Through all of this, two traits stand out in the treatment of Velikovsky by his detractors. One is repeated admissions, frequently boasts, by his most vehement critics that they hadn't read the material they castigatedas if the touch of it might be somehow unclean and defiling. They just "knew" that he couldn't be right, and that was sufficient. The other was that after solemnly reciting commitment to such scholarly principles as scientific objectivity, fairness, and civility of discourse, they would then go on to immediately violate every one of them. Organized science had tried every tactic of distortion, evasion, misrepresentation, intimidation, vilification, and suppression of evidence to slay the monster that threatened the entire foundation of the collective uniformitarian worldview and mind-set. But after twenty years, interest in Velikovsky's theories was not only getting stronger with the apparent vindication from all quarters that was getting past the censorship and receiving coverage, but Velikovsky was no longer virtually alone. Scientists from many disciplines were beginning to organize in his defense, bringing the message to a new generation of readers and students. The topic became included in university courses, and Velikovsky symposia and invitations for Velikovsky to speak on university campuses multiplied. The list of venues from 1970 to 1974 included Harvard; SUNY-Buffalo, Notre Dame, and North Carolina Universities, as well as McMasters and Lethbridge in Canada; NASA Ames Research Center; Lewis and Clark College, Portland; the IBM Research Center; and a conference in Switzerland devoted to his work. In 1971 the editors of Pensée decided to publish a special issue on the purely scientific aspects of Velikovsky's ideas, but the amount of material available was by then so vast that it became a ten-issue serieslater compiled into book form as Velikovsky Reconsidered (1976)which attracted widespread attention.
It couldn't be allowed to go on. The occasion for exorcizing Velikovsy and his heresies from the land and reaffirming the true faith was selected to be the 1974 meeting of the American Association for the Advancement of Science (AAAS), which that year was scheduled to be held in San Francisco. 117
In the summer of 1972, a past president of the AAAS, astronomer and atmospheric scientist Walter Orr Roberts, had written to Stephen L. Talbott, the editor of Pensée, suggesting that a symposium be held on Velikovsky's work. It seems that Roberts's motives were fair and aimed at an honest reappraisal. The following year an announcement appeared in Science, inviting suggestions for the 1974 AAAS meeting agenda. Dr. C. J. Ransom, a plasma physicist, AAAS member, and Velikovsky supporter, proposed the topic of "VenusA Youthful Planet," offering himself as conference organizer and proposing several more names as speakers. This was rejected without explanation, but less than a month later a similar proposal was accepted from the AAAS Astronomy Committee, the salient difference being that it was to be organized by noted critics of Velikovsky: Ivan King, astronomer at U.C. Berkeley; Donald Goldsmith, assistant professor of astronomy at the State University of New York, Stony Brook; and Professor Owen Gingerich, historian of science at Harvard. Because of time limitations, it was decided that the symposium should concentrate on the nature and motions of the planets, with particular regard to Venus and Jupiter.
It soon became clear that the intention was not to stage an impartial debate but a court of inquisition, where the verdict already had been determined. The aim was not to give Velikovsky a hearing but to discredit him in the eyes of the press and the public, and banish his ideas from the forum of acceptable scientific discourse. In this it was resoundingly successful and for the most part remains so to the present time.
The agreement had been that there would be six panelists, three pro- and three anti-Velikovsky, and that Velikovsky would be allotted excess time since he would be presenting his own paper as well as answering his opponents. The promises were promptly broken. The two others that Velikovsky nominated to make up his side were Ransom, cited above, and Professor Lynn E. Rose, a specialist in the history, philosophy, and method of science, who had also taught ancient history and classical languages. These would have made up a formidable team indeed, fully conversant with Velikovsky's theories and between them amply informed to speak on all of the important issues. That was probably why the rules were hastily changed to exclude them. Rose was disqualified on the grounds that he was not from the "hard sciences"although nothing about such had been said up to this point. Ransom obviously fitted this stipulation, but it suddenly became necessary to be an "academician," whereas he was at the time employed in corporate research. Velikovsky was unwilling to go away and come back with further names when the ones he'd said he wanted were turned down, which later resulted in his being blamed for the blatant inequality that he was to face.
However, the AAAS committee dropped its criteria when it came to selecting their own speakers: Norman Storer, a professor of the hard science of sociology at Baruch College, part of the City University of New York; Peter Huber, professor of mathematical statistics at the Swiss Federal Institute of Technology, whose qualification was what he described as his "hobby" of cuneiform writing; J. Derral Mullholland, professor of astronomy at the University of Texas, Austin; and, doubtless to secure the popular vote, the scientific celebrity figure Carl Sagan, from the laboratory for planetary studies at Cornell University. A further speaker, not listed on either side of the panel since he gave his position as neutral, was Dr. Irving Michelson, professor of mechanical and aerospace engineering at the Illinois Institute of Technology.
Originally the deal had been for equal time for both sides of the panel. This was now reinterpreted to mean equal time for each speaker. So, for every half hour that Velikovsky was given, every one of his opponents would receive a half hour too. The flagrant bias was hardly allayed by a statement from King to Pensée stating that "What disturbs the scientists is persistence of these views, in spite of all the efforts the scientists have spent on educating the public" and "This is not a debate on the correctness of Velikovsky's view of the planetary system; none of us in the scientific community believes that such a debate would be remotely justified at a serious scientific meeting." 118
So much for the promised impartiality. It apparently followed that the considerable number of specialists who evidently did believe that such a debate would be justified were by definition not among "us" of the scientific community.
Velikovsky's hope that the flood of evidence and rekindled interest in his ideas might finally have won him a fair hearing had clearly been misplaced. Many of his supporters advised him to pull out right there rather than accept a pitch that had already been tilted seismically against him. The bind, of course, was that this would immediately have been seized upon as showing that he had no answers. Lynn Rose has since speculated that Velikovsky knew exactly what he was doing, and accepted the inevitability of short-term defeat, given the climate of the times, in return for an even stronger verdict in his favor that history would one day pronounce.
So it came about that on February 25, 1974, in the Grand Ballroom of the St. Francis Hotel, Velikovsky, then in his seventy-ninth year, watched by a press corps that had been appropriately primed and apparently saw nothing amiss with the arrangements, mounted the dais to take on four hostile opponents all around half his age in an ordeal that would last until 1:00 a.m. and continue the following day. The final low trick was that the only paper he was permitted to see in advance was Storer's, which didn't deal with Velikovsky's scientific issues. The others were withheld until the day itself, forcing Velikovsky to muster what defense he could in the time he could finda practice that would be illegal in any law court not rigged by a totalitarian state. At the end of the first session, which went on for five and a half hours, one reporter, seeing that Velikovsky looked tired, remarked that he was not his own best spokesman. Not one of the press representatives mentioned that at the end of it all, he had acquitted himself well enough to receive a standing ovation.
Echoing the tone of his memorandum to Pensée, King's opening statement included the words, "No one who is involved in the organization of this symposium believes that Dr. Velikovsky's ideas are correct. Yet millions of people have read his books and after more than twenty years of condemnation by the scientific establishment he still has a large and often devoted following. . . . It is in this spirit that we present this morning's symposium." In other words, this isn't to debate a scientific theory. The purpose is to investigate the persistence of views that we know are wrong. We're here to stamp out heresy.
The first speaker was Storer, who talked about the norms of science and the ideals of method and behavior that it seeks to live up to. Acknowledging that the scientific community had violated these standards in its treatment of Velikovsky back in the fifties, he reminded the audience that this had been a period when science and indeed the whole intellectual enterprise was under attack. The Cold War had been at its chilliest, with loyalty oaths being demanded, blacklists drawn up, and Senator Joseph McCarthy waiting to pounce at the first hint of deviancy or Communist connection. Simply being a scientist was to be a potential traitor, and it was perhaps understandable that they had reacted defensively and failed to welcome with open arms another apparent attempt to discredit established scientific knowledgeand in particular by an outsider.
