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Electromagnetism for Electronic Engineers — Examples Preface

Preface

This is a companion volume to Electromagnetism for Electronic Engineers (3™ edn.) (Ventus, 2009).
It contains the worked examples, together with worked solutions to the end of chapter examples,
which featured in the previous edition of the book. I have discovered and corrected a number of
mistakes in the previous edition.

I hope that students will find these 88 worked examples helpful in illustrating how the fundamental
laws of electromagnetism can be applied to a range of problems. I have maintained the emphasis on
examples which may be of practical value and on the assumptions and approximations which are
needed. In many cases the purpose of the calculations is to find the circuit properties of a component
so that the link between the complementary circuit and field descriptions of a problem are illustrated.

Richard Carter
Lancaster 2010
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1. Electrostatics in free space

1 Electrostatics in free space

1.1 Introduction

Electrostatic problems in free space involve finding the electric fields and the potential distributions

of given arrangements of electrodes. Strictly speaking ‘free space’ means vacuum but the properties
of air and other gases are usually indistinguishable from those of vacuum so it is permissible to
include them in this section. The chief difference is that the breakdown voltage between electrodes

depends upon the gas between them and upon its pressure. The calculation of capacitance between

electrodes in free space is deferred until Chapter 2.

The other problems included in this chapter involve the motion of charged particles (electrons and

ions) in electric fields in vacuum. This topic remains important for certain specialised purposes

including high power radio-frequency and microwave sources, particle accelerators, electron

microscopes, mass spectrometers, ion implantation and electron beam welding and lithography.

1.2 Summary of the methods available

Note: This information is provided here for convenience. The equation numbers in the companion

volume Electromagnetism for Electronic Engineers are indicated by square brackets.

Symbol Signifies

€ (epsilon) The primary electric constant
@] Electric charge

q Electric line charge

o (sigma)  Surface charge density

p (rho) Volume charge density

E Electric field

V Electric potential

V (del) The vector differential operator
rXV,2 Unit vectors

Inverse square law of force between charges in free space

_ 00 .

F r

2
drme,r

e Definition of the electric field of a charge in free space

Units

8.854 x 10" F.m
C

C.m’

C.m?

Cm?

V.m

A%

[1.1]

[1.2]
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e Force acting on a charge placed in an electric field

F=0QE

e Gauss’ Theorem

[1.3]

The flux of E out of any closed surface in free space is equal to the charge enclosed by the surface

divided by ¢,

e The integral form of Gauss’ Theorem

[Ej E.dA:giom pdv

e The differential form of Gauss’ Theorem

OE_ OE E
VE=| —+—+ E |_~
ox oy Oz £

0

e Electrostatic potential difference

v, -V, =—jj E.dl

B

e Calculation of electric field from the electrostatic potential

e Poisson’s equation

oV oV oV
VWV =+ —+— S
ox~ 0y~ Ozx £

e Laplace’s equation

oV o oV

Vi +—+
ox> 0y’ 07

0

e The Principle of Superposition and the method of images
e The Principle of conservation of energy
e The finite difference method

[1.5]

[1.9]

[1.13]

[1.22]

[1.24]

[1.27]
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Example 1.1

Find the force on an electron (charge -1.602 x 10" C) which is 1 nm from a perfectly conducting
plane. What is the electric field acting on the electron?

Solution

Using the method of images the conducting plane is replaced by an image charge of +1.602 x 10™° C
which is 1 nm behind the position of the conducting plane

The force acting on the electron is found using the inverse square law [1.1] noting that the charges are
2 nm apart.

~19.2
~(1.602x1 _
F= 99 _ (1.602x10_"7) —_577x10

7 7
AT 4 x8.854x107 12 x(2><1()_9)

12

N (1.1

Force is a vector quantity so a complete answer must specify its direction. The negative sign indicates
that the electron is attracted to the image charge. The force is therefore acting towards the plane and at
right angles to it.

The electric field acting on the electron is found by substituting its charge and the force acting on it
into [1.3]

~12
F =57.7x10 _
E:—zx—lg:36OMV-m I (1.2)

0O -1.602x10"

The electric field is a vector quantity and the positive sign indicates that it is acting away from the
plane.

Example 1.2

The surface charge density on a metal electrode is 0. Use Gauss’ theorem to show that the electric

field strength close to the surface is £ = o/¢, .

