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Calculus 3c-4 Introduction

Introduction

Here follows a collection of examples of how one can solve linear differential equations with polynomial
coefficients by the method of power series. The reader is also referred to Calculus 3b, to Calculus 3c-3,
and to Complex Functions.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c¢ and
Calculus 2c, because we now assume that the reader can do this himself.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
16th May 2008
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Calculus 3c-4 Solution of differential equations by the power series method

1 Solution of differential equations by the power series method

Example 1.1 1) Find the radius of convergence ¢ for the power series
oo
1) > p-a® .
p=1

2) Find the sum function f(x) for (1), when x €] — o, o[, e.g. by termwise integration of (1).

3) Prove that if y =Y.~ a,x™ is a power series solution of the differential equation
d*y dy
2) (2 —1) =5 + 6z - +4y =0
() -1 e L ray =0,
then we have the recursion formula

n+4

n—Han, nGNO

Ap4+2 =
4) Find the solution y = ¢(x), x € I, of (2), for which ¢(0) =1 and ¢'(0) = 0.

1) We get by the criterion of roots x # 0 that

1
|ap(sc)|:{’/]_9-m2~ﬁ—>m2 for p — oo.
T

From the condition of convergence 22 < 1 follows that o = 1.

2) If we put
fz)= prQp_l, for |z| < 1,
p=1

then

v I ,, 1 a? 1 1 1
F(x):/of(t)dtzizxp:§.lfx2:illfﬁ_ﬁ’
p=1

hence by differentiation,

1 2z x
o) — _
f(x)iF(x)ig.(l—xQ)Qi(1—x2)2’ for |z < 1.
3) If we put
y=Y a", y =Y na,a"', Y => nn-1aa""?
n=0 n=1 n=2
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Calculus 3c-4 Solution of differential equations by the power series method

(formal standard series), then we get by insertion into the differential equation,

0 = (22 —1)y" +6xy +4y

= n(n—l)anac”—zn(n—l)anx"_z—i— Z 6nanm”+z danx”
(;;20) n=2 (77;;%) n=0
e} (o)

= Z(n2 —n+6n+4)ax" — Z(n +2)(n+ 1)any22"
n=0 n=0

= Z(n +1D(n+4)az™ — Z(n + 1)(n + 2)any22"
n=0 n=0

= > (m+ D) {(n+4)a,— (n+2)ani2}a"
n=0

It follows from the identity theorem that
(n+1){(n+4)a, — (n+2)aps2} =0 for n € Ny,
thus for every n in the summation domain. Since n + 1 # 0 for n € Ny, we get

(n+4)an = (n+ 2)anyo for n € Ny,
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Calculus 3c-4 Solution of differential equations by the power series method

which is fulfilled if and only if just one of the following two formule is satisfied

n+4a or Upt2  ap
n+2 " n+4 n+2

Gpta = for n € Ng.
Remark 1.1 In the text, only the former one is required. Note that the latter one is easier to
a
treat. In fact, if we put b,, = %, then it is written
n

an

n+2 0

bpy2 =bp, mn € Np, where b,, =

1
4) If ¢(0) = 1 and ¢’(0) = 0, then ap = 1 and a3 = 0, hence by = 3 and by = 0. It follows from
the recursion formula for b,, that by, 1 = 0, and thus as,+1 = 0 for every n € Ny. Furthermore,
1
bap =bop_o=---=by = 3 hence
agn = (2n+ 2)ba, = n + 1, for n € Np.

If  # 0, then we get by (1) that the power series solution (where o = 1) is given by

. 2n 2n 2p—2 _ | _
_nzz;)agnx —T;)(n—&—l)x —;px i e il g R

By insertion into the differential equation we see that this is a solution

1
T)=—— forx €] —1,1].
SD( ) (1 . 332)2 } ’ [
Remark 1.2 It is often worth the trouble to inspect the equation instead of immediately to start on
the method of inserting a power series into the differential equation. In the present case we e.g. get
by using the rules of differentiation for |x| < 1 that

0 = @3U§%+6z%44y{mngﬂ+2 ?}+4{£%+y}
= (x—Di(%)+%@2 }A%~—+— }:%{W—U%+m%
= éé{ﬂll{WZ )Z +22xx~—1]} { 15%“#-4?@}.

Then by an integration,

1 d
e v e

thus
d
— 1)y =c-(2* - 1).
@ =P = (@ - 1)
Putting ¢ = 3co we get by another integration,
3

(2 = 1)’y =c1 +¢ <% - ac) =c; +co(2® — 32),
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Calculus 3c-4 Solution of differential equations by the power series method

and the complete solution of the differential equation becomes

c1 n 3 — 3z
= C .
G R G i

|z] <1, ¢1,c2 € R arbitreere.

Since

dy 3z2 —3
% :Cl'x'{"'}"_CQ‘ {m+x(.)},
we get

y(0)=c; =1 and  y'(0) = —3c2 =0,
hence ¢; = 0 and ¢y = 0, and the specific solution is

1
@(m):m for z €] —1,1].

Example 1.2 Prove that the differential equation

d*y N
xw+(3—2m)%—4xy20, x € R,

has a simple infinity of solutions which can be written as power series from x =0, i.e. on the form
oo
y:Zanx", xe}—gg[,
n=0

where ag € R is an arbitrary constant.

Find the radius of convergence o and the sum function f(x) for ag = 1.

2
1) The equation is linear of second order with polynomial coefficients. The coefficient 2 of % is only

0 for x = 0, so the formal power series solutions either have radius of convergence ¢ = 0 or p = co.

2) By insertion of

o0 o0 o0
y = E apx™, Yy = E napz" Y,y = E n(n—1)ap,z" 2,
n=0 n=1

n=2
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Calculus 3c-4 Solution of differential equations by the power series method

we get for |z| < o by adding some convenient zero terms,

oo o0
0 = Z n(n — Da,z™ ' + Z 3na,z™ ' ( same group a,z""!, same domain n = 1,2,...)
(n=1) et
o0 o0
- Z 2na,z"tt — Z 4q,z" (same group a,x"*!, same domain n = 0,1,...)
n=1 n=0
(n=0)
o o0
= Z n(n+2)a,z" ! — Z 2(n 4 2)a,z" (collecting each group)
n=1 n=0
o0
= Z n(n + 2)a,z" Z 2nan—ox" (adjust according to the exponent n—1,
n=1

ie. m—1=n+1)
= 2a1+z (n+2)ap,a” ZZnan ox" T,
n=2

where we have removed terms such that we get the same domain in both places. Summing up we
get by collecting the two series,

0=2a; + Z n{(n +2)a, —2a, o}z"*
n=2
3) It follows from the identity theorem that every coefficient is 0, hence
201 =0, og n{(n+2)a, —2a,_2}=0 forn>2,

because the summation domain is given by n > 2.

Since n # 0 for n > 2, this is reduced to a; = 0, and to the recursion formula

2

3 2)a, = 2a,—o ell n =
(3) (n+2)a ap—o eller a )

Uyp—o forn > 2.

4) Solution of the recursion formula.

Since we have a leap of 2 in the indices of (3), we have to consider separately the two cases, where

n is odd or even.

a) It follows from a; = 0 and (3) that as = 0, a5 =0, ..., hence by induction, as,+1 = 0 for every

odd index 2n + 1, n € Nj.

b) For even indices we start by replacing n by 2n in (3), thus

2 1
T e o —
n+2 " n+l

We define the auxiliary sequence b,, = ag, and then get the two variants of the recursion
formula (3),
1

(4) bn:n—klb"*l or (n+1)b, =0b,—1, neN

A2pn = a2(n—1)» n € N.

Here we have three methods of solution:
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Calculus 3c-4 Solution of differential equations by the power series method

i) Induction. Since by is “free”, the first coefficients are

1 1 1 1 1
51—5507 bz—gbl—ﬁbo, 53—1b2—4.3'250~

Set up the hypothesis

1

=

bp, neN, (rigtigforn=1,2,3).

It follows from the recursion formula that the successor becomes

1 1 1
b(n—i—l)—l = nt2 by, = (n+ 2)' bp,

bpyr = —————
T m+1)+1

which is the same as the hypothesis only with n replaced by n + 1. Then the hypothesis

follows by induction.

ii) Recursion. By iteration of the recursion formula we get (note that the difference between

the denominator and the index is constantly equal to 2),

1 1 1
bu = n—|—1bn71 T+l .Ebn72:.“
1 1 1 1
T on+l o 207 (n+1)!b°'
iii) Multiplication by n! # 0 (an integrating factor) gives
(n+ b, =nlb,_1 =--- = 1lby, dvs. b, = #bo.
(n+1)!

360°
thinking
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Calculus 3c-4 Solution of differential equations by the power series method

5) Insertion into to formal power series. We get in all three cases that

1
A2p 1 = 0 and as, =0b, = mao for n € Ng,
hence
— n = 2n = @o 2n
y:Zanx :ZGQnIE :Z—'x .
n=0 n=0 n=0 (n + 1)'
6) Radius of convergence. If we put b,(z) = |ag| - CE 22" > 0, we get for ap # 0 and x # 0
that b, (z) > 0, hence
b, 2(n+1) ! 2
+1(z) _ Jaolz D!z S0<1
by () (n+2)!  Jagla?r  n+2

for n — oo. It follows from the criterion of quotients that the series is convergent for every
x € R, thus p = 0o, and the interval of convergence is R.

1
7) Sum function. The coefficient m indicates that we should think of an exponential function.
n !
When ag = 1 and x # 0 we get by the change of indices n — n — 1 that

oo

_ 1 2n __ 1 2(n—1) _ 1 1 2n
DSy i Bins it D Diias

n=1 n=1
A comparison with the exponential series
1
exp(t) = Z —t", t eR,

n!
n=0

shows that it would be a good idea to put ¢t = 2,

=1 =1
exp(z?) = Z ] 2 =1+ Z ] z?m,
n=0 n=1 "

By a rearrangement,

(oo}

1 n
Z o 22" = exp(2?) — 1,

n=1

hence for x # 0,

1l =1 o, exp(a?)—1
y_achZ::ln!x N z2 '

If = 0, then y(0) = ap = 1, and the sum function is
exp(z?) —

y:f'(x): T fOI‘ZL'?éO,
1 for z = 0.
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Calculus 3c-4 Solution of differential equations by the power series method

8) Alternative solution (without using the power series method). With some deftness we get

d*y 2y Y
0 = xﬁ+(3—2x)£—4xy
d (dy dy dy 5 dy : dy dy dy
= e 8 () 1 L 0 192y, 1 YW 1.9 0. Y
{xdm <d$>+ dx}+ dx {x dw+ Ty Split 3dﬂc dm+ dx
% {x j—i} + %{23}} - %{23:@} (rule of differentiation of a product)
d [ d
dx

{33 d—z +2(1— x2)y} .

Then by integration and adding an arbitrary constant cb,

dy
z— +2(1 — 2%)y = ¢,

thus

d 1 1
_y+2(__x)y:c’2.— for x # 0.
dx T T

S00T NG SWHSAS WL SRl
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Calculus 3c-4 Solution of differential equations by the power series method

Then we get by the usual solution formula for linear differential equations of first order that the
complete solution is

/

2 2 2 2
y = c¢1- exp(zx ) +cy - —exr;(;; ) /exp(—xQ)x dx = c; - exp$(2x ) _ %2 . ex;;(;: ) -exp(—2?)
2 / 2
exp(x c 1 exp(x®) —1 1
_ o @) o 1 epl)-l, 1
T 2 x x T

c
where we have put co = ¢; — 52 This is due to the fact that

exp(z?) — 1 _ — 1 2(n—1) _ — 1 2n
x? 7;11!1 7;(n+1)!x ’

is a convergent power series with o = co.

Example 1.3 1) Prove that the differential equation

d? d
(5) xQd—;;—3xd—i—|—(3—a;4)y:O, x €R,

1
has precisely one power series solution y = ZEO:O anx™, for which (ag,ar,as,a3) = (0,0,07 5),
and find this solution.
Find the interval of convergence and sum function of the series.

2) Find another solution on R of (5), which is linearly independent of the first one, and which at
(CUano) - (070) fulﬁls (yévyg?ygl) = (13070)

3) Find the complete solution of (5) on Ry.

The problem is strictly speaking over-determined, because the singularity at z = 0, where the coeffi-
cient of ¢ is 0 also creates some conditions.

1) If we insert the formal power series

Y= E anpx”, d—y = E napz™ !, d_g = E n(n—1)a,z" 2,
x x
n=0 n=1 n=2
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Calculus 3c-4 Solution of differential equations by the power series method

into the differential equation we get by adding some convenient zero terms that

d*y dy
_ 2 4
0 = = @—31}%—1—(3—% )y
o0 o0
= Z n(n — Dayz™ — Z 3na,x"
(n=0) (n=0)

(here we add some zero terms, cf. the lower bound)

oo oo
+ E 3a,x" — E anpz" Tt
n=0 n=0

— i(n2 —4n+ 3)aza” — i Ap_gx”
n=0 n=4

(collect according to the group a,z™, and change of index)

= Z(n —1)(n—=3)apa" — Z Op—ax"
n=0 n=4
(splitting into factors)
3 [eS)
= Z(n —1)(n=3)a,a™ + Z{(n —1)(n—3)an, — an—_q}z"
n=0 n=4

(removal of terms and collecting the series).

Hence it follows form the identity theorem that we have for the removed terms (the first finite
sum),

n=0: 3ay=0, i.e. ag =0,
n=1: 0=0, i.e. a; arbitrary,
n=2: —ay =0, i.e. ap =0,
n=3: 0=0, i.e. ag arbitrary,

and the recursion formula for n > 4 (from the infinite series)
(n—1)(n —3)ay, = an_4, for n > 4.

It follows in particular, since ag = as = 0, and since there is a leap of 4 in the indices, by induction
that ag, = 0 for every n € Nj.

For odd indices n = 2m + 1 the recursion formula is written
2m - 2(m — 1)agm11 = G2m—3 = G2(m—2)+1, m > 2.
If we put b, = agy41, then
22m(m — Dby, = byy—a, m > 2,
hence by a multiplication by 2™~2(m — 2)! # 0 for m > 2,

(6) 2™mlb,, = 2™ 2(m — )by, M > 2.
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Calculus 3c-4 Solution of differential equations by the power series method

If we put
Cm = 2"mlb,, = 2Mmlag, a1,

then ¢, = ¢p—2 by (6), thus copy1 =+ =1 and ¢gp = -+ - = ¢, hence
Copt1 = 22p+1(2p + Uagpys =c1 =2 1lag = 2as,

and
Cop = 22p(2p)! Q4p+1 = Co = Q1,

SO

1 1 1

1
a4p+1:al'(2—p)!'27p og a4p+3:203'm'm-

2) We get by insertion that all the power series solutions are given by
o0 [e'e) 2 [ee) 2p+1
1 2\ 7 1 22\ 7
= a,z" = a — | = -x+ 2a — | = T
1= S X (3) e e (3)

2 2
= ajzcosh (%) + 2agx sinh <%> ,

where we have recognized the series for cosh and sinh with o = cc.

