


Download free ebooks at bookboon.com

2 

Leif Mejlbro

Integral Operators

http://bookboon.com/


Download free ebooks at bookboon.com

3 

Integral Operators
© 2009 Leif Mejlbro & Ventus Publishing ApS
ISBN 978-87-7681-529-5

Disclaimer: The texts of the advertisements are the sole responsibility of Ventus 
Publishing, no endorsement of them by the author is either stated or implied.

http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Integral Operators

 
4 

Contents

Contents

1.  Hilbert-Smith operators 5
2. Other types of integral operators 47
 Index 66

Designed for high-achieving graduates across all disciplines, London Business School’s Masters 
in Management provides specific and tangible foundations for a successful career in business. 

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM 
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to 
work in consulting or financial services. 

As well as a renowned qualification from a world-class business school, you also gain access 
to the School’s network of more than 34,000 global alumni – a community that offers support and 
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or 
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for  
top-performing  
graduates

*  Figures taken from London Business School’s Masters in Management 2010 employment report

http://bookboon.com/
http://bookboon.com/count/advert/e8616b25-ea05-4d56-87db-9f6000996287


Download free ebooks at bookboon.com

Integral Operators

 
5 

1. Hilbert-Smith operators

1 Hilbert-Schmidt operators

Example 1.1 Let (ek) denote an orthonormal basis in a Hilbert space H, and assume that the operator
T has the matrix representation (tjk) with respect to the basis (ek). Show that

∞∑
j=1

∞∑
k=1

|tjk|2 < ∞

implies that T is compact.
Let (fk) denote another orthonormal basis in H, and let

sjk = (Tfj , fk)

so that (sjk) is the matrix representation of T with respect to the basis (fk).
Show that

∞∑
j=1

∞∑
k=1

|tjk|2 =
∞∑

j=1

∞∑
k=1

|sjk|2 .

An operator satisfying

∞∑
j=1

∞∑
k=1

|tjk|2 < ∞

is called a general Hilbert-Schmidt operator.

Write tjk = (Tej , ej). It follows from Ventus, Hilbert spaces, etc., Example 2.7 that

Tx = T

⎛
⎝+∞∑

j=1

xjej

⎞
⎠ =

+∞∑
j=1

+∞∑
k=1

xjtjkek.

Define the sequence (Tn) of operators by

Tnx = Tn

⎛
⎝+∞∑

j=1

xjej

⎞
⎠ =

+∞∑
j=1

n∑
k=1

xjtjkek.

The range of Tn is finite dimensional, so Tn is compact. Then we conclude from

‖(T − Tn)x‖2 =

∥∥∥∥∥∥
+∞∑
j=1

+∞∑
n=1

xjtjkek

∥∥∥∥∥∥
2

=
+∞∑

k=n+1

∣∣∣∣∣∣
+∞∑
j=1

xjtjk

∣∣∣∣∣∣
2

,

where∣∣∣∣∣∣
+∞∑
j=1

xjtjk

∣∣∣∣∣∣
2

≤
⎧⎨
⎩

+∞∑
j=1

|xj |2
⎫⎬
⎭ ·

⎧⎨
⎩

+∞∑
j=1

|tjk|2
⎫⎬
⎭ ,
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1. Hilbert-Smith operators

that

‖(T − Tn)x‖2 ≤
⎧⎨
⎩

+∞∑
k=n+1

+∞∑
j=1

|tjk|2
⎫⎬
⎭ · ‖x‖2.

It follows that

‖T − Tn‖2 ≤
+∞∑

k=n+1

+∞∑
j=1

|tjk|2 .

Putting

ak =
+∞∑
j=1

|tjk|2 ≥ 0,

it follows from the assumption that

+∞∑
k=1

ak =
+∞∑
j=1

+∞∑
k=1

|tjk|2 < +∞.

Hence, to every ε > 0 there is an n ∈ N, such that

+∞∑
k=n+1

ak < ε2,
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1. Hilbert-Smith operators

from which

‖T − Tn‖2 ≤
+∞∑

k=n+1

+∞∑
j=1

|tjk|2 =
+∞∑

k=n+1

ak < ε2,

thus ‖T − Tn‖ < ε, and we have proved that Tn → T . Because all the Tn are compact, we conclude
that T is also compact.

Given another orthonormal basis (fk) of H, and let sjk = (Tfj , fk). Then an application of Parseval’s
equation gives that

+∞∑
j=1

+∞∑
k=1

|(Tek, fj)|2 =
+∞∑
k=1

‖Tej‖2 =
+∞∑
k=1

+∞∑
j=1

|(Tek, ej)|2 =
+∞∑
j=1

+∞∑
k=1

|tkj |2

and
+∞∑
j=1

+∞∑
k=1

|(Tek, fj)|2 =
+∞∑
j=1

+∞∑
k=1

|(ek, T �fj)|2 =
+∞∑
j=1

‖T �fj‖2 =
+∞∑
j=1

+∞∑
k=1

|(T �fj , fk)|2

=
+∞∑
j=1

+∞∑
k=1

|(fj , T fk)|2 =
+∞∑
j=1

+∞∑
k=1

|(Tfj , fk)|2 =
+∞∑
j=1

+∞∑
k=1

|sjk|2 ,

hence,

+∞∑
j=1

+∞∑
k=1

|tjk|2 =
+∞∑
j=1

+∞∑
k=1

|tkj |2 =
+∞∑
j=1

+∞∑
k=1

|sjk|2 .

Example 1.2 For a general Hilbert-Schmidt operator we define the Hilbert-Schmidt norm ‖ · ‖HS by

‖T‖HS =

⎧⎨
⎩

+∞∑
j=1

+∞∑
k=1

|tjk|2
⎫⎬
⎭

1
2

.

Show that this is a norm, and show that

‖T‖ ≤ ‖T‖HS

for a general Hilbert-Schmidt operator T .

Write tjk = (Tej , ek), and let

‖T‖HS =

⎧⎨
⎩

+∞∑
j=1

+∞∑
k=1

|tjk|2
⎫⎬
⎭

1
2

.

Then ‖T‖HS ≥ 0, and if ‖T‖HS = 0, then tjk = (Tej , ek) = 0 for all j, k ∈ N, thus

Tej =
+∞∑
k=1

(Tej , ek) ek =
+∞∑
k=1

tjkek = 0 for every j ∈ N.
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1. Hilbert-Smith operators

It follows that T = 0 as required.

We infer from (α Tej , ek) = α (Tej , ek) = α tjk that

‖α T‖HS =

⎧⎨
⎩|α|2

+∞∑
j=1

+∞∑
k=1

|tjk|2
⎫⎬
⎭

1
2

= |α| · ‖T‖HS.

Finally, if S = (sjk) and T = (tjk), then

‖S + T‖2
HS =

+∞∑
j=1

+∞∑
k=1

|+sjktjk|2 ≤
+∞∑
j=1

+∞∑
k=1

{
|sjk|2 + 2 |sjk| · |tjk| + |tjk|2

}

= ‖S‖2
HS + ‖T‖2

HS + 2
+∞∑
j=1

+∞∑
k=1

|sjk| · |tjk|

≤ ‖S‖2
HS + ‖T‖2

HS + 2

⎧⎨
⎩

+∞∑
j=1

+∞∑
k=1

|sjk|2
⎫⎬
⎭

1
2

·
⎧⎨
⎩

+∞∑
j=1

+∞∑
k=1

|tjk|2
⎫⎬
⎭

1
2

= ‖S‖2
HS + ‖T‖2

HS + 2 ‖S‖HS · ‖T‖HS = {‖S‖ HS + ‖T‖HS}2
,

and we have proved the triangle inequality,

‖S + T‖HS ≤ ‖S‖ HS + ‖T‖HS.

We have proved that ‖ · ‖HS is a norm.
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1. Hilbert-Smith operators

Finally,

‖Tx‖2 =

∥∥∥∥∥∥
+∞∑
j=1

+∞∑
k=1

xjtjkek

∥∥∥∥∥∥
2

=
+∞∑
k=1

∣∣∣∣∣∣
+∞∑
j=1

xjtjk

∣∣∣∣∣∣
2

≤
+∞∑
k=1

+∞∑
j=1

+∞∑
�=1

|xj | · |tjk| · |x�| · |t�k|

=
+∞∑
j=1

+∞∑
k=1

+∞∑
�=1

{|xj | · |t�k|} · {|x�| · |tjk|}

≤
⎧⎨
⎩

+∞∑
j,k,�=1

|xj |2 |t�j |2
⎫⎬
⎭

1
2

·
⎧⎨
⎩

+∞∑
j,k,�=1

|x�|2 |tjk|2
⎫⎬
⎭

1
2

= ‖T‖2
HS · ‖x‖2,

hence ‖Tx‖ ≤ ‖T‖HS · ‖x‖ for every x, and we find that ‖T‖ ≤ ‖T‖HS.

Example 1.3 Define for f ∈ L2(R), the operator K by

Kf(x) =
∫ ∞

−∞

1
2

exp(−|x − t|) f(t) dt.

Show that Kf ∈ L2(R) and that K is linear and bounded, with norm ≤ 1.

Show that the function
1
2

exp(−|x− t|) does not belong to L2(R2), so that K is not a Hilbert-Schmidt
operator.

First we see that

Kf(x) =
∫ +∞

−∞

1
2

exp(−|x − t|) f(t) dt =
∫ x

−∞

1
2

e−xetf(t) dt +
∫ +∞

x

1
2

exe−tf(t) dt

=
1
2

e−x

∫ x

−∞
etf(t) dt +

1
2

ex

∫ +∞

x

e−tf(t) dt.

Then

|Kf(x)|2 =
{∫ +∞

−∞

1
2

exp(−|x − t|) f(t) dt

}2

≤
∫ +∞

−∞

1
2

exp(−|x − t|) |f(t)| dt ·
∫ +∞

−∞

1
2

exp(−|x − u|) |f(u)| du

=
1
4

∫ +∞

−∞

∫ +∞

−∞
exp−|x − t| exp(−|x − u|) · |f(t)| · |f(u)| dt du

=
∫ +∞

−∞

∫ +∞

−∞

1
4

exp(−|x − t| − |x − u|) · |f(t)| · |f(u)| dt du.

Hence∫ +∞

−∞
|Kf(x)|2dx ≤

∫ +∞

−∞

∫ +∞

−∞

{∫ +∞

−∞

1
4

exp(−|x − t| − |x − u|) dx

}
|f(t)| · |f(u)| dt du.

If t ≤ u, then

|x − t| + |x − u| =

⎧⎨
⎩

t − x + u − x = t + u − 2x, for x ≤ t,
x − t + u − x = u − t, for t ≤ x ≤ u,
x − t + x − u = 2x − t − u, for x ≥ u.

http://bookboon.com/
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1. Hilbert-Smith operators

This gives the inspiration to the following rearrangement∫ +∞

−∞
|Kf(x)|2dx ≤ 2

∫ +∞

−∞

(∫ +∞

t

{∫ +∞

−∞

1
4

exp(−|x − t| − |x − u|) dx

}
|f(u)|du

)
|f(t)|dt,

where∫ +∞

−∞
e−|x−t|−|x−u| dx =

∫ t

−∞
e2x−t−u dx +

∫
t

e−u+t dx +
∫ +∞

u

e−2x+t+u dx

=
[
1
2

e2x−t−u

]t

x=−∞
+ (u − t)e−u+t +

[
−1

2
e−2x+t+u

]+∞

x=u

=
1
2

et−u + (u − t)et−u +
1
2

et−u = (u − t + 1)et−u,

and where we have assumed that t ≤ u.

By insertion,∫ +∞

−∞
|Kf(x)|2 dx ≤ 1

2

∫ +∞

−∞

{∫ +∞

t

(u − t + 1)et−u |f(u) du

}
|f(t)| dt.

Then we change variables y = u − t and z = t + u, thus

t =
y + z

2
og u =

y − z

2
,

where y ∈ [0,+∞[ and z ∈ R. We get∫ +∞

−∞
|Kf(x)|2 dx ≤ 1

4

∫ +∞

−∞

∫ +∞

0

(y + 1)e−y

∣∣∣∣f
(

y − z

2

)∣∣∣∣ ·
∣∣∣∣f
(

y + z

2

)∣∣∣∣ dy dz

=
1
4

∫ +∞

0

{∫ +∞

−∞

∣∣∣∣f
(

y − z

2

)∣∣∣∣ ·
∣∣∣∣f
(

y + z

2

)∣∣∣∣ dz

}
(y + 1)e−y dy.