Solution

Consider a small element of area of the surface d4 such that the surface around it can be considered to
be a plane. The local charge density can be considered to be constant and, from symmetry
considerations, the electric field must be normal to the conducting surface. Now construct a Gaussian
surface dS, as shown in fig. 1.1, such that it encloses the element d4 and has sides which are normal
to the surface and top and bottom faces which are parallel to the surface.
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Fig. 1.1 A Gaussian surface for calculating the electric field of a surface charge.
Since E is parallel to the sides of dS the flux of E through the sides is zero. Also, because the electric
field within a conducting material is zero when the charges are stationary, the flux of E through the

bottom of dS is zero. The flux of E through the top of dS'is

dd = E dA (1.3)

where E is the magnitude of E (since E is normal to the top of dS). The total charge enclosed by dS is

dQ =o dA (1.4)

By Gauss’ theorem

d
do =% (1.5)
0
Substituting in (1.5) from (1.3) and (1.4) gives
=2 (1.6)
£

Note: Because a conducting surface is always an equipotential surface when the charges are stationary
E must always be normal to it. If the surface is curved the electric field varies over it (1.6) shows that,
locally, the charge density is always proportional to the electric field.

Example 1.3

Figure 1.2 right shows a charged wire which is equidistant from a pair of earthed conducting planes
which are at right angles to each other.

a) Where should image charges be placed in order to solve this problem by the method of images?
b) What difference would it make if the planes were at 60° to each other?

¢) Could the method be used when the planes were at 50° to each other?

Download free ebooks at bookboon.com

10


http://bookboon.com/

Please click the advert

Electromagnetism for Electronic Engineers — Examples

1. Electrostatics in free space

H

d I

Fig. 1.2 A charged wire close to the intersection of two conducting planes

Solution

a) If Cartesian co-ordinates are used to describe the positions of the wire and of its images in the
plane then the image line charges are —q at (- d, d) and (d, - d) and +q at (- d, - d) as shown in fig.

1.3.

360°
thinking

Discover the truth at www.deloitte.ca/careers
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b)

Fig. 1.3 Image charges for planes intersecting at 90°

¢) When the planes are at 60° to each other five image charges are equally spaced on a circle as
shown in fig. 1.4.

Fig. 1.4 Image charges for planes intersecting at 60°

d) No. The method can only be used when the angle between the planes divides an even number of
times into 360°. Thus it will work for planes at angles of 1/4, 1/6, 1/8, 1/10 of 360° and so on.

Example 1.4

A wire | mm in diameter is placed mid-way between two parallel conducting planes 10 mm apart.
Given that the planes are earthed and the wire is at a potential of 100 V, find a set of image charges
that will enable the electric field pattern to be calculated.

Solution

If we were to put just one image charge on either side of the wire the field pattern could be calculated
by superimposing the fields of the original wire and the image wires. The results would be as shown
in fig.1.5. None of the equipotential surfaces is a plane. The solution is to use an infinite set of equally
spaced wires charged alternately positive and negative, as shown in Fig. 1.6. The symmetry of this set
of wires is such that there must be equipotential planes mid-way between the wires.
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\ !
\ i

!
! 1
! 1
1

Fig. 1.5 The field pattern around a positively charged wire flanked by a pair of negatively charged
wires.

Fig. 1.6 The field pattern around a set of equispaced parallel wires charged alternately positive and
negative.

Example 1.5

An air-spaced coaxial line has inner and outer conductors with radii @ and b respectively as shown in

fig.1.7. Show that the breakdown voltage of the line is highest when In (a/ b) =1.

&

Fig. 1.7: The arrangement of an air-spaced coaxial line

Download free ebooks at bookboon.com

13


http://bookboon.com/

Please click the advert

Electromagnetism for Electronic Engineers — Examples 1. Electrostatics in free space

Solution

For most practical purposes the properties of air are indistinguishable from vacuum. From the
symmetry of the problem we note that the electric field must everywhere be radial. The field between
the conducting cylinders is identical to that of a long, uniform, line charge ¢ placed along the axis of
the system.

To find the electric field of a line charge we apply the integral form of Gauss’ equation to a Gaussian
surface consisting of a cylinder of unit length whose radius is » and whose ends are normal to the line
charge as shown in fig.1.8. We note that, from considerations of symmetry, the electric field must be

acting radially outwards and depend only on the radius .
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Let the radial component of the electric field at radius » be £,(r). On the curved surface of the cylinder
the radial component of the electric field is constant and the flux is thus the product of the electric
field and the area of the curved surface.

