the other elements back by one. Note that just as the push()

method returns the new length of the array, so does the unshift() method—but only in
Netscape. For some reason at the time of writing, it is not returned in version 5.5 of
Internet Explorer.

The shift() and unshift() methods are just an alternative way to add and remove ele-
ments to and from an array. Sometimes you may want to add to or remove elements from
the end of an array, and sometimes you may want to add to or remove elements from the
beginning of an array. The Array object provides methods to do both.

If you need to add or remove elements in the middle of an array, you will need to use
the splice() method. However, it is one of the four methods of the Array object that we
will leave until later in the book to examine in detail.

188 Day 5

INPUT

ANALYSIS

Remember that the push(), pop(), shift(), and unshift() methods were
only introduced to Internet Explorer at version 5.5. For most of us, this
means that we will have to wait some time before we can safely use these
methods in a production Web site.

Caution

07 2978 CH05 4/10/02 10:41 AM Page 188

An Introduction to Arrays 189

5

The reverse() Method
As its name suggests, the reverse() method reverses the order of the array elements.
Once applied to an array the element that had index 0 will now have the index of the last
element in the array. The element that was last will now be first, and all the elements in
the middle are moved to their corresponding mirror-image position.

This very fast and efficient means of reverse ordering an array provided by the
reverse() method can be very useful. For example if you knew an array was in alpha-
betical order and wanted to put it in reverse alphabetical order, then you would simply
use the reverse() method.

In Listing 5.9 we used the push() and pop() methods to split an array of ages into adults
and minors. If we add the reverse() method prior to separating the array in that listing,
as shown in Listing 5.12, we would preserve the original ordering of the ages.

LISTING 5.12 Using the pop(), push(), and reverse() Methods to Split an
Array While Preserving the Order of Elements (orderPreserved.htm)

<html>
<head>
<title>Separating an Array</title>

<script language=”javascript” type=”text/javascript”>
<!--

var ages = new Array(12,57,32,6,21,19);
ages = ages.reverse(); // *** reverse() added ***

var adults = new Array();
var minors = new Array();
while (ages.length) {
var tempAge = ages.pop();
if (tempAge < 21) minors.push(tempAge);
else adults.push(tempAge);

}

var msg = “There are “ + adults.length + “ adults “;
msg += “with the ages “ + adults.join(“, “) + “
”;
msg += “There are “ + minors.length + “ minors “;
msg += “with the ages “ + minors.join(“, “);

//-->
</script>

</head>
<body>

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 189

<h1>Separating an Array</h1>

<script language=”javascript” type=”text/javascript”>
<!--

document.write(“<p>” + msg + “</p>”);

//-->
</script>

</body>
</html>

As you can see in Figure 5.8, the ordering of the ages which existed in the ages array
has been restored by adding the reverse() method to the code created earlier.

190 Day 5

LISTING 5.12 continued

FIGURE 5.8
Using the reverse()
method to preserve
the ordering of ages
in the new arrays.

OUTPUT

A very useful application of the reverse() method is as a workaround for the lack of
support for the shift() and unshift() methods in Internet Explorer 5.0-. The main task
of the push() and pop() methods can be easily replicated by using the length attribute
to either assign or remove elements from the end of an array. However, the shift() and
unshift() methods are not so easily replicated. Unless of course, we use the reverse()
method to reverse the array so that we can use the length property to add and remove
elements in the same way as we would use it as an alternative to the push() and pop()

methods. Then we can reverse the array back to its original order, and it will be as if we
had added or removed the elements from the front of the array. For example, assuming
we start with an array with the values 2, 3, and 4 in its first, second, and third elements,
respectively, and want to insert the values 0 and 1 at the beginning, we might use code
similar to that shown in Listing 5.13.

07 2978 CH05 4/10/02 10:41 AM Page 190

An Introduction to Arrays 191

5

LISTING 5.13 A Technique Using the reverse() Method to Emulate the
unshift() Method for Adding Elements to the Beginning of an Array
(addElements.htm)

<html>
<head>
<title>Adding Elements</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array(2,3,4);
x.reverse();
x[x.length] = 1;
x[x.length] = 0;
x.reverse();

alert(x); // alerts 0,1,2,3,4

//-->
</script>

</head>
<body>

<h1>Adding Elements</h1>

</body>
</html>

By doing this you effectively add the elements to the start of the array. This
saves you from having to write significantly more complex scripting in order to move all
the elements up by one each time you need to insert a new first element.

ANALYSIS

When adding more than one element to a reversed array you must add the
innermost element first, progressing to what will ultimately be the first
element of the array.

Caution

You can also use the reverse() method when you want to remove elements from the
beginning of an array. This time assume an array starts with a complete list of numbers
from 0 to 4 in its corresponding elements and you want to remove the first two elements
completely.

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 191

LISTING 5.14 Using the reverse() Method to Emulate the Effect of the
shift() Method to Remove Elements from the Beginning of an Array
(removeElements.htm)

<html>
<head>
<title>Removing Elements</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array(0,1,2,3,4);
x.reverse();

var firstElement = x[x.length-1];
x.length = x.length-1;

var secondElement = x[x.length-1];
x.length = x.length-1;
x.reverse();

alert(firstElement) // alerts 0;
alert(secondElement) // alerts 1;
alert(x); // alerts 2,3,4

//-->
</script>

</head>
<body>

<h1>Removing Elements</h1>

</body>
</html>

This time for each of the two elements we have removed, we have first read their
data into a variable (presumably for some sort of processing), and then reduced

the length of the array by one to remove that element. Although not as simple as the
shift() method, by using the reverse() method in this way we are saved from the trou-
ble of constructing scripts to shift element data back, element by element, before finally
removing the last element of the array.

Let’s move on to look at two of the methods listed earlier that you are less likely to use.
One of these is the toSource() method and the other is the valueOf() method.

192 Day 5

INPUT

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 192

An Introduction to Arrays 193

5

The toSource() Method
When applied to an array the toSource() method returns the array’s contents as a string
in the form that might have been written in the code to create the array in the first place.
This is best explained using an example, so take a look at the following piece of code:

var x = new Array(1,”b”,true);
var y = x.toSource();
alert(y); // alerts [1, “b”, true]

As you can see the string contained in the variable y looks the same as the literal nota-
tion that could have been used to create the array x. Not only have the elements been
separated with commas (and optional spaces), but the square brackets are also in place.

The theory is that this string could be turned into code again using the eval() function
to create an identical copy of the original array. There are times when this could be use-
ful, but unfortunately the toSource() method is supported only by Netscape. Unless you
know that you will only be scripting for Netscape users, you would be wise not to use
the toSource() method.

The valueOf() Method
The valueOf() method is of even less use. In fact, in the context of arrays, it is of no use
at all. It exists as a method of the Array object simply because the Array object inherited
it from the object that created it, the Function object (remember what we said in the pre-
vious chapter about all the Core objects being created from the Function object). When
used on an array the valueOf() method simply returns the array itself—it is the same as
if we hadn’t included the method at all.

However, that is not to say the valueOf() method is useless in the context of other
objects! You will see later in the book that it can indeed sometimes be useful. It just
means that in the context of arrays the method can be safely ignored.

Associative Arrays
Throughout this chapter we have focused on the benefits of storing data in data contain-
ers that we can access using index values instead of names. This is, and will continue to
be, our primary way of storing data in arrays. However there is a second method that is
available which, surprisingly enough, involves creating array elements using strings
rather than index values. For example, after defining the array x, you can create elements
like this:

var x = new Array();
x[“first”] = “1st”;
x[“second”] = “2nd”;
x[“third”] = “3rd”;

07 2978 CH05 4/10/02 10:41 AM Page 193

This type of array is commonly known as an associative array. This is because
when elements are created in this way the data they contain is associated with,

and can be accessed using, the string in the square brackets.

Associative arrays are not used very often. In past versions of JavaScript, array elements
could be created and accessed using both the string they were associated with and an
index value. This is no longer the case (at least not for the arrays that we create).
However, associative arrays can be used to teach us something more about the nature of
objects and how we access them.

The data containers that are created when an element is declared using a string instead of
an index value are not included in the indexed elements of the array. They cannot be
accessed using an index value, and they do not affect the length property (and so we
can’t cycle through them using loop statements). The reason for this is that they are not
actually elements of the array, they are properties. To demonstrate, try Listing 5.15.

LISTING 5.15 Creating and Displaying an Associative Array Using Two
Notations (notations.htm)

<html>
<head>
<title>Mixing Notations</title>

<script language=”javascript” type=”text/javascript”>
<!--

var x = new Array();
x[“first”] = “1st”;
x[“second”] = “2nd”;
x[“third”] = “3rd”;

alert(x.first + “, “ + x.second + “, “ + x.third);

//-->
</script>

</head>
<body>

<h1>Mixing Notations</h1>

</body>
</html>

This example will bring up the following alert box, shown in Figure 5.9.

194 Day 5

NEW TERM

INPUT

07 2978 CH05 4/10/02 10:41 AM Page 194

An Introduction to Arrays 195

5

Despite creating the data containers using square brackets and a string, you have been
able to access these “elements” (actually properties) by using the dot notation.

What this teaches us is that in fact the dot notation and the notation where we use string
values in square brackets are just two different ways of accessing the same thing. Both
were marked as “Member” operators in the table of operator precedence in Chapter 2,
“Working with Data,” and as such both signify that the name/string they operate on
respectively are members of the preceding object. All JavaScript objects can be accessed
using either method. For example:

window[“document”]

is equivalent to

window.document

and

window.document.body

is equivalent to

window.document[“body”]

In fact, we can even write a series of object and property names as strings in square
brackets:

window[“document”][“body”]

Try it for yourself by running any of the following lines of code:

alert(window[“document”])
alert(window.document[“body”])
alert(window[“document”][“forms”])

All of these alert functions will alert you to the fact that you have reached an object.

The only thing you cannot do is begin the first object in your object path in this way. For
example:

[“window”][“document”]

FIGURE 5.9
Displaying the con-
tents of the associa-
tive array in an
alert box.

OUTPUT

07 2978 CH05 4/10/02 10:41 AM Page 195

This will cause an error because you cannot begin a line of code with an opening square
bracket in JavaScript. Doing so assumes you are starting a new array using literal nota-
tion. The JavaScript interpreter hasn’t yet come to the later set of square brackets so it
doesn’t know it is part of a path name. In the above example, it would start at the left and
create a single element array where the first element had the string value “window”.
When it then came to the second set of square brackets with the string “document”, it
wouldn’t know what to do with them because you can’t write two sets of array literals
one after another. Hence an error would result.

Clearly, there is no real use for accessing objects, properties, or methods using square
brackets containing their names as a string, in open code. But when you pass object
names to a function for example, you may pass the object’s name as a string rather than
as a reference to the object itself. In this case with the name already in a string value, the
simplest way to access the object is to insert the function argument that contains the
object name into a set of square brackets in the object path. This saves you from the
more awkward use of the eval() function.

An example of when the square bracket notation must be used was shown in the exam-
ple in Chapter 4 when we used a for in loop to explore an object called “bike”.
Hopefully you will now be able to understand the syntax we used to return the value of
each of bike’s properties. Just to make sure that you fully understand what we did earlier,
let’s go over it. Here is the code again.

var props = “”;
for (var prop in bike) {
props += “The bike’s “ + prop + “ is “ + bike[prop] + “\n”;

}
alert(props);

The property name that is given to the variable prop during each loop is in the form of a
string. Therefore to find out its value you cannot simply write bike.prop. You must
access the property value by enclosing the variable prop in square brackets to show that
the string belongs to the object bike.

Note that, conversely, indexed elements can be created for any JavaScript object, not just
instances of the Array object. The difference is that the Array object is specifically
designed for working with indexed elements. Only with instances of the Array object do
you get access to its length property and a host of useful methods—the most powerful
of which we haven’t discussed yet. In general, in JavaScript if you want to create a data
structure where you can access the data using object and property names, you use the
Object object; but, if you want to order, sort, and iterate through your data, you use an
Array object. We will see how to use the Object object later in the book.

196 Day 5

07 2978 CH05 4/10/02 10:41 AM Page 196

An Introduction to Arrays 197

5

Storing Objects in Array Elements
Arrays can store references to objects in their elements as well as simple data (literals).
Perhaps the best examples of this are the collections belonging to the Document object
that we briefly looked at in the previous chapter. These collections are in reality simply
arrays containing elements that hold shortcut references to other objects as opposed to
data.

There are three ways of using these arrays. To demonstrate, let’s assume we want to
access a form with the name “myForm” that is the second form on a page. We could
access it using any of the following three lines:

document.forms[1]
document.forms[“myForm”]
document.forms.myForm

When we know the order in which an object comes in relative to the other objects in a
collection, then we can use an index value to access it (as shown in the first example.
Remember that the second element of an array has the index 1!). In addition to this, as
long as the object also has a name, then you can also access it using either its name as a
string in square brackets (if necessary), or more frequently by referring to it with the dot
notation. These two methods of accessing a form are shown in the second and third lines
respectively.

An HTML collection is the only object where we are able to automatically access its
child objects using their names as well as an index number. Although the forms collec-
tion isn’t the best example, for some collections it is essential to be able to loop through
all its objects as an array. An example of this is the options collection belonging to the
forms collection, which we will meet in Chapter 6, “HTML Forms and the String
Object.”

If it is possible to access an object by name, then that is probably the better of the two
methods. Referring to objects by name provides flexibility to reorder your Web pages
with ease. If you refer to objects by index in your scripts, then you may need to search
through your scripts to change the index numbers used to reference elements when you
change the page. But if the references are by name, then you can move things about
without worrying about the effects of reordering on your scripts.

Listing 5.16 provides a further example where the links collection is used to add a
query string to all links on a page.

07 2978 CH05 4/10/02 10:41 AM Page 197

LISTING 5.16 Modifying the Links Collection (modifyLinks.htm)

<html>
<head>
<title>Link Modifier</title>

</head>
<body>

<h1>Link Modifier</h1>

<p>
Example

Example

Example

Example

Example

Example

</p>

<script language=”javascript” type=”text/javascript”>
<!--

var queryString = “?” + “query string data”;
var allLinks = document.links;
for (var i=0; i<allLinks.length; i++) {
allLinks[i].href = allLinks[i].href + queryString;

}

//-->
</script>

</body>
</html>

In this example, we placed the script block after the contents of the body. This is
because if our script tried to change the links on the page before they had arrived

in the browser, then it would result in an error.

In the first line of our script, we build up a query string. We have simply concatenated a
question mark to another string, but we could have used other processes to build up the
query string, such as extracting user data from a cookie so it can be passed to the server
depending on which link the user clicks.

In the second line of our code, we assign a reference to the links collection to a variable
called allLinks. This saves us from writing document.links in our for loop, helping to
keep the code more concise and easier to read.

198 Day 5

INPUT

ANALYSIS

07 2978 CH05 4/10/02 10:41 AM Page 198

An Introduction to Arrays 199

5

In the parentheses of the for loop, we set the conditions so that it will loop through all
the link objects in the links collection. We then assign the href property of each link
with the href property concatenated to our query string. This has the effect of simply
adding the query string to the link. If we hadn’t concatenated the URI in the href
property with the query string to reassign to the href property, then the query string
would simply overwrite the link.

Summary
In this chapter we have looked at arrays. As we progress through the book their power
and usefulness will become increasingly apparent. In Chapter 14, “Advanced Array
Management,” we will return to the subject of arrays and look at some more advanced
topics.

Always look out for ways of using arrays to structure your data so that your scripts can
run efficiently. Whenever you have a script that performs a repeated operation on some
data, ask yourself if this data might be best organized as an array so a loop statement
could be used to make the process easier. This can be much more efficient than hard-
coding multiple lines of code. The next chapter will explore the Form object and its child
objects. To use the Form object you will need several of the skills discussed in this chap-
ter for array management.

Workshop
In this workshop we will review what you have learned about arrays in this chapter.

Q&A
Q. Is there an easy way to order the data I store in my arrays based on certain

criteria, or do we have to write our own scripts to do this?

A. The four methods of the Array object that we didn’t look at in this chapter are very
powerful tools. One especially, the sort() method, is designed specifically for the
job of rearranging the data stored in an array based on criteria we specify. We will
be taking a detailed look in Chapter 14, but if you need the capabilities it provides
then feel free to skip to Chapter 14. (You should have learned enough by now to be
able to understand the description of how the sort() method works.)

Quiz
1. What is the index number of the third element in an array?

2. What are the methods of the Array object called that remove an element from the
end of an array and add an element to the end of an array?

07 2978 CH05 4/10/02 10:41 AM Page 199

Quiz Answers
1. The index number of the third element in an array is two. The first element in an

array has an index of zero; therefore, the second element has an index of one, and
the third element has an index of two.

2. The pop() method removes an element from the end of an array. The push()
method adds an element to the end of an array.

Exercise
Make up some names and create an array called names in parallel with the array called
ages that we separated earlier. Once you have done this add some code to the for loop
that will separate out the names with the relevant ages. Tip: you will need to create
another two arrays perhaps called minorNames and adultNames that the separated names
should be added to. These two arrays should end up in parallel with the arrays minors
and adults respectively.

200 Day 5

07 2978 CH05 4/10/02 10:41 AM Page 200

DAY 6

WEEK 1

HTML Forms and the
String Object

User interaction with scripts can come in many forms (forgive the pun), but the
primary means of collecting input from a visitor to a Web site remains the
humble HTML/XHTML form.

Forms provide ready-made HTML/XHTML elements that allow users to inter-
act with a Web page (for example, by entering text, selecting options from
select boxes, and ticking checkboxes). So understanding how to manipulate
HTML forms using JavaScript is a particularly important subject if you want to
efficiently gather information from visitors to your Web site.

Since much of the data collected using HTML forms is in the form of strings,
we also will introduce you to techniques that will help you handle strings,
which a user may type into a text field or textbox.

08 2978 CH06 4/10/02 10:40 AM Page 201

This chapter will teach you

• Form properties and methods and how to use some of them

• How to collect data from form elements

• How to process the data you collect

Collecting Data from HTML Forms
First let’s briefly look at how to use HTML form elements before going on to look at
how JavaScript manipulates the objects associated with those elements.

202 Day 6

Use HTML/XHTML tables to position form elements on a Web page. Web
browsers ignore whitespace so positioning form elements tidily on the page
can be a gamble, if you don’t use tables or Cascading Style Sheet position-
ing. In this chapter we will use tables.

Tip

Listing 6.1 creates a simple XHTML form that makes use of several form elements. We
will discuss their use in a moment.

LISTING 6.1 A Simple Form Using Several XHTML Form Elements
(SimpleForm.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>XMML.com - Online Survey</title>
</head>
<body>
<form action=”http://www.XMML.com” method=”POST” name=”MyForm”>
<table width=”600”>
<tr><th colspan=”3” align=”center”>XMML.com - Online Survey

</th>
</tr>
<tr>
<td>Your Name:</td>
<td> </td>
<td><input type=”text” name=”YourName”/></td></tr>
<tr>
<td>Your Gender:</td>
<td> </td>

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 202

HTML Forms and the String Object 203

6

<td>
<input type=”radio” name=”Gender” value=”Male”/>Male

<input type=”radio” name=”Gender” value=”Female”/>Female

</td>
</tr>
<tr><td>Which of our consultancy
services are you interested in?</td>
<td align=”right”>
</td>
<td>
<input type=”checkbox” name=”XML”/> XML

<input type=”checkbox” name=”XSLT”/> XSLT

<input type=”checkbox” name=”SVG”/> SVG

<input type=”checkbox” name=”XSL-FO”/> XSL-FO

<input type=”checkbox” name=”XForms”/> XForms

</td>
</tr>
<tr>
<td>Which free gift would you prefer for filling out this survey?</td>
<td> </td>
<td>
<select name=”FreeGift”>
<option value=”Choice1”>Fresh Air</option>
<option value=”Choice2”>A long life</option>
<option value=”Choice3”>Contentment</option>
</select>

</tr>
<tr>
<td>Enter your comments in
the text box
</td>
<td> </td>
<td><textarea name=”Comments” rows=”5” cols=”50”/></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>
<input type=”submit” value=”Send Form”/></td>
</tr>
</table>
</form>
</body>
</html>

Figure 6.1 shows the appearance on screen when Listing 6.1 is displayed in the
Netscape 6 browser.

LISTING 6.1 continued

08 2978 CH06 4/10/02 10:40 AM Page 203

Most of the elements contained in Listing 6.1 use the <input/> element. To cre-
ate a text field we use the <input/> element with the type attribute that has a

value of “text”. To create a radio button we use an <input/> element with the type
attribute that has a value of “radio”. In the form we have two radio buttons, only one of
which may be selected at a time. Each of the two radio buttons has the same value for
the name attribute, which is possible because only one of the two is checked. Each radio
button has a unique value attribute.

To create check boxes, we again use <input/> elements that, this time, have a type
attribute with value of “checkbox”. In the form we have five checkbox <input/>
elements each of which has a different name attribute.

204 Day 6

FIGURE 6.1
An online survey
using an XHTML
form, shown in the
Netscape 6 browser.

OUTPUT

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 204

HTML Forms and the String Object 205

6

The drop-down menu is created using a <select> element within which are nested a
number of <option> elements. Each <option> element has a value attribute and it is the
value of that value attribute which is sent to a server for processing. The text that is
contained between the start and end tags of the <option> element is purely for human
information on screen.

Finally, in the data entry part of our form we have a text area, defined by a <textarea>
element. The rows attribute defines the text area as having 5 rows and the cols attribute
defines it as having 50 columns.

The final part of the form is yet another <input/> element. This time it has a type
attribute with the value of “submit”; therefore it is the submit button. So, if we can
achieve all this form-related functionality using XHTML alone, the question comes to
mind: Why we would want to use JavaScript in forms anyway?

Why Use JavaScript in Forms?
The form created in Listing 6.1 can, if used with HTML alone, create several problems.
What happens, for example, if a user leaves blank the name text field? It makes it impos-
sible to sensibly store the data according to user name. The form has no default selection
for the radio buttons, so a user could submit the form without having any admitted
gender. So we need, somewhere, to ensure that these two vital pieces of data have been
entered.

The check boxes (about consultancy services) don’t need any boxes to be checked, but
we might want to remind users that services are offered.

Checking that the text field has been filled in and that a radio button for gender has been
selected could be done on the server-side. A disadvantage of that is that there could be a
significant delay, depending on the speed of the user’s Internet connection, before an
error message is delivered to the user. It makes a lot of sense to check for appropriate
filling out of a form on the client side.

Let’s move on to the syntax we need to know in order to access a form using JavaScript,
and look at its contained elements.

Accessing Form Elements Using JavaScript
In Chapter 5, “An Introduction to Arrays,” you saw how the individual forms on a page
could be accessed through the shortcut provided by the forms collection. So, if you had a
form element with the name attribute set to “MyForm” and it was the second form on a
Web page, then you would have three options for a syntax to access that form, as shown
here:

08 2978 CH06 4/10/02 10:40 AM Page 205

document.forms[1]
document.forms[“MyForm”]
document.forms.MyForm

Collections provide a convenient shortcut when you need to access certain types of
objects. Forms however are exceptional. When you want to access a form you don’t need
to refer to the particular form through the forms collection—you can simply omit men-
tioning the collection!

Forms and their elements have been scriptable since the first version of JavaScript was
released with Netscape Navigator version 2. At that time, JavaScript was intended only to
allow scripting of a limited number of elements, forms being important ones. Also at that
time, allowing access to all elements and attributes through a hierarchically structured
document object model (DOM) of an HTML document was not available for use. Forms
were originally accessible simply by name from the document object. This technique of
accessing a form by its name has persisted, in order to ensure backward compatibility;
therefore, to access a form that has a given name, you simply would write:

document.formName;

Of course, for the above syntax to work correctly the form element must have a precisely
corresponding name attribute, like so:

<form name=”formName” ...>

Note that forms are the only elements of a Web page that can be accessed in this way. All
other elements must be accessed through their collections; or, if not part of a collection,
it must be accessed through one of the W3C DOM methods you will learn about in
Chapter 8, “The Browser Issue.”

In this chapter, we will examine how to access the objects that represent the elements in
a form in order to obtain or manipulate the data they contain. Some form elements are
relatively straightforward to access and some are more involved, requiring the use of
arrays and special properties. But, as you will see, all are scriptable.

Let’s look at using JavaScript with all the child objects of a form such as text fields, text
areas, radio buttons, and select boxes. First, though, let’s look at the form element itself.

Properties of the <form> Element
The start tag of a <form> element can contain several attributes that identify the form and
define its behavior. These attributes are reflected in some of the properties of the form
object that JavaScript makes available to us.

206 Day 6

08 2978 CH06 4/10/02 10:40 AM Page 206

HTML Forms and the String Object 207

6

The properties that belong to a form naturally include the form’s name. If it didn’t we
wouldn’t be able to access it by name using the technique described above. In addition to
the name property, we can also access the following properties of the form object:

• acceptCharset

• accessKey

• action

• encoding

• enctype

• length

• method

• tabIndex

• target

If you are familiar with the HTML <form> tag, you may recognize that many of these
properties reflect attributes that can be added to the start tag of a <form> element.
However take note of the case of the letters used in JavaScript for the property names. In
HTML it has been common practice to spell an attribute’s tag name using uppercase let-
ters. Now with the arrival of XHTML, it is becoming more common practice to write
attribute names using lowercase letters. In JavaScript, you do not have flexibility in how
property names should be written. JavaScript property names are case sensitive so it is
important to write them correctly within <script> tags. In general, if an attribute name
is a single word, then its corresponding JavaScript property name is simply written fully
in lowercase letters. But if a property or method name consists of more than one word,
then it is written with the first letters of all but the first word capitalized. Therefore, for
example, the HTML attribute tabindex is written as tabIndex in JavaScript.

Listing 6.2 illustrates the syntax for accessing and displaying a number of the properties
of the Form object for the MyName form shown in Listing 6.1.

LISTING 6.2 Using document.write to Display the Values of Properties of a
Form Object (SimpleForm02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>XMML.com - Online Survey</title>
</head>

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 207

<body>
<form action=”http://www.XMML.com” method=”POST” name=”MyForm”>
<table width=”600”>
<tr><th colspan=”3” align=”center”>XMML.com - Online Survey

</th>
</tr>
<tr>
<td>Your Name:</td>
<td> </td>
<td><input type=”text” name=”YourName”/></td></tr>
<tr>
<td>Your Gender:</td>
<td> </td>
<td>
<input type=”radio” name=”Gender” value=”Male”/>Male

<input type=”radio” name=”Gender” value=”Female”/>Female

</td>
</tr>
<tr><td>Which of our consultancy
services are you interested in?</td>
<td align=”right”>
</td>
<td>
<input type=”checkbox” name=”XML”/> XML

<input type=”checkbox” name=”XSLT”/> XSLT

<input type=”checkbox” name=”SVG”/> SVG

<input type=”checkbox” name=”XSL-FO”/> XSL-FO

<input type=”checkbox” name=”XForms”/> XForms

</td>
</tr>
<tr>
<td>Which free gift would you prefer for filling out this survey?</td>
<td> </td>
<td>
<select name=”FreeGift”>
<option value=”Choice1”>Fresh Air</option>
<option value=”Choice2”>A long life</option>
<option value=”Choice3”>Contentment</option>
</select>

</tr>
<tr>
<td>Enter your comments in
the text box
</td>
<td> </td>
<td><textarea name=”Comments” rows=”5” cols=”50”/></td>
</tr>
<tr>
<td> </td>
<td> </td>

208 Day 6

LISTING 6.2 continued

08 2978 CH06 4/10/02 10:40 AM Page 208

HTML Forms and the String Object 209

6

<td>
<input type=”submit” value=”Send Form”/></td>
</tr>
</table>
</form>
<script type=”text/javascript” language=”javascript”>
<!-- //
document.write(“<h3>The properties of the <i>”
+ document.MyForm.name + “</i> form:</h3>”);
document.write(“<p>The action property has the value: ”
+ document.MyForm.action + “</p>”);
document.write(“<p>The method property has the value: ”
+ document.MyForm.method + “</p>”);
document.write(“<p>The name property has the value: ”
+ document.MyForm.name + “</p>”);
document.write(“<p>The length property has the value: ”
+ document.MyForm.length + “</p>”);
document.write(“<p>The enctype property has the value: ”
+ document.MyForm.enctype + “</p>”);
// -->
</script>
</body>
</html>

Figure 6.2 shows the new output that has been added to the document displayed in a
browser window. In Internet Explorer the value of the enctype property is explicitly
shown as “undefined”; whereas in Netscape 6 it is displayed as a blank.

If you examine the code towards the end of Listing 6.2 you will see that we used
document.write to output values of, for example, the action property, which

is the representation in the DOM of the action attribute. The value for the enctype
property is shown to be undefined because we have not defined a value for it within the
<form> element’s start tag.

Let’s spend a moment clarifying why the length property is displayed as having a value
of 11. The length property represents the number of form elements that are children of
the <form> element. Thus we have one <input> element of type text, two <input> ele-
ments of type radio, five <input> elements of type checkbox, one <select> element,
one <textarea> element, and one <input> element of type submit. In total, there are 11
elements. The <option> elements nested within the <select> element are not part of the
length property since they are not children (although they are descendants) of the
<form> element.

LISTING 6.2 continued

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 209

Many form attributes can be changed simply by assigning a new value to the correspond-
ing property names; you can change the action attribute of a form based on a choice a
user makes. In this way the data entered into a form could be submitted to a different
URI for different processes to be carried out. Assuming that this change has been
detected (we will see how later), we could change the action property of a form using
the following statement:

document.formName.action = “http://www.xmml.com/new/page.htm”;

The same goes for all of the other form attributes that have a corresponding property that
belongs to the Form object. The exception is the length property, which is read-only—
because it is determined by the number of child elements of the Form object, as we have
just discussed.

210 Day 6

FIGURE 6.2
Values of the form
property displayed in
the Netscape 6
browser.

OUTPUT

08 2978 CH06 4/10/02 10:40 AM Page 210

HTML Forms and the String Object 211

6

Methods of the Form Object
Forms have two JavaScript methods that can be applied to them to reflect the standard
“submit” and “reset” buttons that can be added to a form using HTML/XHTML input
tags. In fact both these methods have the same names as the buttons: submit() and
reset(). Note again the case of the letters that make up the names of these methods—
JavaScript won’t recognize them if you don’t spell them using lowercase letters.

Both the reset() and submit() methods are applied to an HTML form by navigating
programmatically to the form’s object, and then applying them with the dot notation. For
example, to submit a form you would write:

document.formName.submit();

Or, to reset a form using JavaScript’s reset() method, you could write:

document.formName.reset();

If you intend to use the submit() method to submit a form on one of your Web pages,
then make sure that it is clear to the user that the form will submit. If the user wasn’t
expecting the form to be submitted, then it is possible that he will hit the stop button on
his browser, which could cause problems on the server side with half-submitted informa-
tion. The intended use of the submit() method was to allow designers to replace the
standard button (which some consider to be ugly), with an image that fits nicely into a
site’s design.

The reset button should also be used with care. If a visitor to your site has filled out all
the information in a (possibly lengthy) form, and it is suddenly wiped because you have
made some sort of obscure use of the reset() method, they may not try again. The most
obvious use of the reset() method is to create your own reset buttons using images
rather than the standard buttons. Alternatively you can change the appearance of the
standard buttons using cascading style sheets.

When changing properties in a form you should be aware of a potential problem that
could arise if the user chooses to refresh the page. Most JavaScript induced changes are
erased during a page refresh; whereas, with the soft refresh caused by simply clicking the
browser’s refresh button, data entered into the form is not erased. If some information the
user had entered were to change the action property of a form and the user then refreshed
the page, the action would be changed back to its original value; however, the choice
made in the form that should cause the script to change the action property would still
exist, but without the action property having been appropriately changed. The form
could then end up being submitted to the wrong URI for processing, causing
unpredictable and likely undesirable results.

08 2978 CH06 4/10/02 10:40 AM Page 211

One of the ways around this potential problem would be to create a script that would
check for any entries in a form each time the page loaded. It could then act accordingly
and make any necessary changes to the form’s properties. However, the process of
detecting user changes to a form that have persisted through a refresh can be involved
and can be as simple or complex as the forms themselves. A much easier way is simply
to reset the form entirely.

To make sure our forms are blank every time the page loads, you will need to use an
event handler. Resetting the forms on a page when the page loads is a fairly simple task,
as shown in Listing 6.3.

LISTING 6.3 Resetting a Form When a Web Page Loads (ResetForm.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Resetting a form on page load</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function ClearForm(){
document.MyForm.reset();
}
// -->
</script>
</head>
<body onload=”ClearForm()”>
<table>
<form name=”MyForm” action=”http://www.XMML.com/” method=”Post”>
<tr>
<td width=”15%” align=”right”>First Name: </td>
<td> <input type=”text” name=”FirstName”/></td>
</tr>
<tr>
<td align=”right”>Last Name: </td>
<td> <input type=”text” name=”LastName”/></td>
</tr>
<tr>
<td align=””right”>User Number: </td>
<td> <input type=”text” name=”UserNo”/></td>
</tr>
<tr>
<td> </td>
<td> <input type=”submit” value=”Submit Form”/></td>

212 Day 6

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 212

HTML Forms and the String Object 213

6

</tr>
</table>
</form>
</body>
</html>

On the <body> element notice that there is an onload attribute which has the
value of “ClearForm()”. When the page loads, the onload event handler is

called. The value of the onload attribute specifies that the ClearForm() function is to be
called. The only action of the ClearForm() function is to execute the reset() method on
the MyForm form.

You may remember from Chapter 4, “JavaScript Is Object-Based,” that if you changed
the Object Explorer page to explore the properties and child objects of an object other
than the navigator object, you would likely see names beginning with the two letters
“on”. We mentioned at the time that the name for these was “event handlers.” The reason
for this is that they “handle,” or intercept, events that occur due to a user’s actions. If
there is more than one form in a Web page, we could modify the ClearForm()function to
reset all the forms on the page, as shown here:

function ClearForm() {
for (var i=0; i<document.forms.length; i++) {
document.forms[i].reset();

}
}

An alternate syntax is to omit the onload attribute from the start tag of the <body>
element and use onload directly within the <script> element:

onload = function() {
for (var i=0; i<document.forms.length; i++) {
document.forms[i].reset();

}
}

The loading of a Web page isn’t the only event that JavaScript can process. If we use an
event handler to capture a click on a button, then we can process that event using a func-
tion of our own design. Listing 6.4 shows a very simple form that applies the form
object’s reset() method when a button is clicked and then outputs an alert box that tells
the user that the reset has been carried out.

LISTING 6.3 continued

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 213

LISTING 6.4 Using the Form Object’s reset() Method to Reset a Form in
Response to User Input (TinyForm.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Test for the reset() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function MyReset(){
document.TestForm.reset();
alert(“Your form has been reset!”);
}
// -->
</script>
</head>
<body>
<form name=”TestForm”>
<table>
<tr>
<td width=”15%” align=”right”>Your Name:</td>
<td ><input type=”text” name=”Name”/></td>
</tr>
<tr>
<td align=”right”>Your Gender:</td>
<td><input type=”text” name=”Gender”/></td>
</tr>
<tr>
<td width=”15%”><input type=”button” value=”Submit”/></td>
<td><input type=”button” value=”Reset” onclick=”MyReset()”/></td>
</tr>
</form>
</body>
</html>

Notice in the second <input> element that there is an onclick attribute. The
value of the onclick attribute is “MyReset()”, in other words the MyReset()

function is called. The MyReset() function makes use of the reset() method of the Form
object named “TestForm”:

document.TestForm.reset();

214 Day 6

INPUT

ANALYSIS

Some sources of information state that Netscape 6 does not execute the
reset() method. If you run Listing 6.4 in a Netscape 6.0 or later browser,
you will see that the form is reset correctly.

Note

08 2978 CH06 4/10/02 10:40 AM Page 214

HTML Forms and the String Object 215

6

Event handlers will be discussed in more detail in Chapter 10, “Events and Events
Handling.”

The code in Listing 6.4 allows you to create your own submit button. You could have
some text that calls the submit() method of a form, as in the listing, but more likely you
will want to use an image to achieve a more attractive appearance than the standard gray
button.

If you want to disable a submit or reset button, then you can do so using a
function that returns the boolean value false.

Tip

Let’s move on to look in a little more detail at the HTML/XHTML elements within a
form—we will call them “form elements”—and how we can manipulate them using
JavaScript.

Form Elements
Forms can have, in principle, any number of child elements of several different types.
Form elements can be split into three different groups:

• Text-based elements

• Selection-based elements

• Control elements

Text-based elements include textboxes, text areas, hidden inputs, and the file-upload ele-
ment. Selection-based elements include check boxes, radio buttons, and select boxes.
Control elements include buttons, for example.

Note that only certain properties of form elements can be changed. Some are read-only.
As a general rule, if the page needs to be restructured in order to implement a change
made by a script, then that change is not allowed. For example, the type attribute of the
<input> element is read-only. If you were able to change an <input> element’s type
attribute from “button” to “radio” for example, the page would need to be restructured.
Similarly the defaultValue property is also read-only. On the other hand, the name prop-
erty of any form element is read/write. The page does not need to be redrawn to imple-
ment a change that might be made to an element’s name, so you can both read and write
an element’s name property.

08 2978 CH06 4/10/02 10:40 AM Page 215

Textual elements do, however, allow their content, and hence appearance, to be changed.
This includes not only changes made by a user but also changes made by a script.
Therefore we can change the value of a text area to change its content, or even change
the value of a button to change the text it shows.

216 Day 6

Be careful if you change the name property of a form element. If any of
your other code makes use of the original value of the name property before
you made a change, then the output of some parts of your code could be
unpredictable.

Caution

Netscape Navigator 4 does not resize buttons if you alter the value of the
value property of a button object with the intention of relabeling the
button. Any text that is longer than the original length that you assign to
the value property will simply be truncated if it is too large for the existing
button dimensions.

Caution

The elements Collection
As well as accessing each element of a form by name, it is possible to access all of them
through a collection of the document object. Each form that belongs to the forms collec-
tion contains another collection called the elements collection. This collection brings all
the elements in the form together so as to make them accessible as an array. As with all
the other collections, it doesn’t matter how these elements are nested within other HTML
elements. If for example a table has been used inside the form to lay out certain ele-
ments, the elements collection will skip through the table straight to the elements you
need to access.

The elements collection orders the elements of a form in the order in which they were
written into the XHTML/HTML that makes up the page. Therefore, you could in theory
access the third element of the second form on a page by using this notation, as shown
here:

document.forms[1].elements[2]

However, as with the forms collection, it is recommended that you not use the elements
collection as your main means of accessing the elements of your forms. It can be fragile.
Suppose you insert an additional <input> element early in a form, then your code for all
later form elements will no longer work correctly because they now are in a different
position in the elements array.

08 2978 CH06 4/10/02 10:40 AM Page 216

HTML Forms and the String Object 217

6

If you choose to use several forms on the same Web page, you can access the first form
and last form. To access the first form on the page use the following:

document.forms[0]

To access the last form on the page use this syntax:

document.forms[document.forms.length-1]

To correctly use the syntax for both those techniques you must remember that the first
form is numbered from zero.

So far we have accessed forms through the document object and referred to the form by
name. But when a script or function is called from the form or an element in the form
itself we can use a shortcut. This shortcut is made available through a special JavaScript
keyword that refers to the object that the script was called from: the keyword this.

When the keyword this is used in a script contained within a tag, it is that tag’s object
that it points to. This can save you from navigating through the hierarchy of objects as
well as shorten the amount of code you have to write.

Whether you decide to pass a reference to the present object (using this), its form
(this.form), or one of its properties (this.property) depends on what you are trying to
achieve.

In a script block the this keyword sometimes isn’t really the appropriate approach. If
you can avoid referring to the window object, then you can also avoid using the keyword
this. When used in other locations, the object it refers to is different and so it can be
very useful. Listing 6.5 shows a simple example that uses the this object in the value of
the onfocus attribute of the <input> element.

LISTING 6.5 Using the this Object within an onfocus Attribute (This.htm)

<html>
<head>
<title>Testing this</title>

</head>
<body>

<h1>Testing this</h1>

<form action=”collect.php”>
<input type=”text” name=”emailAD” size=”15”

value=”Email Address” onfocus=”this.value=’’”>

<submit value=”Subscribe”>

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 217

</form>

</body>
</html>

In the example in Listing 6.5, there is a text box where the information to be
entered is indicated by the text it contains: “Email Address”. When space is

limited this technique can save you from using extra text outside the element explaining
what it is for and taking up space. Clearly anyone who wants to send his e-mail address
to subscribe has to delete this text from the text box first—unless we do it for the user.
And that is exactly what the onFocus event handler that has been placed in the <input>
tag does. It removes the text “Email Address” by assigning an empty string to the value
of the text box. The neat thing about this is that you can use the keyword this instead of
a longer reference:

document.forms[0].emailAD.value

And if you wanted to access the form using its name, as recommended, then you would
also have to give the form and text box a name. The this keyword bypasses all this how-
ever. By using it you are saved from lengthier references that include the document and
form name in the object path, as well as sometimes being saved from naming the form
concerned. When calling functions using event handlers located in the opening tags of an
element this can be very useful.

The this keyword can be used to send data more than once. For example you may wish
to send an element’s name and its value to a function. To do that we would simply write:

onclick=”myFunc(this.name, this.value)”

You can also send references to other elements in a form by using the keyword this in
conjunction with the form property (which references the parent Form object) provided
by each element to navigate to another element within the form:

this.form.otherElement.value

The above syntax refers to the parent Form object of the this object and then finds
another form element named “otherElement” and finally finds the value of that other
form element.

218 Day 6

LISTING 6.5 continued

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 218

HTML Forms and the String Object 219

6

Properties Common to Several Form Elements
All form elements have a form property, which contains the identity of the Form object
within which the form element is contained. You have just seen how it can be used.

Form elements also typically have a name property, which corresponds to the name
attribute on the start tag in the HTML.

When we come to validate data entered into a form, we must be able to access the value
entered. We will look in a moment at how that is done, as well as some other issues rele-
vant to individual types of the form element.

The property belonging to text-based form elements that we will make most use of is the
value property. Using JavaScript we can get and set the text contained in text-based ele-
ments using this property, with the exception of one: elements with the type “file”. File
upload elements, as we will refer to them from now on, cannot be set using scripts. If we
could then we would be able to upload files from the computer of anyone visiting our
site simply by filling in these elements with a likely path to a file. In fact, the element
could be hidden so that the user wouldn’t even be aware that the file-upload element was
on the page. Obviously this could enable serious security breaches and invasions of
privacy, hence the restriction.

To access a form element by name, the element must, of course, have a name attribute in
its start tag. Even if the element is nested inside other elements such as a table, we can
still access it as if it was a direct child element of the form. Again this is because forms
have been around for a long time and shortcut routes to an object were the original
means of accessing elements. Hence we can access a text box by simply writing
something similar to the following:

document.formName.textboxName

However, this is not enough to access the text in the text box. The text box is still a full
object, and the text it contains is one of its properties. You may already have guessed that
if you can place text in a text box by giving it a value attribute in its opening tag that
this will be the property name used to access it as well. If you did then you are absolute-
ly correct. To access a text box and assign the text it contains to a variable, you would
write a statement like the following one:

var myText = document.formName.textboxName.value;

The text that is in the text box we have addressed will now also have been assigned to
the variable myText. Listing 6.6 shows a simple example.

08 2978 CH06 4/10/02 10:40 AM Page 219

LISTING 6.6 Retrieving Text Using the value Property (ValueProperty.htm)

<html>
<head>
<title>Retrieving Text</title>

<script language=”javascript” type=”text/javascript”>
<!--

function alertText()
{

var text = document.simpleForm.myText.value;
alert(text);

}

//-->
</script>

</head>
<body>

<h1>Retrieving Text</h1>

<form name=”simpleForm”>
<input type=”text” name=”myText” size=”20” />
<input type=”button” value=”Alert Text” onclick=”alertText()” />

</form>

</body>
</html>

The onclick attribute that has been added to the start tag of the <input> element
is of type button. The onclick attribute is an event handler; however, whereas

the onload event handler triggers when the page loads, the onclick event handler detects
when a user clicks on the button. In the listing it calls the function alertText() when
users click on the button. Note the syntax of the onclick event handler, as we will use it
often when using buttons to call a function.

Inside XHTML tags we write event handlers completely in lowercase for compliance
with the XHTML recommendation. In HTML they are often written with uppercase only.
This is not an option for event handler names in JavaScript. Again, JavaScript is case
sensitive, and if we assign an event handler using JavaScript we must use correct case
letters.

220 Day 6

INPUT

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 220

HTML Forms and the String Object 221

6

Once the button on the page has been clicked and the function alertText() is called, the
first thing that happens is that the function retrieves the text from the text box. It does
this through the first statement. In this statement we navigate using the document object
to the form called simpleForm, and then to the text box in this form called myText and
finally to myText’s value property. The value of the value property when found is
assigned to the variable called text before the next line when the alert() function is
used to bring up an alert box that contains its value for us to see.

One important point to note about values retrieved from forms is that they
have the data type string—even if the characters in the form element con-
cerned were purely numeric. Care must be taken to ensure that the neces-
sary conversions are made if the values are to be used in a process where
they won’t be converted automatically. We will come back to this point as it
arises.

Caution

The text Element
This corresponds to an <input> element with the type attribute having a value of
“text”. Getting access to the value entered into a text element is straightforward since
the text element is a child of the form and the text element has a value property.

Listing 6.7 shows how you can access the value entered into a text field.

LISTING 6.7 Getting the Value Entered into a Text Field (TextValue.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Displaying the value entered in a text field</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function DisplayValue(){
if(document.MyForm.MyTextField.value!==””){
alert(“The value entered was \n” + document.MyForm.MyTextField.value);
}
else{
alert(“The text field was empty!\nPlease enter your name.”);
}
}

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 221

// -->
</script>
</head>
<body>
<form name=”MyForm” action=”http://www.XMML.com/”
method=”Post” onsubmit=”DisplayValue()”>
<input type=”text” name=”MyTextField”/><p>Enter your name</p>
<input type=”submit” value=”Click to Submit”/>
</form>
</body>
</html>

Notice on the <form> element the onsubmit attribute which calls the
DisplayValue() function. The DisplayValue() function uses the name of the

form and the name of the text field in the value which is alerted. However, if the value in
the text field was the empty string, then a message is displayed, indicating to the user
that they need to enter their name into the text field.

This code only takes us part way to what we want—we can check the value of the value
property but that does not prevent the form being submitted. If you run the code then you
will find that even though the data in the text field is invalid the form is still submitted.
We will, later in the chapter, look at how we can prevent that from happening.

First, let’s improve on another minor deficiency of the form we just looked at. When the
form loads, try typing your name. What happens? Nothing, because the focus is not on
the text field. So when you type, the text isn’t entered into the field. Listing 6.8 uses the
onload event to attach focus to the text field, so you can start typing without first moving
your mouse to the text field and clicking there to give it focus.

LISTING 6.8 Using JavaScript to Attach Focus to a Selected Text Field to
Help Usability (TextFieldWithFocus.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Displaying the value entered in a text field</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
onload = function(){
document.MyForm.MyTextField.focus();
}

222 Day 6

LISTING 6.7 continued

ANALYSIS

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 222

HTML Forms and the String Object 223

6

function DisplayValue(){
if(document.MyForm.MyTextField.value!==””){
alert(“The value entered was \n” + document.MyForm.MyTextField.value);
}
else{
alert(“The text field was empty!\nPlease enter your name.”);
}
}
// -->
</script>
</head>
<body>
<form name=”MyForm” action=”http://www.XMML.com/” method=”Post”
onsubmit=”DisplayValue()”>
<input type=”text” name=”MyTextField”/><p>Enter your name</p>
<input type=”submit” value=”Click to Submit”/>
</form>
</body>
</html>

You can see within the <script> element the function which is associated with
the onload event. You can use the focus() method of the text property of the

form object to attach focus to the desired field. Doing that is more convenient to the user.

The textarea Element
Text areas are represented in HTML by the <textarea> element, and are intended for the
entry of free text. The dimensions of the text area are specified by the values of the rows
and cols attributes. Text areas could be used, for example, to collect customer feedback
comments or for detailing delivery instructions for an online purchase.

If you want to access the value of a text area, you can use syntax similar to that which
was used for the text field shown earlier. For example, if you have a text area with a
name attribute of value “MyTextArea” then you can access the value of the text area as
follows:

document.MyForm.MyTextArea.value

In addition to simply gaining access to the value of a text area, you can control whether
or not it is accessible to users, depending on what they have done in other parts of the
form. In some circumstances, you may want to disable some form elements to ensure
that data has been entered elsewhere in the form before allowing the user to enter
comments, for example.

LISTING 6.8 continued

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 223

Listing 6.9 shows an example where users must enter their names into the form before
the text area is enabled for them to enter their comments. We will set the text area to
read-only until the text field for the user’s name has had some text entered into it.

LISTING 6.9 Restricting a User to the Text Field for Their Name until They
Enter Some Text (TextAreaReadonly.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Disabling a text area until another field has been completed</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
onload = function(){
document.MyForm.MyTextField.value=””; //
document.MyForm.MyTextField.focus(); // sets focus to MyTextField
document.MyForm.Comments.readOnly = true; // sets text area to read-only
} // end onload

function DisplayValue(){
if(document.MyForm.MyTextField.value!==””){
alert(“The value entered was \n” + document.MyForm.MyTextField.value);
}
else{
alert(“The text field was empty!\nPlease enter your name.”);
}
}// end function DisplayValue()

function ChangeStatus(){
if (document.MyForm.MyTextField.value!==””){
document.MyForm.Comments.readOnly = false;
document.MyForm.Comments.select();
} // end if
else{
document.MyForm.MyTextField.focus();
} //end else
}

function CheckStatus(){
if (document.MyForm.MyTextField.value==””){
alert(“First please enter your name”);
document.MyForm.MyTextField.focus();
} // end if
else{
document.MyForm.Comments.select();
} // end else
} // end function CheckStatus()

224 Day 6

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 224

HTML Forms and the String Object 225

6

// -->
</script>
</head>
<body>
<table>
<form name=”MyForm” action=”http://www.XMML.com/” method=”Post”
onsubmit=”DisplayValue()”>
<tr>
<td><input type=”text” name=”MyTextField” onblur=”ChangeStatus()”/></td>
<td>Enter your name</td>
</tr>
<tr>
<td><textarea name=”Comments” rows=”6” cols=”40”
onmouseup=”CheckStatus()” >Please enter your name first</textarea></td>
<td>Enter your comments.</td>
</tr>
<tr>
<td><input type=”submit” value=”Click to Submit”/></td>
<td> </td>
</tr>
</table>
</form>
</body>
</html>

In Listing 6.9, we are really ensuring that the user filled in his name before he
did anything else in the form. When the document loads we set focus to the

<input> element named “MyTextField”. If the user tries to tab out of there or clicks on
another part of the Web page, then the text field will lose focus—that is, “blur.” The
<input> element has an onblur attribute which sets the focus back to the text field if no
text has been entered; or, if text has been entered, sets the text area to no longer read-
only, and puts the focus on the text area. If the user tries to get into the text area (which
is read-only) by clicking on it before the user’s name has been entered, the onmouseup
attribute of the <textarea> element calls the CheckStatus() function and sets focus
back to the MyTextField text field if no name has been entered.

You may not want to tie down users this tightly, but it can be useful to think about how
to control what the user can do using JavaScript.

Historically, text areas used to have text wrap turned off by default. If that was what you
wanted then great, but if you didn’t then it could be problematic, depending on whether
you were scripting for older browsers or not. The reason for this is that different
browsers recognized different keywords for turning on text wrap. Because it is not possi-
ble to assign an attribute two different values for two different browsers using only

LISTING 6.9 continued

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 225

HTML, JavaScript became a workaround for detecting which browser was being used.
Browser detection is discussed in Chapter 8.

Let’s move on to looking at the elements where the user has to make a choice.

Check Boxes
The check box is the easiest choice-based form element to deal with and use. The two
main pieces of information you may want to know about a check box are its value and
whether it is checked or not. The value assigned to the value attribute of a check box can
be obtained or set through the value property of the Checkbox object. The technique is
similar to the one we have looked at for text fields and text areas:

var valueChecked = document.MyForm.someCheckbox.value

Finding out whether a check box is checked or not is also straightforward. Just as the
name used for the attribute that causes a check box to start off checked when the page
loads is the name “checked”, the corresponding property of a Checkbox object is also
called checked. The checked property of a Checkbox object can have one of two values.
A checkbox is either checked or it isn’t, so the checked property can have the value true
or false. For example:

var chkStatus = document.formName.checkboxName.checked;

assigns the value true to the variable chkStatus if the check box being examined is
checked, but false if it isn’t.

If we have several check boxes in a form it becomes a little cumbersome to write code to
check each of them by name. An alternative approach is to loop through the elements
array of the form object and check whether or not each element is an <input> element of
type checkbox. Listing 6.10 shows this being done in the context of the online survey we
saw earlier. Run the code with none, some, or all of the check boxes checked to see the
results.

LISTING 6.10 Checking and Displaying Whether a Form Element Is a Check
Box and Displaying Whether It Is Checked or Not (SimpleFormCheckboxes.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>XMML.com - Online Survey</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function CheckCheckboxes(){

226 Day 6

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 226

HTML Forms and the String Object 227

6

var elLength = document.MyForm.elements.length;
for (i=0; i<elLength; i++)
{
var type = MyForm.elements[i].type;
if (type==”checkbox” && MyForm.elements[i].checked){
alert(“Form element in position “ + i + “ is of type checkbox and is checked.”);
} // end if
else if (type==”checkbox”) {alert(“Form element in position “
+ i + “ is of type checkbox and is not checked.”);
} // end else if
else {} // do nothing if not of type checkbox

} // end for
} // end function CheckCheckboxes()
// -->
</script>
</head>
<body>
<form action=”http://www.XMML.com” method=”POST” name=”MyForm”>
<table width=”600”>
<tr><th colspan=”3” align=”center”>XMML.com - Online Survey

</th>
</tr>
<tr>
<td>Your Name:</td>
<td> </td>
<td><input type=”text” name=”YourName”/></td></tr>
<tr>
<td>Your Gender:</td>
<td> </td>
<td>
<input type=”radio” name=”Gender” value=”Male”/>Male

<input type=”radio” name=”Gender” value=”Female”/>Female

</td>
</tr>
<tr><td>Which of our consultancy
services are you interested in?</td>
<td align=”right”>
</td>
<td>
<input type=”checkbox” name=”XML”/> XML

<input type=”checkbox” name=”XSLT”/> XSLT

<input type=”checkbox” name=”SVG”/> SVG

<input type=”checkbox” name=”XSL-FO”/> XSL-FO

<input type=”checkbox” name=”XForms”/> XForms

</td>
</tr>
<tr>
<td>Which free gift would you prefer for filling out this survey?</td>
<td> </td>
<td>

LISTING 6.10 continued

08 2978 CH06 4/10/02 10:40 AM Page 227

<select name=”FreeGift”>
<option value=”Choice1”>Fresh Air</option>
<option value=”Choice2”>A long life</option>
<option value=”Choice3”>Contentment</option>
</select>

</tr>
<tr>
<td>Enter your comments in
the text box
</td>
<td> </td>
<td><textarea name=”Comments” rows=”5” cols=”50”/></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>
<input type=”submit” value=”Send Form”
onclick=”CheckCheckboxes()”/></td>
</tr>
</table>
</form>
</body>
</html>

When the “Send Form” button is clicked the CheckCheckboxes() function is
called. Within that function we set up a for loop to examine each of the element

types in the form’s elements array. We check whether or not the element in the form’s
elements array is or is not of type checkbox. For each element that is a checkbox we
display an alert which states the position of the checkbox in the elements array, and
whether it is checked or not. If the member of the elements array is not a check box then
we do nothing, as indicated by the else clause towards the end of the
CheckCheckboxes() function.

Radio Buttons
Radio buttons are slightly more complicated to deal with than check boxes. However,
with the knowledge you gained from Chapter 5, “An Introduction to Arrays,” you already
have the knowledge necessary to work with them.

228 Day 6

LISTING 6.10 continued

ANALYSIS

If you want to ensure that a user has consciously checked one of a set of
radio buttons, then leave them all unchecked when the page loads and then
verify, before the form is submitted to the server, that a radio button has
been checked. If no radio button has been checked, then provide a reminder
for the user that one of the radio buttons provided must be checked.

Tip

08 2978 CH06 4/10/02 10:40 AM Page 228

HTML Forms and the String Object 229

6

Radio buttons are, as you perhaps know, grouped together by giving individual radio but-
tons the same name. Initially this may seem to create a problem if you want access to
these elements using JavaScript. After all, if you have several elements in a form with the
same name, then you can’t access any one of them simply by writing the following:

document.formName.radioName

If you were to do this how would the JavaScript interpreter know which of the elements
with the same name you were referring to? The solution is that JavaScript treats radio
button groups as an array. The above line of code would effectively address the array,
and to access any of the individual elements you would need to specify an element index.
The element that comes first in the HTML that makes up the page is the first element in
the array, the element that comes second on the page is second in the array and so on.

Remember that the first element in an array is numbered as zero.Caution

The array representing a radio button group has all the properties that you would expect
to find in the arrays that you create yourself. For example there is a length property for
the array that tells you how many entries there are in the array, or in radio button terms,
how many radio buttons there are in a radio button group. Each radio button in a group is
an object in its own right with its own individual properties. There is no one property
that you can examine to discover which radio button in a group of radio buttons is the
radio button that has been selected by the user (if any). You will need to examine each
button in turn to determine whether it is selected or not. Here the length property comes
in useful once again. In Listing 6.11 we use the length property to allow us to loop
through the array of radio button objects to determine which of them has been selected.

LISTING 6.11 Detecting Which Radio Button Is Selected (RadioCheck.htm)

<html>
<head>
<title>Checking a Radio Button Group</title>

<script language=”javascript” type=”text/javascript”>
<!--//

function evalGroup()
{

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 229

var group = document.radioForm.myRadio;
for (var i=0; i<group.length; i++) {
if (group[i].checked) break;

}
if (i==group.length) return alert(“No radio button is checked”);
alert(“Radio Button “ + (i+1) + “ is checked.”);

}

//-->
</script>

</head>
<body>

<h1>Checking a Radio Button Group</h1>

<form name=”radioForm”>
Radio Button 1: <input type=”radio” name=”myRadio” />

Radio Button 2: <input type=”radio” name=”myRadio” />

Radio Button 3: <input type=”radio” name=”myRadio” />

Radio Button 4: <input type=”radio” name=”myRadio” />

<input type=”button” value=”Eval Group” onclick=”evalGroup()” />

</form>

</body>
</html>

In this example we have a form consisting of four radio buttons and a button
which, when clicked, calls a function. The button has the onclick event handler

added to call the function evalGroup() when clicked. In the first statement of
evalGroup(), we used a variable called group to store a reference to our radio button
group. We created a for loop that loops through the radio group, but with a difference.

Whereas our loops previously have looped through every element in an array, in this loop
we have set it up so that it loops from the start but it will stop looping as soon as it finds
a checked element. We can safely do that since only one button of a radio button group
can be checked. If we find a radio button that has been checked, then we know that we
already have found the only radio button in the radio button group which is checked—
and it is pointless to go on and examine the status of the other buttons in the group.

Select Boxes
Select boxes are the trickiest of the form elements to script. A select box contains child
elements in the form of <option> elements, which isn’t the case for any of the other

230 Day 6

LISTING 6.11 continued

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 230

HTML Forms and the String Object 231

6

form elements. To add to this complexity, select boxes can take the form of either a drop-
down menu where one option can be chosen, or a scroll box where multiple options can
be selected. The single choice drop-down menu is the most popular application, so let’s
concentrate on it.

As is the case for radio button groups, select boxes require array-handling skills. In the
case of select boxes however, it is not the select box that is the array. It is the group of
options that it contains that are in effect an array. In addition to this, each option is also
an object in its own right.

The selectedIndex property tells you which position in the array is occupied by the
option object that has been selected.

Now that we know how to find out which option object is the selected option in a select
box, we need to discover how to access that option in order to find out its properties,
such as its value or the text that it shows in the select box. We do not usually give the
options in a select box a name, so initially you may not seem to have any way to refer-
ence the array of options. However, JavaScript auto generates another collection for just
this purpose—the options collection.

The options collection is just like the other collections we have seen so far. Just as they
are generated automatically whenever a document is loaded into the browser, the
options collection is automatically generated whenever an options element is present in
or written into a form. Whereas collections like the forms collection belong to the docu-
ment object, options collections belong to the select box object that they were created
for. Therefore to access the third option of a select box you would write the following:

document.formName.selectBoxName.options[2]

Remember arrays start at 0, so the third element has the index value 2.

The key piece of information to know in order to work with select boxes is that a select
object’s <option> elements do not have a selected property. This means that you cannot
iterate through each option in a select box in turn checking to see if it is selected, as we
did for radio button groups. However, happily, the solution is even easier. The select
object has a property that tells us which option is selected. This is the selectedIndex
property. Therefore to discover which option in a select box is selected you would simply
write:

document.formName.selectBoxName.selectedIndex

Once you are able to access a select box and its options, the two most important proper-
ties that you may want to discover are its value property and the text shown by the
option in the select box. The value property is just as you have seen before. If you want

08 2978 CH06 4/10/02 10:40 AM Page 231

to discover the value that has been assigned to the second option of a select box, you
would simply write:

document.formName.selectBoxName.options[2].value

As it happens, discovering the text that an option displays in its select box is just as easy.
It is contained in a property called the text property. So to access the text for the second
option of a select box you would write:

document.formName.selectBoxName.options[2].text

The following code shows a function that would allow you to output the value and text

properties of a selected option object, like so:

function getSelected()
{

var select = document.myForm.dropDown;
var index = select.selectedIndex;
var selectedTxt = select.options[index].text;
var selectedVal = select.options[index].value;
var msg = “The “ + (index+1) + “ option is selected. \n”;

msg += “It is the option “ + selectedTxt;
msg += “ and has the value “ + selectedVal + “.”;

alert(msg);
}

Listing 6.12 shows an example of how to display the selected option of a select object in
a form.

LISTING 6.12 Capturing and Displaying the Value of the Selected <option>
Element (SelectedOption.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Find the selected option</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function CheckOption(){
var Selected = document.TestForm.PrizeChosen.selectedIndex;
var SelectedOption = document.TestForm.PrizeChosen.options[Selected].value;
alert(“The prize you have chosen is a “ + SelectedOption);
} // end function CheckOption()
// -->
</script>
</head>
<body>
<form name=”TestForm” action=”SomePage.htm” onsubmit=”CheckOption()”>

232 Day 6

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 232

HTML Forms and the String Object 233

6

<table>
<tr>
<td width=”15%” align=”right”>Your Name:</td>
<td ><input type=”text” name=”Name”/></td>
</tr>
<tr>
<td align=”right”>Your Gender:</td>
<td><input type=”text” name=”Gender”/></td>
</tr>
<tr>
<td width=”15%”><select name=”PrizeChosen”>
<option value=”Ferrari”>Red Ferrari</option>
<option value=”Lear Jet”>Lear Jet</option>
<option value=”Dream Home”>Home to $200,000</option>
</select>
</td>
<td> </td>
</tr>
<tr>
<td width=”15%”><input type=”submit” value=”Submit the form”/></td>
<td> </td>
</tr>
</table>
</form>
</body>
</html>

Buttons
Buttons can be used to initiate actions in response, for example, to clicking a button. In
Listing 6.4 we used an onclick attribute on a button to call a function.

Before we go on to look at how you can ensure that only valid data is sent to the server,
let’s take a step aside to look at some aspects of the String object.

The String Object
In Chapter 1, “Getting the Basics Right,” we learned about JavaScript’s five data types.
At that time we found out that any data in a format that the JavaScript interpreter didn’t
understand had to be expressed as a string. By storing it in strings, no errors will occur
and JavaScript won’t attempt to interfere with its structure. It will simply store the char-
acters one after another and leave the choice of processing up to us—and for that of
course we will need tools. Fortunately, the String object provides many methods to
process the content of strings.

LISTING 6.12 continued

08 2978 CH06 4/10/02 10:40 AM Page 233

When we write a series of characters surrounded by opening and closing quote marks,
we are making use of the String object’s literal notation. When the JavaScript interpreter
comes across a string literal that contains some characters (or none at all in the case of
the empty string) it gives these characters the data type string and stores them. So to
store a string in the variable myString we can use a simple JavaScript variable declara-
tion and assignment statement, like so:

var myString = “Mary had a little lamb”;

It is also possible to explicitly create new instances of the String object to store a string:

var myString new String(“Mary had a little lamb”);

In modern browsers these two statements are functionally identical. Even the assignment
of a string literal to the variable myString allows you to use all the String object’s meth-
ods or to access its properties.

Listing 6.13 demonstrates that for a String object created using the assignment of a
string literal to a variable, the length property of the String object is accessible.

LISTING 6.13 Displaying the length Property of a String Object
(FirstString.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>XHTML 1.0 Transitional Template</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
onload = function(){
var myString = “Mary had a little lamb”;
document.write(“<h3>A first string</h3>”);
document.write(myString + “ has a length of “ + myString.length + “
characters.”);
}
// -->
</script>
</head>
<body>

</body>
</html>

If you run the code in Listing 6.13 you will see that the length of the string literal “Mary
had a little lamb” is 22 characters.

234 Day 6

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 234

HTML Forms and the String Object 235

6

You know from earlier chapters how to concatenate strings together using the + or +=
operators, but in addition to building up strings, you often will need to extract data from
them as well.

Listing 6.14 demonstrates both techniques.

LISTING 6.14 Concatenating Strings Using the + or += Operators
(Concatenate.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Concatenating Strings</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
onload = function(){
var myString = “Mary had a little lamb”;
var mySecondString = “Its fleece was white as snow”;
document.write(“<h3>Concatenating using a separate variable</h3>”);
concatString = myString + “
” + mySecondString;
document.write(concatString);
document.write(“

”);
document.write(“<h3>Using the += operator</h3>”);
myString += “
”;
myString += mySecondString;
document.write(myString);
}
// -->
</script>
</head>
<body>

</body>
</html>

If you run the code you will see that the visual output is identical when using each
technique of concatenation.

String Properties
The String object has only one property that you are likely to make use of on a regular
basis. This property is the length property. There are another two properties, which are
the constructor and prototype properties that we have mentioned also exist for the
Array object. In this instance, let’s concentrate on the length property.

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 235

The String object’s length property is similar to the length property that belongs to the
Array object. Just as the length property of the Array object tells you how many ele-
ments there are in an array, the length property of the String object tells you how many
characters exist in a string. This includes spaces and non-alphanumeric characters, for
example:

var myString = “Ten chars!”;
alert(myString.length); // alerts 10

At first sight the length property may seen to be very limited in its usefulness. After all
there aren’t going to be many occasions when you will want to tell a visitor to your site
how many characters make up this or that string. However, the length property is very
useful when it comes to string manipulation. Just as the length property of the Array
object can be used to help our scripts reliably determine where to find the end of an
array, the length property is used to determine where a string ends. For string
manipulation this information is often very useful.

String Methods
The String object provides a very large number of methods. Some of these methods will
help you when working with your strings—they are listed below. Examples of how to
use some of these methods will follow.

• charAt()

• charCodeAt()

• concat()

• fromCharCode()

• indexOf()

• lastIndexOf()

• localCompare()

• match()

• replace()

• search()

• slice()

• split()

• substr()

• substring()

• toLocaleLowerCase()

236 Day 6

08 2978 CH06 4/10/02 10:40 AM Page 236

HTML Forms and the String Object 237

6

• toLocaleUpperCase()

• toLowerCase()

• toSource()

• toString()

• toUpperCase()

• valueOf()

The way in which you apply String object methods is very flexible. You probably
expect that it is possible to apply the methods to data containers that contain a string
value. For example, you can write:

var strVal = “My string”.valueOf()

to assign the value of a string to the variable strVal.

In fact, your applications can be more complex than this. You can apply multiple
methods to a string, all on the same line of code, for example:

var strUC = “My string”.valueOf().toUpperCase();

This code takes the value of the string literal, converts it to uppercase, and assigns the
uppercase string to the strUC variable.

As usual when multiple operators that are the same or have the same operator precedence
are used in an expression, the operands of the member operator (.) are evaluated from left
to right. In the example above, the first expression to be evaluated is the string “My
string”. Once the JavaScript interpreter has parsed this, it then applies the next operand
to the right which in this case is the valueOf() method. This method, as we know in the
case of literals, simply returns the string itself. Once this result from applying the
valueOf() method has been calculated, then the next and final expression is applied to
the result using the member operator. As its name implies, this string method converts to
uppercase all the characters of the string to which it is applied. Hence the final value that
is assigned to the variable strUC is the string “MY STRING”.

Let’s move on now and look at how to use some of the String object’s methods.

Simple Case Transformations with toUpperCase()
When you need to compare strings you can run into the problem that lowercase and
uppercase letters have different character codes. If the comparison you want to make is
independent of case, then you will need to convert all of the string, or more precisely a
variable which holds that value, to a case which is the same as the case of the variable
with which it is being compared.

08 2978 CH06 4/10/02 10:40 AM Page 237

Listing 6.15 shows a simple string comparison.

LISTING 6.15 Carrying Out a Case-Insensitive String Comparison Using the
toUpperCase() Method of the String Object (ToUpperCase.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>String comparisons</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
onload = function(){
var firstString = new String(“mary Had A litTle lamb”);
var secondString = new String(“Mary had a little lamb”);
document.write(“<h3>Direct comparison of the two strings</h3>”);
var comparison = (firstString==secondString);
document.write(“Are the strings equal?: “ + comparison);
document.write(“<h3>Comparison after conversion to upper case</h3>”);
var firstUpperString = firstString.toUpperCase();
var secondUpperString = secondString.toUpperCase();
document.write(“Are the strings equal?: “
+ (firstUpperString==secondUpperString));
}
// -->
</script>
</head>
<body>

</body>
</html>

Extracting String Segments with charAt()
The simplest of the methods used to find a sub-string in another string is the charAt()
method. This method returns a single character taken from a point in another string that
you specify. You specify this point by providing an index as a parameter to the charAt()
method, for example:

var str = “My string”;
alert(str.charAt(0)); // alerts “M”

Just as the elements of an array are numbered starting from 0, so are the characters in a
string. Therefore, when you specify the 0th character as the parameter of the charAt()
method, then it is the first character, the letter “M”, that this method returns.

238 Day 6

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 238

HTML Forms and the String Object 239

6

When you know the string’s format, then the charAt() method can be the best method
for extracting the characters you need.

Searching for Sub-Strings with indexOf()
For other occasions when you do not know the format of the string, then you will need to
use other methods of the String object. With these you can look for certain strings with-
out knowing at what point in another string they are located.

The indexOf() method is used to find the position of the first occurrence of a sub-string.
See Listing 6.16.

LISTING 6.16 Using the indexOf() Method (IndexOf.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the indexOf() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
var myString = “The cat sat on the mat”;
var mySubstring = “sat”;
var foundAtPosition;
foundAtPosition = myString.indexOf(mySubstring,0);
document.write(“<p>The string “ + mySubstring +
“ was found at position “ + foundAtPosition);
// -->
</script>
</head>
<body>

</body>
</html>

The above code will return the index at which the first (or only) occurrence of
the string “sat” occurred. The output of the document.write indicates that sat

occurred at position 8, which is correct. It is the position of the first character of the sub-
string being searched for that is found using the indexOf() method.

Replacing Sub-Strings with replace()
We can replace sub-strings within a string. This is similar to a search and replace func-
tion in a word processor. For example, if you had a description of JavaScript but wanted
to be sure that all mentions had the correct case, then you could use the replace()

INPUT

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 239

method to replace any incorrectly capitalized versions in the text. Listing 6.17 shows a
simple example using the replace() method.

LISTING 6.17 Using the replace() Method of the String Object
(Replace.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the replace() method of the String object</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
var originalString = “George Washington, President of the United States”;
var replacedString = “Washington”;
var replacementString = “Bush”;
var newString = originalString.replace(replacedString, replacementString);
document.write(“<h3>” + newString + “</h3”);
// -->
</script>
</head>
<body>

</body>
</html>

The replace() method of the originalString String object is used to substi-
tute the string “Bush”, in the variable replacementString, for the string

“Washington”, in the variable replacedString. On screen document.write() outputs
the string “George Bush, President of the United States”.

Concatenating Strings with the concat() Method
The concat() method will concatenate two strings together. To concatenate two strings
you simply apply the method to a string and supply the string that is to be concatenated
to the first string as a parameter to the concat() method. For example, to concatenate the
string “Hello “ to the word “there”, we could use the concat() method, as shown
here:

“Hello “.concat(“there”);

Of course this concatenation could be achieved just as easily using the + operator. In fact
concatenating strings using the + operator is actually more concise, as shown by the
following:

“hello “ + “there”;

240 Day 6

INPUT

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 240

HTML Forms and the String Object 241

6

Because the + operator is more succinct than the concat() method used with a string
literal, the concat() method is not widely used.

Finding Sub-Strings with substr()
In Chapter 4 you learned how to access the hash property of the location object by
writing the following:

var myHash = location.hash;

The problem with this is that it returns the internal document link used preceded by the
hash character (#). If you want to find out the name of the internal link then you would
need to remove this character from the string that the hash property contains. To do this,
use the substr() method of the String object, for example:

var myAnchor = location.hash;
myAnchor = myAnchor.substr(1);

This will retrieve all the characters after the first character of the hash property’s value
(that is the character at index zero) is removed, thereby removing the hash character.

In Chapter 2, “Working with Data,” we talked about operator precedence and said that
when a period character joins two items it means that the righthand one belongs to the
left. We also said that when operators have the same precedence, then they are evaluated
from left to right. Therefore we can actually write the above code all on one line like
this:

var myAnchor = location.hash.substr(1);

The period and square brackets denote membership of one thing to another and have the
highest operator precedence. Therefore the code the period joins will be evaluated first
from left to right. The location.hash is evaluated and turns into a string. Only then is
the next period applying the sub-string function evaluated because by then the loca-
tion.hash has evaluated to its string value that is possible.

Even if there was no content to the location object’s hash property using the substr()
method, starting at the character 1 won’t cause an error. It will simply return an empty
string.

Having taken a brief look at some of the properties and methods of the String object,
let’s look at how we can check for the presence of user input and prevent it from being
sent to the server while it is incomplete.

08 2978 CH06 4/10/02 10:40 AM Page 241

Checking User Input
So far we have only looked at using HTML forms as a convenient means of letting a user
interact with scripts on a page. Another common use is to use JavaScript as an aid to
forms when used for their original purpose: collecting input from a user and sending it to
the server. In this section we will look at how you can check user input (for complete-
ness) and in Chapter 13, “Regular Expressions Make It Easier,” we will look at using
regular expressions to check that user input matches the desired input for a field.

When we talk about checking user input, we mean checking it for completeness before
the data that a user has entered into a form is sent to the server. The first thing to say
about pre-validation using JavaScript is that it should not be used as the only means of
checking that the data to be sent is acceptable. Some Internet users use browsers that do
not, or cannot, interpret JavaScript. If this is the case, then the form data will be sent to
the server without any checks having been performed. If no validation is carried out on
the server, then major errors or even security breaches could potentially occur.

The aim of using JavaScript to check user input is to speed up the user’s browsing expe-
rience. When data is sent to the server there is the risk that, if not filled out properly, the
data may have to be returned to the user for corrections. The time taken for the data to be
passed through a modem, validated, and returned with instructions to make changes can
be considerable and a frustration to the visitors to your site. Using JavaScript to pre-
validate a form before it is sent will, for most users (for example, those with browsers
that are JavaScript capable), mean almost instantaneous checking of data.

When checking forms there is one event handler that you need to know about. This is the
onSubmit event handler. If your validation is to stop the form from submitting if the form
is incocompletely filled out, then you need to use this event handler to do that. (We will
look in Chapter 13, “Regular Expressions Make It Easier,” at how we can ensure that
valid information is entered in each part of the form before it is submitted to the server.)
More importantly, unlike earlier examples in the chapter, we want to ensure that the form
is not submitted to the server until the form is correctly completed.

Listing 6.18 is significantly longer than listings earlier in this chapter. If you take each
part one at a time you should find it all understandable. Refer back to Figure 6.1 if you
want to remind yourself how the form looks on screen. We will check that three parts of
the form are filled in or we will not allow the data to be submitted to the server. The
users have to fill in their names, indicate their gender and give information about
delivery of the prize, which might be theirs for completing the survey.

242 Day 6

08 2978 CH06 4/10/02 10:40 AM Page 242

HTML Forms and the String Object 243

6

LISTING 6.18 Ensuring That the User Has Entered Data Before the Data Is
Sent to the Server (SimpleFormValidated.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>XMML.com - Online Survey</title>
<script type=”text/javascript” language=”javascript”>
<!-- //

function IsFormValid(){
var IsFormValid = false;
if (document.MyForm.YourName.value!==”” && evalRadio()
&& document.MyForm.Comments.value!==””)
{
IsFormValid = true;
}
if (IsFormValid==false) DisplayErrors();
return IsFormValid;
} // end IsFormValid() function

function evalRadio()
{

var group = document.MyForm.Gender;
for (var i=0; i<group.length; i++) {
if (group[i].checked) break;

}
if (i==group.length) return false;
else {return true;

} // end else
} // end evalRadio() function

function DisplayErrors(){
if (document.MyForm.YourName.value==””) alert(“Please enter your name”);
if (evalRadio()==false)
alert(“Please check the radio button\nfor your gender”);
if (document.MyForm.Comments.value==””)
alert(“Please be sure to tell us the delivery address \nfor your free gift”);
} // end DisplayErrors() function;

// -->
</script>
</head>
<body>
<form action=”http://www.XMML.com”
method=”POST” name=”MyForm” onsubmit=”return IsFormValid()”>
<table width=”600”>
<tr><th colspan=”3” align=”center”>XMML.com - Online Survey

</th>

INPUT

08 2978 CH06 4/10/02 10:40 AM Page 243

</tr>
<tr>
<td>Your Name:</td>
<td> </td>
<td><input type=”text” name=”YourName”/></td></tr>
<tr>
<td>Your Gender:</td>
<td> </td>
<td>
<input type=”radio” name=”Gender” value=”Male”/>Male

<input type=”radio” name=”Gender” value=”Female”/>Female

</td>
</tr>
<tr><td>Which of our consultancy
services are you interested in?</td>
<td align=”right”>
</td>
<td>
<input type=”checkbox” name=”XML”/> XML

<input type=”checkbox” name=”XSLT”/> XSLT

<input type=”checkbox” name=”SVG”/> SVG

<input type=”checkbox” name=”XSL-FO”/> XSL-FO

<input type=”checkbox” name=”XForms”/> XForms

</td>
</tr>
<tr>
<td>Which free gift would you prefer for filling out this survey?</td>
<td> </td>
<td>
<select name=”FreeGift”>
<option value=”Choice1”>Fresh Air</option>
<option value=”Choice2”>A long life</option>
<option value=”Choice3”>Contentment</option>
</select>

</tr>
<tr>
<td>Enter your comments in
the text box
</td>
<td> </td>
<td><textarea name=”Comments” rows=”5” cols=”50”/></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>
<input type=”submit” value=”Send Form”/></td>
</tr>
</table>
</form>
</body>
</html>

244 Day 6

LISTING 6.18 continued

08 2978 CH06 4/10/02 10:40 AM Page 244

HTML Forms and the String Object 245

6

The way that JavaScript works revolves around the onsubmit attribute of the
<form> element. When the form is submitted, by clicking the “Send Form” but-

ton, the IsFormValid() function is called. The “return IsFormValid()” syntax for the
onsubmit attribute ensures that it is the value (“true” or “false”) which is returned
from the IsFormValid() function, which determines whether or not the form is
submitted. If IsFormValid()returns false the form is not submitted.

Within the IsFormValid() function the variable IsFormValid is assigned the value
false. Then the if statement applies three tests all of which have to be true for the
following statement

IsFormValid = true;

to be executed. If any of the three tests are false, then the DisplayErrors() function is
called. Three if statements within the DisplayErrors() function control which alert
boxes display.

If there are no errors, then the IsFormValid variable is set to “true” and the value
“true” is returned in response to the onsubmit attribute. Then, and only then, can the
form be submitted to a server.

The tests we have applied to the text field, the radio buttons, and the text area are very
simple ones—we have only checked to see that some data has been entered and that none
of the three essential fields has been left blank. In other circumstances, you may want to
check for the length of number (when checking credit cards, for example), whether a
value entered is a valid date, and so forth.

In production forms you may want to carry out more sophisticated checks on data. If you
expect, for example, that a valid date has to be entered for a particular piece of data, then
you would check if it was a valid JavaScript date.

Summary
In this chapter we have introduced you to the use of JavaScript with the Form object and
form elements. You have been shown how to check values entered by the user, to assist
the user by applying focus to a field you want to be filled in first, and how to prevent
data from being sent to the server for processing while it is incomplete.

In addition you have been introduced to some of the properties and methods of the
String object.

ANALYSIS

08 2978 CH06 4/10/02 10:40 AM Page 245

Workshop
In this workshop we will review what you have learned about forms in this chapter.

Q&A
Q. Do forms have to be embedded in tables to be displayed on screen?

A. No. You can embed forms in an HTML/XHTML Web page without the use of
tables. However, using tables makes it possible to line up parts of the form to
achieve an attractive presentation. An alternative approach is to use CSS for
positioning.

Q. Can I use more than one form on the same HTML/XHTML Web page?

A. Yes, you can. However you will need to think carefully about how data is to be
submitted to the server for processing. For instance, you may want to include a
submit button only on the second form.

Q. Is it possible to use patterns of characters to search for sub-strings?

A. Yes, JavaScript has a RegExp object that allows you to use regular expressions.
Regular expressions make it possible to search strings for patterns of characters in
addition to searching them for literal sub-strings. In Chapter 13, “Regular
Expressions Make It Easier,” we will examine how to use regular expressions in
JavaScript.

Q. Are password fields on forms totally secure?

A. No. A password field keeps someone from looking over your shoulder seeing on
screen the password characters you have typed, but when your password is sent to
the server it is not encrypted or disguised in any way.

Quiz
1. List the form elements into which you can type text.

2. How do you create a drop-down menu in a form?

Quiz Answers
1. There are three form elements into which you can type text—the text field, the text

area, and a password field. Of course, with the password field you see only an
asterisk for each character you type in.

2. The <select> element with nested <option> elements lets you create a drop-down
menu.

246 Day 6

08 2978 CH06 4/10/02 10:40 AM Page 246

HTML Forms and the String Object 247

6

Exercises
1. Write a script to check for the substring “man” in the string “A man wrote a

manual manually for a manipulative manager”.

2. Create a form that asks for a name and credit card information. Write a script that
checks that each field has been filled in before the data is sent to the server.

08 2978 CH06 4/10/02 10:40 AM Page 247

08 2978 CH06 4/10/02 10:40 AM Page 248

DAY 7

WEEK 1

Numbers and Math
An essential part of any programming language is the set of tools for working
with numbers, and JavaScript has many such tools. If you aren’t particularly
enthusiastic about the prospect of creating JavaScript applications that are heav-
ily math-oriented then don’t worry. The Core JavaScript Number and Math
objects provide some powerful mathematical tools to make many of the
processes and calculations much easier. As you will see, even when our specific
requirements are not covered directly by what JavaScript provides, we can
frequently create our own tools with a little bit of ingenuity.

The number of possible JavaScript uses for numbers is enormous. Unless you
are particularly interested in math, then you will find that JavaScript provides
many mathematical techniques that you may never use. However, in common
with all worthwhile programming languages, JavaScript needs to provide pow-
erful and flexible facilities that will allow interested programmers to manipulate
numbers.

This chapter will introduce you to some foundational numeric techniques that
you can build on if you are interested in this topic. However, we can’t look at
all the possible numerical techniques for which you could use JavaScript.

09 2978 CH07 4/10/02 10:46 AM Page 249

This chapter will introduce you to

• The Number object and its properties and methods

• The Math object and its properties and methods

• Examples of carrying out calculations using the Math object

The Number Object
In practice the Number object is seldom used directly by most JavaScript scripters.
Usually you only use its methods, which can be very helpful—especially those methods
that have been recently introduced in JavaScript 1.5. However, before we examine the
Number object’s properties and methods, let’s quickly take a general look at how numbers
are treated in JavaScript.

Numbers in JavaScript
For integers, the numbers that JavaScript outputs seem to be spot on. However for float-
ing-point numbers the situation isn’t quite so simple. By default both Internet Explorer
and Netscape Navigator will return floating-point numbers rounded to 16 or 17 signifi-
cant figures. Unfortunately because JavaScript uses the computer’s floating-point math
(which isn’t always accurate to this precision) the results of JavaScript’s floating-point
calculations are not always entirely accurate. For example, if we divide 10.0 by 3.0 the
answer given will be 3.3333333333333335, as running Listing 7.1 will show.

LISTING 7.1 Exploring the Precision of Numbers (NumberPrecison.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Precision of numbers</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function Calculate(){
var n = 10.0 / 3.0;
document.write(“10.0 divided by 3.0 is “ + n);
}
// -->
</script>
</head>
<body onload=”Calculate()”>

</body>
</html>

250 Day 7

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 250

Numbers and Math 251

7

Most of the time when a piece of arithmetic is expected to return a floating-point number
this small glitch at the end of the fractional part isn’t too much of a problem. But when
numbers should return an integer or are to be output to the screen for a user to see, then
small discrepancies can be annoying. If you modify Listing 7.1 so that 0.3 is divided by
0.1, then the answer returned is 2.9999999999999996, which is correct when rounded but
may very likely not be what was expected by the user.

Fortunately, for situations such as these, we can remedy this problem to a certain extent
as far as the display of numbers is concerned. Listing 7.2 shows how you might handle
the situation of dividing 10.0 by 3.0 to a selected number of decimal places.

LISTING 7.2 Controlling the Output Format of Numbers
(FormatNumber.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Formatting numbers to a chosen number of decimal places</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function Calculate(){
var entry;
var first;
var second;
var numPlaces;
alert(“Divide a larger number by a smaller number\nto a
chosen number of decimal places\nClick to continue”);
entry = prompt(“Enter first number: “, “Enter number here”);
first = Number(entry);
entry = prompt(“Enter second number: “, “Enter number here”);
second = Number(entry);
entry = prompt(“Enter number of decimal places. “, “Enter number here”);
numPlaces = Number(entry);
var n = first / second;
document.write(first + “ divided by “ + second + “ to “
+ numPlaces + “ decimal places is “ + formatNumber(n,numPlaces));
}

function formatNumber(theNum, numDecPlaces)
{

var num = new String();
num = “” + theNum;
var pos = 0;
count = 0;
while (num.substring(pos-1,pos)!== “.”) {
pos += 1 ;

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 251

count += 1;
} //end while
while (pos < (count+numDecPlaces)){
pos +=1;
} // end while
return num.substring(0,pos);

}
// -->
</script>
</head>
<body onload=”Calculate()”>

</body>
</html>

Let’s look at how the code works. On the <body> element there is an onload
attribute which calls the Calculate() function. Within the Calculate() function

we use an alert() box to inform the user what the page will do. We use three prompt()
boxes to gather three numbers chosen by the user. The entry variable is used to hold the
“number” chosen by the user in each prompt() box but, of course, the “number” entered
is actually held as a string. Therefore, in order to use the “numbers” entered for calcula-
tion, we must convert each of those strings to a number, using code like this:

first = Number(entry);

We divide the first number, stored in the first variable, by the second, stored in the
second variable, and store the result of the division in the n variable.

252 Day 7

LISTING 7.2 continued

ANALYSIS

When you enter a numerical value in a prompt() box the value is held as a
string. If you attempt to perform calculations then you can expect an error
since the value on which a calculation is being attempted is a string. To
avoid such errors you need to convert the numeric-looking string to a
number using the Number() function.

Caution

We used document.write() to output the result of the calculation. Within the
document.write() we called the formatNumber() function passing two parameters—the
result of the calculation in the variable n and the desired number of decimal places in the
variable numPlaces.

09 2978 CH07 4/10/02 10:46 AM Page 252

Numbers and Math 253

7

We needed to convert the string entries entered into the prompt() boxes in the
Calculate() function to numbers; however, in the formatNumber() function, we need to
do the opposite and convert the result of the calculation to a string, held in the num
variable, like so:

var num = new String();
num = “” + theNum;

The theNum variable is the parameter passed into the formatNumber() function.

We then used the substring() method of the String object (to which you were intro-
duced in Chapter 6, “HTML Forms and the String Object”) to work through the string
variable num character by character. While we haven’t reached the decimal point in that
string, we just will carry on looping round a while loop, increasing a counter as we go.
Once we do reach the decimal point, then we loop again until we have moved the
required number of positions through the string variable; then we simply return the num
string variable to the document.write() within the Calculate() function. The result of
dividing 10.0 by 3.0 to 4 decimal places is shown in Figure 7.1.

FIGURE 7.1
The result of the out-
put from Listing 7.2
when dividing 10.0
by 3.0 to 4 decimal
places.

OUTPUT

Controlling the format when you expect integer numbers is easier, if you are sure that the
result will be an integer. Listing 7.3 is an example of how you can round numbers to
achieve an integer result.

LISTING 7.3 Using the round() Function of the Math Object to Output
Numbers as Integers (OutputInteger.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 253

<html>
<head>
<title>Rounding a number to an integer</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IntegerCalculate(){
var num1 = 0.3;
var num2 = 0.1;
var result ;
result = num1 / num2;
document.write(num1 + “ divided by “ + num2 +
“ expressed as a whole number is “ + Math.round(result));
}
// -->
</script>
</head>
<body onload=”IntegerCalculate()”>

</body>
</html>

The round() method of the Math object is used to convert the result variable to
an integer number. Of course, you will only want to use the round() method

when you either confidently expect the answer to be a whole number or can accept an
integer as an adequate approximation of a floating-point value.

It is also worth noting before we go on that JavaScript allows you to enter exponential
numbers using the letter “e” (or uppercase “E” if you prefer). As in the following:

1e6 // equivalent to 1,000,000
1E6 // equivalent to 1,000,000
1e+6 // equivalent to 1,000,000
1e-6 // equivalent to 0.000001

Notice that when the exponent is to a positive power, then the plus sign does not need to
be included. But naturally for a number to a negative exponent, the minus sign must be
present.

254 Day 7

LISTING 7.3 continued

ANALYSIS

When using the exponent “E” or “e”, the JavaScript interpreter will accept
either upper or lower case, one of the few situations in which a JavaScript
interpreter will treat upper and lower case the same.

Note

Let’s return to the Number object and take a look at its properties.

09 2978 CH07 4/10/02 10:46 AM Page 254

Numbers and Math 255

7

Properties of the Number object
The Number object has several built-in properties. As with other objects, they include the
constructor and prototype properties that we will look at later in the book. The other
properties are shown below:

• MAX_VALUE

• MIN_VALUE

• NaN

• NEGATIVE_INFINITY

• POSITIVE_INFINITY

We have already met the NaN property earlier in the book. Hopefully you remember that
it stands for Not a Number and that it is the inevitable result of trying to perform an
arithmetic process where one or more of the pieces of data is not numerical.

Listing 7.4 shows how you can test whether or not a user enters a string that is numeric.

LISTING 7.4 Testing Whether or Not a String Entered Can Be Converted to
a Valid Number (NumberNaN.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>The NaN property of the Number object</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function Calculate(){
var entry;
var number = new Number();
alert(“This page will test whether you enter a
\nnumber or a non-numeric string.\nClick to continue”);
entry = prompt(“Enter a number or string: “, “Enter number or string here”);
number = Number(entry);
if (isNaN(number)){
document.writeln(“<p>You entered: “ + entry+ “</p>”);
document.write(“<p>It was not a number</p>”);}
else{
document.writeln(“<p>You entered: “ + entry + “</p>”);
document.write(“<p>It was a number.</p>”);
} // end else
} // end function Calculate()
// -->
</script>

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 255

</head>
<body onload=”Calculate()”>

</body>
</html>

When you load the page the user is presented with an informational alert()
box. Then, in a prompt() box, the user is asked to enter either a number or a

string. The Number() function is then applied to the string—held in the entry variable—
that the user had entered. Finally the isNaN() function is used to test whether or not a
valid number resulted from applying the Number() function to the entry variable. If no
valid number resulted, then the user is shown the string they entered and informed that it
was not a number. If, however, the entry variable can be converted into a valid number,
then the user is reminded of her entry into the prompt() box and told that it was a num-
ber. Figure 7.2 shows the result when the non-numeric string “abc” was entered into the
prompt box.

256 Day 7

LISTING 7.4 continued

ANALYSIS

FIGURE 7.2
The result of apply-
ing the isNaN() func-
tion to test a non-
numeric value.

OUTPUT

The other properties of the Number object reveal key JavaScript values. Note that the
name of each property is written completely in uppercase letters. If you remember what
we said about naming using uppercase letters in Chapter 2, “Working with Data,” you
may realize that this shows that they are constants. Therefore we cannot change the
values they contain because they are defined by the JavaScript interpreter and/or the
environment in which it is operating.

The isNaN() function is the only way to test whether or not a value matches
NaN. So, if you want to test whether a value is or is not a number remember
to use the isNaN() function. Do not attempt to test the NaN property for
equality for example by using if(x == NaN). It doesn’t work.

Tip

09 2978 CH07 4/10/02 10:46 AM Page 256

Numbers and Math 257

7

MAX_VALUE and MIN_VALUE

The MAX_VALUE and MIN_VALUE properties contain the value of the absolute maximum
and minimum numbers that the JavaScript interpreter will accept before it treats them
simply as Infinity or zero respectively. Listing 7.5 displays the maximum and mini-
mum values for you.

LISTING 7.5 Displaying the MAX_VALUE and MIN_VALUE Properties of the Number Object

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Displaying Maximum and Minimum Values</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function ShowLimits(){
var maxAndMin = “Max Number: “ + Number.MAX_VALUE + “\n”;

maxAndMin += “Min Number: “ + Number.MIN_VALUE;
alert(maxAndMin);
}
// -->
</script>
</head>
<body onload=”ShowLimits()”>

</body>
</html>

The result you see may vary according to the platform you use. Figure 7.3 shows the
alert box as it appears in Netscape 6.

FIGURE 7.3
The maximum and
minimum values of
the Number object
displayed in a
Netscape 6 alert box.

OUTPUT

09 2978 CH07 4/10/02 10:46 AM Page 257

You may remember that we also mentioned these values in passing in Chapter 1,
“Getting the Basics Right,” as exponentials of the number 2. To do this we used these
values together with the toString() function to turn them into binary form. For example
to find the maximum value you could use the following:

var x = Number.MAX_VALUE;
x = x.toString(2);

alert(x);

NEGATIVE_INFINITY and POSITIVE_INFINITY

The NEGATIVE_INFINITY and POSITIVE_INFINITY properties of the Number object are
also JavaScript constants. There is no real need to use these properties because if you
ever need to obtain the values infinity or negative infinity, you can simply write the
following:

Infinity

-Infinity

rather than navigating to the values through the Number object like this:

Number.POSITIVE_INFINITY

Number.NEGATIVE_INFINITY

You could also simply divide 1 or -1 by 0 to get the same effect, but it is recommended
that you not do so because using the values Infinity and -Infinity makes your scripts
clearer.

Let’s move on and look at the methods of the Number object.

Methods of the Number Object
The Number object’s methods are significantly more useful to us than its properties. This
is especially so for the methods that were added to the language after the release of
ECMAScript Edition 3. The Number object’s methods are listed below:

• toExponential()

• toFixed()

• toLocaleString()

• toString()

• toPrecision()

• valueOf()

258 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 258

Numbers and Math 259

7

You have already seen the toString() function at work in Listing 7.1. Because the
toString() function is a global function it is available as a method of all Core
JavaScript objects—including the Number object. When it is used with numbers it simply
returns the number converted to the data type string.

The toExponential(), toFixed(), toLocaleString(), and toPrecision() methods are
all new to Internet Explorer 5.5 and Netscape Navigator 6. All of these methods help
with number formatting so that the numbers can be displayed in the way that best suits
your requirements or the requirements of visitors to your Web sites. First let’s look at the
toExponential() method.

Using the toExponential() Method
As mentioned previously, a JavaScript interpreter always converts numbers to their deci-
mal form before it displays them. To force the JavaScript interpreter to display numbers
in a base other than base 10, you can use the toString() method. The toString()
method works because it outputs the number as the data type string. Therefore JavaScript
ignores the order of the characters and doesn’t try to convert them to a decimal value.
The same idea (conversion of the data type to string) can be used to help output numbers
in other formats that JavaScript wouldn’t otherwise allow.

JavaScript will only display numbers between 1000000000000000 (1e15) and 0.000001

(1e-5) in the standard non-exponential format. Even if you input them in exponential
form they are immediately converted to plain numbers. Internet Explorer 5.5+ and
Netscape Navigator 6+ allow you to override these rules and display numbers within the
range in exponential form. The two methods that provide you with a means to do this are
toExponential() and toPrecision().

The toExponential() method simply displays the numbers it is given in exponential
form (as a string). There is nothing special about it other than that. It is applied to a data
container using the dot notation, like so:

var myNum = 1234;
myNum = myNum.toExponential(); // returns 1.234e+3

The method can also be given an optional parameter to control how many decimal places
are returned. This can be especially useful for anyone wanting to display numbers in sci-
entific notation. For example, to display the previous number to 3 decimal places, you
would simply write:

var myNum = 1234;
myNum = myNum.toExponential(4); // returns 1.2340e+3
myNum = myNum.toExponential(2); // returns 1.23e+3

09 2978 CH07 4/10/02 10:46 AM Page 259

Listing 7.6 takes a number entered by the user and displays it with from zero to four
decimal places.

LISTING 7.6 Using the toExponential() Method to Display a User-Entered
Number as an Exponential (toExponential.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Demonstrating the toExponential() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function CreateExponentials(){
var entry1 ;
entry1 = prompt(“Enter a floating point number”, “Enter the number here”);
number = new Number();
number = Number(entry1);
for (var i=0; i<5; i++){
document.write(“<p>The number entered to “ + i + “ decimal places is “
+ number.toExponential(i) + “</p>
”);
}
} // end function CreateExponentials()
// -->
</script>
</head>
<body onload=”CreateExponentials()”>
<p>This listing demonstrates the use of the toExponential() method.</p>

</body>
</html>

On page load the CreateExponentials() function is called. A prompt box is
used to get a floating-point number from the user. Because the toExponential()

method belongs to the Number object, you convert the string value entry1 to a numeric
value stored in the number variable.

The listing simply loops through a for loop displaying the value entered by the user with
the number of decimal places indicated by the loop counter variable, i, of the for loop.

The toPrecision() Method
Although you may not have much need to display your numbers in exponential notation
you will more than likely want to control their accuracy at some point or another. To do
this you have two options. You can either decide on a number of significant figures, or
you can decide on a number of decimal points. To choose the accuracy in terms of the
number of significant figures, you use the toPrecision() method. The method is

260 Day 7

INPUT

ANALYSIS

09 2978 CH07 4/10/02 10:46 AM Page 260

Numbers and Math 261

7

applied with the dot notation and the number of significant figures is controlled by speci-
fying the number as a parameter of the method. To see this at work, look at the following
lines:

var myNum = 1234.56;
var to8SF = myNum.toPrecision(8) // results in 1234.5600
var to6SF = myNum.toPrecision(6) // results in 1234.56
var to4SF = myNum.toPrecision(4) // results in 1234
var to2SF = myNum.toPrecision(2) // results in 1.2e+3

Listing 7.7 shows a full example.

