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Complex Functions Examples c-3 Introduction

Introduction

This is the third book containing examples from the Theory of Complex Functions. The first topic
will be examples of elementary analytic functions, like polynomials, fractional functions, exponential
functions and the trigonometric and the hyperbolic functions. Then follow some examples of harmonic
functions.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
4th June 2008
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Complex Functions Examples c-3 Some necessary theoretical results

1 Some necessary theoretical results
We start with

Theorem 1.1 THE FUNDAMENTAL THEOREM OF ALGEBRA. Every polynomial P(z) of degree n > 1
has at least one complex root.

This theorem immediately implies the following theorem:

Theorem 1.2 If all roots of a polynomial are counted by multiplicity, then every polynomial P(2) of
degree n. has exactly n complex roots.

Concerning the decomposition of fractional functions we have the following important special case:
Theorem 1.3 If the polynomial of the denominator (of degree m)
Qlz) =(z—a1)---(z —am)

has only simple roots, i.e. all a;, j = 1,...,m are mutually different, and the polynomial of the
numerator P(z) has a degree which is smaller than m, then

P(z) _ o~ P (a)) L3 z a a
A6 =% Qlay Toay  FECMan o)

Jj=1

You’re full of energy
and ideas. And that’s
just what we are looking for.

© UBS 2010. All rights reserved.

Looking for a career where your ideas could really make a difference? UBS’s
Graduate Programme and internships are a chance for you to experience

for yourself what it's like to be part of a global team that rewards your input
and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours
by visiting www.ubs.com/graduates.

www.ubs.com/graduates % UB S

Download free ebooks at bookboon.com


http://bookboon.com/
http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Complex Functions Examples c-3 Some necessary theoretical results

We should here also mention that the complex exponential function is defined by
expz = e :=e"cosy +ie’siny forz =x+iy e C.

From this definition we derive the complex trigonometric and hyperbolic functions by

sinz := % {eiz — e*iz} , - % {eiz _|_67iz}’

1 1
sinh z := 5 {e* —e7*}, coshz := 5 {e* +e7 7},

from which we furthermore derive

sin z CoS z
tan z := , cotz .= — ,
CcoS z sin z
sinh z cosh z
tanh z := , coth z := — ,
cosh z sinh z

in the sets where these functions are defined, i.e. outside the zeros of the denominator.

We see that these functions all agree with the well-known ones from the real analysis, when z = z € R
is real. Furthermore, we have the derivatives

d

—e% = ¢?

dz ’
d . d .
— sinz = cos z, — cosz = —sin z,
dz dz
d . .
— sinh z = cosh z, — cosh z = sinh z,
dz dz
d ; 1 d "
— tanz = , — cotz = — ,
dz cos? z dz sin® 2
d d 1
— tanhz = ———, — cothz = —————,
dz cosh” z dz sinh” z

where these also are in agreement with the known real expressions, when z = x € R er reel.

The fundamental relations also hold in the complex description,

2

cos? z +sin?z =1, cosh? z —sinh? z = 1, for z € C,

as well as the well-known rules of addition from the real are extended by just writing z instead of x:

sin(z+w) = sinz-cosw + cosz -sinw,
cos(z4+w) = cosz-cosw —sinz-sinw,
sinh (z +w) = sinhz-coshw + cosh z - sinhw
cosh (z +w) = coshz-coshw + sinh z - sinh w.
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Furthermore, we have the transformation formule,

sin(iz) =4 - sinh z, sinh(iz) =i - sin z,
cos(iz) = cosh z, cosh(iz) = cosz
tan(iz) =i - tanh z, tanh(iz) =4 -tanz
cot(iz) = —i - coth z, coth(iz) = —i - cot z,

We write as usual z = x 4+ it € C. Then it follows easily from the above that,

sinz = sinz-coshy+i cosx - sinhy,
cosz = cosx-coshy —isinx - sinhy,
sinhz = sinhx-cosy+ ¢ coshzx - siny,
coshz = coshx:-cosy+isinhz-siny.

We now mention a couple of results concerning harmonic functions.

Definition 1.1 Assume that Q C R? is an open domain in the real plane. A function u € C%(2) in
the two real variables x and y is said to be harmonic in €, if it satisfies the equation

O | 0

Aui=55 T oy

=0 for every (z,y) € Q.

The importance of the harmonic functions stems from the fact that the equation A = 0 occurs
frequently in the physical and technical applications. The connection with the Theory of Complex
Functions is given by the following theorem.

Theorem 1.4 Assume that f(z) = u(z,y) + iv(z,y) s analytic in an open domain Q@ C C. If we
also consider 2 as a subset of the real plane R?, then both the real part u(z,y) and the imaginary part
v(z,y) of the analytic function f(z) are harmonic in €.

Assume that both u(z,y) and v(z,y) are harmonic functions in the same domain  C R2. If the pair
(u, v) furthermore fulfils Cauchy-Riemann’s equations, we call v an harmonic conjugated function of w.
It follows immediately that if (u,v) is a harmonic conjugated pair (notice the order of the functions),
then (—wv,w) is also an harmonic conjugated pair.

Thus, harmonic conjugating is not a symmetric relation. The importance of an harmonic conjugated
pair (u,v) lies in the fact that under some very mild assumption the level curves

u(x’y):cla ’U(.’Ii,y)zc%
are orthogonal to each other. This follows implicitly from

Theorem 1.5 Assume that (u,v) is an harmonic conjugated pair. Then f(z) = u(z,y) +iv(x,y) is
an analytic function in the same domain.
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We now see that the missing condition for orthogonality above is that f/(z) # 0 at the point z =
r+iy ~ (z,y) € R? under consideration. At the same time this shows that it is often easier
to formulate a problem of harmonic functions by using analytic functions instead of the condition
Aw = 0. Thus it is important to be able to find an harmonic conjugated of a given harmonic function.
We have the following result:

Theorem 1.6 Assume that u(x,y) is harmonic in a simply connected open domain Q C R? (ie. a
domain without “holes”). Then all possible harmonic conjugated functions of u are given by the line
integral,

v(z,y) = *% dx + @ dy » + C, where C' € R is arbitrary.
20 T

Here we integrate along any simple curve in Q from the point zg to z, thus by one’s own choice.

Since the harmonic functions are closely connected with the analytic functions, we may also expect a
mean value theorem. We start with

Theorem 1.7 The MAXIMUM (MINIMUM) PRINCIPLE FOR HARMONIC FUNCTIONS. Assume that
u(x,y) is harmonic and not a constant on an open domain Q. Then u(x,y) has neither a mazimum
nor a minimum in €.

360°
thinking
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Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.

Download free ebooks at bookboon.com


http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6
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Assume that u(z,y) is harmonic and not a constant, and that u(x,y) has a continuous extension to
all of the boundary of a bounded domain €2. Then it follows by one of the main theorems from the
reel analysis that the maximum and the minimum (which do exist) necessarily must be attained at a
boundary point, i.e. in 9.

Theorem 1.8 THE MEAN VALUE THEOREM FOR HARMONIC FUNCTIONS. The value of an harmonic
function u(xz,y) in an open domain Q in a point (xo,yo) ~ zo € Q is equal to the mean value of the
function over any circle of centrum zo and radius r > 0, provided that the closed disc B [zg,r] C Q is
contained in 2. We have explicitly for any such radius v > 0 that

1 27 .
u (zo,y0) = u(z0) = o / U (Zo + 1"619) do,
0

where we as usual freely changes between the notations zo = xo + i yo and (xo,Yo)-

In 1820, Poisson derived a solution formula for the boundary value problem for the harmonic equation
on a disc:

Theorem 1.9 POISSON’S INTEGRAL FORMULA. Assume that f(z) = u + iv is analytic in an open
domain ), which contains the closed disc B0, R], and let zo = xo + iyo = re?, 0 <r < R be any
fized point in the interior of this disc. Then

1 2 R? — 2

- it
u(zo)—%r 0 RQ—i—rz—Zchos(H—t)u(Re ) dt.

and analogously,

1 2 R? — 2 ,
- Re™) dt.
v(z0) 27 Jo R2+41r2—2Rrcos(6 —t) v(Re)

Thus, u(z,y) and v(x,y) can be reconstructed from their values on the circle, which is given by the
parametric description Re' t € [0,27].

If u(z,y) is harmonic in Q, then all harmonic conjugated of u(x,y) are given by

m r - sin(6 — ;
v(z0) = ! /0 21 (Gt u (Re™) dt +v(0),

T o R?2+ 12 —2Rr-cos(f —t)
and we get
1 27 )
f(z0) = %/0 zi—zz u(z) dt + iv(0), where z = Re', t €0,2n].

This formal result seems confused, so choose {2 = B(0,1) as the open unit disc and assume that the
boundary values function h(z) is continuous on the boundary |z| = 1. Then it follows by a Fourier
series expansion, that we have on the boundary,

+oo

) 1
h (ezt) ~5 ao + nz::l {a, cosnt + b, sinnt},
where
1 g2 4 1 (2 )
ap = — / h (") cosnt dt, and by, = — / h(e') sinnt dt.
™ Jo ™ Jo

Then we obtain the following simple result,
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Theorem 1.10 Assume that h(z) is continuous on |z| = 1 and that h(z) has the Fourier series
exrpansion

“+o0o
) 1
B (6115) ~ 5 o + Z {a, cosnt + b, sinnt} .

n=1

Then the unique solution of the boundary value problem

Au=0 for x? + 4% < 1,
u(z,y) = h(z,y) for x® + 4% =1,
is given by
4 1 Ly
u(rew):§a0+Zr2{ancosn0+bnsinn9}, 0<r<1,
n=1

so we just add the factor r™ to the n-th term in the Fourier expansion of the boundary value function
in order to obtain the solution.

S00T NG SWHSAS WL SRl

It's only an
opportunity if
you act on it

IKEA.SE/STUDENT

Download free ebooks at bookboon.com

11


http://bookboon.com/
http://bookboon.com/count/advert/62a3fd82-96d7-e011-adca-22a08ed629e5

Complex Functions Examples c-3 Polynomials

2 Polynomials

Example 2.1 Suppose that all zeros of a polynomial P,(2) of degree n > 1 lie in the open left half
plane. Prove that then all zeros of P! (z) are also lying in the open left half plane.
P (2)

HINT: Apply the factor expansion of P,(z) and then consider the logarithmic derivative 2

. Prove
w(2)

that we obtain a conflict if we assume that P) (z9) = 0 for some zy where Re(z) > 0.
We call polynomials of this type Hurwitz polynomials.
Assume that

P,z)=A(z—2z1)(z—22) - (2 — zn),

where Re(z;) < 0 for j =1, 2, ..., n, and where we allow some of the z; to be identical. Obviously,
we may assume that A = 1. Then

Pa)=(z=2) (=) +(z—zm)+(-2a)(z—2) - (z—2)+ -+ (z2—21) (2= zn1),

and thus
Pi(z) 1 1 1
Pu(2) z—2z z-—2 Z—2Zn
If we put 2; = z; +1iy;, 5 =1, ..., n, and analogously z = x + 7y, then
P’ (z T —x T — T,
) ——— : N
Pu(2) (@ —21)" + (y —u) (@ —an)” + (Y —yn)
According to the assumption, —z; > 0 for j =1, ..., n. Hence it follows that

Re{iig} >0, ifz=Re(z) >0,

thus P/ (z =# 0 for z = Re(z) > 0. The claim is proved.

Remark 2.1 By elaborating further on the argument above it is possible to prove that the zeros of
P! (2) lie in the convex hull of the zeros of P,(z). ¢
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3 Fractional functions
Example 3.1 A fixpoint of the fractional function

az+b

m 5 where

flz) =

Z‘;AO, a, b,c,deC

is a point z € C, for which f(z) = z.
If ¢ =0, we consider co as a fixpoint.
Prove that if f(z) is not the identity function, then there are at most two fixpoints for f(z).

Let ¢ # 0 and assume that z is a fixpoint,

az+b

cz+d’

This equation is equivalent to the follows equation of second degree,
2>+ (d—a)z+b=0.

According to the Fundamental Theorem of Algebra this equation has two roots, so the function has
two fixpoints.
If the roots are identical, i.e. if (d—a)? = 4bc, one usually says that the equation has only one fixpoint.

If c=0and T # I, then oo is a fixpoint. If z € C is another fixpoint, then

a b
z==z+ -,

d d
because the condition
a b
c d

together with ¢ = 0 assures that d # 0. Hence it follows that if a # d, then we have precisely two
fixpoints, where oo is one of them. If a« = d and b =0, then T'= I, and if a = d and b # 0, then oo is
the only fixpoint.

Example 3.2 Decompose inside C:

10 22 —1 24
W ey Y eraery Y Feooey
(a) Here,
10 B 10 1 10 1 10 1 10
CI2 (1) A2 -0G+) 242 5 1o Gr22 zti 2oi(-2)

2 1+2: 1-—-2

242 z—i PR
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(b) First perform a division

221 A T CRer) (Gt NSNS SN S S S b
(z+2)(z+3) (z+2)(z+3) N z4+2 1 z+3 (-1)
I BN
N z2+2 z+3
(c) Here we shall be aware of the factor 22 in the denominator:
24 1 24 A 1 2 " 1 24
2(z-1(z+2) 22 -2z z—-1 1-3 z2+2 4(-3)
_ 12,4 8 2
B 22z z—1 242
Now
24 12 12

= EETD0TY {2+ +2-2}

12:41) A, 8 2
z—1 z42

2012 =

z2z=1)(z+2) =z

by a rearrangement and a reduction of the above. We therefore conclude by the standard method

that

g 120+1) S
-1-2

hence by insertion,

24 12 6 8 2

22(,2—1)(2—1—2):_2_2_; 2—1 242

ALTERNATIVELY one may find A by a formula, which is derived in a later book, so we only mention

the easy computations. Since n =2 and j = 1, we get
1 d271
A = lim

24 A8 s
(2—1) z50d2271 | (z—1)(2+2)) z50dz |z2—1 2z+2

8 8 8
li%{ (z1)2+(z+2)2} * ’

and then as before by insertion,

24 126 8 2

z2(z—1)(z+2):_z_2_; 2—1 242
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Example 3.3 Decompose inside C:

z 22 +5 25 —32+1
b) ————— —.
@ S O peper @ T
(a) The equation z* = —1 has the solutions
1 .
p=— (£144),

V2

all four possible combinations of the signs. It follows that every zero z; is of order 1, hence the

coefficient of is given by
— 2
lim z - L = 2 lim =2 -3 __J,
=z Al Temm (A41) - (2R +1) 42 42 4
Z—Zj

Then

z 1 1 +i 1 7 1 7 1
41 4 1404 —i 4 1+1 4 —1—1

ericsson.
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(b) Since
(=1 (z+1)=("-1)(2+1) (2 +1) = (z+ 1)* (2 — 1)(z — i) (2 + ),

we get by the standard method,

245 B 22 +5
(=1 (z+1) (z+1)2(z—-1)(z—4)(z+1)
1 —1+5 A 1 1+5
= : + + :
(z+1)2 (-2)-2 z+1 =z—-1 22.2
1 5—1 1 541
+ i - -+ - - - -
z—i (1+1)2(i—-1)-2i z+4i (1—14)%(—i—1)(—20)
1 A 3 1 5—1 1 541 1

(z+1)2+z+1+1'z—1+4(1—i)'z—i+4(1+z‘) PR

From
Z3+5 1 1 5 3
— . -1
i)+l +12 G011 (#+5+2" =" +2-1)
_ 2z2—3z+4_ A
24 -1 T 2+1 ’

follows by the standard method,

2
g 2F3EL_ 9
—2-2 4

hence by insertion and reduction,

1 3421 1 3—2r 1

245 1 9 1

3
(z4=1) (z4+1)  (2+1)2 4 241 R 4 z—i 4 a+i

ALTERNATIVELY it follows that

2245 2245

(2 =1)(z+1) (z+1)2(z—-1)(22+1)

By the standard procedure we obtain the coefficient

-1+5
-2.2
1
f—.
Rk
The remaining terms are then obtained by a decomposition of
2345 -1 1 3
_ — - 5 3_ .2 1
A1) (41 (2112 EEEE G RC
_ 223 — 22+ 2+ 4 _ 222 —32+4
(A =1)(z+1)  24-1

