bookboon.com

e
©
N

=<
e,
Q

Ro!
d

=

=)
T

o
S
o

o

E
O
Q
O
O
S
x
O
O
S




Leif Mejlbro

Complex Functions Examples c-6

Calculus of Residues

Download free ebooks at bookboon.com


http://bookboon.com/

Complex Functions Examples c-6 - Calculus of Residues
© 2008 Leif Mejlbro & Ventus Publishing ApS
ISBN 978-87-7681-391-8

Download free ebooks at bookboon.com


http://bookboon.com/

Please click the advert

Complex Funktions Examples c-6 Contents

Contents

Introduction 5
1 Rules of computation of residues 6
2 Residues in nite singularities 9
3 Line integrals computed by means of residues 33
4 The residuum at oo 57

\ The next step for
" top-performing

graduates

Masters in Management Designed for high-achieving graduates across all disciplines, London Business School’s Masters
in Management provides specific and tangible foundations for a successful career in business.

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to
work in consulting or financial services.

As well as a renowned qualification from a world-class business school, you also gain access
to the School’s network of more than 34,000 global alumni —a community that offers support and
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or
give us a call on +44 (0)20 7000 7573.

*Figures taken from London Business School’s Masters in Management 2010 employment report

Download free ebooks at bookboon.com


http://bookboon.com/
http://bookboon.com/count/advert/e8616b25-ea05-4d56-87db-9f6000996287

Complex Funktions Examples c-6 Introduction

Introduction

This is the sixth book containing examples from the Theory of Complex Functions. In this volume we
shall consider the rules of calculations or residues, both in finite singularities and in co. The theory
heavily relies on the Laurent series from the fifth book in this series. The applications of the calculus
of residues are given in the seventh book.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
15th June 2008
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Complex Funktions Examples c-6 Rules of computation of residues

1 Rules of computation of residues
We refer in general to the following rules of computation of residues:

DEFINITION OF A RESIDUUM. Assume that f(z) is an analytic function defined in a neighbourhood of
20 € C (not necessarily at zo itself) with the Laurent series expansion

+oo
fR)= > anz",  0<|z<r

We define the residuum, or residue, of f(z) (more correctly of the complex differential form f(z)dz)
as the coefficient of 1/z in the Laurent series, i.e.

res (f(2) dz; 20) = res (f(2);20) 1= 5= 75 f(z)dz = a_y,

where I' denotes any simple closed curve, which surrounds zg in positive sense, and where there is no
other singularity of f(z) inside and on the curve T'.

RULE 1. If 29 € C is a pole of order < q, where q € N, of the analytic function f(z), then

1 . di—1
qg—1)! 2 daa1

res(f;z0) = ( {(Z—Zo)q_lf(z)}-
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An important special case of RULE 1 is

RULE IA. If zg is a simple pole or a removable singularity of the analytic function f(z), then

res(f;2z0) = lim (2 — z0) f(2).

z—20

RuLE II. If A(2) and B(z) are analytic in a neighbourhood of zy, and B(z) has a zero of first order
at zg, then the residuum of the quotient f(z) := A(z)/B(z) is given by

) Alz). ) _ Alx)
res(f(z);z0) = res (W’ZO} =5 (z(;)'

We also have the following generalization of RULE II, which however is only rarely used, because it
usual implies some heavy calculations:

RuULE III. Assume that A(z) and B(z) are both analytic in a neighbourhood of zy, and assume that
B(z) has a zero of second order. Then the residuum of the quotient f(z) = A(z)/B(z) at zg it given

by

oy = es [ AR 64 (20) B” (20) = 2 A (20) B (20)
res (f(2);20) = (B(z) ; 0) - 3{B" (20)}2 '

The complicated structure of RULE III above indicates why it should only rarely be applied.

DEFINITION OF THE RESIDUUM AT oco. Assume that f(z) is analytic in the set |z| > R, so f(z) has
a Laurent series erpansion

+oo
f(z) = Z an 2".

n=—oo

We define the residuum at oo as
res(f(z)dz;00) i = —a_q,

where one should notice the change of sign.
Rule IV. Assume that f(z) has a zero at co. Then

res(fdz;00) = — lim z f(z2).

r— 00

Rule V. Assume that f(z) is analytic for |z| > R.Then

ez = s (1 () ).
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This may be expressed in the following way: If we change the variable in the Laurent series expansion
above by z = 1/w, then the singularity zp = co is mapped into wg = 0. Since

—% dw = d (%) (= dz),

it follows by this change of variable that we have as a differential form

res(£(2) dzsoe) s (£ (3 ) (1 ) sun =0).

which shows that it is the complex differential form, which is connected with the residues.

CAUCHY’S RESIDUE THEOREM. Assume that f(z) is analytic in an open domain Q C C, and let T
be a simple, closed curve in ), run through in its positive direction, such that there are only a finite

number of singularities {z1,...,zr} of f(z) inside the curve, i.e. to the left of the curve seen in its
direction. Then

k
1
I ﬁf(z) dz = nz::l res(f(2); zn) -
SPECIAL CASE OF CAUCHY’S RESIDUE THEOREM. Assume that f(z) is analytic in Q@ = C\{z1,..., 21},

i.e. f(z) has only a finite number of singularities in C. then

k
> res(f(2);2n) + res(f(2); 00) = 0,
n=1

i.e. the sum of the residues is 0.

Finally, it should be mentioned that since functions like

1 1 1 1
—, , tan z, cot z, - , ,
sin z CoSs z sinh z cosh z

tanh z, coth z,

etc., does not have co as an isolated singularity, none of these functions has a residuum at oo.
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2 Residues in finite singularities

1

Example 2.1 Find the residuum of the function f(z) = ﬁ,
22(z —

z # 0, 1, at the point 0.

Then compute

j{ dz
|z|:% 22(2 — 1) '

We expand f(z) into a Laurent series in the annulus 0 < |z| < 1, i.e. in a neighbourhood of zy = 0.
Then

1

+oo
1 1 1 1 1
R N T g
1) 22(z—1) 22 1—2z ZQ;Z 22z :

The residuum is a_; of this expansion, so it follows immediately that

Then
dz 1
=271 = —2mi.
7%_122(2_1) mres( 2 _1),0> )
1
Example 2.2 Find the residuum of the function f(z) = —————, 2 #0, 1, in the point 0.

22n (22 -1)’

The function can be considered as a function in w = 22, so the Laurent series expansion from zy = 0

only contains even exponents. In particular, a_; = 0, hence

and we do not have to find the explicit Laurent series in this case.

in 2
Example 2.3 Find the residuum of the function f(z) = 51n5 Z, z # 0, at the point zg = 0.
z

The numerator sin z has a zero of order 2, and the denominator z° has a zero of order 5, hence
.2
sin” z
f(2) = —— has a pole of order 3 at 29 = 0.
z

If we choose ¢ = 3 in Rule I, we get the following expression,

sinQ,z.O 1 . d? (sin®z
rex (5 0) =g Mo e g

which will give us some unpleasant computations.
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Residues in finite singularities

Then note that Rule I gives us the possibility to choose a larger ¢, which here is to our advantage. In

fact, if we choose ¢ = 5 in Rule I, then

= m —
25 4) 250 dz4

24 z—0

.2 4 3
1 d 1 d 1 1
rex (—Sm : ; O) =—1 {sin2 z} =51 Zhi% e {sin2z} = — lim 23{—cos2z} = —3

Example 2.4 Find the residues at z = 0 of the following functions:

22+ 1 224+32-5
(a) : (b)) ———

z 23

(a) It follows from

24101
2%+ ~ 14
z z

that

res(f;0) =a_; = 1.

360°
thinking
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Complex Funktions Examples c-6 Residues in finite singularities

(b) Tt follows from

that

res(f;0) =a_1 = 1.

Example 2.5 Find the residues at z = 0 of the following functions:

z

W< 0% e

sin z

24

(a) Here, z = 0 is a simple pole, hence by RULE I,

res(f;0) = lir%ez =1.

(b) Here, z = 0 is a double pole, hence by RULE I,

1 d
res(f;0) = T ;i_r%aezzlii%ezzl.

(c) We get by a series expansion of the numerator sin z that

sin 2z 1 z3+z5 1 1 1+ 1 N
- = z — — —_ e —_ — — — . = N
z4 24 3! 5l 22 6 z 120

Hence

sin z 0 1
res | ——; =q_1=——.
24 ! 6

ALTERNATIVELY we apply RULE I, considering 0 as a pole of at most order 4 (the order is in fact
3<4):

. ) » 1 1
res (%;0) =3 ;lg(l)ﬁ sinz = G lii%{—cosz} -2
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Example 2.6 Find the residues at z = 0 of the following functions:

@ 22 Helr)

sinz . .
(a) Here, —— is an even function, so
z

sin z
res <—5;0) =a_1=0.
z

ALTERNATIVELY we prove this by a series expansion,
sin z 1 23 4 z 1 11 n 1
e i U Qe T
25 ! 2t 622 120

from which we derive that

sin z
res (—5;0> =a_1=0.
z

ALTERNATIVELY we apply RULE I, because 0 is a pole of at most order 5 (the order is in fact 4):

sin z 1 . d*+ . 1 . . 0
res | —; = — lim — sinz = — lim sinz = 0.
257 20 dzt 4! 20

(b) We have in a neighbourhood of 0 (exclusive 0 itself),

Log(1 1 2,8 11
Loglt+z) L [ 22 = \_1_ 1. =2
22 22 2 3 z 2 3

SO

res (MO) =a_1=1.
z

ALTERNATIVELY, z = 0 is a pole of at most order 2 (its order is 1), so by RULE I,

22 )1 250 de

Log(1 1 d 1
res (MO) = — lim — Log(1 + 2z) = lim =
2—01+ 2

Example 2.7 Find the residues of all singularities in C of
sin z

1 z
(a) 2(z—1)’ (®) 24417 (c) 22(m—2)’

(a) The function

1
f(Z)*m

has the simple poles 0 and 1. Then by RULE I:

res(f;0) = limz- f(z) = ;= = -1,
: 1
res(f;1) = lim(z-1)f(z) = lim - =1

12
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(b) Here we have the four simple poles

exp (zz> exp 23—7T exp 15—7T exp 27—7T .
4/’ 4 )’ 4 )’ 4

If we put

A(z) =z and B(z) = z* 4+ 1,

and let zy denote any of these simple poles, then 2§ = —1 for all four of them, and we conclude by
RULE II that

—

Alzo) _ %
B'(29) 4z

res (f;zo) =

hence

frex T __1 . T i
7epz4 —Zlepz4 =71

(¢) Clearly, the singularity at z = 7 is remowvable, so
res(f;m) = 0.

Since

sin z

—1 for z — 0,
z

the singularity at z = 0 is a simple pole, so

i 1 1
res(f;0) = lim 2 f(2) = lim Sz .

z—0 z m™—2Z ™

ALTERNATIVELY we consider z = 0 as a pole of at most order 2, so it follows by RULE I that

1 <] 3 51 1
res(f;O):—limi (blnz) :hm{cosz N sin z }:_.

1 2= dz \m—2z =0 | m—2 (m—2)? ™

Analogously we can consider z = 7 as a “pole” of at most order 1. Then by RULE I,

. sin z
res(f;m) = lim {?} =0.

Z—T
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Example 2.8 Find the residues of all singularities in C of

zet? 2245 e?
(a) EEESE (b) D1 (c) g

(a) The only singularity is a double pole at z = m, so if follows from RULE I that

res (%;TF) = % Zlﬂ% (zeiz) :,}E,T}r (eiz +,L~Zeiz) - 1_in

(b) The function

22 4+5

R EETTeE

has the three simple poles 1, ¢ and —i, and the double pole —1. If we put

3
Az) = i:f and B(z) = 2* -1,

S00T NG SWHSAS WL SRl

It's only an
opportunity if
you act on it
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where the simple poles zg = 1, i, —i, all satisfy 2§ = 1, then

A 1 345 1 1+5
res(f;zo):ﬂ:—.z_i.zo—i_ = . +ZO:—+ =0 )
B'(z) 4 z5 z+1 4 142 4 1+ 2z
hence
1 1 3
res(f; 1) = Z + 5 = Z’
. 1 7 3+ 2
res(fii) = =
. 1 i 3—2i
res(fi=i) = T T

Finally, it follows for the double pole —1 by RULE I,

. d 245
reS(f§ _1) z1—1>n;11 E { (22 + 1) (Z — 1) }

B lim{ 322 22 (23 +5) B 22 +5 }
o | (2241 (1) (2241)%(2—1) (2241)(z2—1)?
_ 3 _2(*1)'4_ 4 __§_1_17_9

2.(=2) 22.(=2) 2-(-2)2 4 2 4

CHECK. The sum of the residues is

3 342 3-2 9
R

This agrees with the fact that the function has a zero of second order at oo, so the residuum in oo
(the additional term) is 0 in this case.

(c) The poles z = —1, 0, 1 are all simple. Therefore we get by RULE I,

. . e® e ! 1
res(fi=1) = lim e+ DFE) = im, e = T T 2
res(f;0) = ;g%zf@):lggggéizz,l
res(f;1) = gﬂ@—lﬁ@yzggzﬁ;ﬁzg,
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Example 2.9 Find the residues at z = 0 of the following functions:

(a) 2z+1 e?
a) ———— :
2(2%—5)’ sin z

We have in both cases a simple pole atz = 0. As usual there are several possibilities of solutions, of
which we only choose one.