[ﬁE~dA=2ftr><1xEr(r) (1.7)
S

The flux of the electric field through the ends of the cylinder is zero because the electric field is
parallel to these surfaces.

We apply Gauss’ theorem [1.5] to find the relationship between the electric field, radius (») and the

unknown line charge ¢. Since S has unit length the total charge contained within it, which is denoted
by the right-hand side of [1.5] is just ¢. Thus

27rrEr(r)=i (1.8)
80

which can be rearranged to give

E(r)=—91 (1.9)
2re, v

Since the electric field is inversely proportional to r, it must be greatest when the radius is least, i.e.

when r = a.
1
max — (1.10)
2rme, a
The potential difference between the cylinders is found from the electric field using [1.13]
b (1 b
v, -V, =~[E (r)dr=--1 j—drz— 1 ln(—j (1.11)
’ 2re, J ¥ 2re, a

The negative sign tells us that if the charge on the inner cylinder is positive then the electrostatic
potential of the outer cylinder is negative with respect to the inner cylinder.

The unknown charge ¢ can be eliminated between (1.10) and (1.11) to give the potential difference in
terms of the maximum permitted electric field and the dimensions of the line.

b
V,-V. =—E,_aln— (1.12)
a
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The condition that the potential difference should be maximum is found by differentiating the
potential difference with respect to the ratio of the dimensions of the conductors and setting the result
to zero. If we set R = b/a the condition can be expressed as

RS T 1O

dR[Rln(R))— s +R2_o (1.13)
or

In(R)=In(b/a)=1 (1.14)
Example 1.6

An air-spaced transmission line consists of two parallel cylindrical conductors each 2 mm in diameter
with their centres 10 mm apart as shown in fig. 1.9. Calculate the maximum potential difference
which can be applied to the conductors assuming that the electrical breakdown strength of air

is3MV-m™.

+
.

=

q.q
Z A X
|
|
1

w|a
O
o]

Fig. 1.9 A cross-sectional view of a parallel-wire transmission line.
Solution

Since the diameters of the wires are small compared with their separation it is reasonable to assume
that close to the surface of each wire the field pattern is determined almost entirely by that wire. The
equipotential surfaces close to the wires take the form of coaxial cylinders, as may be seen in Fig.
1.10. This is equivalent to assuming that the two wires can be represented by uniform line charges + ¢
along their axes. Note that this approximation is only valid if the diameters of the wires are small
compared with the spacing between them.
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Fig. 1.10 The field pattern around a parallel-wire transmission line

The electric field of either wire is then given by Equation (1.9) (for » >1 mm) with the appropriate
sign for g. Since the strength of the electric field of each line charge is inversely proportional to the
distance from the charge, the greatest electric field must occur on the plane passing through the axes
of the two conductors. Using the notation of Fig. 1.9 and Equation (1.9) the electric field on the x axis
between the wires is found by superimposing the fields of the two wires.

q q
E =- - 1.15
27, (+d —x) 2me,(Ld +x) (19
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It is easy to show that this expression is a maximum on the inner surfaces of the wires (as might be
expected from Fig. 1.10), that is, when x = i(%d - a) . The maximum permissible charge is therefore

given by

q. =2reE a(d——a)

1.16
0"~ max d ( )

The potential at points on the x axis between the wires is found from (1.15) using [1.13]

q q q q 29+
Vix)= dx = 1 C 1.17
(x) ZESOJ[(éd—x)+(;d+x)j ) 27e, n[;d—x] " (17

where C'is a constant of integration. It is convenient to choose C = 0 so that the potential is zero at the

origin.

The maximum permissible potential at 4 is obtained by substituting the maximum charge from (1.16)

into (1.17) and setting x = (%d - a) to give

y—g 2d-9) 1n(d_“) (1.18)

A max
d a

The potential at B is -V, so the maximum potential difference between the wires is 2V, Substituting
the numbers gives the maximum voltage between the wires as 5.9 kV.

When the wires are not thin compared with their separation the method of solution is similar but, as
can be seen from the equipotentials in Fig. 1.10, the equivalent line charges are no longer located at
the centres of the wires.

