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Preface

Preface

Here follows a collection of sequences, including sequences, which satisfy some simple difference equa-
tions. The reader is also referred to Calculus 3b. Since my aim also has been to demonstrate some
solution strategy I have as far as possible structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
13th May 2008

http://bookboon.com/
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1 Sequences in General

Example 1.1 Check if the sequence

an =
n

n + 1
− n + 1

n

is convergent or divergent. Find its limit, if it is convergent.

Here we have several possibilities:

1st variant. If the numerator and the denominator in both fractions are divided by n, it follows by
the rules of calculations that

an =
n

n + 1
− n + 1

n
=

1

1 +
1
n

−
(

1 +
1
n

)
→ 1

1 + 0
− (1 + 0) = 0 for n → ∞.

2nd variant. If we remove 1 from both fractions we get

an =
n

n + 1
− n + 1

n
=
(

1 − 1
n + 1

)
−
(

1 +
1
n

)
= − 1

n + 1
− 1

n
→ 0 for n → ∞.

3rd variant. If everything is put on the same fraction line, we get s

an =
n

n + 1
− n + 1

n
=

n2 − (n + 1)2

(n + 1)n
= − 2n + 1

(n + 1)n
= −

2 +
1
n

n + 1
→ 0 for n → ∞.

It is seen in all three variants that the sequence is convergent and its limit is 0. ♦

Sequences in General
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Example 1.2 Check if the sequence

an =
n2

n + 1
− n2 + 1

n

is convergent or divergent. In case of convergence, find its limit.

1st variant. (Does not work, but it illustrates the problem). If we reduce by n in the numerator and
the denominator in the two fractions, we get

an =
n2

n + 1
− n2 + 1

n
=

n

1 +
1
n

− n − 1
n
→ ∞−∞− 0.

This is an illegal type of convergence and nothing can be concluded in this way.

2nd variant. (The elegant variant). Add 0 = −1 + 1 to the first numerator and apply that n2 − 1 =
(n + 1)(n − 1):

an =
n2

n + 1
− n2 + 1

n
=

(n2 − 1) + 1
n + 1

−
{

n +
1
n

}
=

(n + 1)(n − 1)
n + 1

+
1

n + 1
− n − 1

n

= n − 1 +
1

n + 1
− n − 1

n
= −1 +

1
n + 1

− 1
n
→ −1 + 0 − 0 = −1 for n → ∞.

3rd variant. (Brute force). Put everything on the same fraction line and reduce,

an =
n2

n + 1
− n2 + 1

n
=

n3 − (n + 1)(n2 + 1)
(n + 1)n

=
n3 − {n3 + n2 + n + 1}

(n + 1)n

= −n2 + n + 1
n2 + n

= −1 − 1
n2 + n

→ −1 for n → ∞.

The latter calculation can of course be performed more or less elegant. ♦

Example 1.3 Check if the sequence

an = cos
nπ

2

is convergent or divergent. Find the limit in case of convergence.

It follows from

an+4 = cos
(n + 4)π

2
= cos

nπ

2
= an,

that the values

a1 = 0, a2 = −1, a3 = 0, a4 = 1,

are repeated cyclically, i.e. they all occur infinitely often. Thus we have four candidates of the limit,
but since any possible limit is unique, it does not exist in this case, and the sequence is divergent. ♦

Sequences in General
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Example 1.4 . Check if the sequence

an = n(−1)n

is convergent or divergent. Find the limit in case of convergence.

Since the subsequence

a2n = (2n)(−1)2n

= 2n

is divergent, the “bigger sequence” (an) (it contains more elements) must also be divergent. ♦

Example 1.5 . Check if the sequence

an =
an

n
, a ∈ R,

is convergent or divergent. Find the limit in case of convergence.

This sequence contains a parameter, and the question of convergence depends on the the size of the
parameter.

1) If |a| > 1, it follows from the magnitudes that

|an| =
1
n
|a|n → ∞ for n → ∞.

(The exponential function “dominates” the power function in n). In this case we have divergence.

2) If |a| ≤ 1, we get the estimate

|an − 0| = |an| =
1
n
|a|n ≤ 1

n
→ 0 for n → ∞.

It follows immediately from the definition that (an) is convergent and that its limit is 0. ♦

Example 1.6 . Check if the sequence

an = ln(n2 + 1) − 2 ln n

is convergent or divergent. Find the limit in case of convergence.

The type of convergence is “∞−∞, so we first apply the functional equation of the logarithm. Thus

an = ln(n2 + 1) − 2 ln n = ln
(

n2 + 1
n2

)
= ln

(
1 +

1
n2

)
.

Then follow at least two variants.

1st variant. Since ln is continuous on p̊a R+, and 1 +
1
n2

→ 1 for n → ∞, we can interchange ln
and the limit,

lim
n→∞ an = ln

(
lim

n→∞

{
1 +

1
n2

})
= ln 1 = 0,

Sequences in General
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and it follows that the sequence is convergent towards the limit 0.

2nd variant. According to Taylor’s formula,

ln(1 + t) = t + tε(t).

We get by putting t = 1/n2,

an = ln
(

1 +
1
n2

)
=

1
n2

+
1
n2

ε

(
1
n

)
→ 0 + 0 · 0 = 0 for n → ∞,

hence the sequence is convergent and its limit is 0. ♦

Example 1.7 . Check if the sequence

an =
(−1)n

n
+

1 + (−1)n

2

is convergent or divergent. Find the limit in case of convergence.

Due to the change of sign (−1)n a good strategy would be to consider odd and even indices separately.
Thus we shall consider the two subsequences,

a2n+1 =
(−1)2n+1

2n + 1
+

1 + (−1)2n+1

2
= − 1

2n + 1
→ 0 for n → ∞,

and

a2n =
(−1)2n

2n
+

1 + (−1)2n

2
=

1
2n

+ 1 → 1 for n → ∞.

It follows that we have two different candidates of the limit, and since a limit is always unique, we
conclude that it does not exist and the sequence is divergent. ♦

Example 1.8 . Check if the sequence

an =
1
n

sin5 n

is convergent or divergent. Find the limit if the sequence is convergent.

This example is trying to pull the reader’s leg, because one is persuaded to concentrate on the mys-
terious term sin5 n, which apparently cannot be controlled.

Notice that we always have | sin x| ≤ 1, so

|an − 0| = |an| =
1
n
| sin5 n| ≤ 1

n
→ 0 for n → ∞,

and we conclude that

|an − 0| → 0 for n → ∞,

The sequence is convergent according to the definition and its limit is 0. ♦

Sequences in General
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Example 1.9 . Check if the sequence

an =
√

n + 1 −√
n

is convergent or divergent. Find its limit if it is convergent.

This example is of the type “∞−∞′′. It follows from

(a + b)(a − b) = a2 − b2,

that

a − b =
a2 − b2

a + b
.

Then putting a =
√

n + 1 and b =
√

n we find

an =
√

n + 1 −√
n = a − b =

a2 − b2

a + b
=

(n + 1) − n√
n + 1 +

√
n

=
1√

n + 1 +
√

n
→ 0 for n → ∞,

thus the sequence is convergent and its limit is 0. ♦

Sequences in General
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Example 1.10 . Check if the sequence

an =
(

2n − 3
3n + 7

)4

is convergent or divergent. Find its limit if it is convergent.

The function f(x) = x4 is continuous and independent of n, and the “inner part” converges,

2n − 3
3n + 7

=
2 − 3

n

3 +
7
n

→ 2 − 0
3 + 0

=
2
3

for n → ∞.

In this case f and the limit can be interchanged, hence the sequence is convergent, and the limit is

lim
n→∞ an = f

(
lim

n→∞
2n − 3
3n + 7

)
= f

(
2
3

)
=
(

2
3

)4

=
16
81

.

In practice, the following shorter version is also accepted,

an =
(

2n − 3
3n + 7

)4

=

⎛
⎜⎝2 − 3

n

3 +
7
n

⎞
⎟⎠→

(
2
3

)4

=
16
81

for n → ∞,

which is correct, as long as the exponent is a constant, i.e. it does not depend on n. ♦

Example 1.11 . Check if the sequence

an =
n4/3 cos

(
n!π/(

√
2)n
)

n + 1

is convergent or divergent. Find the limit in case of convergence.

We first rewrite an in the following way,

an =
n4/3

n + 1
cos
(
n!π/(

√
2)n
)

.

The first factor tends to ∞,

n4/3

n + 1
=

3
√

n

1 +
1
n

→ ∞ for n → ∞,

which, however, in general is not sufficient, because cosx during the limit might lie close to 0, so we
get the type of convercence “∞ · 0”.

Notice that if we only consider even indices, then we get rid of the square root. By the chance of
parameter n → 2n we get

cos
(

(2n)!
2n

π

)
= cos

(
1 · 2 · 3 · 4 · · · 2n
1 · 2 · 1 · 2 · · · 2 π

)
= 1 for n ≥ 2,

Sequences in General
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because (2n)!/2n is even for n ≥ 2. This proves that we have for n ≥ 2,

a2n =
(2n)4/3

2n + 1
cos
(

(2n)!
2n

π

)
=

(2n)4/3

2n + 1
→ ∞ for n → ∞,

and the sequence is divergent. ♦

Example 1.12 . Check if the sequence

an = cot
1
n
− n

is convergent or divergent. Find the limit in case of convergence

This is a tricky example, in which one must

1) replace 1/n by x = 1/n, i.e. x → 0+ for n → ∞,

2) apply that cot x = cos x/ sinx, followed by putting everything on the same fraction line,

3) apply Taylor’s formula in both the numerator and the denominator, followed by some reduction,

4) finally take the limit x → 0+.

The details of this program look like the following:

an = cos
1
n
− n = cot x − 1

x
=

cos x

sinx
− 1

x
=

x cos x − sinx

x sinx

=
x

{
1 − 1

2
x2 + x2ε(x)

}
−
{

x − 1
6
x3 + x3ε(x)

}
x{x + xε(x)} =

x − 1
2
x3 − x +

1
6
x3 + x3ε(x)

x2{1 + ε(x)}
= −1

3
x · 1 + ε(x)

1 + ε(x)
→ −1

3
· 0 · 1 + 0

1 + 0
= 0 for x → 0 + .

We conclude that the sequence is convergent with the limit 0. ♦

Example 1.13 . Check if the given sequence is convergent or divergent. Find the limit in case of
convergence.

an =
3n + (−2)n

3n+1 + (−2)n+1
, n ∈ N.

When we estimate expressions consisting of two terms the trick is to put the numerically larger and
dominating term outside the expression as a factor. We get by using this principle in both the
numerator and the denominator that

an =
3n + (−2)n

3n+1 + (−2)n+1
=

3n

3n+1
·

1 +
(
−2

3

)n

1 +
(
−2

3

)n+1 =
1
3
·

1 +
(
−2

3

)n

1 +
(
−2

3

)n+1 .

Sequences in General
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Now
∣∣∣∣−2

3

∣∣∣∣ < 1, so
(
−2

3

)n

→ 0 and
(
−2

3

)n+1

→ 0 for n → ∞ (standard sequences), hence according

to the rules of calculations,

an =
1
3
·

1 +
(
−2

3

)n

1 +
(
−2

3

)n+1 → 1
3
· 1 + 0
1 + 0

=
1
3

for n → ∞.

The sequence is convergent and its limit is

lim
n→∞ an =

1
3
. ♦

Example 1.14 . Check if the sequence

an =
n(n + 2)

n + 1
− n3

n2 + 1

is convergent or divergent. Find the limit in case of convergence.

The type of convergence is “∞ − ∞”. We note that both terms behave approximately as n, so we
subtract n from both terms:

an =
n(n + 2)

n + 1
− n3

n2 + 1
=
{

n(n + 2)
n + 1

− n

}
−
{

n3

n2 + 1
− n

}
=

n2 + 2n − n2 − n

n + 1
− n3 − n3 − n

n2 + 1

=
n

n + 1
+

n

n2 + 1
= 1 − 1

n + 1
+

1

n +
1
n

→ 1 − 0 + 0 = 1 for n → ∞.

We see that the sequence is convergent with the limit 1.

A simpler variant is obtained if we immediately see that

n(n + 2)
n + 1

=
n2 + 2n + 1 − 1

n + 1
= n + 1 − 1

n + 1
,

where we use that n2 + 2n + 1 = (n + 1)2. ♦

Example 1.15 . Check if the sequence

an = 3
√

n3 + 1 − n

is convergent or divergent. Find the limit in case of convergence.

The type is “∞−∞”. In this case the trick a − b = (a2 − b2)/(a + b) does not work. However, we
succeed by a small modification. First notice that the cubic is removed by taking the third power, i.e.
we start by considering a3 − b3 where a = 3

√
n3 + 1 amd b = n. Then

1 = (n3 + 1) − n3 = a3 − b3 = (a − b)(a2 + ab + b2),

hence by a rearrangement,

an = 3
√

n3 + 1 − n = a − b =
a3 − b3

a2 + ab + b2
=

1
( 3
√

n3 + 1)2 + n 3
√

n3 + 1 + n2
→ 0

Sequences in General
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for n → ∞, and we see that the sequence is convergent with the limit 0.

