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Preface

Preface

In this volume I present some examples of Elementary Functions, cf. also Calculus 1a, Functions of
One Variable. Since my aim also has been to demonstrate some solution strategy I have as far as
possible structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.

I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
17th July 2007
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1 Some Functions known from High School

Example 1.1 Differentiate each of the following functions:

1) y=n(2a),
2) y = cos/x,
3) y =sin’z,
4y =sin(#?),
5) y=ae®,
6) y— tanx'

A. Simple differentiations.

D. Determine where the function is defined and where it is differentiable. Then apply some well-
known rules of differentiation.

I. 1) The function y = In(2x) is defined and differentiable for = > 0. Since

In(2z) =In2+Inz,

we get
d 1
A for x > 0.
dr x

0.5

o 2 40 60) 80 100 120 140 160

-05
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Figure 1: The graph of y = cos \/z, x > 0; different scales on the axes.

2) The function y = cos /z is defined for z > 0 and differentiable for z > 0 with

dy 1 .
% = _WE Sll’l\/}.
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Figure 2: The graph of y = cos \/(x) in the neighbourhood of x = 0.

One should also check whether the function is differentiable from the right at = 0, where
y = 1. The difference quotient is given by

o) = p(0) _ eoslyB) =1 _ et ORI Tt W SO

1
and we see that it converges towards —— for z — 0+4. Therefore, we conclude that the function

1

has a half tangent at x = 0+, ¢'(0+) = —5
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3) The function y = sin” z is defined and differentiable for every z € R, and

d
Y _ 9sinz cosa = sin(2z).

dx

Figure 3: The graph of y = sin(z?).

4) The function y = sin(z?) is defined and differentiable for every z € R and

j—z = cos (acQ) - 2x = 2x cos (xz) .

Figure 4: The graph of y = 2% e®.

5) The function y = 2% e® is defined and differentiable for every z € R, and

d
ﬁ =2ze® +2%e” = x(x +2)e”.
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ITVYVITrTT T

t
Figure 5: The graph of y = e
x

t
6) The function y = MY s defined and differentiable at least when

x¢{O}U{g+pﬂ ’ pEZ}.
However, since both the numerator and the denominator are 0 for x = 0, we shall look closer
at this point.
a) When z # 0 and z # g + pm, p € Z, it follows from the rules of differentiation that

dy B 1+tan’2z tanz x4+ tan’?z —tanz

dx x 22 2
x cos?x+ 1z sin?z —sinz cosx T —sinx cosx

22 cos? x  22cos?x
b) When z = 0, we get by the continuity that

t 1 i
»(0) = lim anT_ lim SmE

= =1-1=1.
z—0 X rz—0 COS T T

Then consider the difference quotient

z—0 - ;—O B 2 T2 = &(2),

o(x) —p(0) BT —1 tanz—z  2%(z)

which converges towards 0 for x — 0. Here we have used that the numerator tanx — z is
an odd function, and that the Taylor expansion starts with 0 -z, so the first true term is of
the form c- 2% = 22 e(z). We therefore conclude that the function is continuously defined
and also differentiable at x = 0 with the derivative ¢’(0) = 0, which looks quite reasonable

when we consider the figure.

Download free ebooks at bookboon.com


http://bookboon.com/

Calculus Analyse cl1- 2 Some Functions known from High School

Example 1.2 Sketch the graphs of the following functions,

1) y = cos 2z,
2) y=In(—x),
3) y =In(e"),

4) Y= e—lncotz.

Write a programme in MAPLE, by which the graphs are constructed.

A. Drawing of graphs and a MAPLE programme.

D. Determine the domains and reduce the expressions, whenever it is possible.

Figure 6: The graph of y = cos2z.

I. 1) Usually there are several possibilities of writing a programme in MAPLE. Personally T prefer
always to describe a function by using a parameter to describe the function. This may seem a

little complicated, but it is actually the best way of doing it. Here, I suggest in the first case
that we use

plot([t,cos(2%t) ,t=-4..4] ,x=-4..4,y=-1.2..1.2,
scaling=constrained, color=black) ;

2) The function is defined for z < 0. Here we also have several possibilities of the MAPLE
programme. My suggestion is

plot([t,1n(-t),t=-5..0],x=-5..1,y=-2..2,
scaling=constrained, color=black) ;

3) The function is defined everywhere. By a reduction we get
y=I(e") =z,

so a simple MAPLE programme (which is not unique here either) is

plot([t,t,t=-1..1],scaling=constrained,color=black) ;
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Figure 7: The graph of y = In(—z), = < 0.

0.5
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Figure 8:

The graph of y = In(e”) = z.

05

07752704 06 08 1 12 14

Figure 9: The graph of y = e~ "' — tan x in the interval }O, g [

4) The function y = e~ mcos@

™
T € U]pﬂ,pﬂ+§[.
pPEZ

is defined when cot x > 0, i.e. for

11
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In this case the expression is reduced to

1
yzeilnCOtx:thanx, tanx > 0.
cot x

In the interval }0, g [ we can e.g. use the following MAPLE programme,

plot([t,tan(t),t=0..Pi/2-.1],x=0..Pi/2,y=0..3,
scaling=constrained,color=black) ;

where we have cheated a little in order not to be troubled by the vertical line z = T (This can

also be removed by the command discont=true). Notice that one can get more of the graph

by changing y=0..3 to e.g. y=0. .4.
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Example 1.3 Reduce the following expressions:
1) y = cos?z +sin’z,

2) y = cos® x — sin’z,
3) y=e %,

4) y=In(ze®) —Inzx.

A. Reduction of simple mathematical expressions.
D. Determine the domain and then apply high school mathematics.

I. 1) It is obvious that the expression is defined for every x € R and that
y =cos’z +sinz = 1.

REMARK. It is very important for an engineering student to know that (z,y) = (cost,sint),
t € R, is a parametric description of the unit circle, run through infinitely often. The most
important movements are the straight movements and the circular movements. ¢

2) It should also be well-known that

2

y = cos’ & — sin’

T = cos 2, for every = € R.

3) The function y = e~ 7 is defined when Inz is defined, i.e. for z > 0. In this case we get

1
y:e_lnx:—’ for z > 0.
T

REMARK. The trap is of course that one should believe that the function is defined if only
x # 0. This is not true because we have not defined the logarithm of a negative number.

4) The function y = In(e®) — Inz is defined for x > 0. In that case we have

y=In(zxe’) —Inz=mhz+In(e") —lnz ==, for z > 0.

Example 1.4 Prove the following two formule of the derivative of the function

y = tanw.

A. Prove that

d(tanx 1
( ) = =1+ tan®z.
dx cos? x
. Lo sinx
D. Use the known rules of differentiation on tanx = .
Ccos T
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I. When this is done we get for = # g + pm, p € Z, that

d(tanz) d (. 1 1 . —sinz
—F = — |sinx- =CosST:-——+Ssmx- | — 3
dzx dxr Ccos T cos X cos? x
= 1+tan’x
sin? z cos? x +sin’ z 1
cos? x cos? cos?x’

Example 1.5 For the two angles u and v we introduce the vectors
e = (cosu,sinu) and £ = (cosv,sinv).

We can express the scalar product of e and f in two ways: Fither by means of coordinates, or by taking
the length of e multiplied by the length (positive or negative) of the projection of £ onto the direction
defined by e. Apply this to prove an addition formula for trigonometric functions.

A. Derivation of an addition formula.

D. Consider a scalar product of two unit vectors in two different ways.

05

Figure 10: The vectors e and f with the angle v — u between them.

I. In rectangular coordinates the scalar product of the two vectors is given by

e-f (cosu,sinu) - (cos v, sinv)

= Cosu-cosv + sinwu - sinw.

The angle between the vectors e and f calculated from e towards v is given by v — u, hence the
projection of the unit vector f onto the direction given by e is cos(v — u).

By an identification we therefore get

cos(v — u) = cosu - cosv + sinw - sinv.
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If we in this formula replace u by —u, we get

cos(v 4+ u) = cosu - cosv — sinw - sin v.

Example 1.6 For two angles u and v we introduce the vectors
e = (cosu,sinu) and f = (cosv,sinv).

Prove an addition formula for trigonometric functions by first calculating the scalar product &-f in
two ways: Either by means of rectangular coordinates, or by taking the product of the length of one of
the vectors and the signed length of the projection of the second vector onto the direction of the first
one.

A. A trigonometric addition formula.

D. First find the coordinates of the vector € Then use the description above to calculate the scalar
product in two different ways and identify the coordinates.

05

Figure 11: The vectors e and f, and the vector &, which is obtained by turning e the angle g

I. When e = (cosu,sinu), we get
é = (—sinu, cosu),

(interchange the coordinates and then change the sign on the first coordinate). Then the inner
product becomes

~

é-f=(—sinu,cosu) - (cosv,sinv) = cosu - sinv — sinw - cos v.

On the other hand, the signed angle between & and f is given by v — u — g7 i.e. the projection of

the unit vector f onto the line determined by the direction & is

cos (v—u—%) = cos (g —(v—u)) = sin(v — u).
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When these two expressions are identified we get
sin(v — u) = sinwv - cosu — cos v - sin u.
Finally, when u is replaced by —u we get
sin(u + v) = sinw - cosv + cosu - sin v,

and we have proved the addition formula.

Example 1.7 Prove that

v sinwv
tan - = ——— 2prr.
My T T cosv’ vt 2pn

A. Proof of a trigonometric formula.
D. Express e.g. the right hand side by half of the angle and reduce.

I. First note that both sides of the equality sign is defined, if and only if

v # T+ 2pm, p € Z.

S00T NG SWHSAS WL SRl
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Then calculate the right hand side by changing variable to the half angle,

v v v v Y
sinv 2sm§ cosi 2s1n§~cos§ smg v
1+Cosv:1+ 2V 20U 2 cos? 2 - ”:ta‘n?
cos? — — sin” — cos? — cos —
2 2 2 2

Example 1.8 Sketch in the same coordinate system the functions f(x) = a* fora =2, a = 3 and
a = 4. It should in particular be indicated when some graph lies above another one.

A. Graph sketches of exponentials.
D. Write a suitable MAPLE programme.

Figure 12: The graphs of f(x) = a” for a = 2, 3 and 4. Different scales on the axes.

I. Here I have used the following MAPLE programme:
plot({2°x,3"x,4"x},x=-2..2,color=black) ;
Every graph goes through (0,1). To the left of the y-axis we have
47 < 3% < 2%, for z < 0,
and to the right of the y-axis we have instead

2% < 3% < 47, for x > 0.
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1
Example 1.9 Sketch in the same coordinate system the functions f(x) = x®, © > 0, for a = 37

a =2 and o = 3. Indicate in particular when some graph lies above another one.

