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 Preface

Preface

The purpose of this volume is to give some guidelines for the student concerning the solution of 
problems in the theory of Functions in Several Variables.

The intension is not to write a textbook, but instead to give some hints of how to solve problems in this 
fi eld. It therefore cannot replace any given textbook, but it may be used as a supplement to such a book 
on Functions in Several Variables.

The chapters have been kept as short as possible, each dealing with one particular type of standard 
problem, supplied with short descriptions of the possible methods of solutions which may be available, 
their advantages and also their shortcomings.

In Appendix A the reader will fi nd a collection of formulæ which otherwise tacitly are assumed to be 
known from high school. It is highly recommended that the student learns these by heart during the 
course, because they form the backbone of the elementary part of Calculus, which should be mastered, 
before one may proceed to more advanced parts of Mathematics.

The text is a continuation of Studentensupport: Calculus 1, Real Functions in One Variable. It will be 
followed by a volume called Calculus 2b, in which selected examples from the theory of functions in 
several variables are considered.

The text is based on my experiences in my teaching of students in this course. I realized that there was 
absolutely a need for a practical description of how to solve explicit problems.

Leif Mejlbro

http://bookboon.com/
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Problem 1.1 Calculate the integral∫
sinm x cosn x dx for m, n ∈ N0.

Notation: By the degree of the product sinm x cosn x we shall understand the sum m + n of the
exponents.

Division of the problem: There are two main cases, odd and even degree. Each of these is again
divided into two subcases:

1) m+ n odd.

a) m even and n odd, i.e. m = 2p and n = 2q + 1, p, q ∈ N0,

b) m odd and n even, i.e. m = 2p+ 1 and n = 2q, p, q ∈ N0.

2) m+ n even.

a) m and n are both odd, i.e. m = 2p+ 1 and n = 2q + 1, p, q ∈ N0,

b) m and n are both even, i.e. m = 2p and n = 2q, p, q ∈ N0.

The most difficult case is 2b), where both m and n are even.

Method of solution:

1) a) m = 2p and n = 2p+ 1.
Apply the substitution u = sinx corresponding to m = 2p even:∫

sin2p x cos2q+1 x dx =
∫

sin2p x · cos2q x · cosx dx

=
∫

sin2p x · (1− sin2 x)q d sinx

=
∫
u=sinx

u2p(1− u2)q du.

b) m = 2p+ 1 and n = 2q.
Apply the substitution u = cosx corresponding to n = 2q even:∫

sin2p+1 x · cos2q x dx =
∫

sin2p x · cos2q x · sinx dx

=
∫

(1− cos2 x)p cos2q x · (−1) d cosx

= −
∫
u=cos x

(1− u2)pu2q du.

2) When the degree m + n is even, the trick is to change the problem to a similar one by doubling
the angle, thereby halving the degree. Therefore, we use the formulæ

cos2 x =
1
2
(1 + cos 2x), sin2 x =

1
2

(1− cos 2x), sinx cosx =
1
2

sin 2x.

1. Integration of trigonometric polynomials

 Integration of trigonometric polynomials
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a) m = 2p+ 1 and n = 2q + 1 are both odd.
The integrand is transformed in the following way:

sin2p+1 x · cos2q+1 x = (sin2 x)p · (cos2 x)q · sinx cosx

=
{

1
2

(1− cos 2x)
}p{

1
2

(1 + cos 2x)
}q

· 1
2

sin 2x.

Hence we get a special case of 1b), so by the substitution u = cos 2x we get∫
sin2p+1 x cos2q+1 x dx =

1
2p+q+1

∫
(1− cos 2x)p(1 + cos 2x)q sin 2x dx

=
1

2p+q+1

∫
(1− cos 2x)p(1 + cos 2x)q ·

(
−1

2

)
d cos 2x

= − 1
2p+q+2

∫
u=cos 2x

(1− u)p(1 + u)q du.

 Integration of trigonometric polynomials
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b) m = 2p and n = 2q are both even.
In this case there is no final formula, but there is a procedure by which we can reduce the
problem to a sum of several problems of the types 1a) and 2b) of lower degree. The result is
obtained after a finite number of steps.

The integrand is rewritten in the following way:

sin2p x cos2q x =
{

1
2
(1− cos 2x)

}p{
1
2

(1 + cos 2x)
}q

.

The left hand side is of degree 2p+2q in x. The right hand side is a trigonometric polynomial of
degree p+q in the doubled angle 2x. Each term of this polynomial must be handled separately,
depending on whether the degree j(≤ p+ q) is odd (case 1a)) or even (case 2b)).

Remark 1.1 It is of course in principle possible to create a specific solution formula, but it
will be more confusing than the description of the procedure given above. ♦

 Integration of trigonometric polynomials
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Problem 2.1 Write the quotient
P (x)
Q(x)

between two polynomials as a sum of elementary fractions.

Remark 2.1 This problem occurs typically in connection with integration, and in courses on series
also in telescopic summation. If the denominator has complex conjugated roots of at least order 2, a
complex decomposition is usually the easiest method. If the order is 1, then real decomposition may
be applied instead. We shall here show the method of complex decomposition. ♦

Procedure.

1) If the degree of the numerator is ≥ the degree of the denominator, we first perform a division by
the denominator,

P (x)
Q(x)

= P1(x) +
R(x)
Q(x)

,

where the residual polynomial R(x) (the new numerator) has degree smaller than the degree of
Q(x). We save the resulting polynomial P1(x) for the last step.

2) The denominator Q(x) is then factorized into polynomials of degree one (with complex roots):

Q(x) = c · (x− a1)p1 · · · (x− ak)pk .

Check that the sum p1 + · · ·+ pk of all exponents is equal to the degree of Q(x). If Q(x) is a real
polynomial, check that the complex conjugated roots occur of the same degree.

3) Choose the simplest of the polynomials P (x) and R(x). The following method gives the same
result, whether P (x) or R(x) is used. Since it is here theoretically most correct to use R(x), we
shall use R(x) in the rest of this description, and it is left to the reader to write P (x) instead of
R(x), whenever this will give us simpler calculations.

4) The fraction is rewritten in the following way

R(x)
Q(x)

=
1
c
· R(x)
(x− a1)p1 · · · (x− ak)pk

.

We get the coefficient of the special simple fraction

1
(x− a1)p1

by “holding the hand over” the factor (x − a1)p1 in the denominator and then putting x = a1 in
the remainder part:

b1,p1 =
1
c
· R(x)
(x− a2)p2 · · · (x− ak)pk

∣∣∣∣
x=a1

.

We save the result

b1,p1
(x− a1)p1

for the last step in this procedure.

2. Complex decomposition of a fraction 
between two polynomials

 Complex decomposition of a fraction between two polynomials
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5) Repeat 4) on any other of the factors

(x− a2)p2 , · · · (x− ak)pk ,

in the denominator and save all the found special fractions.

6) Subtract all the found special fractions from
R(x)
Q(x)

and reduce:

1
c
· R(x)
(x− a1)p1 · · · (x− ak)pk

− b1,p1
(x−a1)p1 − · · · − bk,pk

(x−ak)pk

=
1
d
· R1(x)
(x− a1)q1

· · · (x− ak)qk .

If the calculation is performed without errors, then

q1 < p1, · · · qk < pk.

Check this! (A weak test.)

 Complex decomposition of a fraction between two polynomials
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7) Repeat 4), 5) and 6) on the reduced fraction

1
d
· R1(x)
(x− a1)q1 · · · (x− ak)qk

.

Remember in each step to write down the elementary fractions which have been found. The
process must necessarily stop after a finite number of steps, because the degree of the denominator
is becoming smaller by each iteration.

8) Finally, collect all the found elementary fractions together with the polynomial from 1).

The description above is the standard procedure. My experience has shown me that one often can
find shortcuts, which are impossible to systemize here. I shall therefore here only give one example of
many possibilities.

Example 2.1 Let us here try to decompose the fractional function

1
x4 − 1

.

1) The standard procedure as described above. The denominator has the simple roots 1, i, −1, −i,
hence

1
x4 − 1

=
1

(x− 1)(x− i)(x+ 1)(x+ i)

=
1

(1−i)(1+1)(1+i)
· 1
x−1

+
1

(i−1)(i+1)(i+i)
· 1
x−i

+
1

(−1−1)(−1−i)(−1+i)
· 1
x+1

+
1

(−i−1)(−i−i)(−i+1)
· 1
x+i

=
1
4
· 1
x−1

− 1
4i
· 1
x−i −

1
4
· 1
x+1

+
1
4i
· 1
x+i

=
1
4
· 1
x−1

− 1
4
· 1
x+1

− 1
4i

{
1

x−i −
1

x+i

}

=
1
4
· 1
x−1

− 1
4
· 1
x+1

− 1
2
· 1
x2 + 1

.

This is of course fairly tiresome, though it works.

2) Alternatively it is seen that

x4 − 1 =
(
x2

)2 − 1 = (x2 + 1)(x2 − 1),

so if we write u = x2, and first decompose after u followed by a decomposition after x, we easily
get in two simpler steps that

1
x4 − 1

=
1

u2 − 1
=

1
(u− 1)(u+ 1)

=
1
2

1
u− 1

− 1
2

1
u+ 1

=
1
2

1
x2 − 1

− 1
2

1
x2 + 1

=
1
2

1
(x− 1)(x+ 1)

− 1
2

1
x2 + 1

=
1
4

1
x− 1

− 1
4

1
x+ 1

− 1
2

1
x2 + 1

. ♦

 Complex decomposition of a fraction between two polynomials
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Problem 3.1 Calculate
∫ P (x)
Q(x)

dx, where P (x) and Q(x) are (real) polynomials.

Remark 3.1 In some cases the pocket calculators TI-92 and TI-89 may for some unknown reasons
give strange results, so one cannot always rely on them. ♦

Procedure.

1) Decompose
P (x)
Q(x)

as described in the previous chapter on complex decomposition.

Then
P (x)
Q(x)

is written as a sum of a polynomial P1(x) and some elementary fractions of the type
c

(x− a)p
.

2) The polynomial P1(x) is integrated in the usual way.

3) The elementary fractions where p > 1 are also integrated in the usual way∫
c

(x− a)p
dx = − c

p− 1
· 1
(x− a)p−1

,

3. Integration of a fraction between two polynomials

 Integration of a fraction between two polynomials
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no matter whether a is real or complex. If P (x) and Q(x) are real, then any complex fraction of

the type
c

(x− a)p
will be accompanied by its complex conjugated fraction

c

(x− a)p
. This means

that the integration of such a pair of complex conjugated fractions can be reduced to∫ {
c

(x− a)p
+

c

(x− a)p

}
dx = − 1

p− 1

{
c

(x− a)p−1
+

c

(x− a)p−1

}

= − 2
p− 1

Re
{

c

(x− a)p−1
· (x− a)p−1

(x− a)p−1

}

= − 2
p− 1

· Re{c · (x− a)p−1}
{x2 − 2Re a · x+ |a|2}p−1

4) If p = 1, and a is real, then of course∫
x

x− a
dx = c · ln |x− a|.

5) If p = 1, and a is complex, then both
c

x− a
and

c

x− a
occur in the decomposition. A direct

integration is not possible, unless on knows the theory of Complex Functions. Instead we add the
two elementary fractions before the integration. (Notice that when p > 1, this is done after the
integration, cf. 3)).

More precisely we put a = α+ i β and c = r + i s. Then

c

x− a
+

c

x− a
=

r + i s

x− α− i β
+

r − i s

x− α+ i β

=
(r + i s)(x− α− i β) + (r − i s)(x− α− i β)

(x− α)2 + β2

=
2r(x− α)

(x− α)2 + β2
− 2sβ

(x− α)2 + β2
,

whence∫ {
c

x− a
+

c

x− a

}
dx = r

∫
2(x− α)

(x− α)2 + β2
dx− 2s

∫
1

1 +
(
x− α

β

)2

1
β
dx

= r · ln{
(x− α)2 + β2

}− 2sArctan
(
x− α

β

)
.

6) The final result is obtained by gathering all the results from 2), 3), 4) and 5).

Example 3.1 In Example 2.1 we found the decomposition

1
x4 − 1

=
1
4

1
x− 1

− 1
4

1
x+ 1

− 1
2

1
x2 + 1

,

from which we immediately get∫
1

x4 − 1
dx =

1
4

ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣− 1
2

Arctan x, x �= ±1. ♦

 Integration of a fraction between two polynomials
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Problem 4.1 Let the structure of a function f(x, y, . . . ) be given. Find the maximum domain of this
function, based on this structure.

Procedure.

1) Divide the function into subfunctions according to the signs + and −, i.e. write f = f+ + f−,
where f+ ≥ 0 and f− ≤ 0 (and f+ · f− = 0).

2) Find the domain for each of the subfunctions (if possible, sketch a figure).

3) Then the domain of f is the intersection of the domains of subfunctions. (Sketch a figure).