(a) It follows by RULE I,

2z +1 0 I 2241 1
res ( ——=—;0 ] = lim =——.
z2(z3—5)’ 2023 — 5 5

(b) In this case RULE IT is the easiest one:

z z
e . e
res| —;0 | = lim =1.
sin z z—0 COoS 2

Example 2.10 Find the residuum at z =1 of
1

Z?’L_

, eN.
1 n

Here z = 1 is a simple pole, so by RULE II,

1 . 1 1
res ;1) = lim =—.
zm—1 z—1m 1 n

ADDITION. Let 2y denote any one of the simple poles, i.e. zJ' = 1. Then it follows by RULE II that

1 1 20 20
res| ——5 2o = 1 = —. <>
zn —1 nz 20 n

Example 2.11 Find the residues at all singularities in C of

| by EoNE)

1
(CL) (2,271)(24,2)’ (24_1)2 ’ (C) exp (Zl)

(a) The poles at —2, —1 and 1 are all simple, hence by RULE I,

1 9 I 1 1
T —_— 1 — = m ———— =z
“NE-DGE+2) te 21 3
1 1 I 1 1
T —_— — = m — = —=
“NE-DGe+2) AN C T D2 2
1 I 1 1
r R = Jim——— = —.
“NE-DGr2) 2z D(z+2) 6
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Remark 2.1 Here,

(W?”) e (m?‘l) e (WM”) -0

in agreement with the fact that we have a zero of order 3 at oo, so the residuum here (the additional
term) is 0. ¢

(b) The poles are her z =1, i, —1, —i, and z = 1 is a simple pole, while the other ones are double
poles. Hence by various applications of RULE I,

3
23 _
3 2 — (2 +2) 2
res(f;1) = hm(zfl)w:th:hmw:i
N S
z—1

REPTORY. B N Gl VI G ok
res(f7 1) - Zl_,_1 dz { (22 —+ ].)2 (Z - 1)2 }

—  lim {322(z+2)+23—1 22 (22=1) (2+2) 2 (22~1) (2+2) }

(22+1)2 (2—1)2 (22_1,_1)3 (Z_l)Q (22+1)2 (2—1)3
T2 T 2.(27 2. (-2 16 16 16 16

—i dz (Z+Z)2 (2271)2
— lim {322(2+2)+Z31 2(z*-1) (z42) 2-2z(*-1) (z+2)}

res(f;i) = lim 4 { (Zg_l) (2+2) }

(402 (22-1)"  (2+0)? (2>—1)° (244)? (22)°
3240 —i—1 2-(=1—0)(2+1d) 4i(—1—i)(2+1)
—4-(=22  =8i(-2)2  —4(-2)p
_ T4 -1-30 2(-1-3) T4 =340 =642 24T
16 164 16 16 16 16 16

res(f;—i) = lim d {—(ZS_l) (2+2) }

sm—i dz (z—i)2 (2271)2

. {322(z+2)+z31 L 2(8-1) (242) 222 (28-1) (z+2)}
=i | (2=0)2(22-1)7 (2—0)3 (22-1)° (z—i)2 (22—1)°

B2—i)+i—1 2-1+)2—i) (—4)(—1+i)2—i) —0r —2-7i
B ) A A L A T

Note again that the sum of residues is 0.
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Complex Funktions Examples c-6 Residues in finite singularities

(c) The only singularity here is z = 1. It is essential, so we must expand into a Laurent series from
20 = 17

1 1
exp(—):1+—+-~-, ,z # 1.
z z

It follows that

1
res <exp< >;1) =a_1=1.
z—1

ericsson.
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Example 2.12 Prove that the functions

(@) —. () —

sin z 1—e*’

only have simple poles in C. Find these end their corresponding residues.

(a) The poles of .
sin z has the zeros {p7 | p € Z}, where

are the same as the zeros of sin z and of the same multiplicity. The function

d
lim — sinz = lim cosz = (—1)? # 0,
zTmdadz Z—opT

hence all poles are simple. Finally, it follows by RULE II that

1 1
res < —: p7r> = lim = (—1)7, p € Z.
sz zT ™ COS 2

(b) The poles of T or e the same as the zeros of 1 — e* and of the same multiplicity. The zeros
—e

are z = 2ipm, p € Z, and since

d
e (1—-¢*)=—e*#0 for every z € C,

all poles are simple. Hence by RULE II,

1 1
res <—; 2ip7r> = lim = -1, pEZL.
1—e*

z—2ipm —e*

Example 2.13 Find the residues at all singularities in C of

1
1—cosz’

1
The function T ooss has a (non-isolated) essential singularity at co, and otherwise only poles in C.
5 2

The poles are determined by the equation 1 — cos z = 0, thus

(1) 0:1—Cosz=2sin2%,

the complete solution of which is z = 2pm, p € Z. It follows from (1) that the zeros are all of second

1
order, hence the poles z = 2pm, p € Z, of T coss are all of second order. We then have by RULE I
—cosz
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and L'HOSPITAL’S RULE the following dreadful computation,

1 1 d [ (z—2pr)?
res| —;2pr ) == lim —<{ —-——
1—cosz 1! z—2pr dz 1—cosz

2(z—2pm)(1—cosz)—(z— 2pm)?sinz

- zggzlm (1—cos z)?
—  lim 2(z—2pm) - 2sin? 2 — (z—2pm)? - 2sin 5 cos £
=2pr (2 sin? 2)”
_ 1 lim 2(2'%*2]?7‘()8111%*(2'%72pﬂ)2COS%
2 z—2pm sin® 5
9 lm (w — pr) sin w-fs(w —pm)? cosw
w—pm sin” w
— 9 lim sinw+ (w—pn) cos w—2(w—pn) cos w— (w—pm)? sinw
w—pm 3sin?w - cosw
_ 2 lim sinw — (w — prr) cosw + (w — pr)? sinw
3 w—pm sin?w - cosw
_ 2 lim cos w—cos w+ (w—pr) sin w+2(w —pr) sin w+ (w—pm)? cos w
3 woprm 2sinw - cos? w — sin® w
_ 2 lim 3(w—pm) sinw+ (w—pm)? cos w
3 w—pn 2sinw - cos? w — sin® w
_ 2 lim 3sinw+3(w—pr) cos w+2(w—pr) cos w— (w—pr)? sinw
3 w—pr 2 cos® w—4sin? w - cosw—3sin® w - cosw
= 0.

Remark 2.2 Whenever one apparently has to go through some heavy computations like the previous
ones, one should check if there should not be another easier method. Here it would have been cheating
the reader first to bring the simple solution, so for pedagogical reasons we have first given the standard

solution.

An ALTERNATIVE method of solution is the following: First note that we have for every z € C and

every p € Z that

cos((z + 2pm) — 2pm) = cos(—(z + 2pm) — 2pm),

which is just another way of saying that the function 1 — cos z is an even function with respect to any
2pm, p € Z, so if we expand the function from some 2pm, then it is again even. In a Laurent series
expansion of any even function all coefficients as, 11, n € Z, of odd indices must be equal to 0. In

particular,

1
res <— : Qpﬂ-) =a_1=0 for ethvert p € Z. O
1—cosz

20
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inh
Example 2.14 Find the residues at all singularities in C of 51.n :
sin® z

Clearly, the poles are z = pmw, p € Z, and z = 0 is a simple pole. Any other pole z = pm, p € Z \ {0}
is a double pole.

When we apply RULE I, we get

( 5 )
. Zlzt 5yt
- sinh !

res(f;0) = lim ZoSmhE im 3 — lim =1,

z—0 sin? 2 z—0 23 2 250 , 52 2
Z _— — e Z 1 —_—— DR
(ae) TeT)
and

sinh z 1 .. d [(2—pn)?sinhz . d [ 2%sinh(z + pr)
res (| ——;pr ) == lim —¢——5——¢=lim — ¢ ———= ¢ =ay,

sin? z 1! z—pr dz sin” z z—0 dz sin” z
where we to ease matters have put

2.

z*sinh(z + pr
#:ao+alz+...’|z‘<ﬂ-’
sin” z

(2)

because z = 0 is a removable singularity, and the function has a Taylor expansion in the open disc of
centrum 0 and radius 7.

The task is now to determine the coefficient a; in the Taylor expansion. It is obvious that the usual
definition with a differentiation followed by taking a limit becomes very messy. Instead we multiply
by the denominator, so (2) becomes equivalent to

1
zQSinh(z—i—pﬂ'):(a0+a1z+---)sin2z:(a0+alz+-~-)-§(1—cos2z),
hence after insertion of the series expansions,
2?{sinhpr + coshpr -z + -} = (ag +arz +---) -
2 1 4
:(a0+a12+...) Z_gz + ,
which for z # 0 is reduced to
. 1
sinhpr + coshpr-z+ -+ =(ag+arz+--+) 1—§—|—~-~ =agtaz+--.

When we identify the coefficients, we get
ag = sinh prw and ayp = cosh prm,

so we conclude that

-1 h
res (51.n2 i : pﬂ') = a1 = cosh pm, p € Z\ {0},
sin” z
inh
res (%, 0) =1 =cosh(0-7), p=0,
sin” z
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Complex Funktions Examples c-6 Residues in finite singularities

(cf. the above). Summing up we have in general,

sinh z
res (m ; p7r> = cosh pr, pEZL.

Example 2.15 Find all Laurent series solutions in a disc with the centrum zq = 0 excluded of the
differential equation

(422 fl(2)+2( +2) f(2) =1,

and find the value of the complex line integral

for everyone of these solutions.

First method. Inspection. Let us first try some manipulation,

(2 1) {2F(2) +2: f(2)} = (2 +1) - (7)) =1

SIMPLY CLEVER SKODA
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Complex Funktions Examples c-6 Residues in finite singularities

When |z| < 1 this equation can be written

d 2 — 1 _+°° 1n2n

hence by termwise integration in the open unit disc |z] < 1:

+oo
_1)»
2f(z) =C+ Z % 22"t = €'+ Arctan z, C € C arbitrary constant,
n=0

and the complete solution in the disc (without its centrum) is given by

C X (-0 ,,_, C  Arctanz
M=+ gy =t 2

n=0

, CeC, 0<]|zl<1.

1
The circle z| = 3 lies in this set, so we conclude that

}1{ f(z)dz =2mi-res(f;0) = 2wia_y = 2mi,
l=1=3

which holds for all of the solutions above.

Second method. The method of series. The coefficient z* + 22 = 22 (z2 + 1) is 0 for z = 0 or for
z = +i, and the solution f(z) is analytic in its domain. Therefore, we get by inserting the Laurent
series

f@ =S, )= nanent,
into the differential equation that
(z* 4+ 22) f(2) + 2 (2% + 2) f(2)
= Z na,z"3 + Z na,z" T+ Z 2a,2" 3 + Z 2a,, 2"
Z(n +2)a, 2" + Z(n + 2)a, 2"
Z nay_ 02"t + Z(n + 2)anz"+1
Z {nan_o+ (n+2)a,} 2"

This expression is the identity theorem equal to 1, if —a_3 + a_1; = 1 and the following recursion
formula holds,

Nan—z+ (n+2)a, =0, forn e Z\ {-1}.

If n =0, then ag = 0 and a_s is an indeterminate. Then it follows by recursion that as, = 0 for
n € Np.

If n = —2, then a_4 = 0 and a_5 is an indeterminate. It follows by recursion that a_o, = 0 for
ne N\ {1}.

It only remains to find the coefficients of odd indices, where we have already proved that

—Q_3 + a_1 = 1
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Complex Funktions Examples c-6 Residues in finite singularities

We have for the odd indices the recursion formulse

2n—1
A2n—1 = —m a2n—3, n €N,
and
—2n+1
G_9p_3 = ——F7——G_2,_1, n € N.
—2n—1

Hence by recursion for the positive, odd indices,

2n—1 _ _( )n 2n—1 2n—3
1T T m+1 2m—1

~_(=nn
T o+ 1’

a2p—1 = ca-1

ol W
Wl

where the corresponding series is convergent for 0 < |z| < 1. This series is determined by the
coefficient a_1.
The analogous coefficients corresponding to the negative odd indices < 3 have a similar structure,

1
corresponding to the domain of convergence given by ’—' < 1, i.e. the set given by |z| > 1. This
z

series is determined by the coefficient a_3.
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Complex Funktions Examples c-6 Residues in finite singularities

. : | :
Since a—; — a_3 = 1, and since the curve |z| = = lies in the set 0 < |z| < 1, we must necessarily

have a_3 = 0, and hence a_; = 1. Therefore, the complete solution is in the unit disc given by

—+oo

f(z) = 22 Z (=D" Z2n—t az€C, 0<|z| <l
2n+1 ' ’

n=0

1
Since the circle |z| = 5 lies in the set 0 < |z] < 1, we get for each of these solutions that

]{ f(2)dz =2mia_y = 2mwires(f;0) = 2mi.
1=

1

2

Example 2.16 Find all Laurent series of the form
a +oo —+oo
flz)= il + Zanz" = Z anz",
n=0 n=-—1

which are solutions of the differential equation
d
(z —2%) d—];f(zfl)f(z)zlJrz,

and find the annulus r < |z| < R, in which these Laurent series are convergent.
Choose any constant ¢ € |r, R[. Find for any of the solutions above the value of the line integral

ﬁﬂ_c f(z)d=.

Ezxpress each of the solutions f(z) by means of elementary functions in the domain of convergence.