If that were the case, then we would expect a different reception to be accorded to insiders presenting revolutionary ideas at times of lesser political tension, not gripped by corresponding extremes of paranoia. But as we already saw in the case of Halton Arp and the cosmologists, and will meet again when we look at Peter Duesberg's reception by the AIDS establishment, it turns out not to be so. One could as well argue that the political stresses of the Reformation excused the Catholic Church's suppression of Galileo and others. In all cases the real crime was the challenging of established authority.
Peter Huber's profession and hobby were inverted both in the official program, which described him as a "professor of ancient history" speaking on "ancient historical records," and King's introduction as one who "has made a study of the ancient archaeological records relating to astronomy. He also, incidentally, has a second specialty in statistics . . ." 119
The essence of Huber's paper was that ancient Babylonian records show Venus to have been where it is today, orbiting as it does today, long before the events that Velikovsky claims, and therefore those events could not have happened. This was a rehash of the same line that Payne-Gaposchkin had used twenty years before, and which Velikovsky had answered. The opposition either hadn't read the earlier exchanges or didn't care, since it would all be new anyway to the public who were to be "educated."
Huber maintained that "Velikovsky draws on historical and archeological evidence to support his hypothesis, but unfortunately his arguments are mainly based on late and secondary sources, in part on obsolete and erroneous translations, and therefore lack force." A devastating indictment, by the sound of it, from one listed and presented as an authority on the subject. It is acknowledged that discrepancies exist between old translations and modern ones, and then asserted that the modern ones contain the truth, whereas the older ones do not. A better way to phrase it, however, would be that the older ones say what the original records said, whereas the modern ones are "corrected" to reflect what proponents of today's approved theory think they should have said. This couldn't have been better demonstrated than by the procedure that Huber himself followed. It would have been far more "unfortunate" for Huber if Lynn Rose, who was in the audience, had been allowed on the panel as Velikovsky requested. Rose made some pointed observations during the questions session afterward, and later, working with Raymond C. Vaughan, wrote a detailed rebuttal showing just how far the evidence has to be twisted to make it conform to current preconceptions. The title, "Just Plainly Wrong," speaks for itself. 120
Huber's first claim boiled down to stating that records from Uruk, in Mesopotamia, show Venus to have existed in the early third millennium b.c., before Velikovsky's Venus encounter occurred. But Velikovsky had never denied that Venus existed before then and was visible. His answer at the symposium was, "That Venus was observed before it came into conflict with Earth is clear from what I wrote. It did not come from Jupiter just on the eve of that collision. It came thousands of years before. It could be seen." And what Velikovsky had said all along could have been seen since 1950.
From the floor, Lynn Rose made the point that the symbols for Venus in these very sources that Huber cited, along with representations of Inanna, the goddess associated with Venus, all take the form of a compact body attached to a long, spreading and sometimes curving fan shape, distinctly suggestive of a comet. Huber's defense amounted to saying that sometimes they don't. This part of his paper was omitted from the version that appeared in the final book form of the proceedings two and a half years later, entitled, aptly enough, Scientists Confront Velikovsky (1977). 121
Huber's second claim drew upon the Ammizaduga tablets, mentioned earlier, which were introduced with something of an air of revelation, as if Velikovsky had avoided them because they would damage his case. In fact, Velikovsky cites them extensively for doing just the oppositeprovided they're allowed to be taken as meaning what they say.
Since some doubts have been expressed about their conventional assignment to the time of Ammizaduga, Rose refers to them as the "Ninsianna" (Venus) document. They record the appearances and disappearances of Venus as it moves close to the Sun and it is swamped by the solar glare, causing it to be seen first at sunset to one side of the solar disk, and then, following a period of invisibility, at dawn on the other. Today, on its inner orbit, Venus is seen for about 260 days as the "Evening Star," disappears behind the Sun for 63 to 70 days, reappears on the other side as the "Morning Star" for about another 260 days, and after vanishing in front of the Sun for around 8 days becomes the Evening Star again. (It took many ancient cultures some time to figure out that it was the same object.) Note that there's no conflict in the suggestion of a comet on an eccentric orbit spending part of its period inside the Earth's orbit, and hence disappearing periodically behind the Sun. During the time it spent outside the Earth's orbit it would at times appear overhead at night, which could never happen with Venus in today's circumstances. Older translations, however (the ones dismissed as obsolete by Huber), clearly state it as appearing at zenith.
Huber's contention was that when properly understood, the ancient observations match the orbits of Venus and Earth that are seen today, and so the orbits haven't changed. To make this work, a period given in the cuneiform records as 5 months, 16 days had to be changed to 2 months, 6 days. Several of the names of the months had to be changed. Places where the texts read "west" had to be changed to "east," and places where they said "east" were changed to "west." Intercalary monthsinserted between the regular months of a calendar to correct the cumulative error that builds up from years not being exact multiples of dayswere taken out from where they had been put in and inserted where the modern translators thought they should go. Huber justified such alterations as being necessary to amend "scribal errors" in the originals. All in all, under further questioning, he admitted changing thirty percent of his data in this way. So presumably a culture that is noted for astronomical records whose accuracy in some areas was not rivaled until the nineteenth century employed scribes who couldn't tell east from west, didn't know what month it was, and who bungled their figures thirty percent of the time. But that wasn't the end of it. In his later, more thorough analysis, "Just Plainly Wrong," Rose found the actual count of errors and fudged data to be closer to seventy-five percent. And even after that amount of abuse, they still don't fit today's orbits.
The press and the custodians of truth who had taken it upon themselves to educate the public were evidently satisfied that the interests of the public were in good hands. The following month, Owen Gingerich, one of the organizers, was quoted in Science (March 14, 1974), in an interview by Robert Gillette, as saying that "He [Huber] demolished Velikovsky" and "There was no point in continuing after that." As with the Egyptian dating figures that we talked about earlier, whatever didn't fit the assumptions was thrown out, and what remained was pointed to as proving the assumptions. The logic is totally circular. Or anything else if you like. On this basis you could pick four points from a circle, alter the rest to suit, and show that it's a square. Small wonder that modern translations fit the approved theory better.
A final argument by Huber was again one that had been used before, namely that dates of eclipses retrocalculated from modern observations match records from before the events that should have made them invalid. Velikovsky responded that none of the instances he was aware of proved much at all, since the locations and dates are not specified, the year alone typically being named or inferred indirectly. One of Huber's examples, taken from the Chinese Spring and Autumn Annals, was given as occurring in the eighth century b.c. In his later study, however, Rose points out that the furthest back this document can be traced is 500 to 600 years after that time. So the question arises of whether the eclipse was actually observed, or was it inferred through retrocalculation by the compilers of the Annals a half a millennium later?known to be a not-unusual practice. In support of his cautioning against relying too much on such sources, Rose cites a work entitled Science Awakening II: The Birth of Astronomy, by Bartel L. Van der Waerden, where Chapter 4 contains the statement, "Very often it is difficult to decide whether text data were observed or calculated. We know from the diaries of later times that missing observations were filled in by calculation sometimes without explicit indication of the fact." 122
A contributor to the book, who in his Preface Van der Waerden says wrote considerable parts of Chapters 3 and 4was Peter Huber.