Example 1.7

A metal sphere of radius 10 mm is placed with its centre 100 mm from a flat earthed sheet of metal.
Assuming that the breakdown strength of air is 3 MV.m™', calculate the maximum voltage which can
be applied to the electrode without breakdown occurring. What is then the ratio of the maximum to
the mean surface-charge density on the sphere?
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Solution

This problem is solved using the same procedure as the previous one. It is necessary to assume that
the field is equivalent to that of a pair of point charges placed at the centre of the sphere and of its
image in the plane as shown in fig.1.11. Since the diameter of the sphere is 20% of its distance from
the plane this assumption should not be seriously in error. We note that the attraction between the
surface charges will ensure that the charge density and the electric field are greatest at the point on
each sphere lying closest to the other one.

2a
01 ~ O

i as L.
S T

3
4
A

Fig. 1.11 The arrangement of the sphere and its image in the plane.

The first step is to use Gauss’ theorem to find the electric field at a distance » from a point charge Q.
The problem has spherical symmetry and therefore the electric field must be constant on the surface
of a sphere of radius r centred on the charge and directed radially outwards. The surface area of a

sphere of radius r is 47 r* so that from [1.5]

Az’ Er(r):g (1.19)
80
so that
E,(r):4 0 - (1.20)
e

Next we use [1.13] to find the potential at a distance » from the charge.

V(r)==[E (r)dr=- © 4#-2 ¢ (1.21)

2
dre,r dre,r

where C is a constant of integration. Now

r=d-x (1.22)

so that the potential due to the first charge is
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_ Y
Vl(x)_47r80(d—x) + G (1.23)

Similarly the potential due to the other charge is

__ =0
VZ(x)_47Z'80(d+x) + C2 (1.24)

Superimposing the potentials of the two charges gives

= ! L T 2 x
V()= (d x d+xj 2me, (d—x)(d+x) (125)

At the surface of the first sphere x =d —a and

N 0 d-a
V(d a)—2”8 [a(2d—a)j (1.26) (1.27)

The electric field at the surface of the sphere is found by superimposing the fields of the two charges
using (1.20)
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DA B S
E(d a)_4ﬂ80{a2+(2d_a)2J (1.28)

Eliminating Q between (1.27) and (1.28) gives the relationship between the breakdown field and the
breakdown voltage

d-a | | :
v =—2F |—27¢ || 4 1.29
m‘“[a(Zd—a)j (az +(2d—a)2J -2

Substituting the numerical values of the quantities we find that the maximum voltage is 28.3 kV.

From example 1.2 we know that the maximum surface charge density is
o,.=&E,  =8854x10""x3x10" =26.6x10°C-m™ (1.30)

max 0

The total charge on the sphere can be computed from (1.28)

4

1 1

Q:Emax4ﬂ.80 _2+ 2 (131)
a (2d—a)

so the average charge density is

-1 -1
4 1 1 ?
Gy = By 0] o BTN e (1.32)
dra’ | a (Zd—a) (2d—a)

and the ratio of peak to average charge density is

av

2
Toox | 14— 21,003 (133)
o (Zd—a)

Example 1.8

An electron starts with zero velocity from a cathode which is at a potential of -10 kV and then moves
into a region of space where the potential is zero. Find its velocity.
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Solution
The principle of conservation of energy requires that the sum of the kinetic energy and the potential
energy of the electron must be constant. Thus

%mv2+qV:O (1.34)

where ¢ is the charge on the electron and V' is the potential relative to the cathode. The charge to mass
ratio of an electron g /m =—1.759x10"C.kg™' and the region of zero potential has a potential relative
to the cathode +10 kV so that, rearranging (1.34) we obtain

24V
v= |29 2x1.759%10" x10* =59.3x10° m.s” (1.35)
m

Note: For accelerating voltages much above 10 kV relativistic effects become important because the
electron velocity is comparable with the velocity of light (0.2998 x 10° m s™). It is then necessary to
use the correct relativistic expression for the kinetic energy of the electron, but the principle of the
calculation is unchanged.

Example 1.9

An electron beam originating from a cathode at a potential of -10 kV has a current of 1 A and a radius
of 10 mm. The beam passes along the axis of an earthed conducting cylinder of radius 20 mm as
shown in fig. 1.12. Use Gauss’ theorem to find expressions for the radial electric field within the
cylinder, and calculate the potential on the axis of the system.