1
HinT: Consider e.g. 3 z f(2).

First method. Inspection. The differential equation has the singular points z = 0 and z = 1, so we
may expect that the domain is given by 0 < |z| < 1. In this set the equation can be divided by
1 —2#0. Then

df d 14z 2

The differential equation can now be written

(3) (= f(2) =1+ o

1—z

If |z| < 1, then 1 — z lies in the right half plane, so Log(1 — 2) is defined for |z| < 1. When we
integrate (3), we get

z- f(z2) = —2—2Log(1l — 2) + C,
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thus

Log(1 —
f(z):g—l—QM, 0<|z|<1l, CeC.
z

We have now answered the last question of the example.

Since
“+oo
1
Log(l —z2) = — Z o PAE for |z| < 1,
n=0

it follows by insertion that

n+1 n+1

n=1

C = 1 C = 2
=——-1+2 "=—+1 " for 0 < [z] < 1.
f(2) p + ;0 z z+ —|—Z z or |z]

This shows that all Laurent series solutions are given by

f(z)—g+1++§ 2 2" 0<|z| <1 cecC
_Z —~ 1 9 9 .

n +

Then it is easy to prove that if ¢ €]0, 1], then

z

j{ f(z)dz)j{ Edz:27rires(f;0):27ria,1:27m'-C’, CeC.
|z|=c |z|=c

2
A VARIANT is to expand T 1 in a series. Then the equation becomes
—z

d

+oo +oo
2 n n
£(z~f(z)):—1+:=—l+2n§::oz =1+2n§::12 . el <1

We get by termwise integration in the disc |z| < 1,

+oo

2
2 f(2)=C+z+ ) 2 zl<1,  CeC,
:1n+1

hence

f(z)*nglJr—‘_i.O 2 z" 0<|z| <1 ceC
oz —n+l ’ ’ '

Clearly, these Laurent series have their domains of convergence 0 < |z] < 1, when C' # 0, and
|z <1if C =0.
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Second method. The method of series. If we put

+o00
f(z)= Z anz" og

n=-—1

df f et
—_— = nanz
dz =

into the differential equation, then

1+z = (2-27) Ef(zfl)f(z)
—+o00 +oo “+o0 —+o0
— Z napz" — Z na,z" Tt — Z anz"t Z anz"
n=—1 n=—1 n=-—1 n=—1
—+o00 +oo —+oo +oo
= Z (n+ Dayz" — Z (n+Da,z"" = Z(n + Dayz" — Z Nan_12"
n=—1 n=—1 n=0 n=0
“+o0o
= l-ap+2a1z2—0-a_1 — 1-aoz+Z{(n+1)an —nap_1}z2"
n=2
“+o00
= ao+(2a1 —ag) z + Z {(n+Da, —na,_1} 2"
n=2

Then it follows by the identity theorem that

G,O:L
2a1 — ag = 17

(n+1)a, =na,_1 for n > 2.

We get ag = 1 and a; = 1, and then from the recursion formula,

(n+Da, =nap_1=--=2-a, =2, n>2,
thus
2
ay, = for n > 2.
n+1

Finally, we note that a_; is an indeterminate, so

+oo

a_1 2
= — ]_ n
f(z) ; + +z+n§:2n+1z,

0<|z| <1

Clearly, the power series has the domain of convergence |z| < 1 = R.

If a_y # 0, then r = 0, so we get 0 < |z| < 1.
Clearly, if ¢ €]0, 1], then

]{ f(z)dz:% %dz:%ria_l.
|z|=c |z|=c

27
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Complex Funktions Examples c-6 Residues in finite singularities

Finally, we have in the given domain,

1 R

1 B 1 1, a1
57 flz) = 2a,1+22+2z +n§::2n+1z
—+o0
1 1 1 1 1 1
_ n+1 _ = _ =2 - - -2
Zn—i—lz 17 g Tatrtgetye
n=0
+oo
(—1)" L1 11 1
= - —z)" a4 ——-z2=-a_1 — —2z— Log(l—
;n—i—l( 2) +2a1 2z 2(11 2z og( 2),

and hence for 0 < |z| < 1,

f(z):__l_z.w_

z z
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Complex Funktions Examples c-6 Residues in finite singularities

Example 2.17 Given

F =B ee\lnen),

(a) Find the isolated singularities {z, | n € Z} for f(z), and indicate their type.

(b) Compute the residuum of f(z) in every pole.

(c) Prove that we have for every real ¢ # 0,

| tanh(m{c +it})| < |coth(mc)|, teR.

(d) Assume that a > 0, and let C,, denote the boundary of the rectangle of the corners a, a+1i, —a+1
and —a. Explain why

(4) ?{Caf(z)dz_jéca%dz

is defined, and find the value of this line integral.

(e) Prove that the improper integral
/+°° tanh 7 x
——dzx
e 214

is convergent, and find — possibly by taking the limit a — +o0 in (4) — the value of this integral.

(a) The singularities are given by z =0, z = ¢ and cosh7 z = 0, thus 7z = ¢ g +inm, n € Z. Hence,

the singularities are

1
2, =0, 21 =141  and zn—i<n+§), n € Z.

It is almost obvious that z{, = 0 and 2] = i are removable singularities, because

T
tanh 7z 1 . tanhwz o 2 .
m-——=—— un—:zhrnCC’S’h—7r’z:71'27
2z—0 Z(Z — Z) 7 2z—0 z z—0 1
and
T
— .
tanh 7 2 1 tanh 7 2 PR cosh’tz T B .
im ———— = - lim ——— = —i lim = — =T,
z—iz(z—1)  da—i z—1 z i 1 (coshim)

where the assumptions of I’'Hospital’s rule are fulfilled, and
(cosh(im))? = (cosm)? = (—1)* = 1.

Furthermore, the singularities

1
zn:i(n+§), n € 7,
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1
are all simple poles. In fact, ﬁ is er defined for all z,, and for
2(z—1
tanhr s — sinh 2z
coshr z

the denominator cosh wz has a simple zero at each z,.

(b) According to (a), the poles are given by

1
zn:i<n+§), n €7,

and they are all simple. When we apply RULE 11, we get

ros tanhmz ; C e sinh 7 z 1 il 1 ~ lim sinh 7 z 1
2(z—4)" ") 2(z —14) coshmz’ 2)) smi(n+d) 2(z =) m-sinh7z
1 1 1 1 4 1
= n € 7.

T Y N N
t{n+-)i({n—< -
2 2 4

(c) Using the definitions of the complex hyperbolic functions we get

cosh?(m ¢)

sinh? (me)

o,  Isin(r{c+it})|>  cosh®(me) — cos?(rt) -

= - = coth?(m¢),
|cosh(m{c+it})]?>  sinh®(mc) + cos?(mt) (me)

| tanh(m{c +it})]|

hence the estimate,

|tanh(m{c +it})| < |coth(n c)|.

Figure 1: The path of integration Cy and the poles on the imaginary axis.

(d) The path of integration C, passes through the two removable singularities z, = 0 and 2] = i.
Since f(z) can be continued analytically to these points, the line integral

%Ca f(z)dz
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is defined, and we get by Cauchy’s residue theorem that the value is given by

tanh 7 2z )
% e 2 .
. z(z z) dz = 7rzres<f( ), 2

> =2mires(f(z); z0) = 271'1'-é = 8i,

™

where we have used that zq is the only pole inside C,, and where res(f(z); z,) has been computed

in (b).
(e) Since

tanh 7 x
— 7 for x — 0,
x

the integrand is continuous on R. Since

tanh 7z 1

f >1
x(1+22)| = 1+ a2 or |z = 1,
tanh 7z
it follows that ———— has an integrable majoring function, so
x(1+22)
/+°° tanh 7w x d </+°° tanh 7 x d </1 tanh 7 x 2d +/+°° dx -y
x —| dx —| dz — 00
z(1+22) |~ ) o |z(1+2?) )| (1+a?) o 122 ’
and the improper integral
/+°° tanh 7«
——dx
—oo @ (142?)
is convergent.
It follows from (d) that
tanh
5) 8 = 7{ 2T
c. 2(z =)
/a tanhﬂ'.z dr — /a tanh(ﬁ{?+i}) da
g x(x—1) e (z+d)x

v dt.

' tanh(r{a +it}) . B ! tanh(w{—a + it})
+/O (a-i—it)(a—i—i{t—l})Zdt /O (—a+it)(—a+ift—1})

We get by (c) the estimates

/1 tanh(m{a + it})
o (a+it)(a+i{t —1})

| coth(m a)|
02

-1—-0 for a — +o0,

idt‘ <

-1 —0 for a — +o0.

! tanh(m{—a + it}) ; | coth(ma)|
/0 Cati)(—ati{i—1}) dt’ =T

Furthermore,

. sinh(rx +7¢)  sinh7a-cosm+1i-coshma-sine  sinh7z
tanh(w{z +1i}) = L = — - = = tanh 7z,
cosh(ma 4+ mi)  coshmz-cosm+i-sinhmz-sine  coshmx
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hence by insertion

/ tanthvdx _ / tanh(ﬂ{x.—i-z}) dx:/ tanh 7 x 1'_ 1' i
g x(x—1) e (z+id)x e X x—i x+i

% tanh 7o 2 [* tanhma
— F— de = 2i —dx.
e x2+1 o v (1+22)

This expression is convergent by the limit a — 400, so it follows from (5) that

“+oo
tanh 7 x
8i = 2i —d 0+0
! z[m x(1+22) z+O+0,

and by a rearrangement,

+oo t
/ anh 7 x do — 4.
o 2 (1+2?)
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Complex Funktions Examples c-6 Line integrals computed by means of residues

3 Line integrals computed by means of residues

Example 3.1 An analytic function f in an open annulus
O={2eC|0<|z| <R},

can be described by its Laurent series:

+oo
f(z)= Z anz", ze .

n=—oo
1) Assume that the function is even, i.e.
f(z)=f(=2), zel
Prove that a,, is zero for all odd values of n.

2) Find the value of the complex line integral

1
]{ - dz.
|z|=1 zZ smz

1) When f is even, we have in Q,

+o00 too
0= 1) - f-2)= 3 = (1"} = 3 2agps.

n=-—oo p=—00
We conclude from the identity theorem that

agpr1 =0 for p € Z.

2) If we put f(z2) =

——, then
z sin z

I P

(—2)-sin(—2) zsinz

so the integrand is an even function. Then by (1) we have in particular a_; = 0, because —1 is
an odd index. Then

1 1
f - dz = 2mires < - ;O> =2mta_1 = 0.
2|=1 2 Sinz z sin z

Example 3.2 Find the value of the line integral

e
— dz.
7{4_2 2(z = 1)?
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It is not a good idea in this case to use the traditional method of inserting a parametric description
and then compute. Note instead that we have inside the curve |z| = 2 (seen in its positive direction)
the two isolated singularities z = 0 and z = 1, hence by Cauchy’s residue theorem,

Now, z = 0 is a simple pole, so it follows from Rule Ia that

e? ) ) e
(T 0) = 1) =
Since z =1 is a pole of second order, ¢ = 2, we get by Rule I,
e 1 Cd?t 9 .od [e® .ef
res (z(z 12 1) = ooy Mg (== 1*f()} = Jim 2 {?} =lm 5 GE-1=0

Finally, by insertion,

eZ
——dz = 2mi.
fiw Az—12 T

ze?

Example 3.3 Compute the line integral flzl_z poa dz.
=2 2 _

In this case the integrand has two isolated singularities inside |z| = 2, namely the two simple poles
z = +1. This gives us a hint of using Rule II. Put A(z) = ze* and B(z) = 22 — 1. Then B'(z) = 2z,
and it follows by Rule II that

zet - Az) _ A(x)  zoezp(z0) _l 240
e\ o ) T Be) ) T B G 2a 2°

where zg is anyone of the singularities £1. When we apply Cauchy’s residue theorem, we get

z 1 —1
j{ ;:_el dz =2mi{ res(f; 1) + res(f; —1)} = 2mi - % =27 - cosh 1.
|z]|=2 77 —

z

v dz.

Example 3.4 Compute the line integral 55|z

The integrand has the four simple poles 1, i, —1 and —i inside the path of integration. Then by
Cauchy’s residue theorem,

fz|—2 " dz = 2mi{res(f;1) + res(f; i) + res(f; —1)+ res(f : —i)}.
When we shall find the residues in several simple poles, “more or less of the same structure”, we
usually apply Rule II. Let zo be anyone of the four simple poles, and put A(z) = z and B(z) = 2* — 1.
Then we get by Rule II,

< z A (z0) o 122 1,
res —_— . Z = = = = — = — Z
A1 B’ (20) 428 4zl 47
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hence by insertion,

.
}{ ﬁw:%{12+z’2+(—1)2+(—i)2}=0.
|z|=2 -

Example 3.5 Integrate the function

Zeaz
=" 0<a<l,
16 == a

along the rectangle of the corners +k, +k + 27w i, where k > 0. Then let k tend towards +oo in order
to find the integrals

+oo ax +oo ax
Joz/ ¢ —dx og J1:/ re —dx.
—oo LHte o 1te

Figure 2: The path of integration Cg and the singularity 7.

az

The integrand -

T+ o has simple poles for e* = —1, i.e. for
e

z=mi+2ipm, pE L.

Of these, only z = 7i lies inside the curve C}, for all £ > 0. The function is analytic outside the
singularities, so it follows from Cauchy’s residue theorem for every k > 0 that

> 0% 2 0% ,L'eaﬂi .
(6) dz =2mives [ ——— ; mi ) =21 — = 2727,
c, 1+¢e? 1+e* er’

in particular, the value does not depend on k > 0.