If f(x, y, . . . ) is a vector function, then perform the above separately for each coordinate function.
The domain is the intersection of all the domains of the coordinate functions.

One should in particular be aware of the following rules:

1) Never divide by 0.

Analyze the set of zeros for the denominator, if it exists.

2) In real analysis, never take the square root of a negative number.

Find the set of zeros of the radicand of the square root. Check the sign in the domains which are
bounded by this set of zeros.

3) In real analysis never take the logarithm of a negative number or of 0.

Find the set of zeros of the expression which we are going to take the logarithm of. Check the sign
in the domains which are bounded by this set of zeros.

Remark 4.1 Experience tells that the square root is in particular difficult to handle. A professor once
said to me that “if one can handle the square root, then one can handle anything in mathematics!”.
Notice that pocket calculators does not like square roots either. ♦

4. The domain of a function

 The domain of a function
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Problem 5.1 Let f = (f1, . . . , fm) be a differentiable vector function in the k real variables x1, . . . ,
xk, and assume that these again are differentiable functions in the n variables u1, . . . , un.
Find the (partial) derivatives of (f1, . . . , fm) after u1, . . . , un.

u1

�

x1

�

f1

· · ·

· · ·

· · ·

un

�

xk

�

fm

�
�

�
���

�
�

�
���

�
�

�
���

�
�

�
���

Figure 1: The general diagram of the chain rule.

uj

x1 · · · xk

fi

�
�

�
���

	
	

	
		


	
	

	
		


�
�

�
���

Figure 2: The reduced diagram of the chain rule.

Procedure.

1) Sketch the general diagram as in figure 1, and reduce the the i-th f -coordinate and the j-th
u-coordinate as shown on figure 2.

2) “Pull the differentiation apart” in the following way with k specimens (i.e. the number of x-
coordinates) on the right hand side

∂fi
∂uj

=
∂fi
∂

∂

∂uj
+ · · ·+ ∂fi

∂

∂

∂uj
.

 The chain rule

5. The chain rule
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3) The empty places are then filled in with all the variables x1, . . . , xk from the layer in the middle,

∂fi
∂uj

=
∂fi
∂x1

∂x1
∂uj

+ · · ·+ ∂fi
∂xk

∂xk
∂uj

.

4) Repeat this process for every relevant i and j.

Remark 5.1 If one of the layers of differentiations only contains one variable, then ∂ is replaced by

d, i.e. one writes
d · · ·
d · · · instead of

∂ · · ·
∂ · · · . ♦

 The chain rule
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Geometric interpretation: Assume that f(x) is a differentiable function. Then the directional
derivative

f ′(x; e)

of f at the point x and in the direction e indicates how much f(x) increases (decreases) per unit in
the direction e. By a direction we shall always understand a unit vector e, i.e. ‖e‖ = 1. In this case
we have

f ′(x; e) = e · �f(x).

Typical problems are:

Problem 6.1 Let a unit vector e be given.
Find the directional derivative f ′(x; e) of f in the direction e.

Procedure.

1) Calculate the gradient �f(x).

2) Calculate the inner product f ′(x; e) = e · �f(x).

Problem 6.2 Given two points x1 and x2.
Find the directional derivative of f(x) at x1 in the direction of x2.

Procedure.

1) Calculate the gradient �f(x) i x1.

2) Find the directional vector e from x1 to x2:

e =
x2 − x1
‖x2 − x1‖ ,

(Do not forget to find the norm of the vector).

3) The directional derivative is given by

f ′(x1; e) = e · �f(x1) =
1

‖x2 − x1‖ (x2 − x1) · �f(x1).

Remark 6.1 The definition is extremely simple. Nevertheless it is causing the students a lot of
trouble for some reason which is not understood by me. I have taken the consequence to include this
chapter here. Notice that when we norm �f(x), we obtain the direction in which the function f(x)
has its highest increase. ♦

6. Calculation of the directional derivative

 Calculation of the directional derivative

http://bookboon.com/


Download free ebooks at bookboon.com

Calculus 2a

20  

The most common case is given by the following problem. Other cases are obtained by suitable
modifications of it.

Problem 7.1 Find the approximating polynomial of at most second degree for a function f(x, y) in
two variables from the point (x0, y0) in its open domain.

There are here several possible methods, which all have there advantages and disadvantages, so one
cannot say that one particular method is always the easiest one to use. However, when the student
encounters this problem for the first time, her or his preference will probably without doubt be the
following

A. Standard procedure

1) Start by explaining (text), why f is a C2-function in the neighbourhood of (x0, y0).

2) Calculate the following equations:

order zero:
{
f(x, y) = · · · , f(x0, y0) = · · · ,

first order:

⎧⎨
⎩

f ′x(x, y) = · · · , f ′x(x0, y0) = · · · ,

f ′y(x, y) = · · · , f ′y(x0, y0) = · · · ,

second order:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ′′xx(x, y) = · · · , f ′′xx(x0, y0) = · · · ,

f ′′xy(x, y) = · · · , f ′′xy(x0, y0) = · · · ,

f ′′yy(x, y) = · · · , f ′′yy(x0, y0) = · · · .

3) Insert the values of the column to the right into the formula

P2(x, y) = f(x0, y0) +
1
1!

{
f ′x(x0, y0) · (x− x0) + f ′y(x0, y0) · (y − y0)

}
+

1
2!

{
f ′′xx(x0, y0) · (x−x0)2 + 2 f ′′xy(x0, y0) · (x−x0)(y−y0) + f ′′yy(x0, y0) · (y−y0)2

}
.

Remark 7.1 Since the approximating polynomial is the best description of f(x, y) in a neighbourhood
of (x0, y0), the right variables here are always x − x0 and y − y0, and not x and y. Therefore, one
shall not reduce the expression further to a polynomial in x and y alone, because we by doing this
will obtain an expression with a higher numerical uncertainty! ♦

7. Approximating polynomials

 Approximating polynomials
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 Approximating polynomials

B. Taylor expansions

1) Explain (text) that f(x, y) is composed of standard functions, for which a Taylor expansion already
Studentensupport:is known from e.g.

2) Reset the problem to zero, i.e. change the variables to

(h, k) = (x− x0, y − y0), (x, y) = (x0 + h, y0 + k).

Then we get f(x, y) = F (h, k) in the new variables (h, k).

3) Apply convenient standard expansions in F (h, k). We list all the usual standard expansions for t
small, which should be known from previous courses,

1
1− t

= 1 + t+ t2 + · · · , 1
1 + t

= 1− t+ t2 − · · · ,

(1 + t)α = 1 + αt+
α(α− 1)

2
t2 + · · · , ln(1 + t) = t− 1

2
t2 + · · · ,

Arctan t = t− · · · , et = 1 + t+
1
2
t2 + · · · ,

sin t = t− · · · , cos t = 1− 1
2
t2 + · · · ,

sinh t = t+ · · · , cosh t = 1 +
1
2
t2 + · · · ,

Calculus 1, Functions in one Variable.
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where the dots indicate terms of the type t2ε(t).

4) Calculate F (h, k), where every term which contains at least three factors of the type h, k, is
symbolized by · · · (of the type t2ε(t)).

5) One obtains the approximating polynomial by deleting the dots and then change variables back to

(h, k) = (x− x0, y − y0).

Remark 7.2 One should always be very careful to rewrite to one of the ten standard functions above.
We have for example (for α = 1/2)

√
25 + t = 5

(
1 +

t

25

) 1
2

= 5
{
1 +

1
2

t

25
− 1

8
t2

625
+ · · ·

}

= 5 +
1
10

t− 1
1000

t2 + · · · , t small. ♦

The following example shows that Taylor expansions may be easier to use than the standard procedure:

Example 7.1 Find the approximating polynomial of at most second degree for the function

f(x, y) = exp(x− y2)Arctan(x+ 2y) cos(x2 + 4y)

from the point (x0, y0) = (2,−1).

It is obvious that the standard procedure will give us a mess of calculations! Let us therefore turn to
the method of using known Taylor expansions.

1. The function is a product of standard functions, where we know the Taylor expansions.

2. The change of variables is here

(h, k) = (x− 2, y + 1), i.e. (x, y) = (2 + h,−1 + k).

In particular we get for t = h+ 2k that

Arctan(x+ 2y) = Arctan(h+ 2k) = (h+ 2k) + · · · ,
so it suffices to expand the other factors of only first degree, since one degree is used in the factor
Arctan(h+ 2k).

3. and 4. Since

exp(x− y2) = exp(1 + h+ 2k − k2) = e · exp(h+ k) · exp(−k2)
= e · {1 + (h+ 2k) + · · · } · {1 + · · · } = e+ e · (h+ 2k) + · · · ,

and

cos(x2 + 4y) = cos(4h+ 4k + k2) = 1 + · · · ,
we get

f(x, y) = exp(1 + h+ 2k − k2)Arctan(h+ 2k) cos(4h+ 4k + k2)
= {e+ e · (h+ 2k) + · · · } · {(h+ 2k) + · · · } · {1 + · · · }
= e · (h+ 2k) + e(h+ 2k)2 + · · · .

 Approximating polynomials
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5. The approximating polynomial is obtained by deleting the dots and then use the inverse transfor-
mation of variables,

P2(x, y) = e(h+ 2k) + e(h+ 2k)2

= e{(x−2) + 2(y+1) + (x−2)2 + 4(x−2)(y+1) + 4(y+)2}.

It should be noticed that there also exist examples where the standard procedure is the easiest
one, so it is impossible to say in advance that one method is always better that the other one. ♦

 Approximating polynomials
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As the main case we consider vector fields in R
3, i.e.

V(x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z)),

which is assumed to be of class C1 in an open domain A � R
3. Whenever necessary we shall mention

the modifications to R
2.

Problem 8.1 Check whether the vector field V = (f, g, h) is a gradient field. When this is the case,
find an antiderivative F . This means that the function F satisfies the equation

�F = V.

Remark 8.1 The problem is tricky, because there exist so many solution methods that one may
be confused the first time one is confronted with this situation. Furthermore, there exist necessary
conditions which are not sufficient, and sufficient conditions which are not necessary. Finally, the
standard procedure assumes some knowledge of line integrals, which is not always the case in every
textbook, the first time this problem is encountered. It will, however, be known at the end of any
course dealing with functions in several variables. ♦

Procedure:

Existence. This section is not necessary, if only one remembers to test the solution in the next
section. The considerations of this section may, however, be useful in some particular situations.

x

f

y

g

z

h

�
�

�
���

�
�

�
���

�����������

�
�

�
���











�

�
�

�
���

Figure 3: Diagram for “cross differentiation”.

1) Check that f , g, h ∈ C2(A) satisfy

∂f

∂y
=

∂g

∂x
,

∂f

∂z
=

∂h

∂x
,

∂g

∂z
=

∂h

∂y
.

One may call these the “cross derivatives”. In case of 2 dimensions we only use the first equation.

a) If these equations are not fulfilled, then V(x, y, z) is not a gradient field, and the problem does
not have an antiderivative.

b) If the equations are satisfied, then V(x, y, z) is indeed a gradient field in every simply connected
region of A.

Remark 8.2 Notice the extra condition that we only consider simply connected regions A.
This is a sufficient sufficient condition, though not necessary. ♦

8. Gradient fi elds; antiderivatives

 Gradient fi elds; antiderivatives
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2) Suppose that the equations of 1) are satisfied. Check whether A is a simply connected region. If
“yes”, then we have proved the existence. If “no”, construct a candidate by means of one of the
methods in the next section and test it, i.e. check the equation

�F = V.

Construction of a possible antiderivative. We shall describe four methods, of which the former
two have intrinsically built a test into them, while the latter two do not contain such a test! For that
reason the latter two methods may be tricky, because their simple formulæ usually give some results,
even when no such antiderivative exists! A reasonable strategy is therefore to skip the investigation
in the section above and instead start by constructing a candidate F of an antiderivative and then as
a rule always perform a test, i.e. check whether the candidate really satisfies the equation

�F = V.

1) Indefinite integration.

a) Write down the differential form

V(x) · dx = f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz.

 Gradient fi elds; antiderivatives

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87


Download free ebooks at bookboon.com

Calculus 2a

26  

b) Choose the simplest looking of the three terms in a), e.g. f(x, y, z) dx. Then calculate

F1(x, y, z) =
∫

f(x, y, z) dx, y, z are here considered as constants.

c) Check the result, i.e. calculate

dF1 =
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz,

and compare this with

V · dx = f dx+ g dy + h dz.

i) If ∂F1
∂x �= f , then we have made an error in our calculations. There is only one thing to do:

Start from the very beginning!
ii) If g1 = g − ∂F1

∂y , or h1 = h− ∂F1
∂z depends on x, then we have two possibilities: Either

(*) we have made an error in our calculations above,

or

(**) V(x, y, z) is not a gradient field.

Notice that both possibilities may occur, so in this case one should check one’s calculations
an extra time.

iii) When neither g1 nor h1 depend on x, (which loosely speaking has been integrated in the
first process, and therefore should have disappeared from the reduced problem), then we
have

V · dx = dF1 + g1(x, y) dy + h1(y, z) dz.