) - X

beam

Fig. 1.12 The arrangement of an electron beam within a concentric conducting tunnel

Note: Electron beams like this are found in the high power microwave vacuum tubes used in
transmitters for radar, TV broadcasting and satellite communications and for powering particle
accelerators such as the Large Hadron Collider at CERN.
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Solution

The velocity of the electrons is given by(1.35). The charge per unit length in an electron beam with
current / and electron velocity v is given by

I
g=-—=-169x10" C.m" (1.36)
A%

The negative sign arises because the direction of the conventional current is opposite to that of the
electron velocity. If the radius of the beam is b and it is assumed that the current density p is uniform
within the beam then

p=—l=-537x10° C.m’ (137)

b

Between the electron beam and the conducting cylinder (region 2) the problem is identical to that in
Example 1.5 and the radial electric field is given by (1.8)

ks (1.38)
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Within the electron beam (region 1) Gauss’ Theorem can be applied in exactly the same way but the
charge enclosed in unit length of a Gaussian surface of radius 7 is now

q(?‘)=7l’l"2p (1.39)
This expression replaces ¢ in (1.38) to give the radial field in region 1

E, (r)="L-r (1.40)

2¢,
The potential in each region is found using [1.13]. In region 1 the result is

q

V=~
27,

Inr+C, (1.41)

The value of C is chosen by requiring V' to be zero when » = a so that

7 n- (1.42)

2re, a

1/1:_

In region 2 we have

v,=—L(rar=-L-1 + ¢, (1.43)

2¢, de,

The value of C; is chosen by setting V, = V', when r = b.

T 1 (ﬁj (1.44)
) 2re, \b

On the axis » =0 and

4, 2re

VZ(O)zib2+Lln(ﬁj=—362V (1.45)
0

Note: This means that the electrons on the axis have a velocity slightly less than that calculated in
(1.35) and electron velocity increases with radius. To obtain an accurate result it would be necessary
to re-compute the electron velocities and the charge density (which now depends on r) to obtain
mutually consistent values.
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Example 1.10

Figure 1.13 shows a simplified form for the deflection plates for a low current electron beam. Given
that the electron beam is launched from an electrode (the cathode) at a potential of -2000V and passes
between the deflection plates as shown, estimate the angular deflection of the beam when the
potentials of the plates are +50 V.

120 mm
1
50 mm

:

Fig. 1.13 The arrangement of a pair of electrostatic deflection plates for an electron beam.

y

Note: The original use of electrostatic deflection systems in cathode ray tubes for oscilloscopes is now
obsolete but the same system can be used in machines for electron beam lithography, electron beam
welding and scanning electron microscopes.

Solution
To make the problem easier we assume that the electric field is constant everywhere between the
plates and falls abruptly to zero at the ends. Then the field between the plates is found by dividing the

potential difference between the plates by their separation to be £, = -5000V m”.

Because there is no x-component of E, the axial velocity of the electrons is constant and found using
the principle of conservation of energy as in Example 1.8.

v, =4/2nV =26.5x10° m.s” (1.46)

where 7 is the charge to mass ratio of the electron. The time taken for an electron to pass along the
length of the plates (L) is then

L
t=—=1.89ns (1.47)
v

x

The equation of motion in the y direction for an electron is

dzy
m 2
dt

__4E (1.48)

y
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where ¢ is the magnitude of the electronic charge. The transverse acceleration of the electrons is
constant and the y-component of velocity as they leave the plates is

qE,

m

t=1.66x10° m.s” (1.49)

v, o=—
)

The angle of deflection is found from the ratio of the y and x components of the velocity

v
6 = arctan (—’j =3.6° (1.50)

\%

x

Note: It is, of course, unrealistic to assume that the field between the plates has the idealized form
chosen above. To obtain a more accurate estimate of the deflection it would be necessary to find the
field distribution between the plates by solving Laplace’s equation. Equation (1.48) could then be
integrated using a more realistic expression for £,.
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Example 1.11

A simple thermionic diode consists of two plane parallel electrodes: the cathode and the anode.
Electrons are emitted from the surface of the cathode with zero velocity and accelerated towards the
anode which is maintained at a potential V, with respect to the cathode. If the density of electrons
between the electrodes is great enough the space charge alters the distribution of the electric field.
Show that, in the limit of high space-charge density, the current through the diode is proportional to

v¥* and independent of the rate at which electrons are supplied by the cathode.

a

Solution
The problem as stated is a one-dimensional problem in which the electron velocity, charge density
and potential depend only on the position x. The motion of the electrons is governed by three

equations: the non-relativistic velocity is found from (1.46) with the difference that J is now a
function of x.