On the other hand,

az k azx 27 -0\ La(k+it
k + it)ealk+it)
(7) % c dz = / re dﬂ?—‘r/ %idt
c, 1t+e? _p l+e” 0 1+ et
/k (x 4+ 27ri)ea(w+2m‘) p /27r (—k + it)ea(—k-&-it) -
— - X — . (3 .
—k 1+ eT+2mi o 1+ efk+zt
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Since 0 < a < 1, it follows by the magnitudes that

+o00 ar +o0 -\ ja(z+2mi)
xe (x + 2mi)e
/_OO e dx and /_OO T criom dx
exist. We have furthermore the estimates
27 . a(k+it) ak
(k +it)e ( . (k +2m)e
‘/O W dtﬁeki_l%r—ﬂ) fOfk—>+OO7
and
2 - a(—k+it ak
—k + it)ea(—k+it) k+2
/ ( —|—z)ek . 'dtS(_:—Tr)e-Qﬂ'HO for k — +o0.
0 1+ ektit ek —

Hence by taking the limit k& — 400, we conclude from (6) and (7) that
5 0% B /+oo T e /+OO (,I + 27_”-)6a(:c+27ri)
- oo 1+e® e 14+ er+2mi

+oo ar +oo ax +oo ax
Te : Te : . e
= / —dx — 62”‘”/ —dx — e2rat . 27rz/ —dz
feo l4e oo l4e oo lH4e

“+o0 ax “+oo ax
; ze ; e
= (1-¢e*) / —dx — 2mi - e?mat / —dx,
—00 1 + (& oo 1 + e

272%™ = lim

dx
k——+o00 Ch 1 + e*
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. . . aﬂ'l
so by a division by e®™",

) ) +o0 T ed® ) +o0 ea
or? = — (e”‘“ — e_’““) / dx — 2mi - e’”“/ dz
Lo LHte* oo Ltef
+oo T e +oo 0T
= —2isin aﬂ/ dx — 2mi(cosma + i sinma) / dx
oo lHe* oo lH4e*
) +oo 0T ) ) +oo T %% +oo 0T
= 27 -sinar —dz — 2i {sinar —dz +m cosam —dz .
s Llte oo 1€ oo 1H+e
Then we get by separating the real and the imaginary parts,
+oo 0T
272 = 27 - sin aw/ —dz,
oo lHe
and
+o00 ax +oo ax
xre e
sin(m/ mdm—i—ﬂ'-cosaw/ —dzr = 0.
Ceo lHe feo lHe
Finally, we derive that
+oo ax 2
e 2 T
J(] = / ——dr = . = )
oo 1 te* 27 -sinam  sinam
and
J /+°° x er T COos am /+°° e T COs am T 72 cosam
= r=—— r=— . =— .
! feo lH4e* sinar  J_o, 1+e® sinam  sinam sin? am
Example 3.6 Compute the complez line integral
1
z|=2 (2 — = ) cosz
2
The analytic function cos z has the simple zeros
™
z = ) + nm, n € 7.
Hence the given integrand has infinitely many (simple) poles outside |z| = 2. Inside |z| = 2 the
. ) s 7r
integrand has a simple pole at z = —5 and a double pole at z = +§. Except for the poles, the
function

1
fZ)=F7——F—
(Z— 5) COS z

is analytic. Then by the residue theorem,

j{z|_27(2_iz :27ri{res(f;g)+res(f;—g)}.

5) COS 2
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Complex Funktions Examples c-6

Figure 3: The curve |z| = 2 with the two poles insider.

Determination of res (f; —g) The pole z = —g is simple. Apply RULE II where e.g.

1
A(z) = = and B(z) = cos z.
)
Then
T
o (f ﬂ) A(‘E) 1 1
T =) = = =—=
) D )
2 2 2
ALTERNATIVELY we apply RULE 1. Then
1 5 1 1
reb(f7_z) = hmw s .Z+2 = s i s
2 Fo-3 22— 5 COSZ TR ) Cosz—cos(—g)
D
1 1 1 1 1
7w [—sinzl—_z @

lim, ,_ = — cosz
2 dz

Determination of res ( f; E). Here we shall demonstrate a seldom application of RULE III, where

A(z) =1 and B(z) = (z — g) COS Z.

Then A’ =0, and
B'(z) = cosz — (z - 5) sin z,

B"(z) = —2sinz — (z - 5) Cos z, B" = -2

B"(z) = =3cosz + (z - g) sin z, B" =0,
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Line integrals computed by means of residues

T 6A'B" —2AB""  6-0
res (f, 5) =

(=2)?

with

(=2)—-2-1-0
3(311)2 o 3. B

and
T z—3 T
9(2) 9(2) _ cosz _ - 2+COSZ _ T(z)
_T T AW N(z)'
=g Z- 5 (z 2) cos z
Since cos z has a simple zero at z = —, the denominator

0.

ALTERNATIVELY (and more difficult) we use RULE I and I’Hospital’s rule (or possibly o-technique)

has a double zero at z = —. The series expansion of cos z from z = — is given by

hence

i (o) g (5 o ((-3))

and we conclude that

T(z) 1

NG 6 (:-3) +O(<2_g)l)’

and therefore,

39
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6 Line integrals computed by means of residues
i les c-
Complex Funktions Examp

ital’ ecursively, since
ALTERNATIVELY we apply [’Hospital’s rule r v,

T(z) =2z~ 4 +cosz, 7]\;(%1)):_%
N(z) = (2 — %) cosz, (5) =0,
T'(z) =1—sinz, T'l(gﬂ)) i%
N’(z):cosz—(z—g)sinz, N (5 =0,
T"(z) = —cos z, T/,/,(%,) :_()_’2
N"(z) = =2sinz — (z — §) cos z, N" (%) = -2,

and we conclude again that

T(z) :i:
SENG) T -2

0.

Finally, we get summing up,

1 .
O e o O PR | SR ()
|z|=2

— — )] COS Z
i 2)
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Complex Funktions Examples c-6 Line integrals computed by means of residues

Example 3.7 Compute the complex line integral
2z _ ,z+1
=2 (2 —1)

The integrand has a pole of at most order < 5 at the point z = 1 (the order is actually 4) inside
|z| = 2, so we get from RULE I that

e?* — e* Tl 2mi t
- e ; . : z z+1
j<l|{| R dz = 2mires(f;1)= o imi oA (¥ — ")

_ 7T_’L . (2462 - 1+1) _ 157 02 5me?
12 12 4
ALTERNATIVELY we may apply RULE I with ¢ = 4 instead,

622 _ eerl 2 d3 e?z o eerl
L dr=2nmi- 1) = lim o )
fjd_g (z—1)5 2= 2mi-res(f3 1) 30 =0 453 < z—1 )

It is possible with some difficulty to get through these computations, but it is not worth it here. The
message is that we gain a lot by pretending a higher order.

ALTERNATIVELY we use that we here also have
res(f; 1) = —res(f; o).
It is actually possible directly to find res(f; co), but again the computations are rather difficult.

ALTERNATIVELY we expand

2z z+1

g(z) =e** —e ud fra z = 1.

as a series. The Taylor coefficients are

g(z) = e — =1, 9(1) =

g'(z) =2e% — et g(1)=

g”(z) = 4e2% — ez+1, ”(1)‘?36
9(3)(2) — 8¢2% — ez+17 9(3)( ) _ 76
g@W(2) = 16e2* — > 11, g@® (1) = 15€2,

so the Laurent series expansion becomes

glz) _ 1
(-1 (-

From here we get

g {0+%(z—1)+32£!(z 1)? +73—'( —1)3+1if (z—1)4+---}.

fz) =

15¢2 152  5e?
res(fi ) = e =T = e =

hence by insertion,

622 _ ez+1 ) 57T€2 )
————dz =2mia_1 = 1 - 1.
[z|=2

(z-1)°
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Example 3.8 Given the function

f(2)

(a+b22)_m,

where z € C is a complex variable, and a, b € Ry are positive, real numbers, and m € N is a positive
integer.

() Find the singular points of the function f(z), and determine their type.

(b) We shall expand f(z) as a Laurent series in the set

a
— 14/ R.
z z\/;’<

Find the largest possible R.
Then find the Laurent series and prove in particular that

0<

(=1)m=1(2m — 2)!

b {(m — 1)1)2 (2\/;>m

(c) Prove that

a_1 =

lim / = 0
R—+oo Jo, (a+022)" 7
where Cr denotes the half circle z = Re®, 0 < 0 < 7.
(d) Find

I: /+Oo dixm
0 (a + ba?)

(a) It follows from

2 _p(24 %) 2 N 12
a+ bz fb<z +b) b(z i b)(z—l—z b)’

that

15 Jup—— :

@+ 6" <zz\/g)m (z+i %)m

a

showing that z = +i are poles of order m.

R

(b) Now,
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Figure 4: The domain of analyticity for a = b > 0.

so it follows from the figure that g(z) is analytic in the open disc

a a
C — iy - 24/ = ¢
{26 ‘z z\/;< b}

a
Hence, g(z) has a Taylor expansion from the centrum zy = z\/; of this disc, and the maximum

a
radius is R = 2\/% . We conclude that f(z) has a Laurent series expansion in the set

a a
—id 2l <92
4 Z\/;‘< \/;’

where R = 2\/% is maximum.

0<

Assume that

a a
— 4/ = 20/ —.
0< |z Z\/;‘< \/;
Then
1 1
flz) = =

—m
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Complex Funktions Examples c-6 Line integrals computed by means of residues

hence by the binomial formula,

= : : : m+oo o L (=i /" n
f()_bm(z—i %)m (22\/% ;( n> 21\/%( b>
Since
() - CmmoyCmonty
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Complex Funktions Examples c-6 Line integrals computed by means of residues

it follows by insertion that

f(Z) = : m X

- fm %Zﬁp'(ﬁ:)ﬁmlﬂn!'(% \/f)’“ (/%)

+oo r p
= Zap(z—l g),

p=—m

which is the Laurent series expansion of f(z) in the set

a a
R el 2, /=
z ’L\/; < \/;,
. /a . a
of centrum z\/; and radius R = 2\/;.

0<

In particular, a_; for p = —1, i.e.
A 1 (2m — 2)! (—1)m-1 1 2m — 2 1 1
e (m =) (m— 1) A"t by, \ m—1 a2
(=/3) (=)

(c) We get from

1 1 a
< = —
la +bz2| = (bR% —a)™ for 2] = B > \/;’

the estimate

1
< lim e - =
=t Ry T

lim / _dz
R Jo (@t 02"

proving that

. dz
R—+o0 Jo, (a4 b22)
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Figure 5: The curves I' 5 and C 5 for a = b.

(d) Denote by I'g, where R > \/E, the closed curve shown on the figure for a = b > 0 and R = /2 >

b

\/E\/Tl.Then
b 1
dz _ Ja . 2 [ 2m —2 1
e ) e ><2>m

2 [ 2m -2 1 b Ja T 2m — 2 a
T\ m—1 ) 22me1 gm\[p T 22m=2gm \ m—1 b

On the other hand,

im 4 F oy [ o [ d
R—+o0 Tr (a+ bzz)m o R—+oc0 Cr (a—l—bz2)m R—+oco | _p (a+ b{IJ2)m

oo dx oo dx
= lim 2/ T oym = 2/ YR
R—+oo  Jo (a4 bx?) o (a+0bx?)

and we conclude that

I_/+°° de o2& 2m — 2 a
Sy (a+ba2)™  22mgm \ m—1 b’

because the improper integral of course is convergent.
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Complex Funktions Examples c-6 Line integrals computed by means of residues

ALTERNATIVELY, the difference of the degrees is 2m > 2 where the denominator is dominating,

b

- /JmL_l/ﬁoL_l i - res ;Z\/E
Jo (a+bx™ 2 ) (a+bx2)" 2 (@+b22)"" "\ b

= mi-Tres )

a
and since none of the poles :I:i\/j lie on the z-axis, we conclude by a theorem that

—_

oo 1 lim dm—1
T (m=1)! .,z dzmt (o
(m=1) Vi <z+i )
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Complex Funktions Examples c-6 Line integrals computed by means of residues

thus
oo dx ) 1 . -m)(=m—1)--- (—=m—m+2)
I = ———y = — - ———— lim —
0 (a4 ba?) b (m_l)!zﬂi\/% e\
244+
(=+/3)
om (=)™t (2m=2)! 1
b (m=1! (m—1)! a2t
(2y3)
b
= e () —
b m= 22m—1, ;2m—1 CL_ g

Example 3.9 Given two polynomials P(z) and Q(z), where the degree of Q(z) is at least 1 bigger
than the degree of P(z). Let z1, ..., z, be the different roots of Q(z). Then it can be proved that the
inverse Laplace transform of

is given by
(8) f(t) = Z res (eZtF(z) ; zj) , fort >0,
j=1

where we consider the variable t as a parameter.
Assume given the formula (8). Find the inverse Laplace transform f(t), t > 0, of

1
(22 +1)*

Describe the function f(t) in the real, i.e. such that the imaginary unit does not occur.