In this case we repeat the process above on the reduced form

g1(y, z) dy + h1(y, z) dz.

d) After at most three repetitions of this process we either get

V(x, y, z) is not a gradient field (in which case the task is finished),

or

V(x) · dx = dF1(x, y, z) + dF2(y, z) + dF3(z),

or something similar. The essential thing is that dF1 depends on all three variables, that dF2

only depends on two of them, and that dF3 only depends on one variable. Since all terms on
the right hand side are “put under the d-sign”, it follows that V(x) is a gradient field. One
gets an antiderivative by removing the d-sign in all three terms,

F (x, y, z) = F1(x, y, z) + F2(y, z) + F3(z).

Finally, we get all possible antiderivatives by adding an arbitrary constant.

 Gradient fi elds; antiderivatives
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2) The method of inspection.

In Danish this is called the “method of guessing”, but this is misleading, because it uses system-
atically the well-known rules of differentiation, read in the opposite direction of what one is used
to from the reader’s previous education:

Linearity: df + αdg = d(f + α g), α konstant,

Product: f df + f dg = d(f · g),

Quotient: g df − f dg =

⎧⎪⎪⎨
⎪⎪⎩

g2 d

(
f

g

)
, g �= 0,

−f2 d
(
g

f

)
, f �= 0,

Composition: F ′(f) df = d(F ◦ f).
These rules are all what we need, so learn them in this form!

a) Apply the rules of differentiation above to put as much as possible under the d-sign:

V(x) · dx = dF1 +V1(x) · dx.

b) If one by this process obtains that V1(x) = 0, then V(x) is indeed a gradient field,

V(x) · dx = dF1 = �F1(x) · dx,
and F1(x) is an antiderivative.

c) If one cannot obtain an equation of the form V1(x) = 0, then either V(x) is not a gradient
field, or one has run out of ideas of further reductions. In this case one chooses another possible
V1(x), which is simpler than V(x), and uses one of the other methods on the reduced form
V1(x) · dx.

Even when V is not a gradient field, it is often quite useful to remove a term of the form dF1(x),
because later calculations of e.g. line integrals will be considerably easier to perform on the residual
vector field. This technique may be useful in practical calculations in e.g. Thermodynamics.

3) Standard method; line integration along a curve consisting of axis parallel lines.

Once the tangential line integral has been introduced, and V(x) is defined in R
3, (or in some

region which allows curves consisting of axis parallel lines as e.g. described in the following), it is
easy to calculate a candidate to an antiderivative by integration along such a curve like e.g.

(0, 0, 0) −→ (x, 0, 0) −→ (x, y, 0) −→ (x, y, z).

a) Start by writing down the differential form

V(x) · dx = f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz.

b) Integrate this differential form along the curve mentioned above,

F0(x, y, z) =
∫ x

0

f(t, 0, 0) dt+
∫ y

0

g(x, t, 0) dt+
∫ z

0

h(x, y,t) dt.

 Gradient fi elds; antiderivatives
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c) Check the result! This means that one should check the equation

�F0 = V(x).

If this is not fulfilled, then V(x) is not a gradient field, not even in the case where the candidate
F0(x, y, z) exists! It is not an antiderivative in this case.

d) If on the other hand F0(x) is an antiderivative, then we get all antiderivatives by adding an
arbitrary constant.

4) Radial integration.

In this case we integrate along the line

(0, 0, 0) −→ (x, y, z).

a) Be extremely careful when x is replaced by tx, and y by ty, and z by tz in V(x). By this
process we get V(tx, ty, tz).

Remark 8.3 Warning! This seemingly simple process is far more difficult to perform than
one would believe at the first sight! ♦

b) Calculate

F0(x, y, z) = (x, y, z) ·
∫ 1

0

V(tx, ty, tz) dt.

Notice that the dot product is used here.

c) Check the result! This means that one should check the equation

�F0(x) = V(x).

Remark 8.4 The method of radial integration is only mentioned here, because it may be found
in some textbooks. I shall here strongly advise against the use of it, partly because the transform
to x→ tx is far more difficult to perform than one would believe, and partly because the integral
which is used in the calculation of F0(x, y, z) in general is far more complicated than the analogous
integral where we integrate along a simple curve consisting of straight lines parallel with one of
the axis. ♦

 Gradient fi elds; antiderivatives
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Consider the abstract integral
∫
A
f(x) dμ, where f : A → R always is assumed to be continuous.

When one wants to classify the type of integration, one should go through the following flow diagram.

Is the domain of integration A closed and bounded without exceptional points for the inte-
grand f?

�
No

Improper integral

�

Proper integral. Is the domain of integration integration A flat?

Yes

�
Yes

�
Yes

�
No

�
No

Dimension 2.
Plane integral.

Dimension 3.
Space integral.

Dimension 1.
Line integral.

Dimension 2.
Surface integral.

� �

Transformation theorems.

Figure 4: Flow diagram for types of integration.

These are ordered according to their difficulties in the following way:

1) Plane integral (rectangular, polar)

2) Space integral (rectangular, semi-polar, spherical)

3) Line integral (rectangular, polar; parametrical representation)

4) Surface integral (rectangular, semi-polar, spherical; parametrical representation)

5) Transformation theorems (plane, space)

6) Improper integral (bounded or unbounded domain).

9. An overview of integration in the plane and in the space

 An overview of integration in the plane and in the space
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In this case we give a more thorough treatment, because it is the basic form which all other reductions
are referring to.

The problems of understanding what is going on here is caused by the historical notation of an integral
in the form∫

· · · dμ,

which says that the integral is actually written as an advanced form of a pair of brackets, where
∫

is
the first bracket and dμ is the second bracket. Other alternative notations are, however, possible but
they have all some other disadvantages, so we shall stick to the familiar notation.

10. Reduction of a plane integral; rectangular version

 Reduction of a plane integral; rectangular version
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Geometry.

Whenever possible, one should always start by sketching a figure of the parametric domain. In its
basic form (the rectangular version) the parametric domain is identical with the domain itself, so one
does not distinguish between whether some of the coordinates are lying in the domain itself, while
other coordinates at the same time are considered as lying in the parametric domain. Therefore, the
same letter may occur both as a variable and as a parameter, depending on the actual situation. This
may at a first glance look very confusing. In other words, one lacks a notation, by which one can
distinguish between a variable and a parameter. Some experiments have been made by using different
colours for the different aspects with some success. We shall, however, for technical reasons not use
such a procedure here.

In the rectangular case there are two basic geometrical forms:

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 5: First version, where one in the inner (i.e. the first) integral integrates vertically. The bounds
are here Y1(x) = 0 and Y2(x) = x.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 6: Second version, where one in the inner (i.e. the first) integral integrates horizontally. The
bounds are here X1(y) = y and X2(y) = 1.

The actual figure is divided into sub-figures of one of these two types. Then each sub-figure is treated
separately. We use the following principles:

 Reduction of a plane integral; rectangular version
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First version. The variable x lies in an interval [a, b], where a and b are constants. Notice that x is
considered as a parameter in the first (i.e. the inner) integration. The variable y lies between the
two curves of equations y = Y1(x) and y = Y2(x).

Second version. The variable y lies in an interval [c, d], where c and d are constants. Notice that
y is considered as a parameter in the first (i.e. the inner) integration. The variable x lies between
the two curved of equations x = X1(y) and x = X2(y).

Remark 10.1 Some figures, like e.g. axis-parallel rectangles, can be described equally well in the two
geometrical versions. Then it depends on the structure of the integrand whether one should choose
the first or the second version, because the integrations themselves do not be equally easy in the two
versions. Whenever one is in trouble with the calculations in one of the two versions, one may try the
other one instead. In some cases these integrations can in fact be calculated. ♦

Problem 10.1 Calculate the abstract plane integral∫
B

f(x, y) dS,

by reduction in rectangular coordinates.

Procedure:

1) Sketch the domain of integration B. If necessary, divide B into sub-domains of type 1 or type 2,
described above.

2) If B (or some sub-domain) is of type 1, then write

B = {(x, y) | a ≤ x ≤ b, Y1(x) ≤ y ≤ Y2(x)},

and set up the reduction formula

∫
B

f(x, y) dS =
∫ b

a

{∫ Y2(x)

Y1(x)

f(x, y) dy

}
dx.

According to the figure of the first version, one first keeps x fixed and integrates vertically. This
can be interpreted as if we are collecting the “mass” of the vertical line above the point x in this
point on the x-axis. Then the total “mass” is afterwards obtained by integrating the partial results
from the inner integrations after x.

3) Perform a separate calculation of the inner integral:

ϕ(x) =
∫ Y2(x)

Y1(x)

f(x, y) dy,

where x is considered as a constant.

Remark 10.2 When one has obtained the necessary training one can of course skip this point. ♦

 Reduction of a plane integral; rectangular version
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 Reduction of a plane integral; rectangular version

∫
B

f(x, y) dS =
∫ b

a

ϕ(x) dx.

5) If B (or a sub-domain of B) is of type 2, then write instead

B = {(x, y) | c ≤ y ≤ d, X1(y) ≤ x ≤ X2(y)},

and continue with the reduction formula∫
B

f(x, y) dS =
∫ d

c

{∫ X2(y)

X1(y)

f(x, y) dx

}
dy.

According to the figure of the second version one starts by keeping y fixed and integrate horizon-
tically after x. This can be interpreted as collecting the “mass” over den horizontal line in the
corresponding point y on the y-axis. Afterwards the total“mass” is obtained by integrating the
partial results after y.

6) Perform a separate calculation of the inner integral:

ψ(y) =
∫ X2(y)

X1(y)

f(x, y) dx,

where y is considered as a constant.

Remark 10.3 When one has obtained the necessary training one can of course skip this point. ♦

Studentensupport:4) Insert and calculate by the usual methods known from e.g. V Calculus 1, Functions in
One Variable

Studentensupport: Calculus 1, Functions in
One Variable

7) Insert and calculate by the usual methods known from e.g.

∫
B

f(x, y) dS =
∫ d

c

ψ(y) dy.
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Geometry.
When the domain of integration B is bounded by radial half lines from (0, 0) or circular arcs (with or
without their centres in (0, 0)), an application of polar coordinates

x = � cosϕ og y = � sinϕ,

will often give simpler calculations. In this case the parametric domain B̃ is not equal to the original
domain. One pays for this by adding a weight function as a factor to the integrand, which is � in
the polar case. The gain is that one after this transformation can reduce the integral as if (�, ϕ) were
rectangular coordinates.

Formally this is expressed by that the abstract element of area dS is written abstractly (and rectan-
gularly) as � d� dϕ, i.e.

dS = � d� dϕ,

or in the form of an integral,∫
B

f(x, y) dS =
∫
B̃

f(x, y) weight d� dϕ =
∫
B̃

f(� cosϕ, � sinϕ) � d� dϕ.

11. Reduction of a plane integral; polar version

 Reduction of a plane integral; polar version
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Then we have reduced the problem to the original one of the rectangular case, and one might stop
here. We shall not do this, because by continuing a little further we shall obtain some reductions,
which one cannot see immediately from the above, and which would be quite convenient to have in
the following.

As in the rectangular case there are also here two basic forms,

Type 1: The domain of integration B lies in an angular sector.

Type 2: The domain of integration B lies between two circular arcs of the same centre.
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Figure 7: First version. First one integrates over B (the inner integral) radially after �.

Procedure.

1) Sketch B, and divide if necessary B into sub-domains of type 1 or type 2.

2) If B is of type 1 (i.e. B lies in some angular sector), then sketch if necessary the parametrical
domain B̃, which we here write in the form

B̃ = {(ϕ, �) | α ≤ ϕ ≤ β, P1(ϕ) ≤ � ≤ P2(ϕ)}.

Notice that e.g. P1 is read as “capital rho 1”.

Then set up the reduction formula∫
B

f(x, y) dS =
∫
B̃

f(� cosϕ, � sinϕ)ϕdϕd�

=
∫ β

α

{∫ P2(ϕ)

P1(ϕ)

f(� cosϕ, � sinϕ� d�)

}
dϕ.

3) Perform a separate calculation (keep ϕ fixed and integrate after �):

F (ϕ) =
∫ P2(ϕ)

P1(ϕ)

f(� cosϕ, � sinϕ) � d�.

 Reduction of a plane integral; polar version
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Figure 8: Second version. Integrate first over B (the inner integral) along the circular arc after ϕ.

4) Insert and calculate

∫
B

f(x, y) dS =
∫ β

α

F (ϕ) dϕ.

5) If B is of type 2 (i.e. B lies between two circular arcs with their centre in (0, 0)), we sketch if
necessary the parametric domain B̃, which here is written

B̃ = {(ϕ, �) | a ≤ � ≤ b, Φ1(�) ≤ ϕ ≤ Φ2(�)}.