Alternatively one applies Taylor’s formula on 3
√

1 + x, i.e.

(1 + x)1/3 = 1 +
(

1/3
1

)
x + xε(x) = 1 +

1
3

x + xε(x),

where ε(x) → 0 for x → 0. By a small rearrangement, in which we put x = 1/n3 → 0 for n → ∞ we
get

an = 3
√

n3 + 1 − n = n
3

√
1 +

1
n3

− n = n

{
1 +

1
3

1
n3

+
1
n3

ε

(
1
n

)}
− n

=
1
3

1
n2

+
1
n2

ε

(
1
n

)
→ 0 for n → ∞,

and the sequence is convergent with the limit 0. ♦

Sequences in General
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Example 1.16 . Check if the sequence

an = (2n + 3n)1/n

is convergent or divergent. Find the limit in case of convergence.

The trick in case of expressions with several terms is always to put the dominating term as a factor.
Here, 3n � 2n, hence

(1) an = (2n + 3n)1/n = 3
{

1 +
(

2
3

)n}1/n

We get from 1 < 1 +
(

2
3

)n

< 2,

3 < an = 3
{

1 +
(

2
3

)n}1/n

< 3 n
√

2 → 3 for n → ∞.

Then all terms an lie between 3 and a sequence which converges towards 3, hence (an) is convergent
with the limit 3.

In a variant we can instead take the logarithm of (1),

ln an = ln 3 +
1
n

ln
(

1 +
(

2
3

)n)
→ ln 3 + 0 · 0 = ln 3 for n → ∞,

which shows that (an) is convergent with the limit 3. ♦

Example 1.17 Let (an) be some real sequence which is convergent with the limit a, and let the
sequence(bn) be given by

bn =
(
1 +

an

n

)n

, n ∈ N.

Prove that (bn) is convergent and find its limit.

(Hint: One may apply Taylor’s formula for ln(1 + x).)

Taylor’s formula for ln(1 + x) gives

ln(1 + x) = x − 1
2

x2 + x2ε(x).

Since an → a for n → ∞, there exists an N ∈ N, such that∣∣∣an

n

∣∣∣ < 1 for n ≥ N.

By putting x = an/n it follows from Taylo’s formula for n ≥ N that

ln bn = n ln
(
1 +

an

n

)
= n

{
an

n
− a2

n

2n2
+

a2
n

n2
ε
(an

n

)}

= an − 1
n

a2
n +

1
n

a2
n

n2
ε
(an

n

)
→ a − 0 + 0 = a for n → ∞.

Sequences in General
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Since exp is continuous, we finally conclude that

bn = exp(ln bn) → exp a = ea for n → ∞,

and (bn) is convergent with the limit ea. ♦

Sequences in General
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2 Summable sequences

Example 2.1 . Given a real sequence (an). Define another sequence (bn) by

bn =
1
n
{a1 + · · · + an} , n ∈ N.

Prove that if (an) is convergent with the limit a, then (bn) is also convergent with the limit a.
Give an example of a divergent sequence (an), for which the corresponding sequence (bn) is convergent.

We say that a sequence (an) is summable, if its corresponding sequence (bn) defined as above is
convergent. We shall prove that if (an) is convergent, then (an) is also summable. Then we shall
construct an example of a summable sequence (an), which is not convergent. Hence, there are more
summable sequences that convergent ones.

1) Assume that an → a for n → ∞. This means that one to every ε > 0 can find some N = N(ε) ∈ N,
such that

(2) |a − an| <
ε

2
for every n ≥ N(ε).

Then

|a − bn| =
∣∣∣∣a − 1

n
(a1 + · · · + an)

∣∣∣∣ = 1
n
|(a − a1) + (a − a1) + · · · + (a − an)| ≤ 1

n

n∑
k=1

|a − ak|.

If n > N(ε), we split the sum in the following way

|a − bn| ≤ 1
n

N(ε)∑
k=1

|a − ak| + 1
n

n∑
k=N(ε)+1

|a − ak| ≤ 1
n

N(ε)∑
k=1

|a − ak| + n − N(ε)
n

· ε

2

≤ 1
n

N(ε)∑
k=1

|a − ak| + ε

2
,

since the n − N(ε) terms of the latter sum are all < ε/2 by (2).

Since N(ε) is fixed (corresponding to the given ε > 0), the sum is

N(ε)∑
k=1

|a − ak|

i.e. a constant, which is independent of n. Thus, there exists an N1 ≥ N(ε), such that

1
n

N(ε)∑
k=1

|a − ak| <
ε

2
for ethvert n ≥ N1.

As a conclusion we get that we to every ε > 0 can find an N1 ∈ N, such that

|a − bn| ≤ 1
n

N(ε)∑
k=1

|a − ak| + ε

2
<

ε

2
+

ε

2
= ε for ethvert n ≥ N1.

This is precisely the definition of bn → a for n → ∞.
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2) The classical example of a divergent sequence (an), for which (bn) is convergent, is

an = (−1)n−1, where b2n−1 =
1

2n − 1
og b2n = 0.

Clearly, bn → 0 for n → ∞.

A slightly more “wild” example is

a2n−1 =
√

n and a2n = −√
n.

In this case,

b2n−1 =
√

n

2n − 1
og b2n = 0,

thus bn → 0 for n → ∞.

Remark 2.1 . It follows from

nbn = a1 + a2 + · · · + an,

that b1 = a1 and

an = nbn − (n − 1)bn−1 for n ≥ 2.

Example 2.2 We define for a real sequence (an) another sequence (bn) by

bn =
1
n
{a1 + · · · + an}, n ∈ N.

Prove that if an → ∞ for n → ∞, then bn → ∞ for n → ∞.
Give an example of a sequence (an) which does not tend towards ∞ for n tending towards ∞, for
which the corresponding sequence (bn) fulfils bn → ∞ for n → ∞.

First note that if |an| ≤ c, then also |bn| ≤ c. It follows that if bn → ∞, then (an) must be unbounded.

Assume that an → ∞ for n → ∞. This means that we to every c > 0 can find an N = N(c) ∈ N,
such that (e.g.)

an > 3c for every n ≥ N(c).

If so, we have for n > N(c) that

bn =
1
n

N(c)∑
k=1

ak +
1
n

n∑
k=N(c)+1

ak >
1
n

N(c)∑
k=1

ak +
n − N(c)

n
· 3c.

To avoid that the finite sum is negative we choose N1 > 3N(c), such that∣∣∣∣∣∣
1
n

N(c)∑
k=1

ak

∣∣∣∣∣∣ < c

[
and trivially

3N(c)
n

< 1
]

for n ≥ N1.
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Then for every n ≥ N1,

bn >
1
n

N(c)∑
k=1

ak +
n − N(c)

n
· 3c > −c + 3c − c = c.

Since for every c > 0 we can choose N1, such that

bn > c for every n ≥ N1,

we conclude that bn → ∞ for n → ∞.

By the introducing remark, bn → ∞ implies that (an) in unbounded. We note that an unbounded
sequence does not necessarily tend towards ∞. Choose e.g.

a2n = 2n and a2n−1 = 0.

Then (an) is unbounded, and it does not tend towards ∞. We note that b1 = 0 and

b2n =
1
2n

(2 + 4 + · · · + 2n) =
1
n

(1 + 2 + · · · + n) =
1
n
· n(n + 1)

2
=

n + 1
2

→ ∞,

and

b2n+1 =
1

2n + 1
(2 + 4 + · · · + 2n) =

n(n + 1)
2n + 1

→ ∞,

thus. bn → ∞.

We have here used that

(3) 1 + 2 + · · · + n =
1
2

n(n + 1), n ∈ N.

For completeness, we see that this is true for n = 1, 2, 3. If (3) holds for some n ∈ N, then we get for
the following term by using (3) that

1 + 2 + · · · + n + (n + 1) =
1
2

n(n + 1) + (n + 1) =
1
2

(n + 1)(n + 2),

which we recognize as (3) where n has been replaced by n+1. Then (3) follows in general by induction
(the boot strap principle), because if (3) holds for some n, then it also holds for the following term,
etc.. Since (3) is true for n = 1 (in the beginning), we see that (3) is true for all n ∈ N. ♦
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3 Recursively given sequences

Example 3.1 Let the sequence (an) be recursively given by

a1 =
1√
2
, an+1 =

√
an +

1
2
, n ∈ N.

Prove that (an) is convergent and find the limit.

We shall first find the possible limit.

Assume that the sequence is convergent, an → a for n → ∞. Since taking the square root of
nonnegative numbers is a continuous function, we get by taking the limit in

an+1 =

√
an +

1
2

> 0,

that

a =

√
a +

1
2
≥ 0, i.e. a2 = a +

1
2

where a ≥ 0.

This equation of degree two has the roots a = (1 ± √
3)/2. Since a > 0, the only possible limit is

a =
1 +

√
3

2
.
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It does not yet follow that the sequence actually is convergent. We continue in the following way.

A sequence (an) is convergent, if it is (weakly) increasing and bounded from above.

1) The sequence is bounded from above.

Obviously, a1 = 1/
√

2 < (1 +
√

3)/2 [the possible limit]

If an < (1 +
√

3)/2, then it follows for the next element that also

an+1 =

√
an +

1
2

<

√
1 +

√
3

2
=

1 +
√

3
2

,

where we have used that(
1 +

√
3

2

)2

=
1
4

{
1 + 3 + 2

√
3
}

= 1 +
√

3
2

.

Then it follows by induction that (an) is bounded from above.

Alternatively it follows from the assumption an < 3/2 that

an+1 =

√
an +

1
2

<

√
3
2

+
1
2

=
√

2 <
3
2
,

hence by induction, an < 3/2, and it is bounded from above.

2) The sequence is increasing.

Firstly,

a2 =

√
1√
2

+
1
2

>

√
1
2

=
1√
2

= a1, i.e. a2 > a1.

Then assume that an > an−1 for some n ≥ 2. (This is at least true for n = 2). Then

an+1 − an =

√
an +

1
2
−
√

an−1 +
1
2

=
an − an−1√

an +
1
2

+
√

an−1 +
1
2

> 0,

and it follows by induction that (an) is increasing.

3) We have now proved that (an) is convergent.

We showed in the beginning that a = (1 +
√

3)/2 is the only possible limit

Since the limit exists, we must have the limit a = (1 +
√

3)/2. ♦

Recursively given sequences
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Example 3.2 . Let the sequence (an) be recursively given by

a1 = 1, an+1 =
√

3an, n ∈ N.

Prove that (an) is convergent, and find its limit.

If an → a for n → ∞, it follows by taking the limit in the recursion formula,

a =
√

3a, or a2 = 3a by a squaring.

We use here that taking the square root is a continuous operation, so the limit and the square root
can be interchanged. Thus we conclude that a = 0 and a = 3 are the only possible limits. We shall
prove that the sequence indeed is convergent. (Our assumption above).

1) The sequence is bounded.

If a ≥ 1, then an+1 ≥ √
3 ≥ 1, i.e. (an) is bounded from below. It follows in particular that if the

limit a exists, then we must have a = 0, thus a = 3 is the only possible limit.

If an < 3, then an+1 =
√

3an <
√

3 · 3 = 3, and (an) is also bounded from above.

2) The sequence is increasing.

In fact,

an+1 − an =
√

3an −√3an−1 =
√

3 · {√an −√
an−1}

shows that if an > an−1 ≥ 1, then also
√

an >
√

an−1, hence an+1 − an > 0, and we have
an+1 > an.

From a2 =
√

3 > 1 = a1 follows that a2 > a1. Then by induction,

1 = a1 < a2 < · · · < an < an+1 < · · · .

3) Conclusion.

An increasing bounded sequence (an) is convergent, so the given sequence is convergent. The only
possible limits were a = 0 and a = 3. But since all an ≥ 1, we can exclude a = 0, and

lim
n→∞ an = 3. ♦
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Example 3.3 Define the sequence (an) by

a1 = k, an+1 =
1
2

(
an +

p

an

)
, n ∈ N,

where k > 0 and p > 0 are any positive numbers. Prove that a2
n ≥ p for every n ≥ 2 and that the

sequence a2, a3, a4, · · · , is weakly decreasing. Then prove that (an) is convergent with the limit
√

p.
Calculate a3 with 4 decimals i the case k = 2, p = 3, and compare the result with the value on the
pocket calculator of

√
3. Finally, describe the connection between the sequence and Newton’s iteration

method of solution of the equation x2 − p = 0.

1) Proof of a2
n ≥ p for every n ≥ 2.

If we put f(t) =
1
2

(
t +

p

t

)
, t > 0, then

an+1 = f(an) ≥ min
t>0

f(t) for n ≥ 1.

Since

f ′(t) =
1
2

(
1 − p

t2

)
= 0 for t =

√
p > 0,

and f(t) → ∞ for t → 0+ and for t → ∞, we must have that t =
√

p corresponds to a minimum,
hence

an+1 ≥ f(
√

p) =
1
2

(√
p +

p√
p

)
=

√
p for n ≥ 1,

and an ≥ √
p, and thus a2

n ≥ p for all n ≥ 2.