i=2nV (x) (1.51)
The current density is related to the charge density and the velocity by
J=px (1.52)

The relationship between the charge density and the potential is given by the 1-dimensional form of
Poisson’s equation [1.24]

d’V
=L (1.53)
dx &
Eliminating the velocity and the charge density between these equations yields
dv J -5
=— Vo2 (1.54)
dx’ &g 21
This equation can be integrated by multiplying both sides by Z(d V/ dx) to give
1
a4 5
d_ =— 14 + C (1.55)
X 80’/ 2n

where C is a constant.
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To determine C we consider the effect of the electronic space-charge on the potential as shown in fig.
1.14. If no electrons are present in the space between the electrodes the potential varies linearly with
position as shown by the dashed line. When electrons are emitted from the cathode (at x = 0) they are
drawn towards the anode gaining velocity as they go. Because the electrons are negatively charged
they depress the electrostatic potential locally as shown by the solid curve. The limit to this process
arises when the slope of the solid curve is zero at the origin because the electric field is zero there and
no more electrons are drawn from the cathode. The current cannot be increased beyond this limit
given by setting C = 0 in(1.55).

|
s V7
~ 08 -
> T 7
E 0.6} i 1 /
3 #E
o .
f=
o 0.4 /
2 J
E 0.2 -
2 ¥
% 0.2 0.4 0.6 0.8

Normalised position (x/d )

Fig. 1.14 The potential distribution in a space-charge limited diode
Equation (1.55) can then be written

1

d_V:_ 4—JV4 (1.56)

dx go\/%

which can be integrated by writing

JV_de:— 4—dex (1.57)

o7

Performing the integration we get

4 3 4J

s =—
3 en2n

Now V=0 when x = 0 and therefore the constant of integration C is zero. At the anode V=V, and x =
d so that

x + C (1.58)
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as required.

(1.59)

The total current flowing in the diode is obtained by multiplying the current density by the area of the
cathode surface. This equation, known as the Child-Langmuir Law, is of fundamental importance in

the theory of vacuum electron devices which remain the dominant technology for generation of radio

waves at high power levels.

Example 1.12

Find the potential distribution between a long thin conducting strip and a surrounding rectangular
conducting tube, as shown in fig. 1.15, when the potential difference between them is 100 V.

4a

V =100

2a

V=0

Fig. 1.15 The arrangement of conductors for this problem.
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Solution

The problem may be simplified by observing that the solution is the same in each quadrant, subject to
appropriate reflections about the planes of symmetry. One quadrant of the diagram is redrawn on an
enlarged scale in Fig. 1.17 with a square mesh added to it. In this example we discuss the solution by
hand.

To start the solution we first write down the potentials on the electrodes and estimate them at all the
interior mesh points. An easy way to do this is to assume that the potential varies linearly with
position. These potentials are written along-side the mesh points as shown. Next we choose a starting
point such as 4 and work through the mesh, generating new values of the potentials with Equation
[1.30].

V()=%(V1+V2+V3+m) [1.30]

where the definitions of the potentials are as shown in fig. 1.16

Fig. 1.16 Basis of the finite difference calculation of potential.

As each new value is calculated it is written down and the previous estimate crossed out. Figure 1.17
shows the results of the first pass through the mesh working along each row from right to left. Along
the lines PO and RS we make use of the symmetry of the field to supply the potentials at the mesh
points outside the figure (i.e. V4 =V, on PQ and V3 = V7 on RS). Check the figures for yourself and
carry the process on for one more pass through the mesh to see how the solution develops. It is not
necessary to retain many significant figures in the early stages of the calculation because any errors
introduced do not stop the method from converging. If we work to two significant figures we can
avoid the use of decimal points by choosing the electrode potentials at 0 and 100 V. The final values
of the potentials can be scaled to any other potential difference if required.
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P
100 100 100 100 100 100 100 100 100
A
” W » - 8 ® »w » 100
75 75 75 75 75 76 78 a8
i_
54 0 54 50 0 - -] .1 100
50 50 50 50 51 54 64 78
x® #® » »w » » 50 w 100
25 25 25 26 29 40 54 76
Q 0 0 o] 0 100
Q ] * 56 % $
33 52 76

(a)

Fig. 1.17. The finite difference solution for one quadrant of the problem: The initial stages.