A. Graph sketches of power functions.

D. Write a suitable MAPLE programme.

1
Figure 13: The graphs of f(z) = 2%, x > 0, for a = 3 2 and 3. Different scales on the axes.

I. The following MAPLE programme has been applied:
plot ({sqrt(x),x"2,x"3},x=0..2,color=black);
Every graph goes through (0,0) and (1,1). In the interval |0, 1[ we have
2 < 2? < Vz, for z €]0,1],
and when = > 1, we have instead

Vz < z? < a?, for x > 1.

Example 1.10 Given three positive numbers a, v and s such that
a"t* =128, a”"f =38, a™ = 1024.

Find the numbers a, v and s.
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A. Three nonlinear equations in three unknowns.
D. Apply the logarithm on all three equations and solve the new equations.

I. Since 128 = 27 and 8 = 2% and 1024 = 29, we get by taking the logarithm of the three given
equations that

(r+s)lna = 7In2,
(r—s)lna = 3In2,
rslna = 10In2.

It follows from the first two equations by an addition and a subtraction, etc. that

rlna=>51n2,
slna=21In2.
When these expressions are inserted into the last equation we get
100In2=rsha=s(rlna)=s-5mn2, ie s=2;

100In2=rsha=r(slna)=r-2In2. ie r=5.

Finally, it follows e.g. from 7 Ina = 5 In2 and r = 5 that Ina = In2, thus a = 2. Hence we have
found that

C. CHECK. When a =2 and r = 5 and s = 2, we get by insertion into the original equations that

arts = 2% = 9T = 128,
K — 2572 — 25 — 8,
a” = 22 = 210 = 1024,

We see that all three equations are fulfilled.

Example 1.11 Given three positive numbers a and b and r such that

1
(ab)" =3, a”" = 3 a

Find the numbers a and b and r.

A. Three nonlinear equations in three unknowns, which all must be positive.
D. Take the logarithm and solve the new equations.

I. By taking the logarithm of the three equations we get

In3 = rln(ab) =7 Ina+rlnb,
1
In- = —rlna,
2 1
Inl16 = - lIna,
r
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which we rewrite as

rina+rInb=1n3,
rina=1n2,

1 Ina=In16 =4 In2.
r

When we divide the latter equation into the former equation, we get

rlna 9 In2 1
1— =7r- = = —.
T A2 4
r

Since r > 0 according to the assumptions, we get
1
r=—_,
2
hence by an insertion into the second equation,

% Ina = In 2, hvoraf a = 4.
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Finally we get from the first equation that
1
In2+ 3 Inb=1In3,
hence
9 9
Inb=2{In3—-In2} =1In—, dvs. b= —.
4 4
As a conclusion the solution is

=4, b=- =
a s 4, T B

C. TEST. By insertion of these values into the original equations we get

It is seen that all three original equations are fulfilled.

REMARK. It can be proved that if one does not require that a and b and r are all positive, then we
get another solution,

The proof of this claim is left to the reader. .

Example 1.12 Prove the three power rules
ar+s — ar . as7 (ab)r — ar . bT7 (ar)s _ ars7

by assuming the logarithmic rules.

A. We shall prove three rules for power functions, where we assume that the rules of logarithm hold,
and that the function In : R, — R is continuous and strictly increasing.

D. Set up the rules of logarithm and derive the power rules.
I. We can use the following three rules,

I In(a,b) =Ina+Inb, for a, b > 0.

I (5

b
IIT In(a") =7 Ina, for a > 0 and r € R.

):lna—lnb, for a, b > 0.
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1) By applying rule III twice and at the last equality using rule I we get

In(a"™) = (r+s)lna=rlna+sla
In(a")+1In(a®) =In(a"-a®).

Since In is one-to-one, we get by the exponential that

2) Analogously we get by applying the rules ITI, I, III, I that
In((ab)r) = r-In(ab) =r{lna+Indb}=rIna+rInd
= In(a")+In®")=In(a"-b").

Since In is one-to-one we get by the exponential that
(ab)" =a"b".
3) Finally we get by using rule IIT at every equality sign that
In((a")’)=sn(a") =rsIna=In(a").

Since In is one-to-one we get by the exponential that

Example 1.13 Given a positive number a and a natural number n. Then a™ can be defined in two
ways: Either as the product of a with itself n times, or by a™ = ™ ™. Explain why the two definitions
give the same result.

A. Two apparently different definitions should give the same.
D. Use the rules of the logarithm.
I. Since
In(ab) =Ina+1Inb for a, b > 0,
we get for b = a,
In (¢®) =In(a-a) =2 Ina,

hence the claim is true for n = 1 and for n = 2, where a > 0 is any number. This indicates that
we should try

INDUCTION. Assume that
In(a")=nlna for some n € N.

This assumption has been proved to be true for n = 1 and for n = 2.
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Then we get for the successor,
In (") =In(a"-a) =In(a")+Ima=nlna+lna=(n+1) Ina,
and we conclude that the formula follows by induction.

We have now proved that

In(a") =nlna=1In(e""").

Since In : R. — R is bijective, we have

an:a._.a:enlna7

and it follows that the two definitions agree for every n € N.

Example 1.14 Investigate in each of the following cases if the claim is correct or wrong:
1) (zy)* = zy7,
2) z¥ = evn7,

Ina
3) ln(a—b) = m,

4) v =¥ 1o,
5) sin(z 4+ y) = sinz + siny,
6) (a+0b)? =a®+ 1%

7) sinv = 2 cos? % -1,

ot

8) fxo‘dz:a—“,
gu+1

9) szdx:x—i—l’

10) [ ! dr = —cotx.

sin’

A. The formulation of this example is on purpose very sloppy, because this is more or less how the
students’ exercises are formulated without any “proof”. We shall find out if some given “formulae’
are correct or not. The solutions will not be too meticulous, because that would demand a lot
more.

D. If one of the formulee is correct, it should of course be proved, and its domain should be specified.

If some formula is wrong, one should give a counterexample. This part is a little tricky because the
formula may be right for carefully chosen z, y and z. In particular, one cannot give some general
guidelines for how to do it.
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I. 1) The claim is in general wrong. If we e.g. choose z =y = z = 2, we get
(xy)* = (2-2)2 =16, ay®* =222 =8# 16 = (zy)~.

Notice however that the formula is correct if z =1, orif x =1 (or z = 0).
2) The claim is true for x > 0.

3) The claim is wrong. First notice that its potential domain is given by 0 < b < a. If we here
e.g. choose b =a — 1 for any a > 1, we get

1
In(a—b)=In1=0 and n—;éO when b # 1.

4) The claim is wrong. Choosing e.g. x =y = z = 1, we get
VP =11 =1 and a¥+2f=1'411=2#1=2av"=

It follows by continuity that the formula is not correct in some open domain containing (1,1, 1).

5) The claim is wrong. If we choose x =y = g we get

sin(z +y)=sint =0 and sinzx+siny=1+1=2%0=sin(x+y).
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Calculus Analyse cl1- 2 Some Functions known from High School

6) The claim is wrong when both a # 0 and b # 0. In fact,
(a+b)? = a? + b* + 2ab,

and we see that the additional term 2ab # 0, when a # 0 and b # 0.

REMARK. A very frequent error made by the students is to put (a +b)? equal to a + b?, which
is not correct. ¢

7) The claim is wrong. The left hand side sinv is an odd function # 0, and the right hand side is
an even function # 0. The only function, which is both odd and even is 0.

8) This claim is correct for a # —1. In fact,

d (zot! a+l
—[——) = cxt = o,
der \a+1 a+1

When o = —1, the right hand side is not defined (never divide by 0). It is well-known that

1
/x_ld;v:/—dm:ln|m|, for x # 0.
x

9) The claim is wrong which can be seen by at small test,

d gz+1 d e(m+1) In2
dz { z+1 } T dx { z+1 }
n2- e(:v+1)ln2 e(m+l)1n2

r+1 C (z41)?
21+1

= Grpplernmz-1pzen

10) The claim is correct for x # pm, p € Z. In fact, we get by a test

d d (cosz —sin? —cos? x 1
o= (5[ -

sinx sin“ x sin

T

Example 1.15 Prove that
1) cos2z =2cos’xz —1=1—2sin’z,

2) sin2x = 2 sinx cosx.

A. Two simple applications of the rules of calculations.
D. Apply the rules with y = = and the sign +.

I. We shall also need the trigonometric fundamental equation

2

cos?z +sinz = 1.
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1) When y = x, we get by the rules of calculations that
cos2x = cos(x+x)=cosx-cosx —sinz-sinx
= cos? —sin?
— 2 2 _ 2
= cosz—(1—cos“x)=2cos’z—1
= (1 —sin®z) —sin® =1 — 2 sin? 2.
2) Analogously,

sin 2z = sin(z + z) = sinz - cosx + cosx - sinx = 2 sinx - cos .

Example 1.16 Let xo(t) be the solution of the differential equation

d
d—f+2x:a,

for which
z(0) =5 and z(t) — 100  for t — oo.

Find xo(t).
Does there exist a solution x(t), for which

z(t) — oo fort — c0?

A. A linear, inhomogeneous differential equation of first order.

D. Start by finding the complete solution. Even though it is possible here to apply the solution
formula, we shall choose the variant, in which one multiplies by the integrating factor e and
reduces.

I. When the equation is multiplied by e?, we get

d d
ae’ Zthd—f—FQth-x: @{eﬂx},

hence by an integration,

e2t 2t'

a a
x:562t+c, dvs. $:§+C~67

When the conditions are inserted into the complete solution we get
3:(0):5=%—|—c and x(t)—>%=100 for t — oo,

hence a = 200 and ¢ = —95. The searched solution is then

zo(t) = g Feoe 2 =100 95 2.

Finally, since

x(t)z%—kc-eﬂtag t — o0,

there does not exist any solution for which x(t) — oo for t — oco.
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Example 1.17 Calculate the integral [ cosx -sinxdx in three ways:
1) Express the integrand by sin 2.
2) Move sinz under the d-sign.

3) Move cosx under the d-sign.

A. Trigonometric integral calculated in three ways.

D. Follow the description.

1
I. 1) Since cosz -sinx = 3 sin 2z, we get
. 1 . 1
cos:v-sma:dmzi sm2mdac:—1 cos2x + ;.
2) Since sinz dr = —d cos z, we get
. 1 2
cosx-sinxdr = — cosxdcosx:—§ cos“ x + co.

3) Since cosx dx = dsinz, we get

. . . 1.,
cosx-sinxdr = | sinxdsinz = 3 sin“ x + c3.
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Calculus Analyse cl1- 2 Some Functions known from High School

REMARK. It follows that
1 1 1 1 1 1
~1 cos 2x = ~1 {COSQ$ — sinzx} =3 cos’x + 13 sin® x — 7

1 1 1
so the three integrals — °°s 2z, —3 cos? x and 5 sin? z only differ from each other by a constant.