Then the reduction formula can be written∫
B

f(x, y) dS =
∫
B̃

f(� cosϕ, � sinϕ) � dϕ d�

=
∫ b

a

{∫ Φ2(�)

Φ1(�)

f(� cosϕ, � sinϕ) dϕ

}
� d�.

6) Perform a separate calculation (keep � fixed and integrate circularly after ϕ):

G(�) =
∫ Φ2(�)

Φ1(�)

f(� cosϕ, � sinϕ) dϕ.

7) Insert and calculate

∫
B

f(x, y) dS =
∫ b

a

G(�) � d�,

Notice that when the formula is written out of its normal context, this weight function does not
seem natural. Therefore, be very careful about not to forget the weight function � in the integrand.

 Reduction of a plane integral; polar version
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The methods are close to the methods of Chapter 10. We get, however, a new complication, because
the dimension 3 can be split into a sum of positive integers in three ways

A. The “post method”: 3 = 2 + 1,

B. The “disc method”: 3 = 1 + 2,

C. The triple integral: 3 = 1 + 1 + 1.

These three cases are treated one by one.

A. The “post method”.

In this case one of the variables, e.g. z, is lying between the graphs of two functions Z1(x, y) and
Z2(x, y) in the other two variables (x, y), where (x, y) lies in a domain B in the (x, y)-plane, (x, y) ∈ B.
The graphs of the two functions are surfaces which cut the bigger domain A out of the cylinder over
B.

Procedure.

1) Write the domain A in the form

A = {(x, y, x) | (x, y) ∈ B, Z1(x, y) ≤ z ≤ Z2(x, y)} � R
3,

i.e. we get the set B � R
2 in the (x, y)-plane and the limiting functions Z1(x, y) and Z2(x, y).

Then write down the reduction formula∫
A

f(x, y, z) dΩ =
∫
B

{∫ Z2(x,y)

Z1(x,y)

f(x, y,z) dz

}
dS.

2) Integrate for fixed (x, y) ∈ B the variable z along the vertical “post” between the limits Z1(x, y)
and Z2(x, y), i.e.

ϕ(x, y) =
∫ Z2(x,y)

Z1(x,y)

f(x, y, z) dz,

where the right hand side is an ordinary integral.

3) By insertion the abstract space integral is reduced to a simpler abstract plane integral,∫
A

f(x, y, z) dΩ =
∫
B

ϕ(x, y) dS.

Finally, the right hand side is calculated by using one of the methods from Chapter 10 (rectangular
case) or Chapter 11 (polar case).

B. The “disc method”.

This is in particular used, when the integrand only depends on one of the three variables, e.g. z,
though it of course is valid in general. The idea is that A is cut at the height z into a slice or disc
B(z), and then one first integrates the inner variables (x, y) ∈ B(z) and finally after z. Roughly
speaking this means that we first find the “mass” of the disc B(z) and then afterwards collect all the
“masses” by an integration after the “parameter” z.

12. Reduction of a space integral; rectangular version

 Reduction of space integral; rectangular version
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Procedure.

1) Write the domain A in the form

A = {(x, y, z) | a ≤ z ≤ b, (x, y) ∈B(z)},

i.e. we identify (by e.g. sketching a figure) the slice or disc B(z) for every relevant z.

Then write down the reduction formula∫
A

f(x, y, z) dΩ =
∫ b

a

{∫
B(z)

f(x, y, z) dS

}
dz.

2) For fixed z ∈ [a, b] calculate the abstract plane integral

ψ(z) =
∫
B(z)

f(x, y, z) dS

applying one of the methods from Chapter 10 (rectangular coordinates) or Chapter 11 (polar
coordinates).

 Reduction of space integral; rectangular version
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3) By insertion the abstract space integral is reduced to an ordinary integral,∫
A

f(x, y, z) dΩ =
∫ b

a

ψ(z) dz.

Remark 12.1 If the integrand only depends on z, then 2) above is reduced to

ψ(z) = f(z) · area B(z),

and we can write 3) in the form∫
A

f(z) dΩ =
∫ b

a

f(z) · area B(z) dz,

where one often can find area B(z) by a simple geometrical consideration. ♦

C. The triple integral.

This is a special case of the “post” method, because we assume that the domain B is bounded by
graphs of functions in one of the variables.

Procedure.

1) Write the domain A in the form

A = {(x, y, z) | a ≤ x ≤ b, Y1(x) ≤ y ≤ Y2(x), Z1(x, y) ≤ z ≤ Z2(x, y)}.
Since this is the most difficult part of the process, one should always check whether the limiting
functions Y1(x), Y2(x), Z1(x, y), Z2(x, y), are correctly calculated. In practice this is the place
where most of the errors occur in problems of this type.

2) Write down the reduction formula∫
A

f(x, y, z) dΩ =
∫ b

a

{∫ Y2(x)

Y1(x)

{∫ Z2(x,y)

Z1(x,y)

f(x, y, z) dz

}
dy

}
dx.

3) For fixed (x, y), calculate the inner integral,

f(x, y) =
∫ Z2(x,y)

Z1(x,y)

f(x, y, z) dz.

Check that the variable z has disappeared after this integration.

4) Then insert the result and calculate for fixed x the middle integral,

h(x) =
∫ Y2(x)

Y1(x)

g(x, y) dy.

Check that the corresponding y disappears by this integration.

5) Insert once again and calculate the outer integral,∫
A

f(x, y, z) dΩ =
∫ b

a

h(x) dx.

 Reduction of space integral; rectangular version
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This method resembles the “disc” method. The difference is that the domain this time is cut like a
pie to the z-axis.
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Figure 9: A fixed angle ϕ determines a half-plane through A with the z-axis as axis. This half-plane
is then transferred into the meridian half-plane.

The formal reduction formula is∫
A

f(x, y, z) dΩ =
∫ β

α

{∫
B(ϕ)

f(� cosϕ, � sinϕ, z) � d� dz

}
dϕ,

where we have used semi-polar coordinates

x = � cosϕ, y = � sinϕ, z = z,

and the corresponding volume element

dΩ = � d� dz dϕ.

The pie cut is B(ϕ), which represents for every fixed ϕ ∈ [α, β] a domain in the meridian half-plane,
i.e. in the (�, z)-plane.

Procedure:

1) Sketch a figure (at least in the meridian half-plane).

2) Express the domain A in semi-polar coordinates

A = {(�, ϕ, z) | α ≤ ϕ ≤ β, (�, z) ∈ B(ϕ)}.
Identify the meridian cut B(ϕ) for every fixed ϕ ∈ [α, β].

3) Keep ϕ ∈ [α, β] fixed and calculate the abstract (inner) plane integral

Φ(ϕ) =
∫
B(ϕ)

f(� cosϕ, � sinϕ, z) � d� dz,

by applying one of the methods from Chapter 10 or Chapter 11. Here one must not forget the
weight function � which should be put as an extra factor in the integrand.

13. Reduction of a space integral; semi-polar version

 Reduction of a space integral; semi-polar version
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4) Insert and calculate finally the ordinary integral on the right hand side,

∫
A

f(x, y, z) dΩ =
∫ β

α

Φ(ϕ) dϕ.

Remark 13.1 If Ω is a rotational domain, then B(ϕ) = B is independent of ϕ. In this case we get a
better procedure by interchanging the order of integration,

∫
A

f(x, y, z) dΩ =
∫
B

{∫ β

α

f(� cosϕ, � sinϕ, z) dϕ

}
� d� dz,

hence one starts in this case by calculating the inner ordinary integral. ♦

 Reduction of a space integral; semi-polar version
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We use here the spherical coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

with the corresponding volume element

dΩ = r2 sin θ dr dθ dϕ,

i.e. the weight function is r2 sin θ.

The reduction formula is not easy to comprehend,

∫
A

f(x, y, z) dΩ =
∫ β

α

{∫
B�(ϕ)

f(r sin θ cosϕ, r sin θ sinϕ, r cos θ) r2 sin θ dr dθ

}
dϕ.

Procedure:

1) If A is a reasonable subset of a ball, then write in spherical coordinates

A = {(r, θ,ϕ) | α ≤ ϕ ≤ β, (r, θ) ∈ B�(ϕ)},
where B�(ϕ) is the meridian cut for fixed ϕ ∈ [α, β], expressed in the spherical coordinates. Iden-
tify and sketch B�(ϕ).

Remark 14.1 This is the most difficult part of this version. ♦
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Figure 10: The meridian cut B�(ϕ) for fixed ϕ.

2) Keep ϕ ∈ [α, β] fixed and apply the methods from Chapter 10 or Chapter 11 in the calculation of
the abstract (inner) integral,

H(ϕ) =
∫
B�(ϕ)

f(r sin θ cosϕ, r sin θ sinϕ, r cos θ) r2 sin θ dr dθ.

Do not forget the weight r2 sin θ here as a factor of the integrand.

14. Reduction of a space integral; spherical version

 Reduction of a space integral; spherical version
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3) Insert the result and calculate the ordinary integral on the right hand side,

∫
A

f(x, y, z) dΩ =
∫ β

α

H(ϕ) dϕ.

Remark 14.2 If Ω is a rotational domain, then B�(ϕ) = B� is independent of ϕ. In this case one
gets simpler calculations by interchanging the order of integration

∫
A

f(x, y, z) dΩ =
∫
B�

{∫ β

α

f(r sin θ cosϕ, r sin θ sinϕ, r cos θ) dϕ

}
r2 sin θ dr dθ.

Notice that the inner integral (which is calculated first)

∫ β

α

f(r sin θ cosϕ, r sin θ sinϕ, r cos θ) dϕ

becomes much simpler, because the weight r2 sin θ only is added as a factor after the calculation of
this integral. ♦

 Reduction of a space integral; spherical version
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This is a 1-dimensional case where the domain of integration is not an interval, but a curve in the
plane or the space. The reduction formula becomes

∫
K
f(x) ds =

∫ b

a

f(r(t))‖r′(t)‖ dt.
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Figure 11: The curve of parameter representation r(t) = (cos t, sin t, t).

Procedure:

1) Write down a rectangular parameter representation for the curve K:

In the plane: (x, y) = r(t), t ∈ [a, b].

In the space: (x, y, z) = r(t), t ∈ [a, b].

2) Calculate the curve element (the weight is ‖r′(t)‖)

ds = ‖r′(t)‖ dt.

Mnemonic rule, Pythagoras,

ds = “
√

(dx)2 + (dy)2 + (dz)2”.

3) Insert the result and calculate the right hand side of

∫
K
f(x) ds =

∫ b

a

f(r(t)) ‖r′(t)‖ dt.

15. Line integrals

 Line integrals
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Special case:

1) Curve length:


(K) =
∫ b

a

‖r′(t)‖ dt =
∫ b

a

√(
dr1
dt

)2

+ · · ·+
(
drk
dt

)2

dt.

2) Graph, y = Y (x), x ∈ [a, b], rectangular. The curve element is

ds =
√

1 + {Y ′(x)}2 dx.

3) Graph, � = P (ϕ), ϕ ∈ [α, β], polar, first variant. The curve element is

ds =
√
{P (ϕ)}2 + {P ′(ϕ)}2 dϕ.

4) Graph, ϕ = Φ(�), � ∈ [a, b], polar, second variant. The curve element is

ds =
√

1 + {�Φ′(�)}2 d�.

Remark 15.1 We see that the square root is quite natural here. Since even programmable pocket
calculators are not too happy with square roots, they will usually stop, when they are not given some
help from the user. Therefore, we cannot expect to get any final result by applying pocket calculators
to problems of this type. Notice in particular that√

g(t)2 = |g(t)|.

(In other words: Remember the numerical signs!) ♦

 Line integrals
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We consider 2-dimensional surfaces imbedded in R
3. The idea is to pull the integration over the surface

F back to a plane integral over the parameter domain E, where we can use one of the methods from
Chapter 10 or Chapter 11. This procedure has its price because we must add some weight function
as a factor to the integrand.
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Figure 12: Example of a surface F with a corresponding parameter domain E in the (x, y)-plane.

Procedure:

1) Write down a rectangular parameter representation of the surface F :

(x, y, z) = r(u, v), (u, v) ∈ E.

The parameter domain E � R
2 is then identified and sketched (a set lying in the plane).

Remark 16.1 It is not always possible to sketch F in the space, but this does not matter much,
because the real calculations are taking place in the parameter domain E. ♦

2) Determine the weight function: Calculate the vectors

r′u(u, v) and r′v(u, v),

and the corresponding normal vector to the surface F in this parameter representation,

N(u, v) = r′u × r′v =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The wanted weight function is ‖N(u, v)‖ (calculate it), and the surface element is

dS = ‖N(u, v)‖ du dv.

16. Surface integrals

 Surface integrals
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3) Insert the parameter representation and the surface element, and calculate the right hand side by
applying one of the methods from Chapter 10 or Chapter 11 in∫

F
f(x, y, z) dS =

∫
E

f(r(u, v)) ‖N(u, v)‖ du dv.