1
If (ap, a1, a2,a3) = (O,O,O7 5), we get the solution

22
=xsinh | — ).
Yy = xsin <2>

Notice that we are here forced to put ag = as = 0.

22
3) If y = x cosh (?)7 then

2 2
y' = cosh (%) + 22 sinh (%) , y(0) =1,
x? x?
y" = 3 cosh <7> + 3z sinh (?) , y"(0) =0,

) 2
y" = 622 cosh (%) + (I4 + 3) sinh (%) , y"(0) = 0.

Remark 1.3 It is actually possible directly to solve the equation by using some “dirty tricks”. The
idea is to divide by 2° for & # 0 and then split in a clever way and of course apply the rules of
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Solution of differential equations by the power series method

differentiation of a product in the opposite way of the usual one:

x° x

1 1d2y71dy_1 1dy_2
22 \zdx? 22 dx 2 |22 doe 23

ol d(1dy\ 1.d[1 1 d
T 22dx \x dx z2 dx :132y 3 dx

1 d (1dy 1 1 d sy Y
= P%{E%_F} el b s
TR OIS AR

i%|& Ri= &w|’_'

1d
By putting A = — —

x dx
a more handy variable than z. It is tempting to put

1d d
“A=Z = ”
d(z?/2)

o lfldy 1\
y 3 | de a2
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Calculus 3c-4 Solution of differential equations by the power series method

dt

More precisely we apply on R, the monotone substitution ¢t = 22/2, 2 = v/2t. Then Fri x, hence
x

by the simplest form of the chain rule,

d_drd _1d
dt  dt de x dx’

Then the equation is reduce to

w () - ()0
de2 \ /2t V2t ’
the complete solution of which is
t
—— = ¢y cosht + ¢y sinht,

V2t
SO
22 x?
Yy = clx/ﬂcosht + czx/ﬂsinht = cyx cosh <2> + cox sinh <2) . O

Example 1.4 Given the power series

e L2
nz_:l n+2\
B n

Find the radius of convergence o.

Prove that the sum function y = f(x) of the power series in the interval of convergence —p < x < p,
satisfies the differential equation
d%y
1—2)— =2z,

and find an explicit expression of f(x).

Prove that the power series is convergent for x = o, and find the sum of the series for x = o.

1) Radius of convergence. It follows from

<n+2 ) B ( n+2 > _ (n+2)(n+1)

n 2 1-2 ’
that
n—1(”+2> —(n+1)(n+2) '
n

hence by the criterion of roots,
B V2 a2
Y1 Yn+2

The condition of convergence becomes |z| < 1, so o = 1.

V an ()] x| — |z] for n — oo.
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Calculus 3c-4 Solution of differential equations by the power series method

2) Differential equation. If we put

- xn+2 - 2 n+2
y:f(x)zz(wd ) :Z(n+1)(n+2)x T lel<t,

n=1 n=1

with f(0) =0, then

Y =)= ——a <1, f(0)=0,

— n+1
and
y”:f”(x)zi%c”:%cix”: 20 lz| < 1
n=1 n=0 1 _1‘7 .
It follows that
d?y

3) Determination of f(x). Since f(0) = f/(0) = 0, we get for |2| < 1 by integration of

d%y 2z 2

dx2 11—z 1—2x ’

that

dy ro2
Yo o dt—2=-2In(1—x)—2
o /0 T3 x n(l —z) — 2z,

and

y = f(x):—2/Ox1n(1—t)dt—/:%dt:2[(1—t)1n(1—t)+t]g—x2

= 20 —2)ln(l—2)+2zx—2>=1—-(1-2)>+2(1 —2)In(1 — ),

hence
- - 2 n+2__ 1 o0\2 o o
for |z| < 1.

2 2

(n+Dn+2)  n?
series is even absolutely convergent for x = £1.

2
4) Convergence for x = p = 1. Since and since Y 7 | — 1s convergent, the
n

The sum is traditionally found in the following way,

> 2 > 1 1 1 1
—:21. _— :21. _—— :1
(n+2)(n+1) Nﬂoz{nﬂ n+2} NT%O{2 N+1}

n=1 n=1
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Calculus 3c-4 Solution of differential equations by the power series method

Alternatively, it follows by Abel’s theorem that

Z m = xlir{l_ f(z) = xl_l)r{l_ {1-(1-2)*+2(1-2)In(1-2)} =1-0+0=1

according to the laws of magnitudes.

Example 1.5 Given the differential equation

& d
(7) (1+x2)%z+6xﬁ+6y:0, zeR.

Find, expressed by a power series, a solution of (7) where

(w0, y(x0), y/($0)) = (07 1, 0),

and find the sum function of the series.

By insertion of the formal power series

— n g n—1 - Jd o n—2
y= ;::Oanx e ;nanx i ;n(n Dayz™ ™=,

into (7), and adding some zero terms we get

0 = (1+x2)%+6x2—i+6y
= i n(n —Da,z" 2 + i n(n — Dayz™ + i 6na,z" + i 6a,x"
e (n=0) (n=0) =
= i(n+1)(n+2)an+2x”+i(n2—|—5n—|—6)an:v" (grouping according to a,422™ and a,z")
n=0 n=0

= Z {(n+1)(n+2)an12+(n+2)(n+3)a, } =" (factorize and collect the series)
n=0

= Z(n +2){(n+1Dapi2 + (n+ 3)ay} " (remove the common factor).

n=0

It follows from the identity theorem for n € Ny (the summation domain) that
(n+2){(n+1)any2 + (n+3)an} =0, n € No.
Since n + 2 # 0 for every n € Ny, this equation is reduced to the recursion formula,

(n+ Dayto + (n+3)a, =0, for n € No.
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Calculus 3c-4 Solution of differential equations by the power series method

Since also n 4+ 1 # 0 and n + 3 # 0, this can more conveniently be written

An+4-2 _ Qn,
n+3 n+1’

for n € Np.

It follows from the line element that ag = 1 and a; = 0, hence the recursion formula gives by induction
that ag,41 = 0 for every n € Ny. We get for even indices (n +— 2n — 2)

az2n a2(n—1) n s n
S — = (-1 e asn = (—1)"(2n + 1).
on+1 2(n—1)+1 (=1)%, ie. ap (=1)"@n+1)

The formal power series solution is

o0 o0
Y = Z Agnr®™ = Z(—l)"(Qn + 1)a?
n=0

n=0

Putting a,,(z) = (—=1)"(2n + 1)a?", we get by the criterion of roots th at

V0an(z)] = ¥V2n+1-2% — |z|>  for n — oco.

The condition of convergence is |x|? < 1, thus |z| < 1 and o = 1.
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Calculus 3c-4 Solution of differential equations by the power series method

Sum function. If |x| < 1, we obtain by known series expansions,

y = 2( D"2n+ 1)z =2 Z )" + 2(—%2)" = —23327271(—332)”1 + 1 —&—lwz
= 2y +1x2)2 + 1+1x2 = (114:;22)2'
Alternatively,
y = 2(1)"(2n+ 1)z = Z (20 + )2 dt = ddx 2(1)%%“

S d T _1'(1+$)—x~2x_ 1— 22
{ nZ:: } {1‘1'332} (1+22)2 T (14a2)2°

Alternatively the equation can directly be solved in the following way for & # 0 by a multiplication
by x, i.e. the integrating factor. This gives

d dy

d2 dy dy dy

_ 3 _ 2y @Y 2 4y
= { +x)d2+(1+3 )dx} (1+3x)dx+6a: dm—&—&ny
_ 4 2 dy
= dx{ (z+a?) } {(Sx 1) dx—i—Gw y}
= %{ x4+ 23 =2 + (322 — 1)y }
o d 22 [(1+2%)? dy+(3x271)(1+:r2)
© dx | 1+22 x dx x? 4

d

dx

{1+x2 di <(1+xx) y)}

For x # 0 we get by an integration,

2 d {(1—1—332)2

1+ 22 dx T

y} = —C, c1 € R7

hence by a rearrangement,

4 —(1—|—x2)2 =—c 1+a2 = —c 1-|-i
dx x yr=a x? - x2 )

Then by another integration,

1+ 2%)? 1 1— a2
gyz—q(m—;)ﬂ-cz:Cy - +CQ.

X

We finally obtain the complete solution for = # 0,

1— a2 T

A+222 @ Trz22 bitrary.
(1 +$2)2 +c2 (1 +$2)27 c1, Co arbitrary

y:cl.
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By insertion into the differential equation it is easily seen that this is in fact the complete solution in
all of R.

Remark 1.4 This example is an excellent illustration of the limitations of the power series method:
We only obtain the solution in the interval of convergence | — 1,1[, and we have to insert into the
differential equation that the solution is valid in all of R.

The reason of this strange phenomenon can be found in the concept of a “singular point of the
d2

differential equation”. By this we understand a zero of the coefficient of the highest order term d_g’
x

here 1+ 22. The singular points are here complez, +4, and they cannot be seen in the real analysis.

They nevertheless influence the radius of convergence, because the numerical values of all (complex)

singular points are the candidates of the radius of convergence. Here | £+ | = 1, in accordance with

o=1.

Example 1.6 Prove that the differential equation

dy 1,
— +4dr —= 2—- =1
dx2+xdx+< 4x)y
has precisely one power series solution y = Z;OZO anx™, and find this solution.

Find the radius of convergence and the sum function of the series.

By insertion of the formal series

y= Z ap, ", e Z na,z" ', and i Z n(n—1)a,z" >
n=0 n=1 n=2
into the differential equation and adding some zero terms we get
(oo} (o]
1 = Z n(n — Dayz™ + Z dna,z" (add some trivial zero terms)
(n=0) (n=0)

o0 1 o0
+ Z 2a, 2" — 1 Z anz” 2
n=0 n=0
oo

1
_ 2 n n
= WE O(n n+4n + 2)a,x" — 1 ng Qan,gx

- 1
= 2a0+ 6a1x + Z {(n +1)(n+2)ay, — Zang} " (remove some terms).

n=2

1
It follows from the identity theorem that ag = 2 a; = 0 and we also get the recursion formula

(over the summation domain)
22(n+2)(n + 1)ap = an_» for n > 2.
When this is multiplied by 2" 2n! # 0, we get

by, :=2"(n+ 2)la, = 2" 2pla, o = b,_o for n > 2.
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Solution of differential equations by the power series method

Then by recursion, bgy,+1 =--- =b; =
bo, = 22”(271 + 2)!a2n ==y =
SO
1 1
n = 7o o\l oon > 0.
“n = onto o =

2 - 3la; = 0, hence ag,+1 = 0 for every n € Ny, and

1
2a0=2-5=1,

By insertion we get the formal power series solution

o0

1
yzz(

=
— (2n+2)!

1
2o

[e%S)

2n

€T = g
n:O(

The faculty in the denominator assures that o = oco.

Giim(§f3~

Sum function. If x = 0, then er f(0)

we try the following rearrangement,

an(x) =

2n+ 2

1

i (5)"

(Apply e.g. the criterion of quotients with

1
3 If & #£ 0, the structure is vary similar to that of cosh, so

)’

oo

P

1
2_

4

x2

X

2

s e (3) - (

10 = Y G (3) -
= % {cosh (g) _ 1} ’
hence
@) = %{cosh (%) —1} for & # 0,

1/2

for x = 0.

Alternatively, the equation can be completely solved by inspection for z # 0. In fact, we get by

some small reformulations

d?y dy 1 5 d*y dy dy 1
1 = 2259 L4 2——2?)y= —Z 42—~ 20— 42y p—— a2
d2—|— Ir < 4x)y { d2—|—xdm}—|—{xd+y} 4xy
d 5 dy 1 d 5 dy 1
= — —{2 - = = 2 - = = - =
dm{z dm}+ {2y} :z:y dm{ dy+ xy} 4zy dZCQ{ y} xy
We have above assumed that = # 0, so we can put z = x2y, and thus y = —- Then we get the
x
equation
d?z 1
ar 1°h

the complete solution of which is

z = ¢ cosh (g) + ¢9 sinh (g) — 4,
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Calculus 3c-4 Solution of differential equations by the power series method

thus

4 1 1
Yy=—-——7+cC — cosh( >+Cz sinh (f), z #0.
x2 2 x2 2

This has only a continuation to x = 0, if ¢; = 4 and ¢, = 0 in accordance with the solution above.

Example 1.7 Given the differential equation

2
8) (1—1;2)%—563—1%4;,:0, zel-1,1[

1) Prove that if y =Y .-, ap,x™ is a power series solution of (8), then we have the recursion formula

n? — 64

man forn > 0.

Ap42 =

2) Prove that the power series solution @(x) of (8), which satisfies p(0) = 1 and ¢'(0) = 0, is a
polynomial, and find all its coefficients.

1) By insertion of the formal series

oo d oo o0
y= E anx", —dy: E na,z™ 1, ) y: E n(n—1)a,x 2,
T
n=0 n=1 n=2

into the differential equation we get by adding some zero terms that

0 = Zn(n - l)angc”_2 — Z n(n — Dayz Z na,x" + 264an
" (n=0) (n=0)
(we have added zero terms in the second and third series)

(o) oo

= Z(n +2)(n 4 Dayq2z™ — Z:(n2 —64)a,z" (change of index; grouping with a,x")
n=0 n=0

= Z {(n+2)(n+ any2 — (n® — 64)a, } 2™, (collect the series after z™).
n=0

We get from the identity theorem for n € Ny (the summation domain) that
(n+2)(n+ aps2 — (n? —64)a, =0 for n € Np.
Since (n +2)(n+ 1) # 0 for n € Ny, this can be rewritten as

~ n?—64 _ (n+8)(n—13)
W2 = O s 2) T )2 €N

2) If ¢(0) =1 and ¢'(0) = 0, then ap = 1 and a3 = 0. The leap of the recursion formula is 2, so it
follows by induction that as,4+1 = 0 for n € Ny.

Download free ebooks at bookboon.com

25


http://bookboon.com/

Please click the advert

Calculus 3c-4 Solution of differential equations by the power series method

For even indices we rewrite the recursion formula (n +— 2n)

u _ 4(n+4)(n —4) " :2(n+4)(n—4)a neN
) T on )2 +2) " @n+ D(n+1) 2" 0

For n = 4 we get a;g = 0, and then it follows from the recursion formula that as, = 0 for n > 5.
Hence

o(x) = agz® + agx® + asz* + asz® + ao.
We now have the following two methods.

a) From ap = 1 follows from the recursion formula

ay = %(14)&0 = —-32,

ay = %(;3) as = (—5)(—32) = 160,
a6 = %(;2)% - —g -160 = —256,
ag = %(;1) ag = —%(—256) =128,
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Calculus 3c-4 Solution of differential equations by the power series method

p(z) = 1282° —2562° + 1602 — 3227 + 1
32(x? —1)(22% — 1)%2% + 1.

b) Alternatively we have found the structure
o(x) = agz® + agx® + aszt + asx? + 1, ag =1,
S0
¢ () = 8agx” + 6agx® + dasx® + 2aq,
¢ (x) = 56ag2® + 30agz® + 12a42% + 2as,

hence by insertion,
0 = (1—a*)¢"(x) — ¢ (x) + 64p(x)
64 + 64as2? + 64asz® + 64agz’® + 64agz®
—2a922 — dagz* — 6aga® — 828
—2a2m2 — 12a4x4 — 30a6:1c6 — 56a8m8
+2as + 12a42° + 30agz? + 56as2°
(64+2a5)+ (60as+12a4) x> 4 (48a4+30ag )zt + (28a¢ +56ag) .