Download free ebooks at bookboon.com

16


http://bookboon.com/

Complex Functions Examples c-3

Fractional functions

Every pole 2 is simple and fulfils 2§ = 1, so the coefficient of becomes
Z— 20
228—-3z0+4  223-323+4z 1 3 9
423 N 423 T4 {229 —320+4z0}
Finally, by insertion of zp = —1, 1, ¢ and —i we get
245 1 9o 1 3 1 342 1  3-2 1
(z4=1) (z+1)  (z+1)2 4z+1 42z2-1 4 z—i 4 z+i

ALTERNATIVELY we may exploit that since zg € {1, ¢, —i} is a simple pole (and in particular

2§ = 1), then the coefficient of

is given in the decomposition by

zZ— 20
I 2 +5 28 +5 1 25 + 520 1 5z9+1
11m = = — . e et —
mzo dad(z+ 1)+ (24— 1) 423 (20+1) 4 z3-(20+1) 4 z+1
If zo = 1, then we get the coefficient
1 5+1 3
4 141 4
If zo = i, then we get the coefficient
1 145 1 1450 1—i 1 1+45+i(5—-1) 3421
4 14i 4 140 1-i 4 12+12 2
If 2o = —i, then we get by complex conjugation that the coefficient is — Z, because every
coefficient of the fractional function is real. 1
By the standard method we see that the coefficient of ——— i
(z+1)?
lim (2 + 1)? 245 TN o S e U
21 (1 =1)(22+1)(z+1) ==-1(2-1)(z2+1) -2-2

Finally, the coefficient of
z

1 ) d271

i (z4+ 1) (2* +5)
(2—1)! z—>-1dz2"1

= 1 d
D@+ ) [ M

1 is also given by some residue formula

2245
z—l)(z2+1)}

. 322 (Z3+5)-1 (z3+5) 2z
= lim 5 — 575 — 5
- (=1 (2 +1) (=122 +1)  (z-1)(22+1)
_3(=1)*>  “145 (=145)-(=2) _ 3 4 4
C(=2)-2 4.2 (-2)-4 4 8 4
__3+2+44 9
N 4 S
and we have as before,
245 1 9 1 3 1 342 1 3-2
(z4=1)(z4+1)  (24+1)2 42+1 42-1 4 z—i 4

}

1
2+

17
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(c) Since the degree of the numerator is bigger than the degree of the denominator we must first

perform a division. Since
(z—i)? = 2% = 2iz — 1,

we get by the decomposition that

25 —32+1 —6z+(1+21) 6 1—4i
L a2 —— T = % — 4 ——
A P R S o gy por
ALTERNATIVELY,
23 —3z+1 Lot A . B
) A M R
(2 —1i)2 (z—1i)2  z—4

where we in finding A and B may use the denominator 2% —3z+1 instead of —62z + (1+2i) (why?),

by which the computations become smoother,

Alim {z*=32+1} =i®-3i+1 = —— 3i+1=1—4i.

V- Aamd]

According to some residue formula where n =2 and j = 1 we get

z—1

d . .
B:hmd—{ztszﬂ} =lim {32* — 3} = —6,
A ZzZ—1
and hence by insertion

23 —3z+1 1— 44 6
A N S .
CED AN T P

Example 3.4 Decompose inside C:

241 241 2l —1
@ sy O sy © Eer

(a) By a direct computation,

241 B 24—1—22—22—1—1_ —22+1
P I B - B s Sy pop PO
B 11 1+1 1 1+1 1
L TR s YA T ;) SN
11 1
= 4 - — -

(b) In this case we get analogously,

241 24241 N 21 11
= = Z _— =2 — -
z(z2—-1) z(z2—-1) z2(z—=1)(z+1) z z—1

1
z4+1
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(c) Here is
22 -1 -2 -2 1 -2 i i
=14 =14 = . 1 - .
2241 (z—1)(z+1) 2i z—i+—2i z41 +z—l z41
Example 3.5 Decompose inside C:
2z+1 2+ 32342
ETS p Tt S
(@) z(z2+1) ®) 22 —32+42’ (<) (z—1)(22+9)
(a) By the standard procedure:,
2:41 241 1 241 1 —2+1 1
z(22+1) 2(z—i)(z+i) 2z i-20 z—i (—=i)(=2i) z+i
1 142 1-2
oz 2(z—d4) 2(z+10)
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(b) The degree of the numerator is bigger than the degree of the dominator, so we first perform a

division,
23+ sl Tz —6+1 +3+7—6+i 1 4-6+i 1
——— f— Z ——————————————— . .
—3242 (z—1)(z 2) 1-2 z-1 2—-1 z—2
141 8+1
= 3— .
S z—1+272

(c) Since we by the standard procedure always obtain the singular part (though not the additional
polynomial) we can put £3i into 323 + 2 instead of into the remainder 322 — 27z + 29 from the
division. Then

32342 _3 322 — 272 +29
(z—=1)(22+9) (z —1)(z — 3i)(z + 37)
:34_3' 1 n 2 — 811 ' 1 n 24 8117 . 1
10 z—1 (3i—1)6i z—3i (=3i—1)(—6i) z+3i
1 1 (2—81i)(—3+i) 1 1 (24814)(—3—1) 1

=3+-—+

1
z—1 6 (=3—i)(3+i) 2—3i 6 ( 3+i)( —3414)(—3—1i) z+3i
1 1 1
=3+ ﬁ+60(—6+81+z{243+2})—+ (—6+81+z{243+2})

2

1

2 +31
1 1 75+245: 1 75—2451 1

2

1

2

=3+

-1 + 60 z—31 * 60 z+3i
1 15+49: 1 15-49¢ 1

z—1 + 12 2-3i * 12 2+43i

z

=3+

Example 3.6 Decompose partly inside R and partly inside C:
23 22 —1)(z+2) 1
@ ——a 7 ® % © Zopera
(z=1)(z*+1) (24— 1) (22-1) (2 +2)

Since the real decomposition can be derived from the complex decomposition, and since a direct
computation of the real decomposition is rather difficult, we shall here only give the complex variant.

(a) the zeros of the denominator are
1 1 1 1
R (=), —=(=141), —
NG N ANV A S

1
and they are all simple. Then the coefficient of
- —

1 (241), (=1—1)

1 is given by

i 23 1
ap = lim —— = —,
0 z—1 24+ 1 2

and the coefficient of , where z = —1, is given by
- j
N Gt % 1 G o1 _1 1
a;, = 1im = . = — = — .
T (2= 1) (2441 oz -1 2+l z—1 422 4 oz -1
lim, ., —— J
Z—Zzj
Hence,
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1 1 V2 1 (1—+2) —i

R L B W IV AR TR o) B
V2
4 (1-v22241 4 1-2V242+1
V2 1-V2-i V2 1-V2-i 242
T8 2-V2 8 22 242
V2 1 ‘
= oz 2-2vEEVE-2-iVE1+ V)
1 142
I T
1 ——_1+i en
2) if zo = 7 , th

S SR N R B € )
az = 7 St T S (S Q) Ry (N )
V2
“1-V2—i V2 —1-V2—i

V2
414V 1 4 1+2V242+1
V2 —1-V2—i V2 —1-V2-i 242
8
V2
8

1

24v2 8 2442 2442

B 1 -2—-2v2—2i
2 1+42
_ Lo ve-1
8 g8
—1—i
3) if z3 = = Zo, then
) if z3 NG 2
1 V21
a3252=—§+2 8 ;
1—14
4) if z4 = = Z1, then
) if 24 7 1
e SR C RS
ap =0 =—gt+i—0—.
Thus the complex decomposition is given by
23 11 14+ (V2+1)i 1 14+(V2-1)i 1
(z—1) (z44+1) 2 2z-1 8 z_ﬂ 8 Z_—H-i
V2 V2
1—(v2+1)i 1 1—(v/2-1)i 1
_ < .Z_ﬂ_ < .Z_—l—i'
V2 V2
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REAL DECOMPOSITION. Since

a+ib N a—ib _ (a+ib)(z—(c—id))+(a—ib)(z—(c+id))
z—(c+id)  z—(c—id) (z—c)2+d?
_ 2az —2ac—2bd
we get
1+ (V2+1)i 1 1—(V2+1)i 1
a ) T 8 'Zi 1—i
Y ¥
1 1
:71.22*2'ﬁ*2(‘/§+1)ﬁ 1 VBB
8 <—i>2+l 8 A-V2a+1
V2 2

1 22-2-2V2 1 2-1-V2

:75.227\/§z+17 4.227\/§z+1’

and analogously,

1+ (vV2-1)i 1 1+ (V2 —1)i 1 1 z+V2-1
8 Z_—1+i 8 Z_—l—i_ 4 242241
V2 V2
so we conclude that the real decomposition is
23 11 1 2-1-v2 1 z+v2-1

(z=1)(z*+1) 2 2—1 422241 422422+1

(b) This is the most difficult decomposition in this example. Notice that even if z — 1 is a divisor
in both the numerator and the denominator, it will be most convenient not to remove this factor.

We first get
(2 =1)(z2+2) A+28-2-2 1 +2z3—z—1
(24— 1) (24— 1) A1 (-1

Then we use a small trick, by using that

1 1 1 1 1 1

A1 (2-1)(2+1) 2 2-1 2 22+1

Hence by a squaring,

1 1 1 1 1 1 1
(A -17 4 (2-1) Z'(22+1)2_§.z471
1 1 1 1 1
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which by insertion gives

(1) (2+2)

(-1

2:3—z2—1 2z3—2—-1

n 223 —2—1
22+1

(22+41) 221
11 1 1
T222-1 22241
+1 22(22—1)+z—1 22(22+1)—3z—1
4 (22-1)° (2241)°
2z (22—1)+z—1 n 2z (22+1)—3z—1
221 2241
11 1 1
T222-1 22241
2z z—1 3z+1
< -2
+4{221+<z?—1>2 A
z—1 3z+1
2_1 2+1
11 1
2221 22241
+1 z+1 z—1 z+1 3z+1
401 22-1 (22-1)2 2241 (22+41)
_olf1 1 11 1243 11
201 2z2-1 2241 42241 42-1
PSR S S R
4 (z=1D(z+1)2 4 (2241)?
11 1 1 1 1 1 243 1 3z+1
o 22-1 4zl 4 (z—1)(z41)? 42241 4 (241)%
Now,
1 1 1 1 1 1 N A
4 (z—=D(z+1)2 16 z—1 8 (24+1)2 241’
where
A 1 1
= — ———{4- D2 4+2(z—1
41 16 (z—l)(z+1)2{ (2 + 1% +2(z - 1)}
1 1 )
= — 2 9,4 224+4—-1-2
16 (z—l)(z+1)2{ FosEAeEs }
1 1 ) 1 1
- - . - @ {_ ) V=
16 (z2—1)(z+1){ ) e TR

23
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which gives by insertion,

(22 -1) (2+2) Loy 1 5.1 1 1 1=z43 1 3241
(z4—1) - \2 7 16) z2—1 16 z+1 8 (2+1)2 42241 4 (z241)°
9 1 5 1 11 1 243 1 3z+1

16 z—1 16 z2+1 8 (2+1)2 4 2241 4 (22+1)%
Thus we have found the real decomposition.

COMPLEX DECOMPOSITION. Since

1 z+3 1 3z+1 1 (z43)(22+1)+(32+1)

T4 Hl 4 (21?4 (22 +1)°
1 24322 +2+3+32+1
C4 (22 +1)°

_1 234322 4+4z+4
4 (z—1)%(z2+1)?

is the only term with complex roots, it is by the complex decomposition sufficient to decompose

234322 4+4z2+4
(z—1)2(z+14)2 ~

With us you can
shape the future.
Every single day.

For more information go to:
WWww.eon-career.com

Your energy shapes the future.
e-on
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It is seen by the standard procedure that the decomposition must contain

B3P +4itd 1 (P 3= A=) +4 L
(2i)2 (z —1)3 (—2i)2 (z+1)?
1 . 1 1 . 1

It follows by a small computation that this expression is equal to

_i%(z2+1)2{(1+3i)(z+z‘)+(1—3i)(z—i>2}
:_iﬁ-me{(um)(zﬂf}
:_%ﬁRe{(1+3i) (2 +2iz— 1)}

11 : g,
:_im {z 6 1},

thus the remainder term is

3 2
z°+32"+4z24+4 1 1 {z2—62—1}
@+1)° 2 (241

1 1
—~—2{223+6z2—|—82—|—8—|—z2—6z—1}
2 (1)
1 2247 2247
2347 4 2247 = =
2P O S e T s G
T4+ 2 1 7T—2 1 T+ 21 1 7T—2 1

— - + - .= — - + — - .
2(2i) z—1i  2(—=2i) z+1 i z—i —4i z41
2-Ti 1 Jr2—1—71' 1

4 z—1 4 z4i

By insertion of these expression we get

B4+32+4z+4  2-T 1 L2471 1430 1 1-3i 1
(z—0)2(z+4)2 4  z—i 4 z4i 4 (z—1)2 4 (z2414)2
and the complex decomposition becomes
(Z2-1)(z+2) 9 1 5 1 11
(24— 1) - 16z—1 16z+1 8 (2+1)2
2-7i 1 2+7 1 1+3i 1 1-3i 1

6 2—i 16 2+i 16 (—i2 16 (G+iP

ALTERNATIVELY one may use that z = 1 is a simple pole, and that z = i, —1, —i are double poles,
and that we can write

(Z2-1)(z+2) (-1 +14+1)(z+2)  (P+z2+1)(2+2)
A-12 12—+ D20 (2= 1)(z 4 1)2 (22 + 1)
(22 =1) (2 +2) B (2 =1) (2 +2)

- 12GH12E D (212 (02 i)
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where we in the following always shall use that expression which is the most convenient on in a
given situation.

The coefficient of is found by the standard procedure:

z —

(2+2z+1)(2+1) 3-3 9

2112 222 160

1
This is also the case of the coefficient of ———:
(z+1)2
(24+241) (242 (1—-14+1)(-1+2) 1-1 1
- 2112 (—(1+1)2  (=2)-22 8§
=l (1) (22 + 1) (=2)(1+1) (-2)

We find the coefficient of

) by using a residue formula for n =2 and j =1,
z

. i{ (23 =1) (2 +2) }

=-1dz | (z—-1)2(2241)°
. {322(z+2)+(23—1) 1, Dy () (z+2)22}
z——1 2

C-D? (211 -DP (21 (-2 (241

3-1-14(-2) 9 (=2)-1 2(—2)~1-(—2)
22.92 (2322 (—2)223
3—2 2 4 5

16 16 16 16

1
The coefficient of ——— can also be found by the standard procedure,

(z—1)?
i (2°=1) (242)  (=i—1)(i+2) —241+i(-1-2) 143
=i (22-1)° (244)2 (FL-1)2(202 4-(4) 16

The coefficient of

- is obtained by means of a residue formula, where n =2 and j = 1:
z—1

- (*=1) (2 +2)

z—i dz (22 — 1)2 (Z+Z)2

C 32%(2+2)+(23-1)
=il i (1

()Y == ,
(—2)2(2i)? (—2)3(2i) (—2)2(2i)3

GBI 2:2(140)(2+) ) (149)(2+)

- 16 E T

T 2i(i)241) | i(1i)(2+)

AT 16 * 16 ‘

- %{7+4i+3i(271+3i)} %6{7+4i+3¢—9}:_21;72.

Download free ebooks at bookboon.com

26


http://bookboon.com/

Please click the advert

Complex Functions Examples c-3 Fractional functions

The fractional function
(% =1)(2+2)
(24— 1)?

1 1
has real coefficients, so the remaining two coefficients of and n respectively, are ob-
z+i

(z+1)?

tained by complex conjugations, so summing up we get as before,

(2% =1)(2+2) 9 1. 5 1 1 1
(24— 1)° 16 z—1 16z+1 8 (z+1)2
(2-7 1 247 1 143 1 1-30 1

16 z—i 16 z+i 16 (z—1)? 16 (z41)2

(c) Tt follows directly by the standard procedure that
1 1 1 1 1 1 1 1

Z 1012 (D 2+ 62-1 2:+1 3232

and this is at the same time both the real and the complex decomposition.
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Example 3.7 Put

2irk
ak:exp( ), k=0,1,...,n—1.
n
Prove that
n oy o o o
:Z k — 0 + 1 +...+’ﬂ771.
2 —1 P e z—ap zZ—oq 2 — Qp_1

Here z™ — 1 has the n (simple) roots ag, a1, ..., @y_1, so the decomposition gives in principal,
n A Aq A1
— + P _|_ _
zn —1 z—aqp zZ—oq Z— Qp_q
where ajf =1 for every k=0, 1, ..., n— 1. The coeflicients Aj, are given by some residue formula,
. Z — O n n oL
A =n- lim = - = — = — = ay,
z—ap 2" — 1 . 2 -1 nozk ay
lim,_.q,
Z — O

and the claim is proved.
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Example 3.8 Two half lines Ly and Lo are given in the complex plane C by
Ly ={z|Im(z) =0 A Re(z) <2}, Ly ={z|Im(z) = -1 A Re(z) <0}.