LISTING 7.7 Using the toPrecision() Method to Control Display of a
Number (toPrecision.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Demonstrating the toPrecision() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function DisplayPrecision(){
var entry1 ;
entry1 = prompt(“Enter a floating point number”, “Enter the number here”);
number = new Number();
number = Number(entry1);
for (var i=1; i<8; i++){
document.write(“<p>The number entered to “ + i + “ significant figures is “
+ number.toPrecision(i) + “</p>
”);
}
} // end function DisplayPrecision()
// -->
</script>
</head>
<body onload=”DisplayPrecision()”>
<p>This listing demonstrates the use of the toPrecision() method.</p>

</body>
</html>

Notice that in the above example that we start the i variable for the for loop at
1, since a value of zero makes no sense for the number of significant figures.

When the number of significant figures specified is greater than the number itself, then
the method adds on zeros. When the number of significant figures you specify is greater
than the whole part of the number, then the number is returned in the standard form; but

INPUT

ANALYSIS

09 2978 CH07 4/10/02 10:46 AM Page 261

when the significant figures specified is smaller than the whole part, it’s turned into
exponential form.

Effectively it then acts as the toExponential() method does when you pass it a number
as a parameter. If this isn’t what you want, then you can simply apply the parseFloat()
function to the result. By turning the result into a number then, as long as the value is
within the range specified earlier, the number will be displayed in normal form. For
example to do this for the last example you could write the following:

var myNum = 1234.56;
var to2SF = myNum.toPrecision(2);
var to2SF = parseFloat(to2SF); // results in 1200

Alternatively as a shortcut, you could simply multiply the result by one, although the
results of the toPrecision() method are in string form. Remember that JavaScript con-
verts the operands of operators to the data type that make most sense for the operation.
The only data type that makes sense for multiplication is the type number so you could
have written it like so:

var myNum = 1234.56;
var to2SF = myNum.toPrecision(2) * 1; // results in 1200

The toPrecision() method may seem to offer a way to force JavaScript to display to a
greater accuracy than its standard 16/17 figures. After all, can’t we just use the method to
specify a number greater than this? Unfortunately, although it can be used to show a
greater number of figures, these figures are not accurate. To illustrate this let’s use a
20-digit number with figures that iterate from 1 through 0 twice:

var myNum = 12345678901234567890;
myNum = myNum.toPrecision(20);

alert(myNum);

Normally this number would be truncated to 17 characters and shown in exponential
form. Using the toPrecision() method like this in Internet Explorer 5.5 makes the
browser display 20 characters. However the characters after the second seven characters
are simply replaced by zeros. Netscape Navigator 6 on the other hand is inconsistent
with the digits it displays after the 17th digit of a long number. In the case above, it
replaces the digits 890 that we might hope for with the digits 168. The fact is that
JavaScript doesn’t handle numbers of such length with accuracy.

The toFixed() Method
Of the four new methods of the Number object, the one you will probably have the most
use for is the toFixed() method. Rather than returning a value to a fixed number of sig-
nificant figures as the toPrecision() method does, it returns numbers to a fixed number
of decimal places.

262 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 262

Numbers and Math 263

7

One aspect of JavaScript that is most frustrating to those who want to use it to deal with
money is its handling of numbers. JavaScript will remove any trailing zeros after a deci-
mal point. Therefore if we were to total up the cost of several items using JavaScript,
then output it to a Web page without any further processing, we would not know whether
it would display correctly. For example, look at the following example of code:

var costOfItem1 = 9.10;
var costOfItem2 = 5.60;
var totalCost = costOfItem1 + costOfItem2; // returns 14.7

Clearly, for example, 14.7 would not be acceptable as a currency value for any Web site
that might use some sort of JavaScript enhancement to calculate the cost of a visitor’s
potential shopping cart purchase. There is a workaround for this which you will see
shortly, but in the future once post-version 6 browsers become the norm, the toFixed()
method should make this redundant. Let’s look at some examples:

var myNum = 1234.5678;
var to6DP = myNum.toFixed(6) // results in 1234.567800
var to4DP = myNum.toFixed(4) // results in 1234.5678
var to2DP = myNum.toFixed(2) // results in 1234.56
var to0DP = myNum.toFixed(0) // results in 1234
var toN2DP = myNum.toFixed(-2) // results in 1200

As you can see the method does exactly as you would expect. The possible exception to
this is the last example where the parameter was set to -2 decimal points. This rounded
the number to the hundreds mark. However at the time of writing, this only worked in
Netscape Navigator 6.

In the previous example you could display the total cost of the items as currency by
writing the following:

var costOfItem1 = 9.10;
var costOfItem2 = 5.60;
var totalCost = costOfItem1 + costOfItem2; // returns 14.7
var totalCost = totalCost.toFixed(2); // returns 14.70

You could if you wanted to then concatenate this with a dollar symbol or a symbol of
another currency as appropriate for the Web site.

Note that if the toFixed() method is used with a very large number such as an exponen-
tial, the result will still be displayed in standard notation. For example, as that shown
here:

var myNum = 1e30;
myNum = myNum.toFixed(3);

alert(myNum); // alerts 1000000000000000000000000000000.000

09 2978 CH07 4/10/02 10:46 AM Page 263

There are occasions when this could be useful. For example if you don’t want to output a
large number in exponential form, you could use this method with the parameter set to
zero.

The toLocaleString() Method
Although the toFixed()method can be used for formatting numbers as currency, it is the
toLocaleString() method that is specifically intended for this job. It uses the system
language of the computer it is running on to format a number to the currency notation of
that language.

Let’s look at an example that illustrates this. Listing 7.8 will allow a user to enter a
floating-point number that is displayed according to the browser settings.

LISTING 7.8 Using the toLocaleString() Method to Demonstrate the
Current Browser Language Settings (toLocaleString.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Demonstrating the toLocaleString() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function DisplayLocale(){
var entry1 ;
entry1 = prompt(“Enter a floating point number”, “Enter the number here”);
number = new Number();
number = Number(entry1);
document.write(“<p>The number entered by the user expressed for the locale is “
+ number.toLocaleString() + “</p>
”);
} // end function DisplayLocale()
// -->
</script>
</head>
<body onload=”DisplayLocale()”>
<p>This listing demonstrates the use of the toPrecision() method.</p>

</body>
</html>

Again, remember that the toLocaleString() method belongs to the Number object and
that a prompt box accepts a string value.

In the United States or in the United Kingdom, Listing 7.8 will result in the display
shown in Figure 7.4 when the number 1234.56 is entered by a user.

264 Day 7

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 264

Numbers and Math 265

7

As you can see, it removes the extraneous digits after the decimal point and
inserts commas between each triplet of the whole part of the number.

However, other countries don’t format numbers in this way. So if the system’s language
setting is German, for example, then the listing will format it differently, as shown in
Figure 7.5.

FIGURE 7.4
Display using
toLocaleString() as
it would appear in
the United States or
United Kingdom.

OUTPUT

FIGURE 7.5
Display using
toLocaleString() as
it appears when the
browser language is
set to German in
Internet Explorer.

OUTPUT

ANALYSIS

To alter the system language settings in Windows 98, for example, choose
Start, Control Panel, Regional Settings. On the Regional Settings tab choose,
for example, German (Standard).

Tip

This time it has used a comma as the decimal point and periods to separate each
triplet, as is the standard German numerical notation.

ANALYSIS

At the time of writing although the toLocaleString() method was recog-
nized by Netscape 6, it did not seem to have any effect on the numbers to
which it was applied.

Caution

09 2978 CH07 4/10/02 10:46 AM Page 265

Many European languages use a format similar to that displayed in Figure 7.5 for the
German language.

Remember from the previous chapter that we stated that the toLocaleString() method
is also applicable to arrays. If you have gathered monetary data and stored it in a string,
you do not need to apply the toLocaleString() method to each element of the array in
turn. You simply apply it to the array as a whole.

266 Day 7

It is important to remember that the toExponential(), toFixed(),
toLocaleString(), and toPrecision() methods all return their results as
strings. If the number is then to be used in an addition operation, you must
convert it to the data type number; otherwise the + operator will concate-
nate strings, not perform an addition calculation.

Caution

The valueOf() method
The valueOf() method of a Number object returns the value of a Number object as a
number datatype. If JavaScript had been created from the start as a fully object-oriented
technology you might well have expected a Number object to possess a value property.
The fact that it doesn’t is a reflection of the time in JavaScript’s history when it was
much less object-oriented than JavaScript 1.5.

Listing 7.9 shows an example using the Number object’s valueOf() method.

LISTING 7.9 Finding the Numeric Value of a Number Object Using the valueOf() Method
(valueOf.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Demonstrating the valueOf() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function DisplayValue(){
var entry1 ;
entry1 = prompt(“Enter a floating point number”, “Enter the number here”);
var number = new Number();
number = Number(entry1);
if (isNaN(number)){
document.write(“<p>You did not enter a valid number.

Hit your browser’s Refresh button to try again.</p>”);
}

09 2978 CH07 4/10/02 10:46 AM Page 266

Numbers and Math 267

7

else{
document.write(“<p>The value of the number entered is “
+ number.valueOf() + “</p>”);
} // end else
} // end function DisplayValue()
// -->
</script>
</head>
<body onload=”DisplayValue()”>
<p>This listing demonstrates the use of the valueOf() method.</p>

</body>
</html>

The processing of an entered number seems to do very little, but as was the case in some
examples earlier in this chapter, there is quite a bit of type casting going on. The string
entered in the prompt box is assigned to the Number object in the variable number. Before
using the document.write() method we use the isNaN() function to output an error
message; if no valid number was entered and, if a valid number was entered into the
prompt box, then we output the result returned by the valueOf() method of the Number
object.

Having looked at the properties and methods of the Number object, let’s move on and
learn a little about the Math object.

The Math Object
You have already seen, and are hopefully now comfortable with, a lot of the mathemati-
cal operators that JavaScript provides. For much of the time those operators are perfectly
adequate for the arithmetical processes that need to be carried out. But whenever more
than the most basic of mathematical operations is needed, then we need something more
specific or more powerful.

JavaScript has its own Math object. The Math object provides some powerful tools and
useful mathematical constants, which we can use in any mathematical operations.

Predefined Properties
The Math object’s properties are all constants so as you would expect they are read-only
and can’t be changed. In line with traditional constant notation in JavaScript, the names
of the properties are written completely in uppercase letters. Be careful to remember this,
as writing the properties with one or more lowercase letters is a common mistake. See
Table 7.1.

LISTING 7.9 continued

09 2978 CH07 4/10/02 10:46 AM Page 267

TABLE 7.1 The Mathematical Constants Provided in the Math Object’s Properties

Property Value Description

E 2.718281828459045 Euler's constant

LN2 0.6931471805599453 Natural log of 2

LN10 2.302585092994046 Natural log of 10

LOG2E 1.4426950408889634 Log to base 2 of E

LOG10E 0.4342944819032518 Log to base 10 of E

PI 3.141592653589793 π

SQRT1_2 0.7071067811865476 Square root of 0.5

SQRT2 1.4142135623730951 Square root of 2

LISTING 7.10 The Properties of the Math Object (MathProperties.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>The Properties of the Math object</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function DisplayMath(){
document.write(“
<p>The value of Euler’s constant <i>E</i> is: “
+ Math.E + “</p>”);
document.write(“
<p>The value of the natural Logarithm of 2 is: “
+ Math.LN2 + “</p>”);
document.write(“
<p>The value of the natural Logarithm of 10 is: “
+ Math.LN10 + “</p>”);
document.write(“
<p>The value of the Logarithm to base 2 of E is: “
+ Math.LOG2E + “</p>”);
document.write(“
<p>The value of the Logarithm to base 10 of E is: “
+ Math.LOG10E + “</p>”);
document.write(“
<p>The value of the constant PI is: “
+ Math.PI + “</p>”);
document.write(“
<p>The value of the square root of 1/2 is: “
+ Math.SQRT1_2 + “</p>”);
document.write(“
<p>The value of the square root of 2 is: “
+ Math.SQRT2 + “</p>”);
} // end function DisplayMath()
// -->
</script>
</head>
<body onload=”DisplayMath()”>

</body>
</html>

268 Day 7

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 268

Numbers and Math 269

7

As with other numbers, the values held by the Math object’s properties are accurate to
approximately 16 significant figures.

When using these properties remember that they must be referred to as properties of the
Math object. Also take care to remember that the Math object starts with an uppercase
“M”. If you only use the Math object occasionally, then both of these important details are
easy to forget. Listing 7.11 shows an example of how to use the Math.PI property in
calculating the area and circumference of a circle.

LISTING 7.11 Using Math.PI to Calculate the Area and Circumference of a
Circle (FindArea.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Find the area and circumference of a circle</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function FindArea(){
var entry1 ;
entry1 = prompt(“Enter the radius of a circle”, “Enter the number here”);
var number = new Number();
number = Number(entry1);
if (isNaN(number)){
document.write(“<p>You did not enter a valid number.

Hit your browser’s Refresh button to try again.</p>”);
}
else{
document.write(“<p>You entered a radius of “ + number + “</p>”);
document.write(“<p>The area of the circle is “
+ (number * number * Math.PI) + “</p>”);
document.write(“<p>The circumference of the circle is “
+ (2 * number * Math.PI) + “</p>”);
} // end else
} // end function FindArea()
// -->
</script>
</head>
<body onload=”FindArea()”>

</body>
</html>

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 269

We ask the user to input a chosen radius for the circle and, if a valid number has been
entered, we calculate the area and circumference of the circle—each calculation uses
Math.PI, as well as the document.write() method to output the results to screen.

Let’s move on to look at the methods of the Math object.

Methods of the Math Object
No matter what you are using JavaScript for it is unlikely, unless you want to use it for
ambitious mathematics, that you will find it lacking in terms of mathematical functions.
The Math object has a large number of methods that cover many eventualities. See
Table 7.2.

TABLE 7.2 The Methods of the JavaScript Math Object

Method Description

abs() Returns the absolute (positive) value of a number

acos() Returns the arc cosine of a value

asin() Returns the arc sine of a value

atan() Returns the arc tangent of a value

atan2() Returns the angle of two polar coordinates

ceil() Rounds up a fractional number to the next integer

cos() Returns the cosine of an angle

exp() Returns Euler’s constant raised to the power of a number

floor() Rounds down a fractional number to the next integer

log() Returns the natural logarithm of a number

max() Returns the maximum number from a comma separated list

min() Returns the minimum number from a comma separated list

pow() Returns one number raised to the power of another

random() Generates a random number between 0 and 1

round() Rounds a number to the nearest integer (rounding .5 up)

sin() Returns the sine of an angle

sqrt() Returns the square root of a number

tan() Returns the tangent of an angle

270 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 270

Numbers and Math 271

7

Many of these methods provide trigonometric functions. Maybe you already know that
you will have a use for them, but if you don’t then don’t ignore them. They can be useful
for all sorts of things such as creating some special dynamic HMTL effects. In the
remainder of the chapter, we will look at some, but not all, of the Math object’s methods.

Finding Absolute Values Using the abs() Method
The simplest of the Math object’s methods is probably the abs() method. It finds the
absolute value of the number it is applied to. The absolute value of a number is the dif-
ference from zero, and it is always expressed as a positive number, whether the original
number was positive or negative. For example, as shown in the following:

Math.abs(1) // returns 1
Math.abs(-1) // returns 1

Hopefully, from this example it isn’t too difficult to see that the absolute value of a num-
ber was the positive magnitude of that number.

Finding Square Roots Using the sqrt() Method
The sqrt() method is another method belonging to the Math object, and it returns the
square root of its argument. When we want to find the square root of a number we
simply pass it to this method as its sole argument. The value it returns is the root of the
number we send it:

Math.sqrt(4) // returns 2
Math.sqrt(9) // returns 3
Math.sqrt(16) // returns 4
Math.sqrt(25) // returns 5

The ceil(), floor(), and round() Methods
JavaScript provides three methods you can use for rounding numbers. The ceil()
method is for rounding up, the floor() is for rounding down, and the round() method is
for rounding off.

The ceil() method is the means of rounding up numbers to the nearest integer. In order
to use it, you need to address it through the Math object and send it the number you want
to round up as a parameter. Here are some examples:

Remember that the properties of the Math object are expressed only in
uppercase characters and the methods of the Math object are expressed in
lowercase characters. Mixing the case of a property or method name can
cause obscure errors, particularly in lengthy calculations.

Caution

09 2978 CH07 4/10/02 10:46 AM Page 271

Math.ceil(1.0001) // returns 2
Math.ceil(1.9999) // returns 2
Math.ceil(-1.0001) // returns -1
Math.ceil(-1.9999) // returns -1

If you want to round down a number, then you need to use the floor() method. It is
used in exactly the same way as the ceil() method—a single number is provided as the
argument of the method. Here are some examples:

Math.floor(1.0001) // returns 1
Math.floor(1.9999) // returns 1
Math.floor(-1.0001) // returns -2
Math.floor(-1.9999) // returns -2

Of course sometimes you will need to round up numbers if their fractional part is greater
than a half, but if it is less, then you will want to round it down. This is where the
round() method comes in. When you round off numbers in this way a choice needs to be
made about which side a number with a fractional part of exactly one half will be round-
ed. In the case of JavaScript, the choice was made that it should be rounded up. To
demonstrate the use of the round() method, here are some more examples:

Math.round(1.0001) // returns 1
Math.round(1.4449) // returns 1
Math.round(1.5000) // returns 2
Math.round(1.5001) // returns 2
Math.round(1.9999) // returns 2

Note that when you pass a data container such as a variable as the parameter to one of
the three rounding methods the data container’s original value is not changed. Therefore
if you want to use the rounded number at some point later in a script, you will need to
store the result.

Finding Maximum and Minimum Values Using the max() and
min() Methods
To find the maximum or minimum number in a series of numbers, we could of course
write a script—perhaps as a function to make reuse easier. This would likely involve
storing the numbers in arrays and string comparisons. As you might imagine, it could all
get a bit messy. Thankfully we don’t need to script that ourselves because the Math
object provides a couple of methods.

The max() and min() methods are fairly self-explanatory in what they do. Listing 7.12
shows the max() and min() methods in use.

272 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 272

Numbers and Math 273

7

LISTING 7.12 Finding the Smallest and Largest Numbers Among Three
Values (FindMaxAndMin.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Finding the maximum and minimum number</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SetFocus(){
document.SimpleForm.FirstInput.focus();
} // end function SetFocus()

function FindMaxAndMin(){
var num1 = document.SimpleForm.FirstInput.value;
var num2 = document.SimpleForm.SecondInput.value;
var num3 = document.SimpleForm.ThirdInput.value;
if (isNaN(num1) || isNaN(num2) || isNaN(num3)){
alert(“You made an invalid entry. Please start again.”);
document.SimpleForm.reset();
SetFocus();
} // end if
else { // all entries are valid numbers
var MaxNum = Math.max(num1,num2,num3);
var MinNum = Math.min(num1,num2,num3);
var alertString = “You entered “ + num1 + “, “ + num2 + “ and “ +num3;
alertString += “\nThe largest number is “ + MaxNum;
alertString += “\nThe smallest number is “ + MinNum;
alert(alertString);
document.SimpleForm.reset();
SetFocus();
} // end else
} // end function FindMaxAndMin()

// -->
</script>
</head>
<body onload=”SetFocus()”>
<form name=”SimpleForm”>
<table>
<tr>
<td width=”25%” align=”right”>Enter first number:</td>
<td><input name=”FirstInput” type=”text”></td>
</tr>
<tr>
<td width=”25%” align=”right”>Enter second number:</td>
<td><input name=”SecondInput” type=”text”></td>
</tr>

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 273

<tr>
<td width=”25%” align=”right”>Enter third number:</td>
<td><input name=”ThirdInput” type=”text”></td>
</tr>
<tr>
<td width=”25%” align=”right”> </td>
<td><button type=”Button” onclick=”FindMaxAndMin()”>
Click to calculate</button></td>
</tr>
</table>
</form>
</body>
</html>

In the example in Listing 7.12, we used an XHTML form to collect three num-
bers which are to be processed to find the maximum and minimum of the three

values.

The page opens with the focus set on the first <input> element in the form, by means of
an onload attribute on the <body> element which calls the SetFocus() function. The user
enters three values, one in each of the <input> elements. Each of the values entered is
assigned to three variables—num1, num2, and num3. If even one of the three variables is
not a number, which we test by means of the isNaN() function, then an error message is
output, the form is reset, and the focus is again placed on the first <input> element in the
form.

If three valid numbers are entered then a string, held in the alertString variable, is dis-
played using an alert box. The three numbers entered are listed in the order in which they
were entered and the maximum and minimum values of the three numbers are displayed.
Once the user has acknowledged the alert box then the user can enter three more
numbers.

274 Day 7

LISTING 7.12 continued

ANALYSIS

The text you want to add to the <button> element must be placed between
the <button> start tag and a </button> end tag. If you try to use a
<button/> tag with attributes, then you will have only a tiny button with no
text displayed on screen.

Note

09 2978 CH07 4/10/02 10:46 AM Page 274

Numbers and Math 275

7

Creating Random Numbers Using the random() Method
Possibly the most fun method we have belonging to any JavaScript object is the Math
object’s random() method, although it can be put to serious practical uses too. The
random() method generates a random number between 0 and 1. So, if we wanted to cre-
ate random numbers greater than 1, we would generate a random number between 0
and 1 and multiply by an appropriate number to achieve the correct range of random
numbers.

Listing 7.13 provides a page where the user can choose a maximum number and one or
more random numbers, up to the chosen maximum, will be generated.

LISTING 7.13 Generating Random Numbers up to a User Selected
Maximum (RandomNumbers.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Generating random numbers</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
var MaxNum = 0;
var ToDisplay;

function SetFocus(){
document.SimpleForm.FirstInput.focus();
} // end function SetFocus()

function SubmitMax(){
var num1 = document.SimpleForm.FirstInput.value;
if (isNaN(num1)){
alert(“You made an invalid entry. Please start again.”);
document.SimpleForm.reset();
SetFocus();
} // end if
else { // entry is a valid number
MaxNum = document.SimpleForm.FirstInput.value;
} // end else
} // end function SubmitMax()

function GenerateRandom(){
if (MaxNum!==0){
ToDisplay = (MaxNum * Math.random());
ToDisplay = formatNumber(ToDisplay, 0);
alert(“Random number up to “ + MaxNum + “ is “ + ToDisplay);
document.SimpleForm.reset();
SetFocus();

INPUT

09 2978 CH07 4/10/02 10:46 AM Page 275

} // end if
} // end function SubmitMax()

function ClearAndSet(){
document.SimpleForm.reset();
SetFocus();
MaxNum = 0;
}

function formatNumber(theNum, numDecPlaces)
{

var num = new String();
num = “” + theNum;
var pos = 0;
count = 0;
while (num.substring(pos-1,pos)!== “.”) {
pos += 1 ;
count += 1;
}
while (pos < (count+numDecPlaces)){
pos +=1;
} // end while
return num.substring(0,pos);

}

// -->
</script>
</head>
<body onload=”SetFocus()”>
<h3>Generate random numbers up to a chosen maximum.</h3>
<form name=”SimpleForm”>
<table>
<tr>
<td width=”30%” align=”right”>Enter maximum number:</td>
<td><input name=”FirstInput” type=”text”></td>
</tr>
<tr>
<td width=”25%” align=”right”> </td>
<td><button type=”Button” onclick=”SubmitMax()”>
Submit max. number</button></td>
</tr>
<tr>
<td width=”25%” align=”right”> </td>
<td> </td>
</tr>
<tr>
<td width=”25%” align=”right”><button type=”Button”
onclick=”ClearAndSet()”>Clear and Start again</button></td>
<td><button type=”Button” onclick=”GenerateRandom()”>

276 Day 7

LISTING 7.13 continued

09 2978 CH07 4/10/02 10:46 AM Page 276

Numbers and Math 277

7

Click to calculate random number</button></td>
</tr>
</table>
</form>
</body>
</html>

The listing is longer than many of the others that you have seen, so let’s take it
one step at a time.

The onload attribute on the <body> element calls the SetFocus() function to set focus
on the <input> element named “FirstInput”. In addition, the variable MaxNum is set to
zero.

When the user enters a number and then clicks on the button labeled “Submit max.
number”, the SubmitMax() function is called and the chosen maximum number is stored
in the variable MaxNum.

Clicking on the button labeled “Click to calculate random number” calls the
GenerateRandom() function which, using an if statement to control what happens, gen-
erates and displays a random number only if the MaxNum variable is not equal to zero.
During the process of displaying the generated random number the GenerateRandom()
function calls the formatNumber() function that you saw in Listing 7.1. On this occasion
we set the number of decimal places to zero so that an integer number is displayed. If
you want to generate random numbers which allow numbers beyond the decimal point,
then adjust the second argument of the call to the formatNumber() function. The user
can generate multiple random numbers up to the chosen maximum, until such time as a
new maximum number is passed to the SubmitMax() function or the form is cleared by
clicking the button labeled “Clear and Start again”.

The button labeled “Clear and Start again” resets the form and returns focus to the
<input> element. In addition, the MaxNum variable is set to zero. Thus, if the button
labeled “Click to calculate number” is clicked after the form has been cleared, then it
does nothing until a new maximum number has been entered by the user, and the button
labeled “Submit max. number” has been clicked.

The exp() and pow() Methods
The Math object has two methods for raising numbers to a power. The first is specific and
is provided as a shortcut to a common mathematical process. This method is the exp()
method. It returns Euler’s constant raised to the power of the numeric parameter it is
given. For example, as shown here:

LISTING 7.13 continued

ANALYSIS

09 2978 CH07 4/10/02 10:46 AM Page 277

// Euler’s constant, e = 2.718281828459045
Math.exp(1) // returns 2.718281828459045
Math.exp(2) // returns 7.38905609893065
Math.exp(3) // returns 20.085536923187668

In the first example, e is raised to the power of one, which of course simply is the value
of e itself. In the second example, e is raised to the power of 2 (e squared), and in the
third and final example, e is raised to the power of 3 (e cubed).

This may be a handy shortcut for some advanced math, but we also have a more general
method for raising other numbers to powers that we specify. To do this we use the pow()
method. With the pow() method, you must specify two parameters. The first is the num-
ber that you want to raise, and the second is the number that you want to raise it by. Here
are some examples just to make sure that is clear:

Math.pow(2,2) // returns 4
Math.pow(2,3) // returns 8
Math.pow(2,4) // returns 16
Math.pow(2,5) // returns 32

The first line is 2 raised to the power of 2 (2 squared), the second line is 2 raised to the
power of 3 (2 cubed), and the third and fourth lines are 2 raised to the power of 4 and 5
respectively. These numbers can of course be any values you want to use. This includes
raising numbers to negative powers (which is the same as 1 over the number raised to the
same positive power). The following shows you some examples:

Math.pow(2,-2) // returns 0.25 (1/Math.pow(2,2))
Math.pow(2,-3) // returns 0.125 (1/Math.pow(2,3))
Math.pow(2,-4) // returns 0.0625 (1/Math.pow(2,4))
Math.pow(2,-5) // returns 0.03125 (1/Math.pow(2,4))

Creating Your Own Math Functions
Although the Math object has many methods, if you use math extensively in your scripts
you will probably run across situations where you need a function that isn’t present as a
method of the Math object. If this happens we would encourage you to think about how
you could use the methods that the Math object does have to create your own functions.
We have included three functions that you may find useful. If you don’t foresee yourself
using a lot of math on your Web site, feel free to skip these examples and come back to
them at a later time, if you find you need them after all.

Finding the Factorial of a Number
The factorial of a number can be calculated using the ability of functions to recurse (call
themselves repeatedly), as shown here:

278 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 278

Numbers and Math 279

7

function factorialOf(theNum)
{

if (theNum > 0)
return theNum * factorialOf(theNum-1);

else return 1
}

Let’s follow the flow through the factorialOf() function. If the number that is the
function’s argument is 0 then the number 1 is returned.

If the theNum argument is greater than zero, then the fourth line of the factorialOf()
function calls itself but with an argument one less than the theNum argument. This
process is called recursion.

Let’s look at what happens if the argument passed to the factorialOf() function is 3.
The number to be returned is 3 multiplied by factorialOf(2), which returns 2 and calls
the factorialOf(1), which returns 1 and calls factorialOf(0), which returns 1. Thus
factorialOf(0) returns 1, which is multiplied by the value returned by
factorialOf(1), which is 1, which in turn is multiplied by the value returned by
factorialOf(2), which in turn is multiplied by the number within factorialOf(3).
Thus we have the following:

1 * 1 * 2 * 3

So the expression factorialOf(3) returns the value of 6.

When using recursion you need to be sure that there is some situation where recursive
calls stop being made. In this example, when the argument reaches zero the value
returned is 1 and no further recursive function calls are made.

Finding the nth Root
Another function that may come in useful is being able to find roots of a number other
than the square root. Before we try to write a function to do this, let’s consider how we
might do it with math notation. To demonstrate, consider the following expression that
contains three numbers x, y, and z:

x = y ^ z

In this example, let’s assume that we know the values of x and z, and we need to find
the value of y. If we were using a calculator, we would find the zth root of x. But how
would we do it if our calculator only had a square root button (as JavaScript does)? Well
we could cancel off the power of z from the righthand side by raising it to one over z.
However, if we do that then we also have to raise the lefthand side to one over z, as
shown here:

x ^ (1/z) = y ^ z ^ (1/z)

09 2978 CH07 4/10/02 10:46 AM Page 279

On the righthand side the z ^ (1/z) reduces to 1 and we are simply left with y. We now
have a formula for finding y, which if we swap the sides is as follows:

y = x ^ (1/z)

Therefore the zth root of x is the same as raising x to the power of one over z. There is a
method belonging to the Math object which can do this, as shown here:

function nthRootOf(theNum, theRoot)
{

return Math.pow(theNum, 1/theRoot)
}

Later in the book you will see how you can add this function to the Math object as one of
its methods.

Log to Base N
The proof for the following function will not be included, but we have included the func-
tion as you may find it useful at some point. The Math object has a method that finds the
natural log (log to base e) of the number you pass to it as a parameter. Unfortunately it
does not include a method for the other common log function which is log to base 10.
This is quite easily solved.

To find the log of a number to any base, you simply need one log function. It doesn’t
matter which base it is for. We already have the method for the natural log, which will do
nicely. As long as we use the same log function, if we divide the log of one number by
the log of another number, the result is the same as if we had taken the log of the first
number to the base of the second. Therefore if we were to use JavaScript to find the log
to base 10 of x, we would simply write the following:

Math.log(x) / Math.log(10)

We could of course incorporate this into a function, given a suitable name such as
“log10()”. However we can make it even more general and create a function that will
find the log of any number to any base. To do this, you could write something like the
following:

function logN(theBase, theNum)
{

return Math.log(theNum) / Math.log(theBase);
}

There are many, many more things you can do with JavaScript from a mathematical
point of view. We hope you are starting to feel comfortable with the ways these objects
and their methods and properties can be used in Web pages where calculations are
needed.

280 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 280

Numbers and Math 281

7

Summary
In this chapter we have gone beyond simple arithmetic operators and introduced you to
the use of the JavaScript Number and Math objects for numerical calculations. We also
looked at the properties and methods of the Number object and created some examples
that used the Number object.

In addition you have been introduced to the properties and methods of the Math object
which can be very useful in a variety of situations where mathematical calculations are
needed.

Workshop
In this workshop we will review some of the new material that you have learned about
the Number and Math objects in this chapter.

Q&A
Q. True or False. The Number object has a NaN property which you can use to test

whether or not a value is a number.

A. False. You need to use the isNaN() function to test whether or not a value is a
number.

Q. What property of the Math object would you use when calculating the area of a
circle?

A. The Math.PI property is used in the calculation of the area of a circle. The area of a
circle is PI times the radius squared.

Quiz
1. The Number object has a value property. True or False?

2. Which methods of the Math object allow you to find the largest and smallest of a
set of numbers?

3. Which property of the Math object is used in the calculation of the area of a circle?

4. How can you create random numbers using the Math object?

Quiz Answers
1. False. To access the numeric value of a Number object, you use the valueOf()

method.

2. To find the largest and smallest of a set of numbers, you would use Math.max()
and Math.min().

09 2978 CH07 4/10/02 10:46 AM Page 281

3. The PI property of the Math object is used to calculate the area of a circle. The area
of a circle is the radius squared multiplied by Math.PI.

4. The Math object has a random() method which finds random numbers between 0
and 1. To create larger random numbers you would need to multiply the number
generated by the random() method by the maximum limit within that which you
want to generate a random number.

Exercises
1. Look at Listing 7.1 and adapt it so that instead of using prompt boxes, the numbers

are entered using an XHTML form.

2. Create a Web page that uses the JavaScript function that you were shown to raise a
number to its nth power.

282 Day 7

09 2978 CH07 4/10/02 10:46 AM Page 282

Let’s Take It Further
8 The Browser Issue

9 Date and Time Manipulation

10 Events and Event Handling

11 Dynamic HTML

12 Windows and Frames

13 Regular Expressions Make It
Easier

14 Advanced Array Management

WEEK 2

10 2978 Part 2 4/10/02 10:39 AM Page 283

10 2978 Part 2 4/10/02 10:39 AM Page 284

DAY 8

WEEK 2

The Browser Issue
JavaScript runs on almost all of the current versions of Web browsers available
today, including specifically Microsoft Internet Explorer and Netscape
Navigator. Unfortunately, each browser that allows for JavaScript scripting does
not support the same JavaScript features. In fact, the versions of JavaScript sup-
ported by the different browsers varies from browser to browser. This chapter
looks at the differences in the various versions of JavaScript supported by
browsers—specifically the differences between Internet Explorer and Netscape
Navigator. We also will discuss how to design your JavaScript code for
cross-browser compatibility.

Finally, we will look at the W3C DOM developed by the World Wide Web
Consortium as a common document object model and how you can use it for
accessing specific elements of the Web page. This chapter will teach you:

• The differences between JavaScript versions supported by different
browsers

• Cross-browser compatible scripting

• About the W3C DOM

11 2978 CH08 4/10/02 10:45 AM Page 285

Different Browsers, Different JavaScript
As we have previously discussed, JavaScript differs from most other programming lan-
guages in that it is a scripting language, not a compiled language. Languages, such as
C++ and Java, are used to create program code that is compiled allowing it to run on vir-
tually any machine. Typically, the operating system where the code will run (such as
Microsoft Windows or the Macintosh OS) is the developer’s only consideration when
distributing the compiled code.

A scripting language, on the other hand, relies on the browser to interpret the scripted
code on the Web page. In other words, each line of JavaScript code is interpreted at run-
time by the browser that accesses the page containing the code. Because of this factor, it
is obvious that JavaScript code can only run on a browser that supports JavaScript. The
most popular browsers today, Netscape Navigator and Internet Explorer both provide
strong support for JavaScript, but unfortunately the JavaScript features supported by
these browsers varies.

JavaScript History
JavaScript originally got its start as a scripting language for Netscape Navigator.
Netscape originally recognized the need for a scripting language to do the following:
allow Web server administrators to manage the Web server and connect its pages to other
services, provide Web page authors the ability to create scripts to run on a Web page and
perform tasks such as verifying a value typed into a field, and create an interface for
communicating with Java applets placed on an HTML page. This scripting language was
originally called “LiveScript.”

Before the release of Navigator 2, Netscape and Sun formed an agreement to call the
new scripting language JavaScript. JavaScript was then introduced by Netscape as part of
Netscape Navigator 2. When Navigator 3 was released, it included an updated version of
JavaScript, JavaScript 1.1.

At the same time Netscape was releasing Navigator 3, Microsoft released Internet
Explorer 3 with its own version of JavaScript named JScript. Because the Java name was
trademarked by Sun, Microsoft chose to call it JScript to avoid the need to license the
name from Sun. Although JScript was intended to parallel the capabilities of the
JavaScript 1.1 available with Navigator 3, its functionality more closely resembled that
which was available in the original version of JavaScript released with Navigator 2.

Finally, with the release of Navigator 4 and Internet Explorer 4, JavaScript and JScript
essentially mirrored core functionalities. Although Microsoft continued to call its version
JScript, Internet Explorer script tags recognized both JScript and JavaScript, allowing

286 Day 8

11 2978 CH08 4/10/02 10:45 AM Page 286

The Browser Issue 287

8
for both types of scripting. Of course, that was not true of Netscape Navigator, which
only recognizes JavaScript script tags.

In an effort to create a more standardized core language, the European Computer
Manufacturers Association (ECMA) met with Microsoft, Netscape, and other organiza-
tions with JavaScript interests. Formal language specifications were published as stan-
dards for the language. Because of the licensing issues with the name JavaScript, the new
language was named ECMAScript.

Currently the ECMA maintains the standards for the core language. The core language
typically maintains the most compatible features consistent between Netscape Navigator
and Microsoft Internet Explorer. Therefore, you can generally feel confident that every-
thing within the ECMA standard will work on the current browser versions for both
Navigator and Internet Explorer, but may not be backward compatible to previous
browser versions, or any of the many other browsers available.

Unfortunately the ECMA standard does not include specifications for all the fun and
exciting features you find on various Web sites that you visit today. Most of these
extended features are built in to the browsers by Microsoft and Netscape. In order to take
advantage of these features, you potentially limit the capability of your audience to view
your site in all its glory. One good example of this would be when Navigator 3 provided
additional capability with the Browser object that allowed Web developers to create
rollover button effects like those which you see on most current sites today. Microsoft
was slower to add this type of feature. So Internet Explorer users did not see the rollover
effects when visiting sites that had incorporated that feature. Of course this functionality
was later added to Internet Explorer. As you can probably deduce, the total functionality
available is based not only on the version of JavaScript supported by the browser but also
the browser version and its browser object model.

You can refer to Appendix E, “A Short History of JavaScript,” for a more
detailed history.

Note

ECMA Standards
As mentioned earlier, the ECMA maintains the standards for the core JavaScript lan-
guage, called ECMAScript because of licensing issues with Sun. Both Netscape
Navigator and Microsoft Internet Explorer maintain that they are ECMA-compliant,
meaning that they include all of the core language features as outlined by the ECMA
standard. The ECMA standards body maintains a document called ECMA-262, which
contains all core ECMAScript language standards. You can find the latest version of this
document at http://www.emca.ch.

11 2978 CH08 4/10/02 10:45 AM Page 287

It is important to recognize that the ECMA provides only core language standards. It is
important to be familiar with some of these standards so that you can determine more
quickly if the JavaScript functionality you want to add will be supported by all current
browsers. For example, EMCAScript Edition 3 specifies the following core components:

• Types—There are nine different types that can be used in expressions: Undefined,
Null, Boolean, String, Number, Object, Reference, List, and Completion.

• Objects—There are 11 different object types that are part of the core language stan-
dard: Global, Object, Function, Array, String, Boolean, Number, Math, Date,
RegExp, and Error objects. As you work with different browsers, you will find that
each browser has its own set of objects for accessing the components of the browser
window.

• Keywords—The following words are used as keywords: break, case, catch,
continue, default, delete, do, else, finally, for, function, if, in, instanceof,
new, return, switch, this, throw, try, typeof, var, void, while, with.

• Reserved Words—These words have been reserved for future use within JavaScript
and therefore should be avoided within your scripts: abstract, boolean, byte,
char, class, const, debugger, double, enum, export, extends, final, float, goto,
implements, import, int, interface, long, native, package, private, protected,
public, short, static, super, synchronized, throws, transient, volatile.

Cross-Browser Compatible Scripting
Because your Web site has the potential to be accessed by multiple browsers, your best
bet is to create cross-browser compatible code. What does this mean? Essentially, if your
code is cross-browser compatible it should execute reliably on all browsers. On the sur-
face this sounds like a fairly straightforward statement. The problem comes in deciding
what you want to use for your standard, for example, browser version, language, or
platform.

As previously mentioned, the ECMA standard creates a standard for core JavaScript code
that will execute reliably on the latest versions of Netscape Navigator and Microsoft
Internet Explorer. Since these browsers are the most widely used, it is feasible to assume
that the majority of the visitors that will be visiting will be using one of these browsers.
However, it also is highly probable that they may not be running the latest version of
either browser.

Although it is assumed that visitors will have either Navigator or Internet Explorer, this
may not necessarily be the case. Especially with the surge of new mobile devices, it is
highly likely that many visitors will have browser interfaces that do not support scripting.

288 Day 8

11 2978 CH08 4/10/02 10:45 AM Page 288

The Browser Issue 289

8
Because this book focuses on JavaScript 1.5, most of the examples in the book are
designed to work on browsers that support that version. If you want to code for earlier
browsers you can refer to Appendix A, “New Features in JavaScript 1.5,” for the list of
new features that were added to JavaScript 1.5. Table 8.1 identifies each of the JavaScript
versions and the corresponding browsers that supported them.

TABLE 8.1 JavaScript Version Support

JavaScript Version Browser Support

JavaScript 1.1 Netscape 3.01

JavaScript 1.2 Netscape 4.05, Internet Explorer 4.01

JavaScript 1.3 Netscape 4.61, Internet Explorer 5.0

JavaScript 1.4 Mozilla 5.0, Alpha Pre-Release

JavaScript 1.5 Netscape 6, Internet Explorer 5.5

As you can see from the table, JavaScript 1.5 features were supported beginning with
Netscape Navigator 6 and Internet Explorer 5.5. Let’s look at ways to identify browsers
that don’t support this version of JavaScript, and how to design your code to avoid these
problems.

Browsers That Don’t Support JavaScript
Although users can download the latest browser for free from the appropriate site, the
chance of being visited by browsers that don’t support JavaScript would appear to be
very limited. After all, JavaScript has been supported by Microsoft and Netscape since
around 1996. But, as Internet access becomes available on more different devices, such
as palm-sized devices and cell phones, it is quite common for sites to be accessed by
browsers that do not support JavaScript. These types of browsers run on devices with
limited resources, so more demanding features, such as JavaScript support, are not avail-
able on most of these devices.

Because of the growing potential of your site being accessed by a device that does not
support JavaScript, you will want to design your site so that it avoids any of these
potential errors.

Most older browsers ignore HTML tags that they do not recognize, therefore, when they
encounter a <script> tag they typically ignore that tag. But because JavaScript code is not
placed within brackets <> those lines of code will be placed on the Web page as text.
Because of this situation, we need to use the HTML comment markers around the
JavaScript code. By doing this, the non-JavaScript supporting browsers will ignore your

11 2978 CH08 4/10/02 10:45 AM Page 289

JavaScript code, but the browsers that support JavaScript will ignore the comment mark-
ers and execute the JavaScript code. You place the comment markers in your JavaScript
code as follows:

<script language=”JavaScript” type = “text/javascript”>
<!--
window.alert(“JavaScript code goes here.”);

//..>
</script>

Notice the <!-- tag marks at the beginning of the JavaScript code and the //..> tag
marks the end of the script. The browsers that do not support scripting will ignore all
code between those tags. Of course, they will also ignore the HTML </script> tag that
signals the end of the JavaScript code.

290 Day 8

Be aware there are some older America Online browsers that do not ignore
the code placed within the HTML comment lines. If a user visits your page
using one of these old browsers, your JavaScript code will appear on the
Web page. Fortunately, these browsers are very outdated and rarely used at
this time.

Caution

Keep in mind, the HTML comment markers do not hide your JavaScript code. They only
tell the browser to ignore the code during processing. As you are probably well aware,
most browsers allow for the source code of a page being visited to be viewed by the visi-
tor. This will include any JavaScript code that you have embedded within your page.

Browsers with JavaScript Support Turned Off
Even though a browser supports JavaScript, there is still the possibility that the
JavaScript support may be disabled for that particular browser. Nearly all browsers that
support JavaScript provide the option of disabling JavaScript. Although browsers default
to allowing JavaScript, many IS departments choose to disable Java and JavaScript sup-
port to eliminate any potential security violations. Even if the browser is set to support
JavaScript, the corporate Firewall may attempt to filter out JavaScript lines from the
incoming HTML code. It is quite simple to disable the support of JavaScript from a
browser as shown in Figure 8.1, which illustrates the Netscape Navigator Preferences
window.

11 2978 CH08 4/10/02 10:45 AM Page 290

The Browser Issue 291

8

To allow for the potential that the scripting support for the browser has been disabled,
each of the browsers that support JavaScript provides an additional set of HTML tags—
<noscript> and </noscript>. Each browser will execute the code within these tags if
the JavaScript support is disabled for the browser. Listing 8.1 illustrates code you can use
to notify the user that the JavaScript support has been disabled for his browser.

LISTING 8.1 Catching Browsers with JavaScript Disabled (JSDisabled.htm)

<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
window.alert(“JavaScript is enabled on this browser.”);
//..>
</script>
<title>Check to See if Scripting is Enabled</title>
<noscript>
Your browser has JavaScript disabled.
</noscript>
</head>
<body>
</body>
</html>

As you can see in Figure 8.2, if the browser does not have JavaScript support enabled,
the code within the <noscript> </noscript> tags will execute. Remember, you cannot
place any script within those tags because the browser will not know how to execute it.
Therefore, you can only use HTML tags within the tags.

FIGURE 8.1
Netscape allows
each user to specify
whether to allow
JavaScript code to
execute.

INPUT

11 2978 CH08 4/10/02 10:45 AM Page 291

Keep in mind that you will want to add the <noscript> tags after each location where
you have <script> tags. This instructs the browser as to the code to run if the JavaScript
support is disabled.

Determining Browser Information
Another way to create cross-browser code is to determine the browser type and version
for the user that is visiting you. You can get browser-specific information from the
Navigator object. The Navigator object was originally added by Netscape to Navigator
2.0, but other browsers soon followed suit. It has become a standard for all browsers that
support JavaScript, making it another good method to use when determining whether
your code will run on a user’s browser.

Although the Navigator object does appear on browsers that support JavaScript, it is not
a JavaScript object. Also, it is not part of the DOM (Document Object Model) that we
will be discussing later in this chapter. In fact, the Navigator object sits alone with the
sole purpose of gathering browser-specific information that can be accessed with its
properties. You can access a property of the object by typing the following:

navigator.propertyname

There are several different properties available for the Navigator object, as shown in
Table 8.2. Although this object was originally implemented by other browsers to be con-
sistent with Netscape, there are properties supported only by Internet Explorer, and oth-
ers that only Netscape supports. Therefore, to avoid potential issues, the table identifies
the browsers that support each property.

292 Day 8

FIGURE 8.2
When your page dis-
plays on a browser
with JavaScript dis-
abled, the HTML
code within the
<noscript> tags
executes.

OUTPUT

11 2978 CH08 4/10/02 10:45 AM Page 292

The Browser Issue 293

8
TABLE 8.2 Navigator Properties

Property Browser Description

appCodeName both Returns the internal code name of the browser.
Both Navigator and Internet Explorer return a
value of Mozilla.

appMinorVersion IE 4.0+ Specifies the minor version number of the browser.
Minor version number changes occur due to
patches or service-pack updates.

appName both Returns the official name of the browser.

appVersion both Returns the version number of the browser.

browserLanguage IE 4.0+ Identifies the language supported by the browser.

cookieEnabled both Returns a Boolean value of True if the browser is
set to allow cookies, or False if cookies are not
allowed.

cpuClass IE 4.0+ Specifies the type of CPU being used by the
computer where the browser is running.

language Netscape 4.0+ Identifies the language supported by the browser.

online IE 4.0+ Returns a value of True if the browser is in online
mode. Otherwise, a value of False is returned.

platform both Specifies the platform (operating system) on which
the browser is running.

securityPolicy Netscape 4.7+ Specifies the encryption policy specified on the
computer.

systemLanguage I.E. 4.0+ Identifies the default language supported by the
user’s operating system.

userAgent both Returns a string containing the following property
values: appCodeName, appName, appVersion, lan-
guage, and platform.

userLanguage I.E. 4.0+ Names the language the user has specified on their
system.

vendor Netscape 6.0+ Returns the name of the company that makes the
browser.

As you can see there are several different properties supported by the Navigator object,
depending on which browser you are using. You will probably find additional properties
of the Navigator object available only on specific browsers. Typically when using the
Navigator object to determine browser-specific information you are going to want to
select properties supported by all browsers, such as appName and appVersion.

11 2978 CH08 4/10/02 10:45 AM Page 293

Probably the easiest method for determining which browser a user has is to use the
appName property as illustrated in Listing 8.2.

LISTING 8.2 Checking Browser Name (NameBrowser.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
if (navigator.appName == “Microsoft Internet Explorer”)
{
alert(“Your browser is Microsoft Internet Explorer.”);
}
else if (navigator.appName == “Netscape”)
{
alert(“Your browser is Netscape Navigator.”);
}
else
{
alert(“You are not using Netscape Navigator or Internet Explorer.”);
}
//..>
</script>
<title>Find Browser Name</title>
</head>
<body>
</body>
</html>

The code in Listing 8.2 displays an alert window with a message indicating the browser
name, as shown in Figure 8.3. You will notice that I added an else statement to accom-
modate any other browsers that were not Netscape Navigator or Internet Explorer.

294 Day 8

INPUT

FIGURE 8.3
The appName proper-
ty returns the name
of the browser that is
viewing your Web
page.

OUTPUT

11 2978 CH08 4/10/02 10:45 AM Page 294

The Browser Issue 295

8
The final else statement may initially appear to handle all issues, but it doesn’t.
Some browsers, specifically Opera, have the ability to customize your browser

identification. By changing this setting in the preferences, an Opera browser can appear
to be Netscape Navigator or Internet Explorer. Although this setting was added to the
browser to ensure access to sites that are coded for a specific browser type, it defeats
your purpose for checking.

Fortunately there is another property that you can use to get this same information, the
userAgent property. Since this property returns more than the browser name, you have to
look in the string to determine what value was returned for the appName value property.

When you use the userAgent property it returns a string that contains information about
the user’s browser. The browser and operating system that are being used to access your
site determines which property values are actually returned by the userAgent property.
Nearly always the following properties are returned in the string: appCodeName,
appVersion, appName, and platform. For example, Figure 8.4 illustrates the string
returned by Internet Explorer 6.0 running on Windows XP.

ANALYSIS

FIGURE 8.4
The actual string
returned by the
userAgent property
varies slightly based
upon the user’s
browser and
operating system.

As you can see in Figure 8.4, the string returned by the userAgent property is fairly
lengthy. To determine if a specific browser name is in the string, you will need to search
the string. One good method to use is the indexOf() string method, which will
determine if one string contains another string.

The indexOf() method allows you to compare the two strings, and it returns
an integer value indicating the location where the second string is located
within the first string. If the string is not found, the method returns a
value of -1.

Note

11 2978 CH08 4/10/02 10:45 AM Page 295

By combining the indexOf() method with if statements, you can determine which
browser is visiting your site, as shown in Listing 8.3.

LISTING 8.3 Using the userAgent Property (UserAgent.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
var bname = “browser”;
if (navigator.userAgent.indexOf(“MSIE”) != -1)
{
bname = “Internet Explorer”;
}
else if (navigator.userAgent.indexOf(“Opera”) != -1)
{
bname = “Opera”;
}
else if ((navigator.appName.indexOf(“Netscape”) != -1) ||
parseFloat(navigator.appVersion >= 3.0))
{
bname = “Netscape Navigator”;
}
else
{
bname = “Unknown Browser”;
}
document.write(“Your browser is: “ + bname);
//..>
</script>
<title>Display Browser Information</title>
</head>
<body>
</body>
</html>

You will notice that we still had to use a different property combination to check
for Netscape. When working with the userAgent property, the application name

(Netscape) is not part of the userAgent string for Netscape Navigator versions prior to
6.0. Therefore, you cannot just use the userAgent property to check for “Netscape” if
you want to detect Netscape versions prior to 6.0. Figure 8.5 shows how the code detects
the browser name.

296 Day 8

INPUT

ANALYSIS

11 2978 CH08 4/10/02 10:45 AM Page 296

The Browser Issue 297

8

Of course, instead of concentrating on the browser name, you may be more interested in
looking at the browser version to determine if your JavaScript code will execute properly.
You can check the browser application version using the appVersion property. If you
remember from Table 8.1, JavaScript support was added to Netscape Navigator version
3.0 and to Internet Explorer 4.01. Therefore, by making sure the browser version is
greater than 3.0 for Netscape and 4.01 for Internet Explorer, you are assured that
JavaScript is supported by those browsers. We did this type of check when looking for
Netscape in the preceding Listing 8.3 above.

Determining Browser Support for Specific Objects
Another method for creating cross-browser scripting is to use specific object support to
determine whether or not your code will execute on the specific browser. So what exactly
does that mean? Even though Netscape Navigator and Internet Explorer both have
objects for the various elements of the browser window, not all of the objects are sup-
ported by both browsers. Also, remember that even objects (such as the Document
object), which both browsers support, do not always have the same properties on both
browsers. Therefore, by checking for specific object property values you are able to
ensure that your browser supports your JavaScript code.

For example, both Netscape and Internet Explorer have an Event object that tracks infor-
mation about each event. Although they both support the same object, they do not sup-
port the same properties. In fact, Netscape Navigator supported different properties for
the object with versions 4 and 5 than with version 6. Therefore, in order to use this
object without errors on the other browsers, you need to create code to check for browser
support. One good way to do this is to use the Document object. This is a common
method used to distinguish between Internet Explorer, Navigator 6, and Navigator 4. To
do so you can use if statements to determine which document object property is sup-
ported, as shown in the following code:

if (document.all)
//Checks for IE 4.0 or later
{

FIGURE 8.5
The userAgent prop-
erty provides another
method for determin-
ing the actual
browser type.

OUTPUT

11 2978 CH08 4/10/02 10:45 AM Page 297

document.form1.text2.value = String.fromCharCode(event.keyCode);
}
else if (document.getElementById)
//checks for Netscape 6 or later
{
document.form1.text2.value = String.fromCharCode(key_event.which);

}
else if (document.layers)
//Checks for Netscape 4
{
document.form1.text2.value = String.fromCharCode(key_event.which);

}
}

You will notice that although each one of the assign statements are assigning the key
pressed to the object, a different property is being used for each.

298 Day 8

You can find out more about the Event object in Chapter 10, “Events and
Event Handling.”

Note

The W3C DOM
In Chapter 4 we looked at how JavaScript is object-based allowing you to access various
elements of the browser by changing the properties of a particular object. The objects or
elements of the browser are all part of the Document Object Model (DOM). Initially
both Microsoft Internet Explorer and Netscape Navigator developed their own indepen-
dent DOMs, making object scripting reliant on one specific browser. To help standardize
the object models to allow developers to create object-oriented scripting for multiple
browsers, the World Wide Web Consortium (W3C) developed a Document object
specification commonly referred to as the W3C DOM.

The DOM describes the relationship of all objects on the HTML page. The relationship
resembles a tree-like structure. Each object within the DOM is referred to as a node. The
first element on the tree is the Document object, and the tree structure branches out from
there. For example, the <HTML> tag is a node of the document, and the <Title> and
<Body> tags are child nodes of the <HTML> tag. Of course you are aware that the
Document object does not appear in the actual HTML code listing. The Document object
is always loaded with the page as the first element for the page.

Again every element of the page is a node, including text which is referred to as a Text
node. A node that contains other nodes, including text, is referred to as a parent node. A
node contained within another node is a child node. Therefore each line of code you

11 2978 CH08 4/10/02 10:45 AM Page 298

The Browser Issue 299

8
specify creates nodes. For example, the following HTML code creates two different
nodes:

<p>Paragraph Text</p>

The code creates a p element and a text node containing “Paragraph Text.” Since the text
node is inside of our element p node, it is considered to be a child node. To better
understand the node concept of the W3C DOM let’s look at the following code:

<html>
<head>
<title>Header Text</title>
</head>
<body>
<p><i>Body Text</i></p>
<div>
link text

</div>
</body>
</html>

If you look at this code closely, you will see that the HTML tags enclose the entire docu-
ment code. The html node is a child of the Document node. In fact, the HTML node is
the only child of the Document node. The Head and Body nodes are child nodes of the
html node, as illustrated in Figure 8.6.

FIGURE 8.6
The W3C DOM
treats each element
of the HTML docu-
ment as a separate
node, creating a tree-
like structure.

document

html

head

title

Header Text

Body

p

i

Body Text

div

a

Link Text

img

Another thing to notice with the representation in Figure 8.6 is that the DOM also tracks
sibling relationships. For example, the img and a nodes are siblings because they belong
to the same parent node (div).

11 2978 CH08 4/10/02 10:45 AM Page 299

Okay, I am sure that all sounds good, but you are probably wondering what nodes really
have to do with creating Web pages. After all, you have been able to do a lot of coding
up to now without dealing with different node issues. But like I mentioned at the begin-
ning of this section, the DOM is designed to enable you to have a more dynamic page by
interacting with elements of the browser page. The DOM nodes provide a method for
accessing and modifying various objects on the page.

Accessing Nodes
Once you understand the concept of a node as specified by the W3C DOM, we can look
at how to access specific nodes or elements of the page.

As we mentioned earlier, each node has a child node. For example, html is a child node
of the Document node. The child nodes for a node are accessed in an array-like fashion
using the childNodes collection. For example, to access the html node from the
Document node you would type the following:

document.childNodes[0]

Notice that we use 0 to access the html node. This is because the values within a collec-
tion start at 0. As a result, you can expand the reference to access the first child of the
html node by typing:

document.childNodes[0].childNodes[0]

This line would access the Head node of the document. There are two additional shortcut
properties you can use to access the first and last child nodes. For example, to access the
first child node for the Document object you can type:

document.firstChild

Again, this code accesses the html node because that is the only child of the Document
object. You can also use the lastChild property to get the last child node for a parent
node.

In much the same fashion that we stepped down through the tree, you can also back up
and determine the parent node for any node. For example, assume we have assigned the
Title node value to the titlenode variable as follows:

titlenode = document.childNodes[0].childnodes[0]

Later we can return the parent to the Title node by typing the following:

titlenode.parentNode

300 Day 8

11 2978 CH08 4/10/02 10:45 AM Page 300

The Browser Issue 301

8
It doesn’t take long to realize that references to nodes within a document can get quite
long as you step through the different levels. To solve this issue, the DOM provides
methods for specification based on the element identification or the HTML tag name.

Accessing an Element by ID
Rather than traversing the nodes to find the element that you want to access, you also can
access an element using the Id attribute assigned to the HTML element. To do this you
use the getElementById method. For example in Listing 8.4, we illustrate how this
method can be used to return the value of a text input field on a form.

LISTING 8.4 Using the getElementById() method
(GetElementByIDMethod.htm)

<html>
<head>
<title>New Page 1</title>
<script language=”JavaScript” type = “text/javascript”>
<!--
function Test()
{
alert(document.getElementById(“testinput”).value);
}
//..>
</script>
</head>
<body>
<form name=”textfield”>

<input type=”text” name=”T1” size=”20” id=”testinput”>
<input type=”button” value=”Click Here” name=”B1” onclick=”Test()”></p>

</form>
</body>
</html>

Notice that we are referencing the text input field with the code:

document.getElementById(“testinput”).value

This method makes accessing the value of the form field much easier than traversing the
tree of document nodes as illustrated earlier.

INPUT

ANALYSIS

11 2978 CH08 4/10/02 10:45 AM Page 301

Accessing Elements by Tag Name
Another method you can use to quickly access individual elements of a page is to access
the elements with the same tag name. For example, you could access all p tags, or all a
tags. This can be accomplished using the getElementByTagName method. When you use
this method it returns a collection of all elements with the specified tag name. For
example, if you have the following code:

<p>Paragraph 1</p>
<p>Paragraph 2</p>
<p>Paragraph 3</p>

You can access the first p tag by typing document.getElementsByTagName(“p”)[0].
Keep in mind, this method is only referencing the actual tag name and not a value
specified with the Name attribute for an HTML element.

302 Day 8

Because the getElementById() is a method that is specific to the W3C DOM
it is frequently used to verify a browser’s W3C compliance, as illustrated with
the following code:

if (document.getElementById)
{
document.write(“Browser is DOM compliant”);
}

You can use this type of compliance check to identify Internet Explorer 5
and later or Netscape 6 and later which are both W3C DOM compliant.

Note

Of course accessing the nodes of your HTML document is only a small por-
tion of what can be accomplished with the W3C DOM. Working with
DHTML you can perform more powerful options such as changing the attrib-
utes of a tag, adding an attribute to a tag, or even removing tags. You can
even change styles of text. We look at these options in more depth in
Chapter 11 where we discuss DHTML.

Note

Summary
In this chapter we have looked at a lot of different aspects of JavaScript and the browsers
where your code runs. We explored the fact that different browsers support different ver-
sions of JavaScript, making it a challenge to determine what JavaScript features to use
when developing your Web page.

11 2978 CH08 4/10/02 10:45 AM Page 302

The Browser Issue 303

8
We briefly looked at the history of JavaScript and how it has evolved. We discussed that
the ECMAScript Standard maintains the standards for the JavaScript supported by all
browsers. Although this is the standard, each browser provides additional JavaScript
features.

Next we looked at how to determine if a browser supported JavaScript, and if the
JavaScript code was active. We looked at how the browser information can be deter-
mined using the Navigator object. Using the properties associated with the Navigator
object you can determine which browser a user has when he connects to your site and
execute specific code based upon that browser’s settings. We also looked at how you can
also use properties of the Document object to determine which code to run.

Finally, we began looking at the W3C DOM and how it provides a standard Document
Object Model for each browser. Using the DOM you can access each element of your
Web page as a node. This foundation on the DOM sets the stage for the DOM work we
will do in Chapter 11 when we work with DHTML.

Workshop
In the workshop today we will use the questions to review what you have learned in this
chapter about cross-browser compatibility issues and working with the W3C DOM.

Q&A
Q. How do I handle code for each specific browser?

A. As we have discussed, different browsers and browser versions support different
JavaScript features. This means that creating code to run for each scenario can
become quite complex if it is all maintained on one page. A common method is to
call a separate page for each browser. For example, load one page for Netscape and
another for Internet Explorer.

Q. What do I do about browsers other than Netscape Navigator and Internet
Explorer?

A. There have been an abundance of different browsers that have surfaced over the
years, and more will continue to come out. In this chapter we concentrated on the
two most commonly used browsers: Netscape Navigator and Microsoft Internet
Explorer. You should make a point to support the most widely used browsers in
your script. Another browser that has gained popularity that you may want to
support is Opera. This browser also supports JavaScript. You can find more
information about this browser at www.opera.com.

11 2978 CH08 4/10/02 10:45 AM Page 303

Q. Can I design my Web page to capture more specific information about the
user, such as name or e-mail address?

A. No, the Navigator object that we discussed in this chapter is only able to provide
information about the user’s browser and operating system. The only way to get
any more specific information about a user is to use a signed script. We’ll look at
the use of signed scripts in Chapter 17, “Privacy and Security.”

Quiz
1. What is the ECMAScript Standard?

2. How do you ensure your script is ignored on browsers that don’t support
JavaScript?

3. What tags do you use for browsers with JavaScript disabled?

4. What object can you use to gather information about the user’s browser?

Quiz Answers
1. The ECMAScript Standard specifies the JavaScript standards that should be sup-

ported by all browsers. Because the ECMAScript Standard is typically behind the
times based upon the features of the new browser versions, browsers typically pro-
vide additional features that are not part of the ECMAScript Standard. Because
these new features are not part of the standard, you need to exercise caution when
using them to ensure that they will run properly on all browsers.

2. When placing JavaScript on your Web page you need to place the HTML comment
tags <!-- and //..> within the <script> tags to mark the block of code to be treated
as comments by non- JavaScript supported browsers. When a browser that does not
support JavaScript encounters the <script> tags, it recognizes they are HTML tags
it does not support, so they are ignored. The actual code must be placed within the
comment tags so that the browser does not write the code to the page as text.

3. Any browser that supports JavaScript includes the <noscript> tags to be used to
specify the code that should execute if the JavaScript option is disabled.
Remember, you want the code placed within these <noscript> tags to be HTML
only. Since the JavaScript has been disabled the only type of code that will execute
is HTML.

4. The Navigator object is available with all current browsers. This object maintains
information about the current browser. You can use the properties associated with
this object to return specific information about the object. For example, the
appName property returns the name of the current browser.

304 Day 8

11 2978 CH08 4/10/02 10:46 AM Page 304

The Browser Issue 305

8
Exercises

1. Use the Navigator.appVersion property to determine if the browser supports
JavaScript. For a list of browser versions that support JavaScript, refer to Table 8.1.
Also, include the code to run, if the JavaScript support is not active.

2. Create a W3C-DOM page that only executes on Web pages that are DOM-compli-
ant. Use the nodes to access the value which is typed in the second form field and
displayed in an Alert window.

11 2978 CH08 4/10/02 10:46 AM Page 305

11 2978 CH08 4/10/02 10:46 AM Page 306

DAY 9

WEEK 2

Date and Time
Manipulation

As you are aware, dates and times are a key part of each of our lives. In fact,
our lives revolve around specific times that indicate the occurance of events.
This holds true when dealing with Internet information as well. Typically
everything has a date and time correlation—whether it is the date when a par-
ticular item is on sale, hours of operation for a business, or even just displaying
current date and time information on your Web page.

This chapter will look at working with dates and time within JavaScript; and,
more specifically, how to work with the Date object. This JavaScript object is
responsible for maintaining not only the date information but also the
corresponding time information.

This chapter will teach you

• What the Date object is

• How to format dates

• How to format times

• How to convert date and time formats

12 2978 CH09 4/10/02 10:44 AM Page 307

JavaScript and Dates
On the surface the concept of working with dates and times seems very straightforward.
After all, we all learned in grade school how to interpret 4:30 p.m. But the difficulty with
dates in JavaScript comes from understanding how JavaScript calculates dates.

JavaScript stores all dates as numeric values. The date value is actually the number of
milliseconds that have passed since 12:00 a.m., January 1, 1970. In other words, all dates
and times since that date are stored as a numeric value, where 10 represents 10 millisec-
onds after midnight on January 1, 1970. Any dates and times prior to that date are
represented as negative values, counting backwards from that date and time.

Because JavaScript stores all dates and times as numeric values, calculations to compare
dates are quite simple because you are basically just comparing two numeric values. For
example, if you want to determine the amount of time that has elapsed between two
dates, you are actually performing a simple mathematical calculation by subtracting one
date from the other date.

When JavaScript executes it always pulls the date and time information from the user’s
computer. Therefore, the date and time information is only as accurate as the settings on
an individual’s computer.

Although JavaScript displays times based on the user’s current computer settings, it actu-
ally stores and manipulates all dates based on Greenwich Mean Time (GMT). If you are
not familiar with GMT, it is the time zone from which all other times zones are calculat-
ed. This time zone, which is situated over Greenwich, England, gets its name from its
location. So, for example, Central time is six hours behind GMT.

Actually JavaScript’s treatment of the dates is handled basically in the same fashion as
your computer. Your personal computer’s clock settings are based on GMT. Typically
when you install an operating system, such as MS Windows, on your computer, you are
requested to specify the time zone where you live. For example, if you are in the Central
time zone your machine knows that it has to use the offset from GMT to calculate your
local time frame, in this case, six hours behind GMT. If you happen to live in an area
that recognizes daylight savings time, your machine also maintains a separate offset that
it uses during that time of the year.

Therefore, when you request the date and time from your computer, JavaScript is captur-
ing the time from the personal computer’s system clock. The date values are converted
from the user’s current date and time. Again, this all assumes that the system clock is
correct.

308 Day 9

12 2978 CH09 4/10/02 10:44 AM Page 308

Date and Time Manipulation 309

9

Each browser stores all date and time information in a single Date object that you can
access from your JavaScript code. In order to access any date or time, you have to access
a specific Date object, as covered in the next section.

The Date Object
In order to work with dates and times in JavaScript, you must use the Date object.
Although the Date object is one of the JavaScript Core objects, there is an instance of the
object created for each browser window (that recognizes JavaScript), or frame. The Date
object always represents one specific instance of time, such as Apri1 2, 2001, 4:15 p.m.
You can specify a range of time with the Date object.

Typically when working in JavaScript, you are going to use the Date object to grab the
current date and time from the user’s system settings. Therefore, the date information
that is captured is only as accurate as the system clock. Therefore, avoid relying on spe-
cific date and time information within your program. For example, if you plan to launch
a special greeting on a certain date, if the system clock on the user’s computer is not
properly set your greeting may never display.

To capture the date and time information, you typically assign the Date object value to a
variable. Once you do this, you can make desired modifications to the date information,
such as changing the formatting.

var currentdate = new Date();

Each time JavaScript encounters the new Date() statement, it assigns the current date
and time information to the corresponding variable. Again, be aware that the date infor-
mation is captured at the point in your code where JavaScript encounters the statement.
If, for example, the date was captured at the beginning of your code, but your code took
two minutes to execute, the variable would still contain the time information from when
the date and time was captured with the Date object.

Don’t get confused with the name of the object. Even though the object is called Date, as
we have previously discussed, the object is used to capture both the date and time infor-
mation. Therefore, even if you only want to know the current date, the object still will
contain the time information, to the exact millisecond from when the Date object was
created. The way the date information displays on your page is ultimately governed by
the default date formatting of the browser. To display the actual system date information,
you would create a script similar to the code in Listing 9.1.

12 2978 CH09 4/10/02 10:44 AM Page 309

LISTING 9.1 Displaying the Current Date (specifydate.htm)

<script language=”JavaScript” type = “text/javascript”>
<!--
current_date = new Date();
document.write(current_date);
//..>
</script>

This code captures the current system date and formats it differently based on the
selected browser, as illustrated in Figure 9.1. For example, Netscape 6 displays

the Date object as:

Mon Nov 05 22:56:58 GMT-0600 (Central Standard Time) 2001

This formatting will vary if you view the code on a Netscape browser running on a
Macintosh computer. If you display the same JavaScript code using Microsoft Internet
Explorer 6.0, you would get the following:

Mon Nov 5 22:59:49 CST 2001

310 Day 9

INPUT

ANALYSIS

FIGURE 9.1
The Date object is
formatted differently
depending upon the
browser and the
operating system.

OUTPUT

In this code, you will notice that we are using the keyword new before the Date object.
When you use the new keyword in your code, you are instructing JavaScript to create a
new Date object that you can then work with. When a Date object is created, it will
always evaluate to an object data type and not a string or numeric value.

Creating a Specific Date Object
There also will be instances when you may want to ensure that you are working with a
specific date. Instead of capturing the date from the user’s computer system, you can cre-
ate a Date object to contain a specific date value. For example, if you want to perform
calculations based on the number of days between today and Christmas, you could create
a Date object that contains the date for Christmas as follows:

Var Christmas = new Date(“December, 25 2002”);

12 2978 CH09 4/10/02 10:44 AM Page 310

Date and Time Manipulation 311

9

You can specify a date or time value for the Date object using any combination of the
Date object arguments as outlined in Table 9.1. For example, when we specified the date
for Christmas 2002, we actually passed the date value in the format of the month, day,
year. In other words we used the arguments Month, dd, yyyy.

TABLE 9.1 Date Object Arguments

Argument Description

dd The day of the month specified with an integer value between 1 and 31

hh The hour of the day specified with an integer value between 0 (representing
midnight) and 23 (11:00 PM)

mm The minute of the hour specified with an integer value between 0 and 59

Month The full name of the month from “January” to “December”

mth The month of the year specified as an integer value between 0 and 11
where 0 represents January and 11 represents December

ms The millisecond portion of the time specified as an integer value between 0
and 999

ss The second portion of the time specified as an integer value between 0
and 59

yyyy A four-digit integer representing the year

yy A two-digit integer between 00 and 99 representing the year

You can use any combination of these arguments to specify a date value for the Date
object. For example, you could use the following argument combination to specify the
date and time:

var date_time = new Date(yyyy, mth, dd, hh, mm, ss);

You can create the actual date using this date and time format as illustrated:

Var date_time = new Date(2001, 11, 05, 13, 15, 45);

This date would be evaluated and then would display in an Internet Explorer browser
window as:

Mon Nov 5 13:15:45 CST 2001

As you can see, no matter what format you use to pass the date to the Date object, the
same information is always created for the object. If you simply write the contents of the
Date object to the page, as demonstrated with Listing 9.1, the date information always
displays the same based upon the settings of the particular browser.

12 2978 CH09 4/10/02 10:44 AM Page 311

Obviously, you are not always going to be content to have that type of date output.
Fortunately, the Date object includes several different methods that you can use to cus-
tomize date and time output. For information about customizing the output from the Date
object refer to the next two sections.

Date Formatting
As discussed earlier in this chapter, when you use the document.write statement to write the con-
tents of the Date object to the browser window you get the date information formatted based on the
default settings for each browser and operating system. For example, not only does Netscape
Navigator display the date differently than Microsoft Internet Explorer, but the date information is
also displayed differently on a Macintosh computer than a Microsoft Windows machine. That
being the case, you are typically going to want to have more control over the actual display of the
date information on the browser window. This can be accomplished by using the various methods
available with the Date object for formatting the date portion.

JavaScript provides methods for accessing each element of a date within a Date object and return-
ing that particular value. For example, to return the month portion of a date you would use the
getMonth() method. Listing 9.2 illustrates how to use the getMonth() method to return the
numeric value that represents the current month.

LISTING 9.2 Returning the Current Month (formatdate.htm)

<html>
<head>
<title>Current Month</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var current_date = new Date();

month_value = current_date.getMonth();

document.write(“Current Month is “ + month_value);

//-->
</script>
</body>
</html>

The code in Listing 9.2 captures the current system date and then uses the
getMonth() method to determine the current month portion of the date. The

method returns a numeric value between 1 and 12 that represents the month of the year,
as illustrated in Figure 9.2.

312 Day 9

INPUT

ANALYSIS

12 2978 CH09 4/10/02 10:44 AM Page 312

Date and Time Manipulation 313

9

The Date object includes a specific method for each element of the date, as shown in
Table 9.2.

TABLE 9.2 Methods for Getting Date Values

Method Description

getFullYear() Gets the year portion of the date as a four-digit number, such as 1998 or
2001

getYear() Gets the year portion of the date as either a two or four-digit year depend-
ing on the browser used. Internet Explorer always returns a four-digit year.
Netscape 4 and later subtracts 1900 from the date and returns the result.
Earlier versions of Netscape truncate and return a two-digit year.

getMonth() Gets the month of the year in the range of 0 to 11, where January is
represented by 0 and December is 11

getDate() Gets the numeric equivalent of the day of the month in the range of 1 to 31

getDay() Gets the numeric equivalent of the day of the week in the range of 0 to 6

Sunday is 0 and Saturday is 6

Be very careful about using the getYear() function. In fact, it is probably going to end
up causing you more grief than anything. As mentioned in the table, when Netscape
Navigator versions 4 or later see the getYear() method, the browser returns a year value
by subtracting 1900 from the current year value. As you can imagine, this concept
worked pretty well before the new millennium. For example, if the year is 1997 and you
subtract 1900 you get a two-digit year of 97. But this type of date conversion no longer

FIGURE 9.2
The getMonth()

method of the Date
object returns a
numeric value
representing the
month of the year.

OUTPUT

Be mindful of the fact that JavaScript counts the months in the year starting
with 0. Therefore, January is actually 0 and December is 11. Make sure you
remember this when you are converting dates.

Caution

12 2978 CH09 4/10/02 10:44 AM Page 313

works. When you subtract 1900 from 2001 you get a value of 101. This being said, I
would recommend just using the getFullYear() to return the year portion of any date.

Another thing to keep in mind is the numeric range used to represent the months of the
year and days of the week. Most of us are used to the concept of 12 months in a year and
seven days in a week. That being said, the first month of the year is January and the last
month is December. JavaScript uses a different numbering pattern in that both of these
ranges start with the number zero, making the first value actually 0 instead of 1. If you
want to return the actual name of the month or day you need to create code to convert the
numeric value, as discussed in the following section.

Converting the Numeric Day and Month Values
More than likely when capturing the day of the week or even the month of the year you
are going to want to display the text equivalent of the numeric value returned. As you
noticed in Figure 9.1, each browser converts the Date object to display the text equiva-
lent of the day of the week and the month of the year by default. Unfortunately if you
decide to create your own date layout there are not any methods for the Date object to
display the text equivalent of either the day of the week or the month value. Therefore, in
order to display these values you must create your own JavaScript code to convert the
numeric value returned by the getMonth() method and the getDay() method.

Of course, as with anything you code, there are multiple ways that you can code the con-
version from a numeric value to a text value. The most common methods would be to
use an array of values as we discussed in Chapter 5, “An Introduction to Arrays.” Listing
9.3 illustrates how to use an array to convert the numeric value returned by the getDay()
method to an actual day of the week.

LISTING 9.3 Converting the Day of the Week (convertday.htm)

<html>
<head>
<title>Convert Day of the Week</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var weekdays = new Array(7);
weekdays[0] = “Sunday”;
weekdays[1] = “Monday”;
weekdays[2] = “Tuesday”;
weekdays[3] = “Wednesday”;
weekdays[4] = “Thursday”;
weekdays[5] = “Friday”;

314 Day 9

INPUT

12 2978 CH09 4/10/02 10:44 AM Page 314

Date and Time Manipulation 315

9

weekdays[6] = “Saturday”;

var current_date = new Date();

weekday_value = current_date.getDay();

document.write(“Today is “ + weekdays[weekday_value]);

//-->
</script>
</body>
</html>

This code takes the numeric value that is returned by the getDate() method and
uses it as the index value for the weekdays array. Since the weekdays array con-

tains 7 values from 0 to 6 the index values for the array elements match the numeric val-
ues returned by the getDate() method. For example, if today is Tuesday, the getDate()
method returns a value of 2 and assigns that value to the weekday_value variable. The
weekday_value variable is used as an index value to access the array. Since the element
of the array with an index value of 2 is Tuesday, the JavaScript code displays that value
on the page, as illustrated in Figure 9.3.

LISTING 9.3 continued

ANALYSIS

FIGURE 9.3
You can create your
own JavaScript code
to convert the numer-
ic value returned by
getDate() to a day
name.

OUTPUT

Of course you can create the same type of code to convert the numeric value returned by
the getMonth() method into the name of the month. Again, keep in mind the fact that the
getMonth() method returns a numeric value between 0 and 11 representing the month.
Therefore, you need to make sure you design your code so that 0 represents January and
11 represents December, so that you will get the correct conversion of the numeric value
returned by the method.

12 2978 CH09 4/10/02 10:44 AM Page 315

Combining Date Values
Up until now we have seen how easy it is to use methods for getting the elements of the
Date object and to return a portion of the date, such as the day of the week, or even the
current year. Obviously the main reason for manipulating the contents of the Date object
would be to format the date value to match your own requirements for the date output.
For example, you may want the ability to display the date in the format “month day,
year,” or November 6, 2001. In order to display the date in this fashion you cannot just
dump the contents of the Date object, as shown with Figure 9.1. However, making the
date appear as you want is still quite simple. It simply requires using the concatenation
operator (+) to join together the date elements you want to create your string.

As you are aware, when you concatenate values together you are essentially creating one
string of values from the original string. If you want to display the current date in the
format mentioned above with the month followed by the day and year values, you need
to concatenate those values together as illustrated in Listing 9.4.

LISTING 9.4 Combining Date Method Values (combinedate.htm)

<html>
<head>
<title>Combine Date Values</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var months = new Array(12);
months[0] = “January”;
months[1] = “February”;
months[2] = “March”;
months[3] = “April”;
months[4] = “May”;
months[5] = “June”;
months[6] = “July”;
months[7] = “August”;
months[8] = “September”;
months[9] = “October”;
months[10] = “November”;
months[11] = “December”;

var current_date = new Date();
month_value = current_date.getMonth();
day_value = current_date.getDate();
year_value = current_date.getFullYear();

316 Day 9

INPUT

12 2978 CH09 4/10/02 10:44 AM Page 316

Date and Time Manipulation 317

9

document.write(“The current date is “ + months[month_value] + “ “ +
day_value + “, “ + year_value);

//-->
</script>
</body>
</html>

Notice with this code we use the array method that we discussed in the previous
section to determine the month name that should be displayed as the current

month name. When concatenating values together, remember you need to manually insert
any spacing that you want in your string. Figure 9.4 shows the result of the code in
Listing 9.4.

LISTING 9.4 continued

ANALYSIS

FIGURE 9.4
Create the desired
formatting for your
date by combining
the values returned
by the date methods.

OUTPUT

As you can probably imagine, there are an infinite number of ways you can express a
date, especially once you have retrieved the elements of the date that you need to display.
In addition to working with the basic date portions of the Date object, don’t forget, the
object also houses the time information for when the date is captured. You can combine
any of the time information with your date statement for even more ways to customize
your date statement. Let’s look at time values of the Date object in the next section.

Time Formatting
It seems quite odd to be looking in the Date object for time information, but that is
where you will find it when working in JavaScript. As you remember from our discus-
sion earlier in this chapter, JavaScript stores the information in the Date object as a mil-
lisecond value. In other words, the value of the Date object is a long number indicating
the total number of milliseconds that passed between January 1, 1970 and the time when
the Date object was created. So you see, although the object is called Date, it actually
indicates a time value by specifying the amount of time since that date.

12 2978 CH09 4/10/02 10:44 AM Page 317

Just like the date elements, you can also retrieve the individual elements of time from the
Date object by using the associated methods. For example, you can use the getHours()
to return the number of hours in the time portion of the Date object, as shown in
Listing 9.5.

LISTING 9.5 Returning the Current Hour (ReturnHour.htm)

<html>
<head>
<title>Current Hour</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var current_date = new Date();
hour_value = current_date.getHours();
document.write(“The current hour is “ + hour_value);

//-->
</script>
</body>
</html>

The code in Listing 9.5 returns an integer value that represents the hour portion
of the time. You will probably quickly notice that there are no AM or PM times.

The value returned by the getHours() method is in a 24-hour clock format or what is
commonly referred to as military time, as shown in Figure 9.5.

318 Day 9

INPUT

ANALYSIS

FIGURE 9.5
Use of the
getHours() method
returns an integer
value based on a
24-hour clock.

OUTPUT

Obviously there are other methods that you can use to return the other portions of the
time. Table 9.3 lists the different methods that you can use with the Date object to return
the time portions.

12 2978 CH09 4/10/02 10:44 AM Page 318

Date and Time Manipulation 319

9

TABLE 9.3 Methods for Getting Time Values

Method Description

getHours() Gets the number of hours in the time. The method returns a value
between 0 and 23, where 0 represents midnight and 23 represents
11:00 PM.

getMinutes() Gets the number of minutes in the hour. The value returned is in the
range of 0 to 59.

getSeconds() Gets the number of seconds in the minute. The value returned is in the
range of 0 to 59.

getMilliseconds() Gets the number of milliseconds in the second. The value returned is in
the range of 0 to 999.

getTime() Returns a numeric value representing the total number of milliseconds
since January 1, 1970 GMT.

The getTime() method basically just returns the numeric value that JavaScript stores for
the Date object. For example, if you create a Date object for the date 12/24/2001 the
getTime() method returns a millisecond value of 1009173600000. This value is the same
as the value that JavaScript uses to store the date.

The time values returned from the Date methods can be combined with the same method
used to create a custom date. For example, you can display an hour and minute combina-
tion by combining the values returned by the getHours() method with the getMinutes()
method value.

var current_date = new Date();
hour_value = current_date.getHours();
minute_value = current_date.getMinutes();

document.write(“The time is “ + hour_value + “:” + minute_value);

Make sure that when you combine the time values you insert the colon (:), or whatever
symbol you want to use to differentiate between an hour, minute, or second value. Of
course all of these times will be based upon a 24-hour clock, so if it is 8:30 PM, the time
displays as 20:30. The only way to remedy this is to manually convert the time value
before displaying it.

Converting to an AM/PM Time Frame
Depending upon where you live and how you were taught to tell time, you probably will
not be content to get a 24-hour clock format for the time. Even if you like stating it as
1900 hours, visitors to your site most likely would prefer seeing the time displayed in the

12 2978 CH09 4/10/02 10:44 AM Page 319

more traditional fashion of 7:00 PM. That being said, JavaScript obviously does not pro-
vide a default solution for doing this. If you want to display the AM and PM times, you
need to manually code a method to convert the value returned by the getHours() method
to the desired format.

If you are familiar with the 24-hour clock concept, you know that the hours start count-
ing at midnight with 0. Noon is considered to be 12:00 which is followed by 13:00 (com-
monly referred to as 1:00 PM). With a 24-hour clock, each hour gets progressively
higher until 23:00, or 11:00 PM. Of course, at midnight the counting starts over.

Listing 9.6 illustrates a simple method to taking the current time and converting it to
display in the AM/PM format.

LISTING 9.6 Returning the Current Hour (ConvertTime.htm)

<html>
<head>
<title>Convert Time</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var current_date = new Date();
var hour_value = current_date.getHours();
var minute_value = current_date.getMinutes();
var second_value = current_date.getSeconds();
var AMorPM = “AM”;

if (hour_value > 12)
{
hour_value -= 12;
AMorPM = “PM”;

}

document.write(“The current time is “ + hour_value + “:” + minute_value +
“:” + second_value + “ “ + AMorPM);

//-->
</script>
</body>
</html>

The code in Listing 9.6 takes the numeric value returned by the getHours()
method and subtracts 12 from it, if the value is larger than 12 and sets the

AMorPM variable to PM. For example, if the time is 17:30 the code converts it to 5:30 PM,
as illustrated in Figure 9.6.

320 Day 9

INPUT

ANALYSIS

12 2978 CH09 4/10/02 10:44 AM Page 320

Date and Time Manipulation 321

9

This code works well for displaying the current time information on the browser page.
But there is one small issue. Since the values that are returned are all integer values it
only displays single digits for values less that 10. This can make a time like 10:05 look a
little odd when it displays as 10:5. To fix this problem, you can add additional if state-
ments that look at the value returned by the getMinutes() and getSeconds() methods,
and adds a zero to the front if the value is less than 10, as shown in Listing 9.7.

LISTING 9.7 Adjusting Time Values under 10 (AdjustTime.htm)

<html>
<head>
<title>Convert Time</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var current_date = new Date();
var hour_value = current_date.getHours();
var minute_value = current_date.getMinutes();
var second_value = current_date.getSeconds();
var AMorPM = “AM”;

if (hour_value > 12)
{
hour_value -= 12;
AMorPM = “PM”;

}

if (hour_value == 0)
{
hour_value = 12;
AMorPM = “AM”;

}

if (second_value < 10)
{

FIGURE 9.6
You can create cus-
tom JavaScript code
to convert from
24-hour clock to
AM/PM times.

OUTPUT

INPUT

12 2978 CH09 4/10/02 10:44 AM Page 321

second_value = “0” + second_value;
}

if (minute_value < 10)
{
minute_value = “0” + minute_value;

}

document.write(“The current time is “ + hour_value + “:” +
minute_value + “:” + second_value + “ “ + AMorPM);

//-->
</script>
</body>
</html>

If you look at the code in Listing 9.7, you will see that the if statements check
the value of the second_value and minute_value variables. If either of the vari-

ables contains a value less than 10, a value of zero is placed in front of that value.
Therefore, your times will all display in the format HH:MM:SS.

Working with Time Zones
As we have already talked about, each computer system maintains the time zone infor-
mation in relation to GMT. Of course, the time zone setting is only accurate if the user
has properly set it. You may find the need to capture the user’s time zone in order to
perform different time calculations, such as determining the amount of time before a
specific event transpires.

In order to do this you can use the getTimezoneOffset() method of the Date object to
determine the number of minutes between the current time zone and GMT. Listing 9.8
illustrates how to use the getTimezoneOffset() method to determine the number of
minutes from GMT for the user’s machine.

LISTING 9.8 Determining Time Difference from GMT (gettimezone.htm)

<html>
<head>
<title>Determine Time Zone</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

322 Day 9

LISTING 9.7 continued

ANALYSIS

INPUT

12 2978 CH09 4/10/02 10:44 AM Page 322

Date and Time Manipulation 323

9

var current_date = new Date();
var current_timezone = current_date.getTimezoneOffset();

document.write(“Your time zone is “ + current_timezone + “ minutes from GMT”);

//-->
</script>
</body>
</html>

Again this code is quite simple, but it illustrates how easy it is to determine the
user’s time zone, as shown in Figure 9.7. If you want to have an event transpire

at a specific time based on your time zone, you can use the getTimezoneOffset()
method to determine the user’s time zone offset, and then use the offset for your time
zone to make the comparisons.

LISTING 9.8 continued

ANALYSIS

FIGURE 9.7
You can determine
the actual difference
in time between your
location and the user
by working with the
time zone offset
value.

OUTPUT

Converting Date and Time Formats
So far in this chapter we have talked about the process of retrieving a date or a portion of
a date value from a particular Date object. Of course, retrieving the date and time infor-
mation is not the only process that you can or will want to do. Sooner or later you will
want to modify the contents of a Date object based on particular date calculations, such
as calculating a shipping date 30 days away, or determining a final payment date.
Whatever the reason, there are many options for working with the date information to
achieve the desired results.

Typically the best method of changing a date is to create an initial Date object and then
perform the desired calculations on the date. Once you have the new date, you can make
the appropriate modifications to the Date object by using the Date object method for

12 2978 CH09 4/10/02 10:44 AM Page 323

changing the object. These methods, shown in Table 9.4, allow you to change all portions
of the Date object, including the time elements.

TABLE 9.4 Methods for Setting Date Object

Method Description

setDate(dd) Accepts an integer value between 1 and 31 to specify the actual day
of the month

setFullYear(yyyy) Accepts a four-digit number that specifies the year, such as 1998 or
2002

setHours(hh) Accepts an integer value between 0 and 23 specifying the hour

setMilliseconds(ms) Accepts an integer value between 0 and 999 specifying the number of
milliseconds

setMinutes(mm) Accepts an integer value between 0 and 59 specifying the number of
minutes

setMonth(mth) Accepts an integer value between 0 (January) and 11 (December)
specifying the month number

setSeconds(ss) Accepts an integer value between 0 and 59 specifying the number of
seconds

setTime(ms) Sets the time by passing a number representing the number of
milliseconds that have passed since January 1, 1970 GMT

setYear(yy) Accepts a two-digit or four-digit number that specifies the year

324 Day 9

If you use the setYear() method, you should always specify a four-digit year
to avoid any confusion with the actual date. The two-digit date only works
for dates between 1900 and 1999. If you type a 01 for 2001, JavaScript
assumes you are referring to the date 1901 and treats it as such. By always
typing a four-digit date you avoid any potential problems.

Note

As you have noticed, all of the methods in Table 9.4 require an argument containing the
value to be passed to the Date object. You should recognize these arguments as the same
arguments that we looked at in Table 9.1. For example, to change the day of the month
you need to use the setDate() method with the dd argument. For example, you can
change the year of the Date object by assigning a new year with the setYear() method
as illustrated in the following lines of code that retrieve the new year from the user and
assign it to the Date object.

12 2978 CH09 4/10/02 10:44 AM Page 324

Date and Time Manipulation 325

9

var user_date = new Date();

var new_year = prompt(“Enter Year”);

user_date.setYear(new_year);

As you can see it is fairly easy to modify the value of a Date object at any time simply
by using the methods outlined in Table 9.4. The modifications to the date can either
come from user input, as shown in the lines of code above, or by calculations performed
on the date information. For example, you may want to add 45 days to a date. Of course
the types of calculations that can be performed on a date are unlimited, as we will
discuss in the following section.

Date Calculations
So far in this chapter we have looked at creating the Date object, retrieving information
from the Date object, and modifying the value of the Date object. Quite often you will
want to perform some type of calculation on the date values before writing the results to
the Date object.

Since the Date object stores the entire date and time information as a numeric value it
makes the value quite easy to work with. The complexity comes with the fact that the
numeric value is stored in milliseconds. Therefore, in order to calculate the amount of
time between dates you need to convert the numeric value accordingly. For example,
there are 1000 milliseconds in just one second. Table 9.5 illustrates the conversion rates
for each element of the Date object.

TABLE 9.5 Converting Date Values

Date Value Conversion

Second 1000 milliseconds

Minute 60 * 1000 = 60,000 milliseconds

Hour 60 * 60 * 1000 = 3,600,000 milliseconds

Day 24 * 60 * 60 * 1000 = 86,400,000 milliseconds

Week 7 * 24 * 60 * 60 * 1000 = 604,800,000

Month (days in month) * 7 * 24 * 60 * 1000

year 365 * 24 * 60 * 60 * 1000 = 31,536,000,000 milliseconds

As show in Table 9.5, it doesn’t take much to create some very large Date values. In fact,
each year that passes is equal to 31,536,000,000 milliseconds.

12 2978 CH09 4/10/02 10:44 AM Page 325

You will want to keep these conversions in mind as you start manipulating different date
values to ensure you return the appropriate results. For example, Listing 9.9 illustrates
how you can prompt the user for a future date and determine the number of years,
months, and days between the current date and the future date.

LISTING 9.9 Comparing Dates (setdate.htm)

<html>
<head>
<title>Find Time Until Future Date</title>
</head>
<body>
<script language=”JavaScript” type=”text/javascript”>
<!--

var user_date = prompt(“Enter a future date: “)

var user_date = Date.parse(user_date);
var today_date = new Date();
var diff_date = user_date - today_date;
var num_years = diff_date/31536000000;
var num_months = (diff_date % 31536000000)/2628000000;
var num_days = ((diff_date % 31536000000) % 2628000000)/86400000;

document.write(“Number of years: “ + Math.floor(num_years) + “
”);
document.write(“Number of months: “ + Math.floor(num_months) + “
”);
document.write(“Number of days: “ + Math.floor(num_days) + “
”);
//-->
</script>
</body>
</html>

Notice how in Listing 9.9 we had to take the total date value and divide it by the
total number of milliseconds in a year to determine how many years were

between the current date and the specified future date. Next we take the remainder of the
year calculation and determine the number of months, and then the number of days.
The code displays the total amount of time between the current date and the future date
broken into the number of years, months, and days between the dates, as shown in
Figure 9.8.

You should pay close attention to the fact that the code in Listing 9.9 accepts a date
value entered by the user and then uses the parse() method to convert the date value to a
Date object. The parse() method definitely comes in handy when you want to receive a
date from a user. By using this method you can take any date string and convert it into a
Date object. The following section talks more about this method.

326 Day 9

INPUT

ANALYSIS

12 2978 CH09 4/10/02 10:44 AM Page 326

Date and Time Manipulation 327

9

Converting Between Strings and Dates
Obviously when you prompt a user for a date you are going to get some form of a date
string. For example, a user could enter the date for Thanksgiving 2001 as 11/22/2001,
November 22, 2001, or even Nov. 22, 2001. Of course you could always ask for each
individual portion of the date, such as the year, month, and day and then piece the date
together using the set methods discussed in Table 9.4, but that is cumbersome. The easier
method is to accept the date string and then convert the string into a Date object. This
can be accomplished by using the parse() method.

The parse() method accepts any valid date string and converts it into a standard Date
object. We used this method in Listing 9.9 when we converted the string entered by the
user. We needed to convert the date value to a Date object so that we could calculate the
difference between that date and the current date, or the number of milliseconds between
the two dates.

Summary
In this chapter we looked at the JavaScript Date object, and how dates and times are
stored as a millisecond value. The value is calculated as the number of milliseconds since
January 1, 1970. Because JavaScript stores date and time information in one object, you
can extract the elements of the object that you need to perform the desired calculations
by using any of the different get methods available with the Date object.

You can also modify the contents of a Date object using the various set methods. For
example, you may want to change the date to reflect a date 30 days in the future. You can
do this by using the setDate() method.

Finally, we explored how the millisecond values can be manipulated to perform desired
calculations, such as determining the amount of time between two dates. Because there
are 1000 milliseconds within just one second, the size of the number stored by a Date
object is typically quite large.

FIGURE 9.8
You can perform cal-
culations to deter-
mine the specific
amount of time
between two dates.

OUTPUT

12 2978 CH09 4/10/02 10:44 AM Page 327

Workshop
In the workshop today we will look at some Q&A issues related to working with the
Date object and we will use the questions and exercises to review what you have learned
in this chapter about the Date object.

Q&A
Q. When do I need to use the new keyword with the Date object?

A. The new keyword always precedes the Date object. The object is declared in the
form: var objectname = new Date().

Q. Why does my 02 appear as 1902, instead or 2002, in the browser window?

A. Most browsers assume that a two-digit date represents a date between 1900 and
1999. If a value of 01 is specified for a date, it will be interpreted as 1901. You
need to specify a four-digit year value to avoid year conversion errors.

Q. When I convert 24-hour clock times to AM and PM I get 00 for times between
midnight and 1:00 AM, how do I fix that?

A. When working with a 24-hour clock, times between midnight and 1:00 AM are dis-
played with the hour as 00. Therefore, 12:15 AM will actually appear as 00:15. In
order to make this more readable, you need to convert the hour value to 00. You
can do this with the following code:

if (hour_value == 0)
{
hour_value = 12;
AMorPM = “AM”;

}

Quiz
1. What is the basic unit used for storing date and time values with the Date object?

2. What is the range of integer values used to represent the months of the year?

3. Why worry about custom formatting a date before displaying it on the browser
window?

4. What is a 24-hour clock format and how would you convert it to AM/PM?

Quiz Answers
1. All date and time information is stored in milliseconds.

2. The 12 months of the year are specified from 0, representing January, to 11 for
December.

328 Day 9

12 2978 CH09 4/10/02 10:44 AM Page 328

Date and Time Manipulation 329

9

3. Each browser displays the Date object using a different format. Typically you want
your date and time information to display consistently on all browsers. In order to
do so, you need to custom format the date output using the set methods for the
Date object.

4. When you request an hour from a Date object it returns the value based upon a 24-
hour clock. The 24-hour clock starts counting with 0 at midnight and 11:00 PM
returns as 23. In order to convert to an AM/PM time you can subtract 12 from all
times that are 13 and over, and specify PM for those times.

Exercises
1. Create an HTML page to count down the number of days until a special event,

such as Christmas, or a special vacation.

2. Create an HTML page to determine how old an individual is based on his
birthdate.

12 2978 CH09 4/10/02 10:44 AM Page 329

12 2978 CH09 4/10/02 10:44 AM Page 330

DAY 10

WEEK 2

Events and Event
Handling

Whenever anything occurs within a browser window an event is created. An
event can be as simple as a mouse cursor moving across the screen or it can be
a result of opening a new page.

In this chapter we will look at the different types of events that can occur with-
in the browser window and how you can monitor these events to determine
when your code should perform certain actions. We also will look at perform-
ing the most popular type of event handling these days—the creation of image
rollovers.

This chapter will teach you:

• What an event is

• Types of events

• How to handle events

• How to create mouse-over effects

13 2978 CH10 4/10/02 10:43 AM Page 331

Understanding Events
Whenever anything happens, your JavaScript code changes the value of an object; or, for
example, even when an error occurs, an event takes place. For instance, if the user clicks
a button on a page, a Click event occurs for that button. If your code updates the value
of a form field, a Change event occurs. By interacting with the HTML code on the page,
you have the ability to capture the events that occur in the browser window and perform
different actions based upon the specific events.

Probably the most commonly captured event is the Click event. This event occurs when-
ever a single mouse click occurs on the browser window. Of course, you may not care
about all mouse clicks, but if the user clicks on a Submit button at the bottom of the form
you definitely want to be aware of that event. As a conscientious programmer you want
to capture the Click event from a Submit button to verify the data entered on the form.
This ensures the values are within the appropriate ranges before the information is sub-
mitted to the server. For example, if a form field must contain a value between 1 and 10,
you can verify the contents of the field and display a message for the user to correct the
value if it is incorrect.

When you create JavaScript code to capture an event you are writing what is
commonly referred to as an event handler. The event handler specifies what

actions you want to perform when the particular event occurs on the page. An event
handler typically consists of two pieces as described in the following section.

Creating an Event Handler
Events can occur all day long on your HTML pages, but if you do not create code to cap-
ture and handle the events, the events are meaningless. For example, you can place a but-
ton on a form, but if you do not create the code to recognize the fact that the button has
been depressed, the vistor to your site can press the button, but there will be no response.
The coding that is done to handle the event is the event handler.