Derral Mullholland was introduced by King as "a celestial mechanician whose name is almost synonymous with high precision." The open snub to Velikovsky, whose ideas, the gathering had shortly before been informed, "No one who is involved in the organization of this symposium believes . . . are correct," was difficult to miss; as were the implied directions to those interpreting the event for the public as to how they should apportion their impartial evaluation.
Mulholland opened: "Before I am asked the question, I would like to point out that I first read Dr. Velikovsky's work in Collier's magazine, when I was sixteen years old, and have read that same work three times since, the most recent yet this year. I found it entertaining when I was sixteen, incidentally, and I still do." 123 The celestial mechanician whose name was almost synonymous with high precision, having given his source as a popular magazine, then began with a synopsis of Velikovsky's planetary theory that read: "Within the folk memory of man, Venus and Mars erupted into the sky and rushed close to the Earth and each other several times. . . . Finally, the two giant comets settle down into their present harmless orbits and became peaceable planets."
Whether he had in mind this invented scenario or the one that Velikovsky actually described, Mulholland repeated the usual insistence that gravitational dynamics provides the most clear-cut contradiction to its being possible. Well, without repeating all that was said earlier, suffice it to say that Einstein didn't think so. The critique then went on to question the validity of accounts of abnormally long days and nights from various parts of the world, when the durations given by people said to possess clocks of high accuracy varied from three to ten days. The lowest form of wit notwithstanding, it's difficult to restrain an impulse toward sarcasm at a suggestion that people in terror, beset by earthquakes, hurricanes, totally enveloping darkness, and torrents of meteorites should be faulted for losing track of time and failing to check with their sundials and water clocks. Mulholland also stated that the myths Velikovsky quotes "do not seem to satisfy the simple requirement" that abnormally long day in one hemisphere ought to be accompanied by abnormally long night in the other. Perhaps the myths Velikovsky quotes that do say precisely this were not among the excerpts condensed in Collier's.
In Worlds in Collision, Velikovsky discusses various ancient sundials and water clocks that read incorrectly for the locations that they are found at, and offers this as evidence of changes in the Earth's motion in space. Mulholland's rejoinder was to doubt the accuracy of such old artifacts and question whether they were constructed at the sites where they are found. No independent evidence is cited of such inaccuracies, or that any relocation of the instruments in question actually took place. The assumptions are made ad hoc, to conform to a preconceived theory that the lengths of days, months, and years must have been the same as they are today. Therefore ancient peoples were unable to measure the time of day. In fact, Babylonian water clocks were accurate enough to be used for astronomical observations and measuring the distances between stars in arc degrees. 124 Moving sundials to another location would make no sense, as anyone capable of designing them would know. A water clock would function correctly at a different latitude if it told only constant hours, but not if it measured different hours in summer and winter. Some water clocks divided day into twelve hours and night into twelve hours, which vary with latitude and with the seasons. Again, it's difficult to imagine designers who were aware of these differences not having the competence to set them up correctly.
The other objection was that according to Velikovsky's account of the errors involved, if they were due to repositioning of the Earth, Babylon would seem to have moved southward 250 kilometers, Faijum in Egypt also southward but by an unspecified amount, while Thebes moved 1,000 kilometers north. The assumption here is that they all moved during the same time period, while Velikovsky says nothing of the kind. Indeed, historians assign the shadow clock at Faijum that Velikovsky refers to, and the water clock at Thebes, to two widely spaced dynasties. 125
In any case, Mulholland maintained, if the spins and orbits of the bodies Velikovsky talks about were seriously disturbed, they would depart from the smooth progression showing angular momentum as a function of mass across the bodies of the Solar System. But he admitted that Mercury, Venus, the Moon, and Mars didn't fit the relationship. Ransom and Rose later showed that the function line misses Mercury, Venus, Earth, Mars, Neptune, and the Sun. Too bad they weren't up on the panel.
It would not be out of place to mention here that the pictures of Mars returned by Mariners 6 and 7 in 1969 had shown a system of surface cracks ("lineaments") running more or less straight over extended distances and aligned with the rotational axis, indicating a violent deceleration and change in angular momentum at some time, stressing the crust. Comparable structures are seen also on the Moon and on Earth.
During the question session after Storer's talk earlier, Mulholland had given anomalous mass concentrations on the Moon and the unexpected internal heat of the Moon as examples of scientists' readiness to accept new concepts when they were justified. Velikovsky asked if he knew who had been the first person to claim that the Moon would be found to have internal heat, and if there was any explanation for the mass concentrations other than an encounter with other celestial bodies. Mulholland had no suggestion regarding the second, and admitted that he didn't know the answer to the first, apparently not realizing that the person had been Velikovsky himself.
Irving Michelson's talk was in the evening session and went back to the notion of electrical forces playing a role in celestial dynamics. Mulholland rejected the suggestion that they played any role, and when Velikovsky cited Danjon's report of a temporary slowing of the Earth's rotation by electrical influences following a large solar flare, Mulholland denied that Danjon's data had shown any such effect.
Toward the end of his paper, Michelson mentioned a "curious but tantalizing" finding of his: that the energy required to turn the Earth's rotational axis through 180º corresponded closely to estimates of a single moderately strong geomagnetic storm that could be triggered by a solar flarein the way the energy of a bomb is triggered by the small energy release of a detonator. Evidently missing the point, Mulholland scoffed at the idea, pointing out that since 108 times as much energy is emitted by a solar flare as is intercepted by the Earth, Michelson's result was in error by that amount. When Michelson responded wearily, "I'll let that go," his remark was widely misinterpreted as meaning that he had no answer. A stormy exchange of correspondence resulted subsequently with the editorial department of Science, who tried to suppress a letter from Michelson straightening out the error.
Dr. Robert Bass, who had been a keen observer of the whole affair for some years, wrote a concise reply to a number of the points that Mulholland had raised in the day and requested time to present them at the same evening session, which was supposedly open to all. He was told that this wouldn't be allowed since the public might become confused if a noted authority disagreed with the expert chosen by the committee.
Well, at least we can be comforted that the organizers hadn't forgotten their commitment to education.
And then there was Dr. Carl Sagan. . . . How to begin here?
Professor Lynn Rose records that in January 1974, when arrangements for the symposium were being finalized, he commented in a letter to Stephen Talbott at Pensée that Sagan delivered errors and untruths at a rate faster than it would be possible to list in the time Velikovsky was being given, let alone be able to refute them. In a tape of a lecture by Sagan at Cornell in March 1973 entitled "Venus and Velikovsky," Rose timed them at three or four per minute, giving a grand total of several score. His review of them appeared some years later in the journal The Velikovskian, edited by Charles Ginenthal. 126
Sagan's perspective on the subject can perhaps be judged from his statement in Broca's Brain, published five years after the symposium: "Catastrophism began largely in the minds of those geologists who accepted a literal interpretation of the Book of Genesis, and in particular, the account of the Noahic flood." 127 Even after the time that had been given to reflect, as far as Sagan was concerned all questioning of accepted theory originated in the minds of theimplicitlydeluded, to justify religious convictions. No possibility exists that it could have originated in the form of real events in the real universe before anything at all was written. On page 126 he goes on, "Velikovsky attempts to rescue not only religion but also astrology."