The process is continued until no further changes are observed in the figures to the accuracy required.
The final result is shown in fig. 1.18. Evidently the accuracy could be improved by using a finer

mesh.

100 100 100 100 100 100 100 100 100
100
75.9 76.1 76.9 78.6 81.6 86.1 91.0 95.6
51.3 51.6 52.9 55.8 61.7 71.9 823 91.6 100
25.9 26.2 273 30.1 375 57.6 74.7 88.3 100
0 0 0 0 0 46.5 70.7 86.8 100
{b)

Fig. 1.18. The finite difference solution for one quadrant of the problem: The final solution.

Example 1.13

Figure 1.19 shows a square coaxial arrangement of electrodes. If the potential of the inner electrode is
5V above that of the outer electrode estimate the maximum and minimum values of the electric field

in the space between the electrodes.
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10 mm

& mm

6 mm 10 mm

Fig. 1.19. A square coaxial arrangement of electrodes.
Solution

The finite difference method can be used to find the fields around two-dimensional arrangements of
electrodes on which the potentials are specified. In this example we show how the method can be
implemented on a spreadsheet.

A uniform square mesh is defined such that the electrodes coincide with mesh lines. The mesh
spacing is chosen so that it is small enough to provide a reasonably detailed approximation to the
fields whilst not being so small that the computational time is very large.

Cells of the spreadsheet are marked out such that one cell corresponds to each mesh point. The
symmetry of the problem can be used to reduce the number of cells required. Thus, for the geometry
shown above it is sufficient to find the solution for one quadrant of the problem. Special care is
needed to ensure that the correct numbers of cells are used. Remember that the cells correspond to
intersections between mesh lines and not to the cells enclosed by them.

o
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
ication. We help make it more economical to create
eaper energy out of thin air.
our experience, expertise, and creativity,
industries ca st performance beyond expectations.
Therefore we'need the best employees who can
eet this challenge!

T% Power of Knowledge Engineering

Download free ebooks at bookboon.com

32


http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Electromagnetism for Electronic Engineers — Examples 1. Electrostatics in free space

The electrode potentials are entered into the cells corresponding to the electrodes and the formula in
Equation [1.30] is entered into all the other cells. It is convenient to take the electrode potentials as 0
and 100 to reduce the number of digits displayed. When symmetry has been used to reduce the size of
the problem the formulae in the cells along symmetry boundaries make use of the fact that the
potentials on either side of the boundary are equal.

The formulae in the cells are then applied repeatedly (a process known as iteration) until the numbers
in the cells cease to change. To do this the calculation options of the spreadsheet must be set to
permit iteration. It is best to set the iteration to manual and to limit the number of iterations so that
the evolution of the solution can be observed. The final numbers in the cells are then approximations
to the potentials at the corresponding points in space.

From this solution the equipotential curves can be plotted and the field components can be calculated at
any mesh point by taking the ratio of the potential difference to the mesh step. Figure 1.20 shows the
final result obtained in this way. An active version of this figure is available for download as an EXCEL
file. Clicking on the Potential Map tab will show you the potential map plotted using the results of the
calculations. The electric field lines could be sketched in at right angles to the equipotential lines.

10

11
12
13
14
15
16
17
18
19

20

Fig. 1.20. Finite difference calculation of the problem. Mesh step = 0.25 mm. The red and blue areas
contain fixed potentials. The white area contains the standard formula and the green areas use
formulae which assume symmetry at the boundaries.
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2. Dielectric materials and capacitance

2.1 Introduction

This chapter provides examples of the solution of problems involving dielectric materials and the
calculation of capacitance. The methods can also be used for air-spaced and vacuum capacitors. The
introduction of materials also makes it possible to discuss problems in the theory of semi-conductor
devices.

2.2 Summary of the methods available

Note: This information is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated by square brackets.

Symbol Signifies Units

¢ (epsilon) Permittivity F.m?