O

Example 1.18 Draw an isosceles triangle of side length 1 and add one of its projections of a corner
T
onto the opposite side. Estimate from this figure sinus and cosine to s and 3 Find in a similar way,

. _ 7r
sinus, cosine and tangens of 1

A. Sinus and cosine of special chosen angles by considering a figure.

D. Draw a figure and find the values.

Figure 14: The isosceles triangle of side length 1.

I. The angles of an isosceles triangle are all g, and the additional line halves the corresponding angle
to E.
6
The additional line is now a smaller side in a right-angled triangle where the larger side has length
1, and where the closer one of the smaller sides has length 7" Then
cos (g) = length of the closer one of the smaller sides =

2
= length of the other one of the smaller sides = {/1 — (—) =

length of the other one of the smaller sides =

=,
=]

= length of the closer one of the smaller sides =

o3 wly ol
—— ~— SN—
I

w0
.
jm}
/N N /N
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Figure 15: A right-angled triangle where the smaller sides have length 1.

The corresponding rectangular triangle of angle g has equal smaller sides, e.g. of length 1. Then

the hypothenuse has the length /12 + 12 = /2, from which

e (2) = 5) = &g
and

(%)
T Sin 4

tan - = — %L =]
toes(3)
COS 4

which can also be found directly, because the two smaller sides are of equal length.

9

Example 1.19 Write the formula for the differentiation of a composite function. Then calculate the
derivatives of the following functions:

1) y = cos2z,
2) y = esine,
3) y=ene,
4)y=e’".

A. Differentiation of a composite function.
D. Follow the text. In (3) one should first reduce.

I. When F(x) = f(g(x)), where f and g are differentiable functions, then it is well-known that
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Figure 16: The graph of e*"#,

In this case we get

d
A sin(2z) - 2 = —2 sin 2.

dx

Here we get analogously

dy
dx

=M% . cosx =coswx - e,

The function is only defined for x > 0, where

Inx

y=e'' =z, for z > 0,
d

Sé—yzlforx>0.
dx

ALTERNATIVELY,
d
ﬁ:elnx.l:x.lz]ﬂ
dx T T

The function is defined for z > 0 and it is differentiable for = > 0. Here,

dy _m (L LY_ 1 =
dx 2 T 2\/x

30
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Example 1.20 Write the formule for differentiation of a product and a quotient. Then calculate the
derivatives of the following functions:

1) y=xlnz—uzx,

2) y=2sinx - cosx,

1

3) y=-—

) y=—,
4) y=tanz = S
cos x

In the latter case one should derive both formule for the derivative of tan.

A. Differentiation.
D. Follow the description of the text.

I. Assume that f and g are differentiable, and let F(z) = f(x)g(z). Then

Fl(z) = f'(z) - g(x) + f(2) - g'(2).

Assume that f and g are differentiable, and let F(z) = @) where furthermore g(x) # 0. Then
oy L@ 9@ [f)g(x) — fz)g' (x)
P =g 1 g2 o(0)?
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The latter formula is preferred in high school and it is also mostly found in tables. However, the
former formula is in practice often more convenient to use. It is derived by considering the quotient

f@) o1
o T @

as a product, where

% <g<1x>) N ‘§<(>)

1
This product is again obtained by composing h(y) = — and g(z) to H(xz) = h(g(z)), then apply
Y

the rule of differentiation of a composite function, and that h'(y) = ——.
)

REMARK 1. The reason why

4R _SE) .
V& <g<x>> @ 1D g

f'(x)
g(z)

in the formula known from high school. The preference in most places of this high school

often is more convenient to use is that the first term

is simpler than the corresponding term

formula is due to the fact that it is more “symmetric” than (1), thus easier to remember. ¢

1) A differentiation of y = z - Inz — x gives by the rule above that

1
@:Llnx—f—x-——l:lnw.
dx T

REMARK 2. From this we also derive the important result,
/lnxdx:x'lnx—x. O

2) A differentiation of y = 2 sinx - cosx = sin 2z gives by the rule of calculation above that

dy 9
27 9.
7 cos

2

r —2-sin“x = 2 cos 2z,

which can also be found directly by a rewriting.

3) Putting f(x) =1 and g(z) = = we get

dy 1
de 22’
REMARK 3. This is actually a circular argument. We have above assumed this rule when we

derived this result! In the correct proof one has to go back to the difference quotient (where
we assume that x # 0 and = + Az # 0),

1
gc—i—AxiE: —Az _ 1 _>_i
Ax Az - (z+ Ax)x z(z+ Ax) a2

for Aw — 0. O
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4) Let f(z) =sinz and g(x) = cosx, and assume that x # g +p-7, p €Z. Then we get by (1)

that
1 sinz - (—sinx) 9
— tanxz = cosx- — =1+tan“z
dx Ccos T Ccos T
cos? x — sin x(—sin x) 1
cos? cos2 g’

Example 1.21 Write the addition formule of sin(x £ y) and cos(x £ y). Then derive formule for
sin 2z and cos2x. Find by means of the trigonometric fundamental equation another two formule for
cos 2.

A. Trigonometric formulee.

D. Follow the description of the text and put y = .

I. Since
sin(x + y) sinx - cosy + cosx - sinvy,
sin(x —y) = sinz-cosy— cosx-siny,
cos(x+y) = cosx-cosy—sinx-siny,
cos(z —y) cosx - cosy + sinx - siny,

we get for y = x in the first and third formula that
sin 2x) sin(x 4+ x) = sinx - cosz + cosz - sinx = 2 sinz - cos z,
and

cos2x = cos(r+x) =cosx-cosx —sinz - sinx

= cos?z —sin’z

2 cos’x—1

= 1-2sin’z.
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Example 1.22 1) Prove that
nzx <z for every x > 0,
by first proving that f(x) = x —Inx is increasing for v > 1.

2) Apply (1) to prove that for every a > 0,

1
Inz < — %, x> 0.
o

3) Prove for every > 0 that

ln.'L' /3 _5/2

l‘—ﬁ < § - X x>0,
and conclude that

1

2% 0 for x — 400,

B

for every B > 0.

The logarithm therefore increases significantly slower that any power function of positive exponent.

A. Investigate the growth of the logarithm and of the power functions.

The procedure has been described in the text.

D. Follow this procedure.

-2

Figure 17: The graphs of y =2z and y =Inx, = > 0.

I. 1) Let f: Ry — R be the differentiable function given by

f(z)=2—Inx.
Then

r)=1_ 1

f(.]f)—l xv
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Figure 18: The graph of y =2 —Inx, = > 0.

i.e. f is decreasing for x €0, 1] and increasing for = €]1, +oo].
Hence, f has a global minimum for z = 1:

fl@)=z—Inz > f(1)=1 for every x €]0, +00].
Then by a rearrangement,

hr<zr—-1<ux for alle z €]0, +o0].
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2) A replacement of x by %, z > 0, @ > 0 in the estimate above gives

alnz =In(z%) < 2,

hence by a division by a > 0,

1
Inz < — %, x>0, a>0.
a
When we put o = g, B> 01in (2), we get

2
Inz < =27 2
p
hence by insertion,

7—.:1:’7

e 22077 2 _gp
P B b 3 ’

x> 0.

Now > 0 and 2°/2 — 40 for  — 400, so we conclude that

1

ar, 0 for x — +o0
B

for every (3 > 0.

REMARK. Putting z = €', t € Ry, we get from (3) that

1 t 2
%:e_ﬂt<ﬁe}(p(_§t>_)o for t — +oc.

Thus, when v > 0,

t\ v

for every v > 0 and every a = ¢”7 > 1.

The growth of any power function is therefore essentially slower than the growth of any expo-

nential a*, a > 1, for t — +o0.

36
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The hyperbolic functions

2 The hyperbolic functions

Example 2.1 Apply the rule of differentiation of a fraction to derive

d(coth 1
(co x):_' 5 =1— coth®z.
dx sinh” x
Then prove that
cothr — 1 forx— 00 and cothz — —1 foraxz— —oc.

A. Tnvestigation of the function f(z) = cothz, x # 0.

D. 1) Differentiate cothz =

2) Check the limits by inserting the definitions of coshz and sinh z.

cosh x

sinh x

, x # 0, as a fraction.

I. a) Using that f(z) =

Figure 19: The graph of y = cothz.

cosh x

sinh x

we get for x # 0,

fla) = d [coshz | sinhz-sinhz —coshx - coshz
"~ dx | sinhz [ sinh? z
B sinh? z — cosh? x B 1
N sinh? x ~ sinh’z
h2
= 17% =1—coth®z.
sinh” x
b) From
: 1 T —x 1 T —x
smhacz—(e —e ) and coshx=§(e +e )
follows for x # 0 that
T —T 2
cothe = e e =1+ 5
er —e 7T er —1
14+e 2 2 2
- =1 ——1-
1— 6721 + 1— —2x

37
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When x — 400, we get e?* — 1 — +o00, and we obtain from the former expression that

2
cothr =1+ —— —1 for x — +o0.
e2r — 1]

When x — 400, we get e~2* — 1 — +00, and we obtain from the latter expression that

cothr=-1- ——— — —1 for x — —o0.

The claims are proved.
Example 2.2 Prove directly the addition formule for sinh(z + y).

A. Prove the hyperbolic addition formulae for sinh.
D. Find e.g. the formule in a table and apply the definition of the functions involved.

I. We shall prove that

sinh(z + y) = sinhx - coshy £ cosh - sinh y,

o
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where

(¢ +e®) and sinhz = % (e —e™™).

N =

coshz =

First note that it follows immediately from this that

coshy +sinhy =eY og coshy —sinh =e™7.

Since cosh(—y) = coshy og sinh(—y) = —sinhy, it is obvious that it suffices to prove that
sinh(x 4+ y) = sinhx - coshy + cosh z - sinh y.
By inserting the definitions of cosh  and sinh z into the right hand side we get

sinh x - coshy 4 cosh x - sinh y

1 1
=3 (e” — e *) coshy + 3 (e” + e ") sinhy
1 1
=35 e® {coshy + sinhy} — 5 e {coshy — sinhy}
1
=5 eve¥ — 5 e e Y
1

=2 {em+y _ 6*(m+y)} = sinh(z + y),

and we have proved the formula.

Example 2.3 Sketch on the same figure the graphs of the functions y = coshx andy = 1+x2. Notice
the difference of the form of the curves.

A. Sketch of curves.
D. Use e.g. MAPLE.
I. A possible MAPLE programme (among many others) is
plot ({cosh(x),1+x"2},x=-4..4,y=-.2..cosh(4.1), color=black);

We see that the graph of coshz is “more flat” at the bottom and that is also increases faster
towards oo, when |z| — oo.
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Figure 20: The graphs of coshx and 1 + z2.

Example 2.4 Check in each of the following cases whether the formula is correct or wrong. If it is
wrong, then correct the right hand side, such that the formula becomes correct.