Then for every fixed y it follows by the Cauchy-Schwarz inequality,∫ +∞

−∞

∣∣∣∣f
(

y − z

2

)∣∣∣∣ ·
∣∣∣∣f
(

y + z

2

)∣∣∣∣ dz

≤
{∫ +∞

−∞

∣∣∣∣f
(

y − z

2

)∣∣∣∣
2

dz

} 1
2

·
{∫ +∞

−∞

∣∣∣∣f
(

y + z

2

)∣∣∣∣
2

dz

} 1
2

{
2
∫ +∞

−∞

∣∣∣∣f
(

y − z

2

)∣∣∣∣
2

d

(
y − z

2

)} 1
2

·
{

2
∫ +∞

−∞

∣∣∣∣f
(

y − z

2

)∣∣∣∣
2

d

(
y + z

2

)} 1
2

= 2‖f‖2 · ‖f‖2 = 2‖f‖2
2,

and we get by insertion the estimate∫ +∞

−∞
|Kf(x)|2 dx ≤ 1

2

∫ +∞

0

(y + 1)e−y dy · ‖f‖2
2

=
1
2

[
−e−y(y + 1) +

∫
e−y dy

]+∞

0

· ‖f‖2
2

=
1
2
[−e−y(y + 2)

]+∞
0

· ‖f‖2
2 = ‖f‖2

2,

http://bookboon.com/
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1. Hilbert-Smith operators

so we have proved that Kf ∈ L2(R) and that

‖Kf‖2 ≤ ‖f‖2 for every f ∈ L2(R),

hence ‖K‖ ≤ 1.

On the other hand, the kernel
1
2

e−|x−t| does not belong to L2(R), because we get by a formal
computation that∫ +∞

−∞

∫ +∞

−∞

1
4

e−2|x−t| dx dt =
1
4

∫ +∞

−∞

{
2
∫ +∞

t

e−2(x−t) dx

}
dt

=
1
4

∫ +∞

−∞

{∫ +∞

0

e−x dx

}
dt =

1
4

∫ +∞

−∞
1 dt = +∞.

Example 1.4 Let K denote the Hilbert-Schmidt operator with kernel

k(x, y) = sin(x) cos(t), 0 ≤ x, t ≤ 2π.

Show that the only eigenvalue for K is 0.
Find an orthonormal basis for ker(K).

First notice that

Kf(x) =
∫ 2π

0

k(x, t) f(t) dt = sin(x) ·
∫ 2π

0

cos(t) · f(t) dt,

hence Kf(x) = a(f) · sin(x), where

a(f) =
∫ 2π

0

cos(t) · f(t) dt ∈ C.

If λ ∈ σp(K), then the corresponding eigenfunction must be f(x) = sin(x). Then by insertion,

(K sin)(x) = sin(x)
∫ 2π

0

cos(t) · sin(t) dt = 0,

proving that λ = 0 is the only eigenvalue.

Now,

1√
2π

,
1√
π

cos(x),
1√
π

sin(x), . . . ,
1√
π

cos(nx),
1√
π

sin(nx), . . . ,

is an ortonormalbasis for L2([0, 2π]), so ker(K) is spanned by all these with the exception of
1√
π

cos(x),

in which case

K

(
1√
π

cos
)

(x) =
√

π

∫ 2π

0

1√
π

cos(t) · 1√
π

cos(t) dt · sin(x)

=
√

π · sin(x) = π · 1√
π

sin(x),

http://bookboon.com/
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1. Hilbert-Smith operators

and we get in particular, K2 ≡ 0.

Note that

k2(x, t) =
∫ 2π

0

k(x, s)k(s, t) ds =
∫ 2π

0

sin(x) · cos(s) · sin(s) · cos(t) ds

= sin(x) · cos(t) ·
∫ 2π

0

sin(s) · cos(s) ds = 0,

which agrees with K2 ≡ 0.

http://bookboon.com/
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1. Hilbert-Smith operators

Example 1.5 Let K denote the Hilbert-Schmidt operator with continuous kernel k on L2(I), where
I is a closed and bounded interval. Show that all the iterated kernels Kn are continuous on I2 and
show that

‖kn‖2 ≤ ‖k‖n
2 .

Show that if |λ| ‖k‖2 < 1, then the series

∞∑
n=1

λn kn

is convergent in L2(I).

Write I = [a, b]. It is well-known that

kn(x, t) =
∫ b

a

f(x, s) kn−1(s, t) ds.

The first claim is proved by induction. Assume that both k(x, s) and kn−1(s, t) are continuous. By
subtracting something and then adding it again we get

kn(x, t) − kn(x0, t0) =
∫ b

a

{k(x, s)kn−1(s, t) − k(x0, s)kn−1(s, t)} ds

+
∫ b

a

{k(x0, s)kn−1(s, t) − k(x0, s)kn−1(s, t0)} ds

=
∫ b

a

{k(x, s) − k(x0, s)} kn−1(s, t) ds

+
∫ b

a

k(x0, s) · {kn−1(s, t) − kn−1(s, t0)} ds.

To every ε > 0 there is a δ > 0, such that

|k(x, s) − k(x0, s)| < ε for |x − x0| < δ and all s ∈ [a, b],

and

|kn−1(s, t) − kn−1(s, t0)| < ε for |t − t0| < δ and all s ∈ [a, b].

If therefore |x − x0| < δ and |t − t0| < δ, then we get the following estimate,

|kn(x, t) − kn(x0, t0)| ≤
∫ b

a

ε · ‖kn−1‖∞ dx +
∫ b

a

‖k‖∞ · ε ds

= (b − a) {‖k‖∞ + ‖kn−1‖∞} ε,

and we conclude that kn(x, t) is continuous, and the claim follows by induction.

http://bookboon.com/
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1. Hilbert-Smith operators

Furthermore,

‖kn‖2
2 =

∫ b

a

∫ b

a

|kn(x, t)|2 dx dt

=
∫ b

a

∫ b

a

∣∣∣∣∣
∫ b

a

k(x, s)kn−1(s, t) ds

∣∣∣∣∣ ·
∣∣∣∣∣
∫ b

a

k(x, r)kn−1(r, t) dr

∣∣∣∣∣ dx dt

≤
∫ b

a

∫ b

a

∫ b

a

∫ b

a

|k(x, s)| · |kn−1(s, t)| · |k(x, r)| · |kn−1(r, t)| ds dr dx dt

≤ 1
2

∫ b

a

∫ b

a

∫ b

a

∫ b

a

{|k(x, s)|2|kn−1(r, t)|2 + |kn−1(s, t)|2|k(x, r)|2} ds dr dx dt

=
1
2
{‖k‖2

2‖kn−1‖2
2 + ‖kn−1‖2

2‖k‖2
2

}
= ‖k‖2

2‖kn−1‖2
2,

and we have proved that

‖kn‖2 ≤ ‖k‖2‖kn−1‖2.

Hence we get for n = 2 that ‖k2‖2 ≤ ‖k‖2
2.

Assume that ‖kn−1‖2 ≤ ‖k‖n−1
2 . Then

‖kn‖2 ≤ ‖k‖2‖kn−1‖2 ≤ ‖k‖2 · ‖k‖n−1
2 = ‖k‖n

2 ,

and the claim follows by induction.
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1. Hilbert-Smith operators

The remaining claim is now trivial, because∥∥∥∥∥
+∞∑
n=1

λn kn(x, t)

∥∥∥∥∥
2

≤
+∞∑
n=1

|λ|n‖kn‖2 ≤
+∞∑
n=1

|λ|n‖k‖n
2 =

+∞∑
n=1

{|λ| · ‖k‖2}n =
1

1 − |λ| · ‖k‖2
,

where we have used that the geometric series is convergent for |λ| · ‖k‖2 < 1.

Example 1.6 Let K and L denote the Hilbert-Schmidt operators with continuous kernels k and � on
L2(I), where I is a closed and bounded interval. We define the trace of K, tr(K) by

tr(K) =
∫

I

k(x, x) dx,

and similarly for K.
Show that

|tr(KL)| ≤ ‖K‖HS‖L‖HS,

and

|tr (Kn) | ≤ ‖K‖n
HS, n ≥ 2.

Moreover, if (Kn), (Ln) denote sequences of Hilbert-Schmidt operators like above, where

‖Kn − K‖HS → 0 and ‖Ln − L‖HS → 0,

then

tr (KnLn) → tr(KL).

Remark 1.1 We first show that the claim is not true, if we replace the Hilbert-Schmidt norm ‖ ·‖ HS
by the operator norm.

Let

k(x, t) = �(x, t) = x + t

be the kernel of self adjoint Hilbert-Schmidt operators K and L on L2([0, 1]). It follows from Exam-

ple 1.7 below that
1
2
± 1√

3
are the two eigenvalues different from zero of both K and L, and the norm

of K (and L) is given by the absolute value of the numerically largest eigenvalue,

‖K‖ = ‖L‖ =
1
2

+
1√
3
.

Furthermore,l

‖k‖2
2 = ‖�‖2

2 =
∫ 1

0

∫ 1

0

(x + t)2 dx dt =
∫ 1

0

∫ 1

0

(
x2 + 2xt + t2

)
dx dt =

∫ 1

0

[
x3

3
+ x2t + xt2

]1
x=0

dt

=
∫ 1

0

{
1
3

+ t + t2
}

dt =
1
3

+
1
2

+
1
3

=
7
6
.
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1. Hilbert-Smith operators

Finally,

tr(KL) =
∫ 1

0

{∫ 1

0

(x + s)(s + x) ds

}
dx =

∫ 1

0

{∫ 1

0

(x + s)2 ds

}
dx = ‖k‖2

2 =
7
6
.

Thus, in this example,

tr(KT ) =
7
6

= ‖k‖k
2 > ‖K‖2 = ‖K‖ · ‖L‖ =

{
1
2

+
1√
3

}2

=
1
4

+
1
3

+
√

3
3

,

which either can be shown numerically, or of course must follow from the theory, because we always
have that ‖K‖ ≤ ‖k‖2. Here we cannot have equality, if σp(K) contains at least two different points

= 0. ♦

Then we turn to the example itself.

Write I = [a, b], and let

Ku(x) =
∫ b

a

k(x, t)u(t) dt and Lu(x) =
∫ b

a

�(x, t)u(t) dt

for u ∈ L2([a, b]). Then

((KL)u)(x) = K(Lu)(x) =
∫ b

a

k(x, t)Lu(t) dt =
∫ b

a

k(x, t)

{∫ b

a

�(t, s)u(s) ds

}
dt

=
∫ b

a

{∫ b

a

k(x, t)�(t, s) dt

}
u(s) ds,

and it follows that the composition KL has the kernel

m(x, t) =
∫ b

a

k(x, s)�(s, t) ds.

Then

|tr(KL)| =

∣∣∣∣∣
∫ b

a

m(x, x) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

{∫ b

a

k(x, t)�(t, x) dt

}
dx

∣∣∣∣∣
≤

∫ b

a

{∫ b

a

|k(x, t)|2dt

} 1
2

·
{∫ b

a

|�(t, x)|2dt

} 1
2

dx.

Putting

k1(x) =

{∫ b

a

|k(x, t)|2dt

} 1
2

og �1(x) =

{∫ b

a

|�(t, x)|2dt

} 1
2

,

we get k1, �1 ∈ L2([a, b]), and it follows from the Cauchy-Schwarz inequality that

|tr(KL)| ≤
∫ b

a

k1(x)�1(x) dx ≤ {k1(x)2 dx
} 1

2

{∫ b

a

�1(x)2dx

} 1
2

=

{∫ b

a

(∫ b

a

|k(x, t)|2dt

)
dx

} 1
2
{∫ b

a

(∫ b

a

|�(t, x)|2dt

)
dx

} 1
2

= ‖k‖2 · ‖�‖2 = ‖K‖HS · ‖L‖HS,
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1. Hilbert-Smith operators

and the first claim is proved.

We note that since KL has the kernel

m(x, t) =
∫ b

a

k(x, s)�(s, t) ds,

we have

‖KL‖2
HS ≤

∫ b

a

∫ b

a

|m(x, t)|2dx dt =
∫ b

a

⎧⎨
⎩
∫ b

a

∣∣∣∣∣
∫ b

a

k(x, s)�(s, t) ds

∣∣∣∣∣
2

dx

⎫⎬
⎭ dt

≤
∫ b

a

⎛
⎜⎝∫ b

a

⎧⎨
⎩
(∫ b

a

|k(x, s)|2ds

) 1
2
(∫ b

a

|�(s, t)|2ds

) 1
2

⎫⎬
⎭

2

dx

⎞
⎟⎠ dt

=
∫ b

a

(∫ b

a

{(∫ b

a

|k(x, s)|2 ds

)
·
(∫ b

a

|�(s, t)|2ds

)}
dx

)
dt

=
∫ b

a

∫ b

a

|k(x, s)|2ds dx ·
∫ b

a

∫ b

a

|�(s, t)|2ds dt = ‖k‖2
2 · ‖�‖2

2 = ‖K‖2
HS · ‖L‖2

HS.

This proves that we always have

(1) ‖KL‖HS ≤ ‖K‖HS · ‖L‖HS .

Recall for n = 1 that

tr(K) =
∫ b

a

k(x, x) dx.

Choosing k(x, x) = 1 and k(x, t) continuous, such that ‖k‖2 < ε, we get

tr(K) = b − a and ‖K‖2
HS < ε,

which shows that the formula is not true for n = 1.

On the other hand, if n ≥ 2, then it follows from the first question and (1) that

|tr (Kn)| =
∣∣tr (K Kn−1

)∣∣ ≤ ‖K‖ HS ‖Kn−1‖HS ≤ ‖K‖HS‖K‖n−1
HS = ‖K‖n

HS.