Although an HTML object typically triggers an event, HTML cannot handle an event on
its own. In order to respond to an event you must use some other language, such as
JavaScript. What we are going to do is create event handlers that respond when specific
properties are set by HTML objects. For example, the following HTML tag includes an
onClick event handler to capture the clicking of the button by the user.

<input type=”button” value=”Push Button” name=”Button1”

onclick=”window.alert(‘Button Pressed’);”>

332 Day 10

NEW TERM

13 2978 CH10 4/10/02 10:43 AM Page 332

Events and Event Handling 333

10

There are basically three types of event handlers that you can create. Each type requires
the capture of an HTML object property, as outlined in Table 10.1.

TABLE 10.1 Types of Event Handlers

Type Description

Statement Event Handler As shown in the sample code above, the HTML tag property
value is assigned a JavaScript statement that executes when the
event occurs.

Function Event Handler The HTML tag property is set to call a specific JavaScript
function when the corresponding event occurs such as,
onclick=”Button_Clicked();”

JavaScript Capture Events Used to create generic JavaScript code that executes each time a
specific event occurs, such as loading a particular page.

Each of these event handling methods is discussed in detail in the following sections.

Handling an Event with a JavaScript Statement
When you want to perform a simple action, such as display a message, when an event
occurs you can place the entire event handler within the tag of the HTML object. For
example, the following code displays an alert message box when the onclick property is
triggered for the Input button.

<input type=”button” value=”Push Button” name=”Button1”

onclick=”window.alert(‘Button Pressed’);”>

You add the event handler to your HTML code as part of the particular object’s tag. Each
event handler must be made up of two specific elements: the event handler attribute and
the value of the attribute. In the above sample code, the event handler is onclick and the
value of the attribute is window.alert(‘Button Pressed’); as soon as the button is
pressed, the alert message displays in the browser window, as shown in Figure 10.1.

FIGURE 10.1
When the specified
event is triggered the
corresponding
JavaScript code
executes.

13 2978 CH10 4/10/02 10:43 AM Page 333

Be sure to notice that the JavaScript code that executes for the event is placed in double
quotes within the HTML tag. HTML does not know how to decipher the JavaScript code.
By placing the code in quotes, it is ignored by HTML and executes as JavaScript code.

334 Day 10

Remember when you need to put quotes around values that are already
within quotes you need to differentiate between the two types of quotes by
alternating between double and single quotes. For example, in the event
handler code onClick=”window.alert(‘Button Pressed’);” the double
quotes are used to specify the event handler code and the single quotes are
used to indicate the text to display on the alert box. You can use the quotes
in any order, either double and then single or vice versa as long as you make
sure they match up correctly.

Tip

You can use this type of event handling when you only have one JavaScript statement to
execute. If you have multiple statements, it is better to call a JavaScript function,
described in the following section.

Handling Events with JavaScript Function Calls
So far we have looked at launching a JavaScript command directly from an HTML
object tag. When you have more than one JavaScript statement to launch, it makes more
sense to call a JavaScript function from the HTML object tag. In other words, you still
use the HTML object property to determine when the event has occurred by setting the
value of the property to call a JavaScript function, as shown in Listing 10.1.

LISTING 10.1 Calling a JavaScript Function for an Event (eventscript.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function CheckValue()
{
if ((document.golf.balls.value >= 1) && (document.golf.balls.value <= 10))
{

var total_amount = document.golf.balls.value * 25;
window.alert(“Total Cost is: “ + “$” + total_amount);

}
else
window.alert(“Type a value between 1 and 10”);

}

INPUT

13 2978 CH10 4/10/02 10:43 AM Page 334

Events and Event Handling 335

10

//..>
</script>
<title>Golf Balls</title>
</head>
<body>
<form name=”golf” method=”POST” >
Golf Balls

$25.00/dzn. Quantity <input type=”text” name=”balls”
size=”5”>
<input type=”button” value=”Order” name=”Order” OnClick=”CheckValue()”></p>

</form>
</body>
</html>

In Listing 10.1, the onClick property triggers the CheckValue function if the Order but-
ton is pressed. The CheckValue function verifies that the value specified in the Quantity
text box is within the appropriate range and then displays the total cost, as illustrated in
Figure 10.2.

LISTING 10.1 continued

FIGURE 10.2
By capturing the
events with a form
you can verify that
the form contains the
appropriate values
before submitting the
form information to
the server.

OUTPUT

Button events are very commonly used to validate values on a form, as shown in
Listing 10.1. The form validation can be done with either an onClick event, or an
onSubmit event triggered from a Submit button being pressed on a form.

There are some objects though that do not have HTML tags. Events triggered by these
objects require a different type of event handling, as outlined in the following section.

Capturing Events Directly Within JavaScript
The final method for capturing object events is to create JavaScript code that watches for
a particular event to occur. This type of coding works best for objects (such as the
Document object) that do not have HTML tags, although you can use this method for any

13 2978 CH10 4/10/02 10:43 AM Page 335

event. Keep in mind this method captures all occurrences of the specified event for the
object.

In order to use this type of method, you need to specify the event handler code statement
within your JavaScript code. The event handler is coded as follows:

objectname.eventname = eventhandler

The objectname value is the name of the object for which you want to capture events. If
you want to capture all events of a type that occur on the entire page, you will want to
specify the Document object.

When you specify the eventname value you must place the word on in front of the event
and the entire name must be all lowercase. For example, to track the Load event, you
would type onload.

The event hander is simply a call to a JavaScript function to handle the event. This
resembles the function calls we made in the previous section. The only major difference
is that you do not place the parentheses after the function name. It also means that you
cannot pass data values into the function. The event handler is coded as follows:

Window.onresize = DisplayMsg;

The code in Listing 10.2 illustrates how to create an event handler for any events of a
specified type. For example, the sample code watches for the browser window to be
resized, and then displays a message.

LISTING 10.2 Capturing Events Within JavaScript (resizescript.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--

window.onresize = DisplayMsg;

function DisplayMsg()
{
window.alert(“You just resized the window.”);
}

//..>
</script>
<title>Window Resizing</title>
</head>
<body>
</body>
</html>

336 Day 10

INPUT

13 2978 CH10 4/10/02 10:43 AM Page 336

Events and Event Handling 337

10

With the code in Listing 10.2, the DisplayMsg function launches each time the
browser window is resized, and then displays a message indicating what

occurred, as shown in Figure 10.3. Notice that we are monitoring the Window object for
the event to occur. We will discuss more about which objects trigger the events you want
to monitor later in this chapter.

ANALYSIS

FIGURE 10.3
The resize event
handler is triggered
within your
JavaScript code each
time that type of
event occurs.

OUTPUT

Types of Events
As we have already seen so far, there are several different types of events for which you
can create event handlers. All of the events available in JavaScript mirror the HTML
events. Although JavaScript does not allow you to script for all events that may occur on
the page, you will see in Table 10.2 that you can capture pretty much all the events you
need to make your code run effectively.

One thing you are going to notice with events is that each object triggers a series of
events, although the same events can be triggered by multiple objects. For example, the
Click event is triggered by several different objects including the Document, BUTTON,
RadioButton, and TABLE objects.

You create an event handler for each of the events that JavaScript supports by using the
keyword on before the name of the event, as illustrated in Table 10.2.

TABLE 10.2 JavaScript Events

Event Event Handler Description

Abort onabort Occurs when loading of a page or image is
canceled

Blur onblur Occurs when the focus moves to a different object

Change onchange Occurs when a field on a form is modified

Click onclick Occurs when an object is clicked with the mouse

DblClick ondblclick Occurs when an object is double-clicked with the
mouse

13 2978 CH10 4/10/02 10:43 AM Page 337

Error onerror Occurs when an error occurs on the page. (We are
not going to deal with the Error object in this
chapter. Error handling is covered extensively in
Chapter 15.)

Focus onfocus Occurs when an object receives focus

KeyDown onkeydown Occurs when a key is pressed on the keyboard

KeyPress onkeypress Occurs when a key is pressed and then released on
the keyboard

KeyUp onkeyup Occurs when a pressed key is released on the
keyboard

Load onload Occurs when a page or image loads

MouseDown onmousedown Occurs when a mouse button is pressed

MouseMove onmousemove Occurs when the mouse pointer is moved

MouseOut onmouseout Occurs when the mouse pointer moves off of an
object

MouseOver onmouseover Occurs when the mouse pointer moves over an
object

MouseUp onmouseup Occurs when a pressed mouse button is released

Move onmove Occurs when the browser window is moved

Reset onreset Occurs when the Reset button is pressed on a form

Resize onresize Occurs when the browser window is resized

Select onselect Occurs when text is highlighted on the page

Submit onsubmit Occurs when the Submit button is pressed on the
form

Unload onunload Occurs when the page unloads

338 Day 10

TABLE 10.2 continued

Event Event Handler Description

The events listed in Table 10.2 reflect those that are available and supported
by both JavaScript and JScript, ensuring that they are valid in both Internet
Explorer and Netscape Navigator. You will find that there are additional
event handlers that you can use that are only supported by one of the two
languages, such as onCut, which is an Internet Explorer-only event handler.
If you are creating code specific to one browser type, you can use the addi-
tional events supported by that browser. Refer to Chapter 8, “The Browser
Issue,” for more information on browser compatibility issues.

Note

13 2978 CH10 4/10/02 10:43 AM Page 338

Events and Event Handling 339

10

How to Handle Events
Earlier in the chapter we looked at the different methods you can use for creating event
handler code. If you remember we looked at how the event handler can be handled as
either part of the HTML object tag or as a separate JavaScript function. Of course the
type of event handler you use will vary based on the type of event you are handling.

We now need to look at handling specific event types in more detail and the
corresponding objects that trigger each event.

Monitoring Form Changes
As we discussed previously, events are very useful when working with forms. By captur-
ing events related to the form, you can determine when the user changes a field or
presses a button.

In Listing 10.1 we used the Click event to determine when a button had been pressed. If
you remember, after the button was pressed we checked the value of the text box to
ensure that it contained a valid value. This same process can be accomplished by moni-
toring a Submit event triggered by a Submit button. We will talk more about using the
Click event as we deal with mouse actions later in the chapter.

Of course the use of the Click or Submit event requires waiting for the user to press a
button before any type of validation can be performed on the values in the form fields.
This can become onerous if you have a long form. A better method would be to be able
to validate the values in a form field each time the field changes. This type of event
handling can be accomplished using the Change event.

You can use the Change event with the form fields that accept values including text
boxes, check boxes, and radio buttons. Each time the value of one of these fields changes
the Change event is triggered. You can create code to validate the specified form field
value, as shown in Listing 10.3.

LISTING 10.3 Capturing Change Events (changeevent.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--

function CheckValue(field_change)
{
switch(field_change.name)
{

INPUT

13 2978 CH10 4/10/02 10:43 AM Page 339

case “balls” :
if ((field_change.value <= 0) || (field_change.value >= 10))
{
window.alert(“Type a value between 1 and 10”);

}
break;
case “tees”:
if ((field_change.value <= 0) || (field_change.value >= 20))
{
window.alert(“Type a value between 1 and 20”);

}
break;
case “gloves”:
if ((field_change.value <= 0) || (field_change.value >= 5))
{
window.alert(“Type a value between 1 and 5”);

}
break;
}
}
//..>
</script>

<title>Golf Balls</title>
</head>

<body>

<form name=”golf” method=”POST” >
Golf Balls
$25.00/dozen
Quantity <input type=”text” name=”balls” size=”5”
onchange=”CheckValue(this)”> <p>
Golf Tees
$1.00/hundred Quantity
<input type=”text” name=”tees” size=”5” onchange=”CheckValue(this)”></p>
<p>Golf Glove
$15.00/each

Quantity

<input type=”text” name=”gloves” size=”5” onchange=”CheckValue(this)”></p>
<p> </p>
<p>
 <input type=”button” value=”Order” name=”Order” ></p>
</p>

</form>
</body>
</html>

340 Day 10

LISTING 10.3 continued

13 2978 CH10 4/10/02 10:43 AM Page 340

Events and Event Handling 341

10

The code in Listing 10.3 monitors the three different text fields to determine
when the value changes. If the value changes the Change event is triggered and

the CheckValue function determines if the value specified in the text box falls within the
range of acceptable values.

Notice that we are calling the same function for the Change event on each text box. The
CheckValue function determines which text box was modified and executes the appropri-
ate code. In order to know which text box has been modified, we are using the this key-
word to pass the reference to the object to the function. Once the reference is passed to
the CheckValue function the name value of the text box object is checked to determine
which text box was altered. We then use the Switch statement to determine which state-
ments to execute based on the text box that was modified. Once the appropriate code
executes, an alert message displays if the value of the text box is not within the
appropriate range, as illustrated in Figure 10.4.

ANALYSIS

FIGURE 10.4
You can use the
Change event to mon-
itor changes to spe-
cific form fields.

Using the this Keyword with Event Handlers
When creating event handlers you will need to know which object triggered a specific
event. Since multiple objects can trigger the same event, you need a means of capturing
that information. This can be accomplished using the this keyword, as we did in
Listing 10.3.

The this keyword allows you to pass a reference to an object as an argument for a
function. For example, in Listing 10.3 we have the following code for each text box:

onchange=CheckValue(this)

When the Change event is triggered for a particular text box the CheckValue function is
called and it receives a reference to the actual object that triggered the Change event. You
then can access properties of the object. For example, we are using the Name property to
determine which object was triggered.

We discussed forms in Chapter 6, “HTML Forms and the String Object.” For
more information on form fields refer to that chapter.

Note

13 2978 CH10 4/10/02 10:43 AM Page 341

Working with Keyboard Events
When dealing with user input you may want to monitor what keys are pressed on the
keyboard. Each time you press a key on the keyboard there are actually a sequence of
three different events that are triggered. When you press down the key, a KeyDown event
is triggered; as the key is released, a KeyUp event triggers; and finally, after you have
pressed a key a KeyPress event triggers. These events occur for every key that is pressed.

You can use these three keyboard events for monitoring input in a specific Form
object, such as a text box, or any other location on the Document object. For example,
Listing 10.4 monitors any key presses that occur on the Web page and then displays a
message indicating that a key was pressed.

LISTING 10.4 Capturing Keyboard Events (keypress.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--

document.onkeypress = DisplayMsg;

function DisplayMsg()
{
window.alert(“You just pressed a key.”);
}

//..>
</script>
<title>Keyboard Event</title>
</head>
<body>
</body>
</html>

If you look closely at the code in Listing 10.4, you will notice that the alert mes-
sage displays for every key that is pressed. If you are only concerned with the

keyboard events within a specific form field, you again can monitor only that specific
object for keyboard events.

342 Day 10

INPUT

ANALYSIS

Keep in mind that you can rely only on receiving these events when keys
with values on the ASCII table are pressed. This includes all alphanumeric
keys, the Enter key, and the spacebar. Typically you will not receive events
from pressing function keys, arrow keys, or any other navigational key.

Note

13 2978 CH10 4/10/02 10:43 AM Page 342

Events and Event Handling 343

10

Of course, just knowing a key has been pressed may not be adequate. It also comes in
handy to know which key was actually pressed. In order to do that we need to use the
Event object so that we can get more information about the event that transpired.

Using the Event Object
Both the Netscape and Internet Explorer object models provide an Event object which
stores information about the current event. JavaScript can access this object at anytime in
order to gather more information about an event. Since it is an object, we can access any
of the properties associated with the object to get more information about the event—
that’s the cool part of the deal.

Unfortunately Microsoft and Netscape do not support the same properties for this object.
Because of this fact, in order for our script to work on both browsers we must create
browser-specific code for each browser, as shown in Listing 10.5.

For specific information about creating cross-browser code refer to
Chapter 8.

Note

LISTING 10.5 Determining Which Key Was Pressed (capture keypress.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--

document.onkeypress = DisplayMsg;

function DisplayMsg(key_event)
{
if (document.all)
//Checks for IE 4.0 or later
{
document.form1.text2.value = String.fromCharCode(event.keyCode);

}
else if (document.getElementById)
//checks for Netscape 6 or later
{
document.form1.text2.value = String.fromCharCode(key_event.which);

}
else if (document.layers)
//Checks for Netscape 4
{
document.form1.text2.value = String.fromCharCode(key_event.which);

INPUT

13 2978 CH10 4/10/02 10:43 AM Page 343

}
}
//..>
</script>
<title>Capture Key Pressed</title>
</head>
<body>
<form name=”form1”>
Type value in field:

 See what you typed:

<input type = “text” name = “text1” onkeypress=”DisplayMsg(event)” size=”20”>

<input type = “text” name = “text2” onkeypress=”DisplayMsg(event)” size=”20”>
</form>
</body>
</html>

The code in Listing 10.5 captures the value typed in the first text box and displays it in
the second text box, as shown in Figure 10.5.

344 Day 10

LISTING 10.5 continued

FIGURE 10.5
Use the Event object
to capture the actual
keys pressed on the
keyboard.

OUTPUT

Again keep in mind that in order to work with the Event object you need to design your
code so that it is browser specific. For example, in Listing 10.5 we used the Document
object with an if statement to determine which browser type was being used. If you
attempt to access an Event property on a browser that does not support that property,
your code will be ignored.

Monitoring an Object’s Focus
Another type of event that we can monitor is to determine when an object has focus. An
object has focus when it is selected. For example, if you have a text box on a form, it has
focus when it is selected to receive keyboard input.

13 2978 CH10 4/10/02 10:43 AM Page 344

Events and Event Handling 345

10

The Focus event is triggered whenever a window, frame, or form object gains focus.
When the specific object is selected, it has focus.

The Blur event, on the other hand, is triggered when focus is removed from an object.
This event is triggered by the same objects as the Focus event. The Blur event works
well for checking a form field that a user has just left and verifying the values.

Listing 10.6 illustrates how to use the Focus event to determine when an object receives
focus and displays a message in the status bar.

LISTING 10.6 Monitoring for an Event to Have Focus (focusevent.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--

function DisplayMsg(NumVal)
{
if (NumVal == 1)
{
status = “Type your name in the field” ;
}
if (NumVal == 2)
{
status = “Type your phone number in the field”

}
}
//..>
</script>
<title>Keyboard Event</title>
</head>
<body>
<form name=”form1”>
Name: <input type = “text” name = “text1”
onfocus=”DisplayMsg (1)” size=”20”><p>
Phone: <input type = “text” name = “text2”
onfocus = “DisplayMsg(2)” size=”20”></p>
</form>
</body>
</html>

In Listing 10.6, the onFocus event handler is triggered whenever the field is
selected, as shown in Figure 10.6. You can also monitor when an object loses

focus by using the onBlur event. Keep in mind that if you use both the onFocus and
onBlur event handlers for fields on a form, as you tab through fields the onBlur event
fires as you leave a text box and the onFocus fires for the next text box.

INPUT

ANALYSIS

13 2978 CH10 4/10/02 10:43 AM Page 345

Monitoring Window and Document Events
JavaScript allows you to monitor events that occur relative to an actual window and the
corresponding document. For example, whenever a new document loads a Load event is
triggered. You can use the onLoad event handler to specify code that you want to run
after the page loads. For example, the following line of code would display an alert box
with a welcome message:

<body onload=alert(“Welcome to my site.”)>

This alert box loads as soon as the page is loaded. In this case, the onLoad event handler
was added to the Body tag, but it can be used to monitor the loading of any object.

By the same token, you can use the Unload event to specify code to execute before
unloading a particular page. If you use this code it executes as soon as the user switches
to another Web page.

Another useful Window event to monitor is the Resize event. This event is triggered
whenever the browser window is resized. If you remember, we used this event in Listing
10.2. In that code we displayed a message each time the browser window was resized.
You can also use the Move event in much the same fashion if you want to monitor when
the browser window is moved.

Capturing Mouse Actions
The mouse is probably the most-used device for interacting with a Web page. Because of
that fact, there are several different events that are triggered because of mouse actions. In
fact, some mouse actions actually trigger multiple events. For example, when you click

346 Day 10

FIGURE 10.6
You can use the
Focus event to moni-
tor the selection of
fields on a form.

OUTPUT

13 2978 CH10 4/10/02 10:43 AM Page 346

Events and Event Handling 347

10

on a button with the mouse not only does the Click event trigger, but also the MouseDown
and MouseUp events. In fact the events are actually triggered in the following order:
MouseDown, MouseUp, and then Click.

Of course clicking the mouse is not the only action you can perform. In fact the browser
actually keeps track of the mouse cursor location and triggers a MouseMove event with
each mouse movement. As the mouse moves across an object, a MouseOver event is
triggered. When you move the mouse off of the object, a MouseOff event is triggered.

Intercepting Mouse Clicks
Probably the most commonly used event handler for the mouse is the onClick event han-
dler. As I mentioned, this event handler indicates that the mouse has been clicked on a
particular object. By adding the onClick event handler to the HTML object tag, you can
customize how the Web page responds to a mouse click on a particular object. For
example, the onClick event handler in the following code is triggered when the button is
clicked.

<input type=”button” value=”Push Button” name=”Button1”

onclick=”window.alert (‘Button Pressed’);”>

Besides monitoring form fields for mouse clicks, you also may want to capture the Click
event for a link. For example, you may want to display a message before opening a link
clicked on your Web page, as illustrated in the code in Listing 10.7.

LISTING 10.7 Verifying Before Opening a Link (clicklink.htm)

<html>
<head>
<script Language=”Javascript” type = “text/javascript”>
<!--
var newurl
function CheckRequest(newurl)
{
if (confirm(“Do you want to visit “ + newurl + “ site.”))
{
return true

}
else
{
return false
}
}

//-->
</script>

INPUT

13 2978 CH10 4/10/02 10:43 AM Page 347

<title>Capturing Links</title>
</head>
<P><A href=”http://www.microsoft.com” onclick = “return
CheckRequest(‘Microsoft’)”>Microsoft</P>
<P><A href=”http://www.netscape.com” onclick = “return
CheckRequest(‘Netscape’)”>Netscape</P>
</body>
</html>

As you can see in Listing 10.7, using the onClick event within a link object
allows you to specify code that should execute before displaying the correspond-

ing link. The code I used for the event handler may look slightly different from other
examples that we have used. In this example, we have added the return keyword before
the JavaScript function call. By doing this you can use the Confirm method to verify that
the user wants to view the Web site before switching to that link. The Confirm method
displays a dialog box, as shown in Figure 10.7. The method returns a value of True if the
user selects the OK button; otherwise, the value of False is returned if the Cancel button
is selected and the new link does not display.

348 Day 10

LISTING 10.7 continued

ANALYSIS

FIGURE 10.7
By capturing the
Click event for a
link, you can
customize how the
link displays.

OUTPUT

Of course the DblClick event can be captured using the same type of coding. If you
want to capture a double click of the mouse instead of the single click, you will need to
use the DblClick event handler. Keep in mind that you will want to be careful capturing
both the Click and DblClick events for the same object. Of course the Click object is
always going to be triggered when the first mouse click occurs, and then the DblClick
event triggers after the second mouse click. Therefore, it can be difficult to distinguish
whether a click or double click occurred.

13 2978 CH10 4/10/02 10:43 AM Page 348

Events and Event Handling 349

10

In addition to the actual clicking of the mouse, you can also capture the events of press-
ing and releasing the mouse using the MouseDown and MouseUp events. These two events
are actually triggered before the Click event.

Creating Mouse-Over Effects
One of the most commonly used visual effects on current Web sites is the changing of
menu items, or other items on a Web page, as the mouse cursor drags across the items.
This may appear to be indicative of the use of cool graphics, but it is actually accom-
plished by simply using mouseover effects that are triggered by the MouseOver and
MouseOut events. This process of changing images based upon the movement of the
mouse is commonly referred to as mouse-over effects or hovering.

When you add mouse-over effects to your Web page you are basically capturing the
mouse movement across a particular image or link. If the mouse moves over the object, a
MouseOver event triggers. When the event triggers you simply swap the image. When the
user moves the mouse off of the object, you swap the image back to the original image.
This type of event capturing and image changing gives the appearance of a much more
dynamic Web page.

In Listing 10.8, we create a Web page that changes the menu-button images when the
mouse moves across the image. The images change again if when the mouse clicks on a
button image to give the impression of a pressed button.

LISTING 10.8 Creating Mouse-Over Effects (mouseaction.htm)

<html>
<head>
<title>Mouse Over Buttons</title>
<script language=”JavaScript” type=”text/javascript”>
<!--
{
if (document.images)
button1on = new Image();
button1on.src = “about-pressed.gif”;
button2on = new Image();
button2on.src = “product-pressed.gif”;
button3on = new Image();
button3on.src = “service-pressed.gif”;
button4on = new Image();
button4on.src = “contact-pressed.gif”;

button1 = new Image();
button1.src = “about-unselected.gif”;
button2 = new Image();
button2.src = “product-unselected.gif”;

INPUT

13 2978 CH10 4/10/02 10:43 AM Page 349

button3 = new Image();
button3.src = “service-unselected.gif”;
button4 = new Image();
button4.src = “contact-unselected.gif”;

button1up = new Image();
button1up.src = “about-highlighted.gif”;
button2up = new Image();
button2up.src = “product-highlighted.gif”;
button3up = new Image();
button3up.src = “service-highlighted.gif”;
button4up = new Image();
button4up.src = “contact-highlighted.gif”;

}

function Down(buttonname)
{
if (document.images)
{
document[buttonname].src = eval(buttonname + “on.src”);
}

}

function Off(buttonname)
{
if (document.images)
{
document[buttonname].src = eval(buttonname + “.src”);
}

}

function Over(buttonname)
{
if (document.images)
{
document[buttonname].src = eval(buttonname + “up.src”);
}

}
// -->
</script>
</head>
<body>

<table width=118 border=0 cellpadding=0 cellspacing=0>
<tr>
<td width=1><a href=”javascript:void(0)” onmouseover=”Over(‘button1’)”
onmouseout=”Off(‘button1’)” onclick=”Down(‘button1’)”>
<img name=”button1” src=”about-unselected.gif” alt=”About Us” border=0
width=”119” height=”31”></td>

350 Day 10

LISTING 10.8 continued

13 2978 CH10 4/10/02 10:43 AM Page 350

Events and Event Handling 351

10

</tr>
<tr>
<td width=1><a href=”javascript:void(0)” onmouseover=”Over(‘button2’)”
onmouseout=”Off(‘button2’)” onclick=”Down(‘button2’)”>
<img name=”button2” src=”product-unselected.gif” alt=”Products”
border=0 width=”119” height=”31”></td>
</tr>
<tr>
<td width=1><a href=”javascript:void(0)” onmouseover=”Over(‘button3’)”
onmouseout=”Off(‘button3’)” onclick=”Down(‘button3’)”>
<img name=”button3” src=”service-unselected.gif” alt=”Services”
border=0 width=”119” height=”31”></td>
</tr>
<tr>
<td width=1><a href=”javascript:void(0)” onmouseover=”Over(‘button4’)”
onmouseout=”Off(‘button4’)” onclick=”Down(‘button4’)”>
<img name=”button4” src=”contact-unselected.gif” alt=”Contact Us”
border=0 width=”119” height=”31”></td>
</tr>
</table>
</body>
</html>

As shown in Figure 10.8, the code in Listing 10.8 creates a menu that contains four but-
ton options. When the mouse cursor drags across a button image, the button appears
highlighted to indicate the mouse’s position. If the mouse clicks on a button image, the
button image changes to an image that gives the impression of a pressed button.

LISTING 10.8 continued

FIGURE 10.8
Mouse-over effects
allow you to create
the illusion of actual
buttons on your Web
page.

OUTPUT

You will notice that the HTML code contains a table with four links as menu
items. Initially an image that represents our unselected button displays for

each link.

ANALYSIS

13 2978 CH10 4/10/02 10:43 AM Page 351

Also, in order for each button image to be changed when the user drags the mouse over,
or clicks on the image, you need to make sure each image is named. This is done by
using the name property. The OnClick, OnMouseOver, and OnMouseOff event handlers are
used to specify the actions to perform when the corresponding events take place. Each
event handler calls the corresponding JavaScript function by passing the name of the
image that was selected.

Now let’s look at the JavaScript code at the top. The first thing you want to do when cre-
ating this type of code is preload all of the graphics into Image objects. As you create the
individual Image objects, you will assign the path of the graphic to the src property for
each object.

352 Day 10

You will notice that instead of assigning another page to each link, I used
the statement javascript:void(0). This statement essentially disables the
link so it remains on the same page. This statement works well anytime you
need to disable a link that you do not want a user to visit.

Tip

You will notice that we used an if statement before creating the Image
objects. The if statement is designed to verify that the browser your code is
running in actually supports the Image object. When if (document.images)
returns a value of True the browser supports the Image object and your
JavaScript code executes. If the statement returns a value of False, the code
is ignored.

Note

After preloading all of the images, we need to create functions to handle the mouse
movements. The Over() function executes whenever the MouseOver event triggers, and
the OnMouseOver event handler calls the function. The Off() function executes when the
MouseOut event triggers. Finally, the Down() function executes when the Click event
triggers.

You can expand on this basic version of the mouse-over effects as you implement it into
your Web page. If you want to give the appearance of the button remaining pressed as
you switch to another page, you would change the HTML code for the button to ignore
the MouseOver and MouseOff events. For example, if you were displaying the Products
page, the link on that page would be modified to display as follows:

13 2978 CH10 4/10/02 10:43 AM Page 352

Events and Event Handling 353

10

<tr>
<td width=1>
<img name=”button2” src=”product-unselected.gif” alt=”Products”
border=0 width=”119” height=”31”></td>
</tr>

You will notice that I removed the OnMouseOver and OnMouseOut event handlers from the
code. By not capturing those events for this button, the button image appears the same
until you select the next link.

Another thing to keep in mind, if you are switching between pages, is that it is not
always necessary to add the onClick event to the HTML tag. Because as soon as the
Click event occurs the link will load the new page. You can simply load the new page
with the button selected image.

There are many ways that you can make the image-over effects work on
your Web page. Another common feature is to have another image modi-
fied as part of the mouse event. To change another image, you would sim-
ply identify the image to be changed as part of your JavaScript functions.

Tip

Summary
This chapter explored how JavaScript intercepts various browser events and allows you
to execute code based upon the event being triggered. By capturing events, you are able
to add a more dynamic feel to your Web site because you are performing specific actions
based on the occurrence of the specific events.

Each event is captured using a corresponding event handler. Typically the event handler
is specified as part of the tag for the HTML object. Although we looked at the fact that
some HTML objects do not have corresponding tags, you will need to create specific
JavaScript code to capture those events.

You can monitor keyboard, mouse, error, window, and document events and perform
actions when any of those events are triggered. Probably the most commonly monitored
mouse event is the Click event. This event can be captured using the onClick event
handler. This event is typically used to monitor the clicking of a link or form button.

Keep in mind that event handling is the basis for Dynamic HTML (DHTML), which we
will discuss in detail in Chapter 11, “Dynamic HTML.”

13 2978 CH10 4/10/02 10:43 AM Page 353

Workshop
In the workshop today we will use the questions to review what you have learned in this
chapter about working with events in JavaScript.

Q&A
Q. Should I validate form fields as the user types values or after the form is

submitted?

A. This is really a personal preference. If you have a large form with several fields,
you may want to validate individual fields to be able to easily indicate to the user
which fields are not valid. The downside to doing so is that the user may already
intend to change form field values before submitting the form, and your messages
on each field may only be an aggravation. Ideally you only validate the form fields
after the form is submitted, but design your messages to properly inform the user
of the fields that need to be modified.

Q. When I use both the Change and Blur events they appear to fire
simultaneously. Is that correct?

A. The Change event always fires immediately after the Blur event. Therefore it
makes more sense to only use one of the events as your event handler. Typically
the Change event is more reliable and is the preferred event handler for monitoring
changes to a form field.

Q. How do I capture events that are triggered by objects that do not have
corresponding HTML tags?

A. Some objects do not have HTML object tags, such as the Document object. In order
to capture these events you need to create JavaScript code that monitors these
events directly. This code is created as follows:

objectname.eventname = eventhandler

Quiz
1. What is the best method for verifying input on a form before it is submitted?

2. What is another event to monitor to determine when a field changes?

3. How do you pass a reference to the object with the event hander JavaScript
function call?

4. What is the Event object?

354 Day 10

13 2978 CH10 4/10/02 10:43 AM Page 354

Events and Event Handling 355

10

Quiz Answers
1. You can use the onSubmit event handler to call a JavaScript function to verify the

values in the fields on the form. For example, if you require a number within a
specific range of values you can check the field to ensure that it contains the
appropriate values.

2. The Change event is triggered whenever a field on a form is modified. You can use
the onChange event handler to monitor the field and launch the appropriate code to
validate the value typed in the field.

3. By using the this keyword as the argument for your JavaScript function call you
can pass a reference to the object back to your JavaScript function. Once you have
passed the object reference into your function, you can use the properties of the
object to reference it. For example, the Name property can be used to reference the
object name.

4. The Event object stores detailed information about the most recent event. Although
the object is supported by both Netscape and Microsoft, they each support different
object properties.

Exercises
1. Create a Web page that uses the Focus event to display a status bar message

describing what should be typed when a text box is selected.

2. Create a Web site that uses the mouse-over effects for the menus. Keep in mind
you want the newly displayed pages to display the selection on the menu.
Therefore, you want the selected menu option to be displayed on the new page.

13 2978 CH10 4/10/02 10:43 AM Page 355

13 2978 CH10 4/10/02 10:43 AM Page 356

DAY 11

WEEK 2

Dynamic HTML
Dynamic HTML, or DHTML as it is commonly called, has become widely
recognized as a method for adding dynamic effects to your Web page. With
DHTML you can access and modify the attributes of nearly every HTML
element.

This chapter will look at the elements that make up DHTML and you will learn
how to combine these elements to create dynamic visual effects on your Web
page.

This chapter will teach you

• What DHTML is

• How to use Cascading Style Sheets

• How to work with layers

• How to change element attributes

• How to move things

14 2978 CH11 4/10/02 10:42 AM Page 357

What is DHTML?
In the last few chapters, you have looked at different methods for creating “dynamic”
effects on your Web page. For example, in Chapter 10, “Events and Events Handling,”
you found out how to capture events that happened on the Web page, and how to perform
actions as a result of an event. Even though we learned to do some pretty cool stuff such
as creating mouse-over effects with a movement of the mouse, everything we have done
has really just added a little life to an otherwise static Web page. So what options are
there? After all, HTML is a just a glorified version of a printed page, right? Well actually
there is another option to look at—Dynamic HTML.

DHTML is a method for gaining control in order to create a dynamic Web page with the
ability to modify content, layout, and design after the page has loaded. In the ideal sense,
DHTML gives you total control over everything on the Web page, not only before it
loads but even after it loads. Of course, keep in mind I said “ideal sense”; part of our
goal in this chapter is to provide a realistic view of what can be accomplished in today’s
browsers with DHTML.

Okay, before you think you have to learn some other language now, let me tell you what
DHTML really is. DHTML is simply a combination of HTML 4.0 (or later), Cascading
Style Sheets, JavaScript, and W3C DOM to produce a “dynamic” Web page. So really
the only thing that we haven’t discussed so far in this book is Cascading Style Sheets,
which we will talk about in the next section.

The main thing to keep in mind is that DHTML standards are only well supported by
Netscape 6 or higher and Internet Explorer 5 and higher. (Other browsers support these
standards too, but we are concentrating on the two main browsers.) The prior versions of
these browsers, particularly the 4.0 versions, supported forms of DHTML but the support
was really proprietary to each browser, making it a bigger challenge to create cross-
browser compatible code. Of course, since these browser versions are still in existence
today, you need to allow for them in your coding, and we will touch on some of the
issues of the earlier browser versions throughout this chapter.

Because Cascading Style Sheets (CSS) play such an important role in the development of
DHTML pages, we will focus a great deal of attention on CSS styles and the creation of
rules. We will also focus on the various properties that you can set. Although these prop-
erties are set as CSS rules, they can also be modified through DHTML.

Using Cascading Style Sheets
As you are probably quite aware, styles allow you to specify how a particular block of
text appears on a page. Since an HTML page is really just another way to display a

358 Day 11

14 2978 CH11 4/10/02 10:42 AM Page 358

Dynamic HTML 359

11

written document, at least that was the original purpose for HTML, most of the HTML
tags available allow you to modify the look of your HTML page. For example, applying
any of these styles changes how your text appears: <h1>, <h2>, <h3>, <p>, , <i>, <u>.
Of course the list of HTML tags that affect the look of your page is really rather exten-
sive. Therefore, your first thought might be to wonder why you would even want to both-
er with any other type of styles. But let’s stop and think about things for a bit. Have you
ever noticed that when you apply an HTML tag to your page that the appearance can be
quite different between one browser and another? Have you ever wanted to not only
make the text bold, but also change the color or font? Yes, HTML with the help of indi-
vidual browsers does provide some limited support for customizing styles. However, in
order to create style effects that appear consistently on all browsers requires that you
apply Cascading Style Sheets.

As mentioned earlier, Microsoft, Netscape, and other browsers started recognizing the
fact that users wanted more control over the actual presentation of their documents.
Therefore, each browser started adding methods for customizing individual HTML tags.
Luckily, the World Wide Web Consortium (W3C) quickly realized the need for this type
of document control and developed the Cascading Style Sheet standard (CSS). CSS pro-
vides new features that you can use with a standard HTML document to control the actu-
al style and appearance. For example, you can use code similar to the following to
change the color of the Level 1 Header:

<h1 style=”color: red”>Document Header 1</h1>

As you can hopefully begin to see, by applying CSS styles you are able to have more
control over how your page appears on each browser. No longer are you bound to the
individual browser’s interpretation of the particular HTML tag; you can actually
customize each tag.

As you can see, CSS styles can be added directly to the HTML tag by combining it with
the style tag. Although this is quite handy for tags that appear only once on a page, for
HTML tags that repeat, such as <p> or , you also have the ability to specify the style
definitions in a central location either at the top of the HTML page or in another docu-
ment. We are going to discuss these three methods of style placement within this section.
But first, let’s look at how to specify your styles.

Defining Styles
First off, in order to define any styles you must use the <style> tag within your HTML
document. This tag identifies the custom styles that you want to use within the page. The
style tag includes the Type attribute that indicates the type of styles being defined, in this
case CSS:

<style type =”text/CSS”>

14 2978 CH11 4/10/02 10:42 AM Page 359

As with most other HTML tags, the <style> tag has a closing </style> tag that marks
the end of the custom styles. Between the open and closing style tags, you specify the
rules to apply to each HTML tag. Creating rules will be discussed in the next section.

As mentioned earlier, you can place the styles either at the top (in the head section) of
your HTML page, or in a separate document. If you only want to apply this set of rules
to one particular page, it is just as easy to place the styles at the top of your HTML page.
To do so, your HTML code would look something like the following:

<html>
<head>
<style type=”text/css”>
h1 {color: red;

text-align: center;
font-family: arial}

p {color: blue;
font-family: times;
font-size: 120%}

</style>
</head>
<body>
<h1>Heading 1</h1>
<p>This is the first paragraph</p>
<p>This is the second paragraph</p>
</body>
</html>

By placing these styles at the top of the page, each time a particular HTML tag is used
the corresponding CSS style rule is applied to the tag. For example, the code above
causes the <p> tags to create text that is blue and 20% larger than normal, as shown in
Figure 11.1.

360 Day 11

INPUT

FIGURE 11.1
By using CSS styles
consistent formatting
can be applied
throughout an HTML
page.

OUTPUT

The cool thing about the use of the styles is the fact that you don’t have to remember that
you want all paragraph text to be blue or bold; the style is automatically applied to that
HTML tag. Of course for tags that occur only once on the page, you can still place the

14 2978 CH11 4/10/02 10:42 AM Page 360

Dynamic HTML 361

11

style code within the tag, as we did earlier with the <h1> tag. In fact you can do this for
all tags if you want, but that would defeat the purpose of the style sheet.

<h1 style=”color: red”>Document Header 1</h1>

Of course placing the styles at the top of the page works well for an individual page, but
what if you want to apply the styles to an entire Web site? It can be a nuisance to remem-
ber to add all your styles to the top of each page. Luckily, this process has a much sim-
pler solution: simply create a separate style sheet that you can call from each page.

Creating a separate style sheet (called an external style sheet) is similar to adding
the style sheet to the top of the page. You can create the external style sheet in

any text editor. There are basically two rules you must follow:

• The style sheet file must have a .css file extension, such as styles.css.

• The external style sheet must not contain any HTML tags. The file simply contains
your rules (style definitions) as shown in Listing 11.1.

LISTING 11.1 The Contents of an External Style Sheet (styles.css)

h1 {color: red;
text-align: center;
font-family: arial}

h2 {color: green;
text-align: right;
font-family: arial}

p {color: blue;
font-family: times;
font-size: 120%}

You call your style sheet from any HTML page using the <link> tag. Just like with the
internal style sheet, you need to place the <link> tag within the head section of your
HTML tag. The <link> tag requires three different attributes: rel, type, and href, as
shown in Listing 11.2, which calls the style sheet created with Listing 11.1.

LISTING 11.2 Calling External Style Sheet (externalstyle.htm)

<html>
<head>
<link rel=”stylesheet” type=”text/css”
href=”styles.css” />
</head>
<body>
<h1>This is header 1</h1>
<h2>This is header 2</h2>

NEW TERM

INPUT

INPUT

14 2978 CH11 4/10/02 10:42 AM Page 361

<p>This is the first paragraph</p>
<p>This is the second paragraph</p>
</body>
</html>

When the HTML document loads it opens the associated .css file and applies those
styles to the page to produce the appropriate results, as illustrated in Figure 11.2.

362 Day 11

LISTING 11.2 continued

FIGURE 11.2
An external style sheet
specifies the styles to
apply to the HTML
document that calls it.

Again, when you use the <link> tag you need to make sure you also use the appropriate
attributes. These attributes, listed in Table 11.1, specify the .css file to load.

TABLE 11.1 Link Tag Attributes for Loading a CSS File

Attribute Description

href Specifies the location (URL) of the document to link to the current HTML
document

rel Indicates the relationship between the current HTML document and the
document that is being linked by the href attribute

Type Indicates the type of the file being linked by the href attribute

You can actually have multiple CSS files linked to a single HTML document,
or even an internal CSS style definition that links to an external CSS file. The
confusion comes when the same HTML tag has multiple rules defined.
Fortunately, there is a predefined order that the browser uses when deter-
mining which rule to apply. Rules have the following order of precedence:

• Inline style (within the HTML tag)

• Internal Style Sheet (within the Head section)

Note

14 2978 CH11 4/10/02 10:42 AM Page 362

Dynamic HTML 363

11

You have total freedom to decide where you want to place your style rules. In fact, it is
quite common to use a combination of an external style sheet, an internal style sheet, and
inline styles within one HTML page.

Of course, now that we have looked at where to place the style definitions, we need to
discuss what can actually be defined, as outlined in the next section.

Creating CSS Rules
Each style definition within the style sheet is called a rule. Essentially a rule consists of
three parts: HTML element (called a selector), and a declaration consisting of a property,
and value. The rule is created by specifying the HTML element, and then specifying the
property and property value in curly brackets as shown:

h1 {color: red}

This definition specifies that the <h1> heading level should be red. One thing to keep in
mind, only the portions of the elements’ style that you specify within your CSS style
sheet are modified. In other words, if the default font for the HTML element is Times
Roman and you do not specify a different font, the font value of the browser is used.

You can also specify the values of multiple properties for each HTML element by
placing a semicolon after each declaration within the brackets:

h1 {color: red;
font-family: arial;
text-align: center}

Notice three different properties were specified for the h1 heading level. By the same
token, you can also apply the same property values to multiple HTML elements using
the same rule:

h1, h2, h3 {color: red;
font-family: arial;
text-align: center}

Essentially you can define properties of any HTML element within the style sheet. As
you can see, the use of CSS is very valuable when creating a consistent look and feel for
your Web site. You can change the alignment, background, colors, fonts, margins,
padding, and list properties for each HTML element.

• External Style Sheet (.css file)

• Browser default

This means that if the tag has a style definition that definition takes prece-
dence over any other style definitions that may be available for that tag.

14 2978 CH11 4/10/02 10:42 AM Page 363

Controlling the Background Properties
You can use the various background properties to control the background appearance
for a particular HTML element. For example, the following code would change the
background color of the HTML page to red:

body {background-color: red}

Besides changing the color, you can specify background images as well as the location
of the background image. The properties you can set are outlined in Table 11.2.

TABLE 11.2 CSS Background Properties

Property Values

background-attachment scroll Image scrolls with the rest of the page.
fixed Image remains in fixed location as page scrolls.

background-color Can be a color name, RGB value, or Hex value representing the
color. See Appendix B for color codes. Also, use transparent for a
transparent background.

background-image No background image. Can be the URL of the image to display
for the background.

background-position One of these values: top left, top center, top right, center
left, center center, center right, bottom right, bottom
center, bottom left. Also, can use x% and y% to specify horizon-
tal and vertical positioning. Or x-pos and y-pos to specify posi-
tioning in any CSS units, such as 10px 20px.

background-repeat repeat Repeats image vertically and horizontally. repeat-x
Repeats image horizontally. repeat-y Repeats image vertically.
no-repeat Does not repeat image.

364 Day 11

Below you will find several tables with the properties you can use with your
Cascading Style Sheets. Unfortunately in one chapter it is not possible to
thoroughly discuss each property and its corresponding values, but these
tables allow you to see the versatility you have in defining your rules.

Note

CSS allows you to use several different units of measurement when you
specify values for various properties. The only catch is that you must specify
the unit identifier after the numeric value, such as 10px represents 10 pixels.
Table 11.3 lists the different units of measurement.

Note

14 2978 CH11 4/10/02 10:42 AM Page 364

Dynamic HTML 365

11

TABLE 11.3 CSS Units of Measurement

Unit Description

% Specific percentage

in Inch

cm Centimeter

mm Millimeter

em Font size of the current element

ex The x-height of the font—normally about half the font size

pt Point (1pt = 1/72 inch)

pc Pica (1pc = 12pt)

px Pixels – (1px = 1 dot on the screen)

Adjusting Borders
You can use the border properties to control the style, color, and width of a particular
HTML element. The properties you can set are outlined in Table 11.4.

TABLE 11.4 CSS Border Properties

Property Values

border-bottom Sets properties for the bottom border by setting border-bottom color,
border-bottom style, and border-bottom width.

border-color Up to four values specifying top, right, bottom, and left borders. Can be a
color name, RGB value, or Hex value representing the color. See Appendix
B for color codes.

border-left Sets properties for the left border by setting border-left color, border-left
style, and border-left width.

border-right Sets properties for the right border by setting border-right color,
border-right style, and border-right width.

border-style Up to four values specifying top, right, bottom, and left borders. Use the
following values: none, hidden, dotted, dashed, solid, double, groove,
ridge, inset, outset.

border-top Sets properties for the top border by setting border-top color, border-top
style, and border-top width.

border-width Up to four values specifying the top, right, bottom, and left borders.
Possible values: thin, medium, thick, or a CSS unit that indicates thickness
of the border.

14 2978 CH11 4/10/02 10:42 AM Page 365

Specify the Classification Properties
You can use the classification properties to control the appearance of an HTML element,
its location in respect to another HTML element, and the visibility of the HTML ele-
ment. Table 11.5 outlines these properties for setting the classification of an element.

TABLE 11.5 CSS Classification Properties

Property Values

clear Indicates sides where floating elements are not allowed: left, right, both,
or none

cursor URL of cursor to display, or one of the following: auto, crosshair,
default, pointer, move, e-resize, ne-resize, nw-resize, n-resize,
se-resize, s-resize, w-resize, text, wait, help, or hand

display Value indicating how element displays: none, inline, block, list-item,
run-in, compact, marker, table, inline-table, table-row-group, table-
header-group, table-footer-group, table-row, table-column-group,
table-cell, or table-caption

float Where an image or text appears on the element: left, right, none

visibility Visibility value: visible, hidden, collapse

Specifying the Dimension Properties
You can use the dimension properties to control the width and height of a particular
image. You can also use these properties to specify the distance between lines of text. For
example, the following rule sets the height and width of an tag:

img { height: 100px;
width: 100px }

Table 11.6 outlines the dimension properties you can use.

TABLE 11.6 CSS Dimension Properties

Property Values

height auto Browser uses actual image height. You can specify a numeric value in
px, cm, or another CSS unit. You can also specify a percentage of the block
containing the image.

line-height normal Browser sets the height. Use a number, such as 2, that is multiplied
by font size to set distance. Specify a CSS unit, such as 10px. You can also
specify a percentage of the current font size.

width auto Browser uses actual image width. You can specify a numeric value in
px, cm, or another CSS unit. You can also specify a percentage of the block
containing the image.

366 Day 11

14 2978 CH11 4/10/02 10:42 AM Page 366

Dynamic HTML 367

11

Changing the Font Properties
Probably one of the most obvious reasons for having style sheets is to have the ability to
adjust the font properties for an HTML element. For example, you may want to make
sure that the text is always displayed in a particular font, or that the headings are bold
and underlined. Table 11.7 outlines the various font properties that you can set in the
Cascading Style Sheet.

Keep in mind, if a browser does not support a font you specify, the brows-
er’s default font is used. Therefore, try to use common fonts that most
people have on their systems to ensure your page displays as intended.

Caution

TABLE 11.7 CSS Font Properties

Property Values

font-family List of font names to use for the HTML element. By providing multiple
fonts, the browser has another font to use if the first font is not available.
Separate the list with commas.

font-size Specify a fixed size in pixels, such as 10px, or a percentage of the parent
element. Use smaller or larger to adjust the size based on the parent ele-
ment. You can also use: xx-small, x-small, small, medium, large, x-large,
and xx-large.

font-style normal Displays normal font. italic Displays an italic font. oblique
Displays an oblique font.

font-variant normal Displays normal font. small-caps Displays text with smallcaps.

font-weight normal Displays normal characters. bold Displays thick characters. bolder
Displays thicker characters. lighter Displays lighter characters. 100 – 900

Numeric value defining thin to thick. 400 equals normal and 700 equals
bold.

Setting List Properties
You can customize the way your lists display using the different list style properties
outlined in Table 11.8.

14 2978 CH11 4/10/02 10:42 AM Page 367

TABLE 11.8 CSS List Style Properties

Property Values

list-style-image Specifies the URL of the image to use as the list marker. If you
do not want an image, specify the value none.

list-style-position inside Indents the marker and the list. outside Keeps the marker
and the text on the left.

list-style-type One of these values to specify list marker type: none, disc,
circle, square, decimal, decimal-leading-zero, lower-roman,
upper-roman, lower-alpha, upper-alpha, lower-latin,
upper-latin, hebrew, armenian, georgian, cjk-ideographic,
hiragana, katakana, hiragana-iroha, and katakana-iroha.

Setting the Spacing
You can use the Margin properties to set the spacing around HTML elements. Whereas,
the Padding properties specify the spacing between the border of the HTML element and
the content, like the padding for a table. Table 11.9 shows these properties.

TABLE 11.9 CSS Margin and Padding Properties

Property Values

padding-bottom Sets the bottom padding as a CSS unit or a percentage of the
element width.

padding-left Sets the left padding as a CSS unit or a percentage of the element
width.

padding-right Sets the right padding as a CSS unit or a percentage of the
element width.

padding-top Sets the top padding as a CSS unit or a percentage of the element
width.

margin-bottom auto Browser sets bottom margin. Specify a fixed bottom margin
or a percentage of total height of document.

margin-left auto Browser sets left margin. Specify a fixed left margin or a
percentage of a total width of document.

margin-right auto Browser sets right margin. Specify a fixed right margin or a
percentage of total width of document.

margin-top auto Browser sets top margin. Specify a fixed top margin or a
percentage of total height of document.

368 Day 11

14 2978 CH11 4/10/02 10:42 AM Page 368

Dynamic HTML 369

11

Customize Text Properties
You can use the various text properties to control the actual appearance of the text.
Table 11.10 shows the various possibilities, such as changing the text color, adjusting the
alignment of the text, and even specifying the indentation.

TABLE 11.10 CSS Text Properties

Property Values

color Can be a color name, RGB value, or Hex value representing the
color. See Appendix B for color codes.

letter-spacing normal Applies normal spacing based on font settings. Specifies a
CSS unit, such as 2px, to indicate spacing between characters.

text-align Specifies alignment value: left, right, center, or justify.

text-decoration Specifies text decoration: none, underline, overline, line-
through, or blink.

text-indent Specifies a CSS unit or percentage to indent the text.

text-transform Specifies how to transform text: none, capitalize, uppercase, or
lowercase.

white-space normal Ignores white space in element. pre Preserves white space
in element. nowrap Text in element does not wrap.

Creating Classes
CSS styles allow you to take rules a step further by creating class rules for an HTML
element. A class is essentially just a subset of a particular element. For example, a com-
mon HTML element is the <a> tag used to create links within your page. You are proba-
bly used to the fact that browsers typically show the text in different colors depending
upon whether the user has visited that link recently. However, with CSS you can actually
specify the colors and any other attributes that you want applied to each stage of the <a>
tag. For example, the following code assigns a different color to the active (selected),
visited, link (unvisited), and hover (with mouse) states of the link.

a:active {color:blue}
a:visted {color:red}
a:link {color:green}
a:hover {color:yellow}

By applying these classes to your HTML document the links change colors based on
their current state.

14 2978 CH11 4/10/02 10:42 AM Page 369

You can create your own classes for HTML elements in much the same fashion. For
example, you may want to apply different formatting to the first paragraph of each page.
To do this you would first create the paragraph style in your Cascading Style Sheet and
then you would call that style as part of the <p> tag, as illustrated in Listing 11.3.

LISTING 11.3 Using CSS Classes (subclass.htm)

<html>
<head>
<style type=”text/css”>
h1 {color: red;

text-align:center}
p {font-family: arial}
p.paragraph1 {color:blue;

font-weight:bold}
</style>
</head>
<body>
<h1>Creating Custom Classes</h1>
<p class=”paragraph1”>This is the first paragraph</p>
<p>This is the second paragraph</p>
</body>
</html>

Note that to create the class rule, you type the name of the HTML element followed by a
period and the name of the class. Within your HTML document, you specify the class
rule by typing the HTML tag followed by class= and the name of the class. As you will
notice in Figure 11.3, the class element receives both the styles for the <p> element and
<p class=”paragraph1”>.

370 Day 11

INPUT

You can also define a class rule that can be assigned to any element. This is
useful when you have styles that you want to apply to multiple elements. To
do so, simply type a period followed by the class name. For example, bold-
text {font-weight:bold} creates a class that can now be applied to multi-
ple HTML elements. You call this class using the same method as above, but
by typing class=”classname”.

Tip

CSS does provide a couple of built-in psuedo-classes that you can use with the <p> tag.
The first-line psuedo-class allows you to specify a rule for the first line of a paragraph.
You can use the first-letter psuedo-class to define a rule for the first letter of the para-
graph. To create the rules for these psuedo-classes you use the same approach as above

14 2978 CH11 4/10/02 10:42 AM Page 370

Dynamic HTML 371

11

Unlike the custom classes that you create, when your HTML document loads, the rules
defined for these styles are automatically applied to each <p> paragraph.

Working with Layers
Netscape originally added the concept of “layers” to Netscape 4.0 to provide the ability
to define a portion of the page that could be positioned, moved, or even hidden on the
screen using DHTML. In order to accomplish this, each layer’s elements where placed
within the <layer> tags. Although this was a great concept, it was proprietary, making it
only supported by Netscape Navigator 4+ browsers, although they are not supported by
Netscape Navigator 6.

Fortunately the CSS specification also included a positioning specification that could be
used with all HTML elements. To replace the proprietary <layer> element, you can use
the <div> element that is supported by all browsers that support HTML 3.0 or higher.
Just like the layering concept, the <div> element defines a group or section of the page.
By combining the CSS positioning properties with the <div> element you can create the
layering effects first introduced by Netscape.

There are several different CSS positioning properties that you can use to specify the
position and shape of the HTML element. The properties are outlined in Table 11.11.

FIGURE 11.3
By creating CSS
class rules you can
create custom defini-
tions that you can
apply to specific
HTML elements.

OUTPUT

by typing the psuedo-class rule in the style sheet section, only you place a colon, not a
period, between the element and the psuedo-class.

P:first-line {color:blue}
P:first-letter{font-size:150%}

14 2978 CH11 4/10/02 10:42 AM Page 371

TABLE 11.11 CSS Positioning Properties

Property Values

bottom auto Browser calculates bottom position of element.
Specifies a CSS unit, such as 100px, or a percentage, for position from
the bottom of a parent block.

clip auto Browser sets the clipped size.
Specifies the size as rect (top, right, bottom, left). For example,
rect(10px, 5px, 10px, 4px).

left auto Browser calculates left position of element.
Specifies a CSS unit, such as 100px, or a percentage, for position from
the left of a parent block.

overflow auto Displays entire element outside specified size.
hidden Content clipped to fit.
scroll Content clipped to fit and scrollbar adds to view rest of element.
auto Browser displays scrollbar if content is clipped.

position static Items are laid out in normal HTML fashion and cannot be
moved.
absolute Item is positioned based upon specified coordinates.
relative Item is positioned based upon an offset from the static location
where HTML would have placed the item.

right auto Browser calculates right position of element.
Specifies a CSS unit, such as 100px, or a percentage, for position from
the right of a parent block.

top auto Browser calculates top position of element.
Specifies a CSS unit, such as 100px, or a percentage, for position from
the top of a parent block.

vertical-align Value specifying vertical alignment: baseline, sub, super, top, text-
top, middle, bottom, text-bottom. You can also specify a CSS unit,
such as 100px, or percentage, indicating vertical alignment.

Probably the most used positioning property is the Position property. By using the
absolute and relative positioning values you can specify exactly where on the page you
want the particular layer to be placed. For example, the code in Listing 11.4 illustrates
how to define the absolute positioning for a “layer.”

LISTING 11.4 Specifying the Positioning of a Layer (PositionLayer.htm)

<html>
<head>
<style type=”text/css”>

372 Day 11

INPUT

14 2978 CH11 4/10/02 10:42 AM Page 372

Dynamic HTML 373

11

div.layer1 {position:absolute;
left:75px;
top:75px;
color:red}

div.layer2 {position:absolute;
right:75px;
bottom:75px;
font-family: arial;
color:blue;
font-weight:bold}

</style>
</head>
<body>
<div class=”layer1”>
<h1>Positioning Layers</h1>
<p>This is the first layer1 paragraph</p>
<p>This is the second layer1 paragraph</p>
</div>
<div class=”layer2”>
<p>This is the first layer2 paragraph</p>
<p>This is the second layer2 paragraph</p>
</div>
</body>
</html>

Notice the fact that not only did we use the positioning properties with the <div>
element but also some of the other CSS properties for specifying the appearance

of the text within each layer. By using absolute positioning, each layer is placed on the
screen at the specified position. HTML does not care how the positioning affects another
layer. In fact, depending upon how the browser window is sized, the layers may even
overlay, as shown in Figure 11.4.

ANALYSIS

FIGURE 11.4
Use the <div> HTML
element to create
layers on your page.

OUTPUT

LISTING 11.4 continued

14 2978 CH11 4/10/02 10:42 AM Page 373

Now that you have seen how to create layering effects within your HTML document,
let’s look at how to change those properties within your JavaScript code to create a more
“dynamic” page.

Changing Attributes of an HTML Element
Now that we have discussed CSS and how layers can be used to apply CSS rules to mul-
tiple elements, we are ready to look at the process of changing the value of a property. In
order to do this effectively, we need to use the W3C DOM that we talked about in
Chapter 8, “The Browser Issue.”

If you remember our discussion in Chapter 8, we looked at how the DOM specifies the
elements of the HTML document in a tree-like structure with the Document object being
the base of the tree and all other elements of the page are child nodes of the Document
object node. We also discussed that the easiest method for accessing a particular element
is to use the getElementById() method. This method allows you to access any HTML
element based on the ID attribute.

Of course accessing a property of an HTML element is only half of what you can
accomplish with the W3C DOM; you can also change the property in much the same
fashion. In fact, you may not realize that you can even change text after it has been
written to the screen, as illustrated in Listing 11.5 where the text for a paragraph changes
when the button is clicked.

LISTING 11.5 Changing Window Text (ChangeText.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function ChangeText()
{
var curtextval = document.getElementById(“ptext”);
curtextval.innerHTML = “New Paragraph 1”
}

374 Day 11

Keep in mind, HTML allows you to nest <div> layers. This means you can
place one or more layers inside another layer. When you do this, the rules of
the parent layer are applied to all child layers. But if any of the properties
are changed within the child layer rules, those new property values are
applied to the child only.

Note

INPUT

14 2978 CH11 4/10/02 10:42 AM Page 374

Dynamic HTML 375

11

//..>
</script>
</head>
<body>
<form>
<p id=”ptext”>This is the first paragraph</p>
<p>This is the second paragraph</p>
<input type=”button” value=”Click to Change Text” onclick=”ChangeText()”></p>

</form>
</body>
</html>

As you can see, it requires very little coding to create dynamic effects that change the
context of the window after it has been loaded. As you can see in Figure 11.5, the text in
the first paragraph changes as soon as the button is clicked.

LISTING 11.5 continued

FIGURE 11.5
With the use of the
DOM, you can change
the characteristics of
HTML elements at any
time.

You may have occasions when the attribute that you want to add to an HTML tag does
not currently exist for that tag. If that is the case, you will need to use the
setAttribute() method. This method requires two parameters: the name of the attribute
to add and the value of the attribute. A good use of this method would be to specify that
a link open in another window by adding the target attribute.

selectedlink.setAttribute(“target”, “_blank”)

On the other hand, you may want to remove an attribute from an element. This can be
accomplished by using the removeAttribute() method. This method simply requires the
name of the attribute to be removed.

selectedlink.removeAttribute(“target”)

Listing 11.6 illustrates how to combine changing attribute values by setting and
removing attributes.

14 2978 CH11 4/10/02 10:42 AM Page 375

LISTING 11.6 Changing URL Text (ChangeAttribute.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function ChangeLink()
{
var newlink = document.getElementById(“urltext”);
var curlink = document.getElementById(“oldurl”);
curlink.href = (“http://” + newlink.value);
curlink.innerHTML = newlink.value;
}
function NewWindow(prefval)
{
var curlink = document.getElementById(“oldurl”);
if (prefval == 1)
{
curlink.setAttribute(“target”, “_blank”);
}
else if (prefval == 2)
{
curlink.removeAttribute(“target”);
}
}
//..>
</script>
</head>
<body>
<form>
www.microsoft.com
<p><input type=”radio” value=”V1” name=”R1”
onClick=”NewWindow(1)”>Open in New Window</p>
<p><input type=”radio” name=”R1” checked value=”V2”
onClick=”NewWindow(2)”>Open in Same Window</p>
<input type=”text” id=”urltext” size=”20”>
<input type=”button” value=”Change Link” name=”B3” onClick=”ChangeLink()”></p>

</form>
</body>
</html>

As you can see in Figure 11.6, the code in Listing 11.6 allows you to change not only the
URL that displays when the user clicks the link, but also the text describing the URL to
match the new URL name. The setAttribute() and removeAttribute() methods are
used to specify whether or not the link opens in a new window.

376 Day 11

INPUT

14 2978 CH11 4/10/02 10:42 AM Page 376

Dynamic HTML 377

11

Keep in mind, you can use any of the property values we discussed with Cascading Style
Sheets to change the attributes of an HTML element. Of course changing the attributes
of HTML elements is quite a cool effect, but there are even more effects that can be
created using DHTML, as outlined in the following section.

Moving Things
Now that we have established a basis for DHTML the list is quite long of the effects you
can create on your HTML page. Effects such as animating images, scrolling text, keeping
portions of your page visible when the user scrolls, and even creating drop-down menus
can all be accomplished through DHTML. In the remaining portion of this chapter, let’s
look at how to go about moving things dynamically on the screen.

One of the most common reasons people decide to use DHTML is to add some type of
animation to their pages. Using DHTML you can animate an element of the page
whether it is text or an image. For example, in Listing 11.7 we scroll the text within the
<div> layer across the screen.

LISTING 11.7 Animating Text (animatetext.htm)

<html>
<head>
<style>
div { position:relative;

color:red}
</style>
<title>Animating Text</title>
<script language=”JavaScript” type = “text/javascript”>
var pos1=0;
function next() {
pos1 += 5;

FIGURE 11.6
Changing the attrib-
utes of HTML ele-
ments allows you to
create dynamic
effects on the page
based upon user
selections.

OUTPUT

INPUT

14 2978 CH11 4/10/02 10:42 AM Page 377

if (pos1 > 640) pos1 = 0;
document.getElementById(“movetext”).style.left = pos1;
window.setTimeout(“next();”,30);
}
</script>
</head>
<body onLoad=”next();”>
<div id=”movetext”>
DHTML provides the ability to animate any

HTML elements on your browser window.
</div>
</body>
</html>

This script moves the text across the screen from left to right, as shown in Figure
11.7. When the position of the text is beyond 640, the position changes back to 0

so that it appears to wrap around the screen. Keep in mind, 640 is used as the maximum
position value because the browser window was sized to 640x480. To run this script on a
larger browser, you can adjust that value.

378 Day 11

LISTING 11.7 continued

ANALYSIS

FIGURE 11.7
Creating animations
of images and text is
one of the popular
uses of DHTML.

OUTPUT

You can reverse the scroll direction from right to left by changing the script as follows:

<script language=”JavaScript” type = “text/javascript”>
var pos1=640;
function next() {
pos1 -= 5;
if (pos1 < 0) pos1 = 640;
document.getElementById(“movetext”).style.left = pos1;
window.setTimeout(“next();”,30);
}
</script>

Notice that now the position is checked to see if it is less than zero; if so, set the position
of the text back to the right side of the browser.

14 2978 CH11 4/10/02 10:42 AM Page 378

Dynamic HTML 379

11

The types of animations available with DHTML are limitless when you use the CSS
Positioning properties covered in Table 11.11.

Another very common use, and probably more useful, of DHTML is to create menus.
With DHTML there are many different types of menu systems you can create.

In Chapter 10, “Events and Events Handling,” we looked at creating a mouse-over menu
where the buttons changed based on the location of the mouse cursor. If you remember,
this menu-creation option required the use of three different graphic buttons for each
menu option to give the appearance of the button changing. In Listing 11.8 we create a
similar menu, but this time it is created with DHTML. By using DHTML we are able to
change the contents of the table cells based on the mouse location.

LISTING 11.8 Dynamic Menus (dynamicmenu.htm)

<html>
<head>
<style type=”text/css”>
td.menu {font-family:Arial;

font-weight:bold;
background-color:blue;
cursor:hand}

a{
text-decoration:none;
color:black;
}
</style>
<script language=”javascript” type = “text/javascript”>
<!--
function selectlink(sellink,linkdesc){
sellink.style.background=’yellow’;
if (document.getElementById)
document.getElementById(“selectdesc”).innerHTML=linkdesc;

else
selectdesc.innerHTML=html;

}
function leavelink(sellink){
sellink.style.background=’blue’;
if (document.getElementById)
document.getElementById(“selectdesc”).innerHTML=’ ’;

else
selectdesc.innerHTML=’ ’;

}
//-->
</script>
</head>
<body>
<table bgcolor=”black” border=”1” bordercolor=”white” cellpadding=”2”

INPUT

14 2978 CH11 4/10/02 10:42 AM Page 379

cellspacing=”0”>
<tr>
<td class=”menu” bordercolor=”black” id=”choice1”
onmouseover=”selectlink(this,’Developers of Internet Explorer’)”

onmouseout=”leavelink(this)””>
Microsoft</td></tr>

<td class=”menu” bordercolor=”black” id=”choice2”
onmouseover=”selectlink(this,’Developers of Netscape Navigator’)”

onmouseout=”leavelink(this)”>
Netscape</td></tr>

<td class=”menu” bordercolor=”black” id=”choice3”
onmouseover=”selectlink(this,’Responsible for the W3C DOM’)”

onmouseout=”leavelink(this)”>
W3C</td></tr>

<td class=”menu” bordercolor=”black” id=”choice4”
onmouseover=”selectlink(this,’Publisher of Computer Books’)”

onmouseout=”leavelink(this)”>
Sams Publishing</td></tr>

<tr>
<td bordercolor=”black” bgcolor=”white” height=”18”>
</td></tr>
</table>
</body>
</html>

If you run the code in Listing 11.8, you will see that we added an additional feature to
this menu. When the user drags the cursor across a menu option, a description of the
menu option displays in the last table cell, as shown in Figure 11.8.

380 Day 11

LISTING 11.8 continued

FIGURE 11.8
You can create some
dynamic menus using
DHTML.

OUTPUT

Summary
In this chapter, you first learned that DHTML is actually comprised of four different
components: CSS, HTML 4.0 (or later), JavaScript, and the W3C DOM. Cascading Style

14 2978 CH11 4/10/02 10:42 AM Page 380

Dynamic HTML 381

11

Sheets (CSS) provide a means for creating style rules that can be applied to an entire
document, or for that matter an entire site. You can create rules for any HTML element.
You can also create rules for sub-class elements, which are simply a sub-class of a partic-
ular element. CSS provides several different types of properties that you can apply to
your HTML elements. For example, to set a particular element to be underlined you set
the text-decoration property value to underline. You can place CSS rules in three differ-
ent locations. They can be part of the HTML tag, listed at the top of the HTML page in
the Head section, or exist in an external style sheet.

Netscape introduced the concept of layers as an addition to DHTML to provide a means
for applying dynamic effects to portions of a page. Unfortunately layers are specific only
to Netscape 4+, but the same effect can be accomplished on a cross-browser basis using
the <div> element.

Finally, we looked at how to combine the elements of DHTML to create dynamic effects
on your page such as changing the values of static text on the page, animating elements,
and even creation of dynamic menus.

Workshop
In the workshop today we will use the Q&A to look at other issues you may face with
DHTML, and we’ll use the questions and exercises to review what you have learned in
this chapter about working with DHTML.

Q&A
Q. How do I avoid conflicts between styles within the document and those in an

external style sheet?

A. Keep in mind, the styles applied as part of the HTML tag will always supercede
any other styles related to that same element. The best practice is to create your
general styles and store them in the external style sheet to be applied to all pages.
Then if you have special situations where you want to change a style, make that
change at the tag level.

Q. Why should I bother to create Cascading Style Sheets?

A. By creating styles you can specify how a particular HTML element should appear
on the page. For example, you may want your heading levels to be a specific font
style and size. You create specific rules that define the styles to apply to each
element.

14 2978 CH11 4/10/02 10:42 AM Page 381

Q. How do I apply the layer effect of Netscape 4+ in cross-browser code?

A. Layers were first introduced by Netscape as a means to group portions of the page
together. You can apply layering effects to all browsers using the <div> tag. With
the use of layering you can set the location of each layer independently.

Quiz
1. What advantage is gained by creating a separate CSS file for your style rules?

2. What is the precedence order for applying CSS styles?

3. How do you change the text in a paragraph using DHTML?

Quiz Answers
1. You actually have the ability to place your CSS rules in three different locations.

You can add the style information directly to the HTML tag by using the style
attribute as part of the tag. For styles that appear frequently within the page you
can create a CSS-style page within the Head section of the HTML page. If you
want the styles applied to multiple pages on your site, you can create a .css file
containing the rules that can be called by each page.

2. With CSS you have the potential of having multiple styles for the same HTML ele-
ment. If rules exist for the same property of the HTML element, the rules are
applied using the following order: inline style (with HTML tag), internal style
sheet, external style sheet, and finally the browser default. In other words, if the
rule exists in the inline style, that is the rule that is applied for that property—
regardless of what the rule in the internal style sheet states.

3. In order to modify the value of a specific HTML element you must access the ele-
ment by its ID attribute. Therefore, for each HTML element that you want to be
dynamic, you must add an ID attribute to the corresponding HTML tag. You can
access the HTML element using the getElementById method.

Exercises
1. Create a Web page that scrolls text or images vertically on the page.

2. Create a Web site that has a dynamic menu that displays across the top of the page.
Try adding a description of the menu link to the status bar.

382 Day 11

14 2978 CH11 4/10/02 10:42 AM Page 382

DAY 12

WEEK 2

Windows and Frames
The Window object is the top-most, or main, object in each browser.
Consequently, all other objects are child objects of the Window object. In this
chapter, we will look at the Window object and how it compares to the Frame
object. We will see that frames are nothing more than a method for displaying
multiple windows within one browser window; however, each frame is
independent.

We will also look at several aspects of the Window object, and how they can be
accessed from JavaScript. These elements are the Location object, the History
object, and the Window object methods for displaying popups. We will also look
at how to make changes to the status line of your window.

This chapter will teach you

• What windows and frames are

• How to determine window location

• How to work with the window history

• How to work with the status line

• How to use the Screen object

15 2978 CH12 4/10/02 10:49 AM Page 383

• How to work with frames

• How to work with popups

What Are Windows and Frames?
You are used to hearing the word “window.” After all, the word appears in the name of
every Microsoft operating system. If you remember our discussion of objects in Chapter
4, “JavaScript Is Object-Based,” you know that with JavaScript the Window object repre-
sents the browser window. In other words, it is the main object and all other objects are
children of the Window object. The Window object contains three different objects—the
Document object (discussed in Chapter 11, “Dynamic HTML,” which contains all other
page elements), the Location object, and the History object (each of which will be
discussed in this chapter).

A frame, on the other hand, is very similar to a window. In fact, it is essentially a sepa-
rate window in your browser window. By using frames you can have multiple pages open
simultaneously within your browser window. Each frame functions independently of the
other frames on the page. Therefore, because each frame contains all the properties of a
window, each frame is considered to be a Window object. Figure 12.1 illustrates how two
frames can display within one browser window.

384 Day 12

FIGURE 12.1
Frames are often used
to display multiple
documents on one
page.

We will delve into frames in more detail later in this chapter. First let’s look at windows
in a little more detail.

15 2978 CH12 4/10/02 10:49 AM Page 384

Windows and Frames 385

12

Because JavaScript treats each frame as a separate window, you will see later that deal-
ing with multiple windows and frames can get a little confusing. In order to keep track of
each window and frame, you need to have a method of differentiating between them. The
best method for doing so is to assign a window to a variable. That way, you can refer-
ence the appropriate window or frame based on its variable name.

first_window = window

Once you have assigned the window to the variable, you can reference the window from
any location. By doing so you can make modifications to its properties.

Window Properties and Methods
Chapter 4 discussed the method of referencing properties and methods for an object. Just
like all other objects, the Window object has its own properties and methods that you can
use. Chapter 4 also discussed the fact that the standard notation for referencing an
object’s property or method is to specify the object name, a period, and the property
name or method, as shown below:

window.close()

With JavaScript, the Window object is the default object. This means that if JavaScript
encounters a property of a method that does not have an object specified, it automatically
assumes that the property or method belongs to the Window object. Therefore, you can
also specify a property or method without the object reference, shown as follows:

alert(“Hi”)

Also mentioned earlier was the fact that you could use a variable to reference a specific
Window object, which is ideal when referencing another window or frame (as we will talk
about later). However, JavaScript also provides a handy self property that you can use to
ensure that the property and method calls are associated with the current window. To use
this property, you simply type it, followed by the property or method you want to use, as
shown below:

self.close()

The list of properties and methods that are associated with the Window object is quite
extensive. Of course, as with other JavaScript objects, some methods and properties are
browser-dependent and should probably be avoided when creating cross-browser code.

Probably the most common events you will use with the Window object are open() and
close(). These methods allow you to open (create) new windows and close open
windows.

15 2978 CH12 4/10/02 10:49 AM Page 385

Opening a Window
If you have done much work with HTML you know that opening a new window is a fair-
ly simple task that you can accomplish by simply setting the target attribute of the <a
href> HTML tag.

Sams Publishing

With the above statement, the specified Web site is opened in a new window because we
specified a value of _blank for the target attribute. In fact, with the target attribute
you actually have the option of specifying which window receives the new document, as
outlined in Table 12.1.

TABLE 12.1 Target Attributes for Opening a Window

Attribute Description

_blank Opens the specified Web page within a new window

_parent Opens the specified Web page within the parent frame

_self Opens the specified Web page within the current window or frame

_top Opens the specified Web page within the current window, eliminating the
existing frames

Another thing to be aware of is the fact you can also use the target attribute to not only
load the Web page in a new window but also to assign a name to the window. By doing
so, you are able to assign new Web pages to that same window using the same value for
the target attribute. See example shown below:

Sams Publishing

Of course I am sure by now you are thinking this is all good HTML information, but
what does it really have to do with JavaScript? I gave you these HTML basics and a
foundation for what you can accomplish with the open() method of the Window object.
Essentially you can use the open() method within your JavaScript code to open an
HTML page in much the same fashion as using the <a href> tag. Actually, in practice,
you have even more capability with this method than you do in HTML.

In order to use the open() method, there are basically two values you must specify: the
URL of the file to open and the name of the window to open. For example, to open the
Sams Publishing site, you would type the following:

window.open(“http://www.samspublishing.com”, “Sams”);

386 Day 12

15 2978 CH12 4/10/02 10:49 AM Page 386

Windows and Frames 387

12

When you call the open() method it actually returns a reference to the new window, so if
you assign the open() method return value in a variable, you can reference the window
later using the variable.

winvar = window.open(“http://www.samspublishing.com”, “Sams”);

Besides specifying the window name, you can also specify the size and position of the
browser window when it opens. By default, the new window opens as the same size as
the default browser window. You can use the attributes in Table 12.2 to change the size
and location of the new window.

TABLE 12.2 Positioning Attributes for the open() Method

Attribute Description

height Indicates the height of the new window in pixels

width Indicates the width of the new window in pixels

left The number of pixels from the left edge of the screen to the left edge of the
window

top The number of pixels from the top edge of the screen to the top edge of the
window

For example, you can create a new window that is 300 pixels wide and 300 pixels high
by typing the following:

winvar = window.open(“http://www.samspublishing.com”, “Sams”, “height = 300,

width = 300”);

You can also specify information about the appearance of the window, such as
whether there are toolbars, scrollbars, and so forth displayed for the new win-

dow. These window features are commonly referred to as the window chrome. Table 12.3
lists the window chrome features that you can specify for the window.

TABLE 12.3 Window Chrome Features with the open() Method

Feature Description

directories Displays the Links bar in Internet Explorer, the Personal toolbar in
Netscape 4.0 or later, or the Directory buttons in Netscape 2 and 3

location Displays the Address box in Internet Explorer, or the Location box in
Netscape (This feature only displays if the toolbar is also displayed.)

menubar Displays the Menu bar

resizable Indicates that the user can resize the window

NEW TERM

15 2978 CH12 4/10/02 10:49 AM Page 387

scrollbars Displays vertical and horizontal scrollbars, if needed

status Displays the status bar

toolbar Displays the toolbar

By using these window chrome features you can easily customize how a particular win-
dow displays. For example, if you pop up a page in a separate window, you may want to
eliminate the navigational ability within that window by removing the Address box. The
code in Listing 12.1 illustrates how to customize the appearance of the window by allow-
ing the user to select the desired window chrome features.

LISTING 12.1 Opening a Custom Window (openwindow.htm)

<html>
<head>
<title>Open Window</title>
<script language=”JavaScript” type =” text/javascript”>
<!--
function ChangeLink(currentform)
{
var window_feature = “”;

for (var cb=0; cb<currentform.length - 1; cb++) {
if (currentform[cb].checked)
{
currentform[cb].value = 1;
}
else
{
currentform[cb].value = 0;
}
window_feature = (window_feature + “,” + currentform[cb].name + “=”

➥+ currentform[cb].value);
}
window.open(“http://www.samspublishing.com”, “_blank”, window_feature);
}
//..>
</script>
</head>
<body>
<form name=”form1”>

<input type=”checkbox” name=”directories” value=”0”>Directories Option</p>
<p><input type=”checkbox” name=”location” value=”0”>Location Option</p>

388 Day 12

TABLE 12.3 continued

Feature Description

INPUT

15 2978 CH12 4/10/02 10:49 AM Page 388

Windows and Frames 389

12

<p><input type=”checkbox” name=”menubar” value=”0”>Menu Bar</p>
<p><input type=”checkbox” name=”resized” value=”0”>Allow Window to

be Resized</p>
<p><input type=”checkbox” name=”scrollbars” value=”0”>Scrollbars</p>
<p><input type=”checkbox” name=”status” value=”0”>Status Bar</p>
<p><input type=”checkbox” name=”toolbar” value=”0”>Toolbar</p>
<p><input type=”button” value=”Create Window” name=”CreateWin”

onClick=”ChangeLink(this.form)”></p>
</form>
</body>
</html>

If you notice we use a for loop to cycle through the checkboxes on the form and
to build the window_feature string, indicating the window options to display.

Since there are actually eight options on the form, seven checkboxes and one button, we
subtracted one from the length property value to ignore that form field. The user selects
the checkboxes corresponding to the desired window properties, as shown in Figure 12.2.
When the button is clicked the new window opens as specified.

LISTING 12.1 continued

ANALYSIS

FIGURE 12.2
Use the Window
Chrome features to
customize the look of
the window you want
to open.

OUTPUT

Closing a Window
Of course if you can open a window, you also need the ability to close a window. You
can close a window from JavaScript using the close() method. To close the current
window, you would use the following code:

window.close()

15 2978 CH12 4/10/02 10:49 AM Page 389

When your command executes, the current browser window will close. Typically
though, you are going to want to close yet another window with this command. In order
to do this, the window you want to close needs to be referenced. The easiest method is to
assign the statement that opens the window to a variable. As mentioned in the previous
section, this gives the variable a reference to the specified window thereby allowing you
to reference the window at any point to close it, as shown below:

ourwindow = window.open(“http://www.microsoft.com/”);
ourwindow.close();

You should be aware that JavaScript has a closed property for each Window object. When
a window closes, the closed property is set to True. If the window is still open, the
closed property is set to False. You can use this property to determine whether or not
you need to close a window. You should also be aware that the property returns a null
value if the window was never opened.

Determining Window Location
In terms of JavaScript and the Window object, location simply specifies the URL, or loca-
tion of the Web page that displays in the window. There are two methods to work with
the window location:

• Use the Location property of the Window object. For example, to set the location of
a window called mywindow you type the following: mywindow.location =
“http://www.netscape.com”;

• Use the Location object to set or return the URL information using the Location
object properties discussed in Table 12.4. For example, you would type the follow-
ing to set the window location using the Location object:
mywindow.location.href = “http://www.netscape.com”;

390 Day 12

It may seem a little odd that there is a Location property for the Window
object and a Location object. This is not at all unusual. In fact the Location
property of the Window object actually loads the Location object with the
specified URL. Essentually, each child object of an object is actually a
property of the same object.

Note

As we just specified, the Location object represents the actual URL for the page.
Although the Location object only contains a URL, it does have several properties you
can use to examine parts of the URL, as outlined in Table 12.4.

15 2978 CH12 4/10/02 10:49 AM Page 390

Windows and Frames 391

12

TABLE 12.4 Location Object Properties

Property Description

hash The name of the anchor specified in the URL address. The anchor value is
the portion of the address that follows the hash sign (#). Anchors are typi-
cally set to jump to a specific location on a page, such as #top.

host The host name and the port used to communicate with the server

hostname The host name of the server

href The entire URL address

pathname The directory path and filename of the document

port The port used by the browser to communicate with the server

protocol The protocol used for communication between the browser and the server
(Common protocols are http and ftp.)

search The portion of the URL that contains the search string. This is the value that
follows a ? in the URL

So, you can change the URL displayed by an open window by either using the
window.location property or the Location.href property. Actually, when you do use
Window.location to change the URL, JavaScript is actually just changing the href prop-
erty of the corresponding Location object. For example, the code in Listing 12.2 illus-
trates how to change the URL displayed in one frame to the value specified by the user
in the other frame. Keep in mind working with frames will be discussed in more detail
later in this chapter.

LISTING 12.2 Changing the Window URL (changelocation.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function changeLocation()
{
parent.frames[1].location = document.form1.NewURL.value;
}
//..>
</script>
</head>
<body>
<title>Specify URL</title>
</head>
<body>

INPUT

15 2978 CH12 4/10/02 10:49 AM Page 391

<form name=”form1”>
<input type=”text” name=”NewURL” size=”50”>
<input type=”button” value=”Change URL” name=”URLButton”

onclick = “changeLocation()”></p>
</form>
</body>
</html>

You will notice that we use the href property of the Location object to set the
URL for the second frame, as shown in Figure 12.3. Keep in mind, the href

property is the default property for the Location object. Therefore, it is not necessary to
specify the property name. In fact, if you omit it, JavaScript automatically applies the
changes to that property.

392 Day 12

LISTING 12.2 continued

ANALYSIS

FIGURE 12.3
The Location object
maintains the URL
information for the
window.

OUTPUT

The Location object also has three methods that you can use: the assign() method, the
reload() method, and the replace() method. Each method is fairly easy to use.

Remember there are two methods that you can use to assign a URL. You can either use
the Location property of the Window object or set the href property of the Location
object. Whichever method you decide to use, JavaScript uses the assign() method to
assign the new URL to the browser window. You can also use this method, if desired, but
it is not necessary. To use it, you simply specify the new URL, as follows:

location.assign(“http://www.netscape.com”);

15 2978 CH12 4/10/02 10:49 AM Page 392

Windows and Frames 393

12

You can use the reload() method to reload the current page in the browser. This is basi-
cally the same as selecting the Refresh or Reload option within the browser. The only
difference is that you can specify whether the page reloads from the browser cache or
from the server using the optional Source attribute, as follows:

location.reload

By default, the reload() method simply reloads the specified page from the browser
cache. This means that the page loads much faster; it also means that any changes to the
page will not be reflected when it is reloaded. If you want to force the page to reload
from the server, you need to specify a value of True for the Source attribute, as shown
below:

location.reload(true)

By reloading the page from the server, you are ensured that the visitor will see the most
current version of the page.

The other method available with the Location object is the replace() method. This
method allows you to change the page that displays when the user clicks the Back but-
ton. This may sound like an odd behavior, but have you ever visited a Web site where the
page did not load properly when you clicked the Back button on the browser? When the
Back button is clicked you can choose whether to display a customized page or the
default page displays by using the following code:

location.replace(www.microsoft.com/default.htm);

When you use this method, the page you specify replaces the current page in the history
list—that is, when the Back button is pressed, this is the page that will display. We are
going to talk more about the window history in the next section.

Working with Window History
As you are probably aware, the browser window maintains a history of the pages that
have been viewed during the current session. This information is stored in the History
object. From the browser window you can scroll back and forth through the history list
using the Back and Forward buttons.

In the previous section, we looked at how you can modify the page that displays when
the Back button is clicked. In addition, you can also use the methods associated with the
History object to move through the history list. There are three different methods that
you can use with the History object, as outlined in Table 12.5.

15 2978 CH12 4/10/02 10:49 AM Page 393

TABLE 12.5 History Object Methods

Method Description

back() Moves back through the history list from the current position. Simulates the
Back button on the browser.

forward() Moves forward through the history list from the current position. Simulates
the Forward button on the browser.

go() Moves forward or backward within the history list. A negative number
moves backward through the list the specified number of pages and a
positive number moves forward. If you specify a value of zero, the current
page refreshes.

Keep in mind that if the history does not exist in the direction you specify with these
methods, the browser remains on the current page.

As you can see from Table 12.5, the go() method provides the most flexibility by allow-
ing you to jump to any page within the history list. For example, you can create your
own back link to move back two pages in the history list, as follows:

Return to Main Page

Again, this code causes the browser to display the page that displayed two pages prior to
the current page. This allows you to customize how the user moves through the history.
By the same token, you may want the movement within the list to display a specific
page, which can be accomplished by specifying a URL. For example, the following code
would jump to the default page for Microsoft:

Return to Home Page

You need to keep in mind that if you specify a URL for the go() method, the URL must
be within the history list or the browser will remain on the current page.

394 Day 12

Be aware that you cannot access URLs that are listed in the history list. You
can simply scroll through the list by going back and forward.

Note

Working with the Status Line
Earlier in this chapter, when the window chrome features were introduced that can be
specified for the Window object, we looked at how to specify whether or not the status bar
would display at the bottom of the window. The status bar normally contains messages

15 2978 CH12 4/10/02 10:50 AM Page 394

Windows and Frames 395

12

related to the page being viewed. For example, the status bar displays the URL when you
drag your mouse cursor across a link. You also can place custom messages in the status
bar by using the Status property of the Window object.

To put a message in the status bar, you simply set the value of the status property equal
to the message you want to display, as follows:

status =”Welcome to our Web Site”;

Notice that although the property is associated with the Window object, as we discussed at
the beginning of the chapter, it is not necessary to use the Window object reference with
the properties because JavaScript automatically assumes that the property belongs to the
Window object.

Keep in mind, the message will display on the status bar until a new message is assigned
to the status bar, either by you or the browser. With that in mind, look at the code in
Listing 12.3, which displays information about links in the status bar when the mouse
cursor drags across the link.

LISTING 12.3 Changing the Status Bar Message (statusmsg.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function StatusMsg(LinkURL, LinkDesc)
{
if (LinkURL == “”)
{
status = “ “
}
else
{
status = (“Visit “ + LinkDesc + “ at “ + LinkURL)
}
return true
}
//..>
</script>
</head>
<body>
<title>Change Status Message</title>
</head>
<body>
<p><a href = “http://www.microsoft.com”

onmouseover = “return StatusMsg(this.href, ‘Microsoft’)”
onmouseout = “return StatusMsg(‘’,’’)”>Microsoft</p>

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 395

<p><a href = “http://www.netscape.com”
onmouseover = “return StatusMsg(this.href, ‘Netscape’)”
onmouseout = “return StatusMsg(‘’,’’)”>Netscape</p>

<p><a href = “http://www.samspublishing.com”
onmouseover = “return StatusMsg(this.href, ‘Sams Publishing’)”
onmouseout = “return StatusMsg(‘’,’’)”>Sams</p>

</body>
</html>

If you look at the code in Listing 12.3, you will notice that at the end of the
StatusMsg function there is a return true statement. When using the status

property with the onMouseOver event, you must use the return statement in order for your
JavaScript to function properly. Although it is rare to use the return statement with your
JavaScript code, in this instance it is necessary. When the user drags the cursor across a
link the message in the status bar changes to describe where the link goes, as shown in
Figure 12.4.

396 Day 12

LISTING 12.3 continued

ANALYSIS

FIGURE 12.4
You can change the
status bar message
using the status
property.

OUTPUT

The code to change the status bar message is typically quite short and, therefore, it is
typically included in only the <a href> tag. Doing so eliminates the need to create a
separate JavaScript function. Although, if you do, you need to make sure you include
both the code to set the status bar message and the return true statement discussed
above. To do so, you need to separate each statement with a semicolon as illustrated in
this code:

<a href = “http://www.netscape.com” onmouseover = “window.status =
‘Visit Netscape at: ‘ + this.href ; return true”>

15 2978 CH12 4/10/02 10:50 AM Page 396

Windows and Frames 397

12

When you open most pages the status bar is typically empty. This is because the default
status bar message is blank. You can customize the default message that displays when
other messages are not displayed by using the defaultstatus property. You set this
property in the same fashion that the status property was set earlier:

defaultstatus = “Welcome to this JavaScript site”;

When you have the defaultStatus property specified in your code, the text specified for
the property displays anytime another message is not displayed on the status bar. If
another message displays, as soon as that message finishes, the default message displays
again.

Using the Screen Object
In addition to the browser that the visitor to your site is using, the other issue to keep in
mind is the screen resolution. Although most developers have learned to run high resolu-
tions to provide more screen space, many visitors run much lower resolutions. So the
main issue becomes determining at what screen size to code your page. If you go with
the lowest common denominator, 640 x 480, everyone can view the site; however, you
are greatly limited to the amount of stuff that you can place on the screen, and visitors
with higher resolutions will see a lot of white space on the right side of the browser win-
dow. Luckily, there is a way to get the resolution information and adjust your code as
desired.

Keep in mind that creating a site that looks good at a higher resolution
does not keep a lower resolution browser from visiting your site. It simply
means that those visitors will not see as much on the page without scrolling.

Note

In order to get the resolution information for the visitor’s screen, you need to access the
properties of the Screen object. All of these properties, listed in Table 12.6, are read-only
and therefore you cannot change the properties; however, you can adjust your own
HTML page code to fit within the parameters.

TABLE 12.6 Screen Object Properties

Property Description

availHeight Indicates the maximum height of the viewing monitor in pixels

availWidth Indicates the maximum width of the viewing monitor in pixels

colorDepth Indicates the bits per pixel

15 2978 CH12 4/10/02 10:50 AM Page 397

height The actual height of the monitor in pixels

width The actual width of the monitor in pixels

The availHeight and availWidth measurements indicate the maximum size of the
browser window. As you are aware, on most operating systems there are other elements
that require part of the screen space, such as the toolbar on a Microsoft Windows operat-
ing system.

For example, with the use of these properties you can create JavaScript code that auto-
matically resizes the browser window to fill the screen, as follows:

Window.moveTo(0,0);
Window.resizeTo(screen.availWidth, screen.availWidth);

Notice the resizeTo() method was used to change the size of the current browser win-
dow. We also used the moveTo() method because we wanted to move the browser win-
dow to the upper-lefthand corner of the screen before resizing it. That way, the window
will appear to cover all available space.

You can of course create code for different resolutions, and then the appropriate code
based upon the screen settings. For example, you can use if statements to check screen
resolution and then execute appropriate code, as shown in Listing 12.4.

LISTING 12.4 Checking Screen Resolution (checkresolution.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
if (screen.width == 640)
{
alert(“Resolution is 640 by 480”);
}
else if(screen.width == 800)

{
alert(“Resolution is 800 by 600”);
}

else if (screen.width == 1024)
{
alert(“Resolution is 1024 by 768”);
}

else if (screen.width > 1024)
{

398 Day 12

TABLE 12.6 continued

Property Description

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 398

Windows and Frames 399

12

alert(“Resolution is greater than 1024 by 768”);
}

//..>
</script>
</head>
<body>
</body>
</html>

Notice in Figure 12.5 that we display a different message depending upon the screen res-
olution. Remember, although 640 x 480 is considered to be the lowest resolution, there
are probably going to be even higher resolution monitors developed which you may need
to bear in mind as you write your code.

LISTING 12.4 continued

FIGURE 12.5
You can use the
Screen object’s
properties to
determine the
resolution of the
visitor’s monitor.

OUTPUT

As you can see, there are multiple methods you can use to set up your code to best uti-
lize the visitor’s screen size. Again, this type of coding does not affect the ability of your
JavaScript code to run, but it does affect how it appears on the screen.

Working with Frames
Since you are learning JavaScript, you probably have heard of frames—especially if you
have done much work with HTML. Frames provide the ability to create the appearance
of multiple windows in one browser window. In other words, by using frames you are
able to display multiple pages in one browser window each within its own frame, and

15 2978 CH12 4/10/02 10:50 AM Page 399

each frame is totally independent of the other frames in the browser
window. The user of frames is illustrated in Figure 12.1, shown earlier in this chapter.

Although frames were incredibly popular three or four years ago, they have lost their
popularity among many Web developers and users. There are different reasons for this, in
particular the difficulty of printing an entire Web page. Even so, they are still a great way
to layout a Web page and maintain navigation buttons and other pertinent information in
the same location on screen. For example, if you want a column of buttons displayed on
the left side of the window that will remain there no matter what direction the user
scrolls, frames are the only method to accomplish this.

Before looking at how you can manipulate the contents of frames using JavaScript, let’s
review some basic frame technology to clarify our discussion.

In order to use frames you must first have an HTML page that defines the frame layout
using the <frameset> tag. The <frameset> tag describes how the frames are laid out on
the page, as shown in Listing 12.5.

LISTING 12.5 Defining the Frame Layout (framepage.htm)

<html>
<head>
<title>Frame Page</title>
</head>
<frameset cols=”25%,75%”>
<frame src=”frame1.htm” name=”frame1”>
<frame src=”frame2.htm” name=”frame2”>

</frameset>
</html>

Each frameset defines the layout using multiple rows or columns. For example,
in Listing 12.5 there are two columns and the first column takes up 25% of the

browser window, while the second column takes the remaining 75%. You can also define
the size of the row or column as an exact pixel size, or you can use * to let the browser
set its size.

400 Day 12

INPUT

ANALYSIS

The layout of the frameset can become very complex in that you can create
nested framesets. For example, you can create a frameset with two columns
and then break one column into three rows.

Note

15 2978 CH12 4/10/02 10:50 AM Page 400

Windows and Frames 401

12

Each frameset contains at least one <frame> tag that defines the contents of the frame.
The frame always has a src attribute that specifies the URL of the page to display in the
particular frame. There are also some other attributes that you can use when defining the
frame, as outlined in Table 12.7. Later in this section we will discuss how you can also
change the values of these attributes using JavaScript.

TABLE 12.7 Frame Attributes

Property Description

frameborder Specifies whether or not a border displays for the frame. A value of 1 dis-
plays the frame and 0 hides the frame.

marginheight Indicates the pixel size of vertical margins within the frame.

marginwidth Indicates the pixel size of the horizontal margins within the frame.

name Indicates the name of the frame. This is needed so you can reference the
frame within your JavaScript code.

noresize A value of true allows the user to resize the frame; whereas, specify false
if the frame should not be resized.

scrolling Specifies whether scrolling is allowed in the frame. Specify a value of yes
to allow scrolling; specify no, if scrolling should not be allowed, or auto to
let the browser determine if scrolling is needed.

src Indicates the URL of the file to display in the frame.

If you look at the frameset and frames in a slightly different approach, you
will see that the frameset is the parent window and each frame is a child
window. Keep this in mind when we discuss referencing different frames.

Note

Unfortunately there are still instances where the user may have a browser that does not
support frames. This is very possible with the many new mobile devices coming to mar-
ket. If so, you need to have a way to catch and redirect those users to other code. This
can be accomplished using the <noframes></noframes> tag pair. You add the
<noframes> tag to your frameset definition so that the browser knows what command to
execute if frames are not supported.

<frameset cols=”25%,75%”>
<frame src=”frame1.htm” name=”frame1”>
<frame src=”frame2.htm” name=”frame2”>
<noframes>Your browser does not support frames</noframes>

</frameset>

15 2978 CH12 4/10/02 10:50 AM Page 401

Finally, let’s discuss one more frame element—the inline frame, which is indicated by
the <iframe> tag.

<iframe src = “http://www.microsoft.com”></iframe>

The inline frame is used to place a frame on an HTML page, as shown in Figure 12.6,
which shows a single inline frame placed on an HTML page.

402 Day 12

INPUT

FIGURE 12.6
You can use inline
frames on HTML
pages where you
want to insert the
contents of a single
page.

OUTPUT

Keep in mind that you can use all of the attributes listed in Table 12.7 to customize the
look of your inline frame.

Now that we have covered the basics of working with frames, let’s look at the process of
working with frames in JavaScript. As discussed at the beginning of this chapter, frames
are essentially just windows and therefore you are going to see a lot of the same process-
es that were discussed early on in this chapter.

As mentioned earlier, just like the other elements of the HTML page, frames have a tree-
like hierarchy. But, because frames are essentially just windows, when you use frames
the frameset is the parent window and each frame it references is a child window.
Actually, the parent window, or frameset, has a Frames property that contains an array of
the child frames. By using the frames array, you can reference each frame in the order in
which it is listed in the frameset with the first frame referenced as frame[0]. This being
the case, you can reference a frame using either the frame name or the frames array. For
example, look at the following frameset code:

15 2978 CH12 4/10/02 10:50 AM Page 402

Windows and Frames 403

12

<frameset cols=”25%,75%”>
<frame src=”frame1.htm” name=”frame1”>
<frame src=”frame2.htm” name=”frame2”>
<noframes>Your browser does not support frames</noframes>

</frameset>

From the frameset page, you would reference the first frame as either frame1 or
frame[0]. From the child frame you can reference the parent window, or frameset, sim-
ply as parent. Probably the bigger issue becomes the ability to reference another child
frame from the current child frame. In order to do this you will need to reference the par-
ent window. So, with our sample code frame1, you can reference frame2 by one of the
following two methods:

parent.frame2

parent.frames[1]

There are a couple of properties that you should keep in mind when dealing with frame
references. The self property allows you to reference the current frame. For example,
you can type self.parent to refer to the parent frame; or as was mentioned earlier,
simply parent. In most cases, the self property is not needed, but using it helps clarify
your point of reference.