Given some Cl-curve K in Q = C\ {L; U Ly} with initial point = = —2i and end point z = 2i.
Compute

22 —6—1
/,C(z—2)(z+i) dz.

Figure 1: A possible curve K from —2i to 2¢ without intersecting the lines L, and L.

We get by a decomposition,

22647 1 3

(2 —2)(z+1) 7z—2+z+i7

so if the curve IC lies in €2, then

/,C%dz/,c{Z;*Zii} dz = [~ Log(z — 2) + 3 Log(z + 1)|%y;

— Log(—2 + 2i) + 3Log(3i) + Log(—2 — 2i) — 3 Log(—1)

3 3
:{1n|—2+2i|+i£}+3{1n3+ig}+{ln|—2—2z’—izﬂ}—?){lnl—ig}
:—37”+3ln3+3i7r:31n3+i377r,

because K lies in the domains of Log(z — 2) and Log(z + 7).
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4 The exponential function and the logarithm function
Example 4.1 Find every complexr number z, which fulfils the equation
622+4’i — 3\/§+ 37/,

and indicate the solution which has the smallest module.

Figure 2: The vector 3v/3 + 3i of length 6 and corresponding angle %

Since

13v/3 + 3i| = V27 + 9 = 6,

it follows that

3\/§+3i:6{\/7§+i%}:6exp(i%> :exp<ln6+i{%+2p7r}>7 peZ.

02040608
R diviotuiiiies v ol
0

Figure 3: The solutions, when p =0 and p = 1.
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We have already taken care of the uncertainty of the exponent modulo 27, so we conclude that

2z+4i:ln6+i{%+2pw}, pez,

thus

1 [
Z—§ID6+’L{572+Z)TF}, pEZL.

Now

)

s s
— -2~ -1 — —24+1-w~1,4
12 , 738 and 1 +1-7 ,403,

so we conclude from the figure that the smallest module (i.e. the smallest absolute value) is obtained
when p =1 (and not when p = 0). Hence, the solution of smallest module is given by

1 T 1 137
20 3 nt6 4 ¢ 1 + 7 5 n6—|—z{12 }

Example 4.2 Describe the streamlines for the complex potential
F(z) = e?,

where y € [0, 7).

Figure 4: Some streamlines for the potential F(z) = e®.

The stream function is given by
Y(z,y) =Im (e*) = e"siny.

Clearly, y = 0 or y = 7 correspond to ¥ (z,y) = 0.
If y €]0, 7], then

Y(x,y) =e"siny > 0.

Download free ebooks at bookboon.com

31


http://bookboon.com/

Please click the advert

Complex Functions Examples c-3 The exponential function and the logarithm function

Hence, the streamlines are given by
Y(x,y) = e siny = ¢ > 0,

thus

x:ln<_c>, yelo,r], ceRy,

siny

because it is here easier to express x as a function of y than vice versa.

Example 4.3 Prove that

2\/_exp< ) (\f+1)+z(\/§—1).

HiNT: Apply
1 1 1
12 3 4

Using the hint we get

2\/§exp<12> = 2V2. exp< ) ( %) =2V2. (cos—-l—z sm%)-(eos%—isin%)
= 2V2. ( +z§> (%_ 7) =(1+iv8) (1—i) = (1+v3) +i (V3-1).
Ijoined MITAS because for Engineere and Geoseientios

I'wanted real respon51b111ty Maersk.com/Mitas

[ was a construction
SUpEervisor in

the North Sea
advising and

e elping foremen
'%% solve problems

=

MAERSK
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Example 4.4 Compute

oo

Log z

22

dz,

by considering the line integral along the curve C with the parametric description

z(t) =

it
Re™,

te]_ﬂ-ﬂﬂ—]»

R > 0.

In this case it is not possible to apply Cauchy’s integral theorem, so instead we insert the parametric
description. This gives

f

Log =

22

dz

—T

/” Log (Re™)

R2 eZit

X T InR+it
iRedt =i ————dt
iRe z/ T ot

—T

= %/ (In R +it)(cost — ¢ sint) dt

T
Z’ ™

R

—T

1

T 1
= — {t-sint—l—it~cost}dt=—§

—T

= 0+}% [—t~cost+/costdt[ﬂ:]—i{{—w~(—1)+(—w)-(—1)}:f.

(InR-cost+tsint) 4+ i(t cost —In R -sint)} dt

s ™

t-costdt—i—é ¢-sintdt

—7 -7

ALTERNATIVELY we may use the following shorter version,

foon

Log 2

22

dz

N /” Log (Re™)

—T

,/” InR
— 7 .

InR

_ _—it]T
- R [6 ]—w

= 0 ifr (1)~ (om) (-} 0= 2

R

4 " InR+it
-z’Re“dt:i/ DR%dt

—T

. 1 77 .
—it —it
dt — — t dt
e R e

—T

1 1 e 1 1 .
o . — —t . _ = —t
R{—J— _ie }W+R < i>/7r€ dt

Example 4.5 Let Q@ = C\ (R_ U {0}). Find the value of the limit

lim {Log(a + iy) — Log(a —iy)},
y—0+

partly when a € Ry, and partly when a € R_
What happens if a = 0%

1) If a € Ry, then Log(a + iy) is continuous in y € R, thus

lir&_ {Log(a + iy) — Log(a —iy)} =0 for a € R4.
y—)
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2) If a € R_, then Log(a + iy) tends towards In |a| + im for y — 0+, and Log(a — iy) tends towards
In |a| — im for y — 0+, hence

lir[1)1+{ Log(a +iy) — Log(a —iy)} = 2mi fora e R_.
y—)
3) If a =0, then

. . . ™. . .
ylir& {Log(iy) — Log(—iy)} = 50 (—5 z) = i, for a = 0.

Example 4.6 Given the function

f(z) = Log(z*+2),

where Log denotes the principal branch of the logarithm, and denote by A the largest domain in C, in
which [ is analytic.

1) Find and sketch the domain A. Then find the derivative f'(z) as a function of z.
2) Let v : [0,1] — A denote any differentiable curve in A of initial point v(0) = 0 and end point
~v(1) = =1 +4. Prove that

2
/2—Zdz:1n\/§—ﬂ.
2%+ 2 4

Figure 5: The set A with the two slits given by z = 0 and |y| > /2 and with a possible path of
integration ~ from 0 to —1 + 1.

1) The principal branch Log of the logarithm is analytic in the plane with a slit alon g the negative
real axis

C\{z € C|Re(z) <0, Im(z) = 0},
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so if we put g(z) = 22 + 2, then the composed function f = Log o g is analytic in the set
A = C\{z€C|Re(z*+2) <0,Im(2*+2) =0}

= C\{z=a+iy|z?—y*+2<0, 22y =0}

It follows that the exception set is defined by either x = 0 or y = 0. Clearly, y = 0 is not possible,
so we get x = 0. Then we must have in the exception set that |y| > /2. We have prove that

A=C\{iy|y<—V2ory> 2}
The function f(z) = Log (22 + 2) is analytic in A, so it follows by the chain rule that

2z

m, ZGA

f'(z) =

Let v : [0,1] — A be a parametric description of any differentiable curve from 0 € A to -1+ € A.
The integrand is equal to f’(z), found above, so the primitive is given by

/f’(Z)dZ = f(4(1)) = f(2(0)) = f(~=1+1) = f(0) = Log ((~1+1)*+2) — Log (0° +2)

™
R

1
Log(—2i+2) — Log 2= Log(l1 —1) = 3 1n2—i4

where we have used that Log 2 = In 2.
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Example 4.7 Define
F(z) = exp (2%), z € C.
(a) Describe for every real constant R > 0 the set of points z € C, for which
|F(z)| = R.
Show in particular on a figure
{zeC[|F(2)| = R}
for representative values of R.
Let
z=re?, r >0, 0el—m,ml,
be the description in polar coordinates of z.
(b) Find every 0y €] — m, |, such that
F() = F (r exp (i6))
never takes on a negative, real value on the half line from 0,
lo, ={z=rexp(ibly)|r>0}.
(c) For any other 0 €] — m, 7| find the smallest
r=r(0) >0,
on the half line Ly, such that

F(z)=F(rexp(i0)) € R_, z € ly.

(d) Prove that the function r(0) defined in (c) has a minimum > 0, and then find the largest open
disc

B(0,R) ={z e C[|z[ < R},

for which F(z) ¢ R_ for every z € B(0, R).

(a) It follows from
|F(2)] = |exp (2%)] = |exp (¢® — y* + 2izy)| = exp (2° — y*) = R > 0,
that
2> —y*=InReR,

which is the equation of a system of hyperbolas, supplied with the straight lines y = x and y = —x,
both corresponding to R = 1.
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Figure 6: Some level curves F(z)| = e” =% = R > 0.

VAN

(b) By using polar coordinates we get the description
F (r eia) = exp (r2 cos 29) - exp (z r? sin 29) .
This represents a negative number, if and only if
(1) r?sin20 = 7 + 2pm, peEL.

Since r > 0 varies, the only possibility that (1) is never fulfilled is when sin 20 = 0, thus if and
only if

™ ™
906{_5505577.(}7

because we have assumed that 0y €] — 7, 7.
The four corresponding half lines are the four half axes (the positive and negative z and y axes)
from 0.

It follows immediately that

F(z) =exp (z*) >0  for every z € R,
and

F(iy) = exp (—yz) >0 for every y € R,

hence F(z) ¢ R_ for z on any of the coordinate axes.

(c) If

06]—#,#]\{—%,0,%,#},

then sin 26 # 0, and it follows from (1) that

9 T+ 2pmw
re = — ,
sin 260

pEZ.
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Then the smallest possible r» = () is given by

9 . 7r+2p7T: T 7
r(0)” = min =g |'sin 20)]

thus

7(9):‘/\5,117:72% ee]—ﬁ,w]\{—g,o,g,w}.

:1) It f:H: S fI:In th EXFIEESIZIl :f (E) m (:) tllat (E 1) 1S 51112"11;5[:’ :hEIl |:1112E 1| 13 12LIgE:t, tllu:
( When |Sln29 | - 1, C()I‘resp()ndlng ‘()

3T T 3_7r
916{_I7_Zaz74 )

so the minimum value is

r(@l)\/?\/?r.
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Now,
F (ﬁeif)l) —_— cosQOleur'sm291 _ 60 . e:l:z‘rr — _1,

so it follows that the largest open disc B(0, R), for which F(z) ¢ R_ for all z € B(0, R), is given
by

B(0,v/7) ={z€C||z| < V7},

corresponding to R = /7.

Example 4.8 Let

F(z) =exp (é), z € C\ {0}.
(a) Describe for every value of R > 0 the point set
{z€ C\{0} | |[F(2)| = R},
and sketch a representative number of the set.
(b) Find the set of points A, for which F(z) is real, thus
A={zeC\{0} | F(2) e R}.

The set A is naturally into decomposed into infinitely many components of connection. Sketch a
representative number of these.

Figure 7: (a) Some of the curves |F(z)| = R.

(a) If z # 0, then

0< R=|F()| = exp (Re (é)) — exp (ﬁ) ,
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hence

=InR, (Zay) 7é (070)

T
-T2+y2

If R =1, then we get the two half lines z = 0, y # 0 of the y axis.

If R+# 1, then

1
2?4y = —

which we write as

1 2 1 2
{x_ZlnR} +y2:{21nR} . (zy) #(0,0),

i.e. some circles (with exceptional points)

1 . 1
centrum: (m , 0) and radius: ’2 th‘ .

Figure 8: Some of the circles of radius

(b) If z # 0, then

F(z) =exp (%) ER,

when
1 x . Y
(o (3)) = () oin (o) o0
hence
Y
m = pm, p (S 7.

40
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When p =0 we get y = 0, x # 0, thus the positive and then negative real half axes.

If p # 0, then

2, 1? 1
2 o
4 2pm

:{%} (r,3) # (0,0),

which describes some circles (with exceptional points) of

1

centrum: (O , ——
2pm

1
) and radius: ——,
27(p|

Note that the radius in this case only go through

1
— N
{27rn|nE }’

and not all of R,..

p € Z\ {0}.

Example 4.9 1) Prove that we have at any point z on the horizontal lines

Im(z) =7+ 2nm, n € Z,
that e* < 0, and hence |e* — 1| > 1.

2) Prove that we have at any point z on the vertical lines

Re(z) =, |r] > 1,
have
1
-1 > <.

1) If Im(z) = 7 + 2nmw, n € Z, then
z=x+i(m+ 2nm), reRogneZ,

hence
e* = et Filrtinm — o ), n e 7.

Then it is trivial that |e* — 1| > 1 for every such z.

2) If Re(z) =r, |r| > 1, then

z=r+1y, [r| >1ogyeR,
hence
e—1
e =1 =|e"e” — 1| > |e" — 1| > 1
1=
e

forr>1

| —

forr < -1

41
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Example 4.10 1) Find the solutions of the equation
2> =3+id
in the form z = x + iy.
2) Find the solutions of the equation
e —(1+i)e " =i.

in the form z = x + iy.

1) Tt follows from
22 =34 4i =22 4+4%4+2-2i = (241)2,
that the solutions are

21=2+i og 222—2—i.
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2) When we multiply the equation by e # 0, then we get after a small rearrangement the equivalent
equation of second order in e**,

(€%)? —ie” — (141) =0.
The solution is

1+1,

eizzé {i+ —1+4(1+i)}:% {i+v3+1i} %{ii(2+i)}=

—1.

From here we get the two families of solutions

1 1(1 )
zm,;log(lJri);{§ln2+i<%+2pw>}—Z—l—pr—%ln?, pEL,

and

1 1
22p = log(—l):;-i{w+2p7r}=7r+2p7r, pEZL.

Example 4.11 Find the solutions of the equation
e —2e7% = 3.
A multiplication by e?* # 0 follows by a rearrangement gives the equivalent equation of second order
in e**,
iz)2 - iz
(e ) —3i-e”*—-2=0,

with the solutions

24
. 1 1 ’
ewzi{3ii\/—9+4-2}:§{3iii}=
i.
Then finally,
1 . 1 (T ™ .
= log(2i) = —_{ln2+z<§+2p7r)} = §—i—2p7r—zln27
i i
z = p € Z.
D log(i) = E i(Z+2 ) = Z 42
e i\ T - g AT
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Example 4.12 Consider the principal branch of the square root
1
72) =i =ex 5 Tog ).
an also the function

g(2) = f(1-2).

1) Find the domains of analyticity A of f, and B of g, and sketch B.
Find the derivative g'(z) for z € B.

2) Denote by T' any oriented closed curve in B, and find the value of the line integral

ﬁ J(2) dz.

Let v denote any oriented curve in B of initial point z = —i and end point z = i. Prove that

[yg'(z)dz = i2v/2 sin (%) :

1) Clearly,
A=C\{z€C|Re(z) <0, Im(z) = 0}.

The exceptional set of g is given by 1 — 23 € R_ U {0}, hence z* € [1,4+oc[, and thus

zr~ei9,r21,9€{2—ﬂ,0,2—ﬂ}}.

B—
C\{ZEC 3 3

Figure 9: The set B with its three slits.

Then we get by the chain rule,

! s V1 — 3. (—322)
z

g = FO-2) (32 =5 —

2
= 3 c V1—23 for z € B.

2 128
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2) Now, ¢'(z) is analytic in B, and T is a closed curve in B, so it follows from Cauchy’s integral

theorem that

f}g'(z) dz = 0.

Furthermore, +i € B, so

—
e
]

»
ol
~/
L
I
~—

N——

I
~
~/

e
]
”
ko)

/
~.

|

N—

N—

/ J()dz = [g(a)]l = —i)— f(1+1) =

Example 4.13 Denote the principal branch of the logarithm by Log.

1) Prove that F(z) = zLog z — z is a primitive of Log in the slitted plane

D* =C\] - ,0].