Since the coefficients of this equation are 0, we must have

60 48 1

ag = —32, a4:—ﬁ~a2=160, CLGZ—%'(L;:—QE)G, ag:—§a6:128,

hence by insertion,

o(x) = 1282% — 2562° 4+ 160z* — 3222 + 1.

Example 1.8 Find, expressed by means of a power series, a solution through the line element (0,0,1)
of the differential equation
Py | dy

SV Y=o
xdx2+xd$+y

Find the radius of convergence and sum function of the series.

2

d
1) The coefficient x of the highest order term d—:g is only 0 for z = 0 in the complex plane. Hence,
x

any formal power series solution of the differential equation can only have its radius of convergence
0 € {0,00}. We shall hope for ¢ = oo.

2) Insert the formal series into the differential equation. Thus we assume that we have the
series expansions kkefremstillinger

n n—1 n—2
Yy T;:Oanx a1 ngzl nang" ", o3 nE:Qn(n Yanx
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When these are inserted into the differential equation, we get

d2y dy S S S
0 = =z Py +x aIr +y==x Z n(n—1)a,z" >4z Z nanxnfl—kz anx"”
r z n=2 n=1 n=0
o0 oo oo
= Z n(n—1)a,z" ! + Z nanx”+z anx” (reduction and addition of zero terms)
(n=1) (n=0) =
o0 o0
= Z(n + Dnay12™ + Z(n + Danpa” (change of index n — n + 1 in the first series)
n=0 n=0

o0
= Z{(n + Dnanpi1an41 + (n+ 1ay pz” (collecting the series).

n=0

3) Identity theorem. We have here a power series for 0. This power series is unique with all its
coefficients equal to 0. Hence, every index which is included in the summation must be zero, hence
for n € Ng. We thus obtain the recursion formula

0=(n+napt1 + (n+ a, = (n+ ){naps1 +a,} for n € Ny.
Since n + 1 # 0 for n € Ny, we can remove this factor, so we get the simpler recursion formula

(9) naps1 +a, =0 for n € Ny.

Remark 1.5 If a common factor of a recursion formula has zeros in the domain of validity, then
these zeros must be excepted in the further investigator, before we can remove the factor. There
is no problem here, because n +1 # 0.

4) Solution of the recursion formula (9).

a) Standard method. Express a,,+1 by a,. (Warning: One must never divide by 0.) Calculate
the first coefficients. Set up an hypothesis of induction and prove it by induction (the bootstrap
principle).

i) If n =0, then 0-a; + ap = ap = 0 (in agreement with the line element).
Then we get by the line element that a; = f/(0) = 1.
If n > 1, then (9) is rewritten as

1
(10) ap41 = —an for n € N.

ii) Since a; = 1, it follows from (10) that

—la-a =1

a2 = 10/1_ ) n =1,
1 1

a3:_§a2:+§7 TL:2,
1 1

a4 = ——-a3 = — n=3
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Based on these values, we set up the hypothesis

(11) a, = (- . n € N.

(n—1)"

Check: It is true for n =1, 2, 3, 4.

iii) Induction. Assume that the hypothesis is true for some n € N. Then by the recursion

formula (10) the successor is

1
Ap4+1 = —— Ap =
n

1

b
(=D™* (n+1) -1

which is precisely the hypothesis where n has been replaced by n + 1.

It follows by the bootstrap principle that (11) holds

for every n € N.

Recursion We get as in (a) that agp = 0 and a; = 1, and (10), hence

1

anH:—E Qs n € N.

If we replace n by n — 1, we get

1
n—1

p = — Qp_1, n =2,

hence by insertion of repetition of the process,

v (o) (5559)
—Za,=(-= _ pq =
n n n—1

B
n!

Ap+41

s n € Np.

We get by the change of index n+—n — 1,

Integrating factor. Write (9) as
napy1 = —a, forn € Nand ag=0,a; =1.

Multiply this equation by (—1)"(n — 1)! # 0 for n € N,
(=D)"nlap = (=1)""'(n—1)la, forn eN.

If we put b,11 = (—1)"nla,41, then

bn+1 = bn == bl = (71)00!(11 = 1,
hence
n—1 (_1)n—1
b, =(-1)"""(n-1la, =1, dvs. a, = Tn

(n—1)

() () ()

(we get n factors by counting)

eN.

29
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Calculus 3c-4 Solution of differential equations by the power series method

We get in all three cases that

(~1)"

m fornEN.

ag=0 and a,=

Of course, only one of the methods above is necessary.

5) The setup of a formal power series. This is

- n __ - (_1)”471 n
nz:%anx _nz::l D)
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Calculus 3c-4 Solution of differential equations by the power series method

6) Determination of the radius of convergence! (The task is without any significance without
this step).

a) The secure method (not necessary, cf. (7) below). Put

G O B
en(z) = (nfl)!x _(nfl)!ZO for n € N.
If x # 0, then ¢, (x) > 0, and
n+1 _ |
Cot1(¥) _ 2] =) zm—>0<1 for n — oc.
cn(x) n! || n

It follows from the criterion of quotients that the formal series is convergent for every x € R,
so 0 = oo, and the formal solution is indeed a solution!

b) We know that ¢ = lim, n , if the limit exists. It follows from (10) (i.e. the recursion
Ap41
formula)
1
pt1 = ——ap
+1 0

that by a rearrangement

= lim n = co.

n—oo

o= lim

n—oo

anJrl

7) Recognize the power series by a comparison with standard series:

0 n 1 oo ’ﬂ
Z D) = Z 1 (change of index n +— n + 1)
n=1 n=0
- 1
= Z — (reformulation)
n!
= xexp(— ) for z € R,

where we have recognized the exponential series, the radius of convergence of which is o = oo, and
the investigation in (6) is superfluous.

Summing up we get the solution via the power series method,
y=uxe * for x € R.

Alternative solution method. The power series method is rather cumbersome. In the most

elementary examples they can actually be solved alternatively by a trick follows by applications of
some rules of calculus. The not so obvious trick here is to add

Ly _dy
dr dx
to the equation. Then we get
d?y dy d?y dy dy dy d dy
0 = — — 41 =5 - = = +1- = —<x—=—
dQJr dery { 332+ dw} der{xder y} dx{xdx y+xy}

d dy _d 5 et dy | e"(x—1) _d 5 d [eTy
dw{xd:r—i—(x 1)y}—dx{xe [m - =@ " @\ 2 '
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We get by integration of the equation

d [ 4 _, d [€" B
%{“ %(z)}—O

that

em
L = +02/—2dx,
x
and the complete solution is
eCE
y=cxe * —|—02me_””/—2dm.
x

For (c1,c2) = (1,0) we get the wanted solution, i.e.

T

Yo =x€ .
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Calculus 3c-4 Solution of differential equations by the power series method

It can be proved that

e* 1 X1 1 > 1
—_— = —_— — —_ _ —— 1 —
/xzdm /{ o+ Z ' }dm x+nlx\+n§(n+1)!.n

cannot be expressed by known elementary functions.

Example 1.9 Given the differential equation

d? d
(12) xd—xg—(xjtz)ﬁjtzy:o.

1) Find a power series solution pi(x) of (12), for which
©1(0) = ¢1(0) = ¢7(0) = ¢{"(0) = 1.
Find the radius of convergence and the sum function of the series.
2) Find a power series solution @s(x) of (12), for which
02(0) = 5(0) = 5(0) =2 og ¥5'(0) = 0.

Find the radius of convergence and the sum function of this series-

3) Find for each of the intervals | — 0o, 0] and |0, 00| the complete solution of (12).

We see that both (1) and (2) are over-determined problems, because we in both cases have four

equations in two unknowns.

1) By insertion of the formal power series

= dy & d2y -2
y:Z anx"”, e Z ) =n(n—1)apz"
n=0 n=1

into the differential equation (12), we get by adding some zero terms in the first two series that

oo oo o
0 = Z n(n — Dayx Z na,x" — Z 2nana™ "t + Z 2a,x"
n=1 n=0

=2 n
(n=1) (n:O)

= Z n(n — 3)anxn71 - Z ana" = Z {in+1)(n—2)ans —

n=1 n=0 n=0

Identity theorem. This gives for n € Ny (the summation domain)
(n=2){(n+ Dap41 —an} =0 for n >0,

hence by a multiplication by n! # 0,

(13) (n—2){(n+ D!any1 — nlay} =0, for n >0,

which can also be applied in (2).

(n—2)ay}z".
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If n = 2, the (13) trivially, no matter the values of ay and as.

If n # 2, the recursion formula is reduced to

(14) (n+ D'aps1 =nlay, forn=10,10gn > 3.
1
It follows from ¢1(0) = ¢{’(0) =1 that ap =1 and 3!as = 1, hence a3 = 6 Notice that

P1(0)=1la; =0lap =1 og ¢/(0)=2laz=0'ag =1,

thus the conditions ¢} (0) = ¢7(0) = 1 are automatically satisfied. They should not have been
assumed, because they can be derived.

Since

(n+D0apts =nla, =---=3lag =1 forn >3,

1
we have a,, = o (also for n = 2, 1, 0), so
n!

o0
1
— n __ — T —
yan:Oan:r 72 —n!fe med ¢ = o0.

n=0

2) If ©/"(0) = 3laz = 0, then a,, = 0 for n > 3 by (13), and

1 2
gog(x):2+ix+§x2:x2+2x+2,

because p2(0) = 2. In particular, ¢5(0) = ¢5(0) = 2, so these conditions are automatically

fulfilled, i.e. they are superfluous.
3) The complete solution for x # 0 is then by the existence and uniqueness theorem given by
y = c101(x) + capa(x) = cre” + ca(2? + 22 + 2),

where c1, co € R are arbitrary constants.

We have some additional variants of solution, in which one does not apply the power series method.

First alternative. The trick for z # 0 is to divide by 3. Then we get by some reformulations,
O_1d2y 2dy71dy+27d ldyid{y}id 1dy7y
T 2 dr? Bdr a2dr 287 dr |22 do de \22)  do |22 dz 22
Ay A
- dx | 22 dz Y7 22 do vy
This equation is immediately integrated:

% dr (e_ﬁy) = —cp, dvs. i (6_$y) — _cgae?,
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hence by another integration
e fy=c—c /Sﬂgeﬂ dz = 1 + coe” ¥ (2% + 22 + 2).

The complete solution for x # 0 is
y = cre® + ca(2? + 2z + 2).

Second alternative. By inspection of the equation we see that the sum of the coefficients is 0,
r—(x+2)+2=0.

d? d
Now d—z = d_y =y for y = €%, so y = e” is a solution of the homogeneous equation. Then we get for
x x

x # 0 by norming the equation,

d?y 2\ dy 2
S I )
dx? (+x)da@+xy

Then a linearly independent solution is given by

1 2
‘Pl(w)/—Q exp (/ (1 + —) dx) de = eg”/e_% e xtdr = e“/e‘wde:E
e1(x) x

= e”{—e‘x(x2+23:+2)}:—(x2+2x+2),

pa(z)

and the complete solution is er

y=cie® +cy (x2 + 2z 4 2), c1, co arbitraere konstanter.

Example 1.10 Prove that the function
flx) =+1—2a2- Arcsin z, xe€]—1,1= B4,
fulfils the differential equation

d
(1—x2)d—gy3 +ay=1-—2°

Then find a power series expansion of f(x).

When we insert

f(z) =1 —2? Arcsin z og f'(z) = —% Arcsin x + 1
—x

into the left hand side of the differential equation, we get
(1—2?)f (z) + 2 f(x) = —2/1 — 22 Arcsin = + (1 — 2°%) + 2v/1 — 22 Arcsin z = 1 — 22,
which shows that f(z) = v/1 — 22 Arcsin z fulfils the differential equation.
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Calculus 3c-4 Solution of differential equations by the power series method

Since f(0) = 0, we must have ag = 0 in any power series expansion of f(x), if it exists, thus
[ee] (oo}
flx)= Z anx”™, where f'(z)= Z napz™ "t
n=1 n=1

By insertion of these formal series into the differential equation we get

o0 o0 o0 o0 o0
1—2% = Z na,z" ! — Z na,z" 4+ Z apx"tl = Z nanx" "t — Z (n — Dayz™*t
n=1 n=1 n=1 n=1 n=1
(n=2)
oo oo oo
= Z na,x" "t — Z(n — 3)an,2x”_1 = aj + 2asx + 3aszx? + Z{nan —(n— 3)an,2}x”_1.
n=1 4 n=4

It follows from the identity theorem that

1
ar =1, az = 0, a3 = —3

and

nay, — (n—3)an—2 =0 for n > 4.

o
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
ication. We help make it more economical to create
eaper energy out of thin air.
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industries ca st performance beyond expectations.
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eet this challenge!
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Calculus 3c-4 Solution of differential equations by the power series method

By the change of index n +— n + 2 and a rearrangement we get

n—1

(15) apso = o an

for n > 2.

Now as = 0, so (15) implies by induction that as,, = 0 for every n. For odd indices (i.e. n — 2n — 1
in (15)) we get by recursion

2n — 2 2n—2 2n—4 4 2 1 2n(2n—2)%(2n—4)2 ... 4% . 22
a2n+1 — —a2n_1:—.— ....... —_— —_ —
2n+1 2n+1 2n—-1 7 5 3 (2n+1)!
B 22n=1pl(n —1)!
(2n +1)!
for n € N. As a; = 1, we find the formal series expansion
f@) =z — i nl(n— 1! g2n—1 241 _ o 1 i nl(n —1)! (221
— (2n+1)! 4= (2n+1)! '
When z # 0 the general term of the series is
1l -1) o1
Hence, by the criterion of quotients
an1(2) (n+1)!n! 20243 @n+1)! 1
an(x)  (2n+3)! nl(n — 1) |2z]2n+l
1 1
w.|2m|2:i.x2_)x2 forn_>00.
(2n +3)(2n + 2) 3
n -+ 5

The convergence condition is #2 < 1, hence |z| < 1, and thus ¢ = 1. We have proved that

. 1 nln—1)! "
f(z) = \/1—x2Arcsmx:x—ZZﬁ(2x)2 o for o] < 1.

n=1

Example 1.11 Find the power series solution of the differential equation

& d
(16) (Ifﬁ)d—ggf?,x%fy:o,

which goes through the line element (0,0,1). Find the radius of convergence and sum function of the
series. Finally find the complete solution of (16) in the interval | — 1,1].