Another property that you need to keep in mind is the top property. This property refers
to the top window object in the browser. This property comes in handy when you have
nested loops because it allows you to back up to the top window and then specify your
reference.

Keep this hierarchical structure in mind as we look at changing properties of different
frames in the rest of this section.

Referencing Frame Locations
As already discussed, you specify the location or URL of the page in order to display in
a frame part of the frameset definition in HTML.

<frame src=”frame1.htm” name=”frame1”>

The HTML definition of the frame contents works well for initially loading the window.
Typically, however, you will want to update your Web pages dynamically by changing
the content of one or more frames within your JavaScript code. As with all window
objects, the URL information for each frame is stored in the Location object. Therefore,
to change the contents of the current frame, you would specify the following:

location = URL

15 2978 CH12 4/10/02 10:50 AM Page 403

URL is the address of the page to display in the current frame. For example, to display
another file on the same Web server, you would simply specify the filename, as follows:

location = “menu2.htm”

Although when dealing with frames, you typically will want to change the contents of
another frame. For example, you may have a list of sites in one frame and when you
click on a link the contents of the second frame change. If the frame containing the menu
is the first frame, a change to the URL displayed in the second frame would be accom-
plished by typing the following:

parent.frame[1].location = “http://www.netscape.com”

Of course, if you know the name of the frame, you can also write this statement as
follows, which uses frame2 as the second frame name:

parent.frame2.location = “http://www.netscape.com”

As seen earlier, when you only have one line of JavaScript code to execute, you can also
add the code to the corresponding HTML tag. For example, you can specify the follow-
ing code to change the contents of the second frame:

<a href=”javascript:void(0)” onclick=”parent.frame[1].location =
“http://www.netscape.com”>Netscape

As you can see, you can change the contents of a frame fairly simply, as long as you
understand the tree-structure that JavaScript follows to locate each frame. When you use
this structure, you can change one frame or multiple frames simultaneously, as shown in
Listing 12.6.

LISTING 12.6 Changing Multiple Frames (ChangeFrame1.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function changeLocation()
{
top.frame2.location.href = document.form1.NewURL1.value;
top.frame3.location.href = document.form1.NewURL2.value;
}
//..>
</script>
</head>
<body>
<title>Specify URL</title>
</head>
<body>

404 Day 12

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 404

Windows and Frames 405

12

<form name=”form1”>
Left Frame: <input type=”text” name=”NewURL1” size=”40”>

Right Frame: <input type=”text” name=”NewURL2” size=”40”>

<input type=”button” value=”Change URLs” name=”URLButton”
onclick = “changeLocation()”></p>
</form>
</body>
</html>

As with any frames, you must have a frameset page. For the code in Listing 12.6, we
have a frameset page made up of two nested framesets, as shown in Listing 12.7.

LISTING 12.7 Nested Frames (Changeframesmain.htm)

<html>
<head>
<title>Changing Frames</title>
</head>
<frameset rows=”20%,80%”>
<frame src=”changeframe1.htm” name=”frame1”>
<frameset cols = “50%,50%”>
<frame src=”changeframe2.htm” name=”frame2”>
<frame src=”changeframe3.htm” name=”frame3”>

</frameset>
</frameset>
</html>

Because the frames are nested, we refer to the frames with URL locations we want to
change by starting with the top property to reference the very top window. The bottom
two frames are updated to reflect the specified URLs, as shown in Figure 12.7.

You can change the URL displayed in multiple frames simultaneously. As you can see, it
is fairly easy to change the URL of the page displayed in each frame. You just need to be
careful that you reference the frame correctly. One potential problem when referencing
frames is the fact that another site can load your site within its own frames. To avoid any
potential reference problems, you can create code that breaks your site out of another
site’s frames, as described in the next section.

LISTING 12.6 continued

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 405

Breaking Out of Frames
One common feature of many sites is to open another URL within existing frames. This
process keeps the visitor on your site with a frame displaying the other URL. This is
similar to what we did in Figure 12.7, where we displayed two different sites, Netscape
and Microsoft, on the same page simultaneously, while the top frame displayed content
from our own site.

Although this is a cool feature, especially for the main site, it can become quite cumber-
some, especially when you have more frames inside of those frames. Also, it can become
a nuisance for your own JavaScript code to run within the frame of another site, because
now when you reference the top frame, you are actually referencing a frame on another
site.

To eliminate any potential issues, you can add code to your site to break out of frames
from the site that called your page. This code is fairly simple, and you can use it whether
or not you are using frames on your site. In fact, by doing so, you can ensure that your
site never appears as a frame in another site.

To break out of frames from another site, you simply need to add the following code to
the pages on your site.

if (top != self)
{
top.location = self.location;
}

406 Day 12

FIGURE 12.7

OUTPUT

15 2978 CH12 4/10/02 10:50 AM Page 406

Windows and Frames 407

12

Of course, this statement also will break up frames on your own site. Therefore, if you
are using frames on your own site, you will need to modify the code slightly to ensure
that your main frame page becomes the top page, as outlined in the next section.

Forcing Frames
Once you set up frames for your Web site, you will want to ensure that the frames
always load when people visit your site. This typically isn’t an issue when they access
your default page, but if they access your site using a link from a search page, it is possi-
ble that they will access a non-frameset page. To ensure that they see the frames, you can
add code to the top of the page to ensure that the frames display.

if (top == self)
{
top.location = “default.htm”;
}

The above code works great for ensuring that the visitor sees the main page of your Web
site. More than likely though, they will lose the link to the page where they entered your
site and now will be forced to relocate it. So, in an ideal world, you would design your
code to open the frames and display the page that was specified when your site was
accessed in the appropriate frame. Of course, this takes a little more complex coding, but
once you place this code on each page your site maintains a consistent look and feel. For
example, Listing 12.8 illustrates the type of code you would place in each frame page to
call the main frameset page.

LISTING 12.8 Forcing Frames (loadframepage.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
if (top==self)
{

var main_frame = “mainframepage.htm”;
var cur_url = self.location.href;
var setframes = main_frame + “?” + cur_url;
location.href = setframes;

}
//-->
</script>
</head>
<body>
<h1>Frame Page</h1>
This page loads within Main Frame page.
</body>
</html>

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 407

Notice that we created a search string to pass the URL of the current page into the main
frameset page. When the frameset page, illustrated in Listing 12.9, receives the search
string it places the specified URL in the appropriate frame.

LISTING 12.9 Main Frame Page (mainframepage.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
var frame_URL;
if (location.search)
{

frame_URL = location.search.substring(1);
}
else {

frame_URL = “changeframe2.htm”;
}
{
document.write(“<frameset rows = ‘20%, 80%’>”)
document.write(“ <frame src=’frame1.htm’>”)
document.write(“<frame src=’” + frame_URL + “‘>”)
document.write(“ </frameset>”)
}
//..>
</script>
</head>
<body>
</body>
</html>

The code on this page is designed so that the page can be accessed directly or
from another page. In other words, if the page is not called from one of the

pages on your site, a search string is not passed and the default page is opened in the sec-
ond frame. Otherwise, the URL of the page that called the main frame page is opened in
the second frame.

Now we should consider combining the code to break out of another site’s frames and to
force the frames thereby ensuring that the visitor gets the ideal visit. You can do this by
adding the code we looked at in the previous section to the top of your frameset page.

This type of frame coding can get rather complex, especially if you start coding for nest-
ed frames. But once you master this type of coding you can ensure not only that frames
display but also that you don’t get trapped in someone else’s frames.

408 Day 12

INPUT

ANALYSIS

15 2978 CH12 4/10/02 10:50 AM Page 408

Windows and Frames 409

12

Working with Popups
Earlier in this chapter we looked at how you can create windows that are specific sizes
and control which window chrome displays on the window. This works well for loading
a new page of information and maintaining the current browser open window. In fact,
popup windows are commonly used on Web sites for displaying advertisement-type mes-
sages. You can create these types of popup windows fairly easily. For example, the code
in Listing 12.10 creates a popup window that displays the text “Good Morning!”

LISTING 12.10 Creating Popup Windows (popupwindow.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
function GreetingWin()
{
DisplayGreeting = window.open(“”, “_blank”, “toolbar=no, status=no,
width=200,height=200”);
greeting = “Good Morning!”
DisplayGreeting.document.write(greeting);
}
//-->
</script>
</head>
<body>
<input type=”button” value=”Click Button” onclick=”GreetingWin()”>
</body>
</html>

As you can see in Figure 12.8, the code in Listing 12.10 creates a window that appears to
popup as soon as the button is clicked on the page. You can also have windows that
popup when a page loads, or when any other event occurs. Actually, the Window object
provides three other built-in popup windows that you can use as needed for different situ-
ations. Each of these methods is easy to use, and also provides the ability to gather input
from the user. In fact, we have already used the alert() method in several examples in
the last few chapters to display popup messages. These three methods are outlined in
Table 12.8.

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 409

TABLE 12.8 Window Methods for Creating Popups

Method Description

alert Displays a message to the user in a popup window. The window contains
one OK button, which can be used to close the window.

confirm Displays a message in a popup window with a Yes and a No button. You can
get the user’s input and use it to determine which tasks to perform.

prompt Displays a message in a popup window with a text field where the user
can type a response. The popup window also includes an OK and a Cancel
button.

To illustrate the difference between these three different popup windows, you can view
the code in Listing 12.11, which uses the prompt() method to request the user’s name,
the confirm() method to verify, and then the alert()method to display a message.

LISTING 12.11 Using Window Object Popup Methods (popupmethods.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
var username = prompt(“Type your name:”, “”);

if (confirm(“Your name is: “ + username + “. Is that correct?”) == true)
{
alert(“Hello “ + username);

}
else
{

410 Day 12

FIGURE 12.8
You can create win-
dows that appear to
popup when a partic-
ular event occurs.

OUTPUT

INPUT

15 2978 CH12 4/10/02 10:50 AM Page 410

Windows and Frames 411

12

alert(“Hi”);
}
//-->
</script>
</head>
</html>

As you can see, each of the three methods displays a different type of popup
window. We used an if statement to determine how to respond based on the but-

ton selected in the confirm popup, shown in Figure 12.9. If the user selects the OK but-
ton, then the alert method displays “Hello” and his name; otherwise the alert method
simply displays the message “Hi”.

LISTING 12.11 continued

ANALYSIS

FIGURE 12.9
You can use the
alert(), confirm(),
and prompt() meth-
ods as popups to
display and gather
values from the user.

OUTPUT

Summary
We have looked at many different elements of the Window and Frame objects in this
chapter. We found out that in reality a frame is just another window; unlike the original
concept we discussed where the Window object is the main object in the browser, and
all other objects are children. When you are using frames you have multiple Window
objects. Your main frameset window is the parent window and all other frames are child
windows.

We discussed how properties and methods can be applied to the current window or frame
by simply using the property or method without an object reference.

We looked at objects associated with the Window object, such as the Location object that
stores the URL information for the currently displayed page and the History object that
maintains a list of the pages viewed during the current session.

15 2978 CH12 4/10/02 10:50 AM Page 411

We looked at how the Screen object properties can be accessed to determine the
resolution settings for the user’s browser. We also showed how you can customize the
messages that display on the status bar for the window.

Workshop
In the workshop today, we will use the questions and exercises to review what you have
learned in this chapter about working with windows and frames.

Q&A
Q. Why should I use the Location object?

A. Every Window object has a corresponding Location object. This object maintains
the URL or location information for the information displayed on the browser win-
dow. By changing the properties of the Location object, you can change the URL
of the page that is being displayed. You can also use the methods associated with
this object to reload the content displayed in the browser window.

Q. Do I really need to know what the user’s resolution is?

A. The Screen object provides information about the resolution of the user’s monitor.
By determining the resolution used by the user you can execute resolution specific
code so that your page displays optimized for that specific resolution. This means
by knowing this information you can make sure you don’t try to display something
larger than the user’s resolution settings. For example, if you have several frames
on your page you need to make sure they can all display within the user’s resolu-
tion settings.

Q. How do I access different frames on the page?

A. The frames property creates a frames array that stores references to each frame.
The frames references are added to the array in the order in which they are listed in
the frameset. You can reference a particular frame using the corresponding refer-
ence in the array. For example, to reference the first frame on the page you would
use frame[0].

Quiz
1. How do you set the default status bar message that displays when no other

messages are displayed on the status bar?

2. If you have the following frameset code, how would you reference and change the
location for frame2 to display the page changeframe4.htm by making the call from
the page displayed in frame1?

412 Day 12

15 2978 CH12 4/10/02 10:50 AM Page 412

Windows and Frames 413

12

<html>
<head>
<title>Changing Frames</title>
</head>
<frameset rows=”20%,80%”>
<frame src=”changeframe1.htm” name=”frame1”>

<frame src=”changeframe2.htm” name=”frame2”>
<frame src=”changeframe3.htm” name=”frame3”>

</frameset>
</html>

3. What are the differences generated by the following popup methods: alert(),
confirm(), and prompt()?

Quiz Answers
1. You can customize the default status bar message using the defaultStatus proper-

ty. By setting this property, your default message displays on the status bar when-
ever there is not another message that needs to display in that location. You set the
default status message by simply assigning the text value to the property:
defaultStatus = “text message”.

2. To change the URL displayed by frame2, you need to reference the parent or top
frame and then call the frame. You can either reference the frame by its name or by
using the Frames array. Either one of these answers is correct.

parent.frame2.location = “changeframe4.htm”

parent.frames[1].location = “changeframe4.htm”

3. The alert() method simply allows you to create a popup window that displays a
message to the user. This method does not expect any response from the user. The
confirm() method creates a popup window and expects the user to provide a con-
firmation by selecting the appropriate button. The prompt() method displays a
popup window containing a textbox where the user can type a value to return to
your code.

Exercises
1. Create a Web page that requests the user’s name, and then displays a custom

greeting on the status bar.

2. Create a Web page with at least two frames. One frame should be a navigation
menu that lists available pages on your Web site. When the user clicks a page, the
corresponding page displays in the second frame. Be sure to add code for browsers
that don’t support frames.

15 2978 CH12 4/10/02 10:50 AM Page 413

15 2978 CH12 4/10/02 10:50 AM Page 414

DAY 13

WEEK 2

Regular Expressions Make
It Easier

We looked at string manipulation and some simple validation of user input
briefly in Chapter 6, “HTML Forms and the String Object,” using some of the
String object’s methods. At that time we mentioned that the processing we
could achieve could be very much enhanced by the use of regular expressions.
This was not an overstatement. Regular expressions, properly used, are a very
powerful tool for the manipulation of strings and for precise validation of form,
and other, data. In this chapter, we will discover some of the important tasks
regular expressions can perform and just how much work regular expressions
can save you when programming in JavaScript.

This chapter will teach you

• Why regular expressions are useful

• What regular expressions are

• How regular expressions are created

• Several ways of using regular expressions

16 2978 CH13 4/10/02 10:48 AM Page 415

Why Regular Expressions Are Useful
There are many times when you might benefit from using regular expressions. However,
if you were unaware of their existence, or unaware of how to use them, you could spend
a lot of time creating a custom piece of programming to achieve an end that an appropri-
ate regular expression could achieve much more quickly and much more easily.

Let’s think about some real-world Web programming situations where you might find a
regular expression useful. Suppose you have an e-commerce site where you want a cus-
tomer to enter a credit card number, and you want to check if the credit card number is
valid before you send it and the other form data to the server. One common structure for
a credit card number is four groups of numerical digits, each of the four-digit groups
with a space between each group. So, if you chose to have the user input in that format,
the credit card number might look like the following:

1234 5678 9012 3456

If you wanted to conduct client-side validation of a credit card number how could you go
about it? Your first thought might be to treat the credit card number as a large integer, but
integers don’t allow spaces between the numerical digits. Perhaps you might think of
treating the credit card number as a string. If you treated it as a string how, with the
JavaScript you have seen so far, would you be able to check the structure of the string?
In theory you might be able to create a new function that checks each group of digits and
whether or not they are in the range 0 to 9. To achieve that you would need many nested
if and else statements. The logic would be fairly complex, and you would need to con-
duct extensive testing on your new code to make sure that you had allowed for all possi-
ble permutations of how a customer might enter a card number incorrectly.

Perhaps, after a lot of effort, you may have created a script which will correctly process
credit card numbers that consist of four groups of four digits separated by space charac-
ters. Quite possibly soon after you think you have finished that task and the site goes
online customer complaints flood in because some customers want to enter their credit
card number as 16 consecutive digits without any spaces. And, perhaps you succeed in
writing yet more if and else statements to enable the script to handle both possibilities.
However, just when you are feeling proud of your achievements a manager comes along
and tells you that not all credit cards are 16 digits and that you also need to allow for
credit card numbers of different lengths. What do you do? Your code is getting pretty
complex already. Oh, and remember to add in debit cards, which have yet another set of
number constraints. At that stage, you could be forgiven for regretting the day you got
involved with JavaScript Web programming at all.

416 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 416

Regular Expressions Make It Easier 417

13

Or suppose, for some confidential employment site, you need to collect personal identi-
fiers such as a United States social security number (SSN) or a United Kingdom SSN,
since your company has offices in both countries. How do you handle that? An American
SSN is wholly numerical, while a UK SSN starts with two letters, has six numeric digits
(usually in three groups of two), and a final letter. Adding code to check for one or both
of those to the code you have created to accept credit card details is an intimidating task,
particularly if you are not yet fully up to speed with JavaScript.

Regular expressions are designed to solve programming problems exactly like this. What
regular expressions do is transfer part of the burden of processing text structures (similar
to the ones we have just considered) from you (the JavaScript programmer) to a regular
expressions processor within the JavaScript interpreter. When you use regular expres-
sions the burden of writing the JavaScript code, and working out the logic it represents,
is lifted from you. All you need to do is be capable of expressing exactly what patterns
of string you designate as allowable. The JavaScript interpreter takes care of the how of
making sure that the designated pattern is allowed and all undesirable patterns are
disallowed.

Not surprisingly, a JavaScript interpreter must be given a very precise description of
which patterns, or regular expressions, you want it to accept. So, let’s move on and con-
sider what a regular expression is and how you can express the idea of a string pattern
using JavaScript.

What Is a Regular Expression?
A regular expression, if it were expressed in plain English, is a description of a pattern
of characters in a string. If we tried to describe what we wanted for the credit card exam-
ple, we might say: “We want a pattern of four numeric digits, followed by an optional
space character, followed by four numeric digits, followed by an optional space charac-
ter, followed by four numeric digits, followed by an optional space character, which is
then followed by four numeric digits.” As you can see it takes many words and quite a
bit of space to express what we want.

A regular expression does the same thing. It is simply a collection of special characters
which represent a pattern. A regular expression is much more compact than saying the
same thing in English. Saving space is, in one sense, a good thing; but saving space
involves using symbols, which can get in the way of understanding until you become
thoroughly familiar with them. So we will look first at very simple regular expressions,
and then build up to more complex (and more useful) regular expressions.

16 2978 CH13 4/10/02 10:48 AM Page 417

The pattern in a regular expression can be used to search a string for anything that
matches the regular expression. The search could be for something very simple such as a
certain name or number but simple tasks like that also could be done using the
indexOf() method of the String object. The real power of regular expressions is the
way they allow you to match something that is a pattern of characters rather than a literal
sequence of characters.

For example, we can use methods of the String object to look for literal strings such as
“ABC”. But the String object’s methods don’t allow us to carry out tasks such as “Search
for three uppercase characters among A, B and C” which is a pattern that a regular
expression could deal with easily.

Many scripters when they look at regular expressions for the first time find them very
intimidating. This is probably because regular expressions look for a pattern, which is
something that many scripters haven’t had to program for in their previous experience.
So the syntax is very unfamiliar. Regular expressions can, at first glance, appear to be an
impenetrable mish-mash of seemingly random characters.

Although we can’t deny that the more advanced uses of regular expressions can be pretty
complex, simpler regular expressions are fairly easy to understand and write once you
grasp the basics of the syntax. We are going to take them one step at a time. Hopefully,
you will gradually pick up exactly how they work.

Let’s look at what is arguably the simplest type of regular expressions—matching a
sequence of literal characters.

Matching a Literal Character Sequence
As well as matching more abstract or complex patterns, JavaScript regular expressions
also allow us to match single literal characters or sequences of literal characters.

For example, if you wanted to assign a JavaScript regular expression that matches the
single literal alphabetic character “a” to the variable myRegExp, you could write this:

var myRegExp = /a/ ;

This syntax is similar to the assignment of a string to a variable:

var myString = “a” ;

When assigning a string, you use an opening quote mark, then the string, and then a clos-
ing quote mark. When you use a regular expression, you use an opening forward slash, /,
followed by the pattern (in the example just shown, a single literal character), followed
by a closing forward slash. All the text, or regular expression syntax (which we will look

418 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 418

Regular Expressions Make It Easier 419

13

at soon), between the opening / and the closing / defines the pattern that the regular
expression matches.

Listing 13.1 shows a simple use of a simple regular expression in a character-guessing
task.

LISTING 13.1 The Regular Expression Matches a Single Lowercase “a” Only
(SingleCharGuess.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching a single literal character</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingChar(str){
var myRegExp = /a/ ;
return myRegExp.test(str)
} // end function IsMatchingChar()

function TestGuess(){
var guess = prompt(“Enter a lower case character here and see if it matches”,
“It must be a lower case character”);
if (IsMatchingChar(guess)){
alert(“You guessed correctly. The correct answer was “ + guess);
} // end if
else{
alert(“Sorry “ + guess + “ doesn’t match”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to guess a single literal lower case character</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to guess</button>
</form>
</body>
</html>

In Listing 13.1 the user is invited, via a prompt box, to enter a single character to
see whether it matches the character chosen by the program, in this example the

single lowercase character “a”.

INPUT

ANALYSIS

16 2978 CH13 4/10/02 10:48 AM Page 419

The default behavior of a regular expression is that the pattern is case sensitive. Thus if
you run Listing 13.1 you will find that you can enter the single lowercase character “a”
and receive the message that you guessed the correct character. However, if you enter the
uppercase character “A”, you will receive a message that you guessed incorrectly, just as
you would if you had entered a “b”, a “c”, or some other character that does not match
the pattern /a/.

We can use longer literal strings using the same syntax. Thus, we could use the following
in a Web page that asked the user to guess the FBI’s most wanted man:

var mostWanted = /Osama Bin Laden/ ;

However, we also might want to allow for people to make a guess using the string,
“Osama bin Laden” (lowercase for the initial letter of “bin”, since the default behavior is
that the pattern is case sensitive. We specify alternate literal strings of characters like
this:

var mostWanted = /Osama Bin Laden|Osama bin Laden/ ;

The pipe character, “|”, allows you to specify two or more options for a literal string that
matches the regular expression.

Listing 13.2 shows how you can test for a long string of the type just shown and accept
two possible literal strings as correct matches.

LISTING 13.2 Matching on More Than One Allowed Literal String
(MostWanted.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>FBI Most Wanted Person</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingPerson(str){
var myRegExp = /Osama Bin Laden|Osama bin Laden/ ;
return myRegExp.test(str)
} // end function IsMatchingPerson()

function TestGuess(){
var guess = prompt(“Enter a name here and see if it matches”,
“It must be a full name”);
if (IsMatchingPerson(guess)){
alert(“You guessed correctly. “ + guess + “ was a correct answer”);

420 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 420

Regular Expressions Make It Easier 421

13

} // end if
else{
alert(“Sorry “ + guess + “ doesn’t match”);
} // end else
} // end function IsMatchingPerson()
// -->
</script>
</head>
<body>
<h3>This page allows you to guess the FBI’s
most wanted person in Quarter 4 2001</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to guess</button>
</form>
</body>
</html>

If you run Listing 13.2 you will find that there are two, and only two, ways you
can guess correctly. One correct string is “Osama Bin Laden” and the other is

“Osama bin Laden”. If you try to enter a first name only, you will be told that there is
no match, or if you try the alternate spelling “Usama Bin Laden” that won’t match either.

Be careful that you don’t leave a space character after the pipe character within the
variable assignment:

var myRegExp = /Osama Bin Laden| Osama bin Laden/ ;

Adding an extraneous space character means that the JavaScript interpreter will only
match the second string if it begins with a literal space character. Thus, when you pro-
vide multiple options using the literal syntax you must avoid space characters around the
pipe character (unless, of course, you really want space characters to be there). This
means that a list of many options can be quite difficult to read, for example:

var myRegExp = /Option1|Option2|Option3|Option4|Option5/ ;

LISTING 13.2 continued

ANALYSIS

JavaScript regular expressions behave a little differently from patterns in
W3C XML Schema, for example. If you enter a space character at the begin-
ning of the text in the prompt box, then a match will be declared. In a W3C
XML Schema pattern that would not be a match because a space character
does not match an initial uppercase “O”. JavaScript appears to strip white-
space at the beginning of a literal string.

Caution

16 2978 CH13 4/10/02 10:48 AM Page 421

Some Simple Patterns
Let’s move on to look at some simple patterns using regular expressions. First let’s
look at the simple case where we want to offer a choice of an uppercase or lowercase
character.

Single Literal Character Choices
As you saw a moment ago, you could do this using the pipe character. So, to define a
pattern for uppercase or lowercase “A” or “a” you could use the following code:

var myRegExp = /a|A/ ;

For the following example, let’s use an alternate syntax to express the same choice:

var myRegExp = /[aA]/;

The square brackets express a choice of characters. In Listing 13.3, we use that syntax to
allow the choice between an uppercase “A” and a lowercase “a”. In a moment we will
come to the advantages of the square bracket syntax.

LISTING 13.3 Allowing the Choice of Case in the Guess of a Single
Character (SingleCharGuess2.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching a single literal character</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingChar(str){
var myRegExp = /[aA]/ ;
return myRegExp.test(str)
} // end function IsMatchingChar()

function TestGuess(){
var guess = prompt(“Enter a character here and see if it matches”,
“It can be either a lower or upper case character”);
if (IsMatchingChar(guess)){
alert(“You guessed correctly. The correct answer was “ + guess);
} // end if
else{
alert(“Sorry “ + guess + “ doesn’t match”);
} // end else
}

422 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 422

Regular Expressions Make It Easier 423

13

// -->
</script>
</head>
<body>
<h3>This page allows you to guess a single
literal character of either case</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to guess</button>
</form>
</body>
</html>

If you enter an “a” or “A” you will get a message indicating you successfully
chose the correct matching character. If you choose other single characters, you

will receive a message indicating that you made an incorrect guess.

If you tried to enter a multi-character string beginning with the correct character, then
you will get a message (erroneously) indicating that you made a correct choice. Why is
that? The reason behind the apparently incorrect behavior is that length of a string is an
independent characteristic from the pattern. In other words, a pattern seeks a match for
itself but also accepts longer matches which begin with the stated pattern. So, if you
want to match a pattern and a length at the same time, you would need to test for the
string length as well as whether it matches the regular expression. In the next example,
we will add that length “error” trapping routine.

First let’s look at how we can use the square brackets syntax in more complex examples.

Suppose you wanted to ensure that the identifier for a machinery part started with an
alphabetic character. How could you do that? You could use the pipe character and add a
total of 52 choices (assuming that all alphabetic characters were valid). The square
bracket syntax allows a much more compact way of expressing those multiple choices.
For example, you could write the following:

var myRegExp = /[a-zA-Z]/ ;

What that means is that any character starting with lowercase “a” through lowercase “z”
(expressed by the characters a-z in the pattern) or starting at uppercase “A” through
uppercase “Z” (expressed by the characters A-Z in the pattern) would be acceptable. In
Listing 13.4, we will allow this to be tested, as well as testing for the desired length (in
this case one character).

ANALYSIS

LISTING 13.3 continued

16 2978 CH13 4/10/02 10:48 AM Page 423

LISTING 13.4 Allowing Any Alphabetic Character in a String of One-
Character Length (AlphabeticOne.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching a single literal character</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingChar(str){
var myRegExp = /[aA]/ ;
return myRegExp.test(str)
} // end function IsMatchingChar()

function TestGuess(){
var guess = prompt(“Enter a character here and see if it matches”,
“It can be either a lower or upper case character”);
if (IsMatchingChar(guess) && (guess.length==1)){
alert(“You guessed correctly. The correct answer was “ + guess);
} // end if
else if (guess.length!==1){
alert(“Sorry you entered a character string of the wrong length”);
}
else {
alert(“Sorry “ + guess + “ doesn’t match”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to guess a single
literal character of either case</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to guess</button>
</form>
</body>
</html>

Notice the if, else if and else statements in the TestGuess() function. If the
text entered via the prompt box matches the pattern in the myRegExp variable and

is the correct length (one character), then a message is displayed indicating success. If
the length is incorrect, then that is indicated, no matter what the first character may be. If
you were using the pattern to test whether a string contained rather than consisted of the
pattern, then you would omit that part of the code. If the length is correct and the chosen
character is incorrect, then that is indicated.

424 Day 13

INPUT

ANALYSIS

16 2978 CH13 4/10/02 10:48 AM Page 424

Regular Expressions Make It Easier 425

13

We can use the same technique to allow the two options for the spelling of the name
“Osama Bin Laden”. A suitable regular expression is /Osama [Bb]in Laden/.

Choices Using Sequences of Literal Characters
Now let’s take this one step further. Suppose we had a catalog of parts that used an
uppercase alphabetic character as the first character and a single numeric character as
the second character. If we used the pipe syntax, we would need 260 choices explicitly
expressed. However, by using the square bracket syntax we need only write the
following:

var myRegExp = /[A-Z][0-9]/

The syntax [A-Z] indicates that the first character is an uppercase character between A
and Z. The syntax [0-9] indicates that any numeric character from 0 to 9 inclusive is
acceptable as the second character. You can try this out in Listing 13.5. Remember that
we now are accepting a two-character parts code such as A4, C9, or W3.

When we group possible characters using syntax such as [A-Z] we are creat-
ing a new character class. In JavaScript character classes are not named.
However, it is reasonable, for example, to refer to [A-Z] as the uppercase
alphabetic character class or to refer to [0-9] as the numeric digits character
class.

Note

LISTING 13.5 Combining Simple Character Classes in a Regular Expression
Pattern (PartsCode.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching a sequence of literal characters</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingCode(str){
var myRegExp = /[A-Z][0-9]/ ;
return myRegExp.test(str)
} // end function IsMatchingCode()

function TestGuess(){
var guess = prompt(“Enter a two character parts code here”,
“Enter an upper case character followed by a number”);
if (IsMatchingCode(guess) && (guess.length==2)){

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 425

alert(“You chose a valid parts code: “ + guess);
} // end if
else if (guess.length!==2){
alert(“Sorry parts codes must be two characters long. Try again.”);
}
else {
alert(“Sorry “ + guess + “ doesn’t match a valid parts code.”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to choose a two character parts code</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to guess</button>
</form>
</body>
</html>

In order to elicit the message that a string entered was correct the string must
be exactly two characters in length, and it must have an uppercase alphabetic

character as its first character and a numeric character as its second character.

We could use a similar approach if we wanted only characters A to M inclusive as the
first character. In which case, we would define a new character class that contains only
the uppercase alphabetic characters from A to M inclusive. The following code would
express that:

var myRegExp = /[A-M][0-9]/ ;

Patterns That Use Numbered Occurrences of Classes
Let’s move on and make it just a little more complex. Suppose we have a parts catalog
that has a structure of two uppercase alphabetic characters, a dash, and three numeric
characters. We can express that using the following syntax:

var myRegExp = /[A-Z]{2}-[0-9]{3}/ ;

The syntax [A-Z] indicates, as before, a choice from a character class of uppercase
alphabetic characters. The syntax {2} indicates that we have a sequence of exactly two
such uppercase alphabetic characters at the beginning of the pattern. The single “-” char-
acter indicates a literal dash. The syntax [0-9] indicates a choice from the numeric char-
acters 0 to 9 inclusive, and the {3} indicates that we have exactly three such numeric
characters.

426 Day 13

LISTING 13.5 continued

ANALYSIS

16 2978 CH13 4/10/02 10:48 AM Page 426

Regular Expressions Make It Easier 427

13

In Listing 13.6 you can test this six-character code.

LISTING 13.6 A Pattern Combining Numbers of Characters from Defined
Character Classes (SixCharCode.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching sequences of more than one literal character</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingCode(str){
var myRegExp = /[A-Z]{2}-[0-9]{3}/ ;
return myRegExp.test(str)
} // end function IsMatchingCode()

function TestGuess(){
var guess = prompt(“Enter a six character parts code here”,
“The format is two upper case letters, a dash and three numbers.”);
if (IsMatchingCode(guess) && (guess.length==6)){
alert(“You chose a valid parts code: “ + guess);
} // end if
else if (guess.length!==6){
alert(“Sorry parts codes must be six characters long. Try again.”);
}
else {
alert(“Sorry “ + guess + “ doesn’t match a valid parts code.”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to choose a six character parts code</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to guess</button>
</form>
</body>
</html>

This technique of using numbers of characters from defined character classes
begins to open up solutions to some of the problems that were discussed earlier

in this chapter.

Let’s look again at the 16-digit credit card number problem. The digits we use are all in
the character class represented by [0-9]. We saw from Listing 13.6 that we can mix

INPUT

ANALYSIS

16 2978 CH13 4/10/02 10:48 AM Page 427

sequences of characters with literal characters. So we want to express a character class of
numeric characters (of which there should be four) followed by a single space character,
followed by four numeric digits, followed by a single space, followed by four numeric
digits, followed by a single space, which is then followed by four numeric digits. Using a
regular expression we can express that as follows:

var myRegExp = /[0-9]{4} [0-9]{4} [0-9]{4} [0-9]{4}/ ;

The syntax [0-9]{4} expresses the character class of numeric digits. The second part of
the sub-expression, {4}, indicates that we use four successive characters from the numer-
ic digits character class.

If we want to use that pattern to test a credit card number, then we must remember to
check that the length is 19 characters long exactly. So Listing 13.7 will allow us to get
part way to solving the credit card validation problem that we discussed earlier.

LISTING 13.7 Validating a 16-Digit Credit Card Number Separated by
Single Space Characters (CreditCard01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching a 16 digit credit card number
separated by a single space</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingCard(str){
var myRegExp = /[0-9]{4} [0-9]{4} [0-9]{4} [0-9]{4}/;
return myRegExp.test(str)
} // end function IsMatchingCard()

function TestGuess(){
var cardNo = prompt(“Enter a credit card number here”,
“The format is 4 numbers, a space,
4 numbers, a space, 4 numbers, a space, 4 numbers”);
if (IsMatchingCard(cardNo) && (cardNo.length==19)){
alert(“You entered a valid credit card number: “ + cardNo);
} // end if
else if (cardNo.length!==19){
alert(“Sorry you entered a credit card
number of the wrong length. Try again.”);
}
else {
alert(“Sorry “ + cardNo + “ isn’t a valid credit card number.”);
} // end else
}

428 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 428

Regular Expressions Make It Easier 429

13

// -->
</script>
</head>
<body>
<h3>This page allows you to enter and check a 16 digit credit card number</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>
Click here to enter card number</button>
</form>
</body>
</html>

You also can use a similar technique to handle zip codes. To test for a standard zip code
you could use the following syntax:

var myRegExp = /[0-9]{5}/ ;

The pattern indicates that five numeric digits make up the pattern.

If we want to accept zip codes only in the extended zip code format, we can use the
following pattern:

var myRegExp = /[0-9]{5}-[0-9]{4}/ ;

The pattern indicates that there are five numeric digits, followed by a single literal dash
followed by four numeric digits.

To accept both standard and extended zip codes, we would use the pipe character we
used earlier, as shown here:

var myRegExp = /[0-9]{5}-[0-9]{4}|[0-9]{5}/ ;

Similarly, we can also now solve the United States SSN problem. In that case, we have
three digits followed by a dash followed by two digits followed by a dash followed by
four digits. So the following code would meet our need:

var myRegExp = /[0-9]{3}-[0-9]{2}-[0-9]{4}/ ;

If we want to be able to accept the format using dashes as well as accept the format sim-
ply using a sequence of digits we could use the following syntax, with the pipe character
separating the two acceptable formats:

var myRegExp = /[0-9]{3}-[0-9]{2}-[0-9]{4}|[0-9]{9}/ ;

Not all the problems we might want to solve use a fixed numbers of characters chosen
from particular sequences of characters. So let’s move on to examine how we can use

LISTING 13.7 continued

16 2978 CH13 4/10/02 10:48 AM Page 429

(within a pattern) variable numbers of characters which are chosen from defined charac-
ter classes that don’t necessarily use sequences of characters.

Patterns Using Variable Numbers of Occurrences
We have made much progress in solving the problems discussed earlier. By adding
syntax to allow for variable numbers of characters, we can add yet more power and flexi-
bility to our growing repertoire of regular expressions.

As a next step, let’s look at how we can allow for a user entering a credit card number to
accidentally or deliberately omit one or more spaces. In Listing 13.7, omitting any spaces
would result in a message that the credit card number entered was not valid. We need a
syntax that allows for zero or one space character between the groups of four numeric
digits.

The following syntax allows the user to omit one or more of the space characters:

var myRegExp = /[0-9]{4} {0,1}[0-9]{4} {0,1}[0-9]{4} {0,1}[0-9]{4}/;

The only difference in this code from that used in Listing 13.7 is that rather than having
a single space character with the unexpressed default count of 1, we use the curly brack-
ets syntax in a new way, {0,1}, to indicate that the literal space character may occur a
minimum of zero times and a maximum of one time.

Since we are now allowing the user to possibly omit spaces, we cannot continue to use a
simple fixed length for the credit card number string. The shortest possible length is 16
characters (when all spaces are omitted), and the maximum length is 19 characters (when
all single space characters are present).

Listing 13.8 will show you how to implement this new flexibility on the regular expres-
sion pattern and length. It will still report an error when a user enters an alphabetic char-
acter, or if a user inserts a space anywhere but between the allowed four numeric charac-
ters from the defined character class.

LISTING 13.8 Allowing Variable Whitespace in a Credit Card Number
(CreditCard02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Matching a 16 digit credit card number
with variable number of space characters</title>
<script type=”text/javascript” language=”javascript”>

430 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 430

Regular Expressions Make It Easier 431

13

<!-- //
function IsMatchingCard(str){
var myRegExp = /[0-9]{4} {0,1}[0-9]{4} {0,1}[0-9]{4} {0,1}[0-9]{4}/;
return myRegExp.test(str)
} // end function IsMatchingCard()

function TestGuess(){
var cardNo = prompt(“Enter a credit card number here”,
“The format is 4 numbers, a space, 4 numbers,
a space, 4 numbers, a space, 4 numbers”);
var validLength = ((cardNo.length>=16) && (cardNo.length<=19));
if (IsMatchingCard(cardNo) && (validLength)){
alert(“You entered a valid credit card number: “ + cardNo);
} // end if
else if (!validLength){
alert(“Sorry you entered a credit card number
of the wrong length. Try again.”);
}
else {
alert(“Sorry “ + cardNo + “ isn’t a valid credit card number.”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to enter and check a 16 digit credit card number</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>Click here to enter card
number</button>
</form>
</body>
</html>

If you run Listing 13.8 and check the various possibilities that we have allowed
the user, you will find that we have permitted any combination of zero or one

space characters at the appropriate places. In addition, perhaps surprisingly, you will find
that the user can now enter a leading space character and be told that the number is valid
if one or more of the later space characters are omitted.

We can also apply the variable frequency technique to situations where we may need to
allow variable occurrences of a character class. Suppose we have a parts catalog where
the parts numbers can be of the forms A12 or AB12. We can express that using the fol-
lowing code:

var myRegExp = /[A-M]{1,2}[0-9]{2}/ ;

LISTING 13.8 continued

ANALYSIS

16 2978 CH13 4/10/02 10:48 AM Page 431

The sub-expression [A-M] defines a character class and its permitted occurrences as
{1,2}. Expressed in plain English, uppercase alphabetic characters from “A” to “M”
inclusive, which may occur once or twice, are allowed.

Another time when you might want to use a pattern is where you want to allow variable
length occurrences of a character class to check whether an e-mail address entered by a
user is or is not valid.

Let’s pause and think how an e-mail address is made up. First let’s look at the simple
form structure of an e-mail address:

consultancy@xmml.com

There is a sequence of alphabetic characters followed by a literal “@” character followed
by alphabetic characters representing the domain name, followed by a period, which is
then followed by a sequence of characters representing such entities as “com”, “net,” and
so on.

We need to remember that numeric characters are also allowed in the part that is to the
left of the @ sign and in the domain name. Additionally, in the domain name, a hyphen
character is allowed. However, remember that the underscore character is not allowed in
a domain name.

There is an additional issue about whether we allow and test the pattern for upper- and
lowercase characters or only lowercase characters. The solution shown here uses only
lowercase alphabetic characters. In parallel with that in the listing that follows, we will
use a method of the String object to convert the e-mail address to lowercase characters
before testing the pattern.

Finally, how many characters should to be allowed? The maximum number of characters
permitted for a domain name is 65, as shown here:

var myRegExp = /[a-z0-9-]{1,30}@[a-z0-9-]{1,65}.[a-z]{3}/ ;

Listing 13.9 is an example of the e-mail checking routine in place. We need to check for
a minimum length since an e-mail address such as j@j.net is the shortest allowed by the
regular expression pattern. Thus, we define the validLength variable as being greater
than or equal to 6 characters in length.

LISTING 13.9 Checking an E-Mail Address, Version 1 (CheckEmail01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>

432 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 432

Regular Expressions Make It Easier 433

13

<head>
<title>Checking an email address - Version 01</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function IsMatchingAddress(str){
var myRegExp = /[a-z0-9-]{1,30}@[a-z0-9-]{1,65}.[a-z]{3}/ ;
return myRegExp.test(str)
} // end function IsMatchingAddress()

function TestGuess(){
var EmailAddr = new String();
entry = prompt(“Enter an email address here”,
“Please type it carefully”);
EmailAddr = entry;
EmailAddr = EmailAddr.toLowerCase();
var validLength = (EmailAddr.length>=6);
if (IsMatchingAddress(EmailAddr) && (validLength)){
alert(“You entered a valid email address: “ + EmailAddr);
} // end if
else if (!validLength){
alert(EmailAddr.length);
alert(“Sorry you entered an email address of the wrong length. Try again.”);
}
else {
alert(“Sorry “ + EmailAddr + “ isn’t a valid email address.”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to enter and check
an email address such as consultancy@xmml.com</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>
Click here to enter email address</button>
</form>
</body>
</html>

The code in Listing 13.9 will pick up many possible errors in an e-mail address.
It will, for example, limit domain names to alphabetic characters, numeric char-

acters, and a dash (hyphen) in accordance with the domain-naming conventions.

However, it has limitations in a number of respects. As currently written, it will
incorrecetly indicate an error for the valid (but fictional) e-mail address of
john.doe@samspublishing.com.

LISTING 13.9 continued

ANALYSIS

16 2978 CH13 4/10/02 10:48 AM Page 433

It will also accept as its final three characters, any three alphabetic characters. So
sleazy@dubious.xxx would wrongly be accepted as a valid e-mail address. With the
advent of domains such as .info a pattern of three alphabetic characters is no longer
comprehensive, even for top-level domains. In addition, country-level domains that may
be used in an e-mail address would wrongly be rejected as invalid.

If you want to be sure that no valid e-mail addresses are incorrectly rejected, then you
could opt for the simple but safe solution, which basically checks for an “@” character
and allows almost anything else, like so:

var myRegExp = /[a-z0-9-.]{1,40}@[a-z0-9-.]{4,70}/

This regular expression allows alphanumeric characters plus a dash and a period in any
sequence from one to 40 characters in length. This is followed by an “@” character,
which in turn is followed by a minimum of 4 characters (for possible country-level
domains such as a .tv) up to 70 characters in length to allow for 65-character domain
names followed by a period, followed by four character domains such as “.info”.

Alternatively, we can attempt to list the current (for the moment) global top-level
domains, com, net, org, info, and biz, and add further options to cover country-level
domains too. The following regular expression lists, within parentheses, the global top-
level domains just mentioned, separated by the pipe character, offers additional options:

var myRegExp = /[a-z0-9-.]{1,30}@[a-z0-9-]{1,65}

.(com|net|org|info|biz|([a-z]{2,3}.[a-z]{2}))/ ;

The following would match the regular expression:

Andrew.Watt@XMML.com // matches literal “com”

Andrew.Watt@XMML.co.uk // matches [a-z]{2,3}.[a-z]{2}

Andrew.Watt@XMML.org.uk // matches [a-z]{2,3}.[a-z]{2}

Andrew.Watt@XMML.net // matches literal “net”

Listing 13.10 uses the more precise test for an e-mail address to allow you to explore this
issue further.

LISTING 13.10 Checking E-Mail Addresses, Version 2.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Checking an email address - Version 02</title>
<script type=”text/javascript” language=”javascript”>
<!-- //

434 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 434

Regular Expressions Make It Easier 435

13

function IsMatchingAddress(str){
var myRegExp = /[a-z0-9-.]{1,30}@[a-z0-9-]{1,65}.(com|net|org|info|biz|([a-
z]{2,3}.[a-z]{2}))/ ;
return myRegExp.test(str)
} // end function IsMatchingAddress()

function TestGuess(){
var EmailAddr = new String();
entry = prompt(“Enter an email address here”,
“Please type it carefully”);
EmailAddr = entry;
EmailAddr = EmailAddr.toLowerCase();
var validLength = (EmailAddr.length>=6);
if (IsMatchingAddress(EmailAddr) && (validLength)){
alert(“You entered a valid email address: “ + EmailAddr);
} // end if
else if (!validLength){
alert(EmailAddr.length);
alert(“Sorry you entered an email address of the wrong length. Try again.”);
}
else {
alert(“Sorry “ + EmailAddr + “ isn’t a valid email address.”);
} // end else
}
// -->
</script>
</head>
<body>
<h3>This page allows you to enter and check an email address
such as consultancy@xmml.com,</h3>
<h3>consultancy@xmml.co.uk or consultancy@xmml.org.uk</h3>
<form>
<button type=”Button” onclick=”TestGuess()”>
Click here to enter email address</button>
</form>
</body>
</html>

LISTING 13.10 continued

The listings given for checking e-mail addresses only check to determine
whether the structure of the string entered corresponds to an e-mail
address. To ensure that spelling or typing errors such as,
conslutancy@xmml.com, are caught, consider asking the user to enter an
e-mail address twice. Also think about building in a further check, by send-
ing a message to the e-mail address asking for confirmation, so that a mali-
cious visitor to your site doesn’t cause problems for the genuine owner of an
e-mail address.

Tip

16 2978 CH13 4/10/02 10:48 AM Page 435

Now that you have an understanding of regular expressions up to this point, let’s take a
step to one side and look a little more formally at regular expressions.

Regular Expressions Overview
The RegExp object is a Core JavaScript object. There is one RegExp object per Window
object.

Regular expressions were introduced to JavaScript in the version 4 browsers—that is,
with JavaScript 1.2. If a significant percentage of the visitors to your site use pre-version
4 browsers, you will need to avoid using regular expressions at all in your JavaScript
code, or use them only within a suitable routine to provide conditional processing—
depending on whether or not a user’s browser supported regular expressions. Although
the scenario of pre-version 4 browser use is becoming less and less important, you would
likely need to apply regular expressions or some equivalent string-validation on the serv-
er side, thereby slowing down validation of user entered text.

Defining Regular Expressions
As for all the other Core JavaScript objects that we have met, regular expressions can be
created in one of two ways. You can use either literal notation (as we have done up to
this point) or the RegExp object as a constructor function. Both of these methods create a
full object, but there are some differences between them.

Creating a Regular Expression Using Literals
The way we have constructed a regular expression thus far in this chapter is to use literal
notation.

When creating a regular expression literal we have to mark it out just as we marked out
a string literal by surrounding it with quote marks. In the case of regular expression
literals, we use a different character to mark out our literals. We use the forward slash
character to indicate the start of the regular expression and to mark its end. Here is an
example:

var myRegExp = /Sams/;

As you can see, this is fairly simple. We have created a new regular expression object
(using literal notation) and assigned it to the variable myRegExp. This regular expression
will match the string “Sams” in any string it is applied to. Of course this isn’t any differ-
ent than what we could achieve by using the indexOf() method of the String object and
giving it the parameter “Sams”.

436 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 436

Regular Expressions Make It Easier 437

13

As you have seen, the real power of regular expressions is in matching patterns as
opposed to exact strings.

In order to match certain characters, you need to have a means of representing these
characters. For example, you may need to know whether a string contains at least one
number, but not be concerned as to which number it is. You could achieve this by doing
10 searches for each numerical digit using the String object’s indexOf() method, but
this is very inefficient when you could just do it in one search using regular expressions.
To match certain characters you need to use special characters. These special characters
are simply normal characters that have been escaped using a backslash. For example \d
is the special character that matches any of the 10 numeric digits, 0 to 9 inclusive.
Therefore to create a regular expression that could be used to search for a numerical digit
you would write the following:

var myRegExp = /\d/;

Alternatively, you can use the syntax you saw earlier:

var myRegExp = /[0-9]/ ;

As you can see when you use an escaped character, this is beginning to show signs of the
possibility of regular expression becoming very cryptic. The nature of having characters
that represent a group of characters will inevitably mean that regular expressions will not
be immediately readable.

After we look at creating a regular expression using a constructor function, we will move
on and take a more detailed look at the special characters available to us when using reg-
ular expressions in JavaScript.

Creating Regular Expressions Using a Constructor
The other option that we can use to create a new regular expression is shown here as
follows:

var myRegExp = new RegExp(“[0-9]”);

You may have noticed that instead of using a pair of forward slashes as delimiters (as we
did when using literal notation), we used a pair of quote marks when using the RegExp()
constructor. You might well suggest that what we have, delimited by quote marks, is a
string. If so, you would be correct.

Remember that the delimiter is / for literal regular expression syntax, and
that the constructor syntax uses the “ character as the delimiter.

Note

16 2978 CH13 4/10/02 10:48 AM Page 437

When we use the RegExp() constructor we are actually storing a string, rather than a reg-
ular expression. This means that when we want to use that string as a regular expression
then the JavaScript interpreter has to convert the content of the string to a regular expres-
sion. This form, which is already in place when we used the literal notation, allows the
use of the regular expression by the JavaScript interpreter. The time to compile the string
to the internal format for the regular expression is not long, but will make a slightly less
efficient computation.

However, using the RegExp() constructor allows you to more easily create or define a
new regular expression from a string variable. You can use the RegExp() constructor,
for example, to create a test bed to check how well you have grasped regular expression
syntax.

Listing 13.11 shows a simple test bed that allows you to easily create and test regular
expression patterns. Notice that it is a pattern without the / delimiters which is needed.

LISTING 13.11 Creating and Testing Regular Expressions
(RegExpTester.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Regular Expression Tester</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
var myRegExp = “”;

function SetFocus(){
document.SimpleForm.FirstInput.focus();
} // end function SetFocus()

function SubmitPattern(){
var pattern = document.SimpleForm.FirstInput.value;
if (pattern.length==0){
alert(“You made an invalid entry. Please start again.”);
document.SimpleForm.reset();
SetFocus();
} // end if
else { // pattern is at least one character long
myRegExp = new RegExp(pattern);
alert(“Current pattern is “ + myRegExp);
} // end else
} // end function SubmitPattern()

438 Day 13

INPUT

16 2978 CH13 4/10/02 10:48 AM Page 438

Regular Expressions Make It Easier 439

13

function TestString(){
testString = document.SimpleForm.TestInput.value;
if (IsMatchingString(testString)){
alert(“The test string: “ +testString +
“\nmatched the current pattern: “ + myRegExp);
} // end if
else{
alert(“The test string: “ +testString +
“\ndid not match the current pattern: “ + myRegExp);
} // end else
} // end function TestString()

function ClearAndSet(){
document.SimpleForm.reset();
SetFocus();
MaxNum = 0;
}

function IsMatchingString(str){
return myRegExp.test(str)
} // end function IsMatchingString()
// -->
</script>
</head>
<body onload=”SetFocus()”>
<h3>This page allows you to create and test regular expression patterns</h3>
<h3>Be careful! - There is no logic to test string length.</h3>
<form name=”SimpleForm”>
<table>
<tr>
<td width=”30%” align=”right”>Enter a pattern:</td>
<td><input name=”FirstInput” type=”text”></td>
</tr>
<tr>
<td width=”25%” align=”right”> </td>
<td><button type=”Button” onclick=”SubmitPattern()”>
Submit new pattern</button>
</td>
</tr>
<tr>
<td width=”30%” align=”right”>Enter a string to match the pattern:</td>
<td><input name=”TestInput” type=”text”></td>
</tr>
<tr>
<td width=”25%” align=”right”><button type=”Button” onclick=”ClearAndSet()”>
Clear and Start again</button></td>
<td><button type=”Button” onclick=”TestString()”>
Click to test the string you entered</button></td>
</tr>

LISTING 13.11 continued

16 2978 CH13 4/10/02 10:48 AM Page 439

</table>
</form>
</body>
</html>

This page allowed you to enter a regular expression pattern as a string. When the
“Submit new pattern” button is clicked an alert box shows the user the pattern

that has been created and which is available for testing. The user then has the option of
entering test strings in the second input box and submitting them for testing against the
regular expression when the “Click to test the string you entered” button is clicked.

440 Day 13

LISTING 13.11 continued

ANALYSIS

When using Listing 13.11 to test regular expression patterns you need to be
aware that the special characters (described in the next section) need to be
entered double escaped. Thus, for example, to achieve “\b” in the regular
expression created from the string, you would enter “\\b” in the form text
field.

Note

Special Characters
There are certain characters that we can’t simply write into our regular expressions in
order to find a match for them. These characters are the regular expression special char-
acters. And, because they have special meaning, simply writing them in as characters and
expecting a match will produce unexpected results or an error.

For example, we can’t just place a forward slash into a regular expression literal and
expect a match on the forward slash character. The forward slash denotes the beginning
and end of a regular expression. So if we want to find a match for the string “Dear
Sir/Madam” we could not just write the following:

var myRegExp = /Dear Sir/Madam/;

JavaScript would get to the forward slash after “Sir” and think that the forward slash
indicated the end of the regular expression. When the JavaScript interpreter processed the
rest of the line and found the string “Madam”, it would attempt to process it as a piece of
JavaScript syntax and an error would result.

The correct syntax is to use a literal forward slash character within a regular expression
to precede the forward slash, which is intended to be interpreted as a literal, with a back-
slash, like so:

var myRegExp = /Dear Sir\/Madam/;

16 2978 CH13 4/10/02 10:48 AM Page 440

Regular Expressions Make It Easier 441

13

There are several other special characters used in regular expressions that we can’t just
write into a regular expression. These include the following:

\ ^ $ * + ? . () { } [] |

All these characters have special meaning when used within regular expressions and will
not be literally matched. You have seen, for example, how the curly braces are used to
enclose the number of permitted occurrences of a character literal or a character class. If
you want to actually match special characters literally, then you will need to remove their
special meaning. You can do this by using another special character, the backslash char-
acter, to escape them. As you will see, the backslash character is a very important charac-
ter in regular expressions. To create a regular expression that matches the string “Enter
(Yes/No)” you would write the following:

var myRegExp = /Enter \(Yes\/No\)/;

By using the backslash character to escape the forward slash in the string “Yes/No”, you
remove the forward slash’s special meaning and so the JavaScript interpreter knows the
forward slash is part of the pattern and not the end of the regular expression. The back-
slash itself isn’t part of the string to be matched. It only has influence on the character
that follows it, as in the example above, to remove special meaning. Similarly the back-
slash which precedes the opening parenthesis, “(“, and the closing parenthesis, “)”, indi-
cate that the character is to be interpreted literally, rather than used to group a sub-
expression within a regular expression.

The backslash can be used in the same way with all the other special characters in the list
shown earlier. If you want to match them literally as opposed to using them with their
special meaning, then you would need to escape them with the backslash character.

One thing that may be confusing about matching characters that have special meaning is
in matching the backslash itself. In the above examples, we have used the special mean-
ing of the backslash character to remove the special meaning of other special characters.
But how do we remove the special meaning from the backslash character itself? You
simply use another backslash character. So if you (for some unknown reason) wanted to
match the string

c:\My Writing\TY JavaScript

then you could create a regular expression like this:

var myRegExp = /c:\\My Writing\\TY JavaScript/;

Each time you see \\ within the regular expression indicates a literal backslash character.

16 2978 CH13 4/10/02 10:48 AM Page 441

Earlier in the chapter you learned about special characters such as the curly braces.
Shortly, we will examine what the other special characters are used for, but for now let’s
look more closely at how to use the backslash character.

The backslash character is key to working with regular expressions. Not only does it
remove special meaning from special characters so you can actually include them in the
pattern to be matched, but it also adds special meaning to non-special characters. At first
this may seem confusing, but you have already seen an example of this behavior in use.
We mentioned previously that you can match any of the 10 numerical digits by using the
following regular expression:

var myRegExp = /\d/;

If the regular expression had simply been,

var myRegExp = /d/;

then it would have matched the character “d”. But by escaping the d we give it special
meaning. In this case the escaped “d” now represents any digit from 0 through 9.

Table 13.1 shows a list of the special characters, including those that will be of most use
to you that can be created by escaping a letter.

TABLE 13.1 The Special Characters in JavaScript Regular Expressions

Escaped Character Character(s) Matched

^ Beginning of input

$ End of input

. Any character but the new line character (\n)

\b Any word boundary character

\B Any character that is not a word boundary character

\d Any numeric digit character

\D Any character that is not a numeric digit character

\n A new line (line feed) character

\r A carriage return character

\s Any whitespace character

\S Any character that is not a whitespace character

\t A tab character

\w Any alphanumeric character (includes the underscore character)

\W Any character that is not an alphanumeric character (excludes the
underscore character)

442 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 442

Regular Expressions Make It Easier 443

13

Notice that \n matches the new line character. You have used this syntax in connection
with alert boxes in earlier chapters.

Most of the special characters are created by escaping a letter that gives some indication
as to which character(s) it will match. For example, \s is used for the special character
that matches whitespace. Hopefully this will help to make it easier to remember which
letter should be escaped to create the special character you need.

You may have noticed another implicit rule in the letters used to create special charac-
ters. If the letter is lowercase, then it matches the characters indicated by the escaped
character, but if it is uppercase then it matches any characters except the characters indi-
cated by the letter. Again this should make it slightly easier to remember which letter is
used to create which special character.

Some characters matched by some of the special characters, or the differences between
some special characters, may not be immediately apparent. So let’s clarify their
meanings.

Whitespace Versus Word Boundary
The distinction between the word boundary special character \b and the whitespace spe-
cial character \s is one of those that may initially be unclear. However the key difference
between the two can be made clear through an example.

For example, you may want to check for a word in a string, such as “man”—a sub-string,
but an actual individual word, “man”; but not to include words such as “manly” or
“manual”. This means that if you were looking for “fun” you wouldn’t want a match if
the word “funny” was in the string. To do this you need to wrap special characters
around the word “man” or “fun” to indicate that you are looking for the exact word and
not just the pattern “man” or “fun”. The following code does this by making use of the
whitespace special character:

var sentence = “What fun regular expressions are.”;
var myWord = /\sfun\s/;
var wordFound = myWord.test(sentence);
alert(wordFound);

In the example above the regular expression will match any string that starts with a
whitespace character followed by the letters “f”, “u” and “n”, and then another white-
space character. Because that string is indeed within the string contained in the variable
called sentence the test will return true. But there are situations when using whitespace
to mark out a word will fail to return the correct result. Let’s change the string slightly
and see what happens:

16 2978 CH13 4/10/02 10:48 AM Page 443

var sentence = “What ‘fun’ regular expressions are.”;
var myWord = /\sfun\s/;
var wordFound = myWord.test(sentence);
alert(wordFound);

This time the test returns the value false. Although the word “fun” is in the string,
because we specified that a match would be surrounded by whitespace characters, the
regular expression didn’t match it. The apostrophe (or single quote) is not a whitespace
character. The solution is to use the regular-expression tool specifically designed for the
job—the word-boundary special character. The word-boundary character will match all
whitespace characters but in addition to this it will match punctuation marks such as
commas, full stops, quotation marks, or any other characters that can come before or
after a word in written English. By replacing the whitespace special characters with
word-boundary special characters in the example above, we will obtain the result we
were looking for:

var sentence = “What ‘fun’ regular expressions are.”;
var myWord = /\bfun\b/;
var wordFound = myWord.test(sentence);
alert(wordFound);

The above code would return true, since the regular expression recognizes the word
boundary expressed by the apostrophe (single quote) characters that delimit “fun”.

Of course, at times the whitespace special character will be what you are looking for. But
you should be careful that it is specifically whitespace that you want to match. If search-
ing for a word, then the word-boundary character is the one to use if you don’t want to
miss words that are contained, for example, in quote marks.

Matching Any Alphanumeric Character
The alphanumeric special character, \w, will match both uppercase and lowercase letters
as well as numbers and the underscore character. Conversely, the special character \W
will match any character except an alphabetical character or numerical character.

Quantifiers
The special characters in the previous section simply match one character. We could get
around this by writing multiple character classes, but as you saw in earlier examples, we
can use syntax such as curly braces, {1,2} for example, to indicate the lower and upper
permitted cardinality.

However, in regular expressions certain common occurrences have a more abbreviated
syntax. If a character is optional, you can indicate that situation using the ? cardinality
operator. So if you have part numbers that are of the form of two uppercase alphabetic

444 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 444

Regular Expressions Make It Easier 445

13

characters, two numeric digits, and an optional alphabetic character, you can express that
using the following code:

var myRegExp = /[A-Z]{2}\d[A-Z]?/

Notice that following the second character class [A-Z], we used the ? character to indi-
cate that that final character is optional—that is, it may occur 0 or 1 times. Alternatively,
but slightly less compactly, we could have expressed the same pattern using the curly
brace syntax, like so:

var myRegExp = /[A-Z]{2}\d[A-Z]{0,1}/

If we wanted to express the idea that the final character was necessary but could occur
multiple times, then we would use the + character:

var myRegExp = /[A-Z]{2}\d[A-Z]+/

An alternate way of expressing that idea using curly braces is shown here:

var myRegExp = /[A-Z]{2}\d[A-Z]{1,}/

The syntax {1,} indicates that the minimum occurrence is one time but that the upper
limit for occurrence is undefined—that is, the character class must occur at least once but
is permitted to occur an unlimited number of times.

Similarly if we wanted to indicate the final character is optional but it is also permitted to
occur an unlimited number of times, then we would use the * character:

var myRegExp = /[A-Z]{2}\d[A-Z]*/

The equivalent meaning expressed using the curly braces syntax is shown here:

var myRegExp = /[A-Z]{2}\d[A-Z]{0,}/

In other words the minimum permitted occurrence is zero times and the maximum is
unbounded.

The cardinality syntax in regular expressions is summarized in Table 13.2.

TABLE 13.2 Cardinality Syntax in JavaScript Regular Expressions

Quantifier Matched Preceding Character

* Zero or more times

? Zero or one times

+ One or more times

{n} Exactly n times

{n,} n or more times

{n,m} Between n and m times (inclusive)

16 2978 CH13 4/10/02 10:48 AM Page 445

The Methods of the RegExp Object
Like many other JavaScript objects, the RegExp object has several methods. The methods
of the RegExp object are listed here:

• compile()

• exec()

• test()

• toString()

• valueOf()

• watch()

• unwatch()

The simplest of the methods used to search for a string is the test() method, which tests
for a string or substring which matches the regular expression pattern. It will return true
if it finds a substring that matches the pattern described by the regular expression used,
or false if it doesn’t.

Regular expression methods are applied to the regular expression containing the pattern
you wish to test for, passing the string to be examined as a parameter. For example, to
test for numbers in a string called myAge you might use the following lines of code:

var myAge = “I am 21 years old”;
var digits = /\d/;
var digitsPresent = digits.test(myAge);
alert(“There are “ + (digitsPresent? “”: “no”) + “ digits.”);

In this example the value returned is true. The regular expression finds the number 2 in
“21” and stops there to return true.

Using the exec() Method
The exec() method provides more information about a match found in a string. It pro-
vides this information in the form of an Array object that it returns when evaluated.
Therefore to capture this information you need to use the exec() method to the right of
an assignment operator and assign the returned array to a variable, like so:

var results = RegExp.exec(str);

As well as having data filled out in some of its elements, the array that is returned has
two properties that are of interest to us. These are the index and input properties. The
input property is simply the string that was sent to the exec() method as its parameter
to search through. The index property, on the other hand, contains a number that is the
index of the first character of the match in the input.

446 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 446

Regular Expressions Make It Easier 447

13

The element that is of most interest to us is the first element of the array. It contains the
substring that the exec() method found that matched the pattern in the regular expres-
sion it was applied to. For example, as shown in the following text:

var caps = /[A-Z]/;
var str = “a sentence With some Capital letters”
var result = caps.exec(str);
alert(result[0]); // alerts “W”

The contents of the first element of the array that was returned from the exec() method
was the string it matched. In this case that was simply the uppercase letter W. The con-
tents of this first element are identical to the lastMatch property of the core RegExp
object. The benefit of this is that, as long as we don’t intentionally overwrite the contents
of the variable result, the array will maintain the results of an individual search that
returned a match even after doing multiple searches using regular expressions. However
each new search will assign new values to the RegExp object’s properties.

The other elements of the array that are returned are also copies of the values assigned to
the array.

If no match is found using the exec() method, then the value null is returned in place of
an array. This enables you to test whether or not you should attempt to carry out any
processing on possible results that may have been returned.

Using the test() Method
The RegExp object’s test()method’s main function is to check for a match in a string.

Each time the test() method finds a match it sets the lastIndex property of the regular
expression used to the string index of the last character in the match. The lastIndex
property tells the test() method from where to start checking. When using the test()
method repeatedly on the same string, this allows a later test of the regular expression to
start where the previous one left off.

Always set the lastIndex property of a regular expression to 0 after each
test if it is not going to be used again on the same string. If the lastIndex
property is not set to zero, then a search for a match may start at an
unpredictable place part way through a string.

Caution

16 2978 CH13 4/10/02 10:48 AM Page 447

The Properties of the RegExp Object
The RegExp object has the following properties that are listed here. Only some of these
will be discussed.

• $1-$9

• $*, $&, $_, $+

• constructor

• global

• ignoreCase

• input

• lastIndex

• lastMatch

• lastParen

• leftContext

• multiline

• prototype

• rightContext

• source

Scoping a Regular Expression Using the global
Property
The global property specifies whether or not a search should be made for all possible
matches of a pattern. The global property can be set or tested directly. Alternatively the
literal regular expression syntax allows a succinct way to express it, by adding a single
character “g” after the closing forward slash of a regular expression, like so:

var myString = “My man created a manual manually”;
var myRegExp = /man/ ;

It will search for the pattern man and stop when the first occurrence is found. However,
by either setting the global property explicitly or adding a g flag to the literal syntax the
full string is searched, rather than stopping after finding the first match.

var myString = “My man created a manual manually”;
var myRegExp = /man/g ;

448 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 448

Regular Expressions Make It Easier 449

13

Making a Regular Expression Case Insensitive Using
the ignoreCase Property
The ignoreCase property can be set explicitly, as it is here:

var myRegExp = new RegExp();
myRegExp.ignoreCase = true;
myRegExp.test(“i doN’t CAre what case is”);

The same effect can be achieved using the literal regular expression syntax using the i
flag, following the closing forward slash of the literal syntax:

var myRegExp = /i doN’t CAre what case is/i ;

There is much more to regular expressions than we have been able to introduce you to in
this chapter. We hope that you have been able to see how powerful regular expressions
can be and will want to explore further the power they provide.

Summary
In this chapter, we looked at some practical problems of string validation that you might
encounter in a production Web site. We also explored step-by-step how regular expres-
sions provide the techniques to allow you to validate the structure of strings entered to
represent textual or numerical data.

If you are able to express in plain English the pattern you want to represent, then you
have already learned many of the parts of regular expression syntax that represent them
and allow you to apply powerful validation techniques in your own Web sites.

Workshop
In this workshop we will review what you have learned about regular expressions in this
chapter.

Q&A
Q. If some data is entered and tested using a regular expression, can I be sure

that the data can be processed further?

A. No, you cannot be certain about that. For example, if a currency amount is entered
a regular expression can check if it is a valid structure but that doesn’t mean you
can use the string (which represents a number) in numerical calculations. You may
need to use the Number() method to ensure that the value is used as a number.

16 2978 CH13 4/10/02 10:48 AM Page 449

Q. If I use the correct regular expression when validating data, do I, or a
colleague, need to carry out validation on the server side?

A. Someone still needs to make checks on the server side. For example, when validat-
ing a form with user contact information, indicate to the users that they will receive
an e-mail requesting confirmation in a few minutes, and if they don’t receive it
then they should re-enter their contact details. Additionally, you may need to
restructure data before storing it in a database. If you have a field for a U.S. SSN
and allow entry to be in the formats 123-4567-89 or 123456789 then you will need
to convert entries to a single format if you want to achieve efficient sorts or
searches within the data.

Quiz
1. What flag do you use to indicate that a regular expression pattern is case

insensitive?

2. Which special character do you use in a regular expression pattern to represent
numeric digits?

3. Give two ways in which you can indicate that a character is optional, but if it
occurs it can occur only once.

4. What character indicates that a character or character class must be present, but can
occur more than once?

Quiz Answers
1. Adding an i after the closing forward slash indicates the pattern is to be applied

case insensitive.

2. You can use the \d special character to indicate numeric digits. Alternatively you
can use the [0-9] character class.

3. The ? cardinality character indicates that a character is optional but, if it occurs, it
can occur only once. We can also indicate the same by writing the following:
{0,1}.

4. The + character indicates that a character or character class occurs one or more
times.

Exercises
1. Adapt the Regular Expression Tester (RegExpTester.htm) to allow a string length

to be entered and to add the length to the testing of test strings which the user has
entered.

450 Day 13

16 2978 CH13 4/10/02 10:48 AM Page 450

Regular Expressions Make It Easier 451

13

2. Create a program, using regular expression patterns, to test a United Kingdom
Social Security Number, which takes the form “AB 12 34 56 C.” The first two
characters and the final character may be any uppercase alphabetic characters.

3. Create a program to test whether a string entered is a valid U.S. telephone number.
Remember that the opening and closing parentheses have a special purpose in
regular expressions.

16 2978 CH13 4/10/02 10:48 AM Page 451

16 2978 CH13 4/10/02 10:48 AM Page 452

DAY 14

WEEK 2

Advanced Array
Management

In Chapter 5, “An Introduction to Arrays,” you were introduced to JavaScript
arrays and some of the ways in which you can use them. In this chapter, we
will build on what you learned earlier, examine more fully the methods of the
Array object, and go on to look at how you can use arrays to represent multi-
dimensional data structures.

This chapter will teach you

• How to use more of the Array object’s methods

• How to simulate a multidimensional array

The Array Object’s Methods
In Chapter 5 we looked at several of the Array object’s methods, but didn’t
look at all of them. In this chapter we will complete our study of those meth-
ods, enabling us to access the full power of arrays for storing and managing our
data.

17 2978 CH14 4/10/02 10:53 AM Page 453

Here is a list of the methods of the Array object:

• concat()

• join()

• pop()

• push()

• reverse()

• slice()

• shift()

• sort()

• splice()

• toLocaleString()

• toSource()

• toString()

• unshift()

• valueOf()

In Chapter 5, we looked at all of the methods except the concat(), slice(), sort(), and
splice() methods. However these are the Array object’s most powerful methods. We
need to understand how to use them to unleash the potential of JavaScript for structuring
and manipulating our data using arrays.

The concat() Method
The concat() method enables you to add one array to the end of another array to create
a third and longer array. The name of the concat() method comes from the term
concatenation, which you may remember from our discussion of the plus sign acting as
the concatenation operator for adding one string to the end of another. Although the
concat() method isn’t quite as simple to use as the concatenation operator, it’s still rela-
tively easy. The concat() method is applied to an array using the dot notation, and the
name of the array to be concatenated to it is written into the parentheses as a parameter.

Listing 14.1 shows a simple example of how to use the concat() method to combine two
arrays.

454 Day 14

17 2978 CH14 4/10/02 10:53 AM Page 454

Advanced Array Management 455

14

LISTING 14.1 Using the concat() Method to Combine Two Arrays
(ConcatArrays01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using concat() method to combine two arrays</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function ConcatArrays(){
var firstArray = new Array(1,2,3);
var secondArray = new Array(4,5,6);
var combinedArray = firstArray.concat(secondArray);
var fa = firstArray.join(“, “);
var sa = secondArray.join(“, “);
var ca = combinedArray.join(“, “);
document.write(“<p>The first array contains: ” + fa + “ </p>”);
document.write(“The second array contains: ” + sa + “ </p>”);
document.write(“The combined array contains: ” + ca + “ </p>”);
document.write(“The combined array length is: ” + combinedArray.length + “
</p>”);
}
// -->
</script>
</head>
<body onload=”ConcatArrays()”>

</body>
</html>

The secondArray elements have been added to the end of the firstArray ele-
ments to create the new array called combinedArray. Note that the process of

concatenating two arrays creates a new array. The original two arrays from which it was
made are unaffected. They both remain intact and separate. We have used the join()
method of the Array object to display the elements of the first, second, and combined
arrays. You may remember that the join() method allows you to display the elements of
an array with a separator of your choosing.

Figure 14.1 shows the output from Listing 14.1. Notice particularly the content of the
combined array and the sequence of elements.

INPUT

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 455

When concatenating two arrays it is essential to make sure that you understand the order
of elements in the new array. Listing 14.2 shows how you can concatenate firstArray to
secondArray. In that situation, as you can see in Figure 14.2, the ordering of elements in
the combined array is different. If you had assumed the ordering which resulted from
Listing 14.1 but used the approach in Listing 14.2, you likely would have unexpected
results when you processed one or more array elements.

LISTING 14.2 The concat() Method Used in the Opposite Order
(ConcatArrays02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using concat() method to combine two arrays</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function ConcatArrays(){
var firstArray = new Array(1,2,3);
var secondArray = new Array(4,5,6);
var combinedArray = secondArray.concat(firstArray);
var fa = firstArray.join(“, “);
var sa = secondArray.join(“, “);
var ca = combinedArray.join(“, “);
document.write(“<p>The first array contains: ” + fa + “ </p>”);
document.write(“The second array contains: ” + sa + “ </p>”);
document.write(“The combined array contains: ” + ca + “ </p>”);
document.write(“The combined array length is: ”
+ combinedArray.length + “ </p>”);
}

456 Day 14

FIGURE 14.1
The output after
concatenating the
secondArray to the
firstArray.

OUTPUT

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 456

Advanced Array Management 457

14

// -->
</script>
</head>
<body onload=”ConcatArrays()”>

</body>
</html>

LISTING 14.2 continued

FIGURE 14.2
The output after
concatenating the
firstArray to the
secondArray.

OUTPUT

Making Copies of an Array
At this point let’s go back and consider the difference between a variable name actually
containing an array (which it doesn’t) and containing a reference to an array (which it
does).

We mentioned in Chapter 5 that arrays don’t actually have their own names. They are
only accessed by data containers (usually a variable), which hold a reference to the array.
The significance of this may not be immediately obvious. You can use the variable name
just as if it was the name of the array. However, if you try to create a copy of an array
and don’t understand this topic, then you can run into some difficulties, which can waste
a lot of time. Before you consider making copies of arrays, let’s first review how we
make a copy of a variable.

There is a major difference between the way you create a copy of a variable and the way
you create a copy of an array. For variables it is very simple: You simply declare a vari-
able name for the copy and assign the value of the original to the new variable as shown
below:

var myVar = “some value”;
var myCopy = myVar;

17 2978 CH14 4/10/02 10:53 AM Page 457

In this way, you can perform any number of operations on the original variable myVar
and then, if needed, revert back to its original value as stored in the variable myCopy.
Unfortunately when you need to create a copy of an array things are not quite so simple.
Let’s look at an example (Listing 14.3) to see what would happen if we were to attempt
it in the same way that we copied the variable myVar.

LISTING 14.3 The Seemingly Successful Copying of an Array
(CopyArray01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Seeming success in copying an array</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function CopyArray(){
var myArray = new Array(1,2,3);
var myCopy = myArray;
var ma = myArray.join(“, “);
var mc = myCopy.join(“, “);
document.write(“<p>The original array
<u><code>myArray</code></u> contains: “ + ma + “ </p>”);
document.write(“<p>The copied array
<u><code>myCopy</code></u> contains: “ + mc + “ </p>”);
}
// -->
</script>
</head>
<body onload=”CopyArray()”>

</body>
</html>

Figure 14.3 shows the result of the (seeming) array copy.

Our attempt at copying an array seems to have worked. However, let’s make some
changes to the original array myArray, and then see if we can revert to its original values
using the copy of the array, myCopy. You can test this with Listing 14.4.

458 Day 14

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 458

Advanced Array Management 459

14

LISTING 14.4 Copying an Array and Then Changing the Original
(CopyArray02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Seeming success in copying an array</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function CopyArray(){
var myArray = new Array(1,2,3);
var myCopy = myArray;

myArray[0] = 10;
myArray[1] = 20;
myArray[2] = 30;

var ma = myArray.join(“, “);
var mc = myCopy.join(“, “);
document.write(“<p>The original array
<u><code>myArray</code></u> contains: “ + ma + “ </p>”);
document.write(“<p>The copied array
<u><code>myCopy</code></u> contains: “ + mc + “ </p>”);
}
// -->
</script>
</head>
<body onload=”CopyArray()”>

</body>
</html>

FIGURE 14.3
The seemingly
successful result of
an array copy.

OUTPUT

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 459

If you run Listing 14.4, you will see the result shown in Figure 14.4. Both the original
array and the copy of that array return the same values for the array elements.

460 Day 14

FIGURE 14.4
Copying and chang-
ing an array changes
its copy too.

OUTPUT

The changes we made to the original array myArray also seem to have affected
the copy myCopy! At first sight that may seem bizarre, and it can cause a great

deal of frustration if you don’t know what’s going on. The reason that the changes we
made to the original array myArray were also reflected in the copy myCopy, is that
myCopy wasn’t actually a copy of the array at all. To understand this we need to come
back to the topic of references.

The variable myArray contained a reference to a part of the computer’s memory where
the array originally created was stored. The consequence of this is that when we tried to
copy the array we had created to a new variable called myCopy, myCopy was really just a
copy of the reference that the variable myArray contained. This means the variable
myCopy ended up pointing to exactly the same array as the variable myArray. They never
were two distinct arrays—there was only one array but two separate references pointing
to the same array.

Whenever we create our own objects the names we give them are always variables, and
as such they only contain references to the objects we create. These references are inter-
nal and we don’t get to see them, but they are real nonetheless. We can only create true
copies of actual pieces of data, so normally when we want to create a copy of an object,
we need to copy each property individually. Thankfully when it comes to arrays this is
not the case. We can use the concat() method to save time and effort.

In the previous examples of using the concat() method, the method was used to con-
catenate one array with another. The two arrays it was applied to were left intact and sep-
arate. The new array had to be assigned to a new variable name. To achieve this the

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 460

Advanced Array Management 461

14

concat() method internally copied each piece of data contained in the elements of the
original arrays to build up a new array. This built-in copying feature can be used to our
advantage and save us from writing the code to do it. To do this, we simply need to con-
catenate the array to be copied with an empty array. Listing 14.5 shows how we would
modify the previous example to do this.

LISTING 14.5 Using the concat() Method of the Array Object to Create a
True Copy (CopyArray03.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Actual success in copying an array using concat()</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function CopyArray(){
var myArray = new Array(1,2,3);
var emptyArray = new Array();
var myCopy = myArray.concat(emptyArray);

myArray[0] = 10;
myArray[1] = 20;
myArray[2] = 30;

var ma = myArray.join(“, “);
var mc = myCopy.join(“, “);
document.write(“<p>The original array
<u><code>myArray</code></u> contains: “ + ma + “ </p>”);
document.write(“<p>The copied array
<u><code>myCopy</code></u> contains: “ + mc + “ </p>”);
}
// -->
</script>
</head>
<body onload=”CopyArray()”>

</body>
</html>

When we run the code in Listing 14.5 we see that we have successfully copied the array,
as you can see in Figure 14.5.

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 461

The variable myCopy has the original values of the array myArray. We have suc-
ceeded in making a true copy that we can refer back to or use as a backup—even

if we have modified the original. If we use the literal notation to create the array, we can
actually shorten this as shown below:

var myArray = new Array(1,2,3);
var emptyArray = [];
var myCopy = myArray.concat(emptyArray);

myArray[0] = 10;
myArray[1] = 20;
myArray[2] = 30;

Or we can even place the array literal in the parentheses of the concat() method to make
it even shorter:

var myArray = new Array(1,2,3);
var myCopy = myArray.concat([]);

myArray[0] = 10;
myArray[1] = 20;
myArray[2] = 30;

The only time this does not work is when one or more elements of the array being copied
is a reference to another array (or other object). In this case, once again, it will be the
references and not the object that will be copied. Any changes to this object will be
reflected in both arrays. For the moment this is unlikely to be an issue for you as you are
unlikely, initially at least, to store objects in your array elements. However, if you do
start to use the multidimensional arrays that we will see later in this chapter, you may
need to bear this in mind.

462 Day 14

FIGURE 14.5
A successful array
copied using the
concat() method.

OUTPUT

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 462

Advanced Array Management 463

14

The slice() Method
Whenever we need to work with a limited number of consecutive elements contained
within an array it is often useful to create a new array out of these elements. To create
this array, we could use a loop statement to loop through the elements between two index
values and copy each element to a new array, but we are saved the trouble of such cus-
tom programming by the slice() method of the Array object, which makes the task a
simple one-line affair.

The slice() method requires two parameters. With the first one we specify the start
index of the section of the array that we want to copy; and with the second one, we spec-
ify the first index after the section to be copied. All the elements between these two
indexes are copied into a new array. For example, assume we have an array of names that
are ordered alphabetically and that we have found the indexes of the first and last ele-
ments with contents that begin with “B” (we can do both these things, as we will see
later). To extract the names beginning with B, we could use the slice() method, as
shown in Listing 14.6.

LISTING 14.6 Using the slice() Method to Create an Array with Selected
Content (SliceArray01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the slice() method of the Array object</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function BNameArray(){
var allNames = new Array(“Allan”, “Bart”, “Ben”, “Bob”, “Colin”);

// Process to find first and last indexes of “B’s” done here

var firstB = 1;
var firstNonB = 4;
var bNames = allNames.slice(firstB, firstNonB);
var an = allNames.join(“, “);
var bn = bNames.join(“, “);

document.write(“<p>The original array
<u><code>allNames</code></u> contains: “ + an + “ </p>”);
document.write(“<p>The array created using slice(),
<u><code>bNames</code></u>, contains: “ + bn + “ </p>”);
}

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 463

// -->
</script>
</head>
<body onload=”BNameArray()”>

</body>
</html>

Running Listing 14.6 will produce an appearance like that shown in Figure 14.6.

464 Day 14

LISTING 14.6 continued

FIGURE 14.6
Using the slice()
method to create a
new array derived
from an existing
array.

OUTPUT

The slice method has copied elements 1 through 3 and built up a new array,
which we have assigned to the variable bNames. Note the values of the two

indexes we had to specify to do this. The first index was the index of the first “B”, but
the second index was the one after the index of the last element containing a name
beginning with B. The index of Bob is 3, but we had to specify 4. This is a rule that is
important to remember, as it is the same for all the other array methods to which we
need to give index values.

The slice() method can only be used to select a continuous segment of an existing
array. If you want to create a new array which uses more than one segment of an existing
array, then you would need to concatenate the arrays created using the slice() method
with the concat() method.

The splice() Method
As you can imagine (from Chapter 5), the four methods for removing and adding
elements from the start and end of an array are often very useful, but we may need to
do something slightly more sophisticated. We may want to remove or insert elements

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 464

Advanced Array Management 465

14

located part way through an array. The splice() method enables us to do this and more.
Not only can we use it for the removal and insertion of elements, but it is also our means
of replacing/editing multiple elements with one line of code.

When we want to delete elements from an array we can use the delete statement. It is
applied to one element at a time, and removes any data that is contained within that ele-
ment. For example, if we subsequently try to use that element, it will have the value
undefined—just as it would have if it never had been assigned a value:

var x = new Array(“a”, “b”, “c”, “d”);
delete x[1];

alert(x[1]); // alerts undefined
alert(x.length); // alerts 4
alert(x); // alerts “a,,c,d”

Note that the data contained in element 1 has been removed—that is, the value of ele-
ment 1 has been set to a value of undefined. The length property of the Array object
still has the value of 4, and the data in the last two elements have not been moved into
earlier elements.

If all you want to do is remove the data contained in a specific element, then the delete
statement is the correct syntax. However sometimes when we remove an element from
an array, we will want the elements that follow it to be moved back by one (assuming we
deleted a single array element), thereby filling the place of the removed element and
reducing the array’s length. In the example above, we might want “c” to move back to
x[1], and “d” to move back to x[2], and of course the length property to be reduced by
one to reflect these changes. However, the delete method was not designed to achieve
this. It simply removes the data from the element to which it is applied.

To carry out a more sophisticated removal of elements with the desired backshift of any
following elements, we need to use the splice() method. In its simplest form the
splice() method simply deletes one or more elements from inside an array, but unlike
the delete method, it moves all the proceeding elements back one or more places. To
achieve this we must specify 2 parameters with the splice() method. The first parame-
ter is the index of the first element we want to remove, and the second parameter is the
number of subsequent elements we want to remove. To demonstrate let’s look at the pre-
vious example modified to provide a more complete removal of the second element, as
shown in Listing 14.7.

17 2978 CH14 4/10/02 10:53 AM Page 465

LISTING 14.7 Using the splice()Method of the Array Object
(SpliceArray01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the splice() method of the Array object</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SpliceArray(){
var x = new Array(“a”, “b”, “c”, “d”);
var xj = x.join(“, “);
document.write(“<p>The original array
<u><code>x</code></u> contains: “ + xj + “ </p>”);
document.write(“<p>The length of the original array
<u><code>x</code></u> is: “ + x.length + “ </p>”);
var y = x.splice(1,1);
var yj = y.join(“, “);
document.write(“<p>The array <u><code>y</code></u>
after using splice() contains: “ + yj + “ </p>”);
document.write(“<p>The length of the array <u><code>y</code></u>
after splice() is: “ + y.length + “ </p>”);
var xj = x.join(“, “);
document.write(“<p>The original array <u><code>x</code></u>
now contains: “ + xj + “ </p>”);
document.write(“<p>The length of the original array
<u><code>x</code></u> is now: “ + x.length + “ </p>”);
}
// -->
</script>
</head>
<body onload=”SpliceArray()”>

</body>
</html>

Figure 14.7 shows the output when you run Listing 14.7.

466 Day 14

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 466

Advanced Array Management 467

14

As we can see, not only has the original data contained in the second element
been removed, but the values c and d have been moved up to occupy elements 1

and 2, and the length property has changed to 3. Notice also that when the splice()
method deleted the second element from the array x it returned it so that it was assigned
to the variable y. Although this example doesn’t show it, the element isn’t just returned
as a piece of data, but rather as a single element array object.

If we wanted to remove more elements from the array, we would just have to specify a
higher number as the second parameter. For example if we want to remove the second
and third elements, we would write:

y = x.splice(1,2);

The 2 indicates that we want to remove 2 elements, and the 1 specifies that the removal
should start at element 1. As before, the removed elements would be returned by the
method, this time as a two-element array.

As well as using the splice() method to delete elements, we can also use it to insert
new elements without removing any of the existing ones. To do this we need to specify
an insertion point and the data to insert. When doing this, the first parameter of the
sort() method specifies the insertion point and the second parameter must be set to
zero. When the second parameter is set to zero, then the number of array elements to be
deleted is zero. We will see the effect of a nonzero second parameter shortly. All the data
we want to insert must then be included as extra parameters. Let’s say this time that
array x is created with only two elements with the values a and d respectively. If we then
want to insert the values b and c between these elements, then we could use code such as
that found in Listing 14.8.

FIGURE 14.7
The array x before
and after using the
splice() method.

OUTPUT

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 467

LISTING 14.8 Using the splice()Method to Insert Array Elements
(SpliceArray02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the splice() method to insert elements</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SpliceArray(){
var x = new Array(“a”,”d”, “e”, “f”);
var xj = x.join(“, “);
document.write(“<p>The original array
<u><code>x</code></u> contains: “ + xj + “ </p>”);
document.write(“<p>The length of the original array
<u><code>x</code></u> is: “ + x.length + “ </p>”);
x.splice(1, 0, “b”, “c”);
var xj = x.join(“, “);
document.write(“<p>The original array <u><code>x</code></u>
now contains: “ + xj + “ </p>”);
document.write(“<p>The length of the original array
<u><code>x</code></u> is now: “ + x.length + “ </p>”);
}
// -->
</script>
</head>
<body onload=”SpliceArray()”>

</body>
</html>

Figure 14.8.shows the result from running the code in Listing 14.8.

468 Day 14

INPUT

FIGURE 14.8
Inserting elements
into an array using
the splice() method.

OUTPUT

17 2978 CH14 4/10/02 10:53 AM Page 468

Advanced Array Management 469

14

As you can see, the second element containing the value d has moved up to
make space for the new elements b and c, and the length property has changed

to reflect the addition of the new elements to the array. When applied to x the splice()

method has returned an Array object.

By varying the second parameter, we can do everything from a pure delete through to an
exact replace to a partial or pure insertion. If we specify a number of array elements to
be removed using the second parameter, then they are removed; but at the same time, we
can also specify elements to insert. The number of elements deleted need not necessarily
be the same as the number of new elements inserted. However, if this happens to be the
case, then the result is that the elements are effectively replaced.

The final use of the splice() method is, in a sense, a combination of the two uses
just discussed. We can use it to replace elements within an array. Listing 14.9 shows
you how.

LISTING 14.9 Using the splice() Method to Replace Elements Within an
Array (SpliceArray03.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the splice() method to replace elements</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SpliceArray(){
var x = new Array(“a”,”b”, “c”, “d”);
var xj = x.join(“, “);
document.write(“<p>The original array
<u><code>x</code></u> contains: “ + xj + “ </p>”);
document.write(“<p>The length of the original array
<u><code>x</code></u> is: “ + x.length + “ </p>”);
x.splice(1, 2, “B”, “C”);
var xj = x.join(“, “);
document.write(“<p>The original array <u><code>x</code></u>
now contains: “ + xj + “ </p>”);
document.write(“<p>The length of the original array
<u><code>x</code></u> is now: “ + x.length + “ </p>”);
}
// -->
</script>
</head>
<body onload=”SpliceArray()”>

</body>
</html>

ANALYSIS

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 469

The result of running Listing 14.9 is shown in Figure 14.9.

470 Day 14

FIGURE 14.9
Using the splice()
method to remove
and insert array ele-
ments with the over-
all effect of replacing
two elements.

OUTPUT

In this example, the first parameter of the splice() method is the number 1 and
the second is the number 2. Therefore we have specified that starting at the ele-

ment with index 1 two elements should be deleted. At the same time, we have also sup-
plied two additional pieces of data to be inserted, and the insertion point for this data is
also the element with the index of 1. The result is that the values b and c are removed
from the second and third elements, and the values B and C are inserted at the same point.
The overall effect is that the second and third elements are overwritten with the values B
and C, as we can see in Figure 14.9. Note that if we had assigned to a variable y, as we
did in Listing 14.7, the elements that were deleted would be returned from the splice
method and stored in the variable y, as we have seen previously.

Normally we will want to do a delete, a replace, or an insert but, as we said earlier, it
isn’t necessary that the number of elements removed be the same as the number of ele-
ments inserted. We can specify more or less of either to get a mixture of the two effects.
The number of elements we specify for deletion will first be deleted, but then the number
of elements we specify for insertion will be inserted at the same point. However, if you
do use the splice() method in such a way, make very sure that you know the effects on
the length property and the positioning of individual elements if you will need to access
them later in your code.

The sort() Method
The sort() method is one of the most powerful of the Array object’s methods. When
applied to an array in its most simple form, it rearranges the data stored in the elements
of the array so that the data is ordered lexicographically. Listing 14.10 shows an example
of the sort() method at work.

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 470

Advanced Array Management 471

14

LISTING 14.10 Using the sort() Method to Order a Number of Strings in
an Array (SortString01.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the sort() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SortElements(){
var colors = new Array(“red”,”blue”,”green”);

colors.sort();
var cj = colors.join(“, “);
alert(“The sorted array contains: “ + cj);
}
// -->
</script>
</head>
<body onload=”SortElements()”>

</body>
</html>

Running Listing 14.10 will bring up the alert box shown in Figure 14.10.

INPUT

FIGURE 14.10
The result of an
array of sorted
strings.

OUTPUT

As you can see the elements of the array have been ordered as we would order
them if we were to put them into alphabetical order. However, this is slightly

misleading. The order in which the elements are ordered is based on the order that char-
acters appear in the Unicode standard. Let’s look at another example to demonstrate the
difference between alphabetical ordering and lexicographical ordering based on the order
of the Unicode characters. This time we will include a mixture of words starting with
uppercase and lowercase letters. See Listing 14.11.

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 471

LISTING 14.11 The Effect of Case on Ordering by Using the sort() Method
(SortString02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the sort() method</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SortElements() {
var colors = new Array(“red”,”Red”,”blue”,”Blue”,”green”,”Green”);

colors.sort();
var cj = colors.join(“, “);
alert(“The sorted array contains: “ + cj);
}
// -->
</script>
</head>
<body onload=”SortElements()”>

</body>
</html>

The alert box displayed by Listing 14.11 is shown in Figure 14.11.

472 Day 14

INPUT

FIGURE 14.11
When using the
sort() method
uppercase comes
before lowercase
letters.

OUTPUT

As you can see the uppercase letters have been placed before the lowercase let-
ters. The colors beginning with uppercase letters are alphabetically ordered, and

the colors beginning with a lowercase letter are alphabetically ordered, but the two
groups are separate. This is because in Unicode uppercase and lowercase letters are sepa-
rate, with the uppercase letters placed before the lowercase letters. Most of the time we
will not want to sort our arrays like this. We will probably prefer the words in an array to
be ordered alphabetically regardless of the case of the letters. Later in this section we
will see how this can be done. For the moment, let’s continue with our look at the char-
acteristics of the sort() method.

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 472

Advanced Array Management 473

14

Sometimes the arrays we wish to sort will contain elements with numerical values. If we
told you that numbers come before both uppercase and lowercase letters in the Unicode
standard, you may think you know the order in which the elements in these types of
arrays will end up. However, you may still be surprised. Let’s look at another two exam-
ples, this time with some numerical elements. See Listing 14.12.

LISTING 14.12 Using the sort()Method to Sort Numbers and Strings
(SortStringsAndNumbers.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the sort() method on numbers and strings</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SortElements() {
var mixture = new Array(“red”,4,”blue”,2,”green”,9);

mixture.sort();
var mj = mixture.join(“, “);
alert(“The sorted array contains: “ + mj);
}
// -->
</script>
</head>
<body onload=”SortElements()”>

</body>
</html>

Figure 14.12 shows the results of running Listing 14.12.

INPUT

FIGURE 14.12
Using the sort()
method produces
numbers before
letters.

OUTPUT

17 2978 CH14 4/10/02 10:53 AM Page 473

The numbers have been moved to the front of the array and are in the order that
you most likely expected. The 2 is placed before the 4, which in turn is placed

before the 9. However, as it happens, this is another deceptive example. The sort()
method does not take the data type of the elements it is comparing into consideration (at
least not in its unmodified form, as we are using it at the moment). The ordering is lexi-
cographical based on the order of the characters in the Unicode standard. In the Unicode
standard characters are just characters. They do not have a data type.

At this point you may be wondering why this matters. After all the characters seem to
have been placed into the correct order. Well, let’s look at another example where the
array contains some different numbers. See Listing 14.13.

LISTING 14.13 A Second Example of Using sort() on Numbers and Strings
(SortStringsAndNumbers02.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the sort() method on numbers and strings</title>
<script type=”text/javascript” language=”javascript”>
<!-- //
function SortElements() {
var myNums = new Array(9,4,”Bob”,11,301);

myNums.sort();
var mj = myNums.join(“, “);
alert(“The sorted array contains: “ + mj);
}
// -->
</script>
</head>
<body onload=”SortElements()”>

</body>
</html>

Figure 14.13 shows the results of running Listing 14.13.

474 Day 14

ANALYSIS

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 474

Advanced Array Management 475

14

At first the results of this sort may surprise you. With the 11 and 301 coming
before 4 and 9, the elements of the array are most certainly not in numerical

order. To understand why, let’s look more closely at what happens when we order words
alphabetically.

For this example, let’s assume we have three words: “first,” “second,” and “third.” To put
these words into alphabetical order, the first thing we do is compare the first letters of the
three words. If the first letter of one alphabetically comes before the first letter of anoth-
er, then it is placed first. But if the first letter of one comes after the first letter of another,
then it is placed later in the order. In the case of our three words, “f” comes before “s”,
so “first” is placed before “second,” and “s” comes before “t” so “second” is placed
before “third.” The fact that status “first” comes before the status “second,” and status
“second” comes before the status “third” has nothing to do with it. This is just coinci-
dence. It is the first letters on which our sort is based.

In the same way the fact that the numbers in the first of our two numerical examples
were placed in the order they were in was also just a coincidence. When JavaScript made
the comparison for the sort what it did was consider the numbers purely as characters.
This time though its reference wasn’t the alphabet; it was the Unicode standard. Because
the character 2 comes before the character 4 in the Unicode standard, it was placed
before 4; and because the character 4 comes before the character 9, it was placed before
9. It is not because the number 2 is before the number 4 numerically, nor because the
number 4 comes before the number 9 numerically.

The difference between sorting numerically and sorting lexicographically using the
Unicode standard is illustrated by Listing 14.13. JavaScript didn’t look at the numbers as
numbers but rather it compared the first character of each number (this is what lexico-
graphically means). The first character of 11 is 1. Because in the Unicode standard the
character “1” comes before the first character of 9 (just “9”), the first character of 4
(“4”), the first character of “Bob” (“B”), and the first character of 301 (“3”), the number
11 was placed first. In the same way the first character of 301 (“3”) comes before the
first character of 9, 4, and “hat,” so it was placed next. This method of ordering was con-
tinued so that 4 was placed next, then the 9, and finally the string “Bob.”

FIGURE 14.13
Notice that the num-
bers have been sort-
ed as strings by ini-
tial character, not by
numerical value.

OUTPUT

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 475

Of course most of the time the order of the characters in the Unicode standard will have
nothing to do with the order in which we want to sort the elements of our arrays. Most
likely we will want to do either a case insensitive alphabetical sort on strings, or a
numerical sort where the order of our numbers is numerical and not lexicographical. To
do this we need to define our own sort criteria.

Defining Our Own Sort Criteria
To define our own sort criteria, we need to understand a little more about how the Array
object’s sort() method works.

When we sort the elements of an array using the sort() method there are two processes
that go on behind the scenes. One is the comparison of the data in an array’s elements to
determine the order in which they should be placed, and the other is the actual process of
moving the data from element to element. It is the sort() method that moves the data
from one element to another, but hidden away is a second function that does the data
comparison. It is this function that tells the sort() method into which order it should
move the data in an array’s elements. Because of the task it performs, this second func-
tion is often called the comparison function.