2) Denote by v e curve in D* of initial point z; =1 and end point zp = i. Explain why the value of

/ Log zdz
~

is independent of the path v and find the value.

1) We see that F'(z) = zLog z — z is precisely defined and analytic in D* = C\] — 00, 0]. Hence, it

suffices to prove that
F'(z) =Log z  for z € D*.
This follows from

1
F'(z)= Log z+2z-—-—1= Log z.
P

2) Clearly, Log z is analytic in D*, and since F'(z) is a primitive of Log z, we get

/ Log zdz = [F(Z)H:1'L0g1*1*i'L0gi+i:0717i{i'(g)}+i
v
= 71+g+i.

The exponential function and the logarithm function
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5 Trigonometric and hyperbolic functions

Example 5.1 Find the real and imaginary parts of

(a) cosh(mi), (b) €', (c) sin(mwi), (d) sinh(1 4 4).

(a) Since cosh(mi) = cosm = —1, we get

Re(cosh(mi)) = —1 and Im(cosh(mi)) = 0.
(b) Since ¢! = cos1+i sin 1, we get

Re (ei) =cosl and Im (ei) =sinl.
(c) Since sin(mi) =i sinh 7, we get

Re(sin(mi)) =0 og Im(sin(mi)) = sinh 7.
(d) Since

sinh(1 +4) =sinh1-cos1+ 4 coshl -sinl,

we get

Re(sinh(1 +4)) =sinh1-cosl, Im(sinh(1 +4)) = cosh 1

46
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Example 5.2 Prove that
2¢ cosh =1+ 2.

Then prove that

/ cos® 0 cos 360 df = E_
0 8

It follows from
. 1 , ,
2¢" cosf =2¢" - 3 {ela + e"e} =1+ %
that
e cosf = 1 {1 Jrezm}
3 .
By taking the third power of this relation, we get

€39 cos® 0 = cos 30 - cos® 0 + i sin 30 - cos® O =

| =

hence

" 17 _
/ COSSGCOSB@dQZRe{g/ (1+6219)3 dﬁ}
0 0

(1 + 621'9)37

1 i . ) )
gRe / {1 + 3¢ 4 340 —|—e€”0} df = %
0

Example 5.3 Prove that the map w = cos z usually maps the straight lines Re(z) = k into hyperbolas,

and the straight lines Im(z) = k into ellipses in the w-plane.

Find the values of k € R for which we instead get a straight line, a half line or an interval.

When we separate
w=u+ 1w =cosz-coshy — i sinx - sinhy,

into the real and the imaginary part, we get

u(x,y) = cosz - coshy and v(z,y) = —sinz - sinh y.

Put Re(z) =z = k. Ifk’zg—kpw,peZ, then

u=0 og v =(—=1)""'sinhy, y € R,
thus the image is in this case the v-axis u = 0.
If k= pm, p € Z, then

u = (—1)" coshy and v =0, y € R.

In this case the image is one of the two half lines | — oo, 1] and [1, +oo[ on the u-axis, depending on

whether p is odd or even.

47
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Figure 10: The two orthogonal systems of curves.

Ifk#p'g,pEZ,thecosk~sinkz7éO, SO

v
= cosh = —sinhy.
cos k Y sin k 4
When we eliminate the parameter y we get an equation of a hyperbola
u? v?

LA —

cos’k  sin?k

Now let Im(z) =y = k. If k = 0, then
(u,v) = (cosz,0), z € R,

and the image is the interval [—1, 1] on the u-axis.

If & # 0, then
U v .
cosh k= cos T, Lk sin x, r €R.

When we eliminate the parameter x we obtain an equation of an ellipse

u? v?

- 4+ =
cosh?k  sinh?
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Example 5.4 Prove that

sin z
jé BLLI
=1 22

It follows from

< 2me.

sin z = sin(z + 1y) = sinx - coshy + i cosz - sinh y,
that

2

|sinz|> = sin?x-cosh?y + cos? z - sinh? y = sin® x - cosh? y + cos? z - (cosh? y — 1)

= cosh?y — cos® .

Therefore, if |z| < 1, then we get the estimate

|sin z| = /cosh? y — cos?z < coshy < e¥ < e.

Then

j{ smz
2
lz]=1 %

Remark 5.1 We shall here demonstrate — although it will later follow more systematically — that

sin z .
5 dz = 2mi.
|z|=1 #

First method. If one already knows a little of calculus of residues, then the task is quite simple: We

sin z

W < 2me.
z

< max
RESS

27 cosh 1
< -
< E

Il
see that z = 0 is a simple pole of ——, because sin z has a simple zero for z = 0, and because

z = 0 is the only singularity inside the c1rcle |z| = 1. Hence by the theorem of residues,

sin z . sin z ... sinz .
5 dz =2mires (| ——; 0 ) =2m lim = 2mi.
‘ | 1 < z z— 4

Second method. It is actually possible already with the present theory available to find the value.
Since 25 s analytic in C\{0}, it follows by introducing the smaller path of integration |z| = r < 1,

2
z
run through once in the positive direction, f\z\:r’ and once in the negative direction, f‘* that

z|=r’
. . % .
S z Sin z sin z S z
fomrg o [ 0 e L g sy,
|z|]=1 % lz|l=1 # |z|=r % lz|]=r %

sin z sin z
= 0+ ——dz = lim —dz,
lsl=r % Tt

where we have used Cauchy’s integral theorem for the multiple connected domain between the two
circles.
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Ay

0.5

Figure 11: The oriented path of integration |z| = 1, and the two additional paths of integration |z| = r
with opposite orientation in the second method.

Then by a Taylor expansion,
: L 3 3
smz:z—gz +0(z ),

hence by insertion,

sin z . 1 1, 5 ' . 1 ' . 1
ﬁ.ﬂ—l Z2 dz_rll,%l+22{262 +0(Z >}dz_rll’%1+ ‘z\:r;d277’141>%1+ Z_T{62+O(Z)}d2.
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It is well-known that

1 2m 1 .
]{ —dz:/ —.Giewdﬁz%'i,
|z|l=r % o ¢

for every r > 0, and since

|fiz|_r {% “t O(Z)} dz

it follows by taking the limit that

1
S{6T+O(T)}'27TT—>O for r — 0+,

f Pldz=2mit0=2mi. O
|z|]=1 %

Example 5.5 Find the value of
3i
/ cos?(mi z) sin?(wi 2) dz.
0

One should not be fooled by the rather complicated integrand. This is only an easy exercise in finding
a primitive, because the integrand of course is analytic in C, and hence independent of the path of
integration:

3i 3i 3i
1 1 1
/ cos?(miz)sin®(riz)dz = —/ sin?(2mi z) dz = —/ — {1 —cos(4riz)}dz
0 4 Jo 4Jo 2
I 1 11 :
= 3 ; {1 — cosh(4m 2)} dz = 3 3i— 3 [sinh (47 2]3"
31 1 37 ' 31
- é — =5 sinh(12mi) = gz - % sin(127) = gl.

Example 5.6 Describe the streamlines of the complex potential
F(z) = sinh z, y € [0, 7).

The stream function is here given by
Y(z,y) = Im(F(2)) = Im(sinh z) = coshz - siny.

Clearly, y = 0 and y = 7 are streamlines corresponding to ¥ (z,y) = 0.
If y €]0, 7], then ¢ (z,y) > 0, and the streamlines are given by

Y(x,y) =cosha -siny =c€ Ry.
When we continue our investigation, we must split into the three cases,

x €10,1], c=1, and  c€]l,4o0l.
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2K

-1

Figure 12: Sketch of the streamlines.

1) If ¢ €]0, 1], then y is expressed as functions of 2 by

y = Arcsin ( ) and y=m — Arcsin (

coshz cosh x ) '

2) If ¢ = 1, then we get the two so-called separatrices, most easily described by

— Q] 2
e () (D) (1) ),
siny

siny siny
because

1 —cosy 1+ cosy
n{——=)=—-In{——=),
siny siny

and we can combine the two + signs into one.

3) If ¢ > 1, we express x by y (the same trick is used on =+):

2 il
o Aveosh (C) - (WW/) .
siny siny

Example 5.7 Prove that the image of
) ™
D={:=a+iy|z=0,0<y<}

by f(z) = coshz is the closed first quadrant in the w-plane, and find the image of each of the three
natural parts of the boundary 0D of D by the map f.

It follows by a separation into real and imaginary parts of

u—+ iv = cosh(z + iy) = coshx - cosy + @ sinh x - siny,
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Figure 13: The domains D (to the left) and f(D) (to the right).

that
u(x,y) = coshx - cosy, v(x,y) = sinha - siny.

The image of the part A; of the boundary, given by x > 0 and y = g, is
™ 0 .
U (x, 5) =0, v (a:, 5) =sinhz € [0, +o0] for x € [0, 400
The image of the part A of the boundary, given by z =0 and y € [O, g}, is

s
U(O,y) = cosy, U(Ovy) = Oa Yy € |:07 §:| .

The image of the part Az of the boundary, given by = > 0 and y = 0, is
u(z,0) = coshzx € [1,+00], v(z,0) =0, x € [0, +o0l.
It follows that the boundary of D is mapped into the boundary of the first quadrant.

Assume that w = u + v belongs to the first quadrant, thus v > 0 and v > 0. We shall prove that one
can find a z € D, such that cosh z = w. Consider

log(w—i—\/wQ—l) :log<u+iv+\/u2—v2—1+2iuv).

It follows from 2uv > 0 that u? —v? — 1+ 2iuw lies in the upper half plane. By choosing the slit of the
square root along the negative real axis and fixing the square root of a positive number as positive,
we obtain that both u + iv and vu2 — v2 — 1 4 2iuv lie in the first quadrant, hence their sum will

™
also lie in the first quadrant, so the principal argument of the sum lies in }O, 5|
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Clearly, Log(w +Vw? — 1) belongs to D for |w| large and w in the first quadrant,

In ("LU+ Vw? — ID > 0),

so we conclude that the image of the first quadrant by Arcosh is precisely D.

Example 5.8 Ezpress tanz by means of the exponential function.
Apply the result in order to prove that

sin 2z + ¢ sinh 2y

tanz = .
cos 2z + cosh 2y

If follows from the definition that

¢ sin z 2 1e?*—e % 1e2% -1
anz = = — _ = = .
cosz  e¥ 4 e ¥ 1 e feiF f 2z 41

2

Try this... #E  options

The sequence 9k b 8 1002, 14,16, ... IS
(TL\?, SCC?U@,V‘.CQ O»,[ evén u)i/to|e_ V]Umlge,rj‘ TLIG,

IOO'Hn ,OIOC{—: N HHS Z)ficluamce RY ane, lr’lu*fh!per‘...
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Then by some computation,

—_

e?zz -1 1 e—2y+2wc —1 e—2y—2m +1 1 e—4y + e—2y+2wf _ e—2y—21x —1

Wz = TS T w51 %% 1§ e 4 o-20F%iw 4 o—2y—Ziw 1 |
oW g g2 _ o 2in
1 e 2 — eV 4 e — =2l U D) + % sin 2z 4 4 sinh 2y
T U e e gz fe 2w 2 | o2 2% | g% o323 + cosh2y |
2 + 2
Note that cosh 2y > 1, so the denominator is zero if and only if both y = 0 and cos 2z = —1, so tan z

is not defined in the points of C, where
™
z = ) + pm, pE,

which are the same exceptional points as in the real case.

Example 5.9 Assume that f(t) is a continuous function on R, and let A € Ry. Prove that

A
/ F(t) cos(zt) dt
—A

is an analytic function in z € C.

Clearly, f(t) cos(zt) is uniformly continuous for ¢t € [—A, 4] for every fixed z € C, and since

(0 cos(=)} = 1+ £(1) sin(z1)

also is uniformly continuous in ¢ € [— A, A] for every fixed z € C, one may differentiate below the sign
of integral with respect to the parameter z € C,

A A A
% /_A f(t) cos(zt)dt = /_A P {f(t) cos(zt)}dt = —/At - f(t) sin(zt) dt.

This proves that f_A 4 f(t) cos(zt) dt is complex differentiable in C with a continuous derivative, hence
the integral is an analytic function in C.
Example 5.10 Find the solutions z € C of the equation
tanz =1 (1 + eiz) .
We put w = €'* for z € C. Then in particular, w € C\ {0}. By using the definition of tan z,

¢ sin z 1 ez — 1 1wt—1
anz = = - — = - .
cosz i eXr4+1 w24l

Since we require that tan z is defined, we must have w? # —1. Hence,

weC\{-i,0,i}=Q.
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Then we put w = e** € € into the given equation, and obtain after a rearrangement,

, i , Lw?>-1 w? —1 . w—1
0 = i(l+e )tanz—z(ler);wz_l_l—z{w+1+w2+1}—z(w+1){1+w2+1}
w?+14+w-—1 (w+1)%w
= ) ]_ . — 9
iw+1) wr+1 TN

where we shall solve the equation for w € Q = C\ {—i, 0, i}.

It follows from w # 0 that w = —1 is the only possibility, corresponding to

hence
1 1. .
z = —log(—1) = = (im + 2ip7) = 7 + 2pm, pEZL.
i i
The complete solution is

z =1+ 2pm, p € Z.

Example 5.11 Find all complex solutions of the equation

{(14+4)cosz+ (1 —i)sinz}* = 16i.

First we get

(I+4)cosz+ (1 —4)sinz = g {exp (z Z) (eiz + e_iz) — 1 exp (—i —) (e — e_iz)}
= % {exp (z %) (eiz + e_iz) exp (z 2) (e’z e"z)}
= %exp(i%) Ze_izzx/gexp(i{z—z}).

Then by insertion into the equation,
{(1+i)cosz+ (1 —i)sinz}* =4 exp(i{m — 42}) = —de ** = 161,
and the equation is reduced to

) 4 7 ™
diz —_—— = - = — ) —
e = 6= 1 exp( 21n2—|—2{2+2p7r}), p € Z.

Then by taking the logarithm,
iz = —2 ln2—|—i{g—|—2p7r}, peZ,

and the complete solution becomes

s T 4
zp:§+p§—|—§ln2, p € Z.
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Example 5.12 Find the complete complex solution of the trigonometric equation

3 cos2z — 10 cos z + 3.

It follows from

0 = 3cosZz—lOcosz+3=3(2€052z—1)—1OCosz+3

= 6cos’z—10 cosz = 2cos z(3cos z — 5)

™ 5 .
that either cosz = 0 the solution of which is z = 5 + p17, p1 € Z, or cosz = 3 If we put w = e*?,

then the latter equation is written

10 1 10 1 10 1 1
0:2 —_— = _—— = — 2—— 1 = — —_ = —3
cosz— 3 w—i—w 3 w{w 3w+ } w{w 3}{w I3

hence
iz = +log3 = £1n3 + 2pme, pE Z.
Summing up the equation has the solutions

_+ T
2 p17

= iln3—|—2p27r, p17p27p3€Zo

—i In3 + 2po,

Example 5.13 Find all solutions of the equation
sinz = 1,

in the form x + iy.

We get by using the definition of sin z,

. . 1 iz —iz 1 iz
Z:SIHZ:2_1'{6 —e }:21'6”{62 —1}.

If this is multiplied by 2i e** # 0, then

27 1 = _9¢i%,

hence by and addition of 2¢?* + 2 and by interchanging the two sides of the equation
2= (eiz)2 +2e%4+1={"+ 1}2 ,

thus

ie _ V2—-1>0,
¢ __1i\/§_{ —(Va+1)<o0.
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Finally, we get the solution

% log(v/2 — 1) = 2pr — i In(v/2 — 1),

1
i log(—v2+1) =7+ 2pr —i In(v/2 + 1),
It follows from (v/2 —1)(v/2 + 1) = 1 that
In(v2—-1) = —In(v2+ 1),
so summing up the solution can be written

zz%—l—?pwi{g—'ln(\/i—i—l)}, p € Z.

p €7,

p € Z.
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Example 5.14 Find all solutions of the equation
tan z = 34,

in the form x + iy.

The solutions are given by

2 1 1
z = arctan(3i) = (z +32) ( iZ) =5 log (5)
T
2

1
% {=In2+i(r+2pm)} =

—|—p7r—|— ln2 p € Z.

Example 5.15 Find all complex solutions of the equation

cos z = 2\/§i.