Hence, the question of a scientific debate never arose. The presumption of fighting an evangelical crusade was written into the ground rules from the beginning, and when saving souls from heresy is at stake, winning is the only thing that counts, at whatever cost and by any means. Robert Anton Wilson writes:
"Sagan likes to quote a 'distinguished professor of Semitics' who told him no Semitic scholars take Dr. Velikovsky very seriously. . . . [T]his 'distinguished professor' remains anonymous, and thus Sagan's hearsay about him would get thrown out of any civilized court. Three distinguished professors of Semitic studies, however, have all shown cordial support for Dr. Velikovsky: Prof. Claude F. A. Schaeffer, Prof. Etienne Droiton, and Prof. Robert Pfeiffer. Look them up in any Who's Who of Semitic studies, archeology and Egyptology. They have a lot more prestige in those fields than Sagan's Prof. Anonymous, who doesn't have a single entry under his name anywhere . . ." 128
At the San Francisco symposium, Sagan presented ten problems, which he referred to as "plagues," with Velikovsky's proposals. Ginenthal's book (1995) that I cited near the beginning is a compilation and rebuttal of the errors, evasions, denials of evidence, and self-contradictions that took the author eight years of research and occupies 447 pages. I will touch on all of them, elaborating on just a few.
Problem 1. The Ejection of Venus by Jupiter
Sagan stated that "Velikovsky's hypothesis begins with an event that has never been observed by astronomers and that is inconsistent with much that we know about planetary and cometary physics, namely the ejection of an object of planetary dimensions from Jupiter."
One wonders who, exactly, the "we" in the authoritarian "we know" is, since the literature makes it clear that the scientific community didn't pretend to know, and nothing much in that respect has changed since. As related above, grave doubts had been cast on the fashionable tidal and accretion theories of Solar System formation, and such figures as McCrea and Lyttleton couldn't have been among the "we" who "knew," since the fission theory that their work (among others) pointed to emerged as an alternative that was consistent with planetary physics. And the reason for their conclusions? Gravitational theoryprecisely what Velikovsky was accused of not understanding or ignoring. But he was fully conversant with Lyttleton's work, which he had cited in "VenusA Youthful Planet" seven years previously. Sagan also produced figures for energy and heat generation showing that a volcanic eruption on Jupiter couldn't have ejected an object resembling Venus, which was all neither here nor there because Velikovsky never said that a volcanic eruption had.
Sagan went on: "From the fact that the apehelia (greatest distances from the Sun) of the orbits of short-period comets have a statistical tendency to lie near Jupiter, Laplace and other early astronomers hypothesized that Jupiter was the source of such comets. This is an unnecessary hypothesis because we now know [again] that long-period comets may be transferred to short-period trajectories by the perturbations of Jupiter."
Later in the same year that Sagan said this, the International Astronomical Union held its twenty-fifth colloquium at Greenbelt, Maryland. In the Proceedings, a paper by Edgar Everhart entitled "The Evolution of Cometary Orbits" states that: "Although it is possible for an orbit of short-period to be the result after a parabolic comet makes a single close encounter with Jupiter, this mechanism does not explain the existence of the short-period comets. This was shown by H. A. Newton (1893). Not wanting to believe his results, and being a little dubious about Newton's procedures, I redid the problem as a numerical experiment and came to exactly the same conclusion." [Emphasis in the original] 129
So ever since 1893 there had been people who not only didn't "know," but found such a transfer model unsupported by the evidence. The main problem is that it would only happen very rarely that a comet entering the Solar System would pass close enough to Jupiter to be pulled into an elliptical orbit that returns it periodically to near Jupiter's distance from the Sun. S. K. Vsekhsviatsky estimates 1 in 100,000, whereas the observed ratio is about 1 in 25. About 70 comets are known in the Jupiter family, and their lifetime is estimated to be not more than 4,000 years before repeated passes by the Sun evaporate all their volatiles and cause them to break up. Capturing this number from parabolic comets entering from afar would require seven million comets entering the Solar System over the last 4,000 years, which works out at five per day. Since a comet would remain in the System for a few years, the night sky should contain somewhere around 9,000 of them. It doesn't. A further difficulty is that all the Jovian comets orbit the Sun in the same direction, but since incoming trajectories should show no preference, according to the capture model about half should be retrograde. As a final embarrassment, the perturbation of comets by planets can work to eject them from the Solar System too, and this in fact turns out to be a more likely and effective mechanism, resulting in the number of short-period comets as a whole being in the order of one hundred times too large.
On the other hand, all of these observations are consistent with the suggestion of many such objects being created recently inside the Solar System. (Accounts from the Roman period indicate significantly more comets occurring then than are seen today.) And no elaborate and implausible construction is needed to explain why they should appear to have originated from the vicinity of Jupiter, for the simple reason that they did.
The conventional way of preserving the short-term-capture principle is the "Oort Cloud," postulated to contain millions of cometary bodies and extend halfway to the nearest stars, which once in a while is disturbed by a passing star to send showers of comets into the Solar System. However, studies of the distribution of comet trajectories and energies show the long-term comets to be quite distinct from shorter-period ones. Arrivals from such a remote source should exhibit preponderantly hyperbolic orbits incapable of being converted to short-term ones. To explain the short-term comets, a new cloud termed the "Kuiper Belt" is then proposed, existing in deep space near the planetary plane. Finally, a belt of "dark matter," the invisible astronomical duct tape that fixes anything, is introduced to induce the Kuiper Belt comets to approach the Solar System. None of this has ever been "observed by astronomers" either. It's invented to enable what the theory requires.
Plenty of people, on the other hand, did claim to have observed the event that Sagan denies, and they left precise descriptions of it. But since Babylonians, Assyrians, Greeks, Maya, and the like aren't figured among the exalted "we," they don't count as astronomers.
Problem 2. Repeated Collisions Among the Earth, Venus, And Mars
Sagan produces a mathematical proof that the probability of five or six near collisions occurring between a comet and a planet are in the order of a "trillion quadrillion" (1027) to one against. The trouble with it is that it treats each near-collision as an independent event unrelated to the others, which in effect ignores gravity. It's a simple consequence of Newton's laws that two celestial bodies, once they have interacted gravitationally, will continue to approach one another periodically. The astronomer Robert Bass wrote that this was "so disingenuous that I do not hesitate to label it a deliberate fraud on the public or else a manifestation of unbelievable incompetence or hastiness combined with desperation." 130 On the other hand, Sagan has no hesitation in accepting that "most short-period comets may have achieved their orbits by multiple encounters with Jupiter, or even by multiple encounters with more distant planets and eventually Jupiter itself"a process calculated to require hundreds of repeated near-collisions.
In his own book Comet (1985) Sagan states (p. 266) that a collision with an Earth-crossing asteroid kilometers across, which he believes to be extinct comets, would represent "a major catastrophe, of a sort that must have happened from time to time during the history of the Earth. It is a statistical inevitability." Enough said.
Problem 3. The Earth's Rotation
Sagan's question here is how, if the Earth slowed down in its rotation, could it get speeded up again? The Earth couldn't do it by itself, he insisted, because of the law of conservation of angular momentum. In 1960, as we've already seen, Danjon measured precisely this happening and attributed it to electrical effects. Conceivably Sagan, like Mulholland, simply refused to believe it. But in 1972 it had happened again, this time even more impressively. On August 7–8, after a week of frenzied solar activity, Stephen Plagemann and John Gribbin measured a 10-millisecond lengthening of the day, once more followed by a gradual return to normal. 131
This is in accord with electrical fundamentals, whereby adding charge to a rotating flywheel constitutes a current that increases the polar moment of inertia, which by the conservation of angular momentum must be accompanied by a decrease in angular velocity, i.e., the flywheel slows down. When the wheel is grounded, dissipating the charge, then by the same principle of conservationthe very law that Sagan invokesthe wheel, still storing the same mechanical energy but with no electrical force to overcome, will speed up again. The application of this to planetary dynamics is discussed by Ralph Juergens. 132
Sagan goes on to another mathematical proof, this time showing that the energy released by the Earth's stopping would be enough to boil all the oceans and generate enough heat to end all advanced life forms. But once again, it isn't necessary for the Earth to halt to produce the visual effect of the Sun's motion being arrested or even reversed. Ginenthal points out that with proto-Venus approaching from the sunward direction, the Earth would be pulled first inward and then outward from its normal orbit, the differences in distance being sufficient on their own to make the Sun appear to move more slowly, without appreciable change in the Earth's rotation at all. He refers anyone skeptical of such a possibility to the well-known astronomer Carl Sagan, who later wrote:
"There is another strange thing about Mercury. It has a highly elliptical orbit. That is, there is a commensurate relation between how long the planet takes to turn once around its axis and how long it takes to go around the Sun. . . . Suppose you stood at one particular place on the equator of Mercury. During the course of the day there you would observe the following. You would see it rising . . . moving toward the zenith . . . Then one degree past the zenith it stops, reverses its motion in the sky, stops again, then continues its original motion. . . ." 133
That was in 1975. I can only wonder what might have prompted the inspiration.