1) The equation is a linear homogeneous differential equation of second order. The coefficient z —x? =

d2
z(1 — z) of the highest order term —Z er 0 for either x = 0 or z = 1. Therefore, we can expect
iy
that the power series solutions have the radius of convergence o € {0, 1, 00}.
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2) When we insert the formal series

yzZanx", %zz:nana:"*l, d—zz n—1)apz"
n=0 n=1 n=2

into (16), we get for |z| < ¢ by adding some zero terms in the first three series,

0 = Z n(n —Da,a™ ' — Z n(n — Dayz Z 3na,x" — Zanac"
(n=1) (n=0) (n=0) e
= Z n(n —Dayz™ ' — Z(n2 —n+3n+ Dayz" (the latter three series are joined)
n=1 n=0
= Z nn+ Dayp12" — Z(n +1)%a,2"™ (adjust the exponent of z™)
n=0 n=0

= Z {n(n+ ans1 — (n+1)%a, } 2" (join the series)
oo

= Z(n + D{nant1 — (n+ ay}a" (remove the common factor).
n=0

3) An application of the identity theorem gives the recursion formula
(n+ D{nayr1 — (n+1)a,} =0 for n € Ny,
where Ny is the summation domain. Now, n + 1 # 0 for every n € Ny, so this can be reduced to

(17) nap+1 = (n+ ay, for n > 0.

4) The line element (0,0, 1) implies that
y(0) =ap =0, og ¢'(0)=1la; =1, hencea; = 1.

Notice that if we put n = 0 into (17), we also get ag = 0, so the setup is strictly speaking
over-determined.

5) The recursion formula (17) has now been reduced to

n+1

nan+1 = (n+1)a, or api1 = a, forn>1,

because ag = 0 and a; = 1.

Solution of the recursion formula.

a) Induction. It follows from a; = 1 that

'(11:2, a3:—~a2:3.

g = B

2 3
1
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Induction hypothesis:
ap =1 for n € N, (rigtig for n = 1,2,3)
Assume that the hypothesis is true for some n € N. Then we get for the successor that

n+1 n+1
ap41 = " CQp = " ‘n=n+1,

which has the same structure as the hypothesis, only with n replaced by n + 1.

The hypothesis then follows by induction. (The bootstrap principle).

n
b) Recursion. From a; =1 and a,, = 1 an—1 for n > 2 it follows recursively that
n—

_n _n n—1 _ _on n—1 2 _
an = An—1 = el (S S T

Since also a; = 1, we have in general a,, = n for n € N.
¢) The divine inspiration. If we divide the recursion formula by (n + 1)n # 0, then

a a
nH:—n, n € N.
n+1 n

a
By putting b, = —, this is also written
n

a a
bust = by = =by = =1, dvs b= =,
hence
ap, =N for n € N.

6) The formal power series solution is

oo
y = E nx'".
n=1

The radius of convergence may e.g. be found by the criterion of roots. In fact, put ¢,(z) =
n|z|™ > 0. Then

YVew(@)= n-|z| — 1| for n — oo.

The condition of convergence is that |x| < 1 = p, hence the radius of convergence is ¢ = 1, and
the series is convergent for z €] — 1, 1].

Once the interval of convergence has been found, we know that we have found a true power series
solution

y:an”, forz e]—1,1].
n=1
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function. When = €] — 1, 1], we are allowed to perform the following reformulations,
7) Sum function. 17,

y:annzxznl‘nil:x@ Zx _xdx 1—x (1-2)
n—1 n=1 (n=0)

8) The complete solution in | — 1, 1[. We have proved that

xT

- forze]—1,1],
Y1 = (1_1/,)27

is a solution of (16). When x # 0 we norm (16),

d?y 3 @_ 1 y=0 for 0 < |z| < 1,
di?2 1—zde x(1—x)
where
3
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Calculus 3c-4 Solution of differential equations by the power series method

Then

exp (= [ fiwyan) =esp (43 [ 12) = expl-3inf1 -l =

hence for 0 < |z| < 1

-3 _l’x)2 / (1 ;256)4 A _lx)?) dr = a _zx)2/1$2$ dz
R

By changing sign, y2(x) — —ya(x), we get the complete solution

x zln|z|+1
y(@) = () — caya(a) = 1 - [ L S E

for 0 < |z| < 1 with arbitrary constants ¢; and ¢z € R.

9) Extension to 2 = 0. (This is here fairly difficult.) Due to the laws of magnitude we have
2 -Injz| — 0 for x — 0. Hence, y2(z) can be extended continuously to x = 0 by taking the limit,

rhnlz|+1  0+1

tim (—n(e)) = lim TR = P =1
hence we have the continuous extension
zln|z|+1
—————— forx #0,
() =4 (-2 7
1 for x = 0.

We note here that —ys () is not continuously differentiable at z = 0. We have e.g.
d
—(zIn|z]) =14+ In|z] - —0 for z — 0,
dz
and yo(z) does not belong to the class C? i z = 0.
It is possible to interpret the solution, if we use the concept of weak differentiation.
10) Alternative solution for 0 < |z| < 1 without using series. This variant is very hard, so it is

only given here without comments. It shall only illustrate that it is also a possible method in this
case. We rewrite the equation in the following way:

%y Y
2y d d
T—x7)——> =3 —y

d (dy dy dy dy
— 2 — — —_— —_— —_——_— —_— .
(- )dx (dx) +a Qx)dx} dx {m derl y}

0 =

—

Il
—N

d d d d
- -} -2
d dy .
= o {x(l - x)% —(1+ x)y} (can be integrated)
d
dx

il e a s S
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Integration of

il =)

gives with an arbitrary constant —cy (notice the sign)
2?2 d [(1-2)?
1—xz dx

from which

d [1—=2)? ] l—2 11
dx z T T Tel\sT2)

Then by another integration,
1—2x)2 1
gy:cl + ¢ <1n|x| + —) ,
x x
and thus

y:| = —C2,
T

. e zln|z| +1
R R R N R

Then proceed as in (9).

for 0 < |z| < 1.

Example 1.12 Find a power series solution of the differential equation

d*y dy
1—2%)=5 —22-2>4+2y=0
(I—a) 7 — 20— +2y =0,
through the line element (0,1,0). Find the interval of convergence of the series and check, if the series

is convergent at the endpoints of the interval. Finally, find the sum function of the series.

When we insert the formal series

— n dy G n—1 d2y - n—2
y:ngoanx , E:;nanx , @:nﬁn(n—l)anx
into the differential equation, we get by adding some zero terms in the second series that
d?y dy
0 = 1-2)2 2242
(1—a?) s 7y T2
= Z n(n—1)a Z n(n — Dayz" Z 2na,x" + Z 2a,x"
- (n=0) (n=0)
= Z(n+2)(n+1)an+2x”—Z(nz—n+2n—2)anx”
n=0 n=0
= Z(n+2)(n+1)an+2x" - Z(n2+n—2)an$"
n=0 n=0
= Z(n+2)(n+1)an+2x” - Z(n—l—Z)(n—l)anx
n=0 n=0
= Z(n +2){(n+ Dapto — (n — Day 2.
n=0
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It follows from the identity theorem that if n € Ny (the summation domain), then
(n+2){(n+ 1aps2 — (n—1)a,} =0 for n € Ny.

Now, n + 2 # 0 for every n € Ny, so this can also be written
(n+1)ant2 = (n—1)ay, for n € Ny.

There is a leap of 2 in the indices, and for n =1,
2-a3=0-a1 =0,

hence by induction, as,+1 = 0 for n > 1, while ay is arbitrary.

In particular, y = x is a solution which can also be seen immediately.

We get for even indices

1
om—1"

(2n—1)ag,=---=(0—1) - ap=—ag, dvs. as, =

It follows from the line element that ag = 1 and a; = 0, hence the formal power series solution becomes

=1
=1- n,
y ;Zn—lx

We get by the criterion of roots,

1
Van(z)| = ————= 2% — 2? for n — oo.

Vv2n —1

The condition of convergence 2 < 1 implies that o = 1.

1
Clearly, fozl Cy— is divergent, so the series is divergent at both of the endpoints of the interval

of convergence.

Sum function. If |z| < 1, then

= 1— 2n:1_ 2n71:1_ / t2n72dt
4 ;Zn—lm x;Qn—lx mgo

e T x [T 1 1 v, (1+x
= 1- 2ndt=1— —dt=1-2 [—t——)at=1-21 .
I/O n; x/o 1- 2 2/0 (1+t+1t> 2“(11)

Alternatively we get the solution y = x by inspection. It is therefore reasonable for z # 0 to find a

differential equation in z = Y instead. By insertion of y = xz we get
x

d?y dy d? d

= 1-2))—2 -2z +2=(1-2%)— — 2z — 2
0 (1—2%) = mdx—i— y=>1-= )dx2(a:z) xdx(xz)—i— xz

d dz dz d?z dz dz

_ 2 2 _ 2 2
2

IR N o PN
= z(l—x )dxz +2(1 -2z )dx'
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Calculus 3c-4 Solution of differential equations by the power series method

dz
This is a linear differential equation of first order in u = e and it can therefore be solved by the
x

usual methods.
Alternatively the equation is multiplied by x # 0 (our assumption), hence

d?z dz d [dz d dz d dz
=@ -2+ (20 —423) 2 = (2 —ah)— | = — (-2 == {2 —-H) 2
0=( T)dx2+(f a:)dx (2 T)da: dx +dx(x =) de  dx (1 - %)
Then by an integration,

dz
2(1 _ 22 _
P -a) =

thus

dz c _ 1+1 1 1 1
dx_arz(lfo)_c 2 2x+1 2x-1]J°

By another integration we get
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Calculus 3c-4 Solution of differential equations by the power series method

Since y = xz and |z| < 1, and if we put ¢ = —cq, we get

1
Y =012+ o PR Y (e for |x| < 1.
2 11—z

Here we have allowed = = 0, because it is seen that the solution can be extended continuously to this
value.

Example 1.13 1) Prove that every power series solution of the differential equation

is of the simple form p(x) = ka2, where k is an arbitrary constant.

2) Then find a power series solution o(x) with ©"'(0) = 0 of the differential equation

d’y dy
(17—3:2)@ i + 2y = 327,

and find the radius of convergence and sum function of this power series solution.

3) Finally, find the complete solution in the interval |0, 1] of the two differential equations.

1) By insertion of the formal series

y:Z anx’™, d—z:Znanxn_l, %gz n(n—l)anx"_2
n=0 n=1

n=2

into the left hand side of the differential equation we get by adding some zero terms to the first

two series,
2 dzy dy = n—1 = n S n—1 = n
(x—x)ﬁ—d—+2y = Z n(n — Da,z" " — Z n(n — 1ay,x —Znanx +Z2anx
x x — =
(n=1) (n=0) e 0
oo o9}
= Z n(n —2)a,z" ! - Z(n2 —n—2)ax"
n=1 n=0
= Z(n —D(n+ Dayyi2™ — Z(n —2)(n+ Dapz"
n=0 n=0
= Z(n + D{(n—1Dans1 — (n —2)a, ta".
n=0

The right hand side of the differential equation is 0, and n 4+ 1 # 0 for every n € Ny (summation
domain), hence we get by the identity theorem that

(n—1Daps1 = (n— 2)an, for n € Np.

If n = 2, then ag = 0, hence a,, = 0 for every n > 3.
If n =1, then a; = 0, hence ay = 0.

Summing up we get that iy = asz? are the only power series solutions of the homogeneous equation.
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2) Since the left hand side of the inhomogeneous equation already has been calculated above as a
series, we immediately get

oo

327 = (n+ 1){(n — Danp1 — (n— 2ay }a".

n=0

Since n + 1 # 0, we get by the identity theorem for n = 2 that
3=(2+1){(2—1)az41—(2—2)az} =3as, thus az =1,

and
(n—1)ant1 = (n—2)ay, for n € No \ {2}

We get from ¢”(0) = 0 that ay = 0. If n =1 then 0 = —ay, so a; = 0.
If n =0, then —a; = 0 = —2ay, hence ag = 0.
If n > 3, then

1
(n—1apt1=(Mn—2)ag=---=(3—-2)azg=1, dvs. a, = —

The formal power series solution is
— 1 1
= — — 2" =—2%In(1—z) for |z| < 1,
y 7;3 — ; - (1—xz) for |x|

where we have recognized the logarithmic series with o = 1.
3) By norming we get the homogeneous equation

E 1y o
dz?  z(l—x)dx x(1l—x)

y=0, for x €]0,1][.

Now, ¢1(x) = 22 is a solution, so a linearly independent solution is given by

1 dz 1 1 1
2 _ 2
pa(x) = =z /? exp(/m)dx—x /E exp(/(;—&-m)dx)dm
1 T 1
2 2
——dr = ——d
22 1-z 07" / x3(1 —x) *
1 1 1 1
= 22 / { +5+5+ —} dz  (decomposition)
— x2 oz
1 1 T 1
2 (Y e ()
* {n 1-z) 222 «f 7 "\1=z) 277
If z €]0, 1 the complete solution of (1) is given by (the arbitrary constants are ci, ca),

9 9 T 1
= + | - = —
Y =C1T C2 {w n<1 x) 2 x},

and of (2),

1
y:_$QIH(1_$)+61$2+62{.’L’ZIH( i )—E—x}_

1—=x

I
8
|
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The equations can also be solved in a different way:

First alternative. Since 2?2 is a solution of the homogeneous equation, we insert y = x2z into the

inhomogeneous equation and set up a differential equation in z. Then

d? d d dz d
32° = (z-— xQ)de (z%2) — I —(2%2) + 2222 = z(l—x)a {m %+2zz} ? £72zz+21’22
d*z d 5 dz d?z d
= z(1-x) {x W+4 dZ+2z} z? %—sz(l x) = (1—x)ﬁ +2z (474x71)£
= (@ —2")= = + (322 4x3)% can now be solved as a first order equation in &
dx? dzx dx

d (dz d , . dz d dz
3_ .4 3_ 4
(@ x)dx (dm)+dm(x z’) dz dx{ ! x)dx}
o d 3 d ry
T {”3 -2 (F)}'
When we integrate this equation in the interval ]0, 1], we get

(1—x)di(y):m3+cQ,

hence

d(y) L, o L L R
— (=)= = c —+ =+
dx \xz? l—z 231—2) 1-z “\l-z 23 22 2

The complete solution of the inhomogeneous equation is obtained by another integration followed by
a multiplication by x2,

1 1
—2%In(1 — ) + 2% + con? {ln(lfx) ~ 5.2 —;}

1
—$21n(1—x)+clx2+02{x2ln(1x )—E—x}, x €10,1[.
—x

<
I

Second alternative. It is possible directly to obtain the differential equation in the first alternative
in the interval ]0, 1] by using the following rearrangements

3$2 = )d—g— ;l

(z—
B dy dy dy
_{ (d) (1—2x }2d+2{xd:p+1y
a4/,
dx
d

- dm{ f1- )di(y)}'

Then continue as in the first alternative.