If f(x, y, z) ≡ 1, the surface integral is interpreted as the area of the surface F . In this case we get

Theorem 16.1 Surface area:

area(F) =
∫
F
dS =

∫
E

‖N(u, v)‖ du dv.

It is of course possible also to use some known area formulæ instead of calculating the cumbersome
integral above. If for instance F is the surface of a sphere of radius r, then it is well-known that

area(F) = area(∂B[0, r]) = 4πr2.

 Surface integrals
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Special cases:

In the following special cases we reduce 2) in the procedure by inserting the given area element dS.

1) Integral over a graph for z = f(x, y), rectangular:

dS =

√
1 +

(
∂f

∂x

)2

+
(
∂f

∂y

)2

dx dy.

(Compare with chapter 15 on the line integral, the case of a graph.)

2) Integral over a cylindric surface r(t, z) = (X(t), Y (t), z), rectangular:

dS =

√(
dX

dt

)2

+
(
dY

dt

)2

dt dz = ds dz,

where ds is the curve element for r̃(t) = (X(t), Y (t)) in the plane, cf. Chapter 15. Line integral.

3) Integral over a rotational surface

r(t, ϕ) = (P (t) cosϕ,P (t) sinϕ,Z(t)),

semi-polar

dS = P (t)

√(
dP

dt

)2

+
(
dZ

dt

)2

dt dϕ = � ds dϕ.

The latter abstract form

dS = � ds dϕ,

can often be of some help when one is using the geometry (sketch a figure) when one sets up the
reduced plane integral.

 Surface integrals
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All the reduction formulæ in the Chapters 10–16 are special cases of more general formulæ. The
presentations were using the classical coordinate systems: the rectangular, polar, semi-polar, and the
spherical coordinate systems. When the coordinate system under consideration is not one of these we
must use the general formulæ form the present chapter instead.

A. Dimension 2.

1) Find a suitable parameter representation (x, y) = r(u, v), (u, v) ∈ D. (Usually this will be
given in advance in exercises).
Sketch the parametric domain D and argue briefly that r(u, v) is injective, with the exception
of e.g. a finite number of points. (More precisely one can neglect a so-called null set; which
usually is not defined in elementary courses in Calculus).
Show also that the range is r(D) = B.

2) Calculate the Jacobian

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
.

Notice here that one is forced to find x and y as functions of (u, v) in 1) in order to calculate
the Jacobian.

The area element is

dS = dx dy =
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv,
where the area element dx dy is lying in B, while the area element du dv is lying in the para-
metric domain D.

3) Insert the result and calculate the right hand side by using the methods from Chapter 10 or
Chapter 11 in the expression∫

B

f(x, y) dx dy =
∫
D

f(r(u, v))
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
Remark 17.1 Usually u and v are given as functions in x and y instead of the form we shall use:

(1) u = U(x, y) and v = V (x, y).

Then one has to solve these equations with respect to x and y. If we in this way obtain a
unique solution, then we have at the same time implicitly proved that the map is injective. Apply
furthermore (1) to find the images of the boundary curves of B, thereby finding the boundary of
D. Finally, the parametric domain D is identified. ♦

17. Transformation theorems

 Transformation theorems
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B. Dimension 3.

Formally the procedure is the same as in section A with obvious modifications due to the higher
dimension.

1) Find a suitable parametric representation (x, y, z) = r(u, v, w), (u, v, w) ∈ D. (This will usually
be given in exercises, possibly in the form u = U(x, y, z), v = V (x, y, z), w = W (x, y, z). If so,
solve these equations with respect to x, y, z).
Sketch the parametric domain D and argue (briefly) that the mapping r(u, v, w) is injective
almost everywhere.
Show that the range is r(D) = B. Cf. also the remarks to section A.

2) Calculate the Jacobian

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then the volume element is

dΩ = dx dy dz =
∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw,
where one must be careful not to forget the numerical signs of the Jacobian.

3) Insert and calculate the right hand side by means of one of the methods from the chapter 12–14
in the formula∫

B

f(x, y, z) dx dy dz =
∫
D

f(r(u, v, w))
∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw.

 Transformation theorems
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Problem 18.1 Calculate the integral∫
A

f(x) dS,

where the domain A is bounded, and where either A is not closed, or the integrand f(x) is not defined
for all x ∈ A.

We choose for convenience A ⊂ R
2.

Idea: Approximate
∫
A
f(x) dS by

∫
An

f(x) dS, where

1) The function f(x) is continuous for all x ∈ An.

2) All sets An ⊂ A are closed and bounded, n ∈ N.

3) area(A \An) → 0 for n→ +∞.

Remark 18.1 Even if we are approaching the solution by this idea, it is not enough. We shall below
supply it with some sufficient conditions in the description of the procedure. ♦

Procedure.

1) Examine whether f(x) has a continuous extension F (x) to A. If this is the case, then∫
A

f(x) dS =
∫
A

F (x) dS,

where the right hand side is calculated by well-known methods, and the problem is solved.

2) If f(x) does not have a continuous extension to A, we continue by an analysis of the sign of f(x).
This step is extremely important! Divide A into two subsets

A+ = {(x, y) ∈ A | f(x, y) ≥ 0} and A− = {(x, y) ∈ A | f(x, y) ≤ 0}.

If f(x, y) is continuous where it is defined, then this division is most easily performed by finding
the null curves i.e. the curves where f(x, y) = 0. These curves divide the domain into open
sub-domains. Due to the continuity the sign of f is constant in each of these sub-domains, so in
order to find the sign one just has to apply f to one point in each sub-domain. The curves where
f(x, y) = 0 can afterwards be included in any of the two sets A+ or A−, and even in both of them,
because since the integrand is 0 on these curves they will not contribute the the final result.

3) Let us first consider A+. If A+ = ∅, then go to 4) in the following. If on the other hand A+ �= ∅,
we choose a convenient increasing sequence of closed and bounded subsets A+

ε ⊂ A+, such that

area(A+ \A+
ε ) → 0 for ε→ 0 + .

Calculate

I+ε =
∫
A+
ε

f(x, y) dS (≥ 0).

18. Improper integrals; bounded domain

 Improper integrals; bounded domain
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If I+ε → +∞ for ε→ 0+, then the improper integral isdivergent.

If on the other hand limε→0 I
+
ε < +∞ (there are only these two possibilities, because I+ε increases,

when ε decreases towards 0), then∫
A+

f(x, y) dS = lim
ε→0+

∫
A+
ε

f(x, y) dS ≥ 0).

4) Then consider the other subset A−. If A = ∅, go to 5).

If on the other hand, A− �= ∅, choose a convenient increasing sequence of closed and bounded
subsets A−ε ⊂ A−, such that

area(A− \A−ε ) → 0 for ε→ 0 + .

Calculate

I−ε =
∫
A−
ε

f(x, y) dS (≤ 0).

(To be continued)

 Improper integrals; bounded domain
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If I−ε → −∞ for ε→ 0, then the improper integral is divergent.

If instead limε→0 I
−
ε > −∞ (there are only these two possibilities), then∫

A−
f(x, y) dS = lim

ε→0+

∫
A−
ε

f(x, y) dS (≤ 0).

5) It is only when we have obtained convergence in both 3) and 4) that we can conclude that the
improper integral is convergent with the value∫

A

f(x, y) dS =
∫
A+

f(x, y) dS +
∫
A−

f(x, y) dS.

 Improper integrals; bounded domain
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Problem 19.1 Calculate the integral∫
A

f(x, y) dS,

where the domain of integration A � R
2 is unbounded.

Procedure:

1) Examine whether f has a continuous extension to A \ {∞}. If this is not the case, remove
suitable bounded neighbourhoods of the “sick” points, and treat each of these neighbourhoods as
in Chapter 18.

The residual set which we here denote by A is then treated in the following way.

2) The important analysis of the sign of the integrand. Divide A into the two sets

A+ = {(x, y) ∈ A | f(x, y) ≥ 0} and A− = {(x, y) ∈ A | f(x, y) ≤ 0}.
The sets A+ and A− are found by analyzing the null curves, i.e. the set defined by the equation
f(x, y) = 0.

3) Let us first consider A+. If A+ = ∅, then go to 4) in the following.

If A+ �= ∅, we choose one of the possible methods of trimming the set

a) Rectangular: A+
n = [−n, n]2 ∩A+, b) Polar: A+

R = K(0;R) ∩A+,

and we calculate

a) Rectangular: I+n =
∫
A+
n

f(x, y) dS, b) Polar: I+R =
∫
A+
R

f(x, y) dS.

If I+n → +∞ for n→ +∞, resp. I+R → +∞ for R→ +∞, then the improper integral is divergent.

Otherwise,

a) Rectangular:
∫
A+ f(x, y) dS = limn→+∞

∫
A+
n
f(x, y) dS.

b) Polar:
∫
A+ f(x, y) dS = limR→+∞

∫
A+
R
f(x, y = dS.

Then go to 4).

4) Next turn to A−. If A− = ∅, then go to 5).

If A− �= ∅, choose one of the trimming possibilities

a) Rectangular: A−n = [−n, n]2 ∩A−, b) Polar: A−R = K(0;R) ∩A−,

and calculate

a) Rectangular: I−n =
∫
A−
n

f(x, y) dS, b) Polar: I−R =
∫
A−
R

f(x, y) dS.

19. Improper integrals; unbounded domain
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If I−n → −∞ for n→ +∞, resp. I−R → −∞ for R→ +∞, then the improper integral is divergent.

Otherwise,

a) Rectangular:
∫
A− f(x, y) dS = limn→+∞

∫
A−
n
f(x, y) dS.

b) Polar:
∫
A− f(x, y) dS = limR→+∞

∫
A−
R
f(x, y) dS.

5) If we obtain convergence in both 3) and 4), then the improper integral is convergent with the value∫
A

f(x, y) dS =
∫
A+

f(x, y) dS +
∫
A−

f(x, y) dS.

Remark 19.1 If we put

A0 = {(x, y) ∈ A | f(x, y) = 0},

it is seen that∫
A0

f(x, y) dS =
∫
A0

0 dS = 0,

so it is of no importance whether we include A0 in our calculations, or we do not do it. The contribution
from A0 is always 0. ♦

 Improper integrals; unbounded domain
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When we set up an integral, we have two possible approaches:

1) A geometrical analysis.

2) Measure theory (i.e. concerning integration).

In elementary books on Calculus the geometrical analysis is dominating, although there may occur
examples, where the measure theory plays a bigger role than the geometry. The latter is often the case
when we apply the transformation theorems. It may also occur when we shall choose between semi-
polar and spherical coordinates. We shall in the following not consider these exceptions, so usually
we start with a geometrical analysis of the domain of integration. This analysis is depending on

1a. Dimension.

1b. Choice of coordinates.

The classical coordinates are er:

Dimension 2:

Rectangular: (x, y), or (u, v), (�, ϕ) or similarly in the parametric domain.

Polar: x = � cosϕ, y = � sinϕ.

General: x = X(u, v), y = Y (u, v), injective almost everywhere.

Dimension 3:

Rectangular: (x, y, z), or (u, v, w), (�, ϕ, z), (r, θ, ϕ) or similarly in the parametric domain.

Semi-polar: z = � cosϕ, y = � sinϕ, z = z,

Spherical: x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

General: x = X(u, v, w), y = Y (u, v, w), z = Z(u, v, w), injective almost everywhere.

These are our building stones in the ongoing geometrical analysis.

Remark 20.1 If the exercise does not contain any hint, then choose among the rectangular, polar,
semi-polar or spherical coordinates. On the other hand, if more general coordinates are needed in an
exercise, then these will always be given, usually in their inverse form:

dimension 2 : u = U(x, y), v = V (x, y),

dimension 3 : u = U(x, y, z), v = V (x, y, z), w = W (x, y, z).

If they are given in their inverse form, we start by solving them with respect to x, y (and z), cf.
Chapter 17. ♦

20. The setting up of a line, a plane, a surface or a   
 space integral

 The setting up of a line, a plane, a surface or a space integral
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Solution strategy:
Choose the coordinates, such that

a) the geometry of the parametric domain becomes simple,

b) the integrand becomes simple.

This is an order of priority, so the geometry is most important in a), while the measure theory is
dominating in b). Both cases can be found in elementary textbooks, though most of the examples are
of the type given in a).

In the following we set up an overview guided by the dimension of the classical coordinates. In each
case the structure will be given by:

i) Formula, where the right hand side is the reduced expression.

ii) Geometry, where the domain is compared with the parametric domain.

iii) Measure theory, which briefly describes the weight function.

iv) Possible comments.

It is seen that we are aiming at the reduction of a given abstract integral to a rectangular integration
over a convenient parametric domain.

Dimension 1.

Characteristics: There is only one variable of integration t.

We have two cases, a) An ordinary integral and b) A line integral.

a) The ordinary integral.

Formula:
∫ b
a
f(t) dt.

Geometry: The domain of integration = the parametric interval.

Measure theory: Weight = 1.

Comment: Basic form known from high school and previous courses in Calculus.

b) The line integral.

