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Complex Functions Examples c-8 Introduction

Introduction

This is the eighth book containing examples from the Theory of Complex Functions. In this volume
we show how we can apply the calculations of residues in connection with some classical transforms
like the Laplace transform, the Mellin transform, the 3-transform and the Fourier transform. 1 have
further supplied with some examples from the Theory of Linear Difference Equations and from the
Theory of Distributions, also called generalized functions.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
22nd June 2008
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1 Some theoretical background

1.1 The Laplace transform

In the elementary Calculus one introduces the class £ of piecewise continuous and exponentially
bounded functions f : [0,+o00[— C as the class of such functions, for which there exist constants
A >0 and B € R, such that

|f(t)] < AeBt for every t € [0, 400].
If f is exponentially bounded, we put
o(f) :=inf { B € R | there exists an A > 0, such that |f(t)| < Ae”" for every t > 0} .

This class of functions is sufficient for most of the applications in practice. On the other hand, it
is easy to extend the theory to the larger class of functions with mathematically better properties,
defined in the following way:

Definition 1.1 A function f : [0, 4+o00[— C* := C U {0} belongs to the class of functions F, if there
exists a constant o € R, such that

+oo
/ |f(t)] e 7t dt < 4o0.
0

When f € F, we define the radius of convergence by

+oo
a(f) :—inf{UER ‘ /0 f(t)|e”tdt<+oo}.
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It is easy to prove that £ C F, and that the function f(z) =1/v/x for z > 0, and f(0) = 0 lies in F,
and not in &, so F is indeed an extension of the class £.

Definition 1.2 We define the Laplace transformed L{f} of a function f € F as the complex function

+oo
C{f}e) = / e f(t) dt,

where z belongs to the set of complex numbers, for which the improper integral on the right hand side
is convergent.

Remark 1.1 One usually denotes the complex variable by s. However, in order to underline the
connection with the Theory of Complex Functions we here write z instead. ¢

The purpose of these definitions is that we have the following theorem:

Theorem 1.1 Assume that f € F. Then the integral representation of L{f}(z) is convergent for
Re z > o(f) and divergent for Re z < o(f).

The function L{f} is analytic in (at least) the open half plane Re z > o(f), and its derivative is
obtained in this set by differentiating below the sign of integral

+o00
L L) =~ / Fe (1) db.

If furthermore, f € £, then o(f) < o(f).

We shall here assume the well-known rules of calculations of the Laplace transform. What is new here
is that we in some cases are able to compute the inverse Laplace transform of an analytic function by
a residuum formula, which will reduce the practical computation considerably.

First we perform a small natural extension. If £{f}(z), which is defined for Re z > o(f), can be
extended analytically to a function F(z) in a bigger domain €2, then F(z) is also called a Laplace
transformed of f(t), even if F(z) does not have a representation as a convergent integral in all its
points of definition. Then the following theorem makes sense:

Theorem 1.2 COMPLEX INVERSION FORMULA FOR THE LAPLACE TRANSFORM BY A RESIDUUM
FORMULA. Assume that F(z) is analytic in a set of the form C\ {z1,...,<n}. If there exist positive
constants M, R and a > 0, such that we have the estimate

M

()< o

for |z = R,

then F(2) has an inverse Laplace transformed function f(t), given by

n

ft)=LTHF}t) =) res (e F(2);2),  fort>0.

j=1
Conwversely, this constructed function f € F satisfies
+oo
Fif{o) = [ e fdt=F()  forRez>a(f)
0

where o(f) = maxj=1, ., Re z;.
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Remark 1.2 This theorem is particular useful in e.g. the Theory of Cybernetics and in the Theory
of Circuits, where a typical task is to find the inverse Laplace transformed of a rational function with
a zero of at least first order in co. Also, this residuum formula may be an alternative to the usual use

of tables. O

A particular simple example of a residuum formula is given by:

Theorem 1.3 HEAVISIDE’S EXPANSION THEOREM. Assume that P(z) and Q(z) are two polynomials,
where the degree of the polynomial of the denominator Q(z) is strictly larger than the degree of the
polynomial of the numerator P(z). If Q(z) only has simple zeros zi,. .., z,, then the inverse Laplace

transformed of F(z) =

is given by

(z
Q(2)

ft) = Z P (ZZJ:) exp (z;t), fort >0,
j=
and o(f) = max;j=1,_ . Re 2;.

1.2 The Mellin transform

The Mellin transform is closely connected with the Laplace transform. Assuming that the integrals
are convergent, we define the Mellin transform of a function f by

+00 T +0o0
M{f}(a) = / fleyen 2 = | ety

T —00

where the latter integral is the two-sided Laplace transformed of the function g(t) := f (e™!), generated
at the point a. We may therefore also here expect a residuum formula:

Theorem 1.4 Assume that f is analytic in the set C\{z1, ..., xn}, where none of the numbers z;,
j=1,....,n, is a real and positive number, z; ¢ R,.

If there exist real constants a < 8 and C, Ry, 1o > 0, such that the following estimates hold
2% f(z)| < C for|z| <rgandz#zj, j=1,...,n,
|zﬁf(z)‘§0 for|z| > Ry and z # zj, j=1,...,n,

then the Mellin transformed is convergent for every a € o, B[\Z, and the value is given by

dz m exp(—mia)

+oo
Mispa)= [ g T = TEETI S e (22 ).

x sina
2 #0

where we define
z% :=exp (a Log,z) for z€ C\ (R4 U {0}),

and

Logyz := In|z| + i Arg,z, Argyz €10, 27, z¢ Ry U {0}
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1.3 The 3-transform

Definition 1.3 Given a continuous function f(t) defined for t > 0. Assume that

R = limsup V/|f(nT)| < +o0.

n—-—+o00

The 3-transformed 37{f}(z) of f with the sample interval T is defined as the analytic function (a
Laurent series)

“+o0
sr{fHz) =Y f(nT)z""  for|z| > R.
n=0

Let H(t) denote the Heaviside function, defined by

1 for t > 0,
H(t) =
0 for t < 0.

Then the 3-transformed of H is the important

z
M} () = == > 1,

which is independent of the sample interval T'.

Definition 1.4 Assume that (an),> is a sequence, for which

R =limsup V/|a,| < +o0.

n—-+oo

We defined the 3-transformed of the sequence as the following analytic function which is defined outside
a disc (again a Laurent series),

+oo
3an} (2) =D anz", |z| > R.
n=0

One may consider the 3-transform as a discrete Laplace transform, and we have quite similar rules of
computations for the two transforms. These are not given her. Instead we mention that we have a
simple residuum formula for the inverse 3-transformed of some analytic functions:

Theorem 1.5 Assume that F(z) is analytic in C\ {z1,...,2,}. Then F(z) has an inverse 3-
transformed. If the sample interval is T > 0, then this inverse 3-transformed is given by

n

f(nT) = Z res (F(z) 2" z1,) forn e N.

k=0
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1.4 Linear difference equations of second order and of constant coefficients

The following theorem is similar to a theorem for ordinary linear differential equations of second order
with constant coefficients,

Theorem 1.6 Let (x,) denote any particular solution of the linear and inhomogeneous difference
equation of second order and of constant coefficients,

Tng2 + €1 Tpi1 + Co Ty = Ap, n € Np.

The complete solution of this equation is obtained by adding to (x,,) the complete solution (y,) of the
corresponding homogeneous equation

Ynt2 + C1Ynt1 +coyn =0, n € Np.

360°
thinking

Deloitte
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It should not be surprising that we have
Theorem 1.7 Assume that A\?> + c1 A+ ¢o = (A — a)(A — 3), where o # 3. The complete solution of
the homogeneous difference equation
Ynt2 + C1Ynt1 + CoYn =0, n € No,
is given by
yn=A-a" + B-[", n € Ny,

where A and B are arbitrary constants.

If instead o = [3, then the complete solution is given by
Yn =A-a"+ B -na", n € Np,
where A and B are arbitrary constants.

We can find a particular solution by using the 3-transform.

Theorem 1.8 Let (a,),~, be a complex sequence with the 3-transformed A(z). For given initial
conditions xq, 1 € C the uniquely determined solution of the difference equation
Tpy2 + €1 Tng1 + € Tn = an, n € No,

is given by the sequence (x,),,~q, which is the inverse 3-transformed of

A(2) + 2022 + (120 +11) 2

X =
(2) 22412+
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2 The Laplace transform

Example 2.1 Prove that

(@) L{1}=) =, Re(z) >0,

) L= Re(z) > 0

(0 Liet=_—1, Re(z) > Re(a),
(@) Lisinat} = 57—, Re(2) > |Im(2)],
(€) Lfeosath() = . Re(z) > |Im(2),
(f) Lisimhat}() = o Re(2) > | Re(a)],
(9) Llcoshath(z) = s, Re(z) > |Re(a)|

We shall use the definition

+oo
C{fHe) = / e f(t) di

of the Laplace transform of f.

(a) If Re(z) > 0, then

I 1 A | A 1
L{1}(z) = e dt= lim |—-e | ==-—Z= lim e BoRy
0 R—doo | 2 o % Z R—o+oo >

—zR’ —e Bz _50for R— 400, nar x > 0.

because ’e

(b) The integral is convergent for Re(z) > 0. Assuming this, it follows by a partial integration and

a recursion,
+o00 1 +oo n +o00
/ tn€7Zt dt — |:__ tn ezt:l 4+ = / tnfl efzt dt
0 Z 0 z Jo

By ) == M 1)) =

L{t"}(2)

(c) If Re(z) > Re(a), then

1

z—a

+oo +oo
L{e™}(z) = / ete  dt = / eIt gt = £{1}(z — a) =
0 0
(d) If Re(z) > |Im(a)|, then it follows from Euler’s formulee and (c),

L{sinat} L£{e} (2) — %E {e7"} (2)

1
2i
1
2

S SR G S -
z—ia  z4ida] 2 22442 22442
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(e) In the same way we get for Re(z) > |[Im(a)| that

L{cosat}(z) = % L{e™} () + %E {e7""} (2)

1 1 n 1 1 2z z
- 2\z—da  z+iaf 2 22+4+a2 22 +a?
(f) In the same way we get for Re(z) > |Re(z)| that

L{sinh at}(z)

1 1

5 L {eat} (2) — 3 L {e_“t} (2)

_ 1 1 1 _1 2a _ a
T2\ z—a z4af 2 22—a2  22-—a2

(g) In the same way we get for Re(z) > |Re(a)| that

L{coshat}(z)

E{at} )+ = 13{67‘”}
B 1 1 L 1 _1' 2z _ z
T2\ z—a z4af 2 22—a2  22—qa2%

Remark 2.1 We note that the assumptions of convergence of the integrals are necessary in all cases.

¢

Example 2.2 Find the Laplace transform of e’ cost and of et cos2t.

If Re(z) > 1, then

—+oo +oo
L{e'cost}(z) = / el coste ! dt = / cott- e (FTDtgt
0 0

z—1
(z—1)24+1

L{cost}(z—1) =

If Re(z) > 2, then

+o0 +oo
L {e* cos2t} (2) / e* cos2te *t dt = / cos2t - e~ G2t
0 0
z—2

1
ALTERNATIVELY it follows by the rule of similarity, where k = 3

(2>} 9= L £ {ctcost) (%z)

1 z-2
2 (z-1)°+1 (2-27+4

L{e* cos2t} (z)

Il
/—/H

]

i

o
7 N

| l\.’>|>—‘|
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The Laplace transform

Example 2.3 Find the Laplace transform of the function
{ 1 fort €10,1],

0 ellers.

ft) =

By the definition,
1 _
+oo a —(1—60‘2), 217é07
L{F} () = / Ft) et dt = / etat={ *

0

0
a, z=0.

Example 2.4 Which of the following functions has a Laplace transform?

(a) —, (b) exp (t* —1), (c) cos(t?).

(a) It follows from

1
0<——<t for t > 0,
1+t

and from the continuity of the function, that the Laplace transform exists.

It's only an
opportunity if
you act on it

IKEA.SE/STUDENT
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Remark 2.2 If we put

f(z):{ ! }(z)=/0+°o T Re(x) <0,

141 141

then we get by differentiating with respect to the parameter z under the sign of integration,

+oo 4 —zt
f(z) = / e ™
0

14+t

oo 4
PE-16 = [ e ta=—

where we still shall find the constant C'. The integral is of a type, which cannot be expressed by
elementary functions, so the example shows that even if we can prove that the Laplace transform
exists, it is not always possible to find an exact expression for it. ¢

(b) We have for every o € R,
+oo
/ exp (t2 — 1) e 7t dt = +oo,
0

so the Laplace transform is not defined.
(¢) Tt follows from
‘cos (tQ)‘ <1 for every t,

and from the continuity of the function that the Laplace transform exists. We cannot either in
this case express the Laplace transform as an elementary function.

Example 2.5 Given f(t) = min{t,1} fort > 0. Sketch the graph of f. Then find L{f}(z) and o(f).

By the definition,

1

/ te #t dt+/ e At dt = [——tezf} +—/ e %t dt+/ e~ #HD gt
0 1 z o *Jo 0

1 . 1 1 .1 1 .
= et eyt o =5 (1-e7),

L{f}(z)

where the improper integral is convergent, if and only if Re(z) > 0, so o(f) = 0.
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0.5

05 0 05 i 15 2 255 3

0.5

Figure 1: The graph of f(¢) = min{¢, 1} for ¢ > 0.

Example 2.6 Find the Laplace transform of
(a) (sint—cost)®,  (b) cosh®4t,  (c) (5e* —3)°.
The function belongs in all three cases to the class E. The rest follows by some simple computations.
(a) We get
(sint — cost)? = sin®t + cos®t — 2 sint cost = 1 — sin 2t.
Hence

' ) 1 2 2292244
£{(sint —cos)?} (2) = £{1 ~sin20} () = -~ g = S

(b) Now,

1 1
cosh? 4t = 3 cosh 8t + 3

so we get in a similar way for Re(z) > 8 that

2% — 32
2 (22 —64)

2 1 _LJt SR G
L {cosh® 4t} (z) = 2£{1+Cosh8t}(z)— 5 {z + z2—64} =

(c) In this case we have for Re(z) > 4,

25 30 9

c{Ge -3 2) = £{25¢" —30e* +9}(2) =

42% 4+ 16z + 72
2(z—4)(z—2)°

z—4 z-2 =z
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Example 2.7 Find the Laplace transform of

sint fort € [0, 7],

ft)

0 ellers.