Y+ 2y (add something and subtract it again)

Download free ebooks at bookboon.com

47


http://bookboon.com/

Please click the advert

Calculus 3c-4 Larger examples of the power series method

2 Larger examples of the power series method

Example 2.1 Find a power series solution y =Y - a,y™ where y(0) = y'(0) = 0 of the differential
equation

Find the radius of convergence and the sum function of this power series solution.

1) Assume that the solution has the formal power series solution

oo o0 [ee]
Y= E apz”™, Yy = E napz" "ty = E n(n —1ap,z™ 2.
n=0 n=1

n=2

We get from the initial conditions,

y(0) =ag =0 og y(0)=1-a; =a; =0,
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so the formal series are
oo oo o0
Y = E apx™, Yy = E napz" Y,y = g n(n — 1ap,z" 2,
n=2 n=2 n=2
with the same lower bound n = 2.

The coefficient of the term of highest order is z + 22 = z(z + 1) = 0 for x = 0 and # = —1 (the
singular points). Hence, the radius of convergence satisfies ¢ € {0, 1, 00}.

By insertion of the series into the differential equation we obtain by reading from the right towards
the left,

(oo} [ee] oo
20 = (z+2?) Z n(n—1)a,z"*+z Z napz" —Z anx"
n=2 n=2 n=2
oo o0 oo o0
— Z n(n—1)a,a" +Z anz” ta,z" "+ Z na,xr" — Z apx”™
n=2 n=2 n=2 n=2

= Z{n2 —n+n— 1}anx"—|—z n(n+1)an412"
n=2 n=1

= 2asx + Z(n—i— D{(n—1)a,+na,41}a".

n=2

Then it follows from the identity theorem,
2a9 = 2, thus as =1,

and the recursion formula [NB: The factor n 4+ 1 > 0 can be removed]
(n—1)ay, +nay,+1 =0 for n > 2,

i.e. when n goes through the summation domain.

Solution of the recursion formula. We write this formula in one of the following ways

n—1

pi1 = — ap, n>2, eller na,11 =—(n—1)a,, n>2.

a) Induction. Since as = 1, we get

o211 .y

as = 2 az = 27 n =z,
C3-1 2\ [/ 1\ 1 .,

Gy = 3 a3 = 3 2 _37 n =o9,
41 /3y 11 )

as = 1 aq = 1 3- n =4.

A reasonable induction hypothesis is

(=D"

for n > 2.
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At least this is fulfilled for n = 2, 3, 4. Assume that (18) holds for some n > 2. Then we get
for the successor a,4+1 by using the recursion formula,
n—1 (71)71 - (71)n+1 (71)n+1

fn1 = n n—-1  n :{n+1}—1’

which has the same structure as (18), only with n replaced by n+ 1. We conclude by induction
(the bootstrap principle) that (18) holds in general.

b) Recursion. When we repeat the recursion formula downwards, we get instead

n—1 n—1 n—2
apy1 = — n Ap = | — n _n—l Ap—-1 =
-1 -2 1
- <n )(n )~~<—>a2 (n—1 factors)
n n—1 2

1
— 71 n—1 R
(ot L

hence by the change of index, n 4+ 1 +— n,
(-1

Gy = —— for n > 2.
n—1

¢) Inspection. If we put b,, = (n — 1)a,, then
bp = —bp_1 = (_1)2bn—2 == (_1)n72bn—(n—2) = (_l)nb27

SO

a, = for n > 2.

We obtain by all three methods

_1)n
ag=a1 =0 and an:( ) for n > 2.
n—1
6) The formal series is
= - (=" — (=t
B n— A -~ "

Here we recognize the logarithmic series with ¢ = 1, and the sum of the series is for |z| < 1,

y=aIn(1+ z), xze]—1,1].

7) (No details). This equation can also be rewritten in a convenient way:

d 2 d ry _
a{x (x—|—1)% (—)}—Qx for x #0,—1.

X
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The complete solution is then obtained by two integrations and a reduction,

z+1

y=xzln|l+z|+ 12 + 2 {xln

-1 for x £ 0, —1.
' boorazo

Every solution can by continuity be extended to xz = 0.

8) It should be mentioned that it is also possible just to guess the solution y = x of the homogeneous
equation, and the the equation can be solved by some known solution formula.

Example 2.2 Find the radius of convergence and sum function of the power series

x2n+1

|
ot n!

Prove that a power series solution of the differential equation

(19) y" —2xy’ — 4y =0,

2n+1

which fulfils y(0) = 0, is of the form k> .~ xT

exist other power series solutions of the diﬁerent%al equation (19).

, where k is an arbitrary constant. Check if there

1) We immediately get the sum function by

2n+1

@) =2 T o ),

n=0 n=0

and the radius of convergence is p = oo

2) When we insert the formal power series

oo

0o (%)
Yy= § a’nxna yl = E nnxn717 E TL - 1 anz 27
n=0 n=1

into the differential equation, we get by adding some zero terms,

0 = 9" —2xy — 4y

= Z (n—1Dapz"* — Z 2nanx"—z4anx”

n=2 n=1 n=0
(n=0)

(o) e9)

= Z(n +2)(n 4 Dagpioz™ — Z 2(n+ 2)apz"
n=0 n=0

= Y (n+2){(n+Danis — 2a,}a".
n=0

Now, n + 2 # 0 for n € Ny, so we conclude from the identity theorem that

2
n+1

(n+ 1Dayy2 = 2ay,, ie. apyo = an, n € Ny,
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with a leap of 2 in the indices.
If y(0) = 0, then ag = 0, so ag, = 0 by induction.

If ay = y'(0) = k, then
2 1

Aoan+1 = 7 A2pn—1 = E a2n—1-

2n
If we multiply by n! # 0, then we get by recursion,

n!a2n+1 = (n — 1)!@2(n,1)+1 == 1!&1 = k,
hence
k
G2nt1 =~ n € Np.

By (1) the power series solution is

oo

1
k Z ] 2?" T = kx - exp(z?), z e R.

n=0
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3) Then let y(0) = ag = k # 0 and y'(0) = 0. We get agp+1 = 0, and

2 4n
aAgp = —— *A9(n— = " a2(p—1)-
T o o1 D T opan —1) Y
. 2n)! . . .
When we multiply by Tl this equation is transferred into
"n!
(2n)! _ (2(n—-1))! o B
gl 20 = iy 200 =T g 0 =k
hence
4"n!
n = -k, € Np.
920 = (o) ne o
The formal series is
o0
4"n!
By A
|
= (2n)!
For x # 0 we get by the criterion of quotients that
Unp1(x)]  k-4nH(n41)lp20+2 (2n)! 4(n+1)z? 222 0%
= . = = — 0 for n — oo.
an(x) (2n +2)! k-4rnle?  (2n42)(2n+1)  2n+1

This proves that the formal series is convergent for every x € R.

It follows from the existence and uniqueness theorem that the complete solution of the dif-
ferential equation is given by

2n

9 > 47!
y:clxexp(x)JchZWm for z € R,
n=0 ’

where ¢, and ¢y are arbitrary constants.
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Example 2.3 Given the initial value problem

d?y dy

4 8Y Y~ >
(20) i i R
y(0)=1,  '(0)=

1) Assume that

oo
Y= E anpx’
n=0

is a power series solution of (20). Find a recursion formula for the coefficients a,.

1
5"

2) Prove that the recursion formula is fulfilled for

1
anzm, TLENO.

3) Find the interval of convergence of the power series solution.

4) Find the sum function of the power series solution for x > 0.

(Hint: Replace x by \/x in a known power series).

1) When we insert the formal power series
o0

oo oo
dy
_ n _ n—1 -2
Y= ,;:0 anx', e nE:1nanac , de E nn—1)a,x ,

into the differential equation and add some zero terms, we get

d d o0 oo oo
0 = d4x d—g+2d_y_y: Z 4n(n—1)anx”*1—|—z 2nanx"*1—2anx”
("i21) n=1 n=0

o0 (oo} (o] o0
= Z 2n(2n — Va,z" ' — Z apx’ = Z 2n(2n — Dayaz™ ' — Z Apq 2"t
n=1 n=0 n=1 n=1
= Z{Zn@n —Day — ap_1}z" L.
n=1
We derive from the identity theorem the recursion formula
2n(2n — Da, = an—1 for n € N.
2) Then we get from the initial values
ag = y(0) =1 and a; =1y (0) = =.

If we put n = 1 into the recursion formula, we see that

2'(271)&1 :2a1 = aop,
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which is in accordance with the given values.

If we multiply the recursion formula by (2n — 2)!, we get

2n)la, = (2(n — 1))lap—1 =---=0lag = ag =1,
hence
1 i ticul 1 and
ap = ——, in particular ag = 1 and a1 = =
(2n)! p 0 1
. 1 .
Alternatively we assume that a,,_ 1 = ———— for some n € N. This is true for n = 1 and

2(n —1))!

n = 2. Then we get from the recursion formula

1 1 1
m@2n—1) "' T mn—D)(@2n—2)!  2n)"

Ap =

and the claim follows by induction.
3) The formal power series solution is
1
y_za" :Z < (2n)! z".
|z ["
(2n)V’

Cntl _ Bl ) (2n)! _ ] -0 for n — o0
cn (2n42) z[* T (2n+2)(2n+1) ’

If we put ¢, = then ¢, > 0 for x # 0, and

It follows from the criterion of quotients that the interval of convergence is R.

Alternatively,
i ! 2" < iim" = el for alle z € R
n=0 (Qn)' ; n=0 n! ’

and it follows from the criterion of comparison that the interval of convergence is R
4) If x > 0, then

o0

y:

= Z ﬁ(ﬁ)% = cosh(v/z).
n=0

n=0

Remark 2.1 If y;(¢) = cosh(y/z) is known for z > 0, then the complete solution can be found for
x > 0 by a known solution formula. By norming we get

d?y 1 dy 1
SR 0.
dx? + % do 4z ’ Tz
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Then

(@) = () / — (196)2 exp (- / (@) dx) dz = cosh(+/z) / m exp (— / %dw) dx

= Cosh(ﬁ)/ ; Lz = cosh(v/3) - 2/ du

cosh2(\/5) . NG u=/T cosh?u
= 2cosh(y/x) - tanh(y/x) = 2sinh(y/).

The complete solution for x € R is not surprisingly

y = c1 cosh(v/z) + cg sinh(v/z), c1, co arbitrary.

Notice that

(oo}

sinh(vz) =

n=0

oo

1 n 1 n
o 1)!(\/5)2 +1 _ Z ) L +(1/2)

n=0

formally is not a power series solution, because every exponent contains one half.

Try this...

The sequence 24,6 810 12,14,16,... 1S

(TL\?, SCC?U@,V‘.CQ O»,[ evén u)i/to|e_ V]Umlge,rj‘ TLIG,

¢
IOO'Hn ,OIOC{—: N HHS Z)ficluamce kY ane, lr’lu*fh!per‘... .
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Remark 2.2 If z < 0, we get analogously [because © = —|z|]
o= > oy U T ; (2n)! ]

By repeating the calculations of Remark 2.1 we get the complete solution for x < 0,

y = c¢1 cos(+/|z|) + casin(y/|z|), c1, cp arbitreere.

Example 2.4 Given the differential equation

d? d
(21) xd—;g—(2x2+1)£—4xy:0, x € R.

1) Prove that if the power series of radius of convergence ¢ > 0,

(22) Z ana”, xr €]—0,0[
n=0

is a solution of (21), then

—ay — 4dapz + Z n{(n—2)a,—2a, o}x" ' =0, x€]- o0l
n=3

2) Prove that (21) has a solution y = p(x) of the form (22), satisfying the conditions ¢(0) = 0,
©'(0) =0, ¢"(0) = 2.

3) Find the sum function of the power series in (2).

2

d
1) The coefficient of the highest order term d—‘z is 0 for z = 0. Hence, we can expect that o € {0, c0}.
3:

We get by insertion of the formal series (22) into (21) (where we add some zero terms) that

o0 oo
n(n—1)a,x E 2na,z" ,g nanmnflfg da,z" T
n=0

I
NE

n=2 n=1
(n=1) (n=0)
o0 o0 o0 o0
= Z n(n —1a,z" ! - Z (n+2)a,x Z n(n — 2)a,x — Z 2Ny _oa™ !
n=1 n=0 n=1 n=2

= —a; —4dagzr + Z n{(n —2)a, — 2a, o}z
n=3
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2) Assume that ¢(z) =Y " a,z™ is a solution of (21) with
0(0)=ap=0, ¢'(0)=1-a1=0, ¢"(0)=2ay=2.
Then we must have
ag =0, a1 =0 og as = 1.

By these assumptions the expression of (1) is reduced to

o0

0= Z n{(n — 2)a, — 2a,_ o}z .

n=3

It follows from the identity theorem that we get the recursion formula
n{(n — 2)a, — 2a,_2} =0, for n > 3.

Since n # 0, this equation is reduced to
(n—2)a, =2a,_9 for n > 3.

There is a leap of 2 in the indices, so we must consider the cases of n odd or even separately.

a) If n =2p+ 1 is odd, then the recursion formula becomes
(2p — 1)agpt1 = 2a9, 1, p=>1

Now a; =0, so a3 = 0, etc., and it follows by induction that all ag,+1 = 0.
b) If n = 2p (> 3), hence p > 2, we get instead

(2p - 2)0’219 = 2a2p—23 p 2 2,
which is reduced to
(p— Dagy = azp-1), p=2.

Here there are more possible solutions:
i) The elegant one. Multiply by (p — 2)! # 0. It follows immediately that

(p — Dl0agp, = (p — 2)lagp—1) = --- = llag = 1,
hence
= ! f >2 ( fi >1)
agp—(p_l)! or p>2 (even for p > 1).

ii) Recursion. By iteration of

1
= — _ >2
azp p— 1 az(p—1)» P =4

(notice how p — 1 occurs on the right hand side) we get

111 1
a - i — Qo1 =
Tp—1p-2 1 T (p-1r

p>2, (p>1).
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iii) Induction. It follows from as = 1 that

p=2: a4 =1; p=3: ag=

1 1 1
——ag=—— = —.
4-1°° 3.2 3
Then we set up the hypothesis

p=4: ag=

= (True for p =1,2,3,4).

By the recursion formula (p — p + 1),

1
A2(p+1) = Z—)a% =

1 1 1
p (p-1! pV’

and the hypothesis follows in general by induction.

Summing up we have proved that we necessarily must have that

ap=0, as,_1=0, as,=-——— forneN.

(n—1)!
Then we get formally,

o0

(p(l‘) = TLZ::Oan'T'n = ;a2n$2n = Z ﬁ CCZn.

It remains to be proved that the radius of convergence is ¢ > 0. This can either be done by
comparing with a standard series of known radius of convergence ¢ > 0 (this is here sufficient; we
shall, however, postpone this method to (3)) or by a direct proof. (This is actually superfluous
here, if we start with (3), though we shall nevertheless go through the argument here.)

1 1

o1 22| = o 22", Then b, (x) > 0, if x # 0. If so, we have

Let b, (x) = n

by 2 (-1 a?
b+(1S):xn' '(nx%):%_}o<1 for n — oo,

for every fixed x € R, and the series is convergent for every = € R, and the radius of convergence
is o = oo.
The solution is

= 1
() = = Z g™ for z € R.