2) Proof of the claim that (an) is weakly decreasing for n ≥ 2.

We first prove that a2 ≥ a3. This follows from

a2 − a3 =
1
2

(
a1 +

p

a1

)
− 1

2

(
a2 +

p

a2

)
=

1
2
(a1 − a2) +

p

2

(
1
a1

− 1
a2

)
=

a1 − a2

2a2

{
a2 − p

a1

}

=
1

2a2

1
2

(
k − p

k

) 1
2

(
k − p

k

)
=

1
8a2

(
k − p

k

)2

≥ 0.

Then assume that an−1 ≥ an, i.e. an−1 − an ≥ 0 for n ≥ 3. This is true for n = 3, according to
our first result. then

an − an+1 =
1
2

(
an−1 +

p

an−1

)
− 1

2

(
an +

p

an

)
=

1
2
(an−1 − an) − p

2

(
1
an

− 1
an−1

)

=
1
2
(an−1 − an) · anan−1 − p

anan−1
.

By 1. we have an ≥ √
p and √

an−1 ≥ √
p, so anan−1 − p ≥ 0.

By the inductions assumption we get an−1 − an ≥ 0.

We see that we also have an − an+1 ≥ 0, hence an ≥ an+1.

Then by induction, at an−1 ≥ an for all n ≥ 2, and the sequence is weakly decreasing.
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3) Since (an) is bounded from below and weakly decreasing, it is convergent.

4) The function f(t) =
1
2

(
t +

p

t

)
is continuous, hence we can find the limit value by taking the

limit in the recursion formula, i.e. replace an+1 and an by the limit value a. We get the equation

a =
1
2

(
a +

p

a

)
, i.e. a2 = p ved omordning.

Since every an ≥ √
p, we have a ≥ √

p, it is in particular positive. It therefore follows that a =
√

p.

5) When k = 2 and p = 3, we get

a1 = 2 og an+1 =
1
2

(
an +

3
an

)
.

Hence

a2 = 1, 750000, a3 = 1, 732143, a4 = 1, 732051.

By a comparison with the value on a pocket calculator we see that a3 agrees on the first 3 decimals
with

√
3 and a4 agrees on the first 6 decimals with

√
3.
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6) Comparison with the Newton-Raphson iteration method.

Let F (x) = x2 − p, then F ′(x) = 2x, hence

g(x) = x − F (x)
F ′(x)

= x − x2 − p

2x
=

1
2

(
x +

p

x

)
.

The iteration formula becomes

an+1 =
1
2

(
an +

p

an

)
,

which is precisely the considered recursive sequence. ♦

Example 3.4 Let the sequence (an) be given by a1 = 0, a2 = 1, and each of the following terms as
the arithmetical mean of the two preceding terms:

a3 =
1
2
, a4 =

3
4
, a5 =

5
8
, . . . , an =

1
2
{an−1 + an−2}, . . . .

Prove by induction that

an =
2
3
· (−1)n−2

2n−1
+

2
3
.

Then prove that the sequence (an) is convergent with the limit 2/3.

For n = 1 we get
2
3
· (−1)n−2

2n−1
+

2
3

= −2
3

+
2
3

= 0 = a1.

For n = 2 we get
2
3
· (−1)n−2

2n−1
=

1
3

+
2
3

= 1 = a2.

For n = 3 we get
2
3
· (−1)n−2

2n−1
= −1

6
+

2
3

=
1
2

= a3.

Assume that

an−2 =
2
3
· (−1)n

2n−3
+

2
3

og an−1 =
2
3
· (−1)n−1

2n−2
+

2
3

for some n ≥ 3. This is at least true for n = 3 and n = 4. Then by an addition,

an =
1
2
(an−1 + an−2) =

2
3

+
2
3
· 1
2

{
(−1)n

2n−3
+

(−1)n−1

2n−2

}
=

2
3

+
2
3
· (−1)n

2n−1
,

which has the same structure, and the formula follows by induction.

Since∣∣∣∣an − 2
3

∣∣∣∣ = 2
3
· 1
2n−1

=
4
3
· 1
2n

→ 0 for n → ∞,

it follows by the definition that an → 2
3
.
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Example 3.5 Consider the recursively given sequence (an), where a1 = c ∈ R, an+1 = f(an) for
f(x) = x + x2. The function f has the fix point x0 = 0. Show graphically that the fix point is
attractive for some values of c < 0, and repelling for every c > 0.

It follows from the equation f(x0) = x0, i.e. x2
0 = 0, that x0 = 0, hence x0 = 0 is a fix point. Since

f(x) = x2 + x =
(

x +
1
2

)
− 1

4
,

it is easy to sketch the graph.

0

1

2

3

–1.5 –1 –0.5 0.5 1 1.5
x

It is difficult to sketch on the figure in MAPLE the lines which shows the convergence, so this is left
to the reader. We see that x0 is attractive for c ∈ [−1, 0] and repelling for c ∈ R \ [−1, 0]

We shall now prove these claims.

1) If c > 0, then f(c) = c2 + c > c, and f(c) moves away from x0 = 0, thus the point is repelling.

2) If r c < −1, then f(c) = c2 + c = |c|(|c| − 1) > 0, and we are back in case 1..

3) If either c = 0 or c = −1, then f(c) = 0. Since trivially f(0) = 0 in all the following iterations, it
follows that x0 = 0 is attractive for these values of c.

4) Finally, if −1 < c < 0, then f(c) = c + c2 = c(1 + c) < 0, and f(c) > c, hence

c < f(c) < 0,

and we conclude that the fix point is attractive for c ∈ ] − 1, 0[. ♦
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Example 3.6 Consider the recursively given sequence (an) where

a1 = c, an+1 = −a3
n.

1) Compute for c = −1 the terms a2, . . . , a5, and give a graphical discription.

2) The same for c = −1/2.

Again, it is difficult to give all necessary details on a figure in MAPLE-figure, so these additions are
left to the reader.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

1) If c = −1, then

a1 = −1, a2 = 1, a3 = −1, a4 = 1, a5 = −1,

and in general an = (−1)n.

2) If c = −1/2, then

a1 = −1
2
, a2 =

1
23

, a3 = − 1
29

, a4 =
1

227
, a5 = − 1

281
,

and in general

an = (−1)n2−(3n−1), n ∈ N. ♦
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Example 3.7 Let the sequence (an) be recursively given by

a1 = 100, an+1 = 2
√

an − 1.

1) Prove by induction that an > 1 for every n ∈ N.

2) Prove by induction that the sequence (an) is decreasing.

3) Finally, prove that the sequence (an) is convergent, and find its limit value.

1) Assume that an > 1. Then an+1 = 2
√

an − 1 > 2 · 1 − 1 = 1, and we see that an > 1 implies that
also the successor satisfies an+1 > 1. Since a1 = 100 > 1, the claim follows by induction, hence
(an) is bounded from below.

2) We get by insertion, a2 = 2
√

100 − 1 = 19 < 100 = a1, thus a2 < a1.

Assume that an−1 > an (this is true for n = 2). When n is replaced by n + 1, we get

an − an+1 = (2
√

an−1 − 1) − (2
√

an − 1) = 2(
√

an−1 −√
an) > 0,

hence an > an+1. We conclude by induction that

a1 > a2 > a3 > · · · > an−1 > an > an+1 > · · · ≥ 1.

Recursively given sequences
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3) Since (an) is decreasing and bounded from below, it follows that (an) is convergent. Denote the
limit value by a. By taking the limit of the recursion formula we get

0 = lim
n→∞ an+1 − lim

n→∞ 2
√

an + 1 = a − 2
√

a + 1 = (
√

a − 1)2,

hence
√

a = 1, and thus limn→∞ an = a = 1.

Remark 3.1 If we consider the function f(x) = 2
√

x−1, where f ′(x) =
1√
x

, then f ′(x0) = f ′(1) = 1,

corresponding to a limiting case, in which one usually can say nothing about the convergence. This is
also demonstrated by an iteration on a pocket calculator, because the approximation becomes slower
the closer one is to a = 1,

a5 = 3, 26904, a10 = 1, 69909, a15 = 1, 39299, a20 = 1, 26997. ♦

Example 3.8 Find the smallest positive solution of the equation

cos x =
1

1 + 25 · 10−6/ sinx

with four decimals by using a convenient iteration method. Then comment on the convergence.

Remark 3.2 This is a very vicious example! ♦

The difficulty of this example apparently stems from the denominator on the right hand side. First
we rewrite in the following way

(4) cos x =
1

1 + 25 · 10−6/ sin x
=

40000 sin x

40000 sin x + 1
= 1 − 1

40000 sin x + 1
.

It is easily seen that x > 0 must be small, hence by Taylor’s formula

sinx ≈ x og cos x ≈ 1 − x2

2
,

and (4) can approximatively be written

1 − x2

2
≈ 1 − 1

40000x + 1
, i.e. x2(40000x + 1) ≈ 2.

We must in particular have 40000x � 1, thus we have in the first iteration (the starting value)

x ≈ 1/ 3
√

20000 ≈ 0, 03684.

Then the method is reduced to the well-known regula falsi, i.e. insert

x1 = 0, 03683, x2 = 0, 03684, x3 = 0, 03685

into (4) and compare,

Recursively given sequences
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n xn cos xn 1 − 1
40000 sin x + 1

Left side relation right side

1 0,03683 0,999321852 0,999321513 >
2 0,03684 0,999321484 0,999321697 <
3 0,03685 0,999321116 0,999321881 <

We are just inside the range of the accuracy of the pocket calculator, because the factor 40000 gives
an error of rounding off which is 40000 times bigger than usual (i.e. 40000 times 10−12).

It is quite ironical that our first approximation by using Taylor’s formula in fact gives the best
approximation with four decimals,

x ≈ 0, 03684,

which should be compared the the interpolation of the table,

x ≈ 0, 036836.

If we instead apply the Newton-Raphson iteration on

F (x) = cosx +
1

40000 sin x + 1
− 1

where

F ′(x) = − sinx − cos x

(40000 sin x + 1)2

we get the auxiliary function

g(x) = x − F (x)
F ′(x)

= x +
cos x − 1 +

1
40000 sin x + 1

sinx +
cos x

(40000 sin x + 1)2
.

Even if we choose the value x0 = 0, 037 as our start [where we have an eye to the value 0,03684] the
iteration is extremely slow,

x1 = 0, 036991, x2 = 0, 036982, x3 = 0, 036974.

If we instead rewrite (4) to

40000 cos x · sinx + cos x = 40000 sin x,

i.e. to

F (x) = 20000 sin 2x − 40000 sin x + cos x = 0,

then

F ′(x) = 40000 cos 2x − 40000 cos x − sinx,

and we get by the Newton-Raphson iteration

xn+1 = xn − 20000 sin 2xn − 40000 sin xn + cos xn

40000 cos 2xn − 40000 cos xn − sinxn

with starting value x0 = 0, 037, the first values

x1 = 0, 036837, x2 = 0, 036836, x3 = 0, 036836.

Recursively given sequences
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Example 3.9 Given the function

F (x) = cosx +
1

coshx
.

1) Write down the Newton-Raphson iteration formula for the solution of the equation F (x) = 0.

2) Apply a programmable pocket calculator to the Newton-Raphson iteration and find the first four
positive zeros of F (x) = 0 by choosing the starting values

x
(1)
0 =

π

2
, x

(2)
0 =

3π
2

, x
(3)
0 =

5π
2

, x
(4)
0 =

7π
2

.

Apply 3 iterations and use 5 decimals.

1) Since

F ′(x) = − sinx − sinhx

cosh2 x
= − sinx · cosh2 x + sinhx

cosh2 x
,

the Newton-Raphson iteration is written

xn+1 = xn − F (xn)
F ′(xn)

= xn +
cos xn · cosh2 xn + coshxn

sinxn · cosh2 xn + sinhxn

.

2) The requested iterations give with 5 decimals,

n 1 2 3 4
x

(n)
0 1,57080 4,71239 7,85398 10,99560

x
(n)
1 1,86265 4,69410 7,85476 10,99550

x
(n)
2 1,87507 4,69409 7,85476 10,99550

x
(n)
3 1,87510 4,69409 7,85476 10,99550

Example 3.10 Given the function

F (x) = ex sinx − 1, x ∈
[
0,

π

2

]
.

Prove that the equation F (x) = 0 has precisely one solution α, and find this by an iteration in two
steps.

Since both ex and sinx are increasing in
[
0,

π

2

]
, and F (x) is continuous with F (0) = −1 < 0 and

F
(π

2

)
− 1 > 0, there exists precisely one zero α ∈

]
0,

π

2

[
.

Since

F ′(x) = ex(sinx + cos x),

Recursively given sequences
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it follows by Newton-Raphson iteration that

αn+1 = αn − F (αn)
F ′(αn)

= αn − eαn sinαn − 1
eαn(sinαn + cos αn)

.

The next question depends on the choice of starting value. In the specific case, however, the process
is fairly robust.

If we choose α0 = 1, then we get successively

α1 = 0, 657, α2 = 0, 591, α3 = 0, 5885.

If we instead choose α0 = 0, 5 then we also get α3 = 0, 5885.