If z # +i, then it follows from the definition,

T 1 T ] 1 T ) 1 —(z—1)t —(z+i)t™
L{f}(z) = /sint~e_2tdt:?/ e_(z_”tdt—?/ e_(Z“)tdt:? £ L
0 1 Jo v Jo A zZ+1 Z—=1 ]
1 1 1 e *T —1
= — (e*™ _1). _ — .
2 (e ) {zz z+i} 2241

We have removable singularities at zg = 44, so

—T 6727‘-

2z

™

- 22’0’

L{f} (20) = lim

z—20
and the result above is supplied with

y

2

iy

. LUH=)

L{Y ) = 5 = og

Example 2.8 Find the Laplace transform of

(a) t?cos®t, (b) (t*—3t+2)sin3t.

(a) Since
1
t? cos®t = 5 2 (1 + cos 2t),

we get for Re(z) > 0,

L{t?cos’t} (z) = %E {£*} () + %E {t? cos2t} (z) = % - j_; + % (—1)? j—; L{cos 2t}(z)
1 1 d? z 1 1d 1 222
B ?+§E{z2—+4>:z_3 §E<z2+4_(z2+4)2)
11 2z 4z 2-22%- 22
B §+§{_(z2+4)2_(z2+4)2 (z2+4)3}
7 473 32 1 42 -32(22+4) 1 P -12
I e O N Co R ) L R CR T

17
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The Laplace transform

(b) Analogously,

L{(t* =3t +2)sin3t} (z) = L {t*sin3t} (

z) + 3 L{—t sin3t}(z) + 2 L{sin 3t}(z)

(—1)2 % L{sin3t}(2) + 3 % L{sin 3t} (=) + 2 L{sin 3¢} (=)

_ @3\ gdf 3\, 03 _df 6 | 18 6
o dz? 2249 dz | 2249 2249  dz (22 +9)* (224972 2249
o 6 122-22_ 182 n 6

(2249)*  (22+9)° (249 249

6
= m{—(22+9)+422—3z(z2+9)—|—(z2+9)2}

z

z2° +

YOUR CHANCE
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Example 2.9 Find the Laplace transform of

ft) =

cost,

sint,

€ [0,n,

t € [m, +ool.

Figure 2: The graph of f(¢).

We have in this case o(f) = 0. Thus for Re(z) > 0

L{f}(z)

T —+oo
/ cost et dt + / sint - e *t dt
s

/ =t e (Z“)t} dt +/ sin(u + ) e 27T dy
0
z

7zt+zt 7zt7it ™ +oo
- - —e 7 sint - e *tdt
z—1 z+1 | 0

1
2
1
2
1
2

e T+ 1) + % (e7*™ + 1)} — e ™ L{sint}(z)

1 oz z—1
2241 2241 2241 €

z—1

—ZT

Example 2.10 Give an example of a non-periodic function f, the Laplace transform of which has
the same form as in the Rule of Periodicity.

A simple example is f(t) := 1 + [t], where [¢] indicates the entire part of ¢ € R, i.e. the largest integer

[t] € Z satistying [t] < t. It is obvious that f(¢) is not periodic.

19
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The Laplace transform is

1 2 n
L{f}(z) = / eitht—i—Z/ eitht—l—---—l—n/ e Fdt + -
0 1 n—1

+o00o n +oo 1 n 1 +oo
= Z / ne “dt = Z n {—— eZt] == Z n {67(”71)2 — 67"2}
n=17n-1 n=1 z t=n—1 z n=1

“+o0 400
e —1 e €5 —1 _n
= ne = nye .
e e
n=1 n=1

The series is of course convergent for Re z > 0. If we put w = e~?, then |w| < 1, and

D It et Wy
- = w where —_— = — = nw
l—w = (1-—w)?2 dwl—-w ’

and thus
w R
o n
P DEE
n=1

We get by insertion for Re z > 0 and w = e™* that

e*—1 w e*—1 e ? 1 1
ﬁ{f}(’z): - (1—711)2: 2 .(1_6*2)2:1—6_2.;.

Hence, one must not be misled by the formal form of the Laplace transform to believe that the function
is periodic.

On the other hand, one should here also mention that e.g. sint is periodic and yet its Laplace transform
1
L{sint}(z) =

22—_|_17 Re z > 0,
does not at all have the same formal form as given by the Rule of Periodicity.

Example 2.11 Find the Laplace transform of
: 27 ‘> 27
cos|(t——], —,
3 3

0, t< =

ft) =

2
It follows from the definition and the change of variable u =t — ?ﬂ that
+oo ) +00 9
/ cos (t—l> e_thtz/ COS U - exXp (—z <u+—7r>) du
277( 3 0 3

2 e 2
= exp (z : g) / cost-e "' dt = exp (—z : ?ﬂ) L{cost}(z)
0

2m z
= exp (—z : ?> g for Re(z) > 0.

L{f}(z)
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1
0.5*

0 i 2 3 4 5 6
-0.5

Figure 3: The graph of f(¢).

Example 2.12 Find the Laplace transforms of

(a) sin®t, (b) e 'sin’t, (c) (1+ te_t)3 .

(a) First we see that

eit — e=it? 1 . . _ _
sin®t = {2} =33 {631t73ezt+36—n7673n}
? 7

VI3 e iy 1 s sy | 3 o1
4{% (e e ) 2% (e e ) —4blnt 4bln3t,

hence we get for Re(z) > 0 that

L{sin’t} (2) = gﬁ{sin th(z) — %E{Sin 3t}(z) =

(b) Using that
.9 1
sin“t = 5 (1 — cos2t),

we get

L{e "sin*t} (z) %E{l et} (z) - %E{e‘tcos%} (2) = % . zil% NCETEE
2
= EE T for Re(z) > —1.

(c) From

(1+te™)’ =143t 43122 4+ e,
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follows that
c{(U+te™)"}(2) = £{1}(=) + 3L {te ™"} (2) + 3L {272} (2)

= L) +IL{P) (4 2)+ L{P) (43

1 3 6 6
-2 f
z+(z—|—1)2+(z—|—2)3+(z+3)4 or Re(z) >0

Example 2.13 Find by using the Laplace transform the values of

+oo +oo
(a) / te 3 sint dt, (b) / t3e " sint dt.
0 0

(a) We shall only give an interpretation of the integrals. We see that
o0 d
/ te 3tsintdt = L{t sint}(3) = lin})) {—d— L{sin t}(z)}
0 S <

. d 1 . 2z 6 3
= hm —_— - e—— th—QZ—:—.
z—3 dz \ 22 +1 =3 (22 4 1) 100 50

+ L{t3*} (2)

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

.u -n
1 fﬁ* _-

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

5,
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Complex Functions Examples c-8 The Laplace transform

(b) We get in the same way

oo a3 d? 1
/ tle " sintdt = L {t’sint} (1) = lim <_E L{sint}(z)> = lim { ( >}
0 z= z—

1] d3 \22+1

= lim d—2 = = lim 4 2 — 822
=1 | d2? \ (22 4+1)° =ldz | (2241)7 (22+1)°

. 8z 16z 382222 8 16 48
= lim< — - + S A H ey

= +
@)’ @)’ @eptf o PP

ALTERNATIVELY,

/ t3e~ sint dt _ e~ (=0t gy 5 B+t gy
0

Example 2.14 Find the values of the following integrals

400 +o0 -t _ o3t
(a) / te ! costdt, (b) / —dt.
0 0 t

(a) We have

+oo

) 1 222 1 8 3
— lim — 50 ="9% " 55(= 55"
=2 | 2241 (2241) 5 25 25

(b) First note that the integrand lies in F. Then we get by the Rule of Division by ¢ (because 0 > —1,
73)3

[T e = T o= [T e w - e @)

+o00 R
/ L—L dr= lim |In vl = In3.
0 z+1 x+3 R—+00 z+3

0
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Example 2.15 Prove that

cos at — cos bt 1 22+ b2
cosat — cos bb L o
o= ) - e (55 )

and find o(f).

Since t = 0 is a removable singularity, we have

cos at — cos bt
t

eF.

a, beR,

Obviously, o(f) < 0, and due to the rules of magnitudes it is almost clear that o(f) > 0, hence

summing up,

o(f) = 0.

0.5

05

-05

25

Figure 4: The path of integration I',.

Finally, it follows from the Rule of Division by ¢ that if Re(z) > 0 and the path of integration is the
curve I',, which consists of the line segment from z to x = Re(z), and then the line segment from x

to 400 along the positive real axis that

r { cosat ; cos bt} )

1 2 bQ
§LO (Z +

22 4+ a?

).

+o00 Hoo 2 o
| cleosat—eostryoyac = [ {+ - zzw}dz

24
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Example 2.16 Prove that

and find o(f).

z+b

e[

+a

Then compute the improper integral

+oo [ —3t —6t
& — €
/ e
0 t

We shall apply the Rule of Division by t. The function

efat _ efbt

t

has a removable singularity at t = 0 with the value b — a.

) fora, b eR,

Furthermore, if Re(z) > max{—a, —b}, then the integral is convergent, while it is divergent, if Re(z) <

max{—a, —b}, so

o(f) = max{—a, —b} = —min{a, b}.

If Re(z) > — min{a, b}, then

c {Lﬂ - < } (z) =

/ ey (©) - £{eY () de

oo 1 1
_ - 1
/Z {z—l—a z—l—b}dz og(

Now, 0 > —min{3,6} = —3, so we conclude that

Example 2.17 Find

L{Sir;ht} (x) o c{

forxz > 1.

‘We conclude from

sinh ¢
lim =
t—0 t

L

that

sinh ¢
t

€T,

—3t—e ¢

+o0 67315 _ 67675 e
— dt=L{— =L
A t C{ t }@) Og(0+3

t

cosht —1 } (2)

25
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and that o(f) = 1.

Then we get for z > 1 by the Rule of Division by ¢ that

lnht +oo . +o0 1 1 —+00 1 1
E{S : }(x) = /x E{smht}(f)dgz/w 52——1d€:§/$ {E_?}dg

N Y A R
- L)l =enGH)

It follows from

ht—-1
lim ST,
t—0 t
that
ht—-1
COS c ]F,

t
and o(f) = 1. Finally, if z > 1, then we get by the Rule of Division by ¢ that

c{= o) = [ et - covenac= [ (1) de

1 M| a?

xT

With us you can
shape the future.
Every single day.

For more information go to:
WWww.eon-career.com

Your energy shapes the future.

e-on
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Example 2.18 Compute

(@) /+°° e tsint it ) /+°° e~V2tginht -sint i,
0 t 0 3

We apply again the Rule of Division by t.

int
(a) Since % € IF, where o(f) =0, we get

T e~tgint sint oo )
/O = z{T}u):/l L{sint}(€) de

+oo 1 400
_ /1 e d¢ = [Arctan &) =

S

(b) Since
efﬁt sinht = 1(3*(\/5*1)t _ 1 e*(ﬁJrl)t
2 2 9

we get as in (a),

/o—s—ooe—\/ﬁtsirtlhﬁsint :_E{Sl?t}(@_1)_-5{51nt}<f+ 1)

1
= 3 [Arctan f]i;%‘il - 5 [Arctan &]12°

ae1 = [Arctan E] f“

= % {Arctan(v2 + 1) — Arctan(v2 — 1)}.

Now

=)
Arctan(v2 + 1) — Arctan(v/2 — 1) = Arctan 1 = %,
hence by insertion,

/+°° e~V2tginht -t 1 7
; ‘ 21

Download free ebooks at bookboon.com

27


http://bookboon.com/

Complex Functions Examples c-8 The Laplace transform

Example 2.19 Prove that

+o00 t s
/ e_t{/ Smudu}dt:—
0 o u
We shall only apply the Rule of Integration and the Rule of Division by ¢,

[ o - e eao- e} [~ cmnon

oo dg too T
/1 e = [Arctan ]} =71

Example 2.20 Prove that

+oo t 1—e U
/ e_t{/ ¢ du} dt =1n2.
0 0 u

1
The integral fot

2
/0+°° ot {At 1 7u67“ du} P {At 1 fue*u du} 1) = %E )
[ - etero i [ 2 aemfu(5)] 7 -we

Example 2.21 Find L{|sint|}(z) and L{max(0,sint)}(z).

du exists, and we get by the Rule of Integration and the Rule of Division by

Here we shall apply the Rule of Periodicity.

Since |sint| is periodic of period m, we get for Re(z) > 0 that

1 ™ Tz s
L{|sint[}(z) = m/ e[ sint| dt = eﬂiil/ e~ sintdt
0
= l . {/ e~ (z—i)t dt— /7r 6_(Z+i)t dt} _ l ::Z |:_ e—zt-i-.zt N e—zt—‘zt
2 -1 /o 0 21 emr—1 ”—3 Z+i |,
! 1
= —_ z_l R —TFZ_l
2i 1{ z—i )+ e )}
= 2 (1+e7™) ! I _e™+1 1
= 5 —1 c—i aqif em—1 241

ANALOGOUSLY we may find £{max(0,sint)}(z) by the Rule of Periodicity, because the period is 2.
However, it is easier to notice that

1 1
max(0,sint) = 5 sint + 5 |sint|,
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so if we use the result above, then

1 1 1 1 1 1 1
L{max(0,sint)}(z) = 5 L{sint}(z) + 3 L{|sint|}(z) = 2 Pl + 3 ;T:Zt TR
11 em 144l e 1
2 2241 em — 1 e —1 2241

Example 2.22 Find the inverse Laplace transform of

3z —12 2z +1 z

BRI PE R

(a)

We have in all three cases given rational functions with a zero at oo, so the inverse Laplace transform
exists and is given by a residuum formula.
ALTERNATIVELY one may use a decomposition.