Since
2V/2i = cosz = % {eiz —i—e_iz}

is equivalent with the equation of second degree
(eiz)2 — 42 +1=0

in e¥*, it follows by the well-known solution formula that
€ =2V2i+ /-8 —1=(2V2£3)i.

hence

S| =

n(2v2 + 3) + i~ + 2pir b,
:%log((?\/ii?))i): { ’ p}

S| =

{ln(3 —2V/2) —i g + 2pi7r} ,
and thus

£2p7r —iIn(2v2+3) = g +2pm — 2i In(v2 + 1),
z = p € Z.
—g +2pm 4+ In(2v2 + 3) = —g + 2pm + 2i In(v/2 + 1),

Summing up,

z—2p7r:t{——2zln(\/_+1)} p €L
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Example 5.16 Find all solutions of the equation

cos z = iV/3.

It follows from
iV3=cosz = % {eiz + 64'2} )

by a rearrangement that we have the equivalent equation of second degree in e?*,
(€)* = 2iv/3- ¢ + 1 =0.

The solution is

i(2+V/3),
et =iVEE VT3 1=i(V3+2) = .
—-i(2-V3) = EETRV:
Hence
z = %10g(i(ﬁi2))
%{1n(2+\/§)+i(g+2pﬂ'>} - g+2p7r—i1n(2+\/§),
) %{—ln(Z—i—\/g)—l—i(—g—l—pr)} = —g+2p7r+iln(2+\/§:),

and summing up,

s=ypra{Z-imE+Vi}, pez

Example 5.17 Given the functions

flz)= -1 and g9(z) = Lo(2)
where Ly denotes the branch of the logarithm, which is defined by
Lo =In|z| +1i argy(z) where argy(z) €10, 27].

Find the domains of analyticity of the functions f, g and h =go f.

Clearly, f is analytic in C\ {0}, and g is analytic in
C\{z€C|Im(z) =0 and Re(z) >0} =C\ (R4 U {0}).
The exceptional set of h = g o f is given by

1
—2—1:a2, a >0,
z
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thus

1
z2=t— a >0,

V1+a? -

and the exceptional set is | — 0o, —1] U [1, +0o0] on the real axis. Hence, h is defined in the set

C\{z € C|[Im(z)| = 0 og [Re(2)| = 1}.
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6 Harmonic functions

Example 6.1 Prove that the function u(x,y) = x3—3xy? is harmonic, and then find all the harmonic
konjugated to u(x,y).

Clearly, u belongs to the class C'*° (]RQ). Then by partial differentiation,

ou 5 5 0% ou 0%u
% =3z — 3y s % = 6$, and 6_y = —61'2,/, 6—y2 = —6z.
It follows that
%u  0%u
A = — — =
U 922 + — 3y = 6x — 62 =0,

hence u(x,y) is harmonic.

Then by Cauchy-Riemann’s equations,

u_ow o o
oxr 0Oy & oy oy’

thus

o(z,y) = /{g—Zd +—dy}+C’ /{——d +—d}+C

/{—(—ny)dx + (32 = 3y*) dy} + C = / {(6zydz + 32 dy) — 3y*dy} dy + C

= /d{3x2y—y3}+0:3x2y—y3+C,
where C' € R is an arbitrary constant.

It is almost obvious that

u(z,y) +iv(x,y) = z® — 3xy? +i{3x2y — y3} =23 = f(2).

Example 6.2 Find the constant a € R, such that the function

u(z,y) = y* + ax’y

becomes harmonic.
Then find an harmonic konjugated function v of u, and describe f(z) = u +iv as a function of z
alone.

Clearly, u € C'* (RQ) for every a € R, so u is harmonic, if and only if Au = 0. It follows by a
computation that
Pu  0%u

Auzaxz 82—6y+2ay—2(3+a)
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so Aw is identical zero, if and only if « = —3, in which case
u(z,y) =y° — 32%y.

Then we find the harmonic conjugated

v(z,y) = /{%der%dy}—i-C:/ {—(3y273x2) dx76xydy}+C
0 Y T 0

—/ {3(y*dz + zdy®) —d (2*)} + C = 2® — 3ay® + C, C €R,
0

hence
f(z) = utiv=y®—32%u+i(2®—32y®) +iC =i{a® +32%iy+3z(iy)®+ (iy)’} +iC
= i(x+iy’P+iC=iz+iC, CcR.
ALTERNATIVELY,

ou ov  Ou ou
1,y v cov_du  Lou (2.2 _ 2.2 — 2 2 . 9.2
fl(z) = o —Hax o Zay 6xy z(3y 3x ) 3u {x Y +2zxy} 3127,

and then by finding a primitive,

f(z) =iz3+CDy, C, eC.
We conclude from

Re(f(2)) = Re (i2°) + Re (C1) = u(z,y) +0,
that Cy is purely imaginary, so

flz)=iz3+iC, C eR.

Example 6.3 Check if the following functions u(x,y) are harmonic:

((1) U(I, y) = 1'2 - y2 + Y,

(b) U(Cﬂ,y) :1,3 7y37

(¢) wu(x,y) =32%y —y° + xy,

(d) u(x,y) =a* — 622y +y* + 23y — 2.

If w is harmonic, then find the corresponding harmonic conjugated functions v, and f(z) = u +iv.

In all four cases, u € C (]R2), so we shall only check if Au = 0.
(a) Here

0 0

hence u is harmonic
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1) It follows by inspection that
u(z,y) =Re (z*) —Re(iz) =Re (2> —iz),
SO

2—iz)+c=2xy—x—|—c, ceR,

v(z,y) =Im (2
and
flz) =22 —iz+ic, ceR

2) ALTERNATIVELY it follows by Cauchy-Riemann’s equations that

0 0 0 0
v(z,y) = /{a—zd$+a—zdy}+62/{—8—2dx+a—3dy}+c

/{—(—2y+1)dm+2xdy}+c: /{2(yd:ﬂ+xdy) —dz}+c

/d(2xy—x)+c=2xy—x+c, ceR,

f2) = ule,y)+iv(z,y) =2 —y* +y+i(2ey — o +c)
= 22—y 2iay—i(z+iy)tic=22—iz+ic, ceR.
(b) Since Au = 6z — 6y # 0 for y # x, we conclude that u(z,y) is not harmonic.
(c) Here,
Au = 6y — 6y =0,

hence u(zx,y) is harmonic.

1) Inspection. Since 3z%y — y3 is a polynomial of third degree, and xy is a polynomial of second

degree in (z,y), it is reasonable to check z* and 22. Thus
2= (z+iy)® =2+ 3iz?y — 3xy® —iy® = (2® — 32y®) +i (32%y — %),
and
2= (r+iy)? =2y +i 2uxy.
It follows immediately that
322y —y> = Re (—z' z3) and zy = Re (—% z2> ,
SO

u(z,y) = Re (—i 23— %,22) ,

and we conclude that

1

1 1 1
U(337?J):Im<—i23—522>+c=—Re(22+§z2> te=—a+3x - -2+ -y’ +e,

2

and

f(z):—iz?’—%zZ—i—ic, ceR.
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2) ALTERNATIVELY we conclude from Cauchy-Riemann’s equations that

0 0
v(z,y) = c—i—/{—a—Zdaj—i—a—Zdy}:c—|—/{—(3x2—3y2+x)dx+(6xy+y)dy}

_ c+/{—3x2dx+3y2dw—xd$+6$ydy+ydy}
— c+/{d(—m3)+{3y2dx+3xd(yz)}—%d($2)+%d(yQ)}

1 1
= c+/d(—x3+3y2x—§w2+§y2>

1 1
= —x3+3y2x—§x2+§y2+c, ceR,

1 1
flz) = U+iv3x2yy3+xy+i{o:3+3y2x§x2+§x2+c}
= —i {x3+3w2(iy)+3x(iy)2+(iy)3}—% {2 —y*+2izy}+ic

. 1 .
= —i23—=2+ic, ceR.
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(d) Here,

Au = 122% — 1292 + 6xy — 1222 + 12y% — 62y = 0,

and u(z,y) is harmonic.

1) Inspection. All terms of u(z,y) are of fourth degree in (z,y), so let us check z*. We get

4
(ac4 — 62%y? + y4) + 43 (x3y — xyg) ,

so we conclude that

2 = (z4iy)t =2t +4iady — 627y — dizy® + o

zt —62%y% + y* = Re (24) and =3y — zy® = Re (—i z4> ,

hence

u(z, y) :Re{(l - %) z4},

and the harmonic conjugated functions are

. ( )
v(z,y) = Im{<1 - %) 24} + ¢ = 4x3y — day® — 1 (z476x2y2 +y4) +c

1 3 1
= 71m4+4x3y+—x2y74zy371y4+c,

2
and finally,

f(z):(l—i.)z‘l—i—ic, ceR.

ceR,

2) ALTERNATIVELY, if follows from Cauchy-Riemann’s equations that

ou ou
v(z,y) = c+/{a—ydx+%dy}

= c+ / {— (—12x2y + 4y + 2% — 3a:y2) dx + (43:3 — 12zy? + 322y — y3) dy}

= c+ / {12w2y de — 4y3dx — x3dx + Sxyzda:} +4z3dy — 12zy?dy + 322y dy — ygdy}

= ot [{(yd (@) + da’dy) ~ (19°dn + 42 ()

(Pa () + () - 1400
S T

N W

1
3 3 1 43 95
= c+ [ d|4x°y — 4oy’ — — 2" + = x7y” —

1 3 1
= —Zx4+4x3y+§x2y2—4xy3—Zy4+c,

Finally,

ceR.

f(z) = w+iv=2a+4iz3y —62%y* — dizy® +y* - i {Q:4+4ix3y76x2y2 74izy3+y4} +ic

24—%z4+ic:(1—%>z4+ic, ceR.
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ALTERNATIVELY we get by Cauchy-Riemann’s equations that

PO T TR
ox dr  Ox dy
= da® — 12z + 3%y —y> — i {—12x2y + 49 4 2% — 3a:y2}
= da® —12zy* + 32%y — y® + 120 2%y — diy® — i + 3ixy?
= 4{x3—3xy2+3ix2y—iy3}—i{x3—3xy2+3ix2y—iy3}
= 42° —iz® = (4—-1i)
By integration,

f(z):i(él—i)z"‘—i—a.

Since u(z,y) = Re(f(z)) does not contain any constant term, a must be purely imaginary, so

f(z)z(l—%)z‘*—i—ic, ceC.

Example 6.4 Find an harmonic conjugated v of each of the following harmonic functions, and then
find f(z) =u+iv:

(a) u(z,y) =2®—3zy>+1,  (b) u(z,y)=e€"siny,

(¢) u(z,y) =xze”cosy —ye’siny.

(al) It follows by an inspection that
22 +1 =23 — 3z? +1+z(3xy y):quiv,

so we may e.g. choose v(z,y) = 322y —1>, because we shall only indicate one harmonic conjugated.
This gives f(z) = 2% + 1.

(a2) ALTERNATIVELY we use Cauchy-Riemann’s equations and line integrals:

/{—?d +—dy} /{6xydx+ - 3y°) dy}

/ {(6zy du + 32°dy) — 3y>dy} = /d (32%y —y°) = 32%y — o,

v(z,y)

S0
flz)=u+iv=2® 32y +1+i(32’y—y’) =" + L.
(b1) It follows by inspection that
—ie® = —ie®(cosy+isiny) =e”siny —ie”cosy =u+iv,
hence

v(z,y) = —e" cosy and f(z) = —ie®.
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(b2) ALTERNATIVELY we get as above by using Cauchy-Riemann’s equations,

v(r,y) = /{—@d +%dy}Z/{—excosydm—i—ezsinyda:}
Qy 0
= —/{cosyd(ez)—&—emd(cosy)}: —/d(ezcosy) = —e"cosy,
and
f(z)=u+iv=e"siny —ie"cosy = —i(e” cosy+ie”siny) = —ie”.

(c1) It follows by inspection that
u(z,y) =xe®cosy —ye siny = Re{(z +1iy) (e cosy +ie"siny)} = Re(z¢€”),
hence
v(z,y) =Im(ze*) = xe®siny + ye* cosy,
and

f(z)=ze".

(c2) ALTERNATIVELY, by Cauchy-Riemann’s equations,

v(z,y)

|
\
/_/H
|
Q’)’Q’J
<<
U
8
_|_
QD’QJ
<
U
<
—

= /{(a:e“/’ siny + e”siny + ye” cosy) dr + (e’ cosy + x€” cosy — y e” siny) dy}
= /{(1 +x)e”sinydr + ye¥ cosydr + xe” cosydy + €”(1-cosy — y - siny)dy}
= /{sinyd (xe®) +ycosyd(e”) + xe®d(siny) + ed(y cosy)}
= /{d(ace“gsiny)—|—d(e”‘ycosy)}::1:6””siny—|—yeg”cosy7

and finally,

f(z) = utiv=ze"cosy—yesiny+ize’siny +iye” cosy
= xez{cosy—kisiny}—kye“"{—siny—l—icosy}:memeiy—kyex{icosy+i2siny}

= zeftyet-ietY =xetiye’ = (x+iy)e’ = ze.
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Example 6.5 In each of the following cases one shall find a corresponding analytic function f(z) =
u +iv, where either the real part u or the imaginary part v is given as an harmonic function:

(a) u(x,y):xQ—y2—|—5x—|—y—sz+y2, 2 eC\ {0},
(b) v(z,y) =In (2% +y?) + 2 — 2y, z€C\ (R_ U {0}).

(a) It follows from

2 92 2 _ _ , y i
s —y 7Re(z), 5z = Re(5z), y = Re(—iz), mRe(;),

that
2 . i
u(z,y) =Re |2z +bz—iz——],
z
so we conclude that

f(z) =2 +5z—iz——+ic, c€R  zeC\{0}h
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(b) Tt follows from
Im(2i Log 2) = In (2* + y?) , Im(—iz) ==, Im(—2z) = =2y,
that
v(z,y) = Im(2iLog z + iz — 2z),
and we conclude that

f(z)=2iLogz+iz—2z+c, c€eR, 2eC\(R_uU{0}).

Example 6.6 Prove that the function

play)=2-a+ s, (2.3)#(0.0),

+y?’

is harmonic.
Find the harmonic conjugated function i(x,y), for which ¢¥(1,0) = 2, and then describe

f(2) = p(z,y) +i(z,y)

as a function of z.
Then put z = e*. By this change of variable one shall find ®(u,v) = p(z,y), and the value of P(u,v)
on the line u = 0.

(al) It follows by inspection that
1 1
p(e.y) =2~ Re(z) +Re( ) =Re(2-z+ ).

1
Since 2+ — — z is analytic for z # 0, the function p(z,y) is harmonic as the real part of an analytic
z

function.

(a2) ALTERNATIVELY we check if the Cauchy-Riemann equations are fulfilled. We get by differenti-

ating
Oy y? —a? Op 2y
o =1+ ——73, T T T o
Oz (22 +32) Oy (22 +y?)
and
o 2z 5 2 (y? —2?) ) @ 4+ 3wy® — 227 ) % — 3xy?
Oa (2 +y?)? (@2 +y?)° (2 +y?)° (@2 +y2)°
32g0_ 2z 4o 2y-2xy 2:173+xy274:vy2 _ 23:37355342
Oy (22 +y?)? (22 +y?)° (22 +y?)° (22 +y?)°
hence
o 0%
Ap=—+—-—=0
YT a2 + Oy? ’

and it follows that ¢(z,y) is harmonic.
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(b1) Using the expression of (al) we get

1
w(x,y)=1m(2—Z+;>+C=—y +e,

__ ¥
.T2 + y2
so we conclude from (1,0) = 2 that ¢ = 2, hence

W(x,y) = —y — —>

- +2.
$2+y2+

(b2) ALTERNATIVELY, by Cauchy-Riemann’s equations for (z,y) € R*\ {(R_ U {0}) x {0}},

(z,y) dp dp
- 92 _Z¥ i
P(z,y) +/( { 9y dx + o dy}

1,0)

(z,y) 9 2 _ .2
2+/ — et [ —1+ L de
o) {(=*+y?) (@ +42)
T2 v tt—1
= 2+/ 7y2dt+/ 1 bt

1 (2 +y?) 0 (1412)

- 2[ Y r - +/y ! dt
2+, Y o | (+2)? :
Now

1 t t-2t t t2+1-1
/—z,dt - —2+/ St = — +2/+—2dt
I+t L+t (14 12) 2 +1 (1+12)

t 1 1
= — 42| —dt—2 | ——dt
1+t2+ /1+t2 /(1+t2)2 ’

[ (a2
o |1+8  (1+2) L 241, yE+1

and we get by insertion that

Yy Y Yy
N _ _

SO

Finally,
. T L. x . 1
f(z) =z, y) +iv(z,y) :2—$+m+21—2y— o =2+2z—z+;.
(c) If z =e¥, then
gw) = f(z) =2+42i—€e" +e ¥ =2+2i—2sinhw,
hence
®(u,v) =2 —2Re(sinhw) = 2 — 2sinhu - cosv.
If u =0, then
®(0,v) = 2.
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Example 6.7 Assume that f = u +iv is analytic in an open domain 2. Prove that wv is harmonic
in Q.