Finally, we note that for any scalar λ and any Hilbert-Schmidt operators,

tr(K + λL) =
∫ b

a

{k(x, x) + λ �(x, x)} dx = tr(K) + λ tr(L),

proving that the trace is linear on the vector space of all Hilbert-Schmidt operators. Then we get

tr(KL) − tr (Kn Ln) = tr (KL − KnLn) = tr (KL − KLn + KLn − KnLn)
= tr (K (L − Ln)) + tr ((K − Kn)Ln)
= tr (K (L − Ln)) + tr ((K − Kn) (Ln − L)) + tr ((K − Kn)L) ,

and it follows from the assumptions and the first part of the example that

|tr(KL) − tr (KnLn)|
≤ ‖K‖HS‖L − Ln‖HS + ‖K − Kn‖HS‖L − Ln‖HS + ‖K − Kn‖HS‖L‖HS → 0 for n → +∞.

http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Integral Operators

 
18 

1. Hilbert-Smith operators

Example 1.7 Let K denote the Hilbert-Schmidt operator on L2([0, 1]) with kernel

k(x, t) = x + t.

Find all eigenvalues and eigenfunctions for K.
Solve the equation

Ku = μu + f, f ∈ L2([0, 1]),

when μ is not in the spectrum for K.

It follows from

(2) Kf(x) = x

∫ 1

0

f(t) dt +
∫ 1

0

t · f(t) dt,

that every eigenfunction corresponding to an eigenvalue λ 
= 0 must have the form f(x) = ax + b. By
insertion into (2) we get

Kf(x) = x

∫ 1

0

(at + b) dt +
∫ 1

0

(
at2 + bt

)
dt =

{a

2
+ b
}

x +
{

a

3
+

k

2

}
.
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1. Hilbert-Smith operators

This expression is equal to λ(ax + b), if and only if (a, b) and
(

a

2
+ b,

a

3
+

b

2

)
are proportion, thus if

and only if

0 =
∣∣∣∣ a

2 + b a
3 + b

2
a b

∣∣∣∣ = ab

2
+ b2 − a3

3
− ab

2
= b2 − a2

3
,

hence if and only if b = ± 1√
3

a. Since

λa =
a

2
+ b =

{
1
2
± 1√

3

}
a,

the corresponding eigenvalues are λ =
1
2
± 1√

3
.

For λ1 =
1
2

+
1√
3

we get the eigenfunction f1(x) = x +
1√
3
.

For λ2 =
1
2
− 1√

3
we get the eigenfunction f2(x) = x − 1√

3
.

Finally, K is trivially self adjoint, thus λ = 0 is an eigenvalue for every function

f ∈
{

span
(

x +
1√
3
, x − 1√

3

)}⊥
= {span(1, x)}⊥,

hence for every function f ∈ L2([0, 1]), for which∫ 1

0

f(t) dt = 0 og
∫ 1

0

t f(t) dt = 0.

Now, k(x, t) = k(t, x), so K is self adjoint. Therefore, if we put

ϕ1(x) =
f1

‖f1‖2
and ϕ2 =

f2

‖f2‖2
,

then the operator K is described by

(3) Ku = λ1 (u, ϕ1) ϕ1 + λ2 (u, ϕ2)ϕ2.

If (f, ϕ1) = (f, ϕ2) = 0, then it follows by a simple check that the solution of the equation

Ku = μu + f, hvor μ /∈
{

0,
1
2

+
1√
3
,
1
2
− 1√

3

}
,

is given by u = − 1
μ

f .

Then assume that f = aϕ1 + b ϕ2. The equation Ku = μu + f can now be written in the form

λ1 (u, ϕ1)ϕ1 + λ2 (u, ϕ2)ϕ2 = μ

∞∑
n=1

(u, ϕn) + aϕ1 + b ϕ2,
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1. Hilbert-Smith operators

which implies that

u = c1 ϕ1 + c2 ϕ2,

where

c1 = (u, ϕ1) =
a

λ1 − μ
=

1
λ1 − μ

(f, ϕ1) ,

and

c2 = (u, ϕ2) =
b

λ2 − μ
=

1
λ2 − μ

(f, ϕ2) .

The equation being linear, it follows in general from the rewriting

Ku − μu = f = (f, ϕ1) ϕ1 + (f, ϕ2) ϕ2 + {f − (f, ϕ1) ϕ1 − (f, ϕ2) ϕ2} ,

that

u =
1

λ1 − μ
(f, ϕ1) ϕ1 +

1
λ2 − μ

(f, ϕ2) ϕ2 − 1
μ

f +
1
μ

(f, ϕ1) ϕ1 +
1
μ

(f, ϕ2) ϕ2

=
λ1

μ(λ1 − μ)
(f, ϕ1) ϕ1 +

λ2

μ(λ2 − μ)
(f, ϕ2) ϕ2 − 1

μ
f = Aϕ1 + B ϕ2 − 1

μ
f,

which in principle can be written explicitly by means of the functions fi(x), i = 1, 2. We shall,
however, not waste our time on that, because the result will look extremely nasty.

Example 1.8 Lad K denote the Hilbert-Schmidt operator on L2
([

−π

2
,
π

2

])
with kernel

k(x, t) = cos(x − t).

Find all eigenvalues and eigenfunctions for K.
Solve the equation

Ku = μu + f, f ∈ L2
([

−π

2
,
π

2

])
,

when μ is not in the spectrum for K.

Obviously, K is self adjoint.

It follows in general from

cos(x − t) = cos(x) · cos(t) + sin(x) · sin(t),

that

(4) Kf(x) = cos(x)
∫ π

2

−π
2

f(t) cos(t) dt + sin(x)
∫ π

2

−π
2

f(t) sin(t) dt.

Then any eigenfunction corresponding to some eigenvalue λ 
= 0 must be of the structure

f(x) = a · cos(x) + b · sin(x).
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1. Hilbert-Smith operators

By insertion into (4),

Kf(x) = cos(x)
∫ π

2

−π
2

{
a · cos2 t + b · sin t cos t dt

}
+ sin(x)

∫ π
2

−π
2

{
a · sin t cos t + b · sin2 t

}
dt

=
{aπ

2
+ 0
}

cos(x) +
{

0 +
bπ

2

}
sin(x) =

π

2
{a cos(x) + b sin(x)} =

π

2
f(x),

hence f(x) = a · cos(x) + b · sin(x) is for every pair (a, b) 
= (0, 0) an eigenfunction corresponding to
the eigenvalue λ =

π

2
.

For λ = 0 we get the eigenspace {cos(x), sin(x)}⊥ i L2
([

−π

2
,
π

2

])
.

Alternatively, we see that

cos(x − t) =
1
2

eixe−it +
1
2

e−ixeit.

We get from

∫ π
2

−π
2

∣∣e±ix
∣∣2 dx = π,

the normed functions

ϕ1(x) =
1√
π

eix and ϕ−1 =
1√
π

e−ix,

where

(ϕ1, ϕ−1) =
∫ π

2

−π
2

ϕ1(x)ϕ−1(x) dx =
1
π

∫ π
2

−π
2

e2ix dx =
1

2iπ
{
eiπ − e−iπ

}
= 0,

hence

k(x, t) = cos(x − t) =
π

2
ϕ1(x)ϕ1(t) +

π

2
ϕ−1(x)ϕ−1(t).

We obtain directly that λ =
π

2
is the only eigenvalue 
= 0, thus ‖K‖ =

π

2
, and the eigenfunctions are

ϕ1 and ϕ−1.

Remark 1.2 A basis for L2
([

−π

2
,
π

2

])
is e.g.

1√
2π

,
1√
π

cos 2x,
1√
π

sin 2x,
1√
π

cos 4x,
1√
π

sin 4x, . . . ,

from which it follows that {cos(x), sin(x)}⊥ may be difficult to describe. ♦

It follows from k(t, x) = k(x, t) that K is self adjoint, which also was noted previously. We may
therefore apply the standard method where we expand after the eigenfunctions.
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1. Hilbert-Smith operators

First choose f , such that

∫ π
2

−π
2

f(t) cos t dt =
∫ π

2

−π
2

f(t) sin t dt = 0.

Then Kf = 0, and we conclude that u = − 1
μ

f is the only solution.

We get in the general case that

u =
+∞∑
n=1

(u, ϕn) ϕn =
1

π
2 − μ

{(f, ϕ1) ϕ1 + (f, ϕ2)ϕ2} − 1
μ

f +
1
μ

(f, ϕ1)ϕ1 +
1
π

(f, ϕ2) ϕ2

=
π
2

μ
(

π
2 − μ

) {(f, ϕ1) ϕ1 + (f, ϕ2) ϕ2} − 1
μ

f.
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1. Hilbert-Smith operators

Now,

ϕi =
fi

‖fi‖2
, i = 1, 2,

where f1(x) = cos x and f2(x) = sin x, and ‖f1‖2
2 = ‖f2‖2

2 =
π

2
, hence

u =
π
2

μ
(

π
2 − μ

) · 1
π
2

{(f, cos t) cos(x) + (f, sin t) sin(x)} − 1
μ

f

=
1

μ
(

π
2 − μ

) ∫ π
2

−π
2

f(t) cos t dt · cos(x) +
1

μ
(

π
2 − μ

) ∫ π
2

−π
2

f(t) sin t dt · sin(x) − 1
μ

f(x).

Notice that this expression can be written as

u =
1

μ
(

π
2 − μ

) ∫ π
2

−π
2

cos(x − t) f(t) dt − 1
μ

f(x) =
1

μ
(

π
2 − μ

) Kf − 1
μ

f.

We have assumed that

μ /∈ σ(K) = σp(K) =
{

0,
π

2

}
.

Example 1.9 Let K denote the Hilbert-Schmidt operator on L2([−π, π]) with kernel

k(x, t) = {cos(x) + cos(t)}2.

Find all eigenvalues and eigenfunctions for K, and find an orthonormal basis for ker(K).

By a simple computation,

k(x, t) = (cos x + cos t)2 = cos2 x + 2 cos x cos t + cos2 t

=
1
2

cos 2x + 2 cos x cos t +
1
2

cos 2t +
1
2

=
1
2

cos 2x + 2 cos x cos t +
{

1 +
1
2

cos 2t

}
· 1.

Hence

Kf(x) = cos 2x

∫ π

−π

1
2

f(t) dt + cos x

∫ π

−π

2 f(t) cos t dt(5)

+
∫ π

−π

f(t) dt +
∫ π

−π

1
2

f(t) cos 2t dt.

Therefore, any eigenfunction corresponding to an eigenvalue λ 
= 0 must be of the form

f(x) = a · cos 2x + b · cos x + c,
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1. Hilbert-Smith operators

where we shall find the constants a, b and c. We get by insertion into (5) that

Kf(x) = cos 2x

∫ π

−π

1
2

(a · cos 2t + b · cos t + c) dt + cos x

∫ π

−π

2(a cos 2t + b cos t + c) cos t dt

+
∫ π

−π

(a · cos 2t + b · cos t + c) dt

+
∫ π

−π

1
2

(a · cos 2t + b · cos t + c) · cos 2t dt

= cπ · cos 2x + 2bπ cos x + 2π c +
aπ

2
.

This expression is equal to λa · cos 2x + λb · cos x + λc, if and only if

λa = cπ, λ b = 2πb, λ c = 2π c +
aπ

2
.

We immediately get the eigenvalue λ = 2π with its corresponding eigenfunction cos x.

The other eigenfunctions are found in the following way: The vectors (a, c) and
(
cπ, 2cπ +

aπ

2

)
must

be proportional, so

0 =
∣∣∣∣ c 2c + a

2
a c

∣∣∣∣ = c2 − 2ac − a2

2
= (c − a)2 − 3

2
a2,

hence

c = a ±
√

3
2

a =

{
1 ±

√
3
2

}
a,

corresponding to

λ =
cπ

a
=

{
1 ±

√
3
2

}
π.

For λ1 =

{
1 +

√
3
2

}
π we get the eigenfunction

f1(x) = cos 2x + 1 +

√
3
2

[
= 2 cos2 x +

√
3
2

]
.

For λ2 =

{
1 −

√
3
2

}
π we get the eigenfunction

f2(x) = cos 2x + 1 −
√

3
2

[
= 2 cos2 x −

√
3
2

]
.

For λ = 2π we get the eigenfunction f3(x) = cos x.

There is no reason here to norm these eigenfunctions. We only notice that they span the same subspace
of L2([−π, π]) as 1, cos x, and cos 2x do.
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1. Hilbert-Smith operators

It follows from k(t, x) = k(x, t) that K is self adjoint, so the null-space is simply the orthogonal
complement of the subspace mentioned above. Thus we conclude that ker(K) is spanned by

sinx, sin 2x, cos 3x, sin 3x, cos 4x, sin 4x, . . . ,

i.e. of the usual trigonometric basis with the exception of 1, cosx and cos 2x.

Example 1.10 Let K denote a self adjoint Hilbert-Schmidt operator on L2(I) with kernel k.
Show that ‖K‖ = ‖k‖2 if and only if the spectrum for K consists of at most two points.

It follows from K being self adjoint that k(t, x) = k(x, t) and there exist an ortonormal sequence (ϕn)
in L2(I) and a sequence (λn) of real numbers with |λ1| ≥ |λ2| ≥ · · · , where either λn = 0 eventually,
or λn → 0, such that

(6) Ku =
+∞∑
n=1

λn (u, ϕn) ϕn for u ∈ L2(I),

where every ϕn is an eigenfunction of the corresponding λn ∈ σp(K), and where 0 is either an
eigenvalue or belongs to the continuous spectrum σc(K), and where

σ(K) = {0} ∪ σp(K).