(a) Inspection and rules of calculation. Since

3z —12 z _E V8

218~ VP (EE VB 21 (VAP
= 3L{cos(2V21)}(z) — 3V2 L{sin(2v/2t)}(z),

the inverse Laplace transform is given by

() = £ {32’ —12

2248

} (t) = 3 cos(2v/2t) — 3v/2 sin(2V/21).

Residuum formula. The singularities are z = +i2/2. They are both simple poles, hence by the
residuum formula and RULE A,

B (32—12)e*t e (32—12)e*t o
f) = res((z—Qi\/ﬁ)(z+2i\/§)721\/§>+res<(z—2i\/§)(z+2i\/§)’ 2@\/5)

f12.+ 6iv/2 REVIN —12 — 6iv/2 iV

i4v/2 —i4:/2
_ 3 {ei2\/§t Jrefz\/ﬁt} 12 ) i {em\/it _ 671'2\/515}
2 2v/2 2i

= 3 cos(2V2t) — 3v2 sin(2V/21).

(b) Decomposition and rules of calculation. Since

L e £ 0= (e )

the inverse Laplace transform is given by

£(8) = £o- { 22 % 1) } ) =1+4e",

z(z+1
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Residuum formula. The two singularities z = 0 and z = —1 are both simple pole. Hence, by the
residuum formula,
2z 41 ' 2z 41 . 0o+1 4, —241 _,
) = et S et ) = —— .
1®) reS(z(z+1) ¢ >+r65<z(z+1) ¢ ) 0or1 St e
= 1+4+et.

(¢) Decomposition and rules of calculation. It follows from

z _oz+1-1 1 B 1 I L .
(z+1)%  (z4+1)5  (z+D* (2+1)5 3 (z+1D* 4l (z+1)
_ L L I B N
= 6£{t}(z+1) 24E{t}(z+1)£{6e t 51 € t* 2)z),

that the inverse Laplace transform is given by

z 1 1 1
t = o-1 _— = —t3 —t - —t4 —t —_ t*t t3 7t-

Download free ebooks at bookboon.com

30


http://bookboon.com/
http://bookboon.com/count/advert/95f8cde3-50a6-4ae7-bfa0-a04600f54275

Complex Functions Examples c-8 The Laplace transform

Residuum formula. The only singularity z = —1 is a five-tuple pole, so
< 2t L d* 2t Lo d? t o at
p) = ves (it 1) = g dim, g (o) = gy i (rae 4 o)
Lo, (- t L. d 3 2 =t
= 3 zlinhﬁ (t ze®t +2te” ) =51 ZlirIle (t ze*t 4+ 3t ez)
1 1 1
= 3 zlinh (t4z e*t + 4t362t) =31 tre 7t + 5 t3e L.

Example 2.23 Find the inverse Laplace transform of

z 1 3z—14
— b) ——— _
@ ey O ez @ m-nas
We have in all three cases given a rational function with a zero at co, so the inverse Laplace transform
exists and is given by a residuum formula. Alternatively we may decompose and then use a table. We
shall demonstrate both methods here.

(a) Decomposition and rules of calculations. Tt follows from

z -1 2 ot ¢
S TS i G O

that the inverse Laplace transform is given by

z
=Lt —— b =2e7H et
f®) {(z+1)(z+2)}
Residuum formula. Since z = —1 and z = —2 are simple poles, we get by the residuum formula

and RULE IA that

f@t) = FGS<%;1>+1¢68(%;2>_—16t+__2@2t

= 2e7 % et
(b) Rules of calculation and use of tables. Since

1 1 2! 1 ) Lo

the inverse Laplace transform is given by

1 1
t) =L ——— L (t) = = tPe .
= g 0 = 3 e
Residuum formula. Here z = —1 is a triple pole, so by the residuum formula and RULE I,

et Lodr o 1,
f(t)—res(m,—l>—izl_1>rr_llﬁe —5156 .
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(¢) Rules of calculation. (Here a little quibbling). We conclude from

3z—14 0 3(z—-2)—-8 z—2 2

224248  (z—-22+422 7 (z-22+22 -4 (z —2)2 + 22
3L{cos2t}(z —2) — 4 L{sin2t}(z — 2) = L {3e* cos 2t — 4€*" sin2t} (2),

that
3z—14
ft) =t {221172’4—8} (t) = 3¢ cos 2t — 4 €' sin 2t.
Residuum formula. The roots of the denominator Q(z) = 22 — 4z + 8 are z = 272i. Since
Q'(z) = 2z — 4, we get from the residuum formula and Heaviside’s expansion theorem that
3z—-14 ) 3z—14 )
f(t) = res (m ez 3 2+22> + res (m ez 3 2-22)
_ 3(2+2i) — 14 (24200t 4 3(2-2i) - 14 (2200t _ —8+6i 2t 2t | —8—6i (2t o —2it
2(242i) — 4 2(2—2i) — 4 4i —4i

1 . A
= . 3 {(3+4i)e* + (3 —4i)e ?"} = € (3 cos 2t — 4 sin 2t).

Example 2.24 Find the inverse Laplace transform of

1 1 22
— b) ——— -
(22 +1)% ®) 24 -1’ (c) 23 —1

(a)

We have in all three cases a rational function with a zero at oo, so the inverse Laplace transform exists
and is given by a residuum formula. We shall treat the examples in various alternative ways, so one
can compare the different methods.

(a) Decomposition and rules of calculations. We conclude from
1 B 1 P of1 1 1 1)’
2+1%  \Ge=d)E+i) ) 2 z—i 2 z+i

__31_12__31+1_2
4 \z—i z+i) 4 (=02 (2+0)? 2241

1 . 1 . 1 .
- L{tY(z =) — i Lt(z+1)+ 3 L{sint}(z)

(AP R T RN & BN |
£{2smt 4te 4te }(z)—£{2smt 2tcost}/z).
that
1 1 1
t)=L°"1 [ ——— } (t) = = sint — =t cost.
(0 <(22+1)2}<> st~
Rule of Convolution. We conclude from

1 1 1

L{f}(z) = EREE = a1 Ari- L{sint}(z) - L{sint}(z) = L{(sin*sin)(¢)}(z).
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t ¢
fity = rcot ;2 (t) = / sin(t — 7)sinTdr = l/ {cos(t — 27) — cost} dr
(22+4+1) 0 2Jo
t
[% sin(t —27) — 7 cost] = % {% sin(—t) —t cost + % sint + O}
T7=0

Residuum formula. The two singularities z = 4 are both double poles, so by the residuum formula
and RULE 1,

zt zt zt zt
ft) = res 6—2;i + res 6—2;71' :lirn_i 67, + 1im_i € -
(22 +1) (22 41) smidz | (2+10)? ) eo-idz | (2 —0)?

B hm t ezt Ly ezt + hm t@Zt Ly ezt
T 25 (Z =+ 2)2 (Z =+ 2)3 z——1 (Z — Z)2 (Z — Z)‘3

te't et te et 1, . 2 1

- (20)2 h (2i)3 + (—2i)? -2 (—2i)° =1 (e” + e‘“) + e (e” -~ e—it)

1t tJrl int
= ——tcos — sint.
5 5 Sin

(b) Decomposition. We conclude from

1 1 1 1 1 1 1 C 1 ht 1 int ! (2)
— . =_. - . = — sinht — = sin z
24 —1 2241 22—-1 2 22—-1 2 2241 2 2 ’
that
1 1 1
f(t):£°_1{24l}zasinht—§sint.

Residuum formula. The denominator Q(z) = z* — 1 has the four simple zeros 1, i, —1
since Q'(z) = 423, it follows by Heaviside’s expansion theorem that

2 et " 3 exp (i"t) 1 3 " ”
f(t) = Zres(m;l ) :ZW:ZZZ exp (i"t)
n=0

=0 n=0

, —1, and

S

{1-et+i-e”—1-e_t—i-e_it}

1 1 1 (1 . 1 ) 1 1
{5 et — Eet} ~3 {Q—Z_e”— 2—@,6”} =3 sinht — 3 sint.

(c) Decomposition. Tt follows from

DN — | =

2 3

24 z 1 1 n Az+ B
-1 (z—1)(z2+2+1) 3 z—-1 224z+1’
that
1 1 1 1 1
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hence by insertion,

22

23 —1

1 1 2z+4+1 1 2
z—1+322+z—|—1 3 {e}(z)+3

- éﬁ{et}(z)—i—gﬁ{exp(—%t)cos<§t> (2).

We conclude that

ft)y=rot {Z3Zi 1} = %et + % exp <—%t> cos (? t> .

Residuum formula. The denominator @(z) = z® — 1 has the simple zeros

W =

1, N ﬁ,

2 2
Ijoined MITAS because o R
I wanted real responsibility Maersk.com/Mitas

[ was a construction
SUpEervisor in

the North Sea
advising and

e elping foremen

i solve problems
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thus we get from the residuum formula for the inverse Laplace transform and from Heaviside’s

expansion theorem,
2 2t 2zt 1 3 2zt 1 3
I e R e b ) RE

Example 2.25 Find the inverse Laplace transform of

(a) mv

1 1 z 1
CON Py oA GO P v g § AR O poor 2

We have in all four cases a rational function with a zero at oo, so we may apply the residuum formula.
We shall try various methods so the reader can compare them.

(a) Decomposition. The structure is

1 11 1 1 +Az+B
2(24+3)3 27 z 3 (2+3)3  (2+3)2
thus
Az+ B 1 11 1 1 1 5
= ————=-—+=- = 27 — 3% 4+9
(z+3)2 2(z+3) 27 z+3 (z4+3)%  27z(z+3)3 { (2 +3)° 492}
1 1 ,
= {27392 27— 2T+ 92} = ——————— {234+ 922 418
27z(z+3)3{ z z z + z} 27:(> + 3)° {z + 927 + z}
1 1 246 11 1 1
= -—— 3 6)= ——. .~ = .. .
Serays N = I T T T3 0 G
Hence
1 L R
2(z+3)3 27 3 (2433 9 (2+3)2 27 2+3

Il
o
—N

SNIERS
——
—
N
N~—
|
o
—
—

! —3tt2} (2)— L {%e—?’tt} (2) - % L{e}(2)

I
[
—
[N}
8=
|
ml
g
N
| =
H{\') ()
_|_ ]
Ol =
~
+
|
\]
~~
—
~
N—

Then it follows that

o 1 1 g (1 1 1
fty==L 1{m}(t)—2—7—e3(6t2+§t+§>.
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Residuum formula. Here we get

ezt ezt 1 1 d2 ezt
) = £ .0 . 3)=— 4 lim -
Uy e ( (z+3)3 ’ ) +ores (z(z+3)3 ' ) 27 + A, 2! dz2 { z }
1 d ezt ezt 1 1 ezt ezt ezt
= —l' t-———Y=_—_+_ 1 2. 9. 49,
27+2z—1>m3 dz{ z 22} 27+2z—l>n—13{ z 2 23}
11 [t?e 3t 2te 3t 273 11, 1 1
= — — — R — -3t _ — t =3t _ = —3t.
27+2{ =3 9 +—27} 27 6 ° 9% "€

(b) Decomposition. The structure is

1 1 1 +A2+B7l N
(z+1)(z—2)2 (=32 z+1 (2-22 9 z+1 (2-2)2’

hence by a rearrangement,

Az + B 1 1 1 1 1
G o? - GiDG 2 9:r1-0 Gine_zE 0 GE-Y7
1 1 1 1
R Ry Py G ) Ak B preyy s LA G Sl
1 1 1 —-24+2+3 1 1 1 1
B RN EE A i R o T ER B S PR R
giving
1 N 1 1 1 1 1 1
z+1)(z—22 9 z+ +§ (z—2)2 9 z-2
- {% } { tth}(z)—E{lezt}(z)
1 1
= {§ egtet g }<Z>-

We therefore conclude that

o— 1 _ —t
10~ {0 =57+ 3

Residuum formula. Here we get
ezt ezt eft d ezt
t) = — 1 -1 — 2| = —— + lim —
10 = v (e ) (e 2) G e )

zt zt 1 1 1
—t L} P T
S L i e S AL
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(c) Decomposition. Using only the standard procedure this may give us an extremely tedious calcu-
lation. However, if we use some small tricks, this method may be quite reasonable:

1 (z+1)2—(2—-12 1 1 1 1

4 (z+13E-12 4 +D(E-1)2 4 (z+1)3

S AT it} e

é'(z—ll)f%'(z+1)1(z_1)_%£{’5267t}(z)

TaEEM R e ee a

= S L{ ) - £} () + g L{te () - S LR (o)
1

1 1 1
_ Lot Dty Lyt L2t '
5{166 16 ¢ —|—8 e —gthe (2)

(z4+1)3(2 — 1)2
(1)

1!

Then by the inverse Laplace transform,

f(t) = £071 {m} (t) = 1_16 671‘/ (1 — 2t1) + %6 (2t — 1)et.

o
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
ication. We help make it more economical to create
eaper energy out of thin air.
our experience, expertise, and creativity,
industries ca st performance beyond expectations.
Therefore we'need the best employees who can
eet this challenge!
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Residuum formula. This will also give some difficult computations:

10 = o (e ) (e Y

- ! lim d—2 _ce e + lim 4] ze !
 2=25-1d22 | (22— 1)2 z—1dz | (#4+1)3

_ 1 lim i {t. Zezt N ezt B 2 ezt }
2z--1dz (z—1)2 (z—1)2 (2—-1)3
N fim {t 2 ezt N ezt B 3z ezt }
=1 (2412 (z+41)2  (z+1)*
- L im {t2 G +t < 2t G +t a
2 z—-1 (z—1)2 (z—1)2 (z—1)3 (z—1)2

ezt 2 ezt ezt = ezt et et 3 et
-2 — 2t —2 6 b — o
Go1p G- CG-1p (z—1>4}+{ - }

1 (. -1 1 (—1) 1
- af {t ot T e T o
2 ~1 1 (1)
(-2 T (=28 T (=2 T (-2t
1 1 1 1 1 1 3

1
= R e e Ry S R e iR P |
e{4+4 4+44+48+6{ }

}+—et{2t+2 3}

I 2 et {2t —
= ¢ {1- 2t}+ {2t —1}.