The way these two functions work is that the sort() method sends the comparison func-
tion the data from two of the elements in the array it is working on, and asks the ques-
tion, “should I swap the data in these elements?”. The comparison function compares the
two pieces of data and returns, telling the sort() method “yes” or “no”. If the two pieces
of data are the “wrong way around,” then the comparison function tells the sort()
method “Yes, you should swap them.” It does this by returning the value 1, which you
can think of as the numerical equivalent of the boolean value true (true to the question,
“should the data be swapped?”).

If the sort() method receives back the value 1 from the comparison function, then it
swaps the data in the two elements and proceeds to send the comparison function another
two pieces of data. Of course the pieces of data won’t always be out of order and there-
fore won’t always need to be swapped. When this is the case the comparison function
returns a different value. When the two pieces of data it receives are in the “right” order,
then the comparison function returns the value –1. This can be thought of as the numeri-
cal equivalent to the boolean value false, meaning “no”, the data in the elements should
not be swapped.

The third condition is of course that the two elements compared are exactly equal. In this
case the elements need not be swapped, and the value returned by the comparison func-
tion is 0. This again tells the sort() method that it should not swap the data in the ele-
ments, and so is again effectively equivalent to the boolean value false.

476 Day 14

17 2978 CH14 4/10/02 10:53 AM Page 476

Advanced Array Management 477

14

By making use of the comparison function, the sort() method repeatedly cycles through
an array’s elements moving their data two at a time until no further changes need to be
made. Once the contents of the array’s elements have been completely rearranged the
sort() method stops.

When we define our own sort criteria we do not need to worry about how to move the
data in the elements of our arrays; the sort() method will do that for us. What we do
need to concern ourselves with is the construction of a comparison function for the
sort() method to use. The sort method will send this function two elements as argu-
ments, which it should compare before returning the numerical value that tells the
sort() method what it should do with the elements. To get a feel for what a comparison
function should look like consider the following example. It is designed to cause the
sort() method to order the elements of an array in a similar way to how it would sort
them by default—lexicographically, based on the order of the characters in the Unicode
standard:

function defaultSort(elementX, elementY)
{

if (elementX < elementY) return -1;
if (elementX > elementY) return 1;
return 0;

}

To understand how this function works, recall from Chapter 2, “Working with Data,”
how the comparison operators behave when used with strings. They check to see if one
of their operands comes before or after their other operand based on the order of the
characters in the Unicode standard! For example,

x < y

returns true if x comes before y, but false otherwise. This characteristic of the compari-
son operators makes them ideal for creating a comparison function that will order the
elements of an array according to the order of the characters in the Unicode standard.

In the comparison function above, called defaultSort(), we use the comparison opera-
tors as our means of checking the two elements that the function is sent. We have given
the arguments of the function the names elementX and elementY to help make this clear-
er. The comparison function must return –1 if the first argument comes before the second
by our ordering scheme. Therefore, in the first line of code in the function body we use
the if statement coupled with the < operator to check for this condition and return –1 if
it is true. We do not need to worry which elements the function has been sent. The
sort() method will keep track of this.

17 2978 CH14 4/10/02 10:53 AM Page 477

If, on the other hand, the first argument (elementX) comes after the data in the second
(elementY) by our ordering scheme, then we need to return the value 1 so that they are
swapped. This condition is checked for by the second if statement in the function body.
If the data in elementX comes after the data in elementY, then 1 is returned to the
sort() method.

If neither of the first two return statements has been evaluated by the third line of the
function body, then the data in the two elements must be identical. Therefore we include
a last return statement to make the function return the value 0, indicating the data in the
elements is the same.

We haven’t yet seen how to tell the sort() method that it should use a comparison func-
tion, which we have defined, rather than its built-in default function. This is actually a lot
easier than creating our function in the first place. You simply send the name of your
comparison function to the sort() method as a parameter. For example, to tell the
sort() method to use the function we have just been looking at, we would write the
following:

arrayName.sort(defaultSort);

478 Day 14

When telling the sort() method to use a function you have created, only
give it the name of the function. You do not include a function call after
this name (a pair of opening and closing parentheses). This means you
would not write something like this:

arrayName.sort(defaultSort());

The function call after the function name will cause an error because you
don’t want to call the function. You only want to give the sort() method
the function name so that it knows which function to use.

Note

Let’s look at an example of how to use this function we have created. See Listing 14.14.

LISTING 14.14 Using the defaultSort() Function with the Array Object’s
sort() Method (SortStringsAndNumbers03.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the sort() method on numbers and strings</title>
<script type=”text/javascript” language=”javascript”>
<!-- //

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 478

Advanced Array Management 479

14

function defaultSort(elementX, elementY)
{

if (elementX < elementY) return -1;
if (elementX > elementY) return 1;
return 0;

}
function SortElements() {
var mixture = new Array(“red”,4,”blue”,2,”green”,9);

mixture.sort(defaultSort);
var mj = mixture.join(“, “);
alert(“The sorted array contains: “ + mj);
}
// -->
</script>
</head>
<body onload=”SortElements()”>

</body>
</html>

This brings up the alert box shown in Figure 14.14.

LISTING 14.14 continued

FIGURE 14.14
A strange “sort.” Not
quite what we were
looking for.…

OUTPUT

It is at this point that we have to admit that the function above doesn’t quite pro-
duce the same results as the internal default function used by the sort()

method. The reason for this is that our function compares elements with the data type of
the data in the array. The default comparison function on the other hand converts the data
type of the elements it is sent with their data type set as a string (so that it can do a lexi-
cographical sort).

There is a reason why having a mixture of data types causes problems for our function—
it is a feature of the comparison operators that we haven’t looked at before. When the
operands of the comparison functions have different data types the value returned is
(almost) always the value false. Therefore:

1 < “a” // evaluates to false
“a” < 1 // evaluates to false

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 479

The result of this is that our comparison function can send the sort() method contradic-
tory commands. Inevitably this results in ordering that at times can seem almost random.
To prevent this problem from occurring, we need the elements that are sent to our com-
parison functions to be compared with the same data type. To do this for our previous
function we might write it like this:

function defaultSort(elementX, elementY)
{

var element1 = elementX.toString();
var element2 = elementY.toString();
if (element1 < element2) return -1;
if (element1 > element2) return 1;
return 0;

}

In this modified function, we have created two temporary variables called element1 and
element2 (notice the slight change in name). To these variables we have assigned the
data from the two arguments after converting their data to the datatype string using the
toString() method. It is then these copies with the modified data type that we use for
the comparison to decide which value to return to the sort() method. This allows us to
have a mixture of data with the datatypes number, string and boolean in our arrays, and
they will be ordered lexicographically. Listing 14.15 shows a revised example.

LISTING 14.15 A Custom Function Produces the Same as the Default
sort() Method (SortStringsAndNumbers04.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using the sort() method on numbers and strings</title>
<script type=”text/javascript” language=”javascript”>
<!-- //

function defaultSort(elementX, elementY)
{

var element1 = elementX.toString();
var element2 = elementY.toString();
if (element1 < element2) return -1;
if (element1 > element2) return 1;
return 0;

}

function SortElements() {
var mixture = new Array(“red”,4,”blue”,2,”green”,9);

mixture.sort(defaultSort);

480 Day 14

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 480

Advanced Array Management 481

14

var mj = mixture.join(“, “);
alert(“The sorted array contains: “ + mj);
}
// -->
</script>
</head>
<body onload=”SortElements()”>

</body>
</html>

When you run Listing 14.15 it will produce the alert box shown in Figure 14.15.

LISTING 14.15 continued

FIGURE 14.15
The output of a
modified
defaultSort()

function.

OUTPUT

Although the functions we have seen so far have introduced us to the use of the
comparison operators in comparison functions, and the need for conversion to a

consistent data type, they are not really of much use. After all we don’t need to create a
function that will produce the same results as the sort() method produces by default.
Far more useful would be functions that will produce a case-insensitive sort and a
numerical sort. Let’s go on now to create both of these.

Hopefully by now you have grasped the idea of the arguments of our comparison func-
tions containing the data from two array elements. We will now drop the longer names
we have been using and use the traditional shorter argument names for comparison func-
tion arguments: a and b.

The first function we are going to look at is one that causes a case-insensitive alphabeti-
cal sort. In the previous example, we converted the arguments of the function so that they
had the datatype string. In this function we are going to make a slightly more signifi-
cant modification to the data and convert it to lowercase letters. By comparing the argu-
ments with all their letters reduced to lowercase, the case of the characters in the actual
array elements doesn’t play a part:

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 481

function alphabetical(a, b)
{

var A = a.toLowerCase();
var B = b.toLowerCase();
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

Notice that the temporary variables are uppercase, whereas the argument names are
lowercase. Because JavaScript is case sensitive the arguments are not changed.

We could just as well have used the string method toUpperCase() rather than the method
toLowerCase(); both would stop the uppercase letters from being separated from lower-
case letters.

For example, if we wanted to make a case-insensitive sort of the colors we were using
before, we would use code like that in Listing 14.16 (see Figure 14.16).

LISTING 14.16 An Alphabetical String Sort, Independent of Case
(SortStringsAndNumbers05.htm)

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Using an alphabetical sort() method on strings</title>
<script type=”text/javascript” language=”javascript”>
<!-- //

function alphabetical(a, b)
{

var A = a.toLowerCase();
var B = b.toLowerCase();
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

function SortElements() {
var colors = new Array(“red”,”Red”,”blue”,”Blue”,”green”,”Green”);

colors.sort(alphabetical);
var cj = colors.join(“, “);
alert(“The sorted array contains: “ + cj);
}
// -->
</script>
</head>

482 Day 14

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 482

Advanced Array Management 483

14

<body onload=”SortElements()”>

</body>
</html>

LISTING 14.16 continued

FIGURE 14.16
A case-independent,
alphabetical string
sort.

OUTPUT

As you can see from the alert box, this time color names have not been separated
by the case of their initial letter—upper and lowercase characters have been

treated equally.

ANALYSIS

The ordering of words equal in a case-insensitive comparison will depend on
their relative position in the initial ordering of the array.

Note

Let’s now look at how we can create a sort for numerical values. It is as simple as the
following code:

function numerical(a, b) {
return a - b;

}

There are two points to note about these two comparison functions. The case-insensitive
comparison function will result in an error, if the array it is used on has any data that has
a datatype other than a string. This is because the toLowerCase() method is a method
belonging to the String object and therefore can’t be used with other datatypes. This
could be partially remedied by applying the toString() method prior to the
toLowerCase() method. This is shown in the code below:

function alphabetical(a, b)
{

var A = a.toString().toLowerCase();
var B = b.toString().toLowerCase();
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

17 2978 CH14 4/10/02 10:53 AM Page 483

This will allow numerical and boolean values to be present in the array on which the
function is used. Most of the time when you are doing a case-insensitive alphabetical
sort, these values will not be present. But for completeness, you may want to use that
form of the alphabetical() function.

The numerical comparison function may also result in an error (or at least unexpected
results); but this time it would be because the array it is used on contains data that is not
numerical. For example,

10 – “a”

evaluates to NaN. Again this isn’t an issue if the array you will use the numerical()
function with only contains numerical data.

Multidimensional Arrays
The arrays we have been working with so far have been single dimension arrays. By this
we mean that you can think of them as a single column of data. There is another type of
array that we may wish to work with that can be thought of as not only containing
columns of data but also rows. These types of arrays are called two-dimensional arrays.
In most full-programming languages, the syntax for these types of arrays is written as in
the following example:

myElement[x,y] // Not how it’s done in JavaScript!!

This refers to an element y that can be thought of as belonging to x (where x and y are
index numbers).

JavaScript doesn’t directly support two-dimensional arrays but, with a clever little trick,
we can simulate two-dimensional arrays in JavaScript. To do this we need to store arrays
within the elements of another array. Effectively, we then have an array of arrays. This is
probably easier to understand with an example, so let’s take a look at one:

var TwoDArray = new Array();
TwoDArray[0] = new Array();
TwoDArray[1] = new Array();

In the piece of code above we have created an array called TwoDArray in the normal way
with the new operator and the Array() constructor function. However, instead of assign-
ing a piece of data to its first and second elements, we have assigned them two new
arrays. These arrays are effectively stored within the elements of TwoDArray. To see how
this is similar to a two-dimensional array, let’s give the two arrays stored within the
elements of the array TwoDArray some data:

484 Day 14

17 2978 CH14 4/10/02 10:53 AM Page 484

Advanced Array Management 485

14

var TwoDArray = new Array();
TwoDArray[0] = new Array();
TwoDArray[1] = new Array();

TwoDArray[0][0] = “a”;
TwoDArray[0][1] = “b”;
TwoDArray[1][0] = “c”;
TwoDArray[1][1] = “d”;

At first this may look a little complex, but if you take time to think it through hopefully
you will see what’s happening in the four new lines. In the first of these lines the part
TwoDArray[0] is simply a reference to the array we stored in the first element of
TwoDArray. Therefore, the extra [0] is a reference to the first element of the array stored
in the first element of TwoDArray. It is this element of the array—stored in the first ele-
ment of TwoDArray—that is assigned the value a.

The same happens for the second element of the array stored in the first element of the
array TwoDArray, except that it is given the value b.

In the third line, we move to the second element of TwoDArray. Remember this element
contains a different array from the one in the first element. First we assign its first ele-
ment the value c, then in the next line we assign its second element the value d.

If it helps you to understand two-dimensional arrays, you can think of them as a table.
The number in the first set of square brackets would represent the row number, and the
number in the second set of square brackets would represent the column number. In the
example we have just looked at, this would mean that row 1 would have the values a and
b in columns 1 and 2 respectively, and row 2 would have the values c and d in columns 1
and 2 respectively.

The benefit of ordering our data in two-dimensional arrays is that it gives us an extra
level of detail.

The idea of containing arrays in the elements of another array can be extended indefinite-
ly. We are not limited simply to two dimensions. We can have as many levels of arrays
stored in elements of arrays as needed for a given task. In general, when we store arrays
in the elements of another array we call them multidimensional arrays. JavaScript multi-
dimensional arrays are really just arrays where the indexes are references to other arrays.

Before we finish, let’s look at a more involved example where multidimensional arrays
are used in conjunction with the Array object’s sort() method to order a list of e-mails.
This example assumes that a server-side process has filled the arrays with the latest four
e-mails. Take a look at Listing 14.17. The initial output is shown in Figure 14.17.

17 2978 CH14 4/10/02 10:53 AM Page 485

LISTING 14.17 Using Multidimensional Arrays and Sorting on Screen
(emailArray.htm)

<html>
<head>
<title>My Emails</title>

<style type=”text/css”>
th {background-color: #999999}
tr.odd {background-color: #cccccc}
tr.even {background-color: #ffffff}
th, td {padding: 0.1em 1em}
</style>

<script language=”javascript” type=”text/javascript”>
<!--

var emails = new Array();

for (var i=0; i<4; i++) {
emails[i] = new Array();

}

emails[0][“From”] = “Iain”;
emails[0][“Date”] = “2001-07-31”;
emails[0][“Subject”] = “TV Tonight”;

emails[1][“From”] = “Member’s Services”;
emails[1][“Date”] = “2001-07-30”;
emails[1][“Subject”] = “Welcome”;

emails[2][“From”] = “Lottery”;
emails[2][“Date”] = “2001-07-29”;
emails[2][“Subject”] = “You’ve Won!!”;

emails[3][“From”] = “Unwanted Spam”;
emails[3][“Date”] = “2001-07-28”;
emails[3][“Subject”] = “Annoying Email”;

function sortByFrom(a, b)
{

var A = a[“From”].toLowerCase();
var B = b[“From”].toLowerCase();
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

function sortByDate(a, b)
{

486 Day 14

INPUT

17 2978 CH14 4/10/02 10:53 AM Page 486

Advanced Array Management 487

14

var A = a[“Date”];
var B = b[“Date”];
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

function sortBySubject(a, b)
{

var A = a[“Subject”].toLowerCase();
var B = b[“Subject”].toLowerCase();
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

var sortCriteria = location.search.substr(1);

if (sortCriteria) {
emails.sort(eval(sortCriteria));

}

//-->
</script>

</head>
<body>

<h1>My Emails</h1>

<table>
<tr>
<th>From</th>
<th>Date</th>
<th>Subject</th>

</tr>

<script language=”javascript” type=”text/javascript”>
<!--

for (var i=0; i<emails.length; i++) {
document.write(“ <tr class=’” + ((i%2)? “odd”: “even”) + “‘>”);

document.write(“ <td>” + emails[i][“From”] + “</td>”);
document.write(“ <td>” + emails[i][“Date”] + “</td>”);
document.write(“ <td>” + emails[i][“Subject”] + “</td>”);

document.write(“ </tr>”);
}

LISTING 14.17 continued

17 2978 CH14 4/10/02 10:53 AM Page 487

//-->
</script>

</table>

</body>
</html>

488 Day 14

LISTING 14.17 continued

FIGURE 14.17
Sorting on screen
using
multidimensional
arrays.

OUTPUT

On the very first line of JavaScript we created an array called emails. Each ele-
ment of the emails array will contain information about an e-mail. However,

because we want to have several pieces of information about each e-mail, such as who
it’s from and when it arrived, we can’t just put pieces of data straight into this array.
Instead we insert new arrays into each of the elements of the emails array (in this case
we have used a for loop to do all four assignments). This allows us to associate several
pieces of information with each e-mail entry.

The next four blocks of three lines each assign a piece of data to associate elements
(remember, elements with a name instead of a number). We could have used numerical
indexes but using names makes it easier to read for this example.

A piece of data is assigned to elements called “From”, “Date”, and “Subject” for each
of our four e-mails.

For the moment ignore the rest of the code in the script block in the head and skip to the
body. Here we create a table with three headings: one for each e-mail field. Note that
these headings are wrapped with links with href attributes containing a short query
string. When clicked on, these links will simply reload the document with the query
string added to the end of the URL. We will see why shortly.

ANALYSIS

17 2978 CH14 4/10/02 10:53 AM Page 488

Advanced Array Management 489

14

To write out the table’s contents, we use a script block containing a for loop. This loop
is set to loop through the array called emails and write the data for each e-mail into the
table in its own row. The first line in the loop is probably the one you are least likely to
understand, so let’s take a closer look at it now:

document.write(“ <tr class=’” + ((i%2)? “odd”: “even”) + “‘>”);

The line writes a <tr> in the following form:

<tr class=’xxx’>

The xxx part is determined by the modulo expression within the conditional operator. If i
is even, then the expression evaluates to 0; but if i is odd, then it evaluates to 1. Because
JavaScript understands 0 to be false and 1 to be true in logical contexts, the conditional
operator alternates between evaluating as “odd” and “even” with each loop. By alternat-
ing the class of each row, we can assign a different background color to help each e-mail
stand out.

The first time the page loads the e-mails are written into the table in the order in which
they are contained within the array called emails. But if we click on one of the headers
we can change this. To understand how this works, let’s look at how the URL might
change if we clicked on the From header:

http://www.xmml.com/email/index.htm?sortByFrom

Let’s now look at the code contained within the document head that we missed earlier,
at the last line to be more precise. As we said in an earlier chapter, by using the
location.search property of the window object, we can obtain the query string from the
URL. However, this returns the query string with the question mark still in place. To
remove this, we use the substr() method. In effect the following line retrieves the query
string and removes the question mark so that we can assign the rest of the query string to
the variable sortCriteria, like so:

var sortCriteria = location.search.substr(1);

Notice that the query string values given to the three-header links correspond to the
names of the three functions that precede the above line. When the value after the ques-
tion mark in the query string has been assigned to the variable sortCriteria, an if

statement checks to see whether the variable has any value. If it does the following line
is executed:

emails.sort(eval(sortCriteria));

The eval() function is the first thing to evaluate in this statement. It takes the function
name that is stored in the sortCriteria variable and interprets it as code. Therefore the
function name is passed as a parameter to the sort() method, as it is applied to the array

17 2978 CH14 4/10/02 10:53 AM Page 489

called emails. In the case of our example, where the From header is clicked, it is the
name of the following function:

function sortByFrom(a, b)
{

var A = a[“From”].toLowerCase();
var B = b[“From”].toLowerCase();
if (A < B) return -1;
if (A > B) return 1;
return 0;

}

This function tells the sort() method that rather than basing the sort on the contents of
the elements of the array it is applied to, it should look at an element of the array con-
tained within that element. In this case, the element it should base the sort on is the
“From” element. The values of this field are also converted to lowercase for the check to
make the sort case insensitive.

The conditions are then as we saw earlier in the chapter. If the first element comes before
the other in the alphabet, then –1 is returned to indicate it should not be swapped. But if
the first element comes after the other in the alphabet, then 1 is returned to indicate that
it should be swapped. If neither of these conditions are met, then the elements must be
identical and so 0 is returned to indicate they do not need swapped.

Note that in this case that when a swap does take place, then all that is contained within
the two elements being compared is swapped. Therefore in the case of these elements
containing arrays, the whole arrays are moved—not just parts of them. This will keep all
of the information connected with one e-mail together.

Once the sort of the emails array has taken place the rest of the page finishes loading.
This time when the table is generated from the array, it has already been sorted into the
order that was selected by clicking on the header.

Of course if we are going to reload the page to restructure it, we might as well omit the
JavaScript and get the server to order the e-mails and write them into a table itself. This
isn’t the point though. You will learn techniques elsewhere in the book that will enable
you to restructure the page without reloading and hence have virtually instant ordering.
The point of this example was to show how a multidimensional array can be useful, and
as an added benefit, how the sort method can be used with multidimensional arrays.

490 Day 14

17 2978 CH14 4/10/02 10:53 AM Page 490

Advanced Array Management 491

14

Summary
Always look out for ways of using arrays to structure your data so that your scripts can
run more efficiently. Whenever you have a script that performs a repeated operation on
some data, ask yourself if this data wouldn’t be better suited as an array so a loop state-
ment could make this process easier. For example when you have elements of a form that
must have the same check made, then give them all the same name so that you can treat
them as an array. This will save you writing out individual lines of code for processing
each one (hard-coding).

Workshop
In this workshop we will review what you have learned about advanced arrays in this
chapter.

Q&A
Q. Are all the Array object’s methods cross-browser?

A. No. Some methods, such as the splice() method are new to one browser. The
splice() method was introduced in JScript 5.5, and with Internet Explorer 5.5, so
you may want to avoid its use for a little time until most of the users of your site
have upgraded to Internet Explorer 5.5 or higher. The splice() method has been
available to Netscape since version 4.

Q. If you sort “100” and “85” as strings will “85” be less than “100”?

A. No. When sorted as strings the character “1” comes before the character “8”.
Therefore “100” is “less” than “85”. Of course, if these two values were sorted as
numbers, you would have the opposite result.

Q. Can you make a copy of an array by assigning the array to a new variable?

A. No. If you were to attempt this, the new variable would only contain a copy of a
reference to the area in memory in which the array is stored. Any changes made to
the array are also reflected if accessed using the new variable.

Quiz
1. Which method is used to concatenate two arrays?

2. Which method of the Array object allows array elements to be deleted, inserted,
and/or replaced?

3. Which method is used to make a true copy of an array?

17 2978 CH14 4/10/02 10:53 AM Page 491

Quiz Answers
1. The concat() method is used to concatenate two arrays.

2. The splice() method. The second argument of the splice() method controls how
many elements are deleted. If further arguments are present, then new elements are
added to the array. Whether the length property increases, decreases, or stays the
same depends on how many deletions and insertions are made.

3. The concat() method can be used to make a true copy of an array by
concatenating that array with an empty array.

Exercises
1. Create an array that contains numerical values in each element of the array, and

then sort the array by numerical value.

2. Create a two-dimensional array for two locations, with maximum daily temperature
for each of seven days of the week. Sort the data by temperature value.

492 Day 14

17 2978 CH14 4/10/02 10:53 AM Page 492

Advanced Topics
15 Debugging and Error Handling

16 Cookies: Storing Persistent Data

17 Privacy and Security

18 Plugins and Applets

19 Creating Your Own Objects

20 JavaScript in E-Commerce

21 JavaScript and SVG

WEEK 3

18 2978 Part 3 4/10/02 10:50 AM Page 493

18 2978 Part 3 4/10/02 10:50 AM Page 494

DAY 15

WEEK 3

Debugging and Error
Handling

The people who put together Web pages run the gamut from professional pro-
grammers, who are accustomed to working with computers and computer lan-
guages, to those whom a Web page is their first exposure to “programming.”
The HTML used to put together Web pages is, as the “ML” in HTML signifies,
a “markup language” that is relatively straightforward to use.

When you leave the safe confines of HTML, however, and embark into
JavaScript programming, you are using a real programming language. As an
interpreted language, JavaScript is a lot easier to get into than languages such
as C++ or Java, but as soon as you go beyond cutting and pasting “prefab”
JavaScript directly into your pages, you are programming.

Like with all programming, you will quickly discover the “joy” of dealing with
programming errors and bugs. There are not very many development tools
specifically designed for debugging JavaScript, but there are a few.
Additionally, there are a number of techniques that can be used to debug your
own JavaScript programs.

19 2978 CH15 4/10/02 10:49 AM Page 495

This chapter will show you how to do the following:

• Use some good programming practices to cut down on errors

• Use document.writeln() to output debugging information

• Use alert boxes to step through JavaScript programs

• Add HTML form fields to display debugging information

• Use some dedicated script debugging tools

Preventing and Classifying JavaScript Errors
Ideally, the best way to “debug” JavaScript programs is to write error-free code.
Unfortunately, this is nearly impossible to do on a consistent basis. It is possible,
however, to develop coding practices and to become familiar with the different types of
errors, and in doing so help make your JavaScript code run as desired.

The field of software engineering is concerned with many aspects of computer
programming—including the development of coding practices that minimize
programming errors. Obviously, in these few pages, these topics cannot be covered fully.
However, some topics can be discussed and techniques can be shown that will give you
the necessary tools for creating and debugging JavaScript code.

Commenting Code
If you’ve ever read any book on programming, one of the first recommendations is that
you comment your code. Obviously, simply adding comments to your programs is not
going to prevent errors, but it does mean that you will need to put some thought into how
your programs are constructed, which may help you catch logic or other errors.

The real benefit of commenting code, though, happens when you come back to the code
at a later time. It is a common practice in programming to start with an older program
and then change it when doing something new, rather than starting from scratch. It is in a
situation like this when you will be glad that you have commented your code. Well-
commented and documented code makes it easier for you to remember what a given
JavaScript does, and also will make it much easier for you to adapt your code for other
uses.

496 Day 15

The topic of commenting your code is usually one of those, “Do what I say,
not what I do” sort of things. A lot of the examples in this book may not be
commented as well as they should; still, it is a good practice.

Note

19 2978 CH15 4/10/02 10:49 AM Page 496

Debugging and Error Handling 497

15
Keeping Track of JavaScript Variables
A common source of errors in JavaScript programs comes from its fairly lax require-
ments concerning variables. JavaScript does not require variables to be strongly typed, so
the same variable can be used to hold integers, floating-point numbers, Boolean values,
and strings. JavaScript does a fairly good job of automatic conversion from one data type
to another when performing various operations, but there is still the possibility of prob-
lems during conversion (particularly with the addition operator +, which is also used for
string concatenation).

There are a number of techniques and approaches that can be used to minimize the
potential pitfalls of JavaScript variable problems. These include the following:

• Explicit casting—Rather than relying on JavaScript’s automatic data-type conver-
sion, use explicit casting to convert values before operating on them. To convert to
an integer or floating-point number, use the int() or float() functions, respec-
tively. To convert a number to a string, you can use the toString() method of the
Math object. The eval() function also can be used to turn numeric strings into
numbers.

• Variable declaration—The JavaScript var statement is used to declare variables,
but it is not required. Variables can be created on-the-fly by simply assigning a
value to them. By explicitly using the var statement to declare each variable, you
will be able to keep better track of them.

• Local versus global variables—Similar to the explicit use of the var statement, it is
important to remember the scope of variables created. When declared with the var
statement inside a function, a variable is local to that function and cannot be
accessed elsewhere. When a variable is declared outside of a function, it is a global
variable and can be accessed in any script. Conflicts between global and local vari-
ables are a common source of errors, particularly when outside scripts are loaded
using the src attribute of the <script> tag.

• Variable-naming convention—By creating a variable naming convention, you can
make it much easier to keep track of all of your variables, particularly when there
are a lot of them. One way you can keep track of your variables is to use a given
prefix to identify integers, floating-point numbers, Booleans, and strings. If you are
including and using external JavaScripts, you also might consider prefixing all of
your variables with a given prefix (such as your initials), in order to reduce the
possibility of conflicts with any variables in the external script.

19 2978 CH15 4/10/02 10:49 AM Page 497

JavaScript Error Types
There are several different types of errors that are commonly encountered when creating
any program, including JavaScript. How each type of error is found and dealt with is
slightly different. The most common types of errors are the following:

• Syntax errors—In the initial creation of any program, the first type of error that
you will encounter is a syntax error. This most commonly happens because of a
typo you may have inserted into the program when typing a JavaScript statement,
either in the spelling of the keyword itself or by mis-nesting braces or parentheses.
As will be shown below, some browsers are able to help you pinpoint where these
errors are, and once found they usually are not too hard to correct. Typically,
syntax errors prevent a script from running.

• Logic errors—This catch-all classification covers the bulk of errors, and they are
the hardest types of errors to discover. There are even cases where “syntax” type
errors cause logic errors, since a typo in a variable name will not necessarily keep
the program from running. Correcting the logic in a program to get it to run
correctly is at the heart of computer programming.

• Browser-based errors—Each Web browser has slightly different capabilities, and
supports different versions of JavaScript. It is quite possible that a JavaScript that
works fine in one browser will not work well in another, either because of differ-
ences in the implementation of JavaScript or because of the differences in the capa-
bilities of the underlying browser. The three most prominent browsers, Internet
Explorer, Netscape Navigator 6.x, and Netscape Navigator 4.x, are largely compat-
ible, but they also have significant differences from each other. Additionally, older
versions of all of these browsers (as well as other JavaScript-enabled browsers such
as Opera) also have some differences. There are strategies for programming multi-
ple browsers to avoid these types of errors. These strategies were covered in
Chapter 8, “The Browser Issue,” and Chapter 11, “Dynamic HTML.”

Finding Syntax Errors
In most computer languages, a syntax error will prevent a program from running. Often
you will be informed of where the problem is, which generally makes finding and cor-
recting syntax errors fairly simple. After writing a program, you continue trying to run it
until it actually runs. At that point, the syntax errors (at least the syntax errors in the
portion of the program that you have run) will have all been corrected.

In many cases, a JavaScript interpreter treats syntax errors the same way. The JavaScript
interpreter that actually runs a JavaScript program is part of the Web browser used to

498 Day 15

19 2978 CH15 4/10/02 10:49 AM Page 498

Debugging and Error Handling 499

15
load the HTML document that includes and calls it. The JavaScript interpreters in
Netscape Navigator and Internet Explorer have different reactions to syntax errors,
however.

Errors in Netscape Navigator
Figure 15.1 shows the reaction of Netscape Navigator 6 to an HTML document that con-
tains JavaScript, which includes a syntax error that prevents correct execution. The exam-
ple program is one shown in greater detail in the next section; if the program were work-
ing, though, there would be output between the two horizontal rules. As can be seen from
the figure, however, there is no outward indication that there is a syntax error, other than
the lack of output.

FIGURE 15.1
Syntax errors in
Netscape Navigator
are not always
reported.

Netscape Navigator has a JavaScript console that can be displayed in order to get infor-
mation about JavaScript errors. In order to display the console, type javascript: into
the address line of the browser, and a window similar to that shown in Figure 15.2 will
display.

FIGURE 15.2
Netscape’s JavaScript
console gives error
information.

As shown, the JavaScript console gives information about the different types of errors
that occurred. In this case, it is possible to pinpoint the syntax error (a missing close
quotation mark on line 54) by looking at these error messages. It is interesting to note

19 2978 CH15 4/10/02 10:49 AM Page 499

that a single syntax error caused both of the error messages shown in Figure 15.2. This is
because the first error, the one listed as being in line 54, caused the definition of the
timeSpelledOut function to be incomplete and undefined, causing the error from
line 63.

Errors in Internet Explorer
Similar to Netscape Navigator, Internet Explorer also allows you to examine error mes-
sages caused by syntax errors in JavaScript programs. In fact, Internet Explorer makes it
a little more obvious that an error has occurred, as shown in Figure 15.3. In addition to
there not being any script output (as expected), Internet Explorer uses a small icon on the
left side of the status bar to indicate an error. (Sometimes, a line such as “Done, but
errors have occurred” will also appear in the status line.)

500 Day 15

FIGURE 15.3
By default, Internet
Explorer uses a small
status bar icon to indi-
cate a script error.

When the error icon appears, you can display an Error dialog box by double-clicking on
the error icon. The Error dialog box will appear, as shown in Figure 15.4. The details of
the error can be examined, as with Netscape’s JavaScript console, to determine where the
JavaScript error occurred. Note that the Previous and Next buttons (when enabled) on the
bottom of the Error dialog box allow you to scroll through all of the error messages gen-
erated. As shown above, it is possible for a single error to generate more than one error
message; in that case, it is important to scroll through all of the messages in order to find
the exact source of the error.

19 2978 CH15 4/10/02 10:49 AM Page 500

Debugging and Error Handling 501

15

Debugging Load-Time Errors
For the most part, in the rest of the chapter you will see different techniques that you can
use to debug JavaScript errors. Different types of JavaScript require different approaches
to debugging; in the next three sections, three different types of scripts will be discussed.

The first type of JavaScript that will be discussed is a load-time script. This is a
JavaScript that is loaded and executed when the Web page first loads in the browser.
Listing 15.1 shows an example of such a Web page and JavaScript program.

LISTING 15.1 Load-Time Script for “Formatted” Time (timeExample.html)

<html>
<head>
<title>timeSpelledOut</title>
<script language=”javascript” type=”text/javascript”>
function timeSpelledOut() {

var now = new Date();
var hour = now.getHours();
var minute = now.getMinutes();
var hourn,minuten,minute_frac,little_str,big_str;

/*

FIGURE 15.4
Double-clicking the
error icon will display
the Error dialog box.

Notice the check box in the Error dialog box shown in Figure 15.4, “Always
display this message when a page contains errors.” If you check this box, any
JavaScript (or other Web page) errors in the future will automatically bring
up the Error dialog box. This optional setting can also be made using the
Advanced tab of the Internet Options, checking the box for “Display a
notification about every script error.”

Note

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 501

* figure out what two numbers the little hand are between
*/
if (hour >= 12) hour -= 12;
if (hour == 0) {

hour = 12;
hourn = 1;

}
else

hourn = hour + 1;
/*
* figure out what two numbers the big hand are between
*/
minute /= 5;
minute_frac = minute - Math.floor(minute);
minute = Math.floor(minute);
if (minute == 0) {

minute = 12;
minuten = 1;

}
else

minuten = minute + 1;
/*
* spell out where the little and big hands are
*/
if (minute == 12 && minute_frac < 0.1)

little_str = “The little hand is on the “ + hour;
else if (minute == 11)

little_str = “The little hand is almost on the “ + hourn;
else if (minute == 12 || minute == 1)

little_str = “The little hand is just past the “ + hour;
else

little_str = “The little hand is between the “ + hour +
“ and the “ + hourn;

if (minute_frac == 0.0)
big_str = “The big hand is on the “ + minute;

else if (minute_frac > 0.7)
big_str = “The big hand is almost on the “ + minuten;

else if (minute_frac < 0.3)
big_str = “The big hand is just past the “ + minute;

else
big_str = “The big hand is between the “ + minute + “ and the “ + minuten;

/*
* return time spelled out
*/
return little_str + “...
” + big_str + “...”;

}
</script>
</head>
<body>

502 Day 15

LISTING 15.1 continued

19 2978 CH15 4/10/02 10:49 AM Page 502

Debugging and Error Handling 503

15<center>
<h1>timeSpelledOut</h1>
<hr>
<script language=”javascript”>
document.writeln(“<h2>” + timeSpelledOut() + “</h2>”);
</script>
<hr>
</center>
Jim O’Donnell,

jim@odonnell.org
</body>
</html>

The JavaScript included in Listing 15.1 displays a formatted time when the Web page is
loaded. This particular format, known as “time spelled out,” gives the current time as it
would be displayed on an analog clock. Figure 15.5 shows an example of the current
time, “spelled out.”

LISTING 15.1 continued

FIGURE 15.5
Load-time JavaScript
that outputs
“analog” time.

OUTPUT

Using the document.writeln() Method
Because a load-time JavaScript executes while the Web page is writing out, the easiest
way to get debugging information (to get some insight into the workings of the script), is
to use the document.writeln() method to write out additional information directly into
the page.

Listing 15.2 shows the same HTML document and JavaScript as that shown in Listing
15.1, only this time with additional debugging statements included to write out
intermediate information from the script. JavaScript comments are used to highlight the

19 2978 CH15 4/10/02 10:49 AM Page 503

debugging information included, so that the statements may be removed (or commented
out easily when the script is working correctly). Figure 15.6 shows an example of the
resulting Web page that shows both the intended output as well as the debug output that
shows intermediate values.

LISTING 15.2 Using document.writeln() to Write Debugging Information

<html>
<head>
<title>timeSpelledOut</title>
<script language=”javascript” type=”text/javascript”>
function timeSpelledOut() {

var now = new Date();
var hour = now.getHours();
var minute = now.getMinutes();
var hourn,minuten,minute_frac,little_str,big_str;

/*
* figure out what two numbers the little hand are between
*/
if (hour >= 12) hour -= 12;
if (hour == 0) {

hour = 12;
hourn = 1;

}
else

hourn = hour + 1;
/*
* figure out what two numbers the big hand are between
*/
minute /= 5;
minute_frac = minute - Math.floor(minute);
minute = Math.floor(minute);
if (minute == 0) {

minute = 12;
minuten = 1;

}
else

minuten = minute + 1;
/*
* spell out where the little and big hands are
*/
if (minute == 12 && minute_frac < 0.1)

little_str = “The little hand is on the “ + hour;
else if (minute == 11)

little_str = “The little hand is almost on the “ + hourn;
else if (minute == 12 || minute == 1)

little_str = “The little hand is just past the “ + hour;

504 Day 15

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 504

Debugging and Error Handling 505

15else
little_str = “The little hand is between the “ + hour +

“ and the “ + hourn;
if (minute_frac == 0.0)

big_str = “The big hand is on the “ + minute;
else if (minute_frac > 0.7)

big_str = “The big hand is almost on the “ + minuten;
else if (minute_frac < 0.3)

big_str = “The big hand is just past the “ + minute;
else

big_str = “The big hand is between the “ + minute +
“ and the “ + minuten;

/*
* DEBUG: output intermediate variables
*/
document.writeln(“now = “ + now + “
”);
document.writeln(“hour = “ + hour + “
”);
document.writeln(“hourn = “ + hourn + “
”);
document.writeln(“minute = “ + minute + “
”);
document.writeln(“minuten = “ + minuten + “
”);
document.writeln(“minute_frac = “ + minute_frac + “
”);
document.writeln(“little_str = “ + little_str + “
”);
document.writeln(“big_str = “ + big_str + “
”);

/*
* return time spelled out
*/
return little_str + “...
” + big_str + “...”;

}
</script>
</head>
<body>
<center>
<h1>timeSpelledOut</h1>
<hr>
<script language=”javascript”>
document.writeln(“<h2>” + timeSpelledOut() + “</h2>”);
</script>
<hr>
</center>
Jim O’Donnell,

jim@odonnell.org
</body>
</html>

LISTING 15.2 continued

19 2978 CH15 4/10/02 10:49 AM Page 505

Using the Alternate Inputs
The timeSpelledOut() JavaScript function shown in Listings 15.1 and 15.2 indicates a
need for further techniques for debugging. Because the script is designed to print out a
formatted version of the current time, it would take 24 hours to test all of the necessary
combinations of times. Obviously, you don’t want to have to wait all that time to test all
of the pertinent combinations.

Listing 15.3 shows another alternative approach, one that allows for full testing of the
function without requiring a great deal of time to hit all of the possibilities. As shown in
the function, it is accomplished by supplying alternative inputs to the timeSpelledOut()
function. When the function is called using these inputs, they are used in place of the
actual time, thereby allowing for times other than the current time to be used. When the
function is called without these inputs, the current time is used.

LISTING 15.3 Supplying Alternate Inputs to Debug Different Cases
(timeExampleDebug2.html)

<html>
<head>
<title>timeSpelledOut</title>
<script language=”javascript” type=”text/javascript”>
function timeSpelledOut(h_in,m_in) {

506 Day 15

FIGURE 15.6
Debugging informa-
tion can be written
directly into the Web
page.

OUTPUT

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 506

Debugging and Error Handling 507

15var now = new Date();
var hour = now.getHours();
var minute = now.getMinutes();
var hourn,minuten,minute_frac,little_str,big_str;

/*
* DEBUG: use function inputs, if defined
*/
document.writeln(“h_in “ + h_in + “
”);
h_in = Math.floor(h_in);
if (h_in >= 0 && h_in <= 23)

hour = h_in;
document.writeln(“m_in “ + m_in + “
”);
h_in = Math.floor(m_in);
if (m_in >= 0 && m_in <= 59)

minute = m_in;
/*
* figure out what two numbers the little hand are between
*/
if (hour >= 12) hour -= 12;
if (hour == 0) {

hour = 12;
hourn = 1;

}
else

hourn = hour + 1;
/*
* figure out what two numbers the big hand are between
*/
minute /= 5;
minute_frac = minute - Math.floor(minute);
minute = Math.floor(minute);
if (minute == 0) {

minute = 12;
minuten = 1;

}
else

minuten = minute + 1;
/*
* spell out where the little and big hands are
*/
if (minute == 12 && minute_frac < 0.1)

little_str = “The little hand is on the “ + hour;
else if (minute == 11)

little_str = “The little hand is almost on the “ + hourn;
else if (minute == 12 || minute == 1)

little_str = “The little hand is just past the “ + hour;
else

little_str = “The little hand is between the “ + hour +
“ and the “ + hourn;

LISTING 15.3 continued

19 2978 CH15 4/10/02 10:49 AM Page 507

if (minute_frac == 0.0)
big_str = “The big hand is on the “ + minute;

else if (minute_frac > 0.7)
big_str = “The big hand is almost on the “ + minuten;

else if (minute_frac < 0.3)
big_str = “The big hand is just past the “ + minute;

else
big_str = “The big hand is between the “ + minute +

“ and the “ + minuten;
/*
* DEBUG: output intermediate variables
*/
document.writeln(“now = “ + now + “
”);
document.writeln(“hour = “ + hour + “
”);
document.writeln(“hourn = “ + hourn + “
”);
document.writeln(“minute = “ + minute + “
”);
document.writeln(“minuten = “ + minuten + “
”);
document.writeln(“minute_frac = “ + minute_frac + “
”);
document.writeln(“little_str = “ + little_str + “
”);
document.writeln(“big_str = “ + big_str + “
”);

/*
* return time spelled out
*/
return little_str + “...
” + big_str + “...”;

}
</script>
</head>
<body>
<center>
<h1>timeSpelledOut</h1>
<hr>
<script language=”javascript”>
document.writeln(“<h2>” + timeSpelledOut(11, 0) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11, 1) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11, 2) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11, 3) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11, 4) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11, 5) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11, 6) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11,54) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11,55) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11,56) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11,57) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11,58) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(11,59) + “</h2>”);
document.writeln(“<h2>” + timeSpelledOut(12, 0) + “</h2>”);
</script>
<hr>

508 Day 15

LISTING 15.3 continued

19 2978 CH15 4/10/02 10:49 AM Page 508

Debugging and Error Handling 509

15</center>
Jim O’Donnell,

jim@odonnell.org
</body>
</html>

Figure 15.7 displays the output of a debugged version of the Web page, showing the out-
put from many different combinations of input times, which are spelled out on the page.

LISTING 15.3 continued

FIGURE 15.7
Use debugging tech-
niques to quickly test
many output possibil-
ities. Only a small
part of the output is
shown.

OUTPUT

Debugging Run-Time Errors I: Discrete
Events

Many JavaScript programs do not run at load-time, however. Using the
document.writeln() method is not as appropriate for debugging those types of scripts,
since the page is not currently open for writing. A prime example of such a run-time
script—one that runs after the page has completely loaded and been displayed—is a
script for performing validation of HTML form inputs. An example of such a script is
shown in Listing 15.4. This script takes a telephone number as input, ensures that it is a
valid U.S. telephone number (seven or ten digits, with an optional leading 1), and then
reformats and displays it back in the form. (An example of its operation is shown in
Figures 15.8 and 15.9.)

19 2978 CH15 4/10/02 10:49 AM Page 509

LISTING 15.4 JavaScript to Format U.S. Telephone Number
(phoneExample.html)

<html>
<head>
<title>phoneNumberFormat</title>
<script language=”javascript” type=”text/javascript”>
function phoneNumberFormat(obj) {

var num_str = obj.phoneNumber.value;
var xChars = new Array(“ “,”(“,”)”,”+”,”-”,”.”,

“I”,”N”,”V”,”A”,”L”,”D”,”!”);
/*
* remove all extraneous characters leaving only numbers
*/
num_str_save = num_str;
for (i = 0;i < xChars.length;i++) {

x = xChars[i];
while (num_str.indexOf(x) > -1)

num_str = num_str.substring(0,num_str.indexOf(x)) +
num_str.substring(num_str.indexOf(x) + 1,

num_str.length)
}

/*
* remove leading 1, if present
*/
if (num_str.indexOf(“1”) == 0)

num_str = num_str.substring(1,num_str.length);
/*
* verify length of number, if valid
*/
if (num_str.length == 7)

num_str = num_str.substring(0,3) + “-” + num_str.substring(3,7);
else if (num_str.length == 10)

num_str = “(“ + num_str.substring(0,3) + “) “ +
num_str.substring(3,6) + “-” + num_str.substring(6,10);

else
if (num_str_save.indexOf(“ INVALID!”) > -1)

num_str = num_str_save;
else

num_str = num_str_save + “ INVALID!”;
/*
* put formatted phone number back into the form
*/
obj.phoneNumber.value = num_str;

}
</script>
</head>
<body>
<center>
<h1>phoneNumberFormat</h1>
<hr>

510 Day 15

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 510

Debugging and Error Handling 511

15<form name=”formInfo”>
Input Phone Number
<input type=”text” size=”30” name=”phoneNumber”
onChange=”phoneNumberFormat(document.formInfo)”>
</form>
<hr>
</center>
Jim O’Donnell,

jim@odonnell.org
</body>
</html>

LISTING 15.4 continued

FIGURE 15.8
JavaScript is often
used to validate and
format forms input.

OUTPUT

Using the alert() Method
The alert() method makes it very simple to output intermediate script values, which
enables you to get insight into the workings of a script by looking at the intermediate
values that were generated. If the answer is not what you expect, which is why you
would need to perform the debugging in the first place, looking at intermediate values is
the best way to figure out why things are not working. Using alert boxes also allows you
to single step through a script.

FIGURE 15.9
Using
document.writeln()

does not work as
well because the
page has completely
loaded.

19 2978 CH15 4/10/02 10:49 AM Page 511

Listing 15.5 shows the telephone-number formatting example, with a series of alert
boxes used to show the intermediate values. When the script function is called by the
onChange() event of the form text box, it formats the telephone number entered into the
field. Now, at each step in the process, an alert box pops up to show the current state of
the formatted output.

LISTING 15.5 Use Alert Boxes to Pop Up Important Debugging Information
(phoneExampleDebug1.html)

<html>
<head>
<title>phoneNumberFormat</title>
<script language=”javascript” type=”text/javascript”>
function phoneNumberFormat(obj) {

var num_str = obj.phoneNumber.value;
var xChars = new Array(“ “,”(“,”)”,”+”,”-”,”.”,

“I”,”N”,”V”,”A”,”L”,”D”,”!”);
/*
* DEBUG: display num_str in alert box
*/
alert(“INPUT: num_str = “ + num_str);

/*
* remove all extraneous characters leaving only numbers
*/
num_str_save = num_str;
for (i = 0;i < xChars.length;i++) {

x = xChars[i];
while (num_str.indexOf(x) > -1)

num_str = num_str.substring(0,num_str.indexOf(x)) +
num_str.substring(num_str.indexOf(x) + 1,

num_str.length)
}

/*
* DEBUG: display num_str in alert box
*/
alert(“EXTRANEOUS CHARACTERS REMOVED: num_str = “ + num_str);

/*
* remove leading 1, if present
*/
if (num_str.indexOf(“1”) == 0)

num_str = num_str.substring(1,num_str.length);
/*
* DEBUG: display num_str in alert box
*/
alert(“LEADING \”1\” REMOVED: num_str = “ + num_str);

/*
* verify length of number, if valid
*/

512 Day 15

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 512

Debugging and Error Handling 513

15if (num_str.length == 7)
num_str = num_str.substring(0,3) + “-” + num_str.substring(3,7);

else if (num_str.length == 10)
num_str = “(“ + num_str.substring(0,3) + “) “ +

num_str.substring(3,6) + “-” + num_str.substring(6,10);
else

if (num_str_save.indexOf(“ INVALID!”) > -1)
num_str = num_str_save;

else
num_str = num_str_save + “ INVALID!”;

/*
* DEBUG: display num_str in alert box
*/
alert(“FORMATTED: num_str = “ + num_str);

/*
* put formatted phone number back into the form
*/
obj.phoneNumber.value = num_str;

}
</script>
</head>
<body>
<center>
<h1>phoneNumberFormat</h1>
<hr>
<form name=”formInfo”>
Input Phone Number
<input type=”text” size=”30” name=”phoneNumber”
onchange=”phoneNumberFormat(document.formInfo)”>
</form>
<hr>
</center>
Jim O’Donnell,

jim@odonnell.org
</body>
</html>

Figures 15.10 through 15.13 show the debugging alert boxes that popped up in the exam-
ple from Listing 15.5. Note that, in addition to showing the current value of the format-
ted telephone number, explanatory text is included to detail where in the process the
script is.

LISTING 15.5 continued

19 2978 CH15 4/10/02 10:49 AM Page 513

While alert boxes work pretty well for stepping through scripts, they can be a
problem if there are many steps to go through. Even though you will remove the

alert boxes after the script is fully debugged, it can still be a pain to get through a full
script if there are too many alert boxes. In such a case, there is a way you can include all
of the debugging input without requiring your input to display an alert box at each step.

Using HTML Form Elements
Another way to output debugging information during the operation of a script is to use
HTML forms—in particular, text and text-area boxes. The text contents of each of these
elements can be accessed and changed via JavaScript. Just as separate alerts were used in
Listing 15.5 to display intermediate calculations and values in the script, the same
information can be displayed in a text-area box.

514 Day 15

FIGURE 15.10
Alert boxes can be
used to show
intermediate values.

OUTPUT

FIGURE 15.11
Intermediate script
values give insight
into its operation.

FIGURE 15.12
Use alert boxes to
show how a script is
progressing step by
step.

FIGURE 15.13
Alerts can be used to
pinpoint script errors
and show intermedi-
ate and final results.

ANALYSIS

19 2978 CH15 4/10/02 10:49 AM Page 514

Debugging and Error Handling 515

15
Listing 15.6 shows another version of the telephone-number formatting example, this one
using a text-area box to display debug information. Figure 15.14 shows the page before
the script is run. Notice that the debug text-area box is included at the end of the Web
page, after the “real” Web page content.

LISTING 15.6 TEXTAREA Boxes Can Display Lots of Information
(phoneExampleDebug2.html)

<html>
<head>
<title>phoneNumberFormat</title>
<script language=”javascript” type=”text/javascript”>
function phoneNumberFormat(obj) {

var num_str = obj.phoneNumber.value;
var xChars = new Array(“ “,”(“,”)”,”+”,”-”,”.”,

“I”,”N”,”V”,”A”,”L”,”D”,”!”);
/*
* DEBUG: display num_str in alert box
*/
textareaDebugWrite(“INPUT: num_str = “,num_str);

/*
* remove all extraneous characters leaving only numbers
*/
num_str_save = num_str;
for (i = 0;i < xChars.length;i++) {

x = xChars[i];
while (num_str.indexOf(x) > -1)

num_str = num_str.substring(0,num_str.indexOf(x)) +
num_str.substring(num_str.indexOf(x) + 1,num_str.length)

}
/*
* DEBUG: display num_str in alert box
*/
textareaDebugWrite(“EXTRANEOUS CHARACTERS REMOVED: num_str = “,num_str);

/*
* remove leading 1, if present
*/
if (num_str.indexOf(“1”) == 0)

num_str = num_str.substring(1,num_str.length);
/*
* DEBUG: display num_str in alert box
*/
textareaDebugWrite(“LEADING \”1\” REMOVED: num_str = “,num_str);

/*
* verify length of number, if valid
*/
if (num_str.length == 7)

num_str = num_str.substring(0,3) + “-” + num_str.substring(3,7);

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 515

else if (num_str.length == 10)
num_str = “(“ + num_str.substring(0,3) + “) “ +

num_str.substring(3,6) + “-” + num_str.substring(6,10);
else

if (num_str_save.indexOf(“ INVALID!”) > -1)
num_str = num_str_save;

else
num_str = num_str_save + “ INVALID!”;

/*
* DEBUG: display num_str in alert box
*/
textareaDebugWrite(“FORMATTED: num_str = “,num_str);

/*
* put formatted phone number back into the form
*/
obj.phoneNumber.value = num_str;

}
</script>
</head>
<body>
<center>
<h1>phoneNumberFormat</h1>
<hr>
<form name=”formInfo”>
Input Phone Number
<input type=”text” size=”30” name=”phoneNumber”
onchange=”phoneNumberFormat(document.formInfo)”>
</form>
<hr>
</center>
Jim O’Donnell,

jim@odonnell.org
<!-- DEBUG STUFF -->

<hr>
<form name=”debugInfo”>
<textarea name=”debugText” rows=”8” cols=”70”>DEBUG INFO...</textarea>
</form>
<hr>
<script language=”javascript” type=”text/javascript”>
function textareaDebugWrite(lbl,val) {

document.debugInfo.debugText.value += “\n” + lbl + val;
}
</script>

<!-- DEBUG STUFF -->
</body>
</html>

516 Day 15

LISTING 15.6 continued

19 2978 CH15 4/10/02 10:49 AM Page 516

Debugging and Error Handling 517

15

After the script is executed, Figure 15.15 shows the resulting output. As shown, the tele-
phone number has been correctly formatted. Additionally, the intermediate information
that you can use to debug the script is shown in the text-area box. If the script does not
work, this information would allow you to pinpoint where the problem exists.

FIGURE 15.14
Text-area boxes can
be used to display
debugging
information.

OUTPUT

FIGURE 15.15
All intermediate cal-
culations can be
output onto page.

OUTPUT

19 2978 CH15 4/10/02 10:49 AM Page 517

Debugging Run-Time Errors II: Continuous
Events

Validation of HTML forms is a discrete event. When a form field is changed or a Submit
button is clicked, a JavaScript runs once and performs its function (for example,
validating and formatting the contents of a text box as in the example in the previous sec-
tion). For this sort of script, the alert box and text-area methods shown in the previous
section are appropriate.

What about “continuous” events, such as those generated by mouse and keyboard events?
Listing 15.7 shows an example of this, which is a positioning example that runs in
Internet Explorer or Navigator 4. In this example, Dynamic HTML techniques are used
to allow a Web-page graphic to be dragged anywhere on the page.

LISTING 15.7 Dynamic HTML Allows Objects to Be Dynamically Moved
(positioningExample.html)

<html>
<head>
<title>Positioning with Cross-Browser Dynamic HTML</title>
<script language=”JavaScript” src=”dynlayer.js”></script>
<script language=”JavaScript” src=”mouseevents.js”></script>
<script language=”JavaScript” src=”drag.js”></script>
<script language=”JavaScript”>
function init() {
/*
* initialize DynLayers
*/
DynLayerInit();

/*

518 Day 15

Before the advent of Dynamic HTML, you could only use form elements,
such as text and text-area boxes, to dynamically change text content once a
Web page was loaded. HTML forms were among the first elements for Web
pages accessible through JavaScript as well. Now, there are other ways to
add and change content on a Web page using Dynamic HTML, and these
techniques also can be used to include debugging information. However,
using HTML forms is still the most straightforward approach.

Note

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 518

Debugging and Error Handling 519

15* add the draggable layers to the drag object
*/
drag.add(author);

/*
* initialize mouse events
*/
initMouseEvents();

}
</script>
</head>
<body onLoad=”init()”>
<center>
<h1>Positioning with
Cross-Browser Dynamic HTML</h1>
<hr>
<table>
<tr><td width=”50%”>

This example uses the DynAPI JavaScript Library
(
http://www.dansteinman.com/dynduo/) to create
an example that will work in Internet
Explorer and Netscape Navigator 4.</td>

<td> </td></tr>
</table>
<hr>
</center>
Jim O’Donnell, jim@odonnell.org
<div id=”authorDiv”
style=”position:absolute;width:275;height:215;left:320;top:150”>
<table>
<tr valign=”BOTTOM”>

<td><img src=”rbflag_ls.gif” width=”50” height=”47”
border=”0” /></td>

<td><img src=”Author.jpg” width=”175” height=”215”
border=”0” /></td>

<td><img src=”rbflag_rs.gif” width=”50” height=”47”
border=”0” /></td></tr>

</table>
</div>
</body>
</html>

Figure 15.16 shows the Web page, as it first appears when it is loaded. As shown in
Figure 15.17, you can pick up and drag the image and move it around the Web page.

LISTING 15.7 continued

19 2978 CH15 4/10/02 10:49 AM Page 519

520 Day 15

FIGURE 15.16
JavaScript and
Dynamic HTML can
be used to move
objects.

OUTPUT

FIGURE 15.17
Continuous events
need a way of dis-
playing debugging
information that will
not interrupt them.

19 2978 CH15 4/10/02 10:49 AM Page 520

Debugging and Error Handling 521

15

How do you debug scripts such as this? While the graphic is being dragged from one
position to another, it is generating events continuously. Obviously, popping up an event
box every time a script was called in this case would not be acceptable, as it would inter-
rupt the dragging operation. Likewise, if a text-area box were used, as in the example in
Listing 15.6, where information was appended to the box contents each time the script
was called, the box would quickly fill up the text-area box and would not be useful. So,
what is the answer?

In this case, a good way to display intermediate or internal script values while it is con-
tinually running is to use an HTML form text box. (Another way would be to use the sta-
tus bar area.) Instead of appending new content, the contents of the box or boxes are
replaced each time the script is called. So, in the positioning example, each time a mouse
event calls the script, it is able to display new information from the script internals.

Listing 15.8 shows the example with debugging information included. In this case, a sim-
ple HTML table is used to format a collection of four text boxes, with each being used to
show information about the object being dragged.

LISTING 15.8 Text Boxes Can Be Updated On-The-Fly
(positioningExampleDebug.html)

<html>
<head>
<title>Positioning with Cross-Browser Dynamic HTML</title>
<script language=”JavaScript” src=”dynlayer.js”></script>
<script language=”JavaScript” src=”mouseevents.js”></script>
<script language=”JavaScript” src=”drag.js”></script>
<script language=”JavaScript” type=”text/javascript”>
function init() {
/*
* initialize DynLayers
*/
DynLayerInit();

/*
* add the draggable layers to the drag object
*/

The Dynamic Duo Web site, located at http://www.dansteinman.com/
dynduo/, is a good example of what you can achieve using Dynamic HTML
that is targeted for both Netscape Navigator and Microsoft Internet
Explorer. The external JavaScripts loaded in this example are from this Web
site. While this site is no longer being updated, it still has lots of good
information, and links to more up-to-date content.

Note

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 521

drag.add(author);
/*
* set up supplemental event handlers
*/
drag.onDragStart = dragStart;
drag.onDragMove = dragMove;
drag.onDragEnd = dragEnd;

/*
* initialize mouse events
*/
initMouseEvents();

}
function dragStart(x,y) {

document.MyForm.ID.value = drag.obj.id
document.MyForm.STATE.value = “moving”
return false

}
function dragMove(x,y) {

document.MyForm.X.value = drag.obj.x
document.MyForm.Y.value = drag.obj.y
return false

}
function dragEnd(x,y) {

document.MyForm.STATE.value = “static”
return false

}
</script>
</head>
<body onLoad=”init()”>
<center>
<h1>Positioning with
Cross-Browser Dynamic HTML</h1>
<hr>
<table>
<tr><td width=”50%”>

This example uses the DynAPI JavaScript Library
(
http://www.dansteinman.com/dynduo/) to create
an example that will work in Internet
Explorer and Netscape Navigator 4.</td>

<td> </td></tr>
</table>
<hr>
</center>
Jim O’Donnell, jim@odonnell.org
<form name=”MyForm”>
<table width=”50%”>
<tr><td>Drag Information</td>

<td>ID </td><td><input name=”ID” type=”text” size=”10” /></td></tr>
<tr><td> </td>

<td>STATE</td><td><input name=”STATE” type=”text” size=”10” /></td></tr>

522 Day 15

LISTING 15.8 continued

19 2978 CH15 4/10/02 10:49 AM Page 522

Debugging and Error Handling 523

15<tr><td> </td>
<td>X </td><td><input name=”X” type=”text” size=”10” /></td></tr>

<tr><td> </td>
<td>Y </td><td><input name=”Y” type=”text” size=”10” /></td></tr>

</table>
</form>
<div id=”authorDiv”
style=”position:absolute;width:275;height:215;left:320;top:150”>
<table>
<tr valign=”BOTTOM”>

<td><img src=”rbflag_ls.gif” width=”50” height=”47”
border=”0” /></td>

<td><img src=”Author.jpg” width=”175” height=”215”
border=”0” /></td>

<td><img src=”rbflag_rs.gif” width=”50” height=”47”
border=”0” /></td></tr>

</table>
</div>
</body>
</html>

Figure 15.18 shows this example when the page is loaded. As displayed, the debugging
information can be found in the lower lefthand corner of the page. When the graphic is
dragged with the mouse, as shown in Figure 15.19, the information in the text boxes is
continuously updated to reflect the current position and state of the movement.

LISTING 15.8 continued

FIGURE 15.18
Text boxes are ideal
for the display of
changing data.

OUTPUT

19 2978 CH15 4/10/02 10:49 AM Page 523

Advanced Debugging Techniques
In addition to the techniques shown above, which are designed to give you the ability to
step through a script and look at some of the internal values and calculations, there are
some other techniques that can be performed that are a bit more involved. In this section,
a couple of these more advanced techniques will be briefly discussed. These techniques,
when used with some of those described above, give you even more capabilities when
debugging.

Creating a Run-Time JavaScript Interpreter
Your JavaScript-enabled browser, whether it is Netscape Navigator, Internet Explorer, or
even Opera, has a built-in JavaScript interpreter. When a Web page is loaded that
includes JavaScript, these scripts are interpreted and the results are output or displayed,
or in some way acted upon by the Web browser. In essence, this is a “batch” process—
where you write a bunch of JavaScript code and submit it to the browser to see if it runs.

In some cases, it would be nice to have the equivalent of a command-line interface to the
JavaScript browser. This would allow you to type in a line of JavaScript and have it
immediately evaluated and its output displayed. Fortunately, JavaScript has a function
that gives you this ability.

524 Day 15

FIGURE 15.19
Information associat-
ed with continuous
events can be dis-
played as the events
unfold.

19 2978 CH15 4/10/02 10:49 AM Page 524

Debugging and Error Handling 525

15
Listing 15.9 shows a JavaScript file that implements a simple JavaScript interpreter using
the prompt() method. When loaded and called from another JavaScript, a prompt box
will display, which takes a line of JavaScript input, evaluates it, and shows the results.

LISTING 15.9 JavaScript eval()Function Used as JavaScript Interpreter
(debugInterpreter.js)

function debugInterpreter () {
var pstr = “JAVASCRIPT INTERPRETER”;
while (true) {

x = prompt(pstr);
if (!x) break;
pstr = “eval(“ + x + “) = “ + eval(x);

}
}

The JavaScript interpreter shown in Listing 15.10 uses the JavaScript eval()
function to interpret JavaScript expressions entered into the prompt box. It then

redisplays a prompt box with the results of the previous line while ready to accept a new
line of input. Clicking on the Cancel button of the prompt box exits the interpreter.

Listing 15.10 shows an application of the interpreter, as it is included in the telephone-
number formatting example. By writing the interpreter as a separate function and calling
it, as in Listing 15.10, you preserve the modularity of the code, thereby making it very
simple to include in a script. The trade-off for doing it this way is that, while in the inter-
preter, you can access only JavaScript variables and browser properties that have global
scope. You will notice in Listing 15.10 that a few of the variables have been made global
by declaring them outside of the JavaScript function. Alternatively, you could actually
include the debug interpreter while loop itself in your script, rather than as a separate
function; this is a little messier, but gives access to all of the local variables in the script.

LISTING 15.10 A Real-Time Interpreter Can Be Used for Debugging
(phoneExampleDebug3.html)

<html>
<head>
<title>phoneNumberFormat</title>
<script language=”javascript” src=”debugInterpreter.js”></script>
<script language=”javascript” type=”javascript”>

var num_str,num_str_save;
function phoneNumberFormat(obj) {

var xChars = new Array(“ “,”(“,”)”,”+”,”-”,”.”,
“I”,”N”,”V”,”A”,”L”,”D”,”!”);

INPUT

ANALYSIS

INPUT

19 2978 CH15 4/10/02 10:49 AM Page 525

/*
* remove all extraneous characters leaving only numbers
*/
num_str = obj.phoneNumber.value;
num_str_save = num_str;
for (i = 0;i < xChars.length;i++) {

x = xChars[i];
while (num_str.indexOf(x) > -1)

num_str = num_str.substring(0,num_str.indexOf(x)) +
num_str.substring(num_str.indexOf(x) + 1,num_str.length)

}
/*
* remove leading 1, if present
*/
if (num_str.indexOf(“1”) == 0)

num_str = num_str.substring(1,num_str.length);
/*
* verify length of number, if valid
*/
if (num_str.length == 7)

num_str = num_str.substring(0,3) + “-” + num_str.substring(3,7);
else if (num_str.length == 10)

num_str = “(“ + num_str.substring(0,3) + “) “ +
num_str.substring(3,6) + “-” + num_str.substring(6,10);

else
if (num_str_save.indexOf(“ INVALID!”) > -1)

num_str = num_str_save;
else

num_str = num_str_save + “ INVALID!”;
/*
* DEBUG: call debug interpreter
*/
debugInterpreter();

/*
* put formatted phone number back into the form
*/
obj.phoneNumber.value = num_str;

}
</script>
</head>
<body>
<center>
<h1>phoneNumberFormat</h1>
<hr>
<form name=”formInfo”>
Input Phone Number
<input type=”text” size=”30” name=”phoneNumber”
onchange=”phoneNumberFormat(document.formInfo)”>
</form>

526 Day 15

LISTING 15.10 continued

19 2978 CH15 4/10/02 10:49 AM Page 526

Debugging and Error Handling 527

15<hr>
</center>
Jim O’Donnell,

jim@odonnell.org
</body>
</html>

Figure 15.20 shows an example of the interpreter in action. It has already been used to
print out the current contents of the num_str variable, and it is in the process of showing
the contents of the HTML form text box.

LISTING 15.10 continued

FIGURE 15.20
A simple script can
be used as a real-
time JavaScript
interpreter.

OUTPUT

Opening a Debug Browser Window
Another alternative that can be used to the text-area method shown in an earlier example
is to use JavaScript to open a completely new window and to direct debug output into the
new window. By opening a new window, you can use the document.writeln() method
to write debug output into it. New windows can be opened using the document.open()
method.

Using JavaScript Debuggers
In addition to the techniques shown in this chapter, there are a few tools available for
debugging JavaScript. Both Microsoft and Netscape have JavaScript debuggers available.
The Microsoft debugger is available at

http://msdn.microsoft.com/scripting/debugger/

The Netscape debugger can be downloaded from

http://developer.netscape.com/software/jsdebug.html

19 2978 CH15 4/10/02 10:49 AM Page 527

In this chapter, we are not going to go into any great depth into the operations of these
debuggers. Most of the capabilities that they give are similar to the ones that were added
to our own scripts using the techniques above. Each of the debuggers has its own
strengths, weaknesses, and quirks, and will not be discussed fully. Instead, some of the
capabilities of the debuggers will be shown with illustrations from Microsoft’s Script
Debugger.

Some of the capabilities that are present in the script debuggers are as follows:

• Entering a script upon error—Internet Explorer can be set up, using one of the
check boxes under the Advanced tab of Internet Options, to enter the script debug-
ger upon script errors. If this is done, then a script error will pop up an alert box
similar to the one shown in Figure 15.21. One of the quirks of the script debugger
is that you have to click on OK to enter the debugger; if you click on Cancel, the
alert box will continue to pop up.

• Stepping through a script—Once you have entered a script, the script debugger
enables you to proceed through it in a variety of ways. You can single step through
it, or run until the next breakpoint (see below). As shown in Figure 15.22,
Microsoft’s Script Debugger indicates the current line with a yellow arrow along
the left-hand side.

• Setting breakpoints—A breakpoint is something you can set within a program that
causes the debugger to halt whenever it reaches that spot. In the case of a
JavaScript, you might want to set a breakpoint just before a crucial operation, thus
allowing yourself to use the debugger to check the values of the information used
in that operation. In the Script Debugger, a breakpoint is denoted with a small stop-
sign icon along the left side.

• Entering JavaScript commands—If a script debugger allows you to stop the script
at a given point (or before each statement), in order for it to be useful you need to
be able to get further information on the current state of the script. You can accom-
plish this by allowing JavaScript statements and expressions to be inputted and
immediately evaluated. The small window in Figure 15.22 shows the Script
Debugger command window; every other line in the window was typed in directly,
followed by what it evaluated.

528 Day 15

FIGURE 15.21
JavaScript errors
give you the option to
enter the debugger.

19 2978 CH15 4/10/02 10:49 AM Page 528

Debugging and Error Handling 529

15

Summary
As with programming in any other language, the process of programming in JavaScript
often involves spending some time tracking down and fixing bugs in what you have writ-
ten. Both Microsoft and Netscape have developed script debuggers which ideally would
make this job easier, but neither of their offerings is terribly robust. This chapter has
shown you a variety of ways that you can use some of JavaScript’s own language ele-
ments to carefully step through your code and narrow down the location and cause of
any errors.

Workshop
In this workshop we will review some of the debugging techniques you have learned in
this chapter.

Q&A
Q. Where are two places you can display debugging information within a web

page while other events are taking place?

A. Either in HTML form fields, normally text or text-area boxes, or in the status area
of the browser window.

FIGURE 15.22
The script debugger
gives many options to
fix script errors.

19 2978 CH15 4/10/02 10:49 AM Page 529

Q. Why aren’t alert boxes appropriate for debugging JavaScripts that involve
continuous events?

A. By their very nature, an alert box interrupts anything else that is happening in a
web page or JavaScript. As soon as the continuous event began, such as one
involving mouse movement or dragging, the alert box would pop up and stop it.

Quiz
1. If you had a JavaScript that looked at a preexisting cookie that gave a “last visited”

time, in order to print out how long it had been since the last time the user
accessed a given Web page, what type of script would that be?

2. What use could a confirm box (as opposed to the alert and prompt box uses shown
above) be put to when debugging a JavaScript?

Quiz Answers
1. That sort of script would be a load-time script, using the document.cookie

property.

2. An alert box allows you to display information and pause before continuing. With
a little more logic, you could use a confirm box instead, but give the option to
either continue or abort the script.

Exercise
Use document.open() and document.writeln() to create a separate debug window for
information from a run-time, discrete event script.

530 Day 15

19 2978 CH15 4/10/02 10:49 AM Page 530

DAY 16

WEEK 3

Cookies: Storing
Persistent Data

Most Web servers have very short memories. When you request a page, the
server usually doesn’t really know who you are, what you entered on a form
three pages ago, or whether this is your first visit to the site or your 75th visit.
One of the challenges of using the Hypertext Transfer Protocol (HTTP) is that
it doesn’t track the state of your interactions with the server. State refers to any
information about you or your visit to a Web site. It can be maintained as you
move from page to page within the site, and it can be used by the Web server or
a JavaScript program (or both) to customize your experience at the site. But if
HTTP doesn’t maintain the state, what does?

This chapter shows you how to get around HTTP’s limitations by using cook-
ies, which allow you to store persistent data about someone’s visit to your web
site. In addition to the material on cookies, you will also be introduced to a few
other methods of preserving information from one Web page to the next, using
URL query string parameters and hidden form variables.

20 2978 CH16 4/10/02 10:52 AM Page 531

This chapter will teach you

• How and why you would want to maintain state information

• What cookies are and how they work

• How to use cookies in your Web pages

• How to use other state maintenance options

Maintaining State
Maintaining state means remembering information while the user moves from page to
page within a Web site. With this information at hand, you can set user preferences, fill
in default form values, track visit counts, and do many other things that make browsing
easier for users and that give you more information about how your pages are used.

You can maintain state information in a number of ways:

• Store it in cookies

• Encode it in URL links

• Send it in hidden form variables

• Store it in variables in other frames

• Store it on the Web server

Be aware, however, that some technical challenges regarding state maintenance can
occur. While browsing a site, a user might suddenly zoom off to another Web site and
return minutes, hours, or days later, only to find that any saved state information is out of
date or has been erased. He or she might return by clicking the browser’s Back button,
by using a bookmark, or by typing in the URL directly, causing state information encod-
ed in the URL to be overwritten or lost.

The Web developer must maintain state information regardless of whether the user navi-
gates through the site using buttons on a form or a URL link on a page. This could mean
adding information to both hidden form variables and every URL <a href…> tag that
appears on the page.

With all these difficulties to overcome, these state maintenance mechanisms had better be
useful. Luckily, they are. Many advantages exist to maintaining state both within a single
site visit and from one visit to the next. Consider the following scenarios:

• A shopping cart application—Users could browse through the site while select-
ing and adding items to a virtual shopping cart. At any time, they can view the
items in the cart, change the contents of their cart, or take the cart to the checkout
counter for purchase. Keeping track of which user owns which shopping cart is
essential.

532 Day 16

20 2978 CH16 4/10/02 10:52 AM Page 532

Cookies: Storing Persistent Data 533

16

• Custom home pages—Many Web sites have now set up home pages where users
can customize what they see when they arrive. After giving the user a choice of
layouts, color schemes, and favorite destinations, it stores the preferences on the
user’s own computer through the use of cookies. Some sites ask for your zip code
and store this information in a cookie, and use it to provide you with local weather
and news information. The user can return to the site any time and get the previ-
ously configured page.

• Frequent visitor bonuses—By storing information on the client computer, this
application keeps track of how many times a browser has hit a particular page.
When the user reaches a certain level of hits, he or she gets access to more or
better services.

• Change banners—You can make the graphical banners and the text change each
time the user hits a page. This technique is often used to cycle through a list of
advertisements.

• Bookmarks—Remember where a user was when he last visited the site. Was he
reading a story, filling out a questionnaire, or playing a game? Let him pick up
where he left off.

• Login information—If your site requires users to log on, you can give the user the
option of allowing your Web site to remember his or her username and/or pass-
word. This information can be stored in a cookie and therefore allow the user faster
access to your site in the future.

• Games—Remember current or high scores, and hence present new challenges
based on past answers and performance.

Cookies: An Introduction
Cookies—sometimes called magic cookies, but more formally known as persistent client-
state HTTP cookies—enable you to store information on the client browser’s computer
for later retrieval. Although they have their drawbacks, cookies are the most powerful
technique available for maintaining state within a Web site.

Netscape came up with the original cookie specification. There doesn’t seem to be any
good reason why Netscape chose that particular name. In fact, on its cookie specification
page, Netscape admits “the state object is called a cookie for no compelling reason.”

In their simplest form, cookies store data in the form of name=value pairs. You, the
developer, can pick any name and value combination you want. More advanced cookie
features include the capability to set an expiration date and to specify which Web pages
can see the cookie information.

20 2978 CH16 4/10/02 10:52 AM Page 533

Advantages of Cookies
One of the most powerful aspects of cookies is its persistence. When a cookie is set on
the user’s browser, it can persist for days, months, or even years. This makes it easy to
save user preferences and visit information, and to keep this information available every
time the user returns to your site.

Cookies prove especially helpful when used in conjunction with JavaScript. Because
JavaScript has functions for reading, adding, and editing cookies, your JavaScript pro-
grams can use them to store global information about a user as he surfs through your
Web site.

Limitations of Cookies
Some limitations of cookies could prove problematic. Cookies are stored on the user’s
computer, usually in a special cookie file or, as with Internet Explorer, in a number of
files. As with all files, this cookie file might be accidentally (or purposely) deleted, tak-
ing all the browser’s cookie information with it. The cookie file could be write protected,
thus preventing any cookies from being stored there. Browser software could impose
limitations on the size and number of cookies that can be stored, and newer cookies
might overwrite older ones.

Because cookies are associated with a particular browser, problems arise if users switch
from one browser to another. If you usually use Netscape Navigator and have a collec-
tion of cookies, they will no longer be available for you to use if you decide to switch to
Microsoft Internet Explorer.

Finally, if several people use the same computer and browser, they could find themselves
using cookies that belong to someone else. The reason for this is that cookie information
is stored in a file on the computer, and depending on how the computer is set up, the
browser might have no way to distinguish between multiple users.

Disadvantages of Cookies
Some problems, both real and imagined, also occur with the use of cookies. Because
many browsers store their cookie information in an unencrypted text file, you should
never store sensitive information, such as a password, in a cookie. Anyone with access to
the user’s computer could read it.

Netscape Navigator and Microsoft Internet Explorer browsers have a feature that can
alert the user every time an attempt is made to set a cookie. These browsers can even be
configured to prevent cookies from being set at all. This sometimes results in confusion
on the user’s part when a dialog box informs her that something strange involving a
cookie is happening to her computer. If cookies are disabled, your carefully designed

534 Day 16

20 2978 CH16 4/10/02 10:52 AM Page 534

Cookies: Storing Persistent Data 535

16

Web application might not run at all, unless you are careful to not rely on the cookie
information being there.

Cookie Myths
The biggest problem facing cookies could be a psychological one. Some savvy Web
users believe that cookies are used by “Big Brother” as a tool to violate their privacy.
Considering the capabilities of cookies for storing information about where specifically
they have visited on a Web site, how many times they have been there, which advertising
banners they have viewed, and what they have selected and placed on forms, some peo-
ple think their privacy is invaded whenever a cookie gets set on their computer.

In reality, cookies are seldom used for these purposes, although technically these things
are possible. The most common use of cookies is to give developers an easy way to cus-
tomize their Web sites for everyone that visits them. A site can ask you for your name or
ask you about some other preference once, and then store this information in a cookie.
That way, the next time you visit the site, it doesn’t have to ask you for this same infor-
mation again, assuming you are using the same browser.

Other users complain about Web sites that write information to their computers and take
up space on their hard drives. This is somewhat true. Web browser software limits the
total size of the cookies stored, as well as the amount of space that can go to the cookies
of a particular Web site. Consider, however, that this limit probably is small when com-
pared to the size of the pages and graphic images that Web browsers routinely store in
their page caches.

Other users are concerned that cookies set by one Web site might be read by other sites.
This is completely untrue. Your Web browser software prevents this from taking place by
making cookies available only to the sites that created them.

If your users understand the usefulness of cookies, this “cookie backlash” shouldn’t be a
problem.

As mentioned previously, Netscape came up with the original cookie specification. You
can find more information about cookies on the Netscape Web site at

http://www.netscape.com/newsref/std/cookie_spec.html

Using Cookies
By now you have considered the pros and cons of cookies and have decided that they are
just what you need to make your JavaScript application a success.

20 2978 CH16 4/10/02 10:52 AM Page 535

This section discusses a number of handy functions for reading and setting cookies,
which will help you make your Web sites smarter and more user-friendly. Also included
are Internet references for finding additional information concerning cookies.

Retrieving Cookie Values
Cookie names and values are stored and set using the cookie property of the document
object. To store the raw cookie string in a variable, you would use a JavaScript command
such as the following:

var myCookie = document.cookie;

To display it on a Web page, use the following command:

document.write(“Raw Cookies: “ + document.cookie + “
”);

JavaScript stores cookies in the following format:

name1=value1; name2=value2; name3=value3

Individual name=value pairs are separated by a semicolon and a blank space. No semi-
colon is used after the final value. To retrieve a particular cookie, you can use a
JavaScript routine such as the one shown in Listing 16.1.

LISTING 16.1 JavaScript Function for Retrieving a Specific Cookie,
favoritesList.htm (excerpted)

//
// GetCookie - Returns the value of the specified cookie or null
// if the cookie doesn’t exist
//
function GetCookie(name) {

var result = null;
var myCookie = “ “ + document.cookie + “;”;
var searchName = “ “ + name + “=”;
var startOfCookie = myCookie.indexOf(searchName)
var endOfCookie;
if (startOfCookie != -1) {

startOfCookie += searchName.length; // skip past cookie name
endOfCookie = myCookie.indexOf(“;”,startOfCookie);
result =

unescape(myCookie.substring(startOfCookie,endOfCookie));
}
return result;

}

536 Day 16

INPUT

20 2978 CH16 4/10/02 10:52 AM Page 536

Cookies: Storing Persistent Data 537

16
In Listing 16.1, the myCookie string is created with a leading space and trailing
semicolon; this helps cookie processing by making sure all cookie string names

start and end similarly. From there, it is easy to find the start of the name= portion of the
string, skip it, and retrieve everything from that point until the next semicolon.

Setting Cookie Values
The name=value combination is the minimum amount of information you need to set up
a cookie. However, there can be more to cookies than just this. The complete list of para-
meters, which should be separated by a space and semicolon, that you can use to specify
a cookie is as follows:

• name=value

• expires=date

• path=path

• domain=domainname

• secure

Choosing Meaningful Cookie Names and Values
The name and value can be anything you choose. In some cases, you might want it to be
very explanatory, such as FavoriteColor=Blue. In other cases, it could just be code that
the JavaScript program interprets, such as CurStat=1:2:1:0:0:1:0:3:1:1. In any case,
the name and value are completely up to you.

Listing 16.2 shows the simplest way to create cookies. The function SetCookieEZ() is a
routine to add a single name=value pair to a cookie.

LISTING 16.2 Adding Cookies Is Easy with JavaScript, favoritesList.htm
(excerpted)

//
// SetCookieEZ - Quickly sets a cookie which will last until the
// user shuts down his browser
//
function SetCookieEZ(name,value) {

document.cookie = name + “=” + escape(value);
}

Most of the listings that appear in this chapter are excerpts from the
favoritesList.htm document discussed in the “A Cookie Example” section
later in this chapter.

Note

ANALYSIS

INPUT

20 2978 CH16 4/10/02 10:52 AM Page 537

Notice that the value is encoded using the JavaScript escape() function. If there
were a semicolon in the value string itself, it might prevent you from achieving

the expected results. Using the escape() function eliminates this problem.

Also notice that the document.cookie property works rather differently from most other
properties. In most other cases, using the assignment operator (=) causes the existing
property value to be completely overwritten with the new value. This is not the case with
the cookie property. With cookies, each new name you assign is added to the active list
of cookies. If you assign the same name twice, the second assignment replaces the first.

Some exceptions exist to this last statement; these are explained in the “Path” section
later in this chapter.

Setting a Cookie Expiration Date
The expires=date property tells the browser when the cookie will expire. The cookie
specification page at Netscape states that dates are in the form of

Wdy, DD-Mon-YY HH:MM:SS GMT

Here’s an example:

Mon, 08-Jul-96 03:18:20 GMT

This date format is based on Internet RFC 822, which you can find at
http://www.w3.org/hypertext/WWW/Protocols/rfc822/#z28.

The only difference between RFC 822 and the Netscape implementation is that in
Netscape Navigator, the expiration date must end with GMT (Greenwich Mean Time).
The JavaScript language provides a function to do just that. By using the toGMTString()
function, you can set cookies to expire in the near or distant future

538 Day 16

ANALYSIS

Even though the date produced by the toGMTString() function doesn’t
match the Netscape specification, it still works under JavaScript.

Tip

If the expiration date isn’t specified, the cookie remains in effect until the browser is shut
down.

The following is a code segment that sets a cookie to expire in one week (where the
number of milliseconds in one week equals 7 days/week × 24 hours/day × 60
minutes/hour × 60 seconds/minute × 1000 milliseconds/second):

20 2978 CH16 4/10/02 10:52 AM Page 538

Cookies: Storing Persistent Data 539

16

var name=”foo”;
var value=”bar”;
var oneWeek = 7 * 24 * 60 * 60 * 1000;
var expDate = new Date();
expDate.setTime(expDate.getTime() + oneWeek);
document.cookie = name + “=” + escape(value) + “; expires=” +

expDate.toGMTString();

How to Delete a Cookie
To delete a cookie, set the expiration date to some time in the past—how far in the past
doesn’t generally matter. To be on the safe side, a few days prior should work fine. The
following is a routine to delete a cookie, shown in Listing 16.3.

LISTING 16.3 Use the Cookie Expiration Date to Delete an Unwanted
Cookie, favoritesList.htm (excerpted)

//
// ClearCookie - Removes a cookie by setting an expiration date
// three days in the past
//
function ClearCookie(name) {

var ThreeDays = 3 * 24 * 60 * 60 * 1000;
var expDate = new Date();
expDate.setTime(expDate.getTime() - ThreeDays);
document.cookie = name + “=NA; expires=” +

expDate.toGMTString();
}

When deleting cookies, it doesn’t matter what you use for the cookie value—any value
will do.

INPUT

Some versions of Netscape do a poor job of converting times to GMT. Some
common JavaScript functions for deleting a cookie consider the past to be 1
millisecond behind the current time. Although this is usually true, it doesn’t
work on all platforms. To be on the safe side, use a few days in the past to
set the expiration for the cookies.

Caution

Using the Cookie Path to Adjust Its Accessibility
By default, cookies are available to other Web pages within the same directory as the
page on which they were created. The path parameter enables a cookie to be made avail-
able to pages in other directories. If the value of the path parameter is a sub-string of a

20 2978 CH16 4/10/02 10:52 AM Page 539

page’s URL, cookies created with that path are available to that page. You could create a
cookie, for example, with the following command:

document.cookie = “foo=bar1; path=/javascript”;

This would make the cookie foo available to every page in the javascript directory and
all those directories beneath it. If, instead, the command looked like this:

document.cookie = “foo=bar2; path=/javascript/sam”;

the cookie would be available to sample1.html, sample2.html, sammy.exe, and so on, if
they are located in the javascript directory or one of its subdirectories.

Finally, to make the cookie available to everyone on your server, use the following
command:

document.cookie = “foo=bar3; path=/”;

What happens when a browser has multiple cookies on different paths but with the same
name? Which one wins?

Actually, they all do. When this situation arises, it is possible to have two or more cook-
ies with the same name but with different values. If a page issued all the commands list-
ed previously, for example, its cookie string would look like the following:

foo=bar3; foo=bar2; foo=bar1

To help be aware of this situation, you might want to write a routine to count the number
of cookie values associated with a cookie name. It would look something like this:

function GetCookieCount(name) {
var result = 0;
var myCookie = “ “ + document.cookie + “;”;
var searchName = “ “ + name + “=”;
var nameLength = searchName.length;
var startOfCookie = myCookie.indexOf(searchName)
while (startOfCookie != -1) {

result += 1;
startOfCookie = myCookie.indexOf(searchName,startOfCookie + nameLength);

}
return result;

}

Of course, if a GetCookieCount function exists, a GetCookieNum function should be
available to retrieve a particular instance of a cookie. That function would look like this:

540 Day 16

20 2978 CH16 4/10/02 10:52 AM Page 540

Cookies: Storing Persistent Data 541

16

function GetCookieNum(name,cookieNum) {
var result = null;
if (cookieNum >= 1) {

var myCookie = “ “ + document.cookie + “;”;
var searchName = “ “ + name + “=”;
var nameLength = searchName.length;
var startOfCookie = myCookie.indexOf(searchName);
var cntr = 0;
for (cntr = 1; cntr < cookieNum; cntr++)

startOfCookie = myCookie.indexOf(searchName,
startOfCookie + nameLength);

if (startOfCookie != -1) {
startOfCookie += nameLength; // skip past cookie name
var endOfCookie = myCookie.indexOf(“;”,startOfCookie);
result = unescape(myCookie.substring(startOfCookie,endOfCookie));

}
}
return result;

}

To delete a cookie, the name and the path must match the original name and path used
when the cookie was set.

Using the Cookie Domain to Adjust Its Accessibility
Usually, after a page on a particular server creates a cookie, that cookie is accessible only
to other pages on that server. Just as the path parameter makes a cookie available outside
its home path, the domain parameter makes it available to other Web servers at the same
site, as described in the next paragraph.

You can’t create a cookie that anyone on the Internet can see. You can only set a path
that falls inside your own domain. This is because the use of the domain parameter dic-
tates that you must use at least two periods (for example, .mydomain.com) if your domain
ends in .com, .edu, .net, .org, .gov, .mil, .int, or the newer root domains such as
.info. Otherwise, if the domain ends in a two-letter country code, it must have at least
three periods (.mydomain.ma.us). Your domain parameter string must match the tail of
your server’s domain name.

How to Use the Cookie secure Parameter
The final cookie parameter tells your browser that this cookie should be sent only under
a secure connection with the Web server. This means that the server and the browser
must support HTTPS security. (HTTPS is Netscape’s Secure Socket Layer Web page
encryption protocol.)

If the secure parameter is not present, cookies are sent unencrypted over the network.

20 2978 CH16 4/10/02 10:52 AM Page 541

Now that you have seen all the cookie parameters, it would be helpful to have a
JavaScript routine set cookies with all the parameters. The SetCookie() function shown
in Listing 16.4 does just that.

LISTING 16.4 JavaScript Routine to Add a Cookie, Including Any Optional
Parameters, favoritesList.htm (excerpted)

//
// SetCookie - Adds or replaces a cookie. Use null for parameters
// that you don’t care about
//
function SetCookie(name,value,expires,path,domain,secure) {

var expString =
((expires == null) ? “” : (“; expires=” + expires.toGMTString()))

var pathString = ((path == null) ? “” : (“; path=” + path))
var domainString =

((domain == null) ? “” : (“; domain=” + domain))
var secureString = ((secure == true) ? “; secure” : “”)
document.cookie = name + “=” + escape(value) +

expString + pathString + domainString +
secureString;

}

To use this routine, you call it with whatever parameters you care about and use null in
place of parameters that don’t matter.

A Cookie Example
The JavaScript program in this example is in the HTML document favoritesList.htm.
Excerpts of the program were shown in Listings 16.1 through 16.4; these showed the
JavaScript functions used to create and manipulate the document cookies used in this
example. The full listing of the document is shown in Listing 16.5, which enables the

542 Day 16

You can’t set an infinite number of cookies on every Web browser that visits
your site. The following list shows the number of cookies you can set and
how large they can be:

• Cookies per server or domain: 20

• Total cookies per browser: 300

• Largest cookie: 4KB (including both the name and value parameters

If these limits are exceeded, the browser might attempt to discard older
cookies by tossing out the oldest cookies first.

Note

INPUT

20 2978 CH16 4/10/02 10:52 AM Page 542

Cookies: Storing Persistent Data 543

16

user to create a personalized Web page containing links to sites of general interest in a
number of categories. The user’s favorite links are stored in cookies.

LISTING 16.5 The <body> Section of the Cookie Example,
favoritesList.htm (excerpted)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Cookie Example</title>
<script type=”text/javascript” language=”javascript”>
<!-- Hide this script from incompatible Web browsers!
//
// This JavaScript code should run under Netscape Navigator 3.0
// and Microsoft Internet Explorer 3.0 and above. It will not run
// locally under Internet Explorer. If you use Internet Explorer,
// you must load this page from a Web server.
//
// STANDARD COOKIE ROUTINES
//
// GetCookie - Returns the value of the specified cookie or null
// if the cookie doesn’t exist
//
function GetCookie(name) {

var result = null;
var myCookie = “ “ + document.cookie + “;”;
var searchName = “ “ + name + “=”;
var startOfCookie = myCookie.indexOf(searchName)
var endOfCookie;
if (startOfCookie != -1) {

startOfCookie += searchName.length; // skip past cookie name
endOfCookie = myCookie.indexOf(“;”,startOfCookie);
result =

unescape(myCookie.substring(startOfCookie,endOfCookie));
}
return result;

}
//
// SetCookieEZ - Quickly sets a cookie which will last until the
// user shuts down his browser
//
function SetCookieEZ(name,value) {

document.cookie = name + “=” + escape(value);
}
//
// SetCookie - Adds or replaces a cookie. Use null for parameters
// that you don’t care about

INPUT

20 2978 CH16 4/10/02 10:52 AM Page 543

//
function SetCookie(name,value,expires,path,domain,secure) {

var expString =
((expires == null) ? “” : (“; expires=” + expires.toGMTString()))

var pathString = ((path == null) ? “” : (“; path=” + path))
var domainString =

((domain == null) ? “” : (“; domain=” + domain))
var secureString = ((secure == true) ? “; secure” : “”)
document.cookie = name + “=” + escape(value) +

expString + pathString + domainString +
secureString;

}
//
// ClearCookie - Removes a cookie by setting an expiration date
// three days in the past
//
function ClearCookie(name) {

var ThreeDays = 3 * 24 * 60 * 60 * 1000;
var expDate = new Date();
expDate.setTime(expDate.getTime() - ThreeDays);
document.cookie = name + “=NA; expires=” +

expDate.toGMTString();
}
//
// JAVASCRIPT OBJECT AND METHODS AND GLOBAL VARIABLES
//
// Here is our “favorite” object...
//
// Properties: fullName - The full descriptive name
// cook - The code used for the cookie
// urlpath - The full url (http://...) to the site
// Methods: Enabled - Returns true if the link’s cookie is
// turned on
// Checked - Returns the word “CHECKED” if the
// link’s cookie is turned on
// WriteAsCheckBox - Sends text to the document in a
// checkbox control format
// WriteAsWebLink - Sends text to the document in a
// <A HREF...> format
//
function favorite(fullName,cook,urlpath) {

this.fullName = fullName;
this.cook = cook;
this.urlpath = urlpath;
this.Enabled = Enabled;
this.Checked = Checked;
this.WriteAsCheckBox = WriteAsCheckBox;
this.WriteAsWebLink = WriteAsWebLink;

}

544 Day 16

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 544

Cookies: Storing Persistent Data 545

16

//
// Enabled - Checks to see if the cookie exists
// returns true, if the cookie exists
// false, otherwise
//
function Enabled() {

var result = false;
var FaveCookie = GetCookie(“Favorites”);
if (FaveCookie != null) {

var searchFor = “<” + this.cook + “>”;
var startOfCookie = FaveCookie.indexOf(searchFor);
if (startOfCookie != -1)

result = true;
}
return result;

}
//
// Checked - Checks to see if the cookie exists (using Enabled)
// returns “CHECKED “, if the cookie exists
// “”, otherwise
//
function Checked () {

if (this.Enabled())
return “CHECKED “;

return “”;
}
//
// WriteAsCheckBox - The favorite may be either a regular URL or
// a section title. If the urlpath is an empty
// string, then the favorite is a section title.
// The links will appear within a definition
// list, and are formatted appropriately.
//
function WriteAsCheckBox() {
//
// check to see if it’s a title or regular link
//

if (this.urlpath == “”)
//
// it’s a section title
//

result = ‘<dt />’ + this.fullName + ‘’;
else

//
// it’s a regular link
//

result = ‘<dd /><input type=”checkbox” name=”’ +
this.cook + ‘“ ‘ +
this.Checked() +

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 545

‘onclick=”SetFavoriteEnabled(this.name,this.checked);” />’ +
this.fullName;

document.writeln(result);
}
//
// NextHeading - Sometimes we only want to print a heading if one
// its favorites is turned on. The NextHeading
// variable helps us to do this. See WriteAsWebLink.
//
var NextHeading = “”;
//
// WriteAsWebLink - The favorite may be either a regular URL or
// a section title. If the urlpath is an empty
// string, then the favorite is a section title.
// The links will appear within a definition
// list, and are formatted appropriately.
//
function WriteAsWebLink() {

var result = ‘’;
if (this.urlpath == “”)

NextHeading = this.fullName; // it must be a title
else {

if (this.Enabled() || (GetCookie(“ViewAll”) != “F”)) {
if (NextHeading != “”) {

result = ‘<dt />’ + NextHeading+ ‘’;
NextHeading = “”;

}
result = result + ‘<dd>’ +

this.fullName + ‘’;
}

}
document.writeln(result);

}
//
// FaveList - Will be a list of all favorite objects, which are
// then declared below. favorites with an empty urlpath
// property are section headings.
//
var FaveList = new Array();
//
// Comics
//
FaveList[1] = new favorite(“Comics”,””,””);
FaveList[2] = new favorite(“Dilbert”,”cdilb”,

“http://www.unitedmedia.com/comics/dilbert/”);
FaveList[3] = new favorite(“For Better of For Worse”,”cfbofw”,

“http://www.fbofw.com”);

546 Day 16

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 546

Cookies: Storing Persistent Data 547

16

FaveList[4] = new favorite(“The Boondocks”,”cboon”,
“http://www.boondocks.net”);

//
// General News
//
FaveList[5] = new favorite(“General News”,””,””);
FaveList[6] = new favorite(“CNN”,”ncnn”,”http://www.cnn.com/”);
FaveList[7] = new favorite(“NPR”,”nnpr”,

“http://www.npr.org/news/”);
FaveList[8] = new favorite(“Washington Blade”,”nblade”,

“http://www.washblade.com/”);
//
// Computer Industry
//
FaveList[9] = new favorite(“Computer Industry”,””,””);
FaveList[10] = new favorite(“ZDNet eWeek”,”ieweek”,

“http://www.zdnet.com/eweek/”);
FaveList[11] = new favorite(“Infoworld”,”iinfo”,

“http://www.infoworld.com/”);
FaveList[12] = new favorite(“CMP TechWeb”,”icmp”,

“http://www.techweb.com/”);
//
// Search Engines
//
FaveList[13] = new favorite(“Search Engines”,””,””);
FaveList[14] = new favorite(“Yahoo!”,”syah”,

“http://www.yahoo.com/”);
FaveList[15] = new favorite(“AltaVista”,”sav”,

“http://www.altavista.com/”);
FaveList[16] = new favorite(“Excite”,”sexc”,

“http://www.excite.com/”);
//
// Miscellaneous
//
FaveList[17] = new favorite(“Miscellaneous”,””,””);
FaveList[18] = new favorite(“Today in History”,”mtih”,

“http://www.thehistorynet.com/today/today.htm”);
FaveList[19] = new favorite(“Merriam-Webster’s Word of the Day”,

“mwod”,”http://www.m-w.com/cgi-bin/mwwod.pl”);
FaveList[20] = new favorite(“Quotes of the Day”,”mquot”,

“http://www.quotationspage.com/qotd.html”);
FaveList[21] = new favorite(“The House of JOD”,”mjod”,

“http://jim.odonnell.org”);
FaveList[22] = new favorite(“Richard’s World”,”mgunther”,

“http://richard.gunther.com”);
FaveList[23] = new favorite(“Damone Motton’s Personal Webspace”,”mmotton”,

“http://www.damone.com”);

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 547

//
// PAGE WRITING ROUTINES
//
// SendOptionsPage - Writes a page allowing the user to select
// her favorite preferences
//
function SendOptionsPage() {

document.writeln(‘<h1>Select Favorites...</h1><hr />’);
document.writeln(‘<form method=”POST”>’);

//
// here’s the button for viewing the Favorites page
//

document.writeln(‘<table><tr><td>’);
document.writeln(‘<input type=”BUTTON” value=”Show Favorites” ‘ +

‘onclick=”ReloadPage();” />’);
document.writeln(‘</td></tr></table>’);

//
// the links will look nicer inside a definition list
//

document.writeln(‘<dl>’);
for (var i = 1; i < FaveList.length; i++)

FaveList[i].WriteAsCheckBox(); // Write each checkbox
document.writeln(‘</dl>’);
SetCookieEZ(“ViewAll”,”F”);
document.writeln(‘</form>’);

}
//
// LoadOptions - Sets the ShowOptions cookie, which makes the
// option selection page appear when the page is
// then reloaded.
//
function LoadOptions() {

SetCookieEZ(“ShowOptions”,”T”);
window.open(document.location.href,”_top”);

}
//
// ToggleView - Toggles ViewAll mode on and off. When on, all
// links will be displayed. When off, only the
// user’s favorite selections will be displayed.
//
function ToggleView() {

if (GetCookie(“ViewAll”) == “F”)
ClearCookie(“ViewAll”);

else
SetCookieEZ(“ViewAll”,”F”);

window.open(document.location.href,”_top”);
}
//

548 Day 16

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 548

Cookies: Storing Persistent Data 549

16

// ClearCookies - Clear the Favorites cookie and reload page
//
function ClearCookies() {

ClearCookie(“Favorites”);
ClearCookie(“ViewAll”);
ClearCookie(“ShowOptions”);
window.open(document.location.href,”_top”);

}
//
// SendPersonalPage - Writes a page showing the categories and
// links which the user prefers. Only shows a
// heading if one of its favorites is enabled
//
function SendPersonalPage() {

if (GetCookie(“ViewAll”) != “F”)
document.writeln(‘<h1>Links...</h1><hr />’);

else
document.writeln(‘<h1>Your Favorites...</h1><hr />’);

//
// here are the buttons for viewing the options or “View All” pages
//

document.writeln(‘<form method=”POST”>’);
document.writeln(‘<table><tr><td>’);
if (GetCookie(“ViewAll”) != “F”)

document.writeln(‘<input type=”BUTTON” value=”View Favorites” ‘ +
‘onclick=”ToggleView();” />’)

else
document.writeln(‘<input type=”BUTTON” value=”View All” ‘ +

‘onclick=”ToggleView();” />’);
document.writeln(‘<input type=”BUTTON” ‘ +

‘VALUE=”Select Personal Favorites” ‘ +
‘onclick=”LoadOptions();”>’);

if (GetCookie(“Favorites”) != null | GetCookie(“ViewAll”) != null |
GetCookie(“ShowOptions”) != null)
document.writeln(‘<input type=”BUTTON” value=”Clear Cookies” ‘ +

‘onclick=”ClearCookies();” />’);
document.writeln(‘</td></tr></table>’);
document.writeln(‘</form>’);

//
// the links will look nicer inside a definition list
//

document.writeln(‘<dl>’);
for (var i = 1;i < FaveList.length;i++)

FaveList[i].WriteAsWebLink(); // write each link
document.writeln(‘</dl>’);

}
//
// HELPER FUNCTIONS

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 549

//
// isEnabled - Returns True if the favorite identified by the
// name parameter is enabled.
//
function isEnabled(name) {

var result = false;
var FaveCookie = GetCookie(“Favorites”);
if (FaveCookie != null) {

var searchFor = “<” + name + “>”;
var startOfCookie = FaveCookie.indexOf(searchFor)
if (startOfCookie != -1)

result = true;
}
return result;

}
//
// AddFavorite - Enables the favorite identified by the name
// parameter.
//
function AddFavorite(name) {

if (!isEnabled(name)) {
var fiveYears = 5 * 365 * 24 * 60 * 60 * 1000;
var expDate = new Date();
expDate.setTime (expDate.getTime() + fiveYears);
SetCookie(“Favorites”,

GetCookie(“Favorites”) + “<” + name + “>”,
expDate,null,null,false);

}
}
//
// ClearFavorite - Disables the favorite identified by the name
// parameter.
//
function ClearFavorite(name) {

if (isEnabled(name)) {
var FaveCookie = GetCookie(“Favorites”);
var searchFor = “<” + name + “>”;
var startOfCookie = FaveCookie.indexOf(searchFor);
var NewFaves =

FaveCookie.substring(0,startOfCookie) +
FaveCookie.substring(startOfCookie+searchFor.length,

FaveCookie.length);
var fiveYears = 5 * 365 * 24 * 60 * 60 * 1000;
var expDate = new Date();
expDate.setTime(expDate.getTime() + fiveYears);
SetCookie(“Favorites”,NewFaves,expDate,null,null,false);

}
}

550 Day 16

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 550

Cookies: Storing Persistent Data 551

16

//
// SetFavoriteEnabled - Turns the favorite identified by the name
// parameter on (SetOn=true) or off
// (SetOn=false).
//
function SetFavoriteEnabled(name,SetOn) {

if (SetOn)
AddFavorite(name);

else
ClearFavorite(name);

}
//
// ReloadPage - Reloads the page
//
function ReloadPage() {

window.open(document.location.href,”_top”);
}
// Hide script from incompatible browsers! -->
</script>
</head>
<body bgcolor=”#ffffff”>
<script type=”text/javascript” language=”javascript”>
<!-- Hide script from incompatible browsers!
//
// Here’s where we select the page to send. Normally we send the
// personalized favorites page (by calling SendPersonalPage). However,
// If the cookie ShowOptions is set, we’ll send the options selection
// page instead (by calling SendOptionsPage).
//
if (GetCookie(“Favorites”) != null)

SetCookieEZ(“ViewAll”,”F”);
if (GetCookie(“ShowOptions”) == “T”) {

ClearCookie(“ShowOptions”);
SendOptionsPage();

} else
SendPersonalPage();

// Hide script from incompatible browsers! -->
</script>
<hr />
<h3>Current Document Cookie Contents...</h3>
<center>
<form name=”MyForm”>
<textarea name=”MyTextArea” rows=”1” cols=”60”>
</textarea>
</form>
</center>
<script type=”text/javascript” language=”javascript”>
<!-- Hide script from incompatible browsers!