Formula:
∫
K f(x, y, z) ds =

∫ b
a
f(r(t)) ‖r′(t)‖ dt, where K : (x, y, z) = r(t).

Geometry: Curve �= parametric interval.

Measure theory: Weight = ‖r′(t)‖.

Comments: By the transform given above b) is transferred back to the basic form a).
Notice that there occurs a hidden square root in the weight function, so
pocket calculators cannot always be successfully applied. Notice that the
curve is embedded in the space R

3.

 The setting up of a line, a plane, a surface or a space integral
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Dimension 2.

Characteristics: There are two variables of integration, e.g. (u, v).
Here we have four cases:

a) Rectangular plane integral.

b) Polar plane integral.

c) General transform.

d) Surface integral.

These cases are treated one by one in the following.

a) Rectangular plane integral.

Formula:
∫
A
f(x, y) dx dy.

Geometry: domain of integration = parametric domain.

Measure theory: Weight = 1.

Comment: Basic form. Further reductions are obtained by means of Chapter 10.

 The setting up of a line, a plane, a surface or a space integral
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b) Polar plane integral.

Formula:
∫
A
f(x, y) dx dy =

∫
B
f(� cosϕ, � sinϕ) � d� dϕ.

Geometry: domain of integration �= parametric domain.

Measure theory: Weight = �.

Comment: This is a brief description of Chapter 11. Notice that
b) is reduced to a).

c) General.

Formula:
∫
A
f(x, y) dx dy =

∫
B
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
Geometry: domain of integration �= parametric domain.

Measure theory: Weight =
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ .
Comment: This is a brief description of a part of Chapter 17.

d) Surface integral.

Formula:
∫
A
f(x, y, z) dS =

∫
B
f(r(u, v)) ‖N(u, v)‖ du dv,

where the surface F is given by (x,y,z) = r(u,v).

Geometry: Surface �= parametric domain.

Measure theory: Weight = ‖N(u, v)‖.

Comment: This is a brief description of Chapter 16, where several special
cases are described. Notice that for rotational surfaces we usually
apply the semi-polar coordinates with the weight function �, where �
is a function of one parameter t.
Notice altso that the surface is embedded in R

3.

 The setting up of a line, a plane, a surface or a space integral
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Dimension 3.

Characteristics: There are three variables of integration, e.g. (u, v, w).

Here we have five cases, of which only four usually are treated in elementary courses in Calculus.

a) Rectangular space integral.

Formula:
∫
A
f(x, y, z) dx dy dz.

Geometry: domain of integration = parametric domain.

Measure theory: Weight = 1.

Comment: Basic form as described in Chapter 12.

b) Semi-polar space integral.

Formula:
∫
A
f(x, y, z) dΩ =

∫
B
f(� cosϕ, � sinϕ, z) � d� dϕdz.

Geometry: domain of integration �= parametric domain.

Measure theory: Weight = �.

Comment: Cf. Chapter 13 for further details. The method is in particular applied on
rotational bodies.

c) Spherical space integral.

Formula:
∫
A
f(x, y, z) dΩ =

∫
B
f(r sin θ cosϕ, r sin θ sinϕ, r cos θ) r2 sin θ dr dθ dϕ.

Geometry: domain of integration �= parametric domain.

Measure theory: Weight = r2 sin θ.

Comment: Cf. also Chapter 14. The method is usually applied on spherical shells.

d) General.

Formula:
∫
A
f(x, y, z) dΩ

=
∫
B
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw.
Geometry: domain of integration �= parametric domain.

Measure theory: Weight =
∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ .
Comment: Cf. also Chapter 17.

 The setting up of a line, a plane, a surface or a space integral
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e) Curved space integral.

One may come across integration over a curved 3-dimensional space in the Theory of Relativity
(embedded in R

4) in Physics. This is of course analogous to the surface integral embedded in R
3.

Usually it does not occur in elementary textbooks of Calculus.

 The setting up of a line, a plane, a surface or a space integral
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The current of a vector field V along a curve K of parametric representation r(t) is defined by:∫
K
V · t, ds =

∫
K
V · dx =

∫ β

α

V(r(t)) · r′(t) dt,

where we have identified

x = r(t) and dx = r′(t) dt.

It can in some cases be identified as an electric current along a wire, represented by the curve.

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4

Figure 13: Example of a plane curve K with initial point (0, 0).

There are here two important special cases:

1) The gradient integral theorem:∫
K
�F (x) · dx = F (b)− F (a),

no matter how the curve K from a to b is chosen.

2) Circulation, i.e. K is a closed curve.

Whenever the word “circulation” occurs in an exercise, always think of Stokes’s theorem,∮
δF
V · t ds =

∫
F
n · rot V dS,

and see if it applies, cf. Chapter 23.

We shall here only consider the gradient integral theorem, cf. Chapter 8, because the circulation
will be treated separately later.

A necessary condition (which is not sufficient). The “cross derivatives” agree,

∂Vi
∂xj

=
∂Vj
∂xi

for all i, j = 1, . . . , k.

21. Tangential line integral; gradient fi eld

 Tangential line integral; gradient fi eld
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Figure 14: The half sphere F gives a typical example, when we shall apply Stokes’s theorem.

A trap: Even if the necessary conditions are all fulfilled, the field V is not always a gradient field,
although many students believe it.

A sufficient condition (which is not necessary). The “cross derivatives” agree:

∂Vi
∂xj

=
∂Vj
∂xi

for all i, j = 1, . . . , k,

and

the domain A is star shaped.

Remark 21.1 Even when V is a gradient field, the corresponding domain A does not have to be star
shaped. ♦

Concerning the calculations in practice we refer to Chapter 8:

1) Indefinite integration,

2) Method of inspection,

3) Integration along a curve consisting of lines parallel with one of the axes,

4) Radial integration.

The radial integration cannot be recommended as a standard procedure.

In some cases a differential form can be simplified by removing a gradient field:

V = �F +U,

or more conveniently,

V · dx = Vx dx+ Vy dy + Vz dz

= dF + Ux dx+ Uy dy + Uz dz,

 Tangential line integral; gradient fi eld
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where U ought to be simpler than V.
If so, then∫

K
V · dx = F (b)− F (a) +

∫
K
U · dx.

This method is e.g. used in Thermodynamics, where the vector field usually is not a gradient field.

In these reductions one can take advantage of the well-known rules of calculus for differentials:

αdf + dg = d(α f + g), α constant

f dg + g df = d(fg),

f dg − g df = f2 d

(
g

f

)
, f �= 0,

F ′(f) df = d(F ◦ f).

 Tangential line integral; gradient fi eld
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The flux Φ of a vector field V through a surface F is given by a surface integral (cf. Chapter 16) in
the following way:

If x = r(u, v), (u, v) ∈ E is a parametric representation of the surface F with a given continuous unit
normal vector field n, then the flux is given by

ΦF (V) =
∫
F
V · n dS =

∫
F
V(x) · n(x) dS =

∫
E

V(r(u, v)) ·N(u, v) du dv.

It is the amount of the vector field which “streams through the surface in the direction of the normal
vector” (e.g. per time unit).

Typically there are two different ways in which the flux can be calculated.

Standard procedure.

In principle this can always be applied, but it is often very cumbersome.

1) Divide if necessary F into convenient sub-surfaces F1, . . . , Fk each having its own unit normal
vector field n1, . . . , nk.

2) Check, whether F (or Fj) is “flat”, and if it is not too difficult to calculate
∫
F V · n dS as an

ordinary plane integral, because F is lying in a plane set.

3) If F is not flat, we calculate the normal vector corresponding to the specific parametric represen-
tation in the variables (u, v),

N(u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Notice that N(u, v) no longer is a unit normal vector field. Stated roughly, we build the weight
function into the new normal vector field N(u, v).

4) Calculate the plane integral over the parametric domain E,

ΦF (V) =
∫
E

V(r(u, v)) ·N(u, v) du dv.

22. Flux and divergence of a vector fi eld; 
 Gauß’s theorem

 Flux and divergence of a vector fi eld; Gauß’s theorem
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Figure 15: The surface of the unit half sphere is closed by adding the unit disc in the (x, y)-plane with a
normal vector pointing downwards (this gives us the closed upper unit half sphere with normal vectors
pointing outwards) and the unit disc in the (x, y)-plane with the normal vector pointing upwards.

Application of Gauß’s theorem.

The method can in principle always be applied when the surface is “closed”, i.e. one adds a surface
with two numerically equal normal vector fields, which are pointing in the opposite directions, n and
−n, such that one surrounds a 3-dimensional domain Ω with outgoing normal, and an additional
surface integral, which hopefully should be easy to calculate.

1) Check that F = ∂Ω is closed, i.e. this surface surrounds a 3-dimensional body Ω.

2) Quote Gauß’s theorem and reduce the surface integral to a space integral,∫
∂Ω

n ·V dS =
∫
Ω

div V dΩ.

3) Calculate the space integral
∫
Ω

div V dΩ by applying one of the methods from the Chapters 12–14.

Remark 22.1 Usually one would not call it a reduction to go from 2 dimensions to 3 dimensions;
but notice that the surface F of dimension 2 may have a fairly complicated geometry, while we in
principle always end up with rectangular coordinates i 3 dimensions, which here may be considered
as a simpler situation. ♦

 Flux and divergence of a vector fi eld; Gauß’s theorem
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Let us first mention the most practical way of calculation the rotation of a 3-dimensional C1 vector
field by means of a formal determinant,

rot V = �×V =

∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

Vx Vy Vz

∣∣∣∣∣∣∣∣∣∣∣
, V = (Vx, Vy, Vz) .

Notice that this rule is only valid when rectangular coordinates are used!

0

0.5

1

–1

–0.5

0.5

1

–1

–0.5

0.5

1

Figure 16: As an example we choose again the surface of the upper unit half sphere F , where the
boundary curve δF is the unit circle in the (x, y)-plane.

Figure 17: The connection between a vector and the corresponding whirl which fixes the orientation.

23. Rotation of a vector fi eld; Stoke´s theorom

 Rotation of a vector fi eld; Stoke’s therom
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The fixing of the orientation of a surface (i.e. the direction of the normal vector), when the direction
of the run through of the boundary curve, is given by:

• The convention of orientation: Let the normal vector field on the surface F be supplied with
a whirl around the foot of the normal vector. The direction of the whirl is by continuity fixed
by the direction of the run through of the boundary curve. If you put your right hand along the
normal vector with the four fingers in the direction of the whirl, then the thumb will point in the
direction of the normal. Cf. also Figure 17.

Whenever circulation of a vector field is mentioned, one should think of an application of Stokes’s
theorem:∮

δF
V · t ds =

∫
F
n · rot V dS,

where the left hand side is the circulation of V (1 dimension), and the right hand side is a flux of the
vector field rot V (2 dimensions).

 Rotation of a vector fi eld; Stoke’s therom
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In exercises the student will often in an earlier question have calculated rot V, so the task is reduced
to the choice of a convenient F for the given closed (boundary) curve δF . As long as the student is
learning these ideas, the surface F will typically either be flat or a part of a sphere.

Remark 23.1 Stokes’s theorem can also be applied from the right to the left. If e.g. one shall find
the flux

∫
F n ·U dS of a rotational field U = rot V, and V is fairly easy to find, then∫

F
n ·U dS =

∫
F
n · rot V dS =

∮
δF
V · t ds. ♦

 Rotation of a vector fi eld; Stoke’s therom
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When Gauß’s and Stokes’s theorems are “translated” to the 2-dimensional case, they are called
Green’s theorems in the plane. They are applicable at the most strange places in the technical
sciences, so they ought to be more emphasized in the teaching.

Figure 18: The unit circle ∂E and its unit tangent t and unit normal n.

Conventions for Green’s theorems in the plane:

Let ∂E be a closed and plane curve without double points. The orbital direction for ∂E is always
chosen such that the domain E to the left of ∂E, is bounded.

The direction of the tangent is determined by the orbital direction, so t is unique. The normal is
always directed away from E, so n is also uniquely determined.

Theorem 24.1 Green’s theorems in the plane:

1) Gauß-like:∮
∂E

(Vxnx + Vyny) ds =
∫
E

(
∂Vx
∂x

+
∂Vy
∂y

)
dS,

2) Stokes-like:∮
∂E

(Vxtx + Vyty) ds =
∫
E

(
∂Vy
∂x

− ∂Vx
∂y

)
dS.

Notice that

Vxnx + Vyny = V · n and Vxtx + Vyty = V · t.

24. Green’s theorems in plane

 Green’s theroms in plane
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In complicated cases it may be useful to apply the abstract theory of nabla calculus instead of the
enormous calculations with coordinates.

The theory may look a little confusing the first time one sees it, until one realizes that there are three
different products in the vector analysis in R

3:

scalar multiplication: no special notation αV, vector,

inner product (dot product) : dot U ·V, scalar,

vector product (cross product) : cross U×V, vector.