(d) Residuum formula. We find

f(t) = res e—Zt'O + res e—Zt'—3 ——+—lim d e—Zt
N z2(z+3)2° 2(z+3)%° 9 " 1l:5-3dz

(
1 . et et 11, 5 1 _g
- 522@3{“7‘2—2}—5‘5“ T9¢

Example 2.26 Find the inverse Laplace transform of

1 1 1
a) ——, b)) ——— ) ————.
@ w1 O mrr © wEry
It is possible in all three cases to apply the residuum formula. Furthermore, since a decomposition
is rather difficult in all three cases, we shall at least for the former two tasks only use the residuum
formula.

(a) The roots of the denominator A(z) = 2% + 1 are

-1 and liz‘@,
2 2

and we notice that if zg is one of these, then
1 20 1

Q) 3% 35 37
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Hence, we get by Heaviside’s expansion theorem,

ft)

(b) The roots of the denominator Q(z) = z* + 4 are z = +1 4+ i, and if 2( is one of these, then

1

1 20 1
= ——= 20-

Q' (z0) 422 41 16

All poles are simple, so by Heaviside’s expansion theorem,

ft)

GZt ezt
res<m,1+z>+res(m,l—'&)
+e ezt 1+ + . ezt ) )
res | ———; —1+1 res | ——; —1—1
24447 24447

1 | , | |
——{A+i)e T+ (1—i)e" (A +i)e (1 —i)e )

16

L gt it it ity L g it it (it it
166 {e +e +z(e e )} 166 {% e +(6 e )}
1, . | - .

16 ¢ {2cost7251nt}fﬁe {—2cost —2sint}

1 1
3 e {sint — cost} + 3 e ' {sint + cost}

1 1
1 cosht-sint — 1 sinht - cost.

(c) Here it is actually possible to use the Rule of Convolution, because

2

ﬁ{f}zmzéﬁ{tz’}-c{mt}.
Thus
@) = 1/0(75—7')251an7':% [—(t—T)QCOST]g—/O(t—T)COSTdT

1 K 1 1
5t2 —[(t —7)sinT] 7/ sinTdr = 5152 + [cos 7]l = §t2 +cost — 1.
0
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If we instead apply the residuum formula, then
ezt ezt ezt
) = res( g0 etk i
10 = oo (o) + v (i )+ s (e )
1 ; d2 o3t . eit . ot
= —lim —
2:-0dz2 | 22 +1 i%-2i  (—1)3(—21)
1 d et 2z et 1, -
= -1 — <t _ - it —it
2Z11,I%)dz{ 22+1 (22+1)2}+2{6 +e }

1 .. 9 et 4zt et 2 e?t 2ze?t.2.22
= —lim<t¢ — + cost

- +
2:-0 0 2241 (2241)° (2417 (:241)°
L t? L 2 + cost ! t> — 1+ cost

= -t"—c- cost = - 17 — cost.
2 2 2

Example 2.27 Find the inverse Laplace transform of

2 222 — 4 522 — 152 — 11
O ey e v ;) R COy pr3 o g y L GO B popr § pop 5

We may use the residuum formula in all three cases.

(a) We get by a decomposition,

z z

(z4+1)2(224+32-10)  (2+1)2(z +5)(z — 2)

-1 L L2 1

C4(=3) (2412 z4+1 42.(=7) z+5 327 z-2

1ot oomo1 5 12

2 (2412 144 z+1 112 z+5 63 z—2

Hence,
1 11 5 2

£ = o1 ? D= —pet_ gt 2 -5t 2 2t

1®) {(z+1)2(22+3210)}() ¢ Tt Tt Tec

ALTERNATIVELY, we get by the residuum formula, where the poles are —1, —5 and 2,

fe) = res ((z+1)2éi;)(z_2) 5 1) e <(z+1>2(zzit5><z—2> ; 5>

z ezt

e (<z+1>2<z+5><z—2) | 2>

— lm d ze*t N —5e 5t N 2e2t

© z=t1dz | 22432-10 (—4)2(-5—2) = 32(2+5)

—  lim e tze®t ze“(22+3)2 5 e_5t+iegt
a—=1| 22432-10  (22432-10) 716 79

et—te ™t eH(=243) 5 _5 2 4
T T-3-10 0 (c122 T2t tee
1 11 5 2
= et ot 9 st 2 2t
2 Tt Tt e
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(b) We decompose

9_ 1 24 1
2 T — +2944' —3+(—3)(—4)'z+1
2)(z - 3)(z + 1) (-1)-3 z2-2 " 1. z

(z —2)(= | | . . _1. )

3 227223 6 z+1

from which

222 — 4 :_le_f,_ée%_i_ze?)t.
4o _ﬁo_l{(z—Q)(z—i%)(z—i-l)}<t) 6" 3% 72

ALTERNATIVELY we apply the residuum formula. Then
z 222 _ 4) ezt
e L W A ;2>
o= e ((z G-+ )T\ G aE D
(222 — 4) et -
A P T ey
(2—4)e”t  (8—4)e* 18 — 4)e3! 1,

42t 73t
=——e —se F+ e
T 3 T 233 T B-2B+D 6 3 5
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Complex Functions Examples c-8 The Laplace transform

(c) A decomposition gives

522 — 15z —11 5+15—11 1 Pi(z) 1 1 Pyi(z)
(z+1(z—2)3 (=33 z+1 (2-2)3 3 z+1 (2-2)3
where
Pi(z) = ! 5227152—11+1(z—2)3 :1~L{22+82741}(z+1)
z+1 3 3 z+1
1
= - (" +82-41).
3
Then by an insertion,
522 —152—11 1 1 +1z2+8z—41_ 11 +1(z2—4z+4)+(122—24)—21
(z+1)(z—2)3  3z+1 3 (2—-23  3z+1 3 (z —2)3
S S SR U SR 7
3241 32z-2 (2-2)2 (2-2)%
SO
522 — 152 — 11 1 7 1
t :£0—1 )= —= —t__t2 2t At 2t - 2t.
1) {(z+1)(z—2)3}() 3¢ Tl tAeTdge

ALTERNATIVELY we apply the residuum formula,

522 — 15z — 11 522 — 15z — 11
t — Zt,_l zt.2
1) res(<z+1><z2>3‘f | )”es(wﬂ)(zz)?'e : )
S+15-11 , 1. d* (522 —15z2—11 ,
—— € —Im-—qJ———€
(-1-2)3 2! 22 dz? z+1

1 1 &2 9t
et + = lim — {526“ —20e* 4+ L}
z

3 2 z—2 dz? +1

where we use that it is easier to differentiate after the division by a polynomial. Then

1 1 d Ote*t 9e*t
f(#) —3 e+ 3 ;1_{% e {562t+5tZ€Zt—20t62t+ < c }

241 (z+1)2
9t2e*t 18te?t n 18e*t
z4+1  (z41)2  (241)3
1 3 1
= 3 et 5te?t 45122t — 1012 + B t2e?t —te? + 3 e?t
1

7 1
= 3 et — 3 t2e? + 4t e® + 3 e?t.

1 1
-3 e t+ +5 th {10t62t+5t2262t—20t262t+
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Example 2.28 Find the inverse Laplace transforms of

6z —4 3z+7 4z + 12

@ S5m0 Oz 9 aiaaie

In all three cases it is easier to make an inspection than to use the residuum formula, although the
assumptions of this use are all fulfilled.

(a) We get by a small reformulation,

 62-4  6z—4  6(z—2)+2-4
L{f}=z) = 224z +20 (2-2)2+42 (z—2)2+42

= 6L{cosdt}(z —2) +2L{sindt}(z — 2) = L {6 cos4t + 2> sindt} (z),

so we conclude that

f(t) = 6 e cos 4t + 2 sin 4t.

(b) Here it follows by a decomposition,

L) = 3247 8247 347 1 3347 1 1 4
o 22-22-3 (z+1)(¢2-3) -1-3 z+1 3+1 2z-3  z+1 2z-3
= L£{4e —e'} (2),

hence

(¢) Here we get directly,

L) = 42412 4z 412 4d2416-4 4 4

T 218116 (2+4)F (2442 244 (214)p
= AL{e ™} —4L{te "} (2),

hence
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Example 2.29 Find the Laplace transforms of

(a) 3z+1 () 22 +22+3 (©) 23 +522 442420
(z—1)(22+1)’ (22 422+2) (22422 +5)’ 22 (22 +9)

It is possible in all three cases to apply the residuum formula, but it will be easier to use other
methods.

(a) We get by a decomposition,

3z+1 3-1+1 1 Az+ B 2 Az + B
G+ 1+1 -1ty it
where
Az+B 3z+4+1 2 _3z+1—2z2—2_—2z2+3z—1_—2z—|—1
22 +1 (z—=1)(z2+1) =z-1 (z—=1)(z2+1) (z—=1)(z2+1) 2241
Hence
C{f} = 3z+1 _ 2 g Z 1

GC-DEZ+D) -1 241l 240
and we conclude that

f(t) =2e" —2 cost +sint.

(b) Using here the change of variable w = (z + 1)? followed by a decomposition, we get

cy = 224+22+43 _ w+ 2
(224+2242)(22422+5) (w+1)(w+4)
o142 1 442 1 1 1 2 1
= 174 w+al T4+l wtd 3w+l 3wid

1 1 1 2

3(z+1)2+1 T3 (z41)2 422
and we conclude that

1 1
ft) = 3 e tsint + 3 e 'sin2t.

(c) The decomposition needed here is a little tricky. It is based on the fact that z only occurs in the

form 22 in the denominator. We get
23+ 522 + 42+ 20 22 +4 522 + 20
L{f}(z) = 2.2 =* 5.2 2,2
22 (2249) 22(2249)  22(22+9)
_ 4 1 —-9+4+4 1 20 1+—45—|—20 1
T 92T T 9 2992 —9 249
20 1 4 1 5 z 25 3
= —=. 4.4 4=
9 229 2z 9 22432 27 22432
2 4 2
= L {got+ g + g cos 3t + £ sin3t} (2).
Finally, this implies that the inverse Laplace transform is given by
20 4 5 25
f(t) = ?t—i_ 9 + 9 cos 3t + 37 sin 3t.
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Example 2.30 Find the inverse Laplace transforms of

) (b) m+ lZ ) (c) [

We cannot apply the residuum formula in any of these cases, because the assumptions are not satisfied.
Instead one should first try the Rule of Shifting.

(a) Since

1
2241

L{[sint}(z) =
if follows from the Rule of Shifting that if

sin(t — 1) for t > 1,
ft) =
0 fort <1,

then

—Zz

z22+1

L{f}(z) =e 7 L{sint}(z) =

)
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The Laplace transform

so we conclude that

e g O =sinte = 1) a0
(b) Tt follows from
£{xn it} (2) =
that
e I

(c) Since

SRS

we may apply the Rule of Shifting,
e 2% 1

£071 o )= =
fe=J N

Example 2.31 Find the inverse Laplace transforms of

tSet,
(t—

e 8 6—32 2z

ze~
9 (b) Ma

2243242

(©)

- (2o

it follows from the Rule of Shifting that
—2z
o—1 €
c { .
(b) Since

EOil {%} (t) =4 sin 2t7

it follows from the Rule of Shifting that

:t’

} () = (t — 2) xoronr(D).

o—1 86_3z :
E 22—+4 (t) =4 Sln(zt — 6) . X[3,+oo[(t)

2)%e' % X2, +o0((t) =

} (1) + X1t oei(1)
1

o—1 1
r {m _ m} (t) + X[, 400 (1)

et —te 4 X[ ool (t)-

662 (t — 2)3€t X[2,+oo[(t)-

46
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(¢) From

1 2 __ 1
224324+2  (z+1)(z+2) z+1 242

follows that

o—1 z o—1 1 2 —2t —t
£ {22+32+2}(t) £ { z+1+z+2}(t) c ‘

Then apply the Rule of Shifting,
o ze % _o(t— (-
L 1 {m} (t) _ {26 2(t—2) _ e (t 2)} . X[2,+oo[(t)'

Example 2.32 Find the inverse Laplace transforms of

e ( —47T z)
52 2 exXp | —
e 5

0) ————=

(z+1)e ™
(@) (z —2)% 22425 (c) 22+z2+1°
(a) Since
1 1 2t
ngﬁ{tge }(Z),

if follows from the Rule of Shifting that

1 e~ 5% 1 2t—1
e s 0= 57 )

(b) Since
z
E{COS 5t}(2’) = m,
it follows from the Rule of Shifting that

47

Z exp ( ? Z) dn
EOil 22—|——25 (t) = COS (5 (t + ?>> . X[%\'H'_oo[(t) = COS(5t) . X[%r,_i_oo[(t)

(c) Since

z+1 . (z—’—%)—’—% . _ 14 @ L . @
Ly () ()
+

Z+§

2

it follows from the Rule of Shifting that

flt)y=cot {%} () =e 2 (=™ {cos <§ (t— m) + % sin (? (t— ﬂ)) }-X[mm[(t).
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Example 2.33 Find the inverse Laplace transforms of

z e *(l—e?)