We shall prove that ‖K‖ = ‖k‖2, if and only if σ(K) contains at most two points.

1) If σ(K) only consists of one point, then σ(K) = {0}, and Ku ≡ 0, thus k(x, t) = 0 almost
everywhere, and it follows trivially that ‖K‖ = ‖k‖1 = 0.

2) If σ(K) contains two points, then it follows from the introducing argument that we necessarily
must have

σ(M) = {0, λ},

so the operator is described by

Ku = (u, ϕ)ϕ = λ

∫ b

a

ϕ(x)ϕ(t) u(t) dt,

from which we derive that

k(x, t) = λϕ(t)ϕ(x).

Clearly, ‖K‖ = λ. Because ‖ϕ‖2 = 1, we get

‖k‖2
2 =

∫ b

a

∫ b

a

|k(x, t)|2dx dt = |λ|2
∫ b

a

∫ b

a

|ϕ(x)|2|ϕ(t)|2dx dt = |λ|2.

Hence ‖k‖2 = |λ| = ‖K‖ in this case.

3) If σ(K) contains more than two points, then

‖K‖ = max |λn| = |λ1| .
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1. Hilbert-Smith operators

Furthermore, we get by the computation

Ku(x) =
∫

I

k(x, y)u(t) dt =
+∞∑
n=1

λn (u, ϕn) ϕn(x) =
∫

I

+∞∑
n=1

λn ϕn(x)ϕn(t)u(t) dt,

that

‖k‖2
2 =

+∞∑
n=1

λ2
n > λ2

1 = ‖K‖2,

and the claim is proved.

http://bookboon.com/
http://bookboon.com/count/advert/95f8cde3-50a6-4ae7-bfa0-a04600f54275


Download free ebooks at bookboon.com

Integral Operators

 
27 

1. Hilbert-Smith operators

Example 1.11 Let {e1, e2, . . . , ep} denote a finite orthonormal set in L2(I), and let the Hilbert-
Schmidt operator K be given by the kernel

k(x, y) =
p∑

i=1

p∑
j=1

kij ei(x) ej(t).

Find the trace tr(K).
We say that the operator K has a canonical kernel of finite rank.

This example is trivial,

tr(K) =
∫

I

k(x, x) dx =
∫

I

p∑
i=1

p∑
j=1

kij ei(x) ej(x) dx =
p∑

i=1

p∑
j=1

kij δij =
p∑

i=1

kii.

Note that this corresponds to the trace of matrix (kij).

Example 1.12 Denote by K a self adjoint Hilbert-Schmidt operator on L2(I) of kernel k.
Prove that K is a general Hilbert-Schmidt operator (cf. the definition in Example 1.1), and find the
Hilbert-Schmidt norm ‖K‖HS.

Put

Ku =
+∞∑
n=1

λn (u, ϕn) ϕn.

It follows from Ventus, Hilbert spaces etc., Example 2.7 that

tjk = (Kϕj , ϕk) =

(
+∞∑
n=1

λn (ϕj , ϕn) ϕn, ϕk

)
= (λj ϕj , ϕk) = λj δjk,

thus tjj = λj and tjk = 0 for j 
= 0.

Then by Example 1.1, K is a general Hilbert-Schmidt operator, if

+∞∑
j=1

+∞∑
k=1

|tjk|2 < +∞,

because it was proved that this number is independent of the choice of orthonormal basis. Furthermore,
it follows from Example 1.2 that

‖K‖HS =

⎧⎨
⎩

+∞∑
j=1

+∞∑
k=1

|tjk|2
⎫⎬
⎭

1
2

.

In the present case we get

‖K‖HS =

⎧⎨
⎩

+∞∑
j=1

+∞∑
k=1

|λj |2 δjk

⎫⎬
⎭

1
2

=

⎧⎨
⎩

+∞∑
j=1

|λj |2
⎫⎬
⎭

1
2

= ‖k‖2.
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1. Hilbert-Smith operators

Example 1.13 Let

k(x, t) = {sin(x) + sin(t)}2 − 1
8

be the kernel for a Hilbert-Schmidt operator K on the complex Hilbert space L2([−π, π]).
Show that K is self adjoint and express the range K

(
L2([−π, π])

)
of K with the help of the non-

normalized basis

1, cos(x), sin(x), cos(2x), sin(2x), . . . .

Find all non-zero eigenvalues and corresponding eigenfunctions for K, and determine σ(K).

Solve the equation Ku = π u − 5π
4

in L2([−π, π]).

1) Clearly, k(x, t) ∈ L2([−π, π] × [−π, π]), and

k(t, x) = (sin t + sinx)2 − 1
8

= k(x, t),

thus k(x, t) is Hermitian, and K is a self adjoint Hilbert-Schmidt-operator. It follows from

k(x, t) = (sin x + sin t)2 − 1
8

= sin2 x + 2 sin x · sin t + sin2 t − 1
8

= −1
2

cos 2x + 2 sinx · sin t − 1
2

cos 2t +
7
8
,

that

Kf(x) =
{
−1

2

∫ π

−π

f(t) dt

}
cos 2x +

{
2
∫ π

−π

f(t) sin t dt

}
sinx(7)

+
{
−1

2

∫ π

−π

f(t) cos 2t dt +
7
8

∫ π

−π

f(t) dt

}
· 1,

and we conclude that the range K
(
L2([−π, π])

)
is spanned by 1, sinx and cos 2x.

(Choose e.g. suitable linear combinations of these three functions in order to conclude that the
dimension is 3).

2) An eigenfunction f corresponding to an eigenvalue λ 
= 0 must necessarily lie in the range, thus it
is of the form

f(x) = a · cos 2x + b · sinx + c, a, b, c ∈ C.

When we insert this expression into (7) and then apply that 1, sinx and cos 2x are mutually
orthogonal, we get

Kf(x) =
{
−1

2
c · 2π

}
cos 2x +

{
2b · 2π

2

}
sinx +

{
−1

2
a · 2π

2
+

7
8

c · 2π
}
· 1

= −cπ · cos 2x + 2bπ · sinx +
{

7π
4

c − π

2
a

}
· 1.
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1. Hilbert-Smith operators

We have for comparison,

λ f(x) = λa · cos 2x + λ b · sinx + λ c · 1.
The coefficient b occurs only in connection with sinx, hence we conclude that sinx is an eigen-
function corresponding to the eigenvalue λ = 2π.

Assume that b = 0. If a · cos 2x + c is an eigenfunction, then the vectors(
−cπ,

7π
4

c − π

2
a

)
= π

(
−c,

7
4

c − 1
2

a

)
og (a, c)

must be proportional with the eigenvalue λ = − c

a
π as the factor of proportion. Thus we get the

condition∣∣∣∣ a −c
c 7

4 c − 1
2 a

∣∣∣∣ = c2 +
7
4

ac − 1
2

a2 = 0.

By solving this equation with respect to c we get

c = −7
8

a ±
√

49
64

a2 +
1
2

a2 = −7
8

a ±
√

81
64

a2 = −7
8

a ± 9
8

a.

We have now two possibilities:

a) For c = −7
8

a− 9
8

a = −2a we get λ = − c

a
π = 2π, corresponding to the eigenfunction cos 2x−2.

b) For c = −7
8

a +
9
8

a =
1
4

a we get λ = − c

a
π = −π

4
, corresponding to the eigenfunction

cos 2x +
1
4
.

Summing up,

λ1 = 2π, ϕ1(x) = sinx,
λ2 = 2π, ϕ2(x) = cos 2x − 2,

λ3 = −π

4
, ϕ3(x) = cos 2x +

1
4
.

Notice that λ1 = λ2,and that the eigenfunctions are not normed.

It follows e.g. from (K cos)(x) = 0 that ker(K) 
= ∅, thus

σ(K) = σp =
{

0,−π

2
, 2π
}

.

3) The equation Ku = π u − 5π
4

can be solved in several ways:

First method. The coefficient π of u on the right hand side of the equation does not belong to
the spectrum, π /∈ σ(K), hence the solution is unique. Because

−5π
4

=
5π
9

(cos 2x − 2) − 5π
9

(
cos 2x +

1
4

)
,
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1. Hilbert-Smith operators

we see that −5π
4

lies in the subspace spanned by the eigenvectors

ϕ2(x) = cos 2x − 2 and ϕ3(x) = cos 2x +
1
4
.

Thus we guess a solution of the structure

u(x) = a · (cos 2x − 2) + b ·
(

cos 2x +
1
4

)
.

We get by insertion of this structure that

Ku(x) − π u(x) = 2πa · (cos 2x − 2) − π

4
b ·
(

cos 2x +
1
4

)

−πa(cos 2x − 2) − πb

(
cos 2x +

1
4

)

= πa(cos 2x − 2) − 5π
4

b

(
cos 2x +

1
4

)

= π

(
a − 5

4
b

)
cos 2x − π

(
2a +

5
16

− b

)
.
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1. Hilbert-Smith operators

This expression is equal to −5π
4

, if

a =
5
4

b and 2 · 5
4

b +
1
4
· 5
4

b =
5
4
,

hence
9
4

b = 1 and b =
4
9
, a =

5
9
. Finally, we get by insertion,

u(x) =
5
9

(cos 2x − 2) +
4
9

(
cos 2x +

1
4

)
= cos 2x − 1 = −2 sin2 x.

Method 1a. A variant of the First method is to guess a solution of the form

u(x) = a · cos 2x + c.

Then apply the previous computation from (2) to get

Ku(x) = −cπ · cos 2x +
{

7π
4

c − π

2
a

}
,

and

−π u(x) = −aπ · cos 2x − cπ,

hence

Ku(x) − π u(x) = −(a + c) cos 2x +
3π
4

c − π

2
a.

This expression is equal to −5π
4

, if and only if

c = −a and − 5π
4

=
3π
4

c − π

2
a = −5π

4
a,

thus a = 1 and c = −1, and the unique solution is given by

u(x) = cos 2x − 1 = −2 sin2 x.

Second method. It is also possible to apply the standard method. A straightforward computa-
tion where we explicitly use the previously found eigenfunctions (these should then be normed),
would demand a lot of energy, although one at different stages could apply one of the two vari-
ants above.

We shall show below how this might be carried out. First put

ϕ1(x) = sinx, ϕ2(x) = cos 2x − 2, ϕ3(x) = cos 2x +
1
4
.

Let {ϕn | n ≥ 4} denote an orthonormal basis of the null-space ker(K). Then a solution of the
equation

Ku = π u − 5π
4

,
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1. Hilbert-Smith operators

has the structure

u =
+∞∑
n=1

an ϕn, where
+∞∑
n=4

|an|2 < +∞.

Put f(x) = −5π
4

. It follows from

(f, ϕn) =
(
−5π

4
, ϕn

)
= 0 for n ∈ N \ {2, 3},

and

f(x) = −5π
4

= c2(cos 2x − 2) + c3

(
cos 2x +

1
4

)
= (c2 + c3) cos 2x −

(
2c2 − 1

4
c3

)
,

that c3 = −c2, and

2c2 − 1
4

c3 = 2c2 +
1
4

c2 =
9
4

c2 =
5π
4

,

thus

c2 =
5π
9

and c3 = −5π
9

.

Then we get by insertion into the equation

Ku − π u = −5π
4

that

Ku − π u = λ1a1ϕ1 + λ2a2ϕ2 + λ3a3ϕ3 −
+∞∑
n=1

an ϕn

= (2π − π)a1ϕ1 + (2π − π)a2ϕ2 −
(π

4
+ π

)
a3ϕ3 − π

+∞∑
n=4

anϕn

= πa1ϕ1 + πa2ϕ2 − 5π
4

a3ϕ3 − π

+∞∑
nm=4

anϕn

= −5π
4

= c2ϕ2 + c3ϕ3,

and we derive that

a1 = 0, a2 =
1
π

c2 =
5
9
, a3 = − 4

5π
c3 =

4
9
, an = 0 for n ≥ 4,

hence

u(x) =
5
9

(cos 2x − 2) +
4
9

(
cos 2x +

1
4

)
= cos 2x − 1 = −2 sin2 x.
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1. Hilbert-Smith operators

Example 1.14 Let k(x, t) = x + t + 2xt be the kernel for the Hilbert-Schmidt operator K on the
Hilbert space H = L2([−1, 1]).
Show that K is self adjoint and determine the range K(H).
Find all non-zero eigenvalues and corresponding eigenfunctions for K, and determine σ(K) as well
as ‖K‖.
Express Kf , f ∈ H, with the help of the Legendre polynomials (Pn).
Let f(x) = cosh(1) cosh(x) − cosh(2x). Show that (f, P0) = (f, P1) = 0 and solve the equation

Ku(x) + u(x) = f(x).

1) It follows from

k(t, x) = t + x + 2tx = x + t + 2xt = k(x, t),

that the kernel is Hermitian, thus K is self adjoint. We conclude from

Kf(x) =
∫ 1

−1

(x + t + 2xt)f(t) dt = x

∫ 1

−1

(1 + 2t)f(t) dt +
∫ 1

−1

t f(t) dt,

that the range is K
(
L2([−1, 1])

)
= span{1, x}.