1) cosh2z =2 cosh’z 41, z € R.
2) (coshx + sinhz)” = coshna + sinhnz, z € R, n € N.
) sinh 2z = cosh? z 4 sinh? z, = € R.

sinh x

x
fanh £ = ST
4) tan 2 cosha—1'"

£ 0.

A. Check some formule. Look in particular for obvious errors. We shall always assume that the left
hand side is given.

D. Apply if possible the definitions.

I. 1) The first claim is clearly wrong. In fact, choose z = 0. Then cosh2z = 1 and 2 cosh’z +1 =

3#1.
In order to get the correct expression we apply the definition of cosh on the left hand side.
Then
1 2x —2x 1 2x —2x
cosh2x = 5{6 +e }:E{e +2+e 72}

xr —T 2
_ 2(%) —1=2cosh?z —1, for z € R.

2) This claim is correct. In fact,
. 1 B 1 B
coshz 4 sinhx = 3 {ew Te 90} + 5 {eoc S :c} —
hence

(coshz + sinhz)" = (e”)" = " = coshnw + sinhnz, z€R, neN.
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3) This claim is wrong. The left hand side is an odd function, and the right hand side is even.
The only function which is both odd and even is zero, so the two expressions do not agree.
Apply the definition of sinh on the left hand side in order to get the correct formula,

sinh2x = % {62”3 — 672&7} = % {e:’: — ef"”} {ex + 67“}
PP
= 2. ——— .+ e ¥2=2sinhx-coshzx.

2

4) This claim is wrong. We have for example tanh 0 = 0, and it is easy to prove that

inh
S ‘—>+oo for t — 0.

coshzx —1

This follows also when we below derive the correct formula:

x —x
- sinhE exp (5) — €xXp (7) exp (E) + exp (—£>
tanh = = 2 _ _ 2 2
2 coshE ex (E)—i—ex (—E) ex (E)—i—ex (—E)
2 PA3 L3 PL3 PAT3
1, —a
et — e 5 (C"L — € )
= p — = 1
e’ +e T+ 2 E(e’”—l—e‘“”)-i-l
_ sinh z
coshx +1°

Notice that the wrong formula only differ from the correct one by a sign in the denominator.
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3 Inverse functions, general
Example 3.1 Find the inverse function of the function
y:x2—|—4x—8, T > —2.

j — 00, —2[?
What is the inverse function like when we change the domain to | — oo, —2|

i i ion i interval.
A. Find the inverse function of a given function in some inte

]:' ICI gl en y? 5C1 e tlle 9qua‘t‘ICIl ltll IESPECE tO Zz. ]:O IIOt fOIget tO lIldlca‘te tlle COIIeprIldlIlg
y—ln(erval (the d()maln ()f the mverse fuIlCtl()Il).

I. From
y=a+4r —8=2"+4dr+4—12 = (z +2)* — 12,
follows that
(z+2)?=y+12>0,

from which we get the condition y > —12.
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-8
/ 10

Figure 21: The graph of y = 2% + 4z — 8.

The solution with respect to x becomes
r=-2+y+12.

If x > —2, then the solution is

r=—-2+4/y+12, y € [—12,+00].

If instead z < —2, then we shall change the sign,

xr=-2—\/y+12, y €] —12,+o0].

83

Example 3.2 Indicate the inverse functions of the power functions y

T
y=a".

and the exponential

A. Inverse functions.

D. Find the domain and the range and then the inverse function.
I. 1) Let y=2“ 2 >0,y >0 and a € R.

a) If @ = 0, then we only get y = 2% = 1, which is not strictly monotonous and the inverse
function does not exist.

b) If a # 0, then y = x® is strictly monotonous (increasing for « > 0 and decreasing for
a < 0), so the inverse function exists. We find this inverse function by raising the equation
1
to the power —,
o

Q=

xz(a:a)ézy, x>0, y>0, acR\{0}.
2) Let y=a", 2 €R, y >0and a > 0.

a) If a =1, we just get y = 1* = 1, and the inverse function does not exist.
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b) If instead a € Ry \ {1}, we get by taking the logarithm,
Iny =2z lna.
Since Ina # 0 for a € Ry \ {1}, the inverse function is
Iny
:mv I’ER, y >0, QER+\{1}.
Example 3.3 Argue why the function
y:x3+x2+x+1, r eR,
has an inverse function x = @(y), y € R. Find ¢'(4).
A. Inverse function.

D. Prove that ¢(z) = 2% + 22 + o + 1 is strictly increasing everywhere, i.e. 1’(z) > 0.

Figure 22: Part of the graph of y = 23 + 22 + 2 + 1.

I. The function ¢(z) = 2% + 2% + x + 1, z € R is of class C*°, and

Y'(z) =32 +20+1=3 962+goc+1 +1—1—3 x—i—l 2+2>0
- B 3709 3 3 377

This shows that ¢ (z) is strictly increasing for every z € R, hence the inverse function x = ¢(y)
exists.

We see by inspection that if = 1, then y = ¢(1) = 4, and since the function ¢ : R — R maps R
bijectively onto itself, we conclude that y = 4 also corresponds uniquely to = 1. Since

y=v(x) =v(ey)),

we get by a differentiation with respect to y of the composite function that

1= 1[},(1‘) : Sﬁl(y)a
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Example 3.4 Assume that y = f(z) and y = g(x) are two increasing and differentiable functions

defined on R. We denote their inverse functions by f~' and g~*, resp..

1) Write the formula for the derivative of the function y = F(x) = f(g(z)).
2) Write the formula for the derivative of the function x = f~1(y).
3) Write the formula for the inverse function x = F~Y(y) of the function in (1).

4) Write the formula for the derivative of the function x = F~1(y).

A. Formule for derivatives of inverse functions.
D. Apply the rule of differentiation of a composite function.
I. 1) This formula is well-known,

dy
dr

2) If = f (f~'(z)), we get by putting g(z) = f~'(z) in (1) that

Fl(z) = f'(9(x)) - g'(x)-

/

1= E = w) 7 @)

hence by a change of letters and a division,
1
F )
REMARK. The corresponding heuristic calculation (which actually gives the right result, though
the argument itself is mathematically wrong) is

(F ) () =

N R .
dy —dy () (M)
dx

3) Ity = F(x) = f(g(x)), then z = F~'(y) = g~* (' (y))-
4) First we note that according to (1),
Fl(z) = f'(g(x)) - g'(2).
An insertion into the result of (2) gives
1 1

F7) ) =5 Fy) o )9 o W)
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4 The Arcus Functions

Example 4.1 Find the derivative of y = Arccos x.

A. The derivative of a given inverse function.
D. Find e.g. the formula in a table. Then prove this formula.
I. We get from every possible textbook on Calculus,

d(Arccos ) 1 for €] — 1,1,

dx V1—22

We shall now prove this formula.

We know that y = Arccos © €0, 7| for  €]—1, 1], and we see that it can be extended by continuity
to the end points of the interval. The correspondence is given by x = f(y) = cosy, where

f(y) = —siny = —y/1 —cos?2y <0 for y €]0, 7|,

because siny > 0 for y €10, 7[.
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Thus,

d(Arccos ) { 1
dx f/(y) y=Arccos x
1 1

/1 — cos2(Arccos z) RV

forx €] —1,1[.

Example 4.2 1) For which x € R is it true that

Arccos(cosx) = x?

2) For which x € R is it true that

cos(Arccos x) = x?

A. Find the domains of two formulee.
D. Check the definition, the domain and the range for the given functions.
I. We know that Arccos is defined by
y=cosr < x= Arccosy, when z € [0,7] and y € [-1,1].
1) Let z € [0, 7], and put y = cosz € [—1,1]. Then
x = Arccos y = Arccos(cos z), x € [0, 7.

Since Arccos(cos z) € [0, 7], we conclude that the formula is never right, when « ¢ [0, 7]. Hence,
the formula is correct, if and only if z € [0, 7].

2) The left hand side is only defined when = € [—1,1]. In this case we put y = Arccos x € [0, 7).
When z and y are exchanged in the correspondence above, we get

x = cosy = cos(Arccos ), for x € [-1,1].

Example 4.3 Check if the following claims are right or wrong.
1) y= Arcsinz = siny=zx.

2) cosy = m

3) cos(Arcsin x) = /1 — 22.

A. Investigation of functions. Check if some claims are correct or not.

D. Check the functions and their domains, ranges, etc..
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1) The claim is obviously true.

3
2) This claim is wrong, when y € g + 2pm, ?ﬂ + 2pm {, p € Z, because then the left hand side

becomes negative, while the right hand side is always > 0.

On the other hand, the claim is correct, when y € [fg + 2pmr, g + 2p7r} , pE 7.

3) Even if this is not obvious, the claim is true.

™ T

If € [-1,1], Then Arcsin x € [—5, 5} Sinc cosy > 0 in this interval, we get

cos(Arcsin ) = —|—\/1 — sin?(Arcsin ) = /1 — 22.

Example 4.4 Prove that

Aresin(cos ) = g -z, x € [0,7].

What is the corresponding formula for x € [—m,0]?

A. Prove one given formula, and derive another one.

D. Since the functions are defined and continuously differentiable for « €10, 7[, it is sufficient to show

I.

that they have the same derivative everywhere, and that they agree in just one point.
Perform a similar analysis for @ € [—m,0].

Here we can produce an alternative solution.

T
1) Both Arcsin(cosx) and 5 T are continuous for z € [0, 7], and sinz > 0 in this interval. For

T ¢
Tr = — We ge
5 weg

Arcsin (cos I) — Aresin0=0=_~_1TZ
2 2 2
hence the functions agree at the point x = g

Both functions are of class C*°, when 2 €0, 7[. and we see that

4 Arcsin(cosz) = 1 (= sinz) = —sinz
du Vi-costa tsng
=T (T ).
dr \2

By an integration we see that the two functions only differ from each other by a constant, and
since we have shown above that the constant is 0, the formula follows by continuity at the end
points.
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2) If x €] — m,0[, then sinz < 0, hence

. —sinz  —sinz  —sinx
. Arcsin(cosx) = =
x

V1—cos? |sinz| —sinx

By an integration we therefore get

Arcsin(cosz) =z +c¢  forze]—m,0[

It follows from the continuity that this is also true at the end points.

When we put z = —g, we get

Arcsin (cos (—g)) = Arcsin 0 =0= —g +c,
) 7r
le.e=g, and we get the formula

Arcsin(cosx) = g +z, for z € [—m,0].
All things considered we have proved that

Arcsin(cosx) = g — |xl, for x € [—7, 7.
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AN ALTERNATIVE SOLUTION.

1) If € [0, 7], then g —x € {—g,g], ie.

Arcsin (sin (g — a:)) = g -z, for x € [0, 7].

From

. (T L T
sin (— - x) =sin g - cos(—x) + cos 5 sin(—x) = cosz,

2

we get

Arcsin(cosx) = g -z, for x € [0, 7.