@ e © e

(a) We get by the Rule of Convolution,

z z 1 .
L{f}(z) = EREE =21 2l L{cost}(z) - L{sint}(z)
= L{(sinxcos)(t)}2).
Thus we conclude that
¢ 1/t 1 1
f@) = / sint - cos(t — ) dr = 5/ {sint —sin(27 — t)} dr = §t sint + 1 [cos(2T — 1)
0 0
= 1tsint+1costflcost—ltsint
) 4 4 2 ’
Since
L{sint}(z) = -
in = —
§ 2241

we ALTERNATIVELY get by the Rule of Multiplication by t, where the formula should be read from
the right to the left,

ﬁ = _% dilz {ﬁ} = % (-~ dilzﬁ{sint}(z) = L{%t sint} (),

hence
o— z 1, .
(b) We get by a decomposition that

1 1 z
m = ; - 2’2——|—1 = E{]. - COSt}(Z),

so it follows by the Rule of Shifting that

o—1 e (1 7 eiz) _ po—1 e ” . 672'2
£ { ZET D) }“’E {z<z2+1> z<z2+1>}“)
{1 cos(t — 1)) Xprsaci(B) — {1 — cos(t — 2)} xpsae((D)
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Example 2.34 Find a series expansion of the inverse Laplace transform
+oo
) =" ant"
n=0
of

F(z) = & exp (%) . zeC\{o}.

The function f(t) is a transcendental function, which cannot be expressed by elementary functions.
We get

“+o00 +oo +o00
(e = FE=teo (L) =X o =Y o =Y o L 6

Vouwo Tewcxs | Rewsur Towcks | Macs Toucks | Vowo Buses | Vowo Consteuction Eourement | Vowo Pesm | Vowo Aero | Voo IT

Vowo Fisswcwr Semnces | Vowo 3P | Wowo Powerreaie | Wowo Pasrs | Wowo Tecswowooy | Vowo Loassncs | Business Anex Asi

Download free ebooks at bookboon.com

49


http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Complex Functions Examples c-8 The Laplace transform

Remark 2.3 It is possible to express the sum by a Bessel function. ¢

An ALTERNATIVE procedure is the following: First we note that since

1
exp (—) —exp(0) =1 for z — oo,
z

we have the estimate

C

|F(2)] < for |z| > R.

E

This means that the inverse Laplace transform f(¢) of F(z) can be expressed by a residuum formula,

F(t) = res G exp (%) Lot 0) .

Here 0 is an essential singularity, so we have to use a series expansion. Clearly, a_; is the constant
term of

“+oo 1 1 “+oo

1 m
exp(;)-exp(zt)—za-z~z:%z ,

n=0 m=0

so a—_1(t) is obtained by putting m = n, and then

+00 1
f)=aq(t)=>) e t",  teR,
n=0 !

because one as before notes that the series has the radius of convergence +oc.

Example 2.35 Find the inverse Laplace transforms of

(a) sin%, (b) exp G) —1, (c¢) sinh (%) (d) cosh (%)1

(a) It follows by a series expansion that

3 —1)" — -1)" n).
L{f}(z) = sinézz((l) 1 S (-)"  (2n)!

(@nt 1)1 22 on + 1)[(2n)! 220+l

= n=0
(D . S D,
= nz_:o(zn(+1))!(2n)!£{t2 }(Z)E{;(szrn!(zn)!tQ }(2)’

and since the latter series is convergent for every ¢ € R, we get

oot 1 R —1)" am
fit)==L {sm;}(t)—;mt, teR.
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ALTERNATIVELY, the series expansion

+oo n +o00 _1\n
sin%zz((;l) 1 :lz((il)i for z # 0,

[ 22n+1 [ S2n’
—= (2n+ 1) 22 z = (2n+ 1) 2%

gives an estimate of the type

1 C
sin—‘ < — for |z| > R.
2|~ |zl

Here, z = 0 is the only singularity (unfortunately an essential singularity), so we get by the inverse
Laplace transform by a residuum formula,

o—1 : 1 _ zt 1 1 _
L {smz}(t)—res(e smz,O =a_1(t),

1 1
where a_1(t) is the coefficient of — in the Laurent series expansion of e*! sin —. Since
z z

=Xm R (-1 1

1
2t - o m .
ST T Z ml © Z (2n + 1)1 z2nt+17

m=0 n=0

it follows from Weierstraf$’s double series theorem that a_q(t) corresponds to m = 2n, thus

a1 B X (- n
L {sm;}(t)a—l(t)zth '

n=0

(b) By a series expansion,

foo +oo |
e <%> > % ' Zi” -2 (n +11)!n! ' Z;:l

n=1 n=0

+oo 1

" U S

n=0

and since the latter series is convergent for every ¢t € R, we get

+oo
1 1
t) =Lt -1t =N ———— ", teR
1®) {exp(z) }( ) ;n!(n—i—l)!
ALTERNATIVELY we conclude from the series expansion

+oo
1 1 1
eXp(;>_1:ZE'Z_n for z # 0,

n=1

1
that the limit value for z {exp (—) — 1} is 1 when z — oco. Hence we have estimates of the type
z

1 C
exp <;> — 1‘ < [ for |z| > R.
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Here z = 0 is the only singularity (an essential singularity), so we get by the residuum formula
that

ot {exp (%) _ 1} () = res (ezt {exp (%) _ 1} : o) —a(®),

. . 1. . .
where a_1(t) is the coefficient of — in the power series expansion
z
400

IRV BRI IS I e W 1
R Zm' Zn' P Zm' Z n—|—1 z”'

It follows from this that we get precisely a_1(t), when m = n, so

Lot {exp (%) - 1} (t) = g mt",

which is convergent for every ¢t € R (the radius of convergence is clearly +o00).

(c) We get by a series expansion,

(1) X 1 X 1 n
L{f}(z) = sinh <;> = ;::O (2n+1)! Sl T Z (2n) (2n+1)! £{t2 }

= 1 2n
= E{Z(Qn) Enri! }(z)'

The latter series is convergent for every ¢t € R, so

f(t) =Lt {sinh (%) } (t) = io m t2n teR.

ALTERNATIVELY one proves as above that we have the estimate

1
sinh (—)‘ < c for |z| > R.
z |2

It follows from the series expansions

Zt.h1_+°°tmm+°° 1 1
e sinh { = _Z%Z .20(2714-1)!.2’2”‘“’

m=0 n=

that the coefficient a_;(t) corresponds to m = 2n, thus

ot {sinh (%)} (1) = a_1(t) = f m 2,
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(d) We get by a series expansion,

(1 O T 1 (2n — 1)!
LY = Cos’h(z)lzm'ﬁZ(zn)!(zn_m' 220

. 1 n=1 . n:olc ) .
= ; oien i AT =L {nz_:l )i en— 1) } (2)-

The latter series is convergent for every ¢ € R, so

+OO 1 n—
f(ﬁ):;mtz 1, teR.

ALTERNATIVELY we even have the estimate

1 C
cosh (—) - 1‘ <im for |z| > R.
z |2
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It follows from the series expansions

+o00 +oo 400 +oo
1 t™m 1 1 1 tm 1 1
zt — m L = = _,m - .
¢ {COSh (;) B 1} N Z m!© Z (2n)! 220 2 Z m!° (2n)!  Z2n-17
m=0 n=1 m=0 n=1

that the coefficient a_1(t) corresponds to m = 2n — 1, i.e.

Lo {cosh G) - 1} (1) = a_y(t) = :f mt%’l.

1
Example 2.36 Find by using the Convolution Theorem the inverse Laplace transform of m
z z—
Since
1
E = V- = E —3t . E t
(N = gy = £l @ £{e} @),

we get by the Convolution Theorem that

i ! 1 1 1
flt)= / e 3Tt T dr = 6t/ e dr=et-[—= (e*‘“ — 1) = el —Z 73,
0 0 1 171

Remark 2.4 For comparison we get by a decomposition that

1 101 11
(z+3)(z—1) 4z2—-1 42+3

from which we immediately get

o—1 1 _1t 1*75
ft)==c {m}(t)zeze?\ O

Example 2.37 Use the Convolution Theorem to prove that

t
1
/ sinu - cos(t — u) du = §t sin t.
0

1
We compute the Laplace transform of the right hand side 3 t sint with some rewriting. By the Rule
of Multiplication by ¢ we get

1. 1 L d . 1d 1
E{it smt} = 5(71) %E{blnt}(z)——ia{ﬁ_i_l}
1

—2z z 1 z

2 (21 1)? (241)? P41 2+
= L{sint}(z) - L{cost}(z) = L{sinxcos(t)}(z)

- ¢ {/Ot sin - cos(t — u) du} (2),
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hence by the inverse Laplace transform,

t
1
/ sinw - cos(t —u) du = Et sint.
0

Example 2.38 Solve the convolution equation

/tf(u)f(t—u)du:2f(t)—|—t—2, teR,,
0

where f € F is assumed to be continuous.

Put F(z) = L{f}(z). Then the equation is by the Rule of Convolution transformed by the Laplace
transform into

F(2)? =2F(z) + =2
hence
1
2- - (= £{26 — 1}(2)),
F(z)li(l%) .
o= L{1}(z).

Here “§” denotes Dirac’s delta-“function”, which is not a true function, and which has not been
introduced into the Calculus courses. Now, we have required that f € F is continuous, so we must
reject the solution 20 — 1, and we get

f)=1€ECF.

CHECK. By a small computation the left hand side becomes

t t
/f(u)f(t—u)duz/t-ldu:t,
0 0

and the right hand side becomes
2f(t)+t—2=2+t—-2=+1.

We get the same result, and we have checked our computations.
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Example 2.39 Solve the convolution equation

£t =2 +/tf(u) sin(t—u)du, teR,,
0

where f € TF.

Put F(z) = L{f}(z). Then by the Rule of Convolution the equation is transformed by the Laplace
transform into

2! 1

F(z) = E{tz} (z2) + F(2) - L{sint}(z) = ; + 21 F(z),

thus by a reduction,

2 1 22
— l1-—— 3% F(2)= ——F
= { ZQH} () = 57 P&,

and we conclude that

2 22412 2 2! 2 4l 9 1 1 , t
F(z):Z—3-7)2—3+Z—5=22ﬁ+I~ﬁ=£{t}(z)—l-ﬁﬁ{t}(z)zﬁ '+ 5 (2).

It follows that the solution is

1
f(t):t2+ﬁt46ECIE‘.

CHECK. If we put the solution
1

— ¢t

12

into the right hand side, then

fit)y ="+

t

¢ t
1
2+ / f(u)sin(t —u) du = t* + / u?sin(t — u) du + 5 u'sin(t — u) du
0 0 0

4 t
- 1—2/0 u® cos(t — u) du

2 t4 1 ¢ 2 . 3
=t*+ —+ 2 [ {3u’sin(t —u) —u’cos(t —u)} du
0

t t
1
=1+ / u?sin(t — u) du + {— u* cos(t — u)]
0 12 0

123
tt 1 ¢ tt
= 2 _ —_ 3 gi —_ = 2 —_— =
=+ 513 [u? sin(t —u)], = t* + 5 f@),

where we have used that

% {u?sin(t —u)} = 3u”sin(t — u) — u® cos(t — u). O

Download free ebooks at bookboon.com

56


http://bookboon.com/

Please click the advert

Complex Functions Examples c-8

The Laplace transform

Example 2.40 Solve the convolution equation

f(t):t+2/0tf(u) cos(t — u) du, teRy,

where f € TF.

Put F(z) = L{f}(z). Using the Rule of Convolution the equation is transferred into

1
F(z)=—=+4+2F(2) ——
()= +2F () 5

hence by a reduction,

1 2z 22 -2241 (z—1)?
1 {1_ ZQ_H}F@) =R = F(2),

22 2241 2241

and the only possibility of the inverse Laplace transform is

22 +1

Try this...

00t ploce

57

The sequence 9k b 8 1002, 14,16, ... IS
(TL\?, SCC?U@,V‘.CQ O»,[ evén u)i/to|e_ V]Umlge,rj‘ TLIG,

Ta Hud zpf:c{uemce kY qu, number...

4 F AllOptions
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It is obvious that the inverse Laplace transform exists in this case and that it is given by a residuum
formula,

24+1 2+1
f(t) = Tres (m e ] 0> + res (m e ] ].)

d 2241 d (22+1
= [ - 1 #t
zl—>0dz{(z—1) }+z—>1 dz{ 22 € }

2z 2(2 +1) 22 +1
= 1 2t _ 2t 4 ¢ zt
;3%){(2_1)26 G_o1p ¢ e
4 lim QZezt_2<22+1)ezt+t,z2+1ezt
1) 22 23 22
2-1
= - +t4+2e —det+t-2-¢
(-1)?

= 24t—2e" +2te.

CHECK. It is not a nice task directly to put the function into the convolution equation. Instead we
consider the Laplace transforms. In fact, if they agree and we are still in F, then the result follows
from the uniqueness theorem. It follows immediately that

E{f}(z)zg—i_z_l?_zzl—i_(zfl)f

We get for the right hand side,

L’{t+2/0tf(u)008(t—u)du}(Z) 212+2{2+12_231—1—(2'—21)2}'2211
—en@+ s+ {3 a1

e+ - e L A )
:L‘,{f}(z)+zi2— Zzlﬂ {(22“23‘1)2 —2(z—1)+2}

— L{f}(=) + ﬁ (2 41— 2o+ 1)(z = 1)? +2( — 1)2% — 252}

= L{f}(z) + =10 (2 4+1—(22+1) (22— 22 +1) +22° — 422}
zﬁ{f}(z)+m {22 +1-22%+42% — 2% — 22+ 22 — 1+ 2% — 427}
= L{f}(2),

and we see that we have an agreement of the two sides of the equation. ¢
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Example 2.41 Solve the integro-differential equation
/Otf(u) cos(t —u) du = f'(t), teRy,
where f(0) =1, and f is differentiable in Ry and f' € F.
We put F(z) = L{f}(z). The equation is transferred by the Laplace transform into
z

F( )22—_|_1 L{f}(z)=2z F(z)— f(0)=z-F(z)— 1.

Hence by a rearrangement,

1=z F(z) — —— F(z):z(l— ! )F(z): ),

2241 2241

I\

and

2’2
F(z) = Z—ng = % + 2—13 — L{1}(z) + %c () (2).