2) The only possible eigenfunctions must be of the form f(x) = ax + b. We get by insertion the
condition

λ f(x) = λax + λb = Kf(x) = x

∫ 1

−1

(1 + 2t)(at + b) dt +
∫ 1

−1

t(qt + b) = dt,

hence

λa =
∫ 1

−1

(1 + 2t)(at + b) dt =
∫ 1

−1

{
2at2 + (a + 2b)t + b

}
dt =

4
3

a + 2b

and

λb =
∫ 1

−1

(
at2 + bt

)
dt =

2a
3

.

Hence,

λ2a =
4
3

aλ + 2λb =
4
3

λa +
4
3

a.

If a = 0, then 2b =
(

λ − 4
3

)
a = 0, which leads to nothing, so we may assume that a 
= 0, e.g.

a = 1. Then

λ2 − 4
3

λ − 4
3

= 0,

i.e.

λ =
2
3
±
√

4
9

+
4
3

=
2
3
±
√

16
9

=
2
3
± 4

3
=

⎧⎪⎨
⎪⎩

2,

−2
3
.
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1. Hilbert-Smith operators

If λ1 = 2 and a = 1, then b =
1
λ1

· 2a
3

=
1
3
, and the corresponding eigenfunction is

ϕ1(x) = x +
1
3
, λ1 = 2.

If λ2 = −2
3

and a = 1, then b =
1
λ2

· 2a
3

= −3
2
· 2
3

= −1, and the corresponding eigenfunction is

ϕ2(x) = x − 1, λ2 = −2
3
.

Since K is self adjoint and of Hilbert-Schmidt-type, ‖K‖ is the absolute value of the eigenvalue of
largest absolute value,

‖K‖ = 2.

Finally,

σ(K) = σp(K) =
{
−2

3
, 0, 2

}
,

and every function, which is orthogonal on both ϕ1 and ϕ2, i.e. on both 1 and x by a change of
basis, must lie in the eigenspace corresponding to λ = 0.
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1. Hilbert-Smith operators

3) It is well-known that the Legendre polynomials form an orthogonal system on L2([−1, 1]). We
have in particular,

P0(t) = 1 and P1(t) = t,

and since span{P0, P1} = K
(
L2([−1, 1])

)
, we infer that

KPn = 0 for every n ≥ 2.

It follows that if f =
∑+∞

n=0 anPn, then

Kf(x) = K

(
+∞∑
n=0

anPn

)
(x) = K

(
1∑

n=0

anPn

)
(x)

= K (a0 + a1t) (x) =
∫ 1

−1

(a0 + a1t) (x + t + 2xt) dt

=
∫ 1

−1

{
a0x + a0t + 2a0x · t + a1x · t + a1(1 + 2x)t2

}
dt

= 2a0x +
2
3

a1(1 + 2x) =
(

2a0 +
4
3

a1

)
x +

2
3

a1

=
(

2a0 +
4
3

a1

)
P1(x) +

2
3

a1P0(x).

4) Let f(x) = cosh 1 · cosh x − cosh 2x. Then

(f, P0) =
∫ 1

−1

{cosh 1 · cosh x − cosh 2x}dx = cosh 1 · [sinhx]1−1 −
[
1
2

sinh 2x
]1
−1

= cosh 1 · 2 sinh 1 − 1
2
· 2 sinh 2 = sinh 2 − sinh 2 = 0,

and

(f, P1) =
∫ 1

−1

{cosh 1 · cosh x − cosh 2x} · x dx = 0,

because the integrand is an odd function, and because we integrate over a finite symmetric interval.

Finally, we shall solve the equation

Ku(x) + u(x) = cosh 1 · cosh x − cosh 2x.

If

u =
+∞∑
n=0

anPn and cosh 1 · cosh x − cosh 2x =
+∞∑
n=2

bnPn,

then it follows from the above that

2
3

a1P0 +
(

2a0 +
4
3

a1

)
P1 + a0P0 + a1P1 +

+∞∑
n=2

anPn

=
+∞∑
n=2

bnPn = cosh 1 · cosh x − cosh 2x,
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1. Hilbert-Smith operators

and we conclude that an = bn for n ≥ 2 and that⎧⎪⎨
⎪⎩

a0 +
2
3

a1 = 0,

2a0 +
7
3

a1 = 0,
hence a0 = a1 = 0,

and whence

u =
+∞∑
n=2

anPn =
+∞∑
n=2

bnPn = cosh 1 · coshx − cosh 2x.
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1. Hilbert-Smith operators

Example 1.15 In L2([−π, π]) we consider the orthonormal basis (en), n ∈ Z, where

en(t) =
1√
2π

eint.

1. Let ϕ : R → C denote a continuous function with period 2π, and assume that ϕ(−x) = ϕ(x) for
all x ∈ R. Show that

Ku(x) =
∫ π

−π

ϕ(x − t)u(t) dt

defines a selfadjoint Hilbert-Schmidt operator on L2([−π, π]).

2. Show that all en are eigenfunctions for K.

From now on we assume that ϕ is the periodic extension from [−π, π] to R of the function

ϕ(x) = 1 − |x|
π

.

3. Calculate the spectrum of K.

4. Solve the equation

Ku =
2
π

u + f in L2([−π, π]),

where f(x) = sin2(x) + sin(x).

5. Solve the equation

Ku =
4
π

u + 1 in L2([−π, π]).

1) The kernel is

k(x, t) = ϕ(x − t), x, t ∈ [−π, π],

where∫ π

−π

∫ π

−π

|ϕ(x − t)|2 dt dx =
∫ π

−π

{∫ π−t

−π−t

|ϕ(u)|2 du

}
dx =

∫ π

−π

∫ π

−π

|ϕ(u)|2 du dx

= 2π ‖ϕ‖2
2 < +∞,

proving that K is a Hilbert-Schmidt operator.

Alternatively, ϕ is continuous on a compact set, hence |ϕ(x)| ≤ c for x ∈ [−π, π]. Then apply
the periodicity to get the estimate∫ π

−π

∫ π

−π

|ϕ(x − t)|2 dt dx ≤ c2(2π)2 = 4π2c2 < +∞. ♦

From ϕ(−x) = ϕ(x) follows that

k(t, x) = ϕ(t − x) = ϕ(x − t) = k(x, t),

which shows that the kernel is Hermitian, thus K is self adjoint.
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1. Hilbert-Smith operators

2) By insertion of en(x) follows by a change of variable,

Ken(x) =
∫ π

−π

ϕ(x − t) en(t) dt =
∫ x+π

x−π

ϕ(u) en(x − u) du

=
∫ x+π

x−π

ϕ(u) · e−inu du · 1√
2π

einx =
∫ π

−π

ϕ(u) e−inu du · en(x),

from which follows that every en(x), n ∈ Z, is an eigenfunction for K.

Conversely, if ψ is an eigenfunction, then ψ =
∑

cnen, hence ψ must lie in the subspace corre-
sponding to the en, which have the same eigenvalue. This means that the eigenvalues are∫ π

−π

ϕ(u) e−inu du, n ∈ Z,

and it suffices only to look at the eigenfunctions en(x), n ∈ Z, in the following.

0

0.4

0.8

–4 –2 2 4

x

Figure 1: The graph of the function ϕ.

3) If ϕ(x) = 1 − |x|
π

for x ∈ [−π, π], then we have in particular that ϕ(−x) = ϕ(x), and that ϕ is
continuous – also after a periodic extension. Therefore, we are again in the situation above. If
n 
= 0, then the eigenvalues are given by∫ π

−π

(
1 − |x|

π

)
e−inx dx = −

∫ π

−π

|x|
π

e−inx dx = − 2
x

∫ π

0

x cos(nx) dx

= 0 +
2

nπ

∫ π

0

sin(nx) dx =
2 {1 − (−1)n}

π n2
.

For n = 0 we instead get by considering an area on the figure,∫ π

−π

(
−|x|

π

)
dx = π.
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1. Hilbert-Smith operators

Alternatively,∫ π

−π

(
a − |x|

π

)
dx = 2π − 2

π

∫ π

0

x dx = 2π − 2π2

2π
= π.

Summing up,

λ0 = π,

⎧⎪⎨
⎪⎩

λ2n = 0, n ∈ Z \ {0},

λ2n+1 =
4

π(2n + 1)2
, n ∈ Z,

and we conclude that the spectrum is

σ(K) = σp(K) = {0, π} ∪
{

4
π(2n + 1)2

∣∣∣∣ n ∈ N0

}
.

Notice that the eigenspace corresponding to each eigenvalue of the form
4

π(2n + 1)2
is of dimension

2, while the eigenspace corresponding to λ0 = π is only of dimension 1.

4) Let

u =
∑

cnen = c0e00
∑
n�=0

c2ne2n +
∑
n∈Z

c2n+1e2n+1.

Then

f(x) = sin2 x + sinx =
1 − cos 2x

2
+ sin 2 =

1
2

+
eix − e−ix

2i
− e2ix + e−2ix

4

=
√

2π
2

e0(x) + i

√
2π
2

e−1(x) − i

√
2π
2

e1(x) −
√

2π
4

e2(x) −
√

2π
4

e−2(x)

= Ku − 2
π

u

=
(

π − 2
π

)
c0e0(x) +

∑
n∈Z\{0}

(
− 2

π

)
c2ne2n(x) +

∑
n∈Z

{
4

(2n + 1)2π
− 2

π

}
c2n+1e2n+1(x).

It follows from
2
π

/∈ σp(K) = σ(K) by identification that

c0 =
√

2π
2

· 1

π − 2
π

=
√

2π · π

2 (π2 − 2)
,

and

c−1 = i

√
2π
2

· 1
4
π
− 2

π

= i
√

2π · π

4
, c1 = c−1 = −i

√
2π · π

4
,

and

c−2 = c2 = −
√

2π
4

· 1

− 2
π

=
√

2π · π

8
, and cn = 0 otherwise.
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1. Hilbert-Smith operators

This implies that

u(x) =
π

2 (π2 − 2)

√
2π e0(x) +

π

2
·
√

2π
2i

{e1(x) − e−1(x)} +
π

4

√
2π
2

{e2(x) + e−2(x)}

=
π

2 (π2 − 2)
+

π

2
sinx +

π

4
cos 2x.

5) In this case,
4
π

is an eigenvalue corresponding to the eigenvectors e1(x) and e−1(x). Since 1 =√
2π e0 is orthogonal to e1 and e−1, we get

u = c−1e−1 + c1e1 + c0e0,

where c−1 and c1 are arbitrary constants, and

1 = K (c0e0) − 4
π

c0e0 =
(

π − 4
π

)
c0e0 =

(
π − 4

π

)
c0 · 1√

2π
,

hence

c0 =
√

2π

π − 4
π

=
π
√

2π
π2 − 4

,
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1. Hilbert-Smith operators

and we get the solutions

u(x) =
π
√

2π
π2 − 4

+ c̃1 eix + c̃−1e
−ix,

where c̃1 and c̃−1 ∈ C are arbitrary constants.

Example 1.16 Let H denote the Hilbert space L2([0, 2π]) with the subspace F = C([0, 2π]), and let
K denote the integral operator on H with the kernel

k(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i

2
exp

(
i

2
(x − t)

)
, if 0 ≤ t < x ≤ 2π,

0 if 0 ≤ t = x ≤ 2π,

− i

2
exp

(
i

2
(x − t)

)
, if 0 ≤ x < t ≤ 2π.

1) Show that K is a self adjoint Hilbert-Schmidt operator.

2) Assume that F is equipped with the sup-norm. Show that K : H → F is continuous.

3) Now let S denote the restriction of K to F (considered as a subspace of H). Show that S is
injective and that S−1 is given by

D
(
S−1

)
= {g ∈ C1([0, 2π]) | g(0) = g(2π)},

and

S−1g = −i g′ − 1
2

g for g ∈ D
(
S−1

)
.

4) Find all normalized eigenfunctions and associated eigenvalues for S−1. Show that all eigenvalues
are simple and that the set of normalized eigenfunctions is an orthonormal system in H.

5) Show that the eigenfunctions for S−1 are also eigenfunctions for K and find the associated eigen-
values. Justify that all eigenfunctions for K are given this way, and write the kernel for K using
the normalized eigenfunctions.

6) Let f ∈ H be given by the Fourier expansion

f =
∞∑

n=−∞
cn einx.

Expand Kf using the Fourier coefficients cn instead of f .

1) The kernel k(x, t) is bounded and continuous for t 
= x in the compact set [0, 2π]2, hence k ∈
L2
(
[0, 2π]2

)
with

‖k‖2
2 =

∫ 2π

0

{∫ 2π

0

|k(x, t)|2 dt

}
dx =

1
4
· (2π)2 = π2,
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1. Hilbert-Smith operators

i.e. ‖k‖2 = π. This shows that K is a Hilbert-Schmidt operator.