Recursively given sequences
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4 Sequences of functions

Example 4.1 Prove that the sequence of functions

fn(x) =
x

x2 + 1
+

x

x2 + 4
+ · · · + x

x2 + n2
,

where fn : [−1, 1] → R, is pointwise convergent on the interval [−1, 1].
Hint. Apply the General principle of convergence.
Apply a programmable pocket calculator to sketch the graph of fn(x) for some large n.
It can be proved that fn converges uniformly on the interval [−1, 1] towards the function

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
π

e2πx + 1
e2πx − 1

− 1
x

]
for x = 0,

0 for x = 0.

For any x ∈ [−1, 1] we have

|fn+m(x) − fn(x)| =
∣∣∣∣ x

x2 + (n + 1)2
+ · · · + x

x2 + (n + m)2

∣∣∣∣ ≤
m∑

j=1

1
(n + j)2

.

It can be proved from the Theory of Fourier Series that
∑∞

n=1

1
n2

=
π2

6
is convergent. This means

that to any ε > 0 there exists an N = N(ε) ∈ N, such that

m∑
j=1

1
(n + j)2

≤
∞∑

j=1

1
(n + j)2

=
∞∑

j=n+1

1
j2

< ε for alle n ≥ N(ε).

By insertion we get that |fn+m(x)−fn(x)| < ε for n ≥ N(ε), not just pointwisely, but even uniformly.

Since every fn, n ∈ N is an odd function, we shall only sketch the graph of fn for x ∈ [0, 1].
That the limit function f(x) is precisely the given function can either be shown by a formula from
Complex Function Theory or by some clever application of a Fourier series. Note that

f(x) =
1
2

{
π coth(πx) − 1

x

}
for x = 0. ♦

Example 4.2 Prove that the sequence of functions fn : R → R, defined by

fn(x) =
1 + x4

(1 + x2)(n + x4)
, n ∈ N,

converges uniformly towards the function 0.

First variant. Since 0 <
1 + x4

n + x4
≤ 1, and

√
y ≥ y for y ∈ ]0, 1], we get

1 + x4

n + x4
≤
√

1 + x4

n + x4
, where we have put y =

1 + x4

n + x4
.

Sequences of functions
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
x

Hence we have the estimate

0 < fn(x) =
1 + x4

(1 + x2)(n + x4)
≤

√
1 + x4

1 + x2
· 1√

n + x4
≤ 1 · 1√

n
→ 0 for n → ∞,

independent of x ∈ R, so (fn) converges uniformly towards 0 over R.

Second variant. Put u = x2. Then by a decomposition with respect to u,

0 < fn(x) =
1 + u2

(1 + u)(n + u2)
=

2
n + 1

· 1
1 + u

+
1

1 + u

{
1 + u2

n + u2
− 2

n + 1

}

=
2

n + 1
· 1
1 + u

+
1

1 + u

{
u2 − 1
n + u2

+ 2
[

1
n + u2

− 1
n + 1

]}

=
2

n + 1
· 1
1 + u

+
u − 1
n + u2

+
2

1 + u
· 1 − u2

(n + u2)(n + 1)

=
2

n + 1
· 1
1 + u

+
u − 1
n + u2

{
1 − 2

n + 1

}
.

Since
u − 1
n + u2

has its maximum for u =
√

n + 1, and since 1 − 2
n + 1

∈ [0, 1[, we get the estimate

0 < fn(x) <
1

n + 1
+

√
n + 1 − 1

n + n + 1
· 1 <

2
n + 1

+
√

n + 1
2n + 1

→ 0 for n → ∞,

independently of u ∈ R+ ∪ {0}, hence also independently of x ∈ R. This proves that (fn) converges
uniformly towards 0 all over R.

Sequences of functions
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Example 4.3 Find a sequence of C1-functions fn : [0, 1] → R, which converges uniformly on [0, 1]
towards a C1-function f : [0, 1] → R, and for which the sequence of derivatives (f ′

n) is pointwise
convergent, but not converging towards the function f ′.

The best strategy must be first to choose some convenient pointwisely convergent sequence of functions
(f ′

n), where the limit function is not continuous, and then integrate the terms of this sequence from
0.

It is well-known that gn(x) = xn is pointwise convergent towards the discontinuous function

g(x) =
{

0 for x ∈ [0, 1[,
1 for x = 1.

Choose

fn(x) =
∫ x

0

gn(t) dt =
xn+1

n + 1
.

It is then obvious that

f ′
m(x) = xn = gn(x) → g(x) for n → ∞.

It follows from the estimate

|fn(x) − 0| =
xn+1

n + 1
≤ 1

n + 1
→ 0 for n → ∞, alle x ∈ [0, 1],

that fn → 0 uniformly. It is obvious that f(x) = 0 is a differentiable function and f ′(x) = 0, which is
= lim f ′

n(x) = g(x).

Sequences of functions
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By using the example above (one introduces a singularity at x = 1) it is possible to construct a
sequence of functions (fn), which converges uniformly towards 0 in [0, 1] where

lim
n→∞ f ′

n(x) = 0 for ethvert x ∈ [0, 1] ∩ Q.

The construction, however, uses series which formally have not yet been introduced.

Example 4.4 For every n ∈ N we put

fn(x) = nxe−nx2
, x ∈ R.

Find limn→∞ fn(x), and prove that

lim
n→∞

∫ 1

0

fn(x) dx =
∫ 1

0

lim
n→∞ fn(x) dx.

1) Pointwise convergence. What is here obvious? When x = 0 is fixed, then

fn(0) = 0 → 0 = f(0) for n → ∞.

If instead x = 0 (fast), it follows by the magnitudes that

fn(x) = x · n(
ex2
)2 → 0 for n → ∞, da ex2

> 1.

As a conclusion we get that (fn) is pointwisely convergent with the limit function

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1
x

f(x) = lim
n→∞ fn(x) = 0.
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2) The integrals. It follows immediately that∫ 1

0

lim
n→∞ fn(x) dx =

∫ 1

0

f(x) dx =
∫ 1

0

0 dx = 0.

Then we get by the substitution u = nx2, du = 2nxdx, that∫ 1

0

fn(x) dx =
∫ 1

0

nxe−nx2
dx =

1
2

∫ n

0

e−u du =
1
2
(
1 − e−n

)
.

Finally, by taking the limit,

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

1
2
(
1 − e−n

)
=

1
2
= 0 =

∫ 1

0

lim
n→∞ fn(x) dx.

Remark 4.1 All functions fn(x) are continuous. Since the integration and the limit cannot be
interchanged, the convergence of (fn) can never be uniform. ♦

Example 4.5 Let fn : R → R be given by

fn(x) =
x2n

1 + x2n
, n ∈ N.

1) Prove that the sequence (fn) is pointwise convergent, but not uniformly convergent.

2) Prove that the sequence (fn) is uniformly convergent in the interval
[
−1

2
,
1
2

]
.

1) This example is tricky, because one must split it up into three cases,

(a) |x| < 1, (b) |x| = 1, (c) |x| > 1.

In the remaining part of this question we keep x fixed in the given domain.

(a) If |x| < 1, then

|fn(x) − 0| = fn(x) =
x2n

1 + x2n
≤ x2n → 0 for n → ∞.

(b) If |x| = 1, i.e. x = ±1, then fn(±1) =
1
2
.

(c) If |x| > 1, then

fn(x) =
x2n

1 + x2n
= 1 − 1

1 + x2n
→ 1 − 0 = 1 for n → ∞.

Summarizing we see that (fn) is pointwise convergent with the limit function

f(x) =

⎧⎪⎨
⎪⎩

0 for |x| < 1,
1
2

for |x| = 1,

1 for |x| > 1.

Since every fn is continuous and the limit function f is not continuous [cf. the figure], it follows
that the sequence is not uniformly convergent.

Sequences of functions
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0

0.2

0.4

0.6

0.8

1

–2 –1 1 2
x

2) Get rid of x! When |x| ≤ 1
2
, we get the estimate

|fn(x) − 0| = fn(x) =
x2n

1 + x2n
≤ x2n ≤

(
1
2

)2n

→ 0 for n → ∞.

Sequences of functions
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For every ε > 0 there exists an N , such that for every n ≥ N and every x ∈
[
−1

2
,
1
2

]
,

|fn(x) − 0| ≤ x2n ≤
(

1
2

)2n

< ε [for n ≥ N(ε)],

i.e. (fn) converges uniformly towards 0 on
[
−1

2
,
1
2

]
.

Example 4.6 Prove that the sequence of functions

fn(x) =
x

1 + xn
, x ∈ [0,∞[,

is pointwise convergent, and find its limit function.
Check if the convergence is uniform.

1) If x ∈ [0, 1[ is kept fixed, then xn tends to 0 for n → ∞, hence

fn(x) =
x

1 + xn
→ x for n → ∞, when x ∈ [0, 1[.

2) If x = 1, er fn(1) =
1
2

for every n ∈ N, then fn(1) → 1
2

for n → ∞.

3) If x > 1 is kept fixed, then xn tends towards ∞ for n → ∞, hence

fn(x) =
x

1 + xn
→ 0 for n → ∞, n̊ar x ∈ ]1,∞[.

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1 1.5 2

As a conclusion we see that (fn) is pointwise convergent and its limit function is

f(x) =

⎧⎪⎨
⎪⎩

x for x ∈ [0, 1[,
1
2

for x = 1,

0 for x ∈ ]1,∞[.

Sequences of functions
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Since every fn(x) is continuous on [0,∞[, and f(x) is not continuous, it follows that the convergence
cannot be uniform.

Example 4.7 Prove that the sequence of functions (fn), which is given by

fn(x) =
1

(1 + x2)n
, n ∈ N,

is pointwise convergent, and find its limit function.
Check if the convergence is uniform in the interval [0,∞[, in the interval ]0,∞[, and in the interval
[1,∞[, respectively.

Pointwise convergence. What is obvious? For x = 0 we have

fn(0) =
1

(1 + 02)n
=

1
1n

= 1 → 1 = f(0) for n → ∞.

Let x = 0 be fixed. If we put 1 + x2 = a > 1 (a fixed number), we see that

fn(x) =
1

(1 + x2)n
=

1
an

→ 0 for n → ∞.

We conclude that we have pointwise convergence and the limit function is

f(x) =
{

1 for x = 0,
0 for x = 0.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3
x

Uniform convergence in [0,∞[? This is not possible, because every fn is continuous, while the
limit function is clearly discontinuous in 0.
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Uniform convergence i ]0,∞[? This is a really tricky question, because the limit function f(x) = 0
is continuous in ]0,∞[. We shall nevertheless prove that the convergence is not uniform!
First note that the range of every fn is ]0, 1[, i.e. fn(]0,∞[) = ]0, 1[.
If we choose xn =

√
n
√

2 − 1 > 0, we get

|fn(xn) − 0| = fn(xn) =
1

(1 + { n
√

2 − 1})n
=

1
2
.

Thus, we shall always obtain the value
1
2

for every fn, and since the constant
1
2

“not can be made as
small as possible”, the convergence cannot be uniform.

Uniform convergence in [1,∞[? In this case the limit function is again f(x) = 0. Since we are far
away from the discontinuity at x = 0, it will be reasonable to get rid of x by an estimation: For x ≥ 1
we have 1 + x2 ≥ 2, thus

|fn(x) − 0| = fn(x) =
1

(1 + x2)n
≤ 1

2n
→ 0 for n → ∞,

and we conclude that the convergence is uniform in [1,∞[.

Remark 4.2 The above will always be accepted. A more careful solution is the following.

1) To every ε > 0 we choose N = N(ε), such that

1
2N

≤ ε

(
choose N ≥ ln(1/ε)

ln 2
fixed

)
.

2) Since (1/2n) is decreasing for increasing n, we have

1
2n

≤ 1
2N

≤ ε for every n ≥ N(ε) [independently of x].

3) For every x ≥ 1 we have

1
(1 + x2)n

≤ 1
2n

≤ ε for every n ≥ N(ε) [independently of x].

Finally we summarize the above:
To every ε > 0 there exists an N = N(ε) [which does not depend on x], such that for every n ≥ N
and every x ≥ 1,

|fn(x) − 0| ≤ ε,

which means that we have uniform convergence on [1,∞[.

Sequences of functions
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Example 4.8 . Prove that the sequence of functions (gn), given by

gn(x) =
1 + nex

x + n
, x ∈ [0, 1],

converges uniformly towards the function ex, x ∈ [0, 1].
Find the limit function limn→∞

∫ 1

0
gn(x) dx.

Let x ∈ [0, 1]. The difference between gn(x) and the possible limit function ex is given by

gn(x) − ex =
1 + nex

x + n
− ex =

1
x + n

− x

x + n
ex.

This gives For x ∈ [0, 1] the following estimate,

|gn(x) − ex| ≤ 1
x + n

+
xex

x + n
≤ 1

0 + n
+

1 · e1

0 + n
=

1 + e

n
,

because a fraction with a positive numerator and positive denominator is made bigger, if we increase
the numerator and the denominator is replaced by a smaller positive constant.

Sequences of functions
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Since the right hand side
1 + e

n
→ 0 for n → ∞, is independent of x ∈ [0, 1], it follows that (gn)

converges uniformly towards ex in the interval [0, 1].