Problem 4. Terrestrial Geology And Lunar Craters
Sagan repeats the assertion that there ought to be ample geological and archeological evidence of such catastrophes if they happened, but he was unable to find records of any. One can only suggest visiting the library on that oneas Velikovsky did, and found enough to fill a whole book.
Sagan was aware of Velikovsky's contention that major mountain uplifts had attended these recent events, but stated that this was belied by geological evidence that put them at tens of millions of years old or more. It's true that the evidence Sagan cites is generally interpreted that way. But we've already seen how sufficient prior belief in a theory can influence interpretation of the evidence by uncritically accepting whatever conforms to it and rejecting anything that doesn't. Much of Velikovsky's evidence was of a kind that doesn't lend itself to a wide range of interpretationfor example, of human presence in the Alps and Andes at heights that are uninhabitable today. It's difficult to read this in any other way than that within the time of human history the land was a lot lower, or else the climate at high altitudes was a lot milder. The second alternative has trouble on other counts, for instance that in the historical period usually assigned to these cultures, glacial cover was more extensive.
But once a theory is "known" to be true, the determination of the believers in making the evidence fit knows no bounds. Ginenthal cites an example where investigators of Lake Titicaca in Peru and the ancient fortress city of Tiahuanacu on its shores, thirteen thousand feet above sea level, faced with clear indications that the region must have been at sea level during the times of human habitation, were driven to conclude that the remains of the cities must be millions of years old since the uplift couldn't be anything less.
With regard to Velikovsky's claim that the Moon should show signs of recent disturbances and melting, Sagan responds that the samples returned by the Apollo missions show no melting of rock more than a few hundred million years ago. We've already seen some examples of how strong expectations of what the results ought to be can lead to circular reasoning in dating procedures. And lunar dating is no exception. When it was believed early on that lunar rocks would provide a direct measure of the age of the Moon and hence the Earth, the results subsequently released with confidence and which found their way into textbooks cited 4.5 billion years, which agreed exactly with the predictions of the most widely accepted theory. Later, the actual data were found to cover the range 2 billion years to 28 billion, in other words from less than half of what was expected to 8 billion years before the universe was supposed to have existed.
But aside from that, Velikovsky had suggested in a letter to the New York Times in 1971 that tests be performed on lunar material by the dating method of thermoluminescence, which many authorities consider to be more reliable than radioisotope testing. NASA did in fact have such tests performed, at the Washington University, St. Louis. The results on samples from six inches or so beneath the surfacebelow recently deposited dust and mixing of micrometeoritesshowed them to have been molten less than ten thousand years ago. Sagan should surely have been aware of this. It's also worthy of mention that the darker "maria" features of the lunar surface, which consist of vast solidified lava sheets, occur not haphazardly but cover a broad swathe following a great circle across one hemisphereconsistent with tidal melting induced by a close-passing massive object.
And speaking of the great lunar plains, what happened to all the dust that ought to be covering them? According to estimates of the rate of infalling meteorite dust and other debris on Earthincluding some made by Sagan himselfif the lunar surface has been exposed for over four billion years, it ought to have accumulated dust to a depth of more than fifty feet. An early concern of the space program had been that the landers would sink into the dust or become too bogged down in it to take off again. But all that was found was about an eighth of an inch. On the other hand, such features as rills, rifts, and crater walls that should, by those same figures, have been eroded away and disappeared long ago seemed sharp and freshdare one say "young"? The features that should have been gone were still there, while the dust that should have worn them down and buried them was not. And even of the dust that does exist, only 1 to 2 percent turns out to be meteoritic. The rest comes from "gardening" (after remelting?) of the moon rock itself.
Exposed lunar rock is a natural particle counter. Fast-moving particles of cosmic dust produce tiny, glass-lined microcraters, and if the exposure age is knownwhich solar-flare particle tracks in the glass linings should indicatea count of the crater density will give a measure of the rate at which the rock was bombarded. Studies of a large Apollo 16 sample showed exposure on the lunar surface for abut eighty thousand years, but with the rate of particle bombardment going up during the last ten thousand years. Nuclear tracks on interplanetary dust particles collected in the Earth's stratosphere also indicate an age no greater than ten thousand years. 134
Problem 5. Chemistry and Biology of the Terrestrial Planets
According to Sagan, "Velikovsky's thesis has some peculiar biological and chemical consequences, which are compounded by some straightforward confusion of simple matters. He seems not to know (p. 16) that oxygen is produced by green-plant photosynthesis on the Earth."
What Velikovsky says on p. 16 of Worlds in Collision is that under the conditions envisaged by the tidal and nebular theories of planet formation, the iron of the globe should have oxidized and combined with all the available oxygen. Thus there would be no oxygen to form the abundance found in the modern atmosphere. Sagan says it comes from photosynthesis. But plants are also composed partly of oxygen, and hence need it to form before they can start making it. And before it existed in any significant amount, there would be no ozone in the upper atmosphere to block harmful bands of ultraviolet that would stop biological molecules forming. Moving the process under water as some theorists have tried to do doesn't help much, since water is about as damaging and corrosive as oxygen and UV for organic chemistry without complex biological defenses to protect it. So it's not clear how the earliest plants got started.
This is a well-known problem that has been widely acknowledged among scientists, including Sagan himself in Broca's Brain. The usual assumption is that the plants got started somehow on trace amounts of oxygen, and once it was in production, bootstrapped themselves from there. The snag with this is that while the beginnings of life are conventionally put at around a billion years ago, the existence of massive "red beds" of rock rich in oxidized iron testify to the existence of not traces but large amounts of available oxygen a billion years earlier. So where did that come from? That's what Velikovsky was saying. Answering that "the green plants did it" doesn't solve the problem. It doesn't sound to me as if it was Velikovsky who was confused here.
Worlds in Collision has petroleum liquids falling to Earth at the time of the meteorite storm as Earth moves into the comet's tail, before the time of intense darkness to which smoke from the widespread fires contributed. In a later section of the book, entitled "Ambrosia," Velikovsky speculates that the "manna from heaven" that saved the Israelites when no other food was to be had could have been carbohydrates formed from hydrocarbon vapors reacting with oxygen under the influence of sunlight in the upper atmosphere. (The difference between them is that carbohydrates, such as sugars, contain oxygen whereas hydrocarbons don't.) Interestingly, traditions from as far removed as Iceland, the Maoris of the Pacific, Greece, India, Egypt, and Finland all tell of a time when a sweet, sticky, milky or honey-like substance precipitated from the skies. Sagan's reading of this is that Velikovsky claimed there were carbohydrates on Jupiter and Venus; that he displayed a sustained confusion of carbohydrates and hydrocarbons; and "seems to imagine that the Israelites were eating motor oil rather than divine nutriment . . ." The irony is that all of Sagan's errors here can be explained by his showing precisely that confusion himself.
