When all its work is done the lie shall rot;
The truth is great, and shall prevail,
When none cares whether it prevails or not. Coventry Patmore, from the poem "Magna est Veritas"
The DDT controversy takes us back over thirty years and might have slipped from the memories of some. Others may never have been cognizant of it in the first place. And that's a good reason for selecting it for inclusion, for it constitutes the original, model environmental catastrophe scenario and protest movement, setting the pattern for just about all of the major issues that have become news since.
The biggest single killer of human beings through history has been malaria. Before the 1940s, 300 million new cases were contracted annually worldwide, and of those stricken, 3 million died. 6 to 7 million cases occurred every year in the United States, primarily in the South and parts of California.
Malaria is caused by a genus of protozoanthe simplest, single-cell animal formcalled Plasmodium, which comes in four species. In the human bloodstream they take a form known as merozoites, which burrow into the red blood cells and reproduce asexually, each one producing 6 to 26 new individuals which burst out to infect new blood cells on a cycle that repeats every forty-eight hours. When the number of merozoites exceeds about 50 per cubic milliliter of blood (a typical drop), the victim suffers a malaria attack every forty-eight hours. In a heavily infected person, the number of plasmodia present can be as high as 2 million per milliliter.
The severity of the symptoms depends on the species involved, but a typical attack consists of severe frontal headache and pain in the neck, lower back, and limbs, dizziness and general malaise, accompanied by waves of chill and seizures alternating with fever temperatures of up to 104oF and profuse sweating, acute thirst and vomiting being not uncommon. The falciparum variety can kill up to 40 percent of those affected. Deaths occur mainly among children under five years old. For those who survive, the pattern continues for several months, and then gives way to symptom-free periods punctuated by relapses that occur over anywhere from a year to ten years. The effects can be sufficiently debilitating to incapacitate 80 percent of a workforce, with such consequences as preventing harvesting of a food crop, thus rendering a population vulnerable to all of the opportunistic threats that come with malnutrition and an impaired immune system, such as hepatitis, tuberculosis, dysentery, and typhoid fever. Transmission from person to person takes place through the ingestion of blood by females of the Anopheles mosquito, and re-injection of Plasmodium into a new victim via the saliva after undergoing another part of its life cycle within the mosquito's stomach.
Since, through most of history, eliminating the mosquito was never feasible, attempts at checking the spread of the disease were directed at destruction of the breeding grounds. The two main methods were draining of swamps and marshy areas, which dates back to the Romans, and the flooding of lakes and open areas of water with oil from early spring to fall, to prevent the mosquito larvae from breathing. Where irrigation channels were needed for agriculture, a common practice was to introduce the "mosquito fish" Gambusia, a typically arduous and expensive undertaking, since it was usually necessary to first eradicate such predatory types as catfish, which were partial to Gambusia. These measures were partially successful at best, and confined to the more developed countries. Only Italy achieved what seemed to be eradication, after a fifteen-year program of intensive effort under Mussolini, but the victory turned out to be temporary.
Then, in 1939, Paul Mueller, a chemist working for J. R. Geigy S.S. in Switzerland, developed a compound, ichloro-diphenyl-trichloroethaneDDTby combining chlorals with hydrocarbons and phenols that was cheap, easy to produce and use, nontoxic to mammals and plants, but extremely toxic on contact to insects and various other arthropods. The Allies quickly recognized its value for wartime use and found it 100 percent effective as a fumigant against the ticks and body lice that transmit typhus, which in World War I had killed millions of soldiers and civilians in Europe. In early 1944 an incipient typhus epidemic in Naples was halted with no adverse side effects apart from a few cases of very minor skin irritation, after efforts with more conventional agents achieved only limited results. A plague epidemic in Dakar, West Africa, was stopped by using DDT to eliminate the carrier fleas, and it was mobilized with great success against malaria in the Pacific theater, Southeast Asia, and Africa. After the war, DDT became widely available not only for the reduction of insect-transmitted human diseases but also of a wide range of agricultural, timber, and animal pests. The results from around the world seemed to bear out its promise as the perfect insecticide.