2) If z € [—m, 0], then —z € [0, 7]. Then we get by the first solution that

Arcsin(cos(—z)) = g — (~2),
ie.
, T
Arcsin(cosx) = 5 +x for z € [—m,0].
3) As a conclusion we have
_ i
Arcsin(cos ) = 5 || for x € [—7, 7).
Example 4.5 Prove that
cos(2 Arcsin x) = 1 — 222, x € [-1,1].

A. Prove a formula.
D. Apply the formula for cos2y.

I. It follows directly from cos2y = 1 — 2sin? y that

cos(2 Arcsin x) == 1 — 2 sin?(Arcsin z) = 1 — 222

3

z€[—

1,1].

50
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Example 4.6 Find the complete solution x = p(t) of the differential equation
der 1+ x?
dt 1+

Hint: Use that

¢ ( n ) tanu 4+ tanwv
an(fu+v)= ——m—.
1 —tanu-tanv

A. A nonlinear differential equation of first order, where the variables can be separated.

D. Solve the differential equation by separating the variables.

1 1
I. Since both and are defined in the whole of R, we get
1+ a2 1+¢2

1 1
= ——at
/1+x2 . /1+t2 ’

Arctan z = Arctan t + k.

i.e.

We shall now use the hint with ¢ = tank,

&

b

-10

d 14 22
Figure 23: Some solution curves of o i
d 1+¢2

x = tan(Arctan x) = tan(Arctan ¢ + k)
t+tank t+c

1—t-tank 1—ect’

1
which is defined for ¢ # ¢ # 0. When ¢ = 0, we of course get x = 0.
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Example 4.7 Guess two solutions of the differential equation

d*x 9
W—l—a SUZO

Then guess two solutions of the differential equation

d*z 9
— =a‘z.
dt?

A. Solve linear and homogeneous differential equations of second order by qualified guessing.

D. Which functions are carried over into themselves, apart form a constant, when we differentiate
twice?

I. It is well-known that

@ t 2 t . t % sin at

— cosat = —a“ cosa — sinat = —a“sina

dt? ’ dt? ’
and that

2 d2

e cosh at = a® cosh at, e sinh at = a? sinh at.
This implies that © = cosat and = = sinat both satisfy the linear and homogeneous differential
equation

d*x 9

— +a“z =0.

dt? +

Since cos at and sin at are linearly independent, and the structure of the solution contains precisely
two arbitrary constants, we conclude that the complete solution is given by

x = c1 cosat + cg sin at, teR, ¢, co € R arbitrary constants.

Similarly we see that © = coshat and = = sinhat are both linearly independent solutions of the
differential equation

hence this equation has the complete solution
x = ¢1 coshat + ¢y sinh at, teR, c1,co € R arbitrary constanter.

REMARK 1. We have implicitly above assumed that a > 0 (or just a # 0). For completeness we
mention that if a = 0, then the complete solution is

T = c1 + cat,
which follows from two to successive integrations of

Pz

a0

Download free ebooks at bookboon.com

52


http://bookboon.com/

Please click the advert

Calculus Analyse cl1- 2 The Arcus Functions

REMARK 2.
d2

0= @

dt?

A’z .
Note that the equation pre a’z is equivalent to

d dx
—a2r=0_=_ -
a - x { / aI}O{ ¢ aa:},

where I denotes the identical operator Iz = x. This equation is solved by successively solving the
system of two linear differential equations of first order

dzr

=0, z=— +ax. O

Tt
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Example 4.8 First prove that if y = Arctan x, then

1 —cos?y _ 2

cos?y

Then find an algebraic expression for cos(Arctan x), x € R. (An algebraic expressions contains only
power functions, root functions and the four basic operations of calculus.)

A. We shall reduce a formula to an algebraic expression. To that end there is given a hint.

D. The hint is proved by some simple geometry. Then apply this formula in order to find an algebraic
expression for cos(Arctan z).

™

™
I. Let y = Arct e]——,
et y rctan r 22

[ for z € R. Then cosy > 0, and

1 — cos? sin?
J_ Y — tan? y = tan®(Arctan x) = 22,

cos?y  cos?y
and we have proved the formula.
It follows from this formula that

1+a22 = ! = !
cos?y  cos?(Arctan z)

Since cosy > 0, we get

1
cos(Arctan ) = + —— z €R.

V1t 2?2

Example 4.9 Find the exact values of the following:

(1) Arccos %; (2) Arctan (tan 2%) ; (3) cos (Arctan Z) .

A. Calculate some exact values of expressions containing Arcus functions.

Analyze suitable figures and some known formulee.

1
I. 1) Since cosg =5 and g € [0, 7], we conclude that

1 T
A — = —.
rccos 5 3

2) Since tan(z + 7) = tanx and Arctan y € }fg, g [, we conclude that

Arctan (tan 2%) = Arctan (tan (—g)) = —g € }—g,g{
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0.5

Figure 24: The unit circle with a vector, making the angle § with the z-axis. Then the projection
onto the z-axis is cos#, and the projection onto the y-axis is sin 6.

1.5 i -05 J 15 2

Figure 25: The unit circle with a tangent-axis (zero at (1,0) on the z-axis and pointing upwards) and
a cotangent-axis (zero at (0,1) on the y-axis and pointing towards the right). When some line from
(0,0) form the angle 6 with the z-axis, we get tanf on the tangent-axis, and cot # on the cotangent-
axis. If on the other hand ¢ = tan 6 is given, we draw this value on the tangent-axis and the line from
(0,0) to this point then forms the angle 6 with the xz-axis. Similarly if ¢ = cot 8 is given.

3) Since Arctan x € }—g, g [, we get cos(Arctan x) > 0. Furthermore,

+1
CosYy = —F————— for cosy > 0,
V1 +tan’y
SO
3 1 1 4
cos | Arctan — | = - = = .
4 5

3 3\ 2
1+ tan® = b
\/ + tan (Arctan 4> 1+<4)
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Example 4.10 Calculate the following integrals by means of partial integration:

(1) /1 - Aresin xdx,  x € [-1,1]; (2) / Arctan xdx, x€R.

A. Integration problems.

D. Apply partial integration. In the first case we first consider x € |—1, 1[, and then extend afterwards
by continuity.

I. 1) Let x €] — 1,1[. Then we get by partial integration,

1
1-Arcsinzdr = z-Arcsinz— [ 2+ ———=dx
/ / V1 — 2z

= z-Arcsin z + L [dl - x2)
B 2) V1-—2z?

= z-Arcsin z + V1 — 22.

Since the result can be extended continuously to [—1, 1], we conclude that this closed interval
is the domain.

C. TEST: We get by a differentiation
d
. {:13 - Arcsin x + V1 — mQ} = Arcsin 2 +
i

= Arcsin z.

x x
Vi—z2 V1-—22
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2) Similarly we get
1

T2 dx

/1-Arctanxdm = x-Arctanx—/x

1
= 1z -Arctan x — 3 ln(1+x2).
C. TEsT. We get by a differentiation
d 1
e {x.Arctan T — 3 In (1 —|—x2)}

T
T 1 2x

T+ 3 T2 = Arctan z.

= Arctan x +

Example 4.11 Find the mazimal domains of the functions
(1) f(x) = Arccos(cos z), (2) cos(Arccos ),

and sketch their graphs.

A. Two functions.

D. Analyze them.

Figure 26: The graph of f(xz) = Arccos(cos(x)).

I. 1) The function Arccos y is defined for y € [—1,1]. Since y = cosx € [—1,1] for every = € R, the
domain of f is the whole of R.

The range of Arccos y is [0, 7]. Since
cos(—z) =cosz and cos(2pm + x) = cosz, pEZ,

we get f(x) = |z| for © € [—m, 7], continued periodically with the period 2.

2) The maximal domain of g(z) is [—1,1], and in this interval we have

cos(Arccos =) =z, xz € [-1,1].
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Figure 27: The graph of g(x) = cos(Arccos(z)), x € [—1,1].

Example 4.12 1) Sketch the graph of the function

1
f(z) = Arccot = x # 0.

2) Show that the constants ¢ and c_ can be fixed in such a way that

Arctan x + ¢ for x <0,
Arctan x +c4  for x > 0.

Arccot 1 = {
x
A. Analysis of a function.
D. Differentiate and start with the second question.
I. When z # 0, we get by a differentiation that
1 1 1

d
! — - — — = —
f(x) = T ( x2> 52 = i Arctan x.

1+;

When we integrate again we conclude that

Arctan x +c_  for x <0,

1
Arccot z { Arctan z +c4  for x > 0.

If = 1 we have Arccot 1 = g = Arctan 1 + ¢4 = % + ¢y, dvs. ¢y = 0.

3
For © = —1 we have Arccot(—1) = Zﬂ- = Arctan(—1) + c_ = % +c_,dvs. c. =

Finally we conclude that

Arctan x + 7, for z <0,

A t L
reeo x| Arctan z, for z > 0.
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25

15

05

1
Figure 28: The graph of Arccot — for x # 0.
x

Example 4.13 Calculate the integral f V1—22dx.

A. Integration.
D. Substitute in a suitable way.

I. We must of course require that € [—1,1]. If we put @ = cost, t € [0,7], we see that this
substitution is monotonous decreasing and that de = —sintdt and

V1—22=1/1-cos?t = Vsin?t = |sint| = sint for t € [0, ]

Hence by insertion and an application of the fact that ¢ = Arccos =,

/\/l—a:Qda: = /sint-(—sint)dt:—/sinztdt

1 1 1
= —/5(17C082t)dt:*§t+ESin2t

= t+1 int-cost = 1t—|—1 t-v1 32 ¢
= 5 5 sint-cost=—g 5 €08 cos

1 1
= —iArccosx+§x\/1—z2
1 1
= §Arcsinx72+fx\/17m2,

2
where the last result is either obtained from
. T
Arcsin x + Arccos x = 5
s
T 2
t e [—5, E}, instead with dr = costdt. Apart from some obvious changes these calculations

(the derivative is 0, and for = 0 we get the value Z), or by using the substitution = = sint,

become quite similar.
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Example 4.14 1) Prove the formula for the derivative of y = Arctan x.
2) Show that

Arctan x < z for all x > 0.

Hint: First prove that f(x) = x— Arctan x is an increasing function.
3) Indicate the inequality between Arctan x and x for x < 0.
4) Show that

tanz >z for:ce}O,g[.

A. Analysis of the function y = Arctan z.

D. 1) Apply the theorem of differentiation of an inverse function.
2) Follow the guideline above.
3) Modify the method from (2).

4) Note that y = Arctan z is the inverse of x = tany and then use (2). It is also possible
ALTERNATIVELY to prove the claim directly.

s ebook 1s prooucen with iText®
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Figure 29: The graphs of y = = (above) and y = Arctan z (below), and the asymptote of the latter

(dotted line).

I. 1) If o = f(y) = tany, y € }—g,g[, then

d
ar =1+tan?y > 0,
dy

and we conclude that the inverse function exists,
y = g(x) = Arctan z, r eR.