&, Relative permittivity Dimensionless
D Electric flux density C.m™

C Capacitance F

/4 Stored energy J

e Relationship between permittivity and relative permittivity

E=¢&yE,

e Definition of electric flux density D

D=¢E [2.4]

e The integral form of Gauss’ theorem (all materials)

Uj[ D-dS:jﬂ o dv [2.5]

e The differential form of Gauss’ theorem (all materials)

e Boundary conditions
The tangential component of E is continuous at a boundary
The normal component of D is continuous at a boundary

Download free ebooks at bookboon.com

35


http://bookboon.com/

Electromagnetism for Electronic Engineers — Examples 2. Dielectric materials and capicitance

e The definition of capacitance
Q=CV [2.14]

e The energy stored in a capacitor

1 1Q* 1
W=-CV?=—=_=-QV 2.16
2 2C 2Q [2.16]

e Energy stored in an electric field
1
W:EI” D-E dv [2.18]

e Finite difference method
e Estimation of capacitance using energy methods

Example 2.1

A MOS transistor is essentially a parallel-plate capacitor comprising a silicon substrate, a silicon
dioxide insulating layer, and an aluminium gate electrode as shown in fig. 2.1. The silicon dioxide has
relative permittivity 3.85 and dielectric strength 6.0 x 10* V.m™, the insulating layer is 0.1 um thick,
and the area of the gate electrode is 0.02 mm®. Estimate the capacitance between the gate and the
substrate and the maximum voltage which can be applied to the gate electrode.

Aluminium gate

i / electrode

.................... Silicon dioxide

insulator

Silicon substrate

Fig. 2.1 Arrangement of layers in a MOS transistor.

Solution

When fringing fields are ignored the capacitance of a parallel plate capacitor can be calculated by
using (1.5) in the form

D=o 2.1
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If the potential difference between the electrodes is /" and their separation is d then

Vv
D=¢ e E=¢.¢ 7 2.2)

The total charge on either plate of the capacitor is

£,64

O=Ao=AD= 14 (2.3)

where 4 is the area of one plate. The capacitance of a parallel plate capacitor is therefore, from [2.14]

_ £,8A4

C = 6.8 pF (2.4)

when the numbers given in the question are inserted. The maximum permissible voltage difference
between the gate and the substrate is the product of the dielectric strength (breakdown field) of the
silicon dioxide and the thickness of the insulating layer (see [1.13]). The result is 60 V.
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Example 2.2

Using the results of Example 2.1 calculate the maximum charge per unit area which can be induced in
the semiconductor material. If there are 2.0 x 10'® atoms per square metre in the first layer of the
silicon crystal, what proportion can be ionized by applying a voltage to the gate which is one sixth of
the breakdown voltage?

Solution
The maximum charge per unit area is obtained from (2.3) by setting 4 = 1 m* and V=60 V

=~ X383%60 6y cm? (2.5)
0.1x10

If the applied voltage is 10 V then the number of electrons per square metre corresponding to the
surface charge is

n=2 =0mx _9 13%10' m? (2.6)
q

6g

where ¢ is the charge on an electron. If we assume that this charge is represented by ionisation of
atoms in the first layer of the silicon substrate then, dividing n by the number of atoms per square
metre, we find that 1.06% of them are ionised

Example 2.3

A variable capacitor comprised a set of fixed plates, 4, and a set of moving plates, B, as shown in Fig.
2.2. The capacitor is used to tune the frequency of a resonant circuit which varies inversely as the
square root of the capacitance. Assuming that the effects of fringing fields can be neglected, find the
shape which the moving plates must have if the frequency is to be proportional to the angle € in the
range 20-160° and 500-1500 kHz.

8

Fig. 2.2 Schematic diagram of a variable capacitor. A set of moving plates B rotates within a parallel
set of fixed plates A.
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Solution

This capacitor is a special example of a parallel plate capacitor. The separation between the plates is
fixed so we know from (2.4) that the capacitance is proportional to the area of overlap between the
plates if fringing effects are neglected. Since the frequency must be linearly related to the angle let

f=a+b0o (2.7)
If fis in kHz and 0 is in degrees then, substituting the extreme values given
500=a+20b and 1500=a+160b (2.8)

The solution of the pair of simultaneous equations (2.8) is b= a/50 so (2.7) becomes

’ =a(l+%) 2.9)

Now the capacitance, and therefore the overlap of the plates, is proportional to the inverse square of
the frequency so we may write the area of overlap as

__ 4
A(6)= (19/50] (2.10)

where 4, is a constant. If the plates are moved through a small angle df then the change in the area of

overlap is

dd=—2r*do (2.11)

so that

= \/—2d—A = \/(—2)—_24)/503 (2.12)
do (1+6/50)

Therefore the dependence of 7 on 8 which is required is
roc(1+6/50) " (2.13)

where @ is in degrees.
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Example 2.4

Show that the capaci