If Venus came from Jupiter and was a comet carrying hydrocarbons, then presumably it brought those hydrocarbons from Jupiter. Sagan asks (1) Are hydrocarbons found on Jupiter? (2) Do comets contain hydrocarbons? (3) Is there a process that converts hydrocarbons to carbohydrates? which questions, he says, pose "grave difficulties" for Velikovsky.
In answer to (1), Ginenthal cites the well-known astronomer Carl Sagan, who at a NASA conference, after describing the Jovian atmosphere, relates a series of experiments that he and his associates performed on comparable mixtures, producing a high yield of a brownish colored substance. Analysis showed it to be " . . . a very complex mixture of organic molecules, that is carbon-based molecules, some of very high complexity. Most of them were of the kind called straight chain hydrocarbons." 135
This information was also available from the Encyclopedia Britannica by 1972, which in Vol.13, p.142 for that year states that "the upper atmosphere of Jupiter is a giant organic factory producing complex organic molecules that include many of biological importance."
In answer to (2), yes, "in large amounts," according to the same well-known astronomer, in his book Comet (p.153).
And to (3), again yes. Ginenthal mentions six reaction pathways and confirms that the products can be edible. (Animal foods were being manufactured from hydrocarbons by 1974.) Ginenthal also lists instances of other occasions through into modern times where substances similar to those that Velikovsky describes were seen to fall or were found on the ground; they were eaten by animals, sometimes gathered and baked into bread, or used as resins and waxes.
Next, we move to Mars. Sagan cites Velikovsky as saying that the Martian polar caps are "made of manna, which are described ambiguously as 'probably in the nature of carbon.' " Actually, it's Sagan's inversion of the text that loses clarity. Velikovsky states that the white precipitate masses are "probably of the nature of carbon," having been derived from Venus, and later refers to this substance as "manna"using the double quoteswhen speculating that the differences from terrestrial conditions prevent it from being permanently dissolved by sunlight.
There seem to be two ingredients to the Martian polar caps. One disappears during the summer and is thought to be solid carbon dioxide that sublimates, while the nature of the other, which remains, is still "unsettled"the word Sagan uses in his book The Cosmic Connection (1973), published the year before the symposium. Since then, others have concluded that it contains carbon, hydrogen, and oxygen, the elements needed for carbohydratesand enough ultraviolet exists there to produce them.
Before Mariner 4, scientists had felt confident that Mars would turn out to be generally flattish, at most with a gently undulating surface. The craters, uplifts, and planetwide system of canyons and fractures that they saw in the pictures came as a shock. Sagan seems to have forgotten this when he assures us that the features observed are fully compatible with an ancient surface shaped hundreds of millions of years ago than a planet recently devastated by catastrophic events. But the fact that these features can be seen at all belies this. Thin as it may be, the atmosphere of Mars creates high-velocity dust storms for seasons that last from three to six months and at times blanket the entire planet. The erosion from this process should long ago have worn down any features of prominence, and things like cracks, river beds, flood plains, and runoff channels would be completely obliterated by the volume of sand produced. We even have some indication of the rates that would be involved from the following, which appeared in Aviation Week and Space Technology, January 29, 1973a year before the symposium.
Using Mariner 9 wind data, Dr. Carl Sagan of Cornell University calculated erosion rates, assuming a dust storm peak wind of 100 mph blowing ten percent of the time. This would mean erosion of 10 km (6.2 miles) of surface in 100 million years. . . . there is no way to reconcile this picture with a view of the planet.
The enormous amounts of water that evidently existed on Mars at one time could only add to the process of erasing the ancient surface and reworking it. Where all the water went and why is another mystery, along with the atmosphere that must have existed to be compatible with liquid oceans. Observers have commented repeatedly on the sharpness and definition of the surface formations, and found themselves at a loss to explain how they could have the appearance of being so new. That the obvious answer never seemed to occur to anyone, or was repressed as taboo, perhaps testifies to the power of professional indoctrination and the pressures to conform.
Problem 6. Manna
Yes, I know we already covered this, but Sagan evidently couldn't let it go. Here, he concedes that "comet tails" contain hydrocarbons "but no aldehydesthe building blocks of carbohydrates." However, in his book Comet (p. 134) he shows how, in the Earth's atmosphere, water vapor, methane, and ammonia, all of them constituents of comets (pp.149–150) "are broken into pieces . . . by ultraviolet light from the Sun or electrical discharges. These molecules recombine to form, among other molecules . . . formaldehyde." Which, in case the connection isn't clear, is an aldehyde.
It's okay for Sagan to quote the Bible, incidentally. "In Exodus, Chapter 16, Verse 20," he states, "we find that manna left overnight was infested with worms in the morningan event possible with carbohydrates but extremely unlikely with hydrocarbons." True, Carl, but check Worlds in Collision one more time. It clearly states, Chapter 2, page 53, under the heading "Naphtha," also referred to in the text as "oil" and "petroleum," "The tails of comets are composed mainly of carbon and hydrogen gases. Lacking oxygen, they do not burn in flight." And Chapter 6, page 134, under the heading "Ambrosia," "Has any testimony been preserved that during the many years of gloom carbohydrates precipitated?" (emphasis added) You've read them the wrong way around again.
But that's beside the point because "it is now known that comets contain large quantities of simple nitrilesin particular, hydrogen cyanide and methyl cyanide. These are poisons, and it is not immediately obvious that comets are good to eat." (emphasis added)
Sagan also deals with the question of cyanide in comets in his book Comet. Here, however, he ridicules people in the past for imagining that the amounts were anything to worry about. For example, with regard to the passage of Halley's comet relatively close to the Earth in 1910 (pp. 143–144): "People imagined themselves choking, gasping, and dying in millions, asphyxiated by the poison gas. The global pandemonium . . . was sadly fueled by a few astronomers who should have known better." (emphasis added) "The cyanogen gas is in turn a minor constituent in the tails of comets. Even if the Earth had passed through the tail in 1910 and the molecules in the tail had been mixed thoroughly down to the surface of the Earth, there would have been only one molecule of cyanogen in every trillion molecules of air."
Problem 7. The Clouds of Venus
The layer of bright clouds covering Venus is perhaps its most immediately striking characteristic, making it one of the brightest objects in the skies. What these clouds are composed of has long been a topic of debate and study. The atmosphere of Earth consists mostly of nitrogen and oxygen, but the clouds that form in it are water vapor.
Sagan was long of the opinion that Venus's clouds were water vapor, toothe subject formed a large part of his research as a graduate student. This could perhaps have been partly why he clung to the conviction long after others, including Velikovsky, had noted that it wasn't compatible with the Mariner 2 findings from 1963. Intelligent Life in the Universe (1966), coauthored by Sagan and I. S. Shklovskii, states (p. 323), "From a variety of observations . . . it has recently been established that the clouds of Venus are indeed made of water [ice crystals at the top and droplets at the bottom]." In 1968 his published paper "The Case for Ice Clouds on Venus" appeared in the Journal of Geophysical Research (Vol. 73, No. 18, September 15).
Velikovsky had predicted that the atmosphere of Venus would contain "petroleum [hydrocarbon] gases," which perhaps explains the somewhat peevish tone when Sagan tells us that "Velikovsky's prognostication that the clouds of Venus were made of carbohydrates has many times been hailed as an example of a successful scientific prediction." (No, Carl. The carbohydrates were produced in the atmosphere of Earth. The one that's got "ate" in it is the one that you "eat." Try remembering it that way.)