Then check, when the funkcion u?

18 also harmonic.

Let u and v be any C?-functions. Then

Dy gD O
oz " T Vs T Y ag
and
82( )= 82u+ 32v+28u ov
az2 W T Va2 T a2 ox Oz’
and analogously,
9?2 0%y 0%v ou Ov

+2

a2 )= Yoy T "oy oy

Oy? +

o2
Finally, by an addition,

ou Ov Ou Ov
(2) A(uv)—zwAu—i-u-Av-}-Q{%.%+8_y.a_y}_

We now assume that f = u + iv is analytic. Then Au = 0 and Av = 0, and we have by Cauchy-
Riemann’s equations that

ou Ov ou ov
= and =

dx By oy Oz

and (2) is reduced to

Ju ou ou Ou

proving that wv is harmonic.

Then assume that u is harmonic, Au = 0. If we choose v = u in (2), then

ou\> ou\?
A(u2)20+0+2{<%> +<3—y) }=2|gradu|2.

This expression is 0, if and only if grad u = 0, thus if and only if u is a constant.
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Example 6.8 Assume that p(x,y) is of class C%. Prove that the family of curves
e(z,y) =k,  keR,

can be considered as a family of level curves for some harmonic function, if and only if

Ay
lgrad o|?

only depends on ¢ and not of any derivative of ¢.
HINT: First prove that the wanted harmonic function must be of the form u = f(¢(x,y)).

It is obvious that if p(x,y) = k defines a family of level curves for some harmonic function u, then
there exists some function f, such that

u(z,y) = f(k),

and we can write

U(J?,y) = f(@(x,y))

S00T NG SWHSAS WL SRl

It's only an
opportunity if
you act on it

IKEA.SE/STUDENT
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Then we find
@—f’( )a_(p @—f”( ) 8_<‘0 2+f’( )82_(’0
oz 7 ‘¥ g a2 ¥ ox 2’

and analogously,

82'“_ 17 dp 2 / 6230
8—y2_f (<P){a—y} +f(</9)‘8—y2-

Since f o ¢ = wu is harmonic, we must have
o> [9p\° o
_n v e / 2 . 2 /
0=7 w){(ax) H(5) pH {5+ 58 =1 leradel? + (012,

Thus, if grad ¢ # 0, and f'(p) # 0, then

Ay f"(%)

lgrady2 ~ f'(p)’

and the claim follows.

On the other hand, if
Ap

grad|?

only depends on ¢, then we define
Ap
/
= — | ———d
ro) =ew (- [ 22 dp).

so we conclude that

Ap

11 = .
f (‘&0) - |grad<p|2

(),

hence f o ¢ = wu is harmonic.

Example 6.9 Assume that u(z,y) is an harmonic function. Find all real functions f : R — R, for
which the composite function f(u(x,y)) is harmonic.

If w is a constant, then any f : R — R can be used.

If grad u # 0, then we at least must assume that f is of class C2. We get under this assumption that

0 , ou
%(fou):(f 0“)@»

and
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and analogously,

52 ) S
5?%fOU)=(fou)(5§> H(ew gt

thus
A(fou) = ( ”ou){(g§>é+(g%>2}+%fQMQAu:(f”ou)gaduﬁ

Since |grad u| # 0, it follows that f o w is harmonic, if and only if f” o u = 0, thus f”(¢) = 0, and
ft) = At + B, where A, B € R.

If w is not a constant, then |grad u| # 0 almost everywhere, so we conclude that f(t) = At+ B almost
everywhere. Since f is continuous, we finally get

f)=At+B, teR

Example 6.10 Find all real functions ¢ : R — R of class C? of the real variable t, such that the
following functions u become harmonic.

(a) u(mvy) = go(x), (b) u(x,y) = go(ax + by)7 a,beR.

First variant. Since x = Re(z) and az+by = Re{(a—ib)z} are harmonic, it follows from Example 6.9
that

p(t) = At + B, A, BeR
Second variant. If one does not know the result of Example 6.9, then we proceed as follows:
(a) Tf u(z,y) = ¢(a), then

0%u ” 0%u
w =@ (.’17) and 6—y2 =0

Hence we get the condition

p(t)=At+B, A BeR

(b) If u(x,y) = p(ax + by), then put t = ax + by. By differentiation,

&*u 2 i u 2 1
W—aw(t) and a—yg—iﬂﬂ(t),
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hence by insertion into the Laplace equation,

0 0

:A = —
0 b 8x2+8y2

— (CL2 4 b2) (P//(t)
If (a,b) = (0,0), then u = constant (and thus harmonic) for every .
If (a,b) # (0,0), then ¢"(t) = 0, and hence

o(t) = At + B, A, BeR.

Remark 6.1 We see that (a) corresponds to (a,b) = (1,0) in (b ). ¢

Example 6.11 Find all the real functions ¢ : R — R of class C? in the real variable t such that the
following functions u become harmonic.

(@) wz,y) =9 (@*~y*), () ulz,y) =p(zy).

First variant. Since

1
2 —y?> =Re (z2) and Ty =5 Im (z2)
are harmonic and not constant, it follows from Example 6.9, that the only possibilities are

p(t) = At + B, A, BeR.
Second variant. ALTERNATIVELY just compute:
(a) If u(z,y) = ¢ (2% — y?), then

2
ou 0%u 5

%:235'90’@2—3/2), @:me (mQ—y2)+2go’(x2—y2),
ou 0%u
5 = 2y (xz _ yz) ’ 3—3/2 = 4y2" ($2 _ yz) — 2y’ (zz _ y2) ,
hence
OZAU:@+@:4($2+Z/2) I/(xQ_yQ):O
0x2  Oy? v ’

and we have derived the condition ¢”(t) = 0 for (z,y) # (0,0), hence
p(t) = At + B, A, BeR, teR,
because (z,y) # (0,0) does not give any real constraint on ¢t € R.
(b) If u(x,y) = (ay), then

?u 0%
0=Au= -7+ a7 v (xy) + 22" (xy) = (2° +y?) " (zy).

If we put t = ay, then ¢"(t) = 0, hence by two integrations,
o(t) = At + B, A, BeR.
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Example 6.12 Find all the real functions ¢ : R — R of class C? in the real variable t, such that the
following functions u become harmonic.

@ e =e (L), a0 @ ua)—¢(TEL), w0

T x
In this example none of the functions

y oty
x’ xz
are harmonic, so we cannot use Example 6.9. One could, however, use Example 6.8 instead. This is

left to the reader as an exercise.
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=% (Y) Lo (B)+Ba(Y)
ox 22 x/)’ 0x2 27 \z »Y\Z)

and the constraint becomes

0=Au=

T

82 32 2_|_ 2 2
u u Y QON(y)"'_ySDI(y)-

02 T a2 T ot o) T2

By a multiplication by z? we get the equivalent equation
2
i+ (&)} (L) 22w (4) -0
x x x x
Then put t = Y in order to derive the differential equation
x

d
0= (14+8)"(t) +2t¢(t) = 5 {(1+8) (1)},
from which we get by integration,

A

(1+1%) ¢'(t) = A4, thus  ©'(t) = el

Then by another integration,
p(t) = A- Arctan ¢t + B, A, BeR.

Hence, the corresponding harmonic functions are
u(z,y) = A - Arctan <y>—|—B A, BeR.

(b) If

x2+y2
T

U(x,y)so( ) x#0,

then it follows by differentiation,
Ou 2P —a?—y? 2ty a?—y? (2t 4y
Ox z2 v x 22 7 T ’
2
@ 1‘2—y2 <‘0// $2+y2 +2_ 2
Ox? x? T

ou T <x2+y2>
- 9Yy, ,
dy T

T
32 2 2 2 1 2 2
5%4%¢«£ii)+%w(£ii)
Y T T T x
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Hence we obtain the condition

0%y O%u
0 = Au=28, 20
b 8x2+8y2
I I e A W e e
B 4 14 x + s 7 x
1 2, .2\ 2 2,2 2,2 2,2
- H{Ey )
x x x x x

x2+y2

When this equation is multiplied by 22 (# 0), and we put t = # 0, then we get the

differential equation
d
0=t2"(t) +2t¢'(t) = = {#*¥'(V)},
hence by an integration,

A

t2/(t) = — A, thus  ¢'(t) = 5

Finally, by another integration,
o(t)=—+ B, A, BeR.
The corresponding harmonic functions are not given by

u(x7y):A 2+B7 A’BER7

T
24y
where we according to the proof must assume that x # 0. However, by making a small check it is

easy to see that it is enough to require that (x,y) # (0,0).

Remark 6.2 We could have solved the problem easier, if we had noted that

2 2 -1
x+y:( x > , for x #£ 0,

T $2+y2

and then applied that

xT

m7 (xvy)7£(070)7

is harmonic. Then it follows from Example 6.9 that all the corresponding harmonic functions are
given by ¢(t) = At + B, thus

u(z,y) = A + B, A, BeR, (x,y)#(0,0).

22 + 42

Notice that this latently contains a rather sophisticated argument, so I have not classified it as an
alternative solution. (It is too difficult.) ¢
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Example 6.13 Find all the real functions ¢ : R, — R of class C? in the real variable t, for which
the following functions u are harmonic.

(a) u(z,y) =@ (2> +4?), (z,y) # (0,0),

() u(wy) = ¢ (v + Va7 +7) (2.) # (0,0).

It is not possible either here to apply Example 6.9. It is, however, possible to use Example 6.8 instead.
This is left to the reader.

(a) If u(z,y) = ¢ (2% +y?), 2% +y? # 0, is harmonic, then

ou 0%u
Fri 2z ¢ (x2 + yQ) , ok 4x2p" (:132 + y2) +2¢ (332 + y2) ,
ou 0%u
% =2y¢ (2? +1?), 92 =4y%0" (2% + %) +2¢ (a2 + ¢?),

and the condition becomes

?u  D*u

Ay—= 22 20
“ 8x2+8y2

=4(2®+ ) ¢" (2® +y?) +4¢ (2 +y?) =0.
If we put t = 2% + 32 (> 0), this equation if reduced to

0=t () + /() = 3 16D, >0,

hence by an integration,

t-o'(t)=A, t>0, thus gﬁ’(t):é

, t>0.

We get by another integration,
p(t)=A -Int+ B, A, B eR, t>0.

The corresponding harmonic functions are then given by
wz,y)=A In(z>+y*)+B, A BeR, (z,y)+#(0,0).

(b) I

u(wy) =¢ (v + V2 +2) . (@) £ (0,0),
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then z + /2?2 +y2 =t > 0, and we get

= | ¢ (ac—i— x2+y2>

ou 1 T , 5 2)
% = +7m (p(l‘-f— e +y° ),
2
Pu x P SR
1 22
a2+ y? ( /x2+y2)
2
e/
"
- r? +y? 4 <x+ $2+y2>+
ou y , 5 5
0*u y2 1"
o = g V)

1 y2

VEE e ()

2

y z?

Zrg? (2 4+ VaT547) +

Y / 2 2)
(22 + 1) /x2+y2(p (x—l— vy

4 (x +Vz2+ y2>

! 2 4 42
@+ ?) T—i—y?w(x—’— x—l—y).
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We end up with the condition

0?u  J*u
0 = Au=—5+—-—
“ 83:2+3y2
_ P42ty 42yt Hy? 4y R
= 21y e+ Ve +y
22 4 q2
+—y3ap’(x+ m2+y2)

()
2 +yt+avat+y?

= 2 a2 (x+ x2+y2)+
(Vo
1 /

= —{2<x+ x2+y2)+<p (x—i— x2+y2)}.

Now put t = = + /22 + 92 > 0. Then we multiply by /22 + 32 # 0 in order to obtain the
following equivalent differential equation of first order in ¢'(t),

2t 0" (t) + ¢'(t) = 0.

The complete solution is

1
NEar ¢ (:17 + Va2 + yQ)

A
\/1—57

hence by an integration and another arbitrary constant A,

¢'(t) =

o(t)=AVi+B, A BeR, teR,.

The corresponding harmonic functions are

u(z,y) = A\ x+ Va2 +y>+ B, A, B eR, (x,y) # (0,0).

Example 6.14 Prove the existence of, and find the analytic functions f(z) = pe', when o is given
by

(a) 0= (2° +y?) e, (b) 0= exp (r?cos26).
Here, z =x +iy =re'.

(al) It follows by inspection that

Q:TQeI _ |Z|2 |€Z| _ ’2262
hence
f(2) = c2%e?, where |¢| = 1.
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(a2) ALTERNATIVELY we use Cauchy-Riemann’s equations in polar coordinates. First note that we
have in polar coordinates,

f(z) =o€ =pcosp+igsing,

hence by separation into real and imaginary part,

u=r2e" 0 . cosp(r, ), v =r2e" 5 sinp(r,0).
Thus
Ou 7 cos 0 2 T cos 0 2 7 cosf s ¥
= 2re cosp+rcosbe ~cosp —r7e sing - -
r r

: 0
= pe" st {cos<p~(2+r cosf) —rsing - 8—S0},
”

10 1 - 9
Lo = L g e o S0
1 0 ;
= rercosecosg0~%—TzsinﬂerCObesingp
0
— ref‘coso{cosgp-a—(g—rsingp-sin@}.

We shall now use the following one of Cauchy-Riemann’s equations,
ou 10v
or r o0’

It follows from the above that

(3) (cosyp,siny) - (2—|—r cosf, —r g—(p> = (cos p,sin ) - (g—(; —r Sin9> ,

r

which is fulfilled when

(4) g—(g:2+r cos ), g—f:sinﬁ,
hence for

o(r,0) =20+ r-sinf + k, keR.

Then by insertion,

f(2)

‘Qeup _ (xQ + y2) ewez(29+r sin 6+k) _ 7’26219 . et yezk _ (7’ ol 9) ew-i—z yezk:
_ e’Lk . 2{,2627

which of course is an analytic function.
When we use the other one of Cauchy-Riemann’s equations in polar coordinates we conclude that
(4) is the only relevant solution of (3)
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(b1) Tt follows by inspection that
0= exp (Re (=2)) = [exp (2)].
hence
fz==C exp(2?), where |C] = 1.
(b2) ALTERNATIVELY we use Cauchy-Riemann’s equations in polar coordinates. We first see that
U = exp (r2 cos 20) cos ¢(r,0) and v = exp (r2 cos 20) sin (r, 0),

hence by differentiation,

u - 2r cos 26 - exp (r? cos 20) cos p — exp (r* cos 20) sin ¢ - ¢
or or
2 . 8()@
= exp (r’ cos20) (cosp,sing) - ( 2r cos26, -35).
1 0v 1 5 . ) A ,
50 — ;{—27" sm29.sm<p—|—cos¢-%}exp(r 60529)

= exp (r’cos20) - (cosp,sin ) - (l g—g, —2r sin 29) .
r

Then we apply the following one of Cauchy-Riemann’s equations,

Ju 1 0v

o r o6
Note, however, that in the first place the implication is going in the wrong direction. However, by
using the other one of Cauchy-Riemann’s equations it actually follows that it is legal to use this
formula. We get

1 0p de

v i 2r cos 20 and o = 2r sin 26,
hence
Iy Iy

20 = 2r2 cos 20 and o = 2r sin 26,
S0

o(r,0) = r’sin260 + k, keR.
Finally, by insertion

f(2) = pe'? =exp (r2 cos 26‘) exp (2 (r2 sin 260 + k)) =eFexp (T2€2i9) = e exp (22) ,

which of course is analytic.
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Example 6.15 Prove the existence of and find the analytic functions f(z) = pe'?, when ¢ is given
by

(a) ¢ =y, (b) o =0+rsind.

Here, z=x+iy=re'?.