These are transferred to a nabla notation,

� =
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
,

by the relations

no special notation grad f = �f,

dot div V = � ·V,

cross rot V = �×V.
When we apply the correspondence � ∼ n we get Gauß’s theorem in three versions:∫

∂Ω
n f dS =

∫
Ω
�f dΩ =

∫
Ω
grad f dΩ, no special notation

∫
∂Ω
n ·V dS =

∫
Ω
� ·V dΩ =

∫
Ω

div V dΩ, dot product, usual version

∫
∂Ω
n×V dS =

∫
Ω
�×V dΩ =

∫
Ω
rot V dΩ, cross product.

When we apply the correspondence (n,�,×) ∼ t, where · and × are always put in a meaningful
connection, we obtain Stokes’s theorem in three versions:∮

δF t f ds =
∫
F n×�f dS =

∫
F n× grad f dS, no special notation

∮
δF t ·V ds =

∫
F n · (�×V) dS =

∫
F n · rot V dS, dot product, usual version

∮
δF t×V ds =

∫
F (n×�)×V dS, cross product.

25. Nabla calculus

 Nabla calculus
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The simplest case is described by

Figure 19: The interval [a, b], where one goes from 1 dimension to 0 dimensions.

1) Main theorem of the differential and integral calculus, 1 dimension:∫ b

a

df

dx
dx = [f(x)]ba = f(f)− f(a),

i.e. a 1-dimensional integral is transformed into a 0-dimensional “boundary integral”. Note that
in the right end point, where the outer normal is equal to the direction of the axis, we use the sign
+, and in the left end point, where the outer normal is opposite to the direction of the axis, we
use the sign −.

Figure 20: A surface F with its limiting curve δF .

2) Stokes’s theorem, 2 dimensions:∫
F
n · rot V dS =

∮
δF
t ·B ds,

i.e. a 2-dimensional surface integral is transferred into a 1-dimensional “boundary integral”.

26. Partial integration in higher dimensions

 Partial integration in higher dimensions
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Figure 21: A domain in space Ω with surface ∂Ω. The unit normal vector field is everywhere directed
away from Ω.

3) Gauß’s theorem, 3 dimensions:∫
Ω

div V dΩ =
∫
∂Ω

n ·V dS,

i.e. a 3-dimensional space integral is transferred into a 2-dimensional “boundary integral”.

The more advanced applications use the nabla calculus, cf. Chapter 25. Here we have several special
cases, because there in e.g. in R

3 exist three types of product (scalar multiplication, dot and cross
product) and three types of differentiation (gradient, divergence, rotation). The basic idea is that if
the integrand is of the form Φ⊗DΨ, where ⊗ stands for any of the possible products, and D stands
for any of the possible differentiations, then we get a new integrand (by a partial integration) of a
simpler form −D̃Φ⊗̃Ψ, where (⊗̃, D̃) does not have to be equal to (⊗,D). The price for this is that
we get an additional boundary integral.

 Partial integration in higher dimensions
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If V satisfies div V = 0 in a star shaped domain Ω in R
3, then V has a vector potential W, i.e.

V = �×W.

Furthermore, if 0 is a “star point”, we even have a solution formula,

W0(x) =
{∫ 1

0

τ V(τ x) dτ
}
× x.

However, be careful here, because this formula is not easy to apply! Since it may be used in practice,
we add the following

Procedure:

1) Check, whether � ×W = V has been calculated at some earlier state of the exercise. If “yes”,
then the problem is solved. If “no”, continue with

2) Check, whether div V = 0. If “no”, then V does not have a vector potential. If “yes”, continue
with

3) Calculate

T(x) = V(x)× x =

∣∣∣∣∣∣∣∣∣∣

ex ey ez

Vx Vy Vz

x y z

∣∣∣∣∣∣∣∣∣∣
.

4) Then write T(ξ, η, ζ) instead of T(x, y, z), and substitute

ξ = τ x, η = τ y, ζ = τ z.

In this way we obtain T(τ x).

Remark 27.1 Most of the errors in exercises of this type are made by the substitution above, so
be extremely careful at this step. ♦

5) Calculate the candidate

W0(x) =
∫ 1

0

T(τ x) dτ .

6) If Ω is star shaped, the problem is solved.

7) If Ω is not er star shaped, just check that

�×W0 = V.

27. Vector potential

 Vector potential
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Start always by quoting:

Theorem 28.1 The second main theorem for continuous functions. If A is a closed and
bounded set (some call it “compact”), and f : A→ R is a continuous map, then f has both a global
maximum and a global minimum on A.

If f : A→ R is continuous on the closed and bounded set A, then the global maximum and the global
minimum should be found in one of the following point sets:

1) The exceptional points, i.e. u ∈ A◦ is an interior point of A and �f does not exist.

2) The stationary points, i.e. u ∈ A◦ is an interior point of A, and �f = 0.

3) The boundary points, i.e. a point set of lower dimension (at least in the elementary courses of
Calculus).

28. Global maximum and minimum

 Global maximum and minimum
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Procedure: Assume that A is closed and bounded, and that f : A→ R is continuous. Then:

1) Sketch the set A; quote and apply the second main theorem for continuous functions.

2) Find the exceptional points (if any) with their corresponding values of the function.

3) Find the stationary points (if any) with their corresponding values of the function.

4) Continue with an investigation of the same type on the boundary which is of at least 1 lower
dimension, i.e. find the maximum and minimum on the boundary. If the boundary is 1-dimensional,
then this is task is known from high school; if the dimension of the boundary is > 1, then iterate
the procedure above.

5) Finally compare numerically the values found in 2)–4) above.

Procedure, when A is bounded, but not closed.

A. If f has a continuous extension, f : A→ R, then find the (global) maximum and minimum for f
by using the methods above. Then compare with f : A→ R, which is defined in fewer points.

B. If f does not have a continuous extension to A, then add separate investigation of what happens
in the neighbourhood of the exceptional points.

Procedure, if A = R
k (no boundary).

i) Possible maxima and minima can only occur among the exceptional and stationary points.

ii) If we can find some restriction of f , such that the values of the restriction tend to +∞ (or to
−∞), then f has no global maximum (or no global minimum).

iii) If f(x) → L for x→∞, then compare L with the already found values in the exceptional points
and the stationary points.

 Global maximum and minimum
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An extremum u is either

• an exceptional point, i.e. �f is not defined in u ∈ A◦,

or

• a stationary point, i.e. �f(u) = 0.

When we have an extremum, then the next task is to decide whether it is a local maximum or a local
minimum.

Assume that f ∈ C2 and that the point u is stationary. Then we have two possible methods:

1) Approximating polynomial of at most second degree, cf. Chapter 7.

Find this approximating polynomial developed from the point under consideration and check
whether there is a (local) maximum or minimum at this point.

This method can in principle be applied in any dimension.

2) The so-called (r, s, t)-method.

This method can only in the form below be used in the Euclidean plane, where the dimension is 2.

It is not possible in R
2, where we have two methods available, to give any rule of thumb of which

one is the easiest one to apply. In particular one should notice that the (r, s, t)-method is far from
being that universal standard solution as many students may think. Since the students in general
make more errors in the application of the (r, s, t)-method than by constructing the approximating
polynomial, I shall here only recommend the method of the approximating polynomial.

Whenever the dimension is > 2, we have only the first method of approximating polynomial at hand,
unless the exercise is so special that some unusual solution looks more tempting due to some special
structure of the problem.

29. Extrema; local investigation

 Extrema; local investigation
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Some of the following formulæ can be assumed to be known from high school. Others are introduced
in Calculus 1. It is highly recommended that one learns most of these formulæ in this appendix by
heart.

A.1 Squares etc.

The following simple formulæ occurs very frequently in the most different situations.

(a+ b)2 = a2 + b2 + 2ab, a2 + b2 + 2ab = (a+ b)2,
(a− b)2 = a2 + b2 − 2ab, a2 + b2 − 2ab = (a− b)2,
(a+ b)(a− b) = a2 − b2, a2 − b2 = (a+ b)(a− b),
(a+ b)2 = (a− b)2 + 4ab, (a− b)2 = (a+ b)2 − 4ab.

A.2 Powers etc.

Logarithm:

ln |xy| = ln |x|+ ln |y|, x, y �= 0,

ln
∣∣∣∣xy

∣∣∣∣ = ln |x| − ln |y|, x, y �= 0,

ln |xr| = r ln |x|, x �= 0.

Power function, fixed exponent:

(xy)r = xr · yr, x, y > 0 (extensions for some r),

(
x

y

)r
=

xr

yr
, x, y > 0 (extensions for some r).

Exponential, fixed base:

ax · ay = ax+y, a > 0 (extensions for some x, y),
(ax)y = axy, a > 0 (extensions for some x, y),

a−x =
1
ax

, a > 0, (extensions for some x),

n
√
a = a1/n, a ≥ 0, n ∈ N.

Square root:
√
x2 = |x|, x ∈ R.

Remark A.1 It happens quite frequently that students make errors when they try to apply these
rules. They must be mastered! In particular, as one of my friends once put it: “If you can master the
square root, you can master everything in mathematics!” Notice that this innocent looking square
root is one of the most difficult operations in Calculus. Do not forget the absolute value! ♦

A. Formulæ

 Formulæ

A.1 Squares etc.

A.2 Powers etc.
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A.3 Differentiation

Here are given the well-known rules of differentiation together with some rearrangements which some-
times may be easier to use:

{f(x)± g(x)}′ = f ′(x)± g′(x),

{f(x)g(x)}′ = f ′(x)g(x) + f(x)g′(x) = f(x)g(x)
{
f ′(x)
f(x)

+
g′(x)
g(x)

}
,

where the latter rearrangement presupposes that f(x) �= 0 and g(x) �= 0.
If g(x) �= 0, we get the usual formula known from high school

{
f(x)
g(x)

}′
=

f ′(x)g(x)− f(x)g′(x)
g(x)2

.

It is often more convenient to compute this expression in the following way:{
f(x)
g(x)

}
=

d

dx

{
f(x) · 1

g(x)

}
=

f ′(x)
g(x)

− f(x)g′(x)
g(x)2

=
f(x)
g(x)

{
f ′(x)
f(x)

− g′(x)
g(x)

}
,

where the former expression often is much easier to use in practice than the usual formula from high
school, and where the latter expression again presupposes that f(x) �= 0 and g(x) �= 0. Under these
assumptions we see that the formulæ above can be written

{f(x)g(x)}′
f(x)g(x)

=
f ′(x)
f(x)

+
g′(x)
g(x)

,

{f(x)/g(x)}′
f(x)/g(x)

=
f ′(x)
f(x)

− g′(x)
g(x)

.

Since

d

dx
ln |f(x)| = f ′(x)

f(x)
, f(x) �= 0,

we also name these the logarithmic derivatives.

Finally, we mention the rule of differentiation of a composite function

{f(ϕ(x))}′ = f ′(ϕ(x)) · ϕ′(x).

We first differentiate the function itself; then the insides. This rule is a 1-dimensional version of the
so-called Chain rule.

A.4 Special derivatives.

Power like:

d

dx
(xα) = α · xα−1, for x > 0, (extensions for some α).

d

dx
ln |x| = 1

x
, for x �= 0.

A.3 Differentiation

A.4 Special derivatives

 Formulæ
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Exponential like:

d

dx
expx = expx, for x ∈ R,

d

dx
(ax) = ln a · ax, for x ∈ R og a > 0.

Trigonometric:

d

dx
sinx = cosx, for x ∈ R,

d

dx
cosx = − sinx, for x ∈ R,

d

dx
tanx = 1 + tan2 x =

1
cos2 x

, for x �= π

2
+ pπ, p ∈ Z,

d

dx
cotx = −(1 + cot2 x) = − 1

sin2 x
, for x �= pπ, p ∈ Z.

Hyperbolic:

d

dx
sinhx = coshx, for x ∈ R,

d

dx
coshx = sinhx, for x ∈ R,

d

dx
tanhx = 1− tanh2 x =

1
cosh2 x

, for x ∈ R,

d

dx
cothx = 1− coth2 x = − 1

sinh2 x
, for x �= 0.

Inverse trigonometric:

d

dx
Arcsin x =

1√
1− x2

, for x ∈ ]− 1, 1 [,

d

dx
Arccos x = − 1√

1− x2
, for x ∈ ]− 1, 1 [,

d

dx
Arctan x =

1
1 + x2

, for x ∈ R,

d

dx
Arccot x =

1
1 + x2

, for x ∈ R.

Inverse hyperbolic:

d

dx
Arsinh x =

1√
x2 + 1

, for x ∈ R,

d

dx
Arcosh x =

1√
x2 − 1

, for x ∈ ] 1,+∞ [,

d

dx
Artanh x =

1
1− x2

, for |x| < 1,

d

dx
Arcoth x =

1
1− x2

, for |x| > 1.