Finally, we get by the inverse Laplace transform,

1
f)y=1+51%
2
CHECK. Clearly, f(0) =1 and

f(t) =t

Then by computing the convolution integral,
t

tf(u) cos(t — u) du = /t (1 + 1u2> cos(u —t) du = Kl + 1u2ﬂ - /tu-sin(u—t)du
0 0 2 2 o Jo
=sint + [u - cos(u —t)]§ — /t cos(u —t)du = sint +t — [sin(u — t)]5 = sint + ¢ —sint
=t=f'(t), 0
and we have found the right solution.

ALTERNATIVELY we may prove that the Laplace transforms of the left hand side and the right hand
side agree for the function
1

ﬂw=1+§ﬂ

Thus we have

,c{/otf(u) coS(t—u)du} = L{l—i—%tZ}(z).zz’j—l _{%+;_3}.2211

and
LAY () = L4t} = 5,

and we have tested our solution. ¢
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Example 2.42 Find f € F, such that
t
/ u f(u) cos(t —u)du =te " —sint, teR,.
0

We put F(z) = L{f}(z). Then the equation is transferred by the Laplace transform into

z 1 1
241 (z+1)2 2241’

L{t-f()}(2)

so we get by the Rule of Multiplication by ¢ and reduction

dF 241 1 1 1 21
o = —L{t f(t)}(2) > {z2+1 - (z+1)2}_; {1m}
2
g (G =

There exists an arbitrary constant C, such that

2
F(z):—z+1+C.

However, since f € F, we must have F(z) — 0 for 2 — oo, which implies that C' = 0, and we have

F(z)= 72—?—1 =—L{2e7"} (2).

Finally, the solution is given by
flt)=—2e7".

CHECK. If we put f(t) = —2e~*, then

t " .
/ u f(u) cos(t —u)du = — / we " cos(t — u) du = —2Re {/ we—teit—u) du}
0 0 0

t

Lot ) ) —(14i)u it t ‘
= —2Re e”/ wemFugy b — oRe{ et |1° - + < / e~ (1+Du g,
0 —(1+14) [ 141 Jg

= —2Re {eit . 12+ ! te_(l"”)t} + 2Re {(11—)2 (e_(l'“)t - 1)}
i

= —2Re e’ t-(—1+1%)p+2Re le*t—le“ =te ¥ —sint
B 2 2i 2i B ’

and we have tested our solution. {
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Example 2.43 Find a function f € IF, such that
t
/ f(u) f(t —u)du = 8(sint — t cost), teR,.
0
We put F(z) = L{f}(z). Then we get by the Laplace transform that
F(2)? 8 L L{t-cost}(z) | =8 L + 4 L{cost}(z)
B 2241 o\ 22+1 dz

1 d z 3 9 9
8<ZQ+1+dz{22+1}> EFET {(ZP+1+224+1-2-22}

16 _( 4 )2
(z241)% \22+1) "’

and we see that we have the two solutions

4
22+1

F(z) ==+ = +£L{4 sint}(z),
corresponding to
f(t) = £4 sint.
CHECK. The sign is of course of no importance. It follows by insertion that

/Of(u)f(t—u)du = 16/0 sinu~sin(t—u)du:8/0{cos(?u—t)—cost}du

= 4[sin(2u —t)];, — 8t cost = 8 sint — 8¢ cost,

and we have tested our solution. ¢
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3 The Mellin transform

Example 3.1 Assume that 0 < a < 2 is a constant. Compute
/+°O ¢ dr
o 22+1 x’
If @ = 1, then it is well-known that
/+°° x! d:v_/+°° de 7
0 1‘24—1@‘7 0 l‘2+172

We assume in the following that a # 1. The function f(z) =

1
2107 € C\ {—i,i} has no pole on
z
R, and there exist constants 0 < ry < Ry, such that we have the estimates

|z0f(z)’ <2 for |z| < ro, og ’z2f(z)‘ <2 for |z| > Ry.

Then the integral is convergent by the theorem of the Mellin transform, and its value is given by a
residuum formula (where we use that a €10, 1[ and a # 1),

/+O<> 7@ dx ﬂ.e—iﬂ'a Za—l N Za—l ]
- = _ res 0 res| ——; —1t
o x2+1 x sin ra 22417 22417
re~ima (] ™ 1 3T
= - — —1 '—) - — —1)i —
sina {22' P <(“ Jig) 5 &P <(a Vi )}
re e 1 (1 ( 7T> (—i) 1 . 3w .
= - -—<—e a—)-(—1)— - e a— | -1
sinra 2 (17 <P 2 ) *P 2
(T
- 1 o r T COS (a 5) T
= — {exp (fw 5) 0exp (za 5)} = =

sinTta 2 sinma 2sin (a Ty
2

We have derived this expression for ¢ # 1 and 0 < a < 2. However, a simple check shows that it is
also true for ¢ = 1. Summing up we have

+oo a—1
/ mQ dx = i s for a €]0,2].
o o+l 2sin (a 5)
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Example 3.2 Prove that

+oo a d
/ A — for a €]0,1].
0

1+ =z sinma

We shall check the assumptions of the theorem of the Mellin transform. First we note that the function

_ 1
14z

f(2)
is analytic C\ {—1}. Then we shall estimate at the endpoints of the interval
Jov, B[ =10, 1[.
If « = 0, then we have the estimate

1
1+=2

<2 for |z| <

N =

2 ()] = 17()] = \

If 8 =1, then we have the estimate

1
= <2 for |z| > 2.

1
3
z

z
142

9] = |2 ()] = \

Then we conclude from a theorem that the integral

/+°° 7% dx
0 142z =

is convergent for a €]0, 1], and its value is given by a residuum formula,

+oo a —Tia a—1 —Tia —Tia
T dx e z Te B Te Iy
- = res i —1) = —— S(=1)° o = . pla=1)im
o 4z oz sinma 1+2 sinma sina
- - il . e—iﬂ'a-l-i‘n'a—i‘n' _ ™ . (_1) ) (_1) _ ™
sin ra sin a sinwa

Example 3.3 Prove that

too 20 do T
—— — = ——=—~  foracl0,3[.
/0 L+a? a 3 sin (ﬂ)
3
We shall again use a convenient theorem with Ja, 5[=]0, 3[ and with the function

1

f(z) = m,

which is analytic for

V3
Ty

| =

zG(C\{l,
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If @ =0, then we get the estimate

1 1
=] <2 orkls g

If 8 = 3, then we get the estimate

3
3 ]z B 1
2% f(2)] ‘1_’_23 1 <2 for |z| > 2.
I+
z

Then it follows from a theorem that the integral

% dx

1+a3 o

+oo
~/0

is convergent for a €0, 3|, and its value is given by a residuum formula. Since we have for every pole

zj that 22 = —1, we get
Too g dg Te Tia 201 Te Ta z}‘_l
1.3 .- T T eS| =312 ) = ——
o 14ad sinma £ B+177 sin Ta 327
J
—iTa —mia - ) Cen
— = elag + elﬂ'a + elaT
3511171'&2 J 351n7ra
T efTrla . . . 5
= g T (iﬂ—a iﬂ—a) ‘{(iza% +ez7ra+eza%}
= (eima — e~
ia % —ta %
T evs —e 3 A ) N
= g T ma | ina ira {eza3 +€“Ta+€za 3 }6 vra
sin T&  eima _ o—
3
T 1 eia% _e—iﬂ'a o (6“17 — 1) <1+€Za +€Za 3)
= — - — . . .e 3 . _
3 Sln% e—ima e2ima _ q
T eza~17r_1 T
3sin B eZima — ] 3 sin 52

64
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4 The 3-transform

Example 4.1 Find the 3-transform of the sequence

().

By the definition,

1 =1 1
{ito=S t=e(l). H>o

n=0

because we have

1
limsup {/ — =0 < +o0.
n— 400 n!

s ebook 1s prooucen with iText®
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Example 4.2 Find the 3-transforms of f(t) = sint, t > 0, when
(@ T=m () T=3.

Since sint is continuous and bounded, we have R < 400, so

(a)
“+o00o
so{sin(t)}(z) = > sinnmw-z7" =0.
n=0
(b)
“+o0 “+o0
(An+ 1w
sz{sin(t)}(2) = sin % Z sin + z4n—t Z sm .z 4n—3
n=0
too +oo +oo n
1 1 1 22 -1 1
— —4n—1 —4n—3 _ -
= Sy —(;;)z{;} -7
n=0 n=0 n=0 11— —
A
3 _ 2 _ 1
= 22 2z ) =_= ) for |z| > 1.

-1 (2-1)(z241) =22+1

Remark 4.1 Tt is obvious in (a) that we lose too much information. However, also in (b) the choice
of the sample interval is questionable. ¢

Example 4.3 Find the 3-transform with sample interval T =1 of the sequence

n+1 1
(55)..
k=1 n>0

Choose

1
= — >
ft) = for t > 0,

as our auxiliary function. Then

1
Rt 1700 = i/ =1
hence
+o00o +oo n
1 1 1 z
z
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Then by some theorem we have for |z| > 1,

n+1 n
3{2%} (=) =5{Zf(k)} (2) =
k=1 k=0

ALTERNATIVELY we consider directly the 3-transform of

n+1 1
().
k=1 n>0

It follows from

n+1

=3

that

1<a, <n+1,

S0
1 <limsup V/|a,| < hm Vn+1l=1,
n—-+400
and R = 1.

—a{f}=) =

Assume that |z| > 1. The 3-transform is analytic for |z| > 1, so we may interchange the summations

in the following, when we use the definition:

IHHIEIES O EES e

k=1 k=1 n=0 k=0

= 1 1\* 1 z +§1 K z
= _— — - —_— = -z —Z =
k+1\z 1 z—1 k—lk z

+oo oo

S e ()

k=0n=k

2

1 Log

n=~k

—_
—_

™R

1
Example 4.4 Find the inverse 3-transform with the sample interval T of exp (—) .
z

It follows by identification from

(i) ()= 3 o = (1) =35 o
that
1
f(nT) = an = =, n € Ny.
n!

67
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z4+2

Example 4.5 Find the inverse 3-transform with sample interval T' of —;
LA

First find the Laurent series of

z4+2
4 _

F(z) = for |z| > 1.

z

We get by the usual technique, where we use that < 1for |z] > 1,

24
+00 +oo +oo
_ z4+2 z4+2 1 z+2 _ _
I S (R ) DL ) i
n=0 1-— ; n=0 n=1
—+o0 +oo
_ Z Zf4n+1 +9 Z 274’”,
n=1 n=1
hence
f((n—-—1T)=1 for n € N, dvs. forn =3, 7, 11, 15, ...,
f(nT) =2 for n € N, dvs. for n)4, 8, 12, 16, ...,
f(ET)=0 ellers, dvs. forn=0,1,2,5,6,9, 10, ....
ALTERNATIVELY,
z4+2
Fiz)= ——
(2) 24 —1

k

has the four simple roots z; = i¥, so z{ = 1. Then for n € N by a residuum formula and RULE II,

4 4 4
2 2 1
f(nT) = E res Z4+ 2 ) = E lim Z+3 =2 g (2 +2) 2774
2t —1 2=z 4z 4
k=1 k=1 k=1
4 4
1 1
_ = _ - -(n+1)k nk
= 3 kg_l (zx +2) 2z = 1 ,;_1 {z + 21 }

Now n > 0, so it is possible to reduce the result to the previous one.

We note that if n = 0, then we must add a correction term,

4
f(O):iZ(Zk+2)+res<z+2 -%;0):24_&:0.

1 _ _
— z 1 1
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Example 4.6 Find the 3-transform F(z) of the sequence

"1
>ul
k=0 n€eNy

expressed by elementary functions.
Then compute res(F(z);00).

We shall first indicate the domain of convergence. We have here

“ 1
1<a,:= Z il < e,
k=0
SO
> 1,
R = limsup Va,
n—-+oo < lim, oo {7@ =1.

\ The next step for
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We conclude that R =1, so

n —+o00 n
(1) F(z)zﬁ{Z%}(z) =Z<Z%> 27" for |z| > 1.
k=0

If |z| > 1, then

z)za{ki:o%}(ZFZilz{%}(z):zilzz%(%)nzzil exp(%), 2] > 1.

ALTERNATIVELY, though not so smart, we compute the right hand side of (1) for |z| > 1. If we in the

1
computation interchange the order of summation and implicitly use that |z| > 1, i.e. |—| < 1, so the
z

series is convergent, then

F(z) = i(é%)z”zgki%%(%)n:::( )n gkl(_)k 2(2)1
()l
Now Z
Ry |
n=0 \k=0

is defined outside a disc |z| > 1, so

1

res(F(z);00) = —a_q = — Z% =—2.

k=0

ALTERNATIVELY, though more clumsy, we find the residuum at oo of F(z) given by the expression

P =g ow (1),

1
so we shall find the coefficient a_; of — in the Laurent series expansion of F'(z). Since |z| > 1, the
z

most natural computation is

+oo “+o0
z 1 1 1 1 1 1
F<Z>:Z_1exp(;): 1‘*"?(2)22_;' W

1
and the coefficient of — corresponds to (n, k) = (0,1) and (1,0), thus
z

1
res( © exp (—) ;OO) =-a_1=—(1+1)=-2.
z—1 z
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ALTERNATIVELY we first apply RULE V, followed by RULE I (because the order of the pole at 0 of

the transformed expression is ¢ = 2):

res(F(z); 00)

1 .. d e? . e?
= —— lim — = — lim
1! 2—0 dz 1—2z z—0 1 —

Example 4.7 Given

1

m fOT’tZO

ft) =

() Find the 3-transform F(z) of the sequence

(Z f(k)>
k=0 neNy

for |z| > R, where one shall find the smallest possible R.