Since
1

(22 + 1)
has the two double poles +i, we shall only find

f(t) =res <m ; z) + res (m, —i) )

We get by RULE 1,

o et ‘ 1 lim d et I te*t 2¢*t
r — i = —lim— = lim —
(22 + 1)’ U emidz \ (2 +1)2 i | (z+14)2  (2+1)3

it it ;
te 2e B TR

F(z) =
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res 762t 5 —1 l lim i et = lim ter! — 27
(22 +1) eotidz \(z2—1)2) 2==i|(z—9)2 (z—1)3

te 2eit

hence by insertion into (8),

1 . 4 .1 T 1 /1. . , 1 , .
t — — ¢ it 7 lt__t —it - —lt:__t - it —it - it —it
1) 1t T Tttt tge il et v Hg gl =

= L t t+ Ly t
= 5 COS B smt.
ALTERNATIVELY we may apply RULE 111, thus

6A/B// _ QAB///

res (73 20) = =

If we put

A(z) = e and  B(z) = (2" + 1)2 =24 4+222 41,

then
A(z) = e*, A(i) = e, A(—i) =e ",
Al(z) = te™, Al(i) = te®,
B(z) = 2* + 222 + 1, B(i) =0, B(—i) =0,
B'(z) = 423 + 4z, B'(i) =0, B'(—i) =0,
B"(z) =122 + 4, B"(i) = -8, B"(—i) = -8,
B®)(2) = 24z, B®) (i) = 244, B®) (i) = —24i,
hence,

et ‘ 6t e’ - (—8) — 2e' - 24i | A
res 5 531 YY) =——te e
(224 1) 3(-8) 4
and
et , 6te . (—=8) — 2~ - (—241) 1 il g
. — = ¢ —7 Z
res<(22+1)2 ) z) 3(=8)? 1 e +4€ ,

and we proceed as above.
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Example 3.10 (a) Find the complete solutions of the differential equation

1

O) F'() =3 16) - =

in the domain Q@ = {z € C| |z| > 1}.
HINT: Find e.g.. f(2) =Y anz™ as a Laurent series solution of (9) in Q. It will be advantageous
1

1 i €.

z+

to use the Laurent series expansion of

(b) Prove that there exists precisely one solution fo(z) of (9) in Q, such that fo(z) is bounded at co.
Express fo(z) by elementary functions without using sums.

(c) Compute the line integral

%ZI—Z fo(2) d=.

(a) Tt follows by inspection that if z # 0, —1, then

_— lZf/(Z)—if(z):M:i(@)

241 2 z 22

Thus, for z| > 1,

M:c—/l~ ! dz:c+/ ! 71 dz =c+ Log ztl ,
z z z+1 1+z =z z

because we only have

z+1
poory Blied aeRy U {0},
when z = €10, 1]. Hence the function

+«
1 1
Log <i) = Log (1 + —)
z z
is analytic in 2. The complete solution is then
1
fG)y=c-z+z-Log |1+ -], |z| >1, ceC.
z

ALTERNATIVELY, assume that f(z) has a Laurent series expansion

“+oo
f(z)= Z anz" for |z| > 1.

n=-—oo

Then by insertion,

1 “+oo “+o00 “+o00
f'(z) - Z f(z)= Z napz""t — Z anz" "t = Z (n—1a,z""".
n=-—o0 n=—oo n=—oo
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Complex Funktions Examples c-6 Line integrals computed by means of residues

Furthermore,
—+oo —+oo
1 1 1 1 1
_ - .- _ (_1)n A (_1)n—1z—n—17
z+1 14 1 z HZ:O P 72110
z

so if we on the left hand side write —n instead of n, the we get the following equation,

—+oo +oo
Z (_n _ 1)a_nz—n—1 - _ Z(_l)nz—n—l.
n=-—oo n=0

The Laurent series expansion is unique, so we conclude that

="

(—n — Da_, = —(—-1)", thus a_,, = ——, n € Ny,
n
ap an indeterminate, (corresponding to n = —1),
an =0 for n > 2.
The formal series is given by
—+oo —+oo p 1
(™ 1 (—1)n* 1 1
RS S L 1+-,
alz—i—;nJrl e alz—i—z; o s a1z + z - Log +z

which of course is convergent for

1
—' <1,ie. for |z| > 1.
z
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Complex Funktions Examples c-6 Line integrals computed by means of residues

(b) If |z| > 1, then
—+oo
(D" 1
L Z) = — L=
: 0g< > ZZ Z n+1 27

and it follows that

1imz~L0g( +1> (-1° _

z2—00 z 1+0

When z — oo, the term ¢ - z is only bounded if ¢ = 0, so the wanted solution is
1
fo(2) = z-Log 1+; .

(¢) The circle |z| = 2 lies in the domain of analyticity €2, so it follows from the Laurent series epansion
that

1 1
% fo(z)dz:% z - Log (1+—> dz=2mia_y =2mi- (—§> = —mi.
|z|=2 |z|=2 z

Example 3.11 Given the differential equation

(10) (2 = 2) f"(2) + (52 = 4)f'(2) + 3 f(2) =

(a) Assume that (10) has a Laurent series solution f(z) = > anz™. Derive a recursion formula for
the coefficients a,, and prove that a, =0 for n < 4.

(b) Then find all Laurent series solutions of (10), and express each of them by elementary functions.

(¢) Find the Laurent series solutions which have a pole at 0, determine the order of this pole and the
residuum at z = 0.

First method. Inspection. This solution method does not follow the text, so we must be careful to
have answered all questions.

We get for z # 0 by some simple manipulations that

0 = (F-2)f" (52—4)f/()+3f()
= {(-*- ) +@22=1)f(2)} +{(82=3)f'(2) + 3 f(2)}

(- > }+—{3<z—1>f<>}
d

{
= {Z_l 2) +322f (2 ))}
3

z—1 d (z))}

i
dz

Download free ebooks at bookboon.com

52


http://bookboon.com/

Complex Funktions Examples c-6 Line integrals computed by means of residues

Hence by an integration,
z—1d
z dz

so z# 0 and z # 1,

(z3f(z)) = ¢y, ze€ C\{0}, ¢ €C,

6123

z—1

C1
z—1

d
a(z?’f(z)) = =c(z+1)+

¢
When we integrate —11, we have two possibilities:
P

1) In the first case we shall check the choice of ¢; Log(z —1). This function has a branch cut along
the half line | — 0o, +1[. In particular, every circle of centrum at 0 will intersect | — oo| at least
once. This means that Log(1 — z) does not have any Laurent series expansion in any annulus,
so we have to reject this possibility of solution.

2) The second choice is ¢; Log(1 — z) of the branch cut along the half line ]1, +oo[. In this case
we already know that

+oo 1
c1Log(l—2) = —c; Z - z" for |z] < 1,
n=1

and we even get a power series expansion. Hence, we shall choose this primitive in the following.

We get by another integration that

2
2Bf(2) = (% + z) + 1 Log(l — 2) + ca, z € C\ ({0} U [1,+o0]),
hence
f) =2+ Slogl-2)+ G+ 2L, 2eC\ ({0} U [1+ o).

When we insert the power series expansion, we get for 0 < |z| < 1 that

C2 C1 +OO]. 1 C2 C1 A 1
_ 2\ _
)= ;w—s{zaz””*éz}z—z*;{ 352"}

n
In particular, ag = 0 for n < —4, and if ¢o # 0, then 0 is a pole or order 3. If ¢co = 0, then the
singularity at 0 becomes removable.

8

= 2—012 z", 0<|z] <1

According to the above we have a_; = 0, so res(f;0) = 0 for any such solution, and we have
answered all questions with the exception of determining the recursion formula, which does not
give sense any more.
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Second method. The standard method, i.e. the series method. By inserting a formal Laurent series

flz) = Z anz"
and its derivatives
fl(z) = Znanzn_l and  f(2) = Zn(n — 1Danz""2,

we get

0 = (2°=2)f"(2)+(B2—4)f(2) +3 f(2)

D n(n—1)anz"=Y n(n—1)anz""" +> bnanz"—» 4na,z" '+ 3a,2"
> {n®—n+5n+3} anz" = n(n+3)anz" "

= ) (n+1)(n+3)anz" = n(n+3)anz"""

= D A+ (n+3)an—(n+1)(n+4)an1} 2"

> (n+1) {(n+3)an — (n+4)an 1} 2"

Then apply the identity theorem to get the recursion formula
(11) (mn+ D) {(n+3)an — (n+4)an+1} =0, for n € Z.
The strategy is first to check the obvious zeros of the factors in (11).

If n = —1, then n+1 = 0. This implies that a_; and a( are independent of each other, so for the
time being they may be chosen arbitrarily.

Remark 3.1 We shall later see that we get a condition on a_;, while ag is an arbitrary
constant. However, this cannot yet be concluded. ¢.

If n # —1, the recursion formula is reduced to
(12) (n+3)an = (n+4)an1, neZ\{-1}.
For n = —4, then a_4 = 0. Put b, = a_,, and derive from (12) that for n € N\ {1},
(n—=3)b, = (n—4)by—1.
We get by recursion for n > 4,
(n=3)a—p=nN=-3)bp=nN—-4bp_1=--=(4—4)by_1 =0,

so we conclude that a,, = 0 for n < —4. There is no restriction on b4_1; = a_3, so this we also
consider for the time being as an arbitrary constant.

If n = —3, then it follows from (12) that
a_2:O~a_3:0.

We conclude that a_g3 is indeed an arbitrary constant, which can be chosen freely.
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Complex Funktions Examples c-6 Line integrals computed by means of residues

If n = —2, then
0=(—2+3)a_z=(—2+4)a_q,
so a_; = 0. In particular,
res(f;0)=a_1 =0

for every convergent series solution.
The case n = —1 has already been treated above.
If n € Ny, then it follows from (12) that

(n+4)any1 = (n+3)ay, =+ = (04 3)ag = 3ay,
hence

a, = 3 a for n € N

n*n+3 0 0>

and we have found all coefficients.

Summing up, the formal Laurent series solutions are given by

3
n+3

z",

+oo
(13) f(z) = +a0 )
n=0

and it follows that the domain of convergence in general is 0 < |z| < 1 for a_3 # 0 and ag # 0.

Try this...

The sequence 9k b 8 1002, 14,16, ... IS
w\f& SCC?U@,MC@ O»,[ evén u)i/to|e_ V]Umlge,rjl TLIG,

IOO'Hn ,OIOC{—: N Hlf'd Z)ficluamce RY ane, mumber-...

Challenging? Not challenging? Try more »» www.alloptions.nl/life
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Complex Funktions Examples c-6 Line integrals computed by means of residues

SPECIAL CASES

If a_3 = 0 and ag # 0, then the domain of convergence is |z| < 1.
If a_3 # 0 and ag = 0, then the domain of convergence is C\ {0}.

If a_3 =ap =0, then f(z) =0 and the domain of convergence is C.

Finally, we shall express the series :i% Y z™ by elementary functions. If we put
n
+oo 3
_ .3 n
then we get for |z| < 1,
=1 =1 =1 3 3
=3 =3y " =3) — 2" -3z—-2"=-3Log(l —2) -3z — = 2*
g(2) ;n+3z ;nz nzz:lnz Z- 5% og(l —2)— 3z 5%
thus
— 3 9(2)
f(z) = a_3z°+ap 3
a_;s Log(l—2z) 1 31
14 = — - —_— - = ——= 1
(14) o Sao{ g =255 ( 0< |zl <1,
in agreement with the solution by the first method with ¢, = a_3 and ¢; = —3ay.

According to (13) (and not (14)) the Laurent series solutions which have a pole at z = 0, are given
by a_3z # 0. The order is 3, and since (13) does not contain any term of the form a-1 (i,e.a_1 =0
z

for all solutions), we have

res(f;0) =a_1 = 0.
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4 The residuum at oo

Example 4.1 Find the residues at oo of the following functions,

@ s w (+2) @S

24 —1
has a zero of first order at co, we get

4

res(f;oo):—nli_>rr;02~f(z):—zllrgoz — ——zli_{go T =L
A
(b) It follows by the binomial formula that
2\" 16 32
<z+;) :Z—4+Z—2+24+822+z4, for z € C\ {0},

which we may consider of a degenerated Laurent series in a neighbouhood of co. It follows from
a_1; = 0 that

res(f;00) = —a—1 = 0.
(c) Since
res(f;0) +res(f;00) =0,

it follows by a rearrangement that

eZ
res(f;00) = —res (?; 0> =-1

ALTERNATIVELY,
1 1 1
res(f;00) = —res (—2 f (—) ;0> = —res <exp (Z) ; 0) =1,
z z z
because
1 1 1=11 1 1 11
> Pol S, =TT Emt53 f 0.
zesz zzn!z" 2 22+2z3+ or z #

n=0

Download free ebooks at bookboon.com

57


http://bookboon.com/

Complex Funktions Examples c-6 The residuum at co

Example 4.2 Find the residues at oo of the following functions:

@ O o @) g meN
a) ———=, —_—, ¢) ——, n .
z2(1-27) (22 +1)° (1+2)"
(a) The function f(z) = ! has a zero of order 3 at oo, so
' oz (1—22) ’ ’
1
res <m N OO) =0.

ALTERNATIVELY,

1 1 1 0 z 0 0
T - = —1 S = —T _ = 0.
es 2(1_22),00 Sl 171 ’ S\

z 22

(b) The Laurent series expansion of the function

2’4

(22 +1)°

only contains even powers of z, so a_; = 0, and thus

4
res | ———— ;00| =0.
(22+1)

(c) Tt follows by the rules of computation,

1 2n
. P 1 (2) 0 (1 1 0
s [ Y~ e | LN g 2, R
"\t ™ = ( 1)"’ S\ G

1 y d"+1{( 1 }:_;)!iii%%_l)nﬂ.n(n+1)--~(n+n+1—1)}

T ) 2R den T | (2 4 D) (n+1 (z + 1)2n 1

" 1 (2n)! " m
= D .(n+1)!.(n71)!:(_1) (n—1>'

flz) =

ALTERNATIVELY, z = —1 is the only finite singularity, so
res(f;—1) + res(f;00) =0,

and then by a rearrangement and RULE I for the residuum at a finite point,

722” ; 00 = —res i _ — 1 im dr! 420
res ((1 +z2)n’ > o ((1 +2)n’ 1) =1 ZLA dzn—1 ( )
= *n_#l)!~2n(2n—1)~~(n+2)'(—1)”*1
= V" - Y <n1 )

Download free ebooks at bookboon.com

58


http://bookboon.com/

Please click the advert

Complex Funktions Examples c-6 The residuum at co

Example 4.3 Prove that z = 0 is an essential singularity of exp (2’2).
Then find

res (exp (2*2) ;0) and res (exp (272) ;oo) .
It follows from
L) _ g~ 1 for all C
exp | — —ngom or alle z € C\ {0},
that

1
G_op = ] # 0, for n € Ny,

proving that 0 is an essential singularity.