For combating malaria, it was sufficient to spray the walls and ceiling of dwellings once or twice a year. Malaria mosquitoes rested in these places when inactive, and the DDT penetrated via their feet. Incidence in India in the 1940s was over 100 million cases annually, of which 2.5 million died. By 1962 these numbers were down to 5 million and 150,000, while life expectancy had risen from thirty-two to forty-seven. 186 A 1.5-ounce shot glass of DDT solution covered twelve by twelve feet of wall. The cost per human life saved worked out at about twenty cents per year. In the same period, India's wheat production increased from less than 25 million tons to over 100 million tons per year due to a combination of pest reduction and a healthier workforce. Ceylonnow Sri Lankareduced its malaria figures from 3 million cases and 12,000 deaths per year in the early fifties to 31 cases total in 1962, and 17 cases the year after, with zero deaths. Pakistan reported 7 million cases of malaria in 1961, which after the introduction of an aggressive spraying program had fallen to 9,500 by 1967. 187
In Africa, in what is considered to be its second most important medical benefit after reducing malaria, DDT proved effective in a program to control the bloodsucking tsetse fly, which transmits the protozoan responsible for deadly sleeping sickness and also fatal cattle diseases. According to the World Health Organization, 40 million square miles of land that had been rendered uninhabitable for humans because of tsetse fly infestation became available.
Another serious menace in parts of Africa and Central American is the blackfly that transmits roundworms causing "river blindness" in humans. Before DDT was introduced, more than 20,000 victims of this affliction in Africa were blind, with incidences as high as 30 percent of the populations of some villages. The larvae of the flies live in fast-flowing streams and had proved impossible to control until the occurrence of a fortunate accident in the 1950s in the Volta River basin, when a mule carrying DDT powder to a spraying project slipped while fording a stream and spilled its load into the water. Blackfly larvae were killed for a mile downstream without ill effects on other forms of aquatic life, and a river treatment program was implemented subsequently, greatly reducing the number of river-blindness sufferers. No masks or protective clothing were required for the operatives. In this entire period no instance of DDT-induced illness was reported among the estimated 130,000 spraying personnel employed, or the millions of people whose dwellings were treated. S. W. Simmons, chief of the technology branch of the Communicable Disease Center of the U.S. Public Health Service, said in 1959:
The total value of DDT to mankind is inestimable. Most of the peoples of the globe have received benefit from it either directly by protection from infectious diseases and pestiferous insects, or indirectly by better nutrition, cleaner food, and increased disease resistance. The discovery of DDT will always remain an historic event in the fields of public health and agriculture. 188
Such being the perversity of human nature, it could only be a matter of time before people started finding reasons why something as good as that couldn't be allowed to continue.
Throughout history there have been those who opposed, or who were simply left not especially impressed by, the furthering of technology and its application to ends traditionally considered indicative of human progress toward better things. Their motives vary from sincere conviction as to the folly of playing God and the likely outcomes of meddling with nature, through simple disenchantment with the results, political opportunism, publicity and status seeking, to resentment at society's building itself around values that they feel exclude them. In some ages they have been lonely minorities, largely ignored and at odds with the fashion of the times; at others, particularly when change has been rapid or heightened social conflict results in yearnings for stability or a return to the imagined tranquility of an earlier age, their influence has been significant in shaping the flow of events.
The 1960s was a time when all these currents converged. A new generation separated from roots in the past by the disruptions of World War II was manifesting an awakening social conscience through such channels as the civil rights movement and challenges to all forms of traditional authority. The destructiveness of the war, particularly its climaxing in the atomic devastation of two Japanese cities, followed by the specter of general nuclear annihilation promulgated through the Cold War with the Soviet Union, made for a climate of distrust in "Big Science" wedded to "Big Politics," with widespread questioning of whether all the effort and upheaval had brought any worthwhile benefits at all. And waves of radical technological change coming in such forms as mass automobile and jet travel, computing and electronics, nuclear energy, the space program, coupled with social revolutions sweeping away the old political and economic order across three quarters of the world had left people everywhere reeling in bewilderment and the social organism in need of respite to collect itself back together and regain cohesion.