By 1974 Sagan had decided that "the question of the composition of the Venus cloudsa major enigma for centurieshas recently been solved (Young and Young, 1973; Sill 1972; Young 1973; Pollack et. al., 1974). The clouds of Venus are composed of an approximately 75 percent solution of sulfuric acid." 136
However, in the following year Andrew T. Young, one of the sources whom Sagan cites as an architect of that theory, was to caution in a NASA report that "none of the currently popular interpretations of cloud phenomenon on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models." 137 The enigma still did not seem generally to be considered solved by the 1980s, and several of the models being proposed then made no mention of sulfuric acid.
But it had been reported back in 1963, following the Mariner 2 flyby in December of 1962, that the clouds of Venus contained hydrocarbons. At the symposium Sagan dismissed this as an instance of journalists seizing on a scientist's personal conjecture and reporting it as fact. Velikovsky disagreed, having established that the person who originated the statement, Professor L. D. Kaplan of the Jet Propulsion Laboratory (JPL), had arrived at his conclusion after careful consideration of the data and had repeated it in several papers and memoranda. Sagan's assertion that JPL revoked the statement was also untrue. JPL's report Mission to Venus (Mariner II), published in 1963, states that "At their base, the clouds are about 200ºF and probably are comprised of condensed hydrocarbons."
Having evidently done his homework, Velikovsky had also ascertained that in a later letter to a colleague at the Institute of Advanced Study at Princeton, Kaplan's identifying of "hydrocarbons" caused a violent reaction among astronomersat that time Kaplan was seemingly unaware of just why. In a later version he amended the offending term to "organic compounds."
The tenor of the astronomers who reacted violently might perhaps be gauged from a later item in Popular Science (April 1979) reporting that the head of the mass spectrometer team for Pioneer Venus 2 stunned colleagues by reporting that the atmosphere of Venus contains 300 to 500 times as much argon as Earth. He then went on to say there were indications that the lower atmosphere may be rich in methanethe simplest hydrocarbon, and also a constituent of Jupiter's atmosphere. A follow-up article in Science News (September 1992) describes the researchers as being so surprised by the findings of methane that they were loathe to publish them. The explanation concocted was that the probe must have just happened to come down over a volcanic eruption of a size which, to produce the amount of methane indicated, would occur about once in a hundred million years.
As an amusing footnote, if it turns out that Sagan was indeed correct in his insistence on sulfuric-acid clouds (we left the jury as still being out), then it would seem to rule out the possibility of Venus being 4 billion years old, since sulfuric acid would decompose under solar ultraviolet radiation. People who have done the calculations give sulfuric acid a lifetime in the upper atmosphere of ten thousand years at most. The hydrogen resulting from its dissociation would escape into space, as would hydrogen released by the dissociation of water released through volcanic outgassing. What's missing is all the oxygen that this ought to produce. Similar considerations apply to the abundance of carbon dioxide, CO2, which splits into O and CO (carbon monoxide) under ultraviolet, and the two do not readily recombine. Once again, where is all the oxygen that ought to be there?
In considering Earth, earlier, we touched on the puzzle of abundant oxygen combining with iron (also identified on Venus) in early times, a billion years before life is supposed to have emerged, and asked where it came from. So everything is consistent with the suggestion that when looking at Venus now, we're watching a new Earth in the making.
Problem 8. The Temperature of Venus
The conventional view before results from Mariner 2 showed, in early 1963, the surface temperature of Venus to be 800ºF had been that it would be slightly warmer than Earth. By the time of the symposium Sagan's recollection had become, in effect, that "we knew it all along." In fact, the only personapart from Velikovskywho had predicted a high temperature was a Dr. Rupert Wildt, whose work was based on a greenhouse mechanism and not generally accepted. (By 1979 Sagan's memory had evidently suffered a further lapse, for in Broca's Brain he states [p. 153], "One now fashionable suggestion I first proposed in 1960 is that the high temperatures on the surface of Venus are due to a runaway greenhouse effect.") When the conventional view was shown to be spectacularly wrong (one is tempted to say "catastrophically"), Wildt's proposal was hastily resurrected in an attempt to explain why, while preserving the doctrine of a long-established planet and slow, uniformitarian change.
But it doesn't really wash. Contrary to current media fictions, the main agent responsible for Earth's greenhouse effect (a natural phenomenon, without which we'd be around 33ºF cooler) isn't carbon dioxide but water vapor, which contributes over 90 percent. Back in the days when Venus's atmosphere was believed to contain a considerable amount of water, the suggestion of an enhanced greenhouse effect yielding temperatures considerably higher than those generally proposed wasn't unreasonable. But it just doesn't work as a plausible mechanism for sustaining the huge temperature gradient that exists down through Venus's atmosphere. Especially when it turns out that the heat source is at the bottom, not the top.
Besides an efficient medium for absorbing and reradiating incoming radiation, an effective greenhouse also needs adequate penetration of the medium by sunlight to utilize the available mass. With Venus, for a start, only about twenty percent of the incoming sunlight gets past the cloud tops forty to forty-five miles above the surface, the rest being reflected back into spacewhich is why Venus is so bright. The surface pressure on Venus is around ninety times that of Earth's, which translates into something like seventy-five times the mass of gases, giving it more the optical characteristics of a seain fact, corresponding to a depth of about three thousand feet. Virtually all the sunlight entering the oceans is absorbed within the top three hundred feet. Likewise, any greenhouse mechanism on Venus would be confined to the top fifteen percent of the atmosphere. These objections were well known. In 1968 the British astronomer V. A. Firshoff, in The Interior Planets, put it like this:
The greenhouse effect cannot be magnified ad lib. Doubling the [glass] thickness may enhance its thermal insulation, so raising its temperature, but it will cut down the transmitted sunshine, so reducing its heat. In the end the process becomes self-defeating. . . . The sea is a perfect "greenhouse" of this kindnone of the obscure heat from the bottom can escape into space. But it is not boiling; in fact it is not much above freezing point. Sagan's deep atmosphere would behave in exactly the same way. . . . An adiabatic atmosphere of a mass envisaged by Sagan is possible only if it is heated from below. In other words, the surface of Venus would have to be kept at a high temperature by internal sources.
By the time the official version of the proceedings was published over two years later as Scientists Confront Velikovsky, Sagan had embellished his argument by reference to the Soviet Venera 9 and 10 landings in October 1975. (True to the spirit of the whole affair, while Sagan was permitted to add a revised appendix of new points, Velikovsky was denied space to respond to them.) The Soviet craft, Sagan claimed, were able to obtain clear pictures in sunlight of surface rocks, showing Velikovsky wrong in saying that light does not penetrate the cloud cover. This doesn't seem to appreciate the fact that the Soviet landers were equipped with floodlights. Further, as reported by Professor Lewis Greenberg, 138 the Venera instruments detected nothing but gloom and darkness after descending through the clouds, until a glow appeared and grew brighter as they neared the surface. The atmosphere at the surface was much brighter than had been expected. V. A. Avduevsky, deputy director of the Soviet Space Flight Control Center, described the terrain as showing distinct, dark shadows that persisted even when the floodlights were turned off, which was unanticipated since sunlight from the clouds would be diffuse. He and his colleagues agreed that it indicated a direct light source on the surface but they could not guess what it was. Velikovsky had proposed that there could still be hydrocarbons burning on the extremely hot surface.