Since a_1; = 0, we have

1
res (exp (z2> ;O) =a_; =0.

Here z = 0 is the only finite singularity, so

res (exp (12> ;oo) = —res (12 exp (zz) ;0> =0.
z z

s ebook 1s prooucen with iText®
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Complex Funktions Examples c-6 The residuum at co

ALTERNATIVELY we get by RULE IV,

I‘ i . — i 2 . p—
es | exp 2 ;00 | = —res = exp(z),O =0,

because
1 =1
o) exp (zz) = Z ] Z?n—2 for z #£ 0,
n=0 "

and it follows that a_; = 0.

Example 4.4 Find the residues at oo of the following functions

@ -1 m AL (22+Z—12>Sinz.

23 — 25 2+ 17

(a) We see that
1 1 1

23 _ 55 b 1
==
z

has a zero of order 5 at oo, so

1
res <m, OO) =0.

2
1
(b) Since Gl

has a zero of first order at co, we get

2 +1
2241 . 2241

res| ——;00 ) =— lim z- =—1.
2341 z2—00 2 +1

(c) It follows by a series expansion of sin z in the neighbourhood of oo that

1 1 1
224+ = )sinz=2%sinz+—-— =2+, z #0.
22 z 3

The power series expansion of z%sin z is convergent in all of C, so the Laurent series of 2% sin z is
equal to the power series, and it will not contribute to the negative indices. Therefore,

2, 1 .
res 25+ — |sin; 00 ) = —a_1 = —1.
z
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Example 4.5 Find the residues at oo of the followingfunctions:

22+2+1 e? 1
— b) ——5—= - .
@ ST O agrg © eo(sr)
224+z2+1
(a) Since o1 has a zero of first order at oo, it follows from RULE IV that
22(z —
2 1+ ! + :
2 1 1 - -
O (i OO N Cih ) B = Y
2?(z —1) z—o0 22(z—1) Fmo0 g 1
z

(b) Since we have only a finite number of singularities in C, and since the sum of the residues is zero,
we get

res(f;00) = —res(f;0) — res(f;3i) — res(f; —3i).

Here z = 0 is a double pole, so

1 |d e? e? 1
)=y A f], =[5t e0] =5

Since z = £3i are simple poles, we get

o3 e3i 1 e
.3' — = = T 5 I
sl ) = ey 2w o7 @
o—3i e—3i 1 e 3
. _3 — = = =" )
res(f; —31) (—3i)2(—3i — 3i)  27-2i 27 2i
hence
1 1 631’ _ 6—32’ 1 1
S N R G T
res(f; 00) 5~ 77 { % } 5 + &7 Sin

ALTERNATIVELY one may try RULE IV,

2 1
ot = (81 (2)0) oo (52

which, however, does not look promising. It should be mentioned that it is possible to find the
Laurent series from zy = 0; but the calculations are far more difficult than the argument above.

(c) We have for z # 0,

1 +oo 1 1 n +o00 1 n n
i - _ - — — 2j—n
emG+)_zmQ+J_§;ﬂlxj)z |

n=0 "
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so the coeflicient a_; corresponds to those terms for which n = 25 + 1, thus

» &0 2+ 1 = (2n+1)
res(f; 00) a_1=—jz_:0m( j ):_HZ_%(znjLU!n!(nJrl)!

- Y
T e+
= nl(n+1)!

By using the definition

oo -1 2\ 2n+n
Jm(z)zm (5) ; m € No,

of the Bessel function of order m it follows that

~ 1 —
res(f;00) = —;m =1 .J1(21).

Example 4.6 Prove that

e‘ﬂ'z ez
—C de=mi, (b £ dz = mi.
(a) ‘%lel mrik=m ( )}{Zzl s dz=mi

(a) The integrand has simple poles at zp = :i:%. Put

A(z) =€ and B(z) =422 +1.
Then, using that 423 = —1, we get in each of the two cases of zo,

Az) _em™ 1
B'(z) 8z 422

TZ0 — _ Zoeﬂ'ZQ.

2

- Zp€

DN | =

Hence,

f'i _ ) (,77)_ 7 ,_1
res ,2—2expz2—4z—4,

. . . 1
(5 -4) - fem(5) - feo-

Since both % and —% lie inside the circle |z| = 1, we finally get

s ; j 11
7{ —4Z62+1dz:27ri{res <f; %) + res (f; —%)} 2“{Z+Z} -
|z|=1
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(b) We have inside |z| = 1 a pole of order 3 atz = 0. It follows from

+oo
e® 1 .-
=2 2"  zeC\{0},
n=0
that

1 1
'O: = = = —
res(£10) = a1 = o = o,

hence

z
€ de=2mi- res(f;0) = 2mi - a_y = mi.
2]=1 2>

z

Example 4.7 Compute §|2|—2 P dz.
—2 1

This integral was previously computed in Example 3.4 by Rule II. We shall here show that it is much

easier to use Rule IV instead, because

2

z * z z
dz = — 2 dz= —2mi-res [ —2—; 00 ) = 2mi- Ii —0
I B Rl C D B

where ¢ * denotes that we have changed the direction of the path of integration fg ceedz = — 550 ceedz.
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Complex Funktions Examples c-6 The residuum at co

Example 4.8 Prove that

2 _ 2
2+ z 1

ﬁll ﬁ dz =

The poles of the integrand are given by

S VY E T B U
FTToEVE T T e
thus
1 3
z1—§ and 22——5.

e . e® 1 27 . d e®
% ——————dz = 2mi-res | —5; 3 =7 lim —
|z|=1 3 22+27 § 2 1! z—>% dz 3
4

2
= 27 lim -2 :2m¢a{2j—§}=o

o 3\ 2 3\ 3
(Z+§> (2+§)

Example 4.9 Prove that
dz e? 4 sin 2z
(a) ?{ — =0, (b) 7{ ———dz = 2.
2)=3 2(2 — 1) |2|=1 z

(a) The poles z =0 and z = 1 lie inside |z] = 3, so

%zl—?) % = 2mi {res <ﬁ ; 0) + res <ﬁ ; 1)} =2mi{—-1+1} =0.

ALTERNATIVELY we have a zero of second order at oo, hence if we let f* denote a closed path of
integration of negative direction, then

?{z|_3 % T ]I{z*—s % = —2mi - Tes (ﬁ, oo) =0.

(b) The simple pole z = 0 is the only singularity inside |z| = 1, so

z . z ]
|z|=1 < “
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Example 4.10 Prove that

dz mi sin z
) 7{_2 (—1)(z+3) 2’ (b) i e dz=0.

(a) Here, z =1 is the only singularity inside |z| = 2, so

j{zl_QM%:ZWi-res(m;l) :2m-%:%i.

(b) Here, z = 7 is the only singularity inside |z| = 4 (notice that = < 4), and since 7 is a pole of at
most order 3 (it is actually only of order 2), it follows by RULE T that

: 2

sin z , . . - .

———5 dz=2mi- 5 lim —— sinz = 7 lim (—sinz) = 0.
|2|=4 (z — ) 2! z—w dz o

Example 4.11 Compute each of the following line integrals
23 —3z+1 cos z dz
m)f ik chu OS2, @)f ke
2=z (2 — 1) ( le-1)=2 27 2= 2 — 1

(a) Here, z =i is a pole of at most second order inside |z| = 2, so

dz = = lim — (2* — 3z + 1) = 2mi lim (32° — 3) = —12mi.

% 23 —3z+1 211 d
|2|=2 (Z — Z)2 1! 2—idz z—1

(b) Here, z =0 is a pole of at most seventh order inside |z — 1| = 2, so

% COS z d 271 . db 271 lim ( ) 271 i
——dz=—1lim — cosz = — lim(—cosz) = ——— = ———.
|z—1|=2 27 6! 2—0 dz 6! z—0 6! 360

ALTERNATIVELY, it follows by a series expansion for z # 0 that

cos z 1 22 2t 8 1 11 1 1 11
. — P _ + + cee
2T 225 24 23 720 z

and since res(f;0) = a_1, we get

coS z 21 ™
dz = 2mi -res(f;0) = — ¥ — ™V
sz_l_Q o7 42 = 2miexes(£30) = —755 = 355

(c) Each of the simple poles zg = 1, i, —1, —i, satisfies z5 = 1, so

1 1 20 20
res| ——; 2 | =——5=—"F% = —.
A1) T 43 T 4zt 4
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All poles lie inside |z| = 4, so

4 .
dz . fl14+i—1—1
ﬁlﬁ T 1" 2mj§=1 res (f; z;)72mi {?} = 0.

ALTERNATIVELY, the integrand has a zero fourth order at oo, thus res(f;oc0) = 0. Let f* denote
the closed line integral of negative direction. Since all finite poles lie inside |z| = 3, we get

d * d
f = —7{ —Z:—Qm'-res(f;oo)zO.
|z |z

Lzt -1 _a 2t —1
[=3 [=3

Example 4.12 Compute each of the following line integrals:

dz dz
@ $mrr O F e

05

-0.5

Figure 6: The path of integration and the four (simple) poles.

(a) Since the curve 2% + y? = 2z, i.e.
(x_1)2+y2 = ]-7
surrounds the two simple poles exp (z %) and exp (—i %), and since the residue s here are
1 1 20 4
res(z‘l——f—l;z())él_zvgz fOI'Zo‘{’].:O,

we get
T

Foop = (1) o () rom ()} = e =2

2420y 2z 41
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Only the pole z = 2 lies inside the circle, so a direct computation gives

]{ dz 271 - res ! 2 2mi lim d !
. = T - - = — —
z—223 (2 —1)(2 —2)? (z—1)(z —2)2"’ 11 z>2dz |2 -1

1

ALTERNATIVELY we change the direction of integration, § = — 3§*. We have a zero of order 3 at
00, SO
dz f* dz
—_— = - ————— = 2mi{res(f; 1) + res(f;00)
$ oy GG 2y G- D =27 }

= —27i{l+40} = —2ni.
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Example 4.13 Compute each of the following line integrals:
dz 2;3
—— b —dz.
@ ¢ ey O bt

(a) The integrand has a zero

of sixth order at oo, so when we chance the direction of integration,
*
§=—¢", we get

dz * dz .
ﬁ'—zm B _7{ Go oy - ritiestf;3) +res(fioo)}

z|=2
21 211 i

0=— =
31" 242~ 121

It is also possible to carry through an ALTERNATIVE solution, in which we compute the residues
at the five simple poles zg, satisfying 2§ = 1:

1 1 1 1 20 1 n 3 1
res{ ——————329 | = = — -4 2. )
(z—3)(z°—1)" ") 2—-3 5z 5 -3 5 5 z-3
We see that we get into some computational problems concerning the last term, because we for
2
Zo = exp (z %) get the denominator

2 2 2
20—3=exp<i?ﬂ-> -3 = (cos§—3)+isin%.

1
(b) Tt follows from res(f;o00) = —5 = —a-1, that

3
z
———dz = —2mwi - res(f; 00) = mi.
f/izm e (f;)
ALTERNATIVELY,

23 I 23 1
res| —— 2 = lim — = —
220417 z—z0 823 8
for each of the four simple poles inside |z| = 1, thus
23 4
———dz =2mi - — = 7.
sz|_1 s =2 g =i

ALTERNATIVELY, the function g(z) = 2z% + 1 has the winding number 4 with respect to 0, and
since ¢'(z) = 823, we get

3 1 ! 42w
% f—dz —j{ 9() dz = m:m',
lz|=1 22% + 1 8 Jizj=1 9(2) 8

where the latter method assumes some knowledge of the Principle of Argument.
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Example 4.14 Compute
—z
e,
|z]=1 Z

The double pole z = 0 is the only singularityt inside |z| = 1, so

—z —Zz 1 d
sz|—1 cosiii) dz = 2mi-res (% ; 0) = 27 - T lli% 7 cos (e_z)

2mi - lim {—sin(e7?) - (—e7*)} =2mi-sinl.

Example 4.15 Find the residuum at z =i for

2z -1
Then compute the line integral

% 1
lomij=1 21— 1

1
Since z = 7 is a simple pole of A ve get by RULE II that
A

) r _ 1 i o
) T s T 4

The disc |z —i| < 3 contains only the singular point z = i, so

dz 1 )
— i RN S RN, Y S
]lgz—i—é ] T - res (z4l’l> i

™
5"

Example 4.16 Compute

(a) j{z=2 . er 1 dz, (b) jl{2|22 %Jrl dz, (¢) }{ e dz

5 .
2|72 % -1

(a) The singularity zp = —1 lies inside |z| = 2, so
% 2 = 2mi - ves (L ; —1) = —2mi.
\z|:2 z 4+ ]. z 4+ 1
ALTERNATIVELY,
1 1
% : dz = j{ {1— }dz:—% dz
\z|:22+1 |Z‘:2 Z+1 |z]=1 Z+1
1
= 2mi-res| ——; 00| = —2mi lim = —2mi.
z+1 z—o0 z + 1
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z

(b) Since the integrand does not have any singularity in the set given by |z| > 2, and since Y
z

has a zero of second order at oo, we get

z * z z
— d _ — - d = 72 - — = 0.
sz|—2 3 z j{z|—2 ] 2 T - res <z3 1 oo>

(c) The integrand has the two simple poles z = %1 inside |z| = 1, thus

ez . ez ez
szlﬂmd«z 271 {res<22+1 ; 1> + res <,22——1’ 1)}

1 —1
- 2m{% _C } — 27 sinh 1.