Since the convergence is uniform, and the interval of integration [0, 1] is bounded, we can interchange
the limit process and the integration,

lim
n→∞

∫ 1

0

gn(x) dx = lim
n→∞

∫ 1

0

1 + nex

x + n
dx =

∫ 1

0

lim
n→∞

(
1 + nex

x + n

)
dx =

∫ 1

0

ex dx = e − 1.

Remark 4.3 Note that none of the integrals∫ 1

0

1 + nex

x + n
dx, n ∈ N,

can be expressed by elementary functions. ♦

Example 4.9 Let fn : [0, 1] → be given by

fn(x) = nx(1 − x)n, n ∈ N.

1) Prove that the sequence (fn) is pointwise convergent, and find limn→∞ fn(x).

2) Prove that

lim
n→∞

∫ 1

0

fn(x) dx =
∫ 1

0

lim
n→∞ fn(x) dx.

3) Find for every n ∈ N the maximum of fn(x).

4) Prove that (fn) is not uniformly convergent.

1) If x = 0, then fn(0) = 0, s̊a f(0) = 0. If x ∈ ]0, 1], then a = 1 − x ∈ [0, 1[, i.e.

fn(x) = (1 − a) · nan → 0 for n → ∞
according to the magnitudes of the functions.
It follows that (fn) converges pointwise towards 0 in [0, 1].

2) We get by a partial integration that

∫ 1

0

fn(x) dx = n

∫ 1

0

x(1 − x)n dx =
[
− n

n + 1
x(1 − x)n+1

]1
0

+
n

n + 1

∫ 1

0

(1 − x)n+1 dx

= 0 +
n

(n + 1)(n + 2)
[−(1 − x)n+2

]1
0

=
n

(n + 1)(n + 2)
.

Alternatively change the variable t = 1 − x, by which we get

∫ 1

0

fn(x) dx = n

∫ 1

0

x(1 − x)n dx = n

∫ 1

0

(1 − t)tn dt = n

∫ 1

0

{
tn − tn+1

}
dt

= n

{
1

n + 1
− 1

n + 2

}
=

n

(n + 1)(n + 2)

Sequences of functions
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There are other alternatives, which the reader may find himself.

It follows that

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

n

(n + 1)(n + 2)
= lim

n→∞
1(

1 +
1
n

)
· (n + 2)

= 0

=
∫ 1

0

0 dx =
∫ 1

0

lim
n→∞ fn(x) dx.

Alternatively one may use that

n

(n + 1)(n + 2)
=

2
n + 2

− 1
n + 1

→ 0 for n → ∞.

Since we now can interchange the limit process and the integration, we may erroneously jump
to the wrong conclusion that the convergence should be uniform. The last two questions of the
example show that this is not the case.

3) We get by differentiation

f ′
n(x) = n(1 − x)n − n2x(1 − x)n−1 = n(1 − x)n−1(1 − x − nx) = n(1 − x)n−1{1 − (n + 1)x}.

Since fn(0) = fn(1) = 0, and fn(x) > 0 for 0 < x < 1, the continuous function fn(x) must have a
maximum.

Since fn ∈ C∞, and since f ′
n(x) = 0 is only fulfilled for x =

1
n + 1

in ]0, 1[, this value corresponds

to the unique maximum. The value of the function here is

fn

(
1

n + 1

)
= n · 1

n + 1

(
1 − 1

n + 1

)n

=
(

1 − 1
n + 1

)n+1

.

4) We see that

(5) lim
n→∞ fn

(
1

n + 1

)
= lim

n→∞

(
1 − 1

n + 1

)n+1

=
1
e
= 0.

Alternatively, ln(1 − x) = −x + xε(x) according to Taylor’s formula. Putting x =
1

n + 1
we get

ln

{(
1 − 1

n + 1

)n+1
}

= (n + 1) ln
(

1 − 1
n + 1

)

= (n + 1)
{
− 1

n + 1
+

1
n + 1

ε

(
1

n + 1

)}
0 − 1 + ε

(
1

n + 1

)
→ −1

for n → ∞.

Now exp is continuous, hence

fn

(
1

n + 1

)
=
(

1 − 1
n + 1

)n+1

= exp
(
−1 + ε

(
1

n + 1

))
→ 1

e
for n → ∞.
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According to (5) we can find an N ∈ N, such that

fn

(
1

n + 1

)
≥ 1

2
· 1
e

> 0 for all n ≥ N.

Since
1
2e

is a constant (it cannot be made as small as we wish), the convergence cannot be uniform.

Example 4.10 Given the function

F (x) = ex sinx − 1, x ∈
[
0,

π

2

]
.

from Example 3.10. Let fn :
]
0,

π

2

]
→ R be given by

fn(x) = x − 1
(ex sinx)n

, n ∈ N.

1) Express by means of α the largest set A ⊆
]
0,

π

2

]
, for which the sequence (fn) is pointwise con-

vergent in A. Find the limit function.

2) Check if the sequence is also uniformly convergent on A. Does there exist a largest set B ⊆
]
0,

π

2

]
,

such that the sequence is uniformly convergent on B?

1) Since ex sinx = F (x) + 1 > 0 for x ∈
]
0,

π

2

]
, the sequence of functions can also be written

fn(x) = x −
{

1
F (x) + 1

}n

, x ∈
]
0,

π

2

]
, n ∈ N.

Since (qn) is convergent for −1 < q ≤ 1, and since F (x) + 1 > 0, we get the condition

0 <
1

1 + F (x)
≤ 1, i.e. F (x) ≥ 0.

According to Example 3.10 this is true for x ∈ A =
[
α,

π

2

]
, because F (α) = 0, and because F (x)

is increasing.

If x = α, then F (α) + 1 = 1, hence

fn(α) = α − 1.

If α < x ≤ π

2
, then 0 <

1
F (x) + 1

< 1, hence
{

1
F (x) + 1

}n

→ 0 for n → ∞. We conclude that

the limit function is

f(x) =

{
α − 1 for x = α,

x for x ∈
]
α,

π

2

]
.

Sequences of functions
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2) Since every function fn is continuous in A, and the limit function f is not continuous in A, the
sequence cannot be uniformly convergent in A.

There does not exist any largest set B, on which (fn) is uniformly convergent. In fact, for every
ε ∈

]
0,

π

2
− α
[

we have that (fn) is uniformly convergent in
[
α + ε,

π

2

]
, and the smallest set which

contains all these intervals is
]
α,

π

2

]
, on which (fn) is not uniformly convergent.

Alternatively, choose a sequence (yn), such that

1
1 + F (yn)

=
1

n
√

2
, i.e. F (yn) = n

√
2 − 1 (→ 0 for n → ∞).

Then yn → α+, and

fn(yn) = yn − 1
2
→ α − 1

2
for n → ∞,

hence (fn(yn)) neither converges towards α nor towards α − 1.
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5 Linear difference equations

Example 5.1 1) Find the complete solution of the difference equation

xk + xk−1 = 0, k ≥ 1.

2) Find a particular solution of the difference equation

(6) xk + xk−1 = 4, k ≥ 1,

and then find the total solution of (6), for which x0 = 1.

A. Linear difference equation of first order.

D. Find the solution of the homogeneous equation and then a particular solution.

I. 1) The characteristic polynomial R + 1 has the root R = −1, thus the complete solution of the
homogeneous equation is given by

xk = c · (−1)k, k ∈ N0, c ∈ R.

2) By inspection we see that the constant solution xk = 2 is one solution of (6). Hence the
complete solution is

xk = 2 + c · (−1)k, k ∈ N0, c ∈ R.

For k = 0 we get x0 = 1 = 2 + c, i.e. c = −1, and the wanted solution becomes

xk = 2 + (−1)k+1, k ∈ N0,

i.e.

xk =
{

1 for k even,
3 for k odd,

k ∈ N0.

Example 5.2 Find a particular solution of the difference equation

xk − xk−1 = 4, k ≥ 1,

and then find the complete solution.

A. Difference equation of first order.

D. Guess some particular solution.

I. Put xk = 4k. Then we get by insertion (i.e. we are testing this sequence) that

xk − xk−1 = 4k − 4(k − 1) = 4,

and we have shown that xk = 4k, k ∈ N, is a particular solution.

The characteristic polynomial R − 1 has the root R = 1, hence the total solution is given by

xk = 4k + c, k ∈ N0, c ∈ R.

Linear difference equations
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Example 5.3 Find that solution of the difference equation

xk + xk−1 = k, k ≥ 1,

for which x0 = 2.

A. Linear, inhomogeneous difference equation of first order.

D. Guess a particular solution.

I. If we guess on xk = αk + β, then we get by insertion that

αk + β + α(k − 1) + β = 2αk = (2β − α),

which is equal to the variable k for α =
1
2

and β =
1
4
.

Since the characteristic polynomial R + 1 has the root R = −1, the complete solution is given by

xk =
1
2

k +
1
4

+ c · (−1)k, k ∈ N0, c ∈ R.

For k = 0 we get

c = x0 − 1
4

= 2 − 1
4

=
7
4
,

thus the wanted solution is

xk =
1
2

k +
1
4

+
7
4
· (−1)k, k ∈ N0.

Example 5.4 Find that solution of the difference equation

xk − xk−1 = k, k ≥ 1,

for which x2 = 4.

A. Linear, inhomogeneous difference equation of first order.

D. Solve the corresponding homogeneous equation. Then guess a particular solution.

I. The characteristic polynomial R − 1 has the root R = 1. Thus, the complete solution of the
homogeneous equation is given by

xk = c, k ∈ N0, c ∈ R.

Since already xk = 1 is a solution of the homogeneous equation and since k · 1 occurs on the right
hand side of the equation, we guess in analogy with the method of solving differential equations
on a solution of the structure

xk = αk2 + βk, k ∈ N0.

Linear difference equations
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We get by insertion,

xk − xk−1 = α
{
k2 − (k − 1)2

}
+ β{k − (k − 1)} = α(2k − 1) + β = 2αk + (β − α).

This expression is equal to the variable k, if α = β =
1
2
, thus the complete solution is

xk =
1
2

k2 +
1
2

+ c, k ∈ N0, c ∈ R.

If k = 2, we get the condition

4 =
1
2
· 22 +

1
2
· 2 + c = 3 + c,

from which c = 1, and the solution is

xk =
1
2

k2 +
1
2

k + 1, k ∈ N0.

Example 5.5 At some given time we have 1000 bacteria in a culture of bacteria . We assume in
general that the number of bacteria is increased by 250 % every second hour. How many bacteria will
there be after 24 hours?

A. Exponential growth (difference equation). Notice that since we are looking at 12 · 2 = 24 hours,
we shall find x12.

D. There are some problems here with the interpretation of the text. If the increase really is 250 %,
then the corresponding difference equation becomes

xk = xk−1 +
5
2

xk−1 =
7
2

xk−1.

If the meaning instead is that the increase is 250 % of the previous value at time (k − 1)2, then
the difference equation becomes

xk =
5
2

xk−1.

Since there is some linguistic uncertainty in the original text (I do not remember where I found
this example), we shall as an exercise go through the solving of both equations.

I. We have x0 = 1000.

1) In the first interpretation we get

x12 =
(

7
2

)12

· 1000 ≈ 3 379 220 508.

2) In the second interpretation we get

x12 =
(

5
1

)12

· 1000 ≈ 59 604 645.

Linear difference equations
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Example 5.6 A man pays every quarter 600 euro into his account. The interest is 11 % p.a., where
the interest is added every quarter. When will there be 25 000 euro on the account?

A. Difference equation for savings.

D. Write down the model of difference equation and then solve this equation.

I. Let xk denote the capital at the k-th quarter after his payment. Then x0 = 600, and since the

interest per quarter is
11
4

%, we get the equation

xk = 600 +
{

1 +
11
400

}
xk−1, k ∈ N.

This is then rewritten as the difference equation

xk − 411
400

xk−1 = 600.

Linear difference equations
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The solution of the corresponding equation is

xk = c ·
(

411
400

)k

, k ∈ N0, c ∈ R.

Then we guess a particular solution of the structure xk = α, k ∈ N0. We get by insertion

xk − 411
400

xk−1 = − 11
400

α,

which is equal to 600 for

α = −240 000
11

.

Thus the complete solution is

xk = −240 000
11

+ c ·
(

411
400

)k

, k ∈ N0, c ∈ R.

For k = 0 we get

c = 600 +
240 000

11
=

246 600
11

,

so the solution becomes

xk = −240 000
11

+
246 600

11
·
(

411
400

)k

, k ∈ N0.

Finally, we shall find the smallest k ∈ N0, for which xk ≥ 25 000. Hence we shall find the smallest
k ∈ N0, for which

246 600
11

·
(

411
400

)k

≥ 25 000 +
240 000

11
=

515 000
11

.

This is rearranged as(
411
400

)k

≥ 515 000
246 000

=
2575
1233

,

from which

k ≥
ln
(

2575
1233

)

ln
(

411
400

) ≈ 0, 7364
0, 0271

≈ 27, 15.

Hence, we see that after 28 quarters, corresponding to 7 years, we get xk ≥ 25 000 for the first
time.