LISTING 16.5 continued

20 2978 CH16 4/10/02 10:52 AM Page 551

document.MyForm.MyTextArea.value = document.cookie;
// Hide script from incompatible browsers! -->
</script>
<hr />
Jim O’Donnell, jim@odonnell.org
</body>
</html>

As shown in Listing 16.5, when this page is loaded, one of two JavaScripts is
called to actually “fill” the page: either SendOptionsPage() or

SendPersonalPage(). The former enables the user to select from a list of sites to be
included as favorites; the latter is used to display those sites (or to display all the possible
sites). Figure 16.1 shows this page when it first loads, before the user has selected a list
of favorites (so all possible sites are shown).

552 Day 16

LISTING 16.5 continued

ANALYSIS

FIGURE 16.1
The Favorites page
displays all possible
sites when first
loaded.

OUTPUT

Before JavaScript, a task such as this would have been handled at the server level. Each
hit would have involved having the server run some type of script or program to read the
user’s cookies and generate his page on-the-fly. With JavaScript, all this processing takes
place in the client’s browser. The server just downloads the static page—and it might
not even need to do that because the page might come from the client’s local cache.

20 2978 CH16 4/10/02 10:52 AM Page 552

Cookies: Storing Persistent Data 553

16

When the page loads, all the links, selected or not, are sent. The client, with the help of
cookies and JavaScript, decides which ones to show the user.

This program makes use of three cookies: The Favorites cookie contains a unique code
for each favored link. The ViewAll cookie toggles between showing the user’s favorites
and all possible links. The program can also display either of two pages: one for display-
ing the selected links, and the other for changing the configuration and options. When
the ShowOptions cookie is set, the Options selection page is displayed. Otherwise, the
regular page is shown.

When the screen shown in Figure 16.1 is displayed after the page loads for the very first
time, the document cookie has not been set yet, so it is empty, which results in all links
displaying. If View Favorites is clicked at this point, then the document cookie is set to

ViewAll=F

and the screen shown in Figure 16.2 is displayed—empty, because no favorites have been
selected yet. Clicking the Select Personal Favorites button gets the screen shown in
Figure 16.3, where favorites can be selected from the list of choices. One such selection
might result in the Favorites list shown in Figure 16.4, which has the document cookie
value of

ViewAll=F; Favorites=null%3Ccfbofw%3E%3Csyah%3E%3Cmjod%3E

which indicates a selection of the “For Better or For Worse”, “Yahoo”, and my home
page as favorites.

The %XX encoding, such as the %3C and %3E shown above, is used for such
symbols as semicolons, commas, and whitespace.

Note

You might notice in Figures 16.2 and 16.4 that the current contents of the
document cookie are displayed in a text-area box at the bottom of the
page. This is done in this example so you can see the changes to the cookie
as they occur; in an actual “production” page, you wouldn’t include it. The
Clear Cookies button shown in these two figures is also something you
probably wouldn’t include in the final page.

Note

20 2978 CH16 4/10/02 10:52 AM Page 553

554 Day 16

FIGURE 16.2
An empty Favorites
list doesn’t yield a
very exciting Web
page.

OUTPUT

FIGURE 16.3
The Select Favorites
page displays all the
possible sites as
checkboxes and
enables the user to
select and deselect
which to use as
favorites.

20 2978 CH16 4/10/02 10:52 AM Page 554

Cookies: Storing Persistent Data 555

16

FIGURE 16.4
By enabling users to
personalize their
copy of your Web
page, you allow a
more personal expe-
rience without a
greater burden on
your server.

FIGURE 16.5
By using cookies to
customize your site
for your users, you
can allow them to
navigate through it
more easily.

Once this list of favorites is created, any of them can be selected to load the
corresponding Web page, as shown in Figure 16.5.

20 2978 CH16 4/10/02 10:52 AM Page 555

The program creates objects called favorites. Each favorite is, in essence, a Web link to
another page. The favorite contains information on the link’s URL, a user-friendly page
description, and the code that identifies it in the Favorites cookie string. The favorite also
knows how to print itself on a Web page as a regular link for the Favorites page, or in a
checkbox format for the Options page. The functions used to manipulate the cookies in
the favoritesList.htm example were shown in Listings 16.1 through 16.5. The other
functions used in this example are summarized in the following list:

• SendOptionsPage()—Loads the Web browser with a page that enables the user to
select which sites to be included as favorites.

• SendPersonalPage()—Loads the Web browser with a page that shows either the
user’s favorites or all the sites as hypertext links.

• WriteAsCheckBox()—Used by SendOptionsPage to display each potential favorite
site as a check box, to enable the user to select or deselect it.

• WriteAsWebLink()—Used by SendPersonalPage to display each site as a
hypertext link.

• LoadOptions()—This function is called to initiate the display of the options page.

• ToggleView()—This function is called to toggle the personal page between
displaying favorites and all sites.

• favorite()—This function is used to create a JavaScript object that is used to
store the information used to define a favorite site.

• Enabled()—This JavaScript function is used as a method by the favorite object;
it returns true if the link corresponding to this object is enabled.

• Checked()—This JavaScript function is used as a method by the favorite object;
it returns the string CHECKED if the link corresponding to this object is enabled.

• isEnabled()—Returns true if the favorite identified by the Name parameter passed
to the function is enabled.

• AddFavorite()—Enables the favorite identified by the Name parameter passed to
the function.

• ClearFavorite()—Disables the favorite identified by the Name parameter passed
to the function.

• ClearCookies()—Clears the three cookies associated with this page.

• SetFavoriteEnabled()—Enables or disables the favorite identified by the Name
parameter passed to the function by calling AddFavorite or ClearFavorite.

• ReloadPage()—Reloads the Web browser with the current page; what is displayed,
however, changes according to the current state of the Document cookie.

556 Day 16

20 2978 CH16 4/10/02 10:52 AM Page 556

Cookies: Storing Persistent Data 557

16

Where Are Cookies Going?
As mentioned earlier, cookies were designed and first implemented by Netscape.
However, the Internet Engineering Task Force (IETF) has a committee—the Hypertext
Transfer Protocol (HTTP) Working Group—whose charter it is to examine, document,
and suggest ways to improve HTTP.

You can find a link to the HTTP Working Group’s latest Internet Draft, called “HTTP
State Management Mechanism,” at
http://www.ietf.cnri.reston.va.us/rfc/rfc2109.txt.

Although the specification resembles Netscape cookies in theory, if not in syntax, it does
have a few notable differences. It doesn’t encourage having cookies around much longer
than the browser session. If the new specification is accepted, cookies will be given a
Max-Age lifetime rather than an expires date. All cookies still expire when their time
comes.

Reading the specification provides insight into the complexities that surround the inner
workings of cookies; it is well worth the read, regardless of whether the specification is
approved.

Where to Find More Information About Cookies
Although other ways of Web programming, such as CGI and special server interfaces,
require that the server as well as the browser understand cookies, only the browser mat-
ters to JavaScript. This means, in general, that you can use JavaScript with impunity as
long as you know your clients are JavaScript-capable, and they can run them with
JavaScript enabled.

Many JavaScript Web applications probably mix the language with other development
tools, however, which would require the server to understand cookies. Nowadays,
though, most clients and servers in use have both JavaScript and cookie support. You can
find cookie information at the following locations on the Web:

• Netscape cookie spec page (referenced previously in this chapter):

http://www.netscape.com/newsref/std/cookie_spec.html

• Browsers supporting cookies:

http://www.research.digital.com/nsl/formtest/stats-by-

test/NetscapeCookie.html

• Cookie Central:

http://www.cookiecentral.com/

20 2978 CH16 4/10/02 10:52 AM Page 557

• Robert Brooks’ Cookie Taste Test:

http://www.geocities.com/SoHo/4535/cookie.html

• Article about tracking cookies from the HotWired Web site:

http://www.arctic.org/~dgaudet/cookies

Other State Maintenance Options
As mentioned earlier in this chapter, a few drawbacks exist to using cookies. Perhaps you
would rather just avoid the controversy and find some other way to maintain state from
one page to the next. Two ways of doing this are available. Which one you use depends
on how you, the developer, will have your users get from one page to the next.

The main limitation of these methods is that they work only from one page to the page
immediately following the previous page. If state information is to be maintained
throughout a series of pages, these mechanisms must be used on every single page.

Using Query Strings to Send Information
If most of your navigation is done through hypertext links embedded in your pages, you
can add extra information to the end of the URL. This is usually done by adding a ques-
tion mark (?) to the end of your Web page URL, followed by information in an encoded
form, such as that returned by the escape method. To separate one piece of information
from another, place an ampersand (&) between them.

If you want to send the parameters color=blue and size=extra large along with your
link, for example, you could use a link such as this:

XL Blue

This format is the same as the format used when submitting forms using the get method.
A succeeding page can read this information by using the search property of the
location object. This property is called search because many Internet search engines
use this part of the URL to store their search criteria.

The following is an example of how to use the location.search property. In this exam-
ple, the name of the current page is sent as a parameter in a link to another page. The
other page reads this property through the search property and states where the browser
came from. Listing 16.6 shows the first page that contains the link.

558 Day 16

20 2978 CH16 4/10/02 10:52 AM Page 558

Cookies: Storing Persistent Data 559

16

LISTING 16.6 You Can Include Extra Parameters in the href to Pass State
Information, whereOne.htm

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Where Was I? (Page 1)</title>
</head>
<body>
<h1>Where Was I? (Page 1)</h1>
<hr />
This page sets information which will allow the page to which it is
linked to figure out where it came from. It uses values embedded in
the link URL in order to do this.
<p>
We’ll assume that any URL parameters are separated by an ampersand.
</p>
<p>
Notice that there doesn’t need to be any JavaScript code in this page.
</p>
<p>
And now...

ON TO PAGE 2!!!

</p>
<hr />
Jim O’Donnell, jim@odonnell.org
</body>
</html>

Listing 16.7 shows the second page, which demonstrates how to use location.search to
find where the browser came from.

LISTING 16.7 Access href Information Using the window.location.search
Property, whereTwo.htm

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Where Was I? (Page 2)</title>
</head>
<body>
<h1>Where Was I? (Page 2)</h1>
<hr />
This page reads information which allows it to figure out where it
came from.

INPUT

INPUT

20 2978 CH16 4/10/02 10:52 AM Page 559

<p>
<script type=”text/javascript” language=”JavaScript”>
<!-- Hide script from incompatible browsers!
//
// WhereWasI - Reads the search string to figure out what link
// brought it here.
//
function WhereWasI() {
//
// start by storing our search string in a handy place (so we don’t
// need to type as much)
//

var handyString = window.location.search;
//
// find the beginning of our special URL variable
//

var startOfSource = handyString.indexOf(“camefrom=”);
//
// if it’s there, find the end of it
//

if (startOfSource != -1) {
var endOfSource = handyString.indexOf(“&”,startOfSource + 9);
var result = handyString.substring(startOfSource + 9,

endOfSource);
}
else

var result = “Source Unknown”;
return result;

}
if (WhereWasI() != “Source Unknown”)

document.write(“You just came from ” + WhereWasI() + “...”)
else

document.write(“Unfortunately, we don’t know where you came from...”);
// Hide script from incompatible browsers! -->
</script>
</p>
<hr />
Jim O’Donnell, jim@odonnell.org
</body>
</html>

Figures 16.6 and 16.7 show the two Web pages, demonstrating that the first was able to
pass information to the second.

560 Day 16

LISTING 16.7 continued

20 2978 CH16 4/10/02 10:52 AM Page 560

Cookies: Storing Persistent Data 561

16

Note that the above techniques can also be used to send information from one Web page
to another with query strings by using the # instead of the ? character. The method is the
same, except that you use location.hash instead of location.search to look through
the string.

How to Use Hidden Form Variables
The method used in the preceding section works fine as long as the user navigates from
one page to another using links. To do the same thing with forms, you can use hidden
form variables rather than the location.search parameter.

Hidden form variables have the following format:

<input type=”HIDDEN” name=”HiddenFieldName” value=”HiddenFieldValue” />

You can specify whatever you like instead of HiddenFieldName and HiddenFieldValue

for the values of the name and value attributes of the <input> element.

FIGURE 16.6
Extra information
can be included in a
hypertext link using
the ? character.

OUTPUT

FIGURE 16.7
By including extra
information in your
hypertext links, you
can enable some
state information to
be passed among
pages in your Web
site.

20 2978 CH16 4/10/02 10:52 AM Page 561

Using hidden fields does not necessarily require the use of JavaScript code. They are
defined, instead, in the <input/> tag of normal HTML documents. You normally will
need to have a server-based script, such as a CGI program or a server API program, to
read the values of these hidden fields. The form containing the hidden variables is sub-
mitted to a server script, which can then process the information for subsequent pages. It
is possible to avoid the need for server processing of hidden form fields if you include
them in a hidden frame, as well. At this point, however—using hidden form fields in
hidden frames—you’re better off going ahead and using cookies.

Summary
It is often useful for a Web page to remember information about its different users from
one visit to another. This information can be collected and maintained on the server, but
an easier way to remember a few things is through the use of browser cookies. Cookies
are stored on your users’ computers, and allow your Web pages to remember information
about them from one visit to another, which can enable you to customize and improve
their experience on your page.

Workshop
In this workshop we will review what you have learned about cookies in today’s chapter.

Q&A
Q. How can you set up a cookie so that it can be accessed from Web pages on

other parts of your Web site?

A. By setting the cookie Path and/or Domain parameters, the cookies can still be
accessed from other locations within your domain; but they still are not accessible
from other domains.

Q. Can you set a cookie equal to more than one value?

A. Yes, by using a character such as an ampersand to append separate cookie values,
and then by using JavaScript’s string functions to split the string apart.

Quiz
1. What are the two ways to clear a cookie that has been set with no expiration date?

2. In addition to using the location.search property, what is one other way of
implementing an URL-based, state maintenance technique?

562 Day 16

20 2978 CH16 4/10/02 10:52 AM Page 562

Cookies: Storing Persistent Data 563

16

Quiz Answers
1. Within JavaScript, the cookie can be cleared by setting a cookie with the same

name with an expiration date in the past. Another way to clear a cookie set with no
expiration date is for the user to close the browser.

2. By using the location.hash property. Just as location.search is set equal to the
part of a URL after the ?, location.hash is set equal to the part after the hash
mark symbol #.

Exercise
Create a Web page with a cookie that keeps track of the amount of time since the last
time a user viewed the page, and prints the time out at the bottom of each page. Here’s a
tip: To make this time as accurate as possible, you can use the onUnload event to set the
last viewed time when the page is exited.

20 2978 CH16 4/10/02 10:52 AM Page 563

20 2978 CH16 4/10/02 10:52 AM Page 564

DAY 17

WEEK 3

Privacy and Security
This chapter will look at the privacy and security issues you could face with
visitors to your Web page and dealing with JavaScript code. Internet security
issues have become a hot topic these days, and Web users have become more
leery about where they visit and the type of information they provide to those
sites they do visit. By the same token, corporations have had to become more
vigilant in their efforts to secure the information on their own corporate sites.
Quite often the information provided on a Web page is not intended for all
potential visitors. Because of this, you need to look at methods to secure the
content, such as password protection.

This chapter will teach you:

• Privacy for Web users

• Privacy for Webmasters

• The impact on JavaScript

21 2978 CH17 4/10/02 10:42 AM Page 565

Privacy for Web Users
Security issues for Web users have become a major concern—everyone is concerned
about their personal information falling into the wrong hands, and this concern is well
founded. Other concerns arise from the fact that there were security holes in the early
browsers that allowed scripts to access files on an individual user’s computer.

Many of these Web user security issues originally surfaced when Netscape first intro-
duced JavaScript. As you remember from our discussions in Chapter 8, “The Browser
Issue,” JavaScript was originally introduced as a scripting language for interacting with
Java. With both Java and scripting support added to the browser, bright programmers
quickly figured out how to access client information on each Web user’s machine when
they visited a particular site. Of course it didn’t take long for news of these security
issues to spread.

As security-related issues have become obvious, each Web browser has been updated
with various security fixes to correct potential holes. Of course, correcting these “holes”
has created more limitations on the capabilities of your JavaScript code. These issues,
with respect to the user’s browser, deal with cookies, file access, and browser-window
access.

File Restrictions
In general, browsers prevent JavaScript code from executing or performing on the user’s
machine any file input or output without the user’s permission. This security restriction
was established to eliminate the risk of unwanted access to file directories and other per-
sonal information available on the machine. So overall, users can be fairly confident that
no changes are occurring on their local computers outside of what they are viewing in
their browser windows. Yet there are still issues to be aware of.

Often, especially in an intranet environment, scripts may be loaded directly onto a user’s
machine. These scripts may be designed to allow access to a corporate site, or other
related areas. If you load JavaScript code that resides on your machine, the script has the
ability to actually read, write, and create files as long as that function is allowed by the
machine. Typically, the browser will still display a warning message indicating that this
action is occurring and allowing the user to cancel out of the function, as illustrated in
Figure 17.1, though how the browser ultimately reacts is determined by security settings.

566 Day 17

21 2978 CH17 4/10/02 10:42 AM Page 566

Privacy and Security 567

17

Messages will display similar to the one in Figure 17.1 when JavaScript, or any other
code, attempts to perform file access commands outside of the browser (as shown in
Listing 17.1), which if allowed by the user creates a text file on the C-drive of the user’s
machine. Again, this type of access can only occur if the script is opened on the user’s
machine and allowed to run.

LISTING 17.1 File Access on User Machine (fileaccess.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
var newfile = new ActiveXObject(“Scripting.FileSystemObject”);
var createfile = newfile.CreateTextFile(“c:\\test.txt”, true);
createfile.WriteLine(“This is a test message created in a text file.”);
createfile.Close();
//..>
</script>
</head>
<body>
</body>
</html>

Keep in mind, the code in Listing 17.1 only works on Internet Explorer by using
the File and FileSystemObject objects to create a new text file. There is similar

functionality available in Netscape, but it requires interaction with Java and LiveConnect.
Again, with Netscape the user must agree to allow the script to execute, as shown in
Figure 17.2.

FIGURE 17.1
Browsers detect sus-
picious file access
attempts and allow
the user to stop the
activity.

INPUT

ANALYSIS

FIGURE 17.2
Netscape also
requires user
interaction before
scripts requesting
File I/O can execute.

21 2978 CH17 4/10/02 10:42 AM Page 567

Cookies
Cookies have become a concern for many Web users primarily because of their concern
about the ability of someone else to store unwanted information on their machine. Most
cookie concerns are unwarranted, as you will see, because the access a site may have to
your machine, by way of a cookie, is very limited. As we discussed in Chapter 16,
“Cookies: Storing Persistent Data,” cookies provide a means for storing user-specific
information on the user’s machine that can be accessed the next time the user visits your
site. The cookies are tagged with the URL of the Web site that created the cookie so only
that particular Web site has access to the information in that particular cookie.

Cookies can store information about the user (for example, the number of visits to a site).
But personal information about the user cannot be stored in a cookie without the user’s
acknowledgment. For example, cookies can be used to store form information for sites
the user frequents. If a cookie is used, the next time the user visits the site, the form
information can be pulled from the cookie and used to auto-fill the form. Keep in mind
though, the cookie file stores the data in plain text; therefore, any personal information
stored in a cookie, such as a credit card number or password, can be read by anyone who
has access to the machine. Therefore, sensitive information is typically encrypted or
encoded in the cookie, making it difficult to read. For example, the following illustrates a
sample cookie file contents:

uniqueUserId %2A0AF A567B%2D1F91%4122D8%12C3CB4DA%31D2F839A51BF%8E jstest.com/
35448444887922553694551245084014324637686*RMID de9123357433bf7f5e30 jstest.com/
700513675670403730714378214452525642544240029455*

As you can see, by using encryption techniques you can make it difficult for others to
interpret the information you store in the cookie file. Keep in mind other Web sites
cannot access the cookie files that you create—only those individuals with access to the
actual machine can view the cookies on the machine.

There are some general restrictions placed on cookies by browsers to protect the user.
For example, in Netscape, your Web site domain cannot create more than 20 cookies. If
you attempt to create more, one of your existing cookies will be discarded when you add
cookie number 21. Although this restriction does not exist in Internet Explorer, to elimi-
nate potential errors you will not want to create more than 20 cookies. To avoid this
problem, I would recommend creating only a couple of cookies and storing all necessary
information in them.

Keep in mind that there is a size limitation on the cookie description of 4096 bytes.
Finally, there cannot be more than 300 total cookies on each computer system.

568 Day 17

21 2978 CH17 4/10/02 10:42 AM Page 568

Privacy and Security 569

17

Browser Window Access
As we discussed in Chapter 12, “Windows and Frames,” through the use of objects,
specifically the Window object, you have the ability to access the browser window and
associate elements from your JavaScript code. By doing so, your JavaScript code is capa-
ble of writing new content to the browser window and changing the
appearance of the window by adding and removing window chrome.

As you probably already know, you can have multiple browser windows open or view
multiple URLS in one browser window if you are using frames. Although the browser
window allows you to open multiple URLs on one page or even in multiple windows,
you can only manipulate the content from pages on the same URL of the JavaScript code
that is executing. We will look at this concept more in the next section when we discuss
the same origin policy.

Computer Resource Limitations
Another important security step that has been taken is to limit the computer resources
available for execution of the script by the browser. These limitations help ensure that a
script does not overuse any of the resources on the user’s machine.

Some limitations are actually specified by the user within the browser. For example, the
user can specify the amount of cache that the browser can use to load an HTML page or
image. Although cookies can be created by a Web site the user visits, Netscape limits
the size of each cookie file to 80 kilobytes. This forces the Web designers to limit the
amount of information they can store in a cookie.

One restriction that Web developers need to keep in mind is the limit on the number of
instructions (or statements) that can be executed for a JavaScript script, which is one mil-
lion. This is to keep a script from executing and essentially locking up a user’s machine.
Typically this is not an issue, as there are not too many situations where you would need
to have a script execute over 1 million statements. However, if you ever need to do
complex calculations, this could become an issue. Consider the following code:

var totalsum = 1;
for (var x = 1; x < 1100000; x++)
{
totalsum = totalsum + x
}

For more specific information about creating and accessing cookies, refer to
Chapter 16.

Note

21 2978 CH17 4/10/02 10:42 AM Page 569

This code would not complete its calculation because 1,100,000 is greater than 1 million.
In order to perform a complex calculation such as this, you would have to break it into
smaller calculations. Doing so would keep the browser from rendering the system
unavailable to execute the script.

Privacy for Webmasters
Although a lot of steps have been taken in the browser world to protect the Web user,
very little security exists for the code you write. In fact, because JavaScript is a scripted,
and not a compiled language, everyone has the ability to see exactly what your code
does.

Yes, unfortunately the JavaScript code that you create is not secure. As you have proba-
bly learned by now, you can pretty much view all the source code used on pages on the
Internet by simply selecting the View Code option in your browser for a Web page. So,
you know those cool JavaScript functions you create, they can be copied by anyone.

There are some who would tell you that you simply need to create a separate .js file in
which to store your JavaScript code. That way, when the user views your HTML source,
they simply see a reference call to the .js file that contains the corresponding JavaScript
code.

<script src=”myjavascript.js”></script>

As we have previously discussed, if you place JavaScript code in a .js file the source
does not display when the user selects View Source for the HTML page. But they do see
the src= statement indicating the name of the file on your Web site that contains the
JavaScript code. This file is not protected or hidden, so a curious Web user simply needs
to type in the name of that file with the URL and they will have access to the source.
Keep in mind, the use of the separate JavaScript file was never designed for security or
privacy purposes, it simply cuts down on your development work by placing frequently
used code in one central location.

There are methods that can make your code a little more difficult to interpret; but, quite
frankly, most methods just cause more grief than they are worth. However, if you are
really concerned about the privacy of your code, you may want to consider using a dif-
ferent method. One way to make your JavaScript code more obscure is to place the entire
script on one line within your browser. I am going to attempt to illustrate how this looks,
in Listing 17.2. Unfortunately there is a limit to how long a line of text can be in a book,
so the code will appear on several lines even though it would be one continuous line.

570 Day 17

21 2978 CH17 4/10/02 10:42 AM Page 570

Privacy and Security 571

17

LISTING 17.2 Obscuring JavaScript Code (oneline.htm)

<html><head><script language=”javascript” type = “text/javascript”>
<!--
function selectlink(sellink,linkdesc){ sellink.style.background=’yellow’;
if (document.getElementById)
document.getElementById(“selectdesc”).innerHTML=linkdesc;
else selectdesc.innerHTML=html; } function
leavelink(sellink){ sellink.style.background=’blue’;
if (document.getElementByI d)
document.getElementById(“selectdesc”).innerHTML=’ ’;
else selectdesc.innerHTML=’ ’; }
//-->
</script></head><body>
<table bgcolor=”blue” border=”1” bordercolor=”white” cellpadding=”2”
cellspacing=”0”><tr>
<td class=”menu” bordercolor=”black” id=”choice1”
onmouseover=”selectlink(this,’Developers of IE’)”
onmouseout=”leavelink(this)””>
Microsoft</td></tr>
<td class=”menu” bordercolor=”black” id=”choice2”
onmouseover=”selectlink(this,’Developers of Netscape Navigator’)”
onmouseout=”leavelink(this)”>Netscape</td></tr>
<td class=”menu” bordercolor=”black” id=”choice3”
onmouseover=”selectlink(this,’Responsible for W3C DOM’)”
onmouseout=”leavelink(this)”>W3C</td></tr>
<td class=”menu” bordercolor=”black” id=”choice4”
onmouseover=”selectlink(this,’Publisher of Computer Books’)”
onmouseout=”leavelink(this)”>
Sams Publishing</td></tr>
<tr><td bordercolor=”black” bgcolor=”white” height=”18”>
</td></tr>
</table>
</body></html>

If you look at the code above, the JavaScript portion of the code is crammed
together, making it more difficult to read. (Although, any astute Web developer

can figure out how to space it all out again.)

Another method you can consider is not only placing the code on one line, but also
changing the names of variables and functions so that they do not relate to their actual
functionality. For example, instead of having a function called selectlink, why not call
it feedthedog? Okay, now you can really have some fun. Although keep in mind, you
will have to maintain this code, so don’t make it too difficult for yourself to figure out.
You should actually keep an unaltered version for yourself.

INPUT

ANALYSIS

21 2978 CH17 4/10/02 10:42 AM Page 571

If you are really concerned about protecting your code, you can consider using a code-
shrouding program. These programs read your code and translate it to source similar to
the original source by removing all of the formatting and then using randomly generated
variable names. Again this code still can be deciphered, but it does take some work.

Finally, you can add copyright statements to your code. Although this does not inhibit
someone from copying your code, it does give you some legal grounds if you need to
prove it was copied. Of course, you will have to determine if it is really worth your time
and effort to pursue.

572 Day 17

The issues we have discussed so far have dealt with the user’s ability to view
and copy your JavaScript code—that is,the code that runs on the client-side.
Server-side scripting—JavaScript code that runs on the server—is never
passed to the Web browser. Therefore, this code remains unseen by the user.

Note

Same Origin Policy
In an effort to ensure that another site cannot manipulate your own content, the same ori-
gin policy was added to browsers. What exactly does that mean? As you know, you can
have documents from multiple locations open simultaneously in a browser window using
frames (as we discussed in Chapter 12). These documents can come from any valid
URL. You also may remember from that chapter how a script in one frame can interact
with the contents of another frame. This will work fine if the documents are from the
same URL, but if they are different the interaction is not allowed.

The origin of a document is determined by the protocol (that is, http or ftp) and domain.
If these values match for both frames, then the script in one frame is allowed to interact
with the other frame’s contents. If you attempt to modify a document from a different
origin, an error message such as “access disallowed” or “permission denied” will display
in the frame.

Okay, this may not sound like such a big deal. After all, this ensures that someone cannot
alter your Web site content . But, imagine your organization has multiple URLs, or is
using different protocols on the Web site (for example, in a situation with an Ecommerce
site where the order form is secured and the protocol is https:. Because the rest of the
site has an http: protocol, you will have a difficult time interacting between frames, even
though both pages are on the same server.

To allow for the fact that you may need to access different portions of your site using
different protocols, you can set the document.domain property to match. In order to use

21 2978 CH17 4/10/02 10:43 AM Page 572

Privacy and Security 573

17

this property, both pages must exist on the same domain, but they can be from different
servers or have different protocols. To do this, you simply need to set the property to
match for each document:

document.domain = “www.testdomain.com”

Keep in mind, you can only set the domain value to match your current domain. In other
words, the domain value cannot be modified from another domain.

Of course, the document origin is not the only check performed by the browser. The doc-
ument object model for windows or frames that do not have the same origin cannot be
accessed. Essentially any object, property, or method that either grants access to the
user’s local system or provides information about Web browsing activity, such as the
Location object, cannot be accessed if the origin does not match.

Privacy Impact on JavaScript
Based on our discussion so far, you can see that although security measures have been
taken for JavaScript, there are still things for the developer to consider. For starters, all
documents on your Web server are accessible if the user knows the name of the file. In
order to keep users from accessing sensitive files, you need to have some type of security
established for the documents that you do not want all Web visitors to view. The best
method for doing this is to employ some form of password protection for the documents
with content you want to restrict. We will discuss password protection options in the next
section.

Another issue you may want to look at is creating signed scripts. As Web users become
more leery about running scripts on Web sites, many of them are opting to disable the
running of scripts within their browsers. In an effort to gain the user’s trust in your site
and the script that is running on it, you may want to look at signing your script.
Unfortunately this ability is not supported equally by Netscape and Microsoft. In fact,
Netscape is the only one that offers the ability to truly sign your script. Microsoft offers a
capability called Authenticode, but it cannot be used directly to sign scripts. Since
Netscape’s object signing options work well for signing your JavaScript code, we are
going to discuss the process of setting this up in this section below.

Password Protection
Depending upon the type of Web site you are creating, more than likely you do not want
all of your content accessible to everyone. You may want to restrict certain documents so
that only users with a valid username and password can access them. There are multiple
methods that you can use to password protect your site, and the methods you can use

21 2978 CH17 4/10/02 10:43 AM Page 573

ultimately are based upon the capabilities of the location where you are hosting your site.
There are three general types of password protection: using the operating system, a CGI
Program, or JavaScript coding.

Using Operating System Security
Each networking system has security that can be used to limit the access to particular
directories. This same security can be used to limit access to a particular Web directory.
For example, with Windows NT/XP as your Web server, you or your network administra-
tors can create a sub-directory for your Web site where only certain users have access.
When a user attempts to access a document from that directory, they are requested to
specify network login information in order to access that directory. Once they have speci-
fied the appropriate login information they can access any files within that directory.

This type of security can be specified for multiple users, and is probably one of the more
effective methods of security because the login is required in order to access any
documents within the corresponding directory.

If the documents you want to secure are sensitive, you definitely want to consider using
either this type or CGI security options outlined in the next section. You can contact your
Network Administrator to determine the feasibility of incorporating this type of security.
Again, if your site is being hosted, this type of security is probably not available.

Security with CGI Scripts
If the server that hosts your Web site supports CGI scripts, this is probably the best
method for securing your documents. But if you select this method, you also need to
either create the CGI script that verifies the username and password information or find
one that you can use on the Internet.

Unfortunately with the complexity of CGI, it is not feasible to look at creating a CGI
script within this chapter. If you decide to pursue this path, there are several resources
available for learning more about CGI, including CGI scripts that you can download
from other sites. You can find CGI resources listed in Appendix D. Another great source
for information on CGI is Sams Teach Yourself CGI in 24 Hours by Rafe Colburn.

Password Protection with JavaScript
Let’s look at some options for performing password protection within JavaScript scripts.
Keep in mind, as with any type of programming you do, there are many options when
determining the best method for accomplishing the task. With JavaScript, you can even
create encrypted passwords. Potentially the user will be able to view your code, so you
will want to use a method that is least obvious. For example, look at the code in
Listing 17.3; although it provides a method for specifying a password, if users view the

574 Day 17

21 2978 CH17 4/10/02 10:43 AM Page 574

Privacy and Security 575

17

source code they immediately can see that they simply need to open the file named
pswdfile.htm.

LISTING 17.3 Simple Password Protection (password1.htm)

<html>
<head>
<script language=”javascript” type = “text/javascript”>
<!--
function verify_password()
{
var docpwrd = prompt(“Specify the password for this document:”, “”);
if (docpwrd == “pwrdfile”)
{
self.location = docpwrd + “.htm”;
}
else
{
alert(“That is not the correct password.”);
}
}
//-->
</script>
</head>
<body>
<form>
<input type=”button” value=”Open Password Protected File.”
name=”OpenFile” onclick=”verify_password()”></p>
</form>
</body>
</html>

The code for password protecting a file in Listing 17.3 provides a quick and sim-
ple method to request a password from the user with the prompt() method as

shown in Figure 17.3. If you examine the code closely, you will see that the user must
specify the name of the HTML document as the password. This works well except for
the fact that you must verify that a valid password was entered in order to open the file.
Therefore, if you view the code you can quickly see that the password is specified in the
if statement. With this code, the user only gets to see the document if the correct pass-
word pwrdfile is specified. Otherwise, an alert box displays indicating the password was
not correct and the current document remains displayed in the browser window.

INPUT

ANALYSIS

21 2978 CH17 4/10/02 10:43 AM Page 575

As I mentioned earlier, JavaScript coding works well for the general protection of your
documents, but it does not ensure that sensitive documents could not be accessed by an
ambitious visitor. Another method you can use to limit file access is to distinguish
(encode) the password, as shown in Listing 17.4.

LISTING 17.4 Encoding the Password (password2.htm)

<html>
<head>
<script language=”javascript” type = “text/javascript”>
<!--
var checkpwrd = 112119114100102105108101;
var enterpwrd = “ “;
function verify_password()

576 Day 17

Another way to make the code even more secure is to remove the if
(docpwrd == “pwrdfile”) statement. This eliminates the inclusion of the
password from your code if the user decides to view the source. Again, the
only way the appropriate file is opened is if the proper password or file
name is specified.

Tip

FIGURE 17.3
Using the prompt()
method, you can
require that a specif-
ic password be
entered before a
document can be
opened.

OUTPUT

We discussed the prompt() method in Chapter 12 when we talked about
popup windows.

Note

INPUT

21 2978 CH17 4/10/02 10:43 AM Page 576

Privacy and Security 577

17

{
var docpwrd = prompt(“Specify the password for this document:”, “”);
for(i =0; i < docpwrd.length; i++)
{
enterpwrd += docpwrd.charCodeAt(i);
}
if (enterpwrd == checkpwrd)
{
self.location = docpwrd + “.htm”;
}
else
{
alert(“That is not the correct password.”);
}
}
//-->
</script>
</head>
<body>
<form>
<input type=”button” value=”Open Password Protected File.”
name=”OpenFile” onclick=”verify_password()”></p>
</form>
</body>
</html>

The code in Listing 17.4 is very similar to the previous password code in Listing 17.3.
The only difference is that we used an encryption method that converts the password
entered by the user to a numeric value. That numeric value is compared to the stored
numeric value of the password. If they match, the code opens the file, as we did in
Listing 17.3. We are creating the numeric value by simply converting each character in
the specified password to its two-digit numeric value with the charCodeAt() method of
the String object. Of course this method is still not totally secure, but it requires some
work to determine the password.

There are actually several different methods that you can use to encode values within
your JavaScript code. In fact, there are several different examples of methods that can be
used on the Internet. Many of the sites referenced in Appendix D have samples of
encryption methods.

Creating Signed Scripts in Netscape
As we mentioned earlier, Netscape provides the capability to digitally sign your scripts.
Digital signatures assure a user of the reliability of the script(s) that reside on your Web

LISTING 17.4 continued

21 2978 CH17 4/10/02 10:43 AM Page 577

site. When you have a digital signature attached to your script it essentially tells the user
that your script can be trusted because it has a valid signature attached. By the same
token, allowing a signed script access to the user permits elements of the browser that are
not typically accessible by your JavaScript code; specifically, you no longer need to
worry about the “same origin” policy we discussed earlier in this chapter.

578 Day 17

Keep in mind the concepts related to signing scripts discussed in this section
are only relevant to Netscape. Although Microsoft has a version for digitally
signing called Authenticode, it is not available for signing your JavaScript
code. For more information about Authenticode, visit the Microsoft Web
site.

Note

In order to sign your script, you first create the JavaScript code that you want to sign.
Once your code is complete you run a signing tool (such as the Netscape signing tool) to
create the digital signature. The signing tool creates and associates a digital signature
with the script you want to sign. The digital signature is placed in a Java Archive (JAR)
file. Once you create your digital signature you cannot alter the script code. The signa-
ture stands to confirm the validity of the code, if the code is altered then it is no longer
valid.

Also, remember the user may refuse to allow your code to run, even though it has a digi-
tal signature. Or the user may be running a non-Netscape browser meaning the signed
script is not valid. You need to allow for both of these situations when designing your
script.

Obtaining a Digital Certificate
In order to sign your JavaScript code, or any other code that you develop, you must first
obtain a digital certificate. The digital certificate, or digital id, is a code that is assigned
to your organization that identifies you as a trusted source. When your JavaScript code is
downloaded to the user’s machine, the digital certificate is also downloaded. When the
HTML document containing the digital certificate is loaded, the user is notified that
JavaScript code has been loaded and it is requesting additional access; the user has the
option of either allowing or rejecting the request.

Each digital certificate is issued by an organization called a certificate authority. The dig-
ital certificate is issued when you provide specific information identifying you as a valid
certificate holder. There are various organizations on the Internet where you can pur-
chase a digital certificate. The most popular is VeriSign Inc.(www.verisign.com). There
is a fee required to obtain a digital certificate in addition to the submission of documents

21 2978 CH17 4/10/02 10:43 AM Page 578

Privacy and Security 579

17

to prove your identity. Once you have obtained the digital certificate you can assign it to
the scripts that you want to sign, as outlined in the next section.

Signing a Script
Once you have your digital certificate, you are ready to sign your scripts. In order to sign
your script, you will need to obtain another program from Netscape called SignTool.
This utility allows you to sign your JavaScript for NetScape. You can find this utility at
http://developer.netscape.com/software/signedobj/jarpack.html. This page
includes the information you need to not only acquire this utility but also the steps you
will need to take to package and sign your scripts. This file creates a Java Archive file,
.jar. A .jar file is a compressed file format required to work with Netscape Navigator
security. The .jar file contains a file that lists the files within the .jar file, the certifi-
cate information, and the contents of the file when it was signed. This is how the digital
certificate ensures the JavaScript code is secure. If the JavaScript code has been altered,
then it does not match the contents of the .jar file.

In order to specify which script should be signed, you need to add two additional
attribute values to your Script tags: the Archive and id attributes.

The Archive attribute must be added to the first Script tag that you want to sign. If the
Script tag is not near the top of your HTML document, you need to create a Script tag to
specify the attribute value. This attribute specifies the name of the .jar file you want to
associate with the HTML document. For example, if the .jar file was securejs.jar you
would specify the following:

<script language=”javascript” type = “text/javascript” archive=”securejs.jar”

id=”sec1”>

When you run the SignTool utility it assigns the attribute specified by the Archive
attribute to the .jar file. When the user loads the HTML document, the attribute serves
to point to the corresponding .jar file.

As I mentioned earlier, the other attribute that must be specified is the id attribute. This
attribute must be unique for each script associated with a particular .jar file. When the
SignTool assigns the .jar file it generates a unique value (hash value) and associates it
with the particular script. Once the user loads the document in his browser, the id
attribute is again used to compare the hash value with the .jar file. The value of the id
attribute can be any valid string, as long as it is unique for the corresponding .jar file.

21 2978 CH17 4/10/02 10:43 AM Page 579

Summary
This chapter discussed the various security issues you need to be aware of when
developing JavaScript code for your Web site. Security is a concern for site visitors
and hosts alike.

Because of security “holes” that were exposed in early versions of browsers that allowed
scripting, measures were put in place by Netscape and Microsoft to create a more secure
environment for the browser user. These security measures were related to cookie access,
file access, and browser window access. All three elements were discussed in the chapter.

Ensuring privacy for the site you are hosting is a bit more difficult than simply protecting
browser users. For the most part, the entire contents of an HTML page, including your
JavaScript code, can be accessed and read by anyone.

In order to mitigate this security risk, we discussed how you can secure documents
through the operating system on the Web server by using a CGI script or by creating
JavaScript code to password protect the page.

Finally, in this chapter we looked at the exclusive Netscape method of signing scripts to
allow you to have additional access to the user’s browser.

Workshop
In the workshop today we will use the questions to review what you have learned in this
chapter about privacy and security when working with JavaScript.

Q&A
Q. How secure is a file if I password protect it by requiring the file name to be

specified?

A. Within the chapter we looked at a couple of examples that illustrated methods for
password protecting a particular file by requiring the filename to be specified in
order to open the file. If you use this method the only real security is the fact that
the user needs to know the file name in order to open it. But keep in mind, if they
just type that file name in as part of the URL, it will open anyhow. This method
only serves to help hide the file from most visitors. Also, be sure that the file name
is not hidden within your script. If you really want to ensure that specific files are
secured from unauthorized access, your best method is to use a CGI script or use
the security of the operating system running the Web site to secure the files.

580 Day 17

21 2978 CH17 4/10/02 10:43 AM Page 580

Privacy and Security 581

17

Q. How do you use the operating system to secure a file?

A. If you have access to the computer that is hosting your Web site, operating system
security is a good option. In order to use this method you would place the files that
you want to secure in a separate folder within the Web site. Once you do this, you
can set the security for the folder to only allow specific usernames and passwords
for access. This method requires you to have Administrative privileges for setting
security.

Q. How does the Same Origin Policy affect my Web site?

A. The Same Origin Policy simply means that if multiple documents are open, they
must be from the same original URL in order for one document to interact with the
elements of another document. This does not inhibit you from opening documents
on other sites from your Web site, but you will not be able to interact with those
sites.

Quiz
1. What are the cookie limitations imposed on cookies?

2. Does a separate .js file help to secure your JavaScript code from the prying
visitor?

3. What is the advantage of creating a signed script?

Quiz Answers
1. Within Netscape Navigator, a Web site domain cannot create more than 20 cookies.

If you attempt to create 21, an existing cookie will be deleted. There cannot be
more than 300 total cookies on the system, with a maximum size of 4096 kilobytes
for each cookie.

2. Only a little. Although the JavaScript code you create does not appear directly
within the HTML page when a user selects to view the source, it still indicates the
name of the .js file. The user can view that source by simply typing the name of
the .js file as the path for the browser. This method is intended to be used to place
frequently used JavaScript functions in one location so they do not need to be
specified on each page.

3. Signed scripts allow you to identify yourself to the visitor as a trusted source. By
doing so, you also request that the user allow you to have additional access to his
system. He has the option of allowing or rejecting your request. This capability is
really only available within Netscape, so you need to code not only for other
browsers that don’t provide signing, but also for the situation where the user rejects
your request.

21 2978 CH17 4/10/02 10:43 AM Page 581

Exercises
1. Create a page that successfully executes over a million mathematical calculations

without being stopped by the browser. Keep in mind, you need to break the
calculations into smaller steps.

2. Create a page that requests a password before allowing the user to view a specific
file. The user should only have three attempts to enter the password. Once the
maximum number of attempts has been tried, an Alert box displays a message.

3. Create a page you can use to create your encrypted passwords. Basically you just
want a page where you can type the desired password and it returns the encrypted
version.

582 Day 17

21 2978 CH17 4/10/02 10:43 AM Page 582

DAY 18

WEEK 3

Plugins and Applets
With all of the capabilities of JavaScript, there are many additional features that
can be used to enhance the capabilities of your Web page. You can enhance
your Web site by using different Java applets and plugins.

Java applets are essentially Java programs that have been designed to run from
a Web page. You can use JavaScript to interface with the applet (for example,
starting and stopping) and change its properties and methods.

Plugins are similar to applets in that they allow you to add additional capabili-
ties to your Web site. A plugin, however, is not necessarily developed within
Java. There are many commonly used plugins that are available for use within
your Web site. Typically these plugins are available for viewing multimedia
type files. For example, Adobe provides a plugin that allows Web users to view
Adobe Acrobat files within their browsers.

This chapter looks at plugins and how you can detect their existence. Of course
with some file types, you may not be as concerned about the existence of a par-
ticular plugin as just knowing whether or not the file type is supported by the
browser. We will also look at how to determine if the browser supports a
particular file type. Finally, we will show how to work with Java applets and
how they can be incorporated into your Web page.

22 2978 CH18 4/10/02 10:41 AM Page 583

This chapter will teach you about:

• Plugins versus applets

• Detecting plugin installation

• Working with plugin objects

• Working with applets

Plugins Versus Applets
Plugins and applets are terms that are frequently used interchangably, giving a novice
user the impression that they both refer to the same thing. However, in fact, they are
two different things—although, browsers treat each similarly.

An applet is essentially a mini-application created within Java that will run on any Java-
Enabled browser. Once called, a Java applet is capable of interacting with the user with-
out any interaction from your HTML or JavaScript code. Although, ideally, you want to
use JavaScript to create an interface between your Web page and the embedded Java
applet. By doing so, as the Web developer you have control over the interaction with the
Java applet.

Plugins on the other hand have a much broader scope. A plugin is essentially an add-on
to the browser that allows the user to work with additional types of data within the
browser. Typically, browsers enable the playing of sound files, video clips, or the ability
to view specific file types. For example, Adobe Acrobat files are frequently available on
Web sites to provide copies of standard printed documents, as illustrated in Figure 18.1.
By loading the Adobe Acrobat plugin, a user can view these files in the same format and
layout in which they were designed.

584 Day 18

FIGURE 18.1
Plugins allow you to
incorporate other file
types into your Web
site.

22 2978 CH18 4/10/02 10:42 AM Page 584

Plugins and Applets 585

18

Plugins and applets were both originally introduced by Netscape with the use of
JavaScript to communicate with them. This technology was originally called
LiveConnect and was first implemented in Netscape Navigator 3.0. Microsoft followed
suit by adding the capability to Internet Explorer also in 4.0, although they were not able
to use the LiveConnect name that was trademarked by Netscape. The Applet and Plugin

objects are now part of the document object model (DOM) maintained by the W3C,
which we covered in Chapter 8, “The Browser Issue.”

The Applet object is a child object of the Document object. In HTML, the code for the
applet is enclosed in the <applet> tags. But you can reference an applet directly from
your JavaScript code by using the corresponding properties and methods for the object,
as we will discuss later in this chapter.

Netscape Navigator provides a child object to the Navigator object called plugins. This
object is actually an array of all the plugins that are installed on the browser. Using the
properties associated with the plugins object you can determine specific information
about a particular plugin, such as its name or description. When working with Internet
Explorer, the plugins object associated with the Navigator object is not supported.
Internet Explorer treats plugins like ActiveX controls and therefore you will need to use
the Embeds object. We will look at this in more detail in the chapter, but it is important to
realize that each browser handles plugins differently.

Detecting Plugin Installation
As we have already discussed, plugins allow you to add multimedia capabilities to your
Web page by adding the ability to play sound, video, or just display specific file types.
However, in order to use these types of files, the plugin must be installed on the user’s
browser. Therefore, you need to determine whether the plugin, or at least support for the
desired file type, exists before attempting to load it on the page.

There are a multitude of plugins available for incorporating this type of capability into
your Web page. Some plugins allow you to interact with them, as we will discuss in the
next section, while other plugins simply perform a specific task with the only interaction
being the specification of which file to open. Typically as the Web developer it becomes
your responsibility to ensure that the files are saved in the appropriate format for use
with the selected plugins. For example, in order to open a PDF file you must have the
appropriate file saved in that format. Although the plugins are generally free to download
by the Web user, the software to create the file formats typically needs to be purchased.
Table 18.1 lists some of the most common plugins used and the Web sites where you can
gather more information about using the particular plugin.

22 2978 CH18 4/10/02 10:42 AM Page 585

TABLE 18.1 Commonly Used Plugins

Plugin Description

Adobe Acrobat Reader www.adobe.com Allows the Web site visitor to view files stored in a
.PDF file format. Storing a file in a PDF format allows you to
preserve all formatting.

Windows Media Player windowsmedia.com/download/download.asp Allows you to view
multimedia files. Available as default player on most versions of
Windows.

Apple QuickTime www.apple.com Typically used to play animation and video files.

Netscape LiveAudio home.netscape.com Provides the ability to play AIFF, AU, MIDI,
and WAV files within Netscape Navigator.

RealPlayer www.real.com Provides the ability to play streaming audio and
video.

Flash www.macromedia.com/flash Macromedia’s premier plugin that
allows users to view animations, presentations, and any other
interactive Web content created using Macromedia Flash.

Shockwave www.macromedia.com/shockwave Provides the ability to view
animations, play games, and run interactive demos.

As you can see by the list of plugins in Table 18.1, there are several multimedia players
available to play audio and video files. For example, current versions of Microsoft
Windows come with Windows Media Player installed, but the user can choose to load
another player, such as RealPlayer, as their selected multimedia player. Because of this,
you may not always check for the availability of a specific plugin but the support of a
specific file type by the browser. We are going to look at both techniques to determine if
a plugin is loaded and to see if a file type is supported. Depending on what you are try-
ing to accomplish, you can determine which type of testing works best for your Web
page.

Of course, the type of checking you are going to be able to perform is constrained by the
user’s browser. While both Netscape and Internet Explorer support the use of plugins, the
way each browser handles plugins is different.

Plugin Handling by Browsers
As we briefly mentioned earlier, each browser provides the Navigator object which con-
tains specific information that describes the specific browser being used by the user. If
you remember, we used the properties related to this object in Chapter 8 to determine
which browser the user was using to view your Web site. This object also contains two
child objects, shown in Figure 18.2, plugins and mimeType, that provide information

586 Day 18

22 2978 CH18 4/10/02 10:42 AM Page 586

Plugins and Applets 587

18

about the specific plugins that are installed within the browser. As shown in the
figure, these objects are actually part of plugins and mimeTypes arrays that contain
corresponding objects for the browser. Unfortunately, only Netscape makes use of these
plugin-related child objects.

FIGURE 18.2
The Navigator object
provides child objects
for handling plugins.

Navigator

Plugins

Plugin

mimeTypes

mimeType

As you will see in the next section, within Netscape it is quite simple to check the plug-
ins array to determine if a particular plugin has been installed on the user’s machine. If a
corresponding Plugin object does not exist, you can then inform the user of the need to
load the required plugin.

Although within Internet Explorer, the Navigator object also includes the Plugin and
mimeType objects, they are not supported in the same fashion as in Netscape. Microsoft
uses a different methodology for dealing with plugins when working in the Microsoft
Windows environment. Internet Explorer treats all plugins as ActiveX controls. Although
they are actually an ActiveX control, plugin type controls are still commonly referred to
as plugins, even in Internet Explorer.

Because plugins are handled as ActiveX controls, they are added to a page using the
<object> tag in Internet Explorer; whereas, plugins are added using the <embed> tag in
Netscape Navigator. The Object element has an attribute called classid, which can be

Multipurpose Internet Mail Extensions (MIME) is the standard used to classi-
fy different types of files and to transmit them over the Internet. Each type
of file is called a MIME type. By default, most browsers have a very limited
number of mime types that they support (for example, HTML, GIF, JS). As
you add additional plugins to your browser, the number of MIME types sup-
ported within the browser increases. Because some multimedia plugins sup-
port multiple MIME types it is highly likely that users may be able to view a
particular file type even though they are lacking a particular plugin.

Note

22 2978 CH18 4/10/02 10:42 AM Page 587

used to determine if a particular plugin is loaded. We will look at this attribute more
closely in the next section when we figure out how to determine if the plugin you need is
installed on the user’s machine. As we will discuss later, it requires the combination of
both the <embed> and <object> tags to add a particular plugin.

Checking for a Plugin
Before you attempt to load a file in a user’s browser that requires a specific plugin, it is
important to verify that the required plugin exists on the user’s machine. This verification
helps to avoid potential errors due to lack of support for the file type, giving visitors to
your site a more pleasing experience.

If you determine that the user’s browser does not have the appropriate plugin loaded, you
can either display a link to download the appropriate plugin, or you can display a non-
plugin required version of the page. In most cases, it is important to provide an option
that does not require loading a plugin. Some users may choose not to load the specific
plugin on their machine, or they may be in a corporate environment that prohibits the
loading of software from the Internet. Because of this situation, you do not want to build
a Web site that relies on the existence of a particular plugin.

588 Day 18

Many of today’s Web sites have utilized Macromedia Flash for the creation
of dynamic menus. Because of the animation capabilities of Flash, the devel-
oper can create effects that are often much flashier than those created with
standard DHTML; or at least, Flash requires fewer programming capabilities
to accomplish similar effects. Keep in mind that if you choose to make your
site reliant on this type of multimedia plugin, you run the risk of encounter-
ing browsers which do not have the ability to load the required plugin.
Therefore, you should also provide a non-plugin-required option for your
Web site.

Caution

Of course detection of the plugin is actually easier than it sounds—as you will soon find
out. Unfortunately browsers are not consistent in their support of plugin object informa-
tion. The easiest method to employ when you want to use a particular plugin is to inform
users that the site uses the plugin and allow users to load the plugin into their browsers
before proceeding, as illustrated in Listing 18.1.

22 2978 CH18 4/10/02 10:42 AM Page 588

Plugins and Applets 589

18

LISTING 18.1 Informing User of Plugin Use (informuser.htm)

<html>
<head>
</head>
<body>
<p>This site uses Macromedia Flash. </p>
<p>Click here to download the Flash plugin

 for your browser.</P>
</body>
</html>

Although this code notifies the user of the use of the particular plugin on your site, as
shown in Figure 18.3, it does not verify that the plugin is actually installed. You are at
the whim of the user to download the particular plugin from the specified link before
proceeding with your site.

INPUT

FIGURE 18.3
It is a good practice
to notify the user of
the use of a plugin,
even if your code
checks for its
existence.

OUTPUT

Ideally your code verifies that the plugin exists on the user’s browser before loading the
code that references the plugin. But in order to do this, you need to access the properties
for the browser. As we discussed earlier, Netscape and Internet Explorer each have dif-
ferent methods for handling of plugins, making the process of checking for plugins a lit-
tle more tedious. Therefore, even if you are checking for the plugin, it is still a good idea
to inform the user of a use of the plugin, as in Listing 18.1, to allow them to download it
on their own, in case your code is not able to verify its existence.

Netscape makes the detection of the browser quite simple by allowing you to check the
plugins collection to determine if a Plugin object exists for the specified browser.
Unfortunately, Internet Explorer does not support this. For example, you can use code
like Listing 18.2 to determine if Macromedia Flash is running on the user’s browser.

22 2978 CH18 4/10/02 10:42 AM Page 589

LISTING 18.2 Checking Netscape for a Plugin (netscapeplugin.htm)

<html>
<head>
<script language=”JavaScript” type = “text/javascript”>
<!--
for (i = 0; i < navigator.plugins.length; i++)
{
if (navigator.plugins[i].name.indexOf(“Flash”) >=0)
{

alert(“You have the Macromedia Flash Plug-in installed!”)
}

}
//..>
</script>
</head>
<body>
</body>
</html>

As you can see the code is simply for checking the existence of a plugin within
Netscape. The for loop cycles through the list of plugins. If a plugin

containing the string “Flash” in the name is encountered, the code determines that the
appropriate plugin exists on the user’s machine.

Because the Internet Explorer document object model includes the plugins object col-
lection it does not return an error when this script is executed. But since the plugins col-
lection is not activated, the code is ignored. Although, older browsers and some other
current browsers may still have a problem with that code, if they do not recognize the
plugins collections. Therefore, it is a good idea to add the following if statement to the
beginning of the code to ensure that only browsers that recognize the plugins collection
execute the specified code:

if (navigator.plugins)

By placing the if statement around the code in Listing 18.2 you ensure that the code
only executes on browsers that recognize the plugins collection. Because Internet
Explorer recognizes the object it will also execute the code, but it will be ignored
because the plugins object collection is not activated within Internet Explorer.

Checking for a plugin within Internet Explorer requires a slightly different approach. As
we have previously discussed, Internet Explorer treats all of the plugin objects as
ActiveX controls. Therefore, if you want to determine if a particular plugin is installed,

590 Day 18

INPUT

ANALYSIS

22 2978 CH18 4/10/02 10:42 AM Page 590

Plugins and Applets 591

18

you need to actually look for it as an ActiveX control. The easiest method for doing this
is to create an object of the specified plugin type. If the object exists, the IsObject
function returns a value of true, as illustrated in the code in Listing 18.3. Since Internet
Explorer was designed to use VBScript to interact with ActiveX controls, it is the best
method for us to use with our code. We are using a Document.Writeln statement to
create the VBScript code within your JavaScript code. Within the Internet Explorer
browser, the code is written to the browser and executed.

LISTING 18.3 Checking Internet Explorer for a Plugin (ieplugin.htm)

<html>
<head>
<script language=”Javascript” type = “text/javascript”>
<!--
if ((navigator.userAgent.indexOf(‘MSIE’) != -1) &&
(navigator.userAgent.indexOf(‘Win’) != -1)){
document.writeln(‘<script language=”VBscript”>’);
document.writeln(‘Function IEPluginDetect(pluginname)’);
document.writeln(‘ on error resume next’);
document.writeln(‘ IEPluginDetect = False’);
document.writeln(‘ IEPluginDetect = IsObject(CreateObject(pluginname))’);
document.writeln(‘ If (err) then’);
document.writeln(‘ IEPluginDetect = False’);
document.writeln(‘ End If’);
document.writeln(‘End Function’);
document.writeln(‘</script>’);

}
//-->
</script>
</head>
<body>
<script>
<!--

document.write(‘Macromedia Flash Plugin: ’ +
IEPluginDetect(‘ShockwaveFlash.ShockwaveFlash’));
// -->
</script>
</body>
</html>

This code executes and displays a value of true if the specified plugin exists on the
user’s browser or false if it does not exist. See Figure 18.4.

INPUT

22 2978 CH18 4/10/02 10:42 AM Page 591

As you can see, it is a little more complicated to determine if a particular plugin
is available within Internet Explorer. But it is still possible. In order to do so

though, you need to know the ActiveX control name assigned to the plugin. For example,
in Listing 18.3 the name of the ActiveX control for Flash is “ShockwaveFlash.
ShockwaveFlash”. Table 18.2 provides a list of common control names. You can replace
the “ShockwaveFlash.ShockwaveFlash” code in Listing 18.3 with one of the names in
the table.

TABLE 18.2 Internet Explorer Plugin Control Names

Plugin Name Description

Adobe.SVGCtl Adobe SVG Viewer

PDF.PdfCtrl.5 Adobe Acrobat Reader

SWCtl.SWCtl.1 Shockwave Director

ShockwaveFlash.ShockwaveFlash Flash

Rmocx.RealPlayer G2 Control.1 RealPlayer

QuickTimeCheckObject.QuickTimeCheck.1 QuickTime

MediaPlayer.MediaPlayer.1 Windows Media Player

Determining Browser Support for a File Type
As we have previously discussed, many multimedia file types are supported by multiple
plugins. For example, if you want to play a MP3 file there are a multitude of different
plugins available for playing that file type. Typically, it becomes less important to deter-
mine whether a particular plugin exists, when what you are really most concerned with is
the user’s ability to access the specific file type. For example, you don’t really care if
they prefer to listen to MP3 files on RealPlayer, or Windows Media Player, you just want
to make sure they can play it.

592 Day 18

FIGURE 18.4
You can check to see
if a plugin is
installed in Internet
Explorer by looking
for the correspond-
ing ActiveX control.

OUTPUT

ANALYSIS

22 2978 CH18 4/10/02 10:42 AM Page 592

Plugins and Applets 593

18

Unfortunately, the ability to check for support of a specific file type is only available
with Netscape, using the mimeType object. Although the Internet Explorer DOM supports
the mimeType object, the object is ignored within the browser. Therefore, what we are
going to look at in this section is only valid for Netscape Navigator.

The mimeType object represents a file type that is transmitted over the Internet. You can
use the mimeTypes collection of the Navigator object to determine if that specific file
type is supported by the browser. The code in Listing 18.4 illustrates how to use the
mimeTypes collection to check for a specific file type supported by the browser. The
code in Listing 18.4 illustrates how to create a list of the file types supported by the
browser.

LISTING 18.4 Checking for a File Type (checkmimetype.htm)

<html>
<head>
</head>
<body>
<Table Border=”1”>
<tr><th>MIME Type</th><th>Description</th><th>Extensions</th><th>Plugin</th>
</tr>
<script language=”javascript” type = “text/javascript”>
<!--
for (var i = 0; i < navigator.mimeTypes.length ; i++) {
document.write(“<td>”, navigator.mimeTypes[i].type, “</td>”)
document.write(“<td>”, navigator.mimeTypes[i].description, “</td>”)
if (navigator.mimeTypes[i].suffixes != “”)
document.write(“<td>”, navigator.mimeTypes[i].suffixes, “</td>”)

else
document.write(“<td>”, navigator.mimeTypes[i].suffixes + “ * “, “</td>”);

if (navigator.mimeTypes[i].enabledPlugin)
document.write(“<td>”, navigator.mimeTypes[i].enabledPlugin.name,

“</TD></TR>”);
else
document.write(“<td>”, “None”, “</td></tr>”);

}
//-->
</script>
</table>
</body>
</html>

The code in Listing 18.4 creates a table that lists the various file types supported by the
browser, as shown in Figure 18.5.

INPUT

22 2978 CH18 4/10/02 10:42 AM Page 593

You will notice that we used the properties associated with the mimeType object to pro-
vide information about each file type supported by the browser. The mimeType object has
four different properties that you can access, as outlined in Table 18.3.

TABLE 18.3 mimeType Object Properties

Property Description

type Indicates the name of the MIME file type

description Provides a description of the MIME file type

suffixes Indicates the file extensions for the MIME type

enabledPlugin Indicates the plugin that has been assigned to display data for that
MIME type (This property is NULL when there is no plugin assigned to
that MIME type.)

Again, although the mimeType object provides some very useful information, you can
only rely on it with Netscape Navigator, since Internet Explorer does not support it.

Working with Plugin Objects
Once you determine the existence of the particular plugin, you are ready to work with
the actual plugin. Most plugins run by embedding the appropriate file type. For example,
to play a MIDI file called sample.mid you would use the HTML <embed> tag as follows:

<embed src=”sample.mid”>

594 Day 18

FIGURE 18.5
You can use the
mimeTypes collection
of the Navigator
object to determine
the file types sup-
ported by Netscape
Navigator.

OUTPUT

22 2978 CH18 4/10/02 10:42 AM Page 594

Plugins and Applets 595

18

Of course the actual player used to play the specified MIDI file varies based upon which
plugin is loaded for playing that file type.

As with any other object, when you embed a plugin object on your HTML page there are
various properties and methods associated with that object. The actual properties and
methods vary based on the specific object that you have embedded. For example, nearly
every plugin object has an src property that identifies the specific file to open. If you are
unfamiliar with the properties and methods for the selected plugin, refer to the plugin’s
documentation.

For example, you may only want an audio file to play when a specific button is pressed.
In this case, you still use the <embed> tag to load the file, but you load it with the Hidden
property set to true. When the corresponding button is pressed, the associated .wav file
plays as illustrated in Listing 18.5.

LISTING 18.5 Specifying Plugin Properties (pluginprops.htm)

<html>
<head>
<script language=”javascript” type = “text/javascript”>
<!--
var sound1 = “ding.wav”
var sound2 = “chord.wav”
function playsound(x)
{
document.write(‘<embed src=’+’”’+x+’”’+’hidden=”true” autostart=”true”>’);
}
//-->
</script>
</head>
<body>
<input type=”button” value=”Sound 1” onclick=”playsound(sound1);”>

<input type=”button” value=”Sound 2” onclick=”playsound(sound2);”>
</body>
</html>

Again, there is much that can be accomplished using plugins. Of course, the most com-
mon use of plugins is to add multimedia effects to a page, as illustrated in Listing 18.5.

Working with Applets
Java applets are simply programs written in Java that are designed to be embedded on a
Web page, in much the same fashion as a plugin.

INPUT

22 2978 CH18 4/10/02 10:42 AM Page 595

As we have previously discussed, JavaScript was originally introduced by Netscape as a
means for creating scripts to interact with Java applets. With the use of JavaScript you
can pass values into a Java applet to specify how the applet performs on your page.

596 Day 18

Developers that are well versed in Java may choose to have the Java applet
contain all of the code for interacting with the page, thereby eliminating
the need for the JavaScript code. Although this is totally feasible, it requires
more work in the long run. The beauty of using JavaScript is that changes
generally can be made on-the-fly to the settings for the Java applet. If you
have all of the settings specified within the applet, the applet code must be
recompiled each time you make a change.

Note

Just like plugins, there are various applets available on the Internet that you can down-
load and incorporate into your Web pages. Of course, applets also allow the flexibility of
developing your own Java applets for use on a Web page (although this type of develop-
ment is beyond the scope of this book). I am, however, going to provide a brief overview
of Java so that you can understand a little more about the language and how JavaScript
can interact with a particular Java applet.

Java Basics
Just like JavaScript, Java deals heavily with objects. In fact, objects are actually the basis
of the Java language, making it one of the commonly referenced object-oriented lan-
guages. Objects are used for all tools, such as screen interaction. Every object in Java is
referred to as a class. Actually when you compile a Java applet it becomes a class and it
is referenced on your Web page with a .class file extension, as follows:

<applet code=”javaapplet.class”>

Since JavaScript has a lot in common with Java, such as strings, arrays, numbers, and so
forth, you will find that the code is fairly easy to interpret based on your JavaScript
knowledge at this point. For example, Listing 18.6 provides some basic code for creating
a simple Java applet. Again, don’t be too concerned if you don’t understand the Java
code, I am only providing it to give you a sampling of what Java looks like compared to
JavaScript.

22 2978 CH18 4/10/02 10:42 AM Page 596

Plugins and Applets 597

18

LISTING 18.6 Simple Java Applet (Ch18Applet.class)

import java.applet.Applet;
import java.awt.Label;

public class Ch18Applet extends Applet {

public void init() {
Label applabel = new Label(“Java Applet”);
add(applabel);
}

}

We are going to call the applet defined in Listing 18.6 from our Web page. As we
mentioned earlier, one major difference between Java and JavaScript is the fact

that all Java code is compiled, whereas JavaScript is not. This means that the code must
be recompiled each time you make modifications to it. Because of this inconvenience
Java applets are typically created for tasks that cannot be easily coded within JavaScript.

There are several different Web sites available that provide extensive information about
creating Java applets, the most popular being Sun’s Web site at www.sun.com. You can
find more Java resources sites listed in Appendix D.

Calling a Java Applet
Java applets are historically embedded into an HTML page using the <applet> tag. But
in HTML 4.0, the <applet> tag has been replaced with the Object tag for applets. This
was done to create a standard tag that could be used to embed all types of objects on the
page. There are several properties that you can set for the applet when you embed it on
the page, as outlined in Table 18.4. You must always specify the code property because
that identifies the location of the applet that you are placing on the Web page.

TABLE 18.4 Object Tag Properties

Property Description

archive Specifies the URL of archives with components that are relevant to the applet

code Indicates the URL of the applet’s class

codebase Indicates the URL of the applet’s implementation

height Specifies the height in pixels that the applet should appear on the page

hspace Indicates the left and right padding that should be applied around the applet
(The measurement is in pixels.)

name Identifies a name for the applet (This makes it easier for other portions of the
Web page to reference the applet.)

INPUT

ANALYSIS

22 2978 CH18 4/10/02 10:42 AM Page 597

tabindex Indicates the tab order that should be applied to the applet (This is only
available in Internet Explorer.)

vspace Indicates the top and bottom padding that should be applied to the applet (The
measurement is in pixels.)

width Specifies the width in pixels that the applet should appear on the page

Calling the applet from within your HTML page is fairly simple. You use the object tag
with the code property.

<object code=”Ch18Applet.class” name=”newapp” height=100 width=100>

</object>

You will notice in this line of code, we also used the Height and Width properties to
specify the size that the Java applet appears on the page. With these settings, the
applet would display in a box that is 100 pixels wide by 100 pixels high, as shown in
Figure 18.6.

598 Day 18

TABLE 18.4 continued

Property Description

INPUT

FIGURE 18.6
You can use the
Object tag properties
to specify the size of
the Java applet on
the HTML page.

OUTPUT

Interfacing with Java Applets
As we mentioned, JavaScript was originally developed to provide the ability to interact
with the Java applets, making it possible to change properties of the applet when the
page is viewed. In order to do this, you need access to the properties and methods
defined for the applet. If you are the one that is creating the applet, you simply need to
define public properties and methods that can be changed. Methods and properties are
made public using the public keyword, as shown here:

public stopApplet()
{
thread.stop;
}

22 2978 CH18 4/10/02 10:42 AM Page 598

Plugins and Applets 599

18

Within your JavaScript code, you simply need to know the name of the properties or
methods that you want to access. They are accessed in the same fashion in which we
called the properties and methods for other objects. For example, if the Java applet is
named newapplet you would access the method as follows:

document.newapplet.stopApplet();

Of course you will quickly recognize that you need to have information about the applet
you are adding to your Web page in order to know what properties and methods you can
script to. If you acquire the Java applet from another source, this information is typically
provided.

Summary
This chapter has allowed you to explore the differences between Java applets and plug-
ins. Although they are both add-ons for the browser, they are actually quite different.

Plugins allow the user to work with additional file types, and applets are Java programs
that are developed to run on a Web page.

We looked at methods for checking to see if a particular plugin exists on a user’s
machine prior to loading a file type that requires the plugin.

We also covered the basics of working with Java applets.

Finally, we discussed the fact that there are many Java applets and plugins that are
available on the Web to download and incorporate into your site. By doing this you can
incorporate the additional functionality of these plugins and applets.

Workshop
In the workshop today we will use the questions to review what you have learned in this
chapter about plugins and Java applets when working with JavaScript.

Q&A
Q. How do I make sure the appropriate plugin gets installed on a user’s

machine?

A. Although both Netscape and Internet Explorer provide methods for determining if
a particular plugin exists on a user’s browser there is no method for automatically
loading the plugin. If you determine that the plugin does not exist, you can provide
the option for the user to download the plugin and install it on his machine. Place a
link to the vendor’s site on the page for the user to download and install the plugin.

22 2978 CH18 4/10/02 10:42 AM Page 599

Q. So do I check for file type support or a specific plugin?

A. As we discussed in this chapter, you have the option with Netscape of checking
either for the existence of a particular plugin or for file type support. When dealing
with common file types, such as .mp3, .wav, and so on, the file types are supported
by multiple plugins. Because the plugin loaded for a particular file type is a per-
sonal preference, in those cases you don’t want to force them to load a particular
plugin. Instead, you can use the mimeTypes collection to determine if the specific
file type you want to open is supported by the browser.

Q. Which tag should I use to place an applet on a page?

A. As you are probably aware, HTML provides both the <applet> and <object> tags
that can be used to place a Java applet on a Web page. Although the original design
of HTML provided the <applet> tag for the purpose of adding Java applets to an
HTML page, HTML 4.0 was updated to use the <object> tag for applets too.
Therefore, while browsers will allow the use of either tag, the preferred method is
to use the <object> tag.

Quiz
1. How do you detect the existence of a plugin on the user’s browser?

2. Is it necessary to detect a specific plugin if I want to play a .wav file on my Web
site?

3. How do I determine which plugin is being used to support a particular mimeType?

Quiz Answers
1. The process of detecting a plugin varies based on the browser that the user is

using. Netscape makes the process quite easy by allowing you to use the plugins
collection. You can simply search through the list of plugins and try to locate one
with the name of the desired plugin. If the plugin is located, then that plugin exists
on the user’s browser. With Internet Explorer you have to take a different approach.
Internet Explorer treats plugins as ActiveX controls. You need to use VBScript to
determine if an object exists with the specified name.

2. No, you can look for the support of the file type by using the mimeTypes collection
on Netscape. You can use the type property to determine if the support exists for
that plugin.

3. The enabledPlugin property of the mimeTypes collection keeps track of the plugin
that has been assigned for that particular file type. You can use that property to
determine if the file type is being supported by the desired plugin. If you prefer the
file to display with a different plugin, you can notify the user that current plugin is
not what you anticipated.

600 Day 18

22 2978 CH18 4/10/02 10:42 AM Page 600

Plugins and Applets 601

18

Exercises
1. Write code to determine if a particular plugin is installed on both Netscape

Navigator and Microsoft Internet Explorer. Remember to make the code browser
specific (as we discussed in Chapter 8).

2. Create code that executes on Netscape Navigator to check whether a plugin is
enabled for a specific mimeType, such as MP3 files. Display that plugin information
for the user.

22 2978 CH18 4/10/02 10:42 AM Page 601

22 2978 CH18 4/10/02 10:42 AM Page 602

DAY 19

WEEK 3

Creating Your Own
Objects

As already discussed, JavaScript provides access to several objects that you can
use to change the content of your page. More than likely, though, you are going
to reach a point where you will want to create your own custom objects to con-
tain specific properties and methods. Custom objects can be very useful espe-
cially when creating e-commerce applications.

This chapter discusses the process of creating custom objects that can be used
to store related values. Because custom objects store values as properties, we
will discuss how to create and modify property values for a custom object. We
also will look at how to instantiate these objects once they have been created,
as well as how to create custom methods for each object. Finally, we will look
at how you can customize the built-in JavaScript objects by adding additional
properties and methods.

23 2978 CH19 4/10/02 10:48 AM Page 603

This chapter will teach you

• What a custom object is

• How to use the constructor function to create an object

• How to create an instance of a custom object

• How to create object methods

What Is a Custom Object?
JavaScript is designed to work with objects. Until this point, the objects that we have
worked with have been either the built-in JavaScript objects or the objects associated
with the browser (DOM). As you have learned, by working with an object you are able
to make modifications to the properties associated with that object and so alter the
appearance of a Web page.

Not only does JavaScript work well with existing JavaScript and DOM objects, but it
also provides you the option of creating your own objects for storing data. Your first
inclination may be to wonder why you need to create a custom object—after all
JavaScript already provides variables and arrays that are quite versatile in the way they
allow you to store data. Although the use of variables and arrays work well for most
types of data, you may find that you need a more complex structure for storing the data.

Probably the most common use of a custom object in JavaScript is creating a database
type of structure. For example, if you are creating an e-commerce site (as we will look at
in the next chapter), you may want to create a customer object that stores custom infor-
mation about your customer. By doing this, the information is stored in one location.

Of course customer information can also be easily stored with variables and arrays, but it
would require several different arrays to store the same information that you can place in
one object. For example, if you wanted to store name, address, phone number, and e-mail
address, you would typically use a separate array for each type of information. Whereas,
if you were to create a custom object, you would have one object for each
customer that would contain each of the data types.

Once you create your custom object, you can have properties for each object. In our
case, our customer object would have properties for Name, Address, Phone, and E-mail.
Besides creating properties for your custom object you can also create custom methods.
For example, you may want to create a custom method to display the customer
information.

Therefore a custom object greatly expands the potential you have for working with
custom data.

604 Day 19

23 2978 CH19 4/10/02 10:48 AM Page 604

Creating Your Own Objects 605

19

Combine Multiple Data Elements into One Object
Without the use of an object you will likely use multiple data elements, such as variables
and arrays, to represent multiple elements of data. Additionally, you will need a separate
variable for each element of information stored about a customer, for example, a name
variable, address variable, and so forth. With the use of a custom object, you only create
one object and then add properties to represent each data element.

Using this process will greatly simplify your code because you are only dealing with one
object. For example, the following code illustrates how you would assign data to each
property of our customer object:

this.name = name;
this.address = address;
this.phone = phone;
this.email = email;

We will look at the process of creating custom objects in detail later in this chapter; for
now, notice that values are assigned to each property of the object in basically the same
fashion.

Create Methods and Properties Specific for the
Custom Object
As discussed in the previous chapters, each object you work with in JavaScript has its
own assortment of custom properties and methods. The properties contain specific infor-
mation that you want to access (for example, the URL property of the Document object,
which specifies the location of the document displayed in the Web browser).

23 2978 CH19 4/10/02 10:48 AM Page 605

Typically most objects also have different methods that you can use with the object.
These methods allow you to make modifications to properties of the object. For example,
the window.alert() method creates an alert window that displays on top of the browser
window.

Just like built-in objects, you can also create properties and methods for your custom
object. In fact, all objects that you create will have properties that represent the data you
want to assign to the object. You can also create methods, as we will discuss in depth
later in this chapter.

Use of the Constructor to Create Objects
As with any other data element that you use, you must create a custom object before you
can use it. Custom objects are created using a function. Functions that create objects are
referred to as the constructor for the object. A constructor function is structured in basi-
cally the same as any other function that you create, with the name of the object you are
going to create used as the function name, like so:

function customerObj (parameters) {
}

When you create a custom object with the constructor function, the use of parameters is
actually optional. However, typically you will want to use these parameters to allow val-
ues to be passed to the object. For example, if you use the built-in document.writeln
method to write text to the screen, the text that you specify is the parameter that is
passed to the Document object. By this same token, if you want to pass values to your
object, you will need to specify parameters for the object; for example, to receive the
parameters for name, address, phone, and e-mail, the parameter statement would appear
as follows:

function customerObj (name, address, phone, email) {
}

Okay, now we know how to create the constructor function, but this is only part of the
process. Passing the parameters into the constructor function requires that properties are
created to receive the parameter values, as we will discuss in the next section.

Adding Properties to the Object
Of course you are creating a custom object for the purpose of storing data. In order to do
so, you will need to define these values. With a custom object the data values are stored
as properties of the object. When you create a custom object you do so by defining the
properties of the new object. For example, our customer object would have the
following properties representing each data element stored in the object:

606 Day 19

23 2978 CH19 4/10/02 10:48 AM Page 606

Creating Your Own Objects 607

19

• name

• address

• telephone

• emailaddress

Typically, you would pass in a separate parameter for each property you are creating for
your object. For example, when we created the customerObj object using the constructor
function, we specified four different parameters, each of which should be assigned to a
separate property within your object. To assign these parameter values to properties with-
in our custom object, we would add the following property assignment code:

function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;
}

If you examine the code for the constructor function used to create our CustomerObj
object, you will notice that the keyword this is used for each property assignment state-
ment. The this keyword is always used when you create a property assignment state-
ment. The this keyword refers to the current object. In the instant case, the keyword is
referring to the custom object that we are creating called customerObj.

Keep in mind, you do not have to pass in parameter values for the properties, as we stat-
ed previously. If you want to have constant values for only some properties, you can sim-
ply assign those values to the property within your constructor function. For example, we
can add a property for the salesperson to our customerObj object. If the orders are gener-
ated by the Web site, the salesperson can be referred to as “Web”. Our object constructor
function would look like this:

function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;
this.salesperson = “Web”;

So now we have specified how to create the custom object. Of course, once you
create the object, it is useless until you actually use it. An object is used by creat-

ing an object instance. In order to create an object instance, or use a custom object, you
will need to use a process referred to as instantiating. We will discuss how to go about
instantiating an object in the next section.

NEW TERM

23 2978 CH19 4/10/02 10:48 AM Page 607

Creating an Instance of a Custom Object
Once you have defined the custom object, of course you are going to want to use it. In
order to use a custom object, you must first create an instance of, or instantiate it.
Instantiating an object is similar to declaring a variable. In fact, what you are doing is
creating an instance of the custom object by creating an object variable and assigning it
the new custom object. You will recognize this process as it is the same as that used to
create instances of built-in objects.

In order to instantiate the object, you will need to use the new keyword to assign an
instance of custom object to the new object variable. Listing 19.1 illustrates how to
instantiate our customerObj object, created in the previous section.

LISTING 19.1 Instantiating the Custom Object (newobject.htm)

<html>
<head>
<script language=”Javascript” type = “text/javascript”>
<!--
function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;

608 Day 19

The this Keyword

As referred to in the text, the this keyword is used as a reference to the
receiving object, which means that it refers to the corresponding object
based on the location of the keyword. Within this chapter, we are illustrat-
ing the use of this keyword in two different types of locations: within an
object constructor function and within a method function.

When the this keyword is used within an object constructor function the
keyword is a reference to the object created by the function. For example, if
you have a function creating an object called newBook, the this keyword
refers to the newBook object whenever used within the function.

When the this keyword is used within a method function the keyword ref-
erences the object that the method belongs to. This can be a little confusing
if there are multiple objects within the code, but the keyword references
the object that has a statement defining the method.

Finally, the this keyword can also be used outside of any functions. This
location is commonly referred to as global code. In this instance, the this
keyword refers to the Window object.

Note

INPUT

23 2978 CH19 4/10/02 10:48 AM Page 608

Creating Your Own Objects 609

19

}
var newCust = new customerObj(“Tom Jones”, “Dallas, Texas”, “214-555-5555”,
“tom@jones.com”);
alert(“Hello “ + newCust.name);
//-->
</script>
</head>
<body>
</body>
</html>

The customerObj object is instantiated when we declare the new object variable:

var newCust = new customerObj(“Tom Jones”, “Dallas, Texas”, “214-555-5555”,
“tom@jones.com”);

Notice we declared a new variable called newCust, which is an instance of the
customerObj object. You will notice that we are passing four different values to the
customerObj object Constructor function. This is because the function is expecting four
different parameter values. Keep in mind these values can be actual values, as we have in
Listing 19.1, or other variables containing the appropriate values. In other words, you
create an instance of an object in the same fashion that you can any other function—by
passing it the appropriate values.

Of course, it is not necessary to specify the values for the properties when you create the
object instance with the new keyword. You can also create the object instance and then
assign property values after the fact. For example, we could revise the creation of the
object instance, shown in Listing 19.1, as follows:

var newCust = new customerObj();
newCust.name = “Tom Jones”;
newCust.address = “Dallas, Texas”;
newCust.telephone = “214-555-5555”;
newCust.emailaddress = “tom@jones.com”;

This method of assigning values to the properties of the object works best for instances
when the custom object has several different properties. By assigning each property indi-
vidually, it makes your code easier to read because you can quickly determine what value
was assigned to each property.

Keep in mind, you can create multiple instances of the same object within your code. For
example, if you wanted to work with information from two different customers, you
could create two instances of the customerObj object, as follows:

LISTING 19.1 continued

ANALYSIS

23 2978 CH19 4/10/02 10:48 AM Page 609

<script language=”Javascript” type = “text/javascript”>
<!--
function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;
}
var newCust1 = new customerObj(“Tom Jones”, “Dallas, Texas”, “214-555-5555”,
“tom@jones.com”);
var newCust2 = new customerObj(“Sam Smith”, “Austin, Texas”, “703-555-5555”,
sam@smith.com”);

With this scenario, we now have two different object instances, newCust1 and newCust2.
Each object instance is based on the properties and methods associated with the
customerObj object. This means that they each have the same properties, but they each
have different values for those same properties. As you can see, we are passing in differ-
ent values for the properties when the object is created. For example, newCust1 has a
value of “Tom Jones” for the name property and newCust2 has a value of “Sam Smith”
for the same property.

Accessing Properties of a Custom Object
Once an instance of the object has been created, you can access any of the object proper-
ties in the same fashion that we accessed properties from other objects. To do so, you
simply specify the object name, a period, and the name of the property that you want to
access. For example, in Listing 19.1, the alert() method contains a reference to the
name property for the object:

alert(“Hello “ + newCust.name);

When this statement executes, the contents of the name property of the object display in
the Alert dialog box as shown in Figure 19.1.

610 Day 19

INPUT

FIGURE 19.1
You can access prop-
erties of a custom
object in much the
same fashion as you
do with built-in
JavaScript objects.

OUTPUT

23 2978 CH19 4/10/02 10:48 AM Page 610

Creating Your Own Objects 611

19

So essentially what occurs is that you have created an instance of the
customerObj called newCust. The new object instance has all of the properties

that are assigned to the custom object. Therefore, since customerObj has the properties
name, address, telephone, and emailaddress, those properties are associated with the
object instance, newCust. You can now reference any of those properties for your new
object instance. Therefore, properties would be referenced using the standard object
property notation of object name, a period, and the property name, as follows:

newCust.name
newCust.address
newCust.telephone
newCust.emailaddress

Once you have created the object instance, the properties of the object instance can be
used anywhere within your code. Keep in mind, you must use the properties of the object
instance, and not the actual object.

Changing the Value of an Object Property
Of course, you are not always going to want to keep the values that you initially assigned
to the properties of the object. Just like built-in objects, you can change the values of the
properties for your custom object at any point within your code. You can accomplish this
in the same manner in which we assigned individual values to each property of the
object.

To change the value of the property for a custom object, you will need to specify the
object instance name, a period, and the name of the property that you want to change.
For example, if we look back at the newCust object instance that we created earlier, we
could change the value of the name property by typing the following line of code:

newCust.name = “Tom Thompson”

This would allow you to receive values from the visitor to your Web site, and then assign
them to the properties for the object. For example, we may want to receive the customer
information in a Web form and assign the values to the object, as outlined in the code in
Listing 19.2.

LISTING 19.2 Changing the Object Properties (setprops.htm)

<html>
<head>
<script language=”Javascript” type = “text/javascript”>
<!--
function customerObj() {
this.name = “”;

ANALYSIS

INPUT

23 2978 CH19 4/10/02 10:48 AM Page 611

this.address = “”;
this.telephone = “”;
this.emailaddress = “”;
}
var newCust = new customerObj();
function createCust() {
newCust.name = custform.name.value;
newCust.address = custform.address.value;
newCust.telephone = custform.phone.value;
newCust.emailaddress = custform.email.value;
alert(“Hello “ + newCust.name);
}
//-->
</script>
</head>
<body>
<form name=”custform”>
<u>Customer Information</u></p>
<p>Name:
<input type=”text” name=”name” size=”20”></p>
<p>Address: <input type=”text” name=”address”

size=”55”></p>
<p>Telephone: <input type=”text” name=”phone” size=”20”></p>
<p>Email:
<input type=”text” name=”email” size=”20”></p>
<p><input type=”submit” value=”Submit” onclick=”createCust()”></p>

</form>
</body>
</html>

As you can see from the code in Listing 19.2, you can pass values from an
HTML form to the custom object as values for the associated properties. When

the page first loads, the values of the properties are empty strings. As soon as the user
clicks the submit button, the values typed into the form become the values of the proper-
ties for the object instance, as shown here:

function createCust() {
newCust.name = custform.name.value;
newCust.address = custform.address.value;
newCust.telephone = custform.phone.value;
newCust.emailaddress = custform.email.value;
alert(“Hello “ + newCust.name);
}

The createCust() function is called when the submit button is clicked by the user. In
this instance, the function is not directly associated with the custom object instance; so,
instead of using the this keyword as we did earlier to reference the object, you will need

612 Day 19

LISTING 19.2 continued

ANALYSIS

23 2978 CH19 4/10/02 10:48 AM Page 612

Creating Your Own Objects 613

19

to actually state the object instance name. In this case, the object instance that was creat-
ed is newCust. The function also contains a statement containing the alert() method.
This method displays an alert() popup message that contains a message for the user
that submitted the form, as shown in Figure 19.2.

FIGURE 19.2
You can use
JavaScript to change
the properties of a
custom object in the
same fashion as
built-in objects.

OUTPUT

You can change the values of properties for an object at any point within your Web page.
Remember though, you need to reference the object instance, and not the actual object,
when you want to change the value of an object property.

Creating Object Methods
You may remember that nearly all of the built-in objects that we have worked with have
had properties as well as associated methods. As discussed in Chapter 4, “JavaScript Is
Object-Based,” methods provide a means for working with the properties associated with
an object. For example, one method that we have used repeatedly throughout this book is
the alert() method that is associated with the Window object. We often forget that it is
actually a method of a built-in object because we do not have to specify the object name
when we use properties and methods associated with the Window object. Consequently,
this method, shown below, allows us to specify any text to display in an alert() popup
window that displays on top of the current browser window:

window.alert(“Display text”);

23 2978 CH19 4/10/02 10:48 AM Page 613

By the same token, you may have a method designed for displaying the properties of
your custom object. Custom methods have the same capabilities as any other JavaScript
functions that you can create.

Defining methods for a custom object is a little more complicated than defining proper-
ties. You create methods for an object by defining a function for each method, and then
associating the function with the object function. For example, we can create a method to
print the customer information from the CustomerObj object that we created earlier in
this chapter. In order to do this, we will need to do some very specific things.

First, we will need to create a custom method function called printCust that indicates
how the customer information should print. This is a standard JavaScript function with
the name of the desired method being used as the function name, as shown below:

function printCust() {
document.write(“Customer Name: “ + this.name + “
\n”);
document.write(“Address: “ + this.address + “
\n”);
document.write(“Telephone Number: “ + this.telephone + “
\n”);
document.write(“Email Address: “ + this.emailaddress);
}

You will notice that within the printCust function that we have defined, it is using the
this keyword to reference the current object. Each property of the object is also refer-
enced. This is because the function is designed to be a method function related to the
current object. In other words, the keyword indicates that the property specified is associ-
ated with the current object.

The next task to be accomplished is to make this method part of the function definition.
This is accomplished in a similar fashion as that used to define a property of the
function:

function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;
this.printCust = printCust;
}

You will notice that this object definition looks the same as earlier in the chapter when
we first defined the customerObj constructor function. The only difference is the line
that was added to link the printCust method function to the object, as shown here:

this.printCust = printCust;

This is a very crucial step in the process of defining methods for a custom object. You
must link the method to the appropriate object in order to have the method function

614 Day 19

23 2978 CH19 4/10/02 10:48 AM Page 614

Creating Your Own Objects 615

19

behave like a standard object method. You will notice that this added statement looks like
the other property definitions. The difference is that instead of referencing a parameter
passed to the constructor function, the statement refers to the method function we
created.

Once you have created a method function and added the method reference to the object
constructor function, you can call the method in the same fashion as other methods. For
example, if we have created an object instance called newCust, you can reference the
method by stating the object reference name, a period, and the name of the method, as
follows:

newCust.printCust();

We can combine the new method with our custom object to print the customer
information on the page, as showns in Listing 19.3.

LISTING 19.3 Using a Custom Method (newmethod.htm)

<html>
<head>
<script language=”Javascript” type = “text/javascript”>
<!--
function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;
this.printCust = printCust;
}
function printCust() {
document.write(“Customer Name: “ + this.name + “
\n”);
document.write(“Address: “ + this.address + “
\n”);
document.write(“Telephone Number: “ + this.telephone + “
\n”);
document.write(“Email Address: “ + this.emailaddress);
}
var newCust = new customerObj(“Tom Jones”, “Dallas, Texas”, “214-555-5555”,
“tom@jones.com”);
newCust.printCust();
//-->
</script>
</head>
<body>
</body>
</html>

INPUT

23 2978 CH19 4/10/02 10:48 AM Page 615

The code in Listing 19.3 creates the custom object and associated method. The method
is called and it prints the contents of the custom object to the screen, as shown in
Figure 19.3.

616 Day 19

FIGURE 19.3
You can create cus-
tom methods to use
with custom objects.

OUTPUT

Linking Objects Together
So far we have seen how to create custom objects with the associated properties and
methods. But what happens when the value of the property is another object? JavaScript
allows you to create objects with property values that are actually references to other
custom objects. Sound a little confusing? Well let’s explore this issue a little further.

Suppose we have two different custom objects. The first object (as shown earlier) con-
tains the customer information such as name, address, telephone number, and e-mail
address. The second object contains company information, such as company name,
address, and phone number, like so:

function companyObj (cname, caddress, cphone) {
this.name = cname;
this.address = caddress;
this.telephone = cphone;
}

Once you have created the object for the company information, you can still create the
company object instance using the new keyword:

var newComp = new companyObj(“ABC Corp.”, “Dallas, Texas”, “214-444-5555”);

You can link a customer to the company information by linking the two objects together.
By doing this the newComp instance of the companyObj actually becomes a property of the
customerObj object:

function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;

23 2978 CH19 4/10/02 10:48 AM Page 616

Creating Your Own Objects 617

19

this.emailaddress = email;
this.companyObj = newComp;
}

Once you have created the company object, you can assign values to the customer object
with one statement:

var newCust = new customerObj(“Jane Smith”, “Dallas, Texas”, “972-555-5555”,
“jane@smith.com”, newComp);

Notice we simply passed the contents of the newComp object instance as the final parame-
ter value when creating the newCust object. The values specified for the object instance
are assigned to our objects, as illustrated in Listing 19.4.

LISTING 19.4 Linking Custom Objects (linkobjects.htm)

<html>
<head>
<script language=”Javascript” type = “text/javascript”>
<!--
function companyObj (cname, caddress, cphone) {
this.cname = cname;
this.caddress = caddress;
this.ctelephone = cphone;
}
var newComp = new companyObj(“ABC Corp”, “Dallas, Texas”, “214-444-5555”);
function customerObj (name, address, phone, email) {
this.name = name;
this.address = address;
this.telephone = phone;
this.emailaddress = email;
this.compObj = newComp;
}
var newCust = new customerObj(“Jane Smith”, “Dallas, Texas”, “972-555-5555”,
“jane@smith.com”, newComp);
document.write(“Customer Name: “ + newCust.name + “
\n”);
document.write(“Address: “ + newCust.address + “
\n”);
document.write(“Telephone Number: “ + newCust.telephone + “
\n”);
document.write(“Email Address: “ + newCust.emailaddress + “
\n”);
document.write(“Company Name: “ + newCust.compObj.cname + “
\n”);
document.write(“Company Address: “ + newCust.compObj.caddress + “
\n”);
document.write(“Telephone Number: “ + newCust.compObj.ctelephone);
//-->
</script>
</head>
<body>
</body>
</html>

INPUT

23 2978 CH19 4/10/02 10:48 AM Page 617

You will notice that when we referenced properties from the newComp object instance, we
also had to reference the name of the property in the customerObj object that corre-
sponds to the object as well as the corresponding property in the companyObj object. You
need to do this in order to capture the companyObj object that corresponds to the
customerObj object you are referencing. The customer and company information are
written to the screen, as shown in Figure 19.4.