(b) Find

lim (z —1) F(z),

z— 1+

where x runs through the positive real numbers > 1.
(a) We get by the definition for 7' =1,

a{f}(z Zf - for |z| > R,

where

1
R =limsup {/|f(n)| = limsup

so if |z| > 1, then

(2) 54/} f{n—li—l_n—liﬂ}(% n:Z§n+1

n=0 ) n=0
400 n +o0 n
1/1 =1 (1
= ZZE(Z) ok g(z) ta=
n=1 n=1

z 1\ _ 1
res Z_lexp 2 ;00 | = —res Z_Ql

cexp(2);0 | = —res (ﬁ : 0)

)"+ S

)
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Then for |z| > max{1,1} =1,

3{Zf(k)}(2)=

Note that the splitting by (2) can be made for |z| > 1.

z

Larl)e) = 2og (S )+ 24

ALTERNATIVELY we have

n n 1 n 1 1 1
=310 =3 s = o e =

k=0 k=0 k=0

SO

1
1= lim 7\1/; < R =limsup /a, <1,

n—-+oo n—-+o0o

giving R = 1. Then for |z| > 1,

n 400 +o0 1 1
WL = D) 5N s St 5

k=0 n=0
400 +00 400

1 1 1 1 2 1

= HEZO:Z—n“*m'F*;_O:z—n*n__lgf Zn+2’zn+2

+oo n nl n

B z 5 1 /1 K 2 R

- 1‘2215'@ Z :
z

2 1 -1 2
= : +2%Log(1— =) =2%Log z + : .
z—1 z z z—1

(b) It follows directly from the result of (a) that

zhm (z—1) {Zf } = 11r{1+x2(:c—1)111<

ALTERNATIVELY, by the Final Value Theorem,
g (o= 5 f 3 109 i 310903 e =3 (e
n—+o0 —n+n+2) Zlnt+l n+2

. 1
= lim <1- =1,
n—+00 n+2

because the series of course is convergent.

r—1

>+ lim 22 =0+1=1.
r—1+
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Example 4.8 Given
fO=@t+13%  t>0.

Find the domain of convergence of the 3-transform F(z) of f with the sample period T = 1, and
express F(z) by elementary functions without using sum signs.

The 3-transform F(z) is naturally extended to an analytic function Fy(z) in C\{1}. Find res(F1(z);1)
and res (Fy(z); 00).

It follows from

lim {/[f(n)]|= lim Y (n+1)2=1,

n—-+oo n—-+4oo
that the 3-transform of f is convergent for |z| > 1, and we have

+oo

B =D L, ol > 1

n=0
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just what we are looking for.
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Then note that we have for |w| < 1,

“+o00 “+ o0 400

+00 +oo
Z(n +1)%w" = Z(n + nw"™ + Z(n +uw" =w Z(n + Dnw™ !+ Z(n + 1w"
n=1 n=0

n=0 n=0 n=0
d? 1 d 1 d 1 1
- wm{m}*%{m}zwd—{u_w)z}mw>2
2w 1—w 1+ w

A—wp T —wp  A—wp

1
Putting w = —, we get for |z| > 1 that
z

= o 1 1+1 2P(z41)
n{f}z) _nzzo(n—’_l) P (1_%)3 o (z—1)37
The function
_ 22(z+1)
R

is clearly analytic in C\ {1}. Using that the sum of residues is zero, we get

22(z+1) 22(z+1) 1. 4.,
res(W;1> _reS<W;w>zale{z +z}

1
= 5111%{3-2%:—1—2-1}:4,

and we conclude that

ALTERNATIVELY we introduce w = z — 1, i.e. z = w + 1, and then

B 22(z+1)_(w+1)2(w+2)_(w2+2w+1)(w+2)
F@z) = (z—1)3 w3 B w3
4 5 2 4 5 2

1+ 24242 =
+w+w2+w3 +Z*1+(2’71)2+(2’71)37

so we conclude that

res (% 1) —a=1.

Finally, we have the following variant of the computation of the residuum at oo:

B 1. d z+1 1 . 1 3(z+1)
- 1!?1%@{(1—2«)3}_ 5135{(1—::)3+(1—z)4}_ b
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5 The Fourier transform

Example 5.1 Find the Fourier transform of the function

1 — |zl for |z <1,

flz) =

0 otherwise.

-0.5

Figure 5: The graph of f(z).

Clearly, f € L*(R), so the Fourier transform exists.
If £ =0, then

Now, f(x) is an even function, so if £ # 0, then

R 400 ) 1 1
& = /_ f(z)e 8 do = /_1(1 — |z|){cos(z§) — i sin(xf)} dx = 2/0 (1 — ) cos(z€) dx
2 i L g ' sin(z€) dox = 3 — cos
= la—sinenli+ ¢ [ sinlee) e = 5 (1 cos).

1
Example 5.2 Find the Fourier transform of P
x

By the definition,

f{ : }@):/W " g ceR

22 +1 oo 1422

T has no pole on the real axis, and since has a zero of second order at oo,

Since f(z) = ——— —-—
2+ 22 +1
we can compute the integral by using residues, assuming that —¢ > 0, i.e. £ < 0. This gives us the

following splitting of the computations:
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1) If £ <0, then

1 too ,—izd +o0 ez\f\z ‘ 6z|§|z )
f{—xQ—kl}(g) = [m —$2+1dx:[m —x2+1dx—27mres(—z2+1;z>
il¢lz —él

= omilim e =2mi- & —me 6l = nef.

2—1 z (3

2) If £ > 0, then it follows from (1) that

- 1 +oo e—ixf J +o00 eiz{ J +o0 €z|§|z J
{xz—i—l}(g) B /_OO 1+ 22 x_/_oo 2 +1 ac—/_oo 22+ 1 *

= qmelll =get.

3) If £ = 0, then we of course get

f{ﬁ%l}@»/jrzgdw:w (=me).

Summing up,

1 _
f{xzﬂ}(a:m H ceRr

sinx

Example 5.3 Find the Fourier transform of .
x

sinx

First note that is a linear function. Note also that

sinx

¢ L'

x
so we have not proved that the Fourier transform exists. However, if it does exist, then

. +oo oo g
f{smx} © / ST | o—int gy — 2/ T cos(x€) du
x — 0

o T T

+ool
- / — {sin((1+€)) + sin((1 — €)a)} do.

If |€] < 1, then 1+ & >0 and 1 — ¢ > 0, and we get that

sinx B +°°sin((1—|—§)x)' . +°°sin((1—§)a:). O de
A e e s A

= T.

_|_

oS

s
2
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If instead |¢| > 1, then we may assume that £ > 1, because the computations are analogous for £ < —1.
Then

sin x B +°°sin((1+§)x). . +°°sin((1f§)x). O da
AP C e ey i et

“+oo —00 400 _: 400 .
sin sin t t sin t
/ sin di + / sin gt — / sin g / sin d—0
0 t 0 13 0 t 0 13

If¢&=41,eg £=1, then

o [Tt (i)

Since ¢ = £1 is a null set, we can neglect the value at these points, so we get summing up,

}_{Sinw}(o_ m for €] —1,1],

0 otherwise.

360°
thinking

Deloitte

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
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Example 5.4 Find the Fourier transform of e~**l a > 0.

Since a > 0, it follows trivially that e =/l € L. Since the function is even, we get

F {e*“m} & = /+OO e~ lele=i2E gy — 2/0+<>0 e cos(x€) dx

— 00

+oo ) 1 ) +oo
2Re {/ e artite dac} =2Re [ - e“”“gi]
0 —a + i€ o

B 1 B 1 B a+i§ | 2a
- 2Re{_—a+i£}_2Re{a—i£}_2Re{a2+£2}_ a2t

1
E le 5.5 Find the Fourier t _
xample ind the Fourier transform of 15716

Clearly,

1

— = e LYR).
xt + 522 +6 (R)

fx) =
Now, f(z) is an even function, so
+o0 e—ixf 400 eix&
o dr = T 2.z dx
oo TEHD2% 46 oo T 452246

too  ilgle
- [ st FNCO:

F{I}HE)

We get by a decomposition that

1 1
24 +5224+6 2242 2243’

hence by residuum computations for £ # 0,

e 1 +o00 ei\g\m J +o0 6i|f;“|m J +o00 ez\zz|m J

{x4+5m2+6}(§) N /,Oo x* 4+ 52246 x—[m x?+2 x_/,oo 213
il¢]z il¢]z

271 {res (;?; \/5) — res (;—_‘_3 ; z\/§>}

cilElivZ  ileliv3 e—lEVZ  —lelV3
= 2m — = — .
2i\/2 2i\/3 V2 V3

Since we have a zero of second order at oo, the integral is also convergent for & = 0, and it follows by
the continuity that the expressions above holds for all £ € R.
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Example 5.6 Compute

+oo _: ER
(a) / ST el dz, (b) / ST e da,
0

e T T

The integrand is an even function, so

+00 3 +oo :
sinx sinx
el gy =2 e "dx,
X 0 X

which is the double of the value of the integral in (b).

We get by the Laplace transform that

T ging o sin x +oo . oo T
/0 ol dmﬁ{ . }(1)/1 E{Slnm}(t)dt—/l mdtfz.

It follows that

Example 5.7 Find the Fourier transform of
_. [Tsint ,
flx)y=e — e'dt.
0 t

Since f(z) is differentiable with the derivative

fl@) = =g+ e et = )+
we have
F(@) + fw) = 228

€T

Then by the Fourier transform,

sinx

i€ 1)+ 7(6) = f{ } () = 7 X1 (E),

x
(either by using a table, or by referring to Example 5.3), so

A T 1—1
f(§) = m x[-L1(¢) =7 Tég X[—l,l](g)'
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Example 5.8 Find the Fourier transform of

1 sin x
Mo =mm =

It follows by the Fourier transform from

sinx

2 f@) + f@) = —,

that

d A
O+ e = -+ Fo =7 {
We shall for € €] — 1, 1] solve the differential equation

2f .
a%—f@)=—m cel-11

The complete solution is

f@O =m+aet +ae™®,  Ee€]-11]

When ¢ € R\ [—1, 1], we shall instead solve the differential equation

>

2

£

Since f € L*(R), we have f(f) — 0 for £ — 400, so the set of solutions is

QL

= —f(©)=0, EeR\[-1,1].

IS

bief for £ < —1,

boe¢ for £ > 1.

. df
Since f and x f € L*(R), both f(&) and d—g are uniformly continuous, hence the solution

byet, for £ < —1,
&) =4 m+aet +age s, for € €] — 1,1],
bae™¢, for € > 1,

is continuously differentiable, even at the points £ = £1. It follows from

bret, for € < -1,

d ~

d_é.c — a/]_e§ — a26_£7 fOr 5 E] - 171[a
_b2e_§’ fOr f > 17
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when & = —1 that
bie~! =aret + ase + ,

—1
bie™" — asge,

hence by subtraction,

™

ay = ——.
2e

If £ =1, then we get the conditions
bre™! = aje4ase 4+,

-1 _ 1
—bse = aje—age ",

hence by addition,

T
alz—%zag.
Then
2 7" 2 T 2 .
b1 = a1 — aqe :—% (l—e ) :_e (e —1):7rsmh17
and

by = as — aje’ = 21 (6271) = 7 sinh 1.
e

We conclude that
7-sinh1- e,

T T T
= S — — h
f© Ty € g e ™~ cos &,

7w -sinh1-e~¢,

for £ < —1,
for £ €] —1,1],

for £ > 1.
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6 Linear difference equations

Example 6.1 Solve the difference equation

3 _
xn+2+xn+1_zmn:2 ", n € Np.

The characteristic polynomial is

z2+z—§* z—1 z+§
4 2 44’

so we conclude that the corresponding homogeneous difference equation has the complete solution

1 n 3 n
a- {5} +b- {—5} , n € Ny, and a, b € C arbitrary constants.

1
Then we shall find the particular solution for which xy = 0 and 1 = —. One may of course choose

other initial values. However, the initial conditions above have been chosen such that the computations
become as simple as possible.

We get by the 3-transform,

L 22 1
A(z):Zanz :ZQ =g f0r|z|>§.
n=0 n=0

Then it follows from the solution formula for the linear inhomogeneous difference equation of second
order that the 3-transform of the particular solution is given by

224+z—-|z—-=

X(z) = i Z;+x022—|—(c1xo+x1)z =( 1)( 3>

1 1 —2 1 +oo 1 n—1 +oo n
g —_ ]_ _ — = — _— — T
2z ( 2z> 2z n{Zz} ZQ"Z ’

n=1
. 1 . . .
where the series are convergent for |z| > ok Since X (z) is the 3-transform of the particular solution

{xn}, we conclude that the complete solution is given by

2 n
n 1 3
Ty = g + a{g} +0b {—5} , for n € Ny og a, b € C arbitrary constants.
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Example 6.2 Find the complete solution of the difference equation
Tpi2 = Tpyl + Tn, n €N

Then find the solution for which 1 = x5 = 1. (Fibonacci’s sequence).
Prove for Fibonacci’s sequence that

(22)
Tn neN
is convergent and find its limit.

The characteristic equation
M-A-1=0

has the roots

1 1 1++5
A_Eiwz+1_ TR

S00T NG SWHSAS WL SRl

It's only an
opportunity if
you act on it

IKEA.SE/STUDENT
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so we conclude that the complete solution is given by

1 ! —1\"
a:n:a-< +2\/5> —|—b-<—\/g2 > , n € Ny,

where a and b are arbitrary constants.

When z1 = 22 = 1, then it follows from the above that
2 2
LHvs o ve-1 o (14 VEY VB
2 2 N 2 2 '
When we subtract the former equation from the latter one, we get
2 2
1+5 1+5 Vb —1 vh—1
0 = a 5 = 5 +0b 2 + 2

1+v5 V51 +\/5—1_\/5+1

l=a

2 2 T 3 b=2ath)
and we conclude that b = —a, hence
L~ 4 1+\/5+\/5—1 -
2 2
thus
1 1
a=— and b=—-——=,
N NG

and the solution is given by

1 ([(1+v5) Vi-1\"
T )

1++5 Vh—1 1

5 > 1. Then 5 :E<1’SO

Now put a =

% {a"(l)”~$} >0,

from which we get

Ty —

o _ AU Gl e ()
Tp % {ar — (-1 L} 1—(-1)" ==
1 5
— a= +2\/_ for n — 4o0.
V5 . .
Remark 6.1 The number o = is called the golden section. When n = 10, we get

11 1,6181818,

10
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which is a reasonable approximation of

|
o= +T\/5 ~1,6180340.