C. Weak control. There is paid 4 · 600 = 2400 euro per year, hence 16 800 euro in 7 years, so the
result looks reasonable. considering the high (and today unrealistic) interest.
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Example 5.7 In the following examples we shall deal with annuity loans. The background is in
general the following:
A loan on G0 euro is repaid with a fixed payment of A euro per settling period, and the interest to be
paid of the debt is r per settling period (where we give r as a usual fraction, and not in %). Let Gn

denote the remaining debt after n settling periods.

1) Prove that Gn satisfies

Gn − (1 + r)Gn−1 = −A, n ≥ 1,

and then find Gn.

2) Establish the condition that the debt is repaid.

A. Annuity loans.

D. Analyze the situation at the end of the n-th settling period in order to find the difference equation
of the problem. Then solve this difference equation.

I. 1) The remaining debt Gn at the n-th settling period is equal to the remaining debt Gn−1 at the
(n − 1)-th settling period, plus the interest, ×Gn−1, and minus the payment A, i.e.

Gn = (1 + r)Gn−1 − A,

which we rearrange as the solution

Gn − (1 + r)Gn−1 = −A, n ≥ 1.

Here we guess a particular solution of the form Gn = α. We get by insertion (i.e. testing this
solution) that

Gn − (1 + r)Gn−1 = α − (1 + r)α = −rα = −A,

and a particular solution is the constant sequence

Gn = α =
A

r
, n ∈ N0.

Since the corresponding homogeneous equation has the solution c·(1+r)n, the complete solution
of the inhomogeneous equation is given by

Gn =
A

r
+ c · (1 + r)n, n ∈ N0, c ∈ R.

For n = 0 we get the condition

G0 =
A

r
+ c, i.e. c = G0 − A

r
,

and the wanted solution becomes

Gn =
A

r
+
(

G0 − A

r

)
· (1 + r)n, n ∈ N0.
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2) The debt will be paid back, if and only if Gn at some time becomes ≤ 0. This means that

G0 − A

r
< 0, hence

A > r · G0,

which is only expressing the reasonable fact that the payment must be bigger than the interest
in one settling period of the original loan.

Example 5.8 Let G0 and A be given, and assume that A is sufficiently large to assure that the loan
will be paid. Find a formula for the number of settling periods which is needed to pay the debt (thus
the smallest number n of settling periods for which Gn ≤ 0.)

A. A continuation of Example 5.7.

D. Apply the solution of Example 5.7.

I. According to Example 5.7 the remaining debt Gn is given by

Gn =
A

r
+
(

G0 − A

r

)
· (1 + r)n, n ∈ N0,

where we must assume that G0 − A

r
< 0, i.e. A > r · G0.

We shall find the smallest n ∈ N0, for which Gn ≤ 0, i.e. the smallest n ∈ N0, for which(
A

r
− G0

)
· (1 + r)n ≥ A

r
, i.e. (1 + r)n ≥ A

A − r · G0
.

We get by taking the logarithm that

n ≥ lnA − ln(A − r · G0)
ln(1 + r)

.

Example 5.9 Let the number of settling periods be fixed to N . Find a formula for the (constant)
payment, by which the debt is paid in precisely N settling periods.

A. A continuation of Example 5.8.

D. Apply the solution of Example 5.8.

I. If A > r · G0, we see from Example 5.8 that we shall find A, such that

N =
lnA − ln(A − r · G0)

ln(1 + r)
= −

ln
(

A − r · G0

A

)
ln(1 + r)

= −
ln
(

1 − rG0

A

)
ln(1 + r)

,

which we rewrite as

ln
(

1 − rG0

A

)
= −N ln(1 + r) = ln

{
(1 + r)−N

}
.
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We get from here the condition

(1 + r)−N = 1 − rG0

A
, i.e.

rG0

A
= 1 − (1 + r)−N ,

hence

A = G0 · r

1 − (1 + r)−N
= G0 · r(1 + r)N

(1 + r)N − 1
= G0 · (1 + r)N+1 − (1 + r)N

(1 + r)N − 1
.

Example 5.10 Assume that G0 is 100 000 euro and that the annual interest is 9 % and that there
are 4 settling periods (quarters) per year. When is the loan repaid if the payment is 3 000 euro per
quarter? And when is the loan repaid, if we double the payment?

A. A continuation of the Examples 5.7–5.9.

D. Apply the results from Examples 5.7–5.9.

I. First calculate

G0 = 100 000, r =
9

400
and A = 3000.

Linear difference equations
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We get

rG0 =
9

400
· 100 000 = 9 · 250 = 2 250 < 3 000 = A,

which guarantees that the loan will be repaid with 3 000 euro in payment per settling period, cf.
Example 5.7.

It follows from Example 5.9 that

n ≥ lnA − ln(A − rG0)
ln(1 + r)

=
ln 3000 − ln 750

ln
(

1 +
9

400

) =
ln 4

ln
409
400

≈ 62, 3,

thus the loan is repaid after 63 settling periods, corresponding to 15 3
4 years.

When A is doubled to 6 000 euro, we get A − rG0 = 3750, hence

n ≥ lnA − ln(A − rG0)
ln(1 + r)

=
ln

6000
3750

ln
409
400

≈ 21, 12,

and the loan is repaid after (only) 22 settling periods, corresponding to 5 1
2 år.

Example 5.11 Assume that G0 is 100 000 euro and that the annual interest is 9 % and that the
payments are quarterly. How big shall we choose the payment, if the loan is repaid after 20 and 30
years, respectively?

A. A continuation of the Examples 5.7-5.10.

D. Use the previous results from Example 5.9.

I. Here G0 = 100 000 and r =
9

400
. In the first case, N = 4 · 20 = 80, and in the second case is

N = 4 · 30 = 120. It follows from Example 5.9 that

A =
rG0(1 + r)N

(1 + r)N − 1
=

rG0

1 − (1 + r)−N
.

1) If N = 80, then

A =

9
400

· 100 000

1 −
(

400
409

)80 =
2250

1 −
(

400
409

)80 = 2706, 38 euro.

2) N̊ar N = 120, er

A =
2250

1 −
(

400
409

)120 = 2417, 40 euro
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Example 5.12 Find that solution of the difference equation

xk + 2xk−1 = cos
(π

2
k
)

, k ≥ 1,

for which x0 = 0.

A Linear, inhomogeneous difference equation of first order.

D. Start by finding the solution of the homogeneous equation. Then analyze the right hand side
(guess a complex solution).

I. The characteristic polynomial R + 2 has the root R = −2, so the complete solution of the homo-
geneous equation is given by

xk = c · (−2)k, k ∈ N0, c ∈ R.

Now, cos
(π

2
k
)

= Re
{
ik
}
, so if we insert xk = α ik, we get

xk + 2xk−1 = α ik + 2α ik−1 = α(1 − 2i)ik,

which is equal to ik, if

α =
1

1 − 2i
=

1 + 2i
5

.

Thus, a particular solution is

xk = Re
{

1 + 2i
5

ik
}

=
1
5

Re
{
ik + 2 ik+1

}
=

1
5

cos
(
k · π

2

)
+

2
5

cos
(
(k + 1)

π

2

)
,

and the complete solution becomes

xk =
1
5

cos
(
k · π

2

)
+

2
5

cos
(
(k + 1)

π

2

)
+ c · (−2)k.

It follows from the initial condition that

x0 = 0 =
1
5

+ 0 + c, i.e. c = −1
5
.

The wanted solution becomes

xk =
1
5

{
(−2)k + cos

(π

2
k
)

+ 2 cos
(π

2
(k + 1)

)}
=

1
5

{
(−2)k + cos

(π

2
k
)
− 2 sin

(π

2
k
)}

, k ∈ N0.
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Example 5.13 Let an = 1 + 2 + · · · + n, n ≥ 1. Find a difference equation which is fulfilled by an.
Then find a formula for an.

A. Establishment and solution of a difference equation.

D. Look at an − an−1.

I. Obviously,

an − an−1 = n, n ≥ 1.

The corresponding homogeneous equation has the constant solution

an = c, n ∈ N0, c ∈ R.

Then we guess the structure an = αn2 + βn. By insertion,

an − an−1 = α
{
n2 − (n − 1)2

}
+ β{n − (n − 1)}

= α(2n − 1) + β = 2αn + (β − α) = n,

thus α =
1
2

and β = α =
1
2
. The complete solution becomes

an =
1
2

n2 +
1
2

n + c =
1
2

n(n + 1) + c, n ∈ N0, c ∈ R.

Since a1 = 1 =
1
2
· 1 · 2 + c = 1 + c, we have c = 0, and the searched solution is

an =
1
2

n(n + 1), n ∈ N0.

Example 5.14 Let an = 1 + 22 + · · ·+ n2, n ≥ 1. Find a difference equation which is fulfilled by an.
Then find a formula for an.

A. Establish a (simple) difference equation.

D. Find such a difference equation for an, and solve it.

I. It is immediately seen that

an − an−1 = n2.

The corresponding homogeneous equation has the constant sequence an = c, c ∈ R, as a solution.
Then we guess a particular solution of the form

an = αn3 + βn2 + γn,

hence by insertion,

an − an−1 = α
{
n3−(n−)3

}
+ β

{
n2−(n−1)2

}
+ γ{n−(n−1)}

= α
{
3n2 − 3n + 1

}
+ β{2n − 1} + γ

= 3αn2 + (−3α + 2β)n + (α − β + γ).
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This expression is equal to n2, if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3α = 1,

−3α + 2β = 0,

α − β + γ = 0,

i.e.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = 1
3 ,

β = 1
2 ,

γ = β − α = 1
6 .

A particular solution is then

an =
1
3

n3 +
1
2

n2 +
1
6

n =
1
6

n(2n2 + 3n + 1) =
1
6

n(2n + 1)(n + 1).

Since a1 =
1
6
· 1 · (2 + 3 + 1) = 1, we see that this is in fact the wanted solution, so

an =
1
6

n(n + 1)(2n + 1), n ∈ N.

The complete solution is of course

an =
1
6

n(n + 1)(2n + 1) + c, n ∈ N, c ∈ R.
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Example 5.15 Find the complete solution of the following difference equations

(1) xk − 5xk−1 + 6xk−2 = 0, k ≥ 2,
(2) xk − 6xk−1 + 9xk−2 = 0, k ≥ 2,
(3) xk + 2xk−1 + 2xk−2 = 0, k ≥ 2.

A. Linear homogeneous difference equations of second order.

D. Find the roots of the characteristic polynomials and apply the solution formula.

I. 1) The characteristic polynomial R2 − 5R + 6 has the simple roots R = 2 and R = 3, hence the
complete solution is

xk = c1 · 2k + c2 · 3k, k ∈ N0, c1, c2 ∈ R.

2) The characteristic polynomial R2 − 6R + 9 has the double root R = 3, hence the complete
solution is

xk = c1 · 3k + c2 · k · 3k, k ∈ N0, c1, c2 ∈ R.

3) The characteristic polynomial R2 + 2R + 2 has the two complex conjugated roots

R = −1 ± i =
√

2 exp
(
±i

3π
4

)
,

hence the complete solution is given by

xk = c1(
√

2)k cos
(

3π
4

k

)
+ c2(

√
2)k sin

(
3π
4

k

)
, k ∈ N0,

where c1, c2 ∈ R are arbitrary constants.

Example 5.16 Find in each of the following cases that solution of the difference equation which also
satisfies the given initial condition.

(1) xk − 7xk−1 + 10xk−2 = 0, k ≥ 2, x0 = 3, x1 = 15.

(2) 9xk + 12xk−1 + 4xk−2 = 0, k ≥ 2, x0 = 1, x1 = 4.

(3) xk + 4xk−2 = 0, k ≥ 2, x0 = x1 = 1.

A. Linear homogeneous difference equations of second order with given initial conditions.

D. Find the roots of the characteristic polynomials and apply some convenient solution formula. Then
insert into the initial conditions.

I. 1) The characteristic polynomial R − 7R + 10 has the two simple roots R = 2 and R = 5, hence
the complete solution is

xk = c1 · 2k + c2 · 5k, k ∈ N0, c1, c2 ∈ R.
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It follows from the initial conditions that{
x0 = 3 = c1 + c2,
x1 = 15 = 2c1 + 5c2,

i.e.
{

2c1 + 2c2 = 6,
2c1 + 5c2 = 15,

thus 3c2 = 15 − 6 = 9, i.e. c2 = 3 and c1 = 0. The wanted solution is

xk = 3 · 5k, k ∈ N0.

2) The characteristic polynomial 9R + 12R + 4 = (3R + 2)2 has the double root R = −2
3
, hence

the complete solution is

xk = c1

(
−2

3

)k

+ c2 · k
(
−2

3

)k

, k ∈ N0, c1, c2 ∈ R.

It follows from the initial conditions that

x0 = 1 = c1 and x1 = 4 = −2
3

(c1 + c2),

thus c1 = 1 and c1 + c2 = −6, i.e. c2 = −7. The wanted solution is

xk = (1 − 7k) ·
(
−2

3

)k

, k ∈ N0.