618 Day 19

FIGURE 19.4
You can link custom
objects together.

OUTPUT

As you can probably imagine, the possibilities of things that you can accomplish
with the use of custom objects is tremendous. By linking different objects togeth-

er you can access not only other objects’ properties, but also the corresponding methods
of that object. What is even more cool, is that multiple objects can be linked to the same
object. For example, you can have both a customer and vendor object that are both
linked to a company object.

The process of linking multiple objects together can become quite complex, and can start
to resemble relational databases. However, you’ve learned there are many ways to com-
bine objects and methods.

Summary
This chapter has provided a stepping stone for creating and working with custom objects
in your JavaScript code. You were able to see how quickly you can create a custom
object that can be used anywhere within your code for the current page.

We learned that in order to create a custom object you need to create an object construc-
tor function. This function closely resembles a standard JavaScript function. Each prop-
erty of a custom object is defined using the this keyword. The this keyword always
refers to the current object. Once you create a custom object, you must create an instance

ANALYSIS

23 2978 CH19 4/10/02 10:48 AM Page 618

Creating Your Own Objects 619

19

of the object. This process is commonly referred to as instantiating the object. To create
the new instance of the object, you need to use the new keyword as part of the variable
definition. You can also create custom methods that can be assigned to the custom
objects. These methods give you the same capabilities available with built-in objects.
Finally, we looked at how you can create even more complex objects by linking multiple
objects together. This allows you to link related objects easily (for example, multiple cus-
tomers from the same company). This requires just one company object by a separate
customer object for each customer. Each of those customer objects can link to the same
company object.

As we have discussed, the capabilities are enormous when dealing with custom objects
in JavaScript.

Workshop
In the workshop today, we will use the Q&A, questions, and exercises to review what
you have learned in this chapter about creating custom objects and defining properties
and methods for the objects used within your JavaScript code.

Q&A
Q. Why should I use a custom object?

A. A custom object allows you to combine multiple data types. For example, you can
store a string, numeric value, and a Boolean value, all within the same custom
object. By doing so, you can group common data together. Custom objects also
allow you to create methods specific to that object. These methods can be cus-
tomized to work only with the data stored in the custom object.

Q. Can I really link an object to more than one other object?

A. Yes, you can link an object to several different objects on the same page. For
example, in this chapter we created a customer object and a company object, so if
you have several customers that work for the same company, each one of the cus-
tomers would have the same company object linked to them. You can even take it a
step further and create a salesperson object that is linked to either the customer of
the salesperson, or perhaps the company that is within the salesperson’s territory.

Q. When can I use the this keyword?

A. The this keyword is used to refer to the current object. Of course the location
where you use the this keyword dictates the actual object that it is referring to.

23 2978 CH19 4/10/02 10:48 AM Page 619

If the this keyword is used within an object constructor function, it refers to the
object being created by the function. If the this keyword is used within a method
function, it refers to the object that is linked to the method function. Finally, if the
this keyword appears outside of any functions, it refers to the Window object.
Therefore, be careful when using this keyword to ensure that you achieve the
appropriate results.

Quiz
1. What keyword is used to “instantiate” an object?

2. If you have a customer object called Book with a property of Name and you create
an object instance of Book1, how would you set the Name property to “Teach
Yourself JavaScript in 21 Days”?

3. What statement do I add to the Book object to link it to the bookInfo method?

Quiz Answers
1. To “instantiate” or create an instance of a custom object, you need to use the new

keyword when you create your variable definition defining the object instance. For
example, var newbook = new book(); creates a new object instance called
newbook of the object Book.

2. In order to change the property for the Book1 object, you would need to type the
following statement: Book1.Name = “Teach Yourself JavaScript in 21 Days”.

3. In order to link a method to an object, you will need to add a statement to the
object indicating the name of the method. To add this to the Book object you would
type the following statement: this.bookInfo = bookInfo;.

Exercises
1. Write the code to create an object that gathers customer information from a form,

and another object that gets the company information from the same form. This
information should include name, address, zip code, phone number, e-mail address,
and customer number. The company information should be name, address, and
phone number. Display a welcome message to the user with the information
gathered from the form.

2. Create a custom method to display the contents of your customer object.

620 Day 19

23 2978 CH19 4/10/02 10:48 AM Page 620

DAY 20

WEEK 3

JavaScript in E-Commerce
As you are probably aware, the Internet has become a Mecca for both buyers
and sellers of different products. In fact it is difficult to visit a Web site these
days without encountering something for sale. Therefore, if you haven’t already
encountered the need to develop this type of site, your day will likely come.

E-commerce applications can be very involved and this chapter will demon-
strate how you can use JavaScript when creating an online store. As we work
through this chapter, you are going to recognize the limitations of using
JavaScript to meet the requirements for creating an e-commerce site. We will
look at the process involved in creating an online catalog and shopping basket.
Finally, we will look at how the order is sent back to the e-commerce site for
processing.

This chapter will teach you

• Requirements for an e-commerce site

• Shop structure

• The online catalog

• Shopping carts

24 2978 CH20 4/10/02 10:40 AM Page 621

Requirements for an E-Commerce Site
As with any type of programming that you do either in JavaScript or another program-
ming language, there are many ways to design your e-commerce site. No matter how you
ultimately decide to design your Web site, there are some basic requirements that you
must meet in order to have a successful e-commerce Web site:

• Online store—As with any store, you will need a location where visitors come to
locate the desired items.

• Database—You will need to create an online catalog (or database) that contains
specific information about each product available for purchase.

• Shopping cart—This is a list of the items that the visitor would like to purchase.

• Order desk—This is the location for receiving the order, along with pertinent
customer information for processing it.

These four items may seem fairly obvious; after all, you would need to have some type
of catalog of the items that can be purchased. Of course, there are various methods that
can be used to create each of these items, but in this chapter let’s focus on creating these
items using JavaScript and HTML. We will also discuss any limitations that exist with
this method of development.

As mentioned, e-commerce sites can be created using a wide variety of technologies. The
technologies you actually use will depend on the sophistication that you want to achieve
with your site. There are other technologies, besides JavaScript and HTML, that you
should consider incorporating when creating an e-commerce site. For example, as we
will discuss later in this chapter, you will want to use a database program if you have a
large number of items to sell on your site. Also, CGI provides a good interface between
the Web servers and your Web page that runs on the user’s page.

Shop Structure
Before you start coding, you need to decide the type of structure you want to use for
your e-commerce site. At the bare minimum you need to have a place where the cus-
tomers can select the items they want and where you can provide the ordering informa-
tion. Of course this could potentially be accomplished all on one page, but it is typically
done with multiple Web pages. Essentially you want to make sure your Web site has each
of the four things specified in the previous section: an online store, database, shopping
cart, and order desk.

622 Day 20

24 2978 CH20 4/10/02 10:40 AM Page 622

JavaScript in E-Commerce 623

20

In this chapter, we are going to create an e-commerce bookstore site that has each of
these items. This site is going to incorporate the technology that we have discussed in the
previous chapters by making use of cookies, custom objects, forms, and event handling.
Therefore, we are assuming you have a thorough understanding of the technology
already discussed in each of those chapters before proceeding with the creation of the
Web site in this chapter.

Our bookstore site is going to consist of two HTML pages. The first page is our online
store. This page provides a list of all items available at our e-commerce site, as shown in
Figure 20.1.

FIGURE 20.1
Your site must contain
at least one page that
lists the items that are
available for ordering.

As you can see in Figure 20.1, we have a catalog of the available items and each one can
be ordered by selecting the Purchase link associated with the desired item. (We will dis-
cuss the creation of this online catalog in detail in the following section.)

The second page of our e-commerce site is our shopping cart page. This page will list
the items ordered and will give the user the ability to remove items from the cart. We
will collect the personal information for the order on this page, as illustrated in
Figure 20.2.

24 2978 CH20 4/10/02 10:40 AM Page 623

Next for our bookstore project, we will use a custom object to track the different books
that are available for purchase on our Web site.

Finally, we are going to use a simplistic method for the order desk of sending a message
containing the order. This type of method for placing orders is used quite frequently,
especially with smaller companies. We will look at this process in more detail when we
discuss the creation of the shopping cart page.

All of the code used to create the e-commerce bookstore is available on the Web site out-
lined in the Introduction. The code for the site is contained in three files, as outlined in
Table 20.1.

TABLE 20.1 Files Used to Create the E-Commerce Web Site

File Contents

bookstore.htm Contains the HTML and JavaScript code required to create the bookstore
page.

shopcart.htm Contains the HTML and JavaScript code needed to create the shopping cart
page. It also contains the code needed to capture the user information and
send the order for processing.

books.js Contains functions needed by both the bookstore.htm and shopcart.htm

pages. This includes the functions for creating the book custom object and
the bookDB array.

624 Day 20

FIGURE 20.2
Create a shopping cart
page to provide the
user with a list of items
that have been
ordered.

24 2978 CH20 4/10/02 10:40 AM Page 624

JavaScript in E-Commerce 625

20

The Online Catalog
It stands to reason that if you are going to create an e-commerce site you must have
something to sell. Typically most e-commerce sites have multiple items for sale, but a
site can have as few as one single item. The page or pages that list the items you have for
sale constitute your online catalog. When creating your online catalog there are really
only two requirements you need to keep in mind: you need to list the items for sale, and
you need to provide a method to select the items for purchase.

There are multiple methods that you can use to create an online catalog, and the method
that you choose is governed by factors such as the number of items you have for sale,
how frequently your list changes, and even whether or not you want to allow visitors to
search for items that match specific criteria.

For our bookstore site, the online catalog consists of two major pieces: the online catalog
page that displays the items for sale, and the actual database of items for sale. Of course,
it may seem that they would both be the same thing, but it will become evident why you
will need these to be two separate elements of the Web site.

Creating the Custom Database
Since we are creating an online bookstore, our online catalog will contain a list of books
that are available for purchase. Because the list of books is fairly short, and we do not
intend to change it, we will use a custom JavaScript object for our database of items.
Perhaps you remember from the last chapter, custom objects allow us to group multiple
related data types together. Our custom object is going to be made up of four different
data values that describe a book, as listed below and shown in Listing 20.1.

Keep in mind that we want to place this code in the books.js file so that
the object can be accessed by both the shopcart.htm and bookstore.htm

pages.

Note

• Title—This value will be a string that contains the title of the book.

• Number—This value will be a string that contains the ISBN number assigned to
the book. Because ISBN numbers are all unique, this provides a good field for
locating the desired book.

• Price—This is a numeric value that indicates the price of the book.

• Quantity—This value indicates the number of units ordered for the corresponding
book, which was ordered by the user. We initially assign a value of zero to this
field.

24 2978 CH20 4/10/02 10:40 AM Page 625

LISTING 20.1 Creating a Book Object

function book(title, number, price, quantity)
{

this.title = title;
this.number = number;
this.price = price;
this.quantity = quantity;

}

As you are aware, the custom object would only represent one book in our bookstore.
Therefore we need to have a separate object for each book. Instead of creating different
objects for each book, we will create one array that contains all of the book objects.

var bookDB = new Array();

Once we have our array of books created, we need to assign values for each book. We
will accomplish this by creating 10 array elements that create separate book objects, as
illustrated in Listing 20.2. Again, place this code in the books.js file.

LISTING 20.2 Assigning the Book Information to the Book Database Array

function createBookDB()
{

bookDB[0] = new book(“Sams Teach Yourself JavaScript in 21 Days”,
“0672322978”, 34.99, 0);

bookDB[1] = new book(“Sams Teach Yourself Web Publishing with
HTML and XHTML in 21 Days”, “0672320770”, 31.99, 0);

bookDB[2] = new book(“Sams Teach Yourself Java 2 in 21 Days”,
“0672319586”, 26.99, 0);

bookDB[3] = new book(“Sams Teach Yourself XSLT in 21 Days”,
“0672323184”, 35.99, 0);

bookDB[4] = new book(“Sams Teach Yourself Ruby in 21 Days”,
“0672322528”, 35.99, 0);

bookDB[5] = new book(“Sams Teach Yourself Mozilla Programming in 21 Days”,
“0672321726”, 35.99, 0);

bookDB[6] = new book(“Sams Teach Yourself Cisco Routers in 21 Days”,
“067232296X”, 35.99, 0);

bookDB[7] = new book(“Sams Teach Yourself Access 2002 in 21 Days”,
“0672321033”, 35.99, 0);

bookDB[8] = new book(“Sams Teach Yourself Perl in 21 Days”,
“0672320355”, 31.99, 0);

bookDB[9] = new book(“Sams Teach Yourself .NET Windows Forms in 21 Days”,
“0672323206”, 35.99, 0);

}

626 Day 20

INPUT

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 626

JavaScript in E-Commerce 627

20

You will notice that as we create each array element, we are actually calling the book()
function to create a separate book object for each element of the array. Again, if you
want more information about creating custom objects, you can refer back to Chapter 19,
“Creating Your Own Objects.”

Using an Actual Database
If you have a more complex online store than the one we are creating, you will need to
seriously consider the use of a real database package for maintaining your list of items.
There are several different database options to consider. For smaller stores, you might
consider using a Microsoft Access database. More complex databases should be created
using database programs such as Microsoft SQL Server, or MySQL. These database
applications are designed to handle larger databases and are also better designed for han-
dling a lot of traffic.

Unfortunately, dealing with these different databases is beyond the scope of this book,
but there are several great resources available. Check out Sams Teach Yourself MySQL in
24 Hours and Sams Teach Yourself Access 2002 in 21 Days for more information on
dealing with other types of databases.

Designing Your Catalog
We already have designed a custom object array to contain the items in the bookstore,
now we need to capture the data from the array to list on the online catalog page. Of
course, you can just as easily create a static HTML page that lists the items for sale, but
by pulling the data from the custom object array (if you do decide to modify the online
catalog), you only need to change the data in your array and it will be updated on the
catalog page.

We are going to create a table of the items in the catalog. Since we are going to be get-
ting the items for the table from our array of custom objects, we need to use JavaScript
to accomplish this, as you can see in Listing 20.3.

LISTING 20.3 Creating the Online Catalog

for (var n = 0; n < bookDB.length; n++)
{

document.writeln(‘<table width=500>’);
document.writeln(‘<tr><td>’ + bookDB[n].title + ‘</td></tr>’);
document.writeln(‘<tr><td>’+ ‘ISBN Number: ‘ + bookDB[n].number +
‘</td></tr>’);
document.writeln(‘<tr><td><i>’+ ‘Price US $’ + bookDB[n].price +

‘</i></td></tr>’);
document.writeln(‘<tr><td><a href=”javascript:addBook(\’’ +

bookDB[n].number + ‘\’)”>’ + ‘Purchase</td></tr></table>’);
}

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 627

In Listing 20.3 you probably noticed that we are creating a for loop that exe-
cutes as long as there are items in our array. It determines how many times to

execute by evaluating the array length with the bookDB.length statement.

Finally, if you examine the code in Listing 20.3, you will notice that the last
document.writeln statement creates a call to the JavaScript function addBook(). We are
going to create this JavaScript function to add the books selected by the user to the shop-
ping cart. The addBook() function is called by passing it the ISBN number for the select-
ed book as an identifier for the book that the user would like to purchase. As mentioned
earlier, ISBN numbers are all unique so this value makes a good identifier for locating a
book in our custom object array.

The addBook() function will accomplish two goals. First we will use the book’s ISBN
number to determine which book the user wants to purchase. We will change the
number property of the array element to reflect the selection. The next step in this func-
tion is to create a cookie string that contains the purchase selections. We then will use
this cookie to maintain a list of the books that the user wants to order. That way, if the
user leaves the site for any reason, when she returns the order can continue to be placed
because the cookie remembers which items have been selected. Finally, as you can see in
Listing 20.4, the function calls our shopping cart page.

LISTING 20.4 Creating the Selection of Books

<script language=”JavaScript” type=”text/javascript”>
<!--
function addBook(isbn_number)
{

for (var n = 0; n < bookDB.length; n++)
{

if (bookDB[n].number == isbn_number)
{
var numOrdered = bookDB[n].quantity;
numOrdered++;
bookDB[n].quantity = numOrdered;
break;

}
}
var ordered = “ “;
for (var n = 0; n < bookDB.length; n++) {

ordered += bookDB[n].quantity;
if (n < bookDB.length - 1) {

ordered += “+”;
}

}
var ordercookie = “orders = “ + ordered;

628 Day 20

ANALYSIS

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 628

JavaScript in E-Commerce 629

20

document.cookie = ordercookie;
window.location = “shopcart.htm”;

}
//-->
</script>

If you look at the last part of the function, you will see the code that creates the
cookie. First, we create a string of the orders for the user and place the string in

the ordered variable. In this case we are using an addition symbol (+) to separate the
number quantities. Essentially, though, if the user were to order the first, third, and
seventh books in the custom array, the ordered variable would have a value of
“1+0+1+0+0+0+1+0+0+0”. This value is stored in the cookie called orders so it can be
retrieved later.

LISTING 20.4 continued

ANALYSIS

For more information on working with cookies in JavaScript refer to
Chapter 16, “Cookies: Storing Persistent Data.”

Note

The Bookstore Code
So far we have looked at the pieces of the code required to create our online bookstore
page. This page is actually fairly simple, as you will see in Listing 20.5.

LISTING 20.5 Creating the Online Bookstore (bookstore.htm)

<html>
<head>
<title>Book Store</title>
<script language=”JavaScript” type=”text/javascript” src=”books.js”></script>

<script language=”JavaScript” type=”text/javascript”>
<!--
function addBook(isbn_number)
{

for (var n = 0; n < bookDB.length; n++)
{

if (bookDB[n].number == isbn_number)
{
var numOrdered = bookDB[n].quantity;
numOrdered++;
bookDB[n].quantity = numOrdered;
break;

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 629

}
}
var ordered = “ “;
for (var n = 0; n < bookDB.length; n++) {

ordered += bookDB[n].quantity;
if (n < bookDB.length - 1) {

ordered += “+”;
}

}
var ordercookie = “orders = “ + ordered;
document.cookie = ordercookie;
window.location = “shopcart.htm”;

}
//-->
</script>
</head>
<body>
<h1 align=”center”>Book Catalog</h1>
<p align=”center”>
<script language=”JavaScript” type=”text/javascript”>
<!--
createBookDB();
if (total_ordered > 0) {

document.writeln(‘’ + ‘view shopping cart’);
}
else {

document.writeln(‘Shopping cart is empty.’);
}
document.writeln(‘<hr>’);
for (var n = 0; n < bookDB.length; n++)
{

document.writeln(‘<table width=500>’);
document.writeln(‘<tr><td>’ + bookDB[n].title + ‘</td></tr>’);
document.writeln(‘<tr><td>’+ ‘ISBN Number: ‘ + bookDB[n].number +

‘</td></tr>’);
document.writeln(‘<tr><td><i>’+ ‘Price US $’ + bookDB[n].price +

‘</i></td></tr>’);
document.writeln(‘<tr><td><a href=”javascript:addBook(\’’ +

bookDB[n].number + ‘\’)”>’ + ‘Purchase</td></tr></table>’);
}
//-->
</script>
</body>
</html>

In Listing 20.5, you more than likely noticed that there are a few additional lines
of code that we have not covered yet.

630 Day 20

LISTING 20.5 continued

ANALYSIS

24 2978 CH20 4/10/02 10:40 AM Page 630

JavaScript in E-Commerce 631

20

As mentioned earlier in the book, we are using the books.js file to store functions that
are needed by each page of our Web site. Of course, if you have this page, you need to
specify its location, as we did at the beginning of the file. This statement directs that that
file be looked in for any functions that are not found in the current file.

<script language=”JavaScript” type=”text/javascript” src=”books.js”></script>

We make use of the code in the books.js file when we make a call to create the custom
book database with the statement createBookDB(). This line of code calls the function in
that file, and the book database is created and loaded with the initial values as shown in
Listings 20.1 and 20.2.

There is one more piece of the code that we have not discussed. We need to provide a
method for the users to quickly view the contents of their shopping carts. Of course if the
cart is empty, there is no reason to view it. Therefore, we can create code to check to see
if any items have been ordered by checking the contents of a global variable called
total_ordered. If this variable is greater than zero, we provide a link to the shopping
cart. Otherwise, we provide a message indicating the cart is empty, as shown in
Listing 20.6.

LISTING 20.6 Linking to the Shopping Cart

if (total_ordered > 0) {
document.writeln(‘’ + ‘view shopping cart’);

}
else {

document.writeln(‘Shopping cart is empty.’);
}

As mentioned, if the user has selected any books to order, the link “view shopping cart”
displays under the page title, as shown in Figure 20.3. By clicking on that link, the shop-
ping cart page displays with a list of the books that have been selected.

Creation of the Books.js File
So far there have been a lot of references made to the books.js file that the e-commerce
site uses to maintain functions that are used by both Web pages. Keep in mind, this file is
not necessary, but without it all of these functions would need to exist in both the shop-
cart.htm and bookstore.htm files. By creating this include file, you are able to clean up
your code and eliminate any redundant functions. Also, if you decide to modify a func-
tion, you only have to make the changes in one location.

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 631

Meanwhile, we have created two functions that exist in the books.js file, the book() and
createBookDB() functions. There are a couple of other functions that we are going to
place in this file–as you can see in Listing 20.7.

LISTING 20.7 Creating the Common Functions (books.js)

var bookDB = new Array();
var total_ordered = 0;
function book(title, number, price, quantity)
{

this.title = title;
this.number = number;
this.price = price;
this.quantity = quantity;

}
function createBookDB()
{

bookDB[0] = new book(“Sams Teach Yourself JavaScript in 21 Days”,
“0672322978”, 34.99, 0);

bookDB[1] = new book(“Sams Teach Yourself Web Publishing with
HTML and XHTML in 21 Days”,

“0672320770”, 31.99, 0);
bookDB[2] = new book(“Sams Teach Yourself Java 2 in 21 Days”,

“0672319586”, 26.99, 0);

632 Day 20

FIGURE 20.3
You can display a
different message
depending on
whether or not the
user has placed an
order for any books.

User has selected 1 or more books.

OUTPUT

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 632

JavaScript in E-Commerce 633

20

bookDB[3] = new book(“Sams Teach Yourself XSLT in 21 Days”,
“0672323184”, 35.99, 0);

bookDB[4] = new book(“Sams Teach Yourself Ruby in 21 Days”,
“0672322528”, 35.99, 0);

bookDB[5] = new book(“Sams Teach Yourself Mozilla Programming in 21 Days”,
“0672321726”, 35.99, 0);

bookDB[6] = new book(“Sams Teach Yourself Cisco Routers in 21 Days”,
“067232296X”, 35.99, 0);

bookDB[7] = new book(“Sams Teach Yourself Access 2002 in 21 Days”,
“0672321033”, 35.99, 0);

bookDB[8] = new book(“Sams Teach Yourself Perl in 21 Days”,
“0672320355”, 31.99, 0);

bookDB[9] = new book(“Sams Teach Yourself .NET Windows Forms in 21 Days”,
“0672323206”, 35.99, 0);

checkQuantity();
}
function checkQuantity()
{

var ordersCookie = findOrder(“orders”);
if (!ordersCookie) {return}
var userOrders = ordersCookie.split(“+”);
for (var n = 0; n < userOrders.length; n++)
{

var orderNum = userOrders[n];
bookDB[n].quantity = orderNum;
if (orderNum > 0)
{

total_ordered++;
}

}
}
function findOrder(findName)
{

var entireCookie;
var cookieName;
var cookieValue;
var cookieArray = document.cookie.split(“; “);
for (var n = 0; n < cookieArray.length; n++)
{

entireCookie = cookieArray[n].split(“=”);
cookieName = entireCookie[0];
cookieValue = entireCookie[1];
if (cookieName == findName)
{

return unescape(cookieValue);
}

}
return null;

}

LISTING 20.7 continued

24 2978 CH20 4/10/02 10:40 AM Page 633

At the beginning of the books.js file you need to declare two different global
variables; both have been mentioned earlier in the chapter. The bookDB variable

is an array used to create the array of custom objects (book database). The total_
ordered variable keeps track of the total number of books that have been ordered.

You probably also noticed that there are two additional functions that we have not looked
at, checkQuantity() and FindOrder(). The checkQuantity() function is called from
the createBookDB() function to determine how many of each book has been ordered.
You will notice that the createBookDB() function first sets the quantity of each book to
zero, and then the checkQuantity() function checks for the cookie. If the cookie exists,
the number of orders for each book is updated by changing the quantity property of the
bookDB array element.

The findOrder() function is also used by another function in the books.js file. This
function is called by the checkQuantity() function to determine if a cookie exists on the
user’s machine. If the specified cookie, in this case the “orders” cookie, exists, it is
returned to the checkQuantity() function so that the function can determine the number
of orders.

634 Day 20

ANALYSIS

When you use include files to store your common JavaScript functions it typ-
ically helps to clean up your code. You can include as many different .js
files as you want. You just need to add a separate line of code for each file-
name.

Include files work great for commonly used functions. Not only do you elimi-
nate code redundancy by only having a function appear in one location in
your source code, but you also eliminate errors caused by updating a func-
tion and forgetting to update it on all pages of the site.

Also, by placing JavaScript functions in .js files you can greatly simplify your
actual HTML page. As discussed in Chapter 17, “Privacy and Security,” these
files can make your code a little more secure because the visitor to your site
must open each .js file to see your JavaScript code.

Note

In this case our .js file is actually rather small. While we could have placed most of our
JavaScript code in this file to simplify the HTML pages, it is your own personal prefer-
ences that determine how you use the .js file.

24 2978 CH20 4/10/02 10:40 AM Page 634

JavaScript in E-Commerce 635

20

Shopping Carts
I am sure you have visited a multitude of different e-commerce sites on the Web.
Although each site has a different look and feel, they are all quite similar when it comes
to the shopping cart page. This page always lists the items that have been ordered. Our
shopping cart lists the ordered items and allows a book order to be removed from the cart
by selecting the Delete link, as shown in Figure 20.4.

FIGURE 20.4
The shopping cart
provides the ability
to remove unwanted
items.

To create the items in the shopping cart, we will use a method similar to the one we used
to create the online catalog by pulling the items from the bookDB array. The main differ-
ence is that on the shopping cart page we only want to display the items, or books, that
the user has selected for purchase. To accomplish this, we are only going to display book
objects with a quantity property value greater than zero, as shown in Listing 20.8.

LISTING 20.8 Viewing Ordered Items

var orderTotal = 0;
document.writeln(‘<tr><th>ISBN Number</th>’);
document.writeln(‘<th>Book Title</th>’);
document.writeln(‘<th>Quantity</th>’);
document.writeln(‘<th>Price</th>’);
document.writeln(‘<th>Total Price</th>’);
document.writeln(‘<th> </th></tr>’);

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 635

for (var n = 0; n < bookDB.length; n++)
{
bookNum = bookDB[n].quantity;
if (bookNum > 0)

{
document.writeln(‘<td width=”110” align=”center”>’ +

bookDB[n].number + ‘</td>’);
document.writeln(‘<td width=”320”>’ + bookDB[n].title + ‘</td>’);
document.writeln(‘<td width=”75” align=”center”>’ +

bookDB[n].quantity + ‘</td>’);
bookPrice = bookDB[n].price;
bookTotal = bookNum * bookPrice;
orderTotal += parseFloat(bookTotal);
document.writeln(‘<td width=”65” align=”center”>’ + ‘$’ +

bookPrice + ‘</td>’);
document.writeln(‘<td width=”75” align=”center”>’ + ‘$’ +

fixFloat(bookTotal, 2) + ‘</td>’);
document.writeln(‘<td><a href=”javascript:deleteOrder(\’’ +

n + ‘\’)”>’ + ‘Delete</td></tr>’);
}

}
document.writeln(‘<tr><td colspan=”4” align=”right”>Subtotal:</td>’);
document.writeln(‘<td align=”center”>$’ + fixFloat(orderTotal, 2) +
‘</td></tr>’);
document.close();

Again, this code is quite similar to the code used to display the book information
on the bookstore.htm page. The big difference is the if statement that checks to

see whether any books have been ordered, ensuring that only books ordered are dis-
played in the shopping cart. We calculate the total price for each book title by multiply-
ing the number of books ordered by the price for that particular book.

Finally we need to total the cost of purchasing the selected books. This is done by adding
up the individual costs for each book title. You will notice that we are calling a
fixFloat() function with each of the total values that we are displaying. This function
solves the math errors that occur when dealing with floating-point numbers, as outlined
in the following section.

Solving Floating-Point Math Errors
Because of floating-point math errors that can exist when performing calculations with
floating-point numbers, it is necessary to ensure that these errors are not displayed on the
Web site. Floating-point math errors occur because of the method that computers use to
represent numeric values. As you are aware, our math system is based on a base-10

636 Day 20

LISTING 20.8 continued

ANALYSIS

24 2978 CH20 4/10/02 10:40 AM Page 636

JavaScript in E-Commerce 637

20

system (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and so forth). Computers, on the other hand, store
all values as binary numbers. This means that the number 2 is represented as 10, 3 is 11,
and so on.

The problems with this type of math occur when dealing with floating-point numbers.
All integer numbers can be represented exactly as a binary value, but this is not true with
floating-point numbers. Because of this, a simple addition of two floating-point values
can produce some odd results.

To counteract this problem let’s create a function called fixFloat() to make sure each
floating-point value is properly formatted, as shown in Listing 20.9.

LISTING 20.9 Fixing Floating-Point Errors

function fixFloat(numValue, decimals)
{

var roundVal = Math.round(numValue * Math.pow(10, decimals));
var convertVal = roundVal / Math.pow(10, decimals);
var stringVal = convertVal.toString();
var decimalLoc = stringVal.indexOf(“.”);
if (decimalLoc == -1)
{
numDecimals = 0;
stringVal += “.”;
}

else
{
numDecimals = stringVal.length - decimalLoc - 1;

}
var padAmt = decimals - numDecimals;
if (padAmt > 0)
{
for (var n = 1; n <= padAmt; n++)

stringVal += “0”;
}

return stringVal;
}

Essentially this function takes the numeric value and multiplies it by 10 raised to
the power represented by the decimals variable, in this case 100. Then the value

is rounded and divided by the same value again. Next we convert the numeric value to a
string and if necessary, insert a decimal at the end of the string, and then pad with zeros
(if needed) to make sure there are two decimal places.

INPUT

ANALYSIS

24 2978 CH20 4/10/02 10:40 AM Page 637

Deleting Orders
If you look at Figure 20.4 again you will see that there are actually two ways that users
can remove contents from the cart. They can either delete individual book titles from the
cart or remove the entire contents of the cart. Therefore, we will need to create the two
functions required to delete orders.

Our first function called deleteOrder() is called when the user selects the Delete link
next to a particular book. This function, shown in Listing 20.10, receives the ISBN num-
ber of the book that should be removed from the shopping list. The function simply
changes the quantity property associated with that bookDB array element to zero and then
recreates the orders cookie.

LISTING 20.10 Deleting an Item from the Shopping Cart

function deleteOrder(bookID)
{

bookDB[bookID].quantity = 0;
total_ordered--;
var ordered = “”;
for (var n = 0; n < bookDB.length; n++)
{

ordered += bookDB[n].quantity;
if (n < bookDB.length - 1)
{

ordered += “+”;
}

}
var ordercookie = “orders = “ + ordered;
document.cookie = ordercookie;
location.reload();

}

Notice that once we have changed the quantity for a particular element of the
BookDB array we reload the Web page with the location.reload() statement.

When this happens, the shopping cart is recreated by loading the orders from the orders
array giving the appearance of deleting the book order from the shopping cart. This also
causes the amounts to be re-totaled for the order.

The other function that we will need to create will delete all the items from the shopping
cart when the user selects the Delete All Items button. This deleteAll() function, shown
in Listing 20.11, works similarly to the deleteOrder() function discussed earlier. The
main difference is that the quantity property is set to zero for all elements of the bookDB
array, indicating that there are no orders for the particular user.

638 Day 20

INPUT

ANALYSIS

24 2978 CH20 4/10/02 10:40 AM Page 638

JavaScript in E-Commerce 639

20

LISTING 20.11 Deleting All Items from the Shopping Cart

function deleteAll()
{
for (var n = 0; n < bookDB.length; n++)
{
bookDB[n].quantity = 0;

}
var ordered = “”;
for (var m = 0; n < bookDB.length; m++)
{

ordered += bookDB[m].quantity;
if (m < bookDB.length - 1)
{

ordered += “+”;
}

}
var ordercookie = “orders = “ + ordered;
document.cookie = ordercookie;
window.location = “shopcart.htm”;
location.reload();

}

As with deleteOrder(), the deleteAll() function also ends with the
location.reload(); statement to reload the Web page. An interesting thing

happens though when we reload the page. Since there are no longer any book orders the
bookstore.htm page loads. This is because we have the code in Listing 20.12 that
checks to see whether there are any book orders each time the shopcart.htm page loads.
If there are no orders, there is no reason to load the shopcart.htm page, and therefore
we load the bookstore.htm page.

LISTING 20.12 Checking Whether Orders Exist

if (total_ordered == 0)
{

location.replace(“bookstore.htm”);
}

Gathering User Information
Finally, in order to send the order to the user you need to capture specific user informa-
tion. Typically this consists of the user’s name, address, telephone number, and credit
card information. There are different methods that can be used to capture this informa-
tion. For our bookstore site, let’s place fields at the bottom of the shopping cart page to

INPUT

ANALYSIS

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 639

gather the user information before they select the Checkout button, as shown in
Figure 20.5.

640 Day 20

FIGURE 20.5
You need to capture
information about the
user to complete the
order.

Let’s capture this information and use the user’s e-mail program to send the order to be
processed. As you can see in Listing 20.13, the order is sent to the address entered in the
e-mail address line on the form. (Obviously you would not send the order to the user, but
in this instance we did in order to test the code to see how an order would arrive within
an e-mail message.)

LISTING 20.13 Sending Order Information

function mailOrder()
{

who=document.order.Email.value;
what=”order”;
var mess = “”;
for (var n = 0; n < bookDB.length; n++)
{
bookNum = bookDB[n].quantity;
if (bookNum > 0)

{
mess += “ISBN: “ + bookDB[n].number + “ ”;
mess += “Book Name: “ + bookDB[n].title + “ ”;
mess += “Quantity Ordered: “ + bookDB[n].quantity +

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 640

JavaScript in E-Commerce 641

20

“ ”;
mess += “Book Price: “ + bookDB[n].price + “ ”;
mess += “ *** “;
}

}
mess +=”Customer Name: “ + document.order.Name.value + “ ”;
mess +=”Email Address: “ + document.order.Email.value + “ ”;
mess +=”Address: “ + document.order.Address.value + “ ”;
mess +=”City: “ + document.order.City.value + “ ”;
mess +=”State: “ + document.order.State.value + “ ”;
mess +=”Zip Code: “ + document.order.ZipCode.value + “ ”;
mess +=”Country: “ + document.order.Country.value + “ ”;
parent.location.href=’mailto:’+who+’?subject=’+what+’&body=’+mess;

}

This code creates a message string by concatenating the entire order and the user infor-
mation. When the Checkout button is selected an e-mail message is created to send for
the order to be processed, as shown in Figure 20.6.

LISTING 20.13 continued

FIGURE 20.6
You can use e-mail to
send an order for
processing.

OUTPUT

Coding for the Shopping Cart Page
We already have created several different functions for our shopcart.htm page. Now
let’s look at how they come together on the page, as shown in Listing 20.14.

24 2978 CH20 4/10/02 10:40 AM Page 641

LISTING 20.14 The Shopping Cart Page (shopcart.htm)

<html>
<script language=”JavaScript” type=”text/javascript” src=”books.js”></script>
<script language=”JavaScript” type=”text/javascript”>
<!--
function deleteOrder(bookID)
{

bookDB[bookID].quantity = 0;
total_ordered--;
var ordered = “”;
for (var n = 0; n < bookDB.length; n++)
{

ordered += bookDB[n].quantity;
if (n < bookDB.length - 1)
{

ordered += “+”;
}

}
var ordercookie = “orders = “ + ordered;
document.cookie = ordercookie;
location.reload();

}
function deleteAll()
{
for (var n = 0; n < bookDB.length; n++)
{
bookDB[n].quantity = 0;

}
var ordered = “”;
for (var m = 0; n < bookDB.length; m++)
{

ordered += bookDB[m].quantity;
if (m < bookDB.length - 1)
{

ordered += “+”;
}

}
var ordercookie = “orders = “ + ordered;
document.cookie = ordercookie;
window.location = “shopcart.htm”;
location.reload();

}
function fixFloat(numValue, decimals)
{

var roundVal = Math.round(numValue * Math.pow(10, decimals));
var convertVal = roundVal / Math.pow(10, decimals);
var stringVal = convertVal.toString();
var decimalLoc = stringVal.indexOf(“.”);
if (decimalLoc == -1)
{

642 Day 20

INPUT

24 2978 CH20 4/10/02 10:40 AM Page 642

JavaScript in E-Commerce 643

20

numDecimals = 0;
stringVal += “.”;
}

else
{
numDecimals = stringVal.length - decimalLoc - 1;

}
var padAmt = decimals - numDecimals;
if (padAmt > 0)
{
for (var n = 1; n <= padAmt; n++)

stringVal += “0”;
}

return stringVal;
}
function mailOrder()
{

who=document.order.Email.value;
what=”order”;
var mess = “”;
for (var n = 0; n < bookDB.length; n++)
{
bookNum = bookDB[n].quantity;
if (bookNum > 0)

{
mess += “ISBN: “ + bookDB[n].number + “ ”;
mess += “Book Name: “ + bookDB[n].title + “ ”;
mess += “Quantity Ordered: “ + bookDB[n].quantity +

“ ”;
mess += “Book Price: “ + bookDB[n].price + “ ”;
mess += “ *** “;
}

}
mess +=”Customer Name: “ + document.order.Name.value + “ ”;
mess +=”Email Address: “ + document.order.Email.value +

“ ”;
mess +=”Address: “ + document.order.Address.value + “ ”;
mess +=”City: “ + document.order.City.value + “ ”;
mess +=”State: “ + document.order.State.value + “ ”;
mess +=”Zip Code: “ + document.order.ZipCode.value + “ ”;
mess +=”Country: “ + document.order.Country.value + “ ”;
parent.location.href=’mailto:’+who+’?subject=’+what+’&body=’+mess;

}
//-->
</script>
</head>
<body>
<h1 align = “center”>Shopping Cart</h1>
<table cellpadding=”0” cellspacing=”0”>

LISTING 20.14 continued

24 2978 CH20 4/10/02 10:40 AM Page 643

<script language=”JavaScript” type=”text/javascript”>
<!--
createBookDB();
if (total_ordered == 0)
{

location.replace(“bookstore.htm”);
}
var orderTotal = 0;
document.writeln(‘<tr><th>ISBN Number</th>’);
document.writeln(‘<th>Book Title</th>’);
document.writeln(‘<th>Quantity</th>’);
document.writeln(‘<th>Price</th>’);
document.writeln(‘<th>Total Price</th>’);
document.writeln(‘<th> </th></tr>’);
for (var n = 0; n < bookDB.length; n++)

{
bookNum = bookDB[n].quantity;
if (bookNum > 0)

{
document.writeln(‘<td width=”110” align=”center”>’ +

bookDB[n].number + ‘</td>’);
document.writeln(‘<td width=”320”>’ + bookDB[n].title + ‘</td>’);
document.writeln(‘<td width=”75” align=”center”>’ +

bookDB[n].quantity + ‘</td>’);
bookPrice = bookDB[n].price;
bookTotal = bookNum * bookPrice;
orderTotal += parseFloat(bookTotal);
document.writeln(‘<td width=”65” align=”center”>’ + ‘$’ +

bookPrice + ‘</td>’);
document.writeln(‘<td width=”75” align=”center”>’ + ‘$’ +

fixFloat(bookTotal, 2) + ‘</td>’);
document.writeln(‘<td><a href=”javascript:deleteOrder(\’’ +

n + ‘\’)”>’ + ‘Delete</td></tr>’);
}

}
document.writeln(‘<tr><td colspan=”4” align=”right”>Subtotal:</td>’);
document.writeln(‘<td align=”center”>$’ + fixFloat(orderTotal, 2) +
‘</td></tr>’);
document.close();
//-->
</script>
</table>
<hr>
<table align=”right”>
<tr><td><input type=”button” value=”Delete All Items”
onClick=”deleteAll()”></td>
<td><input type=”button” value=”Continue Shopping”
onClick=”location=’bookstore.htm’”></td></tr>
</table>

644 Day 20

LISTING 20.14 continued

24 2978 CH20 4/10/02 10:40 AM Page 644

JavaScript in E-Commerce 645

20

<form METHOD=”post” Name=”order”>
<p> </p>
<table border=”0”>
<tr><td>Name</td><td><input type=”text” name=”Name” size=”40”></td></tr>
<tr><td>Email Address</td><td><input type=”text” name=”Email”
size=”40”></td></tr>
<tr><td>Address </td><td><input type=”text” name=”Address”
size=”40”></td></tr>
<tr><td>City</td><td><input type=”text” name=”City” size=”40”></td></tr>
<tr><td>State/Province</td><td><input type=”text” name=”State”
size=”20”>
Zip Code</td><td><input type=”text” name=”ZipCode” size=”20”></td></tr>
<tr><td>Country</td><td><input type=”text” name=”Country”
size=”20”></td></tr>
<tr><td>Credit Card</td><td><input type=”text” name=”Credit” size=”20”>
</td></tr>
<tr><td>Expiration</td><td><input type=”text” name=”Month” size=”5”>/
<input type=”text” name=”Year” size=”5”> </td></tr>
<tr><td><input type=”button” value=”Checkout” onClick=”mailOrder()”></td></tr>
</table>
</form>
</body>
</html>

Keep in mind, as with the bookstore.htm page, the createBookDB() function also needs
to be called when this page loads. This function creates the bookDB() array so that the
code on this page can determine which orders exist.

Issues to Consider
This e-commerce example was designed to use the existing e-mail of the user to enable
the creation of this Web site with the use of existing tools, including JavaScript and
HTML. Unfortunately this is not always the ideal situation. As you probably noticed, the
use of this method typically requires the user to select the Send button on the e-mail
message before the order will be submitted. Also, it is possible that your code may not
be able to access an e-mail program on the user’s computer to send the message with.
Because of this issue there are other methods available on the market for submitting
orders. You can incorporate CGI scripts to process and submit your order. There also are
several other products available for capturing user orders.

Another issue to keep in mind is the security risk of e-mailing credit card numbers. As
you are aware, an e-mail message is not secure, so it is typically not recommended to
e-mail credit card information without encrypting it. There are different encryption
methods that you can use to encrypt a credit card number so that it can be sent securely.

LISTING 20.14 continued

24 2978 CH20 4/10/02 10:40 AM Page 645

If you are using e-mail to process your orders you will probably want to use the tele-
phone to gather credit card information. There are also several server-side options
available for processing credit cards.

Summary
This chapter has provided a look at the basic elements needed to create a successful e-
commerce site. As illustrated, you can create a fairly sophisticated e-commerce site
boasting an online store, database (catalog), shopping cart, and order desk—all accom-
plished with just JavaScript and HTML.

Workshop
In the workshop today, we will look at some Q&A issues dealing with an e-commerce
site and use the questions and exercises to review what you have learned in this chapter
about creating an e-commerce site with JavaScript.

Q&A
Q. Why do I need to use the fixFloat() function? My code works fine without it.

A. As mentioned within the chapter, the method used by your computer to store
numeric, actually all values, is binary or a series of 1’s and 0’s. This works fine for
integer values, but not all floating-point values can be accurately represented in a
binary form. Therefore, when you add two simple numbers together you may end
up with a number with more digits than anticipated. For example, if you have your
computer add these values: 53.98, 35.99, 35.99 it will return a value of
125.96000000000001. This math error will not be apparent until you perform a
calculation that cannot be accurately represented. To avoid errors, you need to use
fixFloat() or another similar function.

Q. What if I want to allow the quantity to be modified on the shopping cart
page?

A. Rather than making the user return to the bookstore page to select another copy of
a book, you can make the Quantity field on your form editable. To do this you
need to make the field into a textbox. Keep in mind that if you do this, you also
need to devise a method to recalculate the form after the quantity is modified. You
can consider using event handling to determine when the field has been modified.
For more information refer to Chapter 10, “Events and Events Handling,” and
Chapter 6, “HTML Forms and the String Object.”

646 Day 20

24 2978 CH20 4/10/02 10:40 AM Page 646

JavaScript in E-Commerce 647

20

Q. Is there a way to store the user information so they don’t have to re-enter it
each time?

A. If you are using cookies you can contain any of the values from your site. For
example, you can store the information that the user enters on the shopping cart
form in a cookie that is placed on his machine. When the page opens again you can
redisplay the values from the cookie. For more information on cookies, refer to
Chapter 16, “Cookies: Storing Persistent Data.”

Quiz
1. Why do you use cookies for an e-commerce site?

2. What value is gained by creating a .js file for the Web site?

3. How do we switch between pages within our JavaScript code?

Quiz Answers
1. Cookies allow you to store the order selections so that they can be accessed on

other pages. With our site we created in this chapter, the “orders” cookie contains a
string of numbers that indicates the number of each book that has been ordered.
This cookie can be accessed on either page of our site.

2. By creating an include file with the .js file extension, you are able to place code
that is needed by each page in one central location. This eliminates the need to
recreate the same code on each page. For example, with our e-commerce site, the
books.js page contains the code for creating our bookDB custom object array that
stores the book information. This also reduces chances for errors when you update
the code because you only need to make the changes in one location.

3. You can have the code switch to another page by changing the replace property
for the location object. When you set this property the specified page is loaded.

Exercises
1. Modify the bookstore.htm page to indicate the number of items that have been

placed in the user’s shopping cart. Keep in mind that since users can order multiple
copies of each book you need to count the number of actual books ordered, not just
the book titles that have been selected.

2. Add code to the shopcart.htm page to make sure the user information is entered
in the fields before allowing the order to be submitted.

24 2978 CH20 4/10/02 10:40 AM Page 647

24 2978 CH20 4/10/02 10:40 AM Page 648

DAY 21

WEEK 3

JavaScript and SVG
Throughout this book you have looked at the use of JavaScript with HTML or
XHTML Web pages. However, JavaScript can be used with many other tech-
nologies. This chapter will introduce you to one of the exciting emerging Web
technologies, Scalable Vector Graphics (SVG), and how it can be used with
JavaScript.

In the space available here, we can only introduce you to the fundamentals of
using JavaScript and SVG. The SVG specification itself is over 600 pages long
and, in addition, references other W3C documents such as those for the
Document Object Model (DOM), and the JavaScript Bindings for the SVG
DOM. To give you a flavor of how you can use JavaScript with SVG, this chap-
ter will introduce you to the use of SVG with some relatively simple SVG
graphics; then it will show you some techniques for manipulating or creating
those shapes using JavaScript.

In this chapter you will learn

• A brief introduction to SVG

• Potential uses of SVG on the Web

• How JavaScript can be used productively with SVG

25 2978 CH21 4/10/02 10:46 AM Page 649

Overview of Scalable Vector Graphics
Scalable Vector Graphics, typically referred to as SVG, is a recently finalized, XML-
based vector graphics specification from the World Wide Web Consortium (W3C). The
full text of the SVG 1.0 Recommendation is located at
http://www.w3.org/TR/2001/REC-SVG-20010904/.

SVG provides a powerful multi-capable vector graphics language for the display of 2D
vector graphics, text, and bitmap graphics. SVG includes powerful animation syntax by
“borrowing” elements from SMIL (Synchronized Multimedia Integration Language) 2.0
(see the specification located at http://www.w3.org/TR/2001/REC-smil-animation-
20010904/). SVG images can be embedded in HTML/XHTML Web pages(we will show
you how in a moment). SVG also provides the syntax to create free-standing “all-SVG”
Web pages (see www.SVGSpider.com/default.svg for an example site).

SVG is an application language of the Extensible Markup Language, XML, just as
HTML is an application language of the Standard Generalized Markup Language,
SGML. Since XML has many similarities to SGML the general form of an XML, and
therefore a SVG document will be familiar—it uses markup tags which look similar to
those in HTML/XHTML—but the details of XML syntax differ from those of HTML.
One important difference is that XML start tags, such as <svg>, must be balanced by a
closing end tag, </svg>. If you omit the end tag your code will be in error and likely part
or all of your SVG image won’t display.

650 Day 21

XHTML is HTML written to comply with XML syntax rules. XHTML tags,
unlike HTML ones, do require an end tag for every start tag.

Note

Why SVG?
You might be asking why W3C added a new graphics format since we already have
bitmap graphics such as GIFs and JPEGs and a widely used vector format, Macromedia
Flash.

Let’s suppose you want to search for Web pages which have information contained in
their graphics; no search engine will ever be able to find those since the “information” is
now simply a pattern of pixels. With SVG, although the information can be incorporated
in attractive graphics, the source code remains searchable since it is held as text in XML
format.

25 2978 CH21 4/10/02 10:46 AM Page 650

JavaScript and SVG 651

21

As you will see later in this chapter, it is possible to create rollover images using SVG
alone which reduce file size and network usage. Since many users will be restricted to
56K modems or slower for some time to come, such bandwidth savings are worthwhile.
In addition, if you master SVG you can create sophisticated rollovers without the need to
invest in expensive bitmap graphics software.

The source code for all SVG images is accessible to the visitor to a Web page, so the
understanding of SVG is expected to snowball in a way similar to the way that HTML
knowledge exploded a few years back. If you can see exactly the SVG techniques used in
an attractive Web page or image, then you can learn the new techniques much faster.

Why SVG and JavaScript?
If SVG on its own can do all these clever things, why do we need to use JavaScript
with it?

One important functionality that JavaScript can add to SVG is to give you the ability to
make decisions based on testing for a particular existing situation. In other words, adding
control logic is a key advantage of combining JavaScript with SVG.

For example, imagine an SVG map of a locality with information on, say, roads, build-
ings, and utility supplies. It may be very helpful to be able to selectively hide certain
parts of the map so that information, which is of particular interest, can be selectively
displayed. Using JavaScript by clicking on a control button can conceal certain parts of
the map if they are already displayed, or display them if they are currently concealed.

Equally, if you were using a multi-step SVG diagram in a Web page as a teaching aid to
describe some process, then clicking on a control could take the display forward step by
step, or allow the user to “rewind” the diagram to gain a better grasp of the sequence of
events. Similarly, a control could allow the user to zoom out or zoom in to see more
detail of what is being displayed or to take a broader view.

The combination of SVG and JavaScript allows user control of the display of SVG
image—limited only by the imagination and skills of the JavaScript programmer.

Basic SVG Tools
To use SVG you will need two types of tools—something to create SVG with, and some-
thing that will render SVG on screen. SVG is XML, which means that an SVG image is
also a text document that you can type character by character in a text editor, if you pre-
fer to do that.

25 2978 CH21 4/10/02 10:46 AM Page 651

SVG Creation Tools
A plain text editor such as Windows Notepad is adequate for the creation of simple SVG
files. If you are going to hand code SVG, then an XML-aware editor is useful since it
will automatically color code the syntax as you type, and it may be able to check what
you have typed for “well-formedness,” an XML term which means essentially that you
have followed the syntax rules correctly. Such color coding will save you a lot of time
trying to find an omitted quote mark or other syntax error in your code. One useful XML
Editor is XMLWriter, which is available as a free time-limited evaluation version from
http://www.xmlwriter.net. Its color highlighting and checking for well-formedness is
straightforward to use.

If you prefer to create SVG more visually, then a number of currently available
commercial vector graphics tools can now export drawings that you produce as SVG
files. Among the big names which have that capability are Adobe Illustrator 10 and
CorelDraw 10. At the time of writing, Macromedia Freehand has no SVG export facility.

A powerful vector drawing tool dedicated to SVG is WebDraw from Jasc. At the time of
writing, WebDraw is unique in that it lets you create SVG visually as well as tweak the
source code by hand. WebDraw has a tabbed interface that you use to create SVG images
by drawing (on the Canvas tab) or by editing SVG code directly (on the Source tab).
Figures 21.1 and 21.2 show the Canvas and Source tabs on a pre-release version of
WebDraw. Further information is located at http://www.jasc.com/products/webdraw/.
At the time of writing version 1.0 of WebDraw has been released and a preview version
is available for download from http://www.jasc.com/products/webdraw/wdrawdl.asp.

652 Day 21

FIGURE 21.1
The Canvas tab of
WebDraw enables
you to draw on
screen.

25 2978 CH21 4/10/02 10:46 AM Page 652

JavaScript and SVG 653

21

Notice in Figure 21.1 that on the left side of the image there is the three-tabbed pane
with Canvas, Source, and Preview tabs. On the right, you can see a representation of the
Document Object Model of the SVG image.

FIGURE 21.2
The Source tab of
WebDraw, showing
the code generated
by creating the
graphic shown in
Figure 21.1.

When seen on screen you can see that the code shown in Figure 21.2 is color-coded to
help you when editing, if you want to tweak an image that you created earlier. WebDraw
also allows you to import existing SVG images for further drawing or coding.

Whichever technique you choose to use to create SVG, you will also need a rendering
engine, often called a viewer, to interpret the SVG source code and display the SVG
image on screen.

SVG Viewers
At the time of writing, none of the popular Web browsers can natively display more than
a very little of SVG. Mozilla (http://www.mozilla.org) and Amaya
(http://www.w3.org/Amaya) are the only Web browsers that currently have even limited
native SVG rendering capabilities.

To display SVG in most Web browsers and script that SVG using JavaScript, you will
need to download and install the Adobe SVG Viewer which is a browser plugin, similar
to the one for Macromedia Flash. At the time of writing, the Adobe Viewer is at Version
3.0 and is already a very powerful implementation of SVG.

To download the Adobe SVG Viewer go to
http://www.adobe.com/svg/viewer/install/main.html. The viewer is intended for
use on Internet Explorer 4.0 and above, and Netscape Navigator 4.0–4.7x, and is there-
fore officially supported only on those browsers. Officially the Adobe SVG Viewer is not
supported on Netscape 6.x or on Mozilla or Opera. In practice you can install the Adobe
Viewer if you have a supported browser to which the viewer can first be installed.

25 2978 CH21 4/10/02 10:46 AM Page 653

Once you have the Adobe SVG Viewer installed, then you can access SVG Web pages or
HTML/XHTML Web pages that contain SVG images in the normal way. Simply type in
a URL such as http://www.svgspider.com/default.svg and the page will display.

The Adobe Viewer supports most of the W3C SVG Recommendation including anima-
tions, transformations, and scripting. At the time of writing, all other SVG implementa-
tions are more limited in the scope of the SVG Recommendation which is implemented.
Therefore, at the present time, the Adobe Viewer is the SVG viewer of choice.

If you want to create your own SVG images and display them on the Web you, or your
ISP, will need to adjust the server settings so that SVG images are served as type
“image/svg+xml”.

Example SVG Code
To help you gain an impression of what an SVG document (without JavaScript) might
look like, let’s take a look at a simple SVG document that describes how three basic
SVG graphics shapes should be rendered. This is shown in Listing 21.1.

LISTING 21.01 Three Basic SVG Shapes (SimpleShapes.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”300” height=”250”>
<line x1=”10” y1=”25” x2=”200” y2=”25” style=”stroke:#FF0000” />
<rect x=”30” y=”50” width=”150” height=”75”
style=”stroke:#FF0000; fill:#999999” />
<ellipse cx=”150” cy=”180” rx=”90” ry=”25”
style=”stroke:#FF6600; stroke-width:4; fill:#00FF00; fill-opacity:0.3” />
</svg>

The first line of the code

<?xml version=”1.0” standalone=”no”?>

654 Day 21

To install the Adobe SVG Viewer, version 3.0, to Netscape 6.x, Mozilla 0.9.3
or above, or Opera 5.x, first install the Adobe Viewer on an officially sup-
ported browser. On the Windows 98SE platform you will then find the key
file in the c:\Windows\System\Adobe\SVG Viewer 3.0 directory. In that direc-
tory you will find a file named NPSVG3.dll. Copy that file to the plugin
directory of the browser(s) to which you want to add SVG support.

Note

INPUT

ANALYSIS

25 2978 CH21 4/10/02 10:46 AM Page 654

JavaScript and SVG 655

21

is called the “XML declaration.” It tells the SVG rendering engine which syntax
(XML 1.0) the document contains. The DOCTYPE declaration, as shown here

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>

indicates the vocabulary that is allowable and the URL where the Document Type
Definition, DTD, which defines that vocabulary is located. Taken together the XML
declaration and the DOCTYPE declaration tell any SVG rendering engine that the syntax
rules to be followed are those of XML 1.0, and that the vocabulary to be used in accor-
dance with those syntax rules is that of SVG 1.0.

Following the DOCTYPE declaration there is an <svg> element which is the document
element for all SVG documents. Nested within the <svg> element are three elements
which describe some of the basic SVG shapes: in this case a line, a rectangle, and an
ellipse. The visual appearance of this simple code is shown in Figure 21.3. Mozilla is not
one of the officially supported browsers for the Adobe SVG Viewer but, as you can see,
the SVG displays using it once the necessary file has been copied to the plugins
directory, as described earlier.

FIGURE 21.3
Simple SVG shapes
seen using the Adobe
SVG Viewer in
Mozilla version
0.9.3.

In order to use JavaScript with SVG, you need to have some understanding of both the
DOM (to which you were introduced in Chapter 8) and the SVG Document Object
Model, as well as several other SVG elements.

25 2978 CH21 4/10/02 10:46 AM Page 655

The SVG Document Object Model
Throughout much of this book you have been manipulating or accessing the Document
Object Model (DOM) for an XHTML or HTML document. Just as each element and
attribute of an XHTML document has a corresponding node in the XHTML DOM, so for
each element and attribute of an SVG document there is a corresponding node in the
SVG DOM. In other words, the XHTML DOM and the SVG DOM are different because
each reflects the details of the structure of an XHTML document and an SVG document
respectively which, clearly, differ significantly.

Batik DOM Viewer
One of the SVG viewers that is used without a normal HTML browser is Batik. Batik
includes an SVG viewer that also allows you to directly see the DOM for an SVG
document which you are viewing.

Batik is a Java-based application. It can be downloaded from http://xml.apache.org/
batik. It also needs a Java 1.3 Runtime Environment, which you can download, if you
don’t already have one, from http://java.sun.com.

656 Day 21

The Java Virtual Machine, JVM, installed automatically on Windows 32-bit
platforms, is not compliant with Java 1.3, due to the long-running legal dis-
pute between Microsoft and Sun Microsystems. To make use of the Batik
SVG browser you will need the Sun Java 1.3 download.

Caution

Detailed installation instructions are located at
http://xml.apache.org/batik/install.html. Once you have downloaded and
installed the Java Runtime and Batik, you can access the Batik SVG Viewer using a
command-line interface (MS DOS Window on some Windows platforms). In the Batik
directory type the following:

java -jar batik-svgbrowser.jar

and, if everything is installed correctly, the Batik browser will open.

If we have a simple SVG document as shown in Listing 21.2, we can use Batik to
display the DOM hierarchy (as shown in Figure 21.4).

25 2978 CH21 4/10/02 10:46 AM Page 656

JavaScript and SVG 657

21

LISTING 21.2 A Simple SVG Document (WelcomeToSVG.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”400px” height=”200px”>
<style type=”text/css”>
<![CDATA[
rect {fill:red; opacity:0.5; stroke:none;}
text {font-family:Arial, sans-serif; font-size:14;}
]]>
</style>
<rect x=”20” y=”20” width=”360px” height=”160px” />
<text x=”40” y=”50” >Welcome to SVG!</text>
</svg>

INPUT

FIGURE 21.4
The SVG image is
displayed in the
Batik browser. The
Tools menu and the
option to display the
DOM Viewer are
highlighted.

OUTPUT

With the image opened in the Batik browser, select the Tools menu, and then the DOM
Viewer option within it to open the DOM Viewer. The DOM Viewer shows the hierarchy
of objects in the object model of the SVG document. The hierarchy can be expanded or
collapsed to allow you to focus on the part of the DOM tree which is of interest to you.
Figure 21.5 shows the DOM hierarchy for the SVG document displayed in Figure 21.4.
The object corresponding to the <rect> element is highlighted. Notice the x, y, width,
and height attributes as well as, in the lower part of the right pane, a host of CSS
properties (mostly default values) for that object.

25 2978 CH21 4/10/02 10:47 AM Page 657

As you want to examine and understand the structure of an SVG document and its asso-
ciated DOM, you can expand or collapse parts of the tree to allow for study of the parts
which are of interest to you. The ability to see the structure of the DOM for a particular
object can be very useful as you are learning the SVG DOM.

If you want to view SVG primarily in a Web browser, then the Adobe Viewer is likely
best. However, Batik includes much more SVG functionality than simply an SVG
viewer. Batik also allows you to embed SVG display functionality in a Java program.

SVG DOM Basics
The SVG DOM is based on the W3C DOM specification. The full Recommendations for
DOM Level 1 and Level 2 Core are located, respectively, at
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001 and
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. In addition the DOM
Level 2 Events Recommendation (http://www.w3.org/TR/2000/REC-DOM-Level-2-
Events-20001113) and DOM Level 2 Style Recommendation
(http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113) are also relevant to
the SVG DOM.

In order to use the SVG DOM from JavaScript, an SVG document must exist. Thus there
must be an <svg> element present, typically preceded by an XML declaration and a
DOCTYPE declaration, as you saw earlier. The DOCTYPE declaration shown below is
the declaration for the SVG 1.0 Recommendation of September, 2001:

658 Day 21

FIGURE 21.5
The DOM hierarchy
of the image shown
in Figure 21.4 dis-
played in Batik’s
DOM Viewer.

25 2978 CH21 4/10/02 10:47 AM Page 658

JavaScript and SVG 659

21

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”250” >

The <svg> element has optional width and height attributes. If you omit those, then the
SVG image defaults to 100% of the browser window’s width and height.

Later in the document, of course, there is an end </svg> tag to match the <svg> start tag;
otherwise the SVG rendering engine will report an error and likely refuse to render any
image on screen.

So how do elements like this translate into the DOM, and how do we access them using
JavaScript?

Using JavaScript in SVG
Strictly speaking the default scripting language for use with SVG is ECMAScript, rather
than JavaScript. As you are already aware, the differences between the two allow us to
often, although not totally correctly, think of JavaScript and ECMAScript as almost inter-
changeable terms.

The <script> Element in SVG Documents
JavaScript code in an SVG document is, as in HTML, nested between a <script> start
tag and a </script> end tag. However, you should be aware that a <script></script>
tag pair in SVG is referring to the SVG <script> element, not the similar
HTML/XHTML <script> element. In XML jargon, they are in different namespaces.

SVG is XML, therefore an XML parser will attempt to parse any content contained
between the <script> and </script> tags. If, for example, it comes across a less-than
sign, the parser (since an SVG parser is an XML parser) would signify an error. It would
interpret the less-than sign as the opening character of a tag, and then would try to inter-
pret the following JavaScript code as a tag name. Unless you were remarkably lucky you
wouldn’t have a corresponding greater-than sign and therefore an error would result.

To avoid that type of problem, JavaScript or ECMAScript code is contained within what
is called a CDATA section within the <script></script> tag pair, like so:

<script>
<![CDATA[
// Your code goes here
]]>
</script>

25 2978 CH21 4/10/02 10:47 AM Page 659

The CDATA section begins with <![CDATA[and ends with the character sequence]]>. It
signifies to the SVG parser that the content of the CDATA section is character data,
which the parser should not attempt to treat as SVG. The JavaScript interpreter sees the
<script> tag, ignores the <![CDATA[and]]> lines, and is happy if we write correct
JavaScript syntax.

Specifying the Scripting Language
SVG provides two methods for us to declare the scripting language that is being used. In
the <svg> element which is the element root, we can use a contentScriptType attribute
to define the default scripting language. Typically we will set the contentScriptType
attribute to a value of “text/ecmascript”. By setting the contentScriptType, we set
the default scripting language for the whole document. Thereafter, for example, we do
not need to specify a type attribute on any subsequent <script> start tags:

<svg contentScriptType=”text/ecmascript” ...>

However, if we wish to make unambiguous which scripting language we are using in a
particular piece of scripting code, we can add a type attribute to a <script> start tag as
shown below:

<script type=”text/ecmascript”>

The <script> start tag also allows us to reference external JavaScript files, like so:

<script type=”text/ecmascript” xlink:href=”MyJavaScript.js” />

660 Day 21

In XML syntax, an empty element can be written either as <someTag>
</someTag> or using a shorthand syntax <someTag />. If you are referencing
an external JavaScript file, it is often convenient to use that shorthand syn-
tax for the <script /> tag.

Note

Of course, if you want to use an HTML script you would use the following code, for
example:

<script type=”text/javascript” src=”MyJavaScript.js” ></script>

in the normal way. Remember too that although a <script /> tag is acceptable for an
SVG viewer, some traditional browsers will choke on that if you use it in an HTML
page.

25 2978 CH21 4/10/02 10:47 AM Page 660

JavaScript and SVG 661

21

A Skeleton SVG Document with JavaScript
An SVG document has to be written according to the rules of XML 1.0 syntax. Clearly,
JavaScript and ECMAScript lack the start tags and end tags required in XML syntax. If
an XML or SVG processor were to attempt to parse JavaScript directly, then an error, or
many errors, would quickly occur. XML provides a technique that indicates to an XML
or SVG processor that a defined block of text in the document is not to be parsed as
XML. To embed JavaScript within an SVG document, we use the CDATA section. A
skeleton document using the CDATA section is shown in Listing 21.3.

LISTING 21.3 A Skeleton Document for Using JavaScript
(SkeletonJavaScript.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”250” >

<script type=”text/javascript”>
<![CDATA[
// JavaScript code would go here.
]]>
</script>

</svg>

Let’s look at each line of the code which is nested within the <svg> element. The
first line,

<script type=”text/javascript”>

consists of the <script> element. The <script> element in SVG has the same element
type name as the <script> element in HTML. However, unlike the HTML <script>
element, the SVG <script> element has no language attribute but does have a type
attribute.

Let’s move on now and create some simple JavaScript code. In the examples which fol-
low, you will see the SVG code we are trying to produce, and then in the accompanying
example how we can use JavaScript to achieve that.

Adding a Title to an SVG Image
If you are using an SVG document as a standalone image or Web page, you can apply a
title to the image or page, which is displayed in the title bar of the browser.

Using declarative syntax, we can add a title as shown in Listing 21.4.

INPUT

ANALYSIS

25 2978 CH21 4/10/02 10:47 AM Page 661

LISTING 21.4 Adding a Title Using Declarative Syntax
(AddTitleDeclar.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”300” height=”150”>
<title>JavaScript works well with SVG!</title>
<rect x=”0” y=”0” width=”300” height=”150” style=”fill:red; stroke:none;”/>
</svg>

The code simply adds a title to the browser title bar, as shown in Figure 21.6.

662 Day 21

INPUT

FIGURE 21.6
Adding a title to the
browser window
using declarative
syntax.

OUTPUT

To achieve the same appearance in the browser window using JavaScript, you will need
to create an SVG <title> element and some content for it. An SVG image with embed-
ded simple JavaScript is shown in Listing 21.5.

LISTING 21.5 Adding a Title to an SVG Image Using JavaScript
(AddTitle.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”300” height=”150” onload=”AddTitle(evt)” >

<script type=”text/javascript”>
<![CDATA[
function AddTitle(evt){
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();
var myTitleData, myTitle;
myTitleData = SVGDoc.createTextNode(‘JavaScript works well with SVG!’);

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 662

JavaScript and SVG 663

21

myTitle = SVGDoc.createElement(“title”);
myTitle.appendChild(myTitleData);

SVGRoot.appendChild(myTitle);
}
]]>
</script>

<rect x=”0” y=”0” width=”300” height=”150” style=”fill:red; stroke:none;”/>
</svg>

The JavaScript code does exactly the same visually as the declarative code
shown in Listing 21.4.

The start tag of the <svg> element includes an onload attribute which calls the
AddTitle() function. We create an SVGDoc variable to identify the SVG image. Having
identified the SVG document, we then create the SVGRoot variable using the
getDocumentElement() method of the SVGDoc object. The variable myTitleData is
assigned the text string “JavaScript works well with SVG!” using the
createTextNode() method of the SVGDoc object. The SVGDoc.createElement() method
is used to create a node representing a <title> element.

The variables we need are created, but we need to add them to the document element.
First we add MyTitleData to the myTitle object using the appendChild() method.
Finally we add the myTitle object (with its new property myTitleData) to the SVGRoot
object.

If you download or type in the code in AddTitle.svg and display it in a browser
window, you will see that it is identical to that shown in Figure 21.6.

Of course we could have achieved the same result by using an external JavaScript file.
Listing 21.6 shows an SVG document with a reference to an external JavaScript script.

LISTING 21.6 An SVG Document Referencing an External JavaScript Script
(AddTitle02.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”300” height=”150” onload=”AddTitle(evt)” >

<script type=”text/javascript” xlink:href=”AddTitle02.js” />

<rect x=”0” y=”0” width=”300” height=”150” style=”fill:red; stroke:none;”/>
</svg>

LISTING 21.5 continued

ANALYSIS

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 663

Notice in Listing 21.6 that there is an xlink:href attribute to identify the location of the
external script. This functions similarly to the familiar href attribute in the HTML
script tag but uses the XML Linking Language (XLink) to provide the linking function-
ality. Listing 21.7 shows the script.

LISTING 21.7 A Simple JavaScript to Add a <title> Element to an SVG
Image (AddTitle02.js)

function AddTitle(evt){
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();
var myTitleData, myTitle;
myTitleData = SVGDoc.createTextNode(‘JavaScript works well with SVG!’);

myTitle = SVGDoc.createElement(“title”);
myTitle.appendChild(myTitleData);

SVGRoot.appendChild(myTitle);
}

Creating a Simple Shape Using JavaScript
In Chapter 4 you saw how document.write() can be used to add new, or dynamic, con-
tent to an HTML document which had not completed loading. Similarly, it is possible to
create a new SVG shape using JavaScript and then to write that to the SVG canvas. In
the next JavaScript example, we will do something similar by using the onload event of
the SVG document.

Our aim is to use JavaScript to create an ellipse on screen. If we wanted to do that
without JavaScript, we could do it using the code in Listing 21.8.

LISTING 21.8 Declaring an Ellipse Without JavaScript (DeclareEllipse.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”250” >
<ellipse cx=”125” cy=”125” rx=”90” ry=”40” style=”fill:#CCCCCC;
stroke:#FF0000”/>
</svg>

To create an ellipse using JavaScript which exactly matches the one in Listing 21.8, we
could use the code in Listing 21.9. In a moment, we will examine each part of the code
to see what it does.

664 Day 21

INPUT

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 664

JavaScript and SVG 665

21

LISTING 21.9 Creating an Ellipse Using JavaScript (CreateEllipse.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”250” onload=”createShape(evt)” >

<script type=”text/javascript”>
<![CDATA[

function createShape(evt) {
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();
var myShape;

myShape = SVGDoc.createElement(“ellipse”);
myShape.setAttribute(“cx”, 125);
myShape.setAttribute(“cy”, 125);
myShape.setAttribute(“rx”, 90);
myShape.setAttribute(“ry”, 40);
myShape.setAttribute(“style”, “fill: #CCCCCC; stroke:#FF0000”);

SVGRoot.appendChild(myShape);
}

]]>
</script>

</svg>

The first three lines of the code, shown here, should be familiar:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>

The first line is the XML declaration. The second and third lines, which form the DOC-
TYPE declaration, specify that the document is an SVG 1.0 document. The <svg> ele-
ment has changed slightly from those you have seen up to now:

<svg width=”250” height=”250” onload=”createShape(evt)” >

The <svg> element has an onload attribute which calls the createShape() JavaScript
function, like so:

<script type=”text/javascript”>
<![CDATA[

We need the <script> element with a type attribute to specify that the contained script is
JavaScript. The JavaScript does not comply with XML syntax rules, so we need to
inform the SVG rendering engine of that by indicating the start of a CDATA section.

INPUT

ANALYSIS

25 2978 CH21 4/10/02 10:47 AM Page 665

Then we come to the definition of the createShape() function itself:

function createShape(evt) {
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();
var myShape;

myShape = SVGDoc.createElement(“ellipse”);
myShape.setAttribute(“cx”, 125);
myShape.setAttribute(“cy”, 125);
myShape.setAttribute(“rx”, 90);
myShape.setAttribute(“ry”, 40);
myShape.setAttribute(“style”, “fill: #CCCCCC; stroke:#FF0000”);

SVGRoot.appendChild(myShape);
}

We declare three variables: The SVGDoc variable represents the SVG document itself. The
SVGRoot variable represents the root node of the SVG document. And, we will use
SVGRoot later to add our new node representing the ellipse.

Finally we create a variable called myShape. We use the createElement() method of the
SVGDoc object to create a node corresponding to an ellipse element. As created, it is
empty and lacks any attribute values, so we need to add those. We use the
setAttribute() method to, respectively, define the values of the cx, cy, rx, ry, and
style attributes of the ellipse element with values that correspond to those you saw
earlier in Listing 21.8.

We now have created an object that represents an <ellipse> element but it is not con-
nected to anything. So we use the appendChild() method to add the newly created node
to the root of the SVG document. This is equivalent to nesting the newly created
<ellipse> element within the <svg> element of Listing 21.8, as shown here:

SVGRoot.appendChild(myShape);
}

]]>
</script>

Having defined the work which the function is to carry out, you must remember the curly
brace to correctly end the function, add the]]> to indicate the end of the CDATA section
and indicate to the SVG rendering engine, by means of the </script> end tag, that the
content of the <script> element has been completed.

Adding Text Using JavaScript
In SVG to create text, you must use a <text> element. You have additional options in
SVG to use <tspan> elements, which we won’t consider further here. To use the <text>

666 Day 21

25 2978 CH21 4/10/02 10:47 AM Page 666

JavaScript and SVG 667

21

element, you must specify where in the SVG image the text is to be located. That is done
using x and y attributes. At the top left of the screen the value of both the x and y attrib-
utes is zero. Additionally you will typically specify the style to be applied to the text.
There are four techniques to add style: using an external style sheet, an internal style
element, a style attribute, or a series of individual attributes each of which represents a
CSS property.

To create a simple text message using declarative syntax, you can use a listing like the
one shown in Listing 21.10.

LISTING 21.10 A Simple Text Message in SVG (SimpleText.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”400” height=”400”>
<text x=”30” y=”50”
style=”opacity:0.8; font-size:20;
font-family:Arial, sans-serif; fill:red”>

Hello SVG
</text>
</svg>

Again, we can use a simple JavaScript script to create the text element, its attributes,
and its content, as shown in Listing 21.11.

LISTING 21.11 Using JavaScript to Create a Simple Text Message
(CreateText.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”400” height=”300” onload=”CreateText(evt)”>
<script type=”text/javascript”>
<![CDATA[
function CreateText(evt)
{
var myText=”Hello SVG”;
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();
textElement = SVGDoc.createElement(“text”);
textElement.setAttribute(“x”,”30”);
textElement.setAttribute(“y”,”50”);
textElement.setAttribute(“style”,”opacity:0.8;

➥font-size:20; font-family:Arial, sans-serif; fill:red”);
textElement.setAttribute(“id”,”MyText”);

INPUT

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 667

textNode = SVGDoc.createTextNode(myText);
textElement.appendChild(textNode);
SVGRoot.appendChild(textElement);
}

]]>
</script>
</svg>

In Listing 21.11 we have used JavaScript to create the text element dynamically. The
techniques are very similar to those we used in Listing 21.9, so if anything is unclear
refer back to the detailed description given earlier for Listing 21.9.

A Timed Animation Using JavaScript
SVG allows us to create timed animations using a number of animation elements “bor-
rowed” from the SMIL 2.0 Recommendation (SMIL is another XML-application lan-
guage). Using those animation elements alone, it is possible to create timed animations
of part or all of a SVG image.

Let’s animate the simple text message created in Listing 21.10. We can do that using
SVG declarative animation, which is shown in Listing 21.12.

LISTING 21.12 Animating a Text Message by Declarative Animation
(AnimSimpleText.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”400” height=”400”>
<text x=”30” y=”50”
style=”opacity:0.8; font-size:16; font-family:Arial, sans-serif; fill:red”>
<animate begin=”2s” dur=”1.5s” attributeName=”font-size” from=”16” to=”36”

repeatCount=”indefinite”/>
Hello SVG
</text>
</svg>

Listing 21.12 shows the syntax that we will want to create using JavaScript. Note
that there is, nested within the text element, an animate element which has sev-

eral attributes. The begin attribute of the animate element tells us that the animation is to
begin 2 seconds after the document loads. The dur attribute tells us that the animation is
to last 1.5 seconds. The attributeName attribute tells us that it is the font-size property

668 Day 21

LISTING 21.11 continued

INPUT

ANALYSIS

25 2978 CH21 4/10/02 10:47 AM Page 668

JavaScript and SVG 669

21

that is to be animated. The from attribute tells us the value which the font size is to be
animated from, and the to attribute tells the value which the font size is to be animated
to. The repeatCount attribute has the value indefinite which tells us that the animation,
once started (2 seconds after the document loads) is to continue indefinitely.

Listing 21.13 shows how, using JavaScript, we can create an animation that is visually
identical to that shown in Listing 21.12.

LISTING 21.13 Using JavaScript to Animate a Simple Text Message
(AnimFontSize.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”400” height=”300” onload=”AnimateFontSize(evt)”>
<script type=”text/javascript”>
<![CDATA[
function AnimateFontSize(evt)
{
var myText=”Hello SVG”;
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();

textElement = SVGDoc.createElement(“text”);
textElement.setAttribute(“x”,”30”);
textElement.setAttribute(“y”,”50”);
textElement.setAttribute(“style”, “opacity:0.8; font-size:16;
➥ font-family:Arial, sans-serif; fill:red”);
textElement.setAttribute(“id”,”MyText”);
var textNode = SVGDoc.createTextNode(myText);
textElement.appendChild(textNode);

var animElement = SVGDoc.createElement(“animate”);
animElement.setAttribute(“begin”, “2s”);
animElement.setAttribute(“dur”, “1.5s”);
animElement.setAttribute(“attributeName”, “font-size”);
animElement.setAttribute(“from”, “16”);
animElement.setAttribute(“to”, “36”);
animElement.setAttribute(“repeatCount”, “indefinite”);

textElement.appendChild(animElement);

SVGRoot.appendChild(textElement);
}

]]>
</script>
</svg>

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 669

First, let’s create a <text> element using techniques similar to those you have
seen before. Then we create an animate element and set the values of the attrib-

utes of the animElement object to values corresponding to those which we want.

670 Day 21

ANALYSIS

Be careful to avoid splitting code lines at a point where they end with a
semicolon, for example, part way through the values of a complex style
attribute. The JavaScript interpreter will think you have finished the
JavaScript statement without closing the quote marks. So do not split the
lines in your source code. In this chapter, of course, lines need to be split for
presentation on the page.

Caution

Finally we must remember to add the objects we have created as children of the SVGRoot
object, which represents the document element of the SVG document.

Creating a Shape That Responds to Events
SVG natively allows you to do things with graphic objects which, using HTML, require
the use of JavaScript. In SVG you can just describe how you want the object to respond
to certain events. In this section, you will see how using native SVG alone you can create
rollover effects, and then you will see how to use JavaScript to produce the same visual
effect.

Listing 21.14 shows a simple rollover of a rectangle.

LISTING 21.14 A Rollover Using Declarative Animation and a Gradient Fill
(SimpleRollover.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”150”>
<defs>
<linearGradient id=”MyGradient” gradientUnits=”objectBoundingBox”
x1=”0%” y1=”0%” x2=”0%” y2=”100%”>

<stop offset=”1%” style=”stop-color:#FF0000”/>
<stop offset=”50%” style=”stop-color:#FFFF00”/>
<stop offset=”100%” style=”stop-color:#FF00FF”/>
</linearGradient>
</defs>
<rect x=”10” y=”20” rx=”5” ry=”15” width=”150” height=”40”
style=”opacity:0.3; fill:red; stroke:none”>
<set begin=”mouseover” end=”mouseout” attributeName=”fill”
from=”red” to=”url(#MyGradient)”/>
</rect>
</svg>

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 670

JavaScript and SVG 671

21

The <rect> element uses two attributes, rx and ry, which you haven’t seen
before. They allow you to create rounded corners on a rectangle.

The code in Listing 21.14 also introduces three SVG elements which you haven’t met
yet. The <defs> element is used to contain definitions which we will use later in an SVG
document. In this case the definition is of a linear gradient which, not surprisingly, is cre-
ated using an SVG linearGradient element. In this case, the linear gradient is a vertical
gradient starting red at the top, changing to yellow in the middle, and to magenta at the
bottom.

Notice too that we use an SVG set animation element. The set element is activated on
mouse-over and causes the fill of the rectangle to be changed from plain red (modified
by the opacity which we will describe in a moment) to the linear gradient called
“MyGradient”. Notice that in the to attribute of the first <set> element that we see the
value “url(#MyGradient)”. The “url” indicates that we are referencing some fill that is
defined elsewhere (in this case within the <defs> element of the same document). The
“#MyGradient” tells us that the fill being referenced has an id attribute of
“MyGradient”—in this case our vertical linear gradient.

Notice how much simpler this is than using two bitmap images and JavaScript to produce
a rollover. Of course we can add text to the button using SVG text elements to produce
a full rollover button.

Again JavaScript can produce the same effect in response to a mouse-over event. Code
using JavaScript to produce this is shown in Listing 21.15.

LISTING 21.15 Using JavaScript with SVG to Create a Rollover
(JSRollover.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”150” onload=”CreateJSRollover(evt)”>
<script type=”text/javascript”>
<![CDATA[
function CreateJSRollover(evt)
{
var SVGDoc = evt.getTarget().getOwnerDocument();
var SVGRoot = SVGDoc.getDocumentElement();

var MyRect = SVGDoc.createElement(“rect”);
MyRect.setAttribute(“x”, 10);
MyRect.setAttribute(“y”, 20);
MyRect.setAttribute(“rx”, 5);
MyRect.setAttribute(“ry”, 15);
MyRect.setAttribute(“width”, 150);

ANALYSIS

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 671

MyRect.setAttribute(“height”, 40);
MyRect.setAttribute(“style”, “opacity:0.3; fill:red; stroke:none”);

var Set1 = SVGDoc.createElement (“set”);
Set1.setAttribute(“begin”, “mouseover”);
Set1.setAttribute(“end”, “mouseout”);
Set1.setAttribute(“attributeName”, “fill”);
Set1.setAttribute(“from”, “red”);
Set1.setAttribute(“to”, “url(#MyGradient)”);
MyRect.appendChild(Set1);

SVGRoot.appendChild(MyRect);
}
]]>
</script>
<defs>
<linearGradient id=”MyGradient” gradientUnits=”objectBoundingBox”
x1=”0%” y1=”0%” x2=”0%” y2=”100%”>

<stop offset=”1%” style=”stop-color:#FF0000”/>
<stop offset=”50%” style=”stop-color:#FFFF00”/>
<stop offset=”100%” style=”stop-color:#FF00FF”/>
</linearGradient>
</defs>

</svg>

When the rectangle is not moused, it is plain red and partly transparent (con-
trolled by the opacity property which is 0 for fully transparent and 1 for fully

opaque). When it is moused, the fill for the rectangle uses the linear gradient defined
within the <linearGradient> element.

Figure 21.7 shows the rectangle displaying the linear gradient on mouse-over.

672 Day 21

LISTING 21.15 continued

ANALYSIS

FIGURE 21.7
When moused the
rectangle displays a
linear gradient.

OUTPUT

25 2978 CH21 4/10/02 10:47 AM Page 672

JavaScript and SVG 673

21

Events Available Using JavaScript with SVG
In this section we will briefly examine some of the events available using JavaScript.

Using mouseover and mouseout Events
First we will use SVG to define an ellipse which changes the color of its fill when we
mouse over the ellipse. The fill will change from gray to bright green. Don’t worry too
much about the detail of the syntax of the animation; it is there simply to show you what
SVG can do. See Listing 21.16.

LISTING 21.16 A Mouseover Effect Using Only SVG
(DeclareEllipseAnimation.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”250” >
<ellipse cx=”125” cy=”125” rx=”90” ry=”40”
style=”fill:#CCCCCC; stroke:#FF0000”>
<set attributeName=”fill” begin=”mouseover”
end=”mouseout” from=”#CCCCCC” to=”#00FF00” />
</ellipse>
</svg>

When we mouse over the ellipse the fill color changes instantly from gray to
green. Notice within the set element that the animation from gray to green is set

to begin on the mouseover event and to end on the mouseout event.

Listing 21.17 uses JavaScript to produce the same visual effect.

LISTING 21.17 A Mouseover Effect Using JavaScript with SVG
(JSEllipseAnimation.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”250” height=”250” xmlns=”http://www.w3.org/2000/svg”>

<script type=”text/javascript”>
<![CDATA[
function ellipseMouse(evt) {
var ellipse = evt.target;
ellipse.style.setProperty(“fill”, “#00FF00”);
}
function ellipseMouse2(evt) {
var ellipse = evt.target;
ellipse.style.setProperty(“fill”, “#CCCCCC”);

INPUT

ANALYSIS

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 673

}
]]>
</script>
<ellipse cx=”125” cy=”125” rx=”90” ry=”40”

style=”fill:#CCCCCC; stroke:#FF0000”
onmouseover=”ellipseMouse(evt)”
onmouseout=”ellipseMouse2(evt)”
/>

</svg>

In Listing 21.17 we change an individual property within the values of the style
attribute. The ellipse object accesses its style property and uses the

setProperty() method to alter the value of the fill of the ellipse when the ellipse is
moused over.

Notice in the ellipse element that the attributes are called onmouseover and
onmouseout; whereas when we use the same events within an animate element, for
example, the value of the attributes would be called mouseover and mouseout (without
the “on” prefix).

Using Click Events
One of the most basic interactive functions is the response of an object to a mouse click.
In SVG we can program such responses using either declarative animation or using
JavaScript. On this occasion, in Listing 21.18, you will be introduced to two JavaScript
techniques that respond to a mouse click. Both listings cause a simple message to be dis-
played in the status bar of the browser window when the rectangle is clicked.

LISTING 21.18 One Syntax to Capture and Process a Click Event Using
JavaScript (WindowStatus.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”300px” height=”200px” onload=”Initialize(evt)”>
<defs>
<script type=”text/ecmascript”>
<![CDATA[
var SVGDoc;

function Initialize (evt) {
SVGDoc = evt.getTarget().getOwnerDocument();

SVGDoc.getElementById(“MyRect”).addEventListener(“click”, ChangeStatus,
false);
}

674 Day 21

LISTING 21.17 continued

ANALYSIS

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 674

JavaScript and SVG 675

21

function ChangeStatus(evt){
var StatusInfo = “You clicked over the rectangle”;
window.status = StatusInfo;
}

]]>
</script>
</defs>
<rect id=”MyRect” x=”20” y=”20” rx=”10” ry=”15” width=”150” height=”40”
style=”fill:#CCCCCC; stroke:none;”/>

</svg>

In Listing 21.18 the Initialize() function is called by the onload event, as
specified by the onload attribute of the svg element. We first create an SVGDoc

element. We then can use the getElementById() and addEventListener() methods to
create an event listener for the rectangle. The event listener specifies that the
ChangeStatus() function is called when the rectangle is clicked. Listing 21.19 uses an
alternate syntax which will be explained following the listing.

LISTING 21.19 An Alternate Syntax to Capture and Process Click Events
Using JavaScript (WindowStatus02.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”300px” height=”200px” >
<defs>
<script type=”text/ecmascript”>
<![CDATA[

function ChangeStatus(evt){
var StatusInfo = “You clicked over the rectangle”;
window.status = StatusInfo;
}
]]>
</script>
</defs>
<rect id=”MyRect” x=”20” y=”20” width=”150”
height=”40” onclick=”ChangeStatus(evt)”/>
</svg>

In Listing 21.19, we add an onclick attribute which calls the ChangeStatus()
function directly.

LISTING 21.18 continued

ANALYSIS

INPUT

ANALYSIS

25 2978 CH21 4/10/02 10:47 AM Page 675

Figure 21.8 shows the output from Listing 21.18. Running Listing 21.19 would
produce the same appearance.

676 Day 21

OUTPUT

FIGURE 21.8
Displaying a mes-
sage in the browser
status bar in
response to a mouse
click.

JavaScript Beyond Declarative Animation
The examples we have looked at to this point have shown you JavaScript techniques that
mimic what is already available in SVG using declarative syntax. However, JavaScript
can carry out programming tasks in SVG, which SVG alone cannot perform.

For example, if we have the simple animation shown below in Listing 21.20, we can use
declarative animation to create the visual effect of “curtains” opening and closing, but
we can’t—using declarative syntax—provide any conditional processing. We can’t, for
example, ensure that if the curtains are already closed that they don’t go through the
closing animation again.

LISTING 21.20 Declarative Animation to Open and Close “Curtains”
(CurtainsDeclar.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”800px” height=”600px”>

<rect style=”fill:black” x=”50” y=”60” height=”100” width=”150”/>

The Adobe SVG Viewer version 3.0 seems to ignore the “mouseover” event
when using syntax similar to that shown in Listing 21.18 or 21.19, although
it responds correctly to a mouse click.

Caution

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 676

JavaScript and SVG 677

21

<rect style=”fill:white” x=”55” y=”65” height=”90” width=”140”/>
<text style=”font-family:Arial; font-size:12; fill:red; stroke:red” x=”75”
y=”80”>SVGSpider.com</text>
<text style=”font-family:Arial; font-size:12; fill:red; stroke:red” x=”60”
y=”110”>
Do you like my curtains?
</text>
<rect style=”fill:red” x=”55” y=”65” height=”90” width=”1” >
<animate attributeName=”width” values=”1; 75; 1” dur=”5s” begin=”0s” />
<animate id=”close3” attributeName=”width” attributeType=”XML” values=”1; 75”
dur=”2.5s”

begin=”button2.click” fill=”freeze”/>
<animate id=”open” attributeName=”width” attributeType=”XML” values=”75; 1”
dur=”2.5s”

begin=”button1.click” fill=”freeze”/>
</rect>

<rect style=”fill:red” x=”194” y=”65” height=”90” width=”1”>
<animate attributeName=”width” values=”1; 75; 1” dur=”5s” begin=”0s”/>
<animate attributeName=”x” values=”194; 122; 194” attributeType=”XML” dur=”5s”
begin=”0s”/>
<animate id=”close1” attributeName=”width” attributeType=”XML” values=”1; 75”
dur=”2.5s”

begin=”button2.click” fill=”freeze”/>
<animate id=”close2” attributeName=”x” attributeType=”XML” values=”194; 122”
dur=”2.5s”

begin=”button2.click” fill=”freeze” />
<animate id=”open” attributeName=”width” attributeType=”XML” values=”75; 1”
dur=”2.5s”

begin=”button1.click” fill=”freeze”/>
<animate id=”open” attributeName=”x” attributeType=”XML” values=”122; 194”
dur=”2.5s”

begin=”button1.click” fill=”freeze” />
</rect>

<g id=”controls”>

<g id=”button1”>
<ellipse cx=”58” cy=”210” rx=”34” ry=”12” style=”fill:red;” />
<text pointer-events=”none” x=”42” y=”214” style=”fill:white;

font-weight:bold;”>Open</text>
</g>

<g id=”button2”>
<ellipse cx=”195” cy=”210” rx=”34” ry=”12” style=”fill:red “/>
<text pointer-events=”none” x=”179” y=”214” style=”fill:white;

font-weight:bold;”>Close</text>
</g>
</g>
</svg>

LISTING 21.20 continued

25 2978 CH21 4/10/02 10:47 AM Page 677

The animation of the rectangles that form the “curtains” depends on one or
another of the controls being clicked. So, in order to create a JavaScript-based

solution, we will need to capture the click event. The logic we want to express is “If the
curtain is open when the Close control is clicked, then close the curtains; but if it is
already closed, do nothing.” Listing 21.21 shows us the JavaScript-based solution.

LISTING 21.21 Using JavaScript to Add Intelligence to the Opening and
Closing of the “Curtains” (CurtainsJS.svg)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 20010904//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg width=”800px” height=”600px” onload=”Initialize(evt)”>
<script type=”text/javascript”>
<![CDATA[
var SVGDoc;
var SVGRoot;
var LeftCurtain;
var RightCurtain;
var NewLeftWidth = 1;
var NewRightWidth = 1;
var NewRightX = 194;

var open;
var closed;
var TimeNow = 0;
var TimerIncrement = 67;
var MaxTime = 5000;

function Initialize(evt){
SVGDoc = evt.getTarget().getOwnerDocument();
SVGRoot = SVGDoc.getDocumentElement();
LeftCurtain = SVGDoc.createElement(“rect”);
RightCurtain = SVGDoc.createElement(“rect”);
open = true;
closed = false;
CreateCurtains();
InitialMovements();
// Set values for open and close at end of the initial animation
open = true;
closed = false;
} // End function Initialize()

function CreateCurtains(){
// Create left “curtain”
LeftCurtain.setAttribute(“id”, “MyLeftCurtain”);
LeftCurtain.setAttribute(“style”, “fill:red; stroke:none”);
LeftCurtain.setAttribute(“x”, “55px”);

678 Day 21

ANALYSIS

INPUT

25 2978 CH21 4/10/02 10:47 AM Page 678

JavaScript and SVG 679

21

LeftCurtain.setAttribute(“y”, “65px”);
LeftCurtain.setAttribute(“width”, “1px”);
LeftCurtain.setAttribute(“height”, “90px”);
SVGRoot.appendChild(LeftCurtain);

// Create right “curtain”
RightCurtain.setAttribute(“id”, “MyRightCurtain”);
RightCurtain.setAttribute(“x”, “194px”);
RightCurtain.setAttribute(“y”, “65px”);
RightCurtain.setAttribute(“width”, “1px”);
RightCurtain.setAttribute(“height”, “90px”);
RightCurtain.setAttribute(“style”, “fill:red; stroke:none”);
SVGRoot.appendChild(RightCurtain);
} // End function CreateCurtains()

function InitialMovements(){
//Left Initial Movement - only width needs to be changed
var InitialAnim1;
InitialAnim1 = SVGDoc.createElement(“animate”);
InitialAnim1.setAttribute(“attributeName”, “width”);
InitialAnim1.setAttribute(“values”, “1; 75; 1”);
InitialAnim1.setAttribute(“dur”, “5s”);
InitialAnim1.setAttribute(“begin”, “0s”);
LeftCurtain.appendChild(InitialAnim1);

// Right Initial Movements - both width and x need to
// be altered in a synchronized way
var InitialAnim2;
var InitialAnim3;
InitialAnim2 = SVGDoc.createElement(“animate”);
InitialAnim2.setAttribute(“attributeName”, “width”);
InitialAnim2.setAttribute(“values”, “1; 75; 1”);
InitialAnim2.setAttribute(“dur”, “5s”);
InitialAnim2.setAttribute(“begin”, “0s”);
RightCurtain.appendChild(InitialAnim2);

InitialAnim3 = SVGDoc.createElement(“animate”);
InitialAnim3.setAttribute(“attributeName”, “x”);
InitialAnim3.setAttribute(“values”, “194; 122; 194”);
InitialAnim3.setAttribute(“dur”, “5s”);
InitialAnim3.setAttribute(“begin”, “0s”);
RightCurtain.appendChild(InitialAnim3);
} // end function InitialMovements()

function Open(evt)
{

LISTING 21.21 continued

25 2978 CH21 4/10/02 10:47 AM Page 679

TimeNow = 0;
OpenCurtains();
} // end function Open()

function Close(evt)
{
TimeNow = 0;
CloseCurtains();
} // end function Close()

function CloseCurtains(){
TimeNow = TimeNow + TimerIncrement;
if (TimeNow > MaxTime) {
closed = true;
open = false;
TimeNow = 0;
return;
} // End if statement

if (NewLeftWidth < 75){
++NewLeftWidth;
++NewRightWidth;
--NewRightX;
LeftCurtain.setAttribute(“width”, NewLeftWidth);
RightCurtain.setAttribute(“width”, NewRightWidth);
RightCurtain.setAttribute(“x”, NewRightX);
} // End if statement

setTimeout(“CloseCurtains()”, TimerIncrement);
window.CloseCurtains = CloseCurtains;
} // end CloseCurtains() function

function OpenCurtains(){
TimeNow = TimeNow + TimerIncrement;
if (TimeNow > MaxTime) {
closed = false;
open = true;
TimeNow = 0;
return;
} // End if statement

if (NewLeftWidth > 1){
--NewLeftWidth;
--NewRightWidth;
++NewRightX;
LeftCurtain.setAttribute(“width”, NewLeftWidth);
RightCurtain.setAttribute(“width”, NewRightWidth);
RightCurtain.setAttribute(“x”, NewRightX);
} // End if statement

680 Day 21

LISTING 21.21 continued

25 2978 CH21 4/10/02 10:47 AM Page 680

JavaScript and SVG 681

21

setTimeout(“OpenCurtains()”, TimerIncrement);
window.OpenCurtains = OpenCurtains;
} // end OpenCurtains() function

]]>
</script>

<rect style=”fill:black” x=”50” y=”60” height=”100” width=”150”/>
<rect style=”fill:white” x=”55” y=”65” height=”90” width=”140”/>
<text style=”font-family:Arial; font-size:12; fill:red; stroke:red” x=”75”
y=”80”>SVGSpider.com</text>
<text style=”font-family:Arial; font-size:12; fill:red; stroke:red” x=”60”
y=”110”>
Do you like my curtains?
</text>

<g id=”controls”>
<g id=”button1” onclick=”OpenCurtains(evt)”>

<ellipse cx=”58” cy=”210” rx=”34” ry=”12” style=”fill:red;” />
<text pointer-events=”none” x=”42” y=”214” style=”fill:white;
font-weight:bold;”>Open</text>

</g>

<g id=”button2” onclick=”CloseCurtains(evt)”>
<ellipse cx=”195” cy=”210” rx=”34” ry=”12” style=”fill:red “/>
<text pointer-events=”none” x=”179” y=”214” style=”fill:white;
font-weight:bold;”>Close</text>

</g>
</g>
</svg>

The code should be pretty familiar to you, if you have followed the techniques
used in earlier examples with the exception of the techniques used in the

CloseCurtains() and OpenCurtains() functions. Let’s look at the CloseCurtains()
function in more detail, as shown here:

function CloseCurtains(){
TimeNow = TimeNow + TimerIncrement;
if (TimeNow > MaxTime) {
closed = true;
open = false;
TimeNow = 0;
return;
} // End if statement

if (NewLeftWidth < 75){
++NewLeftWidth;

LISTING 21.21 continued

ANALYSIS

25 2978 CH21 4/10/02 10:47 AM Page 681

++NewRightWidth;
--NewRightX;
LeftCurtain.setAttribute(“width”, NewLeftWidth);
RightCurtain.setAttribute(“width”, NewRightWidth);
RightCurtain.setAttribute(“x”, NewRightX);
} // End if statement

We enter the CloseCurtains() function through the Close() function which resets the
timer. The variables used in CloseCurtains() have been declared as global variables
earlier in the script, since they will also be used within the OpenCurtains() function.
First we test if more time has elapsed than the maximum allowed by the MaxTime vari-
able. If so, then the function sets the values of the closed and open variables appropriate-
ly and then returns. If the function hasn’t timed out, it checks whether the width of the
curtains is still less than 75 and, if so, the width of each curtain is adjusted by one, and
the right curtain is moved by one pixel—since the top left corner of a rectangle is what
SVG refers to. We then change the values of the relevant attributes of the left and right
curtain.

Finally, the setTimeout() function is called, which again calls the CloseCurtains()
function recursively:

setTimeout(“CloseCurtains()”, TimerIncrement);
window.CloseCurtains = CloseCurtains;

This progressively increases the width of the curtains until the width is 75 (in which case
the width doesn’t increase any more) and the timeout takes place.