We get according to the theorem of differentiating an inverse function,

1 1 1
f'(g(x))  1+tan?(Arctan z) 1+ a2

g'(x) =

Figure 30: The graph of y = x— Arctan x, z > 0.

2) Let f(x) = x— Arctan z, € R. Then, according to (1),

f(x)=1 Lo >0 forxz#0
B 1+22 1+a2 '
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Since f(0) = 0, we get
0< f(x) =2 — Arctan x for x > 0,

(and 0 > f(z) = z— Arctan z for z < 0), hence by a rearrangement,
Arctan x < x for x > 0.

3) It follows from (2) that

0> x— Arctan = for z < 0,

ie.
Arctan x > x for x < 0.

4) Let y € ]O, g [ Then = = tany > 0, and Arctan = y. By insertion into the inequality in (2)
we get
T
y < tany, y€}0,§[.

ALTERNATIVELY we put f(z) =tanz — z. Then f(0) =0, and

f'(x) = tan®z > 0 forace}(hg[v

thus
0 <tanz — z, xG]O,%L
and
s
tanx > x, IE}O,E{.
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Example 4.15 Let the function f(x) be defined by

2
f(z) = Arcsin Txgﬁ

1) Find the domain of the derivative of f(x), and then f'(x) for x # £1.

2) Find the relation beween f(x) and the function

g(x) = Arctan x.

3) Show that

2x

H—wz, z € R.

sin(2 Arctan z) =

A. Analysis of a function and proof of some formulze.

D. 1) Find the domain of the derivative and calculate f'(z).
2) Compare with z.

3) Derive a formula. Either by means of (2), or by proving that the two sides of the equation
agree in one point and that they have the same derivative.

2
Figure 31: The graph of y = Arcsin = , x> 0.
1+ 22

I. 1) The function Arcsin y is only defined for y € [—1, 1]. Therefore, we must require that
2z
1422~

an inequality which is rewritten as 2|z| < 1+ 22, or as (|z| — 1) > 0. Now, this is always
fulfilled, so f(x) is defined for every = € R.
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Furthermore, f(x) is differentiable for ‘ <1, ie. for (Jz| — 1) > 0, or # # +1. When

22
this is the case we get by differentiation of the composite function that
flo) = 1 2-(142%) —2z2-22
2\’ (1 +22)?
1 (==
14 a2
_ 2 1—z?
VA +22)2 - (22)2 1+ 22
- 2 1— 22
VA +a22+22)(1+a2%—22) 1+a?
2
= 1 —2%1 +2?
(1+2)(1 —x)?
1
_ 2 .1_1,2: 2@, fOI‘|iE|<1,
[1—a?] 1+42? —2. ——, for|z| > 1
1+ 22
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2) Let g(z) = Arctan . Then ¢'(x) hence by the above,

“Trar

roN 2¢'(x), for|z| <1,
Fla) = { —2¢'(z), for |z| > 1.

When we integrate this in each of the three domains | — oo[ and | — 1,1 and |1, +oo[, we get

. 2z
f(z) = Arcsin <m> =2g(z)+c
2 Arctan z + ¢, lz] < 1;
2
f(z) = Arcsin <1+—zx2> =c—2g(x)
= c¢—2Arctan z, || > 1.

Choosing x =0 €] — 1, 1], we get ¢ = 0 in the first formula, i.e.
. 2z
Arcsin | —— | = 2 Arctan =, xe]—-1,1].
14 2?2
When & — 400 in the last formula (i.e. x €]1, +00]), we get

c= Arcsin(—x2>—|—2Arctanm—>0+2-%=7r, T — +o00.

2
1+
Since c is constant through the limit, we must have ¢ = 7, so
. 2z
Arcsin [ —— | =7 — 2 Arctan z, x €11, 400l
1422
Similarly, when  — —oo (i.e. €] — 00, —1]),

2
c= Arcsin(l—x>—|—2Arctana:—>0—2-g=—7r, T — —00,

+ a2
ie. c=—mfor x €] — oo, —1[, and
, T
Arcsin | —— | = —7 — 2 Arctan z, x €] —o0,—1].
1+ 22
All things put together we see that
9 7w —2Arctan z, z €]1,+o0q],
Arcsin(1 2> = 2 Arctan x, z€]—1,1],
T —m —2Arctan x, x €]— o0, —1].

Now, f(z) is continuous for every x € R, and all the right hand sides are continuous in each
their domains. Then the formulse must by continuity also be valid at the end points. Then by
a rearrangement,

2
m — AI‘CSiI’l rwa , &I S [1,+OO[,
2
(2) 2g(x) = 2 Arctan x = Arcsin Txe , xel-1,1],
2
—m — Arcsin I +xx2 , x€]—o0,—1].
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3) Apply sinus on (2),

2
sin(2 Arctan ) = sin |7 — Arcsin <
1+ z?
2z 2z
= i A 1 = — 1
Sln< rcsm(l+x2>) et x € [1,4o0],
in(2 Arctan ) = sin ( Aresin [ —2 )} = 2% € [-1,1]
sin(2Arctan z) = sin { Aresin | ;=73 =i x ,1],
. . . 2z
sin(2 Arctan ) = sin | —7 — Arcsin
14 a2
2
= sin (7r — Arcsin (1 fm2>>
2z 2z
= i A i = 5 6 ].7 .
sm( rcsm< +$2>) T2 x € [1,400]
‘We have proved that
(2 A 2z ‘
sin(2 Arctan z) = T2 or x € R.
ALTERNATIVELY put u = Arctan x, x € R. Then
sin(2 Arctan x) = sin2u = 2sinu - cosu
2t
= 2tanu-cos’u = L;L
14 tan“u
2 tan(Arct 2
_ an(Arctan x) x CER.

1+ tan®(Arctan 7)1+ 22’
ALTERNATIVELY both

2
p(z) =sin(2 Arctan ) and ¥(z) = ?22
are differentiable in R, and
' = cos(2Arct —
o'(x) cos(2 Arctan x) T2
_ cos?(Arctan x) — sin®*(Arctan z) 2
~ cos?(Arctan z) + sin’(Arctan x) 1+ 22
1 —tan?(Arctan ) 2
1+ tan?(Arctan ) 1+ 22
1= x? 2 1—a?
1422 1+22 T (1422)2]
and
2. (1422 —2x-2x 1—a?
/ _ _9. — (2.
V) = ey (R

Then by an integration, ¢ = p(x) — ¥ (x), where ¢ is given by

¢=¢(0) —¥(0) =sin0—0=0,

66
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i.e.
2x

() = sin(2 Arctan z) = ¥(x) = T

z € R.

Example 4.16 Let the function f(x) be given by
1
f(x) = Arctan o Arccot z, x #0.

1) Prove that f'(x) =0 for every x # 0.

2) Show that f(x) is not constant in its domain. Ezplain why this does not contradict the fact that if
a differentiable function has the derivative zero in an interval, then the function is constant in the
interval.

3) Find for every x # 0 a simple expression for the function

1
g(x) = Arctan — + Arctan x.
x

A. Derivation of some formulee.

D. 1) Show that the derivative is = # 0.
2) Check the domain once more.

3) Find a simple expression for a similar function.

I. 1) Obviously, f(x) is defined and differentiable for 2 # 0. When we differentiate for x # 0 we get

1 1 -1 1 1
4 = ——— . _—— _— —_— - =
f(m)_l (1)2 ( x2> 1+ 22 1+x2+1+x2 0
+ —
x

2) The domain R_ UR, is not an interval. For z = 1 we get

f(1) = Arctan 1 — Arccot 1 = % — % =0.
For x = —1 we get
3
f(=1) = Arctan(—1) — Arccot(—1) = —% - Iﬂ = —.
Thus we conclude that
0, foraz >0,

1
f(x) = Arctan P Arccot x = { —m, forxz <O0.

This is not a contradiction, because the union R_ UR, is not an interval.
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3) Let x # 0. Then by a differentiation,

oy = (), b
g(x)* 1 2 < .1'2 +1+$2707
1+ (3)

so g(x) is constant for z < 0 and x > 0, respectively. We find the constants by

g(=1) = Arctan(—1)+ Arctan(—1) = —g;
g(1) = Arctan 1+ Arctan 1 = g,
hence
1 E, for x > 0,
g(x) = Arctan — + Arctan z = 2
z 3 for x < 0.
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Example 4.17 Hydrogen perozide, HoOs, is an unstable chemical connection, which decomposes ac-
cording to the reaction equation

(3) 2H202 — 02 + QHQO
1. The equation (3) implies that the concentration x of HoOs in a given solution satisfies the differ-

ential equation

d

—x:—kx27 z>0, t>0.

dt
Find the concentration z in a solution where x(0) = co and ¢y > 0.

We then add a constant stream of a sulfite solution to the original solution, where the sulfite and the
hydrogen perozide immediately react according to the equation

(4) SO2™ 4+ Hy05 — SO2™ + H,0.
If we add V' mol SO§7 per second, then x(t) satisfies the differential equation

d
Y vk, x>0, t>0.
dt

2. Find z(t), when z(0) = co, where ¢g > 0.

3. Find the time T (expressed by V, k and cq), when all HoOqy in the solution has been spent, and
show that T — +oo for V. — 400 for V.— 04, where k and cq are fized constants.

A. Mathematical models. The real task is to solve two differential equations. In both cases the
variables can be separated.

D. 1) Solve the equation by the method of separation.
2) Discuss the reasonableness of the equation, and then solve it.
3) Find T from the solution of (2), where x(7") = 0. Show that

lim T = +4oc.
v—0+

I. 1) When we divide the equation by —x2 # 0 we get

a1y,
22 dt dt \x) 7

hence by an integration,

1
— =kt+ec.
x
1 S
If t =0, then x = ¢y, so ¢ = —, and the solution is given by
€o
(t) ! 0 >0, £>0
x — = X .
1 ) K —
Lt + = Cok’t +1
Co
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d
2) When we add V' > 0 mol SO?,)_ per second, we also remove V mol HoOs per second, so d_gtc is
furthermore diminished by V. This argument gives us the equation
dx k
eV —ka?=—VIi14 22 k .
i V x V{ +Vx}, V>0, kV>0

By a separation of the variables we get

1 % | k
—/th201—vt:/—kdx: EAI'Ctan( Vﬂ]‘)

1422
+Vx

When ¢t =0 we get = cg > 0, hence

% [k
c1 = E~Arctan< V~co>.

Now, x > 0 is given, so the solution is therefore given implicitly by

() - Eia v
= Arctan <\/§'GQ> —VEkV -t e [O,g[.

T
Since t > 0 and Arctan y < 5 we conclude that ¢ must satisfy the inequalities

0<t< ! Arctan \/k c
> _\/W v 01>

and ¢ lies in a bounded time interval.