3) The faculty in the denominator indicates that we must have “something including the exponential
function”. We get by the change of index n +— n + 1 that

_ - 1 2n __ = 1 2(n+1) _ .2 = 1 2\n
ole) = D ooqyet = ettt =) @)
n=1 n=0 n=0

= a?exp(x?) for x € R.
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ApDDITION. This equation can also be solved alternatively by “a dirty trick”. Since differentiation
lowers the degree by 1, and multiplication by x increases the degree by 1, we get for the general term
of the series,

d?y
r—>  hasdegreen—2+1=n-—1,
dx?
2 dy
22— hasdegreen—1+4+2=n+1,
dz
d
el has degreen — 1 =n — 1,
dx

4y has degree n +1=n+ 1.

We see that only the degrees n + 1 and n — 1 with the leap of 2 occur, so the possible power series
solutions must necessarily have the structure
y = a1 f(@2?) + eang(a®) = p(x),

where f and ¢ are functions of ¢ = 2.

s ebook 1s prooucen with iText®
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We have ¢(0) =0, ¢’(0) =0 and ¢"”(0) = 2, so we guess on a solution of the form
y=o(x) = f(z?) which is even.

For o # 0 we apply the change of variable t = 22, (monotonous in each of the intervals z < 0 and
x > 0), hence

dy dt dy dy

= =— = =2 —,

dr  dx dt dt

and
d?y d dy dy 5 d? d?y dy
da? dx{ Tt TR TR T
By insertion into (21) we get
d*y 2, d’y | dy dy
0 = — — (2 1)— — 4oy = dt— +2—= 7, —(2t+1) - 22— —4
Tz BTGy T vy = e (g 25— (U L) e —day
dy dy  dy dy d’y . dy
= dt— +2— —4t— —2— — 4y, =dox{t— —t— — .
x{ AT T T B L R
Since x # 0, we reduce this equation in the following way
d?y dy d?y dy dy d d dy
=t Ly =t—2 412 -2 ()=t — (t+1
0=t ta e e w a W T a W

We get by an integration,

dy
t— —(t+1)y=
dt ( + )y C2,

hence, because = # 0 implies that ¢ > 0,

dy 1 Co
YW o (14-)y=2
dt <+t>y t

1
Now [ (1 + Z) dt =t+Int for t > 0, so the complete solution for ¢t > 0 is

dt

Y= cltet + CQtet gl

It can be proved that if ¢y # 0, this integral cannot be written as an elementary function, so we can
only integrate the corresponding series term by term (a transcendental function).

If c; = 0, then we get for ¢ = 22 > 0 that
=1
y = citel = cra? exp(zz) = g — 222 for x # 0.
‘ n!
-

The remaining now follows by testing the equation ¢”(0) = 2.
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Example 2.5 Given the differential equation

d’y dy
(23) m@—Q%—my:O, z eR.

1) Prove that if the power series of radius of convergence ¢ > 0,
o0
(24) Zanl’n, Y 6]793 Q[,
n=0
is a solution of (23), then

72a1f(2a2+a0)x—a1x2+2{n(n—3)anfan_g}xnfl =0, xz€]—00

n=4

2) Prove by using the result of (1) that (23) has a solution y = p(z) of the form (24), which satisfies
the conditions ¢(0) =1, ¢'(0) =0, ¢"(0) = 0, and that this solution is given by

(o]

2p—1 4
yz(p(x)zl—z -t z € R.
= ()

3) Find the sum function of the power series of (2).
(Hint: Notice that

2p— 1 1 1
@) @) @-n PS N> '

1) We get by insertion of (24) into (23) and addition of some zero terms that

I
NE

o0 o0
n(n —1a,z" ! - g 2nana™ ! — E anpz"
n=1 n=0

-

33

(

I
[M]8

n(n — 3)a,z" ' — Z ap_ox" = —2a; + Z{n(n —3)ap — p_o}x" !
n=2 n=2

n=1

= 2a —(2a2+a0)x—a1x2+2{n(n —3)an — a, o}z 1t
n=4

2) It follows by the identity theorem from the structure of (1) that
ar =0, 2a2+ap=0, a3 =0, nn-3)a, —a,—2=0"forn>4.
Then by the initial conditions,
e(0)=ap=1, ¢0)=a; =0, ¢"(0)=3-2-1-a3=0,

hence, summing up,

1
a/O:ly 0'1:07 a2:_§7 Cl3:0,
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and the recursion formula
n(n —3)a, = an_2 for n > 4.

In particular, as,—1 =0 for p € N.

By choosing n = 2p even the recursion formula is reduced to

2p(2p — 3)agy, = agp—1) forp>2 (even for p>1).
1 L . . 2p—1
When ag = 1 and as = as.q = —3 the solution is unique and it suffices just to check ag, = — ok
p)!
2-1 1
Obviously, ag = 1 and a1 = —or T o Finally,

2p —

3

and the recursion formula holds.

Then it follows from the recursion formula,

. A2(p—1
0 = lim (=1 _
p—oo Ay

lim 2p(2p — 3) = oo,

p—0oQ

so the radius of convergence is p = oco.

Thus, we have proved that the solution is given by

-1
y:@(x):]'_z x2p7

z € R.
= ()

3) By means of the hint we get

2p—nr e

p=2

)

2p—1 o, =/ 1 1 %
@t " ‘1+§:<@m!‘@p—n0x

_ — 1 2 = 1 2p+2 _ :
= Z(Qp)!xp—zmxp = coshz — zsinh z.

p=0 p=0

63
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Example 2.6 Given the differential equation

d*y dy
(25) (222 —|—1)W+8xd——|—4y—0 z € R.

1) Prove that if the power series of radius of convergence ¢ > 0,

(26) Za7lxn7 €T E]iga Q[?
n=0
is a solution of (25), then
n+2 + 2a, =0, n € Ny.
2) Prove that (25) has a solution y = p(x) of the form (26), satisfying the conditions
p(0)=0,  ¢'(0)=1L

3) Find the sum function of the power series of (2).

4) Find a solution of (25) through the line element (0,0,2).

The example can be treated in several ways. The main variant is of course the power series method.

1) By insertion of

oo o0 o0
y = E anxz”, Yy = E napz" L,y = E n(n —1a,z" 2,
n=0 n=1 n=2

and addition of some zero terms we get

d d - n—2 n—1
0 = (22° —|—1)d——|—8zd——|—4y— (22%41) Z: n—1)a,x —|—8$nz:1nan$ —|—4nz;)anx
— Z 2n(n — ayz™ + Z n(n — Dap,z™~ 24 Z 8a,x"™ + Zélanx
n=2 n=2 n=0
(n=0) (n=0)
= Z{QnQ—2n+8n+4}anx"+z(n—|—2)(n+1)an+2x"
n=0 n=0
o0 o0
= 2{2(n2—|—3n+ 2an+(n+2)(n+1)a,2}z" = Z(n +2)(n+ 1){2a, + anq2}a™.
n=0 n=0

Since (n + 2)(n + 1) # 0 for n € Ny, it follows from the identity theorem that we have the
recursion formula

Gnt2 + 2a, =0 for n € Np.
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2) Then we get from ¢(0) = 0 that ap = 0, and from ¢’(0) = 1 that a; = 1.

The recursion formula has a leap of 2 in the indices, so we conclude by induction that as, = 0 for
every n € Ny.

For n =2p+1, p € Ny, odd the recursion formula becomes
A(p+1)+1 = —2a2p+1-

The first terms are
ay =1, az = —2, as = (—2)?,

so we set up the hypothesis asp41 = (—2)P.

Assume this hypothesis. Then by the recursion formula,

n(p1)+1 = —2a2p41 = —2- (=2)P = (=2)P,

which is the hypothesis with p replaced by p 4+ 1. Then the hypothesis follows by induction, i.e.
the bootstrap method.
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Calculus 3c-4 Larger examples of the power series method

Alternatively it follows by recursion that

asps1 = —2as1)41 = (—2)%a9(p2)11 = -+ = (=2)Pa1 = (=2)".

The formal series becomes

oo (oo}

oo
p(r) = Za2p+1$2p+1 = Z(—Q)%QPH =7 Z(—%Q)p-
p=0 p=0

p=0
This is a quotient series of quotient ¢ = —222, so the condition of convergence is | — 22?%| < 1,

ie. |z| < —, and we get p = —.

V2 V2

3) The quotient is ¢ = —222, hence the sum function is in |— o, o[ given by

o0
— P — z :L fi <L
() Jipzzjoq 1—¢ 1122 or |z 7

4) The solution through the line element (0,0, 2) satisfies ¢(0) = 0 and ¥'(0) = 2 = 2 - ¢/(0). The
equation is linear, and since ¢(0) = 2 - ¢(0), the solution is

2x 1

¢($)=2<P(93)=ma || <ﬁ'

1
Remark 2.3 We have so far only found the solution ¢(x) in the interval |z| < 75 Tt is,

o
C 1+ 222
however, immediately seen that the function is defined for every x € R. By a simple test it is also a
solution for x € R. We first calculate

1 4% + (2 -2) 1 2 2 1 2

Tiq2? (1129?1422 1422 (14227 1422 (142097

¢'(x)

and

P A [
P T A 10222 T (1 22238

We get by insertion

4x 16z 8x 16z 4x -

22° +1)¢” ' dp(z) = - - =
@27+ D) 80 (@) +4e(@) = T ~ Ty ae  1v22 T (11202 | 11222

It follows from the test that p(z) = is a solution of (25) in R.

x
1+ 222
Here we have produced the full argument. One can, however, obtain this result without any calculation
at all. In fact, according to the previously shown results ¢ fulfils the differential equation in the interval

1
|z] < —=. Then note that since ¢(z) is a rational fractional function, defined in R, the same is true
for ¢'(x) and ¢”(x). When these fractional functions are inserted into (25), these inserted functions

1
“cannot distinguish between if we are inside or outside the interval |z| < E”. Since the equation is

satisfied inside the interval, it must also be fulfilled outside the interval, and we conclude that p(z) is
a solution in R.
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Calculus 3c-4 Larger examples of the power series method

Remark 2.4 Again we can solve the equation directly by an inspection. In fact, we get by a small
reformulation of (25)

2 d d
0 = @2+1)"2 480l (207 +1)
dz? dz
d (dy 22 d

_ d 2 _d 2
= - {(2 —i—l)d +4J;y}—dx{(2x +1)d9:

X

U
e
+

<
—
+

Then by two successive integrations
(22 + 1)y = 1 + o,

and the complete solution is

+ x cR
=C1" — Cy*  ——— X .
Y= o i1 T ey

The rest is easy.

You’re full of energy
and ideas. And that’s
just what we are looking for.

© UBS 2010. All rights reserved.

Looking for a career where your ideas could really make a difference? UBS’s
Graduate Programme and internships are a chance for you to experience
for yourself what it's like to be part of a global team that rewards your input

and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours
by visiting www.ubs.com/graduates.

www.ubs.com/graduates % UB S

Download free ebooks at bookboon.com

67


http://bookboon.com/
http://bookboon.com/count/advert/52a1fd82-96d7-e011-adca-22a08ed629e5

Calculus 3c-4 Larger examples of the power series method

Example 2.7 Given the differential equation

2 d
(27) xd—Qng(erl)d—erQy:O, z €R.

1) Prove that if the power series of radius of convergence ¢ > 0,
o0
(28) > ana",  z€]-o.4,
n=0
is a solution of (27), then

2a0+a1+Z[(n+1)2an+1+(n+2)an]x" =0, zel-od

n=1
(In some of the variants we get instead
(o)
Z[(n +1)2%apt1 + (n+2)a,]z™ =0, r€]—o,0[
n=0
2) Prove that (27) has a solution y = @(z) of the form (28), satisfying the conditions
p0)=1,  ¢(0)=-2

3) Find the sum function of the power series of (2).

1) We insert the power series (28) into (27) and add some zero terms. Hereby,

oo oo o oo
0 = Z n(n—l)anx”_l—i— Z nanx"+z nanx”_l—i—z 2a,,z"
n=2 n=1 n=1 n=0
(n=1) (n=0)
o0 o0 o0 o0
= Z n2ap,xz™ ! 4 Z(n + 2)apa” = Z(n +1)%a, 12" + Z(n +2)anx"
n=1 n=0 n=0 n=0

= Z{(n +1)%ap41 + (n+2)ay}a".

n=0
2) We get from the identity theorem the recursion formula
(n+1)%an+1 + (n+2)a, =0, n € Ny,
which is equivalent to
n?a, + (n+a, 1 =0, n e N.

From the latter expression we get by recursion

o = _ntlo 7(,1)2”_H.La == (= )n"_H.L...i.za
"o n2 vt n? (n—1)>2 T n? (n—1)2 22 12 0
1
. (-1)%”:; a, neN.
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We see that this formula also holds for n = 0.

We get from the initial conditions that

1+1
0(0)=ap=1 and ¢'(0)=a; = (—1)' % ag = —2ap = —2.
The formal power series solutions is
Nt s ()" s ()" o~ (o) —a
y_ngo(_l) PY _; n! +n§::l(n—1)!_(l_x)nzzo n! = (=@,

where we have recognized the exponential series with o = oc.

Alternatively we use the quotient criterion for x # 0:

(Ln+1ZL'n+1

an, T

— 0 for n — oo

_‘_(n—i—?)m
(n+1)2

for every fixed x € R, so ¢ = 0.

Remark 2.5 This equation can also be solved alternatively by some manipulation. It is, however,
more tricky here. By some trial and error we see that the right idea must be to multiply the equation
by 1—=z, then add something and immediately subtract it again. We introduce in this way a singularity
at © = 1, which ought to be discussed as well. We shall, however, decline from doing this here.

We get by using the sketch above,

d*y 2, Y
0 = x(l—x)w—i—( - )%—F(Q—Q)y
d*y 2y dy dy
= z(l-2)5 +(v—x )E_x +{(1—m)%+(2—x)y}
d d

Then notice that
d dy d?y dy
— < (I—x)—=+(2— =1l-2)-—=+(1—-2)— —
Flo-of+e-anf a0+ a-0f -
so the equation can be rewritten as

0 = z- % {(1_@% + (2—1:)% + (2—33)3/} +1- {(1—1:)% + (2—x)y}

- {e|a-aPre-on]f - £ {sa-orer (S 2 E e},

d x 2
Since — ¢ = x e”, this expression can be further reduced to
de \1—2x (1—2)

d 9 _p d e’ B
%{x(l—x) e %(1_x~y>}—0,
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Calculus 3c-4 Larger examples of the power series method

hence by an integration,

d e’ d e’ e’
1—a)2e o & - dvs. = —ey
z(l—a)%e dx (117 y) 2 VS (lz y) 2 x(1—x)?