3) The characteristic polynomial R2 + 4 has the two complex conjugated roots

R = ±2i = 2 exp
(
±i

π

2

)
.

Hence, the complete solution is

xk = c1 · 2k cos
(π

2
k
)

+ c2 · 2k sin
(π

2
k
)

, k ∈ N0,

where c1, c2 ∈ R are arbitrary constants.
It follows from the initial conditions that

x0 = 1 = c1 and x1 = 1 = 2c2, i.e. c2 =
1
2
.

Thus, the wanted solution becomes

xk = 2k

{
cos
(π

2
k
)

+
1
2

sin
(π

2
k
)}

, k ∈ N0.
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Example 5.17 Find the complete solution of the difference equation

xk + 4xk−1 + 4xx−2 = 7, k ≥ 2.

A. Linear inhomogeneous difference equation of second order.

D. Find the roots of the characteristic polynomial and apply the solution formula when solving the
homogeneous equation. Finally, guess the structure of a particular solution and apply the linearity.

I. We guess a particular solution as a constant sequence, xk = c. It is seen by insertion that xk =
7
9
,

k ∈ N0, is a particular solution.

The characteristic polynomial R2 + 4R + 4 = (R + 2)2 has the double root R = −2, hence the
complete solution becomes

xk =
7
9

+ c1(−2)k + c2k(−2)k, k ∈ N0, c1, c2 ∈ R.

Example 5.18 Find that solution of the difference equation

xk + 2xk−1 + 2xk−2 = 5k, k ≥ 2,

for which x0 = x1 =
1
5
.

A. Linear inhomogeneous difference equation of second order with initial conditions.

D. Find the roots of the characteristic polynomial and apply a solution formula for the homogeneous
equation. Then guess the structure of a particular solution and exploit the linearity. Insert finally
into the initial conditions and find the constants.

I. The characteristic polynomial R2 + 2R + 2 has the two complex conjugated roots

R = −1 ± i =
√

2 exp
(
±3π

4
i

)
.

The complete solution of the homogeneous equation is

xk = c1(
√

2)k cos
(

3π
4

k

)
+ c2(

√
2)k sin

(
3π
4

k

)
, k ∈ N0,

where c1, c2 ∈ R are arbitrary constants.

Then we guess a particular solution of the structure xk = α · 5k. We get by insertion

xk + 2xk−1 + 2xk−2 = α
(
5k + 2 · 5k−1 + 2 · 5k−2

)
=

α

25
(25 + 10 + 2) · 5k =

37
25

α · 5k.

This expression is equal to 5k, if α =
25
37

, thus the complete solution becomes

xk =
25
37

5k + c1(
√

2)k cos
(

3π
4

k

)
+ c2(

√
2)k sin

(
3π
4

k

)
, k ∈ N0,
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where c1 and c2 ∈ R are arbitrary constants.

It follows from the initial conditions that

x0 =
1
5

=
25
37

+ c1,

hence

c1 =
1
5
− 25

37
=

37 − 125
185

= − 88
185

,

and

x1 =
1
5

=
125
37

− c1

√
2√
2

+ c2

√
2√
2

=
125
37

− c1 + c2,

whence

c2 =
1
5

+
1
5
− 25

37
− 125

37
=

2
5
− 150

37
=

74 − 750
185

= −676
185

.

The wanted solution is therefore

xk =
25
37

· 5k − 88
185

(
√

2)k cos
(

3π
4

k

)
− 676

185
(
√

2)k sin
(

3π
4

k

)
, k ∈ N0.
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Example 5.19 Find that solution of the difference equation

xk + 3xk−1 + 2xk−2 = 3k, k ≥ 2,

for which x0 = 0 and x1 = 0.

A. Linear inhomogeneous difference equation of second order with initial conditions.

D. Find the roots of the characteristic polynomial and apply a solution formula for the complete
solution of the homogeneous equation. Then guess the structure of a particular solution and
exploit the linearity. Insert finally into the final conditions and find the constants.

I. The characteristic polynomial R2 + 3R + 2 has the two simple roots R = −1 and R = −2, hence
the complete solution of the homogeneous difference equation becomes

xk = c1(−1)k + c2(−2)k, k ∈ N0, c1, c2 ∈ R.

Then we guess on a particular solution of the structure xk = α · 3k. By insertion into the equation
we get

α
{
3k + 3k + 2 · 3k−2

}
= α

(
2 +

2
9

)
3k =

20
9

α · 3k,

which is equal to 3k for α =
9
20

. Thus the complete solution is

xk =
9
20

· 3k + c1(−1)k + c2(−2)k, k ∈ N0, c1, c2 ∈ R.

Then we get by the final conditions,⎧⎪⎪⎨
⎪⎪⎩

x0 = 0 =
9
20

+ c1 + c2,

x1 = 0 =
27
20

− c1 − 2c2,

whence

c2 =
27
20

+
9
20

=
36
20

=
9
5
,

and

c1 = − 9
20

− c1 = − 9
20

− 9
5

= −45
20

= −9
4
.

The wanted solution is therefore

xk =
9
20

· 3k − 9
4

(1−)k +
9
5

(−2)k, k ∈ N0.
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Example 5.20 Find the complete solution of the difference equations

(1) xk − xk−2 = sin
(
k · π

2

)
, k ≥ 2,

(2) xk − xk−2 = cos
(
k · π

2

)
, k ≥ 2.

A. Linear inhomogeneous difference equations of second order.

D. Find the roots of the characteristic equation and apply a solution formula for the solution of the
homogeneous difference equation. Then try to make a complex guess of a particular solution.

I. Since sin
(
k · π

2

)
= Im

(
ik
)
, and cos

(
k · π

2

)
= Re

(
ik
)
, we can solve both problems at the same

time, until we at last are forced to split into the real and the imaginary part.

The characteristic polynomial R2−1 has the two simple roots R = ±1, hence the complete solution
of the homogeneous equation becomes

xk = c1 + c2(−1)k, k ∈ N0, c1, c2 ∈ R.

Next insert xk = α ik. We get

xk − xk−2 = α
{
ik − ik−2

}
= 2α ik,

which is equal to ik for α =
1
2
.

1) The complete solution of

xk − xk−2 = sin
(
k · π

2

)
= Im

(
ik
)

is

xk = Im
(

1
2

ik
)

+ c1 + c2(−1)k =
1
2

sin
(
k · π

2

)
+ c1 + c2(−1)k, k ∈ N0, c1, c2 ∈ R.

2) The complete solution of

xk − xk−2 = cos
(
k · π

2

)
= Re

(
ik
)

is

xk = Re
(

1
2

ik
)

+ c1 + c2(−1)k =
1
2

cos
(
k · π

2

)
+ c1 + c2(−1)k, k ∈ N0, c1, c2 ∈ R.

Linear difference equations

http://bookboon.com/


Download free ebooks at bookboon.com

Calculus 3c-1

 

65  

Example 5.21 Find that solution of the difference equation

xk − 6xk−1 + 9xk−2 = 3 · 2k + 17 · 4k, k ≥ 2,

for which x0 = 40 and x1 = 400.

A. Linear inhomogeneous difference equation of second order with initial conditions.

D. Solve the characteristic equation; guess a particular solution.

I. The characteristic polynomial R2 − 6R + 9 = (R − 3)2 has the double root R = 3, hence the
homogeneous equation has the complete solution

xk = c1 3k + c2 k · 3k, k ∈ N0, c1, c2 ∈ R.

By guessing the structure xk = a · 2k + b · 4k, we get by insertion (i.e. checking this possible
solution)

xk − 6xk−1 + 9xk−2 = a · 2k + b · 44 − 6a · 2k−1 − 6b · 4k−1 + 9a · 2k−2 + 9b · 4k−2

= a

(
1 − 3 +

9
4

)
2k + b

(
1 − 3

2
+

9
16

)
4k =

a

4
· 2k +

b

16
· 4k.

This expression is equal to 3 · 2k + 17 · 44, if a = 12 and b = 16 · 17 = 272, hence the complete
solution becomes

xk = 12 · 2k + 272 · 4k + c1 · 3k + c2 k · 3k, k ∈ N0, c1, c2 ∈ R.

By insertion into the conditions we get

x0 = 40 = 12 + 272 + c1 = 284 + c1,

thus c1 = −244, and

x1 = 400 = 24 + 1088 + 3c1 + 3c2 = 1112 − 732 + 3c2 = 380 + 3c2,

i.e. c2 =
20
3

. The solution is

xk = 12 · 2k + 272 · 4k − 244 · 3k +
20
3

k · 3k, k ∈ N0.
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Example 5.22 Find the complete solution of the difference equations

(1) xk − 2xk−1 + xk−2 − 2xk−3 = 0, k ≥ 3,
(2) xk − 2xk−1 − xk−2 + 2xk−3 = 0, k ≥ 3,
(3) xk − xk−4 = 0, k ≥ 4.

A. Two linear homogeneous difference equations of third order, and an homogeneous difference equa-
tion of fourth order.

D. Find the roots of the characteristic polynomials and then apply a solution formula.

I. 1) The characteristic polynomial

R3 − 2R2 + R − 2 = (R − 2)(R2 + 1)

has the simple roots R = 2 and R = ±i = exp
(
±i

π

2

)
, thus all (real) solutions are

xk = c1 · 2k + c2 cos
(
k · π

2

)
+ c3 sin

(
k · π

2

)
, k ∈ N0, c1, c2, c3 ∈ R.
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2) The characteristic polynomial

R3 − 2R2 − R + 2 = (R − 2)(R2 − 1) = (R − 2)(R − 1)(R + 1)

has the three simple roots R = 2 and R = ±1, hence the complete solution is

xk = c1 · 2k + c2 + c3 (−1)k, k ∈ N0, c1, c2, c3 ∈ R.

3) The characteristic polynomial

R4 − 1 = (R − 1)(R + 1)(R − i)(R + i)

has the four simple roots R = ±1 and R = ±i, hence all (real) solutions are

xk = c10c2 (−1)k + c3 cos
(
k · π

2

)
+ c4 sin

(
k · π

2

)
, k ∈ N0,

where c1, c2, c3, c4 ∈ R are arbitrary constants.

Example 5.23 Find that solution of the difference equation

xk − xk−1 + 4xk−2 − 4xk−3 = 0, k ≥ 3,

for which x0 = −1, x2 = 2, x4 = 4.

A. Linear homogeneous difference equation of third order with three (non-successive) conditions.

D. Find the roots of the characteristic polynomial and apply the solution formula. Finally, insert into
the conditions.

I. The characteristic polynomial

R3 − R2 + 4R − 4 = (R − 1)(R2 + 4)

has the three simple roots R = 1 and R = ±2i. Hence, the complete solution is

xk = c1 + c2 2k cos
(
k · π

2

)
+ c3 2k sin

(
k · π

2

)
.

Then by insertion into the conditions,⎧⎨
⎩

x0 = −1 = c1 + c2,
x1 = 2 = c1 + 2c3,
x4 = 4 = c1 + 16c2,

from which we get 15c2 = 5, thus c2 =
1
3
, and c1 = −4

3
. Then finally

2c3 = 2 +
4
3
, i.e. c3 = 1 +

2
3

=
5
3
.

The wanted solution is

xk = −4
3

+
1
3
· 2k cos

(
k · π

2

)
+

5
3
· 2k sin

(
k · π

2

)
, k ∈ N0.
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Example 5.24 Find the complete solution of the difference equation

xk − 2xk−1 + xk−2 − 2xx−3 = 4, k ≥ 3.

A. Linear inhomogeneous difference equation of fourth order. The corresponding homogeneous dif-
ference equation is treated in Example 5.22 (1).

D. Find the roots of the characteristic polynomial; then guess a solution of the inhomogeneous equa-
tion.

I. The characteristic polynomial

R3 − 2R2 + R − 2 = (R − 2)(R2 + 1)

has the three simple roots R = 2 and R = ±i. It is seen by inspection that xk = −2, k ∈ N0, is a
particular solution. Hence the complete solution is

xk = −2 + c1 · 2k + c2 cos
(
k · π

2

)
+ c3 sin

(
k · π

2

)
, k ∈ N0,

where c1, c2, c3 ∈ R are arbitrary constants.

Example 5.25 Find the complete solution of the difference equation

xk − 2xk−1 − xk−2 + 2xk−3 = −2, k ≥ 3.

A. Linear inhomogeneous difference equation of third order. The corresponding homogeneous equa-
tion was dealt with in Example 5.22 (2).

D. Find the roots of the characteristic polynomial; then guess a solution of the inhomogeneous equa-
tion.

I. The characteristic polynomial

R3 − 2r2 − R + 2 = (R − 2)(R − 1)(R + 1)

has the three simple roots R = 2 and R = ±1. Since already R = 1 is a root, corresponding to the
solution xk = c, k ∈ N0, of the homogeneous equation, our guess must be modified, so we guess a
particular solution of the form xk = a · k. We get by insertion,

xk − 2xk−1 − xk−2 + 2xk−3 = a{k − 2(k − 1) − (k − 2) + 2(k − 3)}
= a{k − 2k + 2 − k + 2 + 2k − 6} = −2a,

which is equal to −2 for a = 1. Hence, the complete solution is given by

xk = k + c1 + c2(−1)k + c3 · 2k, k ∈ N0, c1, c2, c3 ∈ R.
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Example 5.26 Find the complete solution of the difference equations

(1) xk + xk−2 − 2xx−k = cos
(
k · π

2

)
, k ≥ k.