682 Day 21

You may find that you need a “long” click—that is, hold the mouse button
down for slightly longer than usual—to get the code in Listing 21.21 to
operate correctly.

Note

Interaction Between the HTML and SVG
DOM

Often when you use an SVG image it will be embedded within an HTML or XHTML
Web page. An HTML page may contain one or more Document Object Models. In the
situation where you have a simple HTML/XHTML Web page with a single SVG image
embedded within it, then you will have two separate DOMs—one for the HTML page,
and the other (an SVG DOM) for the SVG image.

Listing 21.22 shows a modification of Listing 21.18, which allows for the situation
where the SVG image is embedded in an HTML page.

25 2978 CH21 4/10/02 10:47 AM Page 682

JavaScript and SVG 683

21

LISTING 21.22 An SVG Event That Affects the Containing HTML/XHTML
Web page (WindowStatus.htm)

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/REC-html40/loose.dtd”>
<html>
<head>
<title>SVG Events affecting the browser window</title>
<script type=”text/javascript”>
<!-- //
// Your JavaScript to script the HTML/XHTML parts of a Web page can go here.

//-->
</script>
</head>
<body>
<embed src=”WindowStatus.svg” type=”image/svg+xml”
width=”300px” height=”200px”>
</body>
</html>

Notice that the embed tag has been used to display the SVG image. The W3C
recommends the object tag but in practice this will cause real difficulties. Use

the embed tag to avoid cross-browser problems. Details are discussed in Chapter 10,
“Events and Events Handling.”

When you click on the rectangle embedded within the WindowStatus.htm file, the event
in the SVG DOM is able, given the code you saw in Listing 21.18, to alter values in the
HTML DOM. Figure 21.9 shows the result.

INPUT

ANALYSIS

FIGURE 21.9
Altering the content
of the status bar of
an HTML Web page
window by using an
SVG DOM event.

OUTPUT

25 2978 CH21 4/10/02 10:47 AM Page 683

Finding Out More About SVG
In this chapter, it has been possible only to introduce SVG which is an extensive, power-
ful, and flexible graphics technology. In this section you will see a number of places
where you can get further information on SVG, and what you can do with it in your Web
pages.

SVG is only five months old at the time of writing; therefore, there are few SVG books
available. The first SVG book published, Designing SVG Web Graphics, provides a broad
introduction to SVG for someone who is new to the topic. By the time this book is in
print, the Sams Teach Yourself SVG in 24 Hours will be available as an alternate intro-
duction to SVG.

The main general mailing list for SVG developers is located on YahooGroups.com.
Further information is available at
http://www.adobe.com/svg/viewer/install/main.html. To subscribe, simply send an
e-mail to svg-developers-subscribe@yahoogroups.com.

There are a number of Web sites where you can either see SVG in use or access online
SVG tutorials.

The Adobe.com Web site, at http://www.adobe.com/svg/, has a significant amount of
introductory material. Two individual sites that are useful are
http://www.kevlindev.com/ and http://www.pinkjuice.com/. A very useful SVG and
JavaScript site is located at http://pilat.free.fr/english/. Another useful site with
an engineering bias, but which includes JavaScript examples, is located at
http://www.mecxpert.de/. Finally, if you want to see how SVG can be used in Web
page layout, including simple declarative animations, take a look at http://www.
svgspider.com/default.svg or http://www.xmml.com and the linked pages.

Summary
This chapter introduced you to Scalable Vector Graphics and has shown you the element
and attribute structure of simple SVG graphics. You have been introduced to the
JavaScript techniques to carry out simple manipulations of the SVG DOM, in order to
give you an impression of the potential of SVG combined with JavaScript.

Workshop
In this workshop, questions and exercises will be used to review what you have learned
in this chapter about using JavaScript with Scalable Vector Graphics.

684 Day 21

25 2978 CH21 4/10/02 10:47 AM Page 684

JavaScript and SVG 685

21

Q&A
Q. I have lots of bitmap graphics and I would like to continue to use them with

SVG. Is that possible?

A. Yes, it’s straightforward to use bitmap graphics, such as GIFs or PNGs, with SVG.
The SVG image element allows an image to be imported into an SVG image or
Web page.

Q. I heard that Flash is a vector graphics format and can use XML too. Why is
SVG any better?

A. One big difference between SVG and Flash is that SVG is XML. So, if you are
planning to use SVG with an XML data store or with some of the many other
XML-based languages, you can use one set of XML tools and your growing XML
knowledge with all the XML languages you want to work with.

Q. Can I create effects like drop shadows in SVG?

A. Yes, SVG provides a range of “filter” effects. One of the simpler SVG filter primi-
tives can be used to create Gaussian blurs, a typical technique that creates drop
shadows.

Q. Does it matter which order I put elements in an SVG document?

A. Yes, it is important that you place objects you want at the back of a graphic early
in an SVG document. To place an object at the front of an SVG graphic, you need
to place the corresponding SVG element last in the source code. Think of it like a
“painter’s model” using oil paint. You paint the first object, and then if you paint a
second object on top of it the first one is likely to be no longer visible. In SVG you
can use semi-transparent effects which allow some “paint” further back to show
through, but if the SVG object is fully opaque then the corresponding area behind
it is no longer visible.

Quiz
1. What is the document element for all SVG documents?

2. Is the script element in SVG the same as the script element in HTML?

3. Which special syntax do you need to use to protect your JavaScript code from
being interpreted as SVG?

Quiz Answers
1. Each SVG document always has an svg element as the document element. Notice

that the technology, SVG, is written all in uppercase letters. The name of the svg
element is always written only in lowercase letters. SVG, like XML and
JavaScript, is case sensitive.

25 2978 CH21 4/10/02 10:47 AM Page 685

2. No. The name of the element is “script” in each case but there are important differ-
ences. Refer back, for example, to the different attributes used to reference an
external JavaScript file.

3. The CDATA section is nested within an SVG script element. Any JavaScript
code within that section is treated by the SVG processor as text. The JavaScript
interpreter processes the JavaScript code nested within a CDATA section in the
normal way.

Exercises
1. You were shown simple techniques to place SVG text and a rectangle on the page.

To create a rollover button with text, combine the techniques to place the text over
the button.

2. After you have added text to the rectangle (hint: the text element must come after
the rect element in document order), add set elements to each object so that the
fill of the rectangle and the color of the text both change when you mouse over the
button.

686 Day 21

25 2978 CH21 4/10/02 10:47 AM Page 686

Appendixes
A New Features in JavaScript 1.5

B Color Codes

C Functions Reference

D Resources Online

E A Short History of JavaScript

26 2978 Part 4 4/10/02 10:39 AM Page 687

26 2978 Part 4 4/10/02 10:39 AM Page 688

APPENDIX A
New Features in
JavaScript 1.5

Just as with a programming language, each version of JavaScript provides not
only fixes for any existing problems but also updated features that you can use.
This appendix provides a brief overview of the additions that were made to
JavaScript 1.5.

Number Formatting Additions
Number formatting was enhanced in JavaScript 1.5 to provide three additional
methods that can be used. Three additional methods have been added to the
Number object.

toExponential Method
The toExponential method returns a string representing a Number object in
exponential notation. The string has one digit before the decimal point, and the
number of digits after the decimal are determined by the value specified for the
argument, described in Table A.1. The digits are rounded to the nearest number.

27 2978 App A 4/10/02 10:40 AM Page 689

TABLE A.1 toExponential() Arguments

Argument Description

fractionDigits An integer value specifying the number of digits to display after the
decimal point

Number.prototype.toExponential(fractionDigits)

toFixed Method
The toFixed method returns a string representing a Number object in fixed-point nota-
tion. The string is rounded to the number of digits after the decimal specified for the
argument, described in Table A.2. For example, toFixed(2) is a good way to format
U.S. currency.

TABLE A.2 toFixed() Arguments

Argument Description

fractionDigits An integer value specifying the number of digits to display after the
decimal point

Number.prototype.toFixed(fractionDigits)

toPrecision Method
The toPrecision method returns a string representing a Number object in exponential or
fixed-point notation. The string has one digit before the decimal point and the number of
digits after the decimal are determined by the value specified for the argument, described
in Table A.3. The digits are rounded to the nearest number.

TABLE A.3 toPrecision() Arguments

Argument Description

precision An integer value specifying the number of digits to display after the
decimal point

Number.prototype.toPrecision(fractionDigits)

Runtime Error Messages
In JavaScript 1.5 runtime errors are reported as exceptions.

690 Appendix A

27 2978 App A 4/10/02 10:40 AM Page 690

New Features in JavaScript 1.5 691

A
Regular Expressions

The following enhancements have been made to regular expressions in JavaScript 1.5.

Greedy Quantifiers
The ? character can now be used after any of the greedy quantifiers, *, +, ? and {}, to
make them non-greedy. This means that instead of matching the maximum number of
times (greedy) the ? character follows the qualifier, it will match the minimum number of
times.

Non-Capturing Parentheses
You can keep a captured expression from being available as a back-reference by using ?:
before the variable. For example, (?:x) matches x but does not remember the match.

Support for Positive and Negative Lookahead
Assertions
Lookahead assertions are supported with the addition of the ? to the statement. For
example, x(?=y) makes a match if x is followed by y. Therefore, if you have the state-
ment Java(?=Script), it will match statements where Java is followed by Script.

JavaScript 1.5 also supports negative assertions, x(?!y), where the match only occurs if
x is not followed by y. Therefore, with the example Java(?!Script), it matches all cases
where Java is not followed by Script.

The Multiple-Line Flag with RegExp
By using the m flag you can now specify that the regular expression should match over
multiple lines.

RegExp(stringtomatch, “m”)

Conditional Function Declarations
You can declare functions within an if clause. By doing so, the function only gets
declared if the if statement evaluates to true. For example, in the following code the
function addnumbers() is only declared if x is greater than 5.

If (x > 5)
{
function addnumbers()
{
x = x + y;
}

}

27 2978 App A 4/10/02 10:40 AM Page 691

Functions Can Be Declared Within an
Expression

You can declare a function within any expression:

var a = function(b) {return b*5};

Multiple Catch Clauses
JavaScript 1.5 allows you to place multiple catch clauses in a try...catch statement.
This allows you to have more than one conditional catch block to handle specific excep-
tions. For example, the following code sample catches either the RangeError or
EvalError exceptions.

Try {
Runcode ();

}
catch (e if e instance of RangeError)
{
rangeErrorCode();
}
catch (e if e instance of EvalError)
{
evalErrorCode();
}
catch (e)
{
nonSpecifiedError()
}

When working with the try … catch statement, make sure you always provide a catch
block for situations when you do not specify an exception. In our code segment, we did
this by creating a catch (e) block of code.

692 Appendix A

27 2978 App A 4/10/02 10:40 AM Page 692

APPENDIX B
Color Codes

One area of Web development that can cause some frustration is the display of
different colors. Color allows you to add more interest to your site, but you
have to be careful to ensure that the colors you select display properly on each
user’s monitor.

The color palette available for the user’s browser typically ranges from 8-bit
(256 colors) to 32-bit, which allows the display of millions of colors. If a par-
ticular color does not exist on the user’s browser, the color palette finds a dif-
ferent color within the palette to display. With this is mind, it is advisable to use
the generic palette of 216 colors that Netscape uses for all 8-bit systems. By
using only these colors, you can be fairly certain that your colors will display
properly when viewed on Netscape Navigator, Internet Explorer, or another
browser.

There are essentially three different methods that can be used to specify the
color you want to use:

• Color name specified as plain-language

• Hexadecimal value representing the desired color

• RGB color code specified using the RGB() function

28 2978 App B 4/10/02 10:44 AM Page 693

Color Names Specified as Plain-Language
Netscape originally developed a list of plain-language color names that are now accepted
by most browsers. These color names, found in Table B.1, can be used to set the color
for most objects. However, not all of the colors are considered Web safe and therefore
may not always produce the desired results. I have placed an asterisk (*) next to the color
names that can be safely used with the HTML tag or in Cascading Style Sheets.

TABLE B.1 Plain-Language Color Names

antiquewhite

*aqua

aquamarine

azure

beige

bisque

*black

blanchedalmond

*blue

blueviolet

brown

burlywood

cadetblue

chartreuse

chocolate

coral

cornflowerblue

cornsilk

crimson

*cyan

darkblue

darkcyan

darkgoldenrod

darkgray

darkgreen

darkkhaki

694 Appendix B

darkmagenta

darkolivegreen

darkorange

darkorchid

darkred

darksalmon

darkseagreen

darkslateblue

darkslategray

darkturquoise

darkviolet

deeppink

deepskyblue

dimgray

dodgerblue

firebrick

floralwhite

forestgreen

*fuchsia

gainsboro

ghostwhite

gold

goldenrod

gray

green

greenyellow

*magenta

maroon

mediumaquamarine

mediumblue

mediumorchid

mediumpurple

mediumseagreen

mediumslateblue

mediumspringgreen

medium turquoise

mediumvioletred

midnightblue

mintcream

mistyrose

moccasin

navajowhite

navy

oldlace

olive

olivedrab

orange

orangered

orchid

palegoldenrod

palegreen

paleturquoise

honeydew

hotpink

indianred

indigo

ivory

khaki

lavender

lavenderblush

lawngreen

lemonchiffon

lightblue

lightcoral

lightcyan

lightgoldenrodyellow

lightgreen

lightgrey

lightpink

lightsalmon

lightseagreen

lightskyblue

lightslategray

lightsteelblue

lightyellow

*lime

limegreen

linen

28 2978 App B 4/10/02 10:44 AM Page 694

Color Codes 695

B

palevioletred

papayawhip

peachpuff

peru

pink

plum

powderblue

*purple

*red

rosybrown

royalblue

saddlebrown

salmon

sandybrown

seagreen

seashell

sienna

silver

skyblue

slateblue

slategray

snow

springgreen

steelblue

tan

*teal

thistle

tomato

turquoise

violet

wheat

*white

whitesmoke

*yellow

yellowgreen

Hexadecimal Color Value
Although many browsers support the color names specified in the previous section, their
interpretations of the color names often vary. To ensure the desired colors display, it is
advisable to use a numeric value to represent the desired color. One common method is
to use the hexadecimal value of the corresponding color value. A hexadecimal color code
is comprised of six different characters (0-9 and A-F) with each code preceded by a #
(number sign). When you use a hexadecimal value for a color, the first two digits repre-
sent the red value; the next two digits are the green value; and the last two digits are the
blue value. Table B.2 lists the hexadecimal color codes that you can use. Again, with
these hexadecimal color values not all of the colors are considered Web safe and there-
fore may not always produce the desired results. I have placed an asterisk (*) next to the
color names that can be safely used. However, there is a trick that can be used with hexa-
decimal values to determine a Web safe color: If the color has pairs of digits in each
position the color is Web safe. For example, #009933 is a Web safe color but #019933 is
not because the first two digits are not a pair.

TABLE B.2 Hexadecimal Values

Hexadecimal Code Color Hexadecimal Code Color

*#000000 Black

#000080 Navy

#00008B Dark blue

#0000CD Medium blue

*#0000FF Blue

#006400 Dark green

#008000 Green

#008080 Teal

#008B8B Dark cyan

#00BFFF Deep sky blue

#00DED1 Dark turquoise

#00FA9A Medium spring green

TABLE B.1 continued

28 2978 App B 4/10/02 10:44 AM Page 695

*#00FF00 Lime

#00FF7F Spring green

*#00FFFF Aqua

*#00FFFF Cyan

#191970 Midnight blue

#1E90FF Dodger blue

#20B2AA Light seagreen

#228B22 Forest green

#2E8B57 Sea green

#2F4F4F Dark slate gray

#32CD32 Lime green

#3CB371 Medium sea green

#40E0D0 Turquoise

#4169E1 Royal blue

#4682B4 Steel blue

#483D8B Dark slate blue

#48D1CC Medium turquoise

#4B0082 Indigo

#556B2F Dark olive green

#5F9EA0 Cadet blue

#6495ED Cornflower blue

#66CDAA Medium aquamarine

#696969 Dim gray

#6A5ACD Slate blue

#6B8E23 Olive drab

*#778899 Light slate gray

#7B68EE Medium slate blue

#7CFC00 Lawn green

#7FFF00 Chartreuse

#7FFFD4 Aquamarine

#800000 Maroon

#800080 Purple

696 Appendix B

TABLE B.2 continued

Hexadecimal Code Color Hexadecimal Code Color

#808080 Gray

#87CEEB Sky blue

#87CEFA Light sky blue

#8A2BE2 Blue violet

#8B0000 Dark red

#8B008B Dark magenta

#8B4513 Saddle brown

#8DBC8F Dark seagreen

#90EE90 Light green

#9370DB Medium purple

#9400D3 Dark violet

#98FB98 Pale green

#9932CC Dark orchid

#9ACD32 Yellow green

#A0522D Sienna

#A52A2A Brown

#A9A9A9 Dark gray

#ADD8E6 Light blue

#ADFF2F Green yellow

#AFEEEE Pale turquoise

#B0C4DE Light steel blue

#B0E0E6 Powder blue

#B22222 Firebrick

#B8860B Dark goldenrod

#BA55D3 Medium orchid

#BC8F8F Rosy brown

#BDB76B Dark khaki

#C0C0C0 Silver

#C71585 Medium violet red

#CD5C5C Indian red

#CD853F Peru

#D2691E Chocolate

28 2978 App B 4/10/02 10:44 AM Page 696

Color Codes 697

B

#D2B48C Tan

#D3D3D3 Light grey

#D8BFD8 Thistle

#DA70D6 Orchid

#DAA520 Goldenrod

#DB7093 Pale violet red

#DC143C Crimson

#DCDCDC Gainsboro

#DDA0DD Plum

#DEB887 Burlywood

#E0FFFF Light cyan

#E6E6FA Lavender

#E9967A Dark salmon

#EE82EE Violet

#EEE8AA Pale goldenrod

#F08080 Light coral

#F0E68C Khaki

#F0F8FF Alice blue

#F0FFF0 Honeydew

#F0FFFF Azure

#F4A460 Sandy brown

#F5DEB3 Wheat

#F5F5DC Beige

#F5F5F5 White smoke

#F5FFFA Mint cream

#F8F8FF Ghost white

#FA8072 Salmon

#FAEBD7 Antique white

#FAF0E6 Linen

#FAFAD2 Light goldenrod yellow

#FDF5E6 Old lace

TABLE B.2 continued

Hexadecimal Code Color Hexadecimal Code Color

*#FF0000 Red

*#FF00FF Fuchsia

*#FF00FF Magenta

#FF1493 Deep pink

#FF4500 Orange red

#FF6347 Tomato

#FF69B4 Hot pink

#FF7F50 Coral

#FF8C00 Dark orange

#FFA07A Light salmon

#FFA500 Orange

#FFB6C1 Light pink

#FFC8CB Pink

#FFD700 Gold

#FFDAB9 Peach puff

#FFDEAD Navajo white

#FFE4B5 Moccasin

#FFE4C4 Bisque

#FFE4E1 Misty rose

#FFEBCD Blanched almond

#FFEFD5 Papaya whip

#FFF0F5 Lavender blush

#FFF5EE Sea shell

#FFF8DC Cornsilk

#FFFACD Lemon chiffon

#FFFAF0 Floral white

#FFFAFA Snow

*#FFFF00 Yellow

#FFFFE0 Light yellow

#FFFFF0 Ivory

*#FFFFFF White

28 2978 App B 4/10/02 10:44 AM Page 697

RGB Color Values
The other method for specifying color values with JavaScript is to use the RGB() func-
tion. When you use this function you are specifying a color as defined by combining a
specific combination of red, green, and blue. You must specify a value for each color
component either as a numeric value between 0 and 255 or a percentage of color. The
most commonly used method is the numeric value, as illustrated in Table B.3 which
shows the RGB values for the most commonly used colors. When you use the RGB()
function you must specify the three-color values in the order red, green, blue. For
example, to display blue you would specify:

rgb(0, 0, 255);

Notice, the red and green values are 0 when you want to display blue. If you wanted to
use the percentage method you would specify the color value as follows:

rgb(0%, 0%, 100%);

TABLE B.3 RGB Combinations for Common Colors

Color Red Green Blue

Aqua 0 255 255

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Magenta 255 0 255

Orange 255 153 0

Pink 255 0 204

Silver 204 204 204

Red 255 0 0

White 255 255 255

Yellow 255 255 0

698 Appendix B

28 2978 App B 4/10/02 10:44 AM Page 698

APPENDIX C
Functions Reference

JavaScript provides several different built-in functions for your use. Some of
these functions are actually associated with specific objects, such as the math
functions that are associated with the Math object. This simply means that the
appropriate object name must be specified as part of the function reference.
When a function is associated with an object, it is also referred to as the
method for that object.

abs()
The abs() function returns the absolute value of the argument. This function
has one argument, outlined in Table C.1, and is associated with the Math object.

TABLE C.1 abs() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.abs(numValue)

29 2978 App C 4/10/02 10:41 AM Page 699

acos()
The acos() function returns the inverse cosine or arccosine value of the argument. This
function has one argument, outlined in Table C.2, and is associated with the Math object.

TABLE C.2 acos() Argument

Argument Description

numValue Any expression that returns a numeric value (This value
should be between -1 and 1.)

Math.acos(numValue)

asin()
The asin() function returns the inverse sine or arcsine of the argument. This function
has one argument, outlined in Table C.3, and is associated with the Math object.

TABLE C.3 asin() Argument

Argument Description

numValue Any expression that returns a numeric value (The value
should be between -1 and 1.)

Math.asin(numValue)

atan()
The atan() function returns the inverse tangent of the argument. This function has one
argument, outlined in Table C.4, and is associated with the Math object.

TABLE C.4 atan() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.atan(numValue)

700 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 700

Functions Reference 701

C

atan2()
The atan2() function returns the inverse tangent or arctangent of the slope of two
arguments, outlined in Table C.5. The function first computes the quotient of
numValue2/numValue1, and then determines the arc tangent of the result. This function
also takes into account the quadrant that the value falls into based upon the signs of the
arguments. This function is associated with the Math object.

TABLE C.5 atan2() Arguments

Argument Description

numValue1 Any expression that returns a numeric value

numValue2 Any expression that returns a numeric value

Math.abs(numValue1, numValue2)

atob()
The atob() function decodes a base-64 encoded value which represents the encoded
form of binary data. The value is decoded and converted to a block of binary data. This
function has one argument, outlined in Table C.6, and is associated with the Window
object.

TABLE C.6 atob() Argument

Argument Description

b64Value A string that contains base-64 encoded data

Window.atob(b64Value)

Boolean()
The Boolean() function converts the specified argument to a Boolean value of either
true or false. This function has one argument, outlined in Table C.7, but if the
argument is omitted it returns a value of false.

TABLE C.7 Boolean() Argument

Argument Description

bValue Any expression

Boolean(bValue)

29 2978 App C 4/10/02 10:41 AM Page 701

The Boolean() function converts the specified argument as outlined in Table C.8.

TABLE C.8 Boolean() Function Results

Value Result

0 false

null false

no value false

undefined false

NaN false

“” (zero length string) false

false (Boolean) false

true (Boolean) true

Non-zero number true

Non-zero length string true

Object true

btoa()
The btoa() function encodes the specified value into base-64 form. Base-64 is typically
used to convert binary data into a format that transmits better across a network. This
function has one argument, outlined in Table C.9, and is associated with the Window
object.

TABLE C.9 btoa() Argument

Argument Description

bValue Any binary expression

Window.btoa(bValue)

captureEvents()
The captureEvents() function is only available within Netscape. This function is used
to route events to other event handlers, or the receiving Document, Layer, or Window
objects. The function has one argument, as outlined in Table C.10, and is associated with
the Document, Layer, and Window objects.

702 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 702

Functions Reference 703

C

TABLE C.10 captureEvents() Argument

Argument Description

eventMask An event mask, such as Event.KEYPRESS

Document.captureEvents(eventMask)

Layer.captureEvents(eventMask)

Window.captureEvents(eventMask)

catch()
The catch() function is used with the try ... catch... error-handling method to trap
errors. This function has one argument, outlined in Table C.11.

TABLE C.11 catch() Argument

Argument Description

errorVal An instance of the Error object

catch(errorVal)

ceil()
The ceil() function rounds up the specified value to the next integer value. This func-
tion has one argument, outlined in Table C.12, and is associated with the Math object.

TABLE C.12 ceil() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.ceil(numValue)

cos()
The cos() function returns the cosine of the specified argument. This function has one
argument, outlined in Table C.13, and is associated with the Math object.

29 2978 App C 4/10/02 10:41 AM Page 703

TABLE C.13 cos() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.cos(numValue)

Date()
The Date() function returns the current date. This function has no arguments.

Date()

decodeURI()
The decodeURI() function decodes a URI value. This function has one argument, shown
in Table C.14.

TABLE C.14 decodeURI() Argument

Argument Description

URIValue An encoded URI value

decodeURI(URIValue)

decodeURIComponent()
The decodeURIComponent() function decodes a URI component. This function has one
argument, shown in Table C.15.

TABLE C.15 decodeURIComponent() Argument

Argument Description

URIComp An encoded URI component

decodeURIComponent(URIComp)

encodeURI()
The encodeURI() function encodes a URI value. The function encodes the string by
replacing in certain characters with hexadecimal escape sequences to conform with the
UTF-8 profile. This function has one argument, shown in Table C.16.

704 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 704

Functions Reference 705

C

TABLE C.16 encodeURI() Argument

Argument Description

URIValue An unencoded URI value

encodeURI(URIValue)

encodeURIComponent()
The encodeURIComponent() function encodes a URI component. This function has one
argument, shown in Table C.17.

TABLE C.17 encodeURIComponent() Argument

Argument Description

URIComp An unencoded URI component

enecodeURIComponent(URIComp)

Error()
The Error() function creates and initializes a new Error object. For example, you can
use this to create a user-defined error. This function has two arguments, as shown in
Table C.18.

TABLE C.18 Error() Arguments

Argument Description

errNumber An error number

errText A text description of the error

Error(errNumber, errText)

escape()
The escape() function computes a new version of the string. It is passed by replacing
certain characters with hexadecimal escape sequences. All character codes between zero
and 32 are escaped. For example, a shape is escaped as %20. This function has two
arguments, as outlined in Table C.19.

29 2978 App C 4/10/02 10:41 AM Page 705

TABLE C.19 escape() Arguments

Argument Description

inputString A string of un-escaped characters

switch A switch that indicates whether the plus signs should be
escaped

escape(inputString, switch)

eval()
The eval() function evaluates and executes the code in the specified string. This
function has one argument, as outlined in Table C.20.

TABLE C.20 eval() Argument

Argument Description

sourceText A string that contains a syntactically correct script source
code

eval(sourceText)

exp()
The exp() function returns the exponential value of the specified argument (e raised to
the specified power). This function has one argument, outlined in Table C.21, and is
associated with the Math object.

TABLE C.21 exp() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.exp(numValue)

floor()
The floor() function rounds down the specified value to the next integer value. This
function has one argument, outlined in Table C.22, and is associated with the Math
object.

706 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 706

Functions Reference 707

C

TABLE C.22 floor() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.floor(numValue)

Function()
The Function() function creates and initializes a new function object. This function can
have any number of arguments, outlined in Table C.23.

TABLE C.23 Function() Arguments

Argument Description

argumentlist Formal parameters and script code

Function(argumentlist)

GetObject()
The GetObject() function returns a reference to an object representing a file that
belongs to an application on your system. This is a Jscript-only function and,
therefore, only works in Internet Explorer. This function has three arguments,
outlined in Table C.24.

TABLE C.24 GetObject() Arguments

Argument Description

ObjectType The application type and object class type to create

Location The path or URL of the object to instantiate

SubObject A fragment identifier for a subobject within the file

GetObject(ObjectType, Location, SubObject)

29 2978 App C 4/10/02 10:41 AM Page 707

handleEvent()
The handleEvent() function is only available in Netscape Navigator. This function han-
dles the specified event object. This function has one argument, outlined in Table C.25.
This function can be used alone, or associated with the Document, Layer, or Window
objects.

TABLE C.25 handleEvent() Arguments

Argument Description

EventObj Any event object

handleEvent(EventObj)

Document.handleEvent(EventObj)

Layer.handleEvent(EventObj)

Window.handleEvent(EventObj)

isFinite()
The isFinite() function checks the specified value for the infinity value. This function
has one argument, outlined in Table C.26.

TABLE C.26 isFinite() Argument

Argument Description

numValue Any expression that returns a numeric value

isFinite(numValue)

isNaN()
The isNaN() function tests the specified value to determine whether it is a valid numeric
value. If the value is not numeric (not-a-number), the function returns a value of false;
otherwise it returns a value of true. This function has one argument, outlined in
Table C.27.

TABLE C.27 isNaN() Argument

Argument Description

numValue Any expression that returns a numeric value

isNaN(numValue)

708 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 708

Functions Reference 709

C

log()
The log() function returns the natural logarithm for the specified value. This function
has one argument, outlined in Table C.28, and is associated with the Math object.

TABLE C.28 log() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.log(numValue)

max()
The max() function determines the maximum of two specified values. This function has
two arguments, outlined in Table C.29, and is associated with the Math object.

TABLE C.29 max() Arguments

Argument Description

numValue1 Any expression that returns a numeric value

numValue2 Any expression that returns a numeric value

Math.max(numValue1, numValue2)

min()
The min() function determines the minimum of two specified values. This function has
two arguments, outlined in Table C.30, and is associated with the Math object.

TABLE C.30 min() Arguments

Argument Description

numValue1 Any expression that returns a numeric value

numValue2 Any expression that returns a numeric value

Math.min(numValue1, numValue2)

29 2978 App C 4/10/02 10:41 AM Page 709

Number()
The Number() function converts the specified expression to a numeric value. This
function has one argument as outlined in Table C.31.

TABLE C.31 Number() Argument

Argument Description

Value1 Any valid expression

Number(Value1)

The Number() function returns a different result based on the type of value passed to the
function, as outlined in Table C.32.

TABLE C.32 Number() Function Results

Value Result

Number Number

No value 0

Null 0

Undefined NaN

Non-numeric string NaN

Boolean true 1

Boolean false 0

Numeric string Equivalent numeric string

Object Internal conversion causes either a number or NaN to be
returned based on the specified object

Object()
The Object() function converts the specified expression to an object. This function has
one argument as outlined in Table C.33.

TABLE C.33 Object() Argument

Argument Description

Value1 Any valid expression

Object(Value1)

710 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 710

Functions Reference 711

C

The Object() function returns a different result based on the type of value passed to the
function, as outlined in Table C.34.

TABLE C.34 Object() Function Results

Value Result

Number Number object with a default value of specified number

No value Empty object

Null Empty object

Undefined Empty object

String String object with the default value of the specified string

Boolean Boolean object with a default value of the specified
Boolean value

Object Object is returned as specified

parseFloat()
The parseFloat() function extracts a floating point number from the specified string.
This function has one argument as outlined in Table C.35.

TABLE C.35 parseFloat() Argument

Argument Description

numValue Any valid expression

parseFloat(numValue)

parseInt()
The parseInt() function extracts an integer value from the specified string. This
function has one argument as outlined in Table C.36.

TABLE C.36 parseInt() Argument

Argument Description

numValue Any valid expression

parseInt(numValue)

29 2978 App C 4/10/02 10:41 AM Page 711

pow()
The pow() function returns the result of raising a value to the specified power. The
function always raises the first argument to the power of the second. This function has
two arguments as outlined in Table C.37 and is associated with the Match object.

TABLE C.37 pow() Argument

Argument Description

numValue1 Any expression that returns a numeric value

numValue2 Any expression that returns a numeric value

Math.pow(numValue1, numValue2)

random()
The random() function returns randomly generated value between 0 and 1 inclusive.
This function has no arguments.

Math.random()

releaseEvents()
The releaseEvents() function is only available within Netscape. This function is used
to specify the events that no longer need to be captured. The function has one argument,
as outlined in Table C.38, and is associated with the Document, Layer, and Window
objects.

TABLE C.38 releaseEvents() Argument

Argument Description

eventMask An event mask, such as Event.KEYPRESS

Document.releaseEvents(eventMask)

Layer.releaseEvents(eventMask)

Window.releaseEvents(eventMask)

712 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 712

Functions Reference 713

C

rgb()
The rgb() function defines a color value by combining specified amounts of blue, red,
and green. This function has three arguments as outlined in Table C.39.

TABLE C.39 rgb() Arguments

Argument Description

redValue Integer value specifying red intensity

greenValue Integer value specifying green intensity

blueValue Integer value specifying blue intensity

rgb(redValue, greenValue, blueValue)

round()
The round() function rounds the specified value to the nearest integer value. This func-
tion has one argument, outlined in Table C.40, and is associated with the Math object.

TABLE C.40 round() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.round(numValue)

routeEvents()
The routeEvents() function is only available within Netscape. This function is used to
specify the events to route to other event handlers, other than the defaults. The function
has one argument, as outlined in Table C.41, and is associated with the Document, Layer,
and Window objects.

TABLE C.41 routeEvents() Argument

Argument Description

eventMask An event mask, such as Event.KEYPRESS

Document.routeEvents(eventMask)

Layer.routeEvents(eventMask)

Window.routeEvents(eventMask)

29 2978 App C 4/10/02 10:41 AM Page 713

ScriptEngine()
The ScriptEngine() function is only available in Internet Explorer. It returns a value of
JScript, VBA, or VBScript indicating the currently installed scripting engine. This
function has no arguments.

ScriptEngine()

sin()
The sin() function returns the sine of the value. This function has one argument,
outlined in Table C.42, and is associated with the Math object.

TABLE C.42 sin() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.sin(numValue)

sqrt()
The sqrt() function returns the square root of the specified value. This function has one
argument, outlined in Table C.43, and is associated with the Math object.

TABLE C.43 sqrt() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.sqrt(numValue)

tan()
The tan() function returns the tangent of the specified value. This function has one
argument, outlined in Table C.44, and is associated with the Math object.

TABLE C.44 tan() Argument

Argument Description

numValue Any expression that returns a numeric value

Math.tan(numValue)

714 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 714

Functions Reference 715

C

toString()
The toString() function returns a string representation of the associated object. This
function has one argument as outlined in Table C.45 and is associated with the Object
object.

TABLE C.45 toString() Argument

Argument Description

radix Radix conversion to be applied when the receiving object is
a number

Object.toString(radix)

unescape()
The unescape() function converts a string back after the escape() function has been
applied. This function has one argument as outlined in Table C.46.

TABLE C.46 unescape() Argument

Argument Description

inputString Any expression string expression

unescape(inputString)

unwatch()
The unwatch() function is only available with Netscape Navigator. The function unsets a
watch point for the property of an object. This function has one argument as outlined in
Table C.47.

TABLE C.47 unwatch() Argument

Argument Description

objProp Any valid object property

unwatch(objProp)

29 2978 App C 4/10/02 10:41 AM Page 715

watch()
The watch() function is only available with Netscape Navigator. The function sets a
watch point for the property of an object. This function has one argument as outlined in
Table C.48.

TABLE C.48 watch() Argument

Argument Description

objProp Any valid object property

watch(objProp)

716 Appendix C

29 2978 App C 4/10/02 10:41 AM Page 716

APPENDIX D
Resources Online

One of the great aspects of working with JavaScript is that there are many
resources available online. There are several sites that provide additional tips
about working with JavaScript along with good examples on how to perform
different tasks. There are also good sites for CGI, Java, HTML, and Java
Applets which we have discussed in this book. Many of these sites are outlined
in this appendix.

JavaScript
These sites provide good information about using JavaScript on your Web
pages.

CNET Builder.COM
This site provides not only tutorials and examples for JavaScript, but also for
other Web technologies such as HTML, XML, and DHTML.

http://builder.cnet.com/

30 2978 App D 4/10/02 10:50 AM Page 717

Dynamic Drive
Dynamic Drive’s site provides a lot of great DHTML examples that are created using
JavaScript.

http://www.dynamicdrive.com/

JavaScript Kit
This is another great site for finding sample code to use on your own Web pages. The
site also includes some good DHTML and CSS examples.

http://wsabstract.com/

The JavaScript Source
This site is loaded with different JavaScript source examples that you can copy and use
on your own site.

http://javascript.internet.com/

JavaScript World
This site provides tutorials and sample scripts for working with JavaScript.

http://www.jsworld.com

Microsoft JScript Reference
This site provides a language reference and user guide for JScript, which is Microsoft’s
version of JavaScript.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/js56jsoriJScript.asp

Netscape JavaScript Developer Central
This site provides some good JavaScript resource information, which includes a
newsgroup, articles, and sample code.

http://developer.netscape.com/tech/javascript/index.html

Netscape Plugin Guide
This site provides online documentation for working with plugins.

http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm

718 Appendix D

30 2978 App D 4/10/02 10:50 AM Page 718

Resources Online 719

D

W3C World Wide Web Consortium
This site contains the guidelines and standards that have been developed for HTML,
CSS, and other Web technologies.

http://www.w3.org/

W3Schools.com
This site provides a good tutorial and examples for using JavaScript. It also provides
tutorials for HTML, CSS, XML, DHTML, VBScript, SQL, and ASP.

http://www.w3schools.com/default.asp

WebReference.com
This site provides valuable tips for working with JavaScript and several other Web
technologies including DHTML, HTML, XML, and Perl.

http://webreference.com/

Java and Java Applets
These sites provide good information about using Java and Java Applets.

FreewareJava.com
This site provides links to some good resources on the Internet for Java applets, Java
tutorials, and even JavaScript.

http://www.freewarejava.com

The Java Boutique
This site provides different Java Applets that can be used on your site.

http://www.javaboutique.internet.com/

Java Technology Tutorials
IBM provides some good tutorials for working with Java.

http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle

Javalobby
This site provides a lot of good resources on Java technologies. It also provides the
ability to chat with other Java developers.

http://www.javalobby.org/

30 2978 App D 4/10/02 10:50 AM Page 719

JavaWorld
This site provides reference and tips for working with Java.

http://www.javaworld.com/

The Source for Java Technology
As the developers of Java, Sun’s site provides a good resource for learning about the
latest Java technology.

http://java.sun.com

ZDNet Developer
This site provides Java applets that you can use on your Web site. This site also provides
information on other Web technologies including HTML, CSS, JavaScript, DHTML,
XMP, and ActiveX.

http://www.zdnet.com/devhead/resources/scriptlibrary/applets/

HTML
The following sites provide some good resources for working with HTML.

HTML Writers Guild
This site provides an international organization of Web authors. By becoming part of this
organization you have access to a support network of other Web developers.

http://www.hwg.org/

NCSA Beginners Guide to HTML
This site provides a good resource for working with HTML by describing each of the
HTML tags.

http://archive.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

Website Tips
This site provides tips and tutorials for building HTML pages. It also contains tips for
other Web technologies, such as JavaScript.

http://www.websitetips.com/index.html

720 Appendix D

30 2978 App D 4/10/02 10:50 AM Page 720

Resources Online 721

D

CGI
The following sites provide good information about working with CGI scripts.

CGI 101
This site provides beginner-level training and tutorials for CGI.

http://www.cgi101.com/

CGI City
This site provides several CGI scripts that you can use on your site.

http://www.icthus.net/CGI-City/

The CGI Resource Index
This site provides access to over 2,600 different CGI resources.

http://www.cgi-resources.com/

The Common Gateway Interface
This site provides detailed information about CGI.

http://hoohoo.ncsa.uiuc.edu/cgi/

30 2978 App D 4/10/02 10:50 AM Page 721

30 2978 App D 4/10/02 10:50 AM Page 722

APPENDIX E
A Short History of
JavaScript

JavaScript has become a fairly widely accepted scripting language that you can
use to perform tasks not available with standard HTML. In fact, JavaScript has
become the most popular scripting language for performing the following tasks:

• Working with Java applets and plugins

• Detecting the user’s browser version, and determining content for that
browser

• Changing the messages within the status line

• Validating form content

• Displaying messages to the user

• Creating mouse-over effects

Evolution of the Internet
Amazingly enough, the Internet can actually trace its origin back to the 1960s.
The Internet concept was actually conceived in the 1960s under the direction of
the Department of Defense, Advanced Research Projects Agency (ARPA).

31 2978 App E 4/10/02 10:45 AM Page 723

Therefore, the first small network of computers that was created was called ARPANET
with the intention of sharing supercomputers among researchers in the United States.

Although originally intended for sharing of computer resources, e-mail capabilities were
added and ARPANET became the first digital post office as researchers learned to collab-
orate on projects. By 1971, ARPANET had grown to 23 hosts, connecting universities
and government research centers around the United States.

In 1972, the government formed the InterNetworking Working Group as a standard-
setting group to govern the expanding network. Vinton Cerf was elected as the first chair-
man of the group, and later became known as the “father of the Internet.”

The first public exposure to the network came in 1974 when Telenet was introduced as
the first commercial version of ARPANET. In 1979, the first USENET groups were
created, allowing users from around the world to join discussion groups on all sorts of
topics.

By 1981, the ARPANET hosts had grown to 213, with a new host being added about
every 20 days. In the mid-1980s, Bob Kahn and Vinton Cerf were members of a team
that developed TCP/IP—the communication language still used today for Internet com-
puters. During that time, the network of computers that made up ARPANET were seen
as an “internet,” thus coining the term used to refer to the network today.

Also during the 1980s, personal computer sales soared, making the Internet a great
communication tool for corporations. By 1987, the number of Internet hosts exceeded
10,000.

The first “Internet worm” was released in November 1988, temporarily disabling 6,000
of the 60,000 Internet hosts. This prompted the development of the Computer Emergency
Response Team (CERT) to address security concerns of the Internet.

The Internet has grown in leaps and bounds from its very limited beginnings in the
1960s. As the network grew, the demand for technologies to display and capture content
grew as well, dramatically causing an increased interest in JavaScript and other Web
development technologies.

Internet Programming Revolution
As previously mentioned, when the Internet (or ARPANET as it was called), first came
into existence it was used as a method for sharing files among researchers. From that
point, different individuals created their own versions of a “hypertext” type of system
that could be used globally for sharing information. The first popular hypertext system
was actually developed in 1987 by Bill Atkinson, and was called HyperCard. HyperCard

724 Appendix E

31 2978 App E 4/10/02 10:45 AM Page 724

A Short History of JavaScript 725

E

simplified the process of creating graphical hypertext applications. This system spanned
other hypertext systems running on large scale systems.

In 1989, the Hypertext Markup Language (HTML) was actually conceived as a system
that could be accessed across a wide range of computer systems by individuals working
at CERN. HTML was conceived as a simple solution that matched tags with simple
network protocol HTTP. HTML was created based on SGML (Standard Generalized
Markup Language), which was widely used at that time.

In fall of 1990, the first text-only browsers were implemented providing access to hyper-
text files created using HTML. Popularity of HTML grew making it the standard for dis-
playing dynamic content on the Internet. Because of the vast growth of HTML, the
World Wide Web Consortium (W3C) gained responsibility for developing standards for
Web developers.

As you are probably aware, HTML provided a good vehicle for displaying static content;
but it was, and still is unable to interact with the visitor. HTML is also unable to make
decisions, or automate repetitive tasks. Because of these constraints, and the demands to
create more dynamic content, other Web technologies were developed.

New technologies, such as Java, were used to create dynamic content on Web pages.
Although use of Java applets created a more dynamic page, it did not allow for interac-
tion between your HTML code and the Java applet. This being the case, Netscape recog-
nized the need for a programming language that would allow for the interface with Java
applets.

JavaScript Introduction
As Web development evolved, Netscape determined that a method was needed as a
means for communicating among the HTML code and the embedded objects on the
page. That being the case, Netscape decided to create a scripting language that would
accomplish this task, along with other tasks that could not be accomplished with the
existing tools, such as allowing Web server administrators to manage the Web server and
connect its pages to other services, providing Web-page authors the ability to create
scripts to run on a Web page and perform tasks such as verifying a value typed in a field,
and finally creating an interface for communicating with Java applets placed on an
HTML page.

As mentioned, JavaScript originally got its start as a scripting language for Netscape
Navigator. This scripting language was originally titled “LiveScript.” It was designed to
be released as part of Netscape Navigator 2.

31 2978 App E 4/10/02 10:45 AM Page 725

Before the release of Navigator 2, Netscape and Sun formed an agreement to call the
new scripting language JavaScript. When Navigator 3 was released, it included an
updated version of JavaScript, titled “JavaScript 1.1.”

At the same time Netscape was releasing Navigator 3, Microsoft released Internet
Explorer 3 with it own version of JavaScript named JScript. Because the Java name was
trademarked by Sun, Microsoft chose to call it JScript to avoid the need to license the
name from Sun. Although JScript was intended to parallel the capabilities of JavaScript
1.1, available with Navigator 3, its functionality more closely resembled that available in
the original version of JavaScript released with Navigator 2.

Finally with the release of Navigator 4 and Internet Explorer 4 the versions of JavaScript
and JScript essentially matched core functionalities. Although Microsoft continued to call
its version JScript, Internet Explorer Script tags recognized both JScript and JavaScript,
allowing for both types of scripting. Of course, that was not true of Netscape Navigator,
which only recognized JavaScript Script tags. But since the tags are essentially the same
for both JavaScript and JScript, if the developer uses JavaScript as the language reference
the code will run on both browsers.

In an effort to create a more standardized core language, the European Computer
Manufacturers Association (ECMA) met with Microsoft, Netscape, and other organiza-
tions with JavaScript interests. Formal language specifications were published as stan-
dards for the language. Because of the licensing issues with the name JavaScript, the new
language was named ECMAScript.

Currently the ECMA maintains the standards for the core language. The core language
typically maintains the most compatible features consistent between Netscape Navigator
and Microsoft Internet Explorer. Therefore, you can typically feel confident that every-
thing within the ECMA standard will work on the current browser versions for both
Netscape and Microsoft, but may not work on previous browser versions, or any of the
many other browsers available.

Unfortunately, the ECMA standard does not include all the fun and exciting features that
you will find on various Web sites that you visit today. Most of these extended features
are built in to particular browsers by Microsoft and Netscape. In order to take advantage
of these features, you potentially limit your audience of visitors capable of viewing your
site in all its glory. One good example of this would be when Navigator 3 provided addi-
tional objects that allowed Web developers to create rollover button effects like those you
see on the most current sites today. Microsoft was slower to add this type of feature.
Meaning the Internet Explorer users did not see the rollover effects when visiting sites
that had incorporated that feature. Of course this functionality was later incorporated into
the Internet Explorer Document Object Model.

726 Appendix E

31 2978 App E 4/10/02 10:45 AM Page 726

A Short History of JavaScript 727

E

As I mentioned earlier, the ECMA maintains the standards for the core JavaScript
language, called ECMAScript because of licensing issues with Sun. Both Netscape
Navigator and Microsoft Internet Explorer maintain that they are ECMA-compliant,
meaning that they include all of the core language features as outlined by the EMCA
standard. The ECMA standards body maintains a document called ECMA-262, which
contains all core language standards. You can find the latest version of this document on
http://www.ecma.ch.

It is important to recognize that the ECMA only provides core-language standards. But it
is important to be familiar with some of these standards so that you can quickly deter-
mine whether the JavaScript functionality you want is supported by all current browsers.

Browser Support of JavaScript Versions
As mentioned, new versions of JavaScript were developed to add additional functionality.
Each version was released with a new version of the Web browser. Table E.1 illustrates
the versions of JavaScript that were supported by each browser version.

TABLE E.1 JavaScript Version Support

JavaScript Version Browser Support

JavaScript 1.1 Netscape 3.01

JavaScript 1.2 Netscape 4.05, Internet Explorer 4.01

JavaScript 1.3 Netscape 4.61, Internet Explorer 5.0

JavaScript 1.4 Mozilla 5.0 Alpha Pre-Release

JavaScript 1.5 Netscape 6, Internet Explorer 5.5

As you can see from the table, JavaScript 1.5 features were supported beginning with
Netscape Navigator 6 and Internet Explorer 5.5.

As discussed in Chapter 8, “The Browser Issue,” JavaScript is supported by most current
browsers on the market today (with the exception of Internet devices, such as cellular
phones, that have recently come to market and that have very limited scripting capabili-
ties). But you always run the risk that someone may access your site with an older
browser that does not support JavaScript. Therefore, it is always a good idea to check for
browser support of JavaScript on your page, to avoid any potential errors. For more
information about doing this, refer to Chapter 8.

31 2978 App E 4/10/02 10:45 AM Page 727

31 2978 App E 4/10/02 10:45 AM Page 728

Symbols

; (semicolons), 22

A

abs()
function, 699
method, 271

absolute values, 271
access

arguments, 85-86
arrays, 168-173
browser windows, 569
cookies, 539-541
elements

HTML forms, 205-206
by ID, 301
by tag names, 302

external files, 27
nodes, 300-302

INDEX

32 2978 Index 4/10/02 10:43 AM Page 729

properties of custom objects, 610-611
URLs, 144-147

acos() function, 700
adding

comments, 496
elements, 182-193
event handlers

capturing, 335-337
functions, 334-335
statements, 333-334

properties, 606-607
text, 666-668
titles, 661-664

Adobe Acrobat Reader, 586
alert boxes, creating, 24-25
Alert dialog box, 610
alert()

function, 41, 153
method, 511-514

alerts, 122
alphanumeric characters, 444
alternate inputs, applying, 506-509
AM (time), converting, 319-321
animation, 377-380, 670-682
Apple QuickTime, 586
applets, 595-597

calling, 597-598
interacting, 598-599
plugins, 584
resources, 719-720

FreewareJava.com, 719
Java Boutique, 719
Javalobby, 719
JavaWorld, 720
tutorials, 719
ZDNet Developer, 720

applying
alternate inputs, 506-509
cookies, 535-536

configuring values, 537-542
examples, 542-556
retrieving values, 536

functions, 82-90
HTML form elements, 514-518
plugins, 594-595
regular expressions, 416-418
toString(), 101

appname property, 294
arguments, 85

arrays, 164-165
Date objects, 311
functions, 85-86
toExponenetial, 690
toFixed, 690
toPrecision, 690

arithmetic functions, 95
converting strings, 98-101
troubleshooting, 95-98

arithmetic operators, 57-59
ARPA (Advanced Research Projects

Agency), 723
Array object, 453-454

concat(), 454-462
slice(), 463-464
sort(), 470-484
splice(), 464-470

arrays, 161-163
accessing, 168-173
associative, 193-196
copying, 457-462
creating, 164

populating, 165-166
providing arguments, 164-165

databases, 626
elements

adding, 182-193
storing objects, 197-198

literals, 167
methods, 179

join(), 181-182
toLocaleString(), 180-181
toString(), 180

730 access

32 2978 Index 4/10/02 10:43 AM Page 730

multi-dimensional, 484-490
parallel, 171-173
properties, 174-178

asin() function, 700
assign() method, 143-144
assigning

arrays to databases, 626
variables to windows, 385

assignment operators, 71-72
associative arrays, 193-196
atan() function, 700
atan2() function, 701
atob() function, 701
attaching forms, 222
attributes

frames, 401
HTML elements, 374-377
open() method, 387
tags, 362
type, 29
windows, 386

B

backgrounds, HTML, 364-365
Batik DOM viewer, 656-658
bitwise operators, 73-74
blocks

scripts, 23-26
statements, 105

body objects, 140-141
Book objects, creating, 626
books.js file, creating, 631-634
bookstores, e-commerce code, 629-631
Boolean() function, 38, 701-702
boundaries, regular expressions, 443-444
breaking out of frames, 406-407
breaks, lines, 22
browser-based errors, 498

browsers. See also interfaces; windows
applets/plugins, 584
compatibility, 30-32
debug windows, 527
histories, 147-149
interpreters, 524-527
languages, 286

compatibility, 288-298
ECMA standards, 287-288
history of, 286-287

names, 294
navigating, 148-149
plugins

handling, 586-587
support, 592-594

screen object, 150, 397-399
selecting, 19-21
version support, 727
W3C DOM, 298-302
windows, 569

btoa() function, 702
building functions, 80-90
buttons, HTML forms, 233

C

calculations, 517
arithmetic functions, 95

converting strings, 98-101
troubleshooting, 95-98

arithmetic operators, 57-59
dates, 325-326
factorials, 278-279
floating math point errors, 636-637

calling
applets, 597-598
external style sheets, 361
functions, 82, 334-335

captureEvents() function, 702

captureEvents() function 731

32 2978 Index 4/10/02 10:43 AM Page 731

capturing
events, 335-337
keyboard events, 342
mouse actions, 346-353

cardinality syntax, regular expressions, 445
Cascading Style Sheets. See CSS
case

sensitivity, 22
toUpperCase() method, 237-238

catalogs, creating, 627-629
catch clauses, 692
catch() function, 703
ceil()

function, 703
method, 271-272

certificates, obtaining, 578-579
CGI (Common Gateway Interface). See also

interfaces
resources, 721
scripts, 574

characters, 440-444
matching, 418-421
selecting, 422-426

check boxes, HTML forms, 226-228
checking user input, HTML forms, 242-245
child elements, HTML forms, 215-221
child nodes, 298
child objects, 129-130, 137-140
chrome, 387-388
classes, numbered occurrences of (pat-

terns), 426-429
classification properties, specifying, 366
classifying errors, 496-498
clauses, catch, 692
Click event, 332, 674-676
client-side objects, 122

dot notations, 122-123
functions, 124-129
methods, 124-129
properties, 124-129
window objects, 122, 129-130

clients, 13-17
close() method, 389-390
closing windows, 389-390
CNET Builder.COM, 717
code

bookstore, 629-631
comments, 496
cookies, 568
documenting, 33-34
events, 332

capturing, 335-337
creating event handlers, 332-333
document events, 346
Focus events, 344-345
function calls, 334-335
keyboard events, 342-344
monitoring forms, 339-341
statements, 333-334
types, 337-338
window events, 346-353

files, 566-567
functions, 82-90
nodes, 298
placement, 23-32
privacy

CGI scripts, 574
impact, 573
passwords, 573-577
signed scripts (Netscape), 577-579

reusing, 32
shopping carts, 641-645
statements, 102

conditional, 103-110
control, 103
do while statements, 112-113
for in statements, 116
for statements, 113-116
loop, 110
while statements, 111-112

strings, 94-95
SVG, 654-655

732 capturing

32 2978 Index 4/10/02 10:43 AM Page 732

Webmasters
privacy, 570-572
same origin policy, 572

collections, 120
elements, 216-218
HTML forms, 202-205

colors
background properties, 364-365
borders, 365
names, 694-697
RGB values, 698

combining
dates, 316-317
multiple data elements, 605

comments, adding to code, 496
comparisons

applets/plugins, 584
dates, 326
functions, 476
operators, 60-65
strings, 237-238

compatibility
browsers, 30, 32
scripting, 288-298

concat() method, 454-462
concatenating

operators, 70-71
strings, 235, 240-241

conditional operators, 65-67
conditions, comparison operators, 60-65
configuring

cookie values, 537-542
event handlers, 332-333

capturing, 335-337
document events, 346
Focus events, 344-345
function calls, 334-335
keyboard events, 342-344
monitoring forms, 339-341
mouse actions, 346-353

statements, 333-334
window events, 346

lists, 367-368
margins, 368

confirm() function, 42
constants, 53-54
Constructor

arrays
creating, 164
literals, 167
populating, 165-166
providing arguments, 164-165

objects, 606-607, 610-613
regular expressions, 438-440

continuous events, 518-524
control statements, 103-110
converting

numbers, 255
strings, 98-101
time, 319-321

Cookie Central Web site, 557
cookies, 531-533, 568

access, 539-541
advantages, 534
applying, 535-536

configuring values, 537-542
retrieving values, 536

deleting, 539
disadvantages, 534-535
examples, 542-556
FavList.htm example, 553
future of, 557
hidden form variables, 561-562
limitations, 534
myths, 535
Netscape specification Web site, 535
resources, 557
security, 541-542
state, 532-560

copying arrays, 457-462

copying arrays 733

32 2978 Index 4/10/02 10:43 AM Page 733

Core objects, 150-153
cos() function, 703
creating

alert boxes, 24-25
arrays, 164

literals, 167
populating, 165-166
providing arguments, 164-165

associating arrays, 194
ellipses, 665
functions, 278-280
instances, 608-610
methods, 613-616
objects, 606-613
regular expressions, 436-440
rollovers, 671
shapes, 664-666, 670-676
SVG, 652
variables, 48-52

criteria, defining, 476-484
cross-browser compatible scripting, 288-289

disabling JavaScript, 290-292
non-JavaScript support, 289-290
objects, 297-298
types, 292-296

cross-platforms languages, 10
CSS (Cascading Style Sheets), 358-363

positioning properties, 371-374
rules, 363-369
sub-classes, 369-370

current dates, 310. See also dates
custom objects, 604

data elements, 605
data types, 605
instances, 608-610
linking, 616-618
methods, 605, 613-616
properties, 605

accessing, 610-611
adding, 606-607
modifying, 611-613

customizing text, 369

D

data elements, 605
data functions, 84-88
data types, 36

boolean, 38
custom objects, 605
numbers, 36-38
strings, 38-40

databases
arrays, 626
e-commerce, 622, 625-627

Date() function, 704
dates, 308-309

calculations, 325-326
combining, 316-317
comparing, 326
converting, 314-315, 323-327
Date object, 309-312
formatting, 312-315

days, converting, 314-315
debugging, 496-498, 524. See also trou-

bleshooting
browser windows, 527
load-time errors, 501-506
Microsoft Debugger, 527-529
runtime errors, 509-524
scripts, 527-529
syntax, 498-509

decimals, 253. See also Number object
declarations

arrays, 167
functions, 691
variables, 89-90

declarative animation, 668, 676-682
decodeURI() function, 704
decodeURIComponent() function, 704
decrement operators, 59
defining

ellipses, 673-674
frames, 400

734 Core objects

32 2978 Index 4/10/02 10:43 AM Page 734

regular expressions, 436-444
sort criteria, 476-484

deleting
cookies, 539
elements, 182-193
orders, 638-639

design. See also creating
coding shopping carts, 641-645
online shopping carts, 625-634
requirements, 622
shopping carts, 635-640, 645
structures, 622-624

detecting
plugins, 585-587
radio buttons, 229

DHTML (Dynamic HTML), 358, 518
animation, 377-380
CSS, 358-370
elements, 374-377
layers, 371-374

dialog boxes
Alert, 610
Error, 500-501

digital certificates, obtaining, 578-579
dimensions, specifying, 366
disabling JavaScript, 290-292
discrete events, 509-518
displaying. See viewing
do while statements, 112-113
document.writeln() method, 503-506
documents

code, 33-34
events, 346
multiple documents, 384. See also Window

object
objects, 120-121, 130

body objects, 140-141
child objects, 137-140
environment objects, 141-150
methods, 133-137
properties, 131-133

SVG, 661
titles, 121

DOM (Document Object Model)
SVG, 656, 659

Batik DOM viewer, 656-658
HTML interaction, 682-683
<script>, 659
scripting languages, 660
syntax, 661

W3C, 298-302
domains, accessing cookies, 541
dot notations, 122-123
drawing shapes, 664-666, 670-676
Dynamic Drive, 718
Dynamic HTML. See DHTML
dynamic menus, 379-380

E

e-commerce, 621
online shopping carts, 625

books.js file, 631-634
bookstore code, 629-631
catalogs, 627-629
databases, 625-627

requirements, 622
shopping carts, 635-636

coding, 641-645
deleting orders, 638-639
floating math point errors, 636-637
security, 645
user information, 639-640

structures, 622-624
ECMA (European Computer

Manufacturers Association), 287-288
ECMAScript, 18-19
editors

selecting, 19-21
SVG, 652

editors 735

32 2978 Index 4/10/02 10:43 AM Page 735

Eich, Brendan, 17
elements

arrays, 164-165
adding, 182-193
storing objects, 197-198

check boxes, 226-228
collection, 216-218
form properties, 206-210
HTML

accessing, 205-206
forms, 202-205, 215-221, 514-518
layers, 371-374
modifying, 374-377
specifying classification properties, 366

ID, 301
multiple data, 605
radio buttons, 228-230
<script>, 659
select boxes, 230-233
sub-classes, 369-370
tags, 302
text

adding, 666-668
forms, 221-223

textarea forms, 223-225
ellipses

creating, 665
defining, 673-674

else if statement, 103-107
else statement, 103-107
empty arrays, creating, 165-166
encodeURI() function, 704
encodeURIComponent() function, 705
encoding passwords, 576
environment objects, 141

accessing URLs, 144-147
history object, 147-149
loading pages, 143-144
location object, 142
navigator object, 149
screen object, 150

Error() function, 705
errors. See also troubleshooting

browser-based, 498
classifying, 496-498
Internet Explorer, 500-501
load-time, 501-506
logic, 498
Netscape Navigator, 499
preventing, 496-498
runtime, 690

debugging, 509-524
interpreters, 524-527

syntax, 498-509
types, 498

escape() function, 705
European Computer Manufacturers

Association (ECMA), 287-288
eval() function, 525, 706
evaluation

operators, 56
strings as code, 94-95

events, 332
Click, 332, 674-676
continuous, 518-524
discrete, 509-518
handlers, 138, 332

capturing, 335-337
creating, 332-333
document events, 346
Focus events, 344-345
function calls, 334-335
keyboard events, 342-344
monitoring forms, 339-341
mouse actions, 346-353
statements, 333-334
this keyword, 341
window events, 346

mouseover/mouseout, 673-674
shapes, 670-676
types, 337-338

736 Eich

32 2978 Index 4/10/02 10:43 AM Page 736

examples
cookies, 542-556
JavaScript, 718

exec() method, 446-447
exp()

function, 706
method, 277

expiration dates, configuring, 538
expressions, 56

function, 692
regular, 179, 691

greedy quantifiers, 691
lookahead assertions, 691
m-flag, 691
non-capturing parentheses, 691

regular, 416. See regular expressions
external files, 27, 32
external style sheets, applying, 362. See also

CSS
extracting strings, 238

F

factorials, searching, 278-279
favorites, 556
fields

attaching forms, 222
restricting users, 224

files
books.js, 631-634
cookies, 568
e-commerce, 624
external, 27, 32
plugins

detecting, 585-587
objects, 594-595
support, 592-594
verifying, 588-592

restrictions, 566-567
SVG, 652

fills, modifying, 673-674
flags, m-flag, 691
Flash, 586
floating math point errors, 636-637
floor()

function, 706
method, 271-272

Focus events, 344-345
fonts, modifying, 367. See also characters
for in

loops, 158
statements, 116

for loops, 155
for statements, 113-116, 169
forcing frames, 407-408
formatting. See also creating

Book objects, 626
books.js file, 631-634
bookstore code, 629-631
catalogs, 627-629
CSS

rules, 363-369
sub-classes, 369-370

databases, 625-627
dates, 312-315, 323-327
event handlers, 332-333

capturing, 335-337
document events, 346
Focus events, 344-345
function calls, 334-335
keyboard events, 342-344
monitoring forms, 339-341
mouse actions, 346-353
statements, 333-334
window events, 346

lists, 367-368
margins, 368
numbers, 689

output, 251
toExponential method, 689-690

formatting 737

32 2978 Index 4/10/02 10:43 AM Page 737

toFixed method, 690
toPrecision method, 690

objects, 606-607, 610-613
specific Date objects, 310-312
strings, 326-327
telephone numbers, 509-511
time, 317-321

converting, 319-326
zones, 322-323

toUpperCase() method, 237-238
forms

hex, 92
hidden form cookie variables, 561-562
HTML

accessing elements, 205-206
buttons, 233
check boxes, 226-228
checking user input, 242-245
collecting data, 202-205
element properties, 206-210
elements, 215-221, 514-518
methods, 211-215
radio buttons, 228-230
select boxes, 230-233
text elements, 221-223
textarea elements, 223-225

monitoring, 339-341
frames, 384, 399, 402-403

attributes, 401
breaking out, 406-407
defining, 400
forcing, 407-408
positioning, 403-405

FreewareJava.com, 719
Function() function, 707
functions

abs(), 699
acos(), 700
alert(), 41, 153
arguments, 85-86

Arrays(), 164
asin(), 700
atan(), 700
atan2(), 701
atob(), 701
Boolean(), 701-702
btoa(), 702
captureEvents(), 702
catch(), 703
ceil(), 703
comparison, 476
confirm(), 42
cos(), 703
Date(), 704
declarations, 691
decodeURI(), 704
decodeURIComponent(), 704
encodeURI(), 704
encodeURIComponent(), 705
Error(), 705
escape(), 705
eval(), 525, 706
event handlers

capturing, 335-337
creating, 334-335

exp(), 706
floor(), 706
Function(), 707
GetObject(), 707
handleEvent(), 708
isFinite(), 708
isNaN(), 256, 708
log(), 709
Math object, 278-280
max(), 709
min(), 709
number(), 710
Object(), 710
objects, 124-129
parseFloat(), 711

738 formatting

32 2978 Index 4/10/02 10:43 AM Page 738

parseInt(), 711
pow(), 712
predefined global, 91-93

arithmetic, 95-101
evaluating strings as code, 94-95

prompt(), 43
random(), 712
releaseEvents(), 712
returning data, 87-88
RGB(), 698, 713
round(), 253, 713
routeEvents(), 713
ScriptEngine(), 714
sending data to, 84
sin(), 714
sqrt(), 714
tan(), 714
timeSpellOut(), 506-509
toString(), 715
unwatch(), 715
user-defined, 80

applying, 82-90
creating, 80-81

watch(), 716
future of cookies, 557

G

gathering user information, 639-640
GetObject() function, 707
global functions, 91-93

arithmetic, 95-101
strings, 94-95

Global object, 122
dot notations, 122-123
functions, 124-129
methods, 124-129
properties, 124-129
window objects, 122, 129-130

global property, 448
global variables, 90
GMT (Greenwich Mean Time), 308,

322-323
gradient fills, 670, 673-674
graphics. See SVG
greedy quantifiers, 691

H

handleEvent() function, 708
handlers, 138, 332

capturing, 335-337
creating, 332-333
document events, 346
Focus events, 344-345
function calls, 334-335
keyboard events, 342-344
monitoring forms, 339-341
mouse actions, 346-353
plugins, 586-587
statements, 333-334
this keyword, 341
window events, 346

hash property, 146
hex forms, 92
hexadecimal values, 695-697
hidden form variables, 561-562
histories

history object, 147-149
JavaScript, 286-287, 723-726
windows, 393-394

History object, 383, 393-394
HotWired Web site, 558
href property, 143-144
HTML (Hypertext Markup Language),

12-13
backgrounds, 364-365
CSS, 360

HTML 739

32 2978 Index 4/10/02 10:43 AM Page 739

DHTML, 357
documents

body objects, 140-141
child objects, 137-140
methods, 133-137
objects, 130
properties, 131-133

elements
layers, 371-374
modifying, 374-377
specifying classification properties, 366

environment objects, 141
accessing URLs, 144-147
history object, 147-149
loading pages, 143-144
location object, 142
navigator object, 149
screen object, 150

events
capturing, 335-337
creating event handlers, 332-333
document events, 346
Focus events, 344-345
function calls, 334-335
keyboard events, 342-344
monitoring forms, 339-341
mouse actions, 346-353
statements, 333-334
types, 337-338
window events, 346

forms
accessing elements, 205-206
buttons, 233
check boxes, 226-228
checking user input, 242-245
collecting data, 202-205
element properties, 206-210
elements, 215-221, 514-518
methods, 211-215
radio buttons, 228-230

select boxes, 230-233
text elements, 221-223
textarea elements, 223-225

frames. See frames, 402
nodes, 298-302
objects, 120-121
resources, 720
script blocks, 23-26
start tags, 28
sub-classes, 369-370
SVG DOM, 682-683
writing, 136

HTTP (Hypertext Transfer Protocol),
532-533

advantages, 534
cookie specification, 535
disadvantages, 534-535
FavList.htm example, 553
future of, 557
limitations, 534
myths, 535
Working Group (IETF), 557

Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I

ID (identification), accessing, 301
if statement, 103-107
ignoreCase property, 449
images. See SVG
impact of privacy, 573
increment operators, 59
indexes

arrays, 162
CGI, 721

input
alternate, 506-509
HTML forms, 242-245

740 HTML

32 2978 Index 4/10/02 10:43 AM Page 740

inserting text, 124
installing plugins

detecting, 585-587
support, 592-594
verifying, 588-592

instances, creating, 608-610
integers, 253
interacting

with applets, 598-599
with HTML/SVG DOM, 682-683

intercepting mouse clicks, 347-353
interfaces

compatibility, 30-32
histories, 147-149
interpreters, 524-527
languages, 286

compatibility, 288-298
ECMA standards, 287-288
history of, 286-287

navigating, 148-149
plugins

handling, 586-587
support, 592-594

screen object, 150
selecting, 19-21
sp viewers, 656
W3C DOM, 298-302

intermediate values, alert() method,
511-514

Internet, history of, 723-726
Internet Explorer

errors, 500-501
plugins, 591-592
W3C DOM, 298-302

interpreters, runtime, 524-527
isFinite() function, 708
isNan() function, 256, 708

J

JAR (Java Archive), 578
Java

applets, 595-597
calling, 597-598
interacting, 598-599

resources, 719-720
FreewareJava.com, 719
Java Boutique, 719
Javalobby, 719
JavaWorld, 720
tutorials, 719
ZDNet Developer, 720

Java Archive (JAR), 578
Java Virtual Machine (JVM), 656
JavaScript, 10, 18

case sensitivity, 22
cookies

FavList.htm example, 553
future of, 557

cross-platform languages, 10
debugging. See debugging
history of, 723-726
line breaks, 22
object-based, 11
requirements, 12-13

client-side, 14-15
server-side, 13-14

resources
CNET Builder.COM, 717
Dynamic Drive, 718
JavaScript kit, 718
JavaScript source, 718
JavaScript World, 718
Micosoft JScript reference, 718
Netscape, 718
W3C, 719
WebReference.com, 719

scripting language, 11
semicolons, 22

JavaScript 741

32 2978 Index 4/10/02 10:43 AM Page 741

versions, 727
whitespace, 22-23

join() method, 181-182
JScript, 18
JVM (Java Virtual Machine), 656

K – L

keyboard events, 342-344
keywords, 288

functions, 82
omitting, 50
return, 88
this, 341, 608

languages
code. See code
DHTML. See DHTML
HTML. See HTML
interfaces, 286

compatibility, 288-298
ECMA standards, 287-288
history of, 286-287

layers, DHTML, 371-374
layouts, defining, 400. See also creating;

formatting
length property, 234
limitations of resources, 569
line breaks, 22
linking

custom objects, 616-618
shopping carts, 631
tag attributes, 362

listings
cookie example (FavList.htm), 552
retrieving cookie values, 536

lists, configuring, 367-368

literals
arrays, 167
matching, 418-421
regular expressions, 436-437
selecting, 422-426

load-time errors, debugging, 501-506
loading pages, 143-144
local variables, 90. See also variables
location object, 142, 383, 390-393

frames, 403-405
history object, 147-149
navigator object, 149
pages, 143-144
screen object, 150
URLs, 144-147
windows, 390-393

log to base N, 280
log() function, 709
logic errors, 498
logical operators, 67-70, 73
lookahead assertions, 691
loops, 110

arrays, 169
do while statements, 112-113
for in statements, 116, 158
for statements, 113-116, 155
while statements, 111-112

M

maintaining state, 532-533, 558-560
margins, 22-23, 368
matching literal character sequences,

418-421
Math object, 267

functions, 278-280
methods, 270

abs() method, 271
ceil() method, 271-272

742 JavaScript

32 2978 Index 4/10/02 10:43 AM Page 742

exp(method, 277
floor() method, 271-272
max() method, 272-274
min() method, 272-274
pow() method, 277
random() method, 275-277
round() method, 271-272
sqrt() method, 271

properties, 267-270
mathematical operators. See arithmetic

operators
MAX VALUE, 257
max()

function, 709
method, 272-274

menus, dynamic, 379-380
messages

runtime errors, 690
status bars, 395

methods, 120
alert(), 511-514
Array object, 453-454

concat(), 454-462
slice(), 463-464
sort(), 470-484
splice(), 464-470

arrays, 179
join(), 181-182
toLocaleString(), 180-181
toString(), 180

assign(), 143-144
charAt(), 238
close(), 389-390
concat(), 240-241
custom objects, 605, 613-616
document objects, 133-137
document.writeln(), 503-506
Form object, 211-215
indexOf(), 239
Math object, 270

abs() method, 271
ceil() method, 271-272
exp() method, 277
floor() method, 271-272
max() method, 272-274
min() method, 272-274
pow() method, 277
random() method, 275-277
round() method, 271-272
sqrt() method, 271

Number object, 258-259
toExponenetial(), 259-260
toFixed(), 262-264
toLocaleString(), 264-265
toPrecision(), 260-262
valueOf(), 266-267

objects, 124-129
open(), 387
parse(), 327
pop(), 184-186
popups, 410
prompt(), 576
push(), 182-184
RegExp object, 446

exec(), 446-447
test(), 447

reload(), 393
replace(), 239-240
reverse(), 189-192
shift(), 187-188
strings, 236-241
substr(), 241
toExponenetial(), 689-690
toFixed(), 690
toPrecision(), 690
toSource(), 193
toUppercase(), 237-238
unshift(), 187-188
valueOf(), 193
windows, 385-390

methods 743

32 2978 Index 4/10/02 10:43 AM Page 743

Microsoft Debugger, 527-529
Microsoft JScript reference, 718
MIME (Multipurpose Internet Mail

Extensions), 135, 587
mimeType Object properties, 594
MIN VALUE, 257
min()

function, 709
method, 272-274

modifying
borders, 365
document titles, 121
fills, 673-674
fonts, 367
forms, 339-341
messages, 395
multiple frames, 404
properties, 611-613
URL, 376
variables, 52
windows, 391

modulo operators, 59
modulus, 97
monitoring

document events, 346
forms, 339-341
mouse actions, 346-353
objects, 344-345
window events, 346

months, converting, 314-315
mouse events, 346-353
mouseover/mouseout events, 673-674
moving objects, 377-380
multi-dimensional arrays, 484-490
multimedia plugins

detecting, 585-587
objects, 594-595
support, 592-594
verifying, 588-592

multiple catch clauses, 692

multiple data elements, combining, 605
multiple documents, viewing, 384
multiple frames, 404
Multiplication Table Generator, 115
Multipurpose Internet Mail Extensions

(MIME), 135, 587

N

names
appname property, 294
browsers, 294
colors, 694-697
functions, 82
plugins, 592
tags, 302
variables, 50-51

navigating
browsers, 148
navigator object, 149
windows, 126

NEGATIVE INFINITY, 258
nested frames, 405
Netscape. See also interfaces

cookie spec Web site, 557
cookie specification Web site, 535
LiveAudio, 586
Navigator

errors, 499
properties, 293
W3C DOM, 298-302

plugins, 590
resources, 718
signed scripts, 577-579

nodes, 138, 298-302
non-capturing parentheses, 691
non-JavaScript support, 289-290
nth roots, searching, 279-280

744 Microsoft Debugger

32 2978 Index 4/10/02 10:43 AM Page 744

Number object, 250-254
methods, 258-259

toExponential() method, 259-260
toFixed() method, 262-264
toLocaleString() method, 264-265
toPrecision() method, 260-262
valueOf() method, 266-267

properties, 255-256
MAX VALUE/MIN VALUE, 257
NEGATIVE INFINITY/POSITIVE

INFINITY, 258
number() function, 710
numbered occurrences of classes, patterns,

426-429
numbers, 36-38

arithmetic functions, 95
converting strings, 98-101
troubleshooting, 95-98

arithmetic operators, 57-59
dates, 308-309

combining, 316-317
converting, 314-315, 323-327
Date object, 309-312
formatting, 312-315

factorials, 278-279
floating math point errors, 636-637
formats, 689

toExponential method, 689-690
toFixed method, 690
toPrecision method, 690

log to base N, 280
nth roots, 279-280
regular expressions, 444-445
strings, 326-327
telephone, 509-511
time

converting, 319-326
formatting, 317-321
zones, 322-323

variable occurrences of (patterns), 430-436

O

Object() function, 710
objects, 11, 120-121, 288

Array, 164
accessing, 168-173
adding elements, 182-193
associative arrays, 193-196
concat() method, 454-462
join method, 181-182
literals, 167
methods, 179, 453-454
populating, 165-166
properties, 174-178
providing arguments, 164-165
slice() method, 463-464
sort() method, 470-484
splice() method, 464-470
storing arrays in elements, 197-198
toLocaleString() method, 180-181
toString() method, 180

Book, 626
client-side, 122

dot notations, 122-123
functions, 124-129
methods, 124-129
properties, 124-129
window objects, 122

children, 129-130
Constructor, 606-607, 610-613
Core, 150-153
custom, 604

accessing properties, 610-611
adding properties, 606-607
combining data elements, 605
creating instances, 608-610
data types, 605
linking, 616-618
methods, 605, 613-616
modifying properties, 611-613
properties, 605

objects 745

32 2978 Index 4/10/02 10:43 AM Page 745

Date, 309-312
document, 130

body objects, 140-141
child objects, 137-140
methods, 133-137
properties, 131-133

environment, 141
accessing URLs, 144-147
history object, 147-149
loading pages, 143-144
location object, 142
navigator object, 149
screen object, 150

Focus events, 344-345
Form

methods, 211-215
properties, 219-221

History, 383, 393-394
HTML

capturing events, 335-337
creating event handlers, 332-333
function calls, 334-335
statements, 333-334

Location, 383, 390-393
Math, 267

abs() method, 271
ceil() method, 271-272
creating functions, 278-280
exp() method, 277
floor() method, 271-272
max() method, 270-272
min() method, 272-274
pow() method, 277
properties, 267-270
random() method, 275-277
round() method, 271-272
sqrt() method, 271

moving, 377-380

Number, 250-254
MAX VALUE/MIN VALUE properties,

257
methods, 258-259
NEGATIVE INFINITY/POSITIVE

INFINITY properties, 258
properties, 255-256
toExponential() method, 259-260
toFixed() method, 262-264
toLocaleString() method, 264-265
toPrecision() method, 260-262
valueOf() method, 266-267

operators, 154-158
plugins, 594-595
predefined global functions, 91-93

arithmetic, 95-101
evaluating strings as code, 94-95

RegExp
exec() method, 446-447
global property, 448
ignoreCase property, 449
methods, 446
properties, 448
test() method, 447

Screen, 397-399
String, 233-235

methods, 236-241
properties, 235

support, 297-298
Window, 383-384

obtaining digital certificates, 578-579
omitting keywords, 50
online shopping carts, 625. See also e-com-

merce; shopping carts
books.js file, 631-634
bookstore code, 629-631
catalogs, 627-629
databases, 625-627

online stores, 622. See also e-commerce
open() method, 387

746 objects

32 2978 Index 4/10/02 10:43 AM Page 746

opening
debug browser windows, 527
windows, 386-389

operands, 55
bitwise operands, 73-74
conditional operators, 65-67

operating systems. See OS
operators, 54-57, 154-158

arithmetic, 57-59, 95
converting strings, 98-101
troubleshooting, 95-98

assignment, 71-72
bitwise, 73-74
comparison, 60-65
concatenation, 70-71
conditional, 65-67
decrement, 59
increment, 59
logical, 67-70
modulo, 59
precedence, 75-76

Order Desks, 622. See also e-commerce
orders, deleting, 638-639
OS (operating system), 574-577

CGI scripts, 574
signed scripts (Netscape), 577-579

output, 251. See also code

P

padding properties, 368
pages. See also HTML; Web pages

loading, 143-144
reloading, 146-147

parallel arrays, 171-173
parameters, 541-542
parent nodes, 298
parentheses, 691
parse() method, 327

parseFloat() function, 711
parseInit() function, 711
passing

arguments, 86
data to functions, 84. See also sending

passwords, 573. See also security
CGI scripts, 574
encoding, 576
OS security, 574-579

paths, accessing, 539-541
patterns, 422-426

numbered occurrences of classes, 426-429
variable number of occurrences, 430-436

placement of text, 23-32. See also format-
ting

plain-language color names, 694-697
platforms, 10. See also languages
plugins

applets, 584
installing, 585-587
objects, 594-595
support, 592-594
verifying, 588-592

PM (time), converting, 319-321
policies, 572
pop() method, 184-186
populating arrays, 165-166
popup windows, 409-410. See also windows
positioning

attributes, 387
frames, 403-405
properties, 371-374
windows, 390-393

POSITIVE INFINITY, 258
pow()

function, 712
method, 277

precedence, operators, 75-76
precision of numbers, 250
predefined global functions, 91-93

predefined global functions 747

32 2978 Index 4/10/02 10:43 AM Page 747

arithmetic, 95-101
strings, 94-95

preventing errors, 496-498. See also trou-
bleshooting

privacy. See also security
impact, 573
passwords, 573

CGI scripts, 574
OS security, 574-577
signed scripts (Netscape), 577-579

users, 566
browser window access, 569
cookies, 568
file restrictions, 566-567
resource limitations, 569

Webmasters, 570-572
prompt()

boxes, 84, 252
function, 43
method, 576

properties, 120
applets, 597
appname, 294
arrays, 174-178
backgrounds, 364-365
borders, 365
classification, 366
custom objects, 604

accessing, 610-611
adding, 606-607
modifying, 611-613

dimensions, 366
document objects, 131-133
elements, 206-210
fonts, 367
for loops, 155
Form element, 219-221
hash, 146
href, 143-144
length, 234

Lengthlength, 174
lists, 367-368
location object, 142-144, 391
margins, 368
Math object, 267-270
mimeType Object, 594
Netscape Navigator, 293
Number object, 255-256

MAX VALUE/MIN VALUE, 257
NEGATIVE INFINITY/POSITIVE

INFINITY, 258
objects, 124-129
plugins, 595
positioning, 371-374
RegExp object, 448

global, 448
ignoreCase, 449

Screen object, 397
Status, 394-396
strings, 235
text, 369
userAgent, 295-296
windows, 385-390

push() method, 182-184

Q – R

quantifiers, regular expressions, 444-445
Query string, 558-560

radio buttons, HTML forms, 228-230
random()

function, 712
method, 275-277

real-time interpreters, 525-527
RealPlayer, 586
reassigning variables, 52. See also assigning
referencing frame locations, 403-405

748 predefined global functions

32 2978 Index 4/10/02 10:43 AM Page 748

RegExp object
methods, 446

exec(), 446-447
test(), 447

properties, 448
global, 448
ignoreCase, 449

regular expressions, 179, 416-418, 691
creating, 436-440
defining, 436
greedy quantifiers, 691
literal character sequences

matching, 418-421
selecting, 422-426

lookahead assertions, 691
m-flag, 691
non-capturing parentheses, 691
patterns, 422-426

numbered occurrences of classes,
426-429

variable number of occurrences,
430-436

quantifiers, 444-445
special characters, 440-444

releaseEvents() function, 712
reload() method, 393
reloading pages, 146-147. See also loading
replacing strings, 239-240
requirements, 12-13

client-side, 14-15
e-commerce, 622
server-side, 13-14

reserved words, 34-35, 288
resolution, 398. See also interfaces; Screen

object
resources

CGI, 101, 721
CGI City, 721
indexes, 721

CNET Builder.COM, 717

cookies, 557
Dynamic Drive, 718
HTML, 720
Java, 719-720

FreewareJava.com, 719
Java Boutique, 719
Javalobby, 719
JavaWorld, 720
tutorials, 719
ZDNet Developer, 720

JavaScript kit, 718
JavaScript source, 718
JavaScript World, 718
limitations, 569
Microsoft JScript reference, 718
Netscape, 718
SVG, 684
W3C, 719
WebReference.com, 719

restricting
files, 566-567
users, 224

retrieving cookie values, 536
returning data functions, 87-88
reusing code, 32
reverse() method, 189-192
RGB (Red, Green, Blue) values, 698
rgb() function, 713
Robert Brook’s Cookie Taste Test Web site,

558
rollovers, 670-671
round()

function, 253, 713
method, 271-272

routeEvents() function, 713
rules, formatting CSS, 363-369
runtime

errors, 509-524, 690
interpreters, 524-527

runtime 749

32 2978 Index 4/10/02 10:43 AM Page 749

S

same origin policy, 572
saving

data, 48
constants, 53-54
operators, 54-56
variables, 48-52

objects, 197-198
Scalable Vector Graphics. See SVG
scoping

regular expressions, 448
variables, 89-90

Screen object, 150, 397-399. See also inter-
faces

<script> element, 659
ScriptEngine() function, 714
scripting languages, 11. See also languages

specifying, 28-29
SVG, 660

scripts
blocks, 23-26
CGI, 574
compatibility, 288-298
debugging, 527-529
signed (Netscape), 577-579

scrolling. See navigating
searching

factorials of numbers, 278-279
log to base N, 280
modulus, 97
nth roots, 279-280
strings

indexOf() method, 239
substr() method, 241

security
cookies, 541-542
impact, 573

passwords, 573
CGI scripts, 574
OS security, 574-577
signed scripts (Netscape), 577-579

shopping carts, 645
users

browser window access, 569
cookies, 568
file restrictions, 566-567
privacy, 566
resource limitations, 569

Webmasters, 570-572
segments, charAt() method, 238
select boxes, HTML forms, 230-233
selecting

browsers, 19-21
clients, 15-17
literal characters, 422-426
servers, 15-17
text editors, 19-21

semicolons (;), 22
sending data to functions, 84
sensitivity, case, 22
sequences

matching, 418-421
selecting, 422-426

servers, 13-17
shapes, creating, 664-666, 670-676
shift, bitwise shift operators, 74
shift() method, 187-188
Shockwave, 586
shopping carts, 635-636

coding, 641-645
deleting orders, 638-639
e-commerce, 622, 625. See also e-com-

merce
books.js file, 631-634
bookstore code, 629-631
catalogs, 627-629

750 same origin policy

32 2978 Index 4/10/02 10:43 AM Page 750

databases, 625-627
floating math point errors, 636-637
linking, 631
security, 645
user information, 639-640

signed scripts (Netscape), 577-579
SignTool, 579
simple data storage, 48

constants, 53-54
operators, 54-56
variables, 48-52

sin() function, 714
skeleton documents, 661
slice() method, 463-464
SMIL (Synchronized Multimedia

Integration Language), 650
sort() method, 470-484
spacing, 368
special characters, 440-444
specific Date objects, creating, 310-312
specifying

CSS
classification properties, 366
dimension properties, 366

scripting language, 28-29, 660
splice() method, 464-470
sqrt()

function, 714
method, 271

square roots, 271
standards, ECMA, 287-288
start tags, 28
state, maintaining, 532-533, 558-560
statements, 102

blocks, 105
control, 103-110
else, 103-107
else if, 103-107
event handlers, 333-334
for, 169

if, 103-107
loop, 110

do while statements, 112-113
for in statements, 116
for statements, 113-116
while statements, 111-112

return, 87-88
switch, 107-110

status lines, 394-396
Status property, 394-396
storage, 48. See also saving

array elements, 197-198
constants, 53-54
operators, 54-56
variables, 48-52

String object, 233-235
methods, 236-241
properties, 235

strings, 38-40
code, 94-95
concatenating, 235
converting, 98-101, 326-327
operators, 70-71
Query, 558-560
testing, 255

structures, 622-624
coding shopping carts, 641-645
online shopping carts, 625-634
shopping carts, 635-640, 645

styles. See CSS
sub-classes, formatting, 369-370
sub-strings. See also strings

replace, 239-240
searching, 239, 241

support. See also troubleshooting
JavaScript, 290-292
non-JavaScript, 289-290
objects, 297-298
plugins, 585-587, 592-594
versions, 289, 727

support 751

32 2978 Index 4/10/02 10:43 AM Page 751

SVG (Scalable Vector Graphics), 650-651
code, 654-655
declarative animation, 676-682
DOM, 656, 659

Batik DOM viewers, 656-658
HTML interaction, 682-683
<script>, 659
scripting languages, 660
syntax, 661

resources, 684
shapes, 664-666, 670-676
test, 666-668
timed-animations, 668-670
titles, 661-664
tools, 651-653
viewers, 653

switch statements, 107-110
Synchronized Multimedia Integration lan-

guage, 650. See SMIL
syntax. See also code

cardinality (regular expressions), 445
errors, 498-509
SVG, 661

T

tags. See also HTML
attributes, 362
elements

accessing, 302
accessing by, 302

start, 28
tan() function, 714
target attributes, 386
telephone numbers, 509-511
test() method, 447

testing
comparison operators, 60-65
regular expressions, 438-439
strings, 255

text. See also documents; HTML; Web
pages

animating, 377-380
case sensitivity, 22
customizing, 369
editors, 19-21
elements, 221-223
HTML form elements, 514-518
inserting, 124
placement, 23-32
SVG

adding, 661-668
animating, 668-670

textarea elements, 223-225
URL, 376

textboxes, updating, 521
this keyword, 341, 608
time

converting, 319-326
formatting, 317-321
zones, 322-323

timed-animations, 668-670. See also anima-
tion; SVG

timeSpelledOut() function, 506-509
titles. See also text

documents, 121
SVG, 661-664

toExponential() method, 259-260
toFixed() method, 262-264
toLocaleString() method, 180-181, 264-265
tools, 41

alert() function, 41
confirm() function, 42
debugging. See debugging
prompt() function, 43
SignTool, 579
SVG, 651-653

752 SVG

32 2978 Index 4/10/02 10:43 AM Page 752

toPrecision() method, 260-262
toSource() method, 193
toString()

function, 715
methods, 101, 180

tracking
variables, 497
windows, 385

troubleshooting
arithmetic functions, 95-98
errors

classifying, 496-498
preventing, 496-498
syntax, 498-509

floating math point errors, 636-637
Internet Explorer, 500-501
Netscape Navigator, 499
runtime errors, 509-524, 690

tutorials, 719
types, 288

attributes, 29
browsers, 292-296
data types. See data types
errors, 498
event handlers, 333
events, 337-338
MIME, 135, 587
of operators, 57

arithmetic, 57-59
assignment, 71-72
bitwise, 73-74
comparison, 60-65
concatenation, 70-71
conditional, 65-67
logical, 67-70

plugins, 586, 592-594

U

Uniform Resource Identifiers (URIs), 92
Uniform Resource Locators. See URLs
units of measure, 365
unshift() method, 187-188
unwatch() function, 715
updating textboxes, 521
URIs (Uniform Resource Identifiers), 92
URLs (Uniform Resource Locators)

accessing, 144-147
modifying, 376
windows, 391

user-defined functions, 80
applying, 82-90
creating, 80-81

userAgent property, 295-296
users

HTML forms, 242-245
information, 639-640
privacy, 566

browser window access, 569
cookies, 568
file restrictions, 566-567
resource limitations, 569

text fields, 224

V

valueOf() method, 193, 266-267
values

abs() method, 271
check boxes, 226-228
cookies

configuring, 537-542
retrieving, 536

values 753

32 2978 Index 4/10/02 10:43 AM Page 753

dates, 308-309
combining, 316-317
converting, 314-315, 323-327
Date object, 309-312
formatting, 312-315

floating math point errors, 636-637
hexadecimal, 695-697
intermediate, 511-514
MAX VALUE/MIN VALUE, 257
objects, 611-613
radio buttons, 228-230
RGB colors, 698
select boxes, 230-233
strings, 326-327
text elements, 221-223
textarea elements, 223-225
time

converting, 319-326
formatting, 317-321
zones, 322-323

variable numbers of occurrences, patterns,
430-436

variables, 48
creating, 48-53
hidden form cookie variables, 561-562
modifying, 52
naming, 50-51
reassigning, 52
scope, 89-90
tracking, 497
windows, 385

verifying lugins, 588-592
versions

browsers, 292-296
JavaScript, 727
support, 289

viewers
Batik DOM, 656-658
SVG, 653

viewing
associative arrays, 194
MAX VALUE/MIN VALUE, 257
multiple documents, 384. See also Window

object

W

W3C (World Wide Web Consortium), 359
DOM, 298-302
JavaScript, 719

watch() function, 716
Web

browser window access, 569
cookies, 532-533, 568

advantages, 534
disadvantages, 534-535
FavList.htm example, 553
future of, 557
limitations, 534
myths, 535
Netscape specification Web site, 535

file restrictions, 566-567
resource limitations, 569
users, 566

Web pages
animation, 377-380
applets

calling, 597-598
interacting, 598-599

DHTML, 358
creating, 363-370
CSS, 358-363
layers, 371-374

plugins
detecting, 585-587
objects, 594-595
support, 592-594
verifying, 588-592

754 values

32 2978 Index 4/10/02 10:43 AM Page 754

Web sites
Cookie Central, 557
e-commerce

coding shopping carts, 641-645
online shopping carts, 625-634
requirements, 622
shopping carts, 635-640, 645
structures, 622-624

frames, 407
HotWired, 558
HTTP Working Group (IETF), 557
Netscape

cookie spec page, 557
cookie specification, 535

Robert Brook’s Cookie Taste Test, 558
WebDraw, 652
Webmasters, 570-572
WebReference.com, 719
while statements, 111-112
white space, 22-23

configuring, 368
regular expressions, 443-444

Window object, 122-130, 383-384
windows, 385. See also interfaces

browsers, 569
chrome, 387-388
closing, 389-390
debug browser, 527
events, 346
frames, 399
histories, 393-394
methods, 385-390
navigating, 126
opening, 386-389
popups, 409-410
positioning, 390-393
properties, 385-390
Screen object, 397-399
status lines, 394-396
URLs, 391

Windows Media Player, 586
words

boundaries, 443-444
reserved, 34-35

World Wide Web Consortium. See W3C
writing HTML, 136
WWW (World Wide Web). See Web

X-Y-Z

ZDNet Developer, 720
zones, time, 322-323

zones 755

32 2978 Index 4/10/02 10:43 AM Page 755

	Sams Teach Yourself JavaScript™ in 21Days
	Copyright © 2002 by Sams Publishing
	Contents at a Glance
	Contents
	About the Authors
	Tell Us What You Think!

	Introduction
	How This Book Is Organized
	Who Should Read This Book
	What This Book Assumes
	Conventions Used in This Book
	What’s on the Web Site?

	WEEK 1 A Sound Foundation
	DAY 1 Getting the Basics Right
	Introducing JavaScript
	JavaScript in Context
	Selecting the Right Technology
	JavaScript, Jscript, and ECMAScript
	Let’s Get Started
	Data Types
	Some Useful Tools
	Summary
	Workshop

	DAY 2 Working with Data
	Simple Data Storage
	Operators
	JavaScript Operators
	Summary
	Workshop

	DAY 3 Functions and Statements
	User Defined Functions
	Predefined Global Functions
	What Is a Statement?
	Control Statements
	Loop Statements
	Summary
	Workshop

	DAY 4 JavaScript Is Object-Based
	Understanding Objects
	Client-Side JavaScript Objects
	The document Object
	Environment Objects
	Core JavaScript Objects
	Exploring an Object
	Summary
	Workshop

	DAY 5 An Introduction to Arrays
	What Is an Array?
	Creating an Array
	Accessing Arrays
	Array Properties
	Array Methods
	Associative Arrays
	Storing Objects in Array Elements
	Summary
	Workshop

	DAY 6 HTML Forms and the String Object
	Collecting Data from HTML Forms
	Form Elements
	The String Object
	Checking User Input
	Summary
	Workshop

	DAY 7 Numbers and Math
	The Number Object
	The Math Object
	Predefined Properties
	Methods of the Math Object
	Creating Your Own Math Functions
	Summary
	Workshop

	WEEK 2 Let’s Take It Further
	DAY 8 The Browser Issue
	Different Browsers, Different JavaScript
	Cross-Browser Compatible Scripting
	The W3C DOM
	Summary
	Workshop

	DAY 9 Date and Time Manipulation
	JavaScript and Dates
	The Date Object
	Date Formatting
	Time Formatting
	Converting Date and Time Formats
	Summary
	Workshop

	DAY 10 Events and Event Handling
	Understanding Events
	Types of Events
	How to Handle Events
	Summary
	Workshop

	DAY 11 Dynamic HTML
	What is DHTML?
	Using Cascading Style Sheets
	Working with Layers
	Changing Attributes of an HTML Element
	Moving Things
	Summary
	Workshop

	DAY 12 Windows and Frames
	What Are Windows and Frames?
	Determining Window Location
	Working with Window History
	Working with the Status Line
	Using the Screen Object
	Working with Frames
	Working with Popups
	Summary
	Workshop

	DAY 13 Regular Expressions Make It Easier
	Why Regular Expressions Are Useful
	What Is a Regular Expression?
	Some Simple Patterns
	Regular Expressions Overview
	Defining Regular Expressions
	Quantifiers
	The Methods of the RegExp Object
	The Properties of the RegExp Object
	Summary
	Workshop

	DAY 14 Advanced Array Management
	The Array Object’s Methods
	Multidimensional Arrays
	Summary
	Workshop

	WEEK 3 Advanced Topics
	DAY 15 Debugging and Error Handling
	Preventing and Classifying JavaScript Errors
	Finding Syntax Errors
	Debugging Load-Time Errors
	Debugging Run-Time Errors I: Discrete Events
	Debugging Run-Time Errors II: Continuous Events
	Advanced Debugging Techniques
	Using JavaScript Debuggers
	Summary
	Workshop

	DAY 16 Cookies: Storing Persistent Data
	Maintaining State
	Cookies: An Introduction
	Using Cookies
	Other State Maintenance Options
	Summary
	Workshop

	DAY 17 Privacy and Security
	Privacy for Web Users
	Privacy for Webmasters
	Privacy Impact on JavaScript
	Summary
	Workshop

	DAY 18 Plugins and Applets
	Plugins Versus Applets
	Detecting Plugin Installation
	Working with Plugin Objects
	Working with Applets
	Summary
	Workshop

	DAY 19 Creating Your Own Objects
	What Is a Custom Object?
	Use of the Constructor to Create Objects
	Creating an Instance of a Custom Object
	Creating Object Methods
	Linking Objects Together
	Summary
	Workshop

	DAY 20 JavaScript in E-Commerce
	Requirements for an E-Commerce Site
	Shop Structure
	The Online Catalog
	Shopping Carts
	Summary
	Workshop

	DAY 21 JavaScript and SVG
	Overview of Scalable Vector Graphics
	Example SVG Code
	The SVG Document Object Model
	Using JavaScript in SVG
	JavaScript Beyond Declarative Animation
	Interaction Between the HTML and SVG DOM
	Finding Out More About SVG
	Summary
	Workshop

	Appendixes
	APPENDIX A New Features in JavaScript 1.5
	Number Formatting Additions
	Runtime Error Messages
	Regular Expressions
	Conditional Function Declarations
	Functions Can Be Declared Within an Expression
	Multiple Catch Clauses

	APPENDIX B Color Codes
	Color Names Specified as Plain-Language
	Hexadecimal Color Value
	RGB Color Values

	APPENDIX C Functions Reference
	abs()
	acos()
	asin()
	atan()
	atan2()
	atob()
	Boolean()
	btoa()
	captureEvents()
	catch()
	ceil()
	cos()
	Date()
	decodeURI()
	decodeURIComponent()
	encodeURI()
	encodeURIComponent()
	Error()
	escape()
	eval()
	exp()
	floor()
	Function()
	GetObject()
	handleEvent()
	isFinite()
	isNaN()
	log()
	max()
	min()
	Number()
	Object()
	parseFloat()
	parseInt()
	pow()
	random()
	releaseEvents()
	rgb()
	round()
	routeEvents()
	ScriptEngine()
	sin()
	sqrt()
	tan()
	toString()
	unescape()
	unwatch()
	watch()

	APPENDIX D Resources Online
	JavaScript
	Java and Java Applets
	HTML
	CGI

	APPENDIX E A Short History of JavaScript
	Evolution of the Internet
	Internet Programming Revolution
	JavaScript Introduction
	Browser Support of JavaScript Versions

	INDEX