By another integration, followed by a multiplication by (1 — z)e™?, we get the complete solution

ex
=ci(1l— - 1-—- | ————dx.
y=c(l—z)e "+ c2(l —x)e / 20 —2) dx

We have a power series expansion of the first term from x = 0. This does not exist for the second
term because of the factor = in the denominator of the integrand. On the other hand, the singularity
at x = 1 is removed, because the singularity of the integrand of second order (in the denominator) by

integration becomes a singularity of first order, and this is cancelled by the factor 1 — x, which has a
zero of first order at z = 1. O

360°
thinking

Deloitte

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
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Calculus 3c-4 Larger examples of the power series method

Example 2.8 Given the differential equation

d*y dy
(29) (2 +1)—5 +(433 +2)d—+2aﬁy—0 zeR.

d2

1) Prove that if the power series of radius of convergence ¢ > 0,

(30) Zanxna IG]*Q, Q[?
n=0

is a solution of (29), then

2a1+(2a9+6as)z+(6a; +12a2)2> —i—Z(n—i—?) [(n43)an o+ (n+1)ay)z" ™ =0
n=2

forx €]—o,0[.
2) Prove that (29) has a solution y = ¢(x) of the form (30), satisfying

p(0)=1,  ¢'(0)=0.

3) Find the sum function of the power series solution of (2).

1) By insertion of the usual formal series

oo o0 o0
y = E anz”, y = E napz" "ty = E n(n—1)a,z" 2,
n=0 n=1 n=2

and by addition of some zero terms, we get

0 = :c +x) inn Dayz™™ 24 (4x +2) Znan *1+2xianx”
n=2 n=1
= i n(n— 1an"+1+z (n—1)a,z" n-l
n=2 n=2
(n=0) (n—l)
+ Z 4dna z"+1—|—22nan n= 1—|—Z2anm
(n= 0)

= Z{n(n — 1) +4n+ 2}a,z" ™t + Z{n(n — 1)+ 2n}a,z™t
n=0 n=1
(o) (o)
= z:(n2 +3n + 2)apaz" ™t + z:(n2 + n)ayz"
n=0 n=1
= Z(n +1)(n + 2)a,z™ T + Z n(n+ a,z" !
n=0 n=1

o0

= Z(n +1)(n + 2)a,z" T + i (n+2)(n+ 3)a, 22"

n=0 n=—1

= 2014 Y {(n+3)anis+ (n+Day}a"t"
n=0
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Remark 2.6 If we here remove the terms for n = 0 and n = 1, we get precisely the desired form.
The following investigation becomes, however, more easy, if we keep the equivalent form, derived
here, which is obtained by adding zero terms.

It follows from the identity theorem that a; = 0. Since n 4 2 # 0 for n > 0, we derive the
recursion formula

(n+3)ant2 + (n+1)a, =0, for n > 0.

The recursion formula has a leap of 2 in the indices. Since already a; = 0, we conclude by induction
that ag,+1 = 0 for all odd indices.

For even indices the recursion formula is written
(2n + 3)ag(p41) + (2n + 1)az, =0, for n > 0,
hence by recursion,

20+l e 20dLl 201 _ (=pm

a2(n+1) = T on+3 A2n =

Then by a change of index,

(1, (D

T 1M T o1

Qon n € N, og for n = 0.

The formal power series solution is given by

The radius of convergence is o = 1, so the series is convergent for |— 1, 1].

If # # 0, then

)

1 = (—1)" Arct
y:_z( ) pant1 _ Arctan @
xn:02n+1 T

and we see that the sum function is

1
— Arctan ¢ for 0 < |z| < 1,

1 for x = 0.
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Remark 2.7 Again the example can be treated alternatively with some manipulation,

0 = x(x2+1)%+(4x2+2)3—3y6+2xy
= (x2+1){x%+1~d—i + (3 2+1)Z—Z+2xy
= (x2+1)%{x3—9yg+1 Yy —(x2+1);l—gyc+(3 241)-= + 22y
= (ﬁ—kl)%{%(xy)}—i—ZxQZ—z—&—Qxy
= (x2—|—1)dix{%(xy)}+2x xa—&-l }
— @+ 0g L@} L@ L)
- @ engent,

0 (29) can be written

61 g {40} =o

If we integrate (31), then

d d Ca
2 .
1)—(zy) = e —(zy) = —2—
@)y =ende () =
Then by another integration,
xy = c¢1 + co Arctan x,
hence
Arct
y=L e, 2T 20,
x x
Arcta Arcta 1
Since T for o 0, and 2R T i even and differentiable with ¢'(0) = 0, and since —
x x

x
cannot be extended to 0, the answer of (2) becomes

Arctan T >
y=p(z) = Z

7

re]l-1,1],

Arctan © | |
where ——— is interpreted as 1 for x = 0.
x
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Example 2.9 Given the differential equation

P2 d
(M)@P+mag+ﬂn+2m%+y:m z€R.

1) Prove that if the power series of radius of convergence ¢ > 0,

(33) Z anx”, xr €]—0,0[
n=0
is a solution of (32), then

a0+2a1+(4a1+6a2)x+Z(n+1)[(n+2)an+1+(n+1)an]a¢” =0,
n=2
forz €]—o,0[.
2) Prove that (32) has a solution y = @(x) of the form (33), satisfying the condition ©(0) = 1.

3) Find the sum function for the power series of (2).

Remark 2.8 We first demonstrate the “untraditional” solution, which shows that it pays off just to
think about the problem before one starts on some standard procedure.

We get by some small rearrangements of the equation

d?y dy d?y dy dy

_ 2 a’y ay _ 2 a’y ay ay )

0 = (z +x)d:r2 +(3x—|—2)d$ +y {(m +x)dx2 —|—(2x+1)dx}+{(x+1)dx +1 y}
e i), [ b

_ %{@+UF%+L4}:£{@+D%WM}

Hence by an integration,

(x—i—l)%(wy):cl, e, —(xy) = . for x # —1.
Then by another integration,

z-y=oc1ln|l+z| + co.
If we also assume that x # 0, then we get the complete solution

In|1 1
:Clw—FCQ'E for x # 0, —1.

The former function can actually be extended to x = 0, because the power series expansion for
0<|z|<1is
n

I e) 1D S0
T x n n —n+l '

n=1 n=1

When x — 0 we obtain the value 1.
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Then we apply the standard method.
1) When we insert the formal power series
o0 oo oo
y= Z apz”, Y = Z na,z""t, oy = Z n(n—1)a,z" 2,
n=0 n=1 n=2

and add some zero terms, we get

d’y dy
2
= _— 2 _
0 (x +x)dx2+(3x+ )dx—i—y
= (2242) Z n(n—1)a,z" ?+(3z+2) Z napx™ ! +Z anx"
n=2 n=1 n=0
= Z n(n — Dayz™ + Z n(n — 1)apz™ ' + Z 3nan,x™ + Z 2nan ™t + Z anx"
n=2 n=2 n=1 n=1 n=0
(n=0) (n=1) (n=0)

= Z{n(n —1)+3n+1}ta2"™ + Z{n(n — 1)+ 2n}a,z"

n=0 n=1

= Z(n +1)%a,2™ + Z n(n + Day,z™ !
n=0 n=1

= Z(n +1)%a,2" + Z(n + 1) (n+2)apy12"
n=0 n=0

= Z(n + D{(n+1a, + (n+ 2)an41 2™
n=0

When we remove the first two terms, we get the desired form. We shall, however, here keep the
form above, because it will be more convenient in the following.

2) The series above is a power series expansion of 0. This is by the identity theorem unique, hence
we get by identification of the coefficients the following recursion formula

(n+1){(n+1an, + (n+2)apt1} =0 for n € Ny.
Now, n + 1 # 0 for n € Ny, so this is immediately reduced to
(n+2)ayi1 = —(n+1)ay, n € Np.
This difference equation can be solved in three different ways.
a) The divine inspiration. If we introduce
bp = (=1)"(n + 1)an,
then
boi1 = (—=1D)" " (n+2)an = (—=1)"(n + Da, = by, n €N,

and thus
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We then get

for n € Ny.

b) Recursion. It follows from

n

a, = —nap_1  that a, = —
(n+1)a Nap_1 at  a menr

n—1, n € N.

By repeating this formula with n replaced by n — 1 etc., we get

e () (5 (- - 21

S00T NG SWHSAS WL SRl
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¢) Induction. Consider again the recursion formula in the form

ap_1, neN, medag=1.

1
If n=1, then a; = —=.

2
If n = 2, then angg 71 :1.
3 2 3
3 1 1
Ifn= h =—— - =—=
n = 3, then ag 13 1

This gives us the hint of the structure

(="
n — 5 € Np.
a ntl n 0

Assume that this formula holds for some n € Ny. This is at least true for n =0, 1, 2, 3.

Then we get by this assumption that

n+1 n+1 (=) (=1)"+!

a/’ﬂ = — . =

n—+ 2 n+2 n+1 n+2

which is the assumption of induction with n replaced by n + 1. Hence

_ e
n+1’

Ap4+1 = —

)

for n € Ng.

29

We see that no matter the choice of method of the solution of the recursion formula, the formal
power series solution of the problem becomes
oo
(—

o) =3t = 3 O e SN EDT
n=0 n=0 n+l n=1 n

The radius of convergence can be found by the criterion of roots,

(0",
n+1

= 21 — x| <1 for n — oo,
Vn+1

n

hence p = 1.

3) The formal power series can also be written
oo
_ (_1)n—1 n—1
SD(J:) - ngl n x ’

so we are very close to a logarithmic series. If |z| < 1, then

s (_1)71—1
In(1 = —a=x-
a(L+0) = 30—t = e ela)
hence p = 1, and
In(1
In(l +2) for 0 < |z| < 1,
p(r) =

1 for x = 0.
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Example 2.10 Given the differential equation

d? d
(34) xQEz—élxﬁ—&-(ﬁ—i—G)y:O, xz €R.

1) Prove that if the power series of radius of convergence ¢ > 0,
oo
(35) Zanxn7 € E]_Qa Q[7
n=0
is a solution of (34), then

6a0—|—2a1x—|—aox2—|—a1x3+Z{(n—2)(n—3)an—|—an_2}m" =0,

n=4

forz €]—o,0[.
2) Prove that (34) has a solution y = p(x) of the form (35), satisfying the initial conditions

p(0)=0, ¢'(0)=0, ¢"(0)=2, ¢"(0)=0.

3) Find the sum function of the power series of (2).

1) When we insert the formal series

Y= Z anx”, e Znanx"_l, T Zn(n—l)anx"_Z,
n=0 n=1 n=2
and add some zero terms, we get
o0 o0 (o] o0
0 = Z nn—1)a,z" — Z 4nanm"+z 6an:c"+z anx"t?
n=2 n=1 n=0 n=0
(n=0) (n=0)

- io:{n2 —bn+6tax" + i Qp_ox”
n=0 n=2

= 06agp + 2a12 + Z{(n—Q)(n—3)an—|—an_2}z".

n=2

Then by removing two terms we get

0= 6a0+2a1x+a0x2+a1x3+Z{(n—2)(n—3)an+an,2}x",
n=4

and we can in the following argue on both expressions. We shall here choose the given version
from the example.

Remark 2.9 Because possible singular points are given by 22 = 0, i.e. 2 = 0, the possible radii
of convergence are ¢ € {0, 00}.
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2) It follows from the initial conditions,
©0(0) =ap =0, ©'(0) =0=ay,

©"(0) =2lag =2, ¢"'(0) = 3laz =0,

Then by the identity theorem,
6ag =0, 2a; =0, ag=0, a3 =0,
and
(n—2)(n—3)a, + an—2 =0, for n > 4,
which fortunately is in agreement with ag = 0 and a; = 0 found previously.

If n > 4, then (n — 2)(n — 3) > 0, and the recursion formula is rewritten as

1

s, forn >4,
mn—2)n-3 "> "

ap = —

ericsson.
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There is here a leap of 2 in the indices, so we shall divide into the two cases of odd and even
indices.

From a3 = 0 follows by induction that asy,; = 0 for all odd indices > 3, thus for all odd indices,
because also a; = 0.

For even indices we write n = 2p > 4, which is satisfied for p > 2,
1

BT T —2)p—3) PV

In order to find some common pattern we try the first values,

1 1 1

p=>2

= 1 = - — = _ = —,
G2=b =Ty Ty T T
These values inspires us to the hypothesis of induction
_ (=t : _ (=
Agp = m, l.e. aQ(p,l) = w

a) By the first values it is seen that the hypothesis holds for p =1, 2, 3.
b) Induction. Assume that

(=1)P
Aa(p—1) = m for some p > 2.
Then by the recursion formula
R S| (-1 (ppe
2p-2)@2p-3) VT 2p-2)2p-3) -4 (2p-2)

which is precisely the hypothesis of induction for p.

CLQP =

Then we get the formal power series solution,

S S S
=20t = 20T = 2 gy oy
n=0 p=1

Radius of convergence.

The series is of course convergent for = = 0.

If 2 # 0, then b (=" o LA
x enb, =|—"———z" = — .
’ (2n —2)! (2n —2)!
We get by the criterion of quotients,
bpy1 a2t (2n —2)! x?
= . = 0<1 f
by, (2n)! x?n 2n(2n — 1) - oo

for every fixed x € R, hence 9 = 0o, and the interval of convergence is R,

_ - (_1)n+1 2n
Yy = Z m €T for x c R.

n=1
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3) The sum function is

n+1

o - _ S (_1)n+2 2n 2 _
=Y X

= X" CcosT.

Since we already know that the cosine series is convergent in R, we might from the identification
of the sum function immediately obtain the interval of convergence.

Remark 2.10 An alternative solution method is the following: The not so obvious trick is for x # 0
to divide by 2*. Then we get by some manipulation that the equation can be rewritten in the following

way,

0 = 29y =284 =29 2 y==
2 dx?2 2?2 dx 23 d:c+ac +x4 dx

L% 2dy 2dy 1 6 d {1 dy
2 dx

d (1 dy d[1 y ? [y y
dm{xQda:+dx< ) y}+x2 dxz{x2}+m2'

_df2z Vv
dx :U3y 2
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Calculus 3c-4 Larger examples of the power series method

If we put z = %, the equation is reduced to
x

d?z
@ﬁLZ:O,

the complete solution of which is

_ Y _ :
z=-—G=ca COST + coSInw,
x
hence

y = c12? cosx + cox® sinz, for x # 0.

Example 2.11 Given the differential equation

d? d
(36) :c2d—xg—2x£+(x2+2)y:0, z e R.

1) Prove that if the power series of radius of convergence ¢ > 0,

(37) Z ana”, z€l—-o,0,
n=0
is a solution of (36), then

2a0 + apz” + Z[(n—l)(”—2)0n+an—2]$n =0, z€l-o0l
n=3
2) Prove that (36) has a y = o(x) of the form (37), satisfying the initial conditions
e(0)=0,  ¢(0)=0, $"(0)=2.

3) Find the sum function of the power series of (2) expressed by elementary functions.