(2) xk + xk−2 − 2xx−4 = sin
(
k · π

2

)
, k ≥ 4.

A. Linear inhomogeneous difference equation of fourth order with two different right hand sides.

D. Find the roots of the characteristic polynomial. Then make a complex guess, when the right hand
side is replaced by ik. Then the two questions are answered by taking the real and the imaginary
part of the complex solution.

I. The characteristic polynomial

R4 + R2 − 2 = (R2 + 2)(R2 − 1)

has the four simple roots R = ±1 and R = ±i
√

2, hence the homogeneous equation has the
complete solution,

xk = c1 + c2(−1)k + c3(
√

2)k cos
(
k · π

2

)
+ c4(

√
2)k sin

(
k · π

2

)
, k ∈ N0,

where c1, c2, c3, c4 ∈ R are arbitrary constants.

If we guess of a complex solution xk = α ik, we get by insertion

xk + xk−2 − 2xk−4 = α
{
ik + ik−2 − 2ik−4

}
= α ik (1 − 1 − 2) = −2α ik,

which is equal to ik for α = −1
2
. Hence the complex equation has the complete solution

xk = −1
2

ik + c1 + c2(−1)k + c3(
√

2)k cos
(
k · π

2

)
+ c4(

√
2)k sin

(
k · π

2

)
, k ∈ N0,

where c1, c2, c3, c4 ∈ R are arbitrary constants.

1) By taking the real part of the solution of the complex solution we get the solution of (1),

xk = −1
2

cos
(
k · π

2

)
+ c1 + c2(−1)k + c3(

√
2)k cos

(
k · π

2

)
+ c4(

√
2)k sin

(
k · π

2

)
,

where k ∈ N0, and where c1, c2, c3, c4 ∈ R are arbitrary constants.

2) By taking the imaginary part of the complex solution, we get the solution of (2),

xk = −1
2

sin
(
k · π

2

)
+ c1 + c2(−1)k + c3(

√
2)k cos

(
k · π

2

)
+ c4(

√
2)k sin

(
k · π

2

)
,

where k ∈ N0, and where c1, c2, c3, c4 ∈ R are arbitrary constants.
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Example 5.27 Let the sequence xk fulfil the difference equation

xk + 16xk−4 = 17(−1)k, k ≥ 4,

where also x0 = 1, x1 = −1, x2 = 9 and x3 = −1. Calculate x400.

A. Linear inhomogeneous difference equation of fourth order. We shall only find x400.

D. Put yk = x4k, y100 = x400, and set up another difference equation.

I. If we put yk = x4k, then we get the difference equation

yk + 16yk−1 = 16, k ≥ 1,

where y0 = x0 = 1. It is immediately seen that yk = 1, k ∈ N0, is a solution of the inhomogeneous
equation, which also satisfies the condition. We therefore conclude that this is the wanted solution,
hence

y100 = x400 = 1.

Linear difference equations
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Example 5.28 The so-called Fibonacci numbers Fn are defined as the elements of the sequence which
satisfies

Fn = Fn−1 + Fn−2, n ≥ 2,

and the initial conditions F0 = 0, F1 = 1.
Find a general formula of the n-tt Fibonacci number Fn.

The Fibonacci numbers were mentioned for the first time in a book from 1202. They were the solution
of the following problem:
Assume that any couple of rabbits which are more than one month of age bear a new couple of rabbits
at the end of each month. If one starts with one pair and none of the rabbits die, how many couples
of rabbits are there after n months?

A. Linear homogeneous difference equation of second order.

D. Find the roots of the characteristic polynomial.

I. The characteristic equation R2 = R + 1, or R2 − R − 1 = 0, has the roots R =
1
2
{1 ± √

5}, thus
the complete solution is

Fn = c1

(
1 +

√
5

2

)n

+ c2

(
1 −√

5
2

)n

, n ∈ N0, c1, c2 ∈ R.

It follows from the initial conditions that F0 = 0 = c1 + c2 and

F1 = 1 = c1 · 1 +
√

5
2

+ c2 · 1 −√
5

2
=

1
2

(c1 + c2) +
√

5
2

(c1 − c2).

Hence

⎧⎨
⎩

c1 + c2 = 0,

c1 − c2 =
2√
5
,

i.e.

⎧⎪⎨
⎪⎩

c1 =
1√
5
,

c2 = − 1√
5
,

and the solution is

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 −√

5
2

)n

, n ∈ N0.
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Example 5.29 We consider in the usual plane n lines where each pair intersects each other, and
where no three lines intersect at the same point. Let An denote the number of domains which the
plane is divided in by these lines.

1) Calculate A2 and A3.

2) What is the connection between An and An−1? Use the result to find a formula for An for every
n ≥ 2.

A. The setup of a difference equation.

D. Analyze A2 and A3, and the general case.

Figure 1: The case of 2 lines and 3 lines.

I. 1) Clearly, A2 = 4, and it follows by the figure that A3 = 7.

2) Given n−1 lines satisfying the conditions of the text. When we add the n-th line we get under
the same assumptions as above n − 1 intersection points with the other lines, so the new line
is divided into n segments. Each of these segments will provide us with a new subdomain, so
the connection between An−1 and An becomes

An = An−1 + n, i.e. An − An−1 = n.

3) Clearly, all solutions of the homogeneous difference equation are the constant sequences An = c.
Then we guess of a particular solution of the form

An = α n2 + β n,

from which we get by insertion

An − An−1 = α
{
n2 − (n − 1)2

}
+ β{n − (n − 1)} = 2nα + (β − α).

This expression is equal to n for α =
1
2

= β, so the complete solution becomes

An =
1
2

n2 +
1
2

n + c =
1
2

n(n + 1) + c, n ∈ N, c ∈ R.
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It follows from the condition

A2 = 4 =
1
2
· 2 · (2 + 1) + c = 3 + c,

that c = 1, so the final solution becomes

An =
1
2

n(n + 1) + 1, n ∈ N.

Example 5.30 We shall by a binary sequence of length n understand n binary numbers in a given
order, where the binary numbers are 0 and 1. Find the number An of all such sequences, which do
not contain two successive zeros.

Let Bn denote the number of sequences which satisfies the condition above and which also end by 1.
Similarly, let Cn denote the number of sequences satisfying the condition above and ending on 0.

1) Find A1, A2 and A3.

2) What is the connection between An+1 and Bn and Cn?

3) What is the connection between An−1 and Bn?

4) Find by means of (2) and (3) a difference equation for An, and find An.

A. Setup of a difference equation. The situation is the same as in Example 5.31, although we her
have a more complicated equation. By a comparison between the results of the two examples we
see that we obtain the same solution.

D. Analyze the given situations.

I. 1) We get by counting all possible sequences that

a) If n = 1, we have the sequences 0, 1, which are both of the desired type, hence A1 = 2.
b) If n = 2, then we have four possibilities

00, 01, 10, 11,

hog which the latter three satisfy the claim, hence A2 = 3.
c) If r n = 3, then we have eight possibilities,

000, 001, 010, 011, 100, 101, 110, 111,

of which the five underlined sequences fulfil the criterion, hence A3 = 5.

2) It follows immediately that

An+1 = 2Bn + Cn.

In fact, after a sequence from Bn can we choose both 0 and 1 (two possibilities), while we after
a sequence from Cn are forced to choose 1, so we have only one possibility.

3) Clearly,

An−1 = Bn.

In fact, every sequence from An−1 can always be followed by 1 without destroying the condition.
The number must therefore be the same.
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4) Before we can set up a difference equation for An, we have to eliminate Cn. Every sequence
from Cn has 0 as its last term, so the second last digit must necessarily be 1. This means that

Cn = Bn−1.

We have the three equations

An+1 = 2Bn + Cn, An−1 = Bn, Cn = Bn−1.

Hence,

An+1 = 2Bn + Cn = 2Bn + Bn−1 = 2An−1 + An−2,

thus by a shift of index and a rearrangement,

An − 2An−2 − An−3 = 0, n ≥ 3.

This is a linear homogeneous difference equation of third order. The characteristic polynomial
R3 − 2R − 1 has the root R = −1, so

R3 − 2R − 1 = (R + 1)(R2 − R − 1).
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Hence we find the three simple roots

R = −1 and R =
1
2
±

√
5

2
=

1
2

(1 ±
√

5).

Thus, the complete solution is

An = cn(−1)n + c2

(
1 +

√
5

2

)n

+ c3

(
1 −√

5
2

)n

, n ∈ N,

where c1, c2, c3 ∈ R are arbitrary constants.

We get the following conditions from (1),

A1 = 2 = −c1 + c2 · 1 +
√

5
2

+ c3 · 1 −√
5

2
,

A2 = 3 = +c1 + c2 ·
(

1 +
√

5
2

)2

+ c3 ·
(

1 −√
5

2

)2

,

A3 = 5 = −c1?c2 ·
(

1 +
√

5
2

)3

+ c3 ·
(

1 −√
5

2

)3

,

hence

2 = −c1 +
1
2

(c2 + c3) +
√

5
2

(c2 − c3),

3 = +c1 +
3
2

(c2 + c3) +
√

5
2

(c2 − c3),

5 = −c1 + 2 (c2 + c3) +
√

5 (c1 − c3),

and thus

c1 = 0, c2 =
5 + 3

√
5

10
, og c3 =

5 − 3
√

5
10

.

The solution is

An =
5 + 3

√
5

10

(
1 +

√
5

2

)n

+
5 − 3

√
5

10

(
1 −√

5
2

)n

=
1√
5

(
1 +

√
5

2

)n+2

− 1√
5

(
1 −√

5
2

)n+2

, n ∈ N.
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Example 5.31 A coin is thrown n times. For each throw we notice whether we have got heads or
tails, and the total result can be described by a sequence like HHTH . . . TT . There are in total 2n

such sequences. The problem is to find the probability of that one in such a sequence does not get two
tails successively.

Let An denote the number of sequences with the desired property, and let pn denote the unknown
probability.

1) Prove that An fulfils the difference equation

An+1 = An + An−1, n ≥ 2.

2) Find pn and limn→+∞ pn.

A. Difference equation. If we write 0 instead of T , and 1 instead of H, the situation is analogous
to the one in Example 5.30, and the solution An ought to be the same. Note that the difference
equation here is simpler than the one in Example 5.30.

D. Analyze how we get the difference equation. Then solve the equation and find pn.

I. 1) Let us consider an element from An. Then we have two possibilities:

a) If the element terminates with a T , will the next element only be included, if the next throw
is an H. We denote the number of elements by An,K .

b) If the element terminates with an H (and the number is An,H), then we can allow both H
and T in the next throw, thus

An+1 = An,K + 2An,P = (An,K + An,P ) + An,P = An + An,P .

Then An,P must be equal to An−1, because one after each element, which contributes to
An−1, can allow H to be the next digit, when we have a contribution to An,P , and every
contribution to An,P is obtained in this way. Then

An+1 = An + An−1, n ≥ 2.

2) Then we get by a rearrangement that

An − An−1 − An−2 = 0, n ≥ 3.

This is a linear, homogeneous difference equation of second order. The characteristic polynomial
R2 − R − 1 has the two simple roots

R =
1 ±√

5
2

.

Hence the complete solution is

An = c1

(
1 +

√
5

2

)n

+ c2

(
1 −√

5
2

)n

, n ∈ N0, c1, c2 ∈ R.

By a counting of the possibilities we get

a) If n = 1, then we have the two possibilities H and T , hence A1 = 2.
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b) If n = 2, then we have the four possibilities

HH, HT, TH, TT,

the first three of which satisfy the conditions, hence A2 = 3.

Thus, we have the following equations for c1 and c2,

A1 = 2 = c1 · 1 +
√

5
2

+ c2 · 1 −√
5

2
=

1
2

(c1 + c2) +
√

5
2

(c1 − c2),

A2 = 3 = c1 ·
(

1 +
√

5
2

)2

+ c2 ·
(

1 −√
5

2

)2

=
3
2

(c1 + c2) +
√

5
2

(c1 − c2),

hence, c1 + c2 = 1 and c1 − c2 =
3√
5
, so

c1 =
1√
5
·
√

5 + 3
2

=
1√
5

(
1 +

√
5

2

)2

,

c2 =
1√
5
·
√

5 − 3
2

= − 1√
5

(
1 −√

5
2

)2

,

This gives us the solution

An =
1√
5

(
1 +

√
5

2

)n+2

− 1√
5

(
1 −√

5
2

)n+2

, n ∈ N,

and thus

pn =
1
2n

An =
4√
5

(
1 +

√
5

4

)n+2

− 4√
5

(
1 −√

5
4

)n+2

, n ∈ N.

From
√

5 < 3, follows that

∣∣∣∣∣1 ±√
5

4

∣∣∣∣∣ < 1, so

(
1 ±√

5
4

)n

→ 0 for n → +∞, and we have

lim
n→+∞ pn = 0.
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