2 |k
Let ¢ =+VEkV. Then V = % and v %7 so we can write the equation in the form

Arctan (% . :c) = Arctan (% . co) —ct, where t € {0, % Arctan (% . co)} .

In particular, t # 21 in this interval. Apply tangent on this equation. Then
c
tan {Aretan (77 @) —t}
¢ = tanqArctan(—-co) — ¢
Vo

tan {Arctan (% . co) } — tan(ct)
1+ tan {Arctan (% . c0> } - tan(ct)

<
v

c
— - ¢o — tan(ct
v o n(ct)

C b
1+ — - co-tan(ct)

<
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from which
c
AN T v tan(ct)
R I 74
O — . = —tan(ct)
Co C
k
v Coyf v tan(VkV - t)
T ke 1 ’
© LY (VR 1)
Co k
1 [k
for t € |0, —— Arctan —-co -

REMARK. I have checked this result, but I shall leave out the test, because it consists of
calculations which are even worse than the calculations above. ¢

3) Since z(T) = 0 is obtained by putting the numerator equal to 0 (apply the continuity), we
must have

1 [k
T =—— " Arctan | o/ = | .

1 [k
When k > 0 and ¢y > 0 are kept fixed and V' — 0+, we get — +ooand Arctan| cgy/ — | —
0 p g N ( 0 V)

g,SéTH#»OOfOI"VHO‘F.

Example 4.18 Prove that

™
2 Arctan © — — for x>0,

2
Arctan <1 (1: - l)) =
2 x s

2 Arctan = + 5 for x <0.

A. Here we shall see that the solution method is far from unique. I shall give a lot of variants.
The task is to prove a formula for an inverse function.
D. AnavLysiS. The left hand side is not defined for x = 0. The standard method is now to show that

the two expressions for = # 0 have the same derivative, thus they agree apart from a constant.
Then by checking the values in some point < 0 and another one x > 0 we show that the constant

is 0 in both cases.

DN | =

1
ALTERNATIVELY one may start by analyzing the function ¢ (z) = <x — —>, z # 0, and then
x

apply tan on both sides. Here we get some additional variants.

I. First variant. The standard method. The function

o(z) = Arctan (% {x - ;})
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is defined and infinitely often differentiable for = = 0. When = # 0, we get by a differentiation,

(z) = L e
¢'(2) 1+<1{z 1})2 2<1+$2>

2 T
7 4 1 1+a® 2 1+a?
- N 2 2 1 22
4+<x;> x2+2+ﬁ
2(1+ 2?) 2(1 + 2?) 2

pd+222+1  (22+1)2 1+a2
An integration in each of the intervals | — 0o, 0 and |0, +-o0o[ gives

1

1
@(x) = Arctan (5 {x——}) :/2m2+ldx+c:2Arctanx+c.

X
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1) As a representative for z < 0 we choose x = —1. Then
1 1
p(=1) = Arctan (5 {—1 - —1}) = Arctan 0 =0
= 2Arctan(—1) 4+ c=2- <—%) + c:c_g,
hence c_ — 5 = 0,or c_ = g

2) As a representative for > 0 we choose z = 1. Then
1 1
¢(1) = Arctan <§ {1 - I}) = Arctan 0 =0

= 2Arctan1+c+:2-%+c+=c++g,
thus c+—|—g:O, 0rc+:—g.

As a conclusion we obtain the wanted formulee,

1 1 2 Arctan = — T for x > 0,
Arctan (5 {x — —}) = 2

x 2 Arctan x + 5 for x <0,.
. . 1 1 o
Second variant. The function ¢ (z) = oA G has the derivative
x

1 1 14+ 22
w’(x)=—<1+ ): R for z # 0,

2 222

so ¥ (x) is strictly increasing in each of the two subintervals | — oo, 0] and ]0, +o0].
Then notice that

1) if x = —o0, then ¥(z) — —o0, and if x — 0—, then ¥ (z) — 400,

2) if x — 0+, then 9(z) — —o0, and if z — +oo, then ¥(z) — +oo.

We conclude that the range of Arctan(% {.T — %}) is }—%, g[ for both z €] — 00,0[ and

z €]0, 400l

1) If > 0, then 2 Arctan = — g € },g’ g {, so the ranges are equal, and everything takes
place in the interval } —g, g { Thus it suffices to prove that

1 1
tan (Arctan (— {x — —})) = tan (2Arctan T — E) , for x > 0.
2 T 2

1 1
Here the left hand side is clearly equal to 3 (:c — —>.
x

Let us turn to the right hand side. Put u = Arctan x € }0, g {, i.e. tanu = x > 0. Then
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we get by the addition formulae,

(o)
sin (2u — —
tan (2 Arctan © — z) = tan (2u - z) = —72r
2 cos <2u - —)
2
~ —cos(2u)  cosu—sinu 1 sin®u—cos’u
~ +sin(2u)  2cosu-sinu 2 cosu-sinu

1 tan?u—1 1 22-1 1 1
= —-— 4t ——— = — - — If_
2 tanu 2 T 2 T

-t (v (3 {2 21),

and the claim is proved for z > 0.
2) Then consider z < 0.
First subvariant. Since y = —x > 0, the formula holds for y according to (1), so

1 1
Arctan (— {y——}) :2Arctany—z, y > 0.
2 Y 2
When we substitute back, y = —z, and use that Arctan is an odd function, we get

1 1
— Arctan | = qx — — = —2 Arctan x — z, z < 0,
2 T 2

hence by a change of sign,

1 1
Arctan | =<z — — = 2 Arctan x + ﬁ7 r <0,
2 T 2

and we have proved the formula.
Second subvariant. When x < 0, we have 2 Arctan x €] — 7,0/, so

™ T
2 Arct — € }——, = {,
rctan x + 5 2
and everything takes place in the right interval. Thus it suffices to prove that

1 1
tan (Arctan (5 {ac — E})) = tan (2Arctan T+ g) for x < 0.

1 1
Here the left hand side is clearly equal to 3 {x — —}.
x

Let us turn to the right hand side. Put v = Arctan = € }—g, 0 [, ie.
tanu = x < 0. Then by the addition formulae

. . sin (2u—|— g)
tan (2Arctan x + —) = tan (2u + —) =—F—=5
2 2 cos (2u+ 5)
_+cos2u_ cos2u—sin2u_1 tan®u — 1
T —sin2u  2cosu-sinu 2 tanu

1 z2-1 1 1
= — = - T — —
2 T 2 T

(v (Lo 1),
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and we have proved the claim for x < 0.

Example 4.19 Find the derivative of the function

1
f(z) = Arctan /a2 — 1 — Arccos —, r>1,
x

and show that

1
Arctan V22 — 1 = Arccos —, x> 1.
x

A. Identity involving inverse trigonometric functions.
D. Just follow the sketch above.

It is obvious that f(z) is defined and continuous for # > 1. Then for z > 1, where f(x) is differen-
tiable,

1 T 1 1
o - ()
1+ (V22 —1) z?—1 -1 z
JU2
- 1 T 1 1
1+22—1 Va2—1 1 50— 22
—Vazt -1
X
1 1

_ =0,
V2 —1 zxvVz2-1
which shows that f(z) = ¢ is a constant for z > 1.

Since f(z) is continuous for > 1, we also have

1
c=f(1) = lir{1+ f(z) = Arctan (\/ 12 — 1) — Arccos <I) =0-0=0,
hence
1
flz) = Arctan( x? — 1) — Arccos o= 0 for x > 1.
Finally we get by a rearrangement,

1
Arctan (\/ x2 — 1) = Arccos — for x > 1.
T
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Example 4.20 Prove that

Arcsin = = Arctan ———— rel—1,1[.

/1_x2’ )

A. An inverse trigonometric formula.

D. Show that the two functions have the same domain and the same derivative, and that they are
equal in one point, proving that the constant must be 0.

I. Obviously, the two functions are defined for x €] — 1,1[. Furthermore,

1
V1—=a?’

d
e Arcsin x =

S00T NG SWHSAS WL SRl
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and

N x 1 { L < 1) o }
@ Aretan — 2 — . P O
— 2 2 ) 3
dx -z 1+1x i Vi—z 2] (VI—a?)
— X

- 1— 22 1 + x2
1 —a22 422 1—22  (1—22)-V1—2a2
1 1
= —— {1-2%2+22) =
5 { 1= =

Vv1i—=x

= — Arcsin z,
dx

2

so the two functions only differ from each other by a constant. Since both sides of the equation
are 0 for x = 0, the constant is 0, and the two functions are equal,

x
Arcsin ¢ = Arctan ——, re|—1,1.
— ] [

Example 4.21 Prove that for every x € R,

Arctan(sinh(z)) = 2 Arctan (e®) —

o3

A. A mixed trigonometric and hyperbolic relation.

D. The two sides of the equation are defined and continuously differentiable for every = € R. show
that they agree in one single point and that they have the same derivative.

Figure 32: The graph of Arctan(sinh ).

I. Since

d . cosh x cosh x 1
— Arctan(sinh x) = —— = — =
dx 1+sinh“x  cosh®z  coshz
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and
d T 2¢® 1 1
— {2 Arctan (&” ——}= = - ’
dx{ rctan (e”) 5 1+e2® e +e* coshz
2

the two functions have the same derivative, i.e. they can only differ by a constant.
From

Arctan(sinh 0) = Arctan 0 = 0,
and

2 Arctan (eo) T 9Aretan1 - =T T _ 0,

2 2 2

we conclude that the difference is 0, so the two functions are equal,

ol 3

Arctan(sinh ) = 2 Arctan (e”) —

o]

1 4 1
Example 4.22 1) Prove that sinh <ln §) =3 and find an exact expression for cosh (ln §>

2) Find the complete solution of the differential equation
dx 2 3
i 2x tanh(t) = (cosh(t))” 4 (cosh(t)), teR.

3) Find the particular solution x = ¢(t), t € R, for which
A (1
\"3) T e

A. In reality the task is to solve a linear differential equation of first order with variable coefficients.
D. Apply some known formulse. Check whether the questions are interfering.

I. 1) By the definition

sinh (hl%) = %{exp <ln%>—exp(ln3)}
L[l (s
213 2\ 3) 3
Similarly,
cosh (111%) = %{exp (ln1)+exp(ln3)}
_L(l ) _1 10 5
- 2\3 2 3 3
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ALTERNATIVELY,

1 1 16 25
cosh? <ln §> =1+ sinh? (ln 5) =1+ n = 9

and since cosh x > 0 for every x € R, we get

1 5
1 - = —.
cosh (n3> 3

2) Since

/2 tanhtdt = /2~ sinh f dt =2 Incosht = Incosh? ¢,
cosht

it follows that cosh?¢ is a solution of the corresponding homogeneous equation. Then a partic-
ular solution is given by

cosh? ¢ /{1 + cosht}dt = (t +sinht) - cosh? t.