If Sagan is permitted to draw on information from after the symposium, then so shall we. In Scientists Confront Velikovsky and also in Broca's Brain, Sagan charges that the reflected spectrum from Venus is entirely consistent with the infrared cloud temperature of 240ºK, in other words the temperature is what would be expected for the amount of sunlight, and this negates Velikovsky's prediction of Venus giving off more heat than it receives from the Sun. That is to say, Venus is in thermal equilibrium with its surroundings, whereas Velikovsky says it shouldn't be. Well, in an article headed "The Mystery of Venus' Internal Heat," the U.K. journal New Scientist reported in 1980 (November 13) that data from the Pioneer Venus orbiter showed Venus to be radiating fifteen percent more energy than is received from the Sun (later figures put it at twenty percent). This would mean that Venus is producing ten thousand times more heat than the Earthstated as being "inconceivable, according to present theories of planetary formation."
It was so inconceivable, in fact, that the scientists resorted to "correcting" the data that clearly pointed to it. Calculation of thermal balance is quite sensitive to the figure used for albedo, the fraction of sunlight that's reflected. Ground-based measurements (examples: 0.878, Muller, 1893; 0.815, Danjon, 1949; 0.815, Knuckles, Sinton and Sinton, 1961; 0.80, Travis, 1975) and measurements from space probes (0.80, Tomasko et al., 1980), allowing for the better accuracy of modern instruments, show a clustering around 0.8, which would normally be averaged to give what would be taken as a good indication of the actual figure. 139 But for Venus to be in thermal balance, while at the same time having an internal heat comparable to Earth's, the figure should be about 0.76more sunlight being absorbed to account for the temperature. The procedure followed, therefore, was that both these conditions were assumed, and the error ranges of the instruments recalculated to allow the observed dataall the presumed errors being biased in the desired direction. And lo and behold, the final massaged figure comes out at 0.76 +/- 0.01entirely consistent with expectations. So why bother sending anything at all?
It doesn't end there. Albedo corrections deal only with the situation at the cloud tops. For Venus to be in thermal equilibrium, a balance between emitted and incoming energy should apply all the way down. If Venus is the predominant source of heat, the imbalance should become greater closer to the surface. And this was what all the American and the Soviet landers found. The four Pioneer Venus probes entered at locations varying from 30º south to 60º north, both in daylight and night, and each one found more energy being radiated up from below than was coming down as sunlight. To complicate things further, the upward energy flux varied from place to place by a factor of two, which is difficult to reconcile with any greenhouse model but fits perfectly well with some areas being hotter than others on the young and still primarily volcanic surface of a recently incandescent planet. The Pioneer data indicated a progressive increase in thermal imbalance from twenty percent at the cloud tops to fifty percent at around seven miles altitude, where all inputs terminated. The Soviet Venera landers showed the trend accelerating all the way to the surface, where the emitted infrared flux was forty times more than that coming from overhead.
None of which was acceptable, of course. Accordingly, the investigators again searched for instrument errors, and having found one that they considered could have increased the Pioneer Venus readings, adjusted the figures for the low-level data to what they considered to be "reasonable values." But with Venera, there was no saving the situation. So as with the scribes who cut the Babylonian tablets, and the dating of reed and nut samples from Egyptian tombs, the story of what they say they saw was dismissed.
As a final word on Venus's temperature, Dr. George Talbott, whose field is thermodynamics, particularly with regard to space application, wrote in the pro-Velikovskian journal Kronos that the thermal calculations presented in Scientists Confront Velikovsky were irrelevant, and developed a cooling curve for an incandescent body the size and mass of Venus. It showed that in the course of thirty-five hundred years the surface temperature would fall to 750ºKjust about the observed value. 140 My understanding is that Talbott's paper was not well received in establishment circles.
Problem 9. The Craters of Venus
Sagan turns to Venus's topography to show that it must be as ancient as the Earth. He tells us that radar observations reveal enormous linear mountain ranges, ringed, basins, a great rift valley and abundant cratering, maybe with areas saturated like parts of the Moon. Such tectonic or impact features couldn't be supported by the thin and fragile crust that Velikovsky's theory requires.
Well, whatever the earlier interpretations of the radar images may have been, many of these features seemed to have disappeared in later years. Studies of the Pioneer-Venus radar mappings were described in various journals in 1980. Science, July 4, reported (p. 103) that "plate tectonics is also absent"; Scientific American, August, (p. 65) concluded "the motion of large plates appears not to have played a dominant role"; while the Journal of Geophysical Research, December 30, found a pattern "indicative of global tectonism has not been identified" (p. 8232). Rick Gore wrote in National Geographic, January, 1985 (p. 36), "Until the orbiter's cloud penetrating radar began, crudely mapping the Venusian surface, we knew relatively nothing about the planet's terrain. . . . [until a surge of new imaging revealed] Venus as a volcanic cauldron . . . with shapes suspiciously like lava flows across the planet."
So maybe that accounts for the elevated formations that Sagan knew were mountain chains and continentswhich couldn't have been produced through tectonic processes since there weren't any. Thick plates and a supporting mantle like those the Earth possesses wouldn't have had time to cool and form on a young planet. Gore's article goes on to say, "Stunning images from the Soviet Union's Venera 15 and 16 orbiters not only revealed abundant evidence of volcanism, but also far fewer ancient meteoric impact craters than on the Moon or Mars."
By then Sagan had stopped seeing areas saturated with craters like parts of the Moon. His book Comet of the same year, coauthored with Ann Druyan, tells us (p. 258) "[T]he sparseness of craters on Venus shows that the surface is continually being modifiedprobably by volcanism."
Problem 10. The Circularization of the Orbit of Venus
This was a continuation of the insistence that had been heard since 1950 that electromagnetic forces play no part in celestial dynamics. However, Einstein, since the outset, had been of the opinion that given some unlikely coincidences they didn't have to, and since Sagan himself conceded that the odds against a Velikovskian scenario were "not overwhelming," it wasn't essential that they be brought up. Velikovsky had introduced the suggestion as a possibility, and as mentioned earlier various candidates for contributory mechanisms have been investigated, such as proto-Venus being in a charged plasma state, and tidal effects on a plastic body acting to pull it toward a lower-energy, hence more circular orbit, converting orbital momentum into heat. And let's bear in mind that electrical conditions across the Solar System following an event like the ejection of Venus from Jupiter could well be vastly different from the relatively quiescent conditions that we observe today. The debate is still going on, and while nothing put forward so far has been sufficient to convince everybody, the subject is far from closed.
And then there's the unthinkable question: Is conventional gravitational theory really on such solid ground as is almost universally supposed? Sagan assures us that literally millions of experiments testify to its validity. Yet, those reports keep coming in from what would seem to be reputable sources of pendulums doing things they're not supposed to under certain conditions of electrical charge and during solar eclipses, when the Sun is obscured. 141 Sagan reminds us of the accuracy achieved in injecting Venera 8, and Voyager 1 precisely into their designated orbits, and getting within one hundred kilometers with the Viking orbiters, using Newtonian mechanics alone. . . . Well, yes; but they did employ course-corrections in flight. And Mariner 2 missed its target area by twelve thousand miles. And in the last year or so we've been hearing that probes now in the outer Solar System are deviating from their expected trajectories and nobody is sure why.
Appealing though Newton's gravitation law may be in its simplicity, the only tests actually performed so far have been very close by in our own backyard. Everything beyond that is based on faith that it continues to apply over unlimited distances because the formula says so. But what if, as in many relationships of physics, this turns out to be an approximation to a more complex function whose deviation becomes more significant as distance increases? The only observational evidence we have of how gravity operates over distances much larger than those found in the Solar System are from the courses of stars within the disks of faraway galaxies, thousands of light-years across. And these are so much in violation of expectations that all kinds of exotic unseen matter are invented to explain them. Could the whole exercise, I can't help wondering, turn out one day to be another case of self-deception arising from a refusal to accept the most simple explanationthat the evidence means what it saysbecause "we know" it can't be possible.