We see from

k(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− i

2
exp

(
− i

2
(t − x)

)
, for 0 ≤ x < t ≤ 2π,

0 for 0 ≤ x = t ≤ 2π,

i

2
exp

(
− i

2
(t − x)

)
, for 0 ≤ t < x ≤ 2π,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i

2
exp

(
i

2
(x − t)

)
, for 0 ≤ t < x ≤ 2π,

0 for 0 ≤ t = x ≤ 2π,

− i

2
exp

(
i

2
(x − t)

)
, for 0 ≤ x < t ≤ 2π,

= k(x, t),

that k(x, t) is Hermitian,, thus K is a self adjoint Hilbert-Schmidt operator.

2) The operator K is described by

Kf(x) =
∫ 2π

0

k(x, t) f(t) dt =
i

2

∫ x

0

exp
(

i

2
(x−t)

)
f(t) dt− i

2

∫ 2π

x

exp
(

i

2
(x−t)

)
f(t) dt

=
i

2
exp

(
i
x

2

)∫ x

0

exp
(
−i

t

2

)
f(t) dt − i

2
exp

(
i
x

2

)∫ 2π

x

exp
(
−i

t

2

)
f(t) dt

=
i

2
exp

(
i
x

2

){∫ x

0

exp
(
−i

t

2

)
f(t) dt +

∫ x

2π

exp
(
−i

t

2

)
f(t) dt

}
.

Applying the Cauchy-Schwarz inequality over [x, x + Δx] we get∣∣∣∣∣
∫ x+Δx

x

exp
(
−i

t

2

)
f(t) dt

∣∣∣∣∣ ≤ ‖f‖2 ·
√

Δx,

where obviously the latter factor in the expression for Kf(x) is continuous. The former factor is
also continuous, so K : H → F is a mapping of H into F .

Then we get the estimate

|Kf(x)| ≤ 1
2
· 1 ·

{∫ x

0

1 · |f(t)| dt +
∫ 2π

x

1 · |f(t)| dt

}

≤ 1
2
‖f‖2

{√
x +

√
2π − x

} ≤ 1
2
‖f‖2 ·

{√
π +

√
π
}

=
√

π · ‖f‖2,
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1. Hilbert-Smith operators

because
√

x +
√

2π − x has its maximum in the interval [0, 2π] at x = π. Then

‖Kf‖∞ ≤ √
π · ‖f‖2, hence ‖K‖ ≤ √

π,

and the linear operator K : H → F is continuous.

3) Assume that f ∈ F with Kf ≡ 0. Then by (2),∫ x

0

exp
(
−i

t

2

)
f(t) dt +

∫ x

2π

exp
(
−i

t

2

)
f(t) dt = 0,

for all x ∈ [0, 2π]. Both integrands are continuous, and the sum of the integrals are C1 and
constant, hence by differentiation,

0 = exp
(
−i

x

2

)
f(x) + exp

(
−i

x

2

)
f(x) = 2 exp

(
−i

x

2

)
f(x),

and we get f ≡ 0, so S = K|F is injective.

It was mentioned above that Kf ∈ C1, if f ∈ C. Furthermore,

Kf(0) =
i

2
· 1
{

0 −
∫ 2π

0

exp
(
−i

t

2

)
f(t) dt

}
= − i

2

∫ 2π

0

exp
(
−i

t

2

)
f(t) dt,

and

Kf(2π) =
i

2
exp

(
i · 2π

2

){∫ 2π

0

exp
(
−i

t

2

)
f(t) dt + 0

}

= − i

2

∫ 2π

0

exp
(
−i

t

2

)
f(t) dt = Kf(0),

so we infer that

D
(
S−1

)
= KF � {g ∈ C1([0, 2π]) | g(0) = g(2π)}.

If on the other hand g ∈ C1([0, 2π]) satisfies g(0) = g(2π), then we shall check if the equation

Kf(x) =
i

2
exp

(
i
x

2

){∫ x

0

exp
(
−i

t

2

)
f(t) dt +

∫ x

2π

exp
(
−i

t

2

)
f(t) dt

}
= g(x)

has a solution f ∈ F . This equation is equivalent to

(8)
∫ x

0

exp
(
−i

t

2

)
f(t) dt +

∫ x

2π

exp
(
−i

t

2

)
f(t) dt = −2i exp

(
−i

x

2

)
g(x),

so we get by differentiation,

(9) 2 exp
(
−i

x

2

)
f(x) = −2i exp

(
−i

x

2

){
− i

2
g(x) + g′(x)

}
,

where (9) is equivalent to that the candidate f(x) must have the structure

f(x) = −1
2

g(x) − i g′(x).
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1. Hilbert-Smith operators

It is obvious that f given in this way is continuous, when g ∈ C1. The proof will be concluded, if
we can prove that the additional condition g(0) = g(2π) combined with (9) implies (8). The trick
is that we write

2 exp
(
−i

x

2

)
f(x) = exp

(
−i

x

2

)
f(x) + exp

(
−i

x

2

)
f(x),

where we integrate the former term on the right hand side from 0 to x, and the latter from 2π to
x. This construction is guaranteed by the assumption g(0) = g(2π).

Alternatively one may compute explicitly,

Kf(x) = −iK(g′)(x) − 1
2

K(g)(x),

and then convince oneself by some partial integration that the result is g(x). ♦

4) The equation S−1g(x) = λ g(x) for g ∈ D
(
S−1

)
is rewritten as

−i g′(x) − 1
2

g(x) = λ g(x), g(0) = g(2π), g ∈ C1([0, 2π]),

i.e.

g′(x) = i

{
λ +

1
2

}
g(x), g(0) = g(2π).
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1. Hilbert-Smith operators

The complete solution without the boundary condition is

g(x) = c · exp
(

i

(
λ +

1
2

)
x

)
.

Choosing c = 1 and inserting into the boundary condition, we get

exp
(

i

(
λ +

1
2

)
0
)

= 1 = exp
(

i

(
λ +

1
2

)
· 2π

)
,

the solutions of which are λn +
1
2

= n ∈ Z.

The eigenvalues are

σp

(
S−1

)
=
{

λn = n − 1
2

∣∣∣∣ n ∈ Z

}
,

with the corresponding normalized eigenfunctions

en(x) =
1√
2π

einπ, n ∈ Z.

5) It follows from S−1en(x) = λnen(x) that

λnKen(x) = en(x), thus Ken(x) =
1
λn

en(x),

and K has the same eigenfunctions as S−1, and the corresponding eigenvalues are{
1
λn

=
1

n − 1
2

=
2

2n − 1

∣∣∣∣ n ∈ Z

}
� σp(K).

Using that K is a self adjoint Hilbert-Schmidt operator, we get that the spectrum is given by

σ(K) = {0} ∪
{

2
2n − 1

∣∣∣∣ n ∈ Z

}
,

where each
2

2n − 1
is an eigenvalue. Now, K is injective according to (3), so 0 is not an eigenvalue,

thus

σc(K) = {0} and σp(K) =
{

2
2n − 1

∣∣∣∣ n ∈ Z

}
.

Finally,

k(x, t) =
+∞∑

n=−∞

1
λn

en(x) · en(t) =
1
π

+∞∑
n=−∞

1
2n − 1

ein(x−t).
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1. Hilbert-Smith operators

6) Let f ∈ H be given by the Fourier expansion

f =
+∞∑

n=−∞
cneinx.

Since einx is an eigenfunction for K corresponding to the eigenvalue
1
λn

=
2

2n − 1
, it follows by a

termwise application of K that

Kf =
+∞∑
−∞

cnK
(
ein�

)
=

+∞∑
n=−∞

2
2n − 1

cneinx.
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2. Other types of integral operators

2 Other types of integral operators

Example 2.1 We shall consider H = L2([0, 1]) as a real Hilbert space, and define T : H → H by

Tf(x) =
∫ x

0

f(t) dt.

Show that

|Tf(x)| ≤ √
x ‖f‖2,

and use this to show that ‖T‖ < 1.
Show that

Tnf(x) =
∫ x

0

(x − t)n−1

(n − 1)!
f(t) dt.

Show that log(I +T ) is a well-defined operator of Volterra type, and find an explicit expression for the
kernel of this operator, using only known functions, that is, find k such that

log(I + T )f(x) =
∫ x

0

k(x, t) f(t) dt.

1) It follows form the Cauchy-Schwarz inequality that

|Tf(x)| =
∣∣∣∣
∫ x

0

f(t) dt

∣∣∣∣ =
∣∣∣∣
∫ 1

0

1[0,x](t) f(t) dt

∣∣∣∣ ≤ ∣∣1[0,x]

∥∥
2
‖f‖2

=
(∫ 1

0

{
1[0,x](t)

}2
dt

) 1
2

‖f‖2 =
{∫ x

0

dt

} 1
2

‖f‖2 =
√

x · ‖f‖2.

(There are more variants of this computation).

2) It follows from the estimate above that

‖Tf‖2
2 =

∫ 1

0

|Tf(x)|2dx ≤
∫ 1

0

x ‖f‖2
2dx =

[
x2

2

]1
0

‖f‖2
2 =

1
2
‖f‖2

2,

and we conclude that

‖T‖ ≤ 1√
2

< 1.

3) The formula clearly holds for n = 1. Assume that for some n ∈ N,

Tnf(x) =
∫ x

0

(x − t)n−1

(n − 1)!
f(t) dt, f ∈ L2([0, 1]).

Interchanging the order of integration in the computation below we get

Tn+1f(x) = T n(Tf)(x) =
∫ x

0

(x − t)n−1

(n − 1)!
Tf(t) dt =

∫ x

0

(x − t)n−1

(n − 1)!

∫ t

0

f(s) ds dt

=
∫ x

0

{∫ x

s

(x − t)n−1

(n − 1)!
dt

}
f(s) ds =

∫ x

0

[
− (x − t)n

n!

]t=x

t=s

f(s) ds

=
∫ x

0

(x − s)n

n!
f(s) ds,
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2. Other types of integral operators

and it follows that the formula also holds, when n is replaced by n + 1. Then the claim follows by
induction.

4) Now,

ϕ(λ) = log(1 + λ) =
+∞∑
n=1

(−1)n−1 1
n

λn, for |λ| < 1,

and T ∈ B(L2([0, 1]) with ‖T‖ ≤ 1√
2

< 1, so the operator log(I + T ) is indeed defined by

ϕ(T ) = log(I + T ) =
+∞∑
n=1

(−1)n−1 1
n

Tn.

Each of the T n is of Volterra type, and ϕ(T ) contains only T n for n ≥ 1, hence ϕ(T ) is also of
Volterra type.

5) When we insert the expression for T nf from (3), we get by purely formal computations that

log(I + T )f(x) =
+∞∑
n=1

(−1)n−1 1
n

∫ x

0

(x − t)n−1

(n − 1)!
f(t) dt =

+∞∑
n=1

∫ x

0

(t − x)n−1

n!
f(t) dt.

However, the series
∑+∞

n=1

(t − x)n−1

n!
is uniformly convergent for 0 ≤ t ≤ x ≤ 1. (Notice that we

get the sum 1 for t = x). Therefore it is indeed legal to interchange summation and integration.
The we get for 0 ≤ t < x the sum

+∞∑
n=1

(t − x)n−1

n!
=

1
t − x

{
+∞∑
n=0

(t − x)n

n!
− 1

}
=

et−x − 1
t − x

= e−x · ex − et

x − t
.

Note that we for t → x get the limit e−x · ex = 1.

We get by interchanging summation and integration,

log(I + T )f(x) =
∫ x

0

e−x · ex − et

x − t
f(t) dt,

so the kernel of the Volterra operator log(I + T ) is given by

k(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−x · ex − et

x − t
for 0 ≤ t < x ≤ 1,

1 for 0 ≤ t = x ≤ 1,

0 otherwise.
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2. Other types of integral operators

Example 2.2 In this example it is allowed to change the order of integrations without justification.
Consider the operator

Af(x) =
1√
π

∫ x

0

f(t)√
x − t

dt, x ∈ [0, 1],

whenever this expression gives sense.

1) Show that Af ∈ L∞([0, 1]) if f ∈ Lp([0, 1]), p > 2.

2) Find the operator B = A2, that is find the kernel k(x, t) such that

Bf(x) = A2f(x) =
∫ x

0

k(x, t) f(t) dt

for f ∈ Lp([0, 1]), p > 2.

3) Show that B : Lp([0, 1]) → L∞([0, 1]), 1 ≤ p ≤ ∞ is bounded.

4) Solve the equation

(I − A)f(x) = 1

formally by a Neumann series, and express f as

f(x) = g(x) + Ah(x),

where g and h are known functions. (Here it is not possible to express Ah(x) as a known function.)
Insert and show that this formal solution is a solution.