2

360°
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Example 4.17 Compute the line integral

ze?
—dz.
fz|—51—22 ’

It follows directly that

ze* . ze* ze*
sz|_5md2’ = 2m {I'GS (-m, 1) + res (—m, —1)}

T-el  (=1)e!
27ri{ 26 +¢}—2m’ cosh 1.

-2

Example 4.18 Compute

1 dz
((1) %ZU—Q z4 +1 dZ, (b) sz|_2 22(2 + 1) '

-2

Figure 7: The four simple poles all lie inside |z — 1| = 2.

(a) It follows from
{zeC||z|<1}C{zeC||z—1| <2},

that all singularities lie inside the closed path of integration |z — 1| = 2. We have a zero of fourth
order at oo, so we get by changing the direction of the path of integration,

f dz ?{* dz o 1 0
—  =— ——— = -2mi-res | ——; 00 ) = 0.
1=z 24+ 1 lam1j=2 2%+ 1 A4+ 17

(b) Every pole lies inside |z| = 2, and we have a zero of order 3 at co. Therefore,

]{ dz ]{* dz 27 - res L 00 0
—_— = — —_— = — 7'(' . —_— = .
zl=2 22(z + 1) zl=2 22(z2 + 1) 2(z+1)]
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Example 4.19 Compute

sin z 27 e*
@ f e O e © fL5e

(a) We have inside |z| = 2 only one singularity z = 1 (a double pole). It follows by the residuum
theorem that

% __ sme dz = 2mi-res sz 1) = i lim 4 ] simz
=2 (2 = 1) (22 +9) B (z—1)2(224+9)" ) 1 z=1dz | 22+9

. CoS 2 2z sin z [cosl 2sinl
27 lim — 5 ¢ = 2mi —
z—1] 2249 (22 + 9) 10 100
5cosl—sinl

= ——————— " Tl.

25

(b) We have four double poles lying inside the curve |z| = 1, and no singularity outside this curve.
Since we have a zero of first order at oo, it follows by RULE IV that

* 7

7 7
% Z72dz —f Zgzdz:—ZmWres 272;00
lz|=2 (2% + 1) lzl=2 (24 + 1) (z4+1)

27 1
—2mi{ — lim z- ———— b =27 lim { ——— } = 2mi.
Z—00 (24 + 1) Z—00 (1 N 1 >

ALTERNATIVELY it is possible here to apply RULE II1, i.e.
6A'B" —2AB" 2A" 2 AB"

res (f;z0) = W ~Br 3 (B”)2’

where
A(z) =27 and B(z) = (z4+1) ¥2 =25 12441,

Finally, 2 = —1, so

A:zg: —, and A’:7zg:—7zg,

20
B'=8(z+2), B"=8(720+32),  B"=8(42z]+62),
thus
B" = -3222 and  B" = —8-362.
We have for each o the four poles zy that
2(-7#5) 2 (-8-36) 7 16-32-4 1

ves(fi20) = 352" ~3 g2 a1 T 16 3124 4

The sum of the four residues is 1, so

foe
—dz=2mi.
=2 (24 + 1)
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(c) Tt follows from

ez_ 1 z 22
i 1+ =+ =4+ 7,

1 2!
that
1 1
a1 = — = —
DTN
hence

z

e ) e® . .
—dz=2mi-res | —=; 0| =27 -a_1 = mi.
- s 23
2|=

ALTERNATIVELY, by RULE I,
d2

e* , e* R P
|Z|:1Z—3dz:2m~res ;,0 :27”'5;11%@6 =T.

Example 4.20 Compute

423 + 22 dz
S O =
(@) fz_g Ar22+1 (®) ]{2_2 (z=1)3(z—1)

(a) We see from
422 +1= (2 + 1)2 = (z—i)%(z+1)%
that we have two double poles zg = +i. In particular, 22 = —1 and

(z — 20)? B 1
Z4+222+1 - (Z+Zo)2.

Thus by RULE I,

423 + 22 1, d|422+22 . 1222 +2 423 + 22
res | 55 3% = 5 lim—q¢—"5=1lim 5 —2 3
2t 422241 1 2=z0 dz | (24 zp) z=z0 | (24 zp) (2 + 20)
122242 A28 + 229 —12+2 4z (225 +1)
(220)° (229)° —4 220 - 422
5 1
= —+-(-2+1)=2

and we conclude from the residuum theorem that

42° 42
szl:z #—;il dz = 2mi{res(f;1) +res(f; —i)} = 2mi{2 4+ 2} = 8mi.
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ALTERNATIVELY we have a zero of first order at oo, and no further singularities outside |z| = 2,

hence
42° + 22 * 423 + 2z
T2 9 = — = T dr = —2mi-res(f;
j{zld A1 7{_1 Arap g e T amires(fie)
423 42
= m lm {_Z' ﬁ;il} = —2mi - (—4) = 8i.

(b) The only pole inside |z| = 2 is the triple pole z = 1, so we find

% dz _ om 1 1) = o ll' d_2 1
me (= 13(z—17) reres (z=13=-7"") o a2 27

i 1 i i 2 . 2
- zﬂ{‘m}—“ﬂm—”m—‘
ALTERNATIVELY,
dz * dz . ) _
fz|=7 GG -T = — j|§,z|=2 oG T = —2mi{res(f;7) + res(f;00)}

1 2mi ™
= —2midlim ——— 4 0p = -l =
“’{ZLH% EESE } 63 108’

because the integrand has a zero of order 4 at oo (RULE IV).

It's only an
opportunity if
you act on it

IKEA.SE/STUDENT

T
108"
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Example 4.21 Compute

(a)f g ) f[jz|_2%’ () 7{2_2%5)2(12.

5
z|=1 %

(a) We have only the pole z = 1 of order 5 lying inside the curve |z| = 1. Hence by RULE I

e* 1 d* 2mi wi
€ = 2mi- = i s =t _ T
szl_l LTI e e TR T
ALTERNATIVELY we may find a_; in the Laurent series expansion
e 1 22 23 A
£ Lzt gy g+ g+
PR 3!
hence
11
TN T o
and thus
e? 1 m
 dp=omi-— =1
szl_l ST T 12
(b) We have only the double pole z = 0 lying inside the closed curve |z| = 2. Then by RULE I
dz 1 d 1 1 2mi
— Y oni = im & —omi lim - b= 2™
fi|222(z—3) ST zlgtl)dz{z—?)} mzli%{ (2—3)2} 9

ALTERNATIVELY, z = 3 is a simple pole outside |z| = 2. Furthermore, we have a zero of order 3
at 0o, so we get by changing the direction of the path of integration, ¢§ = — f*, that

fromemm = Aomy e (aemy?) e (aee))

2(z—3) a2 22z —
1 211

= 2miq-+0p,=——.

m{9+ } 9

(c) Tt follows from ’z’ < 2 and sin~ = 1 that » = g is a double pole lying inside |z| = 2. This is

the only singularity in C, so we get by the residuum theorem that

. 1 d
% L’ngz:%ri'—' lim — sinz = 27 lim cosz = 0.
[z|=2 (Z — I) I 2—3% dz =3

ALTERNATIVELY we expand sin z as a power series from zg = —, i.e.

ine=140-(:=5) —5 (- 5) +
sinz = z 5 5 z 5 ,
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hence
sin z 1 0
™2 ez T Tt
ER e
2 2

so a_; = 0, and we get

f L L —)
m
|Z|:2 (Zi _)
2

Example 4.22 Let C' denote the boundary of the square of the corners £2 + 2i. Compute

e * Cos z z
2

Figure 8: The curve C.

(a) The integrand

e
G
zZ—1=
2
has inside C' only the simple pole at z =1 g Therefore, by RULE 1,
e * e %
% 7T.dZZQ’]TZ"I‘eS =31 :27mexp(71_):27r
i 2 2
Cz—1— z—1 5

(b) The integrand

cos z
z (224 38)
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has the simple poles z = 0 and z = 4-i 2v/2. Only z = 0 lies inside C, so it follows by the residuum
theorem and RULE I that

CoS 2 coS z CcoS z T
—————dz = 2mi - ——— 0) =21 lim — = —.
fg T2 19) z i - Tes (z Z+9) ) mi lim f

1
(c) The integrand ﬁ has a simple pole at z = 5 inside C. Hence,

1
(Z + 5) i . z 211 ™

= 2mi lim == ——.

1
% Z _ dz = mi - res L; —— =27 lim ——%— —=—
CZ+1 Z+1 2 z—»—% 22+1 z—>—%2 4 2

Example 4.23 Compute the following line integrals:
1— 4\ 2z inh
(a) ;f (G Ll M 75 T g,
\z\:% z |z]=1 Sz

2z

(a) Here ze** is analytic in all of C, so it follows by a direct computation and reduction, and the
residuum theorem that

1 — 24) 22 2z 2z 278 d?
j{ —( Z)e dz:j{ e—dz—f Z€2Zd2’=f e—gdz+O:ﬂlim—ezzz47ri.
|2|= |z|= lz[=3%

1 PA 123 A=1 % 2! z250dz?

2 2 2 ‘

sinh
(b) The singularity at z = 0 is removable, so H, extended by the value 1 at z = 0, is analytic
S

in z
everywhere inside and on the closed curve |z| = 1. We conclude from Cauchy’s integral theorem
that

inh
o
|z|=1 sin 2z

Example 4.24 Compute each of the following line integrals:
1 1 1 1
a) — sin <> dz, (b)) — ?{ sin? () dz.
210 J)2=1 z 2 J|z=1 z

(a) We see from

11 1
sin — = —

A T

for z # 0, that a_; = 1, hence

1 1 1
— sin (—) dz = res <sin (—) ; O) =q_; = 1.
210 J|z=1 z z
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(b) Tt follows from

)-3-(2)

that a_; = 0, and hence by the residuum theorem,

sin? ( > dz = 0.
|z|=1

1

2

1
sin? (

1 1
2 2

z

1

211

1
z
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Example 4.25 Given

_ 2V2- 24+ 2% — 224+ /2
(V2 (vaa 1)

Compute the complex line integral

le_l 1(2)dz,

f(z)

where the path of integration is taken in the positive direction, by changing this direction of the path

of integration.

The function f(z) is a rational function of the simple pole z = 0 and the unpleasant triple pole z =

1
V2

inside |z| = 1, and the simple pole z = v/2 outside the circle. If we change the direction of the path

of integration and then apply the residue theorem, then

7|{|—1 f)de = - ﬂ_l f(z)dz =
o [2\/?244“23 — 22442

z2-(V2-2—1)3
.{8\/§+2\/§—2\/§+\/§}
= —2m
V2-(2-1)38

= —18mi+ 27 = —167i.

1
ALTERNATIVELY we compute res(f;0) and res ( I ﬁ)

(@.z_l)gz(ﬁ)f(z_%)‘“’

First we get for z = 0 that

o V2
res(f;0) = V(1) 1

Then we use RULE I to compute the residuum at the triple pole z =

1

z=

—2mi{res(f;V/2) + res(f;00)}

- {— lim zf(z)}?m

\/E Z—00
+ 27 - 2\/53
(v2)

We note that

1.
7

[\

1 d?
L _ li “w
res (f, \/5) | Zj% 22 {

(2 = V2)(V2)?

2\/§~z4+z3—2z+\/§}

lim —

(V2P iy 42

N =

Put

C2V2 2t 42— 2242
2(z —/2) ’

h(z)

1 d? | 2v224 4+ 23— 2242

79
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and then perform a division of polynomials and a decomposition to get

_2\/§oz4—|—z3—22—|—\/§ _ .2 ; 1 9
h(z) = V) 2(z—V2) =2v2- 22 +52+5V2 +z—\/§'

Clearly, it is much easier to differentiate the latter expression of h(z) than the former one. We obtain

R (z2) = \/__3+L

23

hence by insertion

reS(f;%) = mh”<%>=2(\;§)3 4\f2<\/§)3+<18
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Finally, we get

;lilzl F(2) ds = 2 {reS(f;O) © res ( /s )} i (19— 16mi

Sl

Example 4.26 Given the differential equation
(15) 2* f"(2) + (22 + 2) f'(2) = f(2).
Assuming that
400
fz)= Z anz"

is a convergent Laurent series solution in a domain of the form {z € C|r < |z| < R} satisfying (15),
we shall find a recursion formula for a,, with polynomial coefficients, and also prove that a, = 0, when
n € N.

Then find all Laurent series solution of (15).
HiNT: The general solution cannot be expressed by elementary functions.
Denote by fo(z) the Laurent series solution of (15), which also satisfies

fo(1) = Ve, res (fo; 00) = 0.

Express fo(z) by elementary functions.

Here there are many possibilities of solution. We shall go through some of them:
1) The power series method (the standard method),
2) Transformation of the differential equation,
3) Inspection,
4) Transformation, follows by an inspection.