(al) Tt follows by inspection that

. . 1
e'¥ =¢e"" =exp <§ (20 my)) ,

SO we guess on
L
f(z)=C-exp 2% ) CeRy,

which is easily seen to be a solution.
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(a2) ALTERNATIVELY we apply Cauchy-Riemann’s equations to find o. We first identify
u = p-cos(zy) and v = g - sin(xy),

and then get by a differentiation,

ou  do ; = i o0
%% — s cos(xy) — y - o sin(ay) = (cos(xy), sin(zy)) (3:17’ yQ> )
ov do . - i %
B - x - o cos(zy) + By sin(xy) = (cos(zy), sin(wy)) (x 9 5y) ‘
Thus
@ =qx- 0O @ = —u
ox 1 ° & oy ¢
and hence
l @ =z o) 1 @ = -
00z ooy Y
SO

1 1
th:§$2+Cl(y):—§y2+02($)a
from which
_ L2 e _C. Lz 2
lng_2(x y°) + k, eller p = C' - exp 2(m v’) ).

Finally, by insertion,

f(z) =C -exp (% (m2—y2)> e = (O - exp <%,22>, C €Ry,,

which clearly is analytic.
(bl) If p =0+ -sinf, then

u = o(r,0) cos(d +r sinh), v =p(r,0)sin(0 + r sin 0),

hence
du - _ @COS — psing-sinf = (cos p,siny) - 9o _ sin 0
67" - 67’ ¥ 0 ¥ - ®s ¥ 67’7 o )
10 10 1 1 1
;8_2 = ;8—5sinap—i—;gcosgo-{l—i—rcos@}:(cosgo,singo)-(Q{;—i—(}os&},;%).
0 19
Since 2% = = —U, a solution must satisfy the following equation
dr r 00
1 1
;%z—gsin@, and %ZEQ-{IJrTCOS@},
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thus by a rearrangement,

100

1 190 1
000

—r sinf, and - = — + cosf.
oO0r 1

By analyzing the second one of Cauchy-Riemann’s equations we conclude that this is the only
possibility.

Then by an integration,
Inp=r-cosf+Ci(r) =r-cosb +Inr+ Cy(0),
and we conclude that
Ino=Inr+r-cosf +k, k eR,
which we write as
o=Cres? C eR;.
Finally, by insertion,

Qeicp —C-re" coséei(e—i-r sin 0)

= Cre?e™v =(Cze?, C eRy,

f(2)

which clearly is analytic.
(b2) ALTERNATIVELY it follows by inspection that
eicp _ 6i0+i7‘ sinf __ eiGeiy
SO our guess is

f(z)=C-re?. e eV =Cze, CeRy.
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Example 6.16 (a) Prove that the function

o(z,y) =z In\/22 + y2 — y Arctan g, r€e€Ry, yeR,
x
is harmonic.

(b) Denote by 1(x,y) the harmonic conjugated function of ¢(x,y), for which 1(1,0) = 0, and denote
by f(2) = p(x,y) +iv(x,y) the corresponding analytic function. Find

0 0
Fe) =98 4igt

as a function of z. Then express f(z) in the variable z.

Inspection. First note that we have for = > 0,
Log z = In |z| +i6 = In \/22 + 42 + i Arctan %
Then it follows by inspection,
o(z,y) = z-In\/22+y2—y- Arctan %
Re ((x +iy) (ln V22 + 2 4 i Arctan %)) = Re(zLog z).

The function z Log z is in the open right half plane the product of two analytic functions, so it is
also analytic, and ¢(x,y) is harmonic because it is the real part of an analytic function.

Since
Im(zLog z) =z -0+ y In |z| = = - Arctan %—Fy In /22 + 2

is an harmonic conjugated of ¢, and since this function is 0 for (z,y) = (1,0), we conclude that
Y(x,y) = - Arctan %—f—ym, reR,, yeR,

and
f(2) = @(x,y) +iv(x,y) = zLog 2z,  Re(z) > 0.

Finally, by a differentiation,
f'(z) =1+ Log z, Re(z) > 0.

Standard method.

(a) Since ¢ is composed of infinitely often differentiable functions in the given domain, ¢ is also
infinitely often differentiable. Then write

1
o(xr,y) =z -In\/x2 + y? —y - Arctan Y- Ex-ln(mQ—FyQ) —y - Arctan g,
x x
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and we get by a differentiation that

9y
ox

0%
02

dy

1 9 9 1 2z 1 Y
(e +y)+§x'x2+y2_y' (y)2'(__2)
1+ (=
x
2 2

Y 1 2 2
i R G

% In (z* 4+ ¢°) +

x

x2_|_y2’

1 2y Y

—x-———— Arctan = —y. — - —

2 2 2
2 4 +y T 1+(g) T
x

L Arctan y__¥r Arctan g,

x2_’_y2 T $2+y2 T
T

2 T 22
1+(g) T 4ty
T
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Harmonic functions

It follows that
0%p . x

90:8# 8y2_:c2+y2_x2+y2_

and we have proved that ¢ is harmonic.

_0’

Remark 6.3 One is never requested to compute the function ¢. If we do it, we get the following

variant:

We choose the path of integration as the broken line

(1,0) — (2,0) — (,9).

Then by taking some simple primitives,

dy Jx

Y(r,y) = /{—a—(pdx—i—a—wdy}—&- constant

= /{+Arctan gdx—}— {1
x 2

= ¢(1,0)+/1x Arctan <%) dt+/0y{% ln(x2—|—t2)—|—1}dt

_ “1 2, 42
= y+/0 §ln(:c +t)dt

1 1 2t v
= —t-In (2% + ¢ —/—t-idt
y+ |:2 H(CE + ) 2 $2+t2

t

1 Y2+ (2% —
0

In (x2 + yz) + 1} dy} + constant

0

’)
S

1 9 5 v x?

1

1 Y
— y+_y~ln(x2+y2)*y+/ - dt
0

2

oo}

1
= iyln(x2+y2)+:c~Arctan L
x

= ylny22+y?+ x- Arctan Ly
x

f(z) = o(z,y)+iv(z,y)

= zIn22+y? —yArctan % +1y In\/22 + y2 + i 2 Arctan %

= (z+4iy)Invax?2+y>+i(z+iy)Arctan J
x

= (z+iy) (ln Va2 + y? + i Arctan %) = zLog z,

and hence

f'(z) =1+ Log =. O
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(b) By Cauchy-Riemann’s equations we get

dp O dp . Op 1 2 2 . Y
/ _ _rr _-r _r _ = 7
f'(z) = —x—l—z = Oy i y—2ln(x —i—y)—i—l—f—zArctanx

= 1+ {ln\/x2 + y2 + i Arctan Q} =1+ Log z.
x

In particular, f'(z) = 1+ Inz on the positive real half axis, so we get for x € R, that

x

f(x):/lx{l—l—lnt}dt: {tﬁ-t-lnt—/;dt] =[t-Int]f =z-Inax.

1

Since z - Log z is an analytic function in the right half plane, which is equal to x - Inx on the
positive real half axis, we conclude by the uniqueness theorem of analytic functions that

f(z) =z Log z, for Re(z) > 0.

Example 6.17 Prove that the function

r—y
o(z,y) = Arccot (x—l—y)’ x+y >0,
is harmonic.
Find the harmonic conjugated function ¥(x,y) of p(x,y), for which (1,0) = 0, and then write
f(z) = oz, y) +iv(z,y) as a function in z, e.g. by first finding f'(z).
Consider f(z) as a complex potential in the domain © + vy > 0. sketch the streamlines and the
equipotential curves corresponding to f(z) in this domain.

Inspection. Note that we shall not follow the questions of the example strictly by this method, if
only we answer all of them. First analyze Arccot.
Put w=wu+1iv, v > 0. Let Arg w denote the principal argument of w. Then the function

Arg w = Arccot % (= Im(Log w)),

is harmonic in the two variables u© and v. Since

r—Y
x,y) = Arccot ,
e(z,y) (xﬂ/)

is is very tempting to choose
u=x—y og V=T +Y,

ie.
w=z—y+ilz+ty)=z+iy+ilz+iy)=(1+1i)z

Now, w = (1 + i)z is analytic (and conformal) in z, and since Arg w is harmonic in u and v, it
follows that

T —y .
y) = A t(—2 ) = A 1+ , +y >0,
o) = Arocot (2V) = Arg((1 4002}, aty
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054

Figure 14: The open domain 2 lies above the oblique line y = —x.

is harmonic.

Then note that the domain x + y > 0 is given in polar coordinates by

s 3T
r >0, _Z<9<T'

Then the domain can shortly be described by

3
—%< Argz<z7r7

because the principalargument of any complex number # 0 lies in | — m, 7. Since the principal
argument only fix a direction, i.e. a half line from 0, and since

1+i=\/§exp<i%>7

it follows that

o(x,y) = Arg((1+1i)z) = Arg (\/5 exp (z %) z) = Arg ((exp (z %) z)) = g + Arg z,

™ 0
because multiplication by exp (z Z) corresponds to a rotation of 1

Remark 6.4 We see that % + Arg z €]0.7[, i.e. the image of the principal argument, when z lies
in the domain given by x +y > 0. ¢

We conclude from
Log w =In |w| + i Arg w, w # 0,
that

—i Log w= Arg w—i In |w|,
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thus for x +y > 0,

w(w,y)=£+ Argz:Re(%—iLogzﬂLi-C), C eR.

Hence, all harmonic conjugated functions of ¢(x,y) are given by
\Il(x,y):hn(%—iLogz%—i-C)=—ln|z|—|—C, CeR.

The searched harmonic conjugated function ¢ (z,y),  +y > 0, shall also fulfil the condition
1(1,0) = 0, hence by insertion,r

¥(1,0) =-Inl4+C=C=0,
thus C' = 0, and we get

Ylz,y)=—In|z| = —Iny/22 + 42 = —% In (2% + ¢°) .
Finally, it follows from C' = 0 that

F(2) = p(x,y) +iv(z,y) = = —iLog z,  x+y>0.

4
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o & N ._:‘ iy
vy BBy e RPE
e ows

[ was a construction
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the North Sea
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In other forms of computations one may get the equivalent expressions

s

F(2) = —i Log((1 +14)2) + z% In2 = —i Log (exp (z Z) z) .

-2 -1

Figure 15: The streamlines are the half circles, and the equipotential curves are the half lines.

The streamlines are given by 1 (x,y) = —In |z| = k, thus
|z| = e, z+y>0.

Hence, the streamlines are a family of half circles in the domain « +y > 0 of centrum atz = 0.
The equipotential curves are given by
7r
olx,y) = 1 + Arg z =k,

hence

™
Arg =k—_.
rg 1

These curves form a family of half lines from z = 0 in the domain given by = + y > 0.

Standard method. The function

p(z,y) = Arccot (m — y)

Tty

belongs to C*° in the domain given by 4+ y > 0. Then by a differentiation,

do 1 l(z+y)—l-(z—-y)  z+y—zxz+y  y

dx 1+(m—y>2 (z +y)? (z+y)?+(@-y?  2?+y?
Tr+y

odo 1 (Dety-l-(@-y  —z-y-z+y  x

dy 1+(m—y)2 (x +y)? (z+y)?+(x—y? 22+y¥
r+y
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and

o D 2 2
P Py 2wy 2wy
0x? — Oy? (z* +9%)°  (2* +9?)

Thus, ¢ fulfils the Laplace equation in the given domain, so ¢ is harmonic.

Write f(z) = p(z,y) + i¢(x,y). Then by Cauchy-Riemann’s equations,

Fl2) = 3s0+ W _0p v _ y =
ox or Oz ay S22+ 12 2 + 92
- _ Liy__iz__i
N 224+y2 2z oz

1
The principal logarithm Log z is a primitive of — in the domain under consideration, so
z

f(z) =—iLog z+ C, z+y>0.

If 2=1=1+14-0 then

C=f(1)=p(1,0)+i-9%(1,0) = arccot <%> 4i-0= 2’

f(z):—iLogan%:%Jr Arg z —i1n |z|.

It follows immediately from the latter expression that
Y(x,y)=—In [z = —Iny/22 +y2 = —Inr.
Finally, the streamlines and the equipotential curves are found as above.

Variant. One may also find the harmonic conjugated function v int he following way. Since ¥(1,0) =
0, we get by line integrals,

(z,y) b b (z,y)
¥ ¥ €T Y
P(x,y) = / { dr+ ——d } / { dx — dy}
(z-9) (1,0) dy Ox (1,0) r? +y? r? +y?

(z,y)
= —1/ %d(xQ—kyQ)z—%ln(x2+y2)=—ln\/x2+y2.
(

2 J0 24y
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Example 6.18 Prove that the function
o(x,y) = x sinx coshy — y cosz sinhy, (z,y) € R?,

is harmonic. Then find the harmonic conjugated function ¢ (x,y) of p(x,y), for which ¥ (r,0) = 0,
and finally

f(2) = p(z,y) +i(z,y)

as a function of z.

First method. It follows by inspection from
z=x+1iy and sinz = sinx - coshy + ¢ cosx - sinh y,
that
o(z,y) =z -sinx - coshy —y - cosx - sinhy = Re(z - sin 2).

Now, z-sin z is analytic in C, so p(x,y) is harmonic in R?, because it is the real part of an analytic
function.

All harmonic conjugated functions ¥ (x,y) are given by
Y(xz,y) =Im(z-sinz)+ C =z -cosx -sinhy +y-sinz - coshy + C,

where C' € R is an arbitrary constant. It follows from (7, 0) = 0 that C' = 0, hence
Y(x,y) =x-cosx -sinhy + y - sinx - coshy.

Finally, we conclude from the above that
F(2) = p(a,y) + i, y) = 2 - sin =

Second method. ALTERNATIVELY we have ¢ € C'* (Rz). Then by differentiation,

0
a—"O = sinx-coshy+ x-cosx-coshy + y-sinx - sinhy,
x
9% . .
= 2 cosx - coshy —x -sinx - coshy + y - cosx - sinh y,
and
Op . . .
90 = x-sinz -sinhy — cosz - sinhy — y - cosx - coshy,
Y
9% . :
8—312 = x-sinz-coshy —2 cosx - coshy —y - cosx - sinhy,
hence
Py dp
Ap=—%+—=0.
L Oy>?
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Thus we have proved that ¢ is harmonic in R2.

The harmonic conjugated function ¥ (z,y) of ¢(x,y), where ¥ (m,0) = 0, is found by means of
Cauchy-Riemann’s equations and a line integral:

zy) = O g+ 2yl = P ey 2Py
V@) ~/(7r,0) {390 ay Y (r0) L 9y oz Y

= / (—z sinz sinhy 4 cosx sinhy + y cosz coshy) dx
7,0
( )—i—(sinx coshy + x cosz coshy + y sinx sinhy) dy.
The value of this line integral can e.g. be found by an integration along a broken line:
(r,0) — (,0) — (2,y).
Then

y y
(z,y) = / 0dt —|—/ (sinx cosht+axcosx cosht+sinzt - sinht)dt
0 0

y
= sin:c/ (1-cosht+t-sinht)dt+ - cosx - sinhy
0

= sinz-y-coshy+x-cosz -sinhy,
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how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
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or ALTERNATIVELY by playing a little with the well-known formula

d(u-v) =vdu+udv,

so we get
(x,y) = / . (sinhy - {a(—sinx) + 1 - cosz}tdx + y coshy d(sin z)
" )—&—sinm -{1-coshy +y-sinhy}dy + x cosx d(sinh y))
= / . {sinhy d(x cosz) + y coshyd(sinx)
" )—i-x cos z d(sinhy) 4+ sinx d(y coshy)}
= / d{x cosx sinhy + y sinx coshy}
= x(z;)os?x sinhy 4+ y sinx coshy.
Finally,

f(z) = o(z,y) +iv(z,y)

x sinx coshy —y cosx sinhy + ¢y sinz coshy + ¢ x cosx sinhy

(x+iy)sinx coshy +i(x 4+ iy) cosz sinhy
= (z+iy){sinz coshy + i cosx sinhy}

= z-sinz.

Example 6.19 1) Prove that the function

Yy
= Arct _—
o(z,y) re an<1+x>
is harmonic in the domain
Q={z€C| Re(z) > —1}.

2) Find harmonic conjugated function ¥(x,y) of p(xz,y) in Q, where 1)(0,0) = 0.

3) Find the analytic function

f(z) = oz, y) +iv(z,y), z=x+iy €,

as a known function in z.

First method. Inspection.

1) If w = u+ iv, where u > 0, then

1
Log w = Log(u+iv) = 5 In (u2 +v?) + i Arctan (E> ,
u
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hence
v
Arctan (E) = Im(Log w).