Remark 2.1 First note that the kernel does not belong to L2([0, 1]2). In fact, it follows from

k(x, t) =

⎧⎨
⎩

1√
x − t

for 0 ≤ t < x ≤ 1,

0 otherwise,

that∫ 1

0

∫ 1

0

|k(x, t)|2dt dx =
∫ 1

0

{∫ x

0

dt

x − t

}
dx =

∫ 1

0

[− ln(x − t)]xt=0 dx = +∞,

so we cannot apply the theory of the Hilbert-Schmidt operators. Part of the example is to use other
methods. ♦

1) Given f ∈ Lp([0, 1]), where p > 2, thus 1 < q < 2, where q is the conjugated number of p, i.e.
1
p

+
1
q

= 1. Then by the Hölder inequality

|Af(x)| ≤ 1√
π

∫ x

0

|f(t)|√
x − t

dt ≤ 1√
π

{∫ x

0

|f(t)|p dt

} 1
p
{∫ x

0

dt

(x − t)q/2

} 1
q

≤ 1√
π
‖f‖p

⎧⎨
⎩ −1

1 − q

2

[
(x − t)1−

q
2

]x
t=0

⎫⎬
⎭

1
q

=
1√
π
‖f‖p

⎧⎨
⎩ 1

1 − q

2

x1− q
2

⎫⎬
⎭

1
q

≤ 1√
π
·
{

1 − q

2

}− 1
q ‖f‖p,
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2. Other types of integral operators

where we have used that 1 − q

2
> 0, because p > 2. This holds for all x ∈ [0, 1], so

‖Af‖∞ ≤ 1√
π
·
{

1 − q

2

}− 1
q ‖f‖p,

and Af ∈ L∞([0, 1]) for f ∈ Lp([0, 1]), when 2 < p < +∞.

If instead p = +∞, then we get the following estimate,

|Af(x)| ≤ 1√
π

∫ x

0

|f(t)|√
x − t

dt =
1√
π
‖f‖∞

∫ x

0

dt√
x − t

=
1√
π
‖f‖∞ ·

⎡
⎢⎣ −1

1 − 1
2

√
x − t

⎤
⎥⎦

x

0

=
2√
π

√
x · ‖f‖∞ ≤ 2√

π
‖f‖∞,

and we get in this case that

‖Af‖∞ ≤ 2√
π
‖f‖∞,

hence Af ∈ L∞([0, 1]) for f ∈ L∞([0, 1]).

2) Assume again that f ∈ Lp([0, 1]), where p > 2. Then Af ∈ L∞([0, 1]) according to (1). From
p1 = ∞ > 2 follows by another application of (1) that A2f ∈ L∞([0, 1]).

Challenging? Not challenging? Try more 

Try this...

www.alloptions.nl/life

http://bookboon.com/
http://bookboon.com/count/advert/739ffd82-96d7-e011-adca-22a08ed629e5


Download free ebooks at bookboon.com

Integral Operators

 
51 

2. Other types of integral operators

Compute

Bf(x) = A2f(x) =
1√
π

∫ x

0

1√
x − t

Af(t) dt =
1√
π

∫ x

0

1√
x − t

{
1√
π

∫ t

0

f(u)√
t − u

du

}
dt.

From 0 ≤ u ≤ t ≤ x ≤ 1 we infer by an interchange of the integrals f̊as follows by the change of
variable xs = t − u that

Bf(x) =
1
π

∫ x

0

{∫ x

u

dt√
(x − t)(t − u)

}
f(u) du =

1
π

∫ x

0

{∫ x−u

0

ds√{(x − u) − s)s

}
f(u) du

=
1
π

∫ x

0

π f(u) du =
∫ x

0

f(t) dt,

where we have used that∫ a

0

ds√
(a − s)s

= π for a = x − u > 0.

Remark 2.2 We prove for completeness this formula. We get by the monotonous substitution
s = a sin2 θ, θ ∈

[
0,

π

2

]
,

∫ a

0

ds√
(a − s)s

=
∫ π

2

0

1 · 2 sin θ cos θ√
(a − a sin2 θ) · a sin2 θ

dθ = 2a
∫ π

2

0

sin θ cos θ√
a2(1 − sin2 θ) sin2 θ

dθ

=
2a
|a|
∫ π

2

0

cos θ sin θ

| cos θ sin θ| dθ = 2
∫ π

2

0

dθ = π. ♦

The operator is therefore a well-known integral operator, and A corresponds to “integrating one
half time from 0”. The kernel is explicitly given by

k(x, t) =
{

1 for 0 ≤ t ≤ x ≤ 1,
0 otherwise.

3) This follows easily from the Hölder inequality,

|Bf(x)| ≤
∫ x

0

|f(t)| dt ≤
∫ 1

0

|f(t)| · 1 dt ≤ 1 · ‖f‖p,

hence ‖Bf‖∞ ≤ ‖f‖p, and ‖B‖ ≤ 1.

4) The Neumann series is given by

(I − A)−1 =
+∞∑
n=0

An,

so the formal solution is

f(x) =
+∞∑
n=0

An1(x) =
+∞∑
n=0

A2n1(x) +
+∞∑
n=0

A2n+11(x)

=
+∞∑
n=0

Bn1(x) + A

+∞∑
n=0

Bn1(x) = g(x) + Ag(x),
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2. Other types of integral operators

hence

h(x) = g(x) =
+∞∑
n=0

Bn1(x) = 1 +
+∞∑
n=1

Bn1(x) = 1 +
+∞∑
n=1

∫ x

0

tn−1

(n − 1)!
· 1 dt

= 1 +
+∞∑
n=1

xn

n!
= ex,

and the formal solution is

f(x) = ex + Aex.

Then we get by insertion

(I − A)f(f) = f(x) − Af(f) = ex + Aex − Aex − A2ex

= ex − Bex = ex −
∫ x

0

et dt = ex − [et
]x
0

= ex − (ex − 1) = 1,

and we have proved that we have found a solution.
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2. Other types of integral operators

Alternatively (and more elegantly),

(I − A)(I + A) = (I + A)(I − A) = I − A2 = I − B.

Since B is a Volterra operator, we have that (I − B)−1 =
∑+∞

n=0 Bn is bounded. Clearly, A and
B = A2 commutes, so

(I − A)
{
(I + A)(I − B)−1

}
=
{
(I + A)(I − B)−1

}
(I − A) = I,

proving that

(I − A)−1 = (I + A)(I − B)−1.

Hence the equation (I − A)f = 1 is equivalent to

f(x) = (I − A)−1A(x) = (I + A)
+∞∑
n=0

Bn1(x) = (I + A)ex = ex + Aex,

where we have applied the computation above.

Example 2.3 Let H = L2([0, 1]) and consider the integral operator

Bf(x) =
∫ x

0

f(t) dt, for f ∈ H.

1) Show that

k(x, t) = min{x, t}, 0 ≤ x, t ≤ 1,

is the kernel for the self adjoint Hilbert-Schmidt operator K = BB�.

2) Let ϕ be an eigenfunction for K associated with a non-zero eigenvalue λ. Justify that ϕ can be
taken as a C∞-function.
Next, show that ϕ must satisfy the equation

λϕ′′(x) = −ϕ(x),

and use this to find all non-zero eigenvalues for K and all the associated eigenfunctions.

3) Assuming the ‖BB�‖ = ‖B�|2, show that ‖K‖ = ‖B‖2, and find both ‖K‖ and ‖B‖.

1) The operator B has the kernel

b(x, t) =
{

1 for 0 ≤ t ≤ x ≤ 1,
0 otherwise,

so

b�(x, t) = b(t, x) = b(t, x) =
{

1 for 0 ≤ x ≤ t ≤ 1,
0 otherwise.

Then the kernel k(x, t) for K = BB� is given by

k(x, t) =
∫ 1

0

b(x, s)b�(s, t) ds =
∫ 1

0

b(x, s)b(t, s) ds

=
∫ 1

0

b(min{x, t}, s) ds = min{x, t}, x, t ∈ [0, 1].
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2. Other types of integral operators

2) Since k(x, t) is continuous, we can choose the eigenfunctions continuous. Hence, if ϕ(x) is an
eigenfunction corresponding to an eigenvalue λ 
= 0, then

(10) λλϕ(x) =
∫ 1

0

k(x, t)ϕ(t) dt =
∫ x

0

t ϕ(t) dt + x

∫ 1

x

ϕ(t) dt.

If ϕ is continuous, then the right hand side of (10) is differentiable. If ϕ is of class Cn, then the
right hand side of (10) is of class Cn+1, hence ϕ is also of class Cn+1. Then the claim follows by
induction, hence ϕ ∈ C∞.

When we differentiate (10), we get

λϕ′(x) = xϕ(x) +
∫ 1

x

ϕ(t) dt − xϕ(x) =
∫ 1

x

ϕ(t) dt,

hence by another differentiation,

(11) λϕ′′(x) = −ϕ(x),

and the claim is proved.

3) Let α ∈ C \ {0} satisfy the condition α2 =
1
λ

. Then the equation (11) has the complete solution

(12) ϕ(x) = C1e
iαx + C2e

−iαx.

When (12) is put into (10), and we apply that
1
α2

= λ, then

λϕ(x) = λ
{
C1e

iαx + C2e
−iαx

}
=

∫ x

0

t
{
C1e

iαt + C2e
−iαt

}
dt + x

∫ 1

x

{
C1e

iαt + C2e
−iαt

}
dt

=
[
t

{
C1

iα
eiαt − C2

iα
e−iαt

}]x

0

−
∫ x

0

{
C1

iα
eiαt − C2

iα
e−iαt

}
dt

+x

[
C1

iα
eiαt − C2

iα
e−iαt

]1
x

= x

{
C1

iα
eiαx − C2

iα
e−iαx

}
−
[

C1

i2α2
eiαt +

C2

i2α2
e−iαt

]x

0

+x

{
C1

iα
eiα − C2

iα
e−iα

}
− x

{
C1

iα
eiαx − C2

iα
e−iαx

}

=
1
α2

{
C1e

iαx + C2e
−iαx

}− 1
α2

{C1 + C2} +
x

iα

{
C1e

iα − C2e
−iα
}

= λϕ(x) − λ {C1 + C2} +
x

iα

{
C1e

iα − C2e
−iα
}

.

This equation holds for every x, and λ 
= 0 and α 
= 0, so we conclude that

C1 + C2 = 0 and C1e
iα − C2e

−iα = 0,

hence C2 = −C1, and C1

{
eiα + e−iα

}
= 2C1 cos α = 0, thus

α =
π

2
+ nπ, n ∈ Z.
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2. Other types of integral operators

It follows from

ϕ(x) = C1e
iαx + C2e

−iαx = C1

{
eiαx − e−iαx

}
= 2i C1 sinαx,

that the eigenfunctions for K corresponding to a λ ∈ σp(K) \ {0} are some constant times

ϕn(x) = sin
((

n − 1
2

)
π x

)
, n ∈ N,

corresponding to the eigenvalue

λn =
1

α2
n

=
4
π2

· 1
(2n + 1)2

, n ∈ N.

4) Now, ‖K‖ is the absolute value of the numerically largest eigenvalue |λ1|, so

‖K‖ = ‖BB�‖ = λ1 =
4
π2

· 1
(2 − 1)2

=
(

2
π

)2

.

On the other hand, BB� is self adjoint, hence

|BB�‖ = sup{|(BB�f, f)| | f ∈ L2([0, 1]), ‖f‖2 = 1}
= sup{(B�f,B�f) | f ∈ L2([0, 1]), ‖f‖2 = 1}
= sup{‖B�f‖2 | f ∈ L2([0, 1]), ‖f‖2 = 1} = ‖B�‖2

.
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2. Other types of integral operators

Finally, B ∈ B(H), hence also B� ∈ B(H) with ‖B�‖ = ‖B‖, and whence

‖K‖ = ‖BB�‖ = ‖B�|2 = ‖B‖2 =
(

2
π

)2

.

Then

‖B‖ =
2
π

,

where

Bf(x) =
∫ x

0

f(t) dt, f ∈ L2([0, 1]).

Example 2.4 Let H = L2([0, 1]) and consider the operator K with domain D(K) = C([0, 1]) given
by

Kf(x) = x

∫ x

0

f(t) dt +
∫ 1

x

t f(t) dt, f ∈ D(K).

1) Show that K : D(K) → C2([0, 1]), and that

(Kf)′(0) = 0 and (Kf)′(1) = (Kf)(1).

2) Show that K is injective and that K−1 has the domain

D
(
K−1

)
= {u ∈ C2([0, 1]) | u′(0) = 0, u(1) = u′(1)},

and the action K−1u = u′′.

3) Show that K is an integral operator with continuous and symmetric kernel and find this kernel.

4) Let ϕ and ψ denote eigenfunctions for K associated to the same eigenvalue λ. Define the function
f by

f(x) = ψ(0)ϕ(x) − ϕ(0)ψ(x),

and use the existence and uniqueness theorem for ordinary differential equations to argue that
f = 0.
Next show that all eigenspaces for K are of dimension one.

5) Let σp(K) = (λn) denote the sequence of eigenvalues for K. Find

∞∑
n=1

λ2
n.

6) Let λ be a positive eigenvalue and let μ =
1√
λ
. Express the associated eigenfunction with μ a

transcendent equation for μ.
Use a graph argument to show that K has at most one positive eigenvalue.
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2. Other types of integral operators

1) If f ∈ C([0, 1]), then we get immediately that Kf is of class C1([0, 1]) and

(Kf)′(x) =
∫ x

0

f(t) dt + x f(x) − x f(x) =
∫ x

0

f(t) dt.

This shows that we even have (Kf)′ ∈ C1([0, 1]), hence Kf ∈ C2([0, 1]), and

(13) (Kf)′′(x) = f(x).

Furthermore,

(Kf)′(0) =
∫ 0

0

f(t) dt = 0,

and

(Kf)(1) = 1 ·
∫ 1

0

f(t) dt +
∫ 1

1

t f(t) dt =
∫ 1

0

f(t) dt = (Kf)′(1).