First method. The power series method (the standard method). Assume that the Laurent series

f(z)= Z a, 2"

is a solution of (15) in the annulus
Q={zeC|r<]|z| <R}

Then we have in €2,

+o0 too
fl(z)= Z na,z" ! og  f(z)= Z n(n — 1)a,z" "2
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When we put these series into (15), we get by reduction,

0 = 2f"(2) +22°f(2) + 2 f'(2) - f(2)
= Zn n—1a, 224 ZQnan 2 4 Znan —Zanz"
(16) = Znn+1az"+2+2n—lan
— Z(n—2)(n—1)an,2z +Z n—1)a,z"
= Y (n—1){(n—2)an2+an}z"

From (16) also follows that

0 = Z n(n+ 1)a,z" "2 + Z(n —Dayz"
Z n(n+ 1)a, 2" "2 + Z(n + 1D)ay 02"

= Z(n + 1) {na, + anio} 2"t

We have now the following two “variants” of the recursion formula, which shall both be fulfilled
for all n € Z:

(n=1){(n—2)an—2+an} =0,  (n+1){nan+ ansy2} =0.

The treatment of each of the two recursion formulee is in principle the same, so we shall only solve
one of them, namely,

(n—1){(n —2)ap_2 +an} =0, n € Z.

If n = 1, then the left hand side is identically zero, so a_1 and a; are independent of each other.

If n # 1, then the recursion formula is reduced to
(n—2)ap—2 + an =0, neZ\{1}.

If n = 2, then as = 0, and since we have a leap of 2 in the indices in the recursion formula, it
follows that

as, =0 for n € N.
Ifn=2p+1, peN,is odd, it follows by recursion that
azpr1 = —(2p = Nagy—1 = (=1)"(2p = 1)(2p—3)---3-1 - ay,

and since a; is seemingly arbitrary, we cannot immediately conclude that as,41 =0, p € Ny. The
point is that we shall only find the convergent series solutions. Assume that a; # 0. Then it
follows from the above that agp+1 # 0, and we shall check the conditions of convergence for

+oo
(17) Za2p+lz2p+1a
p=0
where
azpr1 = —(2p — 1)agy_1, peN.
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Assuming that z # 0, it follows by the criterion of quotients applied on (17) that the limiting value
of

2p+1
agp 1 22T

a7 1| ~ P DI
-

for p — +o00 must be smaller that 1 for the relevant z. This is only possible for z = 0, contradicting
the assumption of z # 0.

Therefore, if a; # 0, the radius of convergence is 0. Since we are only interested in series of positive
radius of convergence, it follows that a; = 0, and hence also asp+1 = 0 for p € Ny, which together
with az, = 0, p € N, found previously precisely gives us

a, =0 for n € N.

We have proved that the only possibilities of Laurent series solutions necessarily must be of the
form

+00 +o0 1
)=S0 =3 b bi=as. nel.
n=0 n=0

Replacing n by —n in the recursion formula for a,,, we get
(—n—2)a_p—o2+a_, =0, n € Ny,

and since a_,_9 = by42 and a_,, = by, it follows that

1 1

b2 = n—_’_2bn7 n €Ny, or b,= Ebn—% n €N\ {1}.

1
If b, 5 # 0 and w = — # 0, then
z

b,w™ 1
‘ v =—|wf?—-0<1 for n — +o0,
n

bn_an—Q

for every w # 0, and the domain of convergence is given by

1
0<\w|:m<+oo.

The series is convergent for z € C\ {0}.
If n =2p, p € N, is even, we get

(18) 2p - bap = ba(p—1y,

hence by a multiplication by 2P~1(p — 1)! # 0, followed by a recursion,

20plby, = 2071+ (p — 1) byp_1y = -+ = 2% - 0l by = 1o,
and thus
= by, = ! N
a_op = 2p_2p—p!a07 p € No.
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ALTERNATIVELY, it follows from (18) by a straight recursion that

1 1 1 1 1
Bor = — v borr oy = e = No.
=5, ) T 5, 31y 22 2.1 0 T gt PETO
Ifn=2p+1, p €N, is odd, then it follows by recursion that
b 1 b 1 1 1 1 b 1
_ = . R T a_q.
T op 1 P T p+1 2p—1 5 3 ' (2p+)(2p-1)---5-3-1 "

Remark 4.1 It is here possible further to reduce the expression by multiplying the numerator
and the denominator by 27 - p! £ 0. This gives

2-1

1 2 1 2p-1) 1 2.2 1 211
-y =

op+1 2p 2p—1 2p—2 2p-3 4

2P pl
2p+ 1) 4t 0

w|

b2p+1 =
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Summing up, all Laurent series solutions, which are convergent for z € C\ {0}, are given by
+oo 1 +o0
R S N e Y
n=0 p=0

X1 1 1 1
- aoz_:nlzn'zTn+a‘1{2+;(2p+1)(2p—1)---5-3~1‘z2p+1}
X onp) 1
N OZ {@} s 12 (2n + 1)1 24T

2”n' 1

Only the zero solution can be extended to all of C.

The series expansion of fy(z) is convergent in C\ {0} (a neighbourhood of c0), so the condition is
that

a—1 = —res(fo; 00) =0,

so if z € C\ {0}, then
o) = ao-exp ( 5
olZ) = ap - exXp 2—22 .

Second method. Transformation of the differential equation. Since we shall prove that
an =10 for n € N,

we shall actually prove that f(z) has the structure

+oo 1 +oo 1
z):Za_n-Z—nzz:bnw”:g(w), w= -, a_, = by,.
n=0 n=0
The idea is to transform (15) into an equivalent differential equation for g(w). Since

dw_d 1 ——1*711/2
dz  dz \z[ = 22 ’

it follows from the chain rule that

_d dw 1

f'(z) e g9(w) = g'(w) e —w?q (w) = 2 g'(w),
and
F1(2) = () — g 0" () 02 = 20/ () + 'y’ (w),
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which we put into (15) for z # 0 and w # 0,

0 = P+ 45) P - 1)
o1 i) 2w} + {54 L () - otw)

= W)+ g w) g (w) —wg () — gw) = g"(w) — wy'(w) ~ g(uw).

The equation (15) is in the domain C\ {0} equivalent to

(19) ¢"(w) —wg'(w) — g(w) =0,  weC\{0},

where (19) of cause can be extended to w = 0. (The restriction w # 0 is only caused by the
transformation w = 1.) Since (19) is a differential equation of analytic coefficients without singular
points, (i.e. the coefficient of g”(2) is # 0 everywhere), all solutions of (19) are power series solutions
of domain of convergence C, and there are precisely two linearly independent families of solutions.
We conclude that a,, = b_,, =0 for n € N.

Put
“+o00 +oo +o0
g(w) = Z byw", ¢(w)= Z nb,w" 1t ¢ (w) = Z n(n — 1)b,w" 2.
n=0 n=1 n=2
Then by insertion into (19),
“+oco o0 “+oo +oo 00
0= Z n(n—1)b,w™ 2 — Z nb,w" =Y byw" = Z(n—i— 2)(n+1)bpqow™ — Z(n—l— 1)bpw™,
n=2 n=1 n=0 n=0 n=0
(n=0)
thus
+oo

Z(n + D {(n+2)byi2 —byfw™ =0.

n=0

It follows from n + 1 # 0 for n € Ny and by the identity theorem that we have the following
reduced recursion formula,

1

(n+2)bnio us 2=

bn, n e No.

Then we proceed as in the first method above.

Third method. Inspection. Assume that z # 0. If we divide (15) by 22, we get by a small rear-
rangement that

22 E{ z

Hence by an integration,

(20) 2%f'(2) + @ =c, 2#0, cé&C arbitrary.
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When we put the Laurent series of f(z) and f’(z) into (20), then

+oo
n+1 n—1 __ o n n __ o n
E N E = E _ § = E 1+ )
c naz" Y apz (n—1)an-12"+) apt12 {(n—1)an-1+any1} 2

n=—oo
Then we apply the identity theorem. We get in particular for n = 0,
—a_1+a; =c.

However, c is an arbitrary constant, so this equation only says that a_; are a; independent of each
other.

If n # 0, then
(n—1)ap—1 + apt1 =0, n € Z\ {0},

which is a third variant of the recursion formula. This is with only trivial changes solved in the
same way as by the first method.
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Fourth method. Transformation, followed by inspection. We can also inspect the transformed dif-
ferential equation (19). This gives

0 =g"(w) —wg'(w) - g(w) = 2~ {g'(w) —w-g(w)},
hence by an integration,
g'(w) —w-g(w) =c

If ¢ =0, we get

g(w) = a-exp <w72> :

and if ¢ # 0 we insert the series and solve the new recursion formula. The details are left to the
reader.

Example 4.27 (a) Describe the type of all isolated singularities in C* = C U {oo} of the function

1
23 exp <—>
_\*/

1@ =—

(b) Compute the line integral

1
23 exp (—)
f — g
|z[=2

14z

(a) We have clearly the three singularities z = 0, z = —1 and z = oo, and no other.

Obviously, z = 0 is an essential singularity (see what happens when e.g. z = x — 0 along the
positive and the negative real half axis, respectively).

Furthermore, z = —1 is trivially a simple pole, and finally, z = oo is a double pole. The latter is
seen in the following way:
f(z)

lim ~—= = lim
z—o0 2 z—oo 1 4+ 2

exp(l)zl-eozl#o.
z
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(b) Then by Cauchy’s residuum theorem,

1
23 exp <—>

2
— " %

1 1
23 exp (—) . Zexp <—>
z z .
% 7dz:—]{ ———2 dz = —27i - res ;
|z|:2 1+Z \z|:2 1+Z 1+Z
1
) 1 Z_S exp 2 ) 1 e ) 1 ) d3 e
= 271 -res ?H——l’o = 271 - res ij’o :2ﬂzgl%$ m
z
i d? e e* ) d e* e e
= — lim-—<¢—0-— = — lim — -2 2. -
3 zli%dz?{z—kl (z+1)2} 3 zlﬂ%dz{z—kl (z+1)2+ (z+1)3}
iy e® e® e® e* Iy 211
= —1 -3 6 —6 =—{1-34+6—-—6}=——.
3;36{z+1 CET AR CETIE (z+1)4} g 3406 =—=
ALTERNATIVELY,
1 1 1
23 exp (—) 23 exp <—> 23 exp (—)
% 7Zdz:2m' res —Z;O + res —Z;—l ,
|z]=2 1+2 142 1+2
where

) (1>
zZ7 exp ; 1 1
res ;=1 =(-1)%exp (_1> =--,

142

because z = —1 is a simple pole.

Since z = 0 is an essential singularity, we must here find a_; in the Laurent series expansion of
f(2) in 0 < |z| < 1. We have in this domain,

1
23 exp <;> +o0 +oo 1 1 400 +oo ( 1)k
_ 3 VKoK L — 3+k—m
e D DC D D= Ebried DD Dt A
k=0 m=0 k=0 m=0
It follows that we get a_; for 3+k —m = —1, i.e. when m = k + 4, followed by a summation over

k,

res %-o = a_ _f(—l)k_m(—l)”_l_{l 11 1}
k !

1+z 7 :O(k+4)!_n:4 nl e
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and then by insertion,

1 1 1
23 exp <—> 23 exp (—) 23 exp <—>
z . z z
}{ ——>dz = 2mi{res| ———; _—
|z|=2

14z 1+z 142
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Example 4.28 Find the Laurent series expansion from z =1 of

Z+2

AEEE VI Er)

in the domain given by 0 < |z — 1| < 4.
Find the residuum of f at z=1 and z = .

First method. We get by the change of variable w = z — 1,

f(@-ﬁ@-#ﬁ—%( -ﬁ)

(a) 0 < |z — 1| = |w| < 4, then

fz) =

]

=] w

(b) If |z — 1] = |w| > 4, then we get instead

+o00 n
n+1
= EJFEE:(—U (E) R RE

1 e |
- m+4—5;(—1)4 SeEn

1 1 1 1 1
— (1. L N 1)
w ( w 1+%) w? { wz( )

1 1 1 1 1 W\

~ (12, — = Ji_: _1n.(_)

(i) mw i (3]
—+oo

1 1 w\"—4 3 1

B _1"+1.<_) =, 4+ =

w4+45nz::1( ) 4 4 w4+

1 1 X 1"
ot 2 0 {4(z1>} |

Second method. We use again the change of variable w = z —1; but then we alternatively and more

clumsy though also more realistic, decompose instead,

w+3 1 1 1

f(Z)Zmz—

T ourd T B

1 3 1

w1

This decomposition is in itself difficult, so we only sketch the remaining part of the solution. We

use the same method as above on
1 1
44 w+4’

for 0 < |w| < 4, as well as for |w| > 4.
And then we get all the trouble of the final reductions.
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Since f(z) has a zero of order 4 at co, we have

res(f;00) = 0.
Furthermore, z = —3 is a simple pole, so
-1 1
res(f; —3) = a6

The sum of the residues is zero,

res(f;1) + res(f; —3) + res(f;00) =0,
hence
res(f;1) = %

ALTERNATIVELY, z = 1 is a pole of order 4, hence by RULE I,

. 3 (z+2 1 . d?
— lim — =—lim—<¢1-
3l z=1dz3 \ 2+ 3 3! =1 dz3 z+3

1 d 1
= — lim -

—_

res(f;1)

d? 1
3' z—>1 dz? { (z+3)2 }

2 1
2 U -y =2 =
3l - dz{ (z—|—3)3} 31 -1 (z—|—3) 4

256

By 2020, wind could provide one-tenth of our planet's
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