Then by a comparison,

v Y

v 14z

and it is tempting to put © = 1 + 2 and v = y. Choosing these, we see that u > 0 for z € )
and

Arctan (%) = Im(Log(1 4 z)) = Re(—iLog(1 + 2)), z € Q.
x
Now, —i Log(1 + z) is analytic in €2, so

Y
1+

is harmonic in Q (considered as a subset of R?).

Arctan <

2) All harmonic conjugated functions 1 in {2 are given by
Y(z,y) = c+Im(—iLog(l+ 2)) =2 — Re(Log w)
= c¢c— % In (v +v%) =c— % In((1+2)*+y%),
where ¢ € R is a real constant. Then it follows from ¢ (0,0) = 0 that
c=1(0,0) + % In ((14+0)*>+0%*) =0+0=0,
hence

U(z,y) = —% In(1+2)%+y?).

3) Finally, we obtain from the above,

f(z) = o(z,y)+iv(z,y) = Re(—iLog(l + 2)) 4+ iIm(—iLog(l + 2))
= —iLog(1+ 2).

Second method. Definition of an harmonic function.

1) Clearly,

o(x,y) = Arctan (1—1—%)

belongs to C°°(€2). Then by differentiation,

9o _ 1 (v N____ v
dx ( y )2 (1+)? (1+2)%+y?
1+
1+
dp 1 1 14z
oy ( y )2 l+z  (1+2)24y*
14+
1+
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SO
824/7 2y(1 + CC)

2 —_—
0 _ 0 (L4 2)2+42)°

0x?

2(1+z)y
(1 +2)2+y2)°

and it follows that Ay = 0 in €, so ¢ is harmonic in Q. 1
2) The harmonic conjugated 1 (x,y) is defined by the line integra

_ —dy
0+ {
$(0,0) _/(070) 5 7 5

dx +
(z.9) 1+2 Yy dy}
_ T —
B /(00) { (1+2)? +y? (1 +2)* +y°

1/(z,y)d{(1—|—x)2+y2}
~ 2

Y(zy) =

R 2
2 0,0) (]_ =+ 1)2 —+ Yy

— 7% In{(1+2)*+y°}.
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3) A direct computation gives
fz) = olz,y)+iv(z,y)

Y 1 2 2
= Arctan (x—+1> —ig In ((1+ )%+ ¢?)
= —i{ln|l+az+iyl+iArg(l+x+iy)}

= —i{ln|l+z|+iArg(l+2)}

= —iLog(l+ 2).
ALTERNATIVELY we have for z € ),
0 0 1
fllz) = 2—i%l = J —i e
ox Oy (I+2)2+92 (14+2)2+y?
. 1+z—1y . 1
= —1 - - = —1 -
(I+z+iy)(l+z—1iy) 1+z+iy
. 1
= —1 -
1+2°

hence by finding a primitive,

f(z) =c—iLog(l+ z),
where

¢ = f(0) 4+ iLog(l +0) = ¢(0,0) +i(0,0) +i-0=0,
hence

f(z) = —iLog(1 + 2), z €.

Example 6.20 Assume that the function f is analytic in the open domain Q@ € C. Prove that at any
point z = x + iy € Q we have the equation

A(fRIP) =417,

where A denotes the Laplace differential operator.

By putting f = u +iv, we get

_Ou Qv

f(Z)_a—{I?_FZ%?
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and hence by just computing, using that Au =0 and Av = 0, i.e. that v and v are harmonic:

A(lf()) = A(u2+v2):%(u +v)+§2 (u? +27),
) alah i ba) a0

=2 P O [
(G
(B R B) e
(ERCIREE

+1
Note that we have also applied Cauchy-Riemann’s equations

o
(8] (2] laf {3

} > + 2u Au + 2v Av

S

=4\ ().

ox ' Ox

du Ov ou ov
= — and — =

ox Oy oy Oz’

Example 6.21 In two-dimensional elasticity problems one often has to consider the biharmonic equa-
tion

0'® e 9'e
AAD = 22—+ —=0.
ozt + 0x20y> + oyt 0

Assume that Q is an open simply connected domain. Prove that all solutions of the biharmonic
equation AAP® = 0 are given by

® = Re{zf(z) +9(2)},

where the functions f(z) and g(z) are any analytic function in Omega.

Clearly, any harmonic function is also biharmonic.

Since Re g(z) is harmonic for every analytic function ¢g(z) on €2, we shall only prove that Re {Z f(z)}
is biharmonic for every analytic function f(z) on Q in order to prove that all solutions are given as
above.

If we write f = u +iv, then

@ :=Re {Zf(2)} = Re{(z—iy)(u+iv)} = zy+ yo.
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A test gives

82 2
AAD = A{@(a:u—kyv)—k(a?(zy—l-yv)}
SN SCAY DPRLCUT PP A (L
- ar \“ ") Vo2 T 52 T By Yoy
u

x
Bu_'_x v 6v+x Lo

ox az2 " Y 9p2 Oy? Oy y8y2
0

- 2A{-“}+2A{@}+A{mu+ym}

= 2 {Au}+2§y{Av}+A{x«0+y~0}:O.

ox

Conversely, assume that ® is biharmonic in Q. Then A® is harmonic, and since €2 is assumed to be
simply connected, there must exist an analytic function h(z) on Q, such that

A = Re h(z).
Again because 2 is simply connected, we can find a primitive f of % iQ, thus f/ = % Then we get
by a similar computation as above that
ARe {Z f(2)} = Re h = AQ,
thus
A{® — Re {zf(2)}} =0,
proving that ® —Z f(z) is harmonic in 2. Then we can find an analytic function f(z) on €, such that
®— Re {Zf(2)} = Reg(z),

and the result follows by a rearrangement.

Example 6.22 Let Q = B(0,1) denote the open unit disc, and assume that h(z) is continuous on the
boundary |z| = 1. Solve the boundary value problem

Au =0, for (z,y) € Q,
u(xz,y) = h(z,y), for 22 +y% = 1.
We introduce the function ¢ : [0,27] — R or C by
¢(t) == h(e") = h(cost,sint), t € [0,2m].

Then ¢(t) is continuous, and ¢(0) = ¢(27). Then ¢ has a Fourier series expansion

1 =
o(t) ~ 5 aop + Z {a, cosnt + b, sinnt},
n=1
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2m 2m

ap, = —/ o(t) cosntdt and by, = —/ p(t) sinnt dt.
™ Jo T Jo

The solution is given by Poisson’s integral formula,

1 1—r?
© 2w 1472 —2r cos(f —t)

u (re') o(t) dt, re[0,1].

It is well-known, or easily proved, that

1—r? R
=1+2 " cos(n(0 —t)).
1412 —2r cos(f —t) + nz::lr cos(n( )

This series is uniformly convergent, if 0 < r < 1 is kept fixed, so we can interchange the summation
and the integration,

. 1 2 +o0 1 2
u(r ew) = %/0 o(t)dt + Z r’ . ;/0 ©(t) cos(nd — nt) dt.
n=1
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Here,
e 1
— t)dt = =
or J, P =0
and
1 27 1 27 1 2
—/ ©(t) cos(nf —nt)dt = —/ (t) cosntdt - cosnb + —/ ©(t) sinnt dt - sinnf
T Jo T Jo T Jo

= a, cosnb + b, sinnb,
so by insertion we get the very useful solution formula
_ 1 +o00
u (re”’) =5 + Z r"{a, cosnf + b, sinnf},
n=1
in which we shall only perform a Fourier series expansion of the boundary value h (e“’) and then add
the factor ™, 0 < r < 1, to the n-th term of the Fourier series.
Example 6.23 Let u: R xR — R be given by
u(x,y) = exp (m2 — y2) cos(2zy) + €” siny.
1) Prove that u is an harmonic function.
2) Find v, such that u and v are harmonic conjugated, and such that v(0,0) = 0.

3) Write the function u(z,y) +iv(x,y) as a function of z, where z = x + iy.

It follows by inspection from 22 = 2% — y? + 2izy that
ui(z,y) = exp (Re {z*}) cos (Im {2?}) = Re {exp (Re {z*} + iIm {2*})} = Re {exp (%)} .
Analogously,
us(z,y) = e"siny = Im {e”} = Re {—ie?}.
Then it follows that:
1) Since
u(z,y) = ui(z,y) + us(z,y) = Re {exp (2*) —ie*}
is the real part of an analytic function, we have that u(z,%) is harmonic.
2) Since
vi(z,y) =Im {exp (2?) —ie*} = exp (z° — y?) sin(2zy) — e” cos y

is an harmonic conjugated of u(x,y) where v1(0,0) = —1, the wanted harmonic conjugated is given
by

v(x,y) = exp (x2 - y2) sin(2zy) — e” cosy + 1 = Im {exp (zz) —ie* +i}.
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3) The wanted function is

f(2) =exp (2*) —ie” +i.

ALTERNATIVELY, apply the standard method.

1) We get by differentiation,

@
ox
@
y
and

0%u

da?

2z e” Y’ cos(2zy) — 2y e v’ sin(2zy) + e sinvy,

oy e Y cos(2zy) — 2x en v sin(2xy) + €” cos y,

% = 2¢7Y cos(2zxy) + dg2e® Y cos(2zy)
—dxy er’ v’ sin(2zy) — 4ay T sin(2zy)
74y2612*y2 cos(2zy) + e siny
2V cos(2zy) + 4y2612*y2 cos(2zy)
+xy e v sin(2xy)
+dxy e’ v’ sin(2zy) + 4ay er’ v’ sin(2zy)
—dg2e” Y cos(2zy) — e siny

= 0,

so u(z,y) fulfils the Laplace differential equation, thus u(z,y) is harmonic.

2) It follows from Cauchy-Riemann’s equations that

ov
dzx

o
dy

—— =2y e v cos(2zy) + 2z e v sin(2zy) — e” cos y,

Jy
ou

2 = oge Y cos(2zy) — 2y er’ v’ sin(2zy) + €” siny.

ox

Thus we get the differential form

dv

dv dv
E. dx + 8_y dy

e Y’ cos(2zy) - 2y dx + ey’ sin(2xy) - 2z dx
2 2
—cosy - e’dx +e” 7Y cos(2xy) - 2z dy
2 2 . .
—e” Y sin(2xy) - 2y dy + e"siny dy

e v’ cos(2zy) d(2zy) + er v’ sin(2zy) d (z* — y®) — cosy d (e”) — e* d(cos y)

= v d{sin(2zy)} + sin(2zy) d (e"cz_yZ) —d(e” cosy)

d {e$2_y2 (2zy) — €” cos y} ,
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hence by an integration,
v(z,y) = ety sin(2zy) — e” cosy + c.

Now,v(0,0) =0 = —1+¢, so ¢ =1, and the harmonic conjugated function satisfying v(0,0) = 0 is
given by

v(z,y) = et v sin(2zy) — €” cosy + 1.
3) Finally.

f(z) = wlz,y)+iv(z,y)
et —y? cos(2xy) + e siny + it Y sin(2zy) — ie® cosy + 1
= Y {cos(2zy) +i sin(2zy)} —i-e"{cosy +i siny} +i
— V2T ey 4
= exp(2® —y* + 2ixy) —i-exp(z +iy) + i
= exp (z2) —ie” 4.
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Example 6.24 Let A be a domain in C, and let f : A — C denote an analytic function. Put
u=Re(f) and v =TIm(f). Prove that the product u - v is an harmonic function on A.

We assume that f = w + dv is analytic, so v and v are harmonic and satisfy Cauchy-Riemann’s
equations,

u_o0 o o
oxr Oy o oy  Ox’
Then
Py Loy = Q0w 000 fou O
0x? Oy? 9z | Oz ox oy | dy Ay
0z |9y dy dy ox ox
v for oey 10 f ot o
- 20x | dy dy 20 oz ox
1

Y
0?v? 9% %% 0P
0zdy B 0zdy - 0zdy + 8x8y}

Il
—N— %

Il
RN V)

and it follows that « - v is harmonic.

Example 6.25 Let u:R? — R be given by
u(x,y) = €* (x cosy — y siny).
1) Prove that u is an harmonic function.

2) Find all harmonic conjugated functions v : R? — R, for which u + iv is analytic, and write all
these functions u+ v as a function in z, where z = x + 1y.

1) It follows by INSPECTION that
u(z,y) = e" {x cosy — y siny} = Re {(z + iy)e"""¥} = Re {ze’}.
Since z e* is analytic, u(z,y) is harmonic.
2) An harmonic conjugated function is given by
v(x,y) =Im{ze*} =" {z siny +y cosy}.
Then all harmonic conjugated functions are given by
v(x,y) =c+e"{xsiny+y cosy},
and furthermore,

f(z) =u(z,y) +iv(z,y) = ze” +ic, ceR.
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ALTERNATIVELY:

1) The function
u(x,y) = €e”{x cosy —y siny}

has the derivatives

0
a_u = " {x cosy —y siny + cosy},
x
82
G—Z = e"{x cosy —y siny + 2 cosy},
x
0
a_v = e"{—zsiny —y cosy — siny},
Y
32
—Z = e"{—z cosy+ysiny —2cosy}.
dy
Since
0%u . 0%u —0
ox2 oy

it follows that w(z,y) is an harmonic function.

2) Assume that v(z,y) is an harmonic conjugated function. Then by Cauchy-Riemann’s equations,

v v ou ou
dv = —dov+——dy=——dr+ —d
v ox $+(“)y Y dy erax 4
= e"{xsiny+y cosy+siny}tdr+ e {x cosy —y siny + cosy} dy
= sinyd(ze®)+y cosyd(e”) +xe®d(siny) + e* d(y cosy)

= d(ze®siny+ycosy-e’),
and we get by an integration
v(z,y) = c+ e”(x siny + y cosy).
Finally,

f(z) = wlz,y)+iv(z,y)

e"{x cosy —y siny} +ie”{x siny + y cosy} + ic

= ze®{cosy+isiny}+iyeT{cosy+isiny}+ic
(z +iy)e™ ™ +ic = ze* +ic.
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Example 6.26 Let u:R? — R be given by
w(z,y) =zt + 9yt — 622y +x —y+ 1.
1) Prove that u is an harmonic function.

2) Find all the harmonic conjugated functions v : R — R, for which u + iv is analytic, and write
each of these functions u + v as a function in z alone, where z = x + iy.

1) Since u(x,y) is a sum of polynomials of fourth degree and of first degree, it will be quite reasonable
to guess on a linear combination of the real parts and the imaginary parts of z* and z. It follows
by a computation that

2= (z+iy)t =2t — 622y +yt i {4m3y - 4:1:y3} .
When we compare this with the expression of u(zx,y) it follows that
u(z,y) =z* +y* —62°y* + z —y + 1 = Re (2*) + Re(z) + Re(iz) = Re {z* + (1 + i)z} .

Since 2%+ (1+1)z is analytic in C, and u(x,y) is the real part, we conclude that u(z,y) is harmonic.
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2) All harmonic conjugated functions are then
v(z,y) :Im{z4+ (1+i)z} +e=42%y —dzyP + x4+ vy +e,
where ¢ € R is an arbitrary constant.
We have already mentioned that
f(2) = u(z,y) +iv(z,y) =24 + (1 4+14)z +ic, ceR.

ALTERNATIVELY we apply the standard method.

1) We get by differentiation,

0 0

gu =423 — 122y + 1, gu =4y — 122%y — 1,
Ox Jdy

0%u 5 5 0%u 5 5

It follows that

0%u N *u 0
ox2 oy

which implies that u(z,y) is harmonic.

2) Then by Cauchy-Riemann’s equations, at

ov v Ju ou
dv = —dr+——dy=——drv+ —dy={-4y*+122%y+1}d 42 — 122y° + 1} d
U aa:x+8yy 8yx+3xy {y—|— my+}x+{:ﬂ xy—i—}y
= {—4y’dz —dzd (y*)} + {4y d (2*) + 42’dy} + dz + dy = d {4y’ + 42y + z + y} .
Then an integration gives that all harmonic conjugated functions are given by
v(z,y) =423y — dzy® +x +y +c, ceR.
Finally,
f(z) = wulz,y) +iv(z,y) =2 +423(iy) + 622 (iy)? + 4z (iy)® + (iy)* + (z +iy) +i(x + iy) +ic
= (x+iy)* + (1 +d)(z+iy) +ic=2*+ (1 +4i)z+ic, ceR.
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