2) Now, K is linear, hence K is injective, If Kf(x) ≡ 0 implies that f = 0. This follows from (13) in
(1), because

f(x) = (Kf)′′(x) = 0.

Assume that u ∈ C2([0, 1]) satisfies u′(0) = 0 and u(1) = u′(1). We shall prove that there is an
f ∈ C([0, 1]), for which u = Kf . According to (13) the only possibility is f = u′′, which we now
check. Using that u′′ ∈ C([0, 1]), we get

Ku′′(x) = x

∫ x

0

u′′(t) dt +
∫ 1

x

t u′′(t) dt = x {u′(x) − u′(0)} + [t u′(t)]1x −
∫ 1

x

1 · u′(t) dt

= xu′(x) + u′(1) − xu′(x) − [u(t)]1x = u′(1) − u(1) + u(x) = u(x),

and the claim is proved.

3) We get from the expression for Kf that

Kf(x) =
∫ 1

0

k(x, t) f(t) dt =
∫ x

0

f(t) dt +
∫ 1

x

t f(t) dt =
∫ 1

0

max{x, t} f(t) dt,

thus

k(x, t) = max{x, t} for x, t ∈ [0, 1],

and k(x, t) is clearly continuous in [0, 1]2, hence of class L2
(
[0, 1]2

)
.

We note that k(x, t) = k(t, x), hence the kernel is Hermitian and K is a self adjoint Hilbert-Schmidt
operator.

4) This is trivial. We know that K is injective, so 0 /∈ σp(K), and if λ ∈ σp(K), λ 
= 0, and Kϕ = λϕ,
it follows by an application of K−1 that

ϕ = λK−1ϕ, i.e. K−1ϕ =
1
λ

ϕ.
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2. Other types of integral operators

5) Assume that ϕ and ψ are eigenvectors for K with the same eigenvalue λ. Then

f(x) = ψ(0)ϕ(x) − ϕ(0)ψ(x)

is also an eigenfunction corresponding to λ, hence f is according to (4) an eigenvector corresponding

to the operator K−1 =
d2

dx2
with the eigenvalue

1
λ

, so

f ′′(x) =
1
λ

f(x).

Now, (Kϕ)′(0) = 0 = λϕ′(0), and analogously for ψ, so we conclude from (1) that

f(0) = ψ(0)ϕ(0) − ϕ(0)ψ(0) = 0

and

f ′(0) = ψ(0)ϕ − (0) − ϕ(0)ψ′(0) = 0.

It follows from the existence and uniqueness theorem for linear second order differential equations
that

(14)
d2f

dx2
− 1

λ
f(x) = 0, f(0) = 0, f ′(0) = 0,

does only have the solution f(x) ≡ 0, hence

(15) ψ(0)ϕ(x) = ϕ(0)ψ(x).

Then assume that ϕ(0) = 0 for every eigenfunction. Then also ϕ′(0) = 0, cf. the above, so
ϕ is a solution of (14), and ϕ ≡ 0. This means that ϕ is not an eigenfunction, contradicting
the assumption. Therefore, we conclude that ϕ(0) 
= 0 for every eigenfunction. Then it follows
from (15) that all eigenfunctions of the same eigenvalue are mutually proportional, hence every
eigenspace for K has dimension 1.

6) When we use that K is self adjoint and of Hilbert-Schmidt type, cf. (3), we get that all eigenvalues
are real, and

+∞∑
n=1

λ2
n = ‖k‖2

2,

where we have used (5) that every eigenspace has dimension 1. Then

+∞∑
n=1

λ2
n = ‖k‖2

2 =
∫ 1

0

∫ 1

0

max{x, t}2 dt dx =
∫ 1

0

{∫ x

0

x2 dt +
∫ 1

x

t2 dt

}
dt

=
∫ 1

0

{
x3 +

[
t3

3

]1
x

}
dx =

∫ 1

0

{
x3 +

1
3
− x3

3

}
dx =

1
3

∫ 1

0

(
2x3 + 1

)
dx

=
1
3

[
x4

2
+ x

]1
0

=
1
3

{
1
2

+ 1
}

=
1
2
.
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2. Other types of integral operators

7) It follows from (4) that if λ > 0 and μ =
1√
λ

, then

ϕ′′(x) =
1
λ

ϕ(x) = μ2 ϕ(x),

the complete solution of which is

ϕ(x) = C1e
μx + C2e

−μx.
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Figure 2: The graphs of x = μ and x = cothμ intersect at μ ≈ 1.199 678 640.
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2. Other types of integral operators

We shall find the values of C1, C2 and μ, for which ϕ ∈ D
(
K−1

)
. We compute

ϕ′(x) = μ
{
C1e

μx − C2e
−μx

}
,

and get the conditions (because μ > 0)

ϕ′(0) = μ {C1 − C2} = 0, i.e. C1 = C2 = C,

and

ϕ(1) = C
{
eμ + e−μ

}
= Cμ

{
eμ − e−μ

}
= ϕ′(1),

so μ is a solution of the equation

cosh μ = μ sinhμ,

which we write as

coth μ = μ.

Considering the graphs we see that this equation has only one solution μ > 0.

Remark 2.3 Using the iteration

μn+1 =
1

tan μn

we get on a pocket calculator that

μ ≈ 1.199 678 640.

Note that

λ2
1 =

1
μ4

≈ 0.482 770 022 < 0, .5,

so

+∞∑
n=2

λ2
n = 0.017 229 978 � λ2

1.

The norm of K is approximately

‖K‖ = λ1 ≈ 0.694 82.

We have for any other eigenvalue λ ∈ R that λ < 0, so μ =
1√
λ

is purely imaginary. ♦
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2. Other types of integral operators

Example 2.5 Let K ∈ B(H), where H = L2([0, 1]), be given by

Kf(x) =
∫ 1

1−x

f(t) dt.

1) Show that K is actually bounded.

2) Show that the kernel k(x, t) for K is Hermitian, and calculate

‖k‖2 =
∫ 1

0

∫ 1

0

|k(x, t)|2 dt dx.

3) Show that the kernel k2(x, t) for K2 is min{x, t}.
4) Show that an eigenfunction for K is an eigenfunction for K2.

Now, let f denote an eigenfunction for K associated with the eigenvalue λ. Calculate
(
K2f

)′′,
justify that it belongs to H and show that f is a solution to the equation

λ2f ′′ + f = 0.

5) Find all eigenvalues and associated eigenfunctions for K.

6) Determine ‖K‖.

1) Apply the Cauchy-Schwarz inequality in L2([1 − x, 1]) for f ∈ H. This gives

‖Kf‖2
2 =

∫ 1

0

∣∣∣∣
∫ 1

1−x

1 · f(t) dt

∣∣∣∣
2

dx ≤
∫ 1

0

{√
x · ‖f‖2

}2
dx = ‖f‖2

2

∫ 1

0

x dx =
1
2
‖f‖2

2,

and we conclude that ‖K‖ ≤ 1√
2
, thus K is bounded.

2) It follows from

Kf(x) =
∫ 1

0

k(x, t) f(t) dt =
∫ 2

1−x

f(t) dt =
∫ 1

0

1[1−x,1](t) f(t) dt,

that

k(x, t) = 1[1−x,1](t) =
{

1 for 1 − x ≤ t ≤ 1, x ∈ [0, 1],
0 otherwise.

Hence, k(x, t) = 1, if and only if x + t ≥ 1, x, t ∈ [0, 1], and 0 otherwise, i.e. if and only if

(x, t) ∈ B = {(x, t) ∈ [0, 1]2 | x + t ≥ 1},

so we get (cf. the figure)

k(x, t) = 1B(x, t) = 1B(t, x) = k(t, x),
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0
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Figure 3: The domain B, where k(x, t) = 1, is the upper triangle.

which shows that the kernel is Hermitian.

Then we get

‖k‖2
2 =

∫ 1

0

∫ 1

0

|k(x, t)|2 dt dx =
∫ 1

0

∫ 1

0

k(x, t) dt dx = area(B) =
1
2
,

possibly in the variant

‖k‖2
2 =

∫ 1

0

∫ 1

0

k(x, t) dt dx =
∫ 1

0

(K1)(x) dx =
∫ 1

0

{∫ 1

1−x

dt

}
dx =

∫ 1

0

x dx =
1
2
.

3) The kernel for K2 is given by

k2(x, t) =
∫ 1

0

k(x, s)k(s, t) ds,

where the integrand is 
= 0, if and only if

1 − x ≤ s ≤ 1 and 1 − s ≤ t ≤ 1.

This provides us with the bounds

1 − x ≤ s ≤ 1 and 1 − t ≤ s ≤ 1,

hence s ≤ 1 and

s ≥ max{1 − x, 1 − t} = 1 − min{x, t}.
Then by insertion

k2(x, t) =
∫ 1

0

k(x, s)k(s, t) ds =
∫ 1

1−min{x,t}
k(x, s)k(s, t) ds

=
∫ 1

1−min{x,t}
ds = min{x, t},

i.e.

k2(x, t) = min{x, t}, (x, t) ∈ [0, 1]2.
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2. Other types of integral operators

4) If Kf = λ f , then of course

K2f = λKf = λ2f,

so if f is an eigenfunction for K corresponding to the eigenvalue λ, then f is an eigenfunction for
K2 corresponding to the eigenvalue λ2.

We get, the kernel for K2 being k2,

K2f(x) =
∫ 1

0

min{x, t} f(t) dt =
∫ x

0

t f(t) dt + x

∫ 1

x

f(t) dt.

Obviously, K2f is differentiable in the weak sense, and we get

(
K2f

)′
(x) = x f(x) +

∫ 1

x

f(t) dt − x f(x) =
∫ 1

x

f(t) dt.

This shows that
(
K2f

)′ also is weakly differentiable, so

(
K2f

)′′
(x) = −f(x).
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2. Other types of integral operators

If f is an eigenvalue for K corresponding to the eigenvalue λ, i.e. Kf = λ f , then it follows from
the above that(

K2f
)
(x) = λ2f(x)

and f is differentiable. It follows by induction that f is infinitely often differentiable, so we get
from the above that

λ2 f ′′(x) =
(
K2f

)′′
(x) = −f(x),

hence by a rearrangement,

(16) λ2f ′′(x) + f(x) = 0.

Therefore, if f is an eigenfunction for K with eigenvalue λ, then f must also fulfil (16). In
particular, λ 
= 0, if f is an eigenfunction. It is well-known that the solutions of (16) are

f(x) = c1 exp
(

i

λ
x

)
+ c2 exp

(
− i

λ
x

)
.

From K2f(0) = 0 = λ2f(0) follows that f(0) = 0, so we conclude that c1 + c2 = 0. Putting
c1 =

c

2i
, we get c2 = − c

2i
, and the only possibility of an eigenfunction is

f(x) =
c

2i

{
exp

(
i

λ
x

)
− exp

(
− i

λ
x

)}
= c · sin

(x

λ

)
.

5) It remains to find the possible eigenvalues λ.

Put c = 1 and α =
1
λ

. It follows from Kf(x) = λ f(x) that

f(x) = sin
(x

λ

)
= sin(α x) =

1
λ

Kf(x) = α · K sin(α·)(x),

hence by insertion into the definition of K,

sin(α x) = α

∫ 1

1−x

sin(α t) dt = [− cos(αt)]11−x = cos(α(1 − x)) − cos α

= cos α · cos αx + sinα · sinαx − cos α,

so

(1 − sinα) sinαx = cos α · (cos αx − 1).

This equation is fulfilled for all x, if either α = 0, which is not possible because α =
1
λ

, or if
cos α = 0 and sinα = 1, hence

αp =
π

2
+ 2pπ, p ∈ Z,

and we get

λp =
1
αp

=
1

π
2 + 2pπ

=
1
π
· 1
4p + 1

, p ∈ Z.
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2. Other types of integral operators

Then we derive the point spectrum and the continuous spectrum,

σp(K) =
{

2
π
· 1
4p + 1

∣∣∣∣ p ∈ Z

}
and σc(K) = {0}.

The eigenfunction corresponding to

λp =
2
π
· 1
4p + 1

, p ∈ Z,

is

fp(x) = sin
((π

2
+ 2pπ

)
x
)

, x ∈ [0, 1]; p ∈ Z.

6) The numerically largest eigenvalue is λ0 =
2
π

> 0, hence

‖K‖ = max{|λp| | p ∈ Z} =
2
π

.

Check. As a check we use that we should have

1
2

= ‖k‖2
2 =

∑
p∈Z

|λp|2 .

We get

∑
p∈Z

|λp|2 =
4
π2

+∞∑
p=−∞

1
(4p + 1)2

=
4
π2

+∞∑
p=0

1
(2p + 1)2

=
4
π2

· π2

8
=

1
2

= ‖k‖2
2,

because it follows from

π2

6
=

+∞∑
n=1

1
n2

=
{

1 +
1
22

+
1
24

+ · · ·
}+∞∑

p=0

1
(2p + 1)2

=
+∞∑
n=0

1
4n

+∞∑
p=0

1
(2p + 1)2

=
4
3

+∞∑
p=0

1
(2p + 1)2

,

that

+∞∑
p=0

1
(2p + 1)2

=
π2

8
.
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