Example 6.3 Find the complete solution of the difference equation

Tpto =4z — 4z, n € N.

Then find the solution, for which x1 =0 and zo = 4.

Write the equation in the form
Tnyo —4xp41 +42, =0, n € N.

The characteristic equation is
AN 4 +4=(\-2)?=0,

where A = 2 is a double root. The complete solution is then
Tp=a-2" +bn-2", n € Ny,

where a and b are arbitrary constants.

ericsson.
com
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Put 1 =0 and x5 = 4. Then we have the equations

0=x1 = 2a+ 2b,

4 = Ty = 4(1 + 8b,
so a = —b and 4b = 4, thus b =1 and a = —1. The solution is
Ty =-2"4+n-2"=(n—-1)2", n € N.

Example 6.4 Find the complete solution of the difference equation
Tpt2 = 2Tpt1 — 2Ty, n € N.

Find the solution (expressed in the real), for which x1 =2 and x4 = 0.

The characteristic equation
M —2X+2=0
has the roots A = 1 4, so the complete solution is
Tpn=a-(14+0)"+b-(1L—19)", n € Np,
where a and b are complex arbitrary constants.
Put 21 = 2 and 29 = 0. Then
2 = 21 = a-(1+i) + b-(1—49)

(a+b) + ila—0),

0 = zo = a-2i + b-(=2i)) = 2i(a — b),
hence a —b =0 and a+ b =2, thus a = b = 1, and the solution is
T = (1+i)”+(1—i)":2Re{(1+i)”}:2Re{(\/§) exp(in%)}
2-(\/§)ncos(n-%>, n € N.

Remark 6.2 If we choose 1 = 2 and 25 = 4 instead, then we get (cf. the above)

(a+b)+ila—b) = 2, a+b=0,
thus
2i(a—b) = 4, a—b= -2,
so a = —t and b = 4. Then we get by insertion,

Zn = —i(14+4)" +i(1—i)" =2Re{—i(1+4)"} = 2Re {—i {\/E) exp (m %)}
= 2Re{(\/§> - (—1) (COS% +1 sin%r)} =2 (\/5) sin (n %) .
Note in particular that the constants a and b are complex, even if the solution itself

xn:2(\/§)nsin<n~%), n €N,

is real. ¢
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Example 6.5 Prove that every difference equation of the type
Tpto +axpir +x, =0, n €N,

where a is any constant, has a bounded solution (x,).

The characteristic equation is
M+a-A+1=0.

The product of the roots is o - 3 = 1, so we can assume that |o| < 1. Then a bounded solution is

Ty, =c-a”, n €N,
because
|zn| < || for every n € N.

The argument is unchanged, no matter if a # 3 or a = f3.

Example 6.6 1) Find the complete solution of the difference equation
Gp+2 — 3Qpy1 +2a, =0, n € Ny.

2) Solve the linear differential equation
(22 —3241) f"(2) + (82 — 6) f'(z) + 4f(2) =0

by the power series solution method from the point zg = 0,

+oo
f(z) = Zanz", |z| < R,
n=0

Find the largest possible R.
Then express f(z) by elementary functions.

1) The characteristic equation
A —3XA+2=0

has the roots 1 and 2. The difference equation is homogeneous, so the complete solution is given
by

an:a+b~2n, ’I’LEN(),

where a, b € C are arbitrary constants.
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2) Inspection. We rearrange the differential equation in the following way,
0 = (22°-32+1) f"(2)+(82—6)f'(2)+4f(2)
= (22’2 —32—1—1) F'(2)+(42=3)f(2)+(42=3) f'(2)+4f(2)

- {(2z2—3z+1) % F(z)+ dilz (2z2—32—|—1) -f’(z)} + {(4z—3) % + diz (42 —3) - f(z)}

= s {(22 =32+1) f(2)}.

Then it follows by two successive integrations,
(2,22 —32+1) f(2) =12 + o,

so the complete solution is

1z + C2 c1+2x2  c1+tc

222 -324+1  22-1 21

fz) =

1
for z € C\ {5 ; 1}, when the arbitrary constants ¢; and co are chosen, such that ¢; + 2¢o # 0
and c¢1 4 ¢o # 0, with trivial modifications, if one of them is 0.

Power series method. ALTERNATIVELY we insert a formal power series and its formal deriva-

tives,
+00 +o00 400
f(z) = Z a2, f'(z) = Z na,z" Y, f'(z2) = Z n(n —1)a,z""2,
n=0 n=1 n=2

where we assume that the series are convergent for |z| < R. Since

2:2-3241=0

1 1 1
for z = 3 and for z = 1, we conclude that R > 2’ where R = 3 is our guess. This will become

more clear in the following investigation.
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We get by insertion of the series,

2

0 = (22°=32+1) f"(2)+(82—6)f'(2)+4f(2)
“+o0 “+oo “+o00
= Z 2n(n—1)an,z" — Z 3n(n—1)a,z"" ' + Z n(n—1)a,z"~
(n=0) (n=1) =2
“+o00 “+o00 “+o0
+ Z 8na,z" — Z 6na,z""' + Z 4a,z"
(ﬁ:b) n=1 n=0
+oo +oo +oo
= Z {2n*—2n+8n+4} a, 2" — Z 3n(n+1)a,z" ' + Z n(n—1)a,z" >
n=0 = =
+o0 ~+o00 +oo
= Z 2{n*+3n+2} a,2" — Z 3(n+1)(n+2)an412" + Z(n+2)(n+1)an+gz"
n=0 n=0 n=0
+oo
= Z(n—{—l)(n—i—?) {2ap,—3an41+anta} 2"
n=0

We conclude from the identity theorem that this equation is fulfilled, if and only if the following

recursion formula holds (and z belongs to the domain of convergence),

(n+1)(n+2){2a, —3an+1 + 1pi2} =0, n € Ny.

SIMPLY CLEVER
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Since (n+ 1)(n+2) # 0 for every n € Ny, this recursion formula is equivalent to the difference
equation

ap42 — 3apt1 +2ay, =0, n € Np,
which we solved in (1).
According to (1) the complete solution is
ap =a+0b-2", n € No,

so we get the formal power series

“+o0 “+o0
f(z) = Z anz" = Z {a+0b-2"}2".
n=0 n=0

If b+ 0, then
an, a+b-2" 1] b4+a-27" 1 f n
= = = || — = or n — [ee]
i1 a-+b-2ntl 2 |b+a-2n1 2 ’

. N .
so the radius of convergence is 3 in this case.

If b=0 and a # 0, then

Qp

a
:‘—’:1—>1 for n — 400,
Ap+1 a

and the radius of convergence is 1 in this case.

If both a and b are zero, we get the zero series of radius of convergence +oo.

1
When |z| < 3’ then |2z| < 1, so

+00 +oo +o00 +oo +oo
a b

fE) =) {a+b-2}2"=ad 2" 4b) 2" =ad " 4b) (22)" = S+

n=0 n=0 n=0 n=0 n=0
. . . 1

It is obvious that if z € C\ {5, 1}, then
a b

fz) = 1—z+1—22

satisfies the differential equation.
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Example 6.7 By the solution of a difference equation of the solution
Yns 'I’L:O71,2,"',

it has been derived that the 3-transform of yn, i.e. 3{yn}, is
z

(z—a)(z=B)(z 1)’

where z is a complex variable, and § < a < 0.

Y(z) =

(a) Find the singularities of Y (z) and their type for |z] < cc.
Compute the residues in the poles.

(b) Using the calculus of residues one shall find y,,, n =0, 1, 2, ---, and prove that
1 far—1 pr-1
Yn = o Bla-1 163 '

(a) The singularities are the simple poles 1, a and 5 and

1
res(Y(2);1) = (1—a)(1-p)
res(Y (2);0) = .

gy P
res(Y'(2); B) = (B—a)(B—1)"

(b) We shall use the residuum formula
Yn = TES (Y(z)z”_l; 1) + res (Y(z)z”_lg a) +res (Y(2)z" 1 8),

where

) — res 2" ).
res (V(2)2""151) = ((z—a)(z—ﬂ)(z—l)J) (I1-a |

z

z—0)(z-1)

s (0 0) = (= S5 mn) = s pas
res (Y (2)2" "1 3) = res ((z — ! >

Since

n—1, — 1 = ! L - !
res (Y(2)2" 1) = (a—1)(6-1) _a_ﬁ{ﬁ—l a—l}’

it follows by insertion and reduction,

1 n—1 n—1
Yn = {a —ﬂ }, n € N.

a—0 |l a—-1 6—1
If n =0, then
yo =Y (0) =0,

in accordance with the formula above.
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7 Distribution theory

Example 7.1 Compute 26, n € N.
Assuming that ¢ € C§°(R), then
d? —/(n) & dn
n s(n) — (n) n — (_1\" w on — (1) o on,
(a0 ) = (5,2} = (1 (3. g 079 ) = (1) <6,Z(j)dﬂm R
d™xm”
R G = R G I N)

dx™

and we conclude that

"™ = (=1)"n! 4.

Example 7.2 Compute the derivative in the sense of distributions of the function

o) Ccos T forx e [0, %} ,

0 ellers.
Since

f(@) = cosm - xp0,31(x),
it follows for every ¢ € C§°(R) that

™

(f'oe) = =, ¢) :*/05 cosz - ¢/ (z) do = [~ cosz - ()] */0 sinz - p(x) dz

= (0) - (sine - xp0,5)(2), 9(@)) = {5 —sinz - x0,31(2), 9.
This holds for every test function ¢ € C§°(R), so it follows that

[ME]

ff=0—sinz-x 7x (2).
[0’5]

ALTERNATIVELY (and perhaps a little more dangerous?) we shall use the rules of computations,
because we have

d

72 10,31 = 90) —9(5),
which either can be seen directly or by the rearrangement

d d
gz X0.51 = o {X[o,+oo{ - X]%oo[} = 0(0) = 9(5)-

Then it follows by the rules of computations that
, d . d
o= . {cosa: : X[o,g](m)} = —sinz - x[o,z] +cosx - 7 X(0.3]

= —sinz- X[o,g](x) +cosx - d(g) — oS T - (5( )= cos 0 - 0(g) — cos (g) . 6(5) —sinx - X[o,g](ﬂU)

us
2

= ¢ —sinz - xp,x(z).

Download free ebooks at bookboon.com

92


http://bookboon.com/

Please click the advert

Complex Functions Examples c-8 Distribution theory

Example 7.3 Find the Fourier transform of cosx.

Formally/ the Fourier transform of cosz is given by

F{eos}(§) = / cosz - e " dy = 5/ e~ gy 5/ e~ (E+1) 7o

— 00 (oo}

= % {2md) + 2700 } =7 {d) + 91}
We shall not prove this result by using the inversion formula, i.e. we shall only show that
27 - cos(—€) = 2m cos& = - F {61y + 6(—1) } (£).
Now
F {0 + 01} () = 0y (€777¢) + 0y (7€) = €7 + €™ = 2cos
from which follows that

Flcos} =m {6a1) +6(_1)} -
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Example 7.4 Discuss why Parseval’s relation does not hold for d.

Since F{6} = 1, and since neither 1 nor ¢ lie in L?(R), Parseval’s relation does not make sense at all.

Example 7.5 FEzxpress the Fourier series

+oo )
Z (2n2 + Tn + 1) e'mr

n=—oo

as a train of impulses of § and its derivatives.

We get
= . P - S A 1 X,
_z: (2n2 + Tn+ 1) et = 27 {1_2 cot, o Z nZein® 4 7o Z ne™ + 7 Z e””“}
T 400 T 400 "7_0:00 T
= 2 {_2 D Fonm = Ti D Sonm T D 5(%)}

+oo
2 3 {—2 Slmmy = Ti 8y + 5(%)} .

n=—oo
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Example 7.6 Prove that if
Dl < p forneZ\ {0},

where p € N\ {1} is a constant, then

—+oo

Z Cn(f) eina:

n=—oo

is the Fourier series of a function f, which is at least of class CS;Q,
Then find the Fourier series of

1 for x € [0, 7],
-1 for x € [m,2x],

and show that the result cannot be improved to Cg;l forp e N.

When
mmm# forneZ\ {0} and peN\{1},

then we have the estimate

—+o0 +oo “+o0

A 1
3 el e Sheoll L len(NI S leo )]+ 203 5 < oo

proving that ZZ:’_ o Cn(f) e'™® has a convergent majoring series, so it is uniformly convergent. Since
all the terms ¢, (f)e® are continuous, the sum function

—+oo

f@)= Y ealf)e™

n=—oo

is also continuous.
Then assume that p > 2. Let k € {1, ..., p—2}. Then the formally & times differentiated series

+oo
Z iknkcn(f) eina

n=—oo

satisfies the estimate

S0 intea( e < 3l len(fl <203 <203 =20 T < e,
n=—oo n=—oo n=1 n=1

proving that the formally differentiated series is also uniformly convergent. Then it must converge
towards the function f*), which at the same time is proved to be continuous,

+oo
f® () = Z i*nFe, (f)em® e CE2, k=1,...,p—2.

n=—oo
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Finally, if
1 for x € [0, 7,
fla) =
-1 for x € [, 2],
then
2
co(f) = f(x)dz =0
0
If n # 0, then
1 27 ) 1 ™ ) 2 )
en(f) = Y ; flx)e "™ da = o ; e " dy — Py i e " dx
1 1 —inx] T 1 —ing] 2T
= g{_—m [e™"], —in [e™™], }
- —inm _ 1 _ —2inm —nml — " 9 f(_1)" —1
21n {e ¢ te } 21n {=1) }
9
; —é for n odd,
= —{1—-(-1)"} =
{1 (-1}
0 for n even,
thus
= %
~ _ i(2n+1)x
f@) n;m ( (2n + 1)) ‘ ’
and it follows that
el <2 forne 2\ {0)
n N T )
c e or n

where this estimate cannot be improved for p = 1.

Obviously, f does not belong to C9, = CE~".
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