In 1962, naturalist and writer Rachel Carson published a book called Silent Spring that touched a sympathetic note in just about every one of the simmering discontents and nagging apprehensions waiting to be released. But for once, the dangers were straightforward and comprehensible, the villains of the piece identifiable, and rising frustrations saw the prospect of relief through a chance to take action that could make a difference. Carson's work was an eloquent and passionate indictment of what many had come to regard as man's reckless chemical assault in the name of misplaced humanitarianism and the pursuit of profits on the natural environment. Its major target was DDT. The general tenor can perhaps be assessed from the following, taken from the first chapter, "Fable for Tomorrow," which in execution and effect must be described as brilliant.
"There was once a town in the heart of America where all life seemed to live in harmony with its surroundings. The town lay in the midst of a checkerboard of prosperous farms, with fields of grain and hillsides of orchards where, in spring, white clouds of bloom drifted above the green fields." The idyllic picture is developed at some length and concludes, "So it had been from the days many years ago when the first settlers raised their houses, sank their wells, and built their barns."
There continues (pp. 13–14):
Then a strange blight crept over the area and everything began to change. Some evil spell had settled on the community: mysterious maladies swept the flocks of chickens; the cattle and sheep sickened and died. Everywhere was a shadow of death. The farmers spoke of much illness among their families. In the town the doctors had become more and more puzzled by new kinds of sicknesses appearing among their patients. . . .
There was a strange stillness. The birds, for examplewhere had they gone? . . . The few birds seen anywhere were moribund; they trembled violently and could not fly. It was a spring without voices. On the morning that had once throbbed with the dawn chorus . . . only silence lay over the fields and woods and marsh. . . .
The roadsides, once so attractive, were now lined with browned and withered vegetation as though swept by fire. These, too, were silent, deserted by all living things. Even the streams were now lifeless. Anglers no longer visited them, for all the fish had died.
In the gutters under the eaves and between the shingles of the roofs, a white granular powder still showed a few patches; some weeks before it had fallen like snow upon the roofs and the lawns, the fields and streams.
No witchcraft, no enemy action had silenced the rebirth of new life in this stricken world. The people had done it themselves.
J. Gordon Edwards is a professor emeritus of entomology at San Jose State University in California, having taught biology and entomology there for over forty years, and a lifetime fellow of the California Academy of Sciences. He is also a long-term member of both the Audubon Society and the Sierra Club, the latter of which published his book Climbers' Guide to Glacier National Park. Such a person should certainly qualify as a sincere lover of nature and knowledgeable scientist with concerns for protecting living things. In 1992 he wrote of Silent Spring:
" . . . I was delighted. I belonged to several environmental-type organizations, had no feelings of respect for industry or big business, had one of my own books published by the Sierra Club, and I had written articles for The Indiana Waltonian, Audubon Magazine, and other environmental magazines. . . . I eagerly read the condensed version of Silent Spring in the New Yorker magazine and bought a copy of the book as soon as I could find it in the stores." 189 The enthusiasm carried him onward for a while. "As I read the first several chapters, I noticed many statements that I realized were false; however, one can overlook such things when they are produced by one's cohorts, and I did just that."
But by the middle of the book, his feeling had grown that "Rachel Carson was really playing loose with the facts and deliberately wording many sentences in such a way as to make them imply certain things without actually saying them." Upon checking the references that were cited, Edwards found that they did not support the book's contentions about harm being caused by pesticides. He concluded, "When leading scientists began to publish harsh criticisms of her methods and her allegations, it slowly dawned on me that Rachel Carson was not interested in the truth about these topics, and that I really was being duped, along with millions of other Americans."