Remark A.2 The derivative of the trigonometric and the hyperbolic functions are to some extent
exponential like. The derivatives of the inverse trigonometric and inverse hyperbolic functions are
power like, because we include the logarithm in this class. ♦

 Formulæ
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A.5 Integration

The most obvious rules are about linearity∫
{f(x) + λg(x)} dx =

∫
f(x) dx+ λ

∫
g(x) dx, where λ ∈ R is a constant,

and about that differentiation and integration are “inverses to each other”, i.e. modulo some arbitrary
constant c ∈ R, which often tacitly is missing,∫

f ′(x) dx = f(x).

If we in the latter formula replace f(x) by the product f(x)g(x), we get by reading from the right to
the left and then differentiating the product,

f(x)g(x) =
∫
{f(x)g(x)}′ dx =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx.

Hence, by a rearrangement

A.5 Integration

 Formulæ
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The rule of partial integration:∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx.

The differentiation is moved from one factor of the integrand to the other one by changing the sign
and adding the term f(x)g(x).

Remark A.3 This technique was earlier used a lot, but is almost forgotten these days. It must
be revived, because MAPLE and pocket calculators apparently do not know it. It is possible to
construct examples where these devices cannot give the exact solution, unless you first perform a
partial integration yourself. ♦

Remark A.4 This method can also be used when we estimate integrals which cannot be directly
calculated, because the antiderivative is not contained in e.g. the catalogue of MAPLE. The idea is
by a succession of partial integrations to make the new integrand smaller. See also Chapter 4. ♦

Integration by substitution:

If the integrand has the special structure f(ϕ(x)) ·ϕ′(x), then one can change the variable to y = ϕ(x):∫
f(ϕ(x)) · ϕ′(x) dx = “

∫
f(ϕ(x)) dϕ(x)′′ =

∫
y=ϕ(x)

f(y) dy.

 Formulæ

http://bookboon.com/


Download free ebooks at bookboon.com

Calculus 2a

83  

Integration by a monotonous substitution:

If ϕ(y) is a monotonous function, which maps the y-interval one-to-one onto the x-interval, then∫
f(x) dx =

∫
y=ϕ−1(x)

f(ϕ(y))ϕ′(y) dy.

Remark A.5 This rule is usually used when we have some “ugly” term in the integrand f(x). The
idea is to put this ugly term equal to y = ϕ−1(x). When e.g. x occurs in f(x) in the form

√
x, we put

y = ϕ−1(x) =
√
x, hence x = ϕ(y) = y2 og ϕ′(y) = 2y. ♦

A.6 Special antiderivatives

Power like:∫
1
x
dx = ln |x|, for x �= 0. (Do not forget the numerical value!)

∫
xα dx =

1
α+ 1

xα+1, for α �= −1,

∫
1

1 + x2
dx = Arctan x, for x ∈ R,

∫
1

1− x2
dx =

1
2

ln
∣∣∣∣1 + x

1− x

∣∣∣∣ , for x �= ±1,

∫
1

1− x2
dx = Artanh x, for |x| < 1,

∫
1

1− x2
dx = Arcoth x, for |x| > 1,

∫
1√

1− x2
dx = Arcsin x, for |x| < 1,

∫
1√

1− x2
dx = − Arccos x, for |x| < 1,

∫
1√

x2 + 1
dx = Arsinh x, for x ∈ R,

∫
1√

x2 + 1
dx = ln(x+

√
x2 + 1), for x ∈ R,

∫
x√

x2 − 1
dx =

√
x2 − 1, for x ∈ R,

∫
1√

x2 − 1
dx = Arcosh x, for x > 1,

∫
1√

x2 − 1
dx = ln |x+

√
x2 − 1|, for x > 1 eller x < −1.

There is an error in the programs of the pocket calculators TI-92 and TI-89. The numerical signs are
missing. It is obvious that

√
x2 − 1 < |x| so if x < −1, then x+

√
x2 − 1 < 0. Since you cannot take

the logarithm of a negative number, these pocket calculators will give an error message.

A.6 Special antiderivatives

 Formulæ
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Exponential like:∫
expx dx = expx, for x ∈ R,

∫
ax dx =

1
ln a

· ax, for x ∈ R, og a > 0, a �= 1.

Trigonometric:∫
sinx dx = − cosx, for x ∈ R,

∫
cosx dx = sinx, for x ∈ R,

∫
tanx dx = − ln | cosx|, for x �= π

2
+ pπ, p ∈ Z,

∫
cotx dx = ln | sinx|, for x �= pπ, p ∈ Z,

∫
1

cosx
dx =

1
2

ln
(

1 + sinx
1− sinx

)
, for x �= π

2
+ pπ, p ∈ Z,

∫
1

sinx
dx =

1
2

ln
(

1− cosx
1 + cosx

)
, for x �= pπ, p ∈ Z,

∫
1

cos2 x
dx = tanx, for x �= π

2
+ pπ, p ∈ Z,

∫
1

sin2 x
dx = − cotx, for x �= pπ, p ∈ Z.

Hyperbolic:∫
sinhx dx = coshx, for x ∈ R,

∫
coshx dx = sinhx, for x ∈ R,

∫
tanhx dx = ln coshx, for x ∈ R,

∫
cothx dx = ln | sinhx|, for x �= 0,

∫
1

coshx
dx = Arctan(sinhx), for x ∈ R,

∫
1

coshx
dx = 2 Arctan(ex), for x ∈ R,

∫
1

sinhx
dx =

1
2

ln
(

coshx− 1
coshx+ 1

)
, for x �= 0,

 Formulæ
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∫
1

sinhx
dx = ln

∣∣∣∣ex − 1
ex + 1

∣∣∣∣ , for x �= 0,

∫
1

cosh2 x
dx = tanhx, for x ∈ R,

∫
1

sinh2 x
dx = − cothx, for x �= 0.

A.7 Trigonometric formulæ

The trigonometric formulæ are closely connected with circular movements. Thus (cosu, sinu) are
the coordinates of a piont P on the unit circle corresponding to the angle u, cf. figure A.1. This
geometrical interpretation is used from time to time.

��
��

�

�

		
(cosu, sinu)

u
1

Figure 22: The unit circle and the trigonometric functions.

A.7 Trigonometric formulæ

 Formulæ
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The fundamental trigonometric relation:

cos2 u+ sin2 u = 1, for u ∈ R.

Using the previous geometric interpretation this means according to Pythagoras’s theorem, that the
point P with the coordinates (cosu, sinu) always has distance 1 from the origo (0, 0), i.e. it is lying
on the boundary of the circle of centre (0, 0) and radius

√
1 = 1.

Connection to the complex exponential function:

The complex exponential is for imaginary arguments defined by

exp(iu) := cosu+ i sinu.

It can be checked that the usual functional equation for exp is still valid for complex arguments. In
other word: The definition above is extremely conveniently chosen.

By using the definition for exp(iu) and exp(− iu) it is easily seen that

cosu =
1
2
(exp(iu) + exp(− iu)),

sinu =
1
2i

(exp(iu)− exp(− iu)),

.

 Formulæ
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Moivre’s formula: By expressing exp(inu) in two different ways we get:

exp(inu) = cosnu+ i sinnu = (cosu+ i sinu)n.

Example A.1 If we e.g. put n = 3 into Moivre’s formula, we obtain the following typical appliction,

cos(3u) + i sin(3u) = (cosu+ i sinu)3

= cos3 u+ 3i cos2 u · sinu+ 3i2 cosu · sin2 u+ i3 sin3 u
= {cos3 u− 3 cosu · sin2 u}+ i{3 cos2 u · sinu− sin3 u}
= {4 cos3 u− 3 cosu}+ i{3 sinu− 4 sin3 u}

When this is split into the real- and imaginary parts we obtain

cos 3u = 4 cos3 u− 3 cosu, sin 3u = 3 sinu− 4 sin3 u. ♦
Addition formulæ:

sin(u+ v) = sinu cos v + cosu sin v,

sin(u− v) = sinu cos v − cosu sin v,

cos(u+ v) = cosu cos v − sinu sin v,

cos(u− v) = cosu cos v + sinu sin v.

Products of trigonometric functions to a sum:

sinu cos v =
1
2
sin(u+ v) +

1
2

sin(u− v),

cosu sin v =
1
2
sin(u+ v)− 1

2
sin(u− v),

sinu sin v =
1
2
cos(u− v)− 1

2
cos(u+ v),

cosu cos v =
1
2
cos(u− v) +

1
2

cos(u+ v).

Sums of trigonometric functions to a product:

sinu+ sin v = 2 sin
(
u+ v

2

)
cos

(
u− v

2

)
,

sinu− sin v = 2 cos
(
u+ v

2

)
sin

(
u− v

2

)
,

cosu+ cos v = 2 cos
(
u+ v

2

)
cos

(
u− v

2

)
,

cosu− cos v = −2 sin
(
u+ v

2

)
sin

(
u− v

2

)
.

Formulæ of halving and doubling the angle:

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

sin
u

2
= ±

√
1− cosu

2
followed by a discussion of the sign,

cos
u

2
= ±

√
1 + cosu

2
followed by a discussion of the sign,
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A.8 Hyperbolic formulæ

These are very much like the trigonometric formulæ, and if one knows a little of Complex Function
Theory it is realized that they are actually identical. The structure of this section is therefore the same
as for the trigonometric formulæ. The reader should compare the two sections concerning similarities
and differences.

The fundamental relation:

cosh2 x− sinh2 x = 1.

Definitions:

coshx =
1
2
(exp(x) + exp(−x)) , sinhx =

1
2

(exp(x)− exp(−x)) .

“Moivre’s formula”:

exp(x) = coshx+ sinhx.

This is trivial and only rarely used. It has been included to show the analogy.

A.8 Hyperbolic formulæ

 Formulæ
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Addition formulæ:

sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y),

sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y),

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y),

cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y).

Formulæ of halving and doubling the argument:

sinh(2x) = 2 sinh(x) cosh(x),

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1,

sinh
(x
2

)
= ±

√
cosh(x)− 1

2
followed by a discussion of the sign,

cosh
(x
2

)
=

√
cosh(x) + 1

2
.

Inverse hyperbolic functions:

Arsinh(x) = ln
(
x+

√
x2 + 1

)
, x ∈ R,

Arcosh(x) = ln
(
x+

√
x2 − 1

)
, x ≥ 1,

Artanh(x) =
1
2

ln
(

1 + x

1− x

)
, |x| < 1,

Arcoth(x) =
1
2

ln
(
x+ 1
x− 1

)
, |x| > 1.

A.9 Complex transformation formulæ

cos(ix) = cosh(x), cosh(ix) = cos(x),

sin(ix) = i sinh(x), sinh(ix) = i sinx.

A.10 Taylor expansions

The generalized binomial coefficients are defined by(
α
n

)
:=

α(α− 1) · · · (α− n+ 1)
1 · 2 · · ·n ,

with n factors in the numerator and the denominator, supplied with(
α
0

)
:= 1.

The Taylor expansions for standard functions are divided into power like (the radius of convergency
is finite, i.e. = 1 for the standard series) andexponential like (the radius of convergency is infinite).

A.9 Complex transformation formulæ

A.10 Taylor expansions

 Formulæ
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Power like:

1
1− x

=
∞∑
n=0

xn, |x| < 1,

1
1 + x

=
∞∑
n=0

(−1)nxn, |x| < 1,

(1 + x)n =
n∑
j=0

(
n
j

)
xj , n ∈ N, x ∈ R,

(1 + x)α =
∞∑
n=0

(
α
n

)
xn, α ∈ R \ N, |x| < 1,

ln(1 + x) =
∞∑
n=1

(−1)n−1
xn

n
, |x| < 1,

Arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.
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Exponential like:

exp(x) =
∞∑
n=0

1
n!
xn, x ∈ R

exp(−x) =
∞∑
n=0

(−1)n
1
n!
xn, x ∈ R

sin(x) =
∞∑
n=0

(−1)n
1

(2n+ 1)!
x2n+1, x ∈ R,

sinh(x) =
∞∑
n=0

1
(2n+ 1)!

x2n+1, x ∈ R,

cos(x) =
∞∑
n=0

(−1)n
1

(2n)!
x2n, x ∈ R,

cosh(x) =
∞∑
n=0

1
(2n)!

x2n, x ∈ R.

A.11 Magnitudes of functions

We often have to compare functions for x → 0+, or for x → ∞. The simplest type of functions are
therefore arranged in an hierarchy:

1) logarithms,

2) power functions,

3) exponential functions,

4) faculty functions.

When x→∞, a function from a higher class will always dominate a function form a lower class. More
precisely:

A) A power function dominates a logarithm for x→∞:

(lnx)β

xα
→ 0 for x→∞, α, β > 0.

B) An exponential dominates a power function for x→∞:

xα

ax
→ 0 for x→∞, α, a > 1.

C) The faculty function dominates an exponential for n→∞:

an

n!
→ 0, n→∞, n ∈ N, a > 0.

D) When x→ 0+ we also have that a power function dominates the logarithm:

xα lnx→ 0−, for x→ 0+, α > 0.

A.11 Magnitudes og functions

 Formulæ