The complete solution is

@(t) = (t + sinh t) cosh? t + ¢ - cosh? ¢, teR, ceR.

3) Finally.
100 1
—o7 = %) (ln §)
= cosh? (ln %) . {lné + sinh (ln %) + c}
= (§>3-{lnl—é+c}
3 3 3 ’
hence

4 1 3\? 100 4 4
= _ln-—(2) .= =1 Z - —In3.
c n (5> n3+3 3 n3

The required particular solution is then

@(t) = {In3 + t + sinh t} cosh? ¢.
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Example 4.23 Prove that we for every x > —1 have

1
Arctan (%) = Arctan(z) — Z

A. A trigonometric relation.

D. Show that the two functions have the same derivative, so they can only differ by a constant. Then
prove that the constant is 0.

I. When = > —1, we get by differentiating,

d x—1 1 z4+1—(z—1)
— Arct — ] = :
dx rcan<x+1> r—1\2 (x4 1)2
4 (25)
z+1
2 2

x+1)2+(z—1)2 222+0+2
1

d T
= 1o = g et - 5

and the two functions only differ by a constant.
If x =1, we get

-1
Arctan (a:_) = Arctan 0 =0
z+1

and

Arctan 1 — % = =0,

T
4

S

so the two functions are equal for © > —1, (and certainly not for x < —1).
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5 The Area functions
Example 5.1 Find directly the inverse function of

y = sinh z, xz eR.

A. Find the inverse function of a given monotonous function.

D. Apply the definition of sinh 2 and solve the equation first with respect to e* and then with respect
to x.

I. The range of sinhz is R, so y € R. It follows from the definition of sinh x that

hence
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When we add 32 + 1 we get after a small rearrangement,
(€) =2ye” +1> = (" —y) =y + 1.

Thus by taking the square root,
e’ = ’y V241 ‘ .

Since y < \/m for every y we must have

e =y+vy2+1>0,

so by taking the logarithm we get the inverse function,

len(y+\/y2+1>, y € R.

Example 5.2 Calculate the integral f V1+22dx.

A. An integral.

D. The trick is to find some monotonous function f(x), such that it becomes easy to calculate the
square root of 1 + f(x)2. Here we have at least two candidates,

(1) « = sinht, (2) « = tant.

We shall treat both possibilities and learn that the calculations in the first variant are much easier
to perform than the calculations in the second one.

I. First variant. Since 1 + sinh?t = cosh?¢t and z = sinht is strictly increasing, we can choose this
as a monotonous substitution. The “unpleasant thing” is that the inverse function

t:ArSinhlen(x+ x2+1), z € R,

looks complicated. On the other hand,

V1+a2= V1 +sinh?t = cosht and dz = cosh t dt,
are quite simple, and since
cosh 2t = cosh? t + sinh? ¢ = 2 cosh® ¢ — 1,
ie.
9 1
cosh”t = 5 (1 + cosh 2t),

we get the following calculation
/ Vi+aZ2de = /cosht -coshtdt = /COSthdt

(1+cosh2t)dt = -t sinh 2¢

N~ DN~
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Second variant. ALTERNATIVELY (and it will soon be seen that this is somewhat more cumber-
some) we know that

1 te} 7T7T[
0s2t’ 272107

which is of the desired structure. (The variant under consideration has been inspired by the
fact that most students at this stage the trigonometric functions will be more familiar with
them than with the hyperbolic functions, and it is well-known that one will always prefer to
choose the known cases first.) Another possible monotonous substitution is therefore

1+ tan®t =
C

r = tant, with the inverse function ¢ = Arctan =z,
where
1 1
V1422 = V1 + tan? t=+—1, dr = —— dt.
cost cos? t

Let os see what happens by insertion:

/\/1+x2dx - /L ! dt:/COStdt

cost cos?t costt
B dsint B / du
(1 =sin®t)?2 Jugine (1 —u?)?

B / du

B u=sint (1 7“’)2(14»“)2.
Here we shall first decompose the integrand. This is done by the method of “holding-your-
hand-over- the-bad-terms”, cf. Calculus 1a, Functions of One Variable:

1 1 11 14— (1+u)?—(1—u)?
(1—u)2(1+u)?2 Z(l—u)2+1(1+u)2 4 (1+u)?(1+u)?
11 11 1 4-2-—2¢?
T 10w 10 e? 10 -widtw
R 11 1 1
T I —w? 107w 2-wltw
1 1 1 1 1 1 1 1
- Z(l—u)2+§(1—|—u)2+11—u 1414u
Then by insertion,
du
/\/1+x2dx = /(1—u)2(1—|—u)2

R I

! L mju—1+lnjuti]
1 1 n (u n |u

=
{2 <1fz)}
{

2 Slnt 1+sint
cos% 1—sint
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Since x = tant, we get

T
cost = +—= and sint = ——,
V1422 V1422
hence
x

1] 2 LN
/\/1+x2dx = - {—— - (1+2*)+n 7;%
41 V1 +22 1~
V1422

2ry/Ita+In | YLt e Vit te
Vi+a2Z2—a2 V142242

2x\/1+—:c2+1n<( 1+x2+x)2>}

1
x 1+x2+§ln(:c+ 1+x2).

—_—— T ——

N = == &

Example 5.3 1) Find directly the inverse function x = ¢(y) of

y = tanh x, z eR.

2) Find ¢'(y), either by directly to differentiate p(y), or by applying the theorem of differentiation of
an inverse function.

A. Find the inverse ¢(y) of y = tanh z, and the derivative of p(y).
D. 1) Apply the definition of tanh  and then solve with respect to x. Do not forget to specify the
range of y.

2) Calculate ¢'(y) in the two indicated ways.
I. 1) We first see that

sinh x (" —e™™)
y = tanhz = =
cosh x

(e e)

N =N =

621_1 B 1_6721
e2r +1  14e 2o

Since

1

2
—1<—1—|—4:tanhw:1—72
- e + 1

<1,
1+e

where we can get as close to the two limits as we want, we conclude that y €] — 1,1[. In this
case we get

y(e +1)=e* -1, yel-1,1],
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i.e.
621‘(1 _y) = y+ 17

thus

1
62w + y

T >0 fory €] —1,1].

Hence the inverse function is

1 1+
m:@(y):gln(ﬁ>, yel-11[

2) When we differentiate

r=ply) =y ml+y) -z m1-y),  ye]-11]

we get
dz , 1111
_— f— = — _ — . . —1
dy YW =513, 3 1=, Y
1( 1 1 1
2{1+y+1—y} T vel-uil
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Let f(x) = tanhz. Then we get ALTERNATIVELY that f’(z) = 1 — tanh®z > 0, and therefore
by the theorem of differentiating an inverse function,
1 1 1

Fle®) ~ 1—tanh®(Artanhy) 1—92 U el-1,1]

©'(y) =

Example 5.4 A paratrooper of mass m jumps from the height h. We call the air resistance R, and
we denote the gravitation by g. The paratrooper’s vertical velocity is denoted by v(t).

According to Newton’s Second Law the equation for the paratrooper’s vertical velocity is

(5) m % =mg — R(v),

where R(v) is a function of v.

We assume that m = 90 kg. It is empirically known that the paratrooper’s wvelocity at the surface
of the Earth (no matter the initial height) is approzimately 7 m/s. We shall here interpret this as
limt_,_,_oo ’U(t) =T.

We shall consider two different models:

1) Assume that R is proportional to the velocity, i.e. R = C'-v. Find the particular solution of (5),
for which v(0) = 0, sketch the graph of v(t) and find the constant C'.

2) Assume that R is proportional to the square of the velocity, i.e. R = civ?.

a) First show that if k > 0 and g — kv? > 0, then

1 1 k
—_— = A _ .
/ e dv NG rtanh <\/; v)

b) Then find in the present case the particular solution of (5), for which v(0) = 0. Sketch the
graph of v(t) and find the constant c;.

A. We are given in advance a mathematical model (a differential equation of first order where the
variables can be separated). We shall use this model in two special cases. There are given some
guidelines in both cases.

D. Follow the guidelines. Remember the two additional conditions v(0) = 0 and lim; ;o v(t) = 7.

I. 1) When R = C - v, we write (5) in the form

d
md—::mg—C’m,
dv . mg
Where£>0,1.e. mg—C-v>0. Then0§v<?.

By separation of the variables we get

m m [ d(mg — Cv)
t+k = " dv=——
+ /mg—Cvdv C mg — Cv

= —% In(mg — Cw).
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Figure 33: The graph of the solution v(t) =7 {1 — exp (—g t) }, for ¢ > 0, and its horizontal asymp-
tote.

m

From v(0) = 0 we see that k = — c

In(mg), thus

In(mg — Cv) = In(mg) — ¢ t, t>0,
m
and hence
C
mg—Cv=mgexp|——1], t>0,
m

i.e.

v(t)z%{l—exp(—%t)}, t>0.

Then apply the condition lim;—, 4~ v(t) = 7 to get

_ = oim "9 e (“E L 2
7ftl1£rnoov(t)7tilr+noo c {1 exp( mt>} o

thus C' = g, and the solution becomes

v(t)z?{l—exp(—%t)}, t>0.

With the given data, m = 90 kg, g = 9, 81111/327 and the limit velocity 7 m/s we get

90-9,81
C%f’kg.m.s—z.s-m_lzl%kg/s.

Furthermore, % ~1,4s L

Notice that C - v has the physical dimension kg - m/ 52, i.e. the same dimension as a force.
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Figure 34: The graph of the solution v(t) = 7 - tanh (% . t), t>0.

2) Then let R = c;v?. In this case (5) becomes

dv 9
m— =mg — v

dt

d /
In this case, dit} =mg—cv?>0,500<v< @. By separation of the variables followed
(&1

by an integration we get

1 1
t+K:/fdv:/ dv, k=250,
I g—kv m
m

a) Let

1 k
flv) = Tor Artanh <\/;v> ,

k
where &£ > 0 and g — kv? > 0, hence 0 < \/71) < 1. Then
g

1 1 k 1
f’U = —— ¢ — 7:7’
U R S v

g

and we conclude that

1 1 k
—— —dv=—Artanh |/~ v | .
/gfkvr" U g (\/;v>

b) Let us return to the original task. It follows from the result in (a) that

1 1 k
t+ K = dv = Artanh - .
8 = [ e = At (\/?)
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Applying the initial condition v(0) = 0 we find K = 0, so

Artanh (\/EU> =\/gk - t,
g

and thus

v(t):\/%tanh(\/ﬁ-t), t>0.

From the limit condition lim; 4o v(t) =7 m/s we get 7 = \/%, ie. k=2 =2 hence
m

gm  9,81-90
= =—m

) -1 2N
o ="F=""7s s kg - (sm™")” ~ 18 kg/m,

and /gk = g ~1,4s N

The solution is therefore in this second model given by

62,8t -1

m, fOrtZO

v(t)z?”canh(%q&) ~T-
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