Millions of other Americans, however, did not possess the background knowledge of somebody like Edwards or read the journals in which leading scientists published their criticisms. What they did see was a media and journalistic frenzy of sensationalism, nascent action groups discovering a moral crusade of fund-raising potential that was without precedent, and politicians vying for public visibility as champions of the cause. Leading environmentalist organizations found they had become big business and campaigned to expand the operation. In July 1969 the National Audubon Society distributed seventeen thousand leaflets to its members urging them to support the position that DDT should be banned throughout the United States and its export prohibited. In February 1971 the director of the Sierra Club declared , "The Sierra Club wants a ban, not a curb, on pesticides, even in the tropical countries where DDT has kept malaria under control." 190
The attack against DDT was based, essentially, on three broad allegations: (1) that it interfered with bird reproduction, causing mass die-offs among the population; (2) that it persisted in the environment and its concentration was magnified at higher levels of the food chain, and (3) that it caused cancer. While all of these claims continued to draw vigorous opposition within the scientific community, the popular imagery depicted a heroic grass-roots battle affecting everyone.
The imagery and attendant political pressures had their effects overseas, too. Many of the countries that had joined energetically in the war on malaria cut back or abandoned their programs. In 1967 the World Health Organization (WHO) changed its official goal from worldwide "eradication" to "control of the disease, where possible." In India, where health officials at one point had believed malaria on the point of being eradicated, the number of cases returned to a million in 1972, to quadruple by 1974. Ceylon, which in 1963 had brought its incidence down to just 17 cases with no deaths, halted its program on the strength of the claims and public opposition in the West. The number of cases went back up to 308 in 1965; 3,466 in 1967; 17,000 in January 1968; 42,000 in February, and thereafter, millions. 191
A new phenomenon in the midst of all the stirred-up passions was the emergence of groups of scientists taking openly partisan positions on controversial issues. Hence, in addition to receiving a one-sided treatment from large sections of the press, the public was also exposed to statements from positions accepted as carrying scientific authority, but which represented advocacy rather than the impartial exposition that was expected. The situation was exacerbated by the tendency for professional disapproval of such practices to be expressed in limited-circulation, specialized journals rather than the popular media where the original slanted material appeared.
In 1967 the Environmental Defense Fund (EDF) was founded by Victor Yannacone, a New York attorney; Charles Wurster, then assistant professor of biology at the State University of New York, Stony Brook; George Woodwell, a plant physiologist at the Brookhaven National Laboratories on Long Island, and several other scientists with environmental concerns. The stated aim was "to create, through litigation, a body of legal interpretations for natural resource conservation and abatement of ecologically perilous situations." The law courts, then, would be made the forum for the environmental debate. This meant that procedures followed in legal hearings, where each side presents only those points that best support its case, would be applied to deciding what were essentially scientific issueseven if the consequences had significant social implications. But a scientific debate can only be properly decided after consideration of all the pertinent data and all of the available evidence. The truth value of a scientific statement is not affected by debating skill or the persuasive powers of a trained advocate.
In the late sixties the EDF initiated a number of legal actions challenging local practices in various areas, an example being 1967, where it filed suit in western Michigan to restrain nine municipalities from using DDT to spray trees against Dutch elm disease. While in the main these cases lost in court, they were successful nevertheless in gaining publicity and attracting broadbased support through a process of education-by-headlines. Scientists heady with the new feeling of celebrity status took to the laboratories and produced results backing their claims, for example two studies published in 1969 purporting to show that DDT caused cancer in mice. 192 When public interest waned, they called journalists to organize press conferences.
In 1971 a group of environmentalist organizations led by the EDF brought suit against the recently formed (1970) Environmental Protection Agency, which had taken over from the Department of Agriculture the regulation of pesticide registration and use, for the sale and use of DDT to be banned. In response to an appeal by the Montrose Chemical Company, the sole remaining manufacturer of DDT in the United States, and the Department of Agriculture in conjunction with about thirty suppliers of products containing DDT, the EPA appointed a scientific advisory committee to investigate and report on the situation. The hearings began in August 1971.