1) When we insert the formal power series

Y= Z anx”, % = Z na,z" 1, d_a::g = Z n(n —1)a,z" 2,
n=0 n=1

n=2

into (36), read from the right hand side to the left hand side, we get by adding some zero terms,

oo (oo} (o]
0 = 2° Z n(n—1)z" %22 Z na,z" '+ (22 42) Z anz"”
n=2 n=1 n=0
= Z n(n—1)a,z*— Z Qnan$"+z 2(1,@”4—2 anpx™t?
n= n=1 n=0 n=0
(n=0) (n=0)
= Z{n2 —n—2n+2}a,z" + Z Ap_ox"
n=0 n=2
o0 (oo}
= Z(n —1)(n—=2)a,a" + Z Ap—2x"
n=0 n=2

= 2a9 + apr? + Z{(n—l)(n—?)an+an_2}m",

n=3
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and we have proved that (37) necessarily must fulfil
(38) 2ag + apx® + Z{(n—l)(n—?)an+an_2}z" =0.
n=3
2) Tt follows from the identity theorem that ag = 0 and that the recursion formula becomes
(n=1)(n—=2)ap +ap—2=0 forn >3
It is given that
»(0) =ap =0, (in agreement with the identity theorem),

(,0/(0) =1- a; = 0, ie. a1 = O7
©"(0) = 2lag = 2, ie. ay = 1.

The recursion formula has a leap of 2 in the indices, so it follows from a; = 0 by induction that
aoam+1 =0, m € Np.

If n = 2m is even, the recursion formula is written
(39) (2m —1)(2m — 2)agm = —aa(m—1) for m > 2.
(Note that m # 1).

When we multiply by (—1)™~(2m — 3)! # 0, we get

by == (=1)™ 7 (2m — Dlagy, = (=1)™72(2m — 3)lag(m—1) = bim—1,

thus
by = (=)™ 1 2m — Dlagy, = - =b; = (=1)° - 1lay = 1,
and hence
(=)t
n = 7’ N-
“n =g "€

Alternatively we get by recursion of (39),

_ 1 = (-1)2 !
= T Emenen -2 20 O e e - aEm -9
B (= as = ()™~ m € N.

@m—-1)2m—2)---3-2 (2m — 1)1’

Summing up we obtain the formal power series solution

Y = a2n,T n— 7"% ",
— — (2n —1)!
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-1 n—1 2n
If z # 0, then a,(z) = ’ﬁ 2| = ﬁ > 0. We get by the criterion of quotients
n—1)! n—1)!
for x # 0 that
ant1(x) 22 (2p—1)! x?
— . = fi .
(@) @ntD)l P @atian lOfrnoe

Hence we conclude by the criterion of quotiens that the series is convergent for every x € R, so
the interval of convergence is R.

3) Using a known power series expansion we get the sum function

— (=D o, — (D" o1 :
y:Z—x :xzmx =zsinx, xR

n=0

Remark 2.11 One can also solve this equation by a small trick. Since we have a singular point at
x = 0, and since x = 0 clearly gives y(0) = 0 for every solution, it seems natural to put y = xz and
then derive some differential equation in z. From

d_ e Py
de " dx & 2 T Tda? dx’
follows by insertion that
d? d d? d d
0 = xQﬁ — 2m£ + (2? 4+ 2)y = {x?’ﬁ—i—%ﬂﬁ}—{2x2£+2xz}+{x3z+2xz}
d*z d*z
— 3 3, _ .3
= x @—i—x z=x {@—i—z}

Thus, we get the equation when z # 0,

2
% +2=0,
the complete solution of which is
z = cysinx + ¢y cos .
Therefore, if x # 0 then the complete solution of the original equation is

Yy = cirsinx + cox cos T, c1, co arbitraere.

Remark 2.12 If we put y; () = xsinz, then both y;(0) = 0 and 4 (0) = 0. This fact will cause some
extension problems at x = 0, where we cannot conclude anything from the existence and uniqueness
theorem. We shall not go further into this difficult question.
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Example 2.12 1) Prove that if y(z) = Y7 a,a™ is a power series solution of

d?y dy 3
CY W g3y
Ti2 T dx Y ’

then we have the recursion formula

nn —2)a, = 4a,_4 forn > 4.

2) Find the power series solution, which satisfies the conditions y(0) = 1 and y”(0) = 0, and find the
interval of convergence of the series.

3) Does there exist a power series solution y(x), for which y'(0) =1¢

1) When we insert the formal series

o0 oo oo
Y = E apz™, Yy = E napz™ Y,y = E n(n —1ap,z™ 2
n=0 n=1 n=2
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Calculus 3c-4 Larger examples of the power series method

into the differential equation, we get

d?y dy
0 = 25 — — —4a°
xsz dz Ty

o0 o0 (o]
= Z n(n— l)anxnfz—z nanx” "t —4z3 Z anpx”
n=2 n=1 n=0
o0 o0 oo
— Z n(n— l)zznac’“1 —a;— Z napx” - Z dan,a"t3
n=2 n=2 n=0

= —a1+ i n(n—Q)an$n_1—i dap_g2" !
_ n=4

n=2
(n=3)

o0
= —a +3a3x2—|—2{n(n—2)an —4an, 4"t

n=4
Then by the identity theorem.
(40) a1 =0 and az =0,
and the recursion formula (with a leap of 4 in the indices)

(41) n(n — 2)a, = 4an_4 for n > 4.

2) We get by induction from (40) and (41) that a4,41 = 0 and a4p43 = 0, hence
asp+1 =0 for n € Ny.
If y(0) = ap = 1 and y"(0) = 2lay = 0, thus as = 0, it follows again by induction that
Ggnt2 =0 for n € N.

The remaining case is a,, = a4, i.e. n =4m, m € Ny, where ag = 1. We write in this case (41) in
the form

dm(dm — 2)asy = 4a4m—4, m>1,
which is rewritten as
(42) 2m(2m — 1)aam = aa(m-1) m > 1.
We can solve this recursion formula in several ways, of which we shall only demonstrate a couple.
a) If (42) is multiplied by (2m — 2)! = (2(m — 1))!, then
(2m)lagm = {2(m — 1) Hagm—1) = -~ = {2-0}lapg = 1,

hence

Qam = (Qm)"
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b) We get by recursion from (42) that

1 1
Gm = B2 = Gm— 1) "D T 9m@m — 1)(2m — 2)(2m — 3) 23
1 1

T om@m—1)---2-1"°7 @m)’

As a conclusion we have obtained the formal power series solution

o (o]
Y= E Azt = E ! (z%)*™ = cosh(z?)
m (2n)! '
m=0 m=0

We recognize the series as the series of cosh(2?) of radius of convergence ¢ = oo, so the interval
of convergence is R.

3) If some power series solution existed with y'(0) = 1, then a; = 1, which violates (40). Hence, we
cannot have any power series solution of the equation, for which y’(0) = 1.

Alternatively, put ¢t = 0 into the differential equation,
0=0-4"(0) —y'(0) —4-0%y(0) = —4(0), dvs. y'(0) =0.

It is immediately seen that one cannot have any solution for which y'(0) = 1 whatsoever.

Remark 2.13 By using a general solution formula, a linearly independent solution is given by

1 1 T
r) = cosh(z? /76 (/—dx)d:r:coshx2 /—dx
ba(®) @) cosh? (z2) P x (@) cosh? (z2)
1 1 1
= 5 cosh(z?) /u:z2 #Z(u) =3 cosh(z?) tanh(z?) = 3 sinh(z?).

The complete solution is

y = ¢y cosh(z?) + cpsinh(z?), = €R, ¢1,cy arbitreere.
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Example 2.13 Consider the differential equation

d*y 2

Given (and shall not be proved) that there exists a power series solution of the form Zf;o anx™.

1) Find a recursion formula for the coefficients a,, of the power series solution (one shall not solve
the equation of recursion).

2) Find ag, a1, as, ag and ayg for the power series solution for which we have the initial conditions
y(0) =1 and y'(0) = 0.

1) By inserting the formal series

(o) de oo
y= Z anx™, og i Z n(n —1)a,z" "2,
n=0 n=2
we get
0 = ) + 2%y = Z n(n — 1ap,z™ 2% + Z anaz™t?
v n=2 n=0
o0
= Z n(n — 1)an90”_2 + Z Y A
n=2 n=4

o0
2-1-a9+ 3 2asx + Z{n(n —Dap + ap_q}z" 2

n=4

Then by the identity theorem, as = 0 and ag = 0, and the recursion formula
n(n—1)a, +an—4 =0 for n > 4,

thus

(n+4)(n+3)apta +an =0 for n > 0.

2) Clearly, ag = 1 and a; = 0. It follows from (1) that as = 0 and a3 = 0. Finally, we get from the
recursion formula,

(04+4)(0+3)as+ao=0 forn =0,

1
SO ag = 1

Summing up we have
1

ap=1, ay=a3=a3=0 and a4:—ﬁ.
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3 An eigenvalue problem solved by the power series method

Example 3.1 One can sometimes also use the power series method in more complicated problems.
We shall here give one example of an eigenvalue problem, which can be solved by the power series
method. If one wants to know more about eigenvalue problems, the reader is referred to e.g. Calculus

4b.

Consider the eigenvalue problem

dy Py dy
>\ _ _— - = = )\ .
dx4 + ( 1') de d.’lj 07 x G [07 ]

y(0) =4'(0) =" (N) =y (N) =0.

This is the model equation of the deviation from the vertical of a vertically thin column of length A
under the influence of the weight of the column itself. We shall find the smallest eigenvalue X.

1) Start by an inspection of the equation. Since

d dy | d’y  dy
s{o-oft-u-ag- 2

we can also write the differential equation in the form

dty d dy
@‘FE{(A—JJ)%} =0.

This can immediately be integrated

d? d
d—xg + (A - x)d—i =c, ¢ arbitraer.

2) Identification of ¢ by the boundary value y"'(\) = 0 gives
c=y"A)+ X=Xy (A =0.

Hence, the problem is reduced to the simpler homogeneous equation

d*y dy
s T A =0
o . : CoLody dy
which is identified as a second order differential equation in e If we therefore put z = —=, then
i
d?z
T2 +(A—2)z=0,

where the boundary values for z are given by
2(0)=9'(0)=0 and 2'(\)=y"(\)=0.

Remark 3.1 We have already used the boundary value y"”/(\) = z”(\) = 0 above, and we see
that it also follows from the equation. Furthermore, y(0) = 0 is not at all relevant for z = y’.
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3) Change of variable. The factor A — z is annoying, so we chance the variable to t = A — z. If we
put

u(t) = z(x), ie. u(A —z) = z(x),
the equation is transferred into

d’u ,
e +tu(t) =0 med u(N)=0ogu'(0)=0.

4) We shall now for some time neglect the boundary condition u(A) = 0, when we find a power series
solution of this equation. We shall of course later apply the condition u(A) = 0. Since u/(0) = 0,
we have a; = 0. By insertion of the formal series

d*u
)= ant" and —— = — Da,t" 2
u(t) 2 an and  — 2, n(n —1)ay,
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into the differential equation we get

d2 o0 - o 0 . 00 :
0 = dt2+tu z_: n(n — Dayt 2+T;)ant 1 ;(n+2)(n+1)an+2t +nz::1an_1t

= 2ay+ Z{(n +2)(n 4 Danio + anq }t".

n=1

It follows from the identity theorem that as = 0 (we knew already that a; = 0), and for n € N
(the summation domain)

(n+2)(n+1apso +an_1=0 for n € N.
By n — n 4+ 1 this is transformed into
(n+3)(n+2)apis +a, =0 for n € Ny.

Here we have a leap of 3 in the indices, hence, because a; = 0 and as = 0, we conclude by induction
that

a3n41 = 0 and a3nt+2 =0 for n € Np.

We have now reduced the power series solution to

o0 oo
_ Z agnt?m _ Z bnt?rn7
n=0 n=0
where the recursion formula for a3, = b, is obtained by the change n — 3n, thus

(3TL + 3)(3n + 2)(13n+3 + as, =0, n € Ng,

and hence

1

b, bu=asm, neN,.
Bn+3)Bn+2) any TS0

bn+1 - -

If by # 0 and thus b,, # 0, we find the radius of convergence by an application of the criterion of
quotients

— 0 for n — oo.

an1 ()] _ b [t [t*
an(t) by, [|E]37 (3n+3)(3n +2)

Hence, the series is convergent for every ¢t € R, and p = oo

Now we should in reality consider a boundary value problem, so ag = by # 0 are“free”. We
choose arbitrarily ap = by = 1. Then by induction,

bn:a3n: H3]+1 n € N.

Download free ebooks at bookboon.com

91


http://bookboon.com/

Please click the advert

Calculus 3c-4 An eigenvalue problem solved by the power series method

5) We have proved that

dy

(43) e

=z(x)=u\—1z) = Zagn()\—x)3”, zr € R,
n=0

where we have found ag,, in (4). This function cannot be expressed by elementary functions. We
can still perform termwise integration. Since y(0) = 0, we get by termwise integration and a
rearrangement that

[ o —t 3ndt n = (N—t 3n+1
v = = S [0 Z% 00
_ o~ a3n 3n+1 o Qan 3n+1
- Bz N B8y
nzzo?mﬂ nzzoan( z)

giving us the structure of the eigenfunctions, if only we can find the eigenvalues.
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6) It remains to find the smallest (positive) A = A_}jt, for which we have a proper solution, i.e. for
which ag # 0. Here we use the boundary condition y’(0) = 0, hence by (43),

y'(0) = Z azn A" =0 where ag = 1.
n=0

This transcendent equation is solved approximately in the following way:

We put for convenience n = A3, and find successively the smallest root of each of the polynomials

n
P,(n) = Zagknk, n € N.
k=0

Since agy has alternating sign, the possible real roots can only be positive. In the first polynomials
we may only get complex roots. However, if two successive polynomials P, (n) and P,1(n) have
their (smallest) real roots 7, and 1,41, then every successive polynomial P, ., (n) will also have
a (smallest) real root 7,4.,. Since as, is alternating it is easily proved that 1,1.,, m > 1, always
lies between 7,, and 7,11, so we obtain a convergent sequence of number. The following numerical
calculations show that the convergence is fairly fast.

7) Numerical calculations. No text needed.

1
n=1: Pl(n):1—3—2777 m =6 and X\ = V6=1,81712.

n=2: Pg(n)zl—g(l—%), o =8,20180 and Ay = 3 = 2,02403.
n=3 p3(n):1,g<l,%(1,%))7 N3 =7,814712 and s = /i3 = 1,98444.

=t P =1-g (1= g5 (1- 75 (1= 575))

e = 7,838213 and Mg = ¥/ns =1,98643.

n=>5: Ps(n)=1—g (1—% (1_% (1_13% (1_ 157?14)») ’

ns =7,837325 and A; = /15 = 1,98635.

n=6: P6(77)=1—g (1—?:7—0 (1_% (1_1733_2 (1_277T0 (1_ﬁ))))> ’

e = 7,837348 and Mg = /e = 1,98635.

It follows that A5 = A\g = 1,98635 is a correct estimate of A
obtained after only 6 iterations.

crit With 5 